WorldWideScience

Sample records for microbiota epithelial barrier

  1. Fish oil enhances recovery of intestinal microbiota and epithelial integrity in chronic rejection of intestinal transplant.

    Directory of Open Access Journals (Sweden)

    Qiurong Li

    Full Text Available BACKGROUND: The intestinal chronic rejection (CR is the major limitation to long-term survival of transplanted organs. This study aimed to investigate the interaction between intestinal microbiota and epithelial integrity in chronic rejection of intestinal transplantation, and to find out whether fish oil enhances recovery of intestinal microbiota and epithelial integrity. METHODS/PRINCIPAL FINDINGS: The luminal and mucosal microbiota composition of CR rats were characterized by DGGE analysis at 190 days after intestinal transplant. The specific bacterial species were determined by sequence analysis. Furthermore, changes in the localization of intestinal TJ proteins were examined by immunofluorescent staining. PCR-DGGE analysis revealed that gut microbiota in CR rats had a shift towards Escherichia coli, Bacteroides spp and Clostridium spp and a decrease in the abundance of Lactobacillales bacteria in the intestines. Fish oil supplementation could enhance the recovery of gut microbiota, showing a significant decrease of gut bacterial proportions of E. coli and Bacteroides spp and an increase of Lactobacillales spp. In addition, CR rats showed pronounced alteration of tight junction, depicted by marked changes in epithelial cell ultrastructure and redistribution of occuldin and claudins as well as disruption in TJ barrier function. Fish oil administration ameliorated disruption of epithelial integrity in CR, which was associated with an improvement of the mucosal structure leading to improved tight junctions. CONCLUSIONS/SIGNIFICANCE: Our study have presented novel evidence that fish oil is involved in the maintenance of epithelial TJ integrity and recovery of gut microbiota, which may have therapeutic potential against CR in intestinal transplantation.

  2. Microbiota facilitates dietary heme-induced epithelial hyperproliferation and hyperplasia by breaking the mucus barrier

    NARCIS (Netherlands)

    IJssennagger, Noortje; Belzer, Clara; Hooiveld, Guido; Dekker, Jan; Muller, Michael; Kleerebezem, Michiel; Meer, van der Roelof

    2015-01-01

    Colorectal cancer risk is associated with diets high in red meat. Heme, the pigment of red meat, induces cytotoxicity of colonic contents and elicits epithelial damage and compensatory hyperproliferation, leading to hyperplasia. Here we explore the possible causal role of the gut microbiota in

  3. Gut microbiota facilitates dietary heme-induced epithelial hyperproliferation by opening the mucus barrier in colon

    NARCIS (Netherlands)

    Ijssennagger, Noortje; Belzer, Clara; Hooiveld, Guido J; Dekker, Jan; van Mil, Saskia W C; Müller, Michael; Kleerebezem, Michiel; van der Meer, Roelof; van Mil, SWC

    2015-01-01

    Colorectal cancer risk is associated with diets high in red meat. Heme, the pigment of red meat, induces cytotoxicity of colonic contents and elicits epithelial damage and compensatory hyperproliferation, leading to hyperplasia. Here we explore the possible causal role of the gut microbiota in

  4. Site-specific programming of the host epithelial transcriptome by the gut microbiota

    DEFF Research Database (Denmark)

    Sommer, Felix; Nookaew, Intawat; Sommer, Nina

    2015-01-01

    BACKGROUND: The intestinal epithelium separates us from the microbiota but also interacts with it and thus affects host immune status and physiology. Previous studies investigated microbiota-induced responses in the gut using intact tissues or unfractionated epithelial cells, thereby limiting....... The microbial impact on host gene expression was highly site specific, as epithelial responses to the microbiota differed between cell fractions. Specific transcriptional regulators were enriched in each fraction. In general, the gut microbiota induced a more rapid response in the colon than in the ileum...

  5. Lactobacillus frumenti Facilitates Intestinal Epithelial Barrier Function Maintenance in Early-Weaned Piglets

    Science.gov (United States)

    Hu, Jun; Chen, Lingli; Zheng, Wenyong; Shi, Min; Liu, Liu; Xie, Chunlin; Wang, Xinkai; Niu, Yaorong; Hou, Qiliang; Xu, Xiaofan; Xu, Baoyang; Tang, Yimei; Zhou, Shuyi; Yan, Yiqin; Yang, Tao; Ma, Libao; Yan, Xianghua

    2018-01-01

    Increased intestinal epithelial barrier function damages caused by early weaning stress have adverse effects on swine health and feed utilization efficiency. Probiotics have emerged as the promising antibiotic alternatives used for intestinal barrier function damage prevention. Our previous data showed that Lactobacillus frumenti was identified as a predominant Lactobacillus in the intestinal microbiota of weaned piglets. However, whether the intestinal epithelial barrier function in piglets was regulated by L. frumenti is still unclear. Here, piglets received a PBS vehicle or PBS suspension (2 ml, 108 CFU/ml) containing the L. frumenti by oral gavage once a day during the period of 6–20 days of age prior to early weaning. Our data demonstrated that oral administration of L. frumenti significantly improved the intestinal mucosal integrity and decreased the serum endotoxin and D-lactic acid levels in early-weaned piglets (26 days of age). The intestinal tight junction proteins (including ZO-1, Occludin, and Claudin-1) were significantly up-regulated by L. frumenti administration. The serum immunoglobulin G (IgG) levels, intestinal secretory immunoglobulin A (sIgA) levels, and interferon-γ (IFN-γ) levels were significantly increased by L. frumenti administration. Furthermore, our data revealed that oral administration of L. frumenti significantly increased the relative abundances of health-promoting microbes (including L. frumenti, Lactobacillus gasseri LA39, Parabacteroides distasonis, and Kazachstania telluris) and decreased the relative abundances of opportunistic pathogens (including Desulfovibrio desulfuricans and Candida humilis). Functional alteration of the intestinal bacterial community by L. frumenti administration was characterized by the significantly increased fatty acids and protein metabolism and decreased diseases-associated metabolic pathways. These findings suggest that L. frumenti facilitates intestinal epithelial barrier function maintenance

  6. Exploiting the Gastric Epithelial Barrier: Helicobacter pylori's Attack on Tight and Adherens Junctions.

    Science.gov (United States)

    Backert, Steffen; Schmidt, Thomas P; Harrer, Aileen; Wessler, Silja

    2017-01-01

    Highly organized intercellular tight and adherens junctions are crucial structural components for establishing and maintenance of epithelial barrier functions, which control the microbiota and protect against intruding pathogens in humans. Alterations in these complexes represent key events in the development and progression of multiple infectious diseases as well as various cancers. The gastric pathogen Helicobacter pylori exerts an amazing set of strategies to manipulate these epithelial cell-to-cell junctions, which are implicated in changing cell polarity, migration and invasive growth as well as pro-inflammatory and proliferative responses. This chapter focuses on the H. pylori pathogenicity factors VacA, CagA, HtrA and urease, and how they can induce host cell signaling involved in altering cell-to-cell permeability. We propose a stepwise model for how H. pylori targets components of tight and adherens junctions in order to disrupt the gastric epithelial cell layer, giving fresh insights into the pathogenesis of this important bacterium.

  7. Gut microbiota regulates NKG2D ligand expression on intestinal epithelial cells

    DEFF Research Database (Denmark)

    Hansen, Camilla Hartmann Friis; Holm, Thomas L.; Krych, Lukasz

    2013-01-01

    Intestinal epithelial cells (IECs) are one of a few cell types in the body with constitutive surface expression of natural killer group 2 member D (NKG2D) ligands, although the magnitude of ligand expression by IECs varies. Here, we investigated whether the gut microbiota regulates the NKG2D ligand...... expression is kept in check by an intestinal regulatory immune milieu induced by members of the gut microbiota, for example A. muciniphila....

  8. Intestinal barrier: A gentlemen's agreement between microbiota and immunity.

    Science.gov (United States)

    Caricilli, Andrea Moro; Castoldi, Angela; Câmara, Niels Olsen Saraiva

    2014-02-15

    Our body is colonized by more than a hundred trillion commensals, represented by viruses, bacteria and fungi. This complex interaction has shown that the microbiome system contributes to the host's adaptation to its environment, providing genes and functionality that give flexibility of diet and modulate the immune system in order not to reject these symbionts. In the intestine, specifically, the microbiota helps developing organ structures, participates of the metabolism of nutrients and induces immunity. Certain components of the microbiota have been shown to trigger inflammatory responses, whereas others, anti-inflammatory responses. The diversity and the composition of the microbiota, thus, play a key role in the maintenance of intestinal homeostasis and explain partially the link between intestinal microbiota changes and gut-related disorders in humans. Tight junction proteins are key molecules for determination of the paracellular permeability. In the context of intestinal inflammatory diseases, the intestinal barrier is compromised, and decreased expression and differential distribution of tight junction proteins is observed. It is still unclear what is the nature of the luminal or mucosal factors that affect the tight junction proteins function, but the modulation of the immune cells found in the intestinal lamina propria is hypothesized as having a role in this modulation. In this review, we provide an overview of the current understanding of the interaction of the gut microbiota with the immune system in the development and maintenance of the intestinal barrier.

  9. Contentious host-microbiota relationship in inflammatory bowel disease--can foes become friends again?

    Science.gov (United States)

    Satokari, Reetta

    2015-01-01

    Inflammatory bowel diseases (IBDs) are chronic debilitating disorders of unknown etiology, consisting of two main conditions, ulcerative colitis and Crohn's disease. Major advances have recently taken place in human genetic studies of IBD and over 160 risk loci for these two diseases have been uncovered. These genetic data highlight a key role for genes that code for immunological and epithelial barrier functions. Environmental factors also make substantial contributions to the pathogenesis of IBD and account for the growing incidence of the diseases around the world. Intestinal microbiota creates resistance to infection, provides nutrients, and educates the immune system and in many ways has a significant impact on human health. Aberrant microbiota composition and decreased diversity (dysbiotic microbiota) are key etiopathological events in IBD. Dysbiotic microbiota can lead to loss of normal, regulatory immune effects in the gut mucosa. This may play a central role in the development and perpetuation of chronic inflammation. Further, the expression of specific innate immune receptors that recognize microbes is altered in the IBD epithelium. Therefore, the combination of host side epithelial barrier functions and the presence of dysbiotic microbiota in the gut together promote inflammation. New therapeutic options targeting microbiota are currently considered for IBD and they may, in the future, provide means to reverse the pathogenic host-microbiota relationship into a symbiotic one. In this review, the focus is on the intestinal microbiota and host-microbe interactions in IBD.

  10. Characterizing microbiota-independent effects of oligosaccharides on intestinal epithelial cells: insight into the role of structure and size : Structure-activity relationships of non-digestible oligosaccharides.

    Science.gov (United States)

    Akbari, Peyman; Fink-Gremmels, Johanna; Willems, Rianne H A M; Difilippo, Elisabetta; Schols, Henk A; Schoterman, Margriet H C; Garssen, Johan; Braber, Saskia

    2017-08-01

    The direct effects of galacto-oligosaccharides (GOS), including Vivinal ® GOS syrup (VGOS) and purified Vivinal ® GOS (PGOS), on the epithelial integrity and corresponding interleukin-8 (IL-8/CXCL8) release were examined in a Caco-2 cell model for intestinal barrier dysfunction. To investigate structure-activity relationships, the effects of individual DP fractions of VGOS were evaluated. Moreover, the obtained results with GOS were compared with Caco-2 monolayers incubated with fructo-oligosaccharides (FOS) and inulin. Caco-2 monolayers were pretreated (24 h) with or without specific oligosaccharides or DP fractions of VGOS (DP2 to DP6) before being exposed for 12 or 24 h to the fungal toxin deoxynivalenol (DON). Transepithelial electrical resistance and lucifer yellow permeability were measured to investigate barrier integrity. A calcium switch assay was used to study the reassembly of tight junction proteins. Release of CXCL8, a typical marker for inflammation, was quantified by ELISA. In comparison with PGOS, FOS and inulin, VGOS showed the most pronounced protective effect on the DON-induced impairment of the monolayer integrity, acceleration of the tight junction reassembly and the subsequent CXCL8 release. DP2 and DP3 in concentrations occurring in VGOS prevented the DON-induced epithelial barrier disruption, which could be related to their high prevalence in VGOS. However, no effects of the separate DP GOS fractions were observed on CXCL8 release. This comparative study demonstrates the direct, microbiota-independent effects of oligosaccharides on the intestinal barrier function and shows the differences between individual galacto- and fructo-oligosaccharides. This microbiota-independent effect of oligosaccharides depends on the oligosaccharide structure, DP length and concentration.

  11. Vocal Fold Epithelial Barrier in Health and Injury A Research Review

    Science.gov (United States)

    Levendoski, Elizabeth Erickson; Leydon, Ciara; Thibeault, Susan L.

    2015-01-01

    Purpose Vocal fold epithelium is composed of layers of individual epithelial cells joined by junctional complexes constituting a unique interface with the external environment. This barrier provides structural stability to the vocal folds and protects underlying connective tissue from injury while being nearly continuously exposed to potentially hazardous insults including environmental or systemic-based irritants such as pollutants and reflux, surgical procedures, and vibratory trauma. Small disruptions in the epithelial barrier may have a large impact on susceptibility to injury and overall vocal health. The purpose of this article is to provide a broad-based review of our current knowledge of the vocal fold epithelial barrier. Methods A comprehensive review of the literature was conducted. Details of the structure of the vocal fold epithelial barrier are presented and evaluated in the context of function in injury and pathology. The importance of the epithelial-associated vocal fold mucus barrier is also introduced. Results/Conclusions Information presented in this review is valuable for clinicians and researchers as it highlights the importance of this understudied portion of the vocal folds to overall vocal health and disease. Prevention and treatment of injury to the epithelial barrier is a significant area awaiting further investigation. PMID:24686981

  12. Live Faecalibacterium prausnitzii in an apical anaerobic model of the intestinal epithelial barrier.

    Science.gov (United States)

    Ulluwishewa, Dulantha; Anderson, Rachel C; Young, Wayne; McNabb, Warren C; van Baarlen, Peter; Moughan, Paul J; Wells, Jerry M; Roy, Nicole C

    2015-02-01

    Faecalibacterium prausnitzii, an abundant member of the human commensal microbiota, has been proposed to have a protective role in the intestine. However, it is an obligate anaerobe, difficult to co-culture in viable form with oxygen-requiring intestinal cells. To overcome this limitation, a unique apical anaerobic model of the intestinal barrier, which enabled co-culture of live obligate anaerobes with the human intestinal cell line Caco-2, was developed. Caco-2 cells remained viable and maintained an intact barrier for at least 12 h, consistent with gene expression data, which suggested Caco-2 cells had adapted to survive in an oxygen-reduced atmosphere. Live F. prausnitzii cells, but not ultraviolet (UV)-killed F. prausnitzii, increased the permeability of mannitol across the epithelial barrier. Gene expression analysis showed inflammatory mediators to be expressed at lower amounts in Caco-2 cells exposed to live F. prausnitzii than UV-killed F. prausnitzii, This, consistent with previous reports, implies that live F. prausnitzii produces an anti-inflammatory compound in the culture supernatant, demonstrating the value of a physiologically relevant co-culture system that allows obligate anaerobic bacteria to remain viable. © 2014 John Wiley & Sons Ltd.

  13. Rhubarb Supplementation Promotes Intestinal Mucosal Innate Immune Homeostasis through Modulating Intestinal Epithelial Microbiota in Goat Kids.

    Science.gov (United States)

    Jiao, Jinzhen; Wu, Jian; Wang, Min; Zhou, Chuanshe; Zhong, Rongzhen; Tan, Zhiliang

    2018-01-31

    The abuse and misuse of antibiotics in livestock production pose a potential health risk globally. Rhubarb can serve as a potential alternative to antibiotics, and several studies have looked into its anticancer, antitumor, and anti-inflammatory properties. The aim of this study was to test the effects of rhubarb supplementation to the diet of young ruminants on innate immune function and epithelial microbiota in the small intestine. Goat kids were fed with a control diet supplemented with or without rhubarb (1.25% DM) and were slaughtered at days 50 and 60 of age. Results showed that the supplementation of rhubarb increased ileal villus height (P = 0.036), increased jejujal and ileal anti-inflammatory IL-10 production (P immune function were accompanied by shifts in ileal epithelial bacterial ecosystem in favor of Blautia, Clostridium, Lactobacillus, and Pseudomonas, and with a decline in the relative abundance of Staphylococcus (P immune homeostasis by modulating intestinal epithelial microbiota during the early stages of animal development.

  14. Influence of the gut microbiota on transcriptional regulation of genes involved in early life development of the intestinal mucus layer

    DEFF Research Database (Denmark)

    Bergström, Anders; Kristensen, Matilde Bylov; Metzdorff, Stine Broeng

    2010-01-01

    The interplay between the gut microbiota and the intestinal mucus layer is important both in the maintenance of the epithelial barrier as part of the innate immune defense, and in the conservation of gut homeostasis. Little is known about how the microbiota regulates mucin proteins, which protect...

  15. Influence of the gut microbiota on transcriptional regulation of genes involved in early life development of the intestinal mucus layer

    DEFF Research Database (Denmark)

    Bergström, Anders; Kristensen, Matilde Bylov; Metzdorff, Stine Broeng

    The interplay between the gut microbiota and the intestinal mucus layer is important both in the maintenance of the epithelial barrier as part of the innate immune defense, and in the conservation of gut homeostasis. Little is known about how the microbiota regulates mucin proteins, which protect...

  16. Celiac Disease: Role of the Epithelial BarrierSummary

    Directory of Open Access Journals (Sweden)

    Michael Schumann

    2017-03-01

    Full Text Available In celiac disease (CD a T-cell–mediated response to gluten is mounted in genetically predisposed individuals, resulting in a malabsorptive enteropathy histologically highlighted by villous atrophy and crypt hyperplasia. Recent data point to the epithelial layer as an under-rated hot spot in celiac pathophysiology to date. This overview summarizes current functional and genetic evidence on the role of the epithelial barrier in CD, consisting of the cell membranes and the apical junctional complex comprising sealing as well as ion and water channel-forming tight junction proteins and the adherens junction. Moreover, the underlying mechanisms are discussed, including apoptosis of intestinal epithelial cells, biology of intestinal stem cells, alterations in the apical junctional complex, transcytotic uptake of gluten peptides, and possible implications of a defective epithelial polarity. Current research is directed toward new treatment options for CD that are alternatives or complementary therapeutics to a gluten-free diet. Thus, strategies to target an altered epithelial barrier therapeutically also are discussed. Keywords: Celiac Sprue, Gluten-Sensitive Enteropathy, Tight Junction, Epithelial Polarity, Partitioning-Defective Proteins, α-Gliadin 33mer

  17. Airway Epithelial Barrier Dysfunction in Chronic Obstructive Pulmonary Disease: Role of Cigarette Smoke Exposure.

    Science.gov (United States)

    Aghapour, Mahyar; Raee, Pourya; Moghaddam, Seyed Javad; Hiemstra, Pieter S; Heijink, Irene H

    2018-02-01

    The epithelial lining of the airway forms the first barrier against environmental insults, such as inhaled cigarette smoke, which is the primary risk factor for the development of chronic obstructive pulmonary disease (COPD). The barrier is formed by airway epithelial junctions, which are interconnected structures that restrict permeability to inhaled pathogens and environmental stressors. Destruction of the epithelial barrier not only exposes subepithelial layers to hazardous agents in the inspired air, but also alters the normal function of epithelial cells, which may eventually contribute to the development of COPD. Of note, disruption of epithelial junctions may lead to modulation of signaling pathways involved in differentiation, repair, and proinflammatory responses. Epithelial barrier dysfunction may be particularly relevant in COPD, where repeated injury by cigarette smoke exposure, pathogens, inflammatory mediators, and impaired epithelial regeneration may compromise the barrier function. In the current review, we discuss recent advances in understanding the mechanisms of barrier dysfunction in COPD, as well as the molecular mechanisms that underlie the impaired repair response of the injured epithelium in COPD and its inability to redifferentiate into a functionally intact epithelium.

  18. Interplay among gut microbiota, intestinal mucosal barrier and enteric neuro-immune system: a common path to neurodegenerative diseases?

    Science.gov (United States)

    Pellegrini, Carolina; Antonioli, Luca; Colucci, Rocchina; Blandizzi, Corrado; Fornai, Matteo

    2018-05-24

    Neurological diseases, such as Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis (ALS) and multiple sclerosis, are often associated with functional gastrointestinal disorders. These gastrointestinal disturbances may occur at all stages of the neurodegenerative diseases, to such an extent that they are now considered an integral part of their clinical picture. Several lines of evidence support the contention that, in central neurodegenerative diseases, changes in gut microbiota and enteric neuro-immune system alterations could contribute to gastrointesinal dysfunctions as well as initiation and upward spreading of the neurologic disorder. The present review has been intended to provide a comprehensive overview of the available knowledge on the role played by enteric microbiota, mucosal immune system and enteric nervous system, considered as an integrated network, in the pathophysiology of the main neurological diseases known to be associated with intestinal disturbances. In addition, based on current human and pre-clinical evidence, our intent was to critically discuss whether changes in the dynamic interplay between gut microbiota, intestinal epithelial barrier and enteric neuro-immune system are a consequence of the central neurodegeneration or might represent the starting point of the neurodegenerative process. Special attention has been paid also to discuss whether alterations of the enteric bacterial-neuro-immune network could represent a common path driving the onset of the main neurodegenerative diseases, even though each disease displays its own distinct clinical features.

  19. Non-Saccharomyces yeasts protect against epithelial cell barrier disruption induced by Salmonella enterica subsp. enterica serovar Typhimurium.

    Science.gov (United States)

    Smith, I M; Baker, A; Arneborg, N; Jespersen, L

    2015-11-01

    The human gastrointestinal epithelium makes up the largest barrier separating the body from the external environment. Whereas invasive pathogens cause epithelial barrier disruption, probiotic micro-organisms modulate tight junction regulation and improve epithelial barrier function. In addition, probiotic strains may be able to reduce epithelial barrier disruption caused by pathogenic species. The aim of this study was to explore non-Saccharomyces yeast modulation of epithelial cell barrier function in vitro. Benchmarking against established probiotic strains, we evaluated the ability of four nonpathogenic yeast species to modulate transepithelial electrical resistance (TER) across a monolayer of differentiated human colonocytes (Caco-2 cells). Further, we assessed yeast modulation of a Salmonella Typhimurium-induced epithelial cell barrier function insult. Our findings demonstrate distinct patterns of non-Saccharomyces yeast modulation of epithelial cell barrier function. While the established probiotic yeast Saccharomyces boulardii increased TER across a Caco-2 monolayer by 30%, Kluyveromyces marxianus exhibited significantly stronger properties of TER enhancement (50% TER increase). In addition, our data demonstrate significant yeast-mediated modulation of Salmonella-induced epithelial cell barrier disruption and identify K. marxianus and Metschnikowia gruessii as two non-Saccharomyces yeasts capable of protecting human epithelial cells from pathogen invasion. This study demonstrates distinct patterns of non-Saccharomyces yeast modulation of epithelial cell barrier function in vitro. Further, our data demonstrate significant yeast-mediated modulation of Salmonella Typhimurium-induced epithelial cell barrier disruption and identify Kluyveromyces marxianus and Metschnikowia gruessii as two non-Saccharomyces yeasts capable of protecting human epithelial cells from pathogen invasion. This study is the first to demonstrate significant non-Saccharomyces yeast

  20. Structural Change in Microbiota by a Probiotic Cocktail Enhances the Gut Barrier and Reduces Cancer via TLR2 Signaling in a Rat Model of Colon Cancer.

    Science.gov (United States)

    Kuugbee, Eugene Dogkotenge; Shang, Xueqi; Gamallat, Yaser; Bamba, Djibril; Awadasseid, Annoor; Suliman, Mohammed Ahmed; Zang, Shizhu; Ma, Yufang; Chiwala, Gift; Xin, Yi; Shang, Dong

    2016-10-01

    Structural change in the gut microbiota is implicated in cancer. The beneficial modulation of the microbiota composition with probiotics and prebiotics prevents diseases. We investigated the effect of oligofructose-maltodextrin-enriched Lactobacillus acidophilus, Bifidobacteria bifidum, and Bifidobacteria infantum (LBB), on the gut microbiota composition and progression of colorectal cancer. Sprague Dawley rats were acclimatized, given ampicillin (75 mg/kg), and treated as follows; GCO: normal control; GPR: LBB only; GPC: LBB+ 1,2-dimethylhydrazine dihydrochloride (DMH); and GCA: DMH only (cancer control). 16S V4 Pyrosequencing for gut microbiota analysis, tumor studies, and the expression of MUC2, ZO-1, occludin, TLR2, TLR4, caspase 3, COX-2, and β-catenin were conducted at the end of experiment. Probiotic LBB treatment altered the gut microbiota. The relative abundance of genera Pseudomonas, Congregibacter, Clostridium, Candidactus spp., Phaeobacter, Escherichia, Helicobacter, and HTCC was decreased (P cancer control. The altered gut microbiota was associated with decreased tumor incidence (80 % in GPC vs. 100 % in GCA, P = 0.0001), tumor volume (GPC 84.23 (42.75-188.4) mm(3) vs. GCA 243 (175.5-344.5) mm(3), P cancer control GCA (P colon cancer development by decreasing tumor incidence, multiplicity/count, and volume via enhanced TLR2-improved gut mucosa epithelial barrier integrity and suppression of apoptosis and inflammation.

  1. The role of gut microbiota in health and disease: In vitro modeling of host-microbe interactions at the aerobe-anaerobe interphase of the human gut.

    Science.gov (United States)

    von Martels, Julius Z H; Sadaghian Sadabad, Mehdi; Bourgonje, Arno R; Blokzijl, Tjasso; Dijkstra, Gerard; Faber, Klaas Nico; Harmsen, Hermie J M

    2017-04-01

    The microbiota of the gut has many crucial functions in human health. Dysbiosis of the microbiota has been correlated to a large and still increasing number of diseases. Recent studies have mostly focused on analyzing the associations between disease and an aberrant microbiota composition. Functional studies using (in vitro) gut models are required to investigate the precise interactions that occur between specific bacteria (or bacterial mixtures) and gut epithelial cells. As most gut bacteria are obligate or facultative anaerobes, studying their effect on oxygen-requiring human gut epithelial cells is technically challenging. Still, several (anaerobic) bacterial-epithelial co-culture systems have recently been developed that mimic host-microbe interactions occurring in the human gut, including 1) the Transwell "apical anaerobic model of the intestinal epithelial barrier", 2) the Host-Microbiota Interaction (HMI) module, 3) the "Human oxygen-Bacteria anaerobic" (HoxBan) system, 4) the human gut-on-a-chip and 5) the HuMiX model. This review discusses the role of gut microbiota in health and disease and gives an overview of the characteristics and applications of these novel host-microbe co-culture systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Characterizing microbiota-independent effects of oligosaccharides on intestinal epithelial cells

    NARCIS (Netherlands)

    Akbari, Peyman; Fink-Gremmels, Johanna; Willems, Rianne H.A.M.; Difilippo, Elisabetta; Schols, Henk A.; Schoterman, Margriet H.C.; Garssen, Johan; Braber, Saskia

    2017-01-01

    Purpose: The direct effects of galacto-oligosaccharides (GOS), including Vivinal® GOS syrup (VGOS) and purified Vivinal® GOS (PGOS), on the epithelial integrity and corresponding interleukin-8 (IL-8/CXCL8) release were examined in a Caco-2 cell model for intestinal barrier dysfunction. To

  3. Airway Epithelial Barrier Dysfunction in Chronic Obstructive Pulmonary Disease : Role of Cigarette Smoke Exposure

    NARCIS (Netherlands)

    Aghapour, Mahyar; Raee, Pourya; Moghaddam, Seyed Javad; Hiemstra, Pieter S.; Heijink, Irene H.

    The epithelial lining of the airway forms the first barrier against environmental insults, such as inhaled cigarette smoke, which is the primary risk factor for the development of chronic obstructive pulmonary disease (COPD). The barrier is formed by airway epithelial junctions, which are

  4. "Targeted disruption of the epithelial-barrier by Helicobacter pylori"

    Directory of Open Access Journals (Sweden)

    Wroblewski Lydia E

    2011-11-01

    Full Text Available Abstract Helicobacter pylori colonizes the human gastric epithelium and induces chronic gastritis, which can lead to gastric cancer. Through cell-cell contacts the gastric epithelium forms a barrier to protect underlying tissue from pathogenic bacteria; however, H. pylori have evolved numerous strategies to perturb the integrity of the gastric barrier. In this review, we summarize recent research into the mechanisms through which H. pylori disrupts intercellular junctions and disrupts the gastric epithelial barrier.

  5. Bifidobacterium breve reduces apoptotic epithelial cell shedding in an exopolysaccharide and MyD88-dependent manner.

    Science.gov (United States)

    Hughes, K R; Harnisch, L C; Alcon-Giner, C; Mitra, S; Wright, C J; Ketskemety, J; van Sinderen, D; Watson, A J M; Hall, L J

    2017-01-01

    Certain members of the microbiota genus Bifidobacterium are known to positively influence host well-being. Importantly, reduced bifidobacterial levels are associated with inflammatory bowel disease (IBD) patients, who also have impaired epithelial barrier function, including elevated rates of apoptotic extrusion of small intestinal epithelial cells (IECs) from villi-a process termed 'cell shedding'. Using a mouse model of pathological cell shedding, we show that mice receiving Bifidobacterium breve UCC2003 exhibit significantly reduced rates of small IEC shedding. Bifidobacterial-induced protection appears to be mediated by a specific bifidobacterial surface exopolysaccharide and interactions with host MyD88 resulting in downregulation of intrinsic and extrinsic apoptotic responses to protect epithelial cells under highly inflammatory conditions. Our results reveal an important and previously undescribed role for B. breve, in positively modulating epithelial cell shedding outcomes via bacterial- and host-dependent factors, supporting the notion that manipulation of the microbiota affects intestinal disease outcomes. © 2017 The Authors.

  6. Role of airway epithelial barrier dysfunction in pathogenesis of asthma.

    Science.gov (United States)

    Gon, Yasuhiro; Hashimoto, Shu

    2018-01-01

    Bronchial asthma is characterized by persistent cough, increased sputum, and repeated wheezing. The pathophysiology underlying these symptoms is the hyper-responsiveness of the airway along with chronic airway inflammation. Repeated injury, repair, and regeneration of the airway epithelium following exposure to environmental factors and inflammation results in histological changes and functional abnormalities in the airway mucosal epithelium; such changes are believed to have a significant association with the pathophysiology of asthma. Damage to the barrier functions of the airway epithelium enhances mucosal permeability of foreign substances in the airway epithelium of patients with asthma. Thus, epithelial barrier fragility is closely involved in releasing epithelial cytokines (e.g., TSLP, IL-25, and IL-33) because of the activation of airway epithelial cells, dendritic cells, and innate group 2 innate lymphoid cells (ILC2). Functional abnormalities of the airway epithelial cells along with the activation of dendritic cells, Th2 cells, and ILC2 form a single immunopathological unit that is considered to cause allergic airway inflammation. Here we use the latest published literature to discuss the potential pathological mechanisms regarding the onset and progressive severity of asthma with regard to the disruption of the airway epithelial function. Copyright © 2017 Japanese Society of Allergology. Production and hosting by Elsevier B.V. All rights reserved.

  7. HIV-1 transgene expression in rats causes oxidant stress and alveolar epithelial barrier dysfunction

    Directory of Open Access Journals (Sweden)

    Jacob Barbara A

    2009-02-01

    Full Text Available Abstract Background HIV-infected individuals are at increased risk for acute and chronic airway disease even though there is no evidence that the virus can infect the lung epithelium. Although HIV-related proteins including gp120 and Tat can directly cause oxidant stress and cellular dysfunction, their effects in the lung are unknown. The goal of this study was to determine the effects of HIV-1 transgene expression in rats on alveolar epithelial barrier function. Alveolar epithelial barrier function was assessed by determining lung liquid clearance in vivo and alveolar epithelial monolayer permeability in vitro. Oxidant stress in the alveolar space was determined by measuring the glutathione redox couple by high performance liquid chromatography, and the expression and membrane localization of key tight junction proteins were assessed. Finally, the direct effects of the HIV-related proteins gp120 and Tat on alveolar epithelial barrier formation and tight junction protein expression were determined. Results HIV-1 transgene expression caused oxidant stress within the alveolar space and impaired epithelial barrier function even though there was no evidence of overt inflammation within the airways. The expression and membrane localization of the tight junction proteins zonula occludens-1 and occludin were decreased in alveolar epithelial cells from HIV-1 transgenic rats. Further, treating alveolar epithelial monolayers from wild type rats in vitro with recombinant gp120 or Tat for 24 hours reproduced many of the effects on zonula occludens-1 and occludin expression and membrane localization. Conclusion Taken together, these data indicate that HIV-related proteins cause oxidant stress and alter the expression of critical tight junction proteins in the alveolar epithelium, resulting in barrier dysfunction.

  8. Non-Saccharomyces yeasts protect against epithelial cell barrier disruption induced by Salmonella enterica subsp. enterica serovar Typhimurium

    DEFF Research Database (Denmark)

    Smith, Ida Mosbech; Baker, A; Arneborg, Nils

    2015-01-01

    distinct patterns of non-Saccharomyces yeast modulation of epithelial cell barrier function. While the established probiotic yeast Saccharomyces boulardii increased TER across a Caco-2 monolayer by 30%, Kluyveromyces marxianus exhibited significantly stronger properties of TER enhancement (50% TER increase....... In addition, probiotic strains may be able to reduce epithelial barrier disruption caused by pathogenic species. The aim of this study was to explore non-Saccharomyces yeast modulation of epithelial cell barrier function in vitro. Benchmarking against established probiotic strains, we evaluated the ability......). In addition, our data demonstrate significant yeast-mediated modulation of Salmonella-induced epithelial cell barrier disruption and identify K. marxianus and Metschnikowia gruessii as two non-Saccharomyces yeasts capable of protecting human epithelial cells from pathogen invasion. SIGNIFICANCE AND IMPACT...

  9. The intestinal barrier function and its involvement in digestive disease

    Directory of Open Access Journals (Sweden)

    Eloísa Salvo-Romero

    2015-11-01

    Full Text Available The gastrointestinal mucosal surface is lined with epithelial cells representing an effective barrier made up with intercellular junctions that separate the inner and the outer environments, and block the passage of potentially harmful substances. However, epithelial cells are also responsible for the absorption of nutrients and electrolytes, hence a semipermeable barrier is required that selectively allows a number of substances in while keeping others out. To this end, the intestine developed the "intestinal barrier function", a defensive system involving various elements, both intra- and extracellular, that work in a coordinated way to impede the passage of antigens, toxins, and microbial byproducts, and simultaneously preserves the correct development of the epithelial barrier, the immune system, and the acquisition of tolerance against dietary antigens and the intestinal microbiota. Disturbances in the mechanisms of the barrier function favor the development of exaggerated immune responses; while exact implications remain unknown, changes in intestinal barrier function have been associated with the development of inflammatory conditions in the gastrointestinal tract. This review details de various elements of the intestinal barrier function, and the key molecular and cellular changes described for gastrointestinal diseases associated with dysfunction in this defensive mechanism.

  10. Lipopolysaccharide from Crypt-Specific Core Microbiota Modulates the Colonic Epithelial Proliferation-to-Differentiation Balance

    Directory of Open Access Journals (Sweden)

    Tomoaki Naito

    2017-10-01

    Full Text Available We identified a crypt-specific core microbiota (CSCM dominated by strictly aerobic, nonfermentative bacteria in murine cecal and proximal colonic (PC crypts and hypothesized that, among its possible functions, it may affect epithelial regeneration. In the present work, we isolated representative CSCM strains using selective media based upon our initial 16S rRNA-based molecular identification (i.e., Acinetobacter, Delftia, and Stenotrophomonas. Their tropism for the crypt was confirmed, and their influence on epithelial regeneration was demonstrated in vivo by monocolonization of germfree mice. We also showed that lipopolysaccharide (LPS, through its endotoxin activity, was the dominant bacterial agonist controlling proliferation. The relevant molecular mechanisms were analyzed using colonic crypt-derived organoids exposed to bacterial sonicates or highly purified LPS as agonists. We identified a Toll-like receptor 4 (TLR4-dependent program affecting crypts at different stages of epithelial differentiation. LPS played a dual role: it repressed cell proliferation through RIPK3-mediated necroptosis of stem cells and cells of the transit-amplifying compartment and concurrently enhanced cell differentiation, particularly the goblet cell lineage.

  11. Acute Acrolein Exposure Induces Impairment of Vocal Fold Epithelial Barrier Function.

    Science.gov (United States)

    Liu, Xinxin; Zheng, Wei; Sivasankar, M Preeti

    2016-01-01

    Acrolein is a ubiquitous pollutant abundant in cigarette smoke, mobile exhaust, and industrial waste. There is limited literature on the effects of acrolein on vocal fold tissue, although there are clinical reports of voice changes after pollutant exposures. Vocal folds are responsible for voice production. The overall objective of this study was to investigate the effects of acrolein exposure on viable, excised vocal fold epithelial tissue and to characterize the mechanism underlying acrolein toxicity. Vocal fold epithelia were studied because they form the outermost layer of the vocal folds and are a primary recipient of inhaled pollutants. Porcine vocal fold epithelia were exposed to 0, 50, 100, 500, 900 or 1300 μM of acrolein for 3 hours; the metabolic activity, epithelial resistance, epithelial permeability, tight junction protein (occludin and claudin 3) expression, cell membrane integrity and lipid peroxidation were investigated. The data demonstrated that acrolein exposure at 500 μM significantly reduced vocal fold epithelial metabolic activity by 27.2% (p≤0.001). Incubation with 100 μM acrolein caused a marked increase in epithelial permeability by 130.5% (pacrolein-treated samples, the cell membrane integrity was significantly damaged with a 45.6% increase of lipid peroxidation as compared to controls (pacrolein exposure impairs vocal fold epithelial barrier integrity. Lipid peroxidation-induced cell membrane damage may play an important role in reducing the barrier function of the epithelium.

  12. Intestinal epithelial barrier function and tight junction proteins with heat and exercise

    DEFF Research Database (Denmark)

    Dokladny, Karol; Zuhl, Micah N; Moseley, Pope L

    2016-01-01

    A single layer of enterocytes and tight junctions (intercellular multiprotein complexes) form the intestinal epithelial barrier that controls transport of molecules through transcellular and paracellular pathways. A dysfunctional or "leaky" intestinal tight junction barrier allows augmented perme...

  13. Gut Microbiota-brain Axis

    Institute of Scientific and Technical Information of China (English)

    Hong-Xing Wang; Yu-Ping Wang

    2016-01-01

    Objective:To systematically review the updated information about the gut microbiota-brain axis.Data Sources:All articles about gut microbiota-brain axis published up to July 18,2016,were identified through a literature search on PubMed,ScienceDirect,and Web of Science,with the keywords of"gut microbiota","gut-brain axis",and "neuroscience".Study Selection:All relevant articles on gut microbiota and gut-brain axis were included and carefully reviewed,with no limitation of study design.Results:It is well-recognized that gut microbiota affects the brain's physiological,behavioral,and cognitive functions although its precise mechanism has not yet been fully understood.Gut microbiota-brain axis may include gut microbiota and their metabolic products,enteric nervous system,sympathetic and parasympathetic branches within the autonomic nervous system,neural-immune system,neuroendocrine system,and central nervous system.Moreover,there may be five communication routes between gut microbiota and brain,including the gut-brain's neural network,neuroendocrine-hypothalamic-pituitary-adrenal axis,gut immune system,some neurotransmitters and neural regulators synthesized by gut bacteria,and barrier paths including intestinal mucosal barrier and blood-brain barrier.The microbiome is used to define the composition and functional characteristics of gut microbiota,and metagenomics is an appropriate technique to characterize gut microbiota.Conclusions:Gut microbiota-brain axis refers to a bidirectional information network between the gut microbiota and the brain,which may provide a new way to protect the brain in the near future.

  14. The effect of topical treatments for CRS on the sinonasal epithelial barrier.

    Science.gov (United States)

    Ramezanpour, M; Rayan, A; Smith, J L P; Vreugde, S

    2017-06-01

    Several topical treatments are used in the management of Chronic Rhinosinusitis (CRS), some of which the safety and efficacy has yet to be determined. The purpose of this study was to investigate the effect of commonly used topical treatments on the sinonasal epithelial barrier. Normal saline (0.9% Sodium Chloride), hypertonic saline (3% Sodium Chloride), FESS Sinu-Cleanse Hypertonic, FLO Sinus Care and Budesonide 1 mg/ 2 ml were applied to the apical side of air-liquid interface (ALI) cultures of primary human nasal epithelial cells (HNECs) from CRS patients (n=3) and non-CRS controls (n=3) for 24 hours. Epithelial barrier structure and function was assessed using trans-epithelial electrical resistance (TEER), measuring the passage of Fluorescein Isothiocyanate labelled Dextrans (FITC-Dextrans) and assessing the expression of the tight junction protein Zona Occludens-1 (ZO-1) using immunofluorescence. Toxicity was assessed using a Lactate Dehydrogenase (LDH) assay. Data was analysed using ANOVA, followed by Tukey HSD post hoc test. Hypertonic solution and budesonide significantly increased TEER values in CRS derived HNECs. In contrast, FESS Sinu-Cleanse Hypertonic significantly reduced TEER 5 minutes after application of the solution followed by an increase in paracellular permeability of FITC-Dextrans (30 minutes) and increased LDH levels 6 hours after application of the solution. Our findings confirm that isotonic and hypertonic saline solutions do not compromise epithelial barrier function in vitro but underscore the importance of examining safety and efficacy of over-the-counter wash solutions.

  15. TNFα/IFNγ Mediated Intestinal Epithelial Barrier Dysfunction Is Attenuated by MicroRNA-93 Downregulation of PTK6 in Mouse Colonic Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Ricci J Haines

    Full Text Available Since inflammatory bowel diseases (IBD represent significant morbidity and mortality in the US, the need for defining novel drug targets and inflammatory mechanisms would be of considerable benefit. Although protein tyrosine kinase 6 (PTK6, also known as breast tumor kinase BRK has been primarily studied in an oncogenic context, it was noted that PTK6 null mice exhibited significantly enhanced colonic epithelial barrier function. Considering that the inflammatory functions of PTK6 have not yet been explored, we hypothesized that cytokines responsible for mediating IBD, such as TNFα/IFNγ, may solicit the action of PTK6 to alter barrier function. After first assessing critical mediators of TNFα/IFNγ driven epithelial barrier dysfunction, we further explored the possibility of PTK6 in this inflammatory context. In this report, we showed that PTK6 siRNA and PTK6 null young adult mouse colonic epithelial cells (YAMC exhibited significant attenuation of TNFα/IFNγ induced barrier dysfunction as measured by electric cell-substrate impedance sensing (ECIS assay and permeability assays. In addition, PTK6 null cells transfected with PTK6 cDNA displayed restored barrier dysfunction in response to TNFα/IFNγ, while the cells transfected with vector alone showed similar attenuation of barrier dysfunction. Furthermore, using subcellular fractionation and immunocytochemistry experiments, we found that PTK6 plays a role in FoxO1 nuclear accumulation leading to down-regulation of claudin-3, a tight junction protein. Moreover, we searched for relevant miRNA candidates putative for targeting PTK6 in order to identify and assess the impact of microRNA that target PTK6 with respect to TNFα/IFNγ induced barrier dysfunction. Subsequently, we assayed likely targets and determined their effectiveness in attenuating PTK6 expression as well as cytokine induced barrier dysfunction. Results showed that miR-93 reduced PTK6 expression and attenuated TNF

  16. Protecting intestinal epithelial integrity by galacto-oligosaccharides: Keeping it tight

    OpenAIRE

    Akbari, P.

    2016-01-01

    The intestinal barrier serves as a first line of host defense against potentially harmful stressors from the environment ingested with food, and is primarily formed by epithelial cells connected by tight junctions. Oligosaccharides have been identified as components in milk, particularly in colostrum, that support the development of intestinal microbiota in the early phase of life and contribute to the maturation of the immune system in infants. Currently, galacto-oligosaccharides (GOS) are u...

  17. Bacteria in the vaginal microbiome alter the innate immune response and barrier properties of the human vaginal epithelia in a species-specific manner.

    Science.gov (United States)

    Doerflinger, Sylvie Y; Throop, Andrea L; Herbst-Kralovetz, Melissa M

    2014-06-15

    Bacterial vaginosis increases the susceptibility to sexually transmitted infections and negatively affects women's reproductive health. To investigate host-vaginal microbiota interactions and the impact on immune barrier function, we colonized 3-dimensional (3-D) human vaginal epithelial cells with 2 predominant species of vaginal microbiota (Lactobacillus iners and Lactobacillus crispatus) or 2 prevalent bacteria associated with bacterial vaginosis (Atopobium vaginae and Prevotella bivia). Colonization of 3-D vaginal epithelial cell aggregates with vaginal microbiota was observed with direct attachment to host cell surface with no cytotoxicity. A. vaginae infection yielded increased expression membrane-associated mucins and evoked a robust proinflammatory, immune response in 3-D vaginal epithelial cells (ie, expression of CCL20, hBD-2, interleukin 1β, interleukin 6, interleukin 8, and tumor necrosis factor α) that can negatively affect barrier function. However, P. bivia and L. crispatus did not significantly upregulate pattern-recognition receptor-signaling, mucin expression, antimicrobial peptides/defensins, or proinflammatory cytokines in 3-D vaginal epithelial cell aggregates. Notably, L. iners induced pattern-recognition receptor-signaling activity, but no change was observed in mucin expression or secretion of interleukin 6 and interleukin 8. We identified unique species-specific immune signatures from vaginal epithelial cells elicited by colonization with commensal and bacterial vaginosis-associated bacteria. A. vaginae elicited a signature that is consistent with significant disruption of immune barrier properties, potentially resulting in enhanced susceptibility to sexually transmitted infections during bacterial vaginosis. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Preterm infant gut microbiota affects intestinal epithelial development in a humanized microbiome gnotobiotic mouse model.

    Science.gov (United States)

    Yu, Yueyue; Lu, Lei; Sun, Jun; Petrof, Elaine O; Claud, Erika C

    2016-09-01

    Development of the infant small intestine is influenced by bacterial colonization. To promote establishment of optimal microbial communities in preterm infants, knowledge of the beneficial functions of the early gut microbiota on intestinal development is needed. The purpose of this study was to investigate the impact of early preterm infant microbiota on host gut development using a gnotobiotic mouse model. Histological assessment of intestinal development was performed. The differentiation of four epithelial cell lineages (enterocytes, goblet cells, Paneth cells, enteroendocrine cells) and tight junction (TJ) formation was examined. Using weight gain as a surrogate marker for health, we found that early microbiota from a preterm infant with normal weight gain (MPI-H) induced increased villus height and crypt depth, increased cell proliferation, increased numbers of goblet cells and Paneth cells, and enhanced TJs compared with the changes induced by early microbiota from a poor weight gain preterm infant (MPI-L). Laser capture microdissection (LCM) plus qRT-PCR further revealed, in MPI-H mice, a higher expression of stem cell marker Lgr5 and Paneth cell markers Lyz1 and Cryptdin5 in crypt populations, along with higher expression of the goblet cell and mature enterocyte marker Muc3 in villus populations. In contrast, MPI-L microbiota failed to induce the aforementioned changes and presented intestinal characteristics comparable to a germ-free host. Our data demonstrate that microbial communities have differential effects on intestinal development. Future studies to identify pioneer settlers in neonatal microbial communities necessary to induce maturation may provide new insights for preterm infant microbial ecosystem therapeutics. Copyright © 2016 the American Physiological Society.

  19. Disruption of the epithelial barrier during intestinal inflammation: Quest for new molecules and mechanisms.

    Science.gov (United States)

    Lechuga, Susana; Ivanov, Andrei I

    2017-07-01

    The intestinal epithelium forms a key protective barrier that separates internal organs from the harmful environment of the gut lumen. Increased permeability of the gut barrier is a common manifestation of different inflammatory disorders contributing to the severity of disease. Barrier permeability is controlled by epithelial adherens junctions and tight junctions. Junctional assembly and integrity depend on fundamental homeostatic processes such as cell differentiation, rearrangements of the cytoskeleton, and vesicle trafficking. Alterations of intestinal epithelial homeostasis during mucosal inflammation may impair structure and remodeling of apical junctions, resulting in increased permeability of the gut barrier. In this review, we summarize recent advances in our understanding of how altered epithelial homeostasis affects the structure and function of adherens junctions and tight junctions in the inflamed gut. Specifically, we focus on the transcription reprogramming of the cell, alterations in the actin cytoskeleton, and junctional endocytosis and exocytosis. We pay special attention to knockout mouse model studies and discuss the relevance of these mechanisms to human gastrointestinal disorders. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Acute Acrolein Exposure Induces Impairment of Vocal Fold Epithelial Barrier Function.

    Directory of Open Access Journals (Sweden)

    Xinxin Liu

    Full Text Available Acrolein is a ubiquitous pollutant abundant in cigarette smoke, mobile exhaust, and industrial waste. There is limited literature on the effects of acrolein on vocal fold tissue, although there are clinical reports of voice changes after pollutant exposures. Vocal folds are responsible for voice production. The overall objective of this study was to investigate the effects of acrolein exposure on viable, excised vocal fold epithelial tissue and to characterize the mechanism underlying acrolein toxicity. Vocal fold epithelia were studied because they form the outermost layer of the vocal folds and are a primary recipient of inhaled pollutants. Porcine vocal fold epithelia were exposed to 0, 50, 100, 500, 900 or 1300 μM of acrolein for 3 hours; the metabolic activity, epithelial resistance, epithelial permeability, tight junction protein (occludin and claudin 3 expression, cell membrane integrity and lipid peroxidation were investigated. The data demonstrated that acrolein exposure at 500 μM significantly reduced vocal fold epithelial metabolic activity by 27.2% (p≤0.001. Incubation with 100 μM acrolein caused a marked increase in epithelial permeability by 130.5% (p<0.05 and a reduction in transepithelial electrical resistance (TEER by 180.0% (p<0.001. While the expression of tight junctional protein did not change in acrolein-treated samples, the cell membrane integrity was significantly damaged with a 45.6% increase of lipid peroxidation as compared to controls (p<0.05. Taken together, these data provide evidence that acute acrolein exposure impairs vocal fold epithelial barrier integrity. Lipid peroxidation-induced cell membrane damage may play an important role in reducing the barrier function of the epithelium.

  1. Influence of the intrinsic gut microbiota on transcriptional regulation of genes involved in the early life development of intestinal epithelial integrity

    DEFF Research Database (Denmark)

    Bergström, Anders; Kristensen, Matilde Bylov; Frøkjær, Hanne

    2010-01-01

    surfaces of all epithelial linings by physical or specific hindrance of pathogenic species e.g. virus and bacteria. Moreover, the proteins constituting the tight junctions in the apical membrane of the epithelial cells are important as they take part in controlling, which substances can penetrate...... GF and SPF. Comelli EM et al (2008) have shown very similar results on the mucin genes, when colonizing with human adult or baby “full” microbiota. This is the first study with monocolonization however. Finally, we observed inverse correlation between Muc-1 and Lactobacillus 16S rRNA expression...

  2. γδ T cells in homeostasis and host defence of epithelial barrier tissues

    DEFF Research Database (Denmark)

    Nielsen, Morten M.; Witherden, Deborah A.; Havran, Wendy L.

    2017-01-01

    Epithelial surfaces line the body and provide a crucial interface between the body and the external environment. Tissue-resident epithelial γδ T cells represent a major T cell population in the epithelial tissues and are ideally positioned to carry out barrier surveillance and aid in tissue...... homeostasis and repair. In this Review, we focus on the intraepithelial γδ T cell compartment of the two largest epithelial tissues in the body — namely, the epidermis and the intestine — and provide a comprehensive overview of the crucial contributions of intraepithelial γδ T cells to tissue integrity...

  3. Potential in vitro model for testing the effect of exposure to nanoparticles on the lung alveolar epithelial barrier

    Directory of Open Access Journals (Sweden)

    Raymond Derk

    2015-03-01

    Full Text Available Pulmonary barrier function plays a pivotal role in protection from inhaled particles. However, some nano-scaled particles, such as carbon nanotubes (CNT, have demonstrated the ability to penetrate this barrier in animal models, resulting in an unusual, rapid interstitial fibrosis. To delineate the underlying mechanism and specific bio-effect of inhaled nanoparticles in respiratory toxicity, models of lung epithelial barriers are required that allow accurate representation of in vivo systems; however, there is currently a lack of consistent methods to do so. Thus, this work demonstrates a well-characterized in vitro model of pulmonary barrier function using Calu-3 cells, and provides the experimental conditions required for achieving tight junction complexes in cell culture, with trans-epithelial electrical resistance measurement used as a biosensor for proper barrier formation and integrity. The effects of cell number and serum constituents have been examined and we found that changes in each of these parameters can greatly affect barrier formation. Our data demonstrate that use of 5.0 × 104 Calu-3 cells/well in the Transwell cell culture system, with 10% serum concentrations in culture media is optimal for assessing epithelial barrier function. In addition, we have utilized CNT exposure to analyze the dose-, time-, and nanoparticle property-dependent alterations of epithelial barrier permeability as a means to validate this model. Such high throughput in vitro cell models of the epithelium could be used to predict the interaction of other nanoparticles with lung epithelial barriers to mimic respiratory behavior in vivo, thus providing essential tools and bio-sensing techniques that can be uniformly employed.

  4. NOD-Like Receptors in Intestinal Homeostasis and Epithelial Tissue Repair

    Science.gov (United States)

    Parlato, Marianna; Yeretssian, Garabet

    2014-01-01

    The intestinal epithelium constitutes a dynamic physical barrier segregating the luminal content from the underlying mucosal tissue. Following injury, the epithelial integrity is restored by rapid migration of intestinal epithelial cells (IECs) across the denuded area in a process known as wound healing. Hence, through a sequence of events involving restitution, proliferation and differentiation of IECs the gap is resealed and homeostasis reestablished. Relapsing damage followed by healing of the inflamed mucosa is a hallmark of several intestinal disorders including inflammatory bowel diseases (IBD). While several regulatory peptides, growth factors and cytokines stimulate restitution of the epithelial layer after injury, recent evidence in the field underscores the contribution of innate immunity in controlling this process. In particular, nucleotide-binding and oligomerization domain-like receptors (NLRs) play critical roles in sensing the commensal microbiota, maintaining homeostasis, and regulating intestinal inflammation. Here, we review the process of intestinal epithelial tissue repair and we specifically focus on the impact of NLR-mediated signaling mechanisms involved in governing epithelial wound healing during disease. PMID:24886810

  5. Interferon-gamma increased epithelial barrier function via upregulating claudin-7 expression in human submandibular gland duct epithelium.

    Science.gov (United States)

    Abe, Ayumi; Takano, Kenichi; Kojima, Takashi; Nomura, Kazuaki; Kakuki, Takuya; Kaneko, Yakuto; Yamamoto, Motohisa; Takahashi, Hiroki; Himi, Tetsuo

    2016-06-01

    Tight junctions (TJs) are necessary for salivary gland function and may serve as indicators of salivary gland epithelial dysfunction. IgG4-related disease (IgG4-RD) is a newly recognized fibro-inflammatory condition which disrupts the TJ associated epithelial barrier. The salivary glands are one of the most frequently involved organs in IgG4-RD, however, changes of the TJ associated epithelial barrier in salivary gland duct epithelium is poorly understood. Here, we investigated the regulation and function of TJs in human submandibular gland ductal epithelial cells (HSDECs) in normal and IgG4-RD. We examined submandibular gland (SMG) tissue from eight control individuals and 22 patients with IgG4-RD and established an HSDEC culture system. Immunohistochemistry, immunocytochemistry, western blotting, and measurement of transepithelial electrical resistance (TER) were performed. Claudin-4, claudin-7, occludin, and JAM-A were expressed at the apical side of the duct epithelium in submandibular gland (SMG) tissue and at the cell borders in HSDECs of normal and IgG4-RD. The expression and distribution of TJs in SMG tissue were not different in control individuals and patients with IgG4-RD in vivo and in vitro. Although interferon-gamma (IFNγ) generally disrupts the integrity and function of TJs, as manifested by decreased epithelial barrier function, IFNγ markedly increased the epithelial barrier function of HSDECs via upregulation of claudin-7 expression in HSDECs from patients with IgG4-RD. This is the first report showing an IFNγ-dependent increase in epithelial barrier function in the salivary gland duct epithelium. Our results provide insights into the functional significance of TJs in salivary gland duct epithelium in physiological and pathological conditions, including IgG4-RD.

  6. Lactobacillus protects the integrity of intestinal epithelial barrier damaged by pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Qinghua eYu

    2015-03-01

    Full Text Available Pathogens invade intestinal mucosal barrier through phagocytosis of antigen presenting cells (dendritic cell, microfold cells, or through the invasion into the intestinal epithelial directly. Some pathogens could damage the cell junction between epithelial cells and use the paracellular pathway as an entrance to invade. Moreover, some Lactobacillus could inhibit the adhesion of the pathogens and protect the integrity of the cell junction and mucosal barrier. This research focused on the potential therapeutic effect of Lactobacillus fructosus (L. fructosus C2 to attenuate ETEC K88 or S. typhimurium SL1344 induced changes to mucosal barrier. The results demonstrated that treatment of polarized Caco-2 cells with L. fructosus C2 reduced the permeation of dextran, and expression of IL-8, p-ERK and p-JNK when cells were infected with pathogenic bacteria. The findings indicated that L. fructosus C2 exerted a protective effect against the damage to the integrity of Caco-2 cells by ETEC or S. typhimurium infection.

  7. Bacterial Signaling at the Intestinal Epithelial Interface in Inflammation and Cancer

    Directory of Open Access Journals (Sweden)

    Olivia I. Coleman

    2018-01-01

    Full Text Available The gastrointestinal (GI tract provides a compartmentalized interface with an enormous repertoire of immune and metabolic activities, where the multicellular structure of the mucosa has acquired mechanisms to sense luminal factors, such as nutrients, microbes, and a variety of host-derived and microbial metabolites. The GI tract is colonized by a complex ecosystem of microorganisms, which have developed a highly coevolved relationship with the host’s cellular and immune system. Intestinal epithelial pattern recognition receptors (PRRs substantially contribute to tissue homeostasis and immune surveillance. The role of bacteria-derived signals in intestinal epithelial homeostasis and repair has been addressed in mouse models deficient in PRRs and signaling adaptors. While critical for host physiology and the fortification of barrier function, the intestinal microbiota poses a considerable health challenge. Accumulating evidence indicates that dysbiosis is associated with the pathogenesis of numerous GI tract diseases, including inflammatory bowel diseases (IBD and colorectal cancer (CRC. Aberrant signal integration at the epithelial cell level contributes to such diseases. An increased understanding of bacterial-specific structure recognition and signaling mechanisms at the intestinal epithelial interface is of great importance in the translation to future treatment strategies. In this review, we summarize the growing understanding of the regulation and function of the intestinal epithelial barrier, and discuss microbial signaling in the dynamic host–microbe mutualism in both health and disease.

  8. The Pseudomonas aeruginosa Type III Translocon Is Required for Biofilm Formation at the Epithelial Barrier

    DEFF Research Database (Denmark)

    Tran, Cindy S; Rangel, Stephanie M; Almblad, Henrik

    2014-01-01

    Clinical infections by Pseudomonas aeruginosa, a deadly Gram-negative, opportunistic pathogen of immunocompromised hosts, often involve the formation of antibiotic-resistant biofilms. Although biofilm formation has been extensively studied in vitro on glass or plastic surfaces, much less is known...... about biofilm formation at the epithelial barrier. We have previously shown that when added to the apical surface of polarized epithelial cells, P. aeruginosa rapidly forms cell-associated aggregates within 60 minutes of infection. By confocal microscopy we now show that cell-associated aggregates...... a previously unappreciated function for the type III translocon in the formation of P. aeruginosa biofilms at the epithelial barrier and demonstrate that biofilms may form at early time points of infection....

  9. Type 2 innate lymphoid cells disrupt bronchial epithelial barrier integrity by targeting tight junctions through IL-13 in asthmatic patients.

    Science.gov (United States)

    Sugita, Kazunari; Steer, Catherine A; Martinez-Gonzalez, Itziar; Altunbulakli, Can; Morita, Hideaki; Castro-Giner, Francesc; Kubo, Terufumi; Wawrzyniak, Paulina; Rückert, Beate; Sudo, Katsuko; Nakae, Susumu; Matsumoto, Kenji; O'Mahony, Liam; Akdis, Mübeccel; Takei, Fumio; Akdis, Cezmi A

    2018-01-01

    Bronchial epithelial barrier leakiness and type 2 innate lymphoid cells (ILC2s) have been separately linked to asthma pathogenesis; however, the influence of ILC2s on the bronchial epithelial barrier has not been investigated previously. We investigated the role of ILC2s in the regulation of bronchial epithelial tight junctions (TJs) and barrier function both in bronchial epithelial cells of asthmatic patients and healthy subjects and general innate lymphoid cell- and ILC2-deficient mice. Cocultures of human ILC2s and bronchial epithelial cells were used to determine transepithelial electrical resistance, paracellular flux, and TJ mRNA and protein expressions. The effect of ILC2s on TJs was examined by using a murine model of IL-33-induced airway inflammation in wild-type, recombination-activating gene 2 (Rag2) -/- , Rag2 -/- Il2rg -/- , and Rora sg/sg mice undergoing bone marrow transplantation to analyze the in vivo relevance of barrier disruption by ILC2s. ILC2s significantly impaired the epithelial barrier, as demonstrated by reduced transepithelial electrical resistance and increased fluorescein isothiocyanate-dextran permeability in air-liquid interface cultures of human bronchial epithelial cells. This was in parallel to decreased mRNAs and disrupted protein expression of TJ proteins and was restored by neutralization of IL-13. Intranasal administration of recombinant IL-33 to wild-type and Rag2 -/- mice lacking T and B cells triggered TJ disruption, whereas Rag2 -/- Il2rg -/- and Rora sg/sg mice undergoing bone marrow transplantation that lack ILC2s did not show any barrier leakiness. Direct nasal administration of IL-13 was sufficient to induce deficiency in the TJ barrier in the bronchial epithelium of mice in vivo. These data highlight an essential mechanism in asthma pathogenesis by demonstrating that ILC2s are responsible for bronchial epithelial TJ barrier leakiness through IL-13. Copyright © 2017 American Academy of Allergy, Asthma & Immunology

  10. Vocal Fold Epithelial Barrier in Health and Injury: A Research Review

    Science.gov (United States)

    Levendoski, Elizabeth Erickson; Leydon, Ciara; Thibeault, Susan L.

    2014-01-01

    Purpose: Vocal fold epithelium is composed of layers of individual epithelial cells joined by junctional complexes constituting a unique interface with the external environment. This barrier provides structural stability to the vocal folds and protects underlying connective tissue from injury while being nearly continuously exposed to potentially…

  11. Specific inulin-type fructan fibers protect against autoimmune diabetes by modulating gut immunity, barrier function, and microbiota homeostasis.

    Science.gov (United States)

    Chen, Kang; Chen, Hao; Faas, Marijke M; de Haan, Bart J; Li, Jiahong; Xiao, Ping; Zhang, Hao; Diana, Julien; de Vos, Paul; Sun, Jia

    2017-08-01

    Dietary fibers capable of modifying gut barrier and microbiota homeostasis affect the progression of type 1 diabetes (T1D). Here, we aim to compare modulatory effects of inulin-type fructans (ITFs), natural soluble dietary fibers with different degrees of fermentability from chicory root, on T1D development in nonobese diabetic mice. Female nonobese diabetic mice were weaned to long- and short-chain ITFs [ITF(l) and ITF(s), 5%] supplemented diet up to 24 weeks. T1D incidence, pancreatic-gut immune responses, gut barrier function, and microbiota composition were analyzed. ITF(l) but not ITF(s) supplementation dampened the incidence of T1D. ITF(l) promoted modulatory T-cell responses, as evidenced by increased CD25 + Foxp3 + CD4 + regulatory T cells, decreased IL17A + CD4 + Th17 cells, and modulated cytokine production profile in the pancreas, spleen, and colon. Furthermore, ITF(l) suppressed NOD like receptor protein 3 caspase-1-p20-IL-1β inflammasome in the colon. Expression of barrier reinforcing tight junction proteins occludin and claudin-2, antimicrobial peptides β-defensin-1, and cathelicidin-related antimicrobial peptide as well as short-chain fatty acid production were enhanced by ITF(l). Next-generation sequencing analysis revealed that ITF(l) enhanced Firmicutes/Bacteroidetes ratio to an antidiabetogenic balance and enriched modulatory Ruminococcaceae and Lactobacilli. Our data demonstrate that ITF(l) but not ITF(s) delays the development of T1D via modulation of gut-pancreatic immunity, barrier function, and microbiota homeostasis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Arsenic compromises conducting airway epithelial barrier properties in primary mouse and immortalized human cell cultures.

    Directory of Open Access Journals (Sweden)

    Cara L Sherwood

    Full Text Available Arsenic is a lung toxicant that can lead to respiratory illness through inhalation and ingestion, although the most common exposure is through contaminated drinking water. Lung effects reported from arsenic exposure include lung cancer and obstructive lung disease, as well as reductions in lung function and immune response. As part of their role in innate immune function, airway epithelial cells provide a barrier that protects underlying tissue from inhaled particulates, pathogens, and toxicants frequently found in inspired air. We evaluated the effects of a five-day exposure to environmentally relevant levels of arsenic {<4μM [~300 μg/L (ppb] as NaAsO2} on airway epithelial barrier function and structure. In a primary mouse tracheal epithelial (MTE cell model we found that both micromolar (3.9 μM and submicromolar (0.8 μM arsenic concentrations reduced transepithelial resistance, a measure of barrier function. Immunofluorescent staining of arsenic-treated MTE cells showed altered patterns of localization of the transmembrane tight junction proteins claudin (Cl Cl-1, Cl-4, Cl-7 and occludin at cell-cell contacts when compared with untreated controls. To better quantify arsenic-induced changes in tight junction transmembrane proteins we conducted arsenic exposure experiments with an immortalized human bronchial epithelial cell line (16HBE14o-. We found that arsenic exposure significantly increased the protein expression of Cl-4 and occludin as well as the mRNA levels of Cl-4 and Cl-7 in these cells. Additionally, arsenic exposure resulted in altered phosphorylation of occludin. In summary, exposure to environmentally relevant levels of arsenic can alter both the function and structure of airway epithelial barrier constituents. These changes likely contribute to the observed arsenic-induced loss in basic innate immune defense and increased infection in the airway.

  13. Identification of multi-drug resistant Pseudomonas aeruginosa clinical isolates that are highly disruptive to the intestinal epithelial barrier

    Directory of Open Access Journals (Sweden)

    Shevchenko Olga

    2006-06-01

    Full Text Available Abstract Background Multi-drug resistant Pseudomonas aeruginosa nosocomial infections are increasingly recognized worldwide. In this study, we focused on the virulence of multi-drug resistant clinical strains P. aeruginosa against the intestinal epithelial barrier, since P. aeruginosa can cause lethal sepsis from within the intestinal tract of critically ill and immuno-compromised patients via mechanisms involving disruption of epithelial barrier function. Methods We screened consecutively isolated multi-drug resistant P. aeruginosa clinical strains for their ability to disrupt the integrity of human cultured intestinal epithelial cells (Caco-2 and correlated these finding to related virulence phenotypes such as adhesiveness, motility, biofilm formation, and cytotoxicity. Results Results demonstrated that the majority of the multi-drug resistant P. aeruginosa clinical strains were attenuated in their ability to disrupt the barrier function of cultured intestinal epithelial cells. Three distinct genotypes were found that displayed an extreme epithelial barrier-disrupting phenotype. These strains were characterized and found to harbor the exoU gene and to display high swimming motility and adhesiveness. Conclusion These data suggest that detailed phenotypic analysis of the behavior of multi-drug resistant P. aeruginosa against the intestinal epithelium has the potential to identify strains most likely to place patients at risk for lethal gut-derived sepsis. Surveillance of colonizing strains of P. aeruginosa in critically ill patients beyond antibiotic sensitivity is warranted.

  14. Desmoglein 2 regulates the intestinal epithelial barrier via p38 mitogen-activated protein kinase.

    Science.gov (United States)

    Ungewiß, Hanna; Vielmuth, Franziska; Suzuki, Shintaro T; Maiser, Andreas; Harz, Hartmann; Leonhardt, Heinrich; Kugelmann, Daniela; Schlegel, Nicolas; Waschke, Jens

    2017-07-24

    Intestinal epithelial barrier properties are maintained by a junctional complex consisting of tight junctions (TJ), adherens junctions (AJ) and desmosomes. Desmoglein 2 (Dsg2), an adhesion molecule of desmosomes and the only Dsg isoform expressed in enterocytes, is required for epithelial barrier properties and may contribute to barrier defects in Crohn's disease. Here, we identified extradesmosomal Dsg2 on the surface of polarized enterocytes by Triton extraction, confocal microscopy, SIM and STED. Atomic force microscopy (AFM) revealed Dsg2-specific binding events along the cell border on the surface of enterocytes with a mean unbinding force of around 30pN. Binding events were blocked by an inhibitory antibody targeting Dsg2 which under same conditions activated p38MAPK but did not reduce cell cohesion. In enterocytes deficient for Dsg2, p38MAPK activity was reduced and both barrier integrity and reformation were impaired. Dsc2 rescue did not restore p38MAPK activity indicating that Dsg2 is required. Accordingly, direct activation of p38MAPK in Dsg2-deficient cells enhanced barrier reformation demonstrating that Dsg2-mediated activation of p38MAPK is crucial for barrier function. Collectively, our data show that Dsg2, beside its adhesion function, regulates intestinal barrier function via p38MAPK signalling. This is in contrast to keratinocytes and points towards tissue-specific signalling functions of desmosomal cadherins.

  15. Vaginal microbiota and its role in HIV transmission and infection.

    Science.gov (United States)

    Petrova, Mariya I; van den Broek, Marianne; Balzarini, Jan; Vanderleyden, Jos; Lebeer, Sarah

    2013-09-01

    The urogenital tract appears to be the only niche of the human body that shows clear differences in microbiota between men and women. The female reproductive tract has special features in terms of immunological organization, an epithelial barrier, microbiota, and influence by sex hormones such as estrogen. While the upper genital tract is regarded as free of microorganisms, the vagina is colonized by bacteria dominated by Lactobacillus species, although their numbers vary considerably during life. Bacterial vaginosis is a common pathology characterized by dysbiosis, which increases the susceptibility for HIV infection and transmission. On the other hand, HIV infections are often characterized by a disturbed vaginal microbiota. The endogenous vaginal microbiota may protect against HIV by direct production of antiviral compounds, through blocking of adhesion and transmission by ligands such as lectins, and/or by stimulation of immune responses. The potential role of probiotics in the prevention of HIV infections and associated symptoms, by introducing them to the vaginal and gastrointestinal tract (GIT), is also discussed. Of note, the GIT is a site of considerable HIV replication and CD4(+) T-cell destruction, resulting in both local and systemic inflammation. Finally, genetically engineered lactobacilli show promise as new microbicidal agents against HIV. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  16. Lactobacillus casei Shirota Supplementation Does Not Restore Gut Microbiota Composition and Gut Barrier in Metabolic Syndrome: A Randomized Pilot Study.

    Directory of Open Access Journals (Sweden)

    Vanessa Stadlbauer

    Full Text Available Metabolic syndrome is associated with disturbances in gut microbiota composition. We aimed to investigate the effect of Lactobacillus casei Shirota (LcS on gut microbiota composition, gut barrier integrity, intestinal inflammation and serum bile acid profile in metabolic syndrome. In a single-centre, prospective, randomised controlled pilot study, 28 subjects with metabolic syndrome received either LcS for 12 weeks (n = 13 or no LcS (n = 15. Data were compared to healthy controls (n = 16. Gut microbiota composition was characterised from stool using 454 pyrosequencing of 16S rRNA genes. Serum bile acids were quantified by tandem mass spectrometry. Zonulin and calprotectin were measured in serum and stool by ELISA. Bacteroidetes/Firmicutes ratio was significantly higher in healthy controls compared to metabolic syndrome but was not influenced by LcS. LcS supplementation led to enrichment of Parabacteroides. Zonulin and calprotectin were increased in metabolic syndrome stool samples but not influenced by LcS supplementation. Serum bile acids were similar to controls and not influenced by LcS supplementation. Metabolic syndrome is associated with a higher Bacteroidetes/Firmicutes ratio and gut barrier dysfunction but LcS was not able to change this. LcS administration was associated with subtle microbiota changes at genus level.ClinicalTrials.gov NCT01182844.

  17. γδ T cells in homeostasis and host defence of epithelial barrier tissues.

    Science.gov (United States)

    Nielsen, Morten M; Witherden, Deborah A; Havran, Wendy L

    2017-12-01

    Epithelial surfaces line the body and provide a crucial interface between the body and the external environment. Tissue-resident epithelial γδ T cells represent a major T cell population in the epithelial tissues and are ideally positioned to carry out barrier surveillance and aid in tissue homeostasis and repair. In this Review, we focus on the intraepithelial γδ T cell compartment of the two largest epithelial tissues in the body - namely, the epidermis and the intestine - and provide a comprehensive overview of the crucial contributions of intraepithelial γδ T cells to tissue integrity and repair, host homeostasis and protection in the context of the symbiotic relationship with the microbiome and during pathogen clearance. Finally, we describe epithelium-specific butyrophilin-like molecules and briefly review their emerging role in selectively shaping and regulating epidermal and intestinal γδ T cell repertoires.

  18. The Human Gut Microbiota

    NARCIS (Netherlands)

    Harmsen, Hermie J. M.; de Goffau, Marcus. C.; Schwiertz, A

    2016-01-01

    The microbiota in our gut performs many different essential functions that help us to stay healthy. These functions include vitamin production, regulation of lipid metabolism and short chain fatty acid production as fuel for epithelial cells and regulation of gene expression. There is a very

  19. Molecular Pathophysiology of Epithelial Barrier Dysfunction in Inflammatory Bowel Diseases

    Directory of Open Access Journals (Sweden)

    Jessica Y. Lee

    2018-03-01

    Full Text Available Over the years, the scientific community has explored myriads of theories in search of the etiology and a cure for inflammatory bowel disease (IBD. The cumulative evidence has pointed to the key role of the intestinal barrier and the breakdown of these mechanisms in IBD. More and more scientists and clinicians are embracing the concept of the impaired intestinal epithelial barrier and its role in the pathogenesis and natural history of IBD. However, we are missing a key tool that bridges these scientific insights to clinical practice. Our goal is to overcome the limitations in understanding the molecular physiology of intestinal barrier function and develop a clinical tool to assess and quantify it. This review article explores the proteins in the intestinal tissue that are pivotal in regulating intestinal permeability. Understanding the molecular pathophysiology of impaired intestinal barrier function in IBD may lead to the development of a biochemical method of assessing intestinal tissue integrity which will have a significant impact on the development of novel therapies targeting the intestinal mucosa.

  20. Lychee (Litchi chinensis Sonn.) Pulp Phenolic Extract Provides Protection against Alcoholic Liver Injury in Mice by Alleviating Intestinal Microbiota Dysbiosis, Intestinal Barrier Dysfunction, and Liver Inflammation.

    Science.gov (United States)

    Xiao, Juan; Zhang, Ruifen; Zhou, Qiuyun; Liu, Lei; Huang, Fei; Deng, Yuanyuan; Ma, Yongxuan; Wei, Zhencheng; Tang, Xiaojun; Zhang, Mingwei

    2017-11-08

    Liver injury is the most common consequence of alcohol abuse, which is promoted by the inflammatory response triggered by gut-derived endotoxins produced as a consequence of intestinal microbiota dysbiosis and barrier dysfunction. The aim of this study was to investigate whether modulation of intestinal microbiota and barrier function, and liver inflammation contributes to the hepatoprotective effect of lychee pulp phenolic extract (LPPE) in alcohol-fed mice. Mice were treated with an ethanol-containing liquid diet alone or in combination with LPPE for 8 weeks. LPPE supplementation alleviated ethanol-induced liver injury and downregulated key markers of inflammation. Moreover, LPPE supplementation reversed the ethanol-induced alteration of intestinal microbiota composition and increased the expression of intestinal tight junction proteins, mucus protecting proteins, and antimicrobial proteins. Furthermore, in addition to decreasing serum endotoxin level, LPPE supplementation suppressed CD14 and toll-like receptor 4 expression, and repressed the activation of nuclear factor-κB p65 in the liver. These data suggest that intestinal microbiota dysbiosis, intestinal barrier dysfunction, and liver inflammation are improved by LPPE, and therefore, the intake of LPPE or Litchi pulp may be an effective strategy to alleviate the susceptibility to alcohol-induced hepatic diseases.

  1. Multivalent adhesion molecule 7 clusters act as signaling platform for host cellular GTPase activation and facilitate epithelial barrier dysfunction.

    Directory of Open Access Journals (Sweden)

    Jenson Lim

    2014-09-01

    Full Text Available Vibrio parahaemolyticus is an emerging bacterial pathogen which colonizes the gastrointestinal tract and can cause severe enteritis and bacteraemia. During infection, V. parahaemolyticus primarily attaches to the small intestine, where it causes extensive tissue damage and compromises epithelial barrier integrity. We have previously described that Multivalent Adhesion Molecule (MAM 7 contributes to initial attachment of V. parahaemolyticus to epithelial cells. Here we show that the bacterial adhesin, through multivalent interactions between surface-induced adhesin clusters and phosphatidic acid lipids in the host cell membrane, induces activation of the small GTPase RhoA and actin rearrangements in host cells. In infection studies with V. parahaemolyticus we further demonstrate that adhesin-triggered activation of the ROCK/LIMK signaling axis is sufficient to redistribute tight junction proteins, leading to a loss of epithelial barrier function. Taken together, these findings show an unprecedented mechanism by which an adhesin acts as assembly platform for a host cellular signaling pathway, which ultimately facilitates breaching of the epithelial barrier by a bacterial pathogen.

  2. Acrolein Disrupts Tight Junction Proteins and Causes Endoplasmic Reticulum Stress-Mediated Epithelial Cell Death Leading to Intestinal Barrier Dysfunction and Permeability.

    Science.gov (United States)

    Chen, Wei-Yang; Wang, Min; Zhang, Jingwen; Barve, Shirish S; McClain, Craig J; Joshi-Barve, Swati

    2017-12-01

    Increasing evidence suggests that environmental and dietary factors can affect intestinal epithelial integrity leading to gut permeability and bacterial translocation. Intestinal barrier dysfunction is a pathogenic process associated with many chronic disorders. Acrolein is an environmental and dietary pollutant and a lipid-derived endogenous metabolite. The impact of acrolein on the intestine has not been investigated before and is evaluated in this study, both in vitro and in vivo. Our data demonstrate that oral acrolein exposure in mice caused damage to the intestinal epithelial barrier, resulting in increased permeability and subsequently translocation of bacterial endotoxin-lipopolysaccharide into the blood. Similar results were seen in vitro using established Caco-2 cell monolayers wherein acrolein decreased barrier function and increased permeability. Acrolein also caused the down-regulation and/or redistribution of three representative tight junction proteins (ie, zonula occludens-1, Occludin, Claudin-1) that critically regulate epithelial paracellular permeability. In addition, acrolein induced endoplasmic reticulum stress-mediated death of epithelial cells, which is an important mechanism contributing to intestinal barrier damage/dysfunction, and gut permeability. Overall, we demonstrate that exposure to acrolein affects the intestinal epithelium by decrease/redistribution of tight junction proteins and endoplasmic reticulum stress-mediated epithelial cell death, thereby resulting in loss of barrier integrity and function. Our findings highlight the adverse consequences of environmental and dietary pollutants on intestinal barrier integrity/function with relevance to gut permeability and the development of disease. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  3. Specific inulin-type fructan fibers protect against autoimmune diabetes by modulating gut immunity, barrier function, and microbiota homeostasis

    NARCIS (Netherlands)

    Chen, Kang; Chen, Hao; Faas, Marijke M; de Haan, Bart J; Li, Jiahong; Xiao, Ping; Zhang, Hao; Diana, Julien; de Vos, Paul; Sun, Jia

    Scope: Dietary fibers capable of modifying gut barrier and microbiota homeostasis affect the progression of type 1 diabetes (T1D). Here, we aim to compare modulatory effects of inulin-type fructans (ITFs), natural soluble dietary fibers with different degrees of fermentability from chicory root, on

  4. Interleukin-4 and interleukin-13 compromise the sinonasal epithelial barrier and perturb intercellular junction protein expression.

    Science.gov (United States)

    Wise, Sarah K; Laury, Adrienne M; Katz, Elizabeth H; Den Beste, Kyle A; Parkos, Charles A; Nusrat, Asma

    2014-05-01

    Altered expression of epithelial intercellular junction proteins has been observed in sinonasal biopsies from nasal polyps and epithelial layers cultured from nasal polyp patients. These alterations comprise a "leaky" epithelial barrier phenotype. We hypothesize that T helper 2 (Th2) cytokines interleukin (IL)-4 and IL-13 modulate epithelial junction proteins, thereby contributing to the leaky epithelial barrier. Differentiated primary sinonasal epithelial layers cultured at the air-liquid interface were exposed to IL-4, IL-13, and controls for 24 hours at 37°C. Epithelial resistance measurements were taken every 4 hours during cytokine exposure. Western blot and immunofluorescence staining/confocal microscopy were used to assess changes in a panel of tight and adherens junction proteins. Western blot densitometry was quantified with image analysis. IL-4 and IL-13 exposure resulted in a mean decrease in transepithelial resistance at 24 hours to 51.6% (n = 6) and 68.6% (n = 8) of baseline, respectively. Tight junction protein junctional adhesion molecule-A (JAM-A) expression decreased 42.2% with IL-4 exposure (n = 9) and 37.5% with IL-13 exposure (n = 9). Adherens junction protein E-cadherin expression decreased 35.3% with IL-4 exposure (n = 9) and 32.9% with IL-13 exposure (n = 9). Tight junction protein claudin-2 showed more variability but had a trend toward higher expression with Th2 cytokine exposure. There were no appreciable changes in claudin-1, occludin, or zonula occludens-1 (ZO-1) with IL-4 or IL-13 exposure. Sinonasal epithelial exposure to Th2 cytokines IL-4 and IL-13 results in alterations in intercellular junction proteins, reflecting increased epithelial permeability. Such changes may explain some of the phenotypic manifestations of Th2-mediated sinonasal disease, such as edema, nasal discharge, and environmental reactivity. © 2014 ARS-AAOA, LLC.

  5. IL-4 and IL-13 Compromise the Sinonasal Epithelial Barrier and Perturb Intercellular Junction Protein Expression

    Science.gov (United States)

    Wise, Sarah K.; Laury, Adrienne M.; Katz, Elizabeth H.; Den Beste, Kyle A.; Parkos, Charles A.; Nusrat, Asma

    2014-01-01

    Introduction Altered expression of epithelial intercellular junction proteins has been observed in sinonasal biopsies from nasal polyps and epithelial layers cultured from nasal polyp patients. These alterations comprise a “leaky” epithelial barrier phenotype. We hypothesize that Th2 cytokines IL-4 and IL-13 modulate epithelial junction proteins thereby contributing to the leaky epithelial barrier. Methods Differentiated primary sinonasal epithelial layers cultured at the air-liquid interface were exposed to IL-4, IL-13, and controls for 24 hours at 37°C. Epithelial resistance measurements were taken every 4 hours during cytokine exposure. Western blot and immunofluorescence staining/confocal microscopy were used to assess changes in a panel of tight and adherens junction proteins. Western blot densitometry was quantified with image analysis. Results IL-4 and IL-13 exposure resulted in a mean decrease in transepithelial resistance at 24 hours to 51.6% (n=6) and 68.6% (n=8) of baseline, respectively. Tight junction protein JAM-A expression decreased 42.2% with IL-4 exposure (n=9) and 37.5% with IL-13 exposure (n=9). Adherens junction protein E-cadherin expression decreased 35.3% with IL-4 exposure (n=9) and 32.9% with IL-13 exposure (n=9). Tight junction protein claudin-2 showed more variability but had a trend toward higher expression with Th2 cytokine exposure. There were no appreciable changes in claudin-1, occludin, or ZO-1 with IL-4 or IL-13 exposure. Conclusion Sinonasal epithelial exposure to Th2 cytokines IL-4 and IL-13 results in alterations in intercellular junction proteins, reflecting increased epithelial permeability. Such changes may explain some of the phenotypic manifestations of Th2-mediated sinonasal disease, such as edema, nasal discharge, and environmental reactivity. PMID:24510479

  6. Lactobacillus rhamnosus GG Affects Microbiota and Suppresses Autophagy in the Intestines of Pigs Challenged with Salmonella Infantis

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2018-01-01

    Full Text Available Salmonella enterica serovar Infantis (S. Infantis is a common source of foodborne gastroenteritis worldwide. Here, Lactobacillus rhamnosus GG (LGG was administrated to weaned piglets for 1 week before S. Infantis challenge. S. Infantis caused decreased ileal mucosal microbiota diversity, a dramatic Lactobacillus amylovorus bloom, and decreased abundance of Arsenicicoccus, Janibacter, Kocuria, Nocardioides, Devosia, Paracoccus, Psychrobacter, and Weissella. The beneficial effect of LGG correlated with the moderate expansion of L. amylovorus, L. agilis, and several members of the phyla Proteobacteria, Firmicutes, and Bacteroidetes. S. Infantis translocation to the liver was decreased in the LGG-pretreated piglets. An in vitro model of LGG and S. Infantis co-incubation (involving the porcine intestinal epithelial cell line IPEC-J2 was established, and nalidixic acid was used to kill the extracellular S. Infantis. LGG suppressed the initial S. Infantis invasion in the IPEC-J2 cells and deceased the rate of cell death. LGG inhibited S. Infantis-induced autophagy and promoted epidermal growth factor receptor (EGFR and Akt phosphorylation in both the ileum and IPEC-J2 cells. Our findings suggest that LGG inhibited S. Infantis-induced autophagy by promoting EGFR-mediated activation of the negative mediator Akt, which, in turn, suppressed intestinal epithelial cell death and thus restricted systemic S. Infantis infection. LGG can restore the gut microbiota balance and preserve the autophagy-related intestinal epithelial barrier, thereby controlling infections.

  7. EMMPRIN Modulates Epithelial Barrier Function through a MMP–Mediated Occludin Cleavage

    Science.gov (United States)

    Huet, Eric; Vallée, Benoit; Delbé, Jean; Mourah, Samia; Prulière-Escabasse, Virginie; Tremouilleres, Magali; Kadomatsu, Kenji; Doan, Serge; Baudouin, Christophe; Menashi, Suzanne; Gabison, Eric E.

    2011-01-01

    Dry eye is a common disease that develops as a result of alteration of tear fluid, leading to osmotic stress and a perturbed epithelial barrier. Matrix metalloproteinase-9 (MMP-9) may be important in dry eye disease, as its genetic knockout conferred resistance to the epithelial disruption. We show that extracellular matrix metalloproteinase inducer (EMMPRIN; also termed CD147), an inducer of MMP expression, participates in the pathogenesis of dry eye through MMP-mediated cleavage of occludin, an important component of tight junctions. EMMPRIN expression was increased on the ocular surface of dry eye patients and correlated with those of MMP-9. High osmolarity in cell culture, mimicking dry eye conditions, increased both EMMPRIN and MMP-9 and resulted in the disruption of epithelial junctions through the cleavage of occludin. Exogenously added recombinant EMMPRIN had similar effects that were abrogated in the presence of the MMP inhibitor marimastat. Membrane occludin immunostaining was markedly increased in the apical corneal epithelium of both EMMPRIN and MMP-9 knock-out mice. Furthermore, an inverse correlation between EMMPRIN and occludin membrane staining was consistently observed both in vitro and in vivo as a function of corneal epithelial cells differentiation. These data suggest a possible role of EMMPRIN in regulating the amount of occludin at the cell surface in homeostasis beyond pathological situations such as dry eye disease, and EMMPRIN may be essential for the formation and maintenance of organized epithelial structure. PMID:21777561

  8. Intestinal microbiota pathogenesis and fecal microbiota transplantation for inflammatory bowel disease

    Science.gov (United States)

    Wang, Zi-Kai; Yang, Yun-Sheng; Chen, Ye; Yuan, Jing; Sun, Gang; Peng, Li-Hua

    2014-01-01

    The intestinal microbiota plays an important role in inflammatory bowel disease (IBD). The pathogenesis of IBD involves inappropriate ongoing activation of the mucosal immune system driven by abnormal intestinal microbiota in genetically predisposed individuals. However, there are still no definitive microbial pathogens linked to the onset of IBD. The composition and function of the intestinal microbiota and their metabolites are indeed disturbed in IBD patients. The special alterations of gut microbiota associated with IBD remain to be evaluated. The microbial interactions and host-microbe immune interactions are still not clarified. Limitations of present probiotic products in IBD are mainly due to modest clinical efficacy, few available strains and no standardized administration. Fecal microbiota transplantation (FMT) may restore intestinal microbial homeostasis, and preliminary data have shown the clinical efficacy of FMT on refractory IBD or IBD combined with Clostridium difficile infection. Additionally, synthetic microbiota transplantation with the defined composition of fecal microbiota is also a promising therapeutic approach for IBD. However, FMT-related barriers, including the mechanism of restoring gut microbiota, standardized donor screening, fecal material preparation and administration, and long-term safety should be resolved. The role of intestinal microbiota and FMT in IBD should be further investigated by metagenomic and metatranscriptomic analyses combined with germ-free/human flora-associated animals and chemostat gut models. PMID:25356041

  9. Convective diffusion of nanoparticles from the epithelial barrier toward regional lymph nodes.

    Science.gov (United States)

    Dukhin, Stanislav S; Labib, Mohamed E

    2013-11-01

    Drug delivery using nanoparticles as drug carriers has recently attracted the attention of many investigators. Targeted delivery of nanoparticles to the lymph nodes is especially important to prevent cancer metastasis or infection, and to diagnose disease stage. However, systemic injection of nanoparticles often results in organ toxicity because they reach and accumulate in all the lymph nodes in the body. An attractive strategy would be to deliver the drug-loaded nanoparticles to a subset of draining lymph nodes corresponding to a specific site or organ to minimize systemic toxicity. In this respect, mucosal delivery of nanoparticles to regional draining lymph nodes of a selected site creates a new opportunity to accomplish this task with minimal toxicity. One example is the delivery of nanoparticles from the vaginal lumen to draining lymph nodes to prevent the transmission of HIV in women. Other known examples include mucosal delivery of vaccines to induce immunity. In all cases, molecular and particle transport by means of diffusion and convective diffusion play a major role. The corresponding transport processes have common inherent regularities and are addressed in this review. Here we use nanoparticle delivery from the vaginal lumen to the lymph nodes as an example to address the many aspects of associated transport processes. In this case, nanoparticles penetrate the epithelial barrier and move through the interstitium (tissue) to the initial lymphatics until they finally reach the lymph nodes. Since the movement of interstitial liquid near the epithelial barrier is retarded, nanoparticle transport was found to take place through special foci present in the epithelium. Immediately after nanoparticles emerge from the foci, they move through the interstitium due to diffusion affected by convection (convective diffusion). Specifically, the convective transport of nanoparticles occurs due to their convection together with interstitial fluid through the

  10. Neuropeptides, Microbiota, and Behavior.

    Science.gov (United States)

    Holzer, P

    2016-01-01

    The gut microbiota and the brain interact with each other through multiple bidirectional signaling pathways in which neuropeptides and neuroactive peptide messengers play potentially important mediator roles. Currently, six particular modes of a neuropeptide link are emerging. (i) Neuropeptides and neurotransmitters contribute to the mutual microbiota-host interaction. (ii) The synthesis of neuroactive peptides is influenced by microbial control of the availability of amino acids. (iii) The activity of neuropeptides is tempered by microbiota-dependent autoantibodies. (iv) Peptide signaling between periphery and brain is modified by a regulatory action of the gut microbiota on the blood-brain barrier. (v) Within the brain, gut hormones released under the influence of the gut microbiota turn into neuropeptides that regulate multiple aspects of brain activity. (vi) Cerebral neuropeptides participate in the molecular, behavioral, and autonomic alterations which the brain undergoes in response to signals from the gut microbiota. © 2016 Elsevier Inc. All rights reserved.

  11. Small intestine epithelial barrier function is compromised in pigs with low feed intake at weaning.

    NARCIS (Netherlands)

    Spreeuwenberg, M.A.; Verdonk, J.M.; Gaskins, H.R.; Verstegen, M.W.A.

    2001-01-01

    Compromising alterations in gastrointestinal architecture are common during the weaning transition of pigs. The relation between villous atrophy and epithelial barrier function at weaning is not well understood. This study evaluated in vitro transepithelial transport by Ussing metabolic chambers,

  12. Primary human polarized small intestinal epithelial barriers respond differently to a hazardous and an innocuous protein.

    Science.gov (United States)

    Eaton, A D; Zimmermann, C; Delaney, B; Hurley, B P

    2017-08-01

    An experimental platform employing human derived intestinal epithelial cell (IEC) line monolayers grown on permeable Transwell ® filters was previously investigated to differentiate between hazardous and innocuous proteins. This approach was effective at distinguishing these types of proteins and perturbation of monolayer integrity, particularly transepithelial electrical resistance (TEER), was the most sensitive indicator. In the current report, in vitro indicators of monolayer integrity, cytotoxicity, and inflammation were evaluated using primary (non-transformed) human polarized small intestinal epithelial barriers cultured on Transwell ® filters to compare effects of a hazardous protein (Clostridium difficile Toxin A [ToxA]) and an innocuous protein (bovine serum albumin [BSA]). ToxA exerted a reproducible decrease on barrier integrity at doses comparable to those producing effects observed from cell line-derived IEC monolayers, with TEER being the most sensitive indicator. In contrast, BSA, tested at concentrations substantially higher than ToxA, did not cause changes in any of the tested variables. These results demonstrate a similarity in response to certain proteins between cell line-derived polarized IEC models and a primary human polarized small intestinal epithelial barrier model, thereby reinforcing the potential usefulness of cell line-derived polarized IECs as a valid experimental platform to differentiate between hazardous and non-hazardous proteins. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Early Life Microbiota, Neonatal Immune Maturation and Hematopoiesis

    DEFF Research Database (Denmark)

    Kristensen, Matilde Bylov

    Emerging epidemiologic data supports the hypothesis that early life colonization is a key player in development of a balanced immune system. Events in early life, as birth mode and infant diet, are shown to influence development of immune related diseases, like asthma, diabetes and inflammatory...... bowl disease, later in life. The intestinal epithelium makes up a physical and biochemical barrier between the bacteria in the gut lumen and the immune cells in the submocusal tissue. This monolayer of intestinal epithelial cells (IEC) makes up an extremely large surface and is highly important...... for the synergistic coexistence between trillions of bacteria in the gastrointestinal tract and their mammalian hosts. The IEC actively communicate with the microbiota of the gut lumen and tolerance establishment in the intestine is induced as a result of a balanced and controlled communication between IEC...

  14. Dynamic alteration of the colonic microbiota in intestinal ischemia-reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Fan Wang

    Full Text Available Intestinal ischemia-reperfusion (I/R plays an important role in critical illnesses. Gut flora participate in the pathogenesis of the injury. This study is aimed at unraveling colonic microbiota alteration pattern and identifying specific bacterial species that differ significantly as well as observing colonic epithelium change in the same injury model during the reperfusion time course.Denaturing gradient gel electrophoresis (DGGE was used to monitor the colonic microbiota of control rats and experimental rats that underwent 0.5 hour ischemia and 1, 3, 6, 12, 24, and 72 hours following reperfusion respectively. The microbiota similarity, bacterial diversity and species that characterized the dysbiosis were estimated based on the DGGE profiles using a combination of statistical approaches. The interested bacterial species in the gel were cut and sequenced and were subsequently quantified and confirmed with real-time PCR. Meanwhile, the epithelial barrier was checked by microscopy and D-lactate analysis. Colonic flora changed early and differed significantly at 6 hours after reperfusion and then started to recover. The shifts were characterized by the increase of Escherichia coli and Prevotella oralis, and Lactobacilli proliferation together with epithelia healing.This study shows for the first time that intestinal ischemia-reperfusion results in colonic flora dysbiosis that follows epithelia damage, and identifies the bacterial species that contribute most.

  15. The Immune System Bridges the Gut Microbiota with Systemic Energy Homeostasis: Focus on TLRs, Mucosal Barrier, and SCFAs.

    Science.gov (United States)

    Spiljar, Martina; Merkler, Doron; Trajkovski, Mirko

    2017-01-01

    The gut microbiota is essential for the development and regulation of the immune system and the metabolism of the host. Germ-free animals have altered immunity with increased susceptibility to immunologic diseases and show metabolic alterations. Here, we focus on two of the major immune-mediated microbiota-influenced components that signal far beyond their local environment. First, the activation or suppression of the toll-like receptors (TLRs) by microbial signals can dictate the tone of the immune response, and they are implicated in regulation of the energy homeostasis. Second, we discuss the intestinal mucosal surface is an immunologic component that protects the host from pathogenic invasion, is tightly regulated with regard to its permeability and can influence the systemic energy balance. The short chain fatty acids are a group of molecules that can both modulate the intestinal barrier and escape the gut to influence systemic health. As modulators of the immune response, the microbiota-derived signals influence functions of distant organs and can change susceptibility to metabolic diseases.

  16. Effects of flavonoids on intestinal inflammation, barrier integrity and changes in gut microbiota during diet-induced obesity.

    Science.gov (United States)

    Gil-Cardoso, Katherine; Ginés, Iris; Pinent, Montserrat; Ardévol, Anna; Blay, Mayte; Terra, Ximena

    2016-12-01

    Diet-induced obesity is associated with low-grade inflammation, which, in most cases, leads to the development of metabolic disorders, primarily insulin resistance and type 2 diabetes. Although prior studies have implicated the adipose tissue as being primarily responsible for obesity-associated inflammation, the latest discoveries have correlated impairments in intestinal immune homeostasis and the mucosal barrier with increased activation of the inflammatory pathways and the development of insulin resistance. Therefore, it is essential to define the mechanisms underlying the obesity-associated gut alterations to develop therapies to prevent and treat obesity and its associated diseases. Flavonoids appear to be promising candidates among the natural preventive treatments that have been identified to date. They have been shown to protect against several diseases, including CVD and various cancers. Furthermore, they have clear anti-inflammatory properties, which have primarily been evaluated in non-intestinal models. At present, a growing body of evidence suggests that flavonoids could exert a protective role against obesity-associated pathologies by modulating inflammatory-related cellular events in the intestine and/or the composition of the microbiota populations. The present paper will review the literature to date that has described the protective effects of flavonoids on intestinal inflammation, barrier integrity and gut microbiota in studies conducted using in vivo and in vitro models.

  17. Protein kinase C-dependent signaling controls the midgut epithelial barrier to malaria parasite infection in anopheline mosquitoes.

    Directory of Open Access Journals (Sweden)

    Nazzy Pakpour

    Full Text Available Anopheline mosquitoes are the primary vectors of parasites in the genus Plasmodium, the causative agents of malaria. Malaria parasites undergo a series of complex transformations upon ingestion by the mosquito host. During this process, the physical barrier of the midgut epithelium, along with innate immune defenses, functionally restrict parasite development. Although these defenses have been studied for some time, the regulatory factors that control them are poorly understood. The protein kinase C (PKC gene family consists of serine/threonine kinases that serve as central signaling molecules and regulators of a broad spectrum of cellular processes including epithelial barrier function and immunity. Indeed, PKCs are highly conserved, ranging from 7 isoforms in Drosophila to 16 isoforms in mammals, yet none have been identified in mosquitoes. Despite conservation of the PKC gene family and their potential as targets for transmission-blocking strategies for malaria, no direct connections between PKCs, the mosquito immune response or epithelial barrier integrity are known. Here, we identify and characterize six PKC gene family members--PKCδ, PKCε, PKCζ, PKD, PKN, and an indeterminate conventional PKC--in Anopheles gambiae and Anopheles stephensi. Sequence and phylogenetic analyses of the anopheline PKCs support most subfamily assignments. All six PKCs are expressed in the midgut epithelia of A. gambiae and A. stephensi post-blood feeding, indicating availability for signaling in a tissue that is critical for malaria parasite development. Although inhibition of PKC enzymatic activity decreased NF-κB-regulated anti-microbial peptide expression in mosquito cells in vitro, PKC inhibition had no effect on expression of a panel of immune genes in the midgut epithelium in vivo. PKC inhibition did, however, significantly increase midgut barrier integrity and decrease development of P. falciparum oocysts in A. stephensi, suggesting that PKC

  18. Intestinal infection with Giardia spp. reduces epithelial barrier function in a myosin light chain kinase-dependent fashion.

    Science.gov (United States)

    Scott, Kevin G-E; Meddings, Jonathon B; Kirk, David R; Lees-Miller, Susan P; Buret, André G

    2002-10-01

    Giardiasis causes malabsorptive diarrhea, and symptoms can be present in the absence of any significant morphologic injury to the intestinal mucosa. The effects of giardiasis on epithelial permeability in vivo remain unknown, and the role of T cells and myosin light chain kinase (MLCK) in altered intestinal barrier function is unclear. This study was conducted to determine whether Giardia spp. alters intestinal permeability in vivo, to assess whether these abnormalities are dependent on T cells, and to assess the role of MLCK in altered epithelial barrier function. Immunocompetent and isogenic athymic mice were inoculated with axenic Giardia muris trophozoites or sterile vehicle (control), then assessed for trophozoite colonization and gastrointestinal permeability. Mechanistic studies using nontransformed human duodenal epithelial monolayers (SCBN) determined the effects of Giardia on myosin light chain (MLC) phosphorylation, transepithelial fluorescein isothiocyanate-dextran fluxes, cytoskeletal F-actin, tight junctional zonula occludens-1 (ZO-1), and MLCK. Giardia infection caused a significant increase in small intestinal, but not gastric or colonic, permeability that correlated with trophozoite colonization in both immunocompetent and athymic mice. In vitro, Giardia increased permeability and phosphorylation of MLC and reorganized F-actin and ZO-1. These alterations were abolished with an MLCK inhibitor. Disruption of small intestinal barrier function is T cell independent, disappears on parasite clearance, and correlates with reorganization of cytoskeletal F-actin and tight junctional ZO-1 in an MLCK-dependent fashion.

  19. Distinct Shifts in Microbiota Composition during Drosophila Aging Impair Intestinal Function and Drive Mortality

    Directory of Open Access Journals (Sweden)

    Rebecca I. Clark

    2015-09-01

    Full Text Available Alterations in the composition of the intestinal microbiota have been correlated with aging and measures of frailty in the elderly. However, the relationships between microbial dynamics, age-related changes in intestinal physiology, and organismal health remain poorly understood. Here, we show that dysbiosis of the intestinal microbiota, characterized by an expansion of the Gammaproteobacteria, is tightly linked to age-onset intestinal barrier dysfunction in Drosophila. Indeed, alterations in the microbiota precede and predict the onset of intestinal barrier dysfunction in aged flies. Changes in microbial composition occurring prior to intestinal barrier dysfunction contribute to changes in excretory function and immune gene activation in the aging intestine. In addition, we show that a distinct shift in microbiota composition follows intestinal barrier dysfunction, leading to systemic immune activation and organismal death. Our results indicate that alterations in microbiota dynamics could contribute to and also predict varying rates of health decline during aging in mammals.

  20. The crosstalk of gut microbiota and chronic kidney disease: role of inflammation, proteinuria, hypertension, and diabetes mellitus.

    Science.gov (United States)

    Kanbay, Mehmet; Onal, Emine M; Afsar, Baris; Dagel, Tuncay; Yerlikaya, Aslihan; Covic, Adrian; Vaziri, Nosratola D

    2018-05-04

    Chronic kidney disease (CKD) has been shown to result in profound changes in the composition and functions of the gut microbial flora which by disrupting intestinal epithelial barrier and generating toxic by-products contributes to systemic inflammation and the associated complications. On the other hand, emerging evidence points to the role of the gut microbiota in the development and progression of CKD by provoking inflammation, proteinuria, hypertension, and diabetes. These observations demonstrate the causal interconnection between the gut microbial dysbiosis and CKD. The gut microbiota closely interacts with the inflammatory, renal, cardiovascular, and endocrine systems via metabolic, humoral, and neural signaling pathways, events which can lead to chronic systemic inflammation, proteinuria, hypertension, diabetes, and kidney disease. Given the established role of the gut microbiota in the development and progression of CKD and its complications, favorable modification of the composition and function of the gut microbiome represents an appealing therapeutic target for prevention and treatment of CKD. This review provides an overview of the role of the gut microbial dysbiosis in the pathogenesis of the common causes of CKD including hypertension, diabetes, and proteinuria as well as progression of CKD.

  1. Functional and structural alterations of epithelial barrier properties of rat ileum following X-irradiation

    International Nuclear Information System (INIS)

    Dublineau, I.; Lebrun, F.; Grison, S.; Griffiths, N.M.

    2004-01-01

    Irradiation of the digestive system leads to alterations of the small intestine. We have characterized the disruption of the barrier integrity in rat ileum from 1 to 14 days following irradiation ranging from 6 to 12 Gy. The intestinal permeability to 14 C-mannitol and 3 H-dextran 70,000 was measured in vitro in Ussing chambers. In parallel to these functional studies, immunohistochemical analyses of junctional proteins (ZO-1 and β-catenin) of ileal epithelium were performed by confocal microscopy. Irradiation with 10 Gy induced a marked decrease in epithelial tissue resistance at three days and a fivefold increase in mannitol permeability, without modifications of dextran permeability. A disorganization of the localization for ZO-1 and β-catenin was also observed. At 7 days after irradiation, we observed a recovery of the organization of junctional proteins in parallel to a return of intestinal permeability to control value. In addition to these time-dependent effects, a gradual effect on epithelial integrity of the radiation doses was observed 3 days after irradiation. This study shows a disruption of the integrity of the intestinal barrier in rat ileum following abdominal X-irradiation, depending on the time postirradiation and on the delivered dose. The loss of barrier integrity was characterized by a disorganization of proteins of tight and adherent junctions, leading to increased intestinal permeability to mannitol. (author)

  2. Defects in small intestinal epithelial barrier function and morphology associated with peri-weaning failure to thrive syndrome (PFTS) in swine.

    Science.gov (United States)

    Moeser, Adam J; Borst, Luke B; Overman, Beth L; Pittman, Jeremy S

    2012-10-01

    The objective of this study was to investigate intestinal function and morphology associated with peri-weaning failure to thrive syndrome (PFTS) in swine. Jejunum and distal ileum from control and pigs exhibiting PFTS was harvested at weaning, 4 and 11 days post-weaning (PW) for intestinal barrier function studies and histological analyses (n=6 pigs per group). Marked disturbances in intestinal barrier function was observed in PFTS pigs, compared with controls, indicated by lower (p<0.05) TER and increased (p<0.01) permeability to FITC dextran (4 kDa). Intestines from weaned pigs, subjected to a 4-day fast, exhibited minor disturbances in intestinal barrier function. Villus atrophy and crypt hyperplasia were observed in the PFTS intestine compared with control and fasted pigs. These data demonstrate that PFTS is associated with profound disturbances in intestinal epithelial barrier function and alterations in mucosal and epithelial morphology in which anorexia is not the sole factor. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Imbalance of gut microbiome and intestinal epithelial barrier dysfunction in patients with high blood pressure.

    Science.gov (United States)

    Kim, Seungbum; Goel, Ruby; Kumar, Ashok; Qi, Yanfei; Lobaton, Gil; Hosaka, Koji; Mohammed, Mohammed; Handberg, Eileen M; Richards, Elaine M; Pepine, Carl J; Raizada, Mohan K

    2018-03-30

    Recent evidence indicates a link between gut pathology and microbiome with hypertension (HTN) in animal models. However, whether this association exists in humans is unknown. Thus, our objectives in the present study were to test the hypotheses that high blood pressure (BP) patients have distinct gut microbiomes and that gut-epithelial barrier function markers and microbiome composition could predict systolic BP (SBP). Fecal samples, analyzed by shotgun metagenomics, displayed taxonomic and functional changes, including altered butyrate production between patients with high BP and reference subjects. Significant increases in plasma of intestinal fatty acid binding protein (I-FABP), lipopolysaccharide (LPS), and augmented gut-targetting proinflammatory T helper 17 (Th17) cells in high BP patients demonstrated increased intestinal inflammation and permeability. Zonulin, a gut epithelial tight junction protein regulator, was markedly elevated, further supporting gut barrier dysfunction in high BP. Zonulin strongly correlated with SBP (R 2 = 0.5301, P <0.0001). Two models predicting SBP were built using stepwise linear regression analysis of microbiome data and circulating markers of gut health, and validated in a separate cohort by prediction of SBP from zonulin in plasma (R 2 = 0.4608, P <0.0001). The mouse model of HTN, chronic angiotensin II (Ang II) infusion, was used to confirm the effects of butyrate and gut barrier function on the cardiovascular system and BP. These results support our conclusion that intestinal barrier dysfunction and microbiome function are linked to HTN in humans. They suggest that manipulation of gut microbiome and its barrier functions could be the new therapeutic and diagnostic avenues for HTN. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  4. Boswellia serrata Preserves Intestinal Epithelial Barrier from Oxidative and Inflammatory Damage.

    Directory of Open Access Journals (Sweden)

    Daniela Catanzaro

    Full Text Available Aminosalicylates, corticosteroids and immunosuppressants are currently the therapeutic choices in inflammatory bowel diseases (IBD, however, with limited remission and often serious side effects. Meanwhile complementary and alternative medicine (CAM use is increasing, particularly herbal medicine. Boswellia serrata is a traditional Ayurvedic remedy with anti-inflammatory properties, of interest for its usefulness in IBDs. The mechanism of this pharmacological potential of Boswellia serrata was investigated in colonic epithelial cell monolayers exposed to H2O2 or INF-γ+TNF-α, chosen as in vitro experimental model of intestinal inflammation. The barrier function was evaluated by the transepithelial electrical resistance (TEER and paracellular permeability assay, and by the tight junction proteins (zonula occludens-1, ZO-1 and occludin immunofluorescence. The expression of phosphorylated NF-κB and reactive oxygen species (ROS generation were determined by immunoblot and cytofluorimetric assay, respectively. Boswellia serrata oleo-gum extract (BSE and its pure derivative acetyl-11-keto-β-boswellic acid (AKBA, were tested at 0.1-10 μg/ml and 0.027 μg/ml, respectively. BSE and AKBA safety was demonstrated by no alteration of intestinal cell viability and barrier function and integrity biomarkers. H2O2 or INF-γ+TNF-α treatment of Caco-2 cell monolayers significantly reduced TEER, increased paracellular permeability and caused the disassembly of tight junction proteins occludin and ZO-1. BSE and AKBA pretreatment significantly prevented functional and morphological alterations and also the NF-κB phosphorylation induced by the inflammatory stimuli. At the same concentrations BSE and AKBA counteracted the increase of ROS caused by H2O2 exposure. Data showed the positive correlation of the antioxidant activity with the mechanism involved in the physiologic maintenance of the integrity and function of the intestinal epithelium. This study

  5. Inhibition of Epithelial TNF-α Receptors by Purified Fruit Bromelain Ameliorates Intestinal Inflammation and Barrier Dysfunction in Colitis.

    Science.gov (United States)

    Zhou, Zijuan; Wang, Liang; Feng, Panpan; Yin, Lianhong; Wang, Chen; Zhi, Shengxu; Dong, Jianyi; Wang, Jingyu; Lin, Yuan; Chen, Dapeng; Xiong, Yongjian; Peng, Jinyong

    2017-01-01

    Activation of the TNF-α receptor (TNFR) leads to an inflammatory response, and anti-TNF therapy has been administered to reduce inflammation symptoms and heal mucosal ulcers in inflammatory bowel disease (IBD). Bromelain, a complex natural mixture of proteolytic enzymes, has been shown to exert anti-inflammatory effects. This study aimed to investigate the effect of purified fruit bromelain (PFB)-induced inhibition of epithelial TNFR in a rat colitis model. Colitis was established by intracolonic administration of 2, 4, 6-trinitrobenzene sulfonic acid. Expression of TNFR1 and TNFR2 was measured by quantitative RT-PCR and western blotting. The effect of PFB on colitis was evaluated by examining the inflammatory response and intestinal epithelial barrier function. Our results showed that both TNFR1 and TNFR2 expression were significantly increased in a colitis model, and the increase was significantly reversed by PFB. Colitis symptoms, including infiltration of inflammatory cells, cytokine profiles, epithelial cell apoptosis, and epithelial tight junction barrier dysfunction were significantly ameliorated by PFB. Compared with fruit bromelain and stem bromelain complex, the inhibition of TNFR2 induced by PFB was stronger than that exhibited on TNFR1. These results indicate that PFB showed a stronger selective inhibitory effect on TNFR2 than TNFR1. In other words, purification of fruit bromelain increases its selectivity on TNFR2 inhibition. High expression of epithelial TNFRs in colitis was significantly counteracted by PFB, and PFB-induced TNFR inhibition ameliorated colitis symptoms. These results supply novel insights into potential IBD treatment by PFB.

  6. Stress-related IBS

    African Journals Online (AJOL)

    sum of these organisms (microbiota) outnumbers somatic cells ... host epithelium and lymphoid tissue, all of which are important ... Toll-like receptors (innate immune sensors, at the interface of intestinal epithelial barrier, microbiota, and the ...

  7. Nutrition meets the microbiome: micronutrients and the microbiota.

    Science.gov (United States)

    Biesalski, Hans K

    2016-05-01

    There is increasing evidence that food is an important factor that influences and shapes the composition and configuration of the gut microbiota. Most studies have focused on macronutrients (fat, carbohydrate, protein) in particular and their effects on the gut microbiota. Although the microbiota can synthesize different water-soluble vitamins, the effects of vitamins synthesized within the microbiota on systemic vitamin status are unclear. Few studies exist on the shuttling of vitamins between the microbiota and intestine and the impact of luminal vitamins on the microbiota. Studying the interactions between vitamins and the microbiota may help to understand the effects of vitamins on the barrier function and immune system of the intestinal tract. Furthermore, understanding the impact of malnutrition, particularly low micronutrient supply, on microbiota development, composition, and metabolism may help in implementing new strategies to overcome the deleterious effects of malnutrition on child development. This article reviews data on the synthesis of different micronutrients and their effects on the human microbiota, and further discusses the consequences of malnutrition on microbiota composition. © 2016 New York Academy of Sciences.

  8. The pH-sensing receptor OGR1 improves barrier function of epithelial cells and inhibits migration in an acidic environment.

    Science.gov (United States)

    de Vallière, Cheryl; Vidal, Solange; Clay, Ieuan; Jurisic, Giorgia; Tcymbarevich, Irina; Lang, Silvia; Ludwig, Marie-Gabrielle; Okoniewski, Michal; Eloranta, Jyrki J; Kullak-Ublick, Gerd A; Wagner, Carsten A; Rogler, Gerhard; Seuwen, Klaus

    2015-09-15

    The pH-sensing receptor ovarian cancer G protein-coupled receptor 1 (OGR1; GPR68) is expressed in the gut. Inflammatory bowel disease is typically associated with a decrease in local pH, which may lead to altered epithelial barrier function and subsequent gastrointestinal repair involving epithelial cell adhesion and migration. As the mechanisms underlying the response to pH changes are not well understood, we have investigated OGR1-mediated, pH-dependent signaling pathways in intestinal epithelial cells. Caco-2 cells stably overexpressing OGR1 were created and validated as tools to study OGR1 signaling. Barrier function, migration, and proliferation were measured using electric cell-substrate impedance-sensing technology. Localization of the tight junction proteins zonula occludens protein 1 and occludin and the rearrangement of cytoskeletal actin were examined by confocal microscopy. Paracellular permeability and protein and gene expression analysis using DNA microarrays were performed on filter-grown Caco-2 monolayers. We report that an acidic pH shift from pH 7.8 to 6.6 improved barrier function and stimulated reorganization of filamentous actin with prominent basal stress fiber formation. Cell migration and proliferation during in vitro wound healing were inhibited. Gene expression analysis revealed significant upregulation of genes related to cytoskeleton remodeling, cell adhesion, and growth factor signaling. We conclude that acidic extracellular pH can have a signaling function and impact the physiology of intestinal epithelial cells. The deconstruction of OGR1-dependent signaling may aid our understanding of mucosal inflammation mechanisms. Copyright © 2015 the American Physiological Society.

  9. Alpha-Melanocyte Stimulating Hormone Protects against Cytokine-Induced Barrier Damage in Caco-2 Intestinal Epithelial Monolayers.

    Directory of Open Access Journals (Sweden)

    Judit Váradi

    Full Text Available Alpha-melanocyte-stimulating hormone (α-MSH is a potent anti-inflammatory peptide with cytoprotective effect in various tissues. The present investigation demonstrates the ability of α-MSH to interact with intestinal epithelial cell monolayers and mitigate inflammatory processes of the epithelial barrier. The protective effect of α-MSH was studied on Caco-2 human intestinal epithelial monolayers, which were disrupted by exposure to tumor necrosis factor-α and interleukin-1β. The barrier integrity was assessed by measuring transepithelial electric resistance (TEER and permeability for marker molecules. Caco-2 monolayers were evaluated by immunohistochemistry for expression of melanocortin-1 receptor and tight junction proteins ZO-1 and claudin-4. The activation of nuclear factor kappa beta (NF-κB was detected by fluorescence microscopy and inflammatory cytokine expression was assessed by flow cytometric bead array cytokine assay. Exposure of Caco-2 monolayers to proinflammatory cytokines lowered TEER and increased permeability for fluorescein and albumin, which was accompanied by changes in ZO-1 and claudin-4 immunostaining. α-MSH was able to prevent inflammation-associated decrease of TEER in a dose-dependent manner and reduce the increased permeability for paracellular marker fluorescein. Further immunohistochemistry analysis revealed proinflammatory cytokine induced translocation of the NF-κB p65 subunit into Caco-2 cell nuclei, which was inhibited by α-MSH. As a result the IL-6 and IL-8 production of Caco-2 monolayers were also decreased with different patterns by the addition of α-MSH to the culture medium. In conclusion, Caco-2 cells showed a positive immunostaining for melanocortin-1 receptor and α-MSH protected Caco-2 cells against inflammatory barrier dysfunction and inflammatory activation induced by tumor necrosis factor-α and interleukin-1β cytokines.

  10. Probiotics promote endocytic allergen degradation in gut epithelial cells

    International Nuclear Information System (INIS)

    Song, Chun-Hua; Liu, Zhi-Qiang; Huang, Shelly; Zheng, Peng-Yuan; Yang, Ping-Chang

    2012-01-01

    Highlights: ► Knockdown of A20 compromised the epithelial barrier function. ► The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. ► Antigens transported across A20-deficient HT-29 monolayers conserved antigenicity. ► Probiotic proteins increased the expression of A20 in HT-29 cells. -- Abstract: Background and aims: Epithelial barrier dysfunction plays a critical role in the pathogenesis of allergic diseases; the mechanism is to be further understood. The ubiquitin E3 ligase A20 (A20) plays a role in the endocytic protein degradation in the cells. This study aims to elucidate the role of A20 in the maintenance of gut epithelial barrier function. Methods: Gut epithelial cell line, HT-29 cell, was cultured into monolayers to evaluate the barrier function in transwells. RNA interference was employed to knock down the A20 gene in HT-29 cells to test the role of A20 in the maintenance of epithelial barrier function. Probiotic derived proteins were extracted from the culture supernatants using to enhance the expression of A20 in HT-29 cells. Results: The results showed that the knockdown of A20 compromised the epithelial barrier function in HT-29 monolayers, mainly increased the intracellular permeability. The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Allergens collected from the transwell basal chambers of A20-deficient HT-29 monolayers still conserved functional antigenicity. Treating with probiotic derived proteins increased the expression of A20 in HT-29 cells and promote the barrier function. Conclusion: A20 plays an important role in the maintenance of epithelial barrier function as shown by HT-29 monolayer. Probiotic derived protein increases the expression of A20 and promote the HT-29 monolayer barrier function.

  11. Probiotics promote endocytic allergen degradation in gut epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chun-Hua [Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou (China); Liu, Zhi-Qiang [Department of Gastroenterology, The Second Hospital, Zhengzhou University, Zhengzhou (China); Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON (Canada); Huang, Shelly [Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON (Canada); Zheng, Peng-Yuan, E-mail: medp7123@126.com [Department of Gastroenterology, The Second Hospital, Zhengzhou University, Zhengzhou (China); Yang, Ping-Chang, E-mail: yangp@mcmaster.ca [Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON (Canada)

    2012-09-14

    Highlights: Black-Right-Pointing-Pointer Knockdown of A20 compromised the epithelial barrier function. Black-Right-Pointing-Pointer The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Black-Right-Pointing-Pointer Antigens transported across A20-deficient HT-29 monolayers conserved antigenicity. Black-Right-Pointing-Pointer Probiotic proteins increased the expression of A20 in HT-29 cells. -- Abstract: Background and aims: Epithelial barrier dysfunction plays a critical role in the pathogenesis of allergic diseases; the mechanism is to be further understood. The ubiquitin E3 ligase A20 (A20) plays a role in the endocytic protein degradation in the cells. This study aims to elucidate the role of A20 in the maintenance of gut epithelial barrier function. Methods: Gut epithelial cell line, HT-29 cell, was cultured into monolayers to evaluate the barrier function in transwells. RNA interference was employed to knock down the A20 gene in HT-29 cells to test the role of A20 in the maintenance of epithelial barrier function. Probiotic derived proteins were extracted from the culture supernatants using to enhance the expression of A20 in HT-29 cells. Results: The results showed that the knockdown of A20 compromised the epithelial barrier function in HT-29 monolayers, mainly increased the intracellular permeability. The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Allergens collected from the transwell basal chambers of A20-deficient HT-29 monolayers still conserved functional antigenicity. Treating with probiotic derived proteins increased the expression of A20 in HT-29 cells and promote the barrier function. Conclusion: A20 plays an important role in the maintenance of epithelial barrier function as shown by HT-29 monolayer. Probiotic derived protein increases the expression of A20 and promote the HT-29 monolayer barrier function.

  12. Sodium caprate transiently opens claudin-5-containing barriers at tight junctions of epithelial and endothelial cells

    DEFF Research Database (Denmark)

    Del Vecchio, Giovanna; Tscheik, Christian; Tenz, Kareen

    2012-01-01

    Claudin-5 is a tight junction (TJ) protein which limits the diffusion of small hydrophilic molecules. Thus, it represents a potential pharmacological target to improve drug delivery to the tissues protected by claudin-5-dependent barriers. Sodium caprate is known as an absorption enhancer which...... opens the paracellular space acting on TJ proteins and actin cytoskeleton. Its action on claudin-5 is not understood so far. Epithelial and endothelial systems were used to evaluate the effect of caprate on claudin-5 in TJ-free cells and on claudin-5 fully integrated in TJ. To this aim, confocal...... of endothelial and epithelial cells. In conclusion, the study further elucidates the cellular effects of caprate at the tight junctions....

  13. Mucus and microbiota as emerging players in gut nanotoxicology: The example of dietary silver and titanium dioxide nanoparticles.

    Science.gov (United States)

    Mercier-Bonin, Muriel; Despax, Bernard; Raynaud, Patrice; Houdeau, Eric; Thomas, Muriel

    2018-04-13

    Given the growing use of nanotechnology in many common consumer products, including foods, evaluation of the consequences of chronic exposure to nanoparticles in humans has become a major public health issue. The oral route of exposure has been poorly explored, despite the presence of a fraction of nanosized particles in certain food additives/supplements and the incorporation of such particles into packaging in contact with foods. After their ingestion, these nanoparticles pass through the digestive tract, where they may undergo physicochemical transformations, with consequences for the luminal environment, before crossing the epithelial barrier to reach the systemic compartment. In this review, we consider two examples, nanosilver and nanotitanium dioxide. Despite the specific features of these particles and the differences between them, both display a close relationship between physicochemical reactivity and bioavailability/biopersistence in the gastrointestinal tract. Few studies have focused on the interactions of nanoparticles of silver or titanium dioxide with the microbiota and mucus. However, the microbiota and mucus play key roles in intestinal homeostasis and host health and are undoubtedly involved in controlling the distribution of nanoparticles in the systemic compartment.

  14. Severe Burn-Induced Intestinal Epithelial Barrier Dysfunction Is Associated With Endoplasmic Reticulum Stress and Autophagy in Mice

    Science.gov (United States)

    Huang, Yalan; Feng, Yanhai; Wang, Yu; Wang, Pei; Wang, Fengjun; Ren, Hui

    2018-01-01

    The disruption of intestinal barrier plays a vital role in the pathophysiological changes after severe burn injury, however, the underlying mechanisms are poorly understood. Severe burn causes the disruption of intestinal tight junction (TJ) barrier. Previous studies have shown that endoplasmic reticulum (ER) stress and autophagy are closely associated with the impairment of intestinal mucosa. Thus, we hypothesize that ER stress and autophagy are likely involved in burn injury-induced intestinal epithelial barrier dysfunction. Mice received a 30% total body surface area (TBSA) full-thickness burn, and were sacrificed at 0, 1, 2, 6, 12 and 24 h postburn. The results showed that intestinal permeability was increased significantly after burn injury, accompanied by the damage of mucosa and the alteration of TJ proteins. Severe burn induced ER stress, as indicated by increased intraluminal chaperone binding protein (BIP), CCAAT/enhancer-binding protein homologous protein (CHOP) and inositol-requiring enzyme 1(IRE1)/X-box binding protein 1 splicing (XBP1). Autophagy was activated after burn injury, as evidenced by the increase of autophagy related protein 5 (ATG5), Beclin 1 and LC3II/LC3I ratio and the decrease of p62. Besides, the number of autophagosomes was also increased after burn injury. The levels of p-PI3K(Ser191), p-PI3K(Ser262), p-AKT(Ser473), and p-mTOR were decreased postburn, suggesting that autophagy-related PI3K/AKT/mTOR pathway is involved in the intestinal epithelial barrier dysfunction following severe burn. In summary, severe burn injury induces the ER stress and autophagy in intestinal epithelia, leading to the disruption of intestinal barrier. PMID:29740349

  15. Extracorporeal membrane oxygenation causes loss of intestinal epithelial barrier in the newborn piglet.

    Science.gov (United States)

    Kurundkar, Ashish R; Killingsworth, Cheryl R; McIlwain, R Britt; Timpa, Joseph G; Hartman, Yolanda E; He, Dongning; Karnatak, Rajendra K; Neel, Mary L; Clancy, John P; Anantharamaiah, G M; Maheshwari, Akhil

    2010-08-01

    Extracorporeal membrane oxygenation (ECMO) is an important life-support system used in neonates and young children with intractable cardiorespiratory failure. In this study, we used our porcine neonatal model of venoarterial ECMO to investigate whether ECMO causes gut barrier dysfunction. We subjected 3-wk-old previously healthy piglets to venoarterial ECMO for up to 8 h and evaluated gut mucosal permeability, bacterial translocation, plasma levels of bacterial products, and ultrastructural changes in gut epithelium. We also measured plasma lipopolysaccharide (LPS) levels in a small cohort of human neonates receiving ECMO. In our porcine model, ECMO caused a rapid increase in gut mucosal permeability within the first 2 h of treatment, leading to a 6- to 10-fold rise in circulating bacterial products. These changes in barrier function were associated with cytoskeletal condensation in epithelial cells, which was explained by phosphorylation of a myosin II regulatory light chain. In support of these findings, we also detected elevated plasma LPS levels in human neonates receiving ECMO, indicating a similar loss of gut barrier function in these infants. On the basis of these data, we conclude that ECMO is an independent cause of gut barrier dysfunction and bacterial translocation may be an important contributor to ECMO-related inflammation.

  16. Glycogen Synthase Kinase 3 (GSK-3) influences epithelial barrier function by regulating Occludin, Claudin-1 and E-cadherin expression

    International Nuclear Information System (INIS)

    Severson, Eric A.; Kwon, Mike; Hilgarth, Roland S.; Parkos, Charles A.; Nusrat, Asma

    2010-01-01

    The Apical Junctional Complex (AJC) encompassing the tight junction (TJ) and adherens junction (AJ) plays a pivotal role in regulating epithelial barrier function and epithelial cell proliferative processes through signaling events that remain poorly characterized. A potential regulator of AJC protein expression is Glycogen Synthase Kinase-3 (GSK-3). GSK-3 is a constitutively active kinase that is repressed during epithelial-mesenchymal transition (EMT). In the present study, we report that GSK-3 activity regulates the structure and function of the AJC in polarized model intestinal (SK-CO15) and kidney (Madin-Darby Canine Kidney (MDCK)) epithelial cells. Reduction of GSK-3 activity, either by small molecule inhibitors or siRNA targeting GSK-3 alpha and beta mRNA, resulted in increased permeability to both ions and bulk solutes. Immunofluorescence labeling and immunoblot analyses revealed that the barrier defects correlated with decreased protein expression of AJC transmembrane proteins Occludin, Claudin-1 and E-cadherin without influencing other TJ proteins, Zonula Occludens-1 (ZO-1) and Junctional Adhesion Molecule A (JAM-A). The decrease in Occludin and E-cadherin protein expression correlated with downregulation of the corresponding mRNA levels for these respective proteins following GSK-3 inhibition. These observations implicate an important role of GSK-3 in the regulation of the structure and function of the AJC that is mediated by differential modulation of mRNA transcription of key AJC proteins, Occludin, Claudin-1 and E-cadherin.

  17. Glycogen Synthase Kinase 3 (GSK-3) influences epithelial barrier function by regulating Occludin, Claudin-1 and E-cadherin expression

    Energy Technology Data Exchange (ETDEWEB)

    Severson, Eric A.; Kwon, Mike; Hilgarth, Roland S.; Parkos, Charles A. [Epithelial Pathobiology Research Unit, Dept. of Pathology, Emory University, Atlanta, GA 30322 (United States); Nusrat, Asma, E-mail: anusrat@emory.edu [Epithelial Pathobiology Research Unit, Dept. of Pathology, Emory University, Atlanta, GA 30322 (United States)

    2010-07-02

    The Apical Junctional Complex (AJC) encompassing the tight junction (TJ) and adherens junction (AJ) plays a pivotal role in regulating epithelial barrier function and epithelial cell proliferative processes through signaling events that remain poorly characterized. A potential regulator of AJC protein expression is Glycogen Synthase Kinase-3 (GSK-3). GSK-3 is a constitutively active kinase that is repressed during epithelial-mesenchymal transition (EMT). In the present study, we report that GSK-3 activity regulates the structure and function of the AJC in polarized model intestinal (SK-CO15) and kidney (Madin-Darby Canine Kidney (MDCK)) epithelial cells. Reduction of GSK-3 activity, either by small molecule inhibitors or siRNA targeting GSK-3 alpha and beta mRNA, resulted in increased permeability to both ions and bulk solutes. Immunofluorescence labeling and immunoblot analyses revealed that the barrier defects correlated with decreased protein expression of AJC transmembrane proteins Occludin, Claudin-1 and E-cadherin without influencing other TJ proteins, Zonula Occludens-1 (ZO-1) and Junctional Adhesion Molecule A (JAM-A). The decrease in Occludin and E-cadherin protein expression correlated with downregulation of the corresponding mRNA levels for these respective proteins following GSK-3 inhibition. These observations implicate an important role of GSK-3 in the regulation of the structure and function of the AJC that is mediated by differential modulation of mRNA transcription of key AJC proteins, Occludin, Claudin-1 and E-cadherin.

  18. Vaginal microbiota and viral sexually transmitted diseases.

    Science.gov (United States)

    Nardis, C; Mosca, L; Mastromarino, P

    2013-01-01

    Healthy vaginal microbiota is an important biological barrier to pathogenic microorganisms. When this predominantly Lactobacillus community is disrupted, decreased in abundance and replaced by different anaerobes, bacterial vaginosis (BV) may occur. BV is associated with prevalence and incidence of several sexually transmitted infections. This review provides background on BV, discusses the epidemiologic data to support a role of altered vaginal microbiota for acquisition of sexually transmitted diseases and analyzes mechanisms by which lactobacilli could counteract sexually transmitted viral infections.

  19. Mucosal pathobiology and molecular signature of epithelial barrier dysfunction in the small intestine in irritable bowel syndrome.

    Science.gov (United States)

    González-Castro, Ana M; Martínez, Cristina; Salvo-Romero, Eloísa; Fortea, Marina; Pardo-Camacho, Cristina; Pérez-Berezo, Teresa; Alonso-Cotoner, Carmen; Santos, Javier; Vicario, María

    2017-01-01

    Irritable bowel syndrome (IBS) is one of the most prevalent gastrointestinal disorders in developed countries. Its etiology remains unknown; however, a common finding, regardless of IBS subtype, is the presence of altered intestinal barrier. In fact, signaling and location of cell-to-cell adhesion proteins, in connection with increased immune activity, seem abnormal in the intestinal epithelium of IBS patients. Despite that most research is performed on distal segments of the intestine, altered permeability has been reported in both, the small and the large bowel of all IBS subtypes. The small intestine carries out digestion and nutrient absorption and is also the site where the majority of immune responses to luminal antigens takes place. In fact, the upper intestine is more exposed to environmental antigens than the colon and is also a site of symptom generation. Recent studies have revealed small intestinal structural alterations of the epithelial barrier and mucosal immune activation in association with intestinal dysfunction, suggesting the commitment of the intestine as a whole in the pathogenesis of IBS. This review summarizes the most recent findings on mucosal barrier alterations and its relationship to symptoms arising from the small intestine in IBS, including epithelial structural abnormalities, mucosal immune activation, and microbial dysbiosis, further supporting the hypothesis of an organic origin of IBS. © 2016 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  20. HIV-1 impairs human retinal pigment epithelial barrier function: possible association with the pathogenesis of HIV-associated retinopathy.

    Science.gov (United States)

    Tan, Suiyi; Duan, Heng; Xun, Tianrong; Ci, Wei; Qiu, Jiayin; Yu, Fei; Zhao, Xuyan; Wu, Linxuan; Li, Lin; Lu, Lu; Jiang, Shibo; Liu, Shuwen

    2014-07-01

    The breakdown of human retinal pigment epithelial (HRPE) barrier is considered as the etiology of retinopathy, which affects the quality of life of HIV/AIDS patients. Here we demonstrate that HIV-1 could directly impair HRPE barrier function, which leads to the translocation of HIV-1 and bacteria. HRPE cells (D407) were grown to form polarized, confluent monolayers and treated with different HIV-1 infectious clones. A significant increase of monolayer permeability, as measured by trans-epithelial electrical resistance (TEER) and apical-basolateral movements of sodium fluorescein, was observed. Disrupted tightness of HRPE barrier was associated with the downregulation of several tight junction proteins in D407 cells, including ZO-1, Occludin, Claudin-1, Claudin-2, Claudin-3, Claudin-4, and Claudin-5, after exposure to HIV-1, without affecting the viability of cells. HIV-1 gp120 was shown to participate in the alteration of barrier properties, as evidenced by decreased TEER and weakened expression of tight junction proteins in D407 monolayers after exposure to pseudotyped HIV-1, UV-inactivated HIV-1, and free gp120, but not to an envelope (Env)-defective mutant of HIV. Furthermore, exposure to HIV-1 particles could induce the release of pro-inflammatory cytokines in D407, including IL-6 and MCP-1, both of which downregulated the expression of ZO-1 in the HRPE barrier. Disrupted HRPE monolayer allowed translocation of HIV-1 and bacteria across the epithelium. Overall, these findings suggest that HIV-1 may exploit its Env glycoprotein to induce an inflammatory state in HRPE cells, which could result in impairment of HRPE monolayer integrity, allowing virus and bacteria existing in ocular fluids to cross the epithelium and penetrate the HRPE barrier. Our study highlights the role of HIV-1 in the pathogenesis of HIV/AIDS-related retinopathy and suggests potential therapeutic targets for this ocular complication.

  1. Mycotoxin: Its Impact on Gut Health and Microbiota

    Science.gov (United States)

    Liew, Winnie-Pui-Pui; Mohd-Redzwan, Sabran

    2018-01-01

    The secondary metabolites produced by fungi known as mycotoxins, are capable of causing mycotoxicosis (diseases and death) in human and animals. Contamination of feedstuffs as well as food commodities by fungi occurs frequently in a natural manner and is accompanied by the presence of mycotoxins. The occurrence of mycotoxins' contamination is further stimulated by the on-going global warming as reflected in some findings. This review comprehensively discussed the role of mycotoxins (trichothecenes, zearalenone, fumonisins, ochratoxins, and aflatoxins) toward gut health and gut microbiota. Certainly, mycotoxins cause perturbation in the gut, particularly in the intestinal epithelial. Recent insights have generated an entirely new perspective where there is a bi-directional relationship exists between mycotoxins and gut microbiota, thus suggesting that our gut microbiota might be involved in the development of mycotoxicosis. The bacteria–xenobiotic interplay for the host is highlighted in this review article. It is now well established that a healthy gut microbiota is largely responsible for the overall health of the host. Findings revealed that the gut microbiota is capable of eliminating mycotoxin from the host naturally, provided that the host is healthy with a balance gut microbiota. Moreover, mycotoxins have been demonstrated for modulation of gut microbiota composition, and such alteration in gut microbiota can be observed up to species level in some of the studies. Most, if not all, of the reported effects of mycotoxins, are negative in terms of intestinal health, where beneficial bacteria are eliminated accompanied by an increase of the gut pathogen. The interactions between gut microbiota and mycotoxins have a significant role in the development of mycotoxicosis, particularly hepatocellular carcinoma. Such knowledge potentially drives the development of novel and innovative strategies for the prevention and therapy of mycotoxin contamination and

  2. Mycotoxin: Its Impact on Gut Health and Microbiota

    Directory of Open Access Journals (Sweden)

    Winnie-Pui-Pui Liew

    2018-02-01

    Full Text Available The secondary metabolites produced by fungi known as mycotoxins, are capable of causing mycotoxicosis (diseases and death in human and animals. Contamination of feedstuffs as well as food commodities by fungi occurs frequently in a natural manner and is accompanied by the presence of mycotoxins. The occurrence of mycotoxins' contamination is further stimulated by the on-going global warming as reflected in some findings. This review comprehensively discussed the role of mycotoxins (trichothecenes, zearalenone, fumonisins, ochratoxins, and aflatoxins toward gut health and gut microbiota. Certainly, mycotoxins cause perturbation in the gut, particularly in the intestinal epithelial. Recent insights have generated an entirely new perspective where there is a bi-directional relationship exists between mycotoxins and gut microbiota, thus suggesting that our gut microbiota might be involved in the development of mycotoxicosis. The bacteria–xenobiotic interplay for the host is highlighted in this review article. It is now well established that a healthy gut microbiota is largely responsible for the overall health of the host. Findings revealed that the gut microbiota is capable of eliminating mycotoxin from the host naturally, provided that the host is healthy with a balance gut microbiota. Moreover, mycotoxins have been demonstrated for modulation of gut microbiota composition, and such alteration in gut microbiota can be observed up to species level in some of the studies. Most, if not all, of the reported effects of mycotoxins, are negative in terms of intestinal health, where beneficial bacteria are eliminated accompanied by an increase of the gut pathogen. The interactions between gut microbiota and mycotoxins have a significant role in the development of mycotoxicosis, particularly hepatocellular carcinoma. Such knowledge potentially drives the development of novel and innovative strategies for the prevention and therapy of mycotoxin

  3. Epithelial-microbial crosstalk in polymeric Ig receptor deficient mice

    NARCIS (Netherlands)

    Reikvam, D.H.; Derrien, M.M.N.; Islam, R.; Erofeev, A.; Grcic, V.; Sandvik, A.; Gaustad, P.; Meza-Zepeda, L.A.; Jahnsen, F.L.; Smidt, H.; Johansen, F.E.

    2012-01-01

    Innate and adaptive mucosal defense mechanisms ensure a homeostatic relationship with the large and complex mutualistic gut microbiota. Dimeric IgA and pentameric IgM are transported across the intestinal epithelium via the epithelial polymeric Ig receptor (pIgR) and provide a significant portion of

  4. Microbiota-Induced Changes in Drosophila melanogaster Host Gene Expression and Gut Morphology

    Science.gov (United States)

    Buchon, Nicolas

    2014-01-01

    ABSTRACT To elucidate mechanisms underlying the complex relationships between a host and its microbiota, we used the genetically tractable model Drosophila melanogaster. Consistent with previous studies, the microbiota was simple in composition and diversity. However, analysis of single flies revealed high interfly variability that correlated with differences in feeding. To understand the effects of this simple and variable consortium, we compared the transcriptome of guts from conventionally reared flies to that for their axenically reared counterparts. Our analysis of two wild-type fly lines identified 121 up- and 31 downregulated genes. The majority of these genes were associated with immune responses, tissue homeostasis, gut physiology, and metabolism. By comparing the transcriptomes of young and old flies, we identified temporally responsive genes and showed that the overall impact of microbiota was greater in older flies. In addition, comparison of wild-type gene expression with that of an immune-deficient line revealed that 53% of upregulated genes exerted their effects through the immune deficiency (Imd) pathway. The genes included not only classic immune response genes but also those involved in signaling, gene expression, and metabolism, unveiling new and unexpected connections between immunity and other systems. Given these findings, we further characterized the effects of gut-associated microbes on gut morphology and epithelial architecture. The results showed that the microbiota affected gut morphology through their impacts on epithelial renewal rate, cellular spacing, and the composition of different cell types in the epithelium. Thus, while bacteria in the gut are highly variable, the influence of the microbiota at large has far-reaching effects on host physiology. PMID:24865556

  5. The world of epithelial sheets.

    Science.gov (United States)

    Honda, Hisao

    2017-06-01

    An epithelium is a layer of closely connected cells covering the body or lining a body cavity. In this review, several fundamental questions are addressed regarding the epithelium. (i) While an epithelium functions as barrier against the external environment, how is barrier function maintained during its construction? (ii) What determines the apical and basal sides of epithelial layer? (iii) Is there any relationship between the apical side of the epithelium and the apical membrane of an epithelial cell? (iv) Why are hepatocytes (liver cells) called epithelial, even though they differ completely from column-like shape of typical epithelial cells? Keeping these questions in mind, multiple shapes of epithelia were considered, extracting a few of their elemental processes, and constructing a virtual world of epithelia by combining them. Epithelial cells were also classified into several types based on the number of apical domains of each cell. In addition, an intracellular organelle was introduced within epithelial cells, the vacuolar apical compartment (VAC), which is produced within epithelial cells surrounded by external cell matrix (ECM). The VAC interacts with areas of cell-cell contact of the cell surface membrane and is converted to apical membrane. The properties of VACs enable us to answer the initial questions posed above. Finally, the genetic and molecular mechanisms of epithelial morphogenesis are discussed. © 2017 Japanese Society of Developmental Biologists.

  6. Live Faecalibacterium prausnitzii Does Not Enhance Epithelial Barrier Integrity in an Apical Anaerobic Co-Culture Model of the Large Intestine

    Directory of Open Access Journals (Sweden)

    Eva Maier

    2017-12-01

    Full Text Available Appropriate intestinal barrier maturation during infancy largely depends on colonization with commensal bacteria. Faecalibacterium prausnitzii is an abundant obligate anaerobe that colonizes during weaning and is thought to maintain colonic health throughout life. We previously showed that F. prausnitzii induced Toll-like receptor 2 (TLR2 activation, which is linked to enhanced tight junction formation. Therefore, we hypothesized that F. prausnitzii enhances barrier integrity, an important factor in appropriate intestinal barrier maturation. In order to test metabolically active bacteria, we used a novel apical anaerobic co-culture system that allows the survival of both obligate anaerobic bacteria and oxygen-requiring intestinal epithelial cells (Caco-2. The first aim was to optimize the culture medium to enable growth and active metabolism of F. prausnitzii while maintaining the viability and barrier integrity, as measured by trans-epithelial electrical resistance (TEER, of the Caco-2 cells. This was achieved by supplementing the apical cell culture medium with bacterial culture medium. The second aim was to test the effect of F. prausnitzii on TEER across Caco-2 cell layers. Live F. prausnitzii did not improve TEER, which indicates that its benefits are not via altering tight junction integrity. The optimization of the novel dual-environment co-culturing system performed in this research will enable the investigation of new probiotics originating from indigenous beneficial bacteria.

  7. Live Faecalibacterium prausnitzii Does Not Enhance Epithelial Barrier Integrity in an Apical Anaerobic Co-Culture Model of the Large Intestine.

    Science.gov (United States)

    Maier, Eva; Anderson, Rachel C; Roy, Nicole C

    2017-12-12

    Appropriate intestinal barrier maturation during infancy largely depends on colonization with commensal bacteria. Faecalibacterium prausnitzii is an abundant obligate anaerobe that colonizes during weaning and is thought to maintain colonic health throughout life. We previously showed that F. prausnitzii induced Toll-like receptor 2 (TLR2) activation, which is linked to enhanced tight junction formation. Therefore, we hypothesized that F. prausnitzii enhances barrier integrity, an important factor in appropriate intestinal barrier maturation. In order to test metabolically active bacteria, we used a novel apical anaerobic co-culture system that allows the survival of both obligate anaerobic bacteria and oxygen-requiring intestinal epithelial cells (Caco-2). The first aim was to optimize the culture medium to enable growth and active metabolism of F. prausnitzii while maintaining the viability and barrier integrity, as measured by trans-epithelial electrical resistance (TEER), of the Caco-2 cells. This was achieved by supplementing the apical cell culture medium with bacterial culture medium. The second aim was to test the effect of F. prausnitzii on TEER across Caco-2 cell layers. Live F. prausnitzii did not improve TEER, which indicates that its benefits are not via altering tight junction integrity. The optimization of the novel dual-environment co-culturing system performed in this research will enable the investigation of new probiotics originating from indigenous beneficial bacteria.

  8. EMMPRIN modulates epithelial barrier function through a MMP-mediated occludin cleavage: implications in dry eye disease.

    Science.gov (United States)

    Huet, Eric; Vallée, Benoit; Delbé, Jean; Mourah, Samia; Prulière-Escabasse, Virginie; Tremouilleres, Magali; Kadomatsu, Kenji; Doan, Serge; Baudouin, Christophe; Menashi, Suzanne; Gabison, Eric E

    2011-09-01

    Dry eye is a common disease that develops as a result of alteration of tear fluid, leading to osmotic stress and a perturbed epithelial barrier. Matrix metalloproteinase-9 (MMP-9) may be important in dry eye disease, as its genetic knockout conferred resistance to the epithelial disruption. We show that extracellular matrix metalloproteinase inducer (EMMPRIN; also termed CD147), an inducer of MMP expression, participates in the pathogenesis of dry eye through MMP-mediated cleavage of occludin, an important component of tight junctions. EMMPRIN expression was increased on the ocular surface of dry eye patients and correlated with those of MMP-9. High osmolarity in cell culture, mimicking dry eye conditions, increased both EMMPRIN and MMP-9 and resulted in the disruption of epithelial junctions through the cleavage of occludin. Exogenously added recombinant EMMPRIN had similar effects that were abrogated in the presence of the MMP inhibitor marimastat. Membrane occludin immunostaining was markedly increased in the apical corneal epithelium of both EMMPRIN and MMP-9 knock-out mice. Furthermore, an inverse correlation between EMMPRIN and occludin membrane staining was consistently observed both in vitro and in vivo as a function of corneal epithelial cells differentiation. These data suggest a possible role of EMMPRIN in regulating the amount of occludin at the cell surface in homeostasis beyond pathological situations such as dry eye disease, and EMMPRIN may be essential for the formation and maintenance of organized epithelial structure. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  9. Inflammatory Response and Barrier Dysfunction by Different e-Cigarette Flavoring Chemicals Identified by Gas Chromatography-Mass Spectrometry in e-Liquids and e-Vapors on Human Lung Epithelial Cells and Fibroblasts.

    Science.gov (United States)

    Gerloff, Janice; Sundar, Isaac K; Freter, Robert; Sekera, Emily R; Friedman, Alan E; Robinson, Risa; Pagano, Todd; Rahman, Irfan

    2017-03-01

    Recent studies suggest that electronic cigarette (e-cig) flavors can be harmful to lung tissue by imposing oxidative stress and inflammatory responses. The potential inflammatory response by lung epithelial cells and fibroblasts exposed to e-cig flavoring chemicals in addition to other risk-anticipated flavor enhancers inhaled by e-cig users is not known. The goal of this study was to evaluate the release of the proinflammatory cytokine (interleukin-8 [IL-8]) and epithelial barrier function in response to different e-cig flavoring chemicals identified in various e-cig e-liquid flavorings and vapors by chemical characterization using gas chromatography-mass spectrometry analysis. Flavorings, such as acetoin (butter), diacetyl, pentanedione, maltol (malt), ortho-vanillin (vanilla), coumarin, and cinnamaldehyde in comparison with tumor necrosis factor alpha (TNFα), were used in this study. Human bronchial epithelial cells (Beas2B), human mucoepidermoid carcinoma epithelial cells (H292), and human lung fibroblasts (HFL-1) were treated with each flavoring chemical for 24 hours. The cells and conditioned media were then collected and analyzed for toxicity (viability %), lung epithelial barrier function, and proinflammatory cytokine IL-8 release. Cell viability was not significantly affected by any of the flavoring chemicals tested at a concentration of 10 μM to 1 mM. Acetoin and diacetyl treatment induced IL-8 release in Beas2B cells. Acetoin- and pentanedione-treated HFL-1 cells produced a differential, but significant response for IL-8 release compared to controls and TNFα. Flavorings, such as ortho-vanillin and maltol, induced IL-8 release in Beas2B cells, but not in H292 cells. Of all the flavoring chemicals tested, acetoin and maltol were more potent inducers of IL-8 release than TNFα in Beas2B and HFL-1 cells. Flavoring chemicals rapidly impaired epithelial barrier function in human bronchial epithelial cells (16-HBE) as measured by electric cell surface

  10. Drosophila as a Model for Human Diseases-Focus on Innate Immunity in Barrier Epithelia.

    Science.gov (United States)

    Bergman, P; Seyedoleslami Esfahani, S; Engström, Y

    2017-01-01

    Epithelial immunity protects the host from harmful microbial invaders but also controls the beneficial microbiota on epithelial surfaces. When this delicate balance between pathogen and symbiont is disturbed, clinical disease often occurs, such as in inflammatory bowel disease, cystic fibrosis, or atopic dermatitis, which all can be in part linked to impairment of barrier epithelia. Many innate immune receptors, signaling pathways, and effector molecules are evolutionarily conserved between human and Drosophila. This review describes the current knowledge on Drosophila as a model for human diseases, with a special focus on innate immune-related disorders of the gut, lung, and skin. The discovery of antimicrobial peptides, the crucial role of Toll and Toll-like receptors, and the evolutionary conservation of signaling to the immune systems of both human and Drosophila are described in a historical perspective. Similarities and differences between human and Drosophila are discussed; current knowledge on receptors, signaling pathways, and effectors are reviewed, including antimicrobial peptides, reactive oxygen species, as well as autophagy. We also give examples of human diseases for which Drosophila appears to be a useful model. In addition, the limitations of the Drosophila model are mentioned. Finally, we propose areas for future research, which include using the Drosophila model for drug screening, as a validation tool for novel genetic mutations in humans and for exploratory research of microbiota-host interactions, with relevance for infection, wound healing, and cancer. © 2017 Elsevier Inc. All rights reserved.

  11. Metabolic Interaction of Helicobacter pylori Infection and Gut Microbiota

    Directory of Open Access Journals (Sweden)

    Yao-Jong Yang

    2016-02-01

    Full Text Available As a barrier, gut commensal microbiota can protect against potential pathogenic microbes in the gastrointestinal tract. Crosstalk between gut microbes and immune cells promotes human intestinal homeostasis. Dysbiosis of gut microbiota has been implicated in the development of many human metabolic disorders like obesity, hepatic steatohepatitis, and insulin resistance in type 2 diabetes (T2D. Certain microbes, such as butyrate-producing bacteria, are lower in T2D patients. The transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome, but the exact pathogenesis remains unclear. H. pylori in the human stomach cause chronic gastritis, peptic ulcers, and gastric cancers. H. pylori infection also induces insulin resistance and has been defined as a predisposing factor to T2D development. Gastric and fecal microbiota may have been changed in H. pylori-infected persons and mice to promote gastric inflammation and specific diseases. However, the interaction of H. pylori and gut microbiota in regulating host metabolism also remains unknown. Further studies aim to identify the H. pylori-microbiota-host metabolism axis and to test if H. pylori eradication or modification of gut microbiota can improve the control of human metabolic disorders.

  12. Intestinal microbiota in pathophysiology and management of irritable bowel syndrome

    Science.gov (United States)

    Lee, Kang Nyeong; Lee, Oh Young

    2014-01-01

    Irritable bowel syndrome (IBS) is a functional bowel disorder without any structural or metabolic abnormalities that sufficiently explain the symptoms, which include abdominal pain and discomfort, and bowel habit changes such as diarrhea and constipation. Its pathogenesis is multifactorial: visceral hypersensitivity, dysmotility, psychosocial factors, genetic or environmental factors, dysregulation of the brain-gut axis, and altered intestinal microbiota have all been proposed as possible causes. The human intestinal microbiota are composed of more than 1000 different bacterial species and 1014 cells, and are essential for the development, function, and homeostasis of the intestine, and for individual health. The putative mechanisms that explain the role of microbiota in the development of IBS include altered composition or metabolic activity of the microbiota, mucosal immune activation and inflammation, increased intestinal permeability and impaired mucosal barrier function, sensory-motor disturbances provoked by the microbiota, and a disturbed gut-microbiota-brain axis. Therefore, modulation of the intestinal microbiota through dietary changes, and use of antibiotics, probiotics, and anti-inflammatory agents has been suggested as strategies for managing IBS symptoms. This review summarizes and discusses the accumulating evidence that intestinal microbiota play a role in the pathophysiology and management of IBS. PMID:25083061

  13. Intestinal microbiota in pathophysiology and management of irritable bowel syndrome.

    Science.gov (United States)

    Lee, Kang Nyeong; Lee, Oh Young

    2014-07-21

    Irritable bowel syndrome (IBS) is a functional bowel disorder without any structural or metabolic abnormalities that sufficiently explain the symptoms, which include abdominal pain and discomfort, and bowel habit changes such as diarrhea and constipation. Its pathogenesis is multifactorial: visceral hypersensitivity, dysmotility, psychosocial factors, genetic or environmental factors, dysregulation of the brain-gut axis, and altered intestinal microbiota have all been proposed as possible causes. The human intestinal microbiota are composed of more than 1000 different bacterial species and 10(14) cells, and are essential for the development, function, and homeostasis of the intestine, and for individual health. The putative mechanisms that explain the role of microbiota in the development of IBS include altered composition or metabolic activity of the microbiota, mucosal immune activation and inflammation, increased intestinal permeability and impaired mucosal barrier function, sensory-motor disturbances provoked by the microbiota, and a disturbed gut-microbiota-brain axis. Therefore, modulation of the intestinal microbiota through dietary changes, and use of antibiotics, probiotics, and anti-inflammatory agents has been suggested as strategies for managing IBS symptoms. This review summarizes and discusses the accumulating evidence that intestinal microbiota play a role in the pathophysiology and management of IBS.

  14. Epithelial response to a high-protein diet in rat colon.

    Science.gov (United States)

    Beaumont, Martin; Andriamihaja, Mireille; Armand, Lucie; Grauso, Marta; Jaffrézic, Florence; Laloë, Denis; Moroldo, Marco; Davila, Anne-Marie; Tomé, Daniel; Blachier, François; Lan, Annaïg

    2017-01-31

    High-protein diets (HPD) alter the large intestine microbiota composition in association with a metabolic shift towards protein degradation. Some amino acid-derived metabolites produced by the colon bacteria are beneficial for the mucosa while others are deleterious at high concentrations. The aim of the present work was to define the colonic epithelial response to an HPD. Transcriptome profiling was performed on colonocytes of rats fed an HPD or an isocaloric normal-protein diet (NPD) for 2 weeks. The HPD downregulated the expression of genes notably implicated in pathways related to cellular metabolism, NF-κB signaling, DNA repair, glutathione metabolism and cellular adhesion in colonocytes. In contrast, the HPD upregulated the expression of genes related to cell proliferation and chemical barrier function. These changes at the mRNA level in colonocytes were not associated with detrimental effects of the HPD on DNA integrity (comet assay), epithelium renewal (quantification of proliferation and apoptosis markers by immunohistochemistry and western blot) and colonic barrier integrity (Ussing chamber experiments). The modifications of the luminal environment after an HPD were associated with maintenance of the colonic homeostasis that might be the result of adaptive processes in the epithelium related to the observed transcriptional regulations.

  15. Epithelial Cell Inflammasomes in Intestinal Immunity and Inflammation

    Directory of Open Access Journals (Sweden)

    Andrea C. Lei-Leston

    2017-09-01

    Full Text Available Pattern recognition receptors (PRR, such as NOD-like receptors (NLRs, sense conserved microbial signatures, and host danger signals leading to the coordination of appropriate immune responses. Upon activation, a subset of NLR initiate the assembly of a multimeric protein complex known as the inflammasome, which processes pro-inflammatory cytokines and mediates a specialized form of cell death known as pyroptosis. The identification of inflammasome-associated genes as inflammatory bowel disease susceptibility genes implicates a role for the inflammasome in intestinal inflammation. Despite the fact that the functional importance of inflammasomes within immune cells has been well established, the contribution of inflammasome expression in non-hematopoietic cells remains comparatively understudied. Given that intestinal epithelial cells (IEC act as a barrier between the host and the intestinal microbiota, inflammasome expression by these cells is likely important for intestinal immune homeostasis. Accumulating evidence suggests that the inflammasome plays a key role in shaping epithelial responses at the host–lumen interface with many inflammasome components highly expressed by IEC. Recent studies have exposed functional roles of IEC inflammasomes in mucosal immune defense, inflammation, and tumorigenesis. In this review, we present the main features of the predominant inflammasomes and their effector mechanisms contributing to intestinal homeostasis and inflammation. We also discuss existing controversies in the field and open questions related to their implications in disease. A comprehensive understanding of the molecular basis of intestinal inflammasome signaling could hold therapeutic potential for clinical translation.

  16. Integrated Stress Response Mediates Epithelial Injury in Mechanical Ventilation.

    Science.gov (United States)

    Dolinay, Tamas; Himes, Blanca E; Shumyatcher, Maya; Lawrence, Gladys Gray; Margulies, Susan S

    2017-08-01

    Ventilator-induced lung injury (VILI) is a severe complication of mechanical ventilation that can lead to acute respiratory distress syndrome. VILI is characterized by damage to the epithelial barrier with subsequent pulmonary edema and profound hypoxia. Available lung-protective ventilator strategies offer only a modest benefit in preventing VILI because they cannot impede alveolar overdistension and concomitant epithelial barrier dysfunction in the inflamed lung regions. There are currently no effective biochemical therapies to mitigate injury to the alveolar epithelium. We hypothesize that alveolar stretch activates the integrated stress response (ISR) pathway and that the chemical inhibition of this pathway mitigates alveolar barrier disruption during stretch and mechanical ventilation. Using our established rat primary type I-like alveolar epithelial cell monolayer stretch model and in vivo rat mechanical ventilation that mimics the alveolar overdistension seen in acute respiratory distress syndrome, we studied epithelial responses to mechanical stress. Our studies revealed that the ISR signaling pathway is a key modulator of epithelial permeability. We show that prolonged epithelial stretch and injurious mechanical ventilation activate the ISR, leading to increased alveolar permeability, cell death, and proinflammatory signaling. Chemical inhibition of protein kinase RNA-like endoplasmic reticulum kinase, an upstream regulator of the pathway, resulted in decreased injury signaling and improved barrier function after prolonged cyclic stretch and injurious mechanical ventilation. Our results provide new evidence that therapeutic targeting of the ISR can mitigate VILI.

  17. Gut Microbiota in Cardiovascular Health and Disease

    Science.gov (United States)

    Tang, W.H. Wilson; Kitai, Takeshi; Hazen, Stanley L

    2017-01-01

    Significant interest in recent years has focused on gut microbiota-host interaction because accumulating evidence has revealed that intestinal microbiota play an important role in human health and disease, including cardiovascular diseases. Changes in the composition of gut microbiota associated with disease, referred to as dysbiosis, have been linked to pathologies such as atherosclerosis, hypertension, heart failure, chronic kidney disease, obesity and type 2 diabetes mellitus. In addition to alterations in gut microbiota composition, the metabolic potential of gut microbiota has been identified as a contributing factor in the development of diseases. Recent studies revealed that gut microbiota can elicit a variety of effects on the host. Indeed, the gut microbiome functions like an endocrine organ, generating bioactive metabolites, that can impact host physiology. Microbiota interact with the host through a number of pathways, including the trimethylamine (TMA)/ trimethylamine N-oxide (TMAO) pathway, short-chain fatty acids pathway, and primary and secondary bile acids pathways. In addition to these “metabolism dependent” pathways, metabolism independent processes are suggested to also potentially contribute to CVD pathogenesis. For example, heart failure associated splanchnic circulation congestion, bowel wall edema and impaired intestinal barrier function are thought to result in bacterial translocation, the presence of bacterial products in the systemic circulation and heightened inflammatory state. These are believed to also contribute to further progression of heart failure and atherosclerosis. The purpose of the current review is to highlight the complex interplay between microbiota, their metabolites and the development and progression of cardiovascular diseases. We will also discuss the roles of gut microbiota in normal physiology and the potential of modulating intestinal microbial inhabitants as novel therapeutic targets. PMID:28360349

  18. Excreted/secreted Trichuris suis products reduce barrier function and suppress inflammatory cytokine production of intestinal epithelial cells

    DEFF Research Database (Denmark)

    Hiemstra, I. H.; Klaver, E. J.; Vrijland, K.

    2014-01-01

    The administration of helminths is considered a promising strategy for the treatment of autoimmune diseases due to their immunomodulatory properties. Currently, the application of the helminth Trichuris suis as a treatment for Crohn's disease is being studied in large multi-center clinical trials....... The intestinal epithelium forms an efficient barrier between the intestinal lumen containing the microbial flora and helminths, and dendritic cells (DCs) present in the lamina propria that determine the TH response. Here, we investigated how excreted/secreted (E/S) products of T. suis affect the barrier function...... of intestinal epithelial cells (IECs) in order to reach the DCs and modulate the immune response. We show that T. suis E/S products reduce the barrier function and the expression of the tight junction proteins EMP-1 and claudin-4 in IEC CMT93/69 monolayers in a glycan-dependent manner. This resulted...

  19. Gut microbiota controls adipose tissue expansion, gut barrier and glucose metabolism: novel insights into molecular targets and interventions using prebiotics.

    Science.gov (United States)

    Geurts, L; Neyrinck, A M; Delzenne, N M; Knauf, C; Cani, P D

    2014-03-01

    Crosstalk between organs is crucial for controlling numerous homeostatic systems (e.g. energy balance, glucose metabolism and immunity). Several pathological conditions, such as obesity and type 2 diabetes, are characterised by a loss of or excessive inter-organ communication that contributes to the development of disease. Recently, we and others have identified several mechanisms linking the gut microbiota with the development of obesity and associated disorders (e.g. insulin resistance, type 2 diabetes, hepatic steatosis). Among these, we described the concept of metabolic endotoxaemia (increase in plasma lipopolysaccharide levels) as one of the triggering factors leading to the development of metabolic inflammation and insulin resistance. Growing evidence suggests that gut microbes contribute to the onset of low-grade inflammation characterising these metabolic disorders via mechanisms associated with gut barrier dysfunctions. We have demonstrated that enteroendocrine cells (producing glucagon-like peptide-1, peptide YY and glucagon-like peptide-2) and the endocannabinoid system control gut permeability and metabolic endotoxaemia. Recently, we hypothesised that specific metabolic dysregulations occurring at the level of numerous organs (e.g. gut, adipose tissue, muscles, liver and brain) rely from gut microbiota modifications. In this review, we discuss the mechanisms linking gut permeability, adipose tissue metabolism, and glucose homeostasis, and recent findings that show interactions between the gut microbiota, the endocannabinoid system and the apelinergic system. These specific systems are discussed in the context of the gut-to-peripheral organ axis (intestine, adipose tissue and brain) and impacts on metabolic regulation. In the present review, we also briefly describe the impact of a variety of non-digestible nutrients (i.e. inulin-type fructans, arabinoxylans, chitin glucans and polyphenols). Their effects on the composition of the gut microbiota and

  20. Mucosal innate immune cells regulate both gut homeostasis and intestinal inflammation.

    Science.gov (United States)

    Kurashima, Yosuke; Goto, Yoshiyuki; Kiyono, Hiroshi

    2013-12-01

    Continuous exposure of intestinal mucosal surfaces to diverse microorganisms and their metabolites reflects the biological necessity for a multifaceted, integrated epithelial and immune cell-mediated regulatory system. The development and function of the host cells responsible for the barrier function of the intestinal surface (e.g., M cells, Paneth cells, goblet cells, and columnar epithelial cells) are strictly regulated through both positive and negative stimulation by the luminal microbiota. Stimulation by damage-associated molecular patterns and commensal bacteria-derived microbe-associated molecular patterns provokes the assembly of inflammasomes, which are involved in maintaining the integrity of the intestinal epithelium. Mucosal immune cells located beneath the epithelium play critical roles in regulating both the mucosal barrier and the relative composition of the luminal microbiota. Innate lymphoid cells and mast cells, in particular, orchestrate the mucosal regulatory system to create a mutually beneficial environment for both the host and the microbiota. Disruption of mucosal homeostasis causes intestinal inflammation such as that seen in inflammatory bowel disease. Here, we review the recent research on the biological interplay among the luminal microbiota, epithelial cells, and mucosal innate immune cells in both healthy and pathological conditions. © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Role of the normal gut microbiota.

    Science.gov (United States)

    Jandhyala, Sai Manasa; Talukdar, Rupjyoti; Subramanyam, Chivkula; Vuyyuru, Harish; Sasikala, Mitnala; Nageshwar Reddy, D

    2015-08-07

    Relation between the gut microbiota and human health is being increasingly recognised. It is now well established that a healthy gut flora is largely responsible for overall health of the host. The normal human gut microbiota comprises of two major phyla, namely Bacteroidetes and Firmicutes. Though the gut microbiota in an infant appears haphazard, it starts resembling the adult flora by the age of 3 years. Nevertheless, there exist temporal and spatial variations in the microbial distribution from esophagus to the rectum all along the individual's life span. Developments in genome sequencing technologies and bioinformatics have now enabled scientists to study these microorganisms and their function and microbe-host interactions in an elaborate manner both in health and disease. The normal gut microbiota imparts specific function in host nutrient metabolism, xenobiotic and drug metabolism, maintenance of structural integrity of the gut mucosal barrier, immunomodulation, and protection against pathogens. Several factors play a role in shaping the normal gut microbiota. They include (1) the mode of delivery (vaginal or caesarean); (2) diet during infancy (breast milk or formula feeds) and adulthood (vegan based or meat based); and (3) use of antibiotics or antibiotic like molecules that are derived from the environment or the gut commensal community. A major concern of antibiotic use is the long-term alteration of the normal healthy gut microbiota and horizontal transfer of resistance genes that could result in reservoir of organisms with a multidrug resistant gene pool.

  2. Human vaginal pH and microbiota: an update.

    Science.gov (United States)

    Godha, Keshav; Tucker, Kelly M; Biehl, Colton; Archer, David F; Mirkin, Sebastian

    2018-06-01

    A woman's vaginal pH has many implications on her health and it can be a useful tool in disease diagnosis and prevention. For that reason, the further examination of the relationship between the human vaginal pH and microbiota is imperative. In the past several decades, much has been learned about the physiological mechanisms modulating the vaginal pH, and exogenous/genetic factors that may influence it. A unified, coherent understanding of these concepts is presented to comprehend their interrelationships and their cumulative effect on a woman's health. In this review, we explore research on vaginal pH and microbiota throughout a woman's life, vaginal intermediate cell anaerobic metabolism and net proton secretion by the vaginal epithelial, and the way these factors interact to acidify the vaginal pH. This review provides foundational information about what a microbiota is and its relationship with human physiology and vaginal pH. We then evaluate the influence of physiological mechanisms, demographic factors, and propose ideas for the mechanisms behind their action on the vaginal pH.

  3. Microbiota-induced changes in drosophila melanogaster host gene expression and gut morphology.

    Science.gov (United States)

    Broderick, Nichole A; Buchon, Nicolas; Lemaitre, Bruno

    2014-05-27

    To elucidate mechanisms underlying the complex relationships between a host and its microbiota, we used the genetically tractable model Drosophila melanogaster. Consistent with previous studies, the microbiota was simple in composition and diversity. However, analysis of single flies revealed high interfly variability that correlated with differences in feeding. To understand the effects of this simple and variable consortium, we compared the transcriptome of guts from conventionally reared flies to that for their axenically reared counterparts. Our analysis of two wild-type fly lines identified 121 up- and 31 downregulated genes. The majority of these genes were associated with immune responses, tissue homeostasis, gut physiology, and metabolism. By comparing the transcriptomes of young and old flies, we identified temporally responsive genes and showed that the overall impact of microbiota was greater in older flies. In addition, comparison of wild-type gene expression with that of an immune-deficient line revealed that 53% of upregulated genes exerted their effects through the immune deficiency (Imd) pathway. The genes included not only classic immune response genes but also those involved in signaling, gene expression, and metabolism, unveiling new and unexpected connections between immunity and other systems. Given these findings, we further characterized the effects of gut-associated microbes on gut morphology and epithelial architecture. The results showed that the microbiota affected gut morphology through their impacts on epithelial renewal rate, cellular spacing, and the composition of different cell types in the epithelium. Thus, while bacteria in the gut are highly variable, the influence of the microbiota at large has far-reaching effects on host physiology. The guts of animals are in constant association with microbes, and these interactions are understood to have important roles in animal development and physiology. Yet we know little about the

  4. Enhanced Trapping of HIV-1 by Human Cervicovaginal Mucus Is Associated with Lactobacillus crispatus-Dominant Microbiota

    Science.gov (United States)

    Nunn, Kenetta L.; Wang, Ying-Ying; Harit, Dimple; Humphrys, Michael S.; Ma, Bing; Cone, Richard; Ravel, Jacques

    2015-01-01

    ABSTRACT Cervicovaginal mucus (CVM) can provide a barrier that precludes HIV and other sexually transmitted virions from reaching target cells in the vaginal epithelium, thereby preventing or reducing infections. However, the barrier properties of CVM differ from woman to woman, and the causes of these variations are not yet well understood. Using high-resolution particle tracking of fluorescent HIV-1 pseudoviruses, we found that neither pH nor Nugent scores nor total lactic acid levels correlated significantly with virus trapping in unmodified CVM from diverse donors. Surprisingly, HIV-1 was generally trapped in CVM with relatively high concentrations of d-lactic acid and a Lactobacillus crispatus-dominant microbiota. In contrast, a substantial fraction of HIV-1 virions diffused rapidly through CVM with low concentrations of d-lactic acid that had a Lactobacillus iners-dominant microbiota or significant amounts of Gardnerella vaginalis, a bacterium associated with bacterial vaginosis. Our results demonstrate that the vaginal microbiota, including specific species of Lactobacillus, can alter the diffusional barrier properties of CVM against HIV and likely other sexually transmitted viruses and that these microbiota-associated changes may account in part for the elevated risks of HIV acquisition linked to bacterial vaginosis or intermediate vaginal microbiota. PMID:26443453

  5. In vitro safety evaluation of human nasal epithelial cell monolayers exposed to carrageenan sinus wash.

    Science.gov (United States)

    Ramezanpour, Mahnaz; Murphy, Jae; Smith, Jason L P; Vreugde, Sarah; Psaltis, Alkis James

    2017-12-01

    Carrageenans have shown to reduce the viral load in nasal secretions and lower the incidence of secondary infections in children with common cold. Despite the widespread use of carrageenans in topical applications, the effect of carrageenans on the sinonasal epithelial barrier has not been elucidated. We investigate the effect of different carrageenans on the sinonasal epithelial barrier and inflammatory response in vitro. Iota and Kappa carrageenan delivered in saline irrigation solutions applied to air-liquid interface (ALI) cultures of primary human nasal epithelial cells from chronic rhinosinusitis patients and controls. Epithelial barrier structure was assessed by measuring the transepithelial electrical resistance (TEER) and immunolocalization of F actin. Ciliary beat frequency (CBF), toxicity, and inflammatory response was studied. Kappa or Iota carrageenan in the different solutions was not toxic, did not have detrimental effects on epithelial barrier structure and CBF. Rather, application of Kappa carrageenan significantly increased TEER and suppressed interleukin 6 (IL-6) secretion in ALI cultures from CRS patients. Kappa or Iota carrageenan solution was safe and did not negatively affect epithelial barrier function. Kappa carrageenan increased TEER and decreased IL-6 production in CRS patients, indicating positive effects on epithelial barrier function in vitro. © 2017 ARS-AAOA, LLC.

  6. Fatty acids from diet and microbiota regulate energy metabolism [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Joe Alcock

    2015-09-01

    Full Text Available A high-fat diet and elevated levels of free fatty acids are known risk factors for metabolic syndrome, insulin resistance, and visceral obesity. Although these disease associations are well established, it is unclear how different dietary fats change the risk of insulin resistance and metabolic syndrome. Here, we review emerging evidence that insulin resistance and fat storage are linked to changes in the gut microbiota. The gut microbiota and intestinal barrier function, in turn, are highly influenced by the composition of fat in the diet. We review findings that certain fats (for example, long-chain saturated fatty acids are associated with dysbiosis, impairment of intestinal barrier function, and metabolic endotoxemia. In contrast, other fatty acids, including short-chain and certain unsaturated fatty acids, protect against dysbiosis and impairment of barrier function caused by other dietary fats. These fats may promote insulin sensitivity by inhibiting metabolic endotoxemia and dysbiosis-driven inflammation. During dysbiosis, the modulation of metabolism by diet and microbiota may represent an adaptive process that compensates for the increased fuel demands of an activated immune system.

  7. Gut microbial colonization orchestrates TLR2 expression, signaling and epithelial proliferation in the small intestinal mucosa.

    Directory of Open Access Journals (Sweden)

    Nives Hörmann

    Full Text Available The gut microbiota is an environmental factor that determines renewal of the intestinal epithelium and remodeling of the intestinal mucosa. At present, it is not resolved if components of the gut microbiota can augment innate immune sensing in the intestinal epithelium via the up-regulation of Toll-like receptors (TLRs. Here, we report that colonization of germ-free (GF Swiss Webster mice with a complex gut microbiota augments expression of TLR2. The microbiota-dependent up-regulation of components of the TLR2 signaling complex could be reversed by a 7 day broad-spectrum antibiotic treatment. TLR2 downstream signaling via the mitogen-activated protein kinase (ERK1/2 and protein-kinase B (AKT induced by bacterial TLR2 agonists resulted in increased proliferation of the small intestinal epithelial cell line MODE-K. Mice that were colonized from birth with a normal gut microbiota (conventionally-raised; CONV-R showed signs of increased small intestinal renewal and apoptosis compared with GF controls as indicated by elevated mRNA levels of the proliferation markers Ki67 and Cyclin D1, elevated transcripts of the apoptosis marker Caspase-3 and increased numbers of TUNEL-positive cells per intestinal villus structure. In accordance, TLR2-deficient mice showed reduced proliferation and reduced apoptosis. Our findings suggest that a tuned proliferation response of epithelial cells following microbial colonization could aid to protect the host from its microbial colonizers and increase intestinal surface area.

  8. Type 3 innate lymphoid cells maintain intestinal epithelial stem cells after tissue damage

    NARCIS (Netherlands)

    P. Aparicio-Domingo (Patricia); M. Romera Hernández (Mónica); J.J. Karrich (Julien J.); F.H.J. Cornelissen (Ferry); N. Papazian (Natalie); D.J. Lindenbergh-Kortleve (Dicky); J.A. Butler (James A.); L. Boon (Louis); M. Coles (Mark); J.N. Samsom (Janneke); T. Cupedo (Tom)

    2015-01-01

    textabstractDisruption of the intestinal epithelial barrier allows bacterial translocation and predisposes to destructive inflammation. To ensure proper barrier composition, crypt-residing stem cells continuously proliferate and replenish all intestinal epithelial cells within days. As a consequence

  9. Cytokine Tuning of Intestinal Epithelial Function

    Directory of Open Access Journals (Sweden)

    Caroline Andrews

    2018-06-01

    Full Text Available The intestine serves as both our largest single barrier to the external environment and the host of more immune cells than any other location in our bodies. Separating these potential combatants is a single layer of dynamic epithelium composed of heterogeneous epithelial subtypes, each uniquely adapted to carry out a subset of the intestine’s diverse functions. In addition to its obvious role in digestion, the intestinal epithelium is responsible for a wide array of critical tasks, including maintaining barrier integrity, preventing invasion by microbial commensals and pathogens, and modulating the intestinal immune system. Communication between these epithelial cells and resident immune cells is crucial for maintaining homeostasis and coordinating appropriate responses to disease and can occur through cell-to-cell contact or by the release or recognition of soluble mediators. The objective of this review is to highlight recent literature illuminating how cytokines and chemokines, both those made by and acting on the intestinal epithelium, orchestrate many of the diverse functions of the intestinal epithelium and its interactions with immune cells in health and disease. Areas of focus include cytokine control of intestinal epithelial proliferation, cell death, and barrier permeability. In addition, the modulation of epithelial-derived cytokines and chemokines by factors such as interactions with stromal and immune cells, pathogen and commensal exposure, and diet will be discussed.

  10. Epithelial cell-cell junctions and plasma membrane domains

    NARCIS (Netherlands)

    Giepmans, Ben N. G.; van Ijzendoorn, Sven C. D.

    Epithelial cells form a barrier against the environment, but are also required for the regulated exchange of molecules between an organism and its surroundings. Epithelial cells are characterised by a remarkable polarization of their plasma membrane, evidenced by the appearance of structurally,

  11. Midgut microbiota and host immunocompetence underlie Bacillus thuringiensis killing mechanism

    OpenAIRE

    Caccia, Silvia; Di Lelio, Ilaria; La Storia, Antonietta; Marinelli, Adriana; Varricchio, Paola; Franzetti, Eleonora; Banyuls, Núria; Tettamanti, Gianluca; Casartelli, Morena; Giordana, Barbara; Ferré, Juan; Gigliotti, Silvia; Ercolini, Danilo; Pennacchio, Francesco

    2016-01-01

    Bacillus thuringiensis and its toxins are widely used for insect control. Notwithstanding the remarkable importance of this insect pathogen, its killing mechanism has yet to be fully elucidated. Here we show that the microbiota resident in the host midgut triggers a lethal septicemia. The infection process is enhanced by reducing the host immune response and its control on replication of midgut bacteria invading the body cavity through toxin-induced epithelial lesions. The experimental approa...

  12. Gut Microbiota, Obesity and Metabolic Dysfunction

    Directory of Open Access Journals (Sweden)

    Anna Meiliana

    2011-12-01

    Full Text Available BACKGROUND: The prevalence of obesity and related disorders such as metabolic syndrome and diabetes has vastly increased throughout the world. Recent insights have generated an entirely new perspective suggesting that our microbiota might be involved in the development of these disorders. This represents an area of scientific need, opportunity and challenge. The insights gleaned should help to address several pressing global health problems. CONTENT: Our bowels have two major roles: the digestion and absorption of nutrients and the maintenance of a barrier against the external environment. They fulfill these functions in the context of, and with the help from, tens of trillions of resident microbes, known as the gut microbiota. Studies have demonstrated that obesity and metabolic syndrome may be associated with profound microbiotal changes, and the induction of a metabolic syndrome phenotype through fecal transplants corroborates the important role of the microbiota in this disease. Dietary composition and caloric intake appear to swiftly regulate intestinal microbial composition and function. SUMMARY: The interaction of the intestinal microbial world with its host, and its mutual regulation, will become one of the important topics of biomedical research and will provide us with further insights at the interface of microbiota, metabolism, metabolic syndrome, and obesity. A better understanding of the interaction between certain diets and the human gut microbiome should help to develop new guidelines for feeding humans at various time points in their life, help to improve global human health, and establish ways to prevent or treat various food-related diseases. KEYWORDS: gut microbiota, obesity, metabolic syndrome, type 2 diabetes.

  13. Salmonella enterica serovar Typhimurium exploits inflammation to modify swine intestinal microbiota.

    Directory of Open Access Journals (Sweden)

    Rosanna eDrumo

    2016-01-01

    Full Text Available Salmonella enterica serovar Typhimurium is an important zoonotic gastrointestinal pathogen responsible for foodborne disease worldwide. It is a successful enteric pathogen because it has developed virulence strategies allowing it to survive in a highly inflamed intestinal environment exploiting inflammation to overcome colonization resistance provided by intestinal microbiota. In this study, we used piglets featuring an intact microbiota, which naturally develop gastroenteritis, as model for salmonellosis. We compared the effects on the intestinal microbiota induced by a wild type and an attenuated S. Typhimurium in order to evaluate whether the modifications are correlated with the virulence of the strain. This study showed that Salmonella alters microbiota in a virulence-dependent manner. We found that the wild type S. Typhimurium induced inflammation and a reduction of specific protecting microbiota species (SCFA-producing bacteria normally involved in providing a barrier against pathogens. Both these effects could contribute to impair colonization resistance, increasing the host susceptibility to wild type S. Typhimurium colonization. In contrast, the attenuated S. Typhimurium, which is characterized by a reduced ability to colonize the intestine, and by a very mild inflammatory response, was unable to successfully sustain competition with the microbiota.

  14. Host Epithelial Interactions with Helicobacter Pylori: A Role for Disrupted Gastric Barrier Function in the Clinical Outcome of Infection?

    Directory of Open Access Journals (Sweden)

    Andre G Buret

    2005-01-01

    Full Text Available Infection of the human stomach with Helicobacter pylori may develop into gastritis, ulceration, adenocarcinoma and mucosal lymphomas. The pathogenic mechanisms that determine the clinical outcome from this microbial-epithelial interaction remain poorly understood. An increasing number of reports suggests that disruptions of epithelial barrier function may contribute to pathology and postinfectious complications in a variety of gastrointestinal infections. The aim of this review is to critically discuss the implications of H pylori persistence on gastric disease, with emphasis on the role of myosin light chain kinase, claudins and matrix metalloproteinases in gastric permeability defects, and their contribution to the development of cancer. These mechanisms and the associated signalling events may represent novel therapeutic targets to control disease processes induced by H pylori, a microbial pathogen that colonizes the stomach of over 50% of the human population.

  15. Oral Bacterial and Fungal Microbiome Impacts Colorectal Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Klara Klimesova

    2018-04-01

    Full Text Available Host’s physiology is significantly influenced by microbiota colonizing the epithelial surfaces. Complex microbial communities contribute to proper mucosal barrier function, immune response, and prevention of pathogen invasion and have many other crucial functions. The oral cavity and large intestine are distant parts of the digestive tract, both heavily colonized by commensal microbiota. Nevertheless, they feature different proportions of major bacterial and fungal phyla, mostly due to distinct epithelial layers organization and different oxygen levels. A few obligate anaerobic strains inhabiting the oral cavity are involved in the pathogenesis of oral diseases. Interestingly, these microbiota components are also enriched in gut inflammatory and tumor tissue. An altered microbiota composition – dysbiosis – and formation of polymicrobial biofilms seem to play important roles in the development of oral diseases and colorectal cancer. In this review, we describe the differences in composition of commensal microbiota in the oral cavity and large intestine and the mechanisms by which microbiota affect the inflammatory and carcinogenic response of the host.

  16. Characterization of the bile and gall bladder microbiota of healthy pigs.

    Science.gov (United States)

    Jiménez, Esther; Sánchez, Borja; Farina, Annarita; Margolles, Abelardo; Rodríguez, Juan M

    2014-12-01

    Bile is a biological fluid synthesized in the liver, stored and concentrated in the gall bladder (interdigestive), and released into the duodenum after food intake. The microbial populations of different parts of mammal's gastrointestinal tract (stomach, small and large intestine) have been extensively studied; however, the characterization of bile microbiota had not been tackled until now. We have studied, by culture-dependent techniques and a 16S rRNA gene-based analysis, the microbiota present in the bile, gall bladder mucus, and biopsies of healthy sows. Also, we have identified the most abundant bacterial proteins in the bile samples. Our data show that the gall bladder ecosystem is mainly populated by members of the phyla Proteobacteria, Firmicutes, and Bacteroidetes. Furthermore, fluorescent in situ hybridization (FISH) and transmission electron microscopy (TEM) allowed us to visualize the presence of individual bacteria of different morphological types, in close association with either the epithelium or the erythrocytes, or inside the epithelial cells. Our work has generated new knowledge of bile microbial profiles and functions and might provide the basis for future studies on the relationship between bile microbiota, gut microbiota, and health. © 2014 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  17. The intriguing role of Rifaximin in gut barrier chronic inflammation and in the treatment of Crohn's disease.

    Science.gov (United States)

    Lopetuso, Loris R; Napoli, Marco; Rizzatti, Gianenrico; Gasbarrini, Antonio

    2018-06-04

    The gastrointestinal tract acts as a functional unit organized as a semipermeable multilayer system, in which commensal gut microbiota represents the anatomical barrier. Recently,, several studies have highlighted the involvement of gut microbiota in IBD pathogenesis, in sustaining gut barrier chronic inflammation, and in conditioning disease course and therapeutical response. This evidence provides a rationale for treating patients with gut microbiota modifiers. Among these, Rifaximin represents a non-traditional antibiotic able to act as a "eubiotic" on intestinal barrier. Area covered: The purpose of this narrative review is to explore the impact of Rifaximin on gut barrier and gut microbiota in IBD, in particular in Crohn's disease, and to analyze its potential therapeutic applications. Expert opinion: The possibility of a beneficial activity of Rifaximin in chronic intestinal inflammation and Crohn's disease has been debated and evaluated with different studies having obtained promising but still preliminary data. Larger trials are therefore needed. This gut-specific antibiotic could represent an alternative to systemic antibiotics thanks to its favorable safety profile and promising efficacy data. Rifaximin could exert, when appropriate, a synergic effect with immunomodulators in IBD, acting on both the microbial and immunological sides of gut barrier impairment.

  18. Cardiovascular and Antiobesity Effects of Resveratrol Mediated through the Gut Microbiota.

    Science.gov (United States)

    Bird, Julia K; Raederstorff, Daniel; Weber, Peter; Steinert, Robert E

    2017-11-01

    Encouraging scientific research into the health effects of dietary bioactive resveratrol has been confounded by its rapid first-pass metabolism, which leads to low in vivo bioavailability. Preliminary studies have shown that resveratrol can modulate gut microbiota composition, undergo biotransformation to active metabolites via the intestinal microbiota, or affect gut barrier function. In rodents, resveratrol can modify the relative Bacteroidetes:Firmicutes ratio and reverse the gut microbial dysbiosis caused by a high-fat diet. By upregulating the expression of genes involved in maintaining tight junctions between intestinal cells, resveratrol contributes to gut barrier integrity. The composition of the gut microbiome and rapid metabolism of resveratrol determines the production of resveratrol metabolites, which are found at greater concentrations in humans after ingestion than their parent molecule and can have similar biological effects. Resveratrol may affect cardiovascular risk factors such as elevated blood cholesterol or trimethylamine N -oxide concentrations. Modulating the composition of the gut microbiota by resveratrol may affect central energy metabolism and modify concentrations of satiety hormones to produce antiobesity effects. Encouraging research from animal models could be tested in humans. © 2017 American Society for Nutrition.

  19. Circulating and Tissue-Resident CD4+ T Cells With Reactivity to Intestinal Microbiota Are Abundant in Healthy Individuals and Function Is Altered During Inflammation.

    Science.gov (United States)

    Hegazy, Ahmed N; West, Nathaniel R; Stubbington, Michael J T; Wendt, Emily; Suijker, Kim I M; Datsi, Angeliki; This, Sebastien; Danne, Camille; Campion, Suzanne; Duncan, Sylvia H; Owens, Benjamin M J; Uhlig, Holm H; McMichael, Andrew; Bergthaler, Andreas; Teichmann, Sarah A; Keshav, Satish; Powrie, Fiona

    2017-11-01

    cells were functionally heterogeneous, produced barrier-protective cytokines, and stimulated intestinal stromal and epithelial cells via interleukin 17A, interferon gamma, and tumor necrosis factor. In patients with inflammatory bowel diseases, microbiota-reactive CD4 + T cells were reduced in the blood compared with intestine; T-cell responses that we detected had an increased frequency of interleukin 17A production compared with responses of T cells from blood or intestinal tissues of controls. In an analysis of peripheral blood mononuclear cells and intestinal tissues from patients with inflammatory bowel diseases vs controls, we found that reactivity to intestinal bacteria is a normal property of the human CD4 + T-cell repertoire, and does not necessarily indicate disrupted interactions between immune cells and the commensal microbiota. T-cell responses to commensals might support intestinal homeostasis, by producing barrier-protective cytokines and providing a large pool of T cells that react to pathogens. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  20. Intestinal barrier integrity and inflammatory bowel disease

    DEFF Research Database (Denmark)

    Holmberg, Fredrik Eric Olof; Pedersen, Jannie; Jørgensen, Peter

    2018-01-01

    Disruption of normal barrier function is a fundamental factor in the pathogenesis of inflammatory bowel disease, which includes increased epithelial cell death, modified mucus configuration, altered expression and distribution of tight junction-proteins, along with a decreased expression of antim......Disruption of normal barrier function is a fundamental factor in the pathogenesis of inflammatory bowel disease, which includes increased epithelial cell death, modified mucus configuration, altered expression and distribution of tight junction-proteins, along with a decreased expression...... of antimicrobial peptides. Inflammatory bowel disease is associated with life-long morbidity for affected patients, and both the incidence and prevalence is increasing globally, resulting in substantial economic strain for society. Mucosal healing and re-establishment of barrier integrity is associated......, novel treatment strategies to accomplish mucosal healing and to re-establish normal barrier integrity in inflammatory bowel disease are warranted, and luminal stem cell-based approaches might have an intriguing potential. Transplantation of in vitro expanded intestinal epithelial stem cells derived...

  1. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders

    Science.gov (United States)

    Kelly, John R.; Kennedy, Paul J.; Cryan, John F.; Dinan, Timothy G.; Clarke, Gerard; Hyland, Niall P.

    2015-01-01

    The emerging links between our gut microbiome and the central nervous system (CNS) are regarded as a paradigm shift in neuroscience with possible implications for not only understanding the pathophysiology of stress-related psychiatric disorders, but also their treatment. Thus the gut microbiome and its influence on host barrier function is positioned to be a critical node within the brain-gut axis. Mounting preclinical evidence broadly suggests that the gut microbiota can modulate brain development, function and behavior by immune, endocrine and neural pathways of the brain-gut-microbiota axis. Detailed mechanistic insights explaining these specific interactions are currently underdeveloped. However, the concept that a “leaky gut” may facilitate communication between the microbiota and these key signaling pathways has gained traction. Deficits in intestinal permeability may underpin the chronic low-grade inflammation observed in disorders such as depression and the gut microbiome plays a critical role in regulating intestinal permeability. In this review we will discuss the possible role played by the gut microbiota in maintaining intestinal barrier function and the CNS consequences when it becomes disrupted. We will draw on both clinical and preclinical evidence to support this concept as well as the key features of the gut microbiota which are necessary for normal intestinal barrier function. PMID:26528128

  2. Oral Bacterial and Fungal Microbiome Impacts Colorectal Carcinogenesis

    OpenAIRE

    Klara Klimesova; Zuzana Jiraskova Zakostelska; Helena Tlaskalova-Hogenova

    2018-01-01

    Host’s physiology is significantly influenced by microbiota colonizing the epithelial surfaces. Complex microbial communities contribute to proper mucosal barrier function, immune response, and prevention of pathogen invasion and have many other crucial functions. The oral cavity and large intestine are distant parts of the digestive tract, both heavily colonized by commensal microbiota. Nevertheless, they feature different proportions of major bacterial and fungal phyla, mostly due to distin...

  3. The impact of the postnatal gut microbiota on animal models

    DEFF Research Database (Denmark)

    Hansen, Axel Jacob Kornerup; Ejsing-Duun, Maria; Aasted, Bent

    2007-01-01

    Quality control of laboratory animals has been mostly concentrated on eliminating and securing the absence of specific infections, but event barrier bred laboratory animals harbour a huge number of gut bacteria. There is scientific evidence that the nature of the gut microbiota especially in early...... correlated to factors related to early exposure to microorganisms, e.g. the so-called hygiene hypothesis claims that the increasing human incidence of allergy. T1D, RA and IBD may be due to the lack of such exposure. It is possible today by various molecular techniques to profile the gut microbiota...

  4. Stepwise DNA Methylation Changes Are Linked to Escape from Defined Proliferation Barriers and Mammary Epithelial Cell Immortalization

    Energy Technology Data Exchange (ETDEWEB)

    Novak, Petr; Jensen, Taylor J.; Garbe, James C.; Stampfer, Martha R.; Futscher, Bernard W.

    2009-04-20

    The timing and progression of DNA methylation changes during carcinogenesis are not completely understood. To develop a timeline of aberrant DNA methylation events during malignant transformation, we analyzed genome-wide DNA methylation patterns in an isogenic human mammary epithelial cell (HMEC) culture model of transformation. To acquire immortality and malignancy, the cultured finite lifespan HMEC must overcome two distinct proliferation barriers. The first barrier, stasis, is mediated by the retinoblastoma protein and can be overcome by loss of p16(INK4A) expression. HMEC that escape stasis and continue to proliferate become genomically unstable before encountering a second more stringent proliferation barrier, telomere dysfunction due to telomere attrition. Rare cells that acquire telomerase expression may escape this barrier, become immortal, and develop further malignant properties. Our analysis of HMEC transitioning from finite lifespan to malignantly transformed showed that aberrant DNA methylation changes occur in a stepwise fashion early in the transformation process. The first aberrant DNA methylation step coincides with overcoming stasis, and results in few to hundreds of changes, depending on how stasis was overcome. A second step coincides with immortalization and results in hundreds of additional DNA methylation changes regardless of the immortalization pathway. A majority of these DNA methylation changes are also found in malignant breast cancer cells. These results show that large-scale epigenetic remodeling occurs in the earliest steps of mammary carcinogenesis, temporally links DNA methylation changes and overcoming cellular proliferation barriers, and provides a bank of potential epigenetic biomarkers that mayprove useful in breast cancer risk assessment.

  5. Oral and fecal Campylobacter concisus strains perturb barrier function by apoptosis induction in HT-29/B6 intestinal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Hans Linde Nielsen

    Full Text Available Campylobacter concisus infections of the gastrointestinal tract can be accompanied by diarrhea and inflammation, whereas colonization of the human oral cavity might have a commensal nature. We focus on the pathophysiology of C. concisus and the effects of different clinical oral and fecal C. concisus strains on human HT-29/B6 colon cells. Six oral and eight fecal strains of C. concisus were isolated. Mucus-producing HT-29/B6 epithelial monolayers were infected with the C. concisus strains. Transepithelial electrical resistance (R(t and tracer fluxes of different molecule size were measured in Ussing chambers. Tight junction (TJ protein expression was determined by Western blotting, and subcellular TJ distribution was analyzed by confocal laser-scanning microscopy. Apoptosis induction was examined by TUNEL-staining and Western blot of caspase-3 activation. All strains invaded confluent HT-29/B6 cells and impaired epithelial barrier function, characterized by a time- and dose-dependent decrease in R(t either after infection from the apical side but even more from the basolateral compartment. TJ protein expression changes were sparse, only in apoptotic areas of infected monolayers TJ proteins were redistributed. Solely the barrier-forming TJ protein claudin-5 showed a reduced expression level to 66±8% (P<0.05, by expression regulation from the gene. Concomitantly, Lactate dehydrogenase release was elevated to 3.1±0.3% versus 0.7±0.1% in control (P<0.001, suggesting cytotoxic effects. Furthermore, oral and fecal C. concisus strains elevated apoptotic events to 5-fold. C. concisus-infected monolayers revealed an increased permeability for 332 Da fluorescein (1.74±0.13 vs. 0.56±0.17 10(-6 cm/s in control, P<0.05 but showed no difference in permeability for 4 kDa FITC-dextran (FD-4. The same was true in camptothecin-exposed monolayers, where camptothecin was used for apoptosis induction.In conclusion, epithelial barrier dysfunction by oral and

  6. Gut microbiota and metabolic syndrome.

    Science.gov (United States)

    Festi, Davide; Schiumerini, Ramona; Eusebi, Leonardo Henry; Marasco, Giovanni; Taddia, Martina; Colecchia, Antonio

    2014-11-21

    Gut microbiota exerts a significant role in the pathogenesis of the metabolic syndrome, as confirmed by studies conducted both on humans and animal models. Gut microbial composition and functions are strongly influenced by diet. This complex intestinal "superorganism" seems to affect host metabolic balance modulating energy absorption, gut motility, appetite, glucose and lipid metabolism, as well as hepatic fatty storage. An impairment of the fine balance between gut microbes and host's immune system could culminate in the intestinal translocation of bacterial fragments and the development of "metabolic endotoxemia", leading to systemic inflammation and insulin resistance. Diet induced weight-loss and bariatric surgery promote significant changes of gut microbial composition, that seem to affect the success, or the inefficacy, of treatment strategies. Manipulation of gut microbiota through the administration of prebiotics or probiotics could reduce intestinal low grade inflammation and improve gut barrier integrity, thus, ameliorating metabolic balance and promoting weight loss. However, further evidence is needed to better understand their clinical impact and therapeutic use.

  7. Regulation of defensive function on gingival epithelial cells can prevent periodontal disease.

    Science.gov (United States)

    Fujita, Tsuyoshi; Yoshimoto, Tetsuya; Kajiya, Mikihito; Ouhara, Kazuhisa; Matsuda, Shinji; Takemura, Tasuku; Akutagawa, Keiichi; Takeda, Katsuhiro; Mizuno, Noriyoshi; Kurihara, Hidemi

    2018-05-01

    Periodontal disease is a bacterial biofilm-associated inflammatory disease that has been implicated in many systemic diseases. A new preventive method for periodontal disease needs to be developed in order to promote the health of the elderly in a super-aged society. The gingival epithelium plays an important role as a mechanical barrier against bacterial invasion and a part of the innate immune response to infectious inflammation in periodontal tissue. The disorganization of cell-cell interactions and subsequent inflammation contribute to the initiation of periodontal disease. These make us consider that regulation of host defensive functions, epithelial barrier and neutrophil activity, may become novel preventive methods for periodontal inflammation. Based on this concept, we have found that several agents regulate the barrier function of gingival epithelial cells and suppress the accumulation of neutrophils in the gingival epithelium. We herein introduce the actions of irsogladine maleate, azithromycin, amphotericin B, and Houttuynia cordata (dokudami in Japanese), which is commonly used in traditional medicine, on the epithelial barrier and neutrophil migration in gingival epithelial cells in vivo and in vitro , in order to provide support for the clinical application of these agents to the prevention of periodontal inflammation.

  8. Comparative effects of metal oxide nanoparticles on human airway epithelial cells and macrophages

    International Nuclear Information System (INIS)

    Rotoli, Bianca Maria; Bussolati, Ovidio; Costa, Anna Luisa; Blosi, Magda; Di Cristo, Luisana; Zanello, Pier Paolo; Bianchi, Massimiliano G.; Visigalli, Rossana; Bergamaschi, Enrico

    2012-01-01

    Among nanomaterials of industrial relevance, metal-based nanoparticles (NPs) are widely used, but their effects on airway cells are relatively poorly characterized. To compare the effects of metal NPs on cells representative of the lung-blood barrier, Calu-3 epithelial cells and Raw264.7 macrophages were incubated with three industrially relevant preparations of TiO 2 NPs (size range 4–33 nm), two preparations of CeO 2 NPs (9–36 nm) and CuO NPs (25 nm). While Raw264.7 were grown on standard plasticware, Calu-3 cells were seeded on permeable filters, where they form a high-resistance monolayer, providing an in vitro model of the airway barrier. Metal NPs, obtained from industrial sources, were characterized under the conditions adopted for the biological tests. Cytotoxicity was assessed with resazurin method in both epithelial and macrophage cells, while epithelial barrier permeability was monitored measuring the trans-epithelial electrical resistance (TEER). In macrophages, titania and ceria had no significant effect on viability in the whole range of nominal doses tested (15–240 μg/cm 2 of monolayer), while CuO NPs produced a marked viability loss. Moreover, only CuO NPs, but not the other NPs, lowered TEER of Calu-3 monolayers, pointing to the impairment of the epithelial barrier. TEER decreased by 30 % at the dose of 10 μg/cm 2 of CuO NPs, compared to untreated control, and was abolished at doses ≥80 μg/cm 2 , in strict correlation with changes in cell viability. These results indicate that (1) CuO NPs increase airway epithelium permeability even at relatively low doses and are significantly toxic for macrophages and airway epithelial cells, likely through the release of Cu ions in the medium; (2) TiO 2 and CeO 2 NPs do not affect TEER and exhibit little acute toxicity for airway epithelial cells and macrophages; and (3) TEER measurement can provide a simple method to assess the impairment of in vitro airway epithelial barrier model by manufactured

  9. Comparative effects of metal oxide nanoparticles on human airway epithelial cells and macrophages

    Science.gov (United States)

    Rotoli, Bianca Maria; Bussolati, Ovidio; Costa, Anna Luisa; Blosi, Magda; Di Cristo, Luisana; Zanello, Pier Paolo; Bianchi, Massimiliano G.; Visigalli, Rossana; Bergamaschi, Enrico

    2012-09-01

    Among nanomaterials of industrial relevance, metal-based nanoparticles (NPs) are widely used, but their effects on airway cells are relatively poorly characterized. To compare the effects of metal NPs on cells representative of the lung-blood barrier, Calu-3 epithelial cells and Raw264.7 macrophages were incubated with three industrially relevant preparations of TiO2 NPs (size range 4-33 nm), two preparations of CeO2 NPs (9-36 nm) and CuO NPs (25 nm). While Raw264.7 were grown on standard plasticware, Calu-3 cells were seeded on permeable filters, where they form a high-resistance monolayer, providing an in vitro model of the airway barrier. Metal NPs, obtained from industrial sources, were characterized under the conditions adopted for the biological tests. Cytotoxicity was assessed with resazurin method in both epithelial and macrophage cells, while epithelial barrier permeability was monitored measuring the trans-epithelial electrical resistance (TEER). In macrophages, titania and ceria had no significant effect on viability in the whole range of nominal doses tested (15-240 μg/cm2 of monolayer), while CuO NPs produced a marked viability loss. Moreover, only CuO NPs, but not the other NPs, lowered TEER of Calu-3 monolayers, pointing to the impairment of the epithelial barrier. TEER decreased by 30 % at the dose of 10 μg/cm2 of CuO NPs, compared to untreated control, and was abolished at doses ≥80 μg/cm2, in strict correlation with changes in cell viability. These results indicate that (1) CuO NPs increase airway epithelium permeability even at relatively low doses and are significantly toxic for macrophages and airway epithelial cells, likely through the release of Cu ions in the medium; (2) TiO2 and CeO2 NPs do not affect TEER and exhibit little acute toxicity for airway epithelial cells and macrophages; and (3) TEER measurement can provide a simple method to assess the impairment of in vitro airway epithelial barrier model by manufactured nanomaterials.

  10. Structure and barrier properties of human embryonic stem cell-derived retinal pigment epithelial cells are affected by extracellular matrix protein coating.

    Science.gov (United States)

    Sorkio, Anni; Hongisto, Heidi; Kaarniranta, Kai; Uusitalo, Hannu; Juuti-Uusitalo, Kati; Skottman, Heli

    2014-02-01

    Extracellular matrix (ECM) interactions play a vital role in cell morphology, migration, proliferation, and differentiation of cells. We investigated the role of ECM proteins on the structure and function of human embryonic stem cell-derived retinal pigment epithelial (hESC-RPE) cells during their differentiation and maturation from hESCs into RPE cells in adherent differentiation cultures on several human ECM proteins found in native human Bruch's membrane, namely, collagen I, collagen IV, laminin, fibronectin, and vitronectin, as well as on commercial substrates of xeno-free CELLstart™ and Matrigel™. Cell pigmentation, expression of RPE-specific proteins, fine structure, as well as the production of basal lamina by hESC-RPE on different protein coatings were evaluated after 140 days of differentiation. The integrity of hESC-RPE epithelium and barrier properties on different coatings were investigated by measuring transepithelial resistance. All coatings supported the differentiation of hESC-RPE cells as demonstrated by early onset of cell pigmentation and further maturation to RPE monolayers after enrichment. Mature RPE phenotype was verified by RPE-specific gene and protein expression, correct epithelial polarization, and phagocytic activity. Significant differences were found in the degree of RPE cell pigmentation and tightness of epithelial barrier between different coatings. Further, the thickness of self-assembled basal lamina and secretion of the key ECM proteins found in the basement membrane of the native RPE varied between hESC-RPE cultured on compared protein coatings. In conclusion, this study shows that the cell culture substrate has a major effect on the structure and basal lamina production during the differentiation and maturation of hESC-RPE potentially influencing the success of cell integrations and survival after cell transplantation.

  11. Gut Microbiota-Immune System Crosstalk and Pancreatic Disorders

    Directory of Open Access Journals (Sweden)

    D. Pagliari

    2018-01-01

    Full Text Available Gut microbiota is key to the development and modulation of the mucosal immune system. It plays a central role in several physiological functions, in the modulation of inflammatory signaling and in the protection against infections. In healthy states, there is a perfect balance between commensal and pathogens, and microbiota and the immune system interact to maintain gut homeostasis. The alteration of such balance, called dysbiosis, determines an intestinal bacterial overgrowth which leads to the disruption of the intestinal barrier with systemic translocation of pathogens. The pancreas does not possess its own microbiota, and it is believed that inflammatory and neoplastic processes affecting the gland may be linked to intestinal dysbiosis. Increasing research evidence testifies a correlation between intestinal dysbiosis and various pancreatic disorders, but it remains unclear whether dysbiosis is the cause or an effect. The analysis of specific alterations in the microbiome profile may permit to develop novel tools for the early detection of several pancreatic disorders, utilizing samples, such as blood, saliva, and stools. Future studies will have to elucidate the mechanisms by which gut microbiota is modulated and how it tunes the immune system, in order to be able to develop innovative treatment strategies for pancreatic disorders.

  12. Toll-Like Receptor 2 Activation by beta 2 -> 1-Fructans Protects Barrier Function of T84 Human Intestinal Epithelial Cells in a Chain Length-Dependent Manner

    NARCIS (Netherlands)

    Vogt, Leonie M.; Meyer, Diederick; Pullens, Gerdie; Faas, Marijke M.; Venema, Koen; Ramasamy, Uttara; Schols, Henk A.; de Vos, Paul

    Dietary fiber intake is associated with lower incidence and mortality from disease, but the underlying mechanisms of these protective effects are unclear. We hypothesized that beta 2 -> 1-fructan dietary fibers confer protection on intestinal epithelial cell barrier function via Toll-like receptor 2

  13. Changes of saliva microbiota in nasopharyngeal carcinoma patients under chemoradiation therapy.

    Science.gov (United States)

    Xu, Yuan; Teng, Fei; Huang, Shi; Lin, Zhengmei; Yuan, Xiao; Zeng, Xiaowei; Yang, Fang

    2014-02-01

    A growing body of evidence has implicated human oral microbiota in the aetiology of oral and systemic diseases. Nasopharyngeal carcinoma (NPC), an epithelial-originated malignancy, has a complex aetiology not yet fully understood. Chemoradiation therapy of NPC can affect oral microbiota and is usually accompanied by plaque accumulation. Thus, the study aimed to understand the diversity, divergence and development of the oral microbiota in NPC patients and their associated treatment, which might provide useful insights into disease aetiology and treatment side effects. A longitudinal study was designed that included three Chinese adults with NPC. Saliva samples were collected at three time points: prior to the chemoradiation treatment (carcinoma baseline, or CB), 7 months post-treatment (carcinoma-after-therapy phase 1 or CA1) and 12 months post-treatment (carcinoma-after-therapy phase 2 or CA2). Pyrosequencing of the bacterial 16S ribosomal DNA (rDNA) V1-V3 hypervariable region was employed to characterise the microbiota. Saliva samples of three healthy subjects from our former study were employed as healthy controls. Principal coordinates analysis (PCoA), Metastats and random forest prediction models were used to reveal the key microbial members associated with NPC and its treatment programme. (1) In total, 412 bacterial species from at least 107 genera and 13 phyla were found in the saliva samples of the NPC patients. (2) PCoA revealed that not only were the microbiota from NPC patients distinct from those of healthy controls (p<0.001) but also that separation was found on the saliva microbiota between pre- and post-therapy (p<0.001) in the NPC samples. (3) At the genus level and the operational taxonomic unit (OTU) level, Streptococcus was found with lower abundance in NPC samples. (4) Chemoradiation therapy did not incur similar changes in microbiota structure among the three NPC patients; the microbiota in one of them stayed largely steady, while those in the

  14. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome.

    Science.gov (United States)

    Chassaing, Benoit; Koren, Omry; Goodrich, Julia K; Poole, Angela C; Srinivasan, Shanthi; Ley, Ruth E; Gewirtz, Andrew T

    2015-03-05

    The intestinal tract is inhabited by a large and diverse community of microbes collectively referred to as the gut microbiota. While the gut microbiota provides important benefits to its host, especially in metabolism and immune development, disturbance of the microbiota-host relationship is associated with numerous chronic inflammatory diseases, including inflammatory bowel disease and the group of obesity-associated diseases collectively referred to as metabolic syndrome. A primary means by which the intestine is protected from its microbiota is via multi-layered mucus structures that cover the intestinal surface, thereby allowing the vast majority of gut bacteria to be kept at a safe distance from epithelial cells that line the intestine. Thus, agents that disrupt mucus-bacterial interactions might have the potential to promote diseases associated with gut inflammation. Consequently, it has been hypothesized that emulsifiers, detergent-like molecules that are a ubiquitous component of processed foods and that can increase bacterial translocation across epithelia in vitro, might be promoting the increase in inflammatory bowel disease observed since the mid-twentieth century. Here we report that, in mice, relatively low concentrations of two commonly used emulsifiers, namely carboxymethylcellulose and polysorbate-80, induced low-grade inflammation and obesity/metabolic syndrome in wild-type hosts and promoted robust colitis in mice predisposed to this disorder. Emulsifier-induced metabolic syndrome was associated with microbiota encroachment, altered species composition and increased pro-inflammatory potential. Use of germ-free mice and faecal transplants indicated that such changes in microbiota were necessary and sufficient for both low-grade inflammation and metabolic syndrome. These results support the emerging concept that perturbed host-microbiota interactions resulting in low-grade inflammation can promote adiposity and its associated metabolic effects

  15. Erythropoietin protects the retinal pigment epithelial barrier against ...

    African Journals Online (AJOL)

    O2-induced hyperpermeability. H Zhang, Y Gong, X Wu, Y Shi, L Yin, Y Qiu. Abstract. Erythropoietin (EPO) is not limited to hematopoiesis; it may act as a protective cytokine. In this study, the retinal pigment epithelial (RPE) cell viability, cell ...

  16. Use of a combination of in vitro models to investigate the impact of chlorpyrifos and inulin on the intestinal microbiota and the permeability of the intestinal mucosa.

    Science.gov (United States)

    Réquilé, Marina; Gonzàlez Alvarez, Dubàn O; Delanaud, Stéphane; Rhazi, Larbi; Bach, Véronique; Depeint, Flore; Khorsi-Cauet, Hafida

    2018-05-28

    Dietary exposure to the organophosphorothionate pesticide chlorpyrifos (CPF) has been linked to dysbiosis of the gut microbiota. We therefore sought to investigate whether (i) CPF's impact extends to the intestinal barrier and (ii) the prebiotic inulin could prevent such an effect. In vitro models mimicking the intestinal environment (the SHIME®) and the intestinal mucosa (Caco-2/TC7 cells) were exposed to CPF. After the SHIME® had been exposed to CPF and/or inulin, we assessed the system's bacterial and metabolic profiles. Extracts from the SHIME®'s colon reactors were then transferred to Caco-2/TC7 cultures, and epithelial barrier integrity and function were assessed. We found that inulin co-treatment partially reversed CPF-induced dysbiosis and increased short-chain fatty acid production in the SHIME®. Furthermore, co-treatment impacted tight junction gene expression and inhibited pro-inflammatory signaling in the Caco-2/TC7 intestinal cell line. Whereas, an isolated in vitro assessment of CPF and inulin effects provides useful information on the mechanism of dysbiosis, combining two in vitro models increases the in vivo relevance.

  17. Membrane lipidome of an epithelial cell line

    DEFF Research Database (Denmark)

    Sampaio, Julio L; Gerl, Mathias J; Klose, Christian

    2011-01-01

    Tissue differentiation is an important process that involves major cellular membrane remodeling. We used Madin-Darby canine kidney cells as a model for epithelium formation and investigated the remodeling of the total cell membrane lipidome during the transition from a nonpolarized morphology...... to an epithelial morphology and vice versa. To achieve this, we developed a shotgun-based lipidomics workflow that enabled the absolute quantification of mammalian membrane lipidomes with minimal sample processing from low sample amounts. Epithelial morphogenesis was accompanied by a major shift from sphingomyelin...... to generate an apical membrane domain that serves as a protective barrier for the epithelial sheet....

  18. Translocation of SiO2-NPs across in vitro human bronchial epithelial monolayer

    International Nuclear Information System (INIS)

    George, I; Vranic, S; Boland, S; Borot, M C; Marano, F; Baeza-Squiban, A

    2013-01-01

    Safe development and application of nanotechnologies in many fields require better knowledge about their potential adverse effects on human health. Evidence of abilities of nanoparticles (NPs) to cross epithelial barriers and reach secondary organs via the bloodstream led us to investigate the translocation of SiO 2 NPs of 50 nm (50 nm-SiO 2 -NPs) across human bronchial epithelial cells that are primary targets after exposure to inhaled NPs. We quantified the translocation of fluorescently labelled SiO 2 NPs at non-cytotoxic concentrations (5 and 10 μg/cm 2 ) across Calu-3 epithelial monolayer. After 14 days in culture Calu-3 cells seeded onto 3 μm-polycarbonate Transwell membranes formed an efficient bronchial barrier assessed by measurement of the transepithelial electric resistance and quantification of the permeability of the monolayer. After 24 hours of exposure, we observed a significant translocation of NPs that was more important when the initial NP concentration decreased. Confocal microscopy observations revealed NP uptake by cells and an important NP retention inside the porous membrane. In conclusion, 50 nm-SiO 2 -NPs can cross the human bronchial epithelial barrier without affecting the integrity of the epithelial cell monolayer.

  19. Midgut microbiota and host immunocompetence underlie Bacillus thuringiensis killing mechanism

    Science.gov (United States)

    Caccia, Silvia; Di Lelio, Ilaria; La Storia, Antonietta; Marinelli, Adriana; Varricchio, Paola; Franzetti, Eleonora; Banyuls, Núria; Tettamanti, Gianluca; Casartelli, Morena; Giordana, Barbara; Ferré, Juan; Gigliotti, Silvia; Pennacchio, Francesco

    2016-01-01

    Bacillus thuringiensis is a widely used bacterial entomopathogen producing insecticidal toxins, some of which are expressed in insect-resistant transgenic crops. Surprisingly, the killing mechanism of B. thuringiensis remains controversial. In particular, the importance of the septicemia induced by the host midgut microbiota is still debated as a result of the lack of experimental evidence obtained without drastic manipulation of the midgut and its content. Here this key issue is addressed by RNAi-mediated silencing of an immune gene in a lepidopteran host Spodoptera littoralis, leaving the midgut microbiota unaltered. The resulting cellular immunosuppression was characterized by a reduced nodulation response, which was associated with a significant enhancement of host larvae mortality triggered by B. thuringiensis and a Cry toxin. This was determined by an uncontrolled proliferation of midgut bacteria, after entering the body cavity through toxin-induced epithelial lesions. Consequently, the hemolymphatic microbiota dramatically changed upon treatment with Cry1Ca toxin, showing a remarkable predominance of Serratia and Clostridium species, which switched from asymptomatic gut symbionts to hemocoelic pathogens. These experimental results demonstrate the important contribution of host enteric flora in B. thuringiensis-killing activity and provide a sound foundation for developing new insect control strategies aimed at enhancing the impact of biocontrol agents by reducing the immunocompetence of the host. PMID:27506800

  20. Reshaping the gut microbiota at an early age: functional impact on obesity risk?

    Science.gov (United States)

    Luoto, R; Collado, M C; Salminen, S; Isolauri, E

    2013-01-01

    Overweight and obesity can currently be considered a major threat to human health and well-being. Recent scientific advances point to an aberrant compositional development of the gut microbiota and low-grade inflammation as contributing factors, in conjunction with excessive energy intake. A high-fat/energy diet alters the gut microbiota composition, which reciprocally engenders excessive energy harvesting and storage. Further, microbial imbalance increases gut permeability, leading to metabolic endotoxemia, inflammation and insulin resistance. Local intestinal immunologic homeostasis is achieved by tolerogenic immune responses to microbial antigens. In the context of amelioration of insulin sensitivity and decreased adiposity, the potential of gut microbiota modulation with specific probiotics and prebiotics lies in the normalization of aberrant microbiota, improved gut barrier function and creation of an anti-inflammatory milieu. This would suggest a role for probiotic/prebiotic interventions in the search for preventive and therapeutic applications in weight management. © 2013 S. Karger AG, Basel.

  1. Review article: dietary fibre-microbiota interactions.

    Science.gov (United States)

    Simpson, H L; Campbell, B J

    2015-07-01

    Application of modern rapid DNA sequencing technology has transformed our understanding of the gut microbiota. Diet, in particular plant-based fibre, appears critical in influencing the composition and metabolic activity of the microbiome, determining levels of short-chain fatty acids (SCFAs) important for intestinal health. To assess current epidemiological, experimental and clinical evidence of how long-term and short-term alterations in dietary fibre intake impact on the microbiome and metabolome. A Medline search including items 'intestinal microbiota', 'nutrition', 'diet', 'dietary fibre', 'SCFAs' and 'prebiotic effect' was performed. Studies found evidence of fibre-influenced differences in the microbiome and metabolome as a consequence of habitual diet, and of long-term or short-term intervention (in both animals and humans). Agrarian diets high in fruit/legume fibre are associated with greater microbial diversity and a predominance of Prevotella over Bacteroides. 'Western'-style diets, high in fat/sugar, low in fibre, decrease beneficial Firmicutes that metabolise dietary plant-derived polysaccharides to SCFAs and increase mucosa-associated Proteobacteria (including enteric pathogens). Short-term diets can also have major effects, particularly those exclusively animal-based, and those high-protein, low-fermentable carbohydrate/fibre 'weight-loss' diets, increasing the abundance of Bacteroides and lowering Firmicutes, with long-term adherence to such diets likely increasing risk of colonic disease. Interventions to prevent intestinal inflammation may be achieved with fermentable prebiotic fibres that enhance beneficial Bifidobacteria or with soluble fibres that block bacterial-epithelial adherence (contrabiotics). These mechanisms may explain many of the differences in microbiota associated with long-term ingestion of a diet rich in fruit and vegetable fibre. © 2015 The Authors. Alimentary Pharmacology & Therapeutics published by John Wiley & Sons Ltd.

  2. Perinatal supplementation of 4-phenylbutyrate and glutamine attenuates endoplasmic reticulum stress and improves colonic epithelial barrier function in rats born with intrauterine growth restriction.

    Science.gov (United States)

    Désir-Vigné, Axel; Haure-Mirande, Vianney; de Coppet, Pierre; Darmaun, Dominique; Le Dréan, Gwenola; Segain, Jean-Pierre

    2018-05-01

    Intrauterine growth restriction (IUGR) can affect the structure and function of the intestinal barrier and increase digestive disease risk in adulthood. Using the rat model of maternal dietary protein restriction (8% vs. 20%), we found that the colon of IUGR offspring displayed decreased mRNA expression of epithelial barrier proteins MUC2 and occludin during development. This was associated with increased mRNA expression of endoplasmic reticulum (ER) stress marker XBP1s and increased colonic permeability measured in Ussing chambers. We hypothesized that ER stress contributes to colonic barrier alterations and that perinatal supplementation of dams with ER stress modulators, phenylbutyrate and glutamine (PG) could prevent these defects in IUGR offspring. We first demonstrated that ER stress induction by tunicamycin or thapsigargin increased the permeability of rat colonic tissues mounted in Ussing chamber and that PG treatment prevented this effect. Therefore, we supplemented the diet of control and IUGR dams with PG during gestation and lactation. Real-time polymerase chain reaction and histological analysis of colons from 120-day-old offspring revealed that perinatal PG treatment partially prevented the increased expression of ER stress markers but reversed the reduction of crypt depth and goblet cell number in IUGR rats. In dextran sodium sulfate-induced injury and recovery experiments, the colon of IUGR rats without perinatal PG treatment showed higher XBP1s mRNA levels and histological scores of inflammation than IUGR rats with perinatal PG treatment. In conclusion, these data suggest that perinatal supplementation with PG could alleviate ER stress and prevent epithelial barrier dysfunction in IUGR offspring. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Role of intestinal microbiota and metabolites on gut homeostasis and human diseases.

    Science.gov (United States)

    Lin, Lan; Zhang, Jianqiong

    2017-01-06

    A vast diversity of microbes colonizes in the human gastrointestinal tract, referred to intestinal microbiota. Microbiota and products thereof are indispensable for shaping the development and function of host innate immune system, thereby exerting multifaceted impacts in gut health. This paper reviews the effects on immunity of gut microbe-derived nucleic acids, and gut microbial metabolites, as well as the involvement of commensals in the gut homeostasis. We focus on the recent findings with an intention to illuminate the mechanisms by which the microbiota and products thereof are interacting with host immunity, as well as to scrutinize imbalanced gut microbiota (dysbiosis) which lead to autoimmune disorders including inflammatory bowel disease (IBD), Type 1 diabetes (T1D) and systemic immune syndromes such as rheumatoid arthritis (RA). In addition to their well-recognized benefits in the gut such as occupation of ecological niches and competition with pathogens, commensal bacteria have been shown to strengthen the gut barrier and to exert immunomodulatory actions within the gut and beyond. It has been realized that impaired intestinal microbiota not only contribute to gut diseases but also are inextricably linked to metabolic disorders and even brain dysfunction. A better understanding of the mutual interactions of the microbiota and host immune system, would shed light on our endeavors of disease prevention and broaden the path to our discovery of immune intervention targets for disease treatment.

  4. Characterization of a continuous feline mammary epithelial cell line susceptible to feline epitheliotropic viruses.

    Science.gov (United States)

    Pesavento, Patricia; Liu, Hongwei; Ossiboff, Robert J; Stucker, Karla M; Heymer, Anna; Millon, Lee; Wood, Jason; van der List, Deborah; Parker, John S L

    2009-04-01

    Mucosal epithelial cells are the primary targets for many common viral pathogens of cats. Viral infection of epithelia can damage or disrupt the epithelial barrier that protects underlying tissues. In vitro cell culture systems are an effective means to study how viruses infect and disrupt epithelial barriers, however no true continuous or immortalized feline epithelial cell culture lines are available. A continuous cell culture of feline mammary epithelial cells (FMEC UCD-04-2) that forms tight junctions with high transepithelial electrical resistance (>2000Omegacm(-1)) 3-4 days after reaching confluence was characterized. In addition, it was shown that FMECs are susceptible to infection with feline calicivirus (FCV), feline herpesvirus (FHV-1), feline coronavirus (FeCoV), and feline panleukopenia virus (FPV). These cells will be useful for studies of feline viral disease and for in vitro studies of feline epithelia.

  5. The blood-tendon barrier: identification and characterisation of a novel tissue barrier in tendon blood vessels

    Directory of Open Access Journals (Sweden)

    C Lehner

    2016-05-01

    Full Text Available Tissue barriers function as “gate keepers” between different compartments (usually blood and tissue and are formed by specialised membrane-associated proteins, localising to the apicolateral plasma membrane domain of epithelial and endothelial cells. By sealing the paracellular space, the free diffusion of solutes and molecules across epithelia and endothelia is impeded. Thereby, tissue barriers contribute to the establishment and maintenance of a distinct internal and external environment, which is crucial during organ development and allows maintenance of an organ-specific homeostatic milieu. So far, various epithelial and endothelial tissue barriers have been described, including the blood-brain barrier, the blood-retina barrier, the blood-testis barrier, the blood-placenta barrier, and the cerebrospinal fluid (CSF-brain barrier, which are vital for physiological function and any disturbance of these barriers can result in severe organ damage or even death. Here, we describe the identification of a novel barrier, located in the vascular bed of tendons, which we term the blood-tendon barrier (BTB. By using immunohistochemistry, transmission electron microscopy, and tracer studies we demonstrate the presence of a functional endothelial barrier within tendons restricting the passage of large blood-borne molecules into the surrounding tendon tissue. We further provide in vitro evidence that the BTB potentially contributes to the creation of a distinct internal tissue environment impacting upon the proliferation and differentiation of tendon-resident cells, effects which might be fundamental for the onset of tendon pathologies.

  6. Dysbiosis of Intestinal Microbiota and Decreased Antimicrobial Peptide Level in Paneth Cells during Hypertriglyceridemia-Related Acute Necrotizing Pancreatitis in Rats

    Directory of Open Access Journals (Sweden)

    Chunlan Huang

    2017-05-01

    Full Text Available Hypertriglyceridemia (HTG aggravates the course of acute pancreatitis (AP. Intestinal barrier dysfunction is implicated in the pathogenesis of AP during which dysbiosis of intestinal microbiota contributes to the dysfunction in intestinal barrier. However, few studies focus on the changes in intestine during HTG-related acute necrotizing pancreatitis (ANP. Here, we investigated the changes in intestinal microbiota and Paneth cell antimicrobial peptides (AMPs in HTG-related ANP (HANP in rats. Rats fed a high-fat diet to induce HTG and ANP was induced by retrograde injection of 3.5% sodium taurocholate into biliopancreatic duct. Rats were sacrificed at 24 and 48 h, respectively. Pancreatic and ileal injuries were evaluated by histological scores. Intestinal barrier function was assessed by plasma diamine oxidase activity and D-lactate level. Systemic and intestinal inflammation was evaluated by tumor necrosis factor alpha (TNFα, interleukin (IL-1β, and IL-17A expression. 16S rRNA high throughput sequencing was used to investigate changes in intestinal microbiota diversity and structure. AMPs (α-defensin5 and lysozyme expression was measured by real-time polymerase chain reaction (PCR and immunofluorescence. The results showed that compared with those of normal-lipid ANP (NANP groups, the HANP groups had more severe histopathological injuries in pancreas and distal ileum, aggravated intestinal barrier dysfunction and increased TNFα, IL-1β, and IL-17A expression in plasma and distal ileum. Principal component analysis showed structural segregation between the HANP and NANP group. α-Diversity estimators in the HANP group revealed decreased microbiota diversity compared with that in NANP group. Taxonomic analysis showed dysbiosis of intestinal microbiota structure. In the HANP group, at phyla level, Candidatus_Saccharibacteria and Tenericutes decreased significantly, whereas Actinobacteria increased. At genus level, Allobaculum, Bifidobacterium

  7. The Potential Role of Probiotics in the Management of Childhood Autism Spectrum Disorders

    Directory of Open Access Journals (Sweden)

    J. William Critchfield

    2011-01-01

    Full Text Available Gastrointestinal (GI dysfunction has been reported in a substantial number of children with autism spectrum disorders (ASD. Activation of the mucosal immune response and the presence of abnormal gut microbiota are repeatedly observed in these children. In children with ASD, the presence of GI dysfunction is often associated with increased irritability, tantrums, aggressive behaviour, and sleep disturbances. Moreover, modulating gut bacteria with short-term antibiotic treatment can lead to temporary improvement in behavioral symptoms in some individuals with ASD. Probiotics can influence microbiota composition and intestinal barrier function and alter mucosal immune responses. The administration of probiotic bacteria to address changes in the microbiota might, therefore, be a useful novel therapeutic tool with which to restore normal gut microbiota, reduce inflammation, restore epithelial barrier function, and potentially ameliorate behavioural symptoms associated with some children with ASD. In this review of the literature, support emerges for the clinical testing of probiotics in ASD, especially in the context of addressing GI symptoms.

  8. microRNA-4516 Contributes to Different Functions of Epithelial Permeability Barrier by Targeting Poliovirus Receptor Related Protein 1 in Enterovirus 71 and Coxsackievirus A16 Infections

    Directory of Open Access Journals (Sweden)

    Yajie Hu

    2018-04-01

    Full Text Available Enterovirus 71 (EV-A71 and coxsackievirus A16 (CV-A16 remain the predominant etiological agents of hand, foot, and mouth disease (HFMD. The clinical manifestations caused by the two viruses are obviously different. CV-A16 usually triggers a repeated infection, and airway epithelial integrity is often the potential causative factor of respiratory repeated infections. Our previous studies have demonstrated that there were some differentially expressed miRNAs involved in the regulation of adhesion function of epithelial barrier in EV-A71 and CV-A16 infections. In this study, we compared the differences between EV-A71 and CV-A16 infections on the airway epithelial barrier function in human bronchial epithelial (16HBE cells and further screened the key miRNA which leaded to the formation of these differences. Our results showed that more rapid proliferation, more serious destruction of 16HBE cells permeability, more apoptosis and disruption of intercellular adhesion-associated molecules were found in CV-A16 infection as compared to EV-A71 infection. Furthermore, we also identified that microRNA-4516 (miR-4516, which presented down-regulation in EV-A71 infection and up-regulation in CV-A16 infection was an important regulator of intercellular junctions by targeting Poliovirus receptor related protein 1(PVRL1. The expressions of PVRL1, claudin4, ZO-1 and E-cadherin in CV-A16-infected cells were significantly less than those in EV-A71-infected cells, while the expressions of these proteins were subverted when pre-treated with miR-4516-overexpression plasmid in EV-A71 infected and miR-4516-knockdown plasmid in CV-A16 infected 16HBE cells. Thus, these data suggested that the opposite expression of miR-4516 in EV-A71 and CV-A16 infections might be the initial steps leading to different epithelial impairments of 16HBE cells by destroying intercellular adhesion, which finally resulted in different outcomes of EV-A71 and CV-A16 infections.

  9. Leaky Gut As a Danger Signal for Autoimmune Diseases

    Directory of Open Access Journals (Sweden)

    Qinghui Mu

    2017-05-01

    Full Text Available The intestinal epithelial lining, together with factors secreted from it, forms a barrier that separates the host from the environment. In pathologic conditions, the permeability of the epithelial lining may be compromised allowing the passage of toxins, antigens, and bacteria in the lumen to enter the blood stream creating a “leaky gut.” In individuals with a genetic predisposition, a leaky gut may allow environmental factors to enter the body and trigger the initiation and development of autoimmune disease. Growing evidence shows that the gut microbiota is important in supporting the epithelial barrier and therefore plays a key role in the regulation of environmental factors that enter the body. Several recent reports have shown that probiotics can reverse the leaky gut by enhancing the production of tight junction proteins; however, additional and longer term studies are still required. Conversely, pathogenic bacteria that can facilitate a leaky gut and induce autoimmune symptoms can be ameliorated with the use of antibiotic treatment. Therefore, it is hypothesized that modulating the gut microbiota can serve as a potential method for regulating intestinal permeability and may help to alter the course of autoimmune diseases in susceptible individuals.

  10. Deoxynivalenol affects in vitro intestinal epithelial cell barrier integrity through inhibition of protein synthesis

    International Nuclear Information System (INIS)

    Van De Walle, Jacqueline; Sergent, Therese; Piront, Neil; Toussaint, Olivier; Schneider, Yves-Jacques; Larondelle, Yvan

    2010-01-01

    Deoxynivalenol (DON), one of the most common mycotoxin contaminants of raw and processed cereal food, adversely affects the gastrointestinal tract. Since DON acts as a protein synthesis inhibitor, the constantly renewing intestinal epithelium could be particularly sensitive to DON. We analyzed the toxicological effects of DON on intestinal epithelial protein synthesis and barrier integrity. Differentiated Caco-2 cells, as a widely used model of the human intestinal barrier, were exposed to realistic intestinal concentrations of DON (50, 500 and 5000 ng/ml) during 24 h. DON caused a concentration-dependent decrease in total protein content associated with a reduction in the incorporation of [ 3 H]-leucine, demonstrating its inhibitory effect on protein synthesis. DON simultaneously increased the paracellular permeability of the monolayer as reflected through a decreased transepithelial electrical resistance associated with an increased paracellular flux of the tracer [ 3 H]-mannitol. A concentration-dependent reduction in the expression level of the tight junction constituent claudin-4 was demonstrated by Western blot, which was not due to diminished transcription, increased degradation, or NF-κB, ERK or JNK activation, and was also observed for a tight junction independent protein, i.e. intestinal alkaline phosphatase. These results demonstrate a dual toxicological effect of DON on differentiated Caco-2 cells consisting in an inhibition of protein synthesis as well as an increase in monolayer permeability, and moreover suggest a possible link between them through diminished synthesis of the tight junction constituent claudin-4.

  11. Vaginal microbiota in menopause

    OpenAIRE

    Martinus Tarina; Larisa Paramitha; Evita Halim Effendi; Shannaz Nadia Yusharyahya; Hanny Nilasari; Wresti Indriatmi

    2016-01-01

    The human vagina together with its resident, microbiota, comprise a dynamic ecosystem. Normal microbiota is dominated by Lactobacillus species, and pathogen microbiota such as Gardnerella species and Bacteroides species can occur due to decrease in Lactobacillus domination. Lactobacillus plays an essential role in keeping normal vaginal microbiota in balance. Vaginal microbiota adapts to pH change and hormonal value. Changes in the vaginal microbiota over a woman’s lifespan will influence the...

  12. Role of intestinal mucosal barrier in the development and progression of nonalcoholic fatty liver disease

    Directory of Open Access Journals (Sweden)

    ZHANG Yuanyuan

    2016-12-01

    Full Text Available The incidence of non-alcoholic fatty liver disease (NAFLD has been increasing year by year in China. Intestinal mucosa is the largest organ for bacterial storage, and intestinal mucosal barrier includes biological barrier, mechanical barrier, immunological barrier, and chemical barrier. This article investigates the important role of intestinal mucosal barrier function in the pathogenesis of NAFLD. As for the intestinal biological barrier, abnormalities in gut microbiota occur earlier than obesity and other metabolic disorders; small intestinal bacterial overgrowth may affect energy metabolism, promote insulin resistance, and get involved in the pathogenesis of NAFLD; regulation of gut microbiota has a certain clinical effect in the treatment of NAFLD. Intestinal mechanical barrier impairment increases the mucosal permeability and is associated with intestinal dysbacteriosis. The changes in intestinal immunological barrier may be associated with obesity, metabolic disorders, and liver inflammation. The changes in intestinal chemical barrier can inhibit the synthesis and secretion of very low-density lipoprotein and low-density lipoprotein in hepatocytes and may result in triglyceride deposition in the liver. It is pointed out that the research on intestinal mucosal barrier function provides promising prospects for the prevention and treatment of NAFLD.

  13. THE POWER OF POOP: FECAL MICROBIOTA TRANSPLANTATION FOR CLOSTRIDIUM DIFFICILE INFECTION.

    Science.gov (United States)

    Edmond, Michael B

    2016-01-01

    The human gut is colonized with 200 to 1,000 bacterial species. Administration of antibiotics reduces the diversity of the intestinal microbiota, reduces colonization resistance, and can lead to infection with Clostridium difficile . These infections have become more prevalent and increasingly patients are experiencing multiple recurrences that are incurable with standard treatment. Although fecal microbiota transplantation (FMT) has been used for centuries in human and veterinary medicine, only recently has it be shown to be highly effective for recurrent C. difficile infection. The goal of FMT is to re-introduce a complete, stable community of gut microorganisms to repair or replace the disrupted native microbiota. FMT can be delivered via nasoenteric tube, colonoscopy, or enema. Despite a cure rate approximating 90%, many barriers to FMT have limited its availability to patients. The recent development of a not-for-profit stool bank has helped to make this therapy more accessible. Additional indications for FMT are currently under investigation.

  14. The degree of microbiome complexity influences the epithelial response to infection

    Directory of Open Access Journals (Sweden)

    Baker Henry V

    2009-08-01

    Full Text Available Abstract Background The human microflora is known to be extremely complex, yet most pathogenesis research is conducted in mono-species models of infection. Consequently, it remains unclear whether the level of complexity of a host's indigenous flora can affect the virulence potential of pathogenic species. Furthermore, it remains unclear whether the colonization by commensal species affects a host cell's response to pathogenic species beyond the direct physical saturation of surface receptors, the sequestration of nutrients, the modulation of the physico-chemical environment in the oral cavity, or the production of bacteriocins. Using oral epithelial cells as a model, we hypothesized that the virulence of pathogenic species may vary depending on the complexity of the flora that interacts with host cells. Results This is the first report that determines the global epithelial transcriptional response to co-culture with defined complex microbiota. In our model, human immortalized gingival keratinocytes (HIGK were infected with mono- and mixed cultures of commensal and pathogenic species. The global transcriptional response of infected cells was validated and confirmed phenotypically. In our model, commensal species were able to modulate the expression of host genes with a broad diversity of physiological functions and antagonize the effect of pathogenic species at the cellular level. Unexpectedly, the inhibitory effect of commensal species was not correlated with its ability to inhibit adhesion or invasion by pathogenic species. Conclusion Studying the global transcriptome of epithelial cells to single and complex microbial challenges offers clues towards a better understanding of how bacteria-bacteria interactions and bacteria-host interactions impact the overall host response. This work provides evidence that the degree of complexity of a mixed microbiota does influence the transcriptional response to infection of host epithelial cells, and

  15. Acclimation and Institutionalization of the Mouse Microbiota Following Transportation

    Directory of Open Access Journals (Sweden)

    Dan R. Montonye

    2018-05-01

    Full Text Available Using animal models, the gut microbiota has been shown to play a critical role in the health and disease of many organ systems. Unfortunately, animal model studies often lack reproducibility when performed at different institutions. Previous studies in our laboratory have shown that the gut microbiota of mice can vary with a number of husbandry factors leading us to speculate that differing environments may alter gut microbiota, which in turn may influence animal model phenotypes. As an extension of these studies, we hypothesized that the shipping of mice from a mouse producer to an institution will result in changes in the type, relative abundance, and functional composition of the gut microbiota. Furthermore, we hypothesized that mice will develop a microbiota unique to the institution and facility in which they are housed. To test these hypotheses, mice of two strains (C57BL/6J and BALB/cJ, two age groups (4 week and 8 week old, and originating from two types of housing (research animal facility under conventional housing and production facilities under maximum barrier housing were obtained from The Jackson Laboratory. Fecal samples were collected the day prior to shipping, immediately upon arrival, and then on days 2, 5, 7, and weeks 2, 4, and 9 post-arrival. Following the first post-arrival fecal collection, mice were separated into 2 groups and housed at different facilities at our institution while keeping their caging, diet, and husbandry practices the same. DNA was extracted from the collected fecal pellets and 16S rRNA amplicons were sequenced in order to characterize the type and relative abundance of gut bacteria. Principal component analysis (PCA and permutational multivariate analysis of variance (PERMANOVA demonstrated that both the shipping and the institution and facility in which mice were housed altered the gut microbiota. Phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt predicted

  16. Acclimation and Institutionalization of the Mouse Microbiota Following Transportation.

    Science.gov (United States)

    Montonye, Dan R; Ericsson, Aaron C; Busi, Susheel B; Lutz, Cathleen; Wardwell, Keegan; Franklin, Craig L

    2018-01-01

    Using animal models, the gut microbiota has been shown to play a critical role in the health and disease of many organ systems. Unfortunately, animal model studies often lack reproducibility when performed at different institutions. Previous studies in our laboratory have shown that the gut microbiota of mice can vary with a number of husbandry factors leading us to speculate that differing environments may alter gut microbiota, which in turn may influence animal model phenotypes. As an extension of these studies, we hypothesized that the shipping of mice from a mouse producer to an institution will result in changes in the type, relative abundance, and functional composition of the gut microbiota. Furthermore, we hypothesized that mice will develop a microbiota unique to the institution and facility in which they are housed. To test these hypotheses, mice of two strains (C57BL/6J and BALB/cJ), two age groups (4 week and 8 week old), and originating from two types of housing (research animal facility under conventional housing and production facilities under maximum barrier housing) were obtained from The Jackson Laboratory. Fecal samples were collected the day prior to shipping, immediately upon arrival, and then on days 2, 5, 7, and weeks 2, 4, and 9 post-arrival. Following the first post-arrival fecal collection, mice were separated into 2 groups and housed at different facilities at our institution while keeping their caging, diet, and husbandry practices the same. DNA was extracted from the collected fecal pellets and 16S rRNA amplicons were sequenced in order to characterize the type and relative abundance of gut bacteria. Principal component analysis (PCA) and permutational multivariate analysis of variance (PERMANOVA) demonstrated that both the shipping and the institution and facility in which mice were housed altered the gut microbiota. Phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) predicted differences in

  17. Gut microbiota and obesity.

    Science.gov (United States)

    Gérard, Philippe

    2016-01-01

    The human intestine harbors a complex bacterial community called the gut microbiota. This microbiota is specific to each individual despite the existence of several bacterial species shared by the majority of adults. The influence of the gut microbiota in human health and disease has been revealed in the recent years. Particularly, the use of germ-free animals and microbiota transplant showed that the gut microbiota may play a causal role in the development of obesity and associated metabolic disorders, and lead to identification of several mechanisms. In humans, differences in microbiota composition, functional genes and metabolic activities are observed between obese and lean individuals suggesting a contribution of the gut microbiota to these phenotypes. Finally, the evidence linking gut bacteria to host metabolism could allow the development of new therapeutic strategies based on gut microbiota modulation to treat or prevent obesity.

  18. Barriers to Liposomal Gene Delivery: from Application Site to the Target.

    Science.gov (United States)

    Saffari, Mostafa; Moghimi, Hamid Reza; Dass, Crispin R

    2016-01-01

    Gene therapy is a therapeutic approach to deliver genetic material into cells to alter their function in entire organism. One promising form of gene delivery system (DDS) is liposomes. The success of liposome-mediated gene delivery is a multifactorial issue and well-designed liposomal systems might lead to optimized gene transfection particularly in vivo. Liposomal gene delivery systems face different barriers from their site of application to their target, which is inside the cells. These barriers include presystemic obstacles (epithelial barriers), systemic barriers in blood circulation and cellular barriers. Epithelial barriers differ depending on the route of administration. Systemic barriers include enzymatic degradation, binding and opsonisation. Both of these barriers can act as limiting hurdles that genetic material and their vector should overcome before reaching the cells. Finally liposomes should overcome cellular barriers that include cell entrance, endosomal escape and nuclear uptake. These barriers and their impact on liposomal gene delivery will be discussed in this review.

  19. Matriptase zymogen supports epithelial development, homeostasis and regeneration

    DEFF Research Database (Denmark)

    Friis, Stine; Tadeo, Daniel; Le-Gall, Sylvain M.

    2017-01-01

    Background Matriptase is a membrane serine protease essential for epithelial development, homeostasis, and regeneration, as well as a central orchestrator of pathogenic pericellular signaling in the context of inflammatory and proliferative diseases. Matriptase is an unusual protease in that its...... previously reported for transgenic mice mis-expressing wildtype epidermal matriptase. Equally surprising, mice engineered to express only zymogen-locked endogenous matriptase, unlike matriptase null mice, were viable, developed epithelial barrier function, and regenerated the injured epithelium. Compatible...

  20. Cultured alveolar epithelial cells from septic rats mimic in vivo septic lung.

    Directory of Open Access Journals (Sweden)

    Taylor S Cohen

    2010-06-01

    Full Text Available Sepsis results in the formation of pulmonary edema by increasing in epithelial permeability. Therefore we hypothesized that alveolar epithelial cells isolated from septic animals develop tight junctions with different protein composition and reduced barrier function relative to alveolar epithelial cells from healthy animals. Male rats (200-300 g were sacrificed 24 hours after cecal ligation and double puncture (2CLP or sham surgery. Alveolar epithelial cells were isolated and plated on fibronectin-coated flexible membranes or permeable, non-flexible transwell substrates. After a 5 day culture period, cells were either lysed for western analysis of tight junction protein expressin (claudin 3, 4, 5, 7, 8, and 18, occludin, ZO-1, and JAM-A and MAPk (JNK, ERK, an p38 signaling activation, or barrier function was examined by measuring transepithelial resistance (TER or the flux of two molecular tracers (5 and 20 A. Inhibitors of JNK (SP600125, 20 microM and ERK (U0126, 10 microM were used to determine the role of these pathways in sepsis induced epithelial barrier dysfunction. Expression of claudin 4, claudin 18, and occludin was significantly lower, and activation of JNK and ERK signaling pathways was significantly increased in 2CLP monolayers, relative to sham monolayers. Transepithelial resistance of the 2CLP monolayers was reduced significantly compared to sham (769 and 1234 ohm-cm(2, respectively, however no significant difference in the flux of either tracer was observed. Inhibition of ERK, not JNK, significantly increased TER and expression of claudin 4 in 2CLP monolayers, and prevented significant differences in claudin 18 expression between 2CLP and sham monolayers. We conclude that alveolar epithelial cells isolated from septic animals form confluent monolayers with impaired barrier function compared to healthy monolayers, and inhibition of ERK signaling partially reverses differences between these monolayers. This model provides a unique

  1. A gut microbiota-targeted dietary intervention for amelioration of chronic inflammation underlying metabolic syndrome.

    Science.gov (United States)

    Xiao, Shuiming; Fei, Na; Pang, Xiaoyan; Shen, Jian; Wang, Linghua; Zhang, Baorang; Zhang, Menghui; Zhang, Xiaojun; Zhang, Chenhong; Li, Min; Sun, Lifeng; Xue, Zhengsheng; Wang, Jingjing; Feng, Jie; Yan, Feiyan; Zhao, Naisi; Liu, Jiaqi; Long, Wenmin; Zhao, Liping

    2014-02-01

    Chronic inflammation induced by endotoxin from a dysbiotic gut microbiota contributes to the development of obesity-related metabolic disorders. Modification of gut microbiota by a diet to balance its composition becomes a promising strategy to help manage obesity. A dietary scheme based on whole grains, traditional Chinese medicinal foods, and prebiotics (WTP diet) was designed to meet human nutritional needs as well as balance the gut microbiota. Ninety-three of 123 central obese volunteers (BMI ≥ 28 kg m(-2) ) completed a self-controlled clinical trial consisting of 9-week intervention on WTP diet followed by a 14-week maintenance period. The average weight loss reached 5.79 ± 4.64 kg (6.62 ± 4.94%), in addition to improvement in insulin sensitivity, lipid profiles, and blood pressure. Pyrosequencing of fecal samples showed that phylotypes related to endotoxin-producing opportunistic pathogens of Enterobacteriaceae and Desulfovibrionaceae were reduced significantly, while those related to gut barrier-protecting bacteria of Bifidobacteriaceae increased. Gut permeability, measured as lactulose/mannitol ratio, was decreased compared with the baseline. Plasma endotoxin load as lipopolysaccharide-binding protein was also significantly reduced, with concomitant decrease in tumor necrosis factor-α, interleukin-6, and an increase in adiponectin. These results suggest that modulation of the gut microbiota via dietary intervention may enhance the intestinal barrier integrity, reduce circulating antigen load, and ultimately ameliorate the inflammation and metabolic phenotypes. © 2013 The Authors. FEMS Microbiology Ecology pubished by John Wiley & Sons Ltd on behalf of the Federation of European Microbiological Societies.

  2. Intestinal epithelium in inflammatory bowel disease

    DEFF Research Database (Denmark)

    Coskun, Mehmet

    2014-01-01

    The intestinal epithelium has a strategic position as a protective physical barrier to luminal microbiota and actively contributes to the mucosal immune system. This barrier is mainly formed by a monolayer of specialized intestinal epithelial cells (IECs) that are crucial in maintaining intestinal...... of inflammatory bowel disease (IBD). Understanding the role of the intestinal epithelium in IBD pathogenesis might contribute to an improved knowledge of the inflammatory processes and the identification of potential therapeutic targets....

  3. Modulation of gut microbiota contributes to curcumin-mediated attenuation of hepatic steatosis in rats.

    Science.gov (United States)

    Feng, Wenhuan; Wang, Hongdong; Zhang, Pengzi; Gao, Caixia; Tao, Junxian; Ge, Zhijuan; Zhu, Dalong; Bi, Yan

    2017-07-01

    Structural disruption of gut microbiota contributes to the development of non-alcoholic fatty liver disease (NAFLD) and modulating the gut microbiota represents a novel strategy for NAFLD prevention. Although previous studies have demonstrated that curcumin alleviates hepatic steatosis, its effect on the gut microbiota modulation has not been investigated. Next generation sequencing and multivariate analysis were utilized to evaluate the structural changes of gut microbiota in a NAFLD rat model induced by high fat-diet (HFD) feeding. We found that curcumin attenuated hepatic ectopic fat deposition, improved intestinal barrier integrity, and alleviated metabolic endotoxemia in HFD-fed rats. More importantly, curcumin dramatically shifted the overall structure of the HFD-disrupted gut microbiota toward that of lean rats fed a normal diet and altered the gut microbial composition. The abundances of 110 operational taxonomic units (OTUs) were altered by curcumin. Seventy-six altered OTUs were significantly correlated with one or more hepatic steatosis associated parameters and designated 'functionally relevant phylotypes'. Thirty-six of the 47 functionally relevant OTUs that were positively correlated with hepatic steatosis associated parameters were reduced by curcumin. These results indicate that curcumin alleviates hepatic steatosis in part through stain-specific impacts on hepatic steatosis associated phylotypes of gut microbiota in rats. Compounds with antimicrobial activities should be further investigated as novel adjunctive therapies for NAFLD. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Gut microbiota and lipopolysaccharide content of the diet influence development of regulatory T cells: studies in germ-free mice.

    Science.gov (United States)

    Hrncir, Tomas; Stepankova, Renata; Kozakova, Hana; Hudcovic, Tomas; Tlaskalova-Hogenova, Helena

    2008-11-06

    Mammals are essentially born germ-free but the epithelial surfaces are promptly colonized by astounding numbers of bacteria soon after birth. The most extensive microbial community is harbored by the distal intestine. The gut microbiota outnumber ~10 times the total number of our somatic and germ cells. The host-microbiota relationship has evolved to become mutually beneficial. Studies in germ-free mice have shown that gut microbiota play a crucial role in the development of the immune system. The principal aim of the present study was to elucidate whether the presence of gut microbiota and the quality of a sterile diet containing various amounts of bacterial contaminants, measured by lipopolysaccharide (LPS) content, can influence maturation of the immune system in gnotobiotic mice. We have found that the presence of gut microbiota and to a lesser extent also the LPS-rich sterile diet drive the expansion of B and T cells in Peyer's patches and mesenteric lymph nodes. The most prominent was the expansion of CD4+ T cells including Foxp3-expressing T cells in mesenteric lymph nodes. Further, we have observed that both the presence of gut microbiota and the LPS-rich sterile diet influence in vitro cytokine profile of spleen cells. Both gut microbiota and LPS-rich diet increase the production of interleukin-12 and decrease the production of interleukin-4. In addition, the presence of gut microbiota increases the production of interleukin-10 and interferon-gamma. Our data clearly show that not only live gut microbiota but also microbial components (LPS) contained in sterile diet stimulate the development, expansion and function of the immune system. Finally, we would like to emphasize that the composition of diet should be regularly tested especially in all gnotobiotic models as the LPS content and other microbial components present in the diet may significantly alter the outcome of experiments.

  5. Impact of Microbiota on Resistance to Ocular Pseudomonas aeruginosa-Induced Keratitis.

    Directory of Open Access Journals (Sweden)

    Abirami Kugadas

    2016-09-01

    Full Text Available The existence of the ocular microbiota has been reported but functional analyses to evaluate its significance in regulating ocular immunity are currently lacking. We compared the relative contribution of eye and gut commensals in regulating the ocular susceptibility to Pseudomonas aeruginosa-induced keratitis. We find that in health, the presence of microbiota strengthened the ocular innate immune barrier by significantly increasing the concentrations of immune effectors in the tear film, including secretory IgA and complement proteins. Consistent with this view, Swiss Webster (SW mice that are typically resistant to P. aeruginosa-induced keratitis become susceptible due to the lack of microbiota. This was exemplified by increased corneal bacterial burden and elevated pathology of the germ free (GF mice when compared to the conventionally maintained SW mice. The protective immunity was found to be dependent on both eye and gut microbiota with the eye microbiota having a moderate, but significant impact on the resistance to infection. These events were IL-1ß-dependent as corneal IL-1ß levels were decreased in the infected GF and antibiotic-treated mice when compared to the SPF controls, and neutralization of IL-1ß increased the ocular bacterial burden in the SPF mice. Monocolonizing GF mice with Coagulase Negative Staphylococcus sp. isolated from the conjunctival swabs was sufficient to restore resistance to infection. Cumulatively, these data underline a previously unappreciated role for microbiota in regulating susceptibility to ocular keratitis. We predict that these results will have significant implications for contact lens wearers, where alterations in the ocular commensal communities may render the ocular surface vulnerable to infections.

  6. Gut microbiota and immunopathogenesis of diabetes mellitus type 1 and 2.

    Science.gov (United States)

    Wang, Fei; Zhang, Chunfang; Zeng, Qiang

    2016-06-01

    Diabetes mellitus (DM) is a major increasing global health burden in the aging population. Understanding the etiology of DM is beneficial for its prevention as well as treatment. In light of the metagenome hypothesis, defined as the overall bacterial genome, gut microbes have attracted increasing attention in the pathogenesis of DM. Many studies have found that gut microbes are involved in the immunopathogenesis of DM. Probiotics strengthen the host's intestinal barrier and modulate the immune system, and have therefore been investigated in DM management. Recent epigenetic findings in context of genes associated with inflammation suggest a possible way in which gut microbiota participate in the immunopathogenesis of DM. In this review, we discuss the role of gut microbiota in the immunopathogenesis of DM.

  7. Gut microbiota and sirtuins in obesity-related inflammation and bowel dysfunction

    Directory of Open Access Journals (Sweden)

    Lakhan Shaheen E

    2011-11-01

    Full Text Available Abstract Obesity is a chronic disease characterized by persistent low-grade inflammation with alterations in gut motility. Motor abnormalities suggest that obesity has effects on the enteric nervous system (ENS, which controls virtually all gut functions. Recent studies have revealed that the gut microbiota can affect obesity and increase inflammatory tone by modulating mucosal barrier function. Furthermore, the observation that inflammatory conditions influence the excitability of enteric neurons may add to the gut dysfunction in obesity. In this article, we discuss recent advances in understanding the role of gut microbiota and inflammation in the pathogenesis of obesity and obesity-related gastrointestinal dysfunction. The potential contribution of sirtuins in protecting or regulating the circuitry of the ENS under inflamed states is also considered.

  8. A high-grain diet alters the omasal epithelial structure and expression of tight junction proteins in a goat model.

    Science.gov (United States)

    Liu, Jun-Hua; Xu, Ting-Ting; Zhu, Wei-Yun; Mao, Sheng-Yong

    2014-07-01

    The omasal epithelial barrier plays important roles in maintaining nutrient absorption and immune homeostasis in ruminants. However, little information is currently available about the changes in omasal epithelial barrier function at the structural and molecular levels during feeding of a high-grain (HG) diet. Ten male goats were randomly assigned to two groups, fed either a hay diet (0% grain; n = 5) or HG diet (65% grain; n = 5). Changes in omasal epithelial structure and expression of tight junction (TJ) proteins were determined via electron microscopy and Western blot analysis. After 7 weeks on each diet, omasal contents in the HG group showed significantly lower pH (P diet showed profound alterations in omasal epithelial structure and TJ proteins, corresponding to depression of thickness of total epithelia, stratum granulosum, and the sum of the stratum spinosum and stratum basale, marked epithelial cellular damage, erosion of intercellular junctions and down-regulation in expression of the TJ proteins, claudin-4 and occludin. The study demonstrates that feeding a HG diet is associated with omasal epithelial cellular damage and changes in expression of TJ proteins. These research findings provide an insight into the possible significance of diet on the omasal epithelial barrier in ruminants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Cholinergic modulation of epithelial integrity in the proximal colon of pigs.

    Science.gov (United States)

    Lesko, Szilvia; Wessler, Ignaz; Gäbel, Gotthold; Petto, Carola; Pfannkuche, Helga

    2013-01-01

    Within the gut, acetylcholine (ACh) is synthesised by enteric neurons, as well as by 'non-neuronal' epithelial cells. In studies of non-intestinal epithelia, ACh was involved in the generation of an intact epithelial barrier. In the present study, primary cultured porcine colonocytes were used to determine whether treatment with exogenous ACh or expression of endogenous epithelium-derived ACh may modulate epithelial tightness in the gastrointestinal tract. Piglet colonocytes were cultured on filter membranes for 8 days. The tightness of the growing epithelial cell layer was evaluated by measuring transepithelial electrical resistance (TEER). To determine whether ACh modulates the tightness of the cell layer, cells were treated with cholinergic, muscarinic and/or nicotinic agonists and antagonists. Choline acetyltransferase (ChAT), cholinergic receptors and ACh were determined by immunohistochemistry, RT-PCR and HPLC, respectively. Application of the cholinergic agonist carbachol (10 µm) and the muscarinic agonist oxotremorine (10 µM) resulted in significantly higher TEER values compared to controls. The effect was completely inhibited by the muscarinic antagonist atropine. Application of atropine alone (without any agonist) led to significantly lower TEER values compared to controls. Synthesis of ACh by epithelial cells was proven by detection of muscarinic and nicotinic receptor mRNAs, immunohistochemical detection of ChAT and detection of ACh by HPLC. ACh is strongly involved in the regulation of epithelial tightness in the proximal colon of pigs via muscarinic pathways. Non-neuronal ACh seems to be of particular importance for epithelial cells forming a tight barrier. Copyright © 2013 S. Karger AG, Basel.

  10. Gut Microbiota Mediates the Protective Effects of Dietary Capsaicin against Chronic Low-Grade Inflammation and Associated Obesity Induced by High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Chao Kang

    2017-05-01

    Full Text Available Metabolic endotoxemia originating from dysbiotic gut microbiota has been identified as a primary mediator for triggering the chronic low-grade inflammation (CLGI responsible for the development of obesity. Capsaicin (CAP is the major pungent bioactivator in chili peppers and has potent anti-obesity functions, yet the mechanisms linking this effect to gut microbiota remain obscure. Here we show that mice fed a high-fat diet (HFD supplemented with CAP exhibit lower levels of metabolic endotoxemia and CLGI associated with lower body weight gain. High-resolution responses of the microbiota were examined by 16S rRNA sequencing, short-chain fatty acid (SCFA measurements, and phylogenetic reconstruction of unobserved states (PICRUSt analysis. The results showed, among others, that dietary CAP induced increased levels of butyrate-producing Ruminococcaceae and Lachnospiraceae, while it caused lower levels of members of the lipopolysaccharide (LPS-producing family S24_7. Predicted function analysis (PICRUSt showed depletion of genes involved in bacterial LPS synthesis in response to CAP. We further identified that inhibition of cannabinoid receptor type 1 (CB1 by CAP also contributes to prevention of HFD-induced gut barrier dysfunction. Importantly, fecal microbiota transplantation experiments conducted in germfree mice demonstrated that dietary CAP-induced protection against HFD-induced obesity is transferrable. Moreover, microbiota depletion by a cocktail of antibiotics was sufficient to block the CAP-induced protective phenotype against obesity, further suggesting the role of microbiota in this context. Together, our findings uncover an interaction between dietary CAP and gut microbiota as a novel mechanism for the anti-obesity effect of CAP acting through prevention of microbial dysbiosis, gut barrier dysfunction, and chronic low-grade inflammation.

  11. Live Faecalibacterium prausnitzii in an apical anaerobic model of the intestinal epithelial barrier

    NARCIS (Netherlands)

    Ulluwishewa, D.; Anderson, R.C.; Young, W.; McNabb, W.C.; Baarlen, van P.; Moughan, P.J.; Wells, J.M.; Roy, N.C.

    2015-01-01

    Faecalibacterium prausnitzii, an abundant member of the human commensal microbiota, has been proposed to have a protective role in the intestine. However, it is an obligate anaerobe, difficult to co-culture in viable form with oxygen-requiring intestinal cells. To overcome this limitation, a unique

  12. Intestinal epithelium in inflammatory bowel disease

    Directory of Open Access Journals (Sweden)

    Mehmet eCoskun

    2014-08-01

    Full Text Available The intestinal epithelium has a strategic position as a protective physical barrier to luminal microbiota and actively contributes to the mucosal immune system. This barrier is mainly formed by a monolayer of specialized intestinal epithelial cells (IECs that are crucial in maintaining intestinal homeostasis. Therefore, dysregulation within the epithelial layer can increase intestinal permeability, lead to abnormalities in interactions between IECs and immune cells in underlying lamina propria, and disturb the intestinal immune homeostasis, all of which are linked to the clinical disease course of inflammatory bowel disease (IBD. Understanding the role of the intestinal epithelium in IBD pathogenesis might contribute to an improved knowledge of the inflammatory processes and the identification of potential therapeutic targets.

  13. Effect of ionising radiation exposure on structure and permeability of epithelial junctions in rat ileum

    International Nuclear Information System (INIS)

    Lebrum, F.; Dublineau, I.; Grison, S.; Strup, C.; Griffiths, N.M.

    2002-01-01

    Exposure of the digestive tract to ionising radiation results in both morphological and functional alterations of the small intestine. However little is known about the effect of irradiation on the junctions playing a major role in the maintenance of epithelial barrier integrity. Thus the aim of this study was to investigate, in rat ileum, the effect of radiation exposure on the permeability of the epithelial barrier in parallel with the localization of certain inter- and intra-cellular proteins of tight and adherent junctions

  14. Does the maternal vaginal microbiota play a role in seeding the microbiota of neonatal gut and nose?

    Science.gov (United States)

    Sakwinska, O; Foata, F; Berger, B; Brüssow, H; Combremont, S; Mercenier, A; Dogra, S; Soh, S-E; Yen, J C K; Heong, G Y S; Lee, Y S; Yap, F; Meaney, M J; Chong, Y-S; Godfrey, K M; Holbrook, J D

    2017-10-13

    The acquisition and early maturation of infant microbiota is not well understood despite its likely influence on later health. We investigated the contribution of the maternal microbiota to the microbiota of infant gut and nose in the context of mode of delivery and feeding. Using 16S rRNA sequencing and specific qPCR, we profiled microbiota of 42 mother-infant pairs from the GUSTO birth cohort, at body sites including maternal vagina, rectum and skin; and infant stool and nose. In our study, overlap between maternal vaginal microbiota and infant faecal microbiota was minimal, while the similarity between maternal rectal microbiota and infant microbiota was more pronounced. However, an infant's nasal and gut microbiota were no more similar to that of its own mother, than to that of unrelated mothers. These findings were independent of delivery mode. We conclude that the transfer of maternal vaginal microbes play a minor role in seeding infant stool microbiota. Transfer of maternal rectal microbiota could play a larger role in seeding infant stool microbiota, but approaches other than the generally used analyses of community similarity measures are likely to be needed to quantify bacterial transmission. We confirmed the clear difference between microbiota of infants born by Caesarean section compared to vaginally delivered infants and the impact of feeding mode on infant gut microbiota. Only vaginally delivered, fully breastfed infants had gut microbiota dominated by Bifidobacteria. Our data suggest that reduced transfer of maternal vaginal microbial is not the main mechanism underlying the differential infant microbiota composition associated with Caesarean delivery. The sources of a large proportion of infant microbiota could not be identified in maternal microbiota, and the sources of seeding of infant gut and nasal microbiota remain to be elucidated.

  15. Influence of functional food components on gut health.

    Science.gov (United States)

    Wan, Murphy L Y; Ling, K H; El-Nezami, Hani; Wang, M F

    2018-01-30

    Intestinal epithelial cells (IECs) lining the gastrointestinal tract establish a barrier between external environments and the internal milieu. An intact intestinal barrier maintains gut health and overall good health of the body by preventing from tissue injury, pathogen infection and disease development. When the intestinal barrier function is compromised, bacterial translocation can occur. Our gut microbiota also plays a fundamentally important role in health, for example, by maintaining intestinal barrier integrity, metabolism and modulating the immune system, etc. Any disruption of gut microbiota composition (also termed dysbiosis) can lead to various pathological conditions. In short, intestinal barrier and gut microbiota are two crucial factors affecting gut health. The gastrointestinal tract is a complex environment exposed to many dietary components and commensal bacteria. Dietary components are increasingly recognized to play various beneficial roles beyond basic nutrition, resulting in the development of the functional food concepts. Various dietary modifiers, including the consumption of live bacteria (probiotics) and ingestible food constituents such as prebiotics, as well as polyphenols or synbiotics (combinations of probiotics and prebiotics) are the most well characterized dietary bioactive compounds and have been demonstrated to beneficially impact the gut health and the overall well-being of the host. In this review we depict the roles of intestinal epithelium and gut microbiota in mucosal defence responses and the influence of certain functional food components on the modulation of gut health, with a particular focus on probiotics, prebiotics and polyphenols.

  16. Intestinal Microbiota Promotes Psoriasis-Like Skin Inflammation by Enhancing Th17 Response

    Czech Academy of Sciences Publication Activity Database

    Zákostelská, Z.; Málková, J.; Klimešová, K.; Rossmann, P.; Hornová, M.; Novosádová, I.; Stehlíková, Z.; Kostovčík, M.; Hudcovič, T.; Štěpánková, R.; Jůzlová, K.; Hercogová, J.; Tlaskalová-Hogenová, H.; Kverka, Miloslav

    2016-01-01

    Roč. 11, č. 7 (2016), e0159539 E-ISSN 1932-6203 R&D Projects: GA ČR(CZ) GAP303/12/0535; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:68378041 Keywords : altered gut microbiota * delta t-cells * bacterial overgrowth * mucosal barrier Subject RIV: FR - Pharmacology ; Medidal Chemistry Impact factor: 2.806, year: 2016

  17. Combined therapies to treat complex diseases: The role of the gut microbiota in multiple sclerosis.

    Science.gov (United States)

    Calvo-Barreiro, Laura; Eixarch, Herena; Montalban, Xavier; Espejo, Carmen

    2018-02-01

    The commensal microbiota has emerged as an environmental risk factor for multiple sclerosis (MS). Studies in experimental autoimmune encephalomyelitis (EAE) models have shown that the commensal microbiota is an essential player in triggering autoimmune demyelination. Likewise, the commensal microbiota modulates the host immune system, alters the integrity and function of biological barriers and has a direct effect on several types of central nervous system (CNS)-resident cells. Moreover, a characteristic gut dysbiosis has been recognized as a consistent feature during the clinical course of MS, and the MS-related microbiota is gradually being elucidated. This review highlights animal studies in which commensal microbiota modulation was tested in EAE, as well as the mechanisms of action and influence of the commensal microbiota not only in the local milieu but also in the innate and adaptive immune system and the CNS. Regarding human research, this review focuses on studies that show how the commensal microbiota might act as a pathogenic environmental risk factor by directing immune responses towards characteristic pathogenic profiles of MS. We speculate how specific microbiome signatures could be obtained and used as potential pathogenic events and biomarkers for the clinical course of MS. Finally, we review recently published and ongoing clinical trials in MS patients regarding the immunomodulatory properties exerted by some microorganisms. Because MS is a complex disease with a large variety of associated environmental risk factors, we suggest that current treatments combined with strategies that modulate the commensal microbiota would constitute a broader immunotherapeutic approach and improve the clinical outcome for MS patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. AMP-18 Targets p21 to Maintain Epithelial Homeostasis.

    Science.gov (United States)

    Chen, Peili; Li, Yan Chun; Toback, F Gary

    2015-01-01

    Dysregulated homeostasis of epithelial cells resulting in disruption of mucosal barrier function is an important pathogenic mechanism in inflammatory bowel diseases (IBD). We have characterized a novel gastric protein, Antrum Mucosal Protein (AMP)-18, that has pleiotropic properties; it is mitogenic, anti-apoptotic and can stimulate formation of tight junctions. A 21-mer synthetic peptide derived from AMP-18 exhibits the same biological functions as the full-length protein and is an effective therapeutic agent in mouse models of IBD. In this study we set out to characterize therapeutic mechanisms and identify molecular targets by which AMP-18 maintains and restores disrupted epithelial homeostasis in cultured intestinal epithelial cells and a mouse model of IBD. Tumor necrosis factor (TNF)-α, a pro-inflammatory cytokine known to mediate gastrointestinal (GI) mucosal injury in IBD, was used to induce intestinal epithelial cell injury, and study the effects of AMP-18 on apoptosis and the cell cycle. An apoptosis array used to search for targets of AMP-18 in cells exposed to TNF-α identified the cyclin-dependent kinase inhibitor p21 WAF1/CIP1. Treatment with AMP-18 blunted increases in p21 expression and apoptosis, while reversing disturbed cell cycle kinetics induced by TNF-α. AMP-18 appears to act through PI3K/AKT pathways to increase p21 phosphorylation, thereby reducing its nuclear accumulation to overcome the antiproliferative effects of TNF-α. In vitamin D receptor-deficient mice with TNBS-induced IBD, the observed increase in p21 expression in colonic epithelial cells was suppressed by treatment with AMP peptide. The results indicate that AMP-18 can maintain and/or restore the homeostatic balance between proliferation and apoptosis in intestinal epithelial cells to protect and repair mucosal barrier homeostasis and function, suggesting a therapeutic role in IBD.

  19. AMP-18 Targets p21 to Maintain Epithelial Homeostasis.

    Directory of Open Access Journals (Sweden)

    Peili Chen

    Full Text Available Dysregulated homeostasis of epithelial cells resulting in disruption of mucosal barrier function is an important pathogenic mechanism in inflammatory bowel diseases (IBD. We have characterized a novel gastric protein, Antrum Mucosal Protein (AMP-18, that has pleiotropic properties; it is mitogenic, anti-apoptotic and can stimulate formation of tight junctions. A 21-mer synthetic peptide derived from AMP-18 exhibits the same biological functions as the full-length protein and is an effective therapeutic agent in mouse models of IBD. In this study we set out to characterize therapeutic mechanisms and identify molecular targets by which AMP-18 maintains and restores disrupted epithelial homeostasis in cultured intestinal epithelial cells and a mouse model of IBD. Tumor necrosis factor (TNF-α, a pro-inflammatory cytokine known to mediate gastrointestinal (GI mucosal injury in IBD, was used to induce intestinal epithelial cell injury, and study the effects of AMP-18 on apoptosis and the cell cycle. An apoptosis array used to search for targets of AMP-18 in cells exposed to TNF-α identified the cyclin-dependent kinase inhibitor p21 WAF1/CIP1. Treatment with AMP-18 blunted increases in p21 expression and apoptosis, while reversing disturbed cell cycle kinetics induced by TNF-α. AMP-18 appears to act through PI3K/AKT pathways to increase p21 phosphorylation, thereby reducing its nuclear accumulation to overcome the antiproliferative effects of TNF-α. In vitamin D receptor-deficient mice with TNBS-induced IBD, the observed increase in p21 expression in colonic epithelial cells was suppressed by treatment with AMP peptide. The results indicate that AMP-18 can maintain and/or restore the homeostatic balance between proliferation and apoptosis in intestinal epithelial cells to protect and repair mucosal barrier homeostasis and function, suggesting a therapeutic role in IBD.

  20. A microfluidic cell culture device with integrated microelectrodes for barrier studies

    DEFF Research Database (Denmark)

    Tan, Hsih-Yin; Dufva, Martin; Kutter, Jörg P.

    We present an eight cell culture microfluidic device fabricated using thiol-ene ‘click’ chemistry with embedded microelectrodes for evaluating barrier properties of human intestinal epithelial cells. The capability of the microelectrodes for trans-epithelial electrical resistance (TEER) measureme......) measurements was demonstrated by using confluent human colorectal epithelial cells (Caco-2) and rat fibroblast (CT 26) cells cultured in the microfluidic device....

  1. Comparison of a Rat Primary Cell-Based Blood-Brain Barrier Model With Epithelial and Brain Endothelial Cell Lines: Gene Expression and Drug Transport

    Directory of Open Access Journals (Sweden)

    Szilvia Veszelka

    2018-05-01

    Full Text Available Cell culture-based blood-brain barrier (BBB models are useful tools for screening of CNS drug candidates. Cell sources for BBB models include primary brain endothelial cells or immortalized brain endothelial cell lines. Despite their well-known differences, epithelial cell lines are also used as surrogate models for testing neuropharmaceuticals. The aim of the present study was to compare the expression of selected BBB related genes including tight junction proteins, solute carriers (SLC, ABC transporters, metabolic enzymes and to describe the paracellular properties of nine different culture models. To establish a primary BBB model rat brain capillary endothelial cells were co-cultured with rat pericytes and astrocytes (EPA. As other BBB and surrogate models four brain endothelial cells lines, rat GP8 and RBE4 cells, and human hCMEC/D3 cells with or without lithium treatment (D3 and D3L, and four epithelial cell lines, native human intestinal Caco-2 and high P-glycoprotein expressing vinblastine-selected VB-Caco-2 cells, native MDCK and MDR1 transfected MDCK canine kidney cells were used. To test transporter functionality, the permeability of 12 molecules, glucopyranose, valproate, baclofen, gabapentin, probenecid, salicylate, rosuvastatin, pravastatin, atorvastatin, tacrine, donepezil, was also measured in the EPA and epithelial models. Among the junctional protein genes, the expression level of occludin was high in all models except the GP8 and RBE4 cells, and each model expressed a unique claudin pattern. Major BBB efflux (P-glycoprotein or ABCB1 and influx transporters (GLUT-1, LAT-1 were present in all models at mRNA levels. The transcript of BCRP (ABCG2 was not expressed in MDCK, GP8 and RBE4 cells. The absence of gene expression of important BBB efflux and influx transporters BCRP, MRP6, -9, MCT6, -8, PHT2, OATPs in one or both types of epithelial models suggests that Caco-2 or MDCK models are not suitable to test drug candidates which

  2. Lymphocytes accelerate epithelial tight junction assembly: role of AMP-activated protein kinase (AMPK.

    Directory of Open Access Journals (Sweden)

    Xiao Xiao Tang

    2010-08-01

    Full Text Available The tight junctions (TJs, characteristically located at the apicolateral borders of adjacent epithelial cells, are required for the proper formation of epithelial cell polarity as well as for sustaining the mucosal barrier to the external environment. The observation that lymphocytes are recruited by epithelial cells to the sites of infection [1] suggests that they may play a role in the modulation of epithelial barrier function and thus contribute to host defense. To test the ability of lymphocytes to modulate tight junction assembly in epithelial cells, we set up a lymphocyte-epithelial cell co-culture system, in which Madin-Darby canine kidney (MDCK cells, a well-established model cell line for studying epithelial TJ assembly [2], were co-cultured with mouse lymphocytes to mimic an infection state. In a typical calcium switch experiment, the TJ assembly in co-culture was found to be accelerated compared to that in MDCK cells alone. This accelaration was found to be mediated by AMP-activated protein kinase (AMPK. AMPK activation was independent of changes in cellular ATP levels but it was found to be activated by the pro-inflammatory cytokine TNF-alpha. Forced suppression of AMPK, either with a chemical inhibitor or by knockdown, abrogated the accelerating effect of lymphocytes on TJ formation. Similar results were also observed in a co-culture with lymphocytes and Calu-3 human airway epithelial cells, suggesting that the activation of AMPK may be a general mechanism underlying lymphocyte-accelerated TJ assembly in different epithelia. These results suggest that signals from lymphocytes, such as cytokines, facilitate TJ assembly in epithelial cells via the activation of AMPK.

  3. Epithelial cell proliferation arrest induced by lactate and acetate from Lactobacillus casei and Bifidobacterium breve.

    Directory of Open Access Journals (Sweden)

    Takahiro Matsuki

    Full Text Available In an attempt to identify and characterize how symbiotic bacteria of the gut microbiota affect the molecular and cellular mechanisms of epithelial homeostasis, intestinal epithelial cells were co-cultured with either Lactobacillus or Bifidobacterium as bona fide symbionts to examine potential gene modulations. In addition to genes involved in the innate immune response, genes encoding check-point molecules controlling the cell cycle were among the most modulated in the course of these interactions. In the m-ICcl2 murine cell line, genes encoding cyclin E1 and cyclin D1 were strongly down regulated by L. casei and B. breve respectively. Cell proliferation arrest was accordingly confirmed. Short chain fatty acids (SCFA were the effectors of this modulation, alone or in conjunction with the acidic pH they generated. These results demonstrate that the production of SCFAs, a characteristic of these symbiotic microorganisms, is potentially an essential regulatory effector of epithelial proliferation in the gut.

  4. Vaginal microbiota in menopause

    Directory of Open Access Journals (Sweden)

    Martinus Tarina

    2016-12-01

    Full Text Available The human vagina together with its resident, microbiota, comprise a dynamic ecosystem. Normal microbiota is dominated by Lactobacillus species, and pathogen microbiota such as Gardnerella species and Bacteroides species can occur due to decrease in Lactobacillus domination. Lactobacillus plays an essential role in keeping normal vaginal microbiota in balance. Vaginal microbiota adapts to pH change and hormonal value. Changes in the vaginal microbiota over a woman’s lifespan will influence the colonization of pathogenic microbes. They include changes in child, puberty, reproductive state, menopause, and postmenopause. Estrogen levels change will affect the colonization of pathogenic microbium, leading to genitourinary syndrome of menopause. Vulvovaginal atrophy is often found in postmenopausal women, and dominated by L. iners, Anaerococcus sp, Peptoniphilus sp, Prevotella sp, and Streptococcus sp. The normal vaginal microbiota’s imbalance in menopause will cause diseases such as bacterial vaginosis, and recurrent vulvovaginal candidiasis due to hormonal therapies. Changes in the vaginal microbiota due to bacterial vaginosis are characterized by decrease in H2O2-producing Lactobacillus. They are also caused by the increase in numbers and concentration of Gardnerella vaginalis, Mycoplasma hominis, and other anaerob species such as Peptostreptococci, Prevotella spp, and Mobiluncus spp.

  5. Effects of Lactobacillus johnsonii and Lactobacillus reuteri on gut barrier function and heat shock proteins in intestinal porcine epithelial cells.

    Science.gov (United States)

    Liu, Hao-Yu; Roos, Stefan; Jonsson, Hans; Ahl, David; Dicksved, Johan; Lindberg, Jan Erik; Lundh, Torbjörn

    2015-04-01

    Heat shock proteins (HSPs) are a set of highly conserved proteins that can serve as intestinal gate keepers in gut homeostasis. Here, effects of a probiotic, Lactobacillus rhamnosus GG (LGG), and two novel porcine isolates, Lactobacillus johnsonii strain P47-HY and Lactobacillus reuteri strain P43-HUV, on cytoprotective HSP expression and gut barrier function, were investigated in a porcine IPEC-J2 intestinal epithelial cell line model. The IPEC-J2 cells polarized on a permeable filter exhibited villus-like cell phenotype with development of apical microvilli. Western blot analysis detected HSP expression in IPEC-J2 and revealed that L. johnsonii and L. reuteri strains were able to significantly induce HSP27, despite high basal expression in IPEC-J2, whereas LGG did not. For HSP72, only the supernatant of L. reuteri induced the expression, which was comparable to the heat shock treatment, which indicated that HSP72 expression was more stimulus specific. The protective effect of lactobacilli was further studied in IPEC-J2 under an enterotoxigenic Escherichia coli (ETEC) challenge. ETEC caused intestinal barrier destruction, as reflected by loss of cell-cell contact, reduced IPEC-J2 cell viability and transepithelial electrical resistance, and disruption of tight junction protein zonula occludens-1. In contrast, the L. reuteri treatment substantially counteracted these detrimental effects and preserved the barrier function. L. johnsonii and LGG also achieved barrier protection, partly by directly inhibiting ETEC attachment. Together, the results indicate that specific strains of Lactobacillus can enhance gut barrier function through cytoprotective HSP induction and fortify the cell protection against ETEC challenge through tight junction protein modulation and direct interaction with pathogens. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  6. TLR-dependent human mucosal epithelial cell responses to microbial pathogens.

    Directory of Open Access Journals (Sweden)

    Paola eMassari

    2014-08-01

    Full Text Available AbstractToll-Like Receptor (TLR signaling represents one of the best studied pathways to implement defense mechanisms against invading microbes in humans as well as in animals. TLRs respond to specific microbial ligands and to danger signals produced by the host during infection, and initiate downstream cascades that activate both innate and adaptive immunity. TLRs are expressed by professional immune cells and by the large majority of non-hematopoietic cells, including epithelial cells. In epithelial tissues, TLR functions are particularly important because these sites are constantly exposed to microorganisms, due to their location at the host interface with the environment. While at these sites, specific defense mechanisms and inflammatory responses are initiated via TLR signaling against pathogens, suppression or lack of TLR activation is also observed in response to the commensal microbiota. The mechanisms by which TLR signaling is regulated in mucosal epithelial cells include differential expression and levels of TLRs (and their signaling partners, their cellular localization and positioning within the tissue in a fashion that favors responses to pathogens while dampening responses to commensals and maintaining tissue homeostasis in physiologic conditions. In this review, the expression and activation of TLRs in mucosal epithelial cells of several sites of the human body are examined. Specifically, the oral cavity, the ear canal and eye, the airways, the gut and the reproductive tract are discussed, along with how site-specific host defense mechanisms are implemented via TLR signaling.

  7. Fecal microbiota transplant

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/007703.htm Fecal microbiota transplant To use the sharing features on this page, please enable JavaScript. Fecal microbiota transplantation (FMT) helps to replace some of the " ...

  8. Diet, gut microbiota and cognition.

    Science.gov (United States)

    Proctor, Cicely; Thiennimitr, Parameth; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2017-02-01

    The consumption of a diet high in fat and sugar can lead to the development of obesity, type 2 diabetes mellitus (T2DM), cardiovascular disease and cognitive decline. In the human gut, the trillions of harmless microorganisms harboured in the host's gastrointestinal tract are called the 'gut microbiota'. Consumption of a diet high in fat and sugar changes the healthy microbiota composition which leads to an imbalanced microbial population in the gut, a phenomenon known as "gut dysbiosis". It has been shown that certain types of gut microbiota are linked to the pathogenesis of obesity. In addition, long-term consumption of a high fat diet is associated with cognitive decline. It has recently been proposed that the gut microbiota is part of a mechanistic link between the consumption of a high fat diet and the impaired cognition of an individual, termed "microbiota-gut-brain axis". In this complex relationship between the gut, the brain and the gut microbiota, there are several types of gut microbiota and host mechanisms involved. Most of these mechanisms are still poorly understood. Therefore, this review comprehensively summarizes the current evidence from mainly in vivo (rodent and human) studies of the relationship between diet, gut microbiota and cognition. The possible mechanisms that the diet and the gut microbiota have on cognition are also presented and discussed.

  9. Molecular Paths Linking Metabolic Diseases, Gut Microbiota Dysbiosis and Enterobacteria Infections.

    Science.gov (United States)

    Serino, Matteo

    2018-03-02

    Alterations of both ecology and functions of gut microbiota are conspicuous traits of several inflammatory pathologies, notably metabolic diseases such as obesity and type 2 diabetes. Moreover, the proliferation of enterobacteria, subdominant members of the intestinal microbial ecosystem, has been shown to be favored by Western diet, the strongest inducer of both metabolic diseases and gut microbiota dysbiosis. The inner interdependence between the host and the gut microbiota is based on a plethora of molecular mechanisms by which host and intestinal microbes modify each other. Among these mechanisms are as follows: (i) the well-known metabolic impact of short chain fatty acids, produced by microbial fermentation of complex carbohydrates from plants; (ii) a mutual modulation of miRNAs expression, both on the eukaryotic (host) and prokaryotic (gut microbes) side; (iii) the production by enterobacteria of virulence factors such as the genotoxin colibactin, shown to alter the integrity of host genome and induce a senescence-like phenotype in vitro; (iv) the microbial excretion of outer-membrane vesicles, which, in addition to other functions, may act as a carrier for multiple molecules such as toxins to be delivered to target cells. In this review, I describe the major molecular mechanisms by which gut microbes exert their metabolic impact at a multi-organ level (the gut barrier being in the front line) and support the emerging triad of metabolic diseases, gut microbiota dysbiosis and enterobacteria infections. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Epithelial-Mesenchymal Transition in Tissue Repair and Fibrosis

    Science.gov (United States)

    Stone, Rivka C.; Pastar, Irena; Ojeh, Nkemcho; Chen, Vivien; Liu, Sophia; Garzon, Karen I.; Tomic-Canic, Marjana

    2016-01-01

    Epithelial-mesenchymal transition (EMT) describes the global process by which stationary epithelial cells undergo phenotypic changes, including loss of cell-cell adhesion and apical-basal polarity, and acquire mesenchymal characteristics which confer migratory capacity. EMT and its converse, MET (mesenchymal-to-epithelial transition), are integral stages of many physiologic processes, and as such are tightly coordinated by a host of molecular regulators. Converging lines of evidence have identified EMT as a component of cutaneous wound healing, during which otherwise stationary keratinocytes - the resident skin epithelial cells - migrate across the wound bed to restore the epidermal barrier. Moreover, EMT also plays a role in the development of scarring and fibrosis, as the matrix-producing myofibroblast arises from cells of epithelial lineage in response to injury but is pathologically sustained instead of undergoing MET or apoptosis. In this review, we summarize the role of EMT in physiologic repair and pathologic fibrosis of tissues and organs. We conclude that further investigation into the contribution of EMT to the impaired repair of fibrotic wounds may identify components of EMT signaling as common therapeutic targets for impaired healing in many tissues. PMID:27461257

  11. Gut Microbiota Signatures Predict Host and Microbiota Responses to Dietary Interventions in Obese Individuals

    Science.gov (United States)

    Korpela, Katri; Flint, Harry J.; Johnstone, Alexandra M.; Lappi, Jenni; Poutanen, Kaisa; Dewulf, Evelyne; Delzenne, Nathalie; de Vos, Willem M.; Salonen, Anne

    2014-01-01

    Background Interactions between the diet and intestinal microbiota play a role in health and disease, including obesity and related metabolic complications. There is great interest to use dietary means to manipulate the microbiota to promote health. Currently, the impact of dietary change on the microbiota and the host metabolism is poorly predictable and highly individual. We propose that the responsiveness of the gut microbiota may depend on its composition, and associate with metabolic changes in the host. Methodology Our study involved three independent cohorts of obese adults (n = 78) from Belgium, Finland, and Britain, participating in different dietary interventions aiming to improve metabolic health. We used a phylogenetic microarray for comprehensive fecal microbiota analysis at baseline and after the intervention. Blood cholesterol, insulin and inflammation markers were analyzed as indicators of host response. The data were divided into four training set – test set pairs; each intervention acted both as a part of a training set and as an independent test set. We used linear models to predict the responsiveness of the microbiota and the host, and logistic regression to predict responder vs. non-responder status, or increase vs. decrease of the health parameters. Principal Findings Our models, based on the abundance of several, mainly Firmicute species at baseline, predicted the responsiveness of the microbiota (AUC  =  0.77–1; predicted vs. observed correlation  =  0.67–0.88). Many of the predictive taxa showed a non-linear relationship with the responsiveness. The microbiota response associated with the change in serum cholesterol levels with an AUC of 0.96, highlighting the involvement of the intestinal microbiota in metabolic health. Conclusion This proof-of-principle study introduces the first potential microbial biomarkers for dietary responsiveness in obese individuals with impaired metabolic health, and reveals the potential of

  12. Influence of indigenous microbiota on experimental toxoplasmosis in conventional and germ-free mice.

    Science.gov (United States)

    Nascimento, Bruna B; Cartelle, Christiane T; Noviello, Maria de L; Pinheiro, Breno V; de Almeida Vitor, Ricardo W; Souza, Danielle da G; de Vasconcelos Generoso, Simone; Cardoso, Valbert N; Martins, Flaviano Dos S; Nicoli, Jacques R; Arantes, Rosa M E

    2017-08-01

    Toxoplasmosis represents one of the most common zoonoses worldwide. Its agent, Toxoplasma gondii, causes a severe innate pro-inflammatory response. The indigenous intestinal microbiota promotes host animal homoeostasis and may protect the host against pathogens. Germ-free (GF) animals provide an important tool for the study of interactions between host and microbiota. In this study, we assessed the role of indigenous microorganisms in disease development utilizing a murine toxoplasmosis model, which includes conventional (CV) and GF NIH Swiss mice. CV and GF mice orally inoculated with T. gondii had similar survival curves. However, disease developed differently in the two animal groups. In CV mice, intestinal permeability increased and levels of intestinal pro-inflammatory cytokines were altered. In GF animals, there were discrete epithelial degenerative changes and mucosal oedema, but the liver and lungs displayed significant lesions. We conclude that, despite similar survival curves, CV animals succumb to an exaggerated inflammatory response, whereas GF mice fail to produce an adequate systemic response. © 2017 The Authors. International Journal of Experimental Pathology © 2017 International Journal of Experimental Pathology.

  13. Healing of corneal epithelial wounds in marine and freshwater fish.

    Science.gov (United States)

    Ubels, J L; Edelhauser, H F

    The corneal epithelium of a fish is in direct contact with the aquatic environment and is a barrier to movement of ions and water into and through the cornea. This tissue layer is thus important in maintenance of corneal transparency. When the epithelium is wounded, its protective function is lost and corneal transparency remains compromised until the epithelial barrier is re-established. This study was undertaken to investigate the healing response of the fish cornea to epithelial abrasion. Wounds were stained with fluorescein and photographed during healing. Wound areas were measured by planimetry. The cornea of the sculpin, a marine teleost, becomes edematous after wounding and heals at 2.54 to 3.42 mm2/hr. Nonswelling corneas of the elasmobranchs--dogfish shark and skate--heal at 1.29 mm2/hr, respectively. The wounded eye of the rainbow trout, a freshwater teleost, is stressed by the low osmolality of the environment. Severe corneal edema and cataracts develop following epithelial wounding, and the cornea heals at 0.64 mm2/hr. Although the healing rates in teleosts differ from those in mammals, histology shows that the corneal healing mechanism is essentially the same in fish and mammals.

  14. Effect of butyrate and fermentation products on epithelial integrity in a mucus-secreting human colon cell line

    DEFF Research Database (Denmark)

    Nielsen, Ditte Søvsø Gundelund; Jensen, Bent Borg; Theil, Peter Kappel

    2018-01-01

    . This was associated with regulation of different genes involved in epithelial integrity, mucus secretion, apoptosis, oxidative stress, and butyrate transport. In conclusion, butyrate in concentrations that can be achieved by dietary intervention in vivo enhanced the epithelial barrier function in vitro. B...

  15. [Changes in expression of Slingshot protein in hypoxic human intestinal epithelial cell and its relation with barrier function of the cells].

    Science.gov (United States)

    Zhang, Jian; Wang, Pei; He, Wen; Wang, Fengjun

    2016-04-01

    To study the effect of hypoxia on Slingshot protein expression in human intestinal epithelial cell and its relation with changes in barrier function of the cells. The human intestinal epithelial cell line Caco-2 was used to reproduce monolayer-cells. One portion of the monolayer-cell specimens were divided into six parts according to the random number table, and they were respectively exposed to hypoxia for 0 (without hypoxia), 1, 2, 6, 12, and 24 h. Transepithelial electrical resistance (TER) was determined with an ohmmeter. Another portion of the monolayer-cell specimens were exposed to hypoxia as above. Western blotting was used to detect the protein expressions of zonula occludens 1 (ZO-1), occludin, claudin-1, Slingshot-1, Slingshot-2, and Slingshot-3. The remaining portion of the monolayer-cell specimens were also exposed to hypoxia as above. The content of fibrous actin (F-actin) and globular actin (G-actin) was determined by fluorescence method. The sample number of above-mentioned 3 experiments was respectively 10, 10, and 18 at each time point. Data were processed with one-way analysis of variance and Dunnett test. (1) Compared with that of cells exposed to hypoxia for 0 h, TER of cells exposed to hypoxia for 1 to 24 h was significantly reduced (P values below 0.01). (2) Compared with those of cells exposed to hypoxia for 0 h (all were 1.00), the protein expressions of ZO-1, occludin, and claudin-1 of cells exposed to hypoxia for 1 to 24 h were generally lower, especially those of cells exposed to hypoxia for 12 h or 24 h (respectively 0.69 ± 0.20, 0.47 ± 0.15, and 0.47 ± 0.22, Pprotein expressions of Slingshot-1 and Slingshot-3 of cells exposed to hypoxia for 1 to 24 h were not obviously changed (P values above 0.05). The protein expression of Slingshot-2 of cells was decreased at first and then gradually increased from hypoxia hour 1 to 24. The protein expression of Slingshot-2 of cells exposed to hypoxia for 24 h (1.54 ± 0.57) was significantly

  16. Gut Microbiota and Metabolic Disorders

    Directory of Open Access Journals (Sweden)

    Kyu Yeon Hur

    2015-06-01

    Full Text Available Gut microbiota plays critical physiological roles in the energy extraction and in the control of local or systemic immunity. Gut microbiota and its disturbance also appear to be involved in the pathogenesis of diverse diseases including metabolic disorders, gastrointestinal diseases, cancer, etc. In the metabolic point of view, gut microbiota can modulate lipid accumulation, lipopolysaccharide content and the production of short-chain fatty acids that affect food intake, inflammatory tone, or insulin signaling. Several strategies have been developed to change gut microbiota such as prebiotics, probiotics, certain antidiabetic drugs or fecal microbiota transplantation, which have diverse effects on body metabolism and on the development of metabolic disorders.

  17. Characterization of Gastric Microbiota in Twins.

    Science.gov (United States)

    Dong, Quanjiang; Xin, Yongning; Wang, Lili; Meng, Xinying; Yu, Xinjuan; Lu, Linlin; Xuan, Shiying

    2017-02-01

    Contribution of host genetic backgrounds in the development of gastric microbiota has not been clearly defined. This study was aimed to characterize the biodiversity, structure and composition of gastric microbiota among twins. A total of four pairs of twins and eight unrelated individuals were enrolled in the study. Antral biopsies were obtained during endoscopy. The bacterial 16S rRNA gene was amplified and pyrosequenced. Sequences were analyzed for the composition, structure, and α and β diversities of gastric microbiota. Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, and Fusobacteria were the most predominant phyla of gastric microbiota. Each individual, twins as well as unrelated individuals, harbored a microbiota of distinct composition. There was no evidence of additional similarity in the richness and evenness of gastric microbiota among co-twins as compared to unrelated individuals. Calculations of θ YC and PCoA demonstrated that the structure similarity of gastric microbial community between co-twins did not increase compared to unrelated individuals. In contrast, the structure of microbiota was altered enormously by Helicobacter pylori infection. These results suggest that host genetic backgrounds had little effect in shaping the gastric microbiota. This property of gastric microbiota could facilitate the studies discerning the role of microbiota from genetic grounds in the pathogenesis.

  18. Endogenous IL-33 is highly expressed in mouse epithelial barrier tissues, lymphoid organs, brain, embryos, and inflamed tissues: in situ analysis using a novel Il-33-LacZ gene trap reporter strain.

    Science.gov (United States)

    Pichery, Mélanie; Mirey, Emilie; Mercier, Pascale; Lefrancais, Emma; Dujardin, Arnaud; Ortega, Nathalie; Girard, Jean-Philippe

    2012-04-01

    IL-33 (previously known as NF from high endothelial venules) is an IL-1 family cytokine that signals through the ST2 receptor and drives cytokine production in mast cells, basophils, eosinophils, invariant NKT and NK cells, Th2 lymphocytes, and type 2 innate immune cells (natural helper cells, nuocytes, and innate helper 2 cells). Little is known about endogenous IL-33; for instance, the cellular sources of IL-33 in mouse tissues have not yet been defined. In this study, we generated an Il-33-LacZ gene trap reporter strain (Il-33(Gt/Gt)) and used this novel tool to analyze expression of endogenous IL-33 in vivo. We found that the Il-33 promoter exhibits constitutive activity in mouse lymphoid organs, epithelial barrier tissues, brain, and embryos. Immunostaining with anti-IL-33 Abs, using Il-33(Gt/Gt) (Il-33-deficient) mice as control, revealed that endogenous IL-33 protein is highly expressed in mouse epithelial barrier tissues, including stratified squamous epithelia from vagina and skin, as well as cuboidal epithelium from lung, stomach, and salivary gland. Constitutive expression of IL-33 was not detected in blood vessels, revealing the existence of species-specific differences between humans and mice. Importantly, IL-33 protein was always localized in the nucleus of producing cells with no evidence for cytoplasmic localization. Finally, strong expression of the Il-33-LacZ reporter was also observed in inflamed tissues, in the liver during LPS-induced endotoxin shock, and in the lung alveoli during papain-induced allergic airway inflammation. Together, our findings support the possibility that IL-33 may function as a nuclear alarmin to alert the innate immune system after injury or infection in epithelial barrier tissues.

  19. Medicinal lavender modulates the enteric microbiota to protect against Citrobacter rodentium-induced colitis.

    Science.gov (United States)

    Baker, J; Brown, K; Rajendiran, E; Yip, A; DeCoffe, D; Dai, C; Molcan, E; Chittick, S A; Ghosh, S; Mahmoud, S; Gibson, D L

    2012-10-01

    Inflammatory bowel disease, inclusive of Crohn's disease and ulcerative colitis, consists of immunologically mediated disorders involving the microbiota in the gastrointestinal tract. Lavender oil is a traditional medicine used to relieve many gastrointestinal disorders. The goal of this study was to examine the therapeutic effects of the essential oil obtained from a novel lavender cultivar, Lavandula×intermedia cultivar Okanagan lavender (OLEO), in a mouse model of acute colitis caused by Citrobacter rodentium. In colitic mice, oral gavage with OLEO resulted in less severe disease, including decreased morbidity and mortality, reduced intestinal tissue damage, and decreased infiltration of neutrophils and macrophages, with reduced levels of TNF-α, IFN-γ, IL-22, macrophage inflammatory protein-2α, and inducible nitric oxide synthase expression. This was associated with increased levels of regulatory T cell populations compared with untreated colitic mice. Recently, we demonstrated that the composition of the enteric microbiota affects susceptibility to C. rodentium-induced colitis. Here, we found that oral administration of OLEO induced microbiota enriched with members of the phylum Firmicutes, including segmented filamentous bacteria, which are known to protect against the damaging effects of C. rodentium. Additionally, during infection, OLEO treatment promoted the maintenance of microbiota loads, with specific increases in Firmicutes bacteria and decreases in γ-Proteobacteria. We observed that Firmicutes bacteria were intimately associated with the apical region of the intestinal epithelial cells during infection, suggesting that their protective effect was through contact with the gut wall. Finally, we show that OLEO inhibited C. rodentium growth and adherence to Caco-2 cells, primarily through the activities of 1,8-cineole and borneol. These results indicate that while OLEO promoted Firmicutes populations, it also controlled pathogen load through

  20. Dual Function of Novel Pollen Coat (Surface) Proteins: IgE-binding Capacity and Proteolytic Activity Disrupting the Airway Epithelial Barrier

    Science.gov (United States)

    Bashir, Mohamed Elfatih H.; Ward, Jason M.; Cummings, Matthew; Karrar, Eltayeb E.; Root, Michael; Mohamed, Abu Bekr A.; Naclerio, Robert M.; Preuss, Daphne

    2013-01-01

    Background The pollen coat is the first structure of the pollen to encounter the mucosal immune system upon inhalation. Prior characterizations of pollen allergens have focused on water-soluble, cytoplasmic proteins, but have overlooked much of the extracellular pollen coat. Due to washing with organic solvents when prepared, these pollen coat proteins are typically absent from commercial standardized allergenic extracts (i.e., “de-fatted”), and, as a result, their involvement in allergy has not been explored. Methodology/Principal Findings Using a unique approach to search for pollen allergenic proteins residing in the pollen coat, we employed transmission electron microscopy (TEM) to assess the impact of organic solvents on the structural integrity of the pollen coat. TEM results indicated that de-fatting of Cynodon dactylon (Bermuda grass) pollen (BGP) by use of organic solvents altered the structural integrity of the pollen coat. The novel IgE-binding proteins of the BGP coat include a cysteine protease (CP) and endoxylanase (EXY). The full-length cDNA that encodes the novel IgE-reactive CP was cloned from floral RNA. The EXY and CP were purified to homogeneity and tested for IgE reactivity. The CP from the BGP coat increased the permeability of human airway epithelial cells, caused a clear concentration-dependent detachment of cells, and damaged their barrier integrity. Conclusions/Significance Using an immunoproteomics approach, novel allergenic proteins of the BGP coat were identified. These proteins represent a class of novel dual-function proteins residing on the coat of the pollen grain that have IgE-binding capacity and proteolytic activity, which disrupts the integrity of the airway epithelial barrier. The identification of pollen coat allergens might explain the IgE-negative response to available skin-prick-testing proteins in patients who have positive symptoms. Further study of the role of these pollen coat proteins in allergic responses is

  1. Dual function of novel pollen coat (surface proteins: IgE-binding capacity and proteolytic activity disrupting the airway epithelial barrier.

    Directory of Open Access Journals (Sweden)

    Mohamed Elfatih H Bashir

    Full Text Available BACKGROUND: The pollen coat is the first structure of the pollen to encounter the mucosal immune system upon inhalation. Prior characterizations of pollen allergens have focused on water-soluble, cytoplasmic proteins, but have overlooked much of the extracellular pollen coat. Due to washing with organic solvents when prepared, these pollen coat proteins are typically absent from commercial standardized allergenic extracts (i.e., "de-fatted", and, as a result, their involvement in allergy has not been explored. METHODOLOGY/PRINCIPAL FINDINGS: Using a unique approach to search for pollen allergenic proteins residing in the pollen coat, we employed transmission electron microscopy (TEM to assess the impact of organic solvents on the structural integrity of the pollen coat. TEM results indicated that de-fatting of Cynodon dactylon (Bermuda grass pollen (BGP by use of organic solvents altered the structural integrity of the pollen coat. The novel IgE-binding proteins of the BGP coat include a cysteine protease (CP and endoxylanase (EXY. The full-length cDNA that encodes the novel IgE-reactive CP was cloned from floral RNA. The EXY and CP were purified to homogeneity and tested for IgE reactivity. The CP from the BGP coat increased the permeability of human airway epithelial cells, caused a clear concentration-dependent detachment of cells, and damaged their barrier integrity. CONCLUSIONS/SIGNIFICANCE: Using an immunoproteomics approach, novel allergenic proteins of the BGP coat were identified. These proteins represent a class of novel dual-function proteins residing on the coat of the pollen grain that have IgE-binding capacity and proteolytic activity, which disrupts the integrity of the airway epithelial barrier. The identification of pollen coat allergens might explain the IgE-negative response to available skin-prick-testing proteins in patients who have positive symptoms. Further study of the role of these pollen coat proteins in allergic

  2. Role of contact inhibition of locomotion and junctional mechanics in epithelial collective responses to injury

    Science.gov (United States)

    Coburn, Luke; Lopez, Hender; Schouwenaar, Irin-Maya; Yap, Alpha S.; Lobaskin, Vladimir; Gomez, Guillermo A.

    2018-03-01

    Epithelial tissues form physically integrated barriers against the external environment protecting organs from infection and invasion. Within each tissue, epithelial cells respond to different challenges that can potentially compromise tissue integrity. In particular, cells collectively respond to injuries by reorganizing their cell-cell junctions and migrating directionally towards the sites of damage. Notwithstanding, the mechanisms that drive collective responses in epithelial aggregates remain poorly understood. In this work, we develop a minimal mechanistic model that is able to capture the essential features of epithelial collective responses to injuries. We show that a model that integrates the mechanics of cells at the cell-cell and cell-substrate interfaces as well as contact inhibition of locomotion (CIL) correctly predicts two key properties of epithelial response to injury as: (1) local relaxation of the tissue and (2) collective reorganization involving the extension of cryptic lamellipodia that extend, on average, up to 3 cell diameters from the site of injury and morphometric changes in the basal regions. Our model also suggests that active responses (like the actomyosin purse string and softening of cell-cell junctions) are needed to drive morphometric changes in the apical region. Therefore, our results highlight the importance of the crosstalk between junctional biomechanics, cell substrate adhesion, and CIL, as well as active responses, in guiding the collective rearrangements that are required to preserve the epithelial barrier in response to injury.

  3. Rearing room affects the non-dominant chicken caecum microbiota, while diet affects the dominant microbiota

    Directory of Open Access Journals (Sweden)

    Jane eLudvigsen

    2016-02-01

    Full Text Available The combined effect of environment and diet in shaping the gut microbiota remain largely unknown. This knowledge, however, is important for animal welfare and safe food production. For these reasons we determined the effect of experimental units on the chicken caecum microbiota for a full factorial experiment where we tested the combined effect of room, diet and antimicrobial treatment. By Illumina Deep sequencing of the 16S rRNA gene, we found that diet mainly affected the dominant microbiota, while the room as a proxy for environment had major effects on the non-dominant microbiota (p=0.006, Kruskal Wallis test. We therefore propose that the dominant and non-dominant microbiotas are shaped by different experimental units. These findings have implications both for our general understanding of the host-associated microbiota, and for setting up experiments related to specific targeting of pathogens.

  4. The Human Microbiota in Early Life

    DEFF Research Database (Denmark)

    Mortensen, Martin Steen

    The bacteria that colonize the human body, our microbiota, can influence our health, both positively and negatively. The importance and functions of the microbiota in our intestinal tract have been the focus of several research projects and are widely published. However, there are great gaps in our...... knowledge concerning microbiota composition, development and function in other areas of human body. Lack of knowledge about the microbiota development in the airways is an example of such a deficiency. The work presented in this PhD thesis is based on the vast sample collection of the COPSAC2010 cohort......, with 700 mother-infant pairs. The objectives were to perform a detailed examination of the mothers’ vaginal microbiota, describe the early composition and development of the microbiota in the airways of their infants, and determine whether the infants’ microbiota are affected by that of their mothers...

  5. Distinct Effects of the Cervicovaginal Microbiota and Herpes Simplex Type 2 Infection on Female Genital Tract Immunology.

    Science.gov (United States)

    Shannon, B; Gajer, P; Yi, T J; Ma, B; Humphrys, M S; Thomas-Pavanel, J; Chieza, L; Janakiram, P; Saunders, M; Tharao, W; Huibner, S; Shahabi, K; Ravel, J; Kaul, R

    2017-05-01

    Genital inflammation is a key determinant of human immunodeficiency virus (HIV) transmission, and may increase HIV-susceptible target cells and alter epithelial integrity. Several genital conditions that increase HIV risk are more prevalent in African, Caribbean, and other black (ACB) women, including bacterial vaginosis and herpes simplex virus type-2 (HSV-2) infection. Therefore, we assessed the impact of the genital microbiota on mucosal immunology in ACB women and microbiome-HSV-2 interactions. Cervicovaginal secretions and endocervical cells were collected by cytobrush and Instead Softcup, respectively. T cells and dendritic cells were assessed by flow cytometry, cytokines by multiplex enzyme-linked immunosorbent assay (ELISA), and the microbiota by 16S ribosomal ribonucleic acid gene sequencing. The cervicovaginal microbiota of 51 participants were composed of community state types (CSTs) showing diversity (20/51; 39%) or predominated by Lactobacillus iners (22/51; 42%), L. crispatus (7/51; 14%), or L. gasseri (2/51; 4%). High-diversity CSTs and specific bacterial phyla (Gardnerella vaginalis and Prevotella bivia) were strongly associated with cervicovaginal inflammatory cytokines, but not with altered endocervical immune cells. However, cervical CD4+ T-cell number was associated with HSV-2 infection and a distinct cytokine profile. This suggests that the genital microbiota and HSV-2 infection may influence HIV susceptibility through independent biological mechanisms. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  6. Environmentally determined differences in the murine lung microbiota and their relation to alveolar architecture.

    Directory of Open Access Journals (Sweden)

    Yeojun Yun

    Full Text Available Commensal bacteria control the micro-ecology of metazoan epithelial surfaces with pivotal effect on tissue homeostasis and host defense. In contrast to the upper respiratory tract, the lower respiratory tract of healthy individuals has largely been considered free of microorganisms. To understand airway micro-ecology we studied microbiota of sterilely excised lungs from mice of different origin including outbred wild mice caught in the natural environment or kept under non-specific-pathogen-free (SPF conditions as well as inbred mice maintained in non-SPF, SPF or germ-free (GF facilities. High-throughput pyrosequencing of reverse transcribed 16S rRNA revealed metabolically active murine lung microbiota in all but GF mice. The overall composition across samples was similar at the phylum and family level. However, species richness was significantly different between lung microbiota from SPF and non-SPF mice. Non-cultivatable Betaproteobacteria such as Ralstonia spp. made up the major constituents and were also confirmed by 16S rRNA gene cloning analysis. Additionally, Pasteurellaceae, Enterobacteria and Firmicutes were isolated from lungs of non-SPF mice. Bacterial communities were detectable by fluorescent in situ hybridization (FISH at alveolar epithelia in the absence of inflammation. Notably, higher bacterial abundance in non-SPF mice correlated with more and smaller size alveolae, which was corroborated by transplanting Lactobacillus spp. lung isolates into GF mice. Our data indicate a common microbial composition of murine lungs, which is diversified through different environmental conditions and affects lung architecture. Identification of the microbiota of murine lungs will pave the path to study their influence on pulmonary immunity to infection and allergens using mouse models.

  7. Gut microbiota and bacterial translocation in digestive surgery: the impact of probiotics.

    Science.gov (United States)

    Komatsu, Shunichiro; Yokoyama, Yukihiro; Nagino, Masato

    2017-05-01

    It is conceivable that manipulation of the gut microbiota could reduce the incidence or magnitude of surgical complications in digestive surgery. However, the evidence remains inconclusive, although much effort has been devoted to randomized controlled trials (RCTs) and meta-analyses on probiotics. Furthermore, the mechanism behind the protective effects of probiotics appears elusive, our understanding of probiotic actions being fragmentary. The objective of this review is to assess the clinical relevance of the perioperative use of probiotics in major digestive surgery, based on a comprehensive view of the gut microbiota, bacterial translocation (BT), and host defense system. The first part of this article describes the pathophysiological events associated with the gut microbiota. Results of RCTs for the perioperative use of probiotics in major digestive surgery are reviewed in the latter part. The development of the structural and functional barrier to protect against BT primarily results from the generally cooperative interactions between the host and resident microbiota. There is a large body of evidence indicating that probiotics, by enhancing beneficial interactions, reinforce the host defense system to limit BT. The perioperative use of probiotics in patients undergoing hepatobiliary and pancreatic surgery is a promising approach for the prevention of postoperative infectious complications, while the effectiveness in colorectal surgery remains controversial due to substantial heterogeneity among the RCTs with small sample populations. Further studies, such as multi-center RCTs with a larger sample size, are necessary to confirm the clinical relevance of probiotic agents in major digestive surgery.

  8. The Colonic Microbiome and Epithelial Transcriptome Are Altered in Rats Fed a High-Protein Diet Compared with a Normal-Protein Diet.

    Science.gov (United States)

    Mu, Chunlong; Yang, Yuxiang; Luo, Zhen; Guan, Leluo; Zhu, Weiyun

    2016-03-01

    A high-protein diet (HPD) can produce hazardous compounds and reduce butyrate-producing bacteria in feces, which may be detrimental to gut health. However, information on whether HPD affects intestinal function is limited. The aim of this study was to determine the impact of an HPD on the microbiota, microbial metabolites, and epithelial transcriptome in the colons of rats. Adult male Wistar rats were fed either a normal-protein diet (20% protein, 56% carbohydrate) or an HPD (45% protein, 30% carbohydrate) for 6 wk (n = 10 rats per group, individually fed). After 6 wk, the colonic microbiome, microbial metabolites, and epithelial transcriptome were determined. Compared with the normal-protein diet, the HPD adversely altered the colonic microbiota by increasing (P 0.7, P < 0.05) with genes and metabolites generally regarded as being involved in disease pathogenesis, suggesting these bacteria may mediate the detrimental effects of HPDs on colonic health. Our findings suggest that the HPD altered the colonic microbial community, shifted the metabolic profile, and affected the host response in the colons of rats toward an increased risk of colonic disease. © 2016 American Society for Nutrition.

  9. Protecting intestinal epithelial integrity by galacto-oligosaccharides: Keeping it tight

    NARCIS (Netherlands)

    Akbari, P.

    2016-01-01

    The intestinal barrier serves as a first line of host defense against potentially harmful stressors from the environment ingested with food, and is primarily formed by epithelial cells connected by tight junctions. Oligosaccharides have been identified as components in milk, particularly in

  10. Epithelial-mesenchymal transition in tissue repair and fibrosis.

    Science.gov (United States)

    Stone, Rivka C; Pastar, Irena; Ojeh, Nkemcho; Chen, Vivien; Liu, Sophia; Garzon, Karen I; Tomic-Canic, Marjana

    2016-09-01

    The epithelial-mesenchymal transition (EMT) describes the global process by which stationary epithelial cells undergo phenotypic changes, including the loss of cell-cell adhesion and apical-basal polarity, and acquire mesenchymal characteristics that confer migratory capacity. EMT and its converse, MET (mesenchymal-epithelial transition), are integral stages of many physiologic processes and, as such, are tightly coordinated by a host of molecular regulators. Converging lines of evidence have identified EMT as a component of cutaneous wound healing, during which otherwise stationary keratinocytes (the resident skin epithelial cells) migrate across the wound bed to restore the epidermal barrier. Moreover, EMT plays a role in the development of scarring and fibrosis, as the matrix-producing myofibroblasts arise from cells of the epithelial lineage in response to injury but are pathologically sustained instead of undergoing MET or apoptosis. In this review, we summarize the role of EMT in physiologic repair and pathologic fibrosis of tissues and organs. We conclude that further investigation into the contribution of EMT to the faulty repair of fibrotic wounds might identify components of EMT signaling as common therapeutic targets for impaired healing in many tissues. Graphical Abstract Model for injury-triggered EMT activation in physiologic wound repair (left) and fibrotic wound healing (right).

  11. Role of Vitamin D in Maintaining Renal Epithelial Barrier Function in Uremic Conditions

    Directory of Open Access Journals (Sweden)

    Milos Mihajlovic

    2017-11-01

    Full Text Available As current kidney replacement therapies are not efficient enough for end-stage renal disease (ESRD treatment, a bioartificial kidney (BAK device, based on conditionally immortalized human proximal tubule epithelial cells (ciPTEC, could represent an attractive solution. The active transport activity of such a system was recently demonstrated. In addition, endocrine functions of the cells, such as vitamin D activation, are relevant. The organic anion transporter 1 (OAT-1 overexpressing ciPTEC line presented 1α-hydroxylase (CYP27B1, 24-hydroxylase (CYP24A1 and vitamin D receptor (VDR, responsible for vitamin D activation, degradation and function, respectively. The ability to produce and secrete 1α,25-dihydroxy-vitamin D3, was shown after incubation with the precursor, 25-hydroxy-vitamin D3. The beneficial effect of vitamin D on cell function and behavior in uremic conditions was studied in the presence of an anionic uremic toxins mixture. Vitamin D could restore cell viability, and inflammatory and oxidative status, as shown by cell metabolic activity, interleukin-6 (IL-6 levels and reactive oxygen species (ROS production, respectively. Finally, vitamin D restored transepithelial barrier function, as evidenced by decreased inulin-FITC leakage in biofunctionalized hollow fiber membranes (HFM carrying ciPTEC-OAT1. In conclusion, the protective effects of vitamin D in uremic conditions and proven ciPTEC-OAT1 endocrine function encourage the use of these cells for BAK application.

  12. Isolation and gene expression profiling of intestinal epithelial cells: crypt isolation by calcium chelation from in vivo samples.

    LENUS (Irish Health Repository)

    Balfe, Aine

    2018-01-01

    The epithelial layer within the colon represents a physical barrier between the luminal contents and its underlying mucosa. It plays a pivotal role in mucosal homeostasis, and both tolerance and anti-pathogenic immune responses. Identifying signals of inflammation initiation and responses to stimuli from within the epithelial layer is critical to understanding the molecular pathways underlying disease pathology. This study validated a method to isolate and analyze epithelial populations, enabling investigations of epithelial function and response in a variety of disease setting.

  13. Contacting co-culture of human retinal microvascular endothelial cells alters barrier function of human embryonic stem cell derived retinal pigment epithelial cells.

    Science.gov (United States)

    Skottman, H; Muranen, J; Lähdekorpi, H; Pajula, E; Mäkelä, K; Koivusalo, L; Koistinen, A; Uusitalo, H; Kaarniranta, K; Juuti-Uusitalo, K

    2017-10-01

    Here we evaluated the effects of human retinal microvascular endothelial cells (hREC) on mature human embryonic stem cell (hESC) derived retinal pigment epithelial (RPE) cells. The hESC-RPE cells (Regea08/017, Regea08/023 or Regea11/013) and hREC (ACBRI 181) were co-cultured on opposite sides of transparent membranes for up to six weeks. Thereafter barrier function, small molecule permeability, localization of RPE and endothelial cell marker proteins, cellular fine structure, and growth factor secretion of were evaluated. After co-culture, the RPE specific CRALBP and endothelial cell specific von Willebrand factor were appropriately localized. In addition, the general morphology, pigmentation, and fine structure of hESC-RPE cells were unaffected. Co-culture increased the barrier function of hESC-RPE cells, detected both with TEER measurements and cumulative permeability of FD4 - although the differences varied among the cell lines. Co-culturing significantly altered VEGF and PEDF secretion, but again the differences were cell line specific. The results of this study showed that co-culture with hREC affects hESC-RPE functionality. In addition, co-culture revealed drastic cell line specific differences, most notably in growth factor secretion. This model has the potential to be used as an in vitro outer blood-retinal barrier model for drug permeability testing. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. [Saccharomyces boulardii modulates dendritic cell properties and intestinal microbiota disruption after antibiotic treatment].

    Science.gov (United States)

    Collignon, A; Sandré, C; Barc, M-C

    2010-09-01

    Saccharomyces boulardii is a non-pathogenic yeast with biotherapeutic properties that has been used successfully to prevent and to treat various infectious and antibiotic-associated diarrheas. The intestinal microbiota is responsible for colonization resistance and immune response to pathogens but can be disrupted by antibiotics and lose its barrier effect. Dendritic cells (DCs) are professional antigen-presenting cells of the immune system with the ability to initiate a primary immune response or immune tolerance. In a human microbiota-associated mouse model, we evaluated the influence of S. boulardii on the composition of the microbiota and on the properties of dendritic cells in normal homeostatic conditions and after antibiotic-induced stress. The DCs were derived from splenic precursors. Membrane antigen expression and phagocytosis of FITC-latex beads by DCs were evaluated by flow cytometry. The molecular analysis of the microbiota was performed with fluorescence in situ hybridization (FISH) combined with flow cytometry or confocal microscopy using group specific 16S rRNA targeted probes. This evaluation was conducted during and after a 7-day oral treatment with amoxicillin-clavulanic acid alone and in combination with the administration of the yeast. The antibiotic treatment increased the phagocytic activity of DCs. Their antigen presenting function (MHC class II antigen and CD 86 costimulatory molecule membrane expression) was up-regulated. This reflects a functional activation of DCs. In the presence of S. boulardii, the modification of membrane antigen expression was down regulated. To correlate these modifications to the microbiota disruption, we analyzed in parallel the composition of the intestinal microbiota. As previously shown, the amoxicillin-clavulanic acid treatment, both alone and with S. boulardii, did not quantitatively alter the total microbiota. In contrast, after one day of the antibiotic treatment the Clostridium coccoides group decreased

  15. The atypical mitogen-activated protein kinase ERK3 is essential for establishment of epithelial architecture.

    Science.gov (United States)

    Takahashi, Chika; Miyatake, Koichi; Kusakabe, Morioh; Nishida, Eisuke

    2018-06-01

    Epithelia contribute to physical barriers that protect internal tissues from the external environment and also support organ structure. Accordingly, establishment and maintenance of epithelial architecture are essential for both embryonic development and adult physiology. Here, using gene knockout and knockdown techniques along with gene profiling, we show that extracellular signal-regulated kinase 3 (ERK3), a poorly characterized atypical mitogen-activated protein kinase (MAPK), regulates the epithelial architecture in vertebrates. We found that in Xenopus embryonic epidermal epithelia, ERK3 knockdown impairs adherens and tight-junction protein distribution, as well as tight-junction barrier function, resulting in epidermal breakdown. Moreover, in human epithelial breast cancer cells, inhibition of ERK3 expression induced thickened epithelia with aberrant adherens and tight junctions. Results from microarray analyses suggested that transcription factor AP-2α (TFAP2A), a transcriptional regulator important for epithelial gene expression, is involved in ERK3-dependent changes in gene expression. Of note, TFAP2A knockdown phenocopied ERK3 knockdown in both Xenopus embryos and human cells, and ERK3 was required for full activation of TFAP2A-dependent transcription. Our findings reveal that ERK3 regulates epithelial architecture, possibly together with TFAP2A. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Navy and black bean supplementation primes the colonic mucosal microenvironment to improve gut health.

    Science.gov (United States)

    Monk, Jennifer M; Lepp, Dion; Wu, Wenqing; Pauls, K Peter; Robinson, Lindsay E; Power, Krista A

    2017-11-01

    Common beans (Phaseolus vulgaris L.) are enriched in non-digestible fermentable carbohydrates and phenolic compounds that can modulate the colonic microenvironment (microbiota and host epithelial barrier) to improve gut health. In a comprehensive assessment of the impact of two commonly consumed bean varieties (differing in levels and types of phenolic compounds) within the colonic microenvironment, C57Bl/6 mice were fed diets supplemented with 20% cooked navy bean (NB) or black bean (BB) flours or an isocaloric basal diet control (BD) for 3 weeks. NB and BB similarly altered the fecal microbiota community structure (16S rRNA sequencing) notably by increasing the abundance of carbohydrate fermenting bacteria such as Prevotella, S24-7 and Ruminococcus flavefaciens, which coincided with enhanced short chain fatty acid (SCFA) production (microbial-derived carbohydrate fermentation products) and colonic expression of the SCFA receptors GPR-41/-43/-109a. Both NB and BB enhanced multiple aspects of mucus and epithelial barrier integrity vs. BD including: (i) goblet cell number, crypt mucus content and mucin mRNA expression, (ii) anti-microbial defenses (Reg3γ), (iii) crypt length and epithelial cell proliferation, (iv) apical junctional complex components (occludin, JAM-A, ZO-1 and E-cadherin) mRNA expression and (v) reduced serum endotoxin concentrations. Interestingly, biomarkers of colon barrier integrity (crypt height, mucus content, cell proliferation and goblet cell number) were enhanced in BB vs. NB-fed mice, suggesting added benefits attributable to unique BB components (e.g., phenolics). Overall, NB and BB improved baseline colonic microenvironment function by altering the microbial community structure and activity and promoting colon barrier integrity and function; effects which may prove beneficial in attenuating gut-associated diseases. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  17. The interplay between the gut immune system and microbiota in health and disease: nutraceutical intervention for restoring intestinal homeostasis.

    Science.gov (United States)

    Magrone, Thea; Jirillo, Emilio

    2013-01-01

    Gut immune system is daily exposed to a plethora of antigens contained in the environment as well as in food. Both secondary lymphoid tissue, such as Peyer's patches, and lymphoid follicles (tertiary lymphoid tissue) are able to respond to antigenic stimuli releasing cytokines or producing antibodies (secretory IgA). Intestinal epithelial cells are in close cooperation with intraepithelial lymphocytes and possess Toll-like receptors on their surface and Nod-like receptors (NLRs) which sense pathogens or pathogen-associated molecular patterns. Intestinal microbiota, mainly composed of Bacteroidetes and Firmicutes, generates tolerogenic response acting on gut dendritic cells and inhibiting the T helper (h)-17 cell anti-inflammatory pathway. This is the case of Bacteroides fragilis which leads to the production of interleukin-10, an anti-inflammatory cytokine, from both T regulatory cells and lamina propria macrophages. Conversely, segmented filamentous bacteria rather induce Th17 cells, thus promoting intestinal inflammation. Intestinal microbiota and its toxic components have been shown to act on both Nod1 and Nod2 receptors and their defective signaling accounts for the development of inflammatory bowel disease (IBD). In IBD a loss of normal tolerance to intestinal microbiota seems to be the main trigger of mucosal damage. In addition, intestinal microbiota thanks to its regulatory function of gut immune response can prevent or retard neoplastic growth. In fact, chronic exposure to environmental microorganisms seems to be associated with low frequency of cancer risk. Major nutraceuticals or functional foods employed in the modulation of intestinal microbiota are represented by prebiotics, probiotics, polyunsaturated fatty acids, amino acids and polyphenols. The cellular and molecular effects performed by these natural products in terms of modulation of the intestinal microbiota and mostly attenuation of the inflammatory pathway are described.

  18. Neutrophils Compromise Retinal Pigment Epithelial Barrier Integrity

    Directory of Open Access Journals (Sweden)

    Jiehao Zhou

    2010-01-01

    Full Text Available We hypothesized that neutrophils and their secreted factors mediate breakdown of the integrity of the outer blood-retina-barrier by degrading the apical tight junctions of the retinal pigment epithelium (RPE. The effect of activated neutrophils or neutrophil cell lysate on apparent permeability of bovine RPE-Choroid explants was evaluated by measuring [H] mannitol flux in a modified Ussing chamber. The expression of matrix metalloproteinase- (MMP- 9 in murine peritoneal neutrophils, and the effects of neutrophils on RPE tight-junction protein expression were assessed by confocal microscopy and western blot. Our results revealed that basolateral incubation of explants with neutrophils decreased occludin and ZO-1 expression at 1 and 3 hours and increased the permeability of bovine RPE-Choroid explants by >3-fold (P<.05. Similarly, basolateral incubation of explants with neutrophil lysate decreased ZO-1 expression at 1 and 3 hours (P<.05 and increased permeability of explants by 75%. Further, we found that neutrophils prominently express MMP-9 and that incubation of explants with neutrophils in the presence of anti-MMP-9 antibody inhibited the increase in permeability. These data suggest that neutrophil-derived MMP-9 may play an important role in disrupting the integrity of the outer blood-retina barrier.

  19. The gut microbiota and metabolic disease

    DEFF Research Database (Denmark)

    Arora, T; Bäckhed, Gert Fredrik

    2016-01-01

    The human gut microbiota has been studied for more than a century. However, of nonculture-based techniques exploiting next-generation sequencing for analysing the microbiota, development has renewed research within the field during the past decade. The observation that the gut microbiota......, as an environmental factor, contributes to adiposity has further increased interest in the field. The human microbiota is affected by the diet, and macronutrients serve as substrates for many microbially produced metabolites, such as short-chain fatty acids and bile acids, that may modulate host metabolism. Obesity......-producing bacteria might be causally linked to type 2 diabetes. Bariatric surgery, which promotes long-term weight loss and diabetes remission, alters the gut microbiota in both mice and humans. Furthermore, by transferring the microbiota from postbariatric surgery patients to mice, it has been demonstrated...

  20. Rho-A prenylation and signaling link epithelial homeostasis to intestinal inflammation

    DEFF Research Database (Denmark)

    López-Posadas, Rocío; Becker, Christoph; Günther, Claudia

    2016-01-01

    Although defects in intestinal barrier function are a key pathogenic factor in patients with inflammatory bowel diseases (IBDs), the molecular pathways driving disease-specific alterations of intestinal epithelial cells (IECs) are largely unknown. Here, we addressed this issue by characterizing t...

  1. Microbiota and Pelvic Inflammatory Disease

    Science.gov (United States)

    Sharma, Harsha; Tal, Reshef; Clark, Natalie A.; Segars, James H.

    2014-01-01

    Female genital tract microbiota play a crucial role in maintaining health. Disequilibrium of the microbiota has been associated with increased risk of pelvic infections. In recent years, culture-independent molecular techniques have expanded understanding of the composition of genital microbiota and the dynamic nature of the microbiota. There is evidence that upper genital tract may not be sterile and may harbor microflora in the physiologic state. The isolation of bacterial vaginosis-associated organisms in women with genital infections establishes a link between pelvic infections and abnormal vaginal flora. With the understanding of the composition of the microbiota in healthy and diseased states, the next logical step is to identify the function of the newly identified microbes. This knowledge will further expand our understanding of the causation of pelvic infections, which may lead to more effective prevention and treatment strategies. PMID:24390920

  2. Modulation of ocular surface glycocalyx barrier function by a galectin-3 N-terminal deletion mutant and membrane-anchored synthetic glycopolymers.

    Directory of Open Access Journals (Sweden)

    Jerome Mauris

    Full Text Available BACKGROUND: Interaction of transmembrane mucins with the multivalent carbohydrate-binding protein galectin-3 is critical to maintaining the integrity of the ocular surface epithelial glycocalyx. This study aimed to determine whether disruption of galectin-3 multimerization and insertion of synthetic glycopolymers in the plasma membrane could be used to modulate glycocalyx barrier function in corneal epithelial cells. METHODOLOGY/PRINCIPAL FINDINGS: Abrogation of galectin-3 biosynthesis in multilayered cultures of human corneal epithelial cells using siRNA, and in galectin-3 null mice, resulted in significant loss of corneal barrier function, as indicated by increased permeability to the rose bengal diagnostic dye. Addition of β-lactose, a competitive carbohydrate inhibitor of galectin-3 binding activity, to the cell culture system, transiently disrupted barrier function. In these experiments, treatment with a dominant negative inhibitor of galectin-3 polymerization lacking the N-terminal domain, but not full-length galectin-3, prevented the recovery of barrier function to basal levels. As determined by fluorescence microscopy, both cellobiose- and lactose-containing glycopolymers incorporated into apical membranes of corneal epithelial cells, independently of the chain length distribution of the densely glycosylated, polymeric backbones. Membrane incorporation of cellobiose glycopolymers impaired barrier function in corneal epithelial cells, contrary to their lactose-containing counterparts, which bound to galectin-3 in pull-down assays. CONCLUSIONS/SIGNIFICANCE: These results indicate that galectin-3 multimerization and surface recognition of lactosyl residues is required to maintain glycocalyx barrier function at the ocular surface. Transient modification of galectin-3 binding could be therapeutically used to enhance the efficiency of topical drug delivery.

  3. The Microbiota of the Human Skin.

    Science.gov (United States)

    Egert, Markus; Simmering, Rainer

    2016-01-01

    The aim of this chapter is to sum up important progress in the field of human skin microbiota research that was achieved over the last years.The human skin is one of the largest and most versatile organs of the human body. Owing to its function as a protective interface between the largely sterile interior of the human body and the highly microbially contaminated outer environment, it is densely colonized with a diverse and active microbiota. This skin microbiota is of high importance for human health and well-being. It is implicated in several severe skin diseases and plays a major role in wound infections. Many less severe, but negatively perceived cosmetic skin phenomena are linked with skin microbes, too. In addition, skin microorganisms, in particular on the human hands, are crucial for the field of hygiene research. Notably, apart from being only a potential source of disease and contamination, the skin microbiota also contributes to the protective functions of the human skin in many ways. Finally, the analysis of structure and function of the human skin microbiota is interesting from a basic, evolutionary perspective on human microbe interactions.Key questions in the field of skin microbiota research deal with (a) a deeper understanding of the structure (species inventory) and function (physiology) of the healthy human skin microbiota in space and time, (b) the distinction of resident and transient skin microbiota members, (c) the distinction of beneficial skin microorganisms from microorganisms or communities with an adverse or sickening effect on their hosts, (d) factors shaping the skin microbiota and its functional role in health and disease, (e) strategies to manipulate the skin microbiota for therapeutic reasons.

  4. The microbiota-gut-brain axis as a key regulator of neural function and the stress response: Implications for human and animal health.

    Science.gov (United States)

    Wiley, N C; Dinan, T G; Ross, R P; Stanton, C; Clarke, G; Cryan, J F

    2017-07-01

    The brain-gut-microbiota axis comprises an extensive communication network between the brain, the gut, and the microbiota residing there. Development of a diverse gut microbiota is vital for multiple features of behavior and physiology, as well as many fundamental aspects of brain structure and function. Appropriate early-life assembly of the gut microbiota is also believed to play a role in subsequent emotional and cognitive development. If the composition, diversity, or assembly of the gut microbiota is impaired, this impairment can have a negative impact on host health and lead to disorders such as obesity, diabetes, inflammatory diseases, and even potentially neuropsychiatric illnesses, including anxiety and depression. Therefore, much research effort in recent years has focused on understanding the potential of targeting the intestinal microbiota to prevent and treat such disorders. This review aims to explore the influence of the gut microbiota on host neural function and behavior, particularly those of relevance to stress-related disorders. The involvement of microbiota in diverse neural functions such as myelination, microglia function, neuronal morphology, and blood-brain barrier integrity across the life span, from early life to adolescence to old age, will also be discussed. Nurturing an optimal gut microbiome may also prove beneficial in animal science as a means to manage stressful situations and to increase productivity of farm animals. The implications of these observations are manifold, and researchers are hopeful that this promising body of preclinical work can be successfully translated to the clinic and beyond.

  5. The microbiota revolution: Excitement and caution.

    Science.gov (United States)

    Rescigno, Maria

    2017-09-01

    Scientific progress is characterized by important technological advances. Next-generation DNA sequencing has, in the past few years, led to a major scientific revolution: the microbiome revolution. It has become possible to generate a fingerprint of the whole microbiota of any given environment. As it becomes clear that the microbiota affects several aspects of our lives, each new scientific finding should ideally be analyzed in light of these communities. For instance, animal experimentation should consider animal sources and husbandry; human experimentation should include analysis of microenvironmental cues that might affect the microbiota, including diet, antibiotic, and drug use, genetics. When analyzing the activity of a drug, we should remember that, according to the microbiota of the host, different drug activities might be observed, either due to modification or degradation by the microbiota, or because the microbiota changes the immune system of the host in a way that makes that drug more or less effective. This minireview will not be a comprehensive review on the interaction between the host and microbiota, but it will aim at creating awareness on why we should not forget the contribution of the microbiota in any single aspect of biology. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Salmosan, a β-galactomannan-rich product, in combination with Lactobacillus plantarum contributes to restore intestinal epithelial barrier function by modulation of cytokine production.

    Science.gov (United States)

    Brufau, M Teresa; Campo-Sabariz, Joan; Carné, Sergi; Ferrer, Ruth; Martín-Venegas, Raquel

    2017-03-01

    Mannan-oligosaccharides (MOSs) are mannose-rich substrates with several intestinal health-promoting properties. The aim of this study was to investigate the potential capacity of Salmosan (S-βGM), a β-galactomannan-rich MOS product, to restore epithelial barrier function independently from its capacity to reduce bacterial invasion. In addition, the combination of S-βGM with the proven probiotic Lactobacillus plantarum (LP) was also tested. Paracellular permeability was assessed by transepithelial electrical resistance (TER) in co-cultures of Caco-2 cells and macrophages (differentiated from THP-1 cells) stimulated with LPS of Salmonella Enteritidis and in Caco-2 cell cultures stimulated with TNF-α in the absence or presence of 500 μg/ml S-βGM, LP (MOI 10) or a combination of both. In both culture models, TER was significantly reduced up to 25% by LPS or TNF-α stimulation, and the addition of S-βGM or LP alone did not modify TER, whereas the combination of both restored TER to values of nonstimulated cells. Under LPS stimulation, TNF-α production was significantly increased by 10-fold, whereas IL-10 and IL-6 levels were not modified. The combination of S-βGM and LP reduced TNF-α production to nonstimulated cell values and significantly increased IL-10 and IL-6 levels (5- and 7.5-fold, respectively). Moreover, S-βGM has the capacity to induce an increase of fivefold in LP growth. In conclusion, we have demonstrated that S-βGM in combination with LP protects epithelial barrier function by modulation of cytokine secretion, thus giving an additional value to this MOS as a potential symbiotic. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Effect of caloric restriction on gut permeability, inflammation markers, and fecal microbiota in obese women.

    Science.gov (United States)

    Ott, Beate; Skurk, Thomas; Hastreiter, Ljiljana; Lagkouvardos, Ilias; Fischer, Sandra; Büttner, Janine; Kellerer, Teresa; Clavel, Thomas; Rychlik, Michael; Haller, Dirk; Hauner, Hans

    2017-09-20

    Recent findings suggest an association between obesity, loss of gut barrier function and changes in microbiota profiles. Our primary objective was to examine the effect of caloric restriction and subsequent weight reduction on gut permeability in obese women. The impact on inflammatory markers and fecal microbiota was also investigated. The 4-week very-low calorie diet (VLCD, 800 kcal/day) induced a mean weight loss of 6.9 ± 1.9 kg accompanied by a reduction in HOMA-IR (Homeostasis model assessment-insulin resistance), fasting plasma glucose and insulin, plasma leptin, and leptin gene expression in subcutaneous adipose tissue. Plasma high-molecular weight adiponectin (HMW adiponectin) was significantly increased after VLCD. Plasma levels of high-sensitivity C-reactive protein (hsCRP) and lipopolysaccharide-binding protein (LBP) were significantly decreased after 28 days of VLCD. Using three different methods, gut paracellular permeability was decreased after VLCD. These changes in clinical parameters were not associated with major consistent changes in dominant bacterial communities in feces. In summary, a 4-week caloric restriction resulted in significant weight loss, improved gut barrier integrity and reduced systemic inflammation in obese women.

  8. The gut microbiota in type 2 diabetes

    DEFF Research Database (Denmark)

    Nielsen, Trine; Allin, Kristine Højgaard; Pedersen, Oluf

    2016-01-01

    The exploration of the gut microbiota has intensified within the past decade with the introduction of cultivation-independent methods. By investigation of the gut bacterial genes, our understanding of the compositional and functional capability of the gut microbiome has increased. It is now widely...... recognized that the gut microbiota has profound effect on host metabolism and recently changes in the gut microbiota have been associated with type 2 diabetes. Animal models and human studies have linked changes in the gut microbiota to the induction of low-grade inflammation, altered immune response......, and changes in lipid and glucose metabolism. Several factors have been identified that might affect the healthy microbiota, potentially inducing a dysbiotic microbiota associated with a disease state. This increased understanding of the gut microbiota might potentially contribute to targeted intervention...

  9. Gut microbiota in health and disease

    Directory of Open Access Journals (Sweden)

    M.E. Icaza-Chávez

    2013-10-01

    Full Text Available Gut microbiota is the community of live microorganisms residing in the digestive tract. There are many groups of researchers worldwide that are working at deciphering the collective genome of the human microbiota. Modern techniques for studying the microbiota have made us aware of an important number of nonculturable bacteria and of the relation between the microorganisms that live inside us and our homeostasis. The microbiota is essential for correct body growth, the development of immunity, and nutrition. Certain epidemics affecting humanity such as asthma and obesity may possibly be explained, at least partially, by alterations in the microbiota. Dysbiosis has been associated with a series of gastrointestinal disorders that include non-alcoholic fatty liver disease, celiac disease, and irritable bowel syndrome. The present article deals with the nomenclature, modern study techniques, and functions of gut microbiota, and its relation to health and disease.

  10. Lingonberries alter the gut microbiota and prevent low-grade inflammation in high-fat diet fed mice

    Directory of Open Access Journals (Sweden)

    Lovisa Heyman-Lindén

    2016-04-01

    Full Text Available Background: The gut microbiota plays an important role in the development of obesity and obesity-associated impairments such as low-grade inflammation. Lingonberries have been shown to prevent diet-induced obesity and low-grade inflammation. However, it is not known whether the effect of lingonberry supplementation is related to modifications of the gut microbiota. The aim of the present study was to describe whether consumption of different batches of lingonberries alters the composition of the gut microbiota, which could be relevant for the protective effect against high fat (HF-induced metabolic alterations. Methods: Three groups of C57BL/6J mice were fed HF diet with or without a supplement of 20% lingonberries from two different batches (Lingon1 and Lingon2 during 11 weeks. The composition and functionality of the cecal microbiota were assessed by 16S rRNA sequencing and PICRUSt. In addition, parameters related to obesity, insulin sensitivity, hepatic steatosis, inflammation and gut barrier function were examined. Results: HF-induced obesity was only prevented by the Lingon1 diet, whereas both batches of lingonberries reduced plasma levels of markers of inflammation and endotoxemia (SAA and LBP as well as modified the composition and functionality of the gut microbiota, compared to the HF control group. The relative abundance of Akkermansia and Faecalibacterium, genera associated with healthy gut mucosa and anti-inflammation, was found to increase in response to lingonberry intake. Conclusions: Our results show that supplementation with lingonberries to an HF diet prevents low-grade inflammation and is associated with significant changes of the microbiota composition. Notably, the anti-inflammatory properties of lingonberries seem to be independent of effects on body weight gain.

  11. Gut bacterial microbiota and obesity.

    Science.gov (United States)

    Million, M; Lagier, J-C; Yahav, D; Paul, M

    2013-04-01

    Although probiotics and antibiotics have been used for decades as growth promoters in animals, attention has only recently been drawn to the association between the gut microbiota composition, its manipulation, and obesity. Studies in mice have associated the phylum Firmicutes with obesity and the phylum Bacteroidetes with weight loss. Proposed mechanisms linking the microbiota to fat content and weight include differential effects of bacteria on the efficiency of energy extraction from the diet, and changes in host metabolism of absorbed calories. The independent effect of the microbiota on fat accumulation has been demonstrated in mice, where transplantation of microbiota from obese mice or mice fed western diets to lean or germ-free mice produced fat accumulation among recipients. The microbiota can be manipulated by prebiotics, probiotics, and antibiotics. Probiotics affect the microbiota directly by modulating its bacterial content, and indirectly through bacteriocins produced by the probiotic bacteria. Interestingly, certain probiotics are associated with weight gain both in animals and in humans. The effects are dependent on the probiotic strain, the host, and specific host characteristics, such as age and baseline nutritional status. Attention has recently been drawn to the association between antibiotic use and weight gain in children and adults. We herein review the studies describing the associations between the microbiota composition, its manipulation, and obesity. © 2013 The Authors Clinical Microbiology and Infection © 2013 European Society of Clinical Microbiology and Infectious Diseases.

  12. Let the Core Microbiota Be Functional.

    Science.gov (United States)

    Lemanceau, Philippe; Blouin, Manuel; Muller, Daniel; Moënne-Loccoz, Yvan

    2017-07-01

    The microbial community that is systematically associated with a given host plant is called the core microbiota. The definition of the core microbiota was so far based on its taxonomic composition, but we argue that it should also be based on its functions. This so-called functional core microbiota encompasses microbial vehicles carrying replicators (genes) with essential functions for holobiont (i.e., plant plus microbiota) fitness. It builds up from enhanced horizontal transfers of replicators as well as from ecological enrichment of their vehicles. The transmission pathways of this functional core microbiota vary over plant generations according to environmental constraints and its added value for holobiont fitness. Copyright © 2017. Published by Elsevier Ltd.

  13. Linking Gut Microbiota to Colorectal Cancer

    DEFF Research Database (Denmark)

    Raskov, Hans; Burcharth, Jakob; Pommergaard, Hans-Christian

    2017-01-01

    Pre-clinical and clinical data produce mounting evidence that the microbiota is strongly associated with colorectal carcinogenesis. Dysbiosis may change the course of carcinogenesis as microbial actions seem to impact genetic and epigenetic alterations leading to dysplasia, clonal expansion...... and malignant transformation. Initiation and promotion of colorectal cancer may result from direct bacterial actions, bacterial metabolites and inflammatory pathways. Newer aspects of microbiota and colorectal cancer include quorum sensing, biofilm formation, sidedness and effects/countereffects of microbiota...... and probiotics on chemotherapy. In the future, targeting the microbiota will probably be a powerful weapon in the battle against CRC as gut microbiology, genomics and metabolomics promise to uncover important linkages between microbiota and intestinal health....

  14. Modelling the structure of a ceRNA-theoretical, bipartite microRNA-mRNA interaction network regulating intestinal epithelial cellular pathways using R programming.

    Science.gov (United States)

    Robinson, J M; Henderson, W A

    2018-01-12

    We report a method using functional-molecular databases and network modelling to identify hypothetical mRNA-miRNA interaction networks regulating intestinal epithelial barrier function. The model forms a data-analysis component of our cell culture experiments, which produce RNA expression data from Nanostring Technologies nCounter ® system. The epithelial tight-junction (TJ) and actin cytoskeleton interact as molecular components of the intestinal epithelial barrier. Upstream regulation of TJ-cytoskeleton interaction is effected by the Rac/Rock/Rho signaling pathway and other associated pathways which may be activated or suppressed by extracellular signaling from growth factors, hormones, and immune receptors. Pathway activations affect epithelial homeostasis, contributing to degradation of the epithelial barrier associated with osmotic dysregulation, inflammation, and tumor development. The complexity underlying miRNA-mRNA interaction networks represents a roadblock for prediction and validation of competing-endogenous RNA network function. We developed a network model to identify hypothetical co-regulatory motifs in a miRNA-mRNA interaction network related to epithelial function. A mRNA-miRNA interaction list was generated using KEGG and miRWalk2.0 databases. R-code was developed to quantify and visualize inherent network structures. We identified a sub-network with a high number of shared, targeting miRNAs, of genes associated with cellular proliferation and cancer, including c-MYC and Cyclin D.

  15. Mucosal Ecological Network of Epithelium and Immune Cells for Gut Homeostasis and Tissue Healing.

    Science.gov (United States)

    Kurashima, Yosuke; Kiyono, Hiroshi

    2017-04-26

    The intestinal epithelial barrier includes columnar epithelial, Paneth, goblet, enteroendocrine, and tuft cells as well as other cell populations, all of which contribute properties essential for gastrointestinal homeostasis. The intestinal mucosa is covered by mucin, which contains antimicrobial peptides and secretory IgA and prevents luminal bacteria, fungi, and viruses from stimulating intestinal immune responses. Conversely, the transport of luminal microorganisms-mediated by M, dendritic, and goblet cells-into intestinal tissues facilitates the harmonization of active and quiescent mucosal immune responses. The bacterial population within gut-associated lymphoid tissues creates the intratissue cohabitations for harmonized mucosal immunity. Intermolecular and intercellular communication among epithelial, immune, and mesenchymal cells creates an environment conducive for epithelial regeneration and mucosal healing. This review summarizes the so-called intestinal mucosal ecological network-the complex but vital molecular and cellular interactions of epithelial mesenchymal cells, immune cells, and commensal microbiota that achieve intestinal homeostasis, regeneration, and healing.

  16. Microbiota, Inflammation and Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Cécily Lucas

    2017-06-01

    Full Text Available Colorectal cancer, the fourth leading cause of cancer-related death worldwide, is a multifactorial disease involving genetic, environmental and lifestyle risk factors. In addition, increased evidence has established a role for the intestinal microbiota in the development of colorectal cancer. Indeed, changes in the intestinal microbiota composition in colorectal cancer patients compared to control subjects have been reported. Several bacterial species have been shown to exhibit the pro-inflammatory and pro-carcinogenic properties, which could consequently have an impact on colorectal carcinogenesis. This review will summarize the current knowledge about the potential links between the intestinal microbiota and colorectal cancer, with a focus on the pro-carcinogenic properties of bacterial microbiota such as induction of inflammation, the biosynthesis of genotoxins that interfere with cell cycle regulation and the production of toxic metabolites. Finally, we will describe the potential therapeutic strategies based on intestinal microbiota manipulation for colorectal cancer treatment.

  17. The bile acids, deoxycholic acid and ursodeoxycholic acid, regulate colonic epithelial wound healing.

    Science.gov (United States)

    Mroz, Magdalena S; Lajczak, Natalia K; Goggins, Bridie J; Keely, Simon; Keely, Stephen J

    2018-03-01

    The intestinal epithelium constitutes an innate barrier which, upon injury, undergoes self-repair processes known as restitution. Although bile acids are known as important regulators of epithelial function in health and disease, their effects on wound healing processes are not yet clear. Here we set out to investigate the effects of the colonic bile acids, deoxycholic acid (DCA) and ursodeoxycholic acid (UDCA), on epithelial restitution. Wound healing in T 84 cell monolayers grown on transparent, permeable supports was assessed over 48 h with or without bile acids. Cell migration was measured in Boyden chambers. mRNA and protein expression were measured by RT-PCR and Western blotting. DCA (50-150 µM) significantly inhibited wound closure in cultured epithelial monolayers and attenuated cell migration in Boyden chamber assays. DCA also induced nuclear accumulation of the farnesoid X receptor (FXR), whereas an FXR agonist, GW4064 (10 µM), inhibited wound closure. Both DCA and GW4064 attenuated the expression of CFTR Cl - channels, whereas inhibition of CFTR activity with either CFTR- inh -172 (10 µM) or GlyH-101 (25 µM) also prevented wound healing. Promoter/reporter assays revealed that FXR-induced downregulation of CFTR is mediated at the transcriptional level. In contrast, UDCA (50-150 µM) enhanced wound healing in vitro and prevented the effects of DCA. Finally, DCA inhibited and UDCA promoted mucosal healing in an in vivo mouse model. In conclusion, these studies suggest bile acids are important regulators of epithelial wound healing and are therefore good targets for development of new drugs to modulate intestinal barrier function in disease treatment. NEW & NOTEWORTHY The secondary bile acid, deoxycholic acid, inhibits colonic epithelial wound healing, an effect which appears to be mediated by activation of the nuclear bile acid receptor, FXR, with subsequent downregulation of CFTR expression and activity. In contrast, ursodeoxycholic acid promotes

  18. [Gut microbiota in health and disease].

    Science.gov (United States)

    Icaza-Chávez, M E

    2013-01-01

    Gut microbiota is the community of live microorganisms residing in the digestive tract. There are many groups of researchers worldwide that are working at deciphering the collective genome of the human microbiota. Modern techniques for studying the microbiota have made us aware of an important number of nonculturable bacteria and of the relation between the microorganisms that live inside us and our homeostasis. The microbiota is essential for correct body growth, the development of immunity, and nutrition. Certain epidemics affecting humanity such as asthma and obesity may possibly be explained, at least partially, by alterations in the microbiota. Dysbiosis has been associated with a series of gastrointestinal disorders that include non-alcoholic fatty liver disease, celiac disease, and irritable bowel syndrome. The present article deals with the nomenclature, modern study techniques, and functions of gut microbiota, and its relation to health and disease. Copyright © 2013 Asociación Mexicana de Gastroenterología. Published by Masson Doyma México S.A. All rights reserved.

  19. Matriptase activation connects tissue factor-dependent coagulation initiation to epithelial proteolysis and signaling.

    Science.gov (United States)

    Le Gall, Sylvain M; Szabo, Roman; Lee, Melody; Kirchhofer, Daniel; Craik, Charles S; Bugge, Thomas H; Camerer, Eric

    2016-06-23

    The coagulation cascade is designed to sense tissue injury by physical separation of the membrane-anchored cofactor tissue factor (TF) from inactive precursors of coagulation proteases circulating in plasma. Once TF on epithelial and other extravascular cells is exposed to plasma, sequential activation of coagulation proteases coordinates hemostasis and contributes to host defense and tissue repair. Membrane-anchored serine proteases (MASPs) play critical roles in the development and homeostasis of epithelial barrier tissues; how MASPs are activated in mature epithelia is unknown. We here report that proteases of the extrinsic pathway of blood coagulation transactivate the MASP matriptase, thus connecting coagulation initiation to epithelial proteolysis and signaling. Exposure of TF-expressing cells to factors (F) VIIa and Xa triggered the conversion of latent pro-matriptase to an active protease, which in turn cleaved the pericellular substrates protease-activated receptor-2 (PAR2) and pro-urokinase. An activation pathway-selective PAR2 mutant resistant to direct cleavage by TF:FVIIa and FXa was activated by these proteases when cells co-expressed pro-matriptase, and matriptase transactivation was necessary for efficient cleavage and activation of wild-type PAR2 by physiological concentrations of TF:FVIIa and FXa. The coagulation initiation complex induced rapid and prolonged enhancement of the barrier function of epithelial monolayers that was dependent on matriptase transactivation and PAR2 signaling. These observations suggest that the coagulation cascade engages matriptase to help coordinate epithelial defense and repair programs after injury or infection, and that matriptase may contribute to TF-driven pathogenesis in cancer and inflammation.

  20. Gut microbiota utilize immunoglobulin A for mucosal colonization.

    Science.gov (United States)

    Donaldson, G P; Ladinsky, M S; Yu, K B; Sanders, J G; Yoo, B B; Chou, W-C; Conner, M E; Earl, A M; Knight, R; Bjorkman, P J; Mazmanian, S K

    2018-05-18

    The immune system responds vigorously to microbial infection while permitting lifelong colonization by the microbiome. Mechanisms that facilitate the establishment and stability of the gut microbiota remain poorly described. We found that a regulatory system in the prominent human commensal Bacteroides fragilis modulates its surface architecture to invite binding of immunoglobulin A (IgA) in mice. Specific immune recognition facilitated bacterial adherence to cultured intestinal epithelial cells and intimate association with the gut mucosal surface in vivo. The IgA response was required for B. fragilis (and other commensal species) to occupy a defined mucosal niche that mediates stable colonization of the gut through exclusion of exogenous competitors. Therefore, in addition to its role in pathogen clearance, we propose that IgA responses can be co-opted by the microbiome to engender robust host-microbial symbiosis. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  1. Low uptake of silica nanoparticles in Caco-2 intestinal epithelial barriers

    NARCIS (Netherlands)

    Ye, Dong; Bramini, Mattia; Hristov, Delyan R.; Wan, Sha; Salvati, Anna; Åberg, Christoffer; Dawson, Kenneth A.

    2017-01-01

    Cellular barriers, such as the skin, the lung epithelium or the intestinal epithelium, constitute one of the first obstacles facing nanomedicines or other nanoparticles entering organisms. It is thus important to assess the capacity of nanoparticles to enter and transport across such barriers. In

  2. The human microbiota associated with overall health.

    Science.gov (United States)

    Xu, Xiaofei; Wang, Zhujun; Zhang, Xuewu

    2015-03-01

    Human body harbors diverse microbes, the main components include bacteria, eukaryotes and viruses. Emerging evidences show that the human microbiota is intrinsically linked with overall health. The development of next-generation sequencing provides an unprecedented opportunity to investigate the complex microbial communities that are associated with the human body. Many factors like host genetics and environmental factors have a major impact on the composition and dynamic changes of human microbiota. The purpose of this paper is to present an overview of the relationship between human health and human microbiota (skin, nasal, throat, oral, vaginal and gut microbiota), then to focus on the factors modulating the composition of the microbiota and the future challenges to manipulate the microbiota for personalized health.

  3. Dysbiosis and zonulin upregulation alter gut epithelial and vascular barriers in patients with ankylosing spondylitis.

    Science.gov (United States)

    Ciccia, Francesco; Guggino, Giuliana; Rizzo, Aroldo; Alessandro, Riccardo; Luchetti, Michele Maria; Milling, Simon; Saieva, Laura; Cypers, Heleen; Stampone, Tommaso; Di Benedetto, Paola; Gabrielli, Armando; Fasano, Alessio; Elewaut, Dirk; Triolo, Giovanni

    2017-06-01

    Dysbiosis has been recently demonstrated in patients with ankylosing spondylitis (AS) but its implications in the modulation of intestinal immune responses have never been studied. The aim of this study was to investigate the role of ileal bacteria in modulating local and systemic immune responses in AS. Ileal biopsies were obtained from 50 HLA-B27 + patients with AS and 20 normal subjects. Silver stain was used to visualise bacteria. Ileal expression of tight and adherens junction proteins was investigated by TaqMan real-time (RT)-PCR and immunohistochemistry. Serum levels of lipopolysaccharide (LPS), LPS-binding protein (LPS-BP), intestinal fatty acid-BP (iFABP) and zonulin were assayed by ELISA. Monocyte immunological functions were studied in in vitro experiments. In addition the effects of antibiotics on tight junctions in human leukocyte antigen (HLA)-B27 transgenic (TG) rats were assessed. Adherent and invasive bacteria were observed in the gut of patients with AS with the bacterial scores significantly correlated with gut inflammation. Impairment of the gut vascular barrier (GVB) was also present in AS, accompanied by significant upregulation of zonulin, and associated with high serum levels of LPS, LPS-BP, iFABP and zonulin. In in vitro studies zonulin altered endothelial tight junctions while its epithelial release was modulated by isolated AS ileal bacteria. AS circulating monocytes displayed an anergic phenotype partially restored by ex vivo stimulation with LPS+sCD14 and their stimulation with recombinant zonulin induced a clear M2 phenotype. Antibiotics restored tight junction function in HLA-B27 TG rats. Bacterial ileitis, increased zonulin expression and damaged intestinal mucosal barrier and GVB, characterises the gut of patients with AS and are associated with increased blood levels of zonulin, and bacterial products. Bacterial products and zonulin influence monocyte behaviour. Published by the BMJ Publishing Group Limited. For permission to use

  4. Chronic colitis due to an epithelial barrier defect: the role of kindlin-1 isoforms.

    Science.gov (United States)

    Kern, J S; Herz, C; Haan, E; Moore, D; Nottelmann, S; von Lilien, T; Greiner, P; Schmitt-Graeff, A; Opitz, O G; Bruckner-Tuderman, L; Has, C

    2007-12-01

    Kindlin-1 is an epithelium-specific phosphoprotein and focal adhesion adaptor component. Mutations in the corresponding gene (KIND1) cause Kindler syndrome (KS), which is manifested by skin blistering, poikiloderma, photosensitivity and carcinogenesis. Some patients also exhibit gastrointestinal symptoms, but it has remained unclear whether these represent a feature of Kindler syndrome or a coincidence. We examined kindlin-1 in human gastrointestinal epithelia and showed that it is involved in the aetiopathology of Kindler syndrome-associated colitis. Kindlin-1 expression was assessed by indirect immunofluorescence, western blot and RT-PCR. Kindlin-1 is expressed in oral mucosa, colon and rectum. Both the full-length 74 kDa kindlin-1 protein and a 43 kDa isoform were detected in CaCo2 cells, the latter resulting from alternative splicing. In the first months of life, patients (homozygous for null mutations) had severe intestinal involvement with haemorrhagic diarrhoea and showed morphological features of severe ulcerative colitis. Later in childhood, histopathology demonstrated focal detachment of the epithelium in all segments of the colon, chronic inflammation and mucosal atrophy. These findings define an intestinal phenotype for Kindler syndrome as a consequence of a primary epithelial barrier defect. The different clinical intestinal manifestations in Kindler syndrome patients may be explained by partial functional compensation of kindlin-1 deficiency by the intestinal isoform or by the presence of truncated mutant kindlin-1. (c) 2007 Pathological Society of Great Britain and Ireland

  5. Microbiota-Brain-Gut Axis and Neurodegenerative Diseases.

    Science.gov (United States)

    Quigley, Eamonn M M

    2017-10-17

    The purposes of this review were as follows: first, to provide an overview of the gut microbiota and its interactions with the gut and the central nervous system (the microbiota-gut-brain axis) in health, second, to review the relevance of this axis to the pathogenesis of neurodegenerative diseases, such as Parkinson's disease, and, finally, to assess the potential for microbiota-targeted therapies. Work on animal models has established the microbiota-gut-brain axis as a real phenomenon; to date, the evidence for its operation in man has been limited and has been confronted by considerable logistical challenges. Animal and translational models have incriminated a disturbed gut microbiota in a number of CNS disorders, including Parkinson's disease; data from human studies is scanty. While a theoretical basis can be developed for the use of microbiota-directed therapies in neurodegenerative disorders, support is yet to come from high-quality clinical trials. In theory, a role for the microbiota-gut-brain axis is highly plausible; clinical confirmation is awaited.

  6. Suction blister lesions and epithelialization monitored by optical coherence tomography

    DEFF Research Database (Denmark)

    Ahlström, M G; Gjerdrum, L M R; Larsen, H F

    2018-01-01

    suction blister was raised on each buttock, and the blister roof was excised. Lesions were covered with moisture-retaining dressing. In Study 1, the lesions were OCT-scanned on day 0 (D0), D2 and D4 and excised for histological examination. In Study 2, the progress of epithelialization and skin barrier...

  7. Dopamine enhances duodenal epithelial permeability via the dopamine D5 receptor in rodent.

    Science.gov (United States)

    Feng, X-Y; Zhang, D-N; Wang, Y-A; Fan, R-F; Hong, F; Zhang, Y; Li, Y; Zhu, J-X

    2017-05-01

    The intestinal barrier is made up of epithelial cells and intercellular junctional complexes to regulate epithelial ion transport and permeability. Dopamine (DA) is able to promote duodenal epithelial ion transport through D1-like receptors, which includes subtypes of D 1 (D 1 R) and D 5 (D 5 R), but whether D1-like receptors influence the duodenal permeability is unclear. FITC-dextran permeability, short-circuit current (I SC ), Western blot, immunohistochemistry and ELISA were used in human D 5 R transgenic mice and hyperendogenous enteric DA (HEnD) rats in this study. Dopamine induced a downward deflection in I SC and an increase in FITC-dextran permeability of control rat duodenum, which were inhibited by the D1-like receptor antagonist, SCH-23390. However, DA decreased duodenal transepithelial resistance (TER), an effect also reversed by SCH-23390. A strong immunofluorescence signal for D 5 R, but not D 1 R, was observed in the duodenum of control rat. In human D 5 R knock-in transgenic mice, duodenal mucosa displayed an increased basal I SC with high FITC-dextran permeability and decreased TER with a lowered expression of tight junction proteins, suggesting attenuated duodenal barrier function in these transgenic mice. D 5 R knock-down transgenic mice manifested a decreased basal I SC with lowered FITC-dextran permeability. Moreover, an increased FITC-dextran permeability combined with decreased TER and tight junction protein expression in duodenal mucosa were also observed in HEnD rats. This study demonstrates, for the first time, that DA enhances duodenal permeability of control rat via D 5 R, which provides new experimental and theoretical evidence for the influence of DA on duodenal epithelial barrier function. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  8. Microbiota dynamics in patients treated with fecal microbiota transplantation for recurrent Clostridium difficile infection.

    Directory of Open Access Journals (Sweden)

    Yang Song

    Full Text Available Clostridium difficile causes antibiotic-associated diarrhea and pseudomembraneous colitis and is responsible for a large and increasing fraction of hospital-acquired infections. Fecal microbiota transplantation (FMT is an alternate treatment option for recurrent C. difficile infection (RCDI refractory to antibiotic therapy. It has recently been discussed favorably in the clinical and scientific communities and is receiving increasing public attention. However, short- and long-term health consequences of FMT remain a concern, as the effects of the transplanted microbiota on the patient remain unknown. To shed light on microbial events associated with RCDI and treatment by FMT, we performed fecal microbiota analysis by 16S rRNA gene amplicon pyrosequencing of 14 pairs of healthy donors and RCDI patients treated successfully by FMT. Post-FMT patient and healthy donor samples collected up to one year after FMT were studied longitudinally, including one post-FMT patient with antibiotic-associated relapse three months after FMT. This analysis allowed us not only to confirm prior reports that RCDI is associated with reduced diversity and compositional changes in the fecal microbiota, but also to characterize previously undocumented post-FMT microbiota dynamics. Members of the Streptococcaceae, Enterococcaceae, or Enterobacteriaceae were significantly increased and putative butyrate producers, such as Lachnospiraceae and Ruminococcaceae were significantly reduced in samples from RCDI patients before FMT as compared to post-FMT patient and healthy donor samples. RCDI patient samples showed more case-specific variations than post-FMT patient and healthy donor samples. However, none of the bacterial groups were invariably associated with RCDI or successful treatment by FMT. Overall microbiota compositions in post-FMT patients, specifically abundances of the above-mentioned Firmicutes, continued to change for at least 16 weeks after FMT, suggesting that

  9. Gut Microbiota Mediates the Protective Effects of Dietary Capsaicin against Chronic Low-Grade Inflammation and Associated Obesity Induced by High-Fat Diet.

    Science.gov (United States)

    Kang, Chao; Wang, Bin; Kaliannan, Kanakaraju; Wang, Xiaolan; Lang, Hedong; Hui, Suocheng; Huang, Li; Zhang, Yong; Zhou, Ming; Chen, Mengting; Mi, Mantian

    2017-05-23

    Metabolic endotoxemia originating from dysbiotic gut microbiota has been identified as a primary mediator for triggering the chronic low-grade inflammation (CLGI) responsible for the development of obesity. Capsaicin (CAP) is the major pungent bioactivator in chili peppers and has potent anti-obesity functions, yet the mechanisms linking this effect to gut microbiota remain obscure. Here we show that mice fed a high-fat diet (HFD) supplemented with CAP exhibit lower levels of metabolic endotoxemia and CLGI associated with lower body weight gain. High-resolution responses of the microbiota were examined by 16S rRNA sequencing, short-chain fatty acid (SCFA) measurements, and phylogenetic reconstruction of unobserved states (PICRUSt) analysis. The results showed, among others, that dietary CAP induced increased levels of butyrate-producing Ruminococcaceae and Lachnospiraceae , while it caused lower levels of members of the lipopolysaccharide (LPS)-producing family S24_7. Predicted function analysis (PICRUSt) showed depletion of genes involved in bacterial LPS synthesis in response to CAP. We further identified that inhibition of cannabinoid receptor type 1 (CB 1 ) by CAP also contributes to prevention of HFD-induced gut barrier dysfunction. Importantly, fecal microbiota transplantation experiments conducted in germfree mice demonstrated that dietary CAP-induced protection against HFD-induced obesity is transferrable. Moreover, microbiota depletion by a cocktail of antibiotics was sufficient to block the CAP-induced protective phenotype against obesity, further suggesting the role of microbiota in this context. Together, our findings uncover an interaction between dietary CAP and gut microbiota as a novel mechanism for the anti-obesity effect of CAP acting through prevention of microbial dysbiosis, gut barrier dysfunction, and chronic low-grade inflammation. IMPORTANCE Metabolic endotoxemia due to gut microbial dysbiosis is a major contributor to the pathogenesis of

  10. Faecal microbiota transplantation

    DEFF Research Database (Denmark)

    Jørgensen, Simon M D; Hansen, Mette Mejlby; Erikstrup, Christian

    2017-01-01

    BACKGROUND: Faecal microbiota transplantation (FMT) is currently being established as a second-line treatment for recurrent Clostridium difficile infection. FMT is further being considered for other infectious and inflammatory conditions. Safe and reproducible methods for donor screening, laborat......BACKGROUND: Faecal microbiota transplantation (FMT) is currently being established as a second-line treatment for recurrent Clostridium difficile infection. FMT is further being considered for other infectious and inflammatory conditions. Safe and reproducible methods for donor screening...

  11. Human Gut Microbiota: Toward an Ecology of Disease

    Science.gov (United States)

    Selber-Hnatiw, Susannah; Rukundo, Belise; Ahmadi, Masoumeh; Akoubi, Hayfa; Al-Bizri, Hend; Aliu, Adelekan F.; Ambeaghen, Tanyi U.; Avetisyan, Lilit; Bahar, Irmak; Baird, Alexandra; Begum, Fatema; Ben Soussan, Hélène; Blondeau-Éthier, Virginie; Bordaries, Roxane; Bramwell, Helene; Briggs, Alicia; Bui, Richard; Carnevale, Matthew; Chancharoen, Marisa; Chevassus, Talia; Choi, Jin H.; Coulombe, Karyne; Couvrette, Florence; D'Abreau, Samantha; Davies, Meghan; Desbiens, Marie-Pier; Di Maulo, Tamara; Di Paolo, Sean-Anthony; Do Ponte, Sabrina; dos Santos Ribeiro, Priscyla; Dubuc-Kanary, Laure-Anne; Duncan, Paola K.; Dupuis, Frédérique; El-Nounou, Sara; Eyangos, Christina N.; Ferguson, Natasha K.; Flores-Chinchilla, Nancy R.; Fotakis, Tanya; Gado Oumarou H D, Mariam; Georgiev, Metodi; Ghiassy, Seyedehnazanin; Glibetic, Natalija; Grégoire Bouchard, Julien; Hassan, Tazkia; Huseen, Iman; Ibuna Quilatan, Marlon-Francis; Iozzo, Tania; Islam, Safina; Jaunky, Dilan B.; Jeyasegaram, Aniththa; Johnston, Marc-André; Kahler, Matthew R.; Kaler, Kiranpreet; Kamani, Cedric; Karimian Rad, Hessam; Konidis, Elisavet; Konieczny, Filip; Kurianowicz, Sandra; Lamothe, Philippe; Legros, Karina; Leroux, Sebastien; Li, Jun; Lozano Rodriguez, Monica E.; Luponio-Yoffe, Sean; Maalouf, Yara; Mantha, Jessica; McCormick, Melissa; Mondragon, Pamela; Narayana, Thivaedee; Neretin, Elizaveta; Nguyen, Thi T. T.; Niu, Ian; Nkemazem, Romeo B.; O'Donovan, Martin; Oueis, Matthew; Paquette, Stevens; Patel, Nehal; Pecsi, Emily; Peters, Jackie; Pettorelli, Annie; Poirier, Cassandra; Pompa, Victoria R.; Rajen, Harshvardhan; Ralph, Reginald-Olivier; Rosales-Vasquez, Josué; Rubinshtein, Daria; Sakr, Surya; Sebai, Mohammad S.; Serravalle, Lisa; Sidibe, Fily; Sinnathurai, Ahnjana; Soho, Dominique; Sundarakrishnan, Adithi; Svistkova, Veronika; Ugbeye, Tsolaye E.; Vasconcelos, Megan S.; Vincelli, Michael; Voitovich, Olga; Vrabel, Pamela; Wang, Lu; Wasfi, Maryse; Zha, Cong Y.; Gamberi, Chiara

    2017-01-01

    Composed of trillions of individual microbes, the human gut microbiota has adapted to the uniquely diverse environments found in the human intestine. Quickly responding to the variances in the ingested food, the microbiota interacts with the host via reciprocal biochemical signaling to coordinate the exchange of nutrients and proper immune function. Host and microbiota function as a unit which guards its balance against invasion by potential pathogens and which undergoes natural selection. Disturbance of the microbiota composition, or dysbiosis, is often associated with human disease, indicating that, while there seems to be no unique optimal composition of the gut microbiota, a balanced community is crucial for human health. Emerging knowledge of the ecology of the microbiota-host synergy will have an impact on how we implement antibiotic treatment in therapeutics and prophylaxis and how we will consider alternative strategies of global remodeling of the microbiota such as fecal transplants. Here we examine the microbiota-human host relationship from the perspective of the microbial community dynamics. PMID:28769880

  12. Microbiota-induced obesity requires farnesoid X receptor

    DEFF Research Database (Denmark)

    Parséus, Ava; Sommer, Nina; Sommer, Felix

    2017-01-01

    weight gain and hepatic steatosis in an FXR-dependent manner, and the bile acid profiles and composition of faecal microbiota differed between Fxr-/- and wild-type mice. The obese phenotype in colonised wild-type mice was associated with increased beta-cell mass, increased adipose inflammation, increased...... microbiota and bile acid composition, beta-cell mass, accumulation of macrophages in adipose tissue, liver steatosis, and expression of target genes in adipose tissue and liver. We also transferred the microbiota of wild-type and Fxr-deficient mice to GF wild-type mice. RESULTS: The gut microbiota promoted...... steatosis and expression of genes involved in lipid uptake. By transferring the caecal microbiota from HFD-fed Fxr-/- and wild-type mice into GF mice, we showed that the obesity phenotype was transferable. CONCLUSIONS: Our results indicate that the gut microbiota promotes diet-induced obesity and associated...

  13. Modulation of Gut Microbiota in Pathological States

    DEFF Research Database (Denmark)

    Wang, Yulan; Wang, Baohong; Wu, Junfang

    2017-01-01

    The human microbiota is an aggregate of microorganisms residing in the human body, mostly in the gastrointestinal tract (GIT). Our gut microbiota evolves with us and plays a pivotal role in human health and disease. In recent years, the microbiota has gained increasing attention due to its impact...... on host metabolism, physiology, and immune system development, but also because the perturbation of the microbiota may result in a number of diseases. The gut microbiota may be linked to malignancies such as gastric cancer and colorectal cancer. It may also be linked to disorders such as nonalcoholic...... fatty liver disease (NAFLD); obesity and diabetes, which are characterized as “lifestyle diseases” of the industrialized world; coronary heart disease; and neurological disorders. Although the revolution in molecular technologies has provided us with the necessary tools to study the gut microbiota more...

  14. Enterotypes influence temporal changes in gut microbiota

    DEFF Research Database (Denmark)

    Roager, Henrik Munch; Licht, Tine Rask; Kellebjerg Poulsen, Sanne

    The human gut microbiota plays an important role for human health. The question is whether we can modulate the gut microbiota by changing diet. During a 6-month, randomised, controlled dietary intervention, the effect of consuming a diet following the New Nordic Diet recommendations (NND......) as opposed to Average Danish Diet (ADD) on the gut microbiota in humans (n=62) was investigated. Quantitative PCR analysis showed that the microbiota did not change significantly by the intervention. Nevertheless, by stratifying subjects into two enterotypes, distinguished by the Prevotella/Bacteroides ratio...... (P/B), we were able to detect significant changes in the gut microbiota composition resulting from the interventions. Subjects with a high-P/B experienced more pronounced changes in the gut microbiota composition than subjects with a low-P/B. The study is the first to indicate that enterotypes...

  15. Microbiota in fermented feed and swine gut.

    Science.gov (United States)

    Wang, Cheng; Shi, Changyou; Zhang, Yu; Song, Deguang; Lu, Zeqing; Wang, Yizhen

    2018-04-01

    Development of alternatives to antibiotic growth promoters (AGP) used in swine production requires a better understanding of their impacts on the gut microbiota. Supplementing fermented feed (FF) in swine diets as a novel nutritional strategy to reduce the use of AGP and feed price, can positively affect the porcine gut microbiota, thereby improving pig productivities. Previous studies have noted the potential effects of FF on the shift in benefit of the swine microbiota in different regions of the gastrointestinal tract (GIT). The positive influences of FF on swine gut microbiota may be due to the beneficial effects of both pre- and probiotics. Necessarily, some methods should be adopted to properly ferment and evaluate the feed and avoid undesired problems. In this mini-review, we mainly discuss the microbiota in both fermented feed and swine gut and how FF influences swine gut microbiota.

  16. Human-derived gut microbiota modulates colonic secretion in mice by regulating 5-HT3 receptor expression via acetate production.

    Science.gov (United States)

    Bhattarai, Yogesh; Schmidt, Bradley A; Linden, David R; Larson, Eric D; Grover, Madhusudan; Beyder, Arthur; Farrugia, Gianrico; Kashyap, Purna C

    2017-07-01

    Serotonin [5-hydroxytryptamine (5-HT)], an important neurotransmitter and a paracrine messenger in the gastrointestinal tract, regulates intestinal secretion by its action primarily on 5-HT 3 and 5-HT 4 receptors. Recent studies highlight the role of gut microbiota in 5-HT biosynthesis. In this study, we determine whether human-derived gut microbiota affects host secretory response to 5-HT and 5-HT receptor expression. We used proximal colonic mucosa-submucosa preparation from age-matched Swiss Webster germ-free (GF) and humanized (HM; ex-GF colonized with human gut microbiota) mice. 5-HT evoked a significantly greater increase in short-circuit current (Δ I sc ) in GF compared with HM mice. Additionally, 5-HT 3 receptor mRNA and protein expression was significantly higher in GF compared with HM mice. Ondansetron, a 5-HT 3 receptor antagonist, inhibited 5-HT-evoked Δ I sc in GF mice but not in HM mice. Furthermore, a 5-HT 3 receptor-selective agonist, 2-methyl-5-hydroxytryptamine hydrochloride, evoked a significantly higher Δ I sc in GF compared with HM mice. Immunohistochemistry in 5-HT 3A -green fluorescent protein mice localized 5-HT 3 receptor expression to enterochromaffin cells in addition to nerve fibers. The significant difference in 5-HT-evoked Δ I sc between GF and HM mice persisted in the presence of tetrodotoxin (TTX) but was lost after ondansetron application in the presence of TTX. Application of acetate (10 mM) significantly lowered 5-HT 3 receptor mRNA in GF mouse colonoids. We conclude that host secretory response to 5-HT may be modulated by gut microbiota regulation of 5-HT 3 receptor expression via acetate production. Epithelial 5-HT 3 receptor may function as a mediator of gut microbiota-driven change in intestinal secretion. NEW & NOTEWORTHY We found that gut microbiota alters serotonin (5-HT)-evoked intestinal secretion in a 5-HT 3 receptor-dependent mechanism and gut microbiota metabolite acetate alters 5-HT 3 receptor expression in

  17. Cancer cells remodel themselves and vasculature to overcome the endothelial barrier.

    Science.gov (United States)

    Shenoy, Anitha K; Lu, Jianrong

    2016-10-01

    Metastasis refers to the spread of cancer cells from a primary tumor to distant organs mostly via the bloodstream. During the metastatic process, cancer cells invade blood vessels to enter circulation, and later exit the vasculature at a distant site. Endothelial cells that line blood vessels normally serve as a barrier to the movement of cells into or out of the blood. It is thus critical to understand how metastatic cancer cells overcome the endothelial barrier. Epithelial cancer cells acquire increased motility and invasiveness through epithelial-to-mesenchymal transition (EMT), which enables them to move toward vasculature. Cancer cells also express a variety of adhesion molecules that allow them to attach to vascular endothelium. Finally, cancer cells secrete or induce growth factors and cytokines to actively prompt vascular hyperpermeability that compromises endothelial barrier function and facilitates transmigration of cancer cells through the vascular wall. Elucidation of the mechanisms underlying metastatic dissemination may help develop new anti-metastasis therapeutics. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Influence of gut microbiota on neuropsychiatric disorders.

    Science.gov (United States)

    Cenit, María Carmen; Sanz, Yolanda; Codoñer-Franch, Pilar

    2017-08-14

    The last decade has witnessed a growing appreciation of the fundamental role played by an early assembly of a diverse and balanced gut microbiota and its subsequent maintenance for future health of the host. Gut microbiota is currently viewed as a key regulator of a fluent bidirectional dialogue between the gut and the brain (gut-brain axis). A number of preclinical studies have suggested that the microbiota and its genome (microbiome) may play a key role in neurodevelopmental and neurodegenerative disorders. Furthermore, alterations in the gut microbiota composition in humans have also been linked to a variety of neuropsychiatric conditions, including depression, autism and Parkinson's disease. However, it is not yet clear whether these changes in the microbiome are causally related to such diseases or are secondary effects thereof. In this respect, recent studies in animals have indicated that gut microbiota transplantation can transfer a behavioral phenotype, suggesting that the gut microbiota may be a modifiable factor modulating the development or pathogenesis of neuropsychiatric conditions. Further studies are warranted to establish whether or not the findings of preclinical animal experiments can be generalized to humans. Moreover, although different communication routes between the microbiota and brain have been identified, further studies must elucidate all the underlying mechanisms involved. Such research is expected to contribute to the design of strategies to modulate the gut microbiota and its functions with a view to improving mental health, and thus provide opportunities to improve the management of psychiatric diseases. Here, we review the evidence supporting a role of the gut microbiota in neuropsychiatric disorders and the state of the art regarding the mechanisms underlying its contribution to mental illness and health. We also consider the stages of life where the gut microbiota is more susceptible to the effects of environmental stressors, and

  19. Gut microbiota, low-grade inflammation, and metabolic syndrome.

    Science.gov (United States)

    Chassaing, Benoit; Gewirtz, Andrew T

    2014-01-01

    The intestinal tract is inhabited by a large diverse community of bacteria collectively referred to as the gut microbiota. Alterations in gut microbiota composition are associated with a variety of disease states including obesity, diabetes, and inflammatory bowel disease (IBD). Transplant of microbiota from diseased persons (or mice) to germfree mice transfers some aspects of disease phenotype, indicating that altered microbiota plays a role in disease establishment and manifestation. There are myriad potential mechanisms by which alterations in gut microbiota might promote disease, including increasing energy harvest, production of toxic metabolites, and molecular mimicry of host proteins. However, our research indicates that an overarching mechanism by which an aberrant microbiota negatively impacts health is by driving chronic inflammation. More specifically, we hypothesize that the histopathologically evident gut inflammation that defines IBD is a severe but relatively rare outcome of an altered host-microbiota relationship, while a much more common consequence of such disturbances is "low-grade" inflammation characterized by elevated proinflammatory gene expression that associates with, and may promote, metabolic syndrome. In this context, a variety of chronic inflammatory diseases may stem from inability of the mucosal immune system to properly manage a stable healthy relationship with the gut microbiota. While one's ability to manage their gut microbiota is dictated in part by genetics, it can be markedly influenced by the composition of the microbiota one inherits from their early environment. Moreover, the host-microbiota relationship can be perturbed by instigator bacteria or dietary components, which may prove to play a role in promoting chronic inflammatory disease states.

  20. Gut microbiota and the development of obesity.

    Science.gov (United States)

    Boroni Moreira, A P; Fiche Salles Teixeira, T; do C Gouveia Peluzio, M; de Cássia Gonçalves Alfenas, R

    2012-01-01

    Advances in tools for molecular investigations have allowed deeper understanding of how microbes can influence host physiology. A very interesting field of research that has gained attention recently is the possible role of gut microbiota in the development of obesity and metabolic disorders. The aim of this review is to discuss mechanisms that explain the influence of gut microbiota on host metabolism. The gut microbiota is important for normal physiology of the host. However, differences in their composition may have different impacts on host metabolism. It has been shown that obese and lean subjects present different microbiota composition profile. These differences in microbiota composition may contribute to weight imbalance and impaired metabolism. The evidences from animal models suggest that it is possible that the microbiota of obese subjects has higher capacity to harvest energy from the diet providing substrates that can activate lipogenic pathways. In addition, microorganisms can also influence the activity of lipoprotein lipase interfering in the accumulation of triglycerides in the adipose tissue. The interaction of gut microbiota with the endocannabinoid system provides a route through which intestinal permeability can be altered. Increased intestinal permeability allows the entrance of endotoxins to the circulation, which are related to the induction of inflammation and insulin resistance in mice. The impact of the proposed mechanisms for humans still needs further investigations. However, the fact that gut microbiota can be modulated through dietary components highlights the importance to study how fatty acids, carbohydrates, micronutrients, prebiotics, and probiotics can influence gut microbiota composition and the management of obesity. Gut microbiota seems to be an important and promising target in the prevention and treatment of obesity and its related metabolic disturbances in future studies and in clinical practice.

  1. Human retinal pigment epithelial cell-induced apoptosis in activated T cells

    DEFF Research Database (Denmark)

    Jørgensen, A; Wiencke, A K; la Cour, M

    1998-01-01

    PURPOSE: The immune privilege of the eye has been thought to be dependent on physical barriers and absence of lymphatic vessels. However, the immune privilege may also involve active immunologic processes, as recent studies have indicated. The purpose of the present study was to investigate whether...... human retinal pigment epithelial (RPE) cells can induce apoptosis in activated T cells. METHODS: Fas ligand (FasL) expression was detected by flow cytometry and immunohistochemistry. Cultured RPE cells were cocultured with T-cell lines and peripheral blood lymphocytes for 6 hours to 2 days. Induction...... of apoptosis was detected by 7-amino-actinomycin D and annexin V staining. RESULTS: Retinal pigment epithelial cells expressed FasL and induced apoptosis in activated Fas+ T cells. Blocking of Fas-FasL interaction with antibody strongly inhibited RPE-mediated T-cell apoptosis. Retinal pigment epithelial cells...

  2. Lymphoma Caused by Intestinal Microbiota

    Directory of Open Access Journals (Sweden)

    Mitsuko L. Yamamoto

    2014-09-01

    Full Text Available The intestinal microbiota and gut immune system must constantly communicate to maintain a balance between tolerance and activation: on the one hand, our immune system should protect us from pathogenic microbes and on the other hand, most of the millions of microbes in and on our body are innocuous symbionts and some can even be beneficial. Since there is such a close interaction between the immune system and the intestinal microbiota, it is not surprising that some lymphomas such as mucosal-associated lymphoid tissue (MALT lymphoma have been shown to be caused by the presence of certain bacteria. Animal models played an important role in establishing causation and mechanism of bacteria-induced MALT lymphoma. In this review we discuss different ways that animal models have been applied to establish a link between the gut microbiota and lymphoma and how animal models have helped to elucidate mechanisms of microbiota-induced lymphoma. While there are not a plethora of studies demonstrating a connection between microbiota and lymphoma development, we believe that animal models are a system which can be exploited in the future to enhance our understanding of causation and improve prognosis and treatment of lymphoma.

  3. Exposing to cadmium stress cause profound toxic effect on microbiota of the mice intestinal tract.

    Directory of Open Access Journals (Sweden)

    Yehao Liu

    Full Text Available Cadmium (Cd, one of the heavy metals, is an important environmental pollutant and a potent toxicant to organism. It poses a severe threat to the growth of the organism, and also has been recognized as a human carcinogen. However, the toxicity of cadmium and its influences on microbiota in mammal's intestine are still unclear. In our experiment, the changes of intestinal microbiota in two groups of mice were investigated, which were supplied with 20 and 100 mg kg(-1 cadmium chloride respectively for 3 weeks. The control group was treated with water free from cadmium chloride only. This study demonstrated that Cd accumulated in some tissues of mice after Cd administration and the gut barrier was impaired. Cd exposure also significantly elevated the colonic level of TNF-α. On the other hand, Cd-treatment could slow down the growth of gut microbiota and reduced the abundance of total intestinal bacteria of the mice. Among them, the growth of Bacteroidetes was significantly suppressed while Firmicutes growth was not. The probiotics including Lactobacillus and Bifidobacterium were notably inhibited. We also observed that the copies of key genes involved in the metabolism of carbohydrates to short-chain fatty acids (SCFAs were lower in Cd-treated groups than control. As a result, the levels of short-chain fatty acids in colonic decreased significantly. In summary, this study provides valuable insight into the effects of Cd intake on mice gut microbiota.

  4. Omics approaches to study host-microbiota interactions

    NARCIS (Netherlands)

    Baarlen, van P.; Kleerebezem, M.; Wells, J.

    2013-01-01

    The intestinal microbiota has profound effects on our physiology and immune system and disturbances in the equilibrium between microbiota and host have been observed in many disorders. Here we discuss the possibilities to further our understanding of how microbiota impacts on human health and

  5. The DNA Sensor AIM2 Maintains Intestinal Homeostasis via Regulation of Epithelial Antimicrobial Host Defense

    Directory of Open Access Journals (Sweden)

    Shuiqing Hu

    2015-12-01

    Full Text Available Microbial pattern molecules in the intestine play immunoregulatory roles via diverse pattern recognition receptors. However, the role of the cytosolic DNA sensor AIM2 in the maintenance of intestinal homeostasis is unknown. Here, we show that Aim2−/− mice are highly susceptible to dextran sodium sulfate-induced colitis that is associated with microbial dysbiosis as represented by higher colonic burden of commensal Escherichia coli. Colonization of germ-free mice with Aim2−/− mouse microbiota leads to higher colitis susceptibility. In-depth investigation of AIM2-mediated host defense responses reveals that caspase-1 activation and IL-1β and IL-18 production are compromised in Aim2−/− mouse colons, consistent with defective inflammasome function. Moreover, IL-18 infusion reduces E. coli burden as well as colitis susceptibility in Aim2−/− mice. Altered microbiota in inflammasome-defective mice correlate with reduced expression of several antimicrobial peptides in intestinal epithelial cells. Together, these findings implicate DNA sensing by AIM2 as a regulatory mechanism for maintaining intestinal homeostasis.

  6. Human Gut Microbiota: Toward an Ecology of Disease

    Directory of Open Access Journals (Sweden)

    Susannah Selber-Hnatiw

    2017-07-01

    Full Text Available Composed of trillions of individual microbes, the human gut microbiota has adapted to the uniquely diverse environments found in the human intestine. Quickly responding to the variances in the ingested food, the microbiota interacts with the host via reciprocal biochemical signaling to coordinate the exchange of nutrients and proper immune function. Host and microbiota function as a unit which guards its balance against invasion by potential pathogens and which undergoes natural selection. Disturbance of the microbiota composition, or dysbiosis, is often associated with human disease, indicating that, while there seems to be no unique optimal composition of the gut microbiota, a balanced community is crucial for human health. Emerging knowledge of the ecology of the microbiota-host synergy will have an impact on how we implement antibiotic treatment in therapeutics and prophylaxis and how we will consider alternative strategies of global remodeling of the microbiota such as fecal transplants. Here we examine the microbiota-human host relationship from the perspective of the microbial community dynamics.

  7. High-Fat Diet Induces Dysbiosis of Gastric Microbiota Prior to Gut Microbiota in Association With Metabolic Disorders in Mice.

    Science.gov (United States)

    He, Cong; Cheng, Dandan; Peng, Chao; Li, Yanshu; Zhu, Yin; Lu, Nonghua

    2018-01-01

    Accumulating evidence suggests that high-fat diet (HFD) induced metabolic disorders are associated with dysbiosis of gut microbiota. However, no study has explored the effect of HFD on the gastric microbiota. This study established the HFD animal model to determine the impact of HFD on the gastric microbiota and its relationship with the alterations of gut microbiota. A total of 40 male C57BL/6 mice were randomly allocated to receive a standard chow diet (CD) or HFD for 12 weeks (12CD group and 12HFD group) and 24 weeks (24CD group and 24HFD group) ( n = 10 mice per group). Body weight and length were measured and Lee's index was calculated at different time points. The insulin sensitivity and serum levels of metabolic parameters including blood glucose, insulin and lipid were also evaluated. The gastric mucosa and fecal microbiota of mice were characterized by 16S rRNA gene sequencing. The body weight was much heavier and the Lee's index was higher in 24HFD group than 12HFD. The insulin resistance and serum level of lipid were increased in 24HFD group compared to 12HFD, indicating the aggravation of metabolic disorders as HFD went on. 16S rRNA gene sequencing showed dysbiosis of gastric microbiota with decreased community diversity while no significant alteration in gut microbiota after 12 weeks of HFD. The phyla Firmicutes and Proteobacteria tended to increase whereas Bacteroidetes and Verrucomicrobia decrease in the gastric microbiota of 12HFD mice compared to 12CD. Moreover, a remarkable reduction of bacteria especially Akkermansia muciniphila , which has beneficial effects on host metabolism, was observed firstly in the stomach of 12HFD group and then in the gut of 24HFD group, indicating the earlier alterations of microbiota in stomach than gut after HFD. We also found structural segregation of microbiota in the stomach as well as gut between 12HFD and 24HFD group, which is accompanied by the aggregation of metabolic disorders. These data suggest that HFD

  8. Host-microbiota interplay in mediating immune disorders.

    Science.gov (United States)

    Felix, Krysta M; Tahsin, Shekha; Wu, Hsin-Jung Joyce

    2018-04-01

    To maintain health, the immune system must maintain a delicate balance between eliminating invading pathogens and avoiding immune disorders such as autoimmunity and allergies. The gut microbiota provide essential health benefits to the host, particularly by regulating immune homeostasis. Dysbiosis, an alteration and imbalance of the gut microbiota, is associated with the development of several autoimmune diseases in both mice and humans. In this review, we discuss recent advances in understanding how certain factors, such as age and gender, affect the gut microbiota, which in turn can influence the development of autoimmune diseases. The age factor in microbiota-dependent immune disorders indicates a window of opportunity for future diagnostic and therapeutic approaches. We also discuss unique commensal bacteria with strong immunomodulatory activity. Finally, we provide an overview of the potential molecular mechanisms whereby gut microbiota induce autoimmunity, as well as the evidence that gut microbiota trigger extraintestinal diseases by inducing the migration of gut-derived immune cells. Elucidating the interaction of gut microbiota and the host immune system will help us understand the pathogenesis of immune disorders, and provide us with new foundations to develop novel immuno- or microbe-targeted therapies. © 2017 New York Academy of Sciences.

  9. Interaction of the pathogenic mold Aspergillus fumigatus with lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Nir eOsherov

    2012-09-01

    Full Text Available Aspergillus fumigatus is an opportunistic environmental mold that can cause severe allergic responses in atopic individuals and poses a life-threatening risk for severely immunocompromised patients. Infection is caused by inhalation of fungal spores (conidia into the lungs. The initial point of contact between the fungus and the host is a monolayer of lung epithelial cells. Understanding how these cells react to fungal contact is crucial to elucidating the pathobiology of Aspergillus-related disease states. The experimental systems, both in vitro and in vivo, used to study these interactions, are described. Distinction is made between bronchial and alveolar epithelial cells. The experimental findings suggest that lung epithelial cells are more than just innocent bystanders or a purely physical barrier against infection. They can be better described as an active extension of our innate immune system, operating as a surveillance mechanism that can specifically identify fungal spores and activate an offensive response to block infection. This response includes the internalization of adherent conidia and the release of cytokines, antimicrobial peptides and reactive oxygen species. In the case of allergy, lung epithelial cells can dampen an over-reactive immune response by releasing anti-inflammatory compounds such as kinurenine. This review summarizes our current knowledge regarding the interaction of A. fumigatus with lung epithelial cells. A better understanding of the interactions between A. fumigatus and lung epithelial cells has therapeutic implications, as stimulation or inhibition of the epithelial response may alter disease outcome.

  10. Linking Microbiota to Human Diseases

    DEFF Research Database (Denmark)

    Wu, Hao; Tremaroli, Valentina; Bäckhed, F

    2015-01-01

    The human gut microbiota encompasses a densely populated ecosystem that provides essential functions for host development, immune maturation, and metabolism. Alterations to the gut microbiota have been observed in numerous diseases, including human metabolic diseases such as obesity, type 2...

  11. Activation of intestinal epithelial Stat3 orchestrates tissue defense during gastrointestinal infection.

    Directory of Open Access Journals (Sweden)

    Nadine Wittkopf

    Full Text Available Gastrointestinal infections with EHEC and EPEC are responsible for outbreaks of diarrheal diseases and represent a global health problem. Innate first-line-defense mechanisms such as production of mucus and antimicrobial peptides by intestinal epithelial cells are of utmost importance for host control of gastrointestinal infections. For the first time, we directly demonstrate a critical role for Stat3 activation in intestinal epithelial cells upon infection of mice with Citrobacter rodentium - a murine pathogen that mimics human infections with attaching and effacing Escherichia coli. C. rodentium induced transcription of IL-6 and IL-22 in gut samples of mice and was associated with activation of the transcription factor Stat3 in intestinal epithelial cells. C. rodentium infection induced expression of several antimicrobial peptides such as RegIIIγ and Pla2g2a in the intestine which was critically dependent on Stat3 activation. Consequently, mice with specific deletion of Stat3 in intestinal epithelial cells showed increased susceptibility to C. rodentium infection as indicated by high bacterial load, severe gut inflammation, pronounced intestinal epithelial cell death and dissemination of bacteria to distant organs. Together, our data implicate an essential role for Stat3 activation in intestinal epithelial cells during C. rodentium infection. Stat3 concerts the host response to bacterial infection by controlling bacterial growth and suppression of apoptosis to maintain intestinal epithelial barrier function.

  12. Outer Membrane Vesicles From Probiotic and Commensal Escherichia coli Activate NOD1-Mediated Immune Responses in Intestinal Epithelial Cells

    Directory of Open Access Journals (Sweden)

    María-Alexandra Cañas

    2018-03-01

    Full Text Available Gut microbiota plays a critical role in maintaining human intestinal homeostasis and host health. Bacterial extracellular vesicles are key players in bacteria–host communication, as they allow delivery of effector molecules into the host cells. Outer membrane vesicles (OMVs released by Gram-negative bacteria carry many ligands of pattern recognition receptors that are key components of innate immunity. NOD1 and NOD2 cytosolic receptors specifically recognize peptidoglycans present within the bacterial cell wall. These intracellular immune receptors are essential in host defense against bacterial infections and in the regulation of inflammatory responses. Recent contributions show that NODs are also fundamental to maintain intestinal homeostasis and microbiota balance. Peptidoglycan from non-invasive pathogens is delivered to cytosolic NODs through OMVs, which are internalized via endocytosis. Whether this pathway could be used by microbiota to activate NOD receptors remains unexplored. Here, we report that OMVs isolated from the probiotic Escherichia coli Nissle 1917 and the commensal ECOR12 activate NOD1 signaling pathways in intestinal epithelial cells. NOD1 silencing and RIP2 inhibition significantly abolished OMV-mediated activation of NF-κB and subsequent IL-6 and IL-8 expression. Confocal fluorescence microscopy analysis confirmed that endocytosed OMVs colocalize with NOD1, trigger the formation of NOD1 aggregates, and promote NOD1 association with early endosomes. This study shows for the first time the activation of NOD1-signaling pathways by extracellular vesicles released by gut microbiota.

  13. Breakdown evaluation of corneal epithelial barrier caused by antiallergic eyedrops using an electrophysiologic method.

    Science.gov (United States)

    Nakashima, Mikiro; Nakamura, Tadahiro; Teshima, Mugen; To, Hideto; Uematsu, Masafumi; Kitaoka, Takashi; Taniyama, Kotaro; Nishida, Koyo; Nakamura, Junzo; Sasaki, Hitoshi

    2008-02-01

    The aim of this study was to examine the usefulness of an electrophysiologic method for predicting corneal epithelial breakdown by antiallergic eyedrops and comparing the results with those in other appraisal methods. Six kinds of antiallergic eyedrops, including benzalkonium chloride (BK) as an ophthalmic preservative and two kinds of BK-free antiallergic eyedrops, were used in this study. Eyedrops were applied to excise rabbit corneas and monitoring was performed according to an electrophysiologic method, using a commercially available chamber system to mimic human tear turnover. Changes in transepithelial electrical resistance (TEER) in the corneal surface were recorded. The cytotoxicity of each kind of eyedrops in a normal rabbit corneal epithelial (NRCE) cell line and a human endothelial cell line EA.hy926 was also examined. The extent of decrease in the corneal TEER after applying antiallergic eyedrops was dependent on the concentration of the BK included as a preservative, but it was also affected by the different kinds of drugs when the BK concentration was low. Higher cytotoxicity of the eyedrops against the NRCE and EA.hy926 cell lines was observed with a reduction of TEER. Monitoring changes in the corneal TEER, according to the electrophysiologic method with the application of antiallergic eyedrops, is useful for predicting corneal epithelial breakdown caused by their instillation.

  14. Actin-interacting protein 1 controls assembly and permeability of intestinal epithelial apical junctions.

    Science.gov (United States)

    Lechuga, Susana; Baranwal, Somesh; Ivanov, Andrei I

    2015-05-01

    Adherens junctions (AJs) and tight junctions (TJs) are crucial regulators of the integrity and restitution of the intestinal epithelial barrier. The structure and function of epithelial junctions depend on their association with the cortical actin cytoskeleton that, in polarized epithelial cells, is represented by a prominent perijunctional actomyosin belt. The assembly and stability of the perijunctional cytoskeleton is controlled by constant turnover (disassembly and reassembly) of actin filaments. Actin-interacting protein (Aip) 1 is an emerging regulator of the actin cytoskeleton, playing a critical role in filament disassembly. In this study, we examined the roles of Aip1 in regulating the structure and remodeling of AJs and TJs in human intestinal epithelium. Aip1 was enriched at apical junctions in polarized human intestinal epithelial cells and normal mouse colonic mucosa. Knockdown of Aip1 by RNA interference increased the paracellular permeability of epithelial cell monolayers, decreased recruitment of AJ/TJ proteins to steady-state intercellular contacts, and attenuated junctional reassembly in a calcium-switch model. The observed defects of AJ/TJ structure and functions were accompanied by abnormal organization and dynamics of the perijunctional F-actin cytoskeleton. Moreover, loss of Aip1 impaired the apico-basal polarity of intestinal epithelial cell monolayers and inhibited formation of polarized epithelial cysts in 3-D Matrigel. Our findings demonstrate a previously unanticipated role of Aip1 in regulating the structure and remodeling of intestinal epithelial junctions and early steps of epithelial morphogenesis. Copyright © 2015 the American Physiological Society.

  15. Prebiotics and gut microbiota in chickens.

    Science.gov (United States)

    Pourabedin, Mohsen; Zhao, Xin

    2015-08-01

    Prebiotics are non-digestible feed ingredients that are metabolized by specific members of intestinal microbiota and provide health benefits for the host. Fermentable oligosaccharides are best known prebiotics that have received increasing attention in poultry production. They act through diverse mechanisms, such as providing nutrients, preventing pathogen adhesion to host cells, interacting with host immune systems and affecting gut morphological structure, all presumably through modulation of intestinal microbiota. Currently, fructooligosaccharides, inulin and mannanoligosaccharides have shown promising results while other prebiotic candidates such as xylooligosaccharides are still at an early development stage. Despite a growing body of evidence reporting health benefits of prebiotics in chickens, very limited studies have been conducted to directly link health improvements to prebiotic-dependent changes in the gut microbiota. This article visits the current knowledge of the chicken gastrointestinal microbiota and reviews most recent publications related to the roles played by prebiotics in modulation of the gut microbiota and immune functions. Progress in this field will help us better understand how the gut microbiota contributes to poultry health and productivity, and support the development of new prebiotic products as an alternative to in-feed antibiotics. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Effects of dietary poly-β-hydroxybutyrate (PHB) on microbiota composition and the mTOR signaling pathway in the intestines of litopenaeus vannamei.

    Science.gov (United States)

    Duan, Yafei; Zhang, Yue; Dong, Hongbiao; Wang, Yun; Zhang, Jiasong

    2017-12-01

    Poly-β-hydroxybutyrate (PHB) is a natural polymer of the short chain fatty acid β-hydroxybutyrate, which acts as a microbial control agent. The mammalian target of the rapamycin (mTOR) signaling pathway plays a crucial role in intestine inflammation and epithelial morphogenesis. In this study, we examined the composition of intestine microbiota, and mTOR signaling-related gene expression in Pacific white shrimp Litopenaeus vannamei fed diets containing different levels of PHB: 0% (Control), 1% (PHB1), 3% (PHB3), and 5% (PHB5) (w/w) for 35 days. High-throughput sequencing analysis revealed that dietary PHB altered the composition and diversity of intestine microbiota, and that the microbiota diversity decreased with the increasing doses of PHB. Specifically, dietary PHB increased the relative abundance of Proteobacteria and Tenericutes in the PHB1 and PHB5 groups, respectively, and increased that of Gammaproteobacteria in the three PHB groups. Alternatively, PHB decreased Alphaproteobacteria in the PHB3 and PHB5 groups. At the genus level, dietary PHB increased the abundance of beneficial bacteria, such as Bacillus, Lactobacillus, Lactococcus, Clostridium, and Bdellovibrio. The relative mRNA expression levels of the mTOR signaling-related genes TOR, 4E-BP, eIF4E1α, and eIF4E2 all increased in the three PHB treatment groups. These results revealed that dietary PHB supplementation had a beneficial effect on intestine health of L. vannamei by modulating the composition of intestine microbiota and activating mTOR signaling.

  17. Rectal swabs for analysis of the intestinal microbiota.

    Directory of Open Access Journals (Sweden)

    Andries E Budding

    Full Text Available The composition of the gut microbiota is associated with various disease states, most notably inflammatory bowel disease, obesity and malnutrition. This underlines that analysis of intestinal microbiota is potentially an interesting target for clinical diagnostics. Currently, the most commonly used sample types are feces and mucosal biopsy specimens. Because sampling method, storage and processing of samples impact microbiota analysis, each sample type has its own limitations. An ideal sample type for use in routine diagnostics should be easy to obtain in a standardized fashion without perturbation of the microbiota. Rectal swabs may satisfy these criteria, but little is known about microbiota analysis on these sample types. In this study we investigated the characteristics and applicability of rectal swabs for gut microbiota profiling in a clinical routine setting in patients presenting with various gastro-intestinal disorders. We found that rectal swabs appeared to be a convenient means of sampling the human gut microbiota. Swabs can be performed on demand, whenever a patient presents; swab-derived microbiota profiles are reproducible, whether they are gathered at home by patients or by medical professionals in an outpatient setting and may be ideally suited for clinical diagnostics and large-scale studies.

  18. Microbiota in the stomach: new insights.

    Science.gov (United States)

    Wu, Wen Ming; Yang, Yun Sheng; Peng, Li Hua

    2014-02-01

    Bacteria are sparsely distributed in the stomach due to the gastric microbicidal barrier. Several innate defenses (low pH, migrating motor complex and the entero-salivary circulation of nitrate) as well as external factors (diet, Helicobacter pylori infection, proton pump inhibitors, antibiotics and stomach diseases) have been shown to influence significantly the microbiota composition in the stomach. In recent years new culture-independent technologies have allowed the investigation of the cross talk that occurs between hosts and stomach-associated microflora, which helps us to understand the role of gastric bacterial flora in the gastrointestinal microbiological system, both in physiological and pathological conditions. Here, we reviewed the literatures related to this topic and set the stage for future developments of the field. © 2013 Chinese Medical Association Shanghai Branch, Chinese Society of Gastroenterology, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine and Wiley Publishing Asia Pty Ltd.

  19. Microbiota-Derived Metabolic Factors Reduce Campylobacteriosis in Mice.

    Science.gov (United States)

    Sun, Xiaolun; Winglee, Kathryn; Gharaibeh, Raad Z; Gauthier, Josee; He, Zhen; Tripathi, Prabhanshu; Avram, Dorina; Bruner, Steven; Fodor, Anthony; Jobin, Christian

    2018-05-01

    Campylobacter jejuni, a prevalent foodborne bacterial pathogen, exploits the host innate response to induce colitis. Little is known about the roles of microbiota in C jejuni-induced intestinal inflammation. We investigated interactions between microbiota and intestinal cells during C jejuni infection of mice. Germ-free C57BL/6 Il10 -/- mice were colonized with conventional microbiota and infected with a single dose of C jejuni (10 9 colony-forming units/mouse) via gavage. Conventional microbiota were cultured under aerobic, microaerobic, or anaerobic conditions and orally transplanted into germ-free Il10 -/- mice. Colon tissues were collected from mice and analyzed by histology, real-time polymerase chain reaction, and immunoblotting. Fecal microbiota and bile acids were analyzed with 16S sequencing and high-performance liquid chromatography with mass spectrometry, respectively. Introduction of conventional microbiota reduced C jejuni-induced colitis in previously germ-free Il10 -/- mice, independent of fecal load of C jejuni, accompanied by reduced activation of mammalian target of rapamycin. Microbiota transplantation and 16S ribosomal DNA sequencing experiments showed that Clostridium XI, Bifidobacterium, and Lactobacillus were enriched in fecal samples from mice colonized with microbiota cultured in anaerobic conditions (which reduce colitis) compared with mice fed microbiota cultured under aerobic conditions (susceptible to colitis). Oral administration to mice of microbiota-derived secondary bile acid sodium deoxycholate, but not ursodeoxycholic acid or lithocholic acid, reduced C jejuni-induced colitis. Depletion of secondary bile acid-producing bacteria with antibiotics that kill anaerobic bacteria (clindamycin) promoted C jejuni-induced colitis in specific pathogen-free Il10 -/- mice compared with the nonspecific antibiotic nalidixic acid; colitis induction by antibiotics was associated with reduced level of luminal deoxycholate. We identified a

  20. Faecal microbiota in lean and obese dogs.

    Science.gov (United States)

    Handl, Stefanie; German, Alexander J; Holden, Shelley L; Dowd, Scot E; Steiner, Jörg M; Heilmann, Romy M; Grant, Ryan W; Swanson, Kelly S; Suchodolski, Jan S

    2013-05-01

    Previous work has shown obesity to be associated with changes in intestinal microbiota. While obesity is common in dogs, limited information is available about the role of the intestinal microbiota. The aim of this study was to investigate whether alterations in the intestinal microbiota may be associated with canine obesity. Using 16S rRNA gene pyrosequencing and quantitative real-time PCR, we evaluated the composition of the faecal microbiota in 22 lean and 21 obese pet dogs, as well as in five research dogs fed ad libitum and four research dogs serving as lean controls. Firmicutes, Fusobacteria and Actinobacteria were the predominant bacterial phyla. The phylum Actinobacteria and the genus Roseburia were significantly more abundant in the obese pet dogs. The order Clostridiales significantly increased under ad libitum feeding in the research dogs. Canine intestinal microbiota is highly diverse and shows considerable interindividual variation. In the pet dogs, influence on the intestinal microbiota besides body condition, like age, breed, diet or lifestyle, might have masked the effect of obesity. The study population of research dogs was small, and further work is required before the role of the intestinal microbiota in canine obesity is clarified. © 2013 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  1. Expression profiling and functional analysis of Toll-like receptors in primary healthy human nasal epithelial cells shows no correlation and a refractory LPS response

    NARCIS (Netherlands)

    van Tongeren, J.; Röschmann, K. I. L.; Reinartz, S. M.; Luiten, S.; Fokkens, W. J.; de Jong, E. C.; van Drunen, C. M.

    2015-01-01

    Background: Innate immune recognition via Toll-like receptors (TLRs) on barrier cells like epithelial cells has been shown to influence the regulation of local immune responses. Here we determine expression level variations and functionality of TLRs in nasal epithelial cells from healthy donors.

  2. Modulation of Gut Microbiota in Pathological States

    Directory of Open Access Journals (Sweden)

    Yulan Wang

    2017-02-01

    Full Text Available The human microbiota is an aggregate of microorganisms residing in the human body, mostly in the gastrointestinal tract (GIT. Our gut microbiota evolves with us and plays a pivotal role in human health and disease. In recent years, the microbiota has gained increasing attention due to its impact on host metabolism, physiology, and immune system development, but also because the perturbation of the microbiota may result in a number of diseases. The gut microbiota may be linked to malignancies such as gastric cancer and colorectal cancer. It may also be linked to disorders such as nonalcoholic fatty liver disease (NAFLD; obesity and diabetes, which are characterized as “lifestyle diseases” of the industrialized world; coronary heart disease; and neurological disorders. Although the revolution in molecular technologies has provided us with the necessary tools to study the gut microbiota more accurately, we need to elucidate the relationships between the gut microbiota and several human pathologies more precisely, as understanding the impact that the microbiota plays in various diseases is fundamental for the development of novel therapeutic strategies. Therefore, the aim of this review is to provide the reader with an updated overview of the importance of the gut microbiota for human health and the potential to manipulate gut microbial composition for purposes such as the treatment of antibiotic-resistant Clostridium difficile (C. difficile infections. The concept of altering the gut community by microbial intervention in an effort to improve health is currently in its infancy. However, the therapeutic implications appear to be very great. Thus, the removal of harmful organisms and the enrichment of beneficial microbes may protect our health, and such efforts will pave the way for the development of more rational treatment options in the future.

  3. Role of gut microbiota in atherosclerosis

    DEFF Research Database (Denmark)

    Jonsson, Annika Lindskog; Bäckhed, Gert Fredrik

    2017-01-01

    describe three pathways by which microbiota might affect atherogenesis. First, local or distant infections might cause a harmful inflammatory response that aggravates plaque development or triggers plaque rupture. Second, metabolism of cholesterol and lipids by gut microbiota can affect the development...... of atherosclerotic plaques. Third, diet and specific components that are metabolized by gut microbiota can have various effects on atherosclerosis; for example, dietary fibre is beneficial, whereas the bacterial metabolite trimethylamine-N-oxide is considered harmful. Although specific bacterial taxa have been...... associated with atherosclerosis, which is supported by increasing mechanistic evidence, several questions remain to be answered to understand fully how the microbiota contributes to atherosclerosis and cardiovascular disease. Such knowledge might pave the way for novel diagnostics and therapeutics based...

  4. Vaginal Microbiota.

    Science.gov (United States)

    Mendling, Werner

    2016-01-01

    The knowledge about the normal and abnormal vaginal microbiome has changed over the last years. Culturing techniques are not suitable any more for determination of a normal or abnormal vaginal microbiota. Non culture-based modern technologies revealed a complex and dynamic system mainly dominated by lactobacilli.The normal and the abnormal vaginal microbiota are complex ecosystems of more than 200 bacterial species influenced by genes, ethnic background and environmental and behavioral factors. Several species of lactobacilli per individuum dominate the healthy vagina. They support a defense system together with antibacterial substances, cytokines, defensins and others against dysbiosis, infections and care for an normal pregnancy without preterm birth.The numbers of Lactobacillus (L.) iners increase in the case of dysbiosis.Bacterial vaginosis (BV) - associated bacteria (BVAB), Atopobium vaginae and Clostridiales and one or two of four Gardnerella vaginalis - strains develop in different mixtures and numbers polymicrobial biofilms on the vaginal epithelium, which are not dissolved by antibiotic therapies according to guidelines and, thus, provoke recurrences.Aerobic vaginitis seems to be an immunological disorder of the vagina with influence on the microbiota, which is here dominated by aerobic bacteria (Streptococcus agalactiae, Escherichia coli). Their role in AV is unknown.Vaginal or oral application of lactobacilli is obviously able to improve therapeutic results of BV and dysbiosis.

  5. The developing hypopharyngeal microbiota in early life

    DEFF Research Database (Denmark)

    Mortensen, Martin Steen; Brejnrod, Asker Daniel; Roggenbuck, Michael

    2016-01-01

    BACKGROUND: The airways of healthy humans harbor a distinct microbial community. Perturbations in the microbial community have been associated with disease, yet little is known about the formation and development of a healthy airway microbiota in early life. Our goal was to understand the establi......BACKGROUND: The airways of healthy humans harbor a distinct microbial community. Perturbations in the microbial community have been associated with disease, yet little is known about the formation and development of a healthy airway microbiota in early life. Our goal was to understand...... the establishment of the airway microbiota within the first 3 months of life. We investigated the hypopharyngeal microbiota in the unselected COPSAC2010 cohort of 700 infants, using 16S rRNA gene sequencing of hypopharyngeal aspirates from 1 week, 1 month, and 3 months of age. RESULTS: Our analysis shows...... that majority of the hypopharyngeal microbiota of healthy infants belong to each individual's core microbiota and we demonstrate five distinct community pneumotypes. Four of these pneumotypes are dominated by the genera Staphylococcus, Streptococcus, Moraxella, and Corynebacterium, respectively. Furthermore, we...

  6. Immune status, antibiotic medication and pH are associated with changes in the stomach fluid microbiota.

    Science.gov (United States)

    von Rosenvinge, Erik C; Song, Yang; White, James R; Maddox, Cynthia; Blanchard, Thomas; Fricke, W Florian

    2013-07-01

    The stomach acts as a barrier to ingested microbes, thereby influencing the microbial ecology of the entire gastrointestinal (GI) tract. The stomach microbiota and the role of human host and environmental factors, such as health status or medications, in shaping its composition remain largely unknown. We sought to characterize the bacterial and fungal microbiota in the stomach fluid in order to gain insights into the role of the stomach in GI homeostasis. Gastric fluid was collected from 25 patients undergoing clinically indicated upper endoscopy. DNA isolates were used for PCR amplification of bacterial 16S ribosomal RNA (rRNA) genes and fungal internal transcribed spacers (ITS). RNA isolates were used for 16S rRNA cDNA generation and subsequent PCR amplification. While all stomach fluid samples are dominated by the phyla Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria and Fusobacteria (>99% of sequence reads), the transcriptionally active microbiota shows significant reduction in Actinobacteria (34%) and increase in Campylobacter (444%) (PpH >4 (70%; P<0.05). Immunosuppression correlates with decreased abundance of Prevotella (24%), Fusobacterium (2%) and Leptotrichia (6%) and increased abundance of Lactobacillus (3844%) (P<0.003). We have generated the first in-depth characterization of the human gastric fluid microbiota, using bacterial 16S rRNA gene and transcript, and fungal ITS amplicon sequencing and provide evidence for a significant impact of the host immune status on its composition with likely consequences for human health.

  7. Xenobiotic Receptor-Mediated Regulation of Intestinal Barrier Function and Innate Immunity

    Directory of Open Access Journals (Sweden)

    Harmit S. Ranhotra

    2016-07-01

    Full Text Available The molecular basis for the regulation of the intestinal barrier is a very fertile research area. A growing body of knowledge supports the targeting of various components of intestinal barrier function as means to treat a variety of diseases, including the inflammatory bowel diseases. Herein, we will summarize the current state of knowledge of key xenobiotic receptor regulators of barrier function, highlighting recent advances, such that the field and its future are succinctly reviewed. We posit that these receptors confer an additional dimension of host-microbe interaction in the gut, by sensing and responding to metabolites released from the symbiotic microbiota, in innate immunity and also in host drug metabolism. The scientific evidence for involvement of the receptors and its molecular basis for the control of barrier function and innate immunity regulation would serve as a rationale towards development of non-toxic probes and ligands as drugs.

  8. Myosin Light Chain Kinase Mediates Intestinal Barrier Disruption following Burn Injury

    Science.gov (United States)

    Chen, Chuanli; Wang, Pei; Su, Qin; Wang, Shiliang; Wang, Fengjun

    2012-01-01

    Background Severe burn injury results in the loss of intestinal barrier function, however, the underlying mechanism remains unclear. Myosin light chain (MLC) phosphorylation mediated by MLC kinase (MLCK) is critical to the pathophysiological regulation of intestinal barrier function. We hypothesized that the MLCK-dependent MLC phosphorylation mediates the regulation of intestinal barrier function following burn injury, and that MLCK inhibition attenuates the burn-induced intestinal barrier disfunction. Methodology/Principal Findings Male balb/c mice were assigned randomly to either sham burn (control) or 30% total body surface area (TBSA) full thickness burn without or with intraperitoneal injection of ML-9 (2 mg/kg), an MLCK inhibitor. In vivo intestinal permeability to fluorescein isothiocyanate (FITC)-dextran was measured. Intestinal mucosa injury was assessed histologically. Tight junction proteins ZO-1, occludin and claudin-1 was analyzed by immunofluorescent assay. Expression of MLCK and phosphorylated MLC in ileal mucosa was assessed by Western blot. Intestinal permeability was increased significantly after burn injury, which was accompanied by mucosa injury, tight junction protein alterations, and increase of both MLCK and MLC phosphorylation. Treatment with ML-9 attenuated the burn-caused increase of intestinal permeability, mucosa injury, tight junction protein alterations, and decreased MLC phosphorylation, but not MLCK expression. Conclusions/Significance The MLCK-dependent MLC phosphorylation mediates intestinal epithelial barrier dysfunction after severe burn injury. It is suggested that MLCK-dependent MLC phosphorylation may be a critical target for the therapeutic treatment of intestinal epithelial barrier disruption after severe burn injury. PMID:22529961

  9. The Gut Microbiota of Marine Fish

    Science.gov (United States)

    Egerton, Sian; Culloty, Sarah; Whooley, Jason; Stanton, Catherine; Ross, R. Paul

    2018-01-01

    The body of work relating to the gut microbiota of fish is dwarfed by that on humans and mammals. However, it is a field that has had historical interest and has grown significantly along with the expansion of the aquaculture industry and developments in microbiome research. Research is now moving quickly in this field. Much recent focus has been on nutritional manipulation and modification of the gut microbiota to meet the needs of fish farming, while trying to maintain host health and welfare. However, the diversity amongst fish means that baseline data from wild fish and a clear understanding of the role that specific gut microbiota play is still lacking. We review here the factors shaping marine fish gut microbiota and highlight gaps in the research. PMID:29780377

  10. The Gut Microbiota in Host Metabolism and Pathogen Challenges

    DEFF Research Database (Denmark)

    Holm, Jacob Bak

    The human microbiota consists of a complex community of microbial cells that live on and inside each person in a close relationship with their host. The majority of the microbial cells are harboured by the gastro intestinal tract where 10-100 trillion bacteria reside. The microbiota is a dynamic...... community where both composition and function can be affected by changes in the local environment. With the microbiota containing ~150 times more genes than the human host, the microbiota provides a large modifiable “secondary genome” (metagenome). Within the last decade, changes in the gut microbiota...... composition has indeed been established as a factor contributing to the health of the host. Therefore, being able to understand, control and modify the gut microbiota is a promising way of improving health. The following thesis is based on four different projects investigating the murine gut microbiota...

  11. Long-term effects on luminal and mucosal microbiota and commonly acquired taxa in faecal microbiota transplantation for recurrent Clostridium difficile infection

    NARCIS (Netherlands)

    Jalanka, Jonna; Mattila, Eero; Jouhten, Hanne; Hartman, Jorn; Vos, de Willem M.; Arkkila, Perttu; Satokari, Reetta

    2016-01-01

    Background: Faecal microbiota transplantation (FMT) is an effective treatment for recurrent Clostridium difficile infection (rCDI). It restores the disrupted intestinal microbiota and subsequently suppresses C. difficile. The long-term stability of the intestinal microbiota and the recovery of

  12. The composition of the vaginal microbiome in first trimester pregnant women influences the level of autophagy and stress in vaginal epithelial cells.

    Science.gov (United States)

    Nasioudis, Dimitrios; Forney, Larry J; Schneider, G Maria; Gliniewicz, Karol; France, Michael T; Boester, Allison; Sawai, Mio; Scholl, Jessica; Witkin, Steven S

    2017-09-01

    Epithelial cells lining the vagina are major components of genital tract immunity. The influence of the vaginal microbiome on properties of host epithelial cells is largely unexplored. We evaluated whether differences in the most abundant lactobacilli species or bacterial genera in the vagina of first trimester pregnant women were associated with variations in the extent of stress and autophagy in vaginal epithelial cells. Vaginal swabs from 154 first trimester pregnant women were analyzed for bacterial composition by amplification and sequencing of the V1-V3 region of bacterial 16S rRNA genes. Vaginal epithelial cells were lysed and autophagy quantitated by measurement of p62. Intracellular levels of the inducible 70kDa heat shock protein (hsp70), an indicator of cell stress and an autophagy inhibitor, were determined. When Lactobacillus crispatus was the most abundant member of the vaginal microbiota, epithelial p62 and hsp70 levels were lowest as compared to when other bacterial taxa were most abundant. The highest concentrations of p62 and hsp70 were associated with Streptococcus and Bifidobacterium abundance. The p62 level associated with Gardnerella abundance was lower than that observed when lactobacilli other than L. crispatus were most abundant. In conclusion, in the first trimester of pregnancy the abundance of different bacterial taxa is associated with variations in autophagy and magnitude of the stress response in vaginal epithelial cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. HIV gp120 binds to mannose receptor on vaginal epithelial cells and induces production of matrix metalloproteinases.

    Directory of Open Access Journals (Sweden)

    Sashaina E Fanibunda

    Full Text Available BACKGROUND: During sexual transmission of HIV in women, the virus breaches the multi-layered CD4 negative stratified squamous epithelial barrier of the vagina, to infect the sub-epithelial CD4 positive immune cells. However the mechanisms by which HIV gains entry into the sub-epithelial zone is hitherto unknown. We have previously reported human mannose receptor (hMR as a CD4 independent receptor playing a role in HIV transmission on human spermatozoa. The current study was undertaken to investigate the expression of hMR in vaginal epithelial cells, its HIV gp120 binding potential, affinity constants and the induction of matrix metalloproteinases (MMPs downstream of HIV gp120 binding to hMR. PRINCIPAL FINDINGS: Human vaginal epithelial cells and the immortalized vaginal epithelial cell line Vk2/E6E7 were used in this study. hMR mRNA and protein were expressed in vaginal epithelial cells and cell line, with a molecular weight of 155 kDa. HIV gp120 bound to vaginal proteins with high affinity, (Kd = 1.2±0.2 nM for vaginal cells, 1.4±0.2 nM for cell line and the hMR antagonist mannan dose dependently inhibited this binding. Both HIV gp120 binding and hMR exhibited identical patterns of localization in the epithelial cells by immunofluorescence. HIV gp120 bound to immunopurified hMR and affinity constants were 2.9±0.4 nM and 3.2±0.6 nM for vaginal cells and Vk2/E6E7 cell line respectively. HIV gp120 induced an increase in MMP-9 mRNA expression and activity by zymography, which could be inhibited by an anti-hMR antibody. CONCLUSION: hMR expressed by vaginal epithelial cells has high affinity for HIV gp120 and this binding induces production of MMPs. We propose that the induction of MMPs in response to HIV gp120 may lead to degradation of tight junction proteins and the extracellular matrix proteins in the vaginal epithelium and basement membrane, leading to weakening of the epithelial barrier; thereby facilitating transport of HIV across the

  14. Adhesion to the host cell surface is sufficient to mediate Listeria monocytogenes entry into epithelial cells

    Science.gov (United States)

    Ortega, Fabian E.; Rengarajan, Michelle; Chavez, Natalie; Radhakrishnan, Prathima; Gloerich, Martijn; Bianchini, Julie; Siemers, Kathleen; Luckett, William S.; Lauer, Peter; Nelson, W. James; Theriot, Julie A.

    2017-01-01

    The intestinal epithelium is the first physiological barrier breached by the Gram-positive facultative pathogen Listeria monocytogenes during an in vivo infection. Listeria monocytogenes binds to the epithelial host cell receptor E-cadherin, which mediates a physical link between the bacterium and filamentous actin (F-actin). However, the importance of anchoring the bacterium to F-actin through E-cadherin for bacterial invasion has not been tested directly in epithelial cells. Here we demonstrate that depleting αE-catenin, which indirectly links E-cadherin to F-actin, did not decrease L. monocytogenes invasion of epithelial cells in tissue culture. Instead, invasion increased due to increased bacterial adhesion to epithelial monolayers with compromised cell–cell junctions. Furthermore, expression of a mutant E-cadherin lacking the intracellular domain was sufficient for efficient L. monocytogenes invasion of epithelial cells. Importantly, direct biotin-mediated binding of bacteria to surface lipids in the plasma membrane of host epithelial cells was sufficient for uptake. Our results indicate that the only requirement for L. monocytogenes invasion of epithelial cells is adhesion to the host cell surface, and that E-cadherin–mediated coupling of the bacterium to F-actin is not required. PMID:28877987

  15. Microbiota intestinal en la salud y la enfermedad

    OpenAIRE

    M.E. Icaza-Chávez

    2013-01-01

    La microbiota intestinal es la comunidad de microorganismos vivos residentes en el tubo digestivo. Muchos grupos de investigadores a nivel mundial trabajan descifrando el genoma de la microbiota. Las técnicas modernas de estudio de la microbiota nos han acercado al conocimiento de un número importante de bacterias que no son cultivables, y de la relación entre los microorganismos que nos habitan y nuestra homeostasis. La microbiota es indispensable para el correcto crecimiento corporal, el de...

  16. Ingestion of metal-nanoparticle contaminated food disrupts endogenous microbiota in zebrafish (Danio rerio)

    International Nuclear Information System (INIS)

    Merrifield, Daniel L.; Shaw, Benjamin J.; Harper, Glenn M.; Saoud, Imad P.; Davies, Simon J.; Handy, Richard D.; Henry, Theodore B.

    2013-01-01

    Nanoparticles (NPs) can be ingested by organisms, and NPs with antimicrobial properties may disrupt beneficial endogenous microbial communities and affect organism health. Zebrafish were fed diets containing Cu-NPs or Ag-NPs (500 mg kg −1 food), or an appropriate control for 14 d. Intestinal epithelium integrity was examined by transmission electron microscopy, and microbial community structure within the intestine was assessed by denaturing gradient gel electrophoresis (DGGE) of partial 16S rRNA. No lesions were observed in intestinal epithelia; however, presence of NPs in diets changed intestinal microbial community structure. In particular, some beneficial bacterial strains (e.g., Cetobacterium somerae) were suppressed to non-detectable levels by Cu-NP exposure, and two unidentified bacterial clones from the Firmicutes phylum were sensitive (not detected) to Cu, but were present in Ag and control fish. Unique changes in zebrafish microbiome caused by exposure to Ag-NP and Cu-NP indicate that NP ingestion could affect digestive system function and organism health. -- Highlights: ► Zebrafish ingest Cu- and Ag-nanoparticles (NPs) in diet. ► No effect of Cu-NPs or Ag-NPs on intestinal epithelial integrity. ► Cu-NPs and Ag-NPs alter endogenous microbiota of zebrafish. -- Dietary exposure to manufactured Cu- and Ag-nanoparticles caused unique changes in endogenous gut microbiota in zebrafish Danio rerio

  17. Ingestion of metal-nanoparticle contaminated food disrupts endogenous microbiota in zebrafish (Danio rerio)

    Energy Technology Data Exchange (ETDEWEB)

    Merrifield, Daniel L.; Shaw, Benjamin J.; Harper, Glenn M. [School of Biomedical and Biological Sciences, Plymouth University, 401 Davy Building, Drake Circus, Plymouth PL4 8AA, Devon (United Kingdom); Saoud, Imad P. [American University of Beirut, Beirut (Lebanon); Davies, Simon J.; Handy, Richard D. [School of Biomedical and Biological Sciences, Plymouth University, 401 Davy Building, Drake Circus, Plymouth PL4 8AA, Devon (United Kingdom); Henry, Theodore B., E-mail: ted.henry@plymouth.ac.uk [School of Biomedical and Biological Sciences, Plymouth University, 401 Davy Building, Drake Circus, Plymouth PL4 8AA, Devon (United Kingdom); Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN (United States); Department of Forestry, Wildlife and Fisheries, University of Tennessee, Knoxville, TN (United States)

    2013-03-15

    Nanoparticles (NPs) can be ingested by organisms, and NPs with antimicrobial properties may disrupt beneficial endogenous microbial communities and affect organism health. Zebrafish were fed diets containing Cu-NPs or Ag-NPs (500 mg kg{sup −1} food), or an appropriate control for 14 d. Intestinal epithelium integrity was examined by transmission electron microscopy, and microbial community structure within the intestine was assessed by denaturing gradient gel electrophoresis (DGGE) of partial 16S rRNA. No lesions were observed in intestinal epithelia; however, presence of NPs in diets changed intestinal microbial community structure. In particular, some beneficial bacterial strains (e.g., Cetobacterium somerae) were suppressed to non-detectable levels by Cu-NP exposure, and two unidentified bacterial clones from the Firmicutes phylum were sensitive (not detected) to Cu, but were present in Ag and control fish. Unique changes in zebrafish microbiome caused by exposure to Ag-NP and Cu-NP indicate that NP ingestion could affect digestive system function and organism health. -- Highlights: ► Zebrafish ingest Cu- and Ag-nanoparticles (NPs) in diet. ► No effect of Cu-NPs or Ag-NPs on intestinal epithelial integrity. ► Cu-NPs and Ag-NPs alter endogenous microbiota of zebrafish. -- Dietary exposure to manufactured Cu- and Ag-nanoparticles caused unique changes in endogenous gut microbiota in zebrafish Danio rerio.

  18. The gut microbiota, obesity and insulin resistance.

    Science.gov (United States)

    Shen, Jian; Obin, Martin S; Zhao, Liping

    2013-02-01

    The human gut is densely populated by commensal and symbiotic microbes (the "gut microbiota"), with the majority of the constituent microorganisms being bacteria. Accumulating evidence indicates that the gut microbiota plays a significant role in the development of obesity, obesity-associated inflammation and insulin resistance. In this review we discuss molecular and cell biological mechanisms by which the microbiota participate in host functions that impact the development and maintenance of the obese state, including host ingestive behavior, energy harvest, energy expenditure and fat storage. We additionally explore the diverse signaling pathways that regulate gut permeability and bacterial translocation to the host and how these are altered in the obese state to promote the systemic inflammation ("metabolic endotoxemia") that is a hallmark of obesity and its complications. Fundamental to our discussions is the concept of "crosstalk", i.e., the biochemical exchange between host and microbiota that maintains the metabolic health of the superorganism and whose dysregulation is a hallmark of the obese state. Differences in community composition, functional genes and metabolic activities of the gut microbiota appear to distinguish lean vs obese individuals, suggesting that gut 'dysbiosis' contributes to the development of obesity and/or its complications. The current challenge is to determine the relative importance of obesity-associated compositional and functional changes in the microbiota and to identify the relevant taxa and functional gene modules that promote leanness and metabolic health. As diet appears to play a predominant role in shaping the microbiota and promoting obesity-associated dysbiosis, parallel initiatives are required to elucidate dietary patterns and diet components (e.g., prebiotics, probiotics) that promote healthy gut microbiota. How the microbiota promotes human health and disease is a rich area of investigation that is likely to generate

  19. Breakdown of mucin as barrier to digestive enzymes in the ischemic rat small intestine.

    Directory of Open Access Journals (Sweden)

    Marisol Chang

    Full Text Available Loss of integrity of the epithelial/mucosal barrier in the small intestine has been associated with different pathologies that originate and/or develop in the gastrointestinal tract. We showed recently that mucin, the main protein in the mucus layer, is disrupted during early periods of intestinal ischemia. This event is accompanied by entry of pancreatic digestive enzymes into the intestinal wall. We hypothesize that the mucin-containing mucus layer is the main barrier preventing digestive enzymes from contacting the epithelium. Mucin breakdown may render the epithelium accessible to pancreatic enzymes, causing its disruption and increased permeability. The objective of this study was to investigate the role of mucin as a protection for epithelial integrity and function. A rat model of 30 min splanchnic arterial occlusion (SAO was used to study the degradation of two mucin isoforms (mucin 2 and 13 and two epithelial membrane proteins (E-cadherin and toll-like receptor 4, TLR4. In addition, the role of digestive enzymes in mucin breakdown was assessed in this model by luminal inhibition with acarbose, tranexamic acid, or nafamostat mesilate. Furthermore, the protective effect of the mucin layer against trypsin-mediated disruption of the intestinal epithelium was studied in vitro. Rats after SAO showed degradation of mucin 2 and fragmentation of mucin 13, which was not prevented by protease inhibition. Mucin breakdown was accompanied by increased intestinal permeability to FITC-dextran as well as degradation of E-cadherin and TLR4. Addition of mucin to intestinal epithelial cells in vitro protected against trypsin-mediated degradation of E-cadherin and TLR4 and reduced permeability of FITC-dextran across the monolayer. These results indicate that mucin plays an important role in the preservation of the mucosal barrier and that ischemia but not digestive enzymes disturbs mucin integrity, while digestive enzymes actively mediate epithelial cell

  20. The gut microbiota and its relationship to diet and obesity

    Science.gov (United States)

    Clarke, Siobhan F.; Murphy, Eileen F.; Nilaweera, Kanishka; Ross, Paul R.; Shanahan, Fergus; O’Toole, Paul W.; Cotter, Paul D.

    2012-01-01

    Obesity develops from a prolonged imbalance of energy intake and energy expenditure. However, the relatively recent discovery that the composition and function of the gut microbiota impacts on obesity has lead to an explosion of interest in what is now a distinct research field. Here, research relating to the links between the gut microbiota, diet and obesity will be reviewed under five major headings: (1) the gut microbiota of lean and obese animals, (2) the composition of the gut microbiota of lean and obese humans, (3) the impact of diet on the gut microbiota, (4) manipulating the gut microbiota and (5) the mechanisms by which the gut microbiota can impact on weight gain. PMID:22572830

  1. Host-microbiota interactions within the fish intestinal ecosystem.

    Science.gov (United States)

    Pérez, T; Balcázar, J L; Ruiz-Zarzuela, I; Halaihel, N; Vendrell, D; de Blas, I; Múzquiz, J L

    2010-07-01

    Teleost fish are in direct contact with the aquatic environment, and are therefore in continual contact with a complex and dynamic microbiota, some of which may have implications for health. Mucosal surfaces represent the main sites in which environmental antigens and intestinal microbiota interact with the host. Thus, the gut-associated lymphoid tissues (GALT) must develop mechanisms to discriminate between pathogenic and commensal microorganisms. Colonization of intestinal mucosal surfaces with a normal microbiota has a positive effect on immune regulatory functions of the gut, and disturbance in these immune regulatory functions by an imbalanced microbiota may contribute to the development of diseases. Significant attention has therefore been recently focused on the role of probiotics in the induction or restoration of a disturbed microbiota to its normal beneficial composition. Given this, this article explores the fascinating relationship between the fish immune system and the bacteria that are present in its intestinal microbiota, focusing on the bacterial effect on the development of certain immune responses.

  2. Lactobacillus reuteri strains protect epithelial barrier integrity of IPEC-J2 monolayers from the detrimental effect of enterotoxigenic Escherichia coli.

    Science.gov (United States)

    Karimi, Shokoufeh; Jonsson, Hans; Lundh, Torbjörn; Roos, Stefan

    2018-01-01

    Lactobacillus reuteri is an inhabitant of the gastrointestinal (GI) tract of mammals and birds and several strains of this species are known to be effective probiotics. The mechanisms by which L. reuteri confers its health-promoting effects are far from being fully understood, but protection of the mucosal barrier is thought to be important. Leaky gut is a state of abnormal intestinal permeability with implications for the pathophysiology of various gastrointestinal disorders. Enterotoxigenic Escherichia coli (ETEC) can invade the intestinal mucosa and induce changes in barrier function by producing enterotoxin or by direct invasion of the intestinal epithelium. Our hypothesis was that L. reuteri can protect the mucosal barrier, and the goal of the study was to challenge this hypothesis by monitoring the protective effect of L. reuteri strains on epithelial dysfunction caused by ETEC. Using an infection model based on the porcine intestinal cell line IPEC-J2, it was demonstrated that pretreatment of the cells with human-derived L. reuteri strains (ATCC PTA 6475, DSM 17938 and 1563F) and a rat strain (R2LC) reduced the detrimental effect of ETEC in a dose-dependent manner, as monitored by permeability of FITC-dextran and transepithelial electrical resistance (TEER). Moreover, the results revealed that ETEC upregulated proinflammatory cytokines IL-6 and TNFα and decreased expression of the shorter isoform of ZO-1 (187 kDa) and E-cadherin. In contrast, pretreatment with L. reuteri DSM 17938 and 1563F downregulated expression of IL-6 and TNFα, and led to an increase in production of the longer isoform of ZO-1 (195 kDa) and maintained E-cadherin expression. Interestingly, expression of ZO-1 (187 kDa) was preserved only when the infected cells were pretreated with strain 1563F. These findings demonstrate that L. reuteri strains exert a protective effect against ETEC-induced mucosal integrity disruption. © 2018 The Authors. Physiological Reports published by

  3. Gastrointestinal Microbiota and Some Children Diseases: A Review

    Directory of Open Access Journals (Sweden)

    Thabata Koester Weber

    2012-01-01

    Full Text Available The bacterial colonization is defined immediately after birth, through direct contact with maternal microbiota and may be influenced during lactation. There is emerging evidence indicating that quantitative and qualitative changes on gut microbiota contribute to alterations in the mucosal activation of immune system leading to intra- or extra-intestinal diseases. A balance between pathogenic and beneficial microbiota throughout childhood and adolescence is important to gastrointestinal health, including protection against pathogens, inhibition of pathogens, nutrient processing (synthesis of vitamin K, stimulation of angiogenesis, and regulation of host fat storage. Probiotics can promote an intentional modulation of intestinal microbiota favoring the health of the host. This paper is a review about modulation of intestinal microbiota on prevention and adjuvant treatment of pediatric gastrointestinal diseases.

  4. Claudin-4 Undergoes Age-Dependent Change in Cellular Localization on Pig Jejunal Villous Epithelial Cells, Independent of Bacterial Colonization

    Directory of Open Access Journals (Sweden)

    J. Alex Pasternak

    2015-01-01

    Full Text Available Newborn piglets are immunologically naïve and must receive passive immunity via colostrum within 24 hours to survive. Mechanisms by which the newborn piglet gut facilitates uptake of colostral cells, antibodies, and proteins may include FcRn and pIgR receptor-mediated endocytosis and paracellular transport between tight junctions (TJs. In the present study, FcRn gene (FCGRT was minimally expressed in 6-week-old gut and newborn jejunum but it was expressed at significantly higher levels in the ileum of newborn piglets. pIgR was highly expressed in the jejunum and ileum of 6-week-old animals but only minimally in neonatal gut. Immunohistochemical analysis showed that Claudin-5 localized to blood vessel endothelial cells. Claudin-4 was strongly localized to the apical aspect of jejunal epithelial cells for the first 2 days of life after which it was redistributed to the lateral surface between adjacent enterocytes. Claudin-4 was localized to ileal lateral surfaces within 24 hours after birth indicating regional and temporal differences. Tissue from gnotobiotic piglets showed that commensal microbiota did not influence Claudin-4 surface localization on jejunal or ileal enterocytes. Regulation of TJs by Claudin-4 surface localization requires further investigation. Understanding the factors that regulate gut barrier maturation may yield protective strategies against infectious diseases.

  5. The Gut Microbiota of Healthy Chilean Subjects Reveals a High Abundance of the Phylum Verrucomicrobia

    Science.gov (United States)

    Fujio-Vejar, Sayaka; Vasquez, Yessenia; Morales, Pamela; Magne, Fabien; Vera-Wolf, Patricia; Ugalde, Juan A.; Navarrete, Paola; Gotteland, Martin

    2017-01-01

    the Argentinians and sub-populations from the United States. Interestingly, the microbiota of the Chilean subjects stands out for its richness in Verrucomicrobia; the mucus-degrading bacterium Akkermansia muciniphila is the only identified member of this phylum. This is an important finding considering that this microorganism has been recently proposed as a hallmark of healthy gut due to its anti-inflammatory and immunostimulant properties and its ability to improve gut barrier function, insulin sensitivity and endotoxinemia. These results constitute an important baseline that will facilitate the characterization of dysbiosis in the main diseases affecting the Chilean population. PMID:28713349

  6. The Gut Microbiota of Healthy Chilean Subjects Reveals a High Abundance of the Phylum Verrucomicrobia

    Directory of Open Access Journals (Sweden)

    Sayaka Fujio-Vejar

    2017-06-01

    that of the Argentinians and sub-populations from the United States. Interestingly, the microbiota of the Chilean subjects stands out for its richness in Verrucomicrobia; the mucus-degrading bacterium Akkermansia muciniphila is the only identified member of this phylum. This is an important finding considering that this microorganism has been recently proposed as a hallmark of healthy gut due to its anti-inflammatory and immunostimulant properties and its ability to improve gut barrier function, insulin sensitivity and endotoxinemia. These results constitute an important baseline that will facilitate the characterization of dysbiosis in the main diseases affecting the Chilean population.

  7. The small intestine microbiota, nutritional modulation and relevance for health

    NARCIS (Netherlands)

    El Aidy, Sahar; van den Bogert, Bartholomeus; Kleerebezem, Michiel

    The intestinal microbiota plays a profound role in human health and extensive research has been dedicated to identify microbiota aberrations that are associated with disease. Most of this work has been targeting the large intestine and fecal microbiota, while the small intestine microbiota may also

  8. Carbohydrates and the human gut microbiota.

    Science.gov (United States)

    Chassard, Christophe; Lacroix, Christophe

    2013-07-01

    Due to its scale and its important role in maintaining health, the gut microbiota can be considered as a 'new organ' inside the human body. Many complex carbohydrates are degraded and fermented by the human gut microbiota in the large intestine to both yield basic energy salvage and impact gut health through produced metabolites. This review will focus on the gut microbes and microbial mechanisms responsible for polysaccharides degradation and fermentation in the large intestine. Gut microbes and bacterial metabolites impact the host at many levels, including modulation of inflammation, and glucose and lipid metabolisms. A complex relationship occurs in the intestine between the human gut microbiota, diet and the host. Research on carbohydrates and gut microbiota composition and functionality is fast developing and will open opportunities for prevention and treatment of obesity, diabetes and other related metabolic disorders through manipulation of the gut ecosystem.

  9. Myosin light chain kinase mediates intestinal barrier disruption following burn injury.

    Directory of Open Access Journals (Sweden)

    Chuanli Chen

    Full Text Available BACKGROUND: Severe burn injury results in the loss of intestinal barrier function, however, the underlying mechanism remains unclear. Myosin light chain (MLC phosphorylation mediated by MLC kinase (MLCK is critical to the pathophysiological regulation of intestinal barrier function. We hypothesized that the MLCK-dependent MLC phosphorylation mediates the regulation of intestinal barrier function following burn injury, and that MLCK inhibition attenuates the burn-induced intestinal barrier disfunction. METHODOLOGY/PRINCIPAL FINDINGS: Male balb/c mice were assigned randomly to either sham burn (control or 30% total body surface area (TBSA full thickness burn without or with intraperitoneal injection of ML-9 (2 mg/kg, an MLCK inhibitor. In vivo intestinal permeability to fluorescein isothiocyanate (FITC-dextran was measured. Intestinal mucosa injury was assessed histologically. Tight junction proteins ZO-1, occludin and claudin-1 was analyzed by immunofluorescent assay. Expression of MLCK and phosphorylated MLC in ileal mucosa was assessed by Western blot. Intestinal permeability was increased significantly after burn injury, which was accompanied by mucosa injury, tight junction protein alterations, and increase of both MLCK and MLC phosphorylation. Treatment with ML-9 attenuated the burn-caused increase of intestinal permeability, mucosa injury, tight junction protein alterations, and decreased MLC phosphorylation, but not MLCK expression. CONCLUSIONS/SIGNIFICANCE: The MLCK-dependent MLC phosphorylation mediates intestinal epithelial barrier dysfunction after severe burn injury. It is suggested that MLCK-dependent MLC phosphorylation may be a critical target for the therapeutic treatment of intestinal epithelial barrier disruption after severe burn injury.

  10. Intestinal colonisation, microbiota and future probiotics

    NARCIS (Netherlands)

    Salminen, S.; Benno, Y.; Vos, de W.M.

    2006-01-01

    The human intestine is colonized by a large number of microorganisms, collectively termed microbiota, which support a variety of physiological functions. As the major part of the microbiota has not yet been cultured, molecular methods are required to determine microbial composition and the impact of

  11. Hydrostatic pressure incubation affects barrier properties of mammary epithelial cell monolayers, in vitro.

    Science.gov (United States)

    Mießler, Katharina S; Markov, Alexander G; Amasheh, Salah

    2018-01-01

    During lactation, accumulation of milk in mammary glands (MG) causes hydrostatic pressure (HP) and concentration of bioactive compounds. Previously, a changed expression of tight junction (TJ) proteins was observed in mice MGs by accumulation of milk, in vivo. The TJ primarily determines the integrity of the MG epithelium. The present study questioned whether HP alone can affect the TJ in a mammary epithelial cell model, in vitro. Therefore, monolayers of HC11, a mammary epithelial cell line, were mounted into modified Ussing chambers and incubated with 10 kPa bilateral HP for 4 h. Short circuit current and transepithelial resistance were recorded and compared to controls, and TJ proteins were analyzed by Western blotting and immunofluorescent staining. In our first approach HC11 cells could withstand the pressure incubation and a downregulation of occludin was observed. In a second approach, using prolactin- and dexamethasone-induced cells, a decrease of short circuit current was observed, beginning after 2 h of incubation. With the addition of 1 mM barium chloride to the bathing solution the decrease could be blocked temporarily. On molecular level an upregulation of ZO-1 could be observed in hormone-induced cells, which was downregulated after the incubation with barium chloride. In conclusion, bilateral HP incubation affects mammary epithelial monolayers, in vitro. Both, the reduction of short circuit current and the change in TJ proteins may be interpreted as physiological requirements for lactation. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Listeriolysin S: A bacteriocin from epidemic Listeria monocytogenes strains that targets the gut microbiota.

    Science.gov (United States)

    Quereda, Juan J; Meza-Torres, Jazmín; Cossart, Pascale; Pizarro-Cerdá, Javier

    2017-07-04

    Listeria monocytogenes is a Gram-positive food-borne pathogen that in humans may traverse the intestinal, placental and blood/brain barriers, causing gastroenteritis, abortions and meningitis. Crossing of these barriers is dependent on the bacterial ability to enter host cells, and several L. monocytogenes surface and secreted virulence factors are known to facilitate entry and the intracellular lifecycle. The study of L. monocytogenes strains associated to human listeriosis epidemics has revealed the presence of novel virulence factors. One such factor is Listeriolysin S, a thiazole/oxazole modified microcin that displays bactericidal activity and modifies the host microbiota during infection. Our recent results therefore highlight the interaction of L. monocytogenes with gut microbes as a crucial step in epidemic listeriosis. In this article, we will discuss novel implications for this family of toxins in the pathogenesis of diverse medically relevant microorganisms.

  13. Diet strongly influences the gut microbiota of surgeonfishes

    KAUST Repository

    Miyake, Sou

    2015-01-20

    Intestinal tracts are among the most densely populated microbial ecosystems. Gut microbiota and their influence on the host have been well characterized in terrestrial vertebrates but much less so in fish. This is especially true for coral reef fishes, which are among the most abundant groups of vertebrates on earth. Surgeonfishes (family: Acanthuridae) are part of a large and diverse family of reef fish that display a wide range of feeding behaviours, which in turn has a strong impact on the reef ecology. Here, we studied the composition of the gut microbiota of nine surgeonfish and three nonsurgeonfish species from the Red Sea. High-throughput pyrosequencing results showed that members of the phylum Firmicutes, especially of the genus Epulopiscium, were dominant in the gut microbiota of seven surgeonfishes. Even so, there were large inter- and intraspecies differences in the diversity of surgeonfish microbiota. Replicates of the same host species shared only a small number of operational taxonomic units (OTUs), although these accounted for most of the sequences. There was a statistically significant correlation between the phylogeny of the host and their gut microbiota, but the two were not completely congruent. Notably, the gut microbiota of three nonsurgeonfish species clustered with some surgeonfish species. The microbiota of the macro- and microalgavores was distinct, while the microbiota of the others (carnivores, omnivores and detritivores) seemed to be transient and dynamic. Despite some anomalies, both host phylogeny and diet were important drivers for the intestinal microbial community structure of surgeonfishes from the Red Sea. © 2014 John Wiley & Sons Ltd.

  14. New Insights into the Microbiota of Moth Pests.

    Science.gov (United States)

    Mereghetti, Valeria; Chouaia, Bessem; Montagna, Matteo

    2017-11-18

    In recent years, next generation sequencing (NGS) technologies have helped to improve our understanding of the bacterial communities associated with insects, shedding light on their wide taxonomic and functional diversity. To date, little is known about the microbiota of lepidopterans, which includes some of the most damaging agricultural and forest pests worldwide. Studying their microbiota could help us better understand their ecology and offer insights into developing new pest control strategies. In this paper, we review the literature pertaining to the microbiota of lepidopterans with a focus on pests, and highlight potential recurrent patterns regarding microbiota structure and composition.

  15. Role of Intestinal Microbiota in Ulcerative Colitis – Effects of Novel Carbohydrate Preparations

    DEFF Research Database (Denmark)

    Vigsnæs, Louise Kristine

    2011-01-01

    such as protection against pathogens, induction of immune regulatory functions and nutrient processing. Hence, the composition of commensal bacteria is important to preserve colonic health. Ulcerative colitis (UC) is an inflammatory bowel disease and dysbiosis in the composition of commensals has been reported...... the colonic mucus are suggested to play an important role in stimulating regulatory immune responses compared to luminal bacteria, since they reside closer to the intestinal epithelial cells. The ability of fecal microbiota derived from healthy subjects and UC patients to colonize mucus was examined...... in a study of this thesis to elucidate, if the adhesion capacity is different depending on disease state. For this purpose, an in vitro dynamic gut model was used. Several bacterial taxa from both lumen and mucus were quantified using qPCR. The results revealed that the bacterial community of the mucus...

  16. Cultured skin microbiota attracts malaria mosquitoes

    Directory of Open Access Journals (Sweden)

    Takken Willem

    2009-12-01

    Full Text Available Abstract Background Host-seeking of the African malaria mosquito, Anopheles gambiae sensu stricto, is guided by human odours. The precise nature of the odours, and the composition of attractive blends of volatiles, remains largely unknown. Skin microbiota plays an important role in the production of human body odours. It is hypothesized that host attractiveness and selection of An. gambiae is affected by the species composition, density, and metabolic activity of the skin microbiota. A study is presented in which the production and constituency of volatile organic compounds (VOCs by human skin microbiota is examined and the behavioural responses of An. gambiae to VOCs from skin microbiota are investigated. Methods Blood agar plates incubated with skin microbiota from human feet or with a reference strain of Staphylococcus epidermidis were tested for their attractiveness to An. gambiae in olfactometer bioassays and indoor trapping experiments. Entrained air collected from blood agar plates incubated with natural skin microbiota or with S. epidermidis were analysed using GC-MS. A synthetic blend of the compounds identified was tested for its attractiveness to An. gambiae. Behavioural data were analysed by a χ2-test and GLM. GC-MS results were analysed by fitting an exponential regression line to test the effect of the concentration of bacteria. Results More An. gambiae were caught with blood agar plates incubated with skin bacteria than with sterile blood agar plates, with a significant effect of incubation time and dilution of the skin microbiota. When bacteria from the feet of four other volunteers were tested, similar effects were found. Fourteen putative attractants were found in the headspace of the skin bacteria. A synthetic blend of 10 of these was attractive to An. gambiae. Conclusions The discovery that volatiles produced by human skin microorganisms in vitro mediate An. gambiae host-seeking behaviour creates new opportunities for the

  17. Modulatory Effects of Gut Microbiota on the Central Nervous System: How Gut Could Play a Role in Neuropsychiatric Health and Diseases.

    Science.gov (United States)

    Yarandi, Shadi S; Peterson, Daniel A; Treisman, Glen J; Moran, Timothy H; Pasricha, Pankaj J

    2016-04-30

    Gut microbiome is an integral part of the Gut-Brain axis. It is becoming increasingly recognized that the presence of a healthy and diverse gut microbiota is important to normal cognitive and emotional processing. It was known that altered emotional state and chronic stress can change the composition of gut microbiome, but it is becoming more evident that interaction between gut microbiome and central nervous system is bidirectional. Alteration in the composition of the gut microbiome can potentially lead to increased intestinal permeability and impair the function of the intestinal barrier. Subsequently, neuro-active compounds and metabolites can gain access to the areas within the central nervous system that regulate cognition and emotional responses. Deregulated inflammatory response, promoted by harmful microbiota, can activate the vagal system and impact neuropsychological functions. Some bacteria can produce peptides or short chain fatty acids that can affect gene expression and inflammation within the central nervous system. In this review, we summarize the evidence supporting the role of gut microbiota in modulating neuropsychological functions of the central nervous system and exploring the potential underlying mechanisms.

  18. Effect of diet on the human gut microbiota

    DEFF Research Database (Denmark)

    Bahl, Martin Iain

    The gut microbiota plays an important role for humans in both health and disease. It is therefore important to understand how and to what extent choice of diet may influence the microbial community and the effects this has on the host. The variation in the normal human gut microbiota may however...... impede the discovery of correlations between dietary changes and compositional shifts in the microbiota by masking such effects. Although specific functional food ingredients, such as prebiotics, are known to have measurable effects on e.g. abundance of bifidobacteria, it is nevertheless clear...... that induced shifts in gut microbiota show large inter-individual variations. It thus seems plausible that knowing the microbiota composition could facilitate predictions as to how the community will react to dietary interventions thus moving towards some degree of personalised dietary recommendations. During...

  19. The feline skin microbiota: The bacteria inhabiting the skin of healthy and allergic cats

    Science.gov (United States)

    Diesel, Alison; Patterson, Adam P.; Meason-Smith, Courtney; Johnson, Timothy J.; Mansell, Joanne; Suchodolski, Jan S.; Rodrigues Hoffmann, Aline

    2017-01-01

    Background The skin is inhabited by a multitude of microorganisms. An imbalance of these microorganisms is associated with disease, however, the causal relationship between skin microbiota and disease remains unknown. To describe the cutaneous bacterial microbiota of cats and determine whether bacterial dysbiosis occurs on the skin of allergic cats, the skin surfaces on various regions of 11 healthy cats and 10 allergic cats were sampled. Methodology/Principal findings Genomic DNA was extracted from skin swabs and sequenced using primers that target the V4 region of the bacterial 16S rRNA. The bacterial sequences from healthy cats revealed that there are differences in species diversity and richness between body sites and different epithelial surfaces. Bacterial communities preferred body site niches in the healthy cats, however, the bacterial communities on allergic cat skin tended to be more unique to the individual cat. Overall, the number of bacterial species was not significantly different between the two health status groups, however, the abundances of these bacterial species were different between healthy and allergic skin. Staphylococcus, in addition to other taxa, was more abundant on allergic skin. Conclusions/Significance This study reveals that there are more bacterial species inhabiting the skin of cats than previously thought and provide some evidence of an association between dysbiosis and skin disease. PMID:28575016

  20. Human immunodeficiency virus-associated disruption of mucosal barriers and its role in HIV transmission and pathogenesis of HIV/AIDS disease

    Science.gov (United States)

    Tugizov, Sharof

    2016-01-01

    Abstract Oral, intestinal and genital mucosal epithelia have a barrier function to prevent paracellular penetration by viral, bacterial and other pathogens, including human immunodeficiency virus (HIV). HIV can overcome these barriers by disrupting the tight and adherens junctions of mucosal epithelia. HIV-associated disruption of epithelial junctions may also facilitate paracellular penetration and dissemination of other viral pathogens. This review focuses on possible molecular mechanisms of HIV-associated disruption of mucosal epithelial junctions and its role in HIV transmission and pathogenesis of HIV and acquired immune deficiency syndrome (AIDS). PMID:27583187

  1. Exercise-induced stress behavior, gut-microbiota-brain axis and diet: a systematic review for athletes.

    Science.gov (United States)

    Clark, Allison; Mach, Núria

    2016-01-01

    Fatigue, mood disturbances, under performance and gastrointestinal distress are common among athletes during training and competition. The psychosocial and physical demands during intense exercise can initiate a stress response activating the sympathetic-adrenomedullary and hypothalamus-pituitary-adrenal (HPA) axes, resulting in the release of stress and catabolic hormones, inflammatory cytokines and microbial molecules. The gut is home to trillions of microorganisms that have fundamental roles in many aspects of human biology, including metabolism, endocrine, neuronal and immune function. The gut microbiome and its influence on host behavior, intestinal barrier and immune function are believed to be a critical aspect of the brain-gut axis. Recent evidence in murine models shows that there is a high correlation between physical and emotional stress during exercise and changes in gastrointestinal microbiota composition. For instance, induced exercise-stress decreased cecal levels of Turicibacter spp and increased Ruminococcus gnavus, which have well defined roles in intestinal mucus degradation and immune function. Diet is known to dramatically modulate the composition of the gut microbiota. Due to the considerable complexity of stress responses in elite athletes (from leaky gut to increased catabolism and depression), defining standard diet regimes is difficult. However, some preliminary experimental data obtained from studies using probiotics and prebiotics studies show some interesting results, indicating that the microbiota acts like an endocrine organ (e.g. secreting serotonin, dopamine or other neurotransmitters) and may control the HPA axis in athletes. What is troubling is that dietary recommendations for elite athletes are primarily based on a low consumption of plant polysaccharides, which is associated with reduced microbiota diversity and functionality (e.g. less synthesis of byproducts such as short chain fatty acids and neurotransmitters). As more

  2. Effects of synbiotics on ileal microbiota

    Directory of Open Access Journals (Sweden)

    Shunichiro Komatsu

    2018-01-01

    Interpretation & conclusions: The present analysis of a substantial number of samples from surgically resected intestines showed an abundance of obligate anaerobes as a characteristic feature of the ileal mucus microbiota. Our results also indicated that the synbiotics intervention induced a prominent reduction in Enterobacteriaceae in the ileal microbiota.

  3. Interplay between gut microbiota and antibiotics

    NARCIS (Netherlands)

    Jesus Bello Gonzalez, de Teresita

    2016-01-01

    The human body is colonized by a vast number of microorganisms collectively defined as the microbiota. In the gut, the microbiota has important roles in health and disease, and can serve as a host of antibiotic resistance genes. Disturbances in the ecological balance, e.g. by antibiotics, can

  4. The nasal cavity microbiota of healthy adults

    OpenAIRE

    Bassis, Christine M; Tang, Alice L; Young, Vincent B; Pynnonen, Melissa A

    2014-01-01

    Background The microbiota of the nares has been widely studied. However, relatively few studies have investigated the microbiota of the nasal cavity posterior to the nares. This distinct environment has the potential to contain a distinct microbiota and play an important role in health. Results We obtained 35,142 high-quality bacterial 16S rRNA-encoding gene sequence reads from the nasal cavity and oral cavity (the dorsum of the tongue and the buccal mucosa) of 12 healthy adult humans and dep...

  5. Effect of heme oxygenase-1 transduced bone marrow mesenchymal stem cells on damaged intestinal epithelial cells in vitro.

    Science.gov (United States)

    Cao, Yi; Wu, Ben-Juan; Zheng, Wei-Ping; Yin, Ming-Li; Liu, Tao; Song, Hong-Li

    2017-07-01

    In this study, we explored the effects of mesenchymal stem cells (MSCs) from bone marrow overexpressing heme oxygenase-1 (HO-1) on the damaged human intestinal epithelial barrier in vitro. Rat MSCs were isolated from bone marrow and transduced with rat HO-1 recombinant adenovirus (HO-MSCs) for stable expression of HO-1. Colorectal adenocarinoma 2 (Caco2) cells were treated with tumor necrosis factor-α (TNF-α) to establish a damaged colon epithelial model. Damaged Caco2 were cocultured with MSCs, Ad-MSCs, Ad-HO + MSCs or HO-MSCs. mRNA and protein expression of Zona occludens-1 (ZO-1) and human HO-1 and the release of cytokines were measured. ZO-1 and human HO-1 in Caco2 were significantly decreased after treatment with TNF-α; and this effect was reduced when coculture with MSCs from bone marrow. Expression of ZO-1 was not significantly affected by Caco2 treatment with TNF-α, Ad-HO, and MSCs. In contrast, ZO-1 and human HO-1 increased significantly when the damaged Caco2 was treated with HO-MSCs. HO-MSCs showed the strongest effect on the expression of ZO-1 in colon epithelial cells. Coculture with HO-MSCs showed the most significant effects on reducing the expression of IL-2, IL-6, IFN-γ and increasing the expression of IL-10. HO-MSCs protected the intestinal epithelial barrier, in which endogenous HO-1 was involved. HO-MSCs play an important role in the repair process by reducing the release of inflammatory cytokines and increasing the release of anti-inflammatory factors. These results suggested that HO-MSCs from bone marrow were more effective in repairing the damaged intestinal epithelial barrier, and the effectiveness of MSCs was improved by HO-1 gene transduction, which provides favorable support for the application of stem cell therapy in the intestinal diseases. © 2017 The Authors. Cell Biology International Published by John Wiley & Sons Ltd on behalf of International Federation of Cell Biology.

  6. The human gut microbiota: metabolism and perspective in obesity.

    Science.gov (United States)

    Gomes, Aline Corado; Hoffmann, Christian; Mota, João Felipe

    2018-04-18

    The gut microbiota has been recognized as an important factor in the development of metabolic diseases such as obesity and is considered an endocrine organ involved in the maintenance of energy homeostasis and host immunity. Dysbiosis can change the functioning of the intestinal barrier and the gut-associated lymphoid tissues (GALT) by allowing the passage of structural components of bacteria, such as lipopolysaccharides (LPS), which activate inflammatory pathways that may contribute to the development of insulin resistance. Furthermore, intestinal dysbiosis can alter the production of gastrointestinal peptides related to satiety, resulting in an increased food intake. In obese people, this dysbiosis seems be related to increases of the phylum Firmicutes, the genus Clostridium, and the species Eubacterium rectale, Clostridium coccoides, Lactobacillus reuteri, Akkermansia muciniphila, Clostridium histolyticum, and Staphylococcus aureus.

  7. Budesonide and fluticasone propionate differentially affect the airway epithelial barrier

    NARCIS (Netherlands)

    Heijink, I. H.; Jonker, M.R.; Vries, de Maaike; van Oosterhout, A. J. M.; Telenga, E.; ten Hacken, N. H. T.; Postma, D. S.; van den Berge, M.

    2016-01-01

    Background: COPD patients have a higher risk of pneumonia when treated with fluticasone propionate (FP) than with placebo, and a lower risk with budesonide (BUD). We hypothesized that BUD and FP differentially affect the mucosal barrier in response to viral infection and/or cigarette smoke. Methods:

  8. Interaction between dietary lipids and gut microbiota regulates hepatic cholesterol metabolism

    DEFF Research Database (Denmark)

    Caesar, Robert; Nygren, Heli; Orešič, Matej

    2016-01-01

    The gut microbiota influences many aspects of host metabolism. We have previously shown that the presence of a gut microbiota remodels lipid composition. Here we investigated how interaction between gut microbiota and dietary lipids regulates lipid composition in the liver and plasma, and gene...... of most lipid classes differed between mice fed lard and fish oil. However, the gut microbiota also affected lipid composition. The gut microbiota increased hepatic levels of cholesterol and cholesteryl esters in mice fed lard, but not in mice fed fish oil. Serum levels of cholesterol and cholesteryl...... esters were not affected by the gut microbiota. Genes encoding enzymes involved in cholesterol biosynthesis were downregulated by the gut microbiota in mice fed lard and were expressed at a low level in mice fed fish oil independent of microbial status. In summary, we show that gut microbiota...

  9. Microbial endocrinology: Host-microbiota neuroendocrine interactions influencing brain and behavior.

    Science.gov (United States)

    Lyte, Mark

    2014-01-01

    The ability of microorganisms, whether present as commensals within the microbiota or introduced as part of a therapeutic regimen, to influence behavior has been demonstrated by numerous laboratories over the last few years. Our understanding of the mechanisms that are responsible for microbiota-gut-brain interactions is, however, lacking. The complexity of the microbiota is, of course, a contributing factor. Nonetheless, while microbiologists approaching the issue of microbiota-gut-brain interactions in the behavior well recognize such complexity, what is often overlooked is the equal complexity of the host neurophysiological system, especially within the gut which is differentially innervated by the enteric nervous system. As such, in the search for common mechanisms by which the microbiota may influence behavior one may look for mechanisms which are shared by both host and microbiota. Such interkingdom signaling can be found in the shared production of neurochemical mediators that are found in both eukaryotes and prokaryotes. The study of the production and recognition of neurochemicals that are exactly the same in structure to those produced in the vertebrate organisms is known as microbial endocrinology. The examination of the microbiota from the vantage point of host-microbiota neuroendocrine interactions cannot only identify new microbial endocrinology-based mechanisms by which the microbiota can influence host behavior, but also lead to the design of interventions in which the composition of the microbiota may be modulated in order to achieve a specific microbial endocrinology-based profile beneficial to overall host behavior.

  10. Unraveling the ties between irritable bowel syndrome and intestinal microbiota.

    Science.gov (United States)

    Hong, Sung Noh; Rhee, Poong-Lyul

    2014-03-14

    Irritable bowel syndrome (IBS) is the most prevalent functional gastrointestinal disorder. It is a multifactorial disorder. Intestinal microbiota may cause the pathogenesis of IBS by contributing to abnormal gastrointestinal motility, low-grade inflammation, visceral hypersensitivity, communication in the gut-brain axis, and so on. Previous attempts to identify the intestinal microbiota composition in IBS patients have yielded inconsistent and occasionally contradictory results. This inconsistency may be due to the differences in the molecular techniques employed, the sample collection and handling methods, use of single samples that are not linked to fluctuating symptoms, or other factors such as patients' diets and phenotypic characterizations. Despite these difficulties, previous studies found that the intestinal microbiota in some IBS patients was completely different from that in healthy controls, and there does appear to be a consistent theme of Firmicutes enrichment and reduced abundance of Bacteroides. Based on the differences in intestinal microbiota composition, many studies have addressed the roles of microbiota-targeted treatments, such as antibiotics and probiotics, in alleviating certain symptoms of IBS. This review summarizes the current knowledge of the associations between intestinal microbiota and IBS as well as the possible modes of action of intestinal microbiota in the pathogenesis of IBS. Improving the current level of understanding of host-microbiota interactions in IBS is important not only for determining the role of intestinal microbiota in IBS pathogenesis but also for therapeutic modulation of the microbiota.

  11. Regulation of body fat mass by the gut microbiota

    DEFF Research Database (Denmark)

    Schéle, Erik; Grahnemo, Louise; Anesten, Fredrik

    2016-01-01

    New insight suggests gut microbiota as a component in energy balance. However, the underlying mechanisms by which gut microbiota can impact metabolic regulation is unclear. A recent study from our lab shows, for the first time, a link between gut microbiota and energy balance circuitries...

  12. Alveolocapillary model system to study alveolar re-epithelialization

    Energy Technology Data Exchange (ETDEWEB)

    Willems, Coen H.M.P.; Zimmermann, Luc J.I.; Sanders, Patricia J.L.T.; Wagendorp, Margot; Kloosterboer, Nico [Department of Paediatrics, School for Oncology and Developmental Biology (GROW), Maastricht University Medical Centre, Maastricht (Netherlands); Cohen Tervaert, Jan Willem [Division of Clinical and Experimental Immunology, Department of Internal Medicine, Maastricht University Medical Centre, Maastricht (Netherlands); Duimel, Hans J.Q.; Verheyen, Fons K.C.P. [Electron Microscopy Unit, Department of Molecular Cell Biology, Maastricht University Medical Centre, Maastricht (Netherlands); Iwaarden, J. Freek van, E-mail: f.vaniwaarden@maastrichtuniversity.nl [Department of Paediatrics, School for Oncology and Developmental Biology (GROW), Maastricht University Medical Centre, Maastricht (Netherlands)

    2013-01-01

    In the present study an in vitro bilayer model system of the pulmonary alveolocapillary barrier was established to investigate the role of the microvascular endothelium on re-epithelialization. The model system, confluent monolayer cultures on opposing sides of a porous membrane, consisted of a human microvascular endothelial cell line (HPMEC-ST1.6R) and an alveolar type II like cell line (A549), stably expressing EGFP and mCherry, respectively. These fluorescent proteins allowed the real time assessment of the integrity of the monolayers and the automated analysis of the wound healing process after a scratch injury. The HPMECs significantly attenuated the speed of re-epithelialization, which was associated with the proximity to the A549 layer. Examination of cross-sectional transmission electron micrographs of the model system revealed protrusions through the membrane pores and close contact between the A549 cells and the HPMECs. Immunohistochemical analysis showed that these close contacts consisted of heterocellular gap-, tight- and adherens-junctions. Additional analysis, using a fluorescent probe to assess gap-junctional communication, revealed that the HPMECs and A549 cells were able to exchange the fluorophore, which could be abrogated by disrupting the gap junctions using connexin mimetic peptides. These data suggest that the pulmonary microvascular endothelium may impact the re-epithelialization process. -- Highlights: ► Model system for vital imaging and high throughput screening. ► Microvascular endothelium influences re-epithelialization. ► A549 cells form protrusions through membrane to contact HPMEC. ► A549 cells and HPMECs form heterocellular tight-, gap- and adherens-junctions.

  13. Protective Effects of Bifidobacterium on Intestinal Barrier Function in LPS-Induced Enterocyte Barrier Injury of Caco-2 Monolayers and in a Rat NEC Model.

    Science.gov (United States)

    Ling, Xiang; Linglong, Peng; Weixia, Du; Hong, Wei

    2016-01-01

    Zonulin protein is a newly discovered modulator which modulates the permeability of the intestinal epithelial barrier by disassembling intercellular tight junctions (TJ). Disruption of TJ is associated with neonatal necrotizing enterocolitis (NEC). It has been shown bifidobacterium could protect the intestinal barrier function and prophylactical administration of bifidobacterium has beneficial effects in NEC patients and animals. However, it is still unknown whether the zonulin is involved in the gut barrier dysfunction of NEC, and the protective mechanisms of bifidobacterium on intestinal barrier function are also not well understood. The present study aims to investigate the effects of bifidobacterium on intestinal barrier function, zonulin regulation, and TJ integrity both in LPS-induced enterocyte barrier injury of Caco-2 monolayers and in a rat NEC model. Our results showed bifidobacterium markedly attenuated the decrease in transepithelial electrical resistance and the increase in paracellular permeability in the Caco-2 monolayers treated with LPS (P zonulin release (P zonulin (P zonulin protein release and improvement of intestinal TJ integrity.

  14. Intestinal Microbiota Influences Non-intestinal Related Autoimmune Diseases

    Science.gov (United States)

    Opazo, Maria C.; Ortega-Rocha, Elizabeth M.; Coronado-Arrázola, Irenice; Bonifaz, Laura C.; Boudin, Helene; Neunlist, Michel; Bueno, Susan M.; Kalergis, Alexis M.; Riedel, Claudia A.

    2018-01-01

    The human body is colonized by millions of microorganisms named microbiota that interact with our tissues in a cooperative and non-pathogenic manner. These microorganisms are present in the skin, gut, nasal, oral cavities, and genital tract. In fact, it has been described that the microbiota contributes to balancing the immune system to maintain host homeostasis. The gut is a vital organ where microbiota can influence and determine the function of cells of the immune system and contributes to preserve the wellbeing of the individual. Several articles have emphasized the connection between intestinal autoimmune diseases, such as Crohn's disease with dysbiosis or an imbalance in the microbiota composition in the gut. However, little is known about the role of the microbiota in autoimmune pathologies affecting other tissues than the intestine. This article focuses on what is known about the role that gut microbiota can play in the pathogenesis of non-intestinal autoimmune diseases, such as Grave's diseases, multiple sclerosis, type-1 diabetes, systemic lupus erythematosus, psoriasis, schizophrenia, and autism spectrum disorders. Furthermore, we discuss as to how metabolites derived from bacteria could be used as potential therapies for non-intestinal autoimmune diseases. PMID:29593681

  15. Microbiota intestinal en la salud y la enfermedad

    Directory of Open Access Journals (Sweden)

    M.E. Icaza-Chávez

    2013-10-01

    Full Text Available La microbiota intestinal es la comunidad de microorganismos vivos residentes en el tubo digestivo. Muchos grupos de investigadores a nivel mundial trabajan descifrando el genoma de la microbiota. Las técnicas modernas de estudio de la microbiota nos han acercado al conocimiento de un número importante de bacterias que no son cultivables, y de la relación entre los microorganismos que nos habitan y nuestra homeostasis. La microbiota es indispensable para el correcto crecimiento corporal, el desarrollo de la inmunidad y la nutrición. Las alteraciones en la microbiota podrían explicar, por lo menos en parte, algunas epidemias de la humanidad como el asma y la obesidad. La disbiosis se ha asociado a una serie de trastornos gastrointestinales que incluyen el hígado graso no alcohólico, la enfermedad celíaca y el síndrome de intestino irritable. En el presente trabajo trataremos sobre la nomenclatura, las técnicas de estudio modernas, las funciones de la microbiota intestinal y la relación que tiene con la salud y la enfermedad.

  16. Intestinal Microbiota Influences Non-intestinal Related Autoimmune Diseases

    Directory of Open Access Journals (Sweden)

    Maria C. Opazo

    2018-03-01

    Full Text Available The human body is colonized by millions of microorganisms named microbiota that interact with our tissues in a cooperative and non-pathogenic manner. These microorganisms are present in the skin, gut, nasal, oral cavities, and genital tract. In fact, it has been described that the microbiota contributes to balancing the immune system to maintain host homeostasis. The gut is a vital organ where microbiota can influence and determine the function of cells of the immune system and contributes to preserve the wellbeing of the individual. Several articles have emphasized the connection between intestinal autoimmune diseases, such as Crohn's disease with dysbiosis or an imbalance in the microbiota composition in the gut. However, little is known about the role of the microbiota in autoimmune pathologies affecting other tissues than the intestine. This article focuses on what is known about the role that gut microbiota can play in the pathogenesis of non-intestinal autoimmune diseases, such as Grave's diseases, multiple sclerosis, type-1 diabetes, systemic lupus erythematosus, psoriasis, schizophrenia, and autism spectrum disorders. Furthermore, we discuss as to how metabolites derived from bacteria could be used as potential therapies for non-intestinal autoimmune diseases.

  17. Manipulating the gut microbiota to maintain health and treat disease

    Directory of Open Access Journals (Sweden)

    Karen P. Scott

    2015-02-01

    Full Text Available Background: The intestinal microbiota composition varies between healthy and diseased individuals for numerous diseases. Although any cause or effect relationship between the alterations in the gut microbiota and disease is not always clear, targeting the intestinal microbiota might offer new possibilities for prevention and/or treatment of disease. Objective: Here we review some examples of manipulating the intestinal microbiota by prebiotics, probiotics, and fecal microbial transplants. Results: Prebiotics are best known for their ability to increase the number of bifidobacteria. However, specific prebiotics could potentially also stimulate other species they can also stimulate other species associated with health, like Akkermansia muciniphila, Ruminococcus bromii, the Roseburia/Enterococcus rectale group, and Faecalibacterium prausnitzii. Probiotics have beneficial health effects for different diseases and digestive symptoms. These effects can be due to the direct effect of the probiotic bacterium or its products itself, as well as effects of the probiotic on the resident microbiota. Probiotics can influence the microbiota composition as well as the activity of the resident microbiota. Fecal microbial transplants are a drastic intervention in the gut microbiota, aiming for total replacement of one microbiota by another. With numerous successful studies related to antibiotic-associated diarrhea and Clostridium difficile infection, the potential of fecal microbial transplants to treat other diseases like inflammatory bowel disease, irritable bowel syndrome, and metabolic and cardiovascular disorders is under investigation. Conclusions: Improved knowledge on the specific role of gut microbiota in prevention and treatment of disease will help more targeted manipulation of the intestinal microbiota. Further studies are necessary to see the (long term effects for health of these interventions.

  18. Antibiotics and specialized metabolites from the human microbiota.

    Science.gov (United States)

    Mousa, Walaa K; Athar, Bilal; Merwin, Nishanth J; Magarvey, Nathan A

    2017-11-15

    Covering: 2000 to 2017Decades of research on human microbiota have revealed much of their taxonomic diversity and established their direct link to health and disease. However, the breadth of bioactive natural products secreted by our microbial partners remains unknown. Of particular interest are antibiotics produced by our microbiota to ward off invasive pathogens. Members of the human microbiota exclusively produce evolved small molecules with selective antimicrobial activity against human pathogens. Herein, we expand upon the current knowledge concerning antibiotics derived from human microbiota and their distribution across body sites. We analyze, using our in-house chem-bioinformatic tools and natural products database, the encoded antibiotic potential of the human microbiome. This compilation of information may create a foundation for the continued exploration of this intriguing resource of chemical diversity and expose challenges and future perspectives to accelerate the discovery rate of small molecules from the human microbiota.

  19. Microbiota and Human Health: characterization techniques and transference.

    Science.gov (United States)

    Del Campo-Moreno, Rosa; Alarcón-Cavero, Teresa; D'Auria, Giuseppe; Delgado-Palacio, Susana; Ferrer-Martínez, Manuel

    2018-04-01

    The human microbiota comprises all the microorganisms of our body, which can also be categorised as commensals, mutualists and pathogens according to their behaviour. Our knowledge of the human microbiota has considerably increased since the introduction of 16S rRNA next generation sequencing (16S rDNA gene). This technological breakthrough has seen a revolution in the knowledge of the microbiota composition and its implications in human health. This article details the different human bacterial ecosystems and the scientific evidence of their involvement in different diseases. The faecal microbiota transplant procedure, particularly used to treat recurrent diarrhoea caused by Clostridium difficile, and the methodological bases of the new molecular techniques used to characterise microbiota are also described. Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  20. Skin Microbiota Workshop: Multidisciplinary Perspectives, Challenges and Opportunities

    Science.gov (United States)

    2014-12-08

    SECURITY CLASSIFICATION OF: This report details the outcome of the 1st Skin Microbiota Workshop, Boulder, CO, held on October 15th-16th 2012. The...Sep-2014 Approved for Public Release; Distribution Unlimited Final Report: Skin Microbiota Workshop: Multidisciplinary Perspectives, Challenges and...Number of Papers published in peer-reviewed journals: Number of Papers published in non peer-reviewed journals: Final Report: Skin Microbiota Workshop

  1. Water fleas require microbiota for survival, growth and reproduction.

    Science.gov (United States)

    Sison-Mangus, Marilou P; Mushegian, Alexandra A; Ebert, Dieter

    2015-01-01

    Microbiota have diverse roles in the functioning of their hosts; experiments using model organisms have enabled investigations into these functions. In the model crustacean Daphnia, little knowledge exists about the effect of microbiota on host well being. We assessed the effect of microbiota on Daphnia magna by experimentally depriving animals of their microbiota and comparing their growth, survival and fecundity to that of their bacteria-bearing counterparts. We tested Daphnia coming from both lab-reared parthenogenetic eggs of a single genotype and from genetically diverse field-collected resting eggs. We showed that bacteria-free hosts are smaller, less fecund and have higher mortality than those with microbiota. We also manipulated the association by exposing bacteria-free Daphnia to a single bacterial strain of Aeromonas sp., and to laboratory environmental bacteria. These experiments further demonstrated that the Daphnia-microbiota system is amenable to manipulation under various experimental conditions. The results of this study have implications for studies of D. magna in ecotoxicology, ecology and environmental genomics.

  2. Dysbiosis of gut microbiota and microbial metabolites in Parkinson's Disease.

    Science.gov (United States)

    Sun, Meng-Fei; Shen, Yan-Qin

    2018-04-26

    Gut microbial dysbiosis and alteration of microbial metabolites in Parkinson's disease (PD) have been increasingly reported. Dysbiosis in the composition and abundance of gut microbiota can affect both the enteric nervous system and the central nervous system (CNS), indicating the existence of a microbiota-gut-brain axis and thereby causing CNS diseases. Disturbance of the microbiota-gut-brain axis has been linked to specific microbial products that are related to gut inflammation and neuroinflammation. Future directions should therefore focus on the exploration of specific gut microbes or microbial metabolites that contribute to the development of PD. Microbiota-targeted interventions, such as antibiotics, probiotics and fecal microbiota transplantation, have been shown to favorably affect host health. In this review, recent findings regarding alterations and the role of gut microbiota and microbial metabolites in PD are summarized, and potential molecular mechanisms and microbiota-targeted interventions in PD are discussed. Copyright © 2018. Published by Elsevier B.V.

  3. Metagenomic Surveys of Gut Microbiota

    Directory of Open Access Journals (Sweden)

    Rahul Shubhra Mandal

    2015-06-01

    Full Text Available Gut microbiota of higher vertebrates is host-specific. The number and diversity of the organisms residing within the gut ecosystem are defined by physiological and environmental factors, such as host genotype, habitat, and diet. Recently, culture-independent sequencing techniques have added a new dimension to the study of gut microbiota and the challenge to analyze the large volume of sequencing data is increasingly addressed by the development of novel computational tools and methods. Interestingly, gut microbiota maintains a constant relative abundance at operational taxonomic unit (OTU levels and altered bacterial abundance has been associated with complex diseases such as symptomatic atherosclerosis, type 2 diabetes, obesity, and colorectal cancer. Therefore, the study of gut microbial population has emerged as an important field of research in order to ultimately achieve better health. In addition, there is a spontaneous, non-linear, and dynamic interaction among different bacterial species residing in the gut. Thus, predicting the influence of perturbed microbe–microbe interaction network on health can aid in developing novel therapeutics. Here, we summarize the population abundance of gut microbiota and its variation in different clinical states, computational tools available to analyze the pyrosequencing data, and gut microbe–microbe interaction networks.

  4. Fecal microbiota variation across the lifespan of the healthy laboratory rat.

    Science.gov (United States)

    Flemer, Burkhardt; Gaci, Nadia; Borrel, Guillaume; Sanderson, Ian R; Chaudhary, Prem P; Tottey, William; O'Toole, Paul W; Brugère, Jean-François

    2017-09-03

    Laboratory rats are commonly used in life science research as a model for human biology and disease, but the composition and development of their gut microbiota during life is poorly understood. We determined the fecal microbiota composition of healthy Sprague Dawley laboratory rats from 3 weeks to 2 y of age, kept under controlled environmental and dietary conditions. Additionally, we determined fecal short-chain fatty acid profiles, and we compared the rat fecal microbiota with that of mice and humans. Gut microbiota and to a lesser extent SCFAs profiles separated rats into 3 different clusters according to age: before weaning, first year of life (12- to 26-week-old animals) and second year of life (52- to 104-week-old). A core of 46 bacterial species was present in all rats but its members' relative abundance progressively decreased with age. This was accompanied by an increase of microbiota α-diversity, likely due to the acquisition of environmental microorganisms during the lifespan. Contrastingly, the functional profile of the microbiota across animal species became more similar upon aging. Lastly, the microbiota of rats and mice were most similar to each other but at the same time the microbiota profile of rats was more similar to that of humans than was the microbiota profile of mice. These data offer an explanation as to why germ-free rats are more efficient recipients and retainers of human microbiota than mice. Furthermore, experimental design should take into account dynamic changes in the microbiota of model animals considering that their changing gut microbiota interacts with their physiology.

  5. [Gut microbiota: Description, role and pathophysiologic implications].

    Science.gov (United States)

    Landman, C; Quévrain, E

    2016-06-01

    The human gut contains 10(14) bacteria and many other micro-organisms such as Archaea, viruses and fungi. Studying the gut microbiota showed how this entity participates to gut physiology and beyond this to human health, as a real "hidden organ". In this review, we aimed to bring information about gut microbiota, its structure, its roles and its implication in human pathology. After bacterial colonization in infant, intestinal microbial composition is unique for each individual although more than 95% can be assigned to four major phyla. The use of culture independent methods and more recently the development of high throughput sequencing allowed to depict precisely gut microbiota structure and diversity as well as its alteration in diseases. Gut microbiota is implicated in the maturation of the host immune system and in many fundamental metabolic pathways including sugars and proteins fermentation and metabolism of bile acids and xenobiotics. Imbalance of gut microbial populations or dysbiosis has important functional consequences and is implicated in many digestive diseases (inflammatory bowel diseases, colorectal cancer, etc.) but also in obesity and autism. These observations have led to a surge of studies exploring therapeutics which aims to restore gut microbiota equilibrium such as probiotics or fecal microbiota transplantation. But recent research also investigates biological activity of microbial products which could lead to interesting therapeutics leads. Copyright © 2015 Société Nationale Française de Médecine Interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  6. Visualization of probiotic-mediated Ca2+ signaling in intestinal epithelial cells in vivo

    Directory of Open Access Journals (Sweden)

    Takahiro Adachi

    2016-12-01

    Full Text Available Probiotics, such as lactic acid bacteria (LAB and Bacillus subtilis var. natto, have been shown to modulate immune responses. It is important to understand how probiotic bacteria impact intestinal epithelial cells (IECs, because IECs are the first line of defense at the mucosal surface barrier and their activities substantially affect the gut microenvironment and immunity. However, to date, their precise mechanism remains unknown due to a lack of analytical systems available for live animal models. Recently, we generated a conditional Ca2+ biosensor Yellow Cameleon (YC3.60 transgenic mouse line and established 5D (x, y, z, time, and Ca2+ intravital imaging systems of lymphoid tissues including those in Peyer’s patches and bone marrow. In the present study, we further advance our intravital imaging system for intestinal tracts to visualize IEC responses against orally administrated food compounds in real time. Using this system, heat-killed Bacillus subtilis natto, a probiotic TTCC012 strain, is shown to directly induce Ca2+ signaling in IECs in mice housed under specific pathogen-free conditions. In contrast, this activation is not observed in the Lactococcus lactis strain C60; however, when we generate germ-free YC3.60 mice and observe the LAB stimulation of IECs in the absence of gut microbiota, C60 is capable of inducing Ca2+ signaling. This is the first study to successfully visualize the direct effect of probiotics on IECs in live animals. These data strongly suggest that probiotic strains stimulate IECs under physiological conditions, and that their activity is affected by the microenvironment of the small intestine, such as commensal bacteria.

  7. Effect of a Semi-Purified Oligosaccharide-Enriched Fraction from Caprine Milk on Barrier Integrity and Mucin Production of Co-Culture Models of the Small and Large Intestinal Epithelium

    Directory of Open Access Journals (Sweden)

    Alicia M. Barnett

    2016-05-01

    Full Text Available Caprine milk contains the highest amount of oligosaccharides among domestic animals, which are structurally similar to human milk oligosaccharides (HMOs. This suggests caprine milk oligosaccharides may offer similar protective and developmental effects to that of HMOs. However, to date, studies using oligosaccharides from caprine milk have been limited. Thus, this study aimed to examine the impact of a caprine milk oligosaccharide-enriched fraction (CMOF on barrier function of epithelial cell co-cultures of absorptive enterocytes (Caco-2 cells and mucus-secreting goblet cells (HT29-MTX cells, that more closely simulate the cell proportions found in the small (90:10 and large intestine (75:25. Treatment of epithelial co-cultures with 0.4, 1.0, 2.0 and 4.0 mg/mL of CMOF was shown to have no effect on metabolic activity but did enhance cell epithelial barrier integrity as measured by trans-epithelial electrical resistance (TEER, in a dose-dependent manner. The CMOF at the maximum concentration tested (4.0 mg/mL enhanced TEER, mucin gene expression and mucin protein abundance of epithelial co-cultures, all of which are essential components of intestinal barrier function.

  8. Effect of a Semi-Purified Oligosaccharide-Enriched Fraction from Caprine Milk on Barrier Integrity and Mucin Production of Co-Culture Models of the Small and Large Intestinal Epithelium.

    Science.gov (United States)

    Barnett, Alicia M; Roy, Nicole C; McNabb, Warren C; Cookson, Adrian L

    2016-05-06

    Caprine milk contains the highest amount of oligosaccharides among domestic animals, which are structurally similar to human milk oligosaccharides (HMOs). This suggests caprine milk oligosaccharides may offer similar protective and developmental effects to that of HMOs. However, to date, studies using oligosaccharides from caprine milk have been limited. Thus, this study aimed to examine the impact of a caprine milk oligosaccharide-enriched fraction (CMOF) on barrier function of epithelial cell co-cultures of absorptive enterocytes (Caco-2 cells) and mucus-secreting goblet cells (HT29-MTX cells), that more closely simulate the cell proportions found in the small (90:10) and large intestine (75:25). Treatment of epithelial co-cultures with 0.4, 1.0, 2.0 and 4.0 mg/mL of CMOF was shown to have no effect on metabolic activity but did enhance cell epithelial barrier integrity as measured by trans-epithelial electrical resistance (TEER), in a dose-dependent manner. The CMOF at the maximum concentration tested (4.0 mg/mL) enhanced TEER, mucin gene expression and mucin protein abundance of epithelial co-cultures, all of which are essential components of intestinal barrier function.

  9. Diet-induced extinction in the gut microbiota compounds over generations

    Science.gov (United States)

    Sonnenburg, Erica D.; Smits, Samuel A.; Tikhonov, Mikhail; Higginbottom, Steven K.; Wingreen, Ned S.; Sonnenburg, Justin L.

    2015-01-01

    The gut is home to trillions of microbes that play a fundamental role in many aspects of human biology including immune function and metabolism 1,2. The reduced diversity of the Western microbiota compared to populations living traditional lifestyles presents the question of which factors have driven microbiota change during modernization. Microbiota accessible carbohydrates (MACs) found in dietary fiber, play a key role in shaping this microbial ecosystem, and are strikingly reduced in the Western diet relative to more traditional diets 3. Here we show that changes in the microbiota of mice consuming a low-MAC diet and harboring a human microbiota are largely reversible within a single generation, however over multiple generations a low-MAC diet results in a progressive loss of diversity, which is not recoverable upon the reintroduction of dietary MACs. To restore the microbiota to its original state requires the administration of missing taxa in combination with dietary MAC consumption. Our data illustrate that taxa driven to low abundance when dietary MACs are scarce are inefficiently transferred to the next generation and are at increased risk of becoming extinct within an isolated population. As more diseases are linked to the Western microbiota and the microbiota is targeted therapeutically, microbiota reprogramming may need to involve strategies that incorporate dietary MACs as well as taxa not currently present in the Western gut. PMID:26762459

  10. Microbiome/microbiota and allergies.

    Science.gov (United States)

    Inoue, Yuzaburo; Shimojo, Naoki

    2015-01-01

    Allergies are characterized by a hypersensitive immune reaction to originally harmless antigens. In recent decades, the incidence of allergic diseases has markedly increased, especially in developed countries. The increase in the frequency of allergic diseases is thought to be primarily due to environmental changes related to a westernized lifestyle, which affects the commensal microbes in the human body. The human gut is the largest organ colonized by bacteria and contains more than 1000 bacterial species, called the "gut microbiota." The recent development of sequencing technology has enabled researchers to genetically investigate and clarify the diversity of all species of commensal microbes. The collective genomes of commensal microbes are together called the "microbiome." Although the detailed mechanisms remain unclear, it has been proposed that the microbiota/microbiome, especially that in the gut, impacts the systemic immunity and metabolism, thus affecting the development of various immunological diseases, including allergies. In this review, we summarize the recent findings regarding the importance of the microbiome/microbiota in the development of allergic diseases and also the results of interventional studies using probiotics or prebiotics to prevent allergies.

  11. Gut microbiota and malnutrition.

    Science.gov (United States)

    Million, Matthieu; Diallo, Aldiouma; Raoult, Didier

    2017-05-01

    Malnutrition is the leading cause of death worldwide in children under the age of five, and is the focus of the first World Health Organization (WHO) Millennium Development Goal. Breastfeeding, food and water security are major protective factors against malnutrition and critical factors in the maturation of healthy gut microbiota, characterized by a transient bifidobacterial bloom before a global rise in anaerobes. Early depletion in gut Bifidobacterium longum, a typical maternal probiotic, known to inhibit pathogens, represents the first step in gut microbiota alteration associated with severe acute malnutrition (SAM). Later, the absence of the Healthy Mature Anaerobic Gut Microbiota (HMAGM) leads to deficient energy harvest, vitamin biosynthesis and immune protection, and is associated with diarrhea, malabsorption and systemic invasion by microbial pathogens. A therapeutic diet and infection treatment may be unable to restore bifidobacteria and HMAGM. Besides refeeding and antibiotics, future trials including non-toxic missing microbes and nutrients necessary to restore bifidobacteria and HMAGM, including prebiotics and antioxidants, are warranted in children with severe or refractory disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Introduction to the human gut microbiota.

    Science.gov (United States)

    Thursby, Elizabeth; Juge, Nathalie

    2017-05-16

    The human gastrointestinal (GI) tract harbours a complex and dynamic population of microorganisms, the gut microbiota, which exert a marked influence on the host during homeostasis and disease. Multiple factors contribute to the establishment of the human gut microbiota during infancy. Diet is considered as one of the main drivers in shaping the gut microbiota across the life time. Intestinal bacteria play a crucial role in maintaining immune and metabolic homeostasis and protecting against pathogens. Altered gut bacterial composition (dysbiosis) has been associated with the pathogenesis of many inflammatory diseases and infections. The interpretation of these studies relies on a better understanding of inter-individual variations, heterogeneity of bacterial communities along and across the GI tract, functional redundancy and the need to distinguish cause from effect in states of dysbiosis. This review summarises our current understanding of the development and composition of the human GI microbiota, and its impact on gut integrity and host health, underlying the need for mechanistic studies focusing on host-microbe interactions. © 2017 The Author(s).

  13. Control of creatine metabolism by HIF is an endogenous mechanism of barrier regulation in colitis.

    Science.gov (United States)

    Glover, Louise E; Bowers, Brittelle E; Saeedi, Bejan; Ehrentraut, Stefan F; Campbell, Eric L; Bayless, Amanda J; Dobrinskikh, Evgenia; Kendrick, Agnieszka A; Kelly, Caleb J; Burgess, Adrianne; Miller, Lauren; Kominsky, Douglas J; Jedlicka, Paul; Colgan, Sean P

    2013-12-03

    Mucosal surfaces of the lower gastrointestinal tract are subject to frequent, pronounced fluctuations in oxygen tension, particularly during inflammation. Adaptive responses to hypoxia are orchestrated largely by the hypoxia-inducible transcription factors (HIFs). As HIF-1α and HIF-2α are coexpressed in mucosal epithelia that constitute the barrier between the lumen and the underlying immune milieu, we sought to define the discrete contribution of HIF-1 and HIF-2 transactivation pathways to intestinal epithelial cell homeostasis. The present study identifies creatine kinases (CKs), key metabolic enzymes for rapid ATP generation via the phosphocreatine-creatine kinase (PCr/CK) system, as a unique gene family that is coordinately regulated by HIF. Cytosolic CKs are expressed in a HIF-2-dependent manner in vitro and localize to apical intestinal epithelial cell adherens junctions, where they are critical for junction assembly and epithelial integrity. Supplementation with dietary creatine markedly ameliorated both disease severity and inflammatory responses in colitis models. Further, enzymes of the PCr/CK metabolic shuttle demonstrate dysregulated mucosal expression in a subset of ulcerative colitis and Crohn disease patients. These findings establish a role for HIF-regulated CK in epithelial homeostasis and reveal a fundamental link between cellular bioenergetics and mucosal barrier.

  14. Gut Microbiota in Obesity and Undernutrition.

    Science.gov (United States)

    de Clercq, Nicolien C; Groen, Albert K; Romijn, Johannes A; Nieuwdorp, Max

    2016-11-01

    Malnutrition is the result of an inadequate balance between energy intake and energy expenditure that ultimately leads to either obesity or undernutrition. Several factors are associated with the onset and preservation of malnutrition. One of these factors is the gut microbiota, which has been recognized as an important pathophysiologic factor in the development and sustainment of malnutrition. However, to our knowledge, the extent to which the microbiota influences malnutrition has yet to be elucidated. In this review, we summarize the mechanisms via which the gut microbiota may influence energy homeostasis in relation to malnutrition. In addition, we discuss potential therapeutic modalities to ameliorate obesity or undernutrition. © 2016 American Society for Nutrition.

  15. MARCKS-related protein regulates cytoskeletal organization at cell-cell and cell-substrate contacts in epithelial cells.

    Science.gov (United States)

    Van Itallie, Christina M; Tietgens, Amber Jean; Aponte, Angel; Gucek, Marjan; Cartagena-Rivera, Alexander X; Chadwick, Richard S; Anderson, James M

    2018-02-02

    Treatment of epithelial cells with interferon-γ and TNF-α (IFN/TNF) results in increased paracellular permeability. To identify relevant proteins mediating barrier disruption, we performed proximity-dependent biotinylation (BioID) of occludin and found that tagging of MARCKS-related protein (MRP; also known as MARCKSL1) increased ∼20-fold following IFN/TNF administration. GFP-MRP was focused at the lateral cell membrane and its overexpression potentiated the physiological response of the tight junction barrier to cytokines. However, deletion of MRP did not abrogate the cytokine responses, suggesting that MRP is not required in the occludin-dependent IFN/TNF response. Instead, our results reveal a key role for MRP in epithelial cells in control of multiple actin-based structures, likely by regulation of integrin signaling. Changes in focal adhesion organization and basal actin stress fibers in MRP-knockout (KO) cells were reminiscent of those seen in FAK-KO cells. In addition, we found alterations in cell-cell interactions in MRP-KO cells associated with increased junctional tension, suggesting that MRP may play a role in focal adhesion-adherens junction cross talk. Together, our results are consistent with a key role for MRP in cytoskeletal organization of cell contacts in epithelial cells. © 2018. Published by The Company of Biologists Ltd.

  16. Gut Microbiota: Association with NAFLD and Metabolic Disturbances

    Directory of Open Access Journals (Sweden)

    E. Lau

    2015-01-01

    Full Text Available Nonalcoholic fatty liver disease is the hepatic expression of metabolic syndrome, being frequently associated with obesity, insulin resistance, and dyslipidemia. Recent lines of evidence have demonstrated a role of gut microbiota in insulin resistance, obesity, and associated metabolic disturbances, raising the interest in its relationship with NAFLD pathogenesis. Therefore, intestinal microbiota has emerged as a potential factor involved in NAFLD, through different pathways, including its influence in energy storage, lipid and choline metabolism, ethanol production, immune balance, and inflammation. The main objective of this review is to address the pathogenic association of gut microbiota to NAFLD. This comprehension may allow the development of integrated strategies to modulate intestinal microbiota in order to treat NAFLD.

  17. Immune Homeostasis in Epithelial Cells: Evidence and Role of Inflammasome Signaling Reviewed.

    Science.gov (United States)

    Peeters, Paul M; Wouters, Emiel F; Reynaert, Niki L

    2015-01-01

    The epithelium regulates the interaction between the noxious xenogenous, as well as the microbial environment and the immune system, not only by providing a barrier but also by expressing a number of immunoregulatory membrane receptors, and intracellular danger sensors and their downstream effectors. Amongst these are a number of inflammasome sensor subtypes, which have been initially characterized in myeloid cells and described to be activated upon assembly into multiprotein complexes by microbial and environmental triggers. This review compiles a vast amount of literature that supports a pivotal role for inflammasomes in the various epithelial barriers of the human body as essential factors maintaining immune signaling and homeostasis.

  18. The Vaginal Microbiota of Guinea Pigs

    OpenAIRE

    Hafner, L. M.; Rush, C. M.; Timms, P.

    2011-01-01

    The vaginae of four guinea pigs were swabbed and samples cultured aerobically on horse blood agar, in 5 per cent carbon dioxide on MRS agar or anaerobically on anaerobic horse blood agar. Vaginal microbiota consisted almost exclusively of gram-positive bacteria including Corynebacterium, Streptococcus, Enterococcus, Staphylococcus and Lactobacillus species.Keywords: guinea pigs, vaginal microbiota, vaginal vaccines.

  19. Dysbiosis of the gut microbiota in disease

    Directory of Open Access Journals (Sweden)

    Simon Carding

    2015-02-01

    Full Text Available There is growing evidence that dysbiosis of the gut microbiota is associated with the pathogenesis of both intestinal and extra-intestinal disorders. Intestinal disorders include inflammatory bowel disease, irritable bowel syndrome (IBS, and coeliac disease, while extra-intestinal disorders include allergy, asthma, metabolic syndrome, cardiovascular disease, and obesity.In many of these conditions, the mechanisms leading to disease development involves the pivotal mutualistic relationship between the colonic microbiota, their metabolic products, and the host immune system. The establishment of a ‘healthy’ relationship early in life appears to be critical to maintaining intestinal homeostasis. Whilst we do not yet have a clear understanding of what constitutes a ‘healthy’ colonic microbiota, a picture is emerging from many recent studies identifying particular bacterial species associated with a healthy microbiota. In particular, the bacterial species residing within the mucus layer of the colon, either through direct contact with host cells, or through indirect communication via bacterial metabolites, may influence whether host cellular homeostasis is maintained or whether inflammatory mechanisms are triggered. In addition to inflammation, there is some evidence that perturbations in the gut microbiota is involved with the development of colorectal cancer. In this case, dysbiosis may not be the most important factor, rather the products of interaction between diet and the microbiome. High-protein diets are thought to result in the production of carcinogenic metabolites from the colonic microbiota that may result in the induction of neoplasia in the colonic epithelium.Ever more sensitive metabolomics methodologies reveal a suite of small molecules produced in the microbiome which mimic or act as neurosignallers or neurotransmitters. Coupled with evidence that probiotic interventions may alter psychological endpoints in both humans and in

  20. Normal morphogenesis of epithelial tissues and progression of epithelial tumors

    Science.gov (United States)

    Wang, Chun-Chao; Jamal, Leen; Janes, Kevin A.

    2011-01-01

    Epithelial cells organize into various tissue architectures that largely maintain their structure throughout the life of an organism. For decades, the morphogenesis of epithelial tissues has fascinated scientists at the interface of cell, developmental, and molecular biology. Systems biology offers ways to combine knowledge from these disciplines by building integrative models that are quantitative and predictive. Can such models be useful for gaining a deeper understanding of epithelial morphogenesis? Here, we take inventory of some recurring themes in epithelial morphogenesis that systems approaches could strive to capture. Predictive understanding of morphogenesis at the systems level would prove especially valuable for diseases such as cancer, where epithelial tissue architecture is profoundly disrupted. PMID:21898857

  1. The gut microbiota, obesity and insulin resistance

    Science.gov (United States)

    The human gut is densely populated by commensal and symbiotic microbes (the "gut microbiota"), with the majority of the constituent microorganisms being bacteria. Accumulating evidence indicates that the gut microbiota plays a significant role in the development of obesity, obesity-associated inflam...

  2. Chemical regulation of body feather microbiota in a wild bird.

    Science.gov (United States)

    Jacob, Staffan; Sallé, Louis; Zinger, Lucie; Chaine, Alexis S; Ducamp, Christine; Boutault, Léa; Russell, Andrew F; Heeb, Philipp

    2018-04-01

    The microbiota has a broad range of impacts on host physiology and behaviour, pointing out the need to improve our comprehension of the drivers of host-microbiota composition. Of particular interest is whether the microbiota is acquired passively, or whether and to what extent hosts themselves shape the acquisition and maintenance of their microbiota. In birds, the uropygial gland produces oily secretions used to coat feathers that have been suggested to act as an antimicrobial defence mechanism regulating body feather microbiota. However, our comprehension of this process is still limited. In this study, we for the first time coupled high-throughput sequencing of the microbiota of both body feathers and the direct environment (i.e., the nest) in great tits with chemical analyses of the composition of uropygial gland secretions to examine whether host chemicals have either specific effects on some bacteria or nonspecific broad-spectrum effects on the body feather microbiota. Using a network approach investigating the patterns of co-occurrence or co-exclusions between chemicals and bacteria within the body feather microbiota, we found no evidence for specific promicrobial or antimicrobial effects of uropygial gland chemicals. However, we found that one group of chemicals was negatively correlated to bacterial richness on body feathers, and a higher production of these chemicals was associated with a poorer body feather bacterial richness compared to the nest microbiota. Our study provides evidence that chemicals produced by the host might function as a nonspecific broad-spectrum antimicrobial defence mechanism limiting colonization and/or maintenance of bacteria on body feathers, providing new insight about the drivers of the host's microbiota composition in wild organisms. © 2018 John Wiley & Sons Ltd.

  3. Predictive modeling of gingivitis severity and susceptibility via oral microbiota.

    Science.gov (United States)

    Huang, Shi; Li, Rui; Zeng, Xiaowei; He, Tao; Zhao, Helen; Chang, Alice; Bo, Cunpei; Chen, Jie; Yang, Fang; Knight, Rob; Liu, Jiquan; Davis, Catherine; Xu, Jian

    2014-09-01

    Predictive modeling of human disease based on the microbiota holds great potential yet remains challenging. Here, 50 adults underwent controlled transitions from naturally occurring gingivitis, to healthy gingivae (baseline), and to experimental gingivitis (EG). In diseased plaque microbiota, 27 bacterial genera changed in relative abundance and functional genes including 33 flagellar biosynthesis-related groups were enriched. Plaque microbiota structure exhibited a continuous gradient along the first principal component, reflecting transition from healthy to diseased states, which correlated with Mazza Gingival Index. We identified two host types with distinct gingivitis sensitivity. Our proposed microbial indices of gingivitis classified host types with 74% reliability, and, when tested on another 41-member cohort, distinguished healthy from diseased individuals with 95% accuracy. Furthermore, the state of the microbiota in naturally occurring gingivitis predicted the microbiota state and severity of subsequent EG (but not the state of the microbiota during the healthy baseline period). Because the effect of disease is greater than interpersonal variation in plaque, in contrast to the gut, plaque microbiota may provide advantages in predictive modeling of oral diseases.

  4. De novo expression of sodium-glucose cotransporter SGLT2 in Bowman’s capsule coincides with replacement of parietal epithelial cell layer with proximal tubule-like epithelium

    OpenAIRE

    Tabatabai, Niloofar M.; North, Paula E.; Regner, Kevin R.; Kumar, Suresh N.; Duris, Christine B.; Blodgett, Amy B.

    2014-01-01

    In kidney nephron, parietal epithelial cells line the Bowman’s capsule and function as a permeability barrier for the glomerular filtrate. Bowman’s capsule cells with proximal tubule epithelial morphology have been found. However, the effects of tubular metaplasia in Bowman’s capsule on kidney function remain poorly understood. Sodium-glucose cotransporter 2 (SGLT2) plays a major role in reabsorption of glucose in the kidney and is expressed on brush border membrane of epithelial cells in the...

  5. Gut-liver axis, cirrhosis and portal hypertension: the chicken and the egg.

    Science.gov (United States)

    Arab, Juan P; Martin-Mateos, Rosa M; Shah, Vijay H

    2018-02-01

    The term gut-liver axis is used to highlight the close anatomical and functional relationship between the intestine and the liver. The intestine has a highly specialized epithelial membrane which regulates transport across the mucosa. Due to dysbiosis, impairment of the intestinal barrier and altered immunity status, bacterial products can reach the liver through the portal vein, where they are recognized by specific receptors, activate the immune system and lead to a proinflammatory response. Gut microbiota and bacterial translocation play an important role in the pathogenesis of chronic liver diseases, including alcoholic and non-alcoholic fatty liver disease, cirrhosis, and its complications, such as portal hypertension, spontaneous bacterial peritonitis and hepatic encephalopaty. The gut microbiota also plays a critical role as a modulator of bile acid metabolism which can also influence intestinal permeability and portal hypertension through the farnesoid-X receptor. On the other hand, cirrhosis and portal hypertension affect the microbiota and increase translocation, leading to a "chicken and egg" situation, where translocation increases portal pressure, and vice versa. A myriad of therapies targeting gut microbiota have been evaluated specifically in patients with chronic liver disease. Further studies targeting intestinal microbiota and its possible hemodynamic and metabolic effects are needed. This review summarizes the current knowledge about the role of gut microbiota in the pathogenesis of chronic liver diseases and portal hypertension.

  6. Effects of selected non-digestible dietary carbohydrates on the composition of the large intestinal microbiota and susceptibility to salmonella infections

    DEFF Research Database (Denmark)

    Petersen, Anne

    The mammalian intestinal tract is a complex ecosystem colonised by a high and diverse number of commensal bacterial. Bacteria colonising the intestinal tract have a profound impact on host health e.g. by acting as a barrier against colonisation by pathogens and by contributing to digestion...... of complex food components. In this regard there is a considerable interest in dietary components that can modulate the gut microbiota and potentially improve gut health. Some gut bacteria, known as probiotics, are belived to improve gut health upond ingestion, whereas non-digestible (ND) dietary...... of the gut microbiota or by stimulating the immune response. Salmonella is a genus of Gram-negative bacteria that are a major cause of food-borne illness globally. Several studies with probiotics have demonstrated protective effects against murine Salmonella infections, while studies with prebiotics have...

  7. Characterization of Microbiota in Children with Chronic Functional Constipation.

    Science.gov (United States)

    de Meij, Tim G J; de Groot, Evelien F J; Eck, Anat; Budding, Andries E; Kneepkens, C M Frank; Benninga, Marc A; van Bodegraven, Adriaan A; Savelkoul, Paul H M

    2016-01-01

    Disruption of the intestinal microbiota is considered an etiological factor in pediatric functional constipation. Scientifically based selection of potential beneficial probiotic strains in functional constipation therapy is not feasible due to insufficient knowledge of microbiota composition in affected subjects. The aim of this study was to describe microbial composition and diversity in children with functional constipation, compared to healthy controls. Fecal samples from 76 children diagnosed with functional constipation according to the Rome III criteria (median age 8.0 years; range 4.2-17.8) were analyzed by IS-pro, a PCR-based microbiota profiling method. Outcome was compared with intestinal microbiota profiles of 61 healthy children (median 8.6 years; range 4.1-17.9). Microbiota dissimilarity was depicted by principal coordinate analysis (PCoA), diversity was calculated by Shannon diversity index. To determine the most discriminative species, cross validated logistic ridge regression was performed. Applying total microbiota profiles (all phyla together) or per phylum analysis, no disease-specific separation was observed by PCoA and by calculation of diversity indices. By ridge regression, however, functional constipation and controls could be discriminated with 82% accuracy. Most discriminative species were Bacteroides fragilis, Bacteroides ovatus, Bifidobacterium longum, Parabacteroides species (increased in functional constipation) and Alistipes finegoldii (decreased in functional constipation). None of the commonly used unsupervised statistical methods allowed for microbiota-based discrimination of children with functional constipation and controls. By ridge regression, however, both groups could be discriminated with 82% accuracy. Optimization of microbiota-based interventions in constipated children warrants further characterization of microbial signatures linked to clinical subgroups of functional constipation.

  8. Role of Microbiota in Sexually Dimorphic Immunity

    NARCIS (Netherlands)

    Elderman, Marlies; de Vos, Paul; Faas, Marijke

    2018-01-01

    Sex differences in peripheral immune responses are well recognized. This is associated with sex differences in many immunological diseases. As the intestinal microbiota is known to influence the immune system, such sex differences in immune responses may be a consequence of sex-specific microbiota.

  9. Ecological Restoration of Antibiotic-Disturbed Gastrointestinal Microbiota in Foregut and Hindgut of Cows

    Science.gov (United States)

    Ji, Shoukun; Jiang, Tao; Yan, Hui; Guo, Chunyan; Liu, Jingjing; Su, Huawei; Alugongo, Gibson M.; Shi, Haitao; Wang, Yajing; Cao, Zhijun; Li, Shengli

    2018-01-01

    Antibiotically disturbed gastrointestinal microbiota needs a long period time to be restored to normal, which may cause a series of problems to the host. The understanding of restoration of the biased microbiota by antibiotics remains largely unknown. Here, we investigated the microbiota shift in foregut (rumen) and hindgut (rectum) of lactating cows after antibiotics exposure as well as after antibiotics withdrawal with (Microbiota transplantation, MT group) or without (Control, CON group) microbiota transplantation. We were able to demonstrate that microbiota in both foregut and hindgut significantly changed after 3 or 14 days of antibiotics exposure, and the changes persisted over long period of time (>18 days) after withdrawing the antibiotics. We further observed a faster restoration of microbiota in both foregut and hindgut of MT group than CON group, microbiota in foregut was mainly benefited from microbiota transplantation by restoring the alpha-diversity as well as within-group similarity, while microbiota in hindgut was primarily benefited from microbiota transplantation by reestablishing the co-occurrence network (nodes number, edges number, density, modularity as well as closeness centrality). These results together expanded our understanding of restoration of the biased microbiota by antibiotics, and may also be instructive to deal with the delayed microbiota restoration at least in cows. PMID:29594071

  10. Oral microbiota in patients with atherosclerosis

    DEFF Research Database (Denmark)

    Fåk, Frida; Tremaroli, Valentina; Bergström, Göran

    2015-01-01

    BACKGROUND AND AIMS: Recent evidence suggests that the microbiota may be considered as an environmental factor that contributes to the development of atherosclerosis. Periodontal disease has been associated with cardio- and cerebrovascular events, and inflammation in the periodontium is suggested...... to increase the systemic inflammatory level of the host, which may in turn influence plaque composition and rupture. We previously showed that bacteria from the oral cavity and the gut could be found in atherosclerotic plaques. METHODS: To elucidate whether the oral microbiota composition differed between...... patients with asymptomatic and symptomatic atherosclerosis we performed pyrosequencing of the oral microbiota of 92 individuals including patients with asymptomatic and symptomatic atherosclerosis and control individuals without carotid plaques or previous stroke or myocardial infarction. RESULTS...

  11. [Microbiota in women; clinical applications of probiotics].

    Science.gov (United States)

    Álvarez-Calatayud, Guillermo; Suárez, Evaristo; Rodríguez, Juan Miguel; Pérez-Moreno, Jimena

    2015-07-18

    The main function of vaginal microbiota is to protect the mucosa against the colonization and growth of pathogenic microorganisms. This microbiota is modified by hormonal activity. Its maximum concentration and effectiveness occurs during the fertile period, where there is a predominance of lactobacilli. When it is reduced (microbiota dysbiosis) leads to bacterial vaginosis and candida vaginitis which are common diseases in women. Consequently, instillation of lactobacilli in the vagina has beneficial effects on the symptomatology and prognosis of these illnesses. Breast milk is one of the key factors in the development of gut microbiota of the infant. There is an enteric-breast circulation, which is higher at the end of pregnancy and during breastfeeding. This circulation could explain the modulation of the breast microbiota by using probiotics. It could have a positive impact not only for the health of the mother, who would reduce the incidence of mastitis, but also for their infant. The use of probiotics is a hopeful alternative in various gynecological pathologies. However, it's is necessary first some well-designed, randomized trials with standardized methods and with a significant number of patients in order to confirm its benefits and allow us its use in protocols. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  12. Molecular biology of the blood-brain and the blood-cerebrospinal fluid barriers: similarities and differences

    Directory of Open Access Journals (Sweden)

    Redzic Zoran

    2011-01-01

    Full Text Available Abstract Efficient processing of information by the central nervous system (CNS represents an important evolutionary advantage. Thus, homeostatic mechanisms have developed that provide appropriate circumstances for neuronal signaling, including a highly controlled and stable microenvironment. To provide such a milieu for neurons, extracellular fluids of the CNS are separated from the changeable environment of blood at three major interfaces: at the brain capillaries by the blood-brain barrier (BBB, which is localized at the level of the endothelial cells and separates brain interstitial fluid (ISF from blood; at the epithelial layer of four choroid plexuses, the blood-cerebrospinal fluid (CSF barrier (BCSFB, which separates CSF from the CP ISF, and at the arachnoid barrier. The two barriers that represent the largest interface between blood and brain extracellular fluids, the BBB and the BCSFB, prevent the free paracellular diffusion of polar molecules by complex morphological features, including tight junctions (TJs that interconnect the endothelial and epithelial cells, respectively. The first part of this review focuses on the molecular biology of TJs and adherens junctions in the brain capillary endothelial cells and in the CP epithelial cells. However, normal function of the CNS depends on a constant supply of essential molecules, like glucose and amino acids from the blood, exchange of electrolytes between brain extracellular fluids and blood, as well as on efficient removal of metabolic waste products and excess neurotransmitters from the brain ISF. Therefore, a number of specific transport proteins are expressed in brain capillary endothelial cells and CP epithelial cells that provide transport of nutrients and ions into the CNS and removal of waste products and ions from the CSF. The second part of this review concentrates on the molecular biology of various solute carrier (SLC transport proteins at those two barriers and underlines

  13. New frontiers in nanotoxicology: Gut microbiota/microbiome-mediated effects of engineered nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Pietroiusti, Antonio, E-mail: pietroiu@uniroma2.it; Magrini, Andrea; Campagnolo, Luisa

    2016-05-15

    It has been recently recognized that the gut microbiota, the community of organisms living within the gastrointestinal tract is an integral part of the human body, and that its genoma (the microbiome) interacts with the genes expressed by the cells of the host organism. Several important physiological functions require the cooperation of microbiota/microbiome, whose alterations play an important role in several human diseases. On this basis, it is probable that microbiota/microbiome may in part be involved in many biological effects of engineered nanomaterials (ENMs). There are still few reports on the possible toxicological effects of ENMs on microbiota/microbiome, and on their possible clinical consequences. Available data suggest that several ENMs, including carbon nanotubes (CNTs), titanium dioxide, cerium dioxide, zinc oxide, nanosilica and nanosilver may affect the microbiota and that clinical disorders such as colitis, obesity and immunological dysfunctions might follow. On the other hand, other ENMs such as iron nanoparticles may show advantages over traditional iron-based supplemental treatment because they do not interfere with the microbiota/microbiome, and some ENM-based therapeutic interventions might be employed for treating intestinal infections, while sparing the microbiota. The final section of the review is focused on the possible future developments of the research in this field: new in vitro and in vivo models, possible biomarkers and new pathophysiological pathways are proposed and discussed, as well as the possibility that metabolic changes following ENMs/microbiota interactions might be exploited as a fingerprint of ENM exposure. The potential toxicological relevance of physico-chemical modifications of ENMs induced by the microbiota is also highlighted. - Highlights: • Interactions between ENMs and microbiota are largely unexplored. • Microbiota probably mediates several ENMs' biological actions. • ENMs/microbiota interactions

  14. New frontiers in nanotoxicology: Gut microbiota/microbiome-mediated effects of engineered nanomaterials

    International Nuclear Information System (INIS)

    Pietroiusti, Antonio; Magrini, Andrea; Campagnolo, Luisa

    2016-01-01

    It has been recently recognized that the gut microbiota, the community of organisms living within the gastrointestinal tract is an integral part of the human body, and that its genoma (the microbiome) interacts with the genes expressed by the cells of the host organism. Several important physiological functions require the cooperation of microbiota/microbiome, whose alterations play an important role in several human diseases. On this basis, it is probable that microbiota/microbiome may in part be involved in many biological effects of engineered nanomaterials (ENMs). There are still few reports on the possible toxicological effects of ENMs on microbiota/microbiome, and on their possible clinical consequences. Available data suggest that several ENMs, including carbon nanotubes (CNTs), titanium dioxide, cerium dioxide, zinc oxide, nanosilica and nanosilver may affect the microbiota and that clinical disorders such as colitis, obesity and immunological dysfunctions might follow. On the other hand, other ENMs such as iron nanoparticles may show advantages over traditional iron-based supplemental treatment because they do not interfere with the microbiota/microbiome, and some ENM-based therapeutic interventions might be employed for treating intestinal infections, while sparing the microbiota. The final section of the review is focused on the possible future developments of the research in this field: new in vitro and in vivo models, possible biomarkers and new pathophysiological pathways are proposed and discussed, as well as the possibility that metabolic changes following ENMs/microbiota interactions might be exploited as a fingerprint of ENM exposure. The potential toxicological relevance of physico-chemical modifications of ENMs induced by the microbiota is also highlighted. - Highlights: • Interactions between ENMs and microbiota are largely unexplored. • Microbiota probably mediates several ENMs' biological actions. • ENMs/microbiota interactions

  15. Effects of antibiotics on human microbiota and subsequent disease.

    Science.gov (United States)

    Keeney, Kristie M; Yurist-Doutsch, Sophie; Arrieta, Marie-Claire; Finlay, B Brett

    2014-01-01

    Although antibiotics have significantly improved human health and life expectancy, their disruption of the existing microbiota has been linked to significant side effects such as antibiotic-associated diarrhea, pseudomembranous colitis, and increased susceptibility to subsequent disease. By using antibiotics to break colonization resistance against Clostridium, Salmonella, and Citrobacter species, researchers are now exploring mechanisms for microbiota-mediated modulation against pathogenic infection, revealing potential roles for different phyla and family members as well as microbiota-liberated sugars, hormones, and short-chain fatty acids in regulating pathogenicity. Furthermore, connections are now being made between microbiota dysbiosis and a variety of different diseases such as rheumatoid arthritis, inflammatory bowel disease, type 1 diabetes, atopy, and obesity. Future advances in the rapidly developing field of microbial bioinformatics will enable researchers to further characterize the mechanisms of microbiota modulation of disease and potentially identify novel therapeutics against disease.

  16. Resident aerobic microbiota of the adult human nasal cavity

    DEFF Research Database (Denmark)

    Rasmussen, TT; Kirkeby Nielsen, LP; Poulsen, Knud

    2000-01-01

    Recent evidence strongly suggests that the microbiota of the nasal cavity plays a crucial role in determining the reaction patterns of the mucosal and systemic immune system. However, little is known about the normal microbiota of the nasal cavity. The purpose of this study was to determine...... the microbiota in different parts of the nasal cavity and to develop and evaluate methods for this purpose. Samples were collected from 10 healthy adults by nasal washes and by swabbing of the mucosa through a sterile introduction device. Both methods gave results that were quantitatively and qualitatively...... reproducible, and revealed significant differences in the density of the nasal microbiota between individuals. The study revealed absence of gram-negative bacteria that are regular members of the commensal microbiota of the pharynx. Likewise, viridans type streptococci were sparsely represented. The nasal...

  17. A systematic review of studies on the faecal microbiota in anorexia nervosa: future research may need to include microbiota from the small intestine.

    Science.gov (United States)

    Schwensen, Hanna Ferløv; Kan, Carol; Treasure, Janet; Høiby, Niels; Sjögren, Magnus

    2018-03-14

    Anorexia nervosa (AN) is a poorly understood and often chronic condition. Deviations in the gut microbiota have been reported to influence the gut-brain axis in other disorders. Therefore, if present in AN, it may impact on symptoms and illness progression. A review of the gut microbiota studies in AN is presented. A literature search on PubMed yielded 27 articles; 14 were selected and based on relevance, 9 articles were included. The findings were interpreted in the larger context of preclinical research and clinical observations. 8 out of 9 included studies analysed microbiota from faeces samples, while the last analysed a protein in plasma produced by the gut. Two studies were longitudinal and included an intervention (i.e., weight restoration), five were cross-sectional, one was a case report, and the last was a case series consisting of three cases. Deviations in abundance, diversity, and microbial composition of the faecal microbiota in AN were found. There are currently only a few studies on the gut microbiota in AN, all done on faeces samples, and not all describe the microbiota at the species level extensively. The Archaeon Methanobrevibacter smithii was increased in participants with a BMI study and specifically in AN patients in three studies. Methanobrevibacter smithii may, if detected, be a benchmark biomarker for future studies. We propose that microbiota samples could also be collected from the small intestine, where a major exchange of nutrients takes place and where the microbiota may have a biological impact on AN.

  18. Transcriptional profiling of primary endometrial epithelial cells following acute HIV-1 exposure reveals gene signatures related to innate immunity.

    Science.gov (United States)

    Zahoor, Muhammad Atif; Woods, Matthew William; Dizzell, Sara; Nazli, Aisha; Mueller, Kristen M; Nguyen, Philip V; Verschoor, Chris P; Kaushic, Charu

    2018-04-01

    Genital epithelial cells (GECs) line the mucosal surface of the female genital tract (FGT) and are the first cells that interface with both commensal microbiota and sexually transmitted pathogens. Despite the protective barrier formed by GECs, the FGT is a major site of HIV-1 infection. This highlights the importance of studying the interaction of HIV-1 and GECs. Using microarray analysis, we characterized the transcriptional profile of primary endometrial GECs grown in the presence or absence of physiological levels of E2 (10 -9  mol/L) or P4 (10 -7  mol/L) following acute exposure to HIV-1 for 6 hours. Acute exposure of primary endometrial GECs to HIV-1 resulted in the expression of genes related to inflammation, plasminogen activation, adhesion and diapedesis and interferon response. Interestingly, exposure to HIV-1 in the presence of E2 and P4 resulted in differential transcriptional profiles, suggesting that the response of primary endometrial GECs to HIV-1 exposure is modulated by female sex hormones. The gene expression signature of endometrial GECs indicates that the response of these cells may be key to determining host susceptibility to HIV-1 and that sex hormones modulate these interactions. This study allows us to explore possible mechanisms that explain the hormone-mediated fluctuation of HIV-1 susceptibility in women. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Recurrent Fusion Genes in Gastric Cancer: CLDN18-ARHGAP26 Induces Loss of Epithelial Integrity

    Directory of Open Access Journals (Sweden)

    Fei Yao

    2015-07-01

    Full Text Available Genome rearrangements, a hallmark of cancer, can result in gene fusions with oncogenic properties. Using DNA paired-end-tag (DNA-PET whole-genome sequencing, we analyzed 15 gastric cancers (GCs from Southeast Asians. Rearrangements were enriched in open chromatin and shaped by chromatin structure. We identified seven rearrangement hot spots and 136 gene fusions. In three out of 100 GC cases, we found recurrent fusions between CLDN18, a tight junction gene, and ARHGAP26, a gene encoding a RHOA inhibitor. Epithelial cell lines expressing CLDN18-ARHGAP26 displayed a dramatic loss of epithelial phenotype and long protrusions indicative of epithelial-mesenchymal transition (EMT. Fusion-positive cell lines showed impaired barrier properties, reduced cell-cell and cell-extracellular matrix adhesion, retarded wound healing, and inhibition of RHOA. Gain of invasion was seen in cancer cell lines expressing the fusion. Thus, CLDN18-ARHGAP26 mediates epithelial disintegration, possibly leading to stomach H+ leakage, and the fusion might contribute to invasiveness once a cell is transformed.

  20. The vaginal microbiota, host defence and reproductive physiology.

    Science.gov (United States)

    Smith, Steven B; Ravel, Jacques

    2017-01-15

    The interaction between the human host and the vaginal microbiota is highly dynamic. Major changes in the vaginal physiology and microbiota over a woman's lifetime are largely shaped by transitional periods such as puberty, menopause and pregnancy, while daily fluctuations in microbial composition observed through culture-independent studies are more likely to be the results of daily life activities and behaviours. The vaginal microbiota of reproductive-aged women is largely made up of at least five different community state types. Four of these community state types are dominated by lactic-acid producing Lactobacillus spp. while the fifth is commonly composed of anaerobes and strict anaerobes and is sometimes associated with vaginal symptoms. The production of lactic acid has been associated with contributing to the overall health of the vagina due to its direct and indirect effects on pathogens and host defence. Some species associated with non-Lactobacillus vaginal microbiota may trigger immune responses as well as degrade the host mucosa, processes that ultimately increase susceptibility to infections and contribute to negative reproductive outcomes such as infertility and preterm birth. Further studies are needed to better understand the functional underpinnings of how the vaginal microbiota affect host physiology but also how host physiology affects the vaginal microbiota. Understanding this fine-tuned interaction is key to maintaining women's reproductive health. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  1. Gut microbiota, immunity and disease: a complex relationship

    Directory of Open Access Journals (Sweden)

    Michele M Kosiewicz

    2011-09-01

    Full Text Available Our immune system has evolved to recognize and eradicate pathogenic microbes. However, we have a symbiotic relationship with multiple species of bacteria that occupy the gut and comprise the natural commensal flora or microbiota. The microbiota is critically important for the breakdown of nutrients, and also assists in preventing colonization by potentially pathogenic bacteria. In addition, the gut commensal bacteria appears to be critical for the development of an optimally functioning immune system. Various studies have shown that individual species of the microbiota can induce very different types of immune cells (e.g., Th17 cells, Foxp3+ regulatory T cells and responses, suggesting that the composition of the microbiota can have an important influence on the immune response. Although the microbiota resides in the gut, it appears to have a significant impact on the systemic immune response. Indeed, specific gut commensal bacteria have been shown to affect disease development in organs other than the gut, and depending on the species, have been found to have a wide range of effects on diseases from induction and exacerbation to inhibition and protection. In this review, we will focus on the role that the gut microbiota plays in the development and progression of inflammatory/autoimmune disease, and we will also touch upon its role in allergy and cancer.

  2. The vaginal microbiota, host defence and reproductive physiology

    Science.gov (United States)

    Smith, Steven B

    2016-01-01

    Abstract The interaction between the human host and the vaginal microbiota is highly dynamic. Major changes in the vaginal physiology and microbiota over a woman's lifetime are largely shaped by transitional periods such as puberty, menopause and pregnancy, while daily fluctuations in microbial composition observed through culture‐independent studies are more likely to be the results of daily life activities and behaviours. The vaginal microbiota of reproductive‐aged women is largely made up of at least five different community state types. Four of these community state types are dominated by lactic‐acid producing Lactobacillus spp. while the fifth is commonly composed of anaerobes and strict anaerobes and is sometimes associated with vaginal symptoms. The production of lactic acid has been associated with contributing to the overall health of the vagina due to its direct and indirect effects on pathogens and host defence. Some species associated with non‐Lactobacillus vaginal microbiota may trigger immune responses as well as degrade the host mucosa, processes that ultimately increase susceptibility to infections and contribute to negative reproductive outcomes such as infertility and preterm birth. Further studies are needed to better understand the functional underpinnings of how the vaginal microbiota affect host physiology but also how host physiology affects the vaginal microbiota. Understanding this fine‐tuned interaction is key to maintaining women's reproductive health. PMID:27373840

  3. Interactions between the microbiota and pathogenic bacteria in the gut.

    Science.gov (United States)

    Bäumler, Andreas J; Sperandio, Vanessa

    2016-07-07

    The microbiome has an important role in human health. Changes in the microbiota can confer resistance to or promote infection by pathogenic bacteria. Antibiotics have a profound impact on the microbiota that alters the nutritional landscape of the gut and can lead to the expansion of pathogenic populations. Pathogenic bacteria exploit microbiota-derived sources of carbon and nitrogen as nutrients and regulatory signals to promote their own growth and virulence. By eliciting inflammation, these bacteria alter the intestinal environment and use unique systems for respiration and metal acquisition to drive their expansion. Unravelling the interactions between the microbiota, the host and pathogenic bacteria will produce strategies for manipulating the microbiota against infectious diseases.

  4. Interactions between the microbiota and pathogenic bacteria in the gut

    Science.gov (United States)

    Bäumler, Andreas J.; Sperandio, Vanessa

    2016-01-01

    The microbiome has an important role in human health. Changes in the microbiota can confer resistance to or promote infection by pathogenic bacteria. Antibiotics have a profound impact on the microbiota that alters the nutritional landscape of the gut and can lead to the expansion of pathogenic populations. Pathogenic bacteria exploit microbiota-derived sources of carbon and nitrogen as nutrients and regulatory signals to promote their own growth and virulence. By eliciting inflammation, these bacteria alter the intestinal environment and use unique systems for respiration and metal acquisition to drive their expansion. Unravelling the interactions between the microbiota, the host and pathogenic bacteria will produce strategies for manipulating the microbiota against infectious diseases. PMID:27383983

  5. [Research advances in the relationship between childhood malnutrition and gut microbiota].

    Science.gov (United States)

    Wang, Hui-Hui; Wen, Fei-Qiu; Wei, Ju-Rong

    2016-11-01

    Childhood malnutrition is an important disease threatening healthy growth of children worldwide. Gut microbiota has close links to food digestion, absorption and intestinal function. Current research considers that alterations in gut microbiota have been strongly implicated in childhood malnutrition. This review article addresses the latest understanding and evidence of interrelationship between gut microbiota and individual nutrition status, the changes of gut microbiota in different types of malnutrition, and the attribution of gut microbiota in the treatment and prognosis of malnutrition. It provides in depth understanding of childhood malnutrition from the perspective of microbiome.

  6. Chemical ecology of interactions between human skin microbiota and mosquitoes

    NARCIS (Netherlands)

    Verhulst, N.O.; Takken, W.; Dicke, M.; Schraa, G.; Smallegange, R.C.

    2010-01-01

    Microbiota on the human skin plays a major role in body odour production. The human microbial and chemical signature displays a qualitative and quantitative correlation. Genes may influence the chemical signature by shaping the composition of the microbiota. Recent studies on human skin microbiota,

  7. Intestinal microbial dysbiosis and colonic epithelial cell hyperproliferation by dietary α-mangostin is independent of mouse strain.

    Science.gov (United States)

    Gutierrez-Orozco, Fabiola; Thomas-Ahner, Jennifer M; Galley, Jeffrey D; Bailey, Michael T; Clinton, Steven K; Lesinski, Gregory B; Failla, Mark L

    2015-01-22

    Beverages and supplements prepared from mangosteen fruit are claimed to support gut health and immunity, despite the absence of supporting evidence from clinical trials. We recently reported that α-mangostin (α-MG), the most abundant xanthone in mangosteen fruit, altered the intestinal microbiome, promoted dysbiosis, and exacerbated colitis in C57BL/6J mice. The objective of this study was to determine whether induction of dysbiosis by dietary α-MG is limited to the C57BL/6J strain or represents a more generic response to chronic intake of the xanthone on the gut microbiota of mice. C3H, Balb/c, Nude FoxN1nu, and C57BL/6J mice, each demonstrating unique microbiomes, were fed standard diet or diet containing 0.1% α-MG for four weeks. Dietary α-MG significantly altered the cecal and colonic microbiota in all four strains of mice, promoting a reduction in generally assumed beneficial bacterial groups while increasing the abundance of pathogenic bacteria. Consumption of α-MG was associated with reduced abundance of Firmicutes and increased abundance of Proteobacteria. The abundance of Lachnospiraceae, Ruminococcaceae, and Lactobacillaceae was reduced in α-MG-fed mice, while that of Enterobacteriaceae and Enterococcaceae was increased. Dietary α-MG also was associated with increased proliferation of colonic epithelial cells, infiltration of immune cells, infiltration of immune cells and increased fluid content in stool. These results suggest that ingestion of pharmacologic doses of xanthones in mangosteen-containing supplements may adversely alter the gut microbiota and should be used with caution.

  8. Intestinal Microbial Dysbiosis and Colonic Epithelial Cell Hyperproliferation by Dietary α-Mangostin is Independent of Mouse Strain

    Directory of Open Access Journals (Sweden)

    Fabiola Gutierrez-Orozco

    2015-01-01

    Full Text Available Beverages and supplements prepared from mangosteen fruit are claimed to support gut health and immunity, despite the absence of supporting evidence from clinical trials. We recently reported that α-mangostin (α-MG, the most abundant xanthone in mangosteen fruit, altered the intestinal microbiome, promoted dysbiosis, and exacerbated colitis in C57BL/6J mice. The objective of this study was to determine whether induction of dysbiosis by dietary α-MG is limited to the C57BL/6J strain or represents a more generic response to chronic intake of the xanthone on the gut microbiota of mice. C3H, Balb/c, Nude FoxN1nu, and C57BL/6J mice, each demonstrating unique microbiomes, were fed standard diet or diet containing 0.1% α-MG for four weeks. Dietary α-MG significantly altered the cecal and colonic microbiota in all four strains of mice, promoting a reduction in generally assumed beneficial bacterial groups while increasing the abundance of pathogenic bacteria. Consumption of α-MG was associated with reduced abundance of Firmicutes and increased abundance of Proteobacteria. The abundance of Lachnospiraceae, Ruminococcaceae, and Lactobacillaceae was reduced in α-MG-fed mice, while that of Enterobacteriaceae and Enterococcaceae was increased. Dietary α-MG also was associated with increased proliferation of colonic epithelial cells, infiltration of immune cells, infiltration of immune cells and increased fluid content in stool. These results suggest that ingestion of pharmacologic doses of xanthones in mangosteen-containing supplements may adversely alter the gut microbiota and should be used with caution.

  9. Pseudomonas aeruginosa Transmigrates at Epithelial Cell-Cell Junctions, Exploiting Sites of Cell Division and Senescent Cell Extrusion.

    Directory of Open Access Journals (Sweden)

    Guillaume Golovkine

    2016-01-01

    Full Text Available To achieve systemic infection, bacterial pathogens must overcome the critical and challenging step of transmigration across epithelial barriers. This is particularly true for opportunistic pathogens such as Pseudomonas aeruginosa, an agent which causes nosocomial infections. Despite extensive study, details on the mechanisms used by this bacterium to transmigrate across epithelial tissues, as well as the entry sites it uses, remain speculative. Here, using real-time microscopy and a model epithelial barrier, we show that P. aeruginosa employs a paracellular transmigration route, taking advantage of altered cell-cell junctions at sites of cell division or when senescent cells are expelled from the cell layer. Once a bacterium transmigrates, it is followed by a cohort of bacteria using the same entry point. The basal compartment is then invaded radially from the initial penetration site. Effective transmigration and propagation require type 4 pili, the type 3 secretion system (T3SS and a flagellum, although flagellum-deficient bacteria can occasionally invade the basal compartment from wounded areas. In the basal compartment, the bacteria inject the T3SS toxins into host cells, disrupting the cytoskeleton and focal contacts to allow their progression under the cells. Thus, P. aeruginosa exploits intrinsic host cell processes to breach the epithelium and invade the subcellular compartment.

  10. Effects of intrauterine contraception on the vaginal microbiota.

    Science.gov (United States)

    Bassis, Christine M; Allsworth, Jenifer E; Wahl, Heather N; Sack, Daniel E; Young, Vincent B; Bell, Jason D

    2017-09-01

    There have been conflicting reports of altered vaginal microbiota and infection susceptibility associated with contraception use. The objectives of this study were to determine if intrauterine contraception altered the vaginal microbiota and to compare the effects of a copper intrauterine device (Cu-IUD) and a levonorgestrel intrauterine system (LNG-IUS) on the vaginal microbiota. DNA was isolated from the vaginal swab samples of 76 women using Cu-IUD (n=36) or LNG-IUS (n=40) collected prior to insertion of intrauterine contraception (baseline) and at 6 months. A third swab from approximately 12 months following insertion was available for 69 (Cu-IUD, n=33; LNG-IUS, n=36) of these women. The V4 region of the bacterial 16S rRNA-encoding gene was amplified from the vaginal swab DNA and sequenced. The 16S rRNA gene sequences were processed and analyzed using the software package mothur to compare the structure and dynamics of the vaginal bacterial communities. The vaginal microbiota from individuals in this study clustered into 3 major vaginal bacterial community types: one dominated by Lactobacillus iners, one dominated by Lactobacillus crispatus and one community type that was not dominated by a single Lactobacillus species. Changes in the vaginal bacterial community composition were not associated with the use of Cu-IUD or LNG-IUS. Additionally, we did not observe a clear difference in vaginal microbiota stability with Cu-IUD versus LNG-IUS use. Although the vaginal microbiota can be highly dynamic, alterations in the community associated with the use of intrauterine contraception (Cu-IUD or LNG-IUS) were not detected over 12 months. We found no evidence that intrauterine contraception (Cu-IUD or LNG-IUS) altered the vaginal microbiota composition. Therefore, the use of intrauterine contraception is unlikely to shift the composition of the vaginal microbiota such that infection susceptibility is altered. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Microbiota is immature in moderate and severe acute malnutrition

    International Nuclear Information System (INIS)

    Ahmed, Tahmeed

    2014-01-01

    Full text: Globally 19 million under-five children suffer from severe acute malnutrition (SAM) while 51.5 million children have moderate acute malnutrition (MAM). These two conditions, together known as acute malnutrition, are responsible for 14.6% of all under-five deaths. Case fatality rate can be reduced with treatment of SAM, which however, is not readily available everywhere. Even with effective treatment, recovery can be slow and relapse not uncommon. Lack of nutrients is one of the causes of acute malnutrition but other factors including infections, inter- and intra-generational factors are also believed to play important roles in the etiology. The gut microbiota is another factor; however its relationship with nutritional interventions and therapeutic response is poorly understood. We studied the gut microbiota of children suffering from severe and moderate acute malnutrition in Bangladesh. Children with SAM were studied during the acute phase, nutritional rehabilitation and follow up in icddr,b Hospital, Dhaka. During the nutritional rehabilitation phase, the children were randomized to either RUTF or a combination of local diets (khichuri and halwa). Children with MAM were randomly selected from a birth cohort in a slum settlement and so were healthy controls. Gut microbiota were identified using 16S rRNA datasets generated from monthly fecal samples obtained from the healthy control children. ‘Relative microbiota maturity index’ and ‘microbiota-for-age Z-score’ were computed from a model developed from the age-discriminatory bacterial species identified in the healthy and acutely malnourished children. The index and the Z-score compare maturation of an acutely malnourished child’s fecal microbiota relative to healthy children of similar chronological age. Our results indicate that SAM is associated with relative immaturity of the gut microbiota. Moreover, treatment with either RUTF or the local diets is associated with incomplete recovery of

  12. Weight gain after fecal microbiota transplantation.

    Science.gov (United States)

    Alang, Neha; Kelly, Colleen R

    2015-01-01

    Fecal microbiota transplantation (FMT) is a promising treatment for recurrent Clostridium difficile infection. We report a case of a woman successfully treated with FMT who developed new-onset obesity after receiving stool from a healthy but overweight donor. This case may stimulate further studies on the mechanisms of the nutritional-neural-microbiota axis and reports of outcomes in patients who have used nonideal donors for FMT.

  13. Gut microbiota and obesity: role in aetiology and potential therapeutic target.

    Science.gov (United States)

    Moran, Carthage P; Shanahan, Fergus

    2014-08-01

    Obesity is epidemic; chronic energy surplus is clearly important in obesity development but other factors are at play. Indigenous gut microbiota are implicated in the aetiopathogenesis of obesity and obesity-related disorders. Evidence from murine models initially suggested a role for the gut microbiota in weight regulation and the microbiota has been shown to contribute to the low grade inflammation that characterises obesity. The microbiota and its metabolites mediate some of the alterations of the microbiota-gut-brain axis, the endocannabinoid system, and bile acid metabolism, found in obesity-related disorders. Modulation of the gut microbiota is an attractive proposition for prevention or treatment of obesity, particularly as traditional measures have been sub-optimal. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Silver deposition in the central nervous system and the hematoencephalic barrier studied with the electron microscope.

    Science.gov (United States)

    VAN BREEMEN, V L; CLEMENTE, C D

    1955-03-01

    For the purpose of studying the hematoencephalic barrier as it is concerned with silver circulating in the blood stream, silver nitrate was vitally administered to rats in their drinking water over periods of 6 to 8 months. The cerebrum, cerebellum, medulla, area postrema, and choroid plexus were prepared for light and electron microscopy. Silver deposition was found in the perivascular spaces in the choroid plexus, area postrema, in the medulla surrounding the area postrema, and in minute quantities in the cerebrum, cerebellum, and most of the medulla. Two levels of the hematoencephalic barrier were apparently demonstrated in our investigations. The endothelial linings of the vessels in the cerebrum, cerebellum, and medulla constitute the first threshold of the hematoencephalic barrier (specifically here, blood-brain barrier). The cell membranes adjacent to the perivascular spaces form the second threshold, as follows:-the neuroglial cell membranes in the cerebrum, cerebellum, and medulla (blood-brain barrier); the membranes of the neuroglial cells in the area postrema (blood-brain barrier); and the membranes of the epithelial cells of the choroid plexus (blood-cerebrospinal fluid barrier). This study deals with silver deposition and does not infer that the penetration of ionic silver, if present in the blood stream, would necessarily be limited to the regions described. Bleb-like structures were observed to cover the epithelial cell surfaces in the choroid plexus. They may be cellular projections increasing the cell surface area or they may be secretory droplets.

  15. Gut Microbiota: From Microorganisms to Metabolic Organ Influencing Obesity.

    Science.gov (United States)

    Stephens, Richard W; Arhire, Lidia; Covasa, Mihai

    2018-05-01

    This review summarizes the current understanding of the relationship between gut microbiota and the host as it pertains to the regulation of energy balance and obesity. The paper begins with a brief description of the gut microbiota environment, distribution, and its unique symbiotic relationship with the host. The way that enviromental factors influence microbiota composition and subsequent impact on the host are then described. Next, the mechanisms linking gut dysbiosis with obesity are discussed, and finally current challenges and limitations in understanding the role of gut microbiota in control of obesity are presented. Gut microbiota has been implicated in regulation of fat storage, as well as gut dysbiosis, thus contributing to the development of obesity, insulin resistance, hyperglycemia and hyperlipidemia. However, the underlying mechanisms of these processes are far from being clear and will require complex preclinical and clinical interdisciplinary studies of bacteria and host cell-to-cell interactions. There is a need for a better understanding of how changes in gut microbiota composition can impact energy balance and thus control weight gain. This may represent a promising avenue in the race to develop nonsurgical treatments for obesity. © 2018 The Obesity Society.

  16. High fat diet drives obesity regardless the composition of gut microbiota in mice.

    Science.gov (United States)

    Rabot, Sylvie; Membrez, Mathieu; Blancher, Florence; Berger, Bernard; Moine, Déborah; Krause, Lutz; Bibiloni, Rodrigo; Bruneau, Aurélia; Gérard, Philippe; Siddharth, Jay; Lauber, Christian L; Chou, Chieh Jason

    2016-08-31

    The gut microbiota is involved in many aspects of host physiology but its role in body weight and glucose metabolism remains unclear. Here we studied the compositional changes of gut microbiota in diet-induced obesity mice that were conventionally raised or received microbiota transplantation. In conventional mice, the diversity of the faecal microbiota was weakly associated with 1(st) week weight gain but transferring the microbiota of mice with contrasting weight gain to germfree mice did not change obesity development or feed efficiency of recipients regardless whether the microbiota was taken before or after 10 weeks high fat (HF) feeding. Interestingly, HF-induced glucose intolerance was influenced by microbiota inoculation and improved glucose tolerance was associated with a low Firmicutes to Bacteroidetes ratio. Transplantation of Bacteroidetes rich microbiota compared to a control microbiota ameliorated glucose intolerance caused by HF feeding. Altogether, our results demonstrate that gut microbiota is involved in the regulation of glucose metabolism and the abundance of Bacteroidetes significantly modulates HF-induced glucose intolerance but has limited impact on obesity in mice. Our results suggest that gut microbiota is a part of complex aetiology of insulin resistance syndrome, individual microbiota composition may cause phenotypic variation associated with HF feeding in mice.

  17. Individual diet has sex-dependent effects on vertebrate gut microbiota

    Science.gov (United States)

    Bolnick, Daniel I.; Snowberg, Lisa K.; Hirsch, Philipp E.; Lauber, Christian L.; Org, Elin; Parks, Brian; Lusis, Aldons J.; Knight, Rob; Caporaso, J. Gregory; Svanbäck, Richard

    2014-01-01

    Vertebrates harbour diverse communities of symbiotic gut microbes. Host diet is known to alter microbiota composition, implying that dietary treatments might alleviate diseases arising from altered microbial composition (‘dysbiosis’). However, it remains unclear whether diet effects are general or depend on host genotype. Here we show that gut microbiota composition depends on interactions between host diet and sex within populations of wild and laboratory fish, laboratory mice and humans. Within each of two natural fish populations (threespine stickleback and Eurasian perch), among-individual diet variation is correlated with individual differences in gut microbiota. However, these diet–microbiota associations are sex dependent. We document similar sex-specific diet–microbiota correlations in humans. Experimental diet manipulations in laboratory stickleback and mice confirmed that diet affects microbiota differently in males versus females. The prevalence of such genotype by environment (sex by diet) interactions implies that therapies to treat dysbiosis might have sex-specific effects. PMID:25072318

  18. The gut microbiota and obesity: from correlation to causality.

    Science.gov (United States)

    Zhao, Liping

    2013-09-01

    The gut microbiota has been linked with chronic diseases such as obesity in humans. However, the demonstration of causality between constituents of the microbiota and specific diseases remains an important challenge in the field. In this Opinion article, using Koch's postulates as a conceptual framework, I explore the chain of causation from alterations in the gut microbiota, particularly of the endotoxin-producing members, to the development of obesity in both rodents and humans. I then propose a strategy for identifying the causative agents of obesity in the human microbiota through a combination of microbiome-wide association studies, mechanistic analysis of host responses and the reproduction of diseases in gnotobiotic animals.

  19. Hydration status regulates sodium flux and inflammatory pathways through epithelial sodium channel (ENaC) in the skin.

    Science.gov (United States)

    Xu, Wei; Hong, Seok Jong; Zeitchek, Michael; Cooper, Garry; Jia, Shengxian; Xie, Ping; Qureshi, Hannan A; Zhong, Aimei; Porterfield, Marshall D; Galiano, Robert D; Surmeier, D James; Mustoe, Thomas A

    2015-03-01

    Although it is known that the inflammatory response that results from disruption of epithelial barrier function after injury results in excessive scarring, the upstream signals remain unknown. It has also been observed that epithelial disruption results in reduced hydration status and that the use of occlusive dressings that prevent water loss from wounds decreases scar formation. We hypothesized that hydration status changes sodium homeostasis and induces sodium flux in keratinocytes, which result in activation of pathways responsible for keratinocyte-fibroblast signaling and ultimately lead to activation of fibroblasts. Here, we demonstrate that perturbations in epithelial barrier function lead to increased sodium flux in keratinocytes. We identified that sodium flux in keratinocytes is mediated by epithelial sodium channels (ENaCs) and causes increased secretion of proinflammatory cytokines, which activate fibroblast via the cyclooxygenase 2 (COX-2)/prostaglandin E2 (PGE2) pathway. Similar changes in signal transduction and sodium flux occur by increased sodium concentration, which simulates reduced hydration, in the media in epithelial cultures or human ex vivo skin cultures. Blockade of ENaC, prostaglandin synthesis, or PGE2 receptors all reduce markers of fibroblast activation and collagen synthesis. In addition, employing a validated in vivo excessive scar model in the rabbit ear, we demonstrate that utilization of either an ENaC blocker or a COX-2 inhibitor results in a marked reduction in scarring. Other experiments demonstrate that the activation of COX-2 in response to increased sodium flux is mediated through the PIK3/Akt pathway. Our results indicate that ENaC responds to small changes in sodium concentration with inflammatory mediators and suggest that the ENaC pathway is a potential target for a strategy to prevent fibrosis.

  20. Tight junction proteins contribute to barrier properties in human pleura.

    Science.gov (United States)

    Markov, Alexander G; Voronkova, Maria A; Volgin, George N; Yablonsky, Piotr K; Fromm, Michael; Amasheh, Salah

    2011-03-15

    The permeability of pleural mesothelium helps to control the volume and composition of the liquid lubricating pleural surfaces. Information on pleural barrier function in health and disease, however, is scarce. Tissue specimens of human pleura were mounted in Ussing chambers for measurement of transmesothelial resistance. Expression of tight junction (TJ) proteins was studied by Western blots and immune fluorescence confocal microscopy. Both visceral and parietal pleura showed barrier properties represented by transmesothelial resistance. Occludin, claudin-1, -3, -5, and -7, were detected in visceral pleura. In parietal pleura, the same TJ proteins were detected, except claudin-7. In tissues from patients with pleural inflammation these tightening claudins were decreased and in visceral pleura claudin-2, a paracellular channel former, became apparent. We report that barrier function in human pleura coincides with expression of claudins known to be key determinants of epithelial barrier properties. In inflamed tissue, claudin expression indicates a reduced barrier function. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. [Oral microbiota: a promising predictor of human oral and systemic diseases].

    Science.gov (United States)

    Xin, Xu; Junzhi, He; Xuedong, Zhou

    2015-12-01

    A human oral microbiota is the ecological community of commensal, symbiotic, and pathogenic microorganisms found in human oral cavity. Oral microbiota exists mostly in the form of a biofilm and maintains a dynamic ecological equilibrium with the host body. However, the disturbance of this ecological balance inevitably causes oral infectious diseases, such as dental caries, apical periodontitis, periodontal diseases, pericoronitis, and craniofacial bone osteomyelitis. Oral microbiota is also correlated with many systemic diseases, including cancer, diabetes mellitus, rheumatoid arthritis, cardiovascular diseases, and preterm birth. Hence, oral microbiota has been considered as a potential biomarker of human diseases. The "Human Microbiome Project" and other metagenomic projects worldwide have advanced our knowledge of the human oral microbiota. The integration of these metadata has been the frontier of oral microbiology to improve clinical translation. By reviewing recent progress on studies involving oral microbiota-related oral and systemic diseases, we aimed to propose the essential role of oral microbiota in the prediction of the onset, progression, and prognosis of oral and systemic diseases. An oral microbiota-based prediction model helps develop a new paradigm of personalized medicine and benefits the human health in the post-metagenomics era.

  2. Dynamic 99mTc-DTPA radioaerosol lung scanning for the evaluation of alveolar-capillary barrier permeability

    International Nuclear Information System (INIS)

    Maini, C.L.; Marchetti, L.; Bonetti, M.G.; Giordano, A.; Pistelli, R.; Antonelli Incalzi, R.

    1987-01-01

    Pulmonary clearance of small droplet 99m Tc-DTPA radioaerosol was studied in 100 patients (12 normal subjects, N; 10 asymptomatic healthy smoker, FA; 31 patients with interstitial lung diseases, IP; 47 patients with chronic obstructive lung disease, BPCO). The first seven minutes of clearance were described with the function At=Ao*exp(-K*t) and the time constant K was considered representative of the 99m Tc-DTPA clearance rate and hence of the alveolar-capillary barrier permeability. Groups FA, IP and BPCO showed a significant (p 99m Tc-DTPA dynamic lung scanning is an easy, non-invasive method to assess derangements of alveolar-capillary barrier permeability secondary to epithelial damage; 2) permeability increase is a very early effect of cigarette smoke damafe to the epithelium; 3) other mechanisms of epithelial injury are present in diffuse lung disease; 4) while the clinical role of this new pathophysiological test is not yet clear, it is likely that it may become a very early marker of pulmonary epithelial damage in diffuse lung disease

  3. The Vaginal Microbiota and Urinary Tract Infection.

    Science.gov (United States)

    Stapleton, Ann E

    2016-12-01

    The vagina is a key anatomical site in the pathogenesis of urinary tract infection (UTI) in women, serving as a potential reservoir for infecting bacteria and a site at which interventions may decrease the risk of UTI. The vaginal microbiota is a dynamic and often critical factor in this pathogenic interplay, because changes in the characteristics of the vaginal microbiota resulting in the loss of normally protective Lactobacillus spp. increase the risk of UTI. These alterations may result from the influence of estrogen deficiency, antimicrobial therapy, contraceptives, or other causes. Interventions to reduce adverse effects on the vaginal microbiota and/or to restore protective lactobacilli may reduce the risks of UTI.

  4. Gut Microbiota in Obesity and Undernutrition123

    Science.gov (United States)

    Groen, Albert K; Romijn, Johannes A; Nieuwdorp, Max

    2016-01-01

    Malnutrition is the result of an inadequate balance between energy intake and energy expenditure that ultimately leads to either obesity or undernutrition. Several factors are associated with the onset and preservation of malnutrition. One of these factors is the gut microbiota, which has been recognized as an important pathophysiologic factor in the development and sustainment of malnutrition. However, to our knowledge, the extent to which the microbiota influences malnutrition has yet to be elucidated. In this review, we summarize the mechanisms via which the gut microbiota may influence energy homeostasis in relation to malnutrition. In addition, we discuss potential therapeutic modalities to ameliorate obesity or undernutrition. PMID:28140325

  5. Alterations in Factors Involved in Differentiation and Barrier Function in the Epithelium in Oral and Genital Lichen Planus.

    Science.gov (United States)

    Danielsson, Karin; Ebrahimi, Majid; Nylander, Elisabet; Wahlin, Ylva Britt; Nylander, Karin

    2017-02-08

    Lichen planus is a chronic recurrent inflammatory disease affecting both skin and mucosa, mainly in oral and/or genital regions. Keratinocytes go through a well-regulated process of proliferation and differentiation, alterations in which may result in defects in the protective epithelial barrier. Long-term barrier impairment might lead to chronic inflammation. In order to broaden our understanding of the differentiation process in mucosal lichen planus, we mapped the expression of 4 factors known to be involved in differentiation. Biopsies were collected from oral and genital lichen planus lesions and normal controls. Altered expression of all 4 factors in epithelium from lichen planus lesions was found, clearly indicating disturbed epithelial differentiation in lichen planus lesions.

  6. Repressed Beauveria bassiana Infections in Delia antiqua due to Associated Microbiota.

    Science.gov (United States)

    Zhou, Fangyuan; Wu, Xiaoqing; Xu, Letian; Guo, Shuhai; Chen, Guanhong; Zhang, Xinjian

    2018-05-23

    Insects form both mutualistic and antagonistic relationships with microbes, and some antagonistic microbes have been used as biocontrol agents (BCAs) in pest management. Contextually, BCAs may be inhibited by beneficial insect symbionts, which can become potential barriers for entomopathogen-dependent pest biocontrol. Thus, by using the symbioses formed by one devastating dipteran pest, Delia antiqua, and its associated microbes as a model system, we sought to determine whether the antagonistic interaction between BCAs and microbial symbionts could affect the outcome of entomopathogen-dependent pest biocontrol. The result showed that in contrast to non-axenic D. antiqua larvae, i.e., onion maggots, axenic larvae lost resistance to the entomopathogenic Beauveria bassiana, and the re-inoculation of microbiota increased the resistance of axenic larvae to B. bassiana. Furthermore, bacteria, including Citrobacter freundii, Enterobacter ludwigii, Pseudomonas protegens, Serratia plymuthica, Sphingobacterium faecium, and Stenotrophomonas maltophilia, frequently isolated from larvae suppressed B. bassiana conidia germination and hyphal growth, and the re-inoculation of specific individual bacteria enhanced the resistance of axenic larvae to B. bassiana. Bacteria associated with larvae, including C. freundii, E. ludwigii, P. protegens, S. plymuthica, S. faecium, and S. maltophilia, can inhibit B. bassiana infection. Removing the microbiota can suppress larval resistance to fungal infection. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Could the gut microbiota reconcile the oral bioavailability conundrum of traditional herbs?

    Science.gov (United States)

    Chen, Feng; Wen, Qi; Jiang, Jun; Li, Hai-Long; Tan, Yin-Feng; Li, Yong-Hui; Zeng, Nian-Kai

    2016-02-17

    A wealth of information is emerging about the impact of gut microbiota on human health and diseases such as cardiovascular diseases, obesity and diabetes. As we learn more, we find out the gut microbiota has the potential as new territory for drug targeting. Some novel therapeutic approaches could be developed through reshaping the commensal microbial structure using combinations of different agents. The gut microbiota also affects drug metabolism, directly and indirectly, particularly towards the orally administered drugs. Herbal products have become the basis of traditional medicines such as traditional Chinese medicine and also been being considered valuable materials in modern drug discovery. Of note, low oral bioavailability but high bioactivity is a conundrum not yet solved for some herbs. Since most of herbal products are orally administered, the herbs' constituents are inevitably exposed to the intestinal microbiota and the interplays between herbal constituents and gut microbiota are expected. Emerging explorations of herb-microbiota interactions have an opportunity to revolutionize the way we view herbal therapeutics. The present review aims to provide information regarding the health promotion and/or disease prevention by the interplay between traditional herbs with low bioavailability and gut microbiota through gut microbiota via two different types of mechanisms: (1) influencing the composition of gut microbiota by herbs and (2) metabolic reactions of herbal constituents by gut microbiota. The major data bases (PubMed and Web of Science) were searched using "gut microbiota", "intestinal microbiota", "gut flora", "intestinal flora", "gut microflora", "intestinal microflora", "herb", "Chinese medicine", "traditional medicine", or "herbal medicine" as keywords to find out studies regarding herb-microbiota interactions. The Chinese Pharmacopoeia (2010 edition, Volume I) was also used to collect the data of commonly used medicinal herbs and their quality

  8. Handling stress may confound murine gut microbiota studies

    Directory of Open Access Journals (Sweden)

    Cary R. Allen-Blevins

    2017-01-01

    Full Text Available Background Accumulating evidence indicates interactions between human milk composition, particularly sugars (human milk oligosaccharides or HMO, the gut microbiota of human infants, and behavioral effects. Some HMO secreted in human milk are unable to be endogenously digested by the human infant but are able to be metabolized by certain species of gut microbiota, including Bifidobacterium longum subsp. infantis (B. infantis, a species sensitive to host stress (Bailey & Coe, 2004. Exposure to gut bacteria like B. infantisduring critical neurodevelopment windows in early life appears to have behavioral consequences; however, environmental, physical, and social stress during this period can also have behavioral and microbial consequences. While rodent models are a useful method for determining causal relationships between HMO, gut microbiota, and behavior, murine studies of gut microbiota usually employ oral gavage, a technique stressful to the mouse. Our aim was to develop a less-invasive technique for HMO administration to remove the potential confound of gavage stress. Under the hypothesis that stress affects gut microbiota, particularly B. infantis, we predicted the pups receiving a prebiotic solution in a less-invasive manner would have the highest amount of Bifidobacteria in their gut. Methods This study was designed to test two methods, active and passive, of solution administration to mice and the effects on their gut microbiome. Neonatal C57BL/6J mice housed in a specific-pathogen free facility received increasing doses of fructooligosaccharide (FOS solution or deionized, distilled water. Gastrointestinal (GI tracts were collected from five dams, six sires, and 41 pups over four time points. Seven fecal pellets from unhandled pups and two pellets from unhandled dams were also collected. Qualitative real-time polymerase chain reaction (qRT-PCR was used to quantify and compare the amount of Bifidobacterium, Bacteroides, Bacteroidetes, and

  9. Cultivating Healthy Growth and Nutrition through the Gut Microbiota

    Science.gov (United States)

    Subramanian, Sathish; Blanton, Laura; Frese, Steven A.; Charbonneau, Mark; Mills, David A.; Gordon, Jeffrey I.

    2015-01-01

    Microbiota assembly is perturbed in children with undernutrition, resulting in persistent microbiota immaturity that is not rescued by current nutritional interventions. Evidence is accumulating that this immaturity is causally related to the pathogenesis of undernutrition and its lingering sequelae. Preclinical models in which human gut communities are replicated in gnotobiotic mice have provided an opportunity to identify and predict the effects of different dietary ingredients on microbiota structure, expressed functions, and host biology. This capacity sets the stage for proof-of-concept tests designed to deliberately shape the developmental trajectory and configurations of microbiota in children representing different geographies, cultural traditions, and states of health. Developing these capabilities for microbial stewardship is timely given the global health burden of childhood undernutrition, the effects of changing eating practices brought about by globalization, and the realization that affordable nutritious foods need to be developed to enhance our capacity to cultivate healthier microbiota in populations at risk for poor nutrition. PMID:25815983

  10. Gut microbiota modulation of chemotherapy efficacy and toxicity.

    Science.gov (United States)

    Alexander, James L; Wilson, Ian D; Teare, Julian; Marchesi, Julian R; Nicholson, Jeremy K; Kinross, James M

    2017-06-01

    Evidence is growing that the gut microbiota modulates the host response to chemotherapeutic drugs, with three main clinical outcomes: facilitation of drug efficacy; abrogation and compromise of anticancer effects; and mediation of toxicity. The implication is that gut microbiota are critical to the development of personalized cancer treatment strategies and, therefore, a greater insight into prokaryotic co-metabolism of chemotherapeutic drugs is now required. This thinking is based on evidence from human, animal and in vitro studies that gut bacteria are intimately linked to the pharmacological effects of chemotherapies (5-fluorouracil, cyclophosphamide, irinotecan, oxaliplatin, gemcitabine, methotrexate) and novel targeted immunotherapies such as anti-PD-L1 and anti-CLTA-4 therapies. The gut microbiota modulate these agents through key mechanisms, structured as the 'TIMER' mechanistic framework: Translocation, Immunomodulation, Metabolism, Enzymatic degradation, and Reduced diversity and ecological variation. The gut microbiota can now, therefore, be targeted to improve efficacy and reduce the toxicity of current chemotherapy agents. In this Review, we outline the implications of pharmacomicrobiomics in cancer therapeutics and define how the microbiota might be modified in clinical practice to improve efficacy and reduce the toxic burden of these compounds.

  11. The Microbiota, the Immune System and the Allograft

    Science.gov (United States)

    Alegre, Maria-Luisa; Mannon, Roslyn B.; Mannon, Peter J.

    2015-01-01

    The microbiota represents the complex collections of microbial communities that colonize a host. In health, the microbiota is essential for metabolism, protection against pathogens and maturation of the immune system. In return, the immune system determines the composition of the microbiota. Altered microbial composition (dysbiosis) has been correlated with a number of diseases in humans. The tight reciprocal immune/microbial interactions complicate determining whether dysbiosis is a cause and/or a consequence of immune dysregulation and disease initiation or progression. However, a number of studies in germ-free and antibiotic-treated animal models support causal roles for intestinal bacteria in disease susceptibility. The role of the microbiota in transplant recipients is only starting to be investigated and its study is further complicated by putative contributions of both recipient and donor microbiota. Moreover, both flora may be affected directly or indirectly by immunosuppressive drugs and anti-microbial prophylaxis taken by transplant patients, as well as by inflammatory processes secondary to ischemia/reperfusion and allorecognition, and the underlying cause of end-organ failure. Whether the ensuing dysbiosis affects alloresponses and whether therapies aimed at correcting dysbiosis should be considered in transplant patients constitutes an exciting new field of research. PMID:24840316

  12. Demonstration of Microbial Subgroups among Normal Vaginal Microbiota Data

    OpenAIRE

    Lee, M.-L. T.

    2011-01-01

    In this study we identified subgroups of observations relating to the healthy vaginal microbiota. This microbiota resides in a dynamic environment that undergoes cyclic change during the menstrual cycle. Cluster analysis procedures were applied to divide a set of 226 normal microbiota observations into groups. Three subgroups containing 100, 65, and 61 observations were identified. Plots of principal components determined by canonical analysis were obtained to demonstrate graphically the clus...

  13. Multi-level comparisons of cloacal, skin, feather and nest-associated microbiota suggest considerable influence of horizontal acquisition on the microbiota assembly of sympatric woodlarks and skylarks.

    Science.gov (United States)

    van Veelen, H Pieter J; Falcao Salles, Joana; Tieleman, B Irene

    2017-12-01

    Working toward a general framework to understand the role of microbiota in animal biology requires the characterisation of animal-associated microbial communities and identification of the evolutionary and ecological factors shaping their variation. In this study, we described the microbiota in the cloaca, brood patch skin and feathers of two species of birds and the microbial communities in their nest environment. We compared patterns of resemblance between these microbial communities at different levels of biological organisation (species, individual, body part) and investigated the phylogenetic structure to deduce potential microbial community assembly processes. Using 16S rRNA gene amplicon data of woodlarks (Lullula arborea) and skylarks (Alauda arvensis), we demonstrated that bird- and nest-associated microbiota showed substantial OTU co-occurrences and shared dominant taxonomic groups, despite variation in OTU richness, diversity and composition. Comparing host species, we uncovered that sympatric woodlarks and skylarks harboured similar microbiota, dominated by Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes and Acidobacteria. Yet, compared with the nest microbiota that showed little variation, each species' bird-associated microbiota displayed substantial variation. The latter could be partly (~ 20%) explained by significant inter-individual differences. The various communities of the bird's body (cloaca, brood patch skin and feathers) appeared connected with each other and with the nest microbiota (nest lining material and surface soil). Communities were more similar when the contact between niches was frequent or intense. Finally, bird microbiota showed significant phylogenetic clustering at the tips, but not at deeper branches of the phylogeny. Our interspecific comparison suggested that the environment is more important than phylogeny in shaping the bird-associated microbiotas. In addition, variation among individuals and among body parts

  14. An overview on the interplay between nutraceuticals and gut microbiota.

    Science.gov (United States)

    Catinean, Adrian; Neag, Maria Adriana; Muntean, Dana Maria; Bocsan, Ioana Corina; Buzoianu, Anca Dana

    2018-01-01

    Nowadays, growing attention was being given to the alternative ways to prevent or treat diseases. Nutraceuticals are used increasingly for this purpose. Many of these are being used as alternative therapy. Classic therapy with synthetic drugs, although very effective, has many side effects. The term "nutraceuticals" refers to the link between the nutritional and pharmaceutical domains. Also, lately, many studies have been done to investigate the role of microbiota in maintaining health. There is the hypothesis that some of the health benefits of nutraceuticals are due to their ability to change the microbiota. The aim of this review was to emphasize the link between the most commonly used nutraceuticals, the microbiota and the health benefits. We selected the articles in PubMed, published up to July 2017, that provided information about most used nutraceuticals, microbiota and health benefits. In this review, we incorporate evidence from various types of studies, including observational, in vitro and in vivo , clinical studies or animal experiments. The results demonstrate that many nutraceuticals change the composition of microbiota and can interfere with health status of the patients. There is evidence which sustains the importance of nutraceuticals in people's health through microbiota but further studies are needed to complete the assessment of nutraceuticals in health benefit as a consequence of microbiota's changing.

  15. Host and Environmental Factors Affecting the Intestinal Microbiota in Chickens.

    Science.gov (United States)

    Kers, Jannigje G; Velkers, Francisca C; Fischer, Egil A J; Hermes, Gerben D A; Stegeman, J A; Smidt, Hauke

    2018-01-01

    The initial development of intestinal microbiota in poultry plays an important role in production performance, overall health and resistance against microbial infections. Multiplexed sequencing of 16S ribosomal RNA gene amplicons is often used in studies, such as feed intervention or antimicrobial drug trials, to determine corresponding effects on the composition of intestinal microbiota. However, considerable variation of intestinal microbiota composition has been observed both within and across studies. Such variation may in part be attributed to technical factors, such as sampling procedures, sample storage, DNA extraction, the choice of PCR primers and corresponding region to be sequenced, and the sequencing platforms used. Furthermore, part of this variation in microbiota composition may also be explained by different host characteristics and environmental factors. To facilitate the improvement of design, reproducibility and interpretation of poultry microbiota studies, we have reviewed the literature on confounding factors influencing the observed intestinal microbiota in chickens. First, it has been identified that host-related factors, such as age, sex, and breed, have a large effect on intestinal microbiota. The diversity of chicken intestinal microbiota tends to increase most during the first weeks of life, and corresponding colonization patterns seem to differ between layer- and meat-type chickens. Second, it has been found that environmental factors, such as biosecurity level, housing, litter, feed access and climate also have an effect on the composition of the intestinal microbiota. As microbiota studies have to deal with many of these unknown or hidden host and environmental variables, the choice of study designs can have a great impact on study outcomes and interpretation of the data. Providing details on a broad range of host and environmental factors in articles and sequence data repositories is highly recommended. This creates opportunities to

  16. Host and Environmental Factors Affecting the Intestinal Microbiota in Chickens

    Directory of Open Access Journals (Sweden)

    Jannigje G. Kers

    2018-02-01

    Full Text Available The initial development of intestinal microbiota in poultry plays an important role in production performance, overall health and resistance against microbial infections. Multiplexed sequencing of 16S ribosomal RNA gene amplicons is often used in studies, such as feed intervention or antimicrobial drug trials, to determine corresponding effects on the composition of intestinal microbiota. However, considerable variation of intestinal microbiota composition has been observed both within and across studies. Such variation may in part be attributed to technical factors, such as sampling procedures, sample storage, DNA extraction, the choice of PCR primers and corresponding region to be sequenced, and the sequencing platforms used. Furthermore, part of this variation in microbiota composition may also be explained by different host characteristics and environmental factors. To facilitate the improvement of design, reproducibility and interpretation of poultry microbiota studies, we have reviewed the literature on confounding factors influencing the observed intestinal microbiota in chickens. First, it has been identified that host-related factors, such as age, sex, and breed, have a large effect on intestinal microbiota. The diversity of chicken intestinal microbiota tends to increase most during the first weeks of life, and corresponding colonization patterns seem to differ between layer- and meat-type chickens. Second, it has been found that environmental factors, such as biosecurity level, housing, litter, feed access and climate also have an effect on the composition of the intestinal microbiota. As microbiota studies have to deal with many of these unknown or hidden host and environmental variables, the choice of study designs can have a great impact on study outcomes and interpretation of the data. Providing details on a broad range of host and environmental factors in articles and sequence data repositories is highly recommended. This creates

  17. Antibiotic-Induced Changes in the Intestinal Microbiota and Disease

    Science.gov (United States)

    Becattini, Simone; Taur, Ying; Pamer, Eric G.

    2016-01-01

    The gut microbiota is a key player in many physiological and pathological processes occurring in humans. Recent investigations suggest that the efficacy of some clinical approaches depends on the action of commensal bacteria. Antibiotics are invaluable weapons to fight infectious diseases. However, by altering the composition and functions of the microbiota, they can also produce long-lasting deleterious effects for the host. The emergence of multidrug-resistant pathogens raises concerns about the common, and at times inappropriate, use of antimicrobial agents. Here we review the most recently discovered connections between host pathophysiology, microbiota, and antibiotics highlighting technological platforms, mechanistic insights, and clinical strategies to enhance resistance to diseases by preserving the beneficial functions of the microbiota. PMID:27178527

  18. The gut microbiota and metabolic disease: current understanding and future perspectives.

    Science.gov (United States)

    Arora, T; Bäckhed, F

    2016-10-01

    The human gut microbiota has been studied for more than a century. However, of nonculture-based techniques exploiting next-generation sequencing for analysing the microbiota, development has renewed research within the field during the past decade. The observation that the gut microbiota, as an environmental factor, contributes to adiposity has further increased interest in the field. The human microbiota is affected by the diet, and macronutrients serve as substrates for many microbially produced metabolites, such as short-chain fatty acids and bile acids, that may modulate host metabolism. Obesity predisposes towards type 2 diabetes and cardiovascular disease. Recently, it has been established that levels of butyrate-producing bacteria are reduced in patients with type 2 diabetes, whereas levels of Lactobacillus sp. are increased. Recent data suggest that the reduced levels of butyrate-producing bacteria might be causally linked to type 2 diabetes. Bariatric surgery, which promotes long-term weight loss and diabetes remission, alters the gut microbiota in both mice and humans. Furthermore, by transferring the microbiota from postbariatric surgery patients to mice, it has been demonstrated that an altered microbiota may contribute to the improved metabolic phenotype following this intervention. Thus, greater understanding of alterations of the gut microbiota, in combination with dietary patterns, may provide insights into how the gut microbiota contributes to disease progression and whether it can be exploited as a novel diagnostic, prognostic and therapeutic target. © 2016 The Association for the Publication of the Journal of Internal Medicine.

  19. The interplay between the gut microbiota and the immune system.

    Science.gov (United States)

    Geuking, Markus B; Köller, Yasmin; Rupp, Sandra; McCoy, Kathy D

    2014-01-01

    The impact of the gut microbiota on immune homeostasis within the gut and, importantly, also at systemic sites has gained tremendous research interest over the last few years. The intestinal microbiota is an integral component of a fascinating ecosystem that interacts with and benefits its host on several complex levels to achieve a mutualistic relationship. Host-microbial homeostasis involves appropriate immune regulation within the gut mucosa to maintain a healthy gut while preventing uncontrolled immune responses against the beneficial commensal microbiota potentially leading to chronic inflammatory bowel diseases (IBD). Furthermore, recent studies suggest that the microbiota composition might impact on the susceptibility to immune-mediated disorders such as autoimmunity and allergy. Understanding how the microbiota modulates susceptibility to these diseases is an important step toward better prevention or treatment options for such diseases.

  20. Core fecal microbiota of domesticated herbivorous ruminant, hindgut fermenters, and monogastric animals.

    Science.gov (United States)

    O' Donnell, Michelle M; Harris, Hugh M B; Ross, R Paul; O'Toole, Paul W

    2017-10-01

    In this pilot study, we determined the core fecal microbiota composition and overall microbiota diversity of domesticated herbivorous animals of three digestion types: hindgut fermenters, ruminants, and monogastrics. The 42 animals representing 10 animal species were housed on a single farm in Ireland and all the large herbivores consumed similar feed, harmonizing two of the environmental factors that influence the microbiota. Similar to other mammals, the fecal microbiota of all these animals was dominated by the Firmicutes and Bacteroidetes phyla. The fecal microbiota spanning all digestion types comprised 42% of the genera identified. Host phylogeny and, to a lesser extent, digestion type determined the microbiota diversity in these domesticated herbivores. This pilot study forms a platform for future studies into the microbiota of nonbovine and nonequine domesticated herbivorous animals. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  1. The Central Role of the Gut Microbiota in Chronic Inflammatory Diseases

    Directory of Open Access Journals (Sweden)

    Caroline Marcantonio Ferreira

    2014-01-01

    Full Text Available The commensal microbiota is in constant interaction with the immune system, teaching immune cells to respond to antigens. Studies in mice have demonstrated that manipulation of the intestinal microbiota alters host immune cell homeostasis. Additionally, metagenomic-sequencing analysis has revealed alterations in intestinal microbiota in patients suffering from inflammatory bowel disease, asthma, and obesity. Perturbations in the microbiota composition result in a deficient immune response and impaired tolerance to commensal microorganisms. Due to altered microbiota composition which is associated to some inflammatory diseases, several strategies, such as the administration of probiotics, diet, and antibiotic usage, have been utilized to prevent or ameliorate chronic inflammatory diseases. The purpose of this review is to present and discuss recent evidence showing that the gut microbiota controls immune system function and onset, development, and resolution of some common inflammatory diseases.

  2. Probiotic Species in the Modulation of Gut Microbiota: An Overview

    Directory of Open Access Journals (Sweden)

    Md. Abul Kalam Azad

    2018-01-01

    Full Text Available Probiotics are microbial strains that are beneficial to health, and their potential has recently led to a significant increase in research interest in their use to modulate the gut microbiota. The animal gut is a complex ecosystem of host cells, microbiota, and available nutrients, and the microbiota prevents several degenerative diseases in humans and animals via immunomodulation. The gut microbiota and its influence on human nutrition, metabolism, physiology, and immunity are addressed, and several probiotic species and strains are discussed to improve the understanding of modulation of gut microbiota. This paper provides a broad review of several Lactobacillus spp., Bifidobacterium spp., and other coliform bacteria as the most promising probiotic species and their role in the prevention of degenerative diseases, such as obesity, diabetes, cancer, cardiovascular diseases, malignancy, liver disease, and inflammatory bowel disease. This review also discusses a recent study of Saccharomyces spp. in which inflammation was prevented by promotion of proinflammatory immune function via the production of short-chain fatty acids. A summary of gut microbiota alteration with future perspectives is also provided.

  3. Links between Dietary Protein Sources, the Gut Microbiota, and Obesity.

    Science.gov (United States)

    Madsen, Lise; Myrmel, Lene S; Fjære, Even; Liaset, Bjørn; Kristiansen, Karsten

    2017-01-01

    The association between the gut microbiota and obesity is well documented in both humans and in animal models. It is also demonstrated that dietary factors can change the gut microbiota composition and obesity development. However, knowledge of how diet, metabolism and gut microbiota mutually interact and modulate energy metabolism and obesity development is still limited. Epidemiological studies indicate an association between intake of certain dietary protein sources and obesity. Animal studies confirm that different protein sources vary in their ability to either prevent or induce obesity. Different sources of protein such as beans, vegetables, dairy, seafood, and meat differ in amino acid composition. Further, the type and level of other factors, such as fatty acids and persistent organic pollutants (POPs) vary between dietary protein sources. All these factors can modulate the composition of the gut microbiota and may thereby influence their obesogenic properties. This review summarizes evidence of how different protein sources affect energy efficiency, obesity development, and the gut microbiota, linking protein-dependent changes in the gut microbiota with obesity.

  4. Oral microbiota and cancer

    Directory of Open Access Journals (Sweden)

    Jukka H. Meurman

    2010-08-01

    Full Text Available Inflammation caused by infections may be the most important preventable cause of cancer in general. However, in the oral cavity the role of microbiota in carcinogenesis is not known. Microbial populations on mouth mucosa differ between healthy and malignant sites and certain oral bacterial species have been linked with malignancies but the evidence is still weak in this respect. Nevertheless, oral microorganisms inevitably up-regulate cytokines and other inflammatory mediators that affect the complex metabolic pathways and may thus be involved in carcinogenesis. Poor oral health associates statistically with prevalence of many types of cancer, such as pancreatic and gastrointestinal cancer. Furthermore, several oral micro-organisms are capable of converting alcohol to carcinogenic acetaldehyde which also may partly explain the known association between heavy drinking, smoking, poor oral health and the prevalence of oral and upper gastrointestinal cancer. A different problem is the cancer treatment-caused alterations in oral microbiota which may lead to the emergence of potential pathogens and subsequent other systemic health problems to the patients. Hence clinical guidelines and recommendations have been presented to control oral microbiota in patients with malignant disease, but also in this area the scientific evidence is weak. More controlled studies are needed for further conclusion.

  5. Gut Microbiota: Modulate its Complexity to Restore the Balance

    Directory of Open Access Journals (Sweden)

    Fermín Mearin

    2015-12-01

    Full Text Available The importance of the gut microbiota to health is becoming more widely appreciated. The range of commensal microorganisms in healthy individuals and in patients with a variety of digestive diseases is under active investigation, and evidence is accumulating to suggest that both the diversity and balance of bacterial species are important for health. Disturbance of the balance of microorganisms – dysbiosis – is associated with obesity and a variety of diseases. Restoring the balance by modulating the microbiota through diet, probiotics, or drugs is now being developed as a potential treatment for digestive diseases. Rifaximin has been shown to increase levels of beneficial bacterial species without perturbing the overall composition of the microbiota in patients with a variety of digestive diseases, making it a ‘eubiotic’ rather than an antibiotic. Rifaximin has demonstrated clinical benefit in the treatment of symptomatic uncomplicated diverticular disease, where changes in the colonic microbiota contribute to the pathogenesis of this disease. Modulating the microbiota is also a promising treatment for some types of irritable bowel syndrome (IBS that have been linked to an overgrowth of coliform and Aeromonas species in the small intestine. Rifaximin has demonstrated efficacy in relieving symptoms and reducing relapses in diarrhoeal IBS in the TARGET-1, 2, and 3 trials, without reducing microbial diversity or increasing antimicrobial resistance. While many aspects of the balance of gut microbiota in disease are not yet fully understood, the new understanding of rifaximin as a modulator of gut microbiota may open up new treatment options in digestive disease.

  6. Gut Microbiota and Nonalcoholic Fatty Liver Disease: Insights on Mechanisms and Therapy

    Directory of Open Access Journals (Sweden)

    Junli Ma

    2017-10-01

    Full Text Available The gut microbiota plays critical roles in development of obese-related metabolic diseases such as nonalcoholic fatty liver disease (NAFLD, type 2 diabetes(T2D, and insulin resistance(IR, highlighting the potential of gut microbiota-targeted therapies in these diseases. There are various ways that gut microbiota can be manipulated, including through use of probiotics, prebiotics, synbiotics, antibiotics, and some active components from herbal medicines. In this review, we review the main roles of gut microbiota in mediating the development of NAFLD, and the advances in gut microbiota-targeted therapies for NAFLD in both the experimental and clinical studies, as well as the conclusions on the prospect of gut microbiota-targeted therapies in the future.

  7. The lung tissue microbiota of mild and moderate chronic obstructive pulmonary disease.

    Science.gov (United States)

    Pragman, Alexa A; Lyu, Tianmeng; Baller, Joshua A; Gould, Trevor J; Kelly, Rosemary F; Reilly, Cavan S; Isaacson, Richard E; Wendt, Chris H

    2018-01-09

    Oral taxa are often found in the chronic obstructive pulmonary disease (COPD) lung microbiota, but it is not clear if this is due to a physiologic process such as aspiration or experimental contamination at the time of specimen collection. Microbiota samples were obtained from nine subjects with mild or moderate COPD by swabbing lung tissue and upper airway sites during lung lobectomy. Lung specimens were not contaminated with upper airway taxa since they were obtained surgically. The microbiota were analyzed with 16S rRNA gene qPCR and 16S rRNA gene hypervariable region 3 (V3) sequencing. Data analyses were performed using QIIME, SourceTracker, and R. Streptococcus was the most common genus in the oral, bronchial, and lung tissue samples, and multiple other taxa were present in both the upper and lower airways. Each subject's own bronchial and lung tissue microbiota were more similar to each other than were the bronchial and lung tissue microbiota of two different subjects (permutation test, p = 0.0139), indicating more within-subject similarity than between-subject similarity at these two lung sites. Principal coordinate analysis of all subject samples revealed clustering by anatomic sampling site (PERMANOVA, p = 0.001), but not by subject. SourceTracker analysis found that the sources of the lung tissue microbiota were 21.1% (mean) oral microbiota, 8.7% nasal microbiota, and 70.1% unknown. An analysis using the neutral theory of community ecology revealed that the lung tissue microbiota closely reflects the bronchial, oral, and nasal microbiota (immigration parameter estimates 0.69, 0.62, and 0.74, respectively), with some evidence of ecologic drift occurring in the lung tissue. This is the first study to evaluate the mild-moderate COPD lung tissue microbiota without potential for upper airway contamination of the lung samples. In our small study of subjects with COPD, we found oral and nasal bacteria in the lung tissue microbiota, confirming that

  8. INTESTINAL MICROBIOTA IN DIGESTIVE DISEASES

    Directory of Open Access Journals (Sweden)

    Maria do Carmo Friche PASSOS

    2017-07-01

    Full Text Available ABSTRACT BACKGROUND In recent years, especially after the development of sophisticated metagenomic studies, research on the intestinal microbiota has increased, radically transforming our knowledge about the microbiome and its association with health maintenance and disease development in humans. Increasing evidence has shown that a permanent alteration in microbiota composition or function (dysbiosis can alter immune responses, metabolism, intestinal permeability, and digestive motility, thereby promoting a proinflammatory state. Such alterations can mainly impair the host’s immune and metabolic functions, thus favoring the onset of diseases such as diabetes, obesity, digestive, neurological, autoimmune, and neoplastic diseases. This comprehensive review is a compilation of the available literature on the formation of the complex intestinal ecosystem and its impact on the incidence of diseases such as obesity, non-alcoholic steatohepatitis, irritable bowel syndrome, inflammatory bowel disease, celiac disease, and digestive neoplasms. CONCLUSION: Alterations in the composition and function of the gastrointestinal microbiota (dysbiosis have a direct impact on human health and seem to have an important role in the pathogenesis of several gastrointestinal diseases, whether inflammatory, metabolic, or neoplastic ones.

  9. Early-life disruption of amphibian microbiota decreases later-life resistance to parasites.

    Science.gov (United States)

    Knutie, Sarah A; Wilkinson, Christina L; Kohl, Kevin D; Rohr, Jason R

    2017-07-20

    Changes in the early-life microbiota of hosts might affect infectious disease risk throughout life, if such disruptions during formative times alter immune system development. Here, we test whether an early-life disruption of host-associated microbiota affects later-life resistance to infections by manipulating the microbiota of tadpoles and challenging them with parasitic gut worms as adults. We find that tadpole bacterial diversity is negatively correlated with parasite establishment in adult frogs: adult frogs that had reduced bacterial diversity as tadpoles have three times more worms than adults without their microbiota manipulated as tadpoles. In contrast, adult bacterial diversity during parasite exposure is not correlated with parasite establishment in adult frogs. Thus, in this experimental setup, an early-life disruption of the microbiota has lasting reductions on host resistance to infections, which is possibly mediated by its effects on immune system development. Our results support the idea that preventing early-life disruption of host-associated microbiota might confer protection against diseases later in life.Early-life microbiota alterations can affect infection susceptibility later in life, in animal models. Here, Knutie et al. show that manipulating the microbiota of tadpoles leads to increased susceptibility to parasitic infection in adult frogs, in the absence of substantial changes in the adults' microbiota.

  10. The food contaminant deoxynivalenol, decreases intestinal barrier permeability and reduces claudin expression

    International Nuclear Information System (INIS)

    Pinton, Philippe; Nougayrede, Jean-Philippe; Del Rio, Juan-Carlos; Moreno, Carolina; Marin, Daniela E.; Ferrier, Laurent; Bracarense, Ana-Paula; Kolf-Clauw, Martine; Oswald, Isabelle P.

    2009-01-01

    'The gastrointestinal tract represents the first barrier against food contaminants as well as the first target for these toxicants. Deoxynivalenol (DON) is a mycotoxin that commonly contaminates cereals and causes various toxicological effects. Through consumption of contaminated cereals and cereal products, human and pigs are exposed to this mycotoxin. Using in vitro, ex vivo and in vivo approaches, we investigated the effects of DON on the intestinal epithelium. We demonstrated that, in intestinal epithelial cell lines from porcine (IPEC-1) or human (Caco-2) origin, DON decreases trans-epithelial electrical resistance (TEER) and increases in a time and dose-dependent manner the paracellular permeability to 4 kDa dextran and to pathogenic Escherichia coli across intestinal cell monolayers. In pig explants treated with DON, we also observed an increased permeability of intestinal tissue. These alterations of barrier function were associated with a specific reduction in the expression of claudins, which was also seen in vivo in the jejunum of piglets exposed to DON-contaminated feed. In conclusion, DON alters claudin expression and decreases the barrier function of the intestinal epithelium. Considering that high levels of DON may be present in food or feed, consumption of DON-contaminated food/feed may induce intestinal damage and has consequences for human and animal health.

  11. Role of the Microbiota in Immunity and inflammation

    Science.gov (United States)

    Belkaid, Yasmine; Hand, Timothy

    2014-01-01

    The microbiota plays a fundamental role on the induction, training and function of the host immune system. In return, the immune system has largely evolved as a means to maintain the symbiotic relationship of the host with these highly diverse and evolving microbes. When operating optimally this immune system–microbiota alliance allows the induction of protective responses to pathogens and the maintenance of regulatory pathways involved in the maintenance of tolerance to innocuous antigens. However, in high-income countries overuse of antibiotics, changes in diet, and elimination of constitutive partners such as nematodes has selected for a microbiota that lack the resilience and diversity required to establish balanced immune responses. This phenomenon is proposed to account for some of the dramatic rise in autoimmune and inflammatory disorders in parts of the world where our symbiotic relationship with the microbiota has been the most affected. PMID:24679531

  12. Phototherapeutic LASEK for a persistent epithelial defect and a recurrent epithelial erosion.

    Science.gov (United States)

    Hondur, Ahmet; Bilgihan, Kamil; Hasanreisoglu, Berati

    2005-01-01

    To present two patients, one with persistent epithelial defect and one with recurrent epithelial erosion, unresponsive to conventional therapy treated with phototherapeutic keratectomy (PTK) with the laser subepithelial keratomileusis (LASEK) technique (phototherapeutic LASEK). The epithelial flap was created following 18% ethanol application for 20 seconds. A 10-microm deep ablation was performed in the central 7.0-mm zone. A contact lens was placed and the patient examined daily until epithelial closure. Upon epithelial closure, the contact lens was removed. A mild topical steroid and artificial tears were applied for 2 weeks. The epithelium healed in 4 days in both patients. Patients reported only mild pain until epithelial closure. The manifest refraction and uncorrected visual acuity remained unchanged in both eyes. No haze was noted. The first patient has remained asymptomatic without any recurrence for 12 months, and the second for 9 months. Phototherapeutic LASEK provides a therapeutic option for refractory recurrent erosions and persistent epithelial defects, with the additional benefit of being less painful and less risky for haze development than conventional PTK.

  13. MicroRNA-122a Regulates Zonulin by Targeting EGFR in Intestinal Epithelial Dysfunction.

    Science.gov (United States)

    Zhang, Bin; Tian, Yinghai; Jiang, Ping; Jiang, Yanqiong; Li, Chao; Liu, Ting; Zhou, Rujian; Yang, Ning; Zhou, Xinke; Liu, Zhihua

    2017-01-01

    This study aimed to investigate the role of microRNA (miR)-122a in regulating zonulin during the modulation of intestinal barrier. Zonulin proteins and their target gene expression were analyzed in miR-122a-overexpressing cell lines and in the target gene of epidermal growth factor receptor (EGFR). An mmu-miR-122a intestinal epithelial conditional transgenic (miR-122a-TG) mouse model was established to investigate EGFR and zonulin expression. MiR-122a was also detected in the clinical specimens of inflammatory bowel disease. EGFR was identified as a target gene of miR-122a. The expression level of miR-122a was positively correlated with that of zonulin. The expression level of zonulin was significantly increased, whereas the expression level of EGFR was significantly decreased in the miR-122a-TG mice and in the corresponding primary epithelial culture (P zonulin by targeting EGFR, which increased the intestinal epithelial permeability in vivo and in vitro. © 2017 The Author(s). Published by S. Karger AG, Basel.

  14. Antibiotic-Induced Changes in the Intestinal Microbiota and Disease.

    Science.gov (United States)

    Becattini, Simone; Taur, Ying; Pamer, Eric G

    2016-06-01

    The gut microbiota is a key player in many physiological and pathological processes occurring in humans. Recent investigations suggest that the efficacy of some clinical approaches depends on the action of commensal bacteria. Antibiotics are invaluable weapons to fight infectious diseases. However, by altering the composition and functions of the microbiota, they can also produce long-lasting deleterious effects for the host. The emergence of multidrug-resistant pathogens raises concerns about the common, and at times inappropriate, use of antimicrobial agents. Here we review the most recently discovered connections between host pathophysiology, microbiota, and antibiotics highlighting technological platforms, mechanistic insights, and clinical strategies to enhance resistance to diseases by preserving the beneficial functions of the microbiota. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Weaning stress and gastrointestinal barrier development: Implications for lifelong gut health in pigs

    Directory of Open Access Journals (Sweden)

    Adam J. Moeser

    2017-12-01

    Full Text Available The gastrointestinal (GI barrier serves a critical role in survival and overall health of animals and humans. Several layers of barrier defense mechanisms are provided by the epithelial, immune and enteric nervous systems. Together they act in concert to control normal gut functions (e.g., digestion, absorption, secretion, immunity, etc. whereas at the same time provide a barrier from the hostile conditions in the luminal environment. Breakdown of these critical GI functions is a central pathophysiological mechanism in the most serious GI disorders in pigs. This review will focus on the development and functional properties of the GI barrier in pigs and how common early life production stressors, such as weaning, can alter immediate and long-term barrier function and disease susceptibility. Specific stress-related pathophysiological mechanisms responsible for driving GI barrier dysfunction induced by weaning and the implications to animal health and performance will be discussed.

  16. Chitin Oligosaccharide Modulates Gut Microbiota and Attenuates High-Fat-Diet-Induced Metabolic Syndrome in Mice

    Directory of Open Access Journals (Sweden)

    Junping Zheng

    2018-02-01

    Full Text Available Gut microbiota has been proved to be an indispensable link between nutrient excess and metabolic syndrome, and chitin oligosaccharide (NACOS has displayed therapeutic effects on multiple diseases such as cancer and gastritis. In this study, we aim to confirm whether NACOS can ameliorate high-fat diet (HFD-induced metabolic syndrome by rebuilding the structure of the gut microbiota community. Male C57BL/6J mice fed with HFD were treated with NACOS (1 mg/mL in drinking water for five months. The results indicate that NACOS improved glucose metabolic disorder in HFD-fed mice and suppressed mRNA expression of the protein regulators related to lipogenesis, gluconeogenesis, adipocyte differentiation, and inflammation in adipose tissues. Additionally, NACOS inhibited the destruction of the gut barrier in HFD-treated mice. Furthermore, 16S ribosome RNA sequencing of fecal samples demonstrates that NACOS promoted the growth of beneficial intestinal bacteria remarkably and decreased the abundance of inflammogenic taxa. In summary, NACOS partly rebuilt the microbial community and improved the metabolic syndrome of HFD-fed mice. These data confirm the preventive effects of NACOS on nutrient excess-related metabolic diseases.

  17. The Reciprocal Interactions between Polyphenols and Gut Microbiota and Effects on Bioaccessibility

    Science.gov (United States)

    Ozdal, Tugba; Sela, David A.; Xiao, Jianbo; Boyacioglu, Dilek; Chen, Fang; Capanoglu, Esra

    2016-01-01

    As of late, polyphenols have increasingly interested the scientific community due to their proposed health benefits. Much of this attention has focused on their bioavailability. Polyphenol–gut microbiota interactions should be considered to understand their biological functions. The dichotomy between the biotransformation of polyphenols into their metabolites by gut microbiota and the modulation of gut microbiota composition by polyphenols contributes to positive health outcomes. Although there are many studies on the in vivo bioavailability of polyphenols, the mutual relationship between polyphenols and gut microbiota is not fully understood. This review focuses on the biotransformation of polyphenols by gut microbiota, modulation of gut microbiota by polyphenols, and the effects of these two-way mutual interactions on polyphenol bioavailability, and ultimately, human health. PMID:26861391

  18. Contribution of diet to the composition of the human gut microbiota.

    Science.gov (United States)

    Graf, Daniela; Di Cagno, Raffaella; Fåk, Frida; Flint, Harry J; Nyman, Margareta; Saarela, Maria; Watzl, Bernhard

    2015-01-01

    In the human gut, millions of bacteria contribute to the microbiota, whose composition is specific for every individual. Although we are just at the very beginning of understanding the microbiota concept, we already know that the composition of the microbiota has a profound impact on human health. A key factor in determining gut microbiota composition is diet. Preliminary evidence suggests that dietary patterns are associated with distinct combinations of bacteria in the intestine, also called enterotypes. Western diets result in significantly different microbiota compositions than traditional diets. It is currently unknown which food constituents specifically promote growth and functionality of beneficial bacteria in the intestine. The aim of this review is to summarize the recently published evidence from human in vivo studies on the gut microbiota-modulating effects of diet. It includes sections on dietary patterns (e.g. Western diet), whole foods, food constituents, as wells as food-associated microbes and their influence on the composition of human gut microbiota. The conclusions highlight the problems faced by scientists in this fast-developing field of research, and the need for high-quality, large-scale human dietary intervention studies.

  19. The epithelium in idiopathic pulmonary fibrosis: breaking the barrier

    Directory of Open Access Journals (Sweden)

    Ana eCamelo

    2014-01-01

    Full Text Available Idiopathic pulmonary fibrosis is a progressive disease of unknown etiology characterised by a dysregulated wound healing response that leads to fatal accumulation of fibroblasts and extracellular matrix in the lung, which compromises tissue architecture and lung function capacity. Injury to type II alveolar epithelial cells is thought to be the key event for the initiation of the disease, and so far both genetic factors, such as mutations in telomerase and MUC5b genes as well as environmental components, like cigarette smoking, exposure to asbestos and viral infections have been implicated as potential initiating triggers. The injured epithelium then enters a state of senescence-associated secretory phenotype whereby it produces both pro-inflammatory and pro-fibrotic factors that contribute to the wound healing process in the lung. Immune cells, like macrophages and neutrophils as well as activated myofibroblasts then perpetuate this cascade of epithelial cell apoptosis and proliferation by release of pro-fibrotic TGF-β and continuous deposition of extracellular matrix stiffens the basement membrane, altogether having a deleterious impact on epithelial cell function. In this review we describe the role of the epithelium as both a physical and immunological barrier between environment and self in the homeostatic versus diseased lung and explore the potential mechanisms of epithelial cell injury and the impact of loss of epithelial cell permeability and function on cytokine production, inflammation and myofibroblast activation in the fibrotic lung.

  20. The gut microbiota and inflammatory noncommunicable diseases

    DEFF Research Database (Denmark)

    West, Christina E; Renz, Harald; Jenmalm, Maria C

    2015-01-01

    Rapid environmental transition and modern lifestyles are likely driving changes in the biodiversity of the human gut microbiota. With clear effects on physiologic, immunologic, and metabolic processes in human health, aberrations in the gut microbiome and intestinal homeostasis have the capacity...... for neurodevelopment and mental health. These diverse multisystem influences have sparked interest in strategies that might favorably modulate the gut microbiota to reduce the risk of many NCDs. For example, specific prebiotics promote favorable intestinal colonization, and their fermented products have anti....... In human subjects it has been successfully used in cases of Clostridium difficile infection and IBD, although controlled trials are lacking for IBD. Here we discuss relationships between gut colonization and inflammatory NCDs and gut microbiota modulation strategies for their treatment and prevention....

  1. Diet-microbiota interactions as moderators of human metabolism

    DEFF Research Database (Denmark)

    Sonnenburg, Justin L; Bäckhed, Gert Fredrik

    2016-01-01

    It is widely accepted that obesity and associated metabolic diseases, including type 2 diabetes, are intimately linked to diet. However, the gut microbiota has also become a focus for research at the intersection of diet and metabolic health. Mechanisms that link the gut microbiota with obesity...

  2. Impact of delivery mode on the colostrum microbiota composition.

    Science.gov (United States)

    Toscano, Marco; De Grandi, Roberta; Peroni, Diego Giampietro; Grossi, Enzo; Facchin, Valentina; Comberiati, Pasquale; Drago, Lorenzo

    2017-09-25

    Breast milk is a rich nutrient with a temporally dynamic nature. In particular, numerous alterations in the nutritional, immunological and microbiological content occur during the transition from colostrum to mature milk. The objective of our study was to evaluate the potential impact of delivery mode on the microbiota of colostrum, at both the quantitative and qualitative levels (bacterial abundance and microbiota network). Twenty-nine Italian mothers (15 vaginal deliveries vs 14 Cesarean sections) were enrolled in the study. The microbiota of colostrum samples was analyzed by next generation sequencing (Ion Torrent Personal Genome Machine). The colostrum microbiota network associated with Cesarean section and vaginal delivery was evaluated by means of the Auto Contractive Map (AutoCM), a mathematical methodology based on Artificial Neural Network (ANN) architecture. Numerous differences between Cesarean section and vaginal delivery colostrum were observed. Vaginal delivery colostrum had a significant lower abundance of Pseudomonas spp., Staphylococcus spp. and Prevotella spp. when compared to Cesarean section colostrum samples. Furthermore, the mode of delivery had a strong influence on the microbiota network, as Cesarean section colostrum showed a higher number of bacterial hubs if compared to vaginal delivery, sharing only 5 hubs. Interestingly, the colostrum of mothers who had a Cesarean section was richer in environmental bacteria than mothers who underwent vaginal delivery. Finally, both Cesarean section and vaginal delivery colostrum contained a greater number of anaerobic bacteria genera. The mode of delivery had a large impact on the microbiota composition of colostrum. Further studies are needed to better define the meaning of the differences we observed between Cesarean section and vaginal delivery colostrum microbiota.

  3. Human gut microbiota and healthy aging: Recent developments and future prospective.

    Science.gov (United States)

    Kumar, Manish; Babaei, Parizad; Ji, Boyang; Nielsen, Jens

    2016-10-27

    The human gut microbiota alters with the aging process. In the first 2-3 years of life, the gut microbiota varies extensively in composition and metabolic functions. After this period, the gut microbiota demonstrates adult-like more stable and diverse microbial species. However, at old age, deterioration of physiological functions of the human body enforces the decrement in count of beneficial species (e.g. Bifidobacteria ) in the gut microbiota, which promotes various gut-related diseases (e.g. inflammatory bowel disease). Use of plant-based diets and probiotics/prebiotics may elevate the abundance of beneficial species and prevent gut-related diseases. Still, the connections between diet, microbes, and host are only partially known. To this end, genome-scale metabolic modeling can help to explore these connections as well as to expand the understanding of the metabolic capability of each species in the gut microbiota. This systems biology approach can also predict metabolic variations in the gut microbiota during ageing, and hereby help to design more effective probiotics/prebiotics.

  4. Microbiota dysbiosis in select human cancers: Evidence of association and causality.

    Science.gov (United States)

    Chen, Jie; Domingue, Jada C; Sears, Cynthia L

    2017-08-01

    The human microbiota is a complex ecosystem of diverse microorganisms consisting of bacteria, viruses, and fungi residing predominantly in epidermal and mucosal habitats across the body, such as skin, oral cavity, lung, intestine and vagina. These symbiotic communities in health, or dysbiotic communities in disease, display tremendous interaction with the local environment and systemic responses, playing a critical role in the host's nutrition, immunity, metabolism and diseases including cancers. While the profiling of normal microbiota in healthy populations is useful and necessary, more recent studies have focused on the microbiota associated with disease, particularly cancers. In this paper, we review current evidence on the role of the human microbiota in four cancer types (colorectal cancer, head and neck cancer, pancreatic cancer, and lung cancer) proposed as affected by both the oral and gut microbiota, and provide a perspective on current gaps in the knowledge of the microbiota and cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Gut microbiota and obesity: lessons from the microbiome.

    Science.gov (United States)

    Cani, Patrice D

    2013-07-01

    The distal gut harbours microbial communities that outnumber our own eukaryotic cells. The contribution of the gut microbiota to the development of several diseases (e.g. obesity, type 2 diabetes, steatosis, cardiovascular diseases and inflammatory bowel diseases) is becoming clear, although the causality remains to be proven in humans. Global changes in the gut microbiota have been observed by a number of culture-dependent and culture-independent methods, and while the latter have mostly included 16S ribosomal RNA gene analyses, more recent studies have utilized DNA sequencing of whole-microbial communities. Altogether, these high-throughput methods have facilitated the identification of novel candidate bacteria and, most importantly, metabolic functions that might be associated with obesity and type 2 diabetes. This review discusses the association between specific taxa and obesity, together with the techniques that are used to characterize the gut microbiota in the context of obesity and type 2 diabetes. Recent results are discussed in the framework of the interactions between gut microbiota and host metabolism.

  6. Deoxynivalenol, gut microbiota and immunotoxicity: A potential approach?

    Science.gov (United States)

    Liao, Yuxiao; Peng, Zhao; Chen, Liangkai; Nüssler, Andreas K; Liu, Liegang; Yang, Wei

    2018-02-01

    Deoxynivalenol (DON, vomitoxin) is the most frequent mycotoxin in grains and grain products. DON contamination in fodder and food is a serious threat for health, since it impairs the immune and gastrointestinal systems of both human and animals. Gut microbiota seems to play a more and more important part in human and animals' health according to related researches. Previous studies implied some associations among gut microbiota, DON and immune system. For example, DON affects immune system as well as the composition and abundance of gut microbiota, and the latter influences immune system as well. In the present short review, we not only provide the available information about the toxic consequences of DON-induced immunotoxicity on different animals and cell lines and discuss its main possible molecule mechanisms, but also summarize research results concerning the role of gut microbiota in DON-induced immunotoxicity and gender differences, with the aim to find some potential therapeutic strategies to tackle DON-induced immunotoxicity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. How informative is the mouse for human gut microbiota research?

    Science.gov (United States)

    Nguyen, Thi Loan Anh; Vieira-Silva, Sara; Liston, Adrian; Raes, Jeroen

    2015-01-01

    The microbiota of the human gut is gaining broad attention owing to its association with a wide range of diseases, ranging from metabolic disorders (e.g. obesity and type 2 diabetes) to autoimmune diseases (such as inflammatory bowel disease and type 1 diabetes), cancer and even neurodevelopmental disorders (e.g. autism). Having been increasingly used in biomedical research, mice have become the model of choice for most studies in this emerging field. Mouse models allow perturbations in gut microbiota to be studied in a controlled experimental setup, and thus help in assessing causality of the complex host-microbiota interactions and in developing mechanistic hypotheses. However, pitfalls should be considered when translating gut microbiome research results from mouse models to humans. In this Special Article, we discuss the intrinsic similarities and differences that exist between the two systems, and compare the human and murine core gut microbiota based on a meta-analysis of currently available datasets. Finally, we discuss the external factors that influence the capability of mouse models to recapitulate the gut microbiota shifts associated with human diseases, and investigate which alternative model systems exist for gut microbiota research. © 2015. Published by The Company of Biologists Ltd.

  8. Comparison of the Fecal Microbiota in Feral and Domestic Goats

    Directory of Open Access Journals (Sweden)

    María G. Domínguez-Bello

    2011-12-01

    Full Text Available Animals have co-evolved with mutualistic microbial communities, known as the microbiota, which are essential for organ development and function. We hypothesize that modern animal husbandry practices exert an impact on the intestinal microbiota. In this study, we compared the structure of the fecal microbiota between feral and domestic goats using the G2 PhyloChip and assessed the presence of five tetracycline resistance genes [tet(M, tet(S, tet(O, tet(Q and tet(W] by PCR. Feces were collected from 10 goats: 5 domestic from a farm in the main island of Puerto Rico and 5 feral from the remote dry island of Mona. There were 42 bacterial phyla from 153 families detected in the goats’ feces. A total of 84 PhyloChip-OTUs were different in the fecal microbiota of feral and domestic goat. Both feral and domestic goats carried antibiotic resistance genes tet(O and tet(W, but domestic goats additionally carried tet(Q. Diet, host genetics and antibiotic exposure are likely determinant factors in shaping the intestinal microbiota and may explain the differences observed between feral and domestic goats fecal microbiota.

  9. Feeding the microbiota-gut-brain axis: diet, microbiome, and neuropsychiatry.

    Science.gov (United States)

    Sandhu, Kiran V; Sherwin, Eoin; Schellekens, Harriët; Stanton, Catherine; Dinan, Timothy G; Cryan, John F

    2017-01-01

    The microbial population residing within the human gut represents one of the most densely populated microbial niche in the human body with growing evidence showing it playing a key role in the regulation of behavior and brain function. The bidirectional communication between the gut microbiota and the brain, the microbiota-gut-brain axis, occurs through various pathways including the vagus nerve, the immune system, neuroendocrine pathways, and bacteria-derived metabolites. This axis has been shown to influence neurotransmission and the behavior that are often associated with neuropsychiatric conditions. Therefore, research targeting the modulation of this gut microbiota as a novel therapy for the treatment of various neuropsychiatric conditions is gaining interest. Numerous factors have been highlighted to influence gut microbiota composition, including genetics, health status, mode of birth, and environment. However, it is diet composition and nutritional status that has repeatedly been shown to be one of the most critical modifiable factors regulating the gut microbiota at different time points across the lifespan and under various health conditions. Thus the microbiota is poised to play a key role in nutritional interventions for maintaining brain health. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Beyond gut feelings: how the gut microbiota regulates blood pressure.

    Science.gov (United States)

    Marques, Francine Z; Mackay, Charles R; Kaye, David M

    2018-01-01

    Hypertension is the leading risk factor for heart disease and stroke, and is estimated to cause 9.4 million deaths globally every year. The pathogenesis of hypertension is complex, but lifestyle factors such as diet are important contributors to the disease. High dietary intake of fruit and vegetables is associated with reduced blood pressure and lower cardiovascular mortality. A critical relationship between dietary intake and the composition of the gut microbiota has been described in the literature, and a growing body of evidence supports the role of the gut microbiota in the regulation of blood pressure. In this Review, we describe the mechanisms by which the gut microbiota and its metabolites, including short-chain fatty acids, trimethylamine N-oxide, and lipopolysaccharides, act on downstream cellular targets to prevent or contribute to the pathogenesis of hypertension. These effects have a direct influence on tissues such as the kidney, the endothelium, and the heart. Finally, we consider the role of the gut microbiota in resistant hypertension, the possible intergenerational effect of the gut microbiota on blood pressure regulation, and the promising therapeutic potential of gut microbiota modification to improve health and prevent disease.

  11. Evaluating the core microbiota in complex communities: A systematic investigation.

    Science.gov (United States)

    Astudillo-García, Carmen; Bell, James J; Webster, Nicole S; Glasl, Bettina; Jompa, Jamaluddin; Montoya, Jose M; Taylor, Michael W

    2017-04-01

    The study of complex microbial communities poses unique conceptual and analytical challenges, with microbial species potentially numbering in the thousands. With transient or allochthonous microorganisms often adding to this complexity, a 'core' microbiota approach, focusing only on the stable and permanent members of the community, is becoming increasingly popular. Given the various ways of defining a core microbiota, it is prudent to examine whether the definition of the core impacts upon the results obtained. Here we used complex marine sponge microbiotas and undertook a systematic evaluation of the degree to which different factors used to define the core influenced the conclusions. Significant differences in alpha- and beta-diversity were detected using some but not all core definitions. However, findings related to host specificity and environmental quality were largely insensitive to major changes in the core microbiota definition. Furthermore, none of the applied definitions altered our perception of the ecological networks summarising interactions among bacteria within the sponges. These results suggest that, while care should still be taken in interpretation, the core microbiota approach is surprisingly robust, at least for comparing microbiotas of closely related samples. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  12. We Are Never Alone: Living with the Human Microbiota

    OpenAIRE

    da Silva, Gabriela Jorge; Domingues, Sara

    2017-01-01

    The human body is inhabited by millions of tiny living organisms, which, all together, are called the human microbiota. Bacteria are microbes found on the skin, in the nose, mouth, and especially in the gut. We acquire these bacteria during birth and the first years of life, and they live with us throughout our lives. The human microbiota is involved in healthy growth, in protecting the body from invaders, in helping digestion, and in regulating moods. Some changes in the microbiota may occur...

  13. Characterization of the gut microbiota in leptin deficient obese mice

    DEFF Research Database (Denmark)

    Ellekilde, Merete; Krych, Lukasz; Hansen, Camilla Hartmann Friis

    2014-01-01

    Gut microbiota have been implicated as a relevant factor in the development of type 2 diabetes mellitus (T2DM), and its diversity might be a cause of variation in animal models of T2DM. In this study, we aimed to characterise the gut microbiota of a T2DM mouse model with a long term vision of being...... able to target the gut microbiota to reduce the number of animals used in experiments. Male B6.V-Lep(ob)/J mice were characterized according to a number of characteristics related to T2DM, inflammation and gut microbiota. All findings were thereafter correlated to one another in a linear regression...... model. The total gut microbiota profile correlated to glycated haemoglobin, and high proportions of Prevotellaceae and Lachnospiraceae correlated to impaired or improved glucose intolerance, respectively. In addition, Akkermansia muciniphila disappeared with age as glucose intolerance worsened. A high...

  14. Intestinal Microbiota: Early Formation, Health Effects, and Correction Ways

    Directory of Open Access Journals (Sweden)

    Andrey S. Yakushin

    2017-01-01

    Full Text Available An increase in the prevalence of diseases resulting from disorders of metabolism and immune system functions is largely due to disturbances in the intestinal microbiota composition at an early age. The review  considers the stages and conditions of the natural development of the  intestinal microbiota, starting from the intrauterine period. We  conducted the analysis of possible risk factors for the intestinal  microbiota composition disorders in the pre- and postnatal periods. The  results of modern studies on the association between the intestinal  microbiota composition in infancy and the development of «civilization  diseases» at older ages are given. A separate section is devoted to a  discussion of the efficacy and appropriateness of taking probiotic drugs for disease prevention.

  15. Gut Microbiota and Lifestyle Interventions in NAFLD

    Science.gov (United States)

    Houghton, David; Stewart, Christopher J.; Day, Christopher P.; Trenell, Michael

    2016-01-01

    The human digestive system harbors a diverse and complex community of microorganisms that work in a symbiotic fashion with the host, contributing to metabolism, immune response and intestinal architecture. However, disruption of a stable and diverse community, termed “dysbiosis”, has been shown to have a profound impact upon health and disease. Emerging data demonstrate dysbiosis of the gut microbiota to be linked with non-alcoholic fatty liver disease (NAFLD). Although the exact mechanism(s) remain unknown, inflammation, damage to the intestinal membrane, and translocation of bacteria have all been suggested. Lifestyle intervention is undoubtedly effective at improving NAFLD, however, not all patients respond to these in the same manner. Furthermore, studies investigating the effects of lifestyle interventions on the gut microbiota in NAFLD patients are lacking. A deeper understanding of how different aspects of lifestyle (diet/nutrition/exercise) affect the host–microbiome interaction may allow for a more tailored approach to lifestyle intervention. With gut microbiota representing a key element of personalized medicine and nutrition, we review the effects of lifestyle interventions (diet and physical activity/exercise) on gut microbiota and how this impacts upon NAFLD prognosis. PMID:27023533

  16. Regulation of Epithelial Sodium Transport via Epithelial Na+ Channel

    Science.gov (United States)

    Marunaka, Yoshinori; Niisato, Naomi; Taruno, Akiyuki; Ohta, Mariko; Miyazaki, Hiroaki; Hosogi, Shigekuni; Nakajima, Ken-ichi; Kusuzaki, Katsuyuki; Ashihara, Eishi; Nishio, Kyosuke; Iwasaki, Yoshinobu; Nakahari, Takashi; Kubota, Takahiro

    2011-01-01

    Renal epithelial Na+ transport plays an important role in homeostasis of our body fluid content and blood pressure. Further, the Na+ transport in alveolar epithelial cells essentially controls the amount of alveolar fluid that should be kept at an appropriate level for normal gas exchange. The epithelial Na+ transport is generally mediated through two steps: (1) the entry step of Na+ via epithelial Na+ channel (ENaC) at the apical membrane and (2) the extrusion step of Na+ via the Na+, K+-ATPase at the basolateral membrane. In general, the Na+ entry via ENaC is the rate-limiting step. Therefore, the regulation of ENaC plays an essential role in control of blood pressure and normal gas exchange. In this paper, we discuss two major factors in ENaC regulation: (1) activity of individual ENaC and (2) number of ENaC located at the apical membrane. PMID:22028593

  17. The role of gut microbiota in human metabolism

    NARCIS (Netherlands)

    Vrieze, A.

    2013-01-01

    This thesis supports the hypothesis that gut microbiota can be viewed as an ‘exteriorised organ’ that contributes to energy metabolism and the modulation of our immune system. Following Koch’s postulates, it has now been shown that gut microbiota are associated with metabolic disease and that these

  18. High fat diet drives obesity regardless the composition of gut microbiota in mice

    OpenAIRE

    Rabot, Sylvie; Membrez, Mathieu; Blancher, Florence; Berger, Bernard; Moine, Deborah; Krause, Lutz; Bibiloni, Rodrigo; Bruneau, Aurelia; Gerard, Philippe; Siddharth, Jay; Lauber, Christian L.

    2016-01-01

    The gut microbiota is involved in many aspects of host physiology but its role in body weight and glucose metabolism remains unclear. Here we studied the compositional changes of gut microbiota in diet-induced obesity mice that were conventionally raised or received microbiota transplantation. In conventional mice, the diversity of the faecal microbiota was weakly associated with 1st week weight gain but transferring the microbiota of mice with contrasting weight gain to germfree mice did not...

  19. Navy and black bean supplementation attenuates colitis-associated inflammation and colonic epithelial damage.

    Science.gov (United States)

    Monk, Jennifer M; Wu, Wenqing; Hutchinson, Amber L; Pauls, Peter; Robinson, Lindsay E; Power, Krista A

    2018-02-27

    The enriched levels of nondigestible fermentable carbohydrates and phenolic compounds found in common beans can exert immunomodulatory effects within the colon that improve gut health and mitigate the severity of colitis-associated inflammatory pathology. Prior to acute colitis onset, C57Bl/6 mice were prefed isocaloric 20% cooked navy bean (NB) or black bean (BB) diets for 3 weeks and switched to control basal diet (BD) 24 h prior to colitis induction via 5-day exposure to dextran sodium sulfate (2% w/v in drinking water)+3 days of fresh water. The severity of the acute colitis phenotype was attenuated by bean prefeeding, evidenced by reduced colon tissue inflammatory transcription factor activation (NFκB, STAT3) and inflammatory mediator levels in the colon (IL-1β, IL-6, IL-18 and MCP-1) and serum (TNFα, IL-6, IL-1β, MCP-1) versus BD (P≤.05). Additionally, biomarkers of enhanced wound repair responses were increased by bean prefeeding including colon tissue protein levels of IL-22, IL-27 and activated (i.e., GTP-bound) Cdc42 and Rac1 versus BD (P≤.05). mRNA expressions of genes involved in normal colonic epithelial function and the promotion of epithelial barrier integrity, defense and/or restitution and wound closure including MUC1, RELMβ, IgA and REG3γ were all increased in NB and BB prefed mice versus BD (P≤.05). Collectively, bean supplementation prior to colitis induction (i.e., mimicking disease relapse) primes the colonic microenvironment to attenuate the severity of the colitis inflammatory phenotype and maintain aspects of epithelial barrier function. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Long-term effect of depot medroxyprogesterone acetate on vaginal microbiota, epithelial thickness and HIV target cells.

    Science.gov (United States)

    Mitchell, Caroline M; McLemore, Leslie; Westerberg, Katharine; Astronomo, Rena; Smythe, Kimberly; Gardella, Carolyn; Mack, Matthias; Magaret, Amalia; Patton, Dorothy; Agnew, Kathy; McElrath, M Juliana; Hladik, Florian; Eschenbach, David

    2014-08-15

    Depot medroxyprogesterone acetate (DMPA) has been linked to human immunodeficiency virus type 1 (HIV-1) acquisition. Vaginal microbiota of women using DMPA for up to 2 years were cultured. Mucosal immune cell populations were measured by immunohistological staining. Over 12 months, the proportion with H2O2-positive lactobacilli decreased (n = 32; 53% vs 27%; P = .03). Median vaginal CD3(+) cells also decreased (n = 15; 355 vs 237 cells/mm(2); P = .03), as did CD3(+)CCR5(+) cells (195 vs 128 cells/mm(2); P = .04), HLA-DR(+) cells (130 vs 96 cells/mm(2); P = .27), and HLA-DR(+)CCR5(+) cells (18 vs 10 cells/mm(2); P = .33). DMPA contraception does not increase vaginal mucosal CCR5(+) HIV target cells but does decrease CD3(+) T lymphocytes and vaginal H2O2-producing lactobacilli. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. What mother is telling you : The messages encoded in milk-derived extracellular vesicles : Implications for the immune system and epithelial barrier function

    NARCIS (Netherlands)

    Zonneveld, M.I.|info:eu-repo/dai/nl/338042202

    2017-01-01

    Human milk assists the development of the neonatal intestinal epithelial mucosa. Human milk is composed of many bioactive macromolecular structures and it is under active investigation what the contribution of these structures is to the development of a healthy epithelial mucosa. One understudied

  2. The metabolism of the Antartic crytoendolithic microbiota

    Science.gov (United States)

    Vestal, J. Robie

    1989-01-01

    The carbon metabolism of the cryptoendolithic microbiota in sandstones from the Ross Desert region of Antarctica was studied in situ and in vitro. Organic and inorganic compounds were metabolized by the microbiota, with bicarbonate being metabolized maximally in the light. There was a linear response of photosynthesis to light up to 200 to 300 micromole photons/sq m/s. The community photosynthetic response to temperature was a minimum at -5 C, two optima at +5 and +15 C and a maximum at +35 C. Photosynthetic metabolism occurred maximally in the presence of liquid water, but could occur in an environment of water vapor. Biomass of the cryptoendolithic microbiota was measured as the amount of lipid phosphate present. The in situ biomass ranged from 1.92 to 3.26 g carbon/sq m of rock and 2 orders of magnitude less than epilithic lichen microbiota from Antarctica in a location 7 degrees more north in latitude. With these data, it was possible to calculate primary production and carbon turnover in this simple microbiota. Production values ranged from 0.108 to 4.41 mg carbon/sq m/yr, while carbon turnover values ranged from 576 to 23,520 years. These values are the lowest and longest yet recorded for any ecosystem on Earth. If life did evolve on Mars to the level of prokaryotes or primitive eukaryotes, the possibility that the organisms retreated, to the protection of the inside of the rock so that metabolism could continue during planetary cooling, cannot be overlooked.

  3. Clinical Relevance of Gastrointestinal Microbiota During Pregnancy: A Primer for Nurses.

    Science.gov (United States)

    Chung, Seon-Yoon; Ravel, Jacques; Regan, Mary

    2018-01-01

    Emerging evidence about the human microbiome, a collective term for all the microorganisms living in and on the human body, consistently demonstrates the critical influence it has on host physiology and disease risk. The microbiota in the gastrointestinal (GI) tract has the most significant and far-reaching effect on human physiology. The maternal GI microbiota can decrease the risk of adverse pregnancy outcomes by modulating energy extraction, glucose metabolism, vitamin production, and host immunity essential for optimal maternal and neonatal health. Moreover, the maternal GI microbiota is thought to influence colonization of the fetus and neonate that may predispose them to different health trajectories. This article provides a basic understanding about the influence of the structure of the maternal GI microbiota, the fundamental role it plays during pregnancy, and the factors that influence the structure, and subsequently function, of the GI microbiota in the general and pregnant population. While only a small number of studies have examined this topic during pregnancy, the preponderance of the evidence supports the need to clarify baseline structure and function of GI microbiota and its associations with pregnancy outcomes. In addition, the results from the studies conducted in the general population can be extrapolated to pregnancy in many cases. This knowledge is essential for clinicians who need to understand the implications of the microbiota for disease and wellness in order to address the care factors that may adversely influence the GI microbiota during pregnancy.

  4. Characterization of Microbiota in Children with Chronic Functional Constipation

    NARCIS (Netherlands)

    de Meij, Tim G. J.; de Groot, Evelien F. J.; Eck, Anat; Budding, Andries E.; Kneepkens, C. M. Frank; Benninga, Marc A.; van Bodegraven, Adriaan A.; Savelkoul, Paul H. M.

    2016-01-01

    Disruption of the intestinal microbiota is considered an etiological factor in pediatric functional constipation. Scientifically based selection of potential beneficial probiotic strains in functional constipation therapy is not feasible due to insufficient knowledge of microbiota composition in

  5. Impact of the gut microbiota on rodent models of human disease.

    Science.gov (United States)

    Hansen, Axel Kornerup; Hansen, Camilla Hartmann Friis; Krych, Lukasz; Nielsen, Dennis Sandris

    2014-12-21

    Traditionally bacteria have been considered as either pathogens, commensals or symbionts. The mammal gut harbors 10(14) organisms dispersed on approximately 1000 different species. Today, diagnostics, in contrast to previous cultivation techniques, allow the identification of close to 100% of bacterial species. This has revealed that a range of animal models within different research areas, such as diabetes, obesity, cancer, allergy, behavior and colitis, are affected by their gut microbiota. Correlation studies may for some diseases show correlation between gut microbiota composition and disease parameters higher than 70%. Some disease phenotypes may be transferred when recolonizing germ free mice. The mechanistic aspects are not clear, but some examples on how gut bacteria stimulate receptors, metabolism, and immune responses are discussed. A more deeper understanding of the impact of microbiota has its origin in the overall composition of the microbiota and in some newly recognized species, such as Akkermansia muciniphila, Segmented filamentous bacteria and Faecalibacterium prausnitzii, which seem to have an impact on more or less severe disease in specific models. Thus, the impact of the microbiota on animal models is of a magnitude that cannot be ignored in future research. Therefore, either models with specific microbiota must be developed, or the microbiota must be characterized in individual studies and incorporated into data evaluation.

  6. Small Bowel Transit and Altered Gut Microbiota in Patients With Liver Cirrhosis.

    Science.gov (United States)

    Liu, Yang; Jin, Ye; Li, Jun; Zhao, Lei; Li, Zhengtian; Xu, Jun; Zhao, Fuya; Feng, Jing; Chen, Huinan; Fang, Chengyuan; Shilpakar, Rojina; Wei, Yunwei

    2018-01-01

    Disturbance of the gut microbiota is common in liver cirrhosis (LC) patients, the underlying mechanisms of which are yet to be unfolded. This study aims to explore the relationship between small bowel transit (SBT) and gut microbiota in LC patients. Cross-sectional design was applied with 36 LC patients and 20 healthy controls (HCs). The gut microbiota was characterized by 16S rRNA gene sequencing. The Firmicutes/Bacteroidetes (F/B) ratio and the Microbial Dysbiosis index (MDI) were used to evaluate the severity of microbiota dysbiosis. The scintigraphy method was performed in patients to describe the objective values of SBT. Patients were then subdivided according to the Child-Pugh score (threshold = 5) or SBT value (threshold = 0.6) for microbiota analysis. LC patients were characterized by an altered gut microbiota; F/B ratios and MDI were higher than HC in both Child_5 (14.00 ± 14.69 vs. 2.86 ± 0.99, p gut microbiota between Child_ 5 and Child_5+ patients was inappreciable, but the SBT was relatively slower in Child_5+ patients (43 ± 26% vs. 80 ± 15%, p gut microbiota was observed between SBT_0.6- and SBT_0.6+ patients [Pr(> F ) = 0.0068, pMANOVA], with higher F/B ratios and MDI in SBT_0.6- patients (19.71 ± 16.62 vs. 7.33 ± 6.65, p gut microbiota abnormalities observed in patients with LC.

  7. Composition, variability, and temporal stability of the intestinal microbiota of the elderly.

    LENUS (Irish Health Repository)

    Claesson, Marcus J

    2011-03-15

    Alterations in the human intestinal microbiota are linked to conditions including inflammatory bowel disease, irritable bowel syndrome, and obesity. The microbiota also undergoes substantial changes at the extremes of life, in infants and older people, the ramifications of which are still being explored. We applied pyrosequencing of over 40,000 16S rRNA gene V4 region amplicons per subject to characterize the fecal microbiota in 161 subjects aged 65 y and older and 9 younger control subjects. The microbiota of each individual subject constituted a unique profile that was separable from all others. In 68% of the individuals, the microbiota was dominated by phylum Bacteroides, with an average proportion of 57% across all 161 baseline samples. Phylum Firmicutes had an average proportion of 40%. The proportions of some phyla and genera associated with disease or health also varied dramatically, including Proteobacteria, Actinobacteria, and Faecalibacteria. The core microbiota of elderly subjects was distinct from that previously established for younger adults, with a greater proportion of Bacteroides spp. and distinct abundance patterns of Clostridium groups. Analyses of 26 fecal microbiota datasets from 3-month follow-up samples indicated that in 85% of the subjects, the microbiota composition was more like the corresponding time-0 sample than any other dataset. We conclude that the fecal microbiota of the elderly shows temporal stability over limited time in the majority of subjects but is characterized by unusual phylum proportions and extreme variability.

  8. Links between Dietary Protein Sources, the Gut Microbiota, and Obesity

    OpenAIRE

    Lise Madsen; Lise Madsen; Lise Madsen; Lene S. Myrmel; Even Fjære; Bjørn Liaset; Karsten Kristiansen; Karsten Kristiansen

    2017-01-01

    The association between the gut microbiota and obesity is well documented in both humans and in animal models. It is also demonstrated that dietary factors can change the gut microbiota composition and obesity development. However, knowledge of how diet, metabolism and gut microbiota mutually interact and modulate energy metabolism and obesity development is still limited. Epidemiological studies indicate an association between intake of certain dietary protein sources and obesity. Animal stu...

  9. Links between dietary protein sources, the gut microbiota, and obesity

    OpenAIRE

    Madsen, Lise; Myrmel, Lene S.; Fjære, Even; Liaset, Bjørn; Kristiansen, Karsten

    2017-01-01

    The association between the gut microbiota and obesity is well documented in both humans and in animal models. It is also demonstrated that dietary factors can change the gut microbiota composition and obesity development. However, knowledge of how diet, metabolism and gut microbiota mutually interact and modulate energy metabolism and obesity development is still limited. Epidemiological studies indicate an association between intake of certain dietary protein sources and obesity. Animal stu...

  10. The human microbiota: novel targets for hospital-acquired infections and antibiotic resistance.

    Science.gov (United States)

    Pettigrew, Melinda M; Johnson, J Kristie; Harris, Anthony D

    2016-05-01

    Hospital-acquired infections are increasing in frequency due to multidrug resistant organisms (MDROs), and the spread of MDROs has eroded our ability to treat infections. Health care professionals cannot rely solely on traditional infection control measures and antimicrobial stewardship to prevent MDRO transmission. We review research on the microbiota as a target for infection control interventions. We performed a literature review of key research findings related to the microbiota as a target for infection control interventions. These data are summarized and used to outline challenges, opportunities, and unanswered questions in the field. The healthy microbiota provides protective functions including colonization resistance, which refers to the microbiota's ability to prevent colonization and/or expansion of pathogens. Antibiotic use and other exposures in hospitalized patients are associated with disruptions of the microbiota that may reduce colonization resistance and select for antibiotic resistance. Novel methods to exploit protective mechanisms provided by an intact microbiota may provide the key to preventing the spread of MDROs in the health care setting. Research on the microbiota as a target for infection control has been limited. Epidemiologic studies will facilitate progress toward the goal of manipulating the microbiota for control of MDROs in the health care setting. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Simultaneous cell death and desquamation of the embryonic diffusion barrier during epidermal development

    International Nuclear Information System (INIS)

    Saathoff, Manuela; Blum, Barbara; Quast, Thomas; Kirfel, Gregor; Herzog, Volker

    2004-01-01

    The periderm is an epithelial layer covering the emerging epidermis in early embryogenesis of vertebrates. In the chicken embryo, an additional cellular layer, the subperiderm, occurs at later embryonic stages underneath the periderm. The questions arose what is the function of both epithelial layers and, as they are transitory structures, by which mechanism are they removed. By immunocytochemistry, the tight junction (TJ) proteins occludin and claudin-1 were localized in the periderm and in the subperiderm, and sites of close contact between adjacent cells were detected by electron microscopy. Using horseradish peroxidase (HRP) as tracer, these contacts were identified as tight junctions involved in the formation of the embryonic diffusion barrier. This barrier was lost by desquamation at the end of the embryonic period, when the cornified envelope of the emerging epidermis was formed. By TUNEL and DNA ladder assays, we detected simultaneous cell death in the periderm and the subperiderm shortly before hatching. The absence of caspases-3, -6, and -7 activity, key enzymes of apoptosis, and the lack of typical morphological criteria of apoptosis such as cell fragmentation or membrane blebbing point to a special form of programmed cell death (PCD) leading to the desquamation of the embryonic diffusion barrier

  12. Mucin-Microbiota Interaction During Postnatal Maturation of the Intestinal Ecosystem: Clinical Implications.

    Science.gov (United States)

    Rokhsefat, Sana; Lin, Aifeng; Comelli, Elena M

    2016-06-01

    The mucus layer and gut microbiota interplay contributes to host homeostasis. The mucus layer serves as a scaffold and a carbon source for gut microorganisms; conversely, gut microorganisms, including mucin degraders, influence mucin gene expression, glycosylation, and secretion. Conjointly they shield the epithelium from luminal pathogens, antigens, and toxins. Importantly, the mucus layer and gut microbiota are established in parallel during early postnatal life. During this period, the development of gut microbiota and mucus layer is coupled with that of the immune system. Developmental changes of different mucin types can impact the age-dependent patterns of intestinal infection in terms of incidence and severity. Altered mucus layer, dysbiotic microbiota, and abnormal mucus-gut microbiota interaction have the potential for inducing systemic effects, and accompany several intestinal diseases such as inflammatory bowel disease, colorectal cancer, and radiation-induced mucositis. Early life provides a pivotal window of opportunity to favorably modulate the mucus-microbiota interaction. The support of a health-compatible mucin-microbiota maturation in early life is paramount for long-term health and serves as an important opportunity for clinical intervention.

  13. Gut microbiota modifications and weight gain in early life

    Directory of Open Access Journals (Sweden)

    Emmanouil Angelakis

    2018-04-01

    Full Text Available Childhood and adolescent obesity is a significant public health concern and has been associated with cardiovascular disease and related metabolic sequelae later in life. In recent years, several studies have postulated an imbalance in the composition of the early life gut microbiota results in pediatric obesity and its associated diseases. The early life gut microbiota is influenced by several factors including the mode of delivery, prematurity, breastfeeding, and the use of antibiotics and probiotics. It has been proposed that, when given early in life, antibiotics and probiotics disrupt the gut microbiota and consequently its metabolic activity, promoting weight gain. Probiotics have increasingly been administrated to children and studies on the perinatal use of probiotics on low birth weight and healthy infants revealed significantly increased body length and weight later in life in comparison with infants who did not receive probiotic supplements. Similarly, exposure to antibiotics is very high perinatally and in the early periods of life and there is evidence that antibiotic treatment decreases the biodiversity of the early life gut microbiota. In addition, studies have revealed that antibiotic treatment during the first months of life is associated with being overweight later in life. In this paper we review the effects of the administration of probiotics and antibiotics in early life on the gut microbiota and discuss their effects on weight gain. Keywords: Gut microbiota, Obesity, Newborn, Antibiotics, Probiotics

  14. Interferon-γ induces expression of MHC class II on intestinal epithelial cells and protects mice from colitis.

    Directory of Open Access Journals (Sweden)

    Christoph Thelemann

    Full Text Available Immune responses against intestinal microbiota contribute to the pathogenesis of inflammatory bowel diseases (IBD and involve CD4(+ T cells, which are activated by major histocompatibility complex class II (MHCII molecules on antigen-presenting cells (APCs. However, it is largely unexplored how inflammation-induced MHCII expression by intestinal epithelial cells (IEC affects CD4(+ T cell-mediated immunity or tolerance induction in vivo. Here, we investigated how epithelial MHCII expression is induced and how a deficiency in inducible epithelial MHCII expression alters susceptibility to colitis and the outcome of colon-specific immune responses. Colitis was induced in mice that lacked inducible expression of MHCII molecules on all nonhematopoietic cells, or specifically on IECs, by continuous infection with Helicobacter hepaticus and administration of interleukin (IL-10 receptor-blocking antibodies (anti-IL10R mAb. To assess the role of interferon (IFN-γ in inducing epithelial MHCII expression, the T cell adoptive transfer model of colitis was used. Abrogation of MHCII expression by nonhematopoietic cells or IECs induces colitis associated with increased colonic frequencies of innate immune cells and expression of proinflammatory cytokines. CD4(+ T-helper type (Th1 cells - but not group 3 innate lymphoid cells (ILCs or Th17 cells - are elevated, resulting in an unfavourably altered ratio between CD4(+ T cells and forkhead box P3 (FoxP3(+ regulatory T (Treg cells. IFN-γ produced mainly by CD4(+ T cells is required to upregulate MHCII expression by IECs. These results suggest that, in addition to its proinflammatory roles, IFN-γ exerts a critical anti-inflammatory function in the intestine which protects against colitis by inducing MHCII expression on IECs. This may explain the failure of anti-IFN-γ treatment to induce remission in IBD patients, despite the association of elevated IFN-γ and IBD.

  15. Irritable bowel syndrome, the microbiota and the gut-brain axis

    DEFF Research Database (Denmark)

    Raskov, Hans; Burcharth, Jakob; Pommergaard, Hans-Christian

    2016-01-01

    Irritable bowel syndrome is a common functional gastrointestinal disorder and it is now evident that irritable bowel syndrome is a multi-factorial complex of changes in microbiota and immunology. The bidirectional neurohumoral integrated communication between the microbiota and the autonomous...... nervous system is called the gut-brain-axis, which integrates brain and GI functions, such as gut motility, appetite and weight. The gut-brain-axis has a central function in the perpetuation of irritable bowel syndrome and the microbiota plays a critical role. The purpose of this article is to review...... recent research concerning the epidemiology of irritable bowel syndrome, influence of microbiota, probiota, gut-brain-axis, and possible treatment modalities on irritable bowel syndrome....

  16. Diet-dependent modular dynamic interactions of the equine cecal microbiota

    DEFF Research Database (Denmark)

    Kristoffersen, Camilla; Jensen, Rasmus Bovbjerg; Avershina, Ekaterina

    2016-01-01

    Knowledge on dynamic interactions in microbiota is pivotal for understanding the role of bacteria in the gut. We herein present comprehensive dynamic models of the horse cecal microbiota, which include short-chained fatty acids, carbohydrate metabolic networks, and taxonomy. Dynamic models were...... diets. We observed marked differences in the microbial dynamic interaction patterns for Fibrobacter succinogenes, Lachnospiraceae, Streptococcus, Treponema, Anaerostipes, and Anaerovibrio between the two diet groups. Fluctuations and microbiota interactions were the most pronounced for the starch rich...... sugars for the starch-rich diet and monosaccharides for the fiber-rich diet. In conclusion, diet may not only affect the composition of the cecal microbiota, but also dynamic interactions and metabolic cross-feeding....

  17. Sensing of EGTA Mediated Barrier Tissue Disruption with an Organic Transistor

    Directory of Open Access Journals (Sweden)

    Scherrine Tria

    2013-01-01

    Full Text Available Barrier tissue protects the body against external factors by restricting the passage of molecules. The gastrointestinal epithelium is an example of barrier tissue with the primary purpose of allowing the passage of ions and nutrients, while restricting the passage of pathogens and toxins. It is well known that the loss of barrier function can be instigated by a decrease in extracellular calcium levels, leading to changes in protein conformation and an increase in paracellular transport. In this study, ethylene glycol-bis(beta-aminoethyl ether-N,N,N',N'-tetra acetic acid (EGTA, a calcium chelator, was used to disrupt the gastrointestinal epithelial barrier. The effect of EGTA on barrier tissue was monitored by a novel label-free method based on an organic electrochemical transistor (OECT integrated with living cells and validated against conventional methods for measuring barrier tissue integrity. We demonstrate that the OECT can detect breaches in barrier tissue upon exposure to EGTA with the same sensitivity as existing methods but with increased temporal resolution. Due to the potential of low cost processing techniques and the flexibility in design associated with organic electronics, the OECT has great potential for high-throughput, disposable sensing and diagnostics.

  18. Effects of ethanol and acetaldehyde on tight junction integrity: in vitro study in a three dimensional intestinal epithelial cell culture model.

    Directory of Open Access Journals (Sweden)

    Elhaseen Elamin

    Full Text Available BACKGROUND: Intestinal barrier dysfunction and translocation of endotoxins are involved in the pathogenesis of alcoholic liver disease. Exposure to ethanol and its metabolite, acetaldehyde at relatively high concentrations have been shown to disrupt intestinal epithelial tight junctions in the conventional two dimensional cell culture models. The present study investigated quantitatively and qualitatively the effects of ethanol at concentrations detected in the blood after moderate ethanol consumption, of its metabolite acetaldehyde and of the combination of both compounds on intestinal barrier function in a three-dimensional cell culture model. METHODS AND FINDINGS: Caco-2 cells were grown in a basement membrane matrix (Matrigel™ to induce spheroid formation and were then exposed to the compounds at the basolateral side. Morphological differentiation of the spheroids was assessed by immunocytochemistry and transmission electron microscopy. The barrier function was assessed by the flux of FITC-labeled dextran from the basal side into the spheroids' luminal compartment using confocal microscopy. Caco-2 cells grown on Matrigel assembled into fully differentiated and polarized spheroids with a central lumen, closely resembling enterocytes in vivo and provide an excellent model to study epithelial barrier functionality. Exposure to ethanol (10-40 mM or acetaldehyde (25-200 µM for 3 h, dose-dependently and additively increased the paracellular permeability and induced redistribution of ZO-1 and occludin without affecting cell viability or tight junction-encoding gene expression. Furthermore, ethanol and acetaldehyde induced lysine residue and microtubules hyperacetylation. CONCLUSIONS: These results indicate that ethanol at concentrations found in the blood after moderate drinking and acetaldehyde, alone and in combination, can increase the intestinal epithelial permeability. The data also point to the involvement of protein hyperacetylation in

  19. Metagenomics and development of the gut microbiota in infants

    DEFF Research Database (Denmark)

    Vallès, Y.; Gosalbes, M. J.; de Vries, Lisbeth Elvira

    2012-01-01

    Clin Microbiol Infect 2012; 18 (Suppl. 4): 21–26 The establishment of a balanced intestinal microbiota is essential for numerous aspects of human health, yet the microbial colonization of the gastrointestinal tract of infants is both complex and highly variable among individuals. In addition......, the gastrointestinal tract microbiota is often exposed to antibiotics, and may be an important reservoir of resistant strains and of transferable resistance genes from early infancy. We are investigating by means of diverse metagenomic approaches several areas of microbiota development in infants, including...

  20. The gut microbiota, environment and diseases of modern society.

    Science.gov (United States)

    Kelsen, Judith R; Wu, Gary D

    2012-01-01

    The human gut microbiota is a complex community that provides important metabolic functions to the host. Consequently, alterations in the gut microbiota have been associated with the pathogenesis of several human diseases associated with a disturbance in metabolism, particularly those that have been increasing in incidence over the last several decades including obesity, diabetes and atherosclerosis. In this review, we explore how advances in deep DNA sequencing technology have provided us a greater understanding of the factors that influence that composition of the gut microbiota and its possible links to the pathogenesis of these diseases.