WorldWideScience

Sample records for microbial processes affecting

  1. Deep subsurface microbial processes

    Science.gov (United States)

    Lovley, D.R.; Chapelle, F.H.

    1995-01-01

    Information on the microbiology of the deep subsurface is necessary in order to understand the factors controlling the rate and extent of the microbially catalyzed redox reactions that influence the geophysical properties of these environments. Furthermore, there is an increasing threat that deep aquifers, an important drinking water resource, may be contaminated by man's activities, and there is a need to predict the extent to which microbial activity may remediate such contamination. Metabolically active microorganisms can be recovered from a diversity of deep subsurface environments. The available evidence suggests that these microorganisms are responsible for catalyzing the oxidation of organic matter coupled to a variety of electron acceptors just as microorganisms do in surface sediments, but at much slower rates. The technical difficulties in aseptically sampling deep subsurface sediments and the fact that microbial processes in laboratory incubations of deep subsurface material often do not mimic in situ processes frequently necessitate that microbial activity in the deep subsurface be inferred through nonmicrobiological analyses of ground water. These approaches include measurements of dissolved H2, which can predict the predominant microbially catalyzed redox reactions in aquifers, as well as geochemical and groundwater flow modeling, which can be used to estimate the rates of microbial processes. Microorganisms recovered from the deep subsurface have the potential to affect the fate of toxic organics and inorganic contaminants in groundwater. Microbial activity also greatly influences 1 the chemistry of many pristine groundwaters and contributes to such phenomena as porosity development in carbonate aquifers, accumulation of undesirably high concentrations of dissolved iron, and production of methane and hydrogen sulfide. Although the last decade has seen a dramatic increase in interest in deep subsurface microbiology, in comparison with the study of

  2. Response of the Eastern Mediterranean microbial ecosystem to dust and dust affected by acid processing in the atmosphere

    Directory of Open Access Journals (Sweden)

    Michael David Krom

    2016-08-01

    Full Text Available Acid processes in the atmosphere, particularly those caused by anthropogenic acid gases, increase the amount of bioavailable P in dust and hence are predicted to increase microbial biomass and primary productivity when supplied to oceanic surface waters. This is likely to be particularly important in the Eastern Mediterranean Sea (EMS, which is P limited during the winter bloom and N&P co-limited for phytoplankton in summer. However, it is not clear how the acid processes acting on Saharan dust will affect the microbial biomass and primary productivity in the EMS. Here, we carried out bioassay manipulations on EMS surface water on which Saharan dust was added as dust (Z, acid treated dust (ZA, dust plus excess N (ZN and acid treated dust with excess N (ZNA during springtime (May 2012 and measured bacterioplankton biomass, metabolic and other relevant chemical and biological parameters. We show that acid treatment of Saharan dust increased the amount of bioavailable P supplied by a factor of ~40 compared to non-acidified dust (18.4 nmoles P mg-1 dust vs. 0.45 nmoles P mg-1 dust, respectively. The increase in chlorophyll, primary and bacterial productivity for treatments Z and ZA were controlled by the amount of N added with the dust while those for treatments ZN and ZNA (in which excessive N was added were controlled by the amount of P added. These results confirm that the surface waters were N&P co-limited for phytoplankton during springtime. However, total chlorophyll and primary productivity in the acid treated dust additions (ZA and ZNA were less than predicted from that calculated from the amount of the potentially limiting nutrient added. This biological inhibition was interpreted as being due to labile trace metals being added with the acidified dust. A probable cause for this biological inhibition was the addition of dissolved Al, which forms potentially toxic Al nanoparticles when added to seawater. Thus, the effect of anthropogenic acid

  3. Microbial processes in glaciers and permafrost. A literature study on microbiology affecting groundwater at ice sheet melting

    International Nuclear Information System (INIS)

    Hallbeck, Lotta

    2009-10-01

    A repository for spent nuclear fuel will remain for hundred thousands of years. During this period, several ice ages will most likely take place. To understand the effect of melt water from ice sheets on the repository, the microbiological processes of oxygen reduction has to be elucidated. This report is a compilation of the present knowledge about biological activity in glacier environments. These environments consist of many different parts which have their own biological character depending on the prevailing physical and chemical conditions. There are, for example, ice sheets and glaciers, glacial streams and rivers, soil and water beneath the ice, soil and water in front of and beside ice sheets and glacier and deep groundwater beneath the ice. The microbiological processes of importance are consumption of oxygen by aerobic microorganisms, anaerobic organisms and their reduced metabolites, like sulphide, acetate and methane, which can act as reducing agents in biological or chemical oxygen reduction. The lithotrophic type (inorganic energy source) of metabolism is important in these cold environments. There are also microbiological processes important to radionuclide transport and the production of complexing agents, biological colloids and biofilms. The study of microbial processes in glacier and ice sheet environments is still a young scientific niche. The studies have so far mostly been concentrated to ice surfaces and the subglacial environment. The most important findings from the literature study are as follows. Primary production is ongoing in snow cover and on ice surfaces of glaciers and ice sheets. The production is dependent on the location, because of temperature and solar radiation, but also on the prevailing state of the glacier. On surfaces and in the snow cover, heterotrophic microorganisms consume oxygen and organic material. In surface ice structures anaerobic conditions may occur. The subglacial environment is very active with several types

  4. Microbial processes in glaciers and permafrost. A literature study on microbiology affecting groundwater at ice sheet melting

    Energy Technology Data Exchange (ETDEWEB)

    Hallbeck, Lotta (Microbial Analytics Sweden AB, Moelnlycke (Sweden))

    2009-10-15

    A repository for spent nuclear fuel will remain for hundred thousands of years. During this period, several ice ages will most likely take place. To understand the effect of melt water from ice sheets on the repository, the microbiological processes of oxygen reduction has to be elucidated. This report is a compilation of the present knowledge about biological activity in glacier environments. These environments consist of many different parts which have their own biological character depending on the prevailing physical and chemical conditions. There are, for example, ice sheets and glaciers, glacial streams and rivers, soil and water beneath the ice, soil and water in front of and beside ice sheets and glacier and deep groundwater beneath the ice. The microbiological processes of importance are consumption of oxygen by aerobic microorganisms, anaerobic organisms and their reduced metabolites, like sulphide, acetate and methane, which can act as reducing agents in biological or chemical oxygen reduction. The lithotrophic type (inorganic energy source) of metabolism is important in these cold environments. There are also microbiological processes important to radionuclide transport and the production of complexing agents, biological colloids and biofilms. The study of microbial processes in glacier and ice sheet environments is still a young scientific niche. The studies have so far mostly been concentrated to ice surfaces and the subglacial environment. The most important findings from the literature study are as follows. Primary production is ongoing in snow cover and on ice surfaces of glaciers and ice sheets. The production is dependent on the location, because of temperature and solar radiation, but also on the prevailing state of the glacier. On surfaces and in the snow cover, heterotrophic microorganisms consume oxygen and organic material. In surface ice structures anaerobic conditions may occur. The subglacial environment is very active with several types

  5. Next-Generation Pyrosequencing Analysis of Microbial Biofilm Communities on Granular Activated Carbon in Treatment of Oil Sands Process-Affected Water

    Science.gov (United States)

    Islam, M. Shahinoor; Zhang, Yanyan; McPhedran, Kerry N.

    2015-01-01

    The development of biodegradation treatment processes for oil sands process-affected water (OSPW) has been progressing in recent years with the promising potential of biofilm reactors. Previously, the granular activated carbon (GAC) biofilm process was successfully employed for treatment of a large variety of recalcitrant organic compounds in domestic and industrial wastewaters. In this study, GAC biofilm microbial development and degradation efficiency were investigated for OSPW treatment by monitoring the biofilm growth on the GAC surface in raw and ozonated OSPW in batch bioreactors. The GAC biofilm community was characterized using a next-generation 16S rRNA gene pyrosequencing technique that revealed that the phylum Proteobacteria was dominant in both OSPW and biofilms, with further in-depth analysis showing higher abundances of Alpha- and Gammaproteobacteria sequences. Interestingly, many known polyaromatic hydrocarbon degraders, namely, Burkholderiales, Pseudomonadales, Bdellovibrionales, and Sphingomonadales, were observed in the GAC biofilm. Ozonation decreased the microbial diversity in planktonic OSPW but increased the microbial diversity in the GAC biofilms. Quantitative real-time PCR revealed similar bacterial gene copy numbers (>109 gene copies/g of GAC) for both raw and ozonated OSPW GAC biofilms. The observed rates of removal of naphthenic acids (NAs) over the 2-day experiments for the GAC biofilm treatments of raw and ozonated OSPW were 31% and 66%, respectively. Overall, a relatively low ozone dose (30 mg of O3/liter utilized) combined with GAC biofilm treatment significantly increased NA removal rates. The treatment of OSPW in bioreactors using GAC biofilms is a promising technology for the reduction of recalcitrant OSPW organic compounds. PMID:25841014

  6. Next-generation pyrosequencing analysis of microbial biofilm communities on granular activated carbon in treatment of oil sands process-affected water.

    Science.gov (United States)

    Islam, M Shahinoor; Zhang, Yanyan; McPhedran, Kerry N; Liu, Yang; Gamal El-Din, Mohamed

    2015-06-15

    The development of biodegradation treatment processes for oil sands process-affected water (OSPW) has been progressing in recent years with the promising potential of biofilm reactors. Previously, the granular activated carbon (GAC) biofilm process was successfully employed for treatment of a large variety of recalcitrant organic compounds in domestic and industrial wastewaters. In this study, GAC biofilm microbial development and degradation efficiency were investigated for OSPW treatment by monitoring the biofilm growth on the GAC surface in raw and ozonated OSPW in batch bioreactors. The GAC biofilm community was characterized using a next-generation 16S rRNA gene pyrosequencing technique that revealed that the phylum Proteobacteria was dominant in both OSPW and biofilms, with further in-depth analysis showing higher abundances of Alpha- and Gammaproteobacteria sequences. Interestingly, many known polyaromatic hydrocarbon degraders, namely, Burkholderiales, Pseudomonadales, Bdellovibrionales, and Sphingomonadales, were observed in the GAC biofilm. Ozonation decreased the microbial diversity in planktonic OSPW but increased the microbial diversity in the GAC biofilms. Quantitative real-time PCR revealed similar bacterial gene copy numbers (>10(9) gene copies/g of GAC) for both raw and ozonated OSPW GAC biofilms. The observed rates of removal of naphthenic acids (NAs) over the 2-day experiments for the GAC biofilm treatments of raw and ozonated OSPW were 31% and 66%, respectively. Overall, a relatively low ozone dose (30 mg of O3/liter utilized) combined with GAC biofilm treatment significantly increased NA removal rates. The treatment of OSPW in bioreactors using GAC biofilms is a promising technology for the reduction of recalcitrant OSPW organic compounds. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. Microbial processes in radioactive waste repository

    International Nuclear Information System (INIS)

    Gazso, L.; Farkas-Galgoczi, G.; Diosi, G.

    2002-01-01

    Microbial processes could potentially affect the performance of a radioactive waste disposal system and related factors that could have an influence on the mobility of radionuclides are outlined. Analytical methods, including sampling of water, rock and surface swabs from a potential disposal site, are described and the quantitative as well as qualitative experimental results obtained are given. Although the results contribute to an understanding of the impact of microbial processes on deep geological disposal of nuclear waste, there is not yet sufficient information for a model which will predict the consequences of these processes. (author)

  8. Perceptual Processing Affects Conceptual Processing

    Science.gov (United States)

    van Dantzig, Saskia; Pecher, Diane; Zeelenberg, Rene; Barsalou, Lawrence W.

    2008-01-01

    According to the Perceptual Symbols Theory of cognition (Barsalou, 1999), modality-specific simulations underlie the representation of concepts. A strong prediction of this view is that perceptual processing affects conceptual processing. In this study, participants performed a perceptual detection task and a conceptual property-verification task…

  9. Microbial processes in a clay repository

    Energy Technology Data Exchange (ETDEWEB)

    Canniere, Pierre de [Federal Agency of Nuclear Control (FANC), Brussels (Belgium); Meleshyn, Artur [Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH (GRS), Braunschweig (Germany)

    2013-07-01

    The safety of a deep geologic repository (DGR) for nuclear waste must be ensured for geological times exceeding human imagination taking into account large uncertainties. The long-term effects of complex biogeochemical processes potentially affecting the integrity and the long-term safety of engineered barriers might still be unknown. The aim of this presentation is to give a general overview of some microbial processes which have contributed to shape the Earth since probably billions of years and whose unexpected consequences for nuclear waste disposal should be appropriately tackled. (orig.)

  10. Microbial contamination associated with the processing of ...

    African Journals Online (AJOL)

    Anihouvi Gildas

    2013-05-01

    May 1, 2013 ... tchachanga investigated, but different processing methods had significant changes in the microbial ... placed on wooden skewers and cooked on the embers of charcoal .... processing place, including the use of dirty jute bags,.

  11. Microbial processes in coastal pollution

    International Nuclear Information System (INIS)

    Capone, D.G.; Bauer, J.E.

    1992-01-01

    In this chapter, the authors describe the nature and range of some of the interactions that can occur between the microbiota and environmental contaminants in coastal areas. The implications of such interactions are also discussed. Pollutant types include inorganic nutrients, heavy metals, bulk organics, organic contaminants, pathogenic microorganisms and microbial pollutants. Both the effects of pollutants such as petroleum hydrocarbons on natural microbial populations and the mitigation of contaminant effects by complexation and biodegradation are considered. Finally, several areas of emerging concerns are presented that involve a confluence of biogeochemistry, microbial ecology and applied and public health microbiology. These concerns range in relevance from local/regional to oceanic/global scales. 308 ref

  12. Microbial community composition affects soil fungistasis.

    Science.gov (United States)

    de Boer, Wietse; Verheggen, Patrick; Klein Gunnewiek, Paulien J A; Kowalchuk, George A; van Veen, Johannes A

    2003-02-01

    Most soils inhibit fungal germination and growth to a certain extent, a phenomenon known as soil fungistasis. Previous observations have implicated microorganisms as the causal agents of fungistasis, with their action mediated either by available carbon limitation (nutrient deprivation hypothesis) or production of antifungal compounds (antibiosis hypothesis). To obtain evidence for either of these hypotheses, we measured soil respiration and microbial numbers (as indicators of nutrient stress) and bacterial community composition (as an indicator of potential differences in the composition of antifungal components) during the development of fungistasis. This was done for two fungistatic dune soils in which fungistasis was initially fully or partly relieved by partial sterilization treatment or nutrient addition. Fungistasis development was measured as restriction of the ability of the fungi Chaetomium globosum, Fusarium culmorum, Fusarium oxysporum, and Trichoderma harzianum to colonize soils. Fungistasis did not always reappear after soil treatments despite intense competition for carbon, suggesting that microbial community composition is important in the development of fungistasis. Both microbial community analysis and in vitro antagonism tests indicated that the presence of pseudomonads might be essential for the development of fungistasis. Overall, the results lend support to the antibiosis hypothesis.

  13. Microbial stratification and microbially catalyzed processes along a hypersaline chemocline

    Science.gov (United States)

    Hyde, A.; Joye, S. B.; Teske, A.

    2017-12-01

    Orca Basin is the largest deep hypersaline anoxic basin in the world, covering over 400 km2. Located at the bottom of the Gulf of Mexico, this body of water reaches depths of 200 meters and is 8 times denser (and more saline) than the overlying seawater. The sharp pycnocline prevents any significant vertical mixing and serves as a particle trap for sinking organic matter. These rapid changes in salinity, oxygen, organic matter, and other geochemical parameters present unique conditions for the microbial communities present. We collected samples in 10m intervals throughout the chemocline. After filtering the water, we used high-throughput bacterial and archaeal 16S rRNA gene sequencing to characterize the changing microbial community along the Orca Basin chemocline. The results reveal a dominance of microbial taxa whose biogeochemical function is entirely unknown. We then used metagenomic sequencing and reconstructed genomes for select samples, revealing the potential dominant metabolic processes in the Orca Basin chemocline. Understanding how these unique geochemical conditions shape microbial communities and metabolic capabilities will have implications for the ocean's biogeochemical cycles and the consequences of expanding oxygen minimum zones.

  14. Factors Affecting Microbial Contamination of Market Eggs: A Review

    Directory of Open Access Journals (Sweden)

    Svobodová J.

    2015-01-01

    Full Text Available The aim of the review was to analyze the ways of microbial contamination, the protective mechanism of egg, and factors that affect the quantity of contamination and microbial penetration. Eggs can be contaminated during their formation in the infected reproductive organs of hens or after laying, when eggs are exposed to contaminated environment. The eggs are equipped against microbial contamination by several protective mechanisms comprising the presence of cuticle, eggshell, eggshell membranes, occurrence of some antibacterial proteins, and high pH value of albumen. There are several factors that affect the quantity of microbial contamination and penetration such as species of bacteria, the amount of microorganisms, storage conditions, quality of eggshell or number of pores.

  15. Anaerobic microbial processes for energy conservation and biotransformation of pollutants

    NARCIS (Netherlands)

    Luz Ferreira Martins Paulo, da Lara

    2017-01-01

    Anaerobic microbial processes are commonly applied in the treatment of domestic and industrial wastewaters. Anaerobic digestion (AD) of wastewater has received a great deal of attention, but many aspects related to the complex interactions between microorganism, and how that is affected by the

  16. Microbial additives in the composting process

    Directory of Open Access Journals (Sweden)

    Noelly de Queiroz Ribeiro

    Full Text Available ABSTRACT Composting is the process of natural degradation of organic matter carried out by environmental microorganisms whose metabolic activities cause the mineralization and partial humification of substances in the pile. This compost can be beneficially applied to the soil as organic fertilizer in horticulture and agriculture. The number of studies involving microbial inoculants has been growing, and they aim to improve processes such as composting. However, the behavior of these inoculants and other microorganisms during the composting process have not yet been described. In this context, this work aimed to investigate the effects of using a microbial inoculum that can improve the composting process and to follow the bacterial population dynamics throughout the process using the high-resolution melt (HRM technique. To do so, we analysed four compost piles inoculated with Bacillus cereus, Bacillus megaterium, B. cereus + B. megaterium and a control with no inoculum. The analyses were carried out using samples collected at different stages of the process (5th to 110th days. The results showed that the bacterial inocula influenced the process of composting, altering the breakdown of cellulose and hemicelluloses and causing alterations to the temperature and nitrogen levels throughout the composting process. The use of a universal primer (rDNA 16S allowed to follow the microbial succession during the process. However, the design of a specific primer is necessary to follow the inoculum throughout the composting process with more accuracy.

  17. Microbial Flora of Partially Processed Periwinkles (Tympantotonus ...

    African Journals Online (AJOL)

    A survey of microbial flora of partially processed periwinkles (Tympanotonus fuscatus) sold in six markets in Port Harcourt was undertaken for twelve weeks. Results show that all samples of periwinkles were contaminated with Staphylococcus aureus, Bacillus sp., Escherichia coil, Staphepidermidis sp., Micrococcus sp., ...

  18. Microbial processes in radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, Karsten [Goeteborg Univ. (Sweden). Dept. of Cell and Molecular Biology, Microbiology

    2000-04-15

    Independent scientific work has unambiguously demonstrated life to be present in most deep geological formations investigated, down to depths of several kilometres. Microbial processes have consequently become an integral part of the performance safety assessment of high-level radioactive waste (HLW) repositories. This report presents the research record from the last decade of the microbiology research programme of the Swedish Nuclear Fuel and Waste Management Company (SKB) and gives current perspectives of microbial processes in HLW disposal. The goal of the microbiology programme is to understand how microbes may interact with the performance of a future HLW repository. First, for those who are not so familiar with microbes and their ways of living, the concept of 'microbe' is briefly defined. Then, the main characteristics of recognised microbial assemblage and microbial growth, activity and survival are given. The main part of the report summarises data collected during the research period of 1987-1999 and interpretations of these data. Short summaries introduce the research tasks, followed by reviews of the results and insight gained. Sulphate-reducing bacteria (SRB) produce sulphide and have commonly been observed in groundwater environments typical of Swedish HLW repositories. Consequently, the potential for sulphide corrosion of the copper canisters surrounding the HLW must be considered. The interface between the copper canister and the buffer is of special concern. Despite the fact that nowhere are the environmental constraints for life as strong as here, it has been suggested that SRB could survive and locally produce sulphide in concentrations large enough to cause damage to the canister. Experiments conducted thus far have indicated the opposite. Early studies in the research programme revealed previously unknown microbial ecosystems in igneous rock aquifers at depths exceeding 1000 m. This discovery triggered a thorough exploration of the

  19. Microbial processes in radioactive waste disposal

    International Nuclear Information System (INIS)

    Pedersen, Karsten

    2000-04-01

    Independent scientific work has unambiguously demonstrated life to be present in most deep geological formations investigated, down to depths of several kilometres. Microbial processes have consequently become an integral part of the performance safety assessment of high-level radioactive waste (HLW) repositories. This report presents the research record from the last decade of the microbiology research programme of the Swedish Nuclear Fuel and Waste Management Company (SKB) and gives current perspectives of microbial processes in HLW disposal. The goal of the microbiology programme is to understand how microbes may interact with the performance of a future HLW repository. First, for those who are not so familiar with microbes and their ways of living, the concept of 'microbe' is briefly defined. Then, the main characteristics of recognised microbial assemblage and microbial growth, activity and survival are given. The main part of the report summarises data collected during the research period of 1987-1999 and interpretations of these data. Short summaries introduce the research tasks, followed by reviews of the results and insight gained. Sulphate-reducing bacteria (SRB) produce sulphide and have commonly been observed in groundwater environments typical of Swedish HLW repositories. Consequently, the potential for sulphide corrosion of the copper canisters surrounding the HLW must be considered. The interface between the copper canister and the buffer is of special concern. Despite the fact that nowhere are the environmental constraints for life as strong as here, it has been suggested that SRB could survive and locally produce sulphide in concentrations large enough to cause damage to the canister. Experiments conducted thus far have indicated the opposite. Early studies in the research programme revealed previously unknown microbial ecosystems in igneous rock aquifers at depths exceeding 1000 m. This discovery triggered a thorough exploration of the

  20. Patterns of prokaryotic lateral gene transfers affecting parasitic microbial eukaryotes

    DEFF Research Database (Denmark)

    Alsmark, Cecilia; Foster, Peter G; Sicheritz-Pontén, Thomas

    2013-01-01

    BACKGROUND: The influence of lateral gene transfer on gene origins and biology in eukaryotes is poorly understood compared with those of prokaryotes. A number of independent investigations focusing on specific genes, individual genomes, or specific functional categories from various eukaryotes have...... approach to systematically investigate lateral gene transfer affecting the proteomes of thirteen, mainly parasitic, microbial eukaryotes, representing four of the six eukaryotic super-groups. All of the genomes investigated have been significantly affected by prokaryote-to-eukaryote lateral gene transfers...... indicated that lateral gene transfer does indeed affect eukaryotic genomes. However, the lack of common methodology and criteria in these studies makes it difficult to assess the general importance and influence of lateral gene transfer on eukaryotic genome evolution. RESULTS: We used a phylogenomic...

  1. Modeling microbial processes in porous media

    Science.gov (United States)

    Murphy, Ellyn M.; Ginn, Timothy R.

    The incorporation of microbial processes into reactive transport models has generally proceeded along two separate lines of investigation: (1) transport of bacteria as inert colloids in porous media, and (2) the biodegradation of dissolved contaminants by a stationary phase of bacteria. Research over the last decade has indicated that these processes are closely linked. This linkage may occur when a change in metabolic activity alters the attachment/detachment rates of bacteria to surfaces, either promoting or retarding bacterial transport in a groundwater-contaminant plume. Changes in metabolic activity, in turn, are controlled by the time of exposure of the microbes to electron acceptors/donor and other components affecting activity. Similarly, metabolic activity can affect the reversibility of attachment, depending on the residence time of active microbes. Thus, improvements in quantitative analysis of active subsurface biota necessitate direct linkages between substrate availability, metabolic activity, growth, and attachment/detachment rates. This linkage requires both a detailed understanding of the biological processes and robust quantitative representations of these processes that can be tested experimentally. This paper presents an overview of current approaches used to represent physicochemical and biological processes in porous media, along with new conceptual approaches that link metabolic activity with partitioning of the microorganism between the aqueous and solid phases. Résumé L'introduction des processus microbiologiques dans des modèles de transport réactif a généralement suivi deux voies différentes de recherches: (1) le transport de bactéries sous forme de colloïdes inertes en milieu poreux, et (2) la biodégradation de polluants dissous par une phase stationnaire de bactéries. Les recherches conduites au cours des dix dernières années indiquent que ces processus sont intimement liés. Cette liaison peut intervenir lorsqu

  2. Solving Microbial Spoilage Problems in Processed Foods

    Science.gov (United States)

    Clavero, Rocelle

    This chapter surveys common microbial food spoilage processes. The chapter is organized by food products and includes sections addressing spoilage in meat, poultry, fish; dairy products (milk, butter, cheese); beverage products; bakery products; canned foods; fruit and confectionery products; and emulsions. It addresses the isolation and identification of spoilage organisms and provides several case studies as examples. It introduces various organisms responsible for spoilage including Gram-positive lactic acid bacteria, Gram-negative aerobic bacteria, yeasts, molds, and fungal contaminants. Throughout the chapter, attention is given to when, where, and how spoilage organisms enter the food processing chain. Troubleshooting techniques are suggested. The effect (or lack of effect) of heating, dehydration, pH change, cooling, and sealing on various organisms is explained throughout. The chapter contains four tables that connect specific organisms to various spoilage manifestations in a variety of food products.

  3. Microbial consortia in meat processing environments

    Science.gov (United States)

    Alessandria, V.; Rantsiou, K.; Cavallero, M. C.; Riva, S.; Cocolin, L.

    2017-09-01

    Microbial contamination in food processing plants can play a fundamental role in food quality and safety. The description of the microbial consortia in the meat processing environment is important since it is a first step in understanding possible routes of product contamination. Furthermore, it may contribute in the development of sanitation programs for effective pathogen removal. The purpose of this study was to characterize the type of microbiota in the environment of meat processing plants: the microbiota of three different meat plants was studied by both traditional and molecular methods (PCR-DGGE) in two different periods. Different levels of contamination emerged between the three plants as well as between the two sampling periods. Conventional methods of killing free-living bacteria through antimicrobial agents and disinfection are often ineffective against bacteria within a biofilm. The use of gas-discharge plasmas potentially can offer a good alternative to conventional sterilization methods. The purpose of this study was to measure the effectiveness of Atmospheric Pressure Plasma (APP) surface treatments against bacteria in biofilms. Biofilms produced by three different L. monocytogenes strains on stainless steel surface were subjected to three different conditions (power, exposure time) of APP. Our results showed how most of the culturable cells are inactivated after the Plasma exposure but the RNA analysis by qPCR highlighted the entrance of the cells in the viable-but non culturable (VBNC) state, confirming the hypothesis that cells are damaged after plasma treatment, but in a first step, still remain alive. The understanding of the effects of APP on the L. monocytogenes biofilm can improve the development of sanitation programs with the use of APP for effective pathogen removal.

  4. Minimally processed vegetable salads: microbial quality evaluation.

    Science.gov (United States)

    Fröder, Hans; Martins, Cecília Geraldes; De Souza, Katia Leani Oliveira; Landgraf, Mariza; Franco, Bernadette D G M; Destro, Maria Teresa

    2007-05-01

    The increasing demand for fresh fruits and vegetables and for convenience foods is causing an expansion of the market share for minimally processed vegetables. Among the more common pathogenic microorganisms that can be transmitted to humans by these products are Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella. The aim of this study was to evaluate the microbial quality of a selection of minimally processed vegetables. A total of 181 samples of minimally processed leafy salads were collected from retailers in the city of Sao Paulo, Brazil. Counts of total coliforms, fecal coliforms, Enterobacteriaceae, psychrotrophic microorganisms, and Salmonella were conducted for 133 samples. L. monocytogenes was assessed in 181 samples using the BAX System and by plating the enrichment broth onto Palcam and Oxford agars. Suspected Listeria colonies were submitted to classical biochemical tests. Populations of psychrotrophic microorganisms >10(6) CFU/g were found in 51% of the 133 samples, and Enterobacteriaceae populations between 10(5) and 106 CFU/g were found in 42% of the samples. Fecal coliform concentrations higher than 10(2) CFU/g (Brazilian standard) were found in 97 (73%) of the samples, and Salmonella was detected in 4 (3%) of the samples. Two of the Salmonella-positive samples had minimally processed vegetables had poor microbiological quality, and these products could be a vehicle for pathogens such as Salmonella and L. monocytogenes.

  5. Microbial ecology to manage processes in environmental biotechnology.

    Science.gov (United States)

    Rittmann, Bruce E

    2006-06-01

    Microbial ecology and environmental biotechnology are inherently tied to each other. The concepts and tools of microbial ecology are the basis for managing processes in environmental biotechnology; and these processes provide interesting ecosystems to advance the concepts and tools of microbial ecology. Revolutionary advancements in molecular tools to understand the structure and function of microbial communities are bolstering the power of microbial ecology. A push from advances in modern materials along with a pull from a societal need to become more sustainable is enabling environmental biotechnology to create novel processes. How do these two fields work together? Five principles illuminate the way: (i) aim for big benefits; (ii) develop and apply more powerful tools to understand microbial communities; (iii) follow the electrons; (iv) retain slow-growing biomass; and (v) integrate, integrate, integrate.

  6. Microbial production of scleroglucan and downstream processing

    Directory of Open Access Journals (Sweden)

    Natalia Alejandra Castillo

    2015-10-01

    Full Text Available Synthetic petroleum-based polymers and natural plant polymers have the disadvantage of restricted sources, in addition to the non-biodegradability of the former ones. In contrast, eco-sustainable microbial polysaccharides, of low-cost and standardized production, represent an alternative to address this situation. With a strong global market, they attracted worldwide attention because of their novel and unique physico-chemical properties as well as varied industrial applications, and many of them are promptly becoming economically competitive. Scleroglucan, a beta-1,3-beta-1,6-glucan secreted by Sclerotium fungi, exhibits high potential for commercialization and may show different branching frequency, side-chain length and/or molecular weight depending on the producing strain or culture conditions. Water-solubility, viscosifying ability and wide stability over temperature, pH and salinity make scleroglucan useful for different biotechnological (enhanced oil recovery, food additives, drug delivery, cosmetic and pharmaceutical products, biocompatible materials, etc., and biomedical (immunoceutical, antitumor, etc. applications. It can be copiously produced at bioreactor scale under standardized conditions, where a high EPS concentration normally governs the process optimization. Operative and nutritional conditions, as well as the incidence of scleroglucan downstream processing will be discussed in this chapter. The relevance of using standardized inocula from selected strains and experiences concerning the intricate scleroglucan scaling-up will be also herein outlined.

  7. Biotechnological Processes in Microbial Amylase Production.

    Science.gov (United States)

    Gopinath, Subash C B; Anbu, Periasamy; Arshad, M K Md; Lakshmipriya, Thangavel; Voon, Chun Hong; Hashim, Uda; Chinni, Suresh V

    2017-01-01

    Amylase is an important and indispensable enzyme that plays a pivotal role in the field of biotechnology. It is produced mainly from microbial sources and is used in many industries. Industrial sectors with top-down and bottom-up approaches are currently focusing on improving microbial amylase production levels by implementing bioengineering technologies. The further support of energy consumption studies, such as those on thermodynamics, pinch technology, and environment-friendly technologies, has hastened the large-scale production of the enzyme. Herein, the importance of microbial (bacteria and fungi) amylase is discussed along with its production methods from the laboratory to industrial scales.

  8. Biotechnological Processes in Microbial Amylase Production

    Directory of Open Access Journals (Sweden)

    Subash C. B. Gopinath

    2017-01-01

    Full Text Available Amylase is an important and indispensable enzyme that plays a pivotal role in the field of biotechnology. It is produced mainly from microbial sources and is used in many industries. Industrial sectors with top-down and bottom-up approaches are currently focusing on improving microbial amylase production levels by implementing bioengineering technologies. The further support of energy consumption studies, such as those on thermodynamics, pinch technology, and environment-friendly technologies, has hastened the large-scale production of the enzyme. Herein, the importance of microbial (bacteria and fungi amylase is discussed along with its production methods from the laboratory to industrial scales.

  9. Biochar affects soil organic matter cycling and microbial functions but does not alter microbial community structure in a paddy soil.

    Science.gov (United States)

    Tian, Jing; Wang, Jingyuan; Dippold, Michaela; Gao, Yang; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2016-06-15

    The application of biochar (BC) in conjunction with mineral fertilizers is one of the most promising management practices recommended to improve soil quality. However, the interactive mechanisms of BC and mineral fertilizer addition affecting microbial communities and functions associated with soil organic matter (SOM) cycling are poorly understood. We investigated the SOM in physical and chemical fractions, microbial community structure (using phospholipid fatty acid analysis, PLFA) and functions (by analyzing enzymes involved in C and N cycling and Biolog) in a 6-year field experiment with BC and NPK amendment. BC application increased total soil C and particulate organic C for 47.4-50.4% and 63.7-74.6%, respectively. The effects of BC on the microbial community and C-cycling enzymes were dependent on fertilization. Addition of BC alone did not change the microbial community compared with the control, but altered the microbial community structure in conjunction with NPK fertilization. SOM fractions accounted for 55% of the variance in the PLFA-related microbial community structure. The particulate organic N explained the largest variation in the microbial community structure. Microbial metabolic activity strongly increased after BC addition, particularly the utilization of amino acids and amines due to an increase in the activity of proteolytic (l-leucine aminopeptidase) enzymes. These results indicate that microorganisms start to mine N from the SOM to compensate for high C:N ratios after BC application, which consequently accelerate cycling of stable N. Concluding, BC in combination with NPK fertilizer application strongly affected microbial community composition and functions, which consequently influenced SOM cycling. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Land use type significantly affects microbial gene transcription in soil.

    Science.gov (United States)

    Nacke, Heiko; Fischer, Christiane; Thürmer, Andrea; Meinicke, Peter; Daniel, Rolf

    2014-05-01

    Soil microorganisms play an essential role in sustaining biogeochemical processes and cycling of nutrients across different land use types. To gain insights into microbial gene transcription in forest and grassland soil, we isolated mRNA from 32 sampling sites. After sequencing of generated complementary DNA (cDNA), a total of 5,824,229 sequences could be further analyzed. We were able to assign nonribosomal cDNA sequences to all three domains of life. A dominance of bacterial sequences, which were affiliated to 25 different phyla, was found. Bacterial groups capable of aromatic compound degradation such as Phenylobacterium and Burkholderia were detected in significantly higher relative abundance in forest soil than in grassland soil. Accordingly, KEGG pathway categories related to degradation of aromatic ring-containing molecules (e.g., benzoate degradation) were identified in high abundance within forest soil-derived metatranscriptomic datasets. The impact of land use type forest on community composition and activity is evidently to a high degree caused by the presence of wood breakdown products. Correspondingly, bacterial groups known to be involved in lignin degradation and containing ligninolytic genes such as Burkholderia, Bradyrhizobium, and Azospirillum exhibited increased transcriptional activity in forest soil. Higher solar radiation in grassland presumably induced increased transcription of photosynthesis-related genes within this land use type. This is in accordance with high abundance of photosynthetic organisms and plant-infecting viruses in grassland.

  11. Microbial profile and critical control points during processing of 'robo ...

    African Journals Online (AJOL)

    Microbial profile and critical control points during processing of 'robo' snack from ... the relevant critical control points especially in relation to raw materials and ... to the quality of the various raw ingredients used were the roasting using earthen

  12. Microbial Transglutaminase in Noodle and Pasta Processing

    DEFF Research Database (Denmark)

    Gharibzahedi, Seyed Mohammad Taghi; Yousefi, Shima; Chronakis, Ioannis S.

    2017-01-01

    -formulations for noodles and pasta products based on microbial transglutaminase (MTGase) can guarantee the shelf life extension with minimum quality losses. The current review focuses on recent trends and future prospects of MTGase utilization in the structural matrix of noodles and pasta products and represents......Nowadays, there is an aggressive rate in consumption of noodles and pasta products throughout the world. Consumer acceptability and preference of these functional products can be promoted by the discovery of novel knowledge to improve their formulation and quality. The development of fortified...... from new microbial sources. The high potential of MTGase in developing commercial noodles and pasta products is successfully demonstrated. MTGase by modifying the crystallinity or molecular structure via covalent crosslinks between protein molecules strengthens the doughs stability and the textural...

  13. Microbial production of bulk chemicals: development of anaerobic processes

    NARCIS (Netherlands)

    Weusthuis, R.A.; Lamot, I.; Oost, van der J.; Sanders, J.P.M.

    2011-01-01

    nnovative fermentation processes are necessary for the cost-effective production of bulk chemicals from renewable resources. Current microbial processes are either anaerobic processes, with high yield and productivity, or less-efficient aerobic processes. Oxygen utilization plays an important role

  14. Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell

    KAUST Repository

    Wang, Aijie; Sun, Dan; Cao, Guangli; Wang, Haoyu; Ren, Nanqi; Wu, Wei-Min; Logan, Bruce E.

    2011-01-01

    Hydrogen gas production from cellulose was investigated using an integrated hydrogen production process consisting of a dark fermentation reactor and microbial fuel cells (MFCs) as power sources for a microbial electrolysis cell (MEC). Two MFCs

  15. Effects of acid deposition on microbial processes in natural waters

    International Nuclear Information System (INIS)

    Gilmour, C.C.

    1992-01-01

    Biogeochemical processes mediated by microorganisms are not adversely affected by the acidification of natural waters to the same extent as are the life cycles of higher organisms. Basic processes, e.g., primary production and organic matter decomposition, are not slowed in moderately acidified systems and do not generally decline above a pH of 5. More specifically, the individual components of the carbon, nitrogen, and sulfur cycles are, with few exceptions, also acid resistant. The influence of acid deposition on microbial processes is more often stimulation of nitrogen and sulfur cycling, often leading to alkalinity production, which mitigates the effect of strong acid deposition. Bacterial sulfate reduction and denitrification in sediments are two of the major processes that can be stimulated by sulfate and nitrate deposition, respectively, and result in ANC (acid-neutralizing capacity) generation. One of the negative effects of acid deposition is increased mobilization and bioaccumulation of some metals. Bacteria appear to play an important role, especially in mercury cycling, with acidification leading to increased bacterial methylation of mercury and subsequent bioaccumulation in higher organisms

  16. Digestion and microbial protein synthesis in sheep as affected by ...

    African Journals Online (AJOL)

    Useni , Alain

    enzyme (EFE) on the in vitro gas production (GP) and ANKOM digestion systems on the mixture of milled ... determine the EFE effect on the DM, CP and NDF digestion of a mixture of lucerne hay and wheat straw .... and the microbial protein synthesis (MPS) measured as purine derivates (RNA equivalent in µg/DM g) on.

  17. Termites and flooding affect microbial communities in decomposing wood

    Science.gov (United States)

    Michael D. Ulyshen; Susan V. Diehl; Dragica Jeremic

    2016-01-01

    Wood properties and microbial community characteristics were compared between loblolly pine (Pinus taeda L.) logs protected or unprotected from termites (Blattodea: Rhinotermitidae: Reticulitermes spp.) and other arthropods for two years in seasonally flooded and unflooded forests in the southeastern United States. Significant compositional differences were observed...

  18. Modelling coupled microbial processes in the subsurface: Model development, verification, evaluation and application

    Science.gov (United States)

    Masum, Shakil A.; Thomas, Hywel R.

    2018-06-01

    To study subsurface microbial processes, a coupled model which has been developed within a Thermal-Hydraulic-Chemical-Mechanical (THCM) framework is presented. The work presented here, focuses on microbial transport, growth and decay mechanisms under the influence of multiphase flow and bio-geochemical reactions. In this paper, theoretical formulations and numerical implementations of the microbial model are presented. The model has been verified and also evaluated against relevant experimental results. Simulated results show that the microbial processes have been accurately implemented and their impacts on porous media properties can be predicted either qualitatively or quantitatively or both. The model has been applied to investigate biofilm growth in a sandstone core that is subjected to a two-phase flow and variable pH conditions. The results indicate that biofilm growth (if not limited by substrates) in a multiphase system largely depends on the hydraulic properties of the medium. When the change in porewater pH which occurred due to dissolution of carbon dioxide gas is considered, growth processes are affected. For the given parameter regime, it has been shown that the net biofilm growth is favoured by higher pH; whilst the processes are considerably retarded at lower pH values. The capabilities of the model to predict microbial respiration in a fully coupled multiphase flow condition and microbial fermentation leading to production of a gas phase are also demonstrated.

  19. Microbial processes in banded iron formation deposition

    DEFF Research Database (Denmark)

    Posth, Nicole; Konhauser, Kurt; Kappler, Andreas

    2013-01-01

    , remains unresolved. Evidence of an anoxic Earth with only localized oxic areas until the Great Oxidation Event ca 2·45 to 2·32 Ga makes the investigation of O2-independent mechanisms for banded iron formation deposition relevant. Recent studies have explored the long-standing proposition that Archean......Banded iron formations have been studied for decades, particularly regarding their potential as archives of the Precambrian environment. In spite of this effort, the mechanism of their deposition and, specifically, the role that microbes played in the precipitation of banded iron formation minerals...... banded iron formations may have been formed, and diagenetically modified, by anaerobic microbial metabolisms. These efforts encompass a wide array of approaches including isotope, ecophysiological and phylogeny studies, molecular and mineral marker analysis, and sedimentological reconstructions. Herein...

  20. Developing and using artificial soils to analyze soil microbial processes

    Science.gov (United States)

    Gao, X.; Cheng, H. Y.; Boynton, L.; Masiello, C. A.; Silberg, J. J.

    2017-12-01

    Microbial diversity and function in soils are governed by soil characteristics such as mineral composition, particles size and aggregations, soil organic matter (SOM), and availability of nutrients and H2O. The spatial and temporal heterogeneity of soils creates a range of niches (hotspots) differing in the availability of O2, H2O, and nutrients, which shapes microbial activities at scales ranging from nanometer to landscape. Synthetic biologists often examine microbial response trigged by their environment conditions in nutrient-rich aqueous media using single strain microbes. While these studies provided useful insight in the role of soil microbes in important soil biogeochemical processes (e.g., C cycling, N cycling, etc.), the results obtained from the over-simplified model systems are often not applicable natural soil systems. On the contrary, soil microbiologists examine microbial processes in natural soils using longer incubation time. However, due to its physical, chemical and biological complexity of natural soils, it is often difficult to examine soil characteristics independently and understand how each characteristic influences soil microbial activities and their corresponding soil functioning. Therefore, it is necessary to bridge the gap and develop a model matrix to exclude unpredictable influences from the environment while still reliably mimicking real environmental conditions. The objective of this study is to design a range of ecologically-relevant artificial soils with varying texture (particle size distribution), structure, mineralogy, SOM content, and nutrient heterogeneity. We thoroughly characterize the artificial soils for pH, active surface area and surface morphology, cation exchange capacity (CEC), and water retention curve. We demonstrate the effectiveness of the artificial soils as useful matrix for microbial processes, such as microbial growth and horizontal gene transfer (HGT), using the gas-reporting biosensors recently developed in

  1. Does microbial biomass affect pelagic ecosystem efficiency? An experimental study.

    Science.gov (United States)

    Wehr, J D; Le, J; Campbell, L

    1994-01-01

    Bacteria and other microorganisms in the pelagic zone participate in the recycling of organic matter and nutrients within the water column. The microbial loop is thought to enhance ecosystem efficiency through rapid recycling and reduced sinking rates, thus reducing the loss of nutrients contained in organisms remaining within the photic zone. We conducted experiments with lake communities in 5400-liter mesocosms, and measured the flux of materials and nutrients out of the water column. A factorial design manipulated 8 nutrient treatments: 4 phosphorus levels × 2 nitrogen levels. Total sedimentation rates were greatest in high-N mesocosms; within N-surplus communities, [Symbol: see text]1 µM P resulted in 50% increase in total particulate losses. P additions without added N had small effects on nutrient losses from the photic zone; +2 µM P tanks received 334 mg P per tank, yet after 14 days lost only 69 mg more particulate-P than did control communities. Nutrient treatments resulted in marked differences in phytoplankton biomass (twofold N effect, fivefold P effect in +N mesocosms only), bacterioplankton densities (twofold N-effect, twofold P effects in -N and +N mesocosms), and the relative importance of autotrophic picoplankton (maximum in high NY mesocosms). Multiple regression analysis found that of 8 plankton and water chemistry variables, the ratio of autotrophic picoplankton to total phytoplankton (measured as chlorophyll α) explained the largest portion of the total variation in sedimentation loss rates (65% of P-flux, 57% of N-flux, 26% of total flux). In each case, systems with greater relative importance of autotrophic picoplankton had significantly reduced loss rates. In contrast, greater numbers of planktonic bacteria were associated with increased sedimentation rates and lower system efficiency. We suggest that different microbial components may have contrasting effects on the presumed enhanced efficiency provided by the microbial loop.

  2. Microbial diversity and their roles in the vinegar fermentation process.

    Science.gov (United States)

    Li, Sha; Li, Pan; Feng, Feng; Luo, Li-Xin

    2015-06-01

    Vinegar is one of the oldest acetic acid-diluted solution products in the world. It is produced from any fermentable sugary substrate by various fermentation methods. The final vinegar products possess unique functions, which are endowed with many kinds of compounds formed in the fermentation process. The quality of vinegar is determined by many factors, especially by the raw materials and microbial diversity involved in vinegar fermentation. Given that metabolic products from the fermenting strains are directly related to the quality of the final products of vinegar, the microbial diversity and features of the dominant strains involved in different fermentation stages should be analyzed to improve the strains and stabilize fermentation. Moreover, although numerous microbiological studies have been conducted to examine the process of vinegar fermentation, knowledge about microbial diversity and their roles involved in fermentation is still fragmentary and not systematic enough. Therefore, in this review, the dominant microorganism species involved in the stages of alcoholic fermentation and acetic acid fermentation of dissimilar vinegars were summarized. We also summarized various physicochemical properties and crucial compounds in disparate types of vinegar. Furthermore, the merits and drawbacks of vital fermentation methods were generalized. Finally, we described in detail the relationships among microbial diversity, raw materials, fermentation methods, physicochemical properties, compounds, functionality, and final quality of vinegar. The integration of this information can provide us a detailed map about the microbial diversity and function involved in vinegar fermentation.

  3. Microbial contamination associated with the processing of ...

    African Journals Online (AJOL)

    This study aimed to assess the microbiological contamination and quality of tchachanga, a roasted meat braised product processed at traditional scale in Benin, West Africa. A survey was performed to collect samples of tchachanga and data related to hygienic conditions of the roasted meat processing environment. A total ...

  4. The significance of microbial processes in hydrogeology and geochemistry

    Science.gov (United States)

    Chapelle, Francis H.

    Microbial processes affect the chemical composition of groundwater and the hydraulic properties of aquifers in both contaminated and pristine groundwater systems. The patterns of water-chemistry changes that occur depend upon the relative abundance of electron donors and electron acceptors. In many pristine aquifers, where microbial metabolism is limited by the availability of electron donors (usually organic matter), dissolved inorganic carbon (DIC) accumulates slowly along aquifer flow paths and available electron acceptors are consumed sequentially in the order dissolved oxygen >nitrate>Fe(III)>sulfate>CO2 (methanogenesis). In aquifers contaminated by anthropogenic contaminants, an excess of available organic carbon often exists, and microbial metabolism is limited by the availability of electron acceptors. In addition to changes in groundwater chemistry, the solid matrix of the aquifer is affected by microbial processes. The production of carbon dioxide and organic acids can lead to increased mineral solubility, which can lead to the development of secondary porosity and permeability. Conversely, microbial production of carbonate, ferrous iron, and sulfide can result in the precipitation of secondary calcite or pyrite cements that reduce primary porosity and permeability in groundwater systems. Les processus microbiologiques peuvent affecter la composition chimique de l'eau souterraine et les propriétés hydrauliques des nappes aussi bien dans les systèmes aquifères pollués que dans les systèmes indemnes de pollution. Les changements de chimisme des eaux qui se produisent dépendent de l'abondance relative des donneurs et des accepteurs d'électrons. Dans les aquifères non contaminés, où le métabolisme microbien est limité par la disponibilité des donneurs d'électrons (en général la matière organique), le carbone minéral dissous (CMD) s'accumule lentement le long des axes d'écoulement souterrain et les accepteurs d'électrons disponibles sont

  5. Radiation processing of leafy vegetables to ensure their microbial safety

    International Nuclear Information System (INIS)

    Khade, H.D.; Jain, M.P.; Satyendra, Gautam

    2015-01-01

    Leafy vegetables which are consumed in raw form such as spinach, coriander and mint were found to be heavily burdened with microbial load including presumptive coliform, an indicator of pathogenic contaminations. Total aerobic plate counts in fresh spinach, coriander and mint samples collected from different location of Mumbai and nearby cities were found to be in the order of ∼ 10 7 to ∼ 10 8 CFU/g. In these samples yeast and mould count was in the order of ∼10 5 CFU/g and presumptive coliform in the order of ∼ 10 4 to ∼10 5 CFU/g. As per USFDA coliform load in the food commodity should be nil. The finding thus indicates that these fresh vegetables are not safe for raw consumption. Hence there is utmost need of process which can ensure the safety by reducing their microbial load below permissible level (<10 4 CFU/gm) and coliform load to nil without affecting the appearance and quality of such produce. In this study gamma radiation was used for hygienization of leafy vegetables. The sample were first cleaned in potable water followed by sodium hypochlorite wash (200 ppm for 20 min), air dried, packed in styrofoam based tray, wrapped with cling film and radiation processed at 1 to 2.5 kGy and stored at 4 and 10℃ . Post irradiation microbiological analysis of radiation processed samples was carried out at in 2 kGy irradiated samples total plate count was below ∼10 3 CFU/g and presumptive coliform count was below detectable level. Yeast and mould count in these samples also reduced to below ∼ 10 3 CFU/g. Based on the study the following combination treatment can be given to raw leafy vegetables, washing with potable water (5 min) → sodium hypochlorite (200 ppm 20 min) wash → Air drying → Packaging in styrofoam based tray and wrapping with cling film → Irradiation at 2 kGy → storage at 4℃ . Besides ensuring safety the treatment also resulted in increased shelf life extension of the commodities up to 20 days. (author)

  6. Microbial safety of minimally processed foods

    National Research Council Canada - National Science Library

    Novak, John S; Sapers, Gerald M; Juneja, Vijay K

    2003-01-01

    ...-course meals. All are expected to be portioned and minimally processed to balance the naturalness of unaltered foods with a concern for safety. Yet the responsibility for proper food preparation and handling remains with the naïve modern consumer, who may be less adept in food preparations than his or her less sophisticated ancestors. As a result,...

  7. Above- and belowground linkages in Sphagnum peatland: climate warming affects plant-microbial interactions.

    Science.gov (United States)

    Jassey, Vincent E J; Chiapusio, Geneviève; Binet, Philippe; Buttler, Alexandre; Laggoun-Défarge, Fatima; Delarue, Frédéric; Bernard, Nadine; Mitchell, Edward A D; Toussaint, Marie-Laure; Francez, André-Jean; Gilbert, Daniel

    2013-03-01

    Peatlands contain approximately one third of all soil organic carbon (SOC). Warming can alter above- and belowground linkages that regulate soil organic carbon dynamics and C-balance in peatlands. Here we examine the multiyear impact of in situ experimental warming on the microbial food web, vegetation, and their feedbacks with soil chemistry. We provide evidence of both positive and negative impacts of warming on specific microbial functional groups, leading to destabilization of the microbial food web. We observed a strong reduction (70%) in the biomass of top-predators (testate amoebae) in warmed plots. Such a loss caused a shortening of microbial food chains, which in turn stimulated microbial activity, leading to slight increases in levels of nutrients and labile C in water. We further show that warming altered the regulatory role of Sphagnum-polyphenols on microbial community structure with a potential inhibition of top predators. In addition, warming caused a decrease in Sphagnum cover and an increase in vascular plant cover. Using structural equation modelling, we show that changes in the microbial food web affected the relationships between plants, soil water chemistry, and microbial communities. These results suggest that warming will destabilize C and nutrient recycling of peatlands via changes in above- and belowground linkages, and therefore, the microbial food web associated with mosses will feedback positively to global warming by destabilizing the carbon cycle. This study confirms that microbial food webs thus constitute a key element in the functioning of peatland ecosystems. Their study can help understand how mosses, as ecosystem engineers, tightly regulate biogeochemical cycling and climate feedback in peatlands. © 2012 Blackwell Publishing Ltd.

  8. Effects of post-processing handling and packaging on microbial populations

    International Nuclear Information System (INIS)

    Zagory, D.

    1999-01-01

    The type of produce, process conditions, and prior temperature management will all affect the mix of microorganisms found on fresh produce. Normally, fresh produce will be covered by a complex mix of bacteria, fungi and yeasts that are characteristic of that fruit or vegetable. For example, carrots typically have large numbers of Lactobacillus and other lactic acid bacteria while apples may have relatively large numbers of yeasts. Which of these microorganisms will come to dominate the population will be a function of the make-up of the original population on the product in the field, distribution time, distribution temperature and the atmosphere within the package. Another chief determinant of microbial populations will be the physiological condition of the product. Factors that injure or weaken the plant tissues may be expected to encourage microbial growth while conditions that maintain the physiological integrity of the tissues may be expected to discourage microbial growth. Each of these factors can be expected to affect the make-up of the microbial population in characteristic ways but always constrained by the initial condition of original population makeup. This paper describes which microorganisms are favored by given conditions in order to develop a concept of microbial management designed to favor desirable microbes at the expense of undesirable ones. Particular emphasis will be placed on the effects of modified atmospheres on microorganisms, especially human pathogens

  9. Copper anode corrosion affects power generation in microbial fuel cells

    KAUST Repository

    Zhu, Xiuping; Logan, Bruce E.

    2013-01-01

    Non-corrosive, carbon-based materials are usually used as anodes in microbial fuel cells (MFCs). In some cases, however, metals have been used that can corrode (e.g. copper) or that are corrosion resistant (e.g. stainless steel, SS). Corrosion could increase current through galvanic (abiotic) current production or by increasing exposed surface area, or decrease current due to generation of toxic products from corrosion. In order to directly examine the effects of using corrodible metal anodes, MFCs with Cu were compared with reactors using SS and carbon cloth anodes. MFCs with Cu anodes initially showed high current generation similar to abiotic controls, but subsequently they produced little power (2 mW m-2). Higher power was produced with microbes using SS (12 mW m-2) or carbon cloth (880 mW m-2) anodes, with no power generated by abiotic controls. These results demonstrate that copper is an unsuitable anode material, due to corrosion and likely copper toxicity to microorganisms. © 2013 Society of Chemical Industry.

  10. Copper anode corrosion affects power generation in microbial fuel cells

    KAUST Repository

    Zhu, Xiuping

    2013-07-16

    Non-corrosive, carbon-based materials are usually used as anodes in microbial fuel cells (MFCs). In some cases, however, metals have been used that can corrode (e.g. copper) or that are corrosion resistant (e.g. stainless steel, SS). Corrosion could increase current through galvanic (abiotic) current production or by increasing exposed surface area, or decrease current due to generation of toxic products from corrosion. In order to directly examine the effects of using corrodible metal anodes, MFCs with Cu were compared with reactors using SS and carbon cloth anodes. MFCs with Cu anodes initially showed high current generation similar to abiotic controls, but subsequently they produced little power (2 mW m-2). Higher power was produced with microbes using SS (12 mW m-2) or carbon cloth (880 mW m-2) anodes, with no power generated by abiotic controls. These results demonstrate that copper is an unsuitable anode material, due to corrosion and likely copper toxicity to microorganisms. © 2013 Society of Chemical Industry.

  11. Plant extracts affect in vitro rumen microbial fermentation.

    Science.gov (United States)

    Busquet, M; Calsamiglia, S; Ferret, A; Kamel, C

    2006-02-01

    Different doses of 12 plant extracts and 6 secondary plant metabolites were incubated for 24 h in diluted ruminal fluid with a 50:50 forage:concentrate diet. Treatments were: control (no additive), plant extracts (anise oil, cade oil, capsicum oil, cinnamon oil, clove bud oil, dill oil, fenugreek, garlic oil, ginger oil, oregano oil, tea tree oil, and yucca), and secondary plant metabolites (anethol, benzyl salicylate, carvacrol, carvone, cinnamaldehyde, and eugenol). Each treatment was supplied at 3, 30, 300, and 3,000 mg/L of culture fluid. At 3,000 mg/L, most treatments decreased total volatile fatty acid concentration, but cade oil, capsicum oil, dill oil, fenugreek, ginger oil, and yucca had no effect. Different doses of anethol, anise oil, carvone, and tea tree oil decreased the proportion of acetate and propionate, which suggests that these compounds may not be nutritionally beneficial to dairy cattle. Garlic oil (300 and 3,000 mg/L) and benzyl salicylate (300 and 3,000 mg/L) reduced acetate and increased propionate and butyrate proportions, suggesting that methane production was inhibited. At 3,000 mg/L, capsicum oil, carvacrol, carvone, cinnamaldehyde, cinnamon oil, clove bud oil, eugenol, fenugreek, and oregano oil resulted in a 30 to 50% reduction in ammonia N concentration. Careful selection and combination of these extracts may allow the manipulation of rumen microbial fermentation.

  12. Microbial Genetic Memory to Study Heterogeneous Soil Processes

    Science.gov (United States)

    Fulk, E. M.; Silberg, J. J.; Masiello, C. A.

    2017-12-01

    Microbes can be engineered to sense environmental conditions and produce a detectable output. These microbial biosensors have traditionally used visual outputs that are difficult to detect in soil. However, recently developed gas-producing biosensors can be used to noninvasively monitor complex soil processes such as horizontal gene transfer or cell-cell signaling. While these biosensors report on the fraction of a microbial population exposed to a process or chemical signal at the time of measurement, they do not record a "memory" of past exposure. Synthetic biologists have recently developed a suite of genetically encoded memory circuits capable of reporting on historical exposure to the signal rather than just the current state. We will provide an overview of the microbial memory systems that may prove useful to studying microbial decision-making in response to environmental conditions. Simple memory circuits can give a yes/no report of any past exposure to the signal (for example anaerobic conditions, osmotic stress, or high nitrate concentrations). More complicated systems can report on the order of exposure of a population to multiple signals or the experiences of spatially distinct populations, such as those in root vs. bulk soil. We will report on proof-of-concept experiments showing the function of a simple permanent memory system in soil-cultured microbes, and we will highlight additional applications. Finally, we will discuss challenges still to be addressed in applying these memory circuits for biogeochemical studies.

  13. Elimination of pyraclostrobin by simultaneous microbial degradation coupled with the Fenton process in microbial fuel cells and the microbial community.

    Science.gov (United States)

    Zhao, Huanhuan; Kong, Chui-Hua

    2018-06-01

    The elimination of pyraclostrobin by simultaneous microbial degradation and Fenton oxidation was achieved in a microbial fuel cell (MFC) system. After 12 h of incubation, the removal rate of pyraclostrobin was 1.4 mg/L/h at the anode and 1.7 mg/L/h at the cathode. The pyraclostrobin concentration was less than the detection limit (0.1 mg/L) after 72 h at the anode and 24 h at the cathode. The air flow rate, temperature, and pH of the catholyte had significant effects on the generation of H 2 O 2 . The maximum production of H 2 O 2 was 1.2 mg/L after reaction for 20 h during the Fenton process. Microbial community analysis indicated that functional bacteria in the genera Chryseobacterium, Stenotrophomonas, Arcobacter, and Comamonas were predominant in the anodic biofilm. In conclusion, the MFC-Fenton system provides an effective approach for treating environmental contaminants. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Microbial ecology of the Agaricus bisporus mushroom cropping process.

    Science.gov (United States)

    McGee, Conor F

    2018-02-01

    Agaricus bisporus is the most widely cultivated mushroom species in the world. Cultivation is commenced by inoculating beds of semi-pasteurised composted organic substrate with a pure spawn of A. bisporus. The A. bisporus mycelium subsequently colonises the composted substrate by degrading the organic material to release nutrients. A layer of peat, often called "casing soil", is laid upon the surface of the composted substrate to induce the development of the mushroom crop and maintain compost environmental conditions. Extensive research has been conducted investigating the biochemistry and genetics of A. bisporus throughout the cultivation process; however, little is currently known about the wider microbial ecology that co-inhabits the composted substrate and casing layers. The compost and casing microbial communities are known to play important roles in the mushroom production process. Microbial species present in the compost and casing are known for (1) being an important source of nitrogen for the A. bisporus mycelium, (2) releasing sugar residues through the degradation of the wheat straw in the composted substrate, (3) playing a critical role in inducing development of the A. bisporus fruiting bodies and (4) acting as pathogens by parasitising the mushroom mycelium/crop. Despite a long history of research into the mushroom cropping process, an extensive review of the microbial communities present in the compost and casing has not as of yet been undertaken. The aim of this review is to provide a comprehensive summary of the literature investigating the compost and casing microbial communities throughout cultivation of the A. bisporus mushroom crop.

  15. Microbial ecology of Thailand tsunami and non-tsunami affected terrestrials.

    Science.gov (United States)

    Somboonna, Naraporn; Wilantho, Alisa; Jankaew, Kruawun; Assawamakin, Anunchai; Sangsrakru, Duangjai; Tangphatsornruang, Sithichoke; Tongsima, Sissades

    2014-01-01

    The effects of tsunamis on microbial ecologies have been ill-defined, especially in Phang Nga province, Thailand. This ecosystem was catastrophically impacted by the 2004 Indian Ocean tsunami as well as the 600 year-old tsunami in Phra Thong island, Phang Nga province. No study has been conducted to elucidate their effects on microbial ecology. This study represents the first to elucidate their effects on microbial ecology. We utilized metagenomics with 16S and 18S rDNA-barcoded pyrosequencing to obtain prokaryotic and eukaryotic profiles for this terrestrial site, tsunami affected (S1), as well as a parallel unaffected terrestrial site, non-tsunami affected (S2). S1 demonstrated unique microbial community patterns than S2. The dendrogram constructed using the prokaryotic profiles supported the unique S1 microbial communities. S1 contained more proportions of archaea and bacteria domains, specifically species belonging to Bacteroidetes became more frequent, in replacing of the other typical floras like Proteobacteria, Acidobacteria and Basidiomycota. Pathogenic microbes, including Acinetobacter haemolyticus, Flavobacterium spp. and Photobacterium spp., were also found frequently in S1. Furthermore, different metabolic potentials highlighted this microbial community change could impact the functional ecology of the site. Moreover, the habitat prediction based on percent of species indicators for marine, brackish, freshwater and terrestrial niches pointed the S1 to largely comprise marine habitat indicating-species.

  16. Multistage A-O Activated Sludge Process for Paraformaldehyde Wastewater Treatment and Microbial Community Structure Analysis

    Directory of Open Access Journals (Sweden)

    Danyang Zheng

    2016-01-01

    Full Text Available In recent years, the effect of formaldehyde on microorganisms and body had become a global public health issue. The multistage combination of anaerobic and aerobic process was adopted to treat paraformaldehyde wastewater. Microbial community structure in different reaction stages was analyzed through high-throughput sequencing. Results showed that multistage A-O activated sludge process positively influenced polyformaldehyde wastewater. The removal rates of formaldehyde were basically stable at more than 99% and those of COD were about 89%. Analysis of the microbial diversity index indicated that the microbial diversity of the reactor was high, and the treatment effect was good. Moreover, microbial community had certain similarity in the same system. Microbial communities in different units also showed typical representative characteristics affected by working conditions and influent concentrations. Proteobacteria, Firmicutes, and Bacteroidetes were the dominant fungal genera in the phylum level of community composition. As to family and genus levels, Peptostreptococcaceae was distributed at various stages and the dominant in this system. This bacterium also played an important role in organic matter removal, particularly decomposition of the acidified middle metabolites. In addition, Rhodobacteraceae and Rhodocyclaceae were the formaldehyde-degrading bacteria found in the reactor.

  17. Something new from something old? Fracking stimulated microbial processes

    Science.gov (United States)

    Wrighton, K. C.; Daly, R. A.; Hoyt, D.; Trexler, R.; McRae, J.; Wilkins, M.; Mouser, P. J.

    2015-12-01

    Hydraulic fracturing, colloquially known as "fracking", is employed for effective gas and oil recovery in deep shales. This process injects organisms and liquids from the surface into the deep subsurface (~2500 m), exposing microorganisms to high pressures, elevated temperatures, chemical additives, and brine-level salinities. Here we use assembly-based metagenomics to create a metabolic blueprint from an energy-producing Marcellus shale well over a 328-day period. Using this approach we ask the question: What abiotic and biotic factors drive microbial metabolism and thus biogeochemical cycling during natural gas extraction? We found that after 49 days, increased salinity in produced waters corresponded to a shift in the microbial community, with only organisms that encode salinity adaptations detected. We posit that organic compatible solutes, produced by organisms adapting to increased salinity, fuels a methylamine-driven ecosystem in fractured shale. This metabolic network ultimately results in biogenic methane production from members of Methanohalophilus and Methanolobus. Proton NMR validated these genomic hypotheses, with mono-methylamine being highest in the input material, but detected throughout the sampling. Beyond abiotic constraints, our genomic investigations revealed that viruses can be linked to key members of the microbial community, potentially releasing methylamine osmoprotectants and impacting bacterial strain variation. Collectively our results indicate that adaptation to high salinity, metabolism in the absence of oxidized electron acceptors, and viral predation are controlling factors mediating microbial community metabolism during hydraulic fracturing of the deep subsurface.

  18. Coupling Spatiotemporal Community Assembly Processes to Changes in Microbial Metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Graham, Emily B.; Crump, Alex R.; Resch, Charles T.; Fansler, Sarah; Arntzen, Evan; Kennedy, David W.; Fredrickson, Jim K.; Stegen, James C.

    2016-12-16

    Community assembly processes govern shifts in species abundances in response to environmental change, yet our understanding of assembly remains largely decoupled from ecosystem function. Here, we test hypotheses regarding assembly and function across space and time using hyporheic microbial communities as a model system. We pair sampling of two habitat types through hydrologic fluctuation with null modeling and multivariate statistics. We demonstrate that dual selective pressures assimilate to generate compositional changes at distinct timescales among habitat types, resulting in contrasting associations of Betaproteobacteria and Thaumarchaeota with selection and with seasonal changes in aerobic metabolism. Our results culminate in a conceptual model in which selection from contrasting environments regulates taxon abundance and ecosystem function through time, with increases in function when oscillating selection opposes stable selective pressures. Our model is applicable within both macrobial and microbial ecology and presents an avenue for assimilating community assembly processes into predictions of ecosystem function.

  19. Spectral Characteristics of Salinized Soils during Microbial Remediation Processes.

    Science.gov (United States)

    Ma, Chuang; Shen, Guang-rong; Zhi, Yue-e; Wang, Zi-jun; Zhu, Yun; Li, Xian-hua

    2015-09-01

    In this study, the spectral reflectance of saline soils, the associated soil salt content (SSC) and the concentrations of salt ions were measured and analysed by tracing the container microbial remediation experiments for saline soil (main salt is sodium chloride) of Dongying City, Shandong Province. The sensitive spectral reflectance bands of saline soils to SSC, Cl- and Na+ in the process of microbial remediation were analysed. The average-dimension reduction of these bands was conducted by using a combination of correlation coefficient and decision coefficient, and by gradually narrowing the sampling interval method. Results showed that the tendency and magnitude of the average spectral reflectance in all bands of saline soils during the total remediation processes were nearly consistent with SSC and with Cl- coocentration, respectively. The degree of salinity of the soil, including SSC and salt ion concentrations, had a significant positive correlation with the spectral reflectance of all bands, particularly in the near-infrared band. The optimal spectral bands of SSC were 1370 to 1445 nm and 1447 to 1608 nm, whereas the optimal spectral bands of Cl- and Na+ were 1336 to 1461 nm and 1471 to 1561 nm, respectively. The relationship model among SSC, soil salt ion concentrations (Cl- and Na+) and soil spectral reflectance of the corresponding optimal spectral band was established. The largest R2 of relationship model between SSC and the average reflectance of associated optimal band reached to 0.95, and RMSEC and RMSEP were 1.076 and 0.591, respectively. Significant statistical analysis of salt factors and soil reflectance for different microbial remediation processes indicated that the spectral response characteristics and sensitivity of SSC to soil reflectance, which implied the feasibility of high spectrum test on soil microbial remediation monitoring, also provided the basis for quick nondestructive monitoring soil bioremediation process by soil spectral

  20. Winter climate change affects growing-season soil microbial biomass and activity in northern hardwood forests

    Science.gov (United States)

    Jorge Durán; Jennifer L. Morse; Peter M. Groffman; John L. Campbell; Lynn M. Christenson; Charles T. Driscoll; Timothy J. Fahey; Melany C. Fisk; Myron J. Mitchell; Pamela H. Templer

    2014-01-01

    Understanding the responses of terrestrial ecosystems to global change remains a major challenge of ecological research. We exploited a natural elevation gradient in a northern hardwood forest to determine how reductions in snow accumulation, expected with climate change, directly affect dynamics of soil winter frost, and indirectly soil microbial biomass and activity...

  1. OPTIMIZATION OF FLOCCULATION PROCESS BY MICROBIAL COAGULANT IN RIVER WATER

    Directory of Open Access Journals (Sweden)

    Fatin Nabilah Murad

    2017-12-01

    Full Text Available The existing process of coagulation and flocculation are using chemicals that known as cationic coagulant such as alum, ferric sulfate, calcium oxide, and organic polymers.  Thus, this study concentrates on optimizing of flocculation process by microbial coagulant in river water. Turbidity and suspended solids are the main constraints of river water quality in Malaysia. Hence, a study is proposed to produce microbial coagulants isolated locally for river water treatment. The chosen microbe used as the bioflocculant producer is Aspergillus niger. The parameters to optimization in the flocculation process were pH, bioflocculant dosage and effluent concentration. The research was done in the jar test process and the process parameters for maximum turbidity removal was validated. The highest flocculating activity was obtained on day seven of cultivation in the supernatant. The optimum pH and bioflocculant dosage for an optimize sedimentation process were between 4-5 and 2-3 mL for 0.3 g/L of effluent concentration respectively. The model was validated by using a river water sample from Sg. Pusu and the result showed that the model was acceptable to evaluate the bioflocculation process.

  2. Microbial electrolytic disinfection process for highly efficient Escherichia coli inactivation

    DEFF Research Database (Denmark)

    Zhou, Shaofeng; Huang, Shaobin; Li, Xiaohu

    2018-01-01

    extensively studied for recalcitrant organics removal, its application potential towards water disinfection (e.g., inactivation of pathogens) is still unknown. This study investigated the inactivation of Escherichia coli in a microbial electrolysis cell based bio-electro-Fenton system (renamed as microbial......Water quality deterioration caused by a wide variety of recalcitrant organics and pathogenic microorganisms has become a serious concern worldwide. Bio-electro-Fenton systems have been considered as cost-effective and highly efficient water treatment platform technology. While it has been......]OH was identified as one potential mechanism for disinfection. This study successfully demonstrated the feasibility of bio-electro-Fenton process for pathogens inactivation, which offers insight for the future development of sustainable, efficient, and cost-effective biological water treatment technology....

  3. Metabolic engineering of microbial competitive advantage for industrial fermentation processes.

    Science.gov (United States)

    Shaw, A Joe; Lam, Felix H; Hamilton, Maureen; Consiglio, Andrew; MacEwen, Kyle; Brevnova, Elena E; Greenhagen, Emily; LaTouf, W Greg; South, Colin R; van Dijken, Hans; Stephanopoulos, Gregory

    2016-08-05

    Microbial contamination is an obstacle to widespread production of advanced biofuels and chemicals. Current practices such as process sterilization or antibiotic dosage carry excess costs or encourage the development of antibiotic resistance. We engineered Escherichia coli to assimilate melamine, a xenobiotic compound containing nitrogen. After adaptive laboratory evolution to improve pathway efficiency, the engineered strain rapidly outcompeted a control strain when melamine was supplied as the nitrogen source. We additionally engineered the yeasts Saccharomyces cerevisiae and Yarrowia lipolytica to assimilate nitrogen from cyanamide and phosphorus from potassium phosphite, and they outcompeted contaminating strains in several low-cost feedstocks. Supplying essential growth nutrients through xenobiotic or ecologically rare chemicals provides microbial competitive advantage with minimal external risks, given that engineered biocatalysts only have improved fitness within the customized fermentation environment. Copyright © 2016, American Association for the Advancement of Science.

  4. Site- and horizon-specific patterns of microbial community structure and enzyme activities in permafrost-affected soils of Greenland

    Science.gov (United States)

    Gittel, Antje; Bárta, Jiří; Kohoutová, Iva; Schnecker, Jörg; Wild, Birgit; Čapek, Petr; Kaiser, Christina; Torsvik, Vigdis L.; Richter, Andreas; Schleper, Christa; Urich, Tim

    2014-01-01

    Permafrost-affected soils in the Northern latitudes store huge amounts of organic carbon (OC) that is prone to microbial degradation and subsequent release of greenhouse gasses to the atmosphere. In Greenland, the consequences of permafrost thaw have only recently been addressed, and predictions on its impact on the carbon budget are thus still highly uncertain. However, the fate of OC is not only determined by abiotic factors, but closely tied to microbial activity. We investigated eight soil profiles in northeast Greenland comprising two sites with typical tundra vegetation and one wet fen site. We assessed microbial community structure and diversity (SSU rRNA gene tag sequencing, quantification of bacteria, archaea and fungi), and measured hydrolytic and oxidative enzyme activities. Sampling site and thus abiotic factors had a significant impact on microbial community structure, diversity and activity, the wet fen site exhibiting higher potential enzyme activities and presumably being a hot spot for anaerobic degradation processes such as fermentation and methanogenesis. Lowest fungal to bacterial ratios were found in topsoils that had been relocated by cryoturbation (“buried topsoils”), resulting from a decrease in fungal abundance compared to recent (“unburied”) topsoils. Actinobacteria (in particular Intrasporangiaceae) accounted for a major fraction of the microbial community in buried topsoils, but were only of minor abundance in all other soil horizons. It was indicated that the distribution pattern of Actinobacteria and a variety of other bacterial classes was related to the activity of phenol oxidases and peroxidases supporting the hypothesis that bacteria might resume the role of fungi in oxidative enzyme production and degradation of phenolic and other complex substrates in these soils. Our study sheds light on the highly diverse, but poorly-studied communities in permafrost-affected soils in Greenland and their role in OC degradation. PMID

  5. Electricity generation from synthesis gas by microbial processes: CO fermentation and microbial fuel cell technology.

    Science.gov (United States)

    Kim, Daehee; Chang, In Seop

    2009-10-01

    A microbiological process was established to harvest electricity from the carbon monoxide (CO). A CO fermenter was enriched with CO as the sole carbon source. The DGGE/DNA sequencing results showed that Acetobacterium spp. were enriched from the anaerobic digester fluid. After the fermenter was operated under continuous mode, the products were then continuously fed to the microbial fuel cell (MFC) to generate electricity. Even though the conversion yield was quite low, this study proved that synthesis gas (syn-gas) can be converted to electricity with the aid of microbes that do not possess the drawbacks of metal catalysts of conventional methods.

  6. Affective processing in bilingual speakers: disembodied cognition?

    Science.gov (United States)

    Pavlenko, Aneta

    2012-01-01

    A recent study by Keysar, Hayakawa, and An (2012) suggests that "thinking in a foreign language" may reduce decision biases because a foreign language provides a greater emotional distance than a native tongue. The possibility of such "disembodied" cognition is of great interest for theories of affect and cognition and for many other areas of psychological theory and practice, from clinical and forensic psychology to marketing, but first this claim needs to be properly evaluated. The purpose of this review is to examine the findings of clinical, introspective, cognitive, psychophysiological, and neuroimaging studies of affective processing in bilingual speakers in order to identify converging patterns of results, to evaluate the claim about "disembodied cognition," and to outline directions for future inquiry. The findings to date reveal two interrelated processing effects. First-language (L1) advantage refers to increased automaticity of affective processing in the L1 and heightened electrodermal reactivity to L1 emotion-laden words. Second-language (L2) advantage refers to decreased automaticity of affective processing in the L2, which reduces interference effects and lowers electrodermal reactivity to negative emotional stimuli. The differences in L1 and L2 affective processing suggest that in some bilingual speakers, in particular late bilinguals and foreign language users, respective languages may be differentially embodied, with the later learned language processed semantically but not affectively. This difference accounts for the reduction of framing biases in L2 processing in the study by Keysar et al. (2012). The follow-up discussion identifies the limits of the findings to date in terms of participant populations, levels of processing, and types of stimuli, puts forth alternative explanations of the documented effects, and articulates predictions to be tested in future research.

  7. Microbial processes in the Athabasca Oil Sands and their potential applications in microbial enhanced oil recovery.

    Science.gov (United States)

    Harner, N K; Richardson, T L; Thompson, K A; Best, R J; Best, A S; Trevors, J T

    2011-11-01

    The Athabasca Oil Sands are located within the Western Canadian Sedimentary Basin, which covers over 140,200 km(2) of land in Alberta, Canada. The oil sands provide a unique environment for bacteria as a result of the stressors of low water availability and high hydrocarbon concentrations. Understanding the mechanisms bacteria use to tolerate these stresses may aid in our understanding of how hydrocarbon degradation has occurred over geological time, and how these processes and related tolerance mechanisms may be used in biotechnology applications such as microbial enhanced oil recovery (MEOR). The majority of research has focused on microbiology processes in oil reservoirs and oilfields; as such there is a paucity of information specific to oil sands. By studying microbial processes in oil sands there is the potential to use microbes in MEOR applications. This article reviews the microbiology of the Athabasca Oil Sands and the mechanisms bacteria use to tolerate low water and high hydrocarbon availability in oil reservoirs and oilfields, and potential applications in MEOR.

  8. Linking geology and microbiology: inactive pockmarks affect sediment microbial community structure.

    Science.gov (United States)

    Haverkamp, Thomas H A; Hammer, Øyvind; Jakobsen, Kjetill S

    2014-01-01

    Pockmarks are geological features that are found on the bottom of lakes and oceans all over the globe. Some are active, seeping oil or methane, while others are inactive. Active pockmarks are well studied since they harbor specialized microbial communities that proliferate on the seeping compounds. Such communities are not found in inactive pockmarks. Interestingly, inactive pockmarks are known to have different macrofaunal communities compared to the surrounding sediments. It is undetermined what the microbial composition of inactive pockmarks is and if it shows a similar pattern as the macrofauna. The Norwegian Oslofjord contains many inactive pockmarks and they are well suited to study the influence of these geological features on the microbial community in the sediment. Here we present a detailed analysis of the microbial communities found in three inactive pockmarks and two control samples at two core depth intervals. The communities were analyzed using high-throughput amplicon sequencing of the 16S rRNA V3 region. Microbial communities of surface pockmark sediments were indistinguishable from communities found in the surrounding seabed. In contrast, pockmark communities at 40 cm sediment depth had a significantly different community structure from normal sediments at the same depth. Statistical analysis of chemical variables indicated significant differences in the concentrations of total carbon and non-particulate organic carbon between 40 cm pockmarks and reference sample sediments. We discuss these results in comparison with the taxonomic classification of the OTUs identified in our samples. Our results indicate that microbial communities at the sediment surface are affected by the water column, while the deeper (40 cm) sediment communities are affected by local conditions within the sediment.

  9. Linking geology and microbiology: inactive pockmarks affect sediment microbial community structure.

    Directory of Open Access Journals (Sweden)

    Thomas H A Haverkamp

    Full Text Available Pockmarks are geological features that are found on the bottom of lakes and oceans all over the globe. Some are active, seeping oil or methane, while others are inactive. Active pockmarks are well studied since they harbor specialized microbial communities that proliferate on the seeping compounds. Such communities are not found in inactive pockmarks. Interestingly, inactive pockmarks are known to have different macrofaunal communities compared to the surrounding sediments. It is undetermined what the microbial composition of inactive pockmarks is and if it shows a similar pattern as the macrofauna. The Norwegian Oslofjord contains many inactive pockmarks and they are well suited to study the influence of these geological features on the microbial community in the sediment. Here we present a detailed analysis of the microbial communities found in three inactive pockmarks and two control samples at two core depth intervals. The communities were analyzed using high-throughput amplicon sequencing of the 16S rRNA V3 region. Microbial communities of surface pockmark sediments were indistinguishable from communities found in the surrounding seabed. In contrast, pockmark communities at 40 cm sediment depth had a significantly different community structure from normal sediments at the same depth. Statistical analysis of chemical variables indicated significant differences in the concentrations of total carbon and non-particulate organic carbon between 40 cm pockmarks and reference sample sediments. We discuss these results in comparison with the taxonomic classification of the OTUs identified in our samples. Our results indicate that microbial communities at the sediment surface are affected by the water column, while the deeper (40 cm sediment communities are affected by local conditions within the sediment.

  10. Removal of mercury from coal via a microbial pretreatment process

    Science.gov (United States)

    Borole, Abhijeet P [Knoxville, TN; Hamilton, Choo Y [Knoxville, TN

    2011-08-16

    A process for the removal of mercury from coal prior to combustion is disclosed. The process is based on use of microorganisms to oxidize iron, sulfur and other species binding mercury within the coal, followed by volatilization of mercury by the microorganisms. The microorganisms are from a class of iron and/or sulfur oxidizing bacteria. The process involves contacting coal with the bacteria in a batch or continuous manner. The mercury is first solubilized from the coal, followed by microbial reduction to elemental mercury, which is stripped off by sparging gas and captured by a mercury recovery unit, giving mercury-free coal. The mercury can be recovered in pure form from the sorbents via additional processing.

  11. Evaluation of microbial hazards during creamy cream cheese processing

    Directory of Open Access Journals (Sweden)

    Joanna Żukowska

    2015-04-01

    Full Text Available The purpose of the work was to identify the potential microbial hazards that may occur during the manufacturing process of creamy cream cheese, and to present the means of their elimination or minimization. The analysis demonstrated that among the most crucial stages that should be particularly monitored are: the quality of raw materials, the control of pasteurization and souring parameters as well as temperature of product packaging, ensuring proper storage conditions of the finished product and hygiene throughout the production. Of these, the most critical step in the entire process (critical control points - CCP is a heat treatment process which is pasteurization. On the basis of the analysis, it can be concluded that the monitoring of such a process and consistent adherence to Operational Pre-Condition Pro-grams at the thermisation and centrifuging and later packaging, can help guarantee a safe product and its long shelf life.

  12. Affect intensity and processing fluency of deterrents.

    Science.gov (United States)

    Holman, Andrei

    2013-01-01

    The theory of emotional intensity (Brehm, 1999) suggests that the intensity of affective states depends on the magnitude of their current deterrents. Our study investigated the role that fluency--the subjective experience of ease of information processing--plays in the emotional intensity modulations as reactions to deterrents. Following an induction phase of good mood, we manipulated both the magnitude of deterrents (using sets of photographs with pre-tested potential to instigate an emotion incompatible with the pre-existent affective state--pity) and their processing fluency (normal vs. enhanced through subliminal priming). Current affective state and perception of deterrents were then measured. In the normal processing conditions, the results revealed the cubic effect predicted by the emotional intensity theory, with the initial affective state being replaced by the one appropriate to the deterrent only in participants exposed to the high magnitude deterrence. In the enhanced fluency conditions the emotional intensity pattern was drastically altered; also, the replacement of the initial affective state occurred at a lower level of deterrence magnitude (moderate instead of high), suggesting the strengthening of deterrence emotional impact by enhanced fluency.

  13. Affective processes in human-automation interactions.

    Science.gov (United States)

    Merritt, Stephanie M

    2011-08-01

    This study contributes to the literature on automation reliance by illuminating the influences of user moods and emotions on reliance on automated systems. Past work has focused predominantly on cognitive and attitudinal variables, such as perceived machine reliability and trust. However, recent work on human decision making suggests that affective variables (i.e., moods and emotions) are also important. Drawing from the affect infusion model, significant effects of affect are hypothesized. Furthermore, a new affectively laden attitude termed liking is introduced. Participants watched video clips selected to induce positive or negative moods, then interacted with a fictitious automated system on an X-ray screening task At five time points, important variables were assessed including trust, liking, perceived machine accuracy, user self-perceived accuracy, and reliance.These variables, along with propensity to trust machines and state affect, were integrated in a structural equation model. Happiness significantly increased trust and liking for the system throughout the task. Liking was the only variable that significantly predicted reliance early in the task. Trust predicted reliance later in the task, whereas perceived machine accuracy and user self-perceived accuracy had no significant direct effects on reliance at any time. Affective influences on automation reliance are demonstrated, suggesting that this decision-making process may be less rational and more emotional than previously acknowledged. Liking for a new system may be key to appropriate reliance, particularly early in the task. Positive affect can be easily induced and may be a lever for increasing liking.

  14. Microbial fuel cell treatment of ethanol fermentation process water

    Science.gov (United States)

    Borole, Abhijeet P [Knoxville, TN

    2012-06-05

    The present invention relates to a method for removing inhibitor compounds from a cellulosic biomass-to-ethanol process which includes a pretreatment step of raw cellulosic biomass material and the production of fermentation process water after production and removal of ethanol from a fermentation step, the method comprising contacting said fermentation process water with an anode of a microbial fuel cell, said anode containing microbes thereon which oxidatively degrade one or more of said inhibitor compounds while producing electrical energy or hydrogen from said oxidative degradation, and wherein said anode is in electrical communication with a cathode, and a porous material (such as a porous or cation-permeable membrane) separates said anode and cathode.

  15. Microbial communities, processes and functions in acid mine drainage ecosystems.

    Science.gov (United States)

    Chen, Lin-xing; Huang, Li-nan; Méndez-García, Celia; Kuang, Jia-liang; Hua, Zheng-shuang; Liu, Jun; Shu, Wen-sheng

    2016-04-01

    Acid mine drainage (AMD) is generated from the oxidative dissolution of metal sulfides when water and oxygen are available largely due to human mining activities. This process can be accelerated by indigenous microorganisms. In the last several decades, culture-dependent researches have uncovered and validated the roles of AMD microorganisms in metal sulfides oxidation and acid generation processes, and culture-independent studies have largely revealed the diversity and metabolic potentials and activities of AMD communities, leading towards a full understanding of the microbial diversity, functions and interactions in AMD ecosystems. This review describes the diversity of microorganisms and their functions in AMD ecosystems, and discusses their biotechnological applications in biomining and AMD bioremediation according to their capabilities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Neuroimaging of affect processing in schizophrenia

    International Nuclear Information System (INIS)

    Habel, U.; Kircher, T.; Schneider, F.

    2005-01-01

    Functional imaging of normal and dysfunctional emotional processes is an important tool for a better understanding of the pathophysiology of affective symptoms in schizophrenia patients. These symptoms are still poorly characterized with respect to their neural correlates. Comparisons of cerebral activation during emotional paradigms offered the possibility for a better characterization of cerebral dysfunctions during emotional processing in schizophrenia. Abnormal activation patterns reveal a complex dysfunctional subcortical-cortical network. This is modulated by respective genotypes as well as psycho- and pharmacotherapy. (orig.) [de

  17. Identifying target processes for microbial electrosynthesis by elementary mode analysis.

    Science.gov (United States)

    Kracke, Frauke; Krömer, Jens O

    2014-12-30

    Microbial electrosynthesis and electro fermentation are techniques that aim to optimize microbial production of chemicals and fuels by regulating the cellular redox balance via interaction with electrodes. While the concept is known for decades major knowledge gaps remain, which make it hard to evaluate its biotechnological potential. Here we present an in silico approach to identify beneficial production processes for electro fermentation by elementary mode analysis. Since the fundamentals of electron transport between electrodes and microbes have not been fully uncovered yet, we propose different options and discuss their impact on biomass and product yields. For the first time 20 different valuable products were screened for their potential to show increased yields during anaerobic electrically enhanced fermentation. Surprisingly we found that an increase in product formation by electrical enhancement is not necessarily dependent on the degree of reduction of the product but rather the metabolic pathway it is derived from. We present a variety of beneficial processes with product yield increases of maximal 36% in reductive and 84% in oxidative fermentations and final theoretical product yields up to 100%. This includes compounds that are already produced at industrial scale such as succinic acid, lysine and diaminopentane as well as potential novel bio-commodities such as isoprene, para-hydroxybenzoic acid and para-aminobenzoic acid. Furthermore, it is shown that the way of electron transport has major impact on achievable biomass and product yields. The coupling of electron transport to energy conservation could be identified as crucial for most processes. This study introduces a powerful tool to determine beneficial substrate and product combinations for electro-fermentation. It also highlights that the maximal yield achievable by bio electrochemical techniques depends strongly on the actual electron transport mechanisms. Therefore it is of great importance to

  18. Stress modulation of cognitive and affective processes

    Science.gov (United States)

    CAMPEAU, SERGE; LIBERZON, ISRAEL; MORILAK, DAVID; RESSLER, KERRY

    2012-01-01

    This review summarizes the major discussion points of a symposium on stress modulation of cognitive and affective processes, which was held during the 2010 workshop on the neurobiology of stress (Boulder, CO, USA). The four discussants addressed a number of specific cognitive and affective factors that are modulated by exposure to acute or repeated stress. Dr David Morilak discussed the effects of various repeated stress situations on cognitive flexibility, as assessed with a rodent model of attentional set-shifting task, and how performance on slightly different aspects of this test is modulated by different prefrontal regions through monoaminergic neurotransmission. Dr Serge Campeau summarized the findings of several studies exploring a number of factors and brain regions that regulate habituation of various autonomic and neuroendocrine responses to repeated audiogenic stress exposures. Dr Kerry Ressler discussed a body of work exploring the modulation and extinction of fear memories in rodents and humans, especially focusing on the role of key neurotransmitter systems including excitatory amino acids and brain-derived neurotrophic factor. Dr Israel Liberzon presented recent results on human decision-making processes in response to exogenous glucocorticoid hormone administration. Overall, these discussions are casting a wider framework on the cognitive/affective processes that are distinctly regulated by the experience of stress and some of the brain regions and neurotransmitter systems associated with these effects. PMID:21790481

  19. Silver nanoparticles uptake by salt marsh plants - Implications for phytoremediation processes and effects in microbial community dynamics.

    Science.gov (United States)

    Fernandes, Joana P; Mucha, Ana P; Francisco, Telmo; Gomes, Carlos Rocha; Almeida, C Marisa R

    2017-06-15

    This study investigated the uptake of silver nanoparticles (AgNPs) by a salt marsh plant, Phragmites australis, as well as AgNPs effects on rhizospheric microbial community, evaluating the implications for phytoremediation processes. Experiments were carried out with elutriate solution doped with Ag, either in ionic form or in NP form. Metal uptake was evaluated in plant tissues, elutriate solutions and sediments (by AAS) and microbial community was characterized in terms of bacterial community structure (evaluated by ARISA). Results showed Ag accumulation but only in plant belowground tissues and only in the absence of rhizosediment, the presence of sediment reducing Ag availability. But in plant roots Ag accumulation was higher when Ag was in NP form. Multivariate analysis of ARISA profiles showed significant effect of the absence/presence of Ag either in ionic or NP form on microbial community structure, although without significant differences among bacterial richness and diversity. Overall, P. australis can be useful for phytoremediation of medium contaminated with Ag, including with AgNPs. However, the presence of Ag in either forms affected the microbial community structure, which may cause disturbances in ecosystems function and compromise phytoremediation processes. Such considerations need to be address regarding environmental management strategies applied to the very important estuarine areas. The form in which the metal was added affected metal uptake by Phragmites australis and rhizosediment microbial community structure, which can affect phytoremediation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Factors affecting medication-order processing time.

    Science.gov (United States)

    Beaman, M A; Kotzan, J A

    1982-11-01

    The factors affecting medication-order processing time at one hospital were studied. The order processing time was determined by directly observing the time to process randomly selected new drug orders on all three work shifts during two one-week periods. An order could list more than one drug for an individual patient. The observer recorded the nature, location, and cost of the drugs ordered, as well as the time to process the order. The time and type of interruptions also were noted. The time to process a drug order was classified as six dependent variables: (1) total time, (2) work time, (3) check time, (4) waiting time I--time from arrival on the dumbwaiter until work was initiated, (5) waiting time II--time between completion of the work and initiation of checking, and (6) waiting time III--time after the check was completed until the order left on the dumbwaiter. The significant predictors of each of the six dependent variables were determined using stepwise multiple regression. The total time to process a prescription order was 58.33 +/- 48.72 minutes; the urgency status of the order was the only significant determinant of total time. Urgency status also significantly predicted the three waiting-time variables. Interruptions and the number of drugs on the order were significant determinants of work time and check time. Each telephone interruption increased the work time by 1.72 minutes. While the results of this study cannot be generalized to other institutions, pharmacy managers can use the method of determining factors that affect medication-order processing time to identify problem areas in their institutions.

  1. Variation in Honey Bee Gut Microbial Diversity Affected by Ontogenetic Stage, Age and Geographic Location

    Science.gov (United States)

    Hroncova, Zuzana; Havlik, Jaroslav; Killer, Jiri; Doskocil, Ivo; Tyl, Jan; Kamler, Martin; Titera, Dalibor; Hakl, Josef; Mrazek, Jakub; Bunesova, Vera; Rada, Vojtech

    2015-01-01

    Social honey bees, Apis mellifera, host a set of distinct microbiota, which is similar across the continents and various honey bee species. Some of these bacteria, such as lactobacilli, have been linked to immunity and defence against pathogens. Pathogen defence is crucial, particularly in larval stages, as many pathogens affect the brood. However, information on larval microbiota is conflicting. Seven developmental stages and drones were sampled from 3 colonies at each of the 4 geographic locations of A. mellifera carnica, and the samples were maintained separately for analysis. We analysed the variation and abundance of important bacterial groups and taxa in the collected bees. Major bacterial groups were evaluated over the entire life of honey bee individuals, where digestive tracts of same aged bees were sampled in the course of time. The results showed that the microbial tract of 6-day-old 5th instar larvae were nearly equally rich in total microbial counts per total digestive tract weight as foraging bees, showing a high percentage of various lactobacilli (Firmicutes) and Gilliamella apicola (Gammaproteobacteria 1). However, during pupation, microbial counts were significantly reduced but recovered quickly by 6 days post-emergence. Between emergence and day 6, imago reached the highest counts of Firmicutes and Gammaproteobacteria, which then gradually declined with bee age. Redundancy analysis conducted using denaturing gradient gel electrophoresis identified bacterial species that were characteristic of each developmental stage. The results suggest that 3-day 4th instar larvae contain low microbial counts that increase 2-fold by day 6 and then decrease during pupation. Microbial succession of the imago begins soon after emergence. We found that bacterial counts do not show only yearly cycles within a colony, but vary on the individual level. Sampling and pooling adult bees or 6th day larvae may lead to high errors and variability, as both of these stages may

  2. Temperature regulates deterministic processes and the succession of microbial interactions in anaerobic digestion process

    Czech Academy of Sciences Publication Activity Database

    Lin, Qiang; De Vrieze, J.; Li, Ch.; Li, J.; Li, J.; Yao, M.; Heděnec, Petr; Li, H.; Li, T.; Rui, J.; Frouz, Jan; Li, X.

    2017-01-01

    Roč. 123, October (2017), s. 134-143 ISSN 0043-1354 Institutional support: RVO:60077344 Keywords : anaerobic digestion * deterministic process * microbial interactions * modularity * temperature gradient Subject RIV: DJ - Water Pollution ; Quality OBOR OECD: Water resources Impact factor: 6.942, year: 2016

  3. Estimating and mapping ecological processes influencing microbial community assembly.

    Science.gov (United States)

    Stegen, James C; Lin, Xueju; Fredrickson, Jim K; Konopka, Allan E

    2015-01-01

    Ecological community assembly is governed by a combination of (i) selection resulting from among-taxa differences in performance; (ii) dispersal resulting from organismal movement; and (iii) ecological drift resulting from stochastic changes in population sizes. The relative importance and nature of these processes can vary across environments. Selection can be homogeneous or variable, and while dispersal is a rate, we conceptualize extreme dispersal rates as two categories; dispersal limitation results from limited exchange of organisms among communities, and homogenizing dispersal results from high levels of organism exchange. To estimate the influence and spatial variation of each process we extend a recently developed statistical framework, use a simulation model to evaluate the accuracy of the extended framework, and use the framework to examine subsurface microbial communities over two geologic formations. For each subsurface community we estimate the degree to which it is influenced by homogeneous selection, variable selection, dispersal limitation, and homogenizing dispersal. Our analyses revealed that the relative influences of these ecological processes vary substantially across communities even within a geologic formation. We further identify environmental and spatial features associated with each ecological process, which allowed mapping of spatial variation in ecological-process-influences. The resulting maps provide a new lens through which ecological systems can be understood; in the subsurface system investigated here they revealed that the influence of variable selection was associated with the rate at which redox conditions change with subsurface depth.

  4. Estimating and Mapping Ecological Processes Influencing Microbial Community Assembly

    Directory of Open Access Journals (Sweden)

    James C Stegen

    2015-05-01

    Full Text Available Ecological community assembly is governed by a combination of (i selection resulting from among-taxa differences in performance; (ii dispersal resulting from organismal movement; and (iii ecological drift resulting from stochastic changes in population sizes. The relative importance and nature of these processes can vary across environments. Selection can be homogeneous or variable, and while dispersal is a rate, we conceptualize extreme dispersal rates as two categories; dispersal limitation results from limited exchange of organisms among communities, and homogenizing dispersal results from high levels of organism exchange. To estimate the influence and spatial variation of each process we extend a recently developed statistical framework, use a simulation model to evaluate the accuracy of the extended framework, and use the framework to examine subsurface microbial communities over two geologic formations. For each subsurface community we estimate the degree to which it is influenced by homogeneous selection, variable selection, dispersal limitation, and homogenizing dispersal. Our analyses revealed that the relative influences of these ecological processes vary substantially across communities even within a geologic formation. We further identify environmental and spatial features associated with each ecological process, which allowed mapping of spatial variation in ecological-process-influences. The resulting maps provide a new lens through which ecological systems can be understood; in the subsurface system investigated here they revealed that the influence of variable selection was associated with the rate at which redox conditions change with subsurface depth.

  5. Effect of acid rain on soil microbial processes

    International Nuclear Information System (INIS)

    Myrold, D.D.; Nason, G.E.

    1992-01-01

    Acid rain is real; the pH of precipitation in many areas of the world is below its normal equilibrium value, and concentrations of inorganic N and S are elevated above background. The impact of acid rain on soil microbial processes is less clear. This is largely because of the chemical buffering of the soil ecosystem and the inherent resiliency and redundancy of soil microorganisms. Microorganisms have an amazing capacity to adapt to new situations, which is enhanced by their ability to evolve under selection pressure. Their resilience is a function of both the large number of microorganisms present in a given volume of soil and their high growth rate relative to macroorganisms. This suggests that microorganisms are likely to be able to adapt more quickly to acidification than plants or animals, which may be one reason why symbiotic associations, such as ectomycorrhizae, are more susceptible to acid inputs than their saprophytic counterparts

  6. Development of a high temperature microbial fermentation process for butanol

    Energy Technology Data Exchange (ETDEWEB)

    Jeor, Jeffery D. St. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Reed, David W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Daubaras, Dayna L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Thompson, Vicki S. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-08-01

    Transforming renewable biomass into cost-competitive high-performance biofuels and bioproducts is key to the U.S. future energy and chemical needs. Butanol production by microbial fermentation for chemical conversion to polyolefins, elastomers, drop-in jet or diesel fuel, and other chemicals is a promising solution. A high temperature fermentation process could decrease energy costs, capital cost, give higher butanol production, and allow for continuous fermentation. In this paper, we describe our approach to genetically transform Geobacillus caldoxylosiliticus, using a pUCG18 plasmid, for potential insertion of a butanol production pathway. Transformation methods tested were electroporation of electrocompetent cells, ternary conjugation with E. coli donor and helper strains, and protoplast fusion. These methods have not been successful using the current plasmid. Growth controls show cells survive the various methods tested, suggesting the possibility of transformation inhibition from a DNA restriction modification system in G. caldoxylosiliticus, as reported in the literature.

  7. Quantitative Microbial Risk Assessment for in Natural and Processed Cheeses

    Directory of Open Access Journals (Sweden)

    Heeyoung Lee

    2016-08-01

    Full Text Available This study evaluated the risk of Clostridium perfringens (C. perfringens foodborne illness from natural and processed cheeses. Microbial risk assessment in this study was conducted according to four steps: hazard identification, hazard characterization, exposure assessment, and risk characterization. The hazard identification of C. perfringens on cheese was identified through literature, and dose response models were utilized for hazard characterization of the pathogen. For exposure assessment, the prevalence of C. perfringens, storage temperatures, storage time, and annual amounts of cheese consumption were surveyed. Eventually, a simulation model was developed using the collected data and the simulation result was used to estimate the probability of C. perfringens foodborne illness by cheese consumption with @RISK. C. perfringens was determined to be low risk on cheese based on hazard identification, and the exponential model (r = 1.82×10−11 was deemed appropriate for hazard characterization. Annual amounts of natural and processed cheese consumption were 12.40±19.43 g and 19.46±14.39 g, respectively. Since the contamination levels of C. perfringens on natural (0.30 Log CFU/g and processed cheeses (0.45 Log CFU/g were below the detection limit, the initial contamination levels of natural and processed cheeses were estimated by beta distribution (α1 = 1, α2 = 91; α1 = 1, α2 = 309×uniform distribution (a = 0, b = 2; a = 0, b = 2.8 to be −2.35 and −2.73 Log CFU/g, respectively. Moreover, no growth of C. perfringens was observed for exposure assessment to simulated conditions of distribution and storage. These data were used for risk characterization by a simulation model, and the mean values of the probability of C. perfringens foodborne illness by cheese consumption per person per day for natural and processed cheeses were 9.57×10−14 and 3.58×10−14, respectively. These results indicate that probability of C. perfringens

  8. Long Term Monitoring of Microbial Induced Soil Strengthening Processes

    Science.gov (United States)

    Saneiyan, S.; Ntarlagiannis, D.; Werkema, D. D., Jr.; Colwell, F. S.; Ohan, J.

    2016-12-01

    Soil strengthening/stabilization processes are used to address some of soil quality issues. Microbial induced calcite precipitation (MICP) is a promising soil stabilization process that could offer long term solution by overcoming problems of commonly used methods (e.g. injecting cement slurry). MICP can be applied in larger spatial scales, allowing the enhanced soils to be maintained in an economic sustainable and environmental friendly way. Methods are sought for the long term monitoring of MICP enhanced soils. The spectral induced polarization (SIP) method is one promising method due to sensitivity on such processes and the ability for long term, even autonomous, operation as well as cost effectiveness. Previous laboratory tests showed the sensitivity of the SIP method on soil strengthening as a result of abiotic calcite precipitation. We extended this work to biotic calcite precipitation through MICP. Early results suggest that the MICP formed calcite is denser and could provide improved strengthening capabilities. Our results are supported by geophysical (SIP and shear-wave velocity), geo-chemical and microbiological monitoring. Destructive analysis and visualization (scanning electron imaging - SEM) is expected to provide conclusive evidence on the MICP long term effectiveness.

  9. Microbial ecology and starter culture technology in coffee processing.

    Science.gov (United States)

    Vinícius de Melo Pereira, Gilberto; Soccol, Vanete Thomaz; Brar, Satinder Kaur; Neto, Ensei; Soccol, Carlos Ricardo

    2017-09-02

    Coffee has been for decades the most commercialized food product and most widely consumed beverage in the world, with over 600 billion cups served per year. Before coffee cherries can be traded and processed into a final industrial product, they have to undergo postharvest processing on farms, which have a direct impact on the cost and quality of a coffee. Three different methods can be used for transforming the coffee cherries into beans, known as wet, dry, and semi-dry methods. In all these processing methods, a spontaneous fermentation is carried out in order to eliminate any mucilage still stuck to the beans and helps improve beverage flavor by microbial metabolites. The microorganisms responsible for the fermentation (e.g., yeasts and lactic acid bacteria) can play a number of roles, such as degradation of mucilage (pectinolytic activity), inhibition of mycotoxin-producing fungi growth, and production of flavor-active components. The use of starter cultures (mainly yeast strains) has emerged in recent years as a promising alternative to control the fermentation process and to promote quality development of coffee product. However, scarce information is still available about the effects of controlled starter cultures in coffee fermentation performance and bean quality, making it impossible to use this technology in actual field conditions. A broader knowledge about the ecology, biochemistry, and molecular biology could facilitate the understanding and application of starter cultures for coffee fermentation process. This review provides a comprehensive coverage of these issues, while pointing out new directions for exploiting starter cultures in coffee processing.

  10. Multitrophic microbial interactions for eco- and agro-biotechnological processes: theory and practice.

    Science.gov (United States)

    Saleem, Muhammad; Moe, Luke A

    2014-10-01

    Multitrophic level microbial loop interactions mediated by protist predators, bacteria, and viruses drive eco- and agro-biotechnological processes such as bioremediation, wastewater treatment, plant growth promotion, and ecosystem functioning. To what extent these microbial interactions are context-dependent in performing biotechnological and ecosystem processes remains largely unstudied. Theory-driven research may advance the understanding of eco-evolutionary processes underlying the patterns and functioning of microbial interactions for successful development of microbe-based biotechnologies for real world applications. This could also be a great avenue to test the validity or limitations of ecology theory for managing diverse microbial resources in an era of altering microbial niches, multitrophic interactions, and microbial diversity loss caused by climate and land use changes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Metals other than uranium affected microbial community composition in a historical uranium-mining site.

    Science.gov (United States)

    Sitte, Jana; Löffler, Sylvia; Burkhardt, Eva-Maria; Goldfarb, Katherine C; Büchel, Georg; Hazen, Terry C; Küsel, Kirsten

    2015-12-01

    To understand the links between the long-term impact of uranium and other metals on microbial community composition, ground- and surface water-influenced soils varying greatly in uranium and metal concentrations were investigated at the former uranium-mining district in Ronneburg, Germany. A soil-based 16S PhyloChip approach revealed 2358 bacterial and 35 archaeal operational taxonomic units (OTU) within diverse phylogenetic groups with higher OTU numbers than at other uranium-contaminated sites, e.g., at Oak Ridge. Iron- and sulfate-reducing bacteria (FeRB and SRB), which have the potential to attenuate uranium and other metals by the enzymatic and/or abiotic reduction of metal ions, were found at all sites. Although soil concentrations of solid-phase uranium were high, ranging from 5 to 1569 μg·g (dry weight) soil(-1), redundancy analysis (RDA) and forward selection indicated that neither total nor bio-available uranium concentrations contributed significantly to the observed OTU distribution. Instead, microbial community composition appeared to be influenced more by redox potential. Bacterial communities were also influenced by bio-available manganese and total cobalt and cadmium concentrations. Bio-available cadmium impacted FeRB distribution while bio-available manganese and copper as well as solid-phase zinc concentrations in the soil affected SRB composition. Archaeal communities were influenced by the bio-available lead as well as total zinc and cobalt concentrations. These results suggest that (i) microbial richness was not impacted by heavy metals and radionuclides and that (ii) redox potential and secondary metal contaminants had the strongest effect on microbial community composition, as opposed to uranium, the primary source of contamination.

  12. Mess management in microbial ecology: Rhetorical processes of disciplinary integration

    Science.gov (United States)

    McCracken, Christopher W.

    As interdisciplinary work becomes more common in the sciences, research into the rhetorical processes mediating disciplinary integration becomes more vital. This dissertation, which takes as its subject the integration of microbiology and ecology, combines a postplural approach to rhetoric of science research with Victor Turner's "social drama" analysis and a third-generation activity theory methodological framework to identify conceptual and practical conflicts in interdisciplinary work and describe how, through visual and verbal communication, scientists negotiate these conflicts. First, to understand the conflicting disciplinary principles that might impede integration, the author conducts a Turnerian analysis of a disciplinary conflict that took place in the 1960s and 70s, during which American ecologists and biologists debated whether they should participate in the International Biological Program (IBP). Participation in the IBP ultimately contributed to the emergence of ecology as a discipline distinct from biology, and Turnerian social drama analysis of the debate surrounding participation lays bare the conflicting principles separating biology and ecology. Second, to answer the question of how these conflicting principles are negotiated in practice, the author reports on a yearlong qualitative study of scientists working in a microbial ecology laboratory. Focusing specifically on two case studies from this fieldwork that illustrate the key concept of textually mediated disciplinary integration, the author's analysis demonstrates how scientific objects emerge in differently situated practices, and how these objects manage to cohere despite their multiplicity through textually mediated rhetorical processes of calibration and alignment.

  13. Set anode potentials affect the electron fluxes and microbial community structure in propionate-fed microbial electrolysis cells

    KAUST Repository

    Rao, Hari Ananda; Katuri, Krishna; Logan, Bruce E.; Saikaly, Pascal

    2016-01-01

    , but their relative abundance varied among the tested SAPs. Microbial community analysis implies that complete degradation of propionate in all the tested SAPs was facilitated by syntrophic interactions between fermenters and Geobacter at the anode and ferementers

  14. Insights into the Processing of Carbon by Early Microbial Ecosystems

    Science.gov (United States)

    DesMarais, D.; Bebout, B.; Carpenter, S.; Discipulo, S.; Londry, K.; Habicht, K.; Turk, K.

    2003-01-01

    Interactions between Earth and the biosphere that were crucial for early biological evolution also influenced substantially the processes that circulate C between its reservoirs in the atmosphere, ocean, crust and mantle. The C-13 C-12 values of crustal carbonates and organics have recorded changes both in biological discrimination and in the relative rates of burial of organics and carbonates. A full interpretation of these patterns needs further isotopic studies of microbial ecosystems and individual anaerobes. Thus we measured carbon isotope discrimination during autotrophic and heterotrophic growth of pure cultures of sulfate-reducing bacteria and archaea (SRB and SRA). Discrimination during CO2 assimilation is significantly larger than during heterotrophic growth on lactate or acetate. SRB grown lithoautotrophically consumed less than 3% of available CO2 and exhibited substantial discrimination, as follows: Desulfobacterium autotrophicum (alpha 1.0100 to 1.0123), Desulfobacter hydrogenophilus (alpha = 0.0138), and Desulfotomuculum acetoxidans (alpha = 1.0310). Mixotrophic growth of Desulfovibrio desulfuricans on acetate and CO2 resulted in biomass with delta C-13 composition intermediate to that of the substrates. We have recently extended these experiments to include the thermophilic SRA Archeoglobus spp. Ecological forces also influence isotopic discrimination. Accordingly, we quantified the flow of C and other constituents in modern marine cyanobacterial mats, whose ancestry extends back billions of years. Such ecosystem processes shaped the biosignatures that entered sediments and atmospheres. At Guerrero Negro, BCS, Mexico, we examined mats dominated by Microcoleus (subtidal) and Lyngbya (intertidal to supratidal) cyanobacteria. During 24 hour cycles, we observed the exchange of O2 and dissolved inorganic C (DIC) between mats and the overlying water. Microcoleus mats assimilated near-equal amounts of DIC during the day as they released at night, but

  15. Invasion in microbial communities: Role of community composition and assembly processes

    DEFF Research Database (Denmark)

    Kinnunen, Marta

    of microbial community assembly. Biotic factors include interactions between different microbial groups as well as the community response to alien species – invaders. Microbial invasions can have significant effects on the composition and functioning of resident communities. There is, however, lack......Microbes contribute to all biogeochemical cycles on earth and are responsible for key biological processes that support the survival of plants and animals. There is increased interest in controlling and managing microbial communities in different ecosystems in order to make targeted microbiological...... processes more effective. In order to manage microbial communities, it is essential to understand the factors that shape and influence microbial community composition. In addition to abiotic factors, such as environmental conditions and resource availability, biotic factors also shape the dynamics...

  16. Advances in concrete materials for sewer systems affected by microbial induced concrete corrosion: A review.

    Science.gov (United States)

    Grengg, Cyrill; Mittermayr, Florian; Ukrainczyk, Neven; Koraimann, Günther; Kienesberger, Sabine; Dietzel, Martin

    2018-05-01

    Microbial induced concrete corrosion (MICC) is recognized as one of the main degradation mechanisms of subsurface infrastructure worldwide, raising the demand for sustainable construction materials in corrosive environments. This review aims to summarize the key research progress acquired during the last decade regarding the understanding of MICC reaction mechanisms and the development of durable materials from an interdisciplinary perspective. Special focus was laid on aspects governing concrete - micoorganisms interaction since being the central process steering biogenic acid corrosion. The insufficient knowledge regarding the latter is proposed as a central reason for insufficient progress in tailored material development for aggressive wastewater systems. To date no cement-based material exists, suitable to withstand the aggressive conditions related to MICC over its entire service life. Research is in particular needed on the impact of physiochemical material parameters on microbial community structure, growth characteristics and limitations within individual concrete speciation. Herein an interdisciplinary approach is presented by combining results from material sciences, microbiology, mineralogy and hydrochemistry to stimulate the development of novel and sustainable materials and mitigation strategies for MICC. For instance, the application of antibacteriostatic agents is introduced as an effective instrument to limit microbial growth on concrete surfaces in aggressive sewer environments. Additionally, geopolymer concretes are introduced as highly resistent in acid environments, thus representing a possible green alternative to conventional cement-based construction materials. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Antibiotics in 16-day-old broilers temporarily affect microbial and immune parameters in the gut.

    Science.gov (United States)

    Wisselink, H J; Cornelissen, J B W J; Mevius, D J; Smits, M A; Smidt, H; Rebel, J M J

    2017-09-01

    Animal health benefits from a stable intestinal homeostasis, for which proper development and functioning of the intestinal microbiota and immune system are essential. It has been established that changes in microbial colonization in early life (the first 2 wk post hatch) impacts the functioning of the adult gut and the associated crosstalk between microbiota and intestinal mucosal cells. The aim of the present study was to study the effect of the administration of antibiotics later in life (d 15 to 20 post hatch) on microbiota and immune parameters. For this purpose, chickens received from 15 d post hatch during 5 d amoxicillin or enrofloxacin through their drinking water. Before and at 6, 16, and 27 d after start of the administration of antibiotics, the composition of the microbiota in the jejunum was determined using a 16S ribosomal RNA gene-targeted DNA microarray, the CHICKChip. At 6 d after the start of the administration of the antibiotics, the composition and diversity of the microbiota were affected significantly (P antibiotic administration, the number of CD4+ T-cells and CD8+ T-cells in the duodenum was lower compared to the control animals; however, this difference was not significant. At some time points, significant differences (P antibiotics only temporarily affect intestinal microbial and immune parameters. © 2017 Poultry Science Association Inc.

  18. Bioprocessing of coal - 10 - an application of microbial flotation to mineral processing

    Energy Technology Data Exchange (ETDEWEB)

    Nagaoka, T. [and others] [CRIEPI, Abiko-shi (Japan). Abiko Research Lab.

    1996-09-01

    Microbial flotation for coal desulfurization is being developed. Pyrite in coal is removed by bacterial adhesion by changing the surface property of pyrite. The bacterial adhesion of Thiobacillus ferrooxidans to sulfide minerals (pyrite, galena, molybdenite, chalcocite and millerite), and pyrite removal from the mixture of these sulfide minerals by microbial flotation was investigated. To compare the adhesion of T. ferrooxidans to pyrite with that to the other four minerals mentioned, the surface areas of the minerals, where the bacterium could adhere, was measured. It was observed that the roughness on the mineral surfaces was much smaller than the size of the bacterial cells. Hence, it was suggested that the roughness did not affect the bacterial adhesion to mineral surfaces. Bacterial adhesion to pyrite was compared with that to the other minerals. The amount of adhering bacterium was estimated on the basis of the adherable surface area measured with microscopic method. The amount of adhering cells to pyrite was 421.6 x 10{sup 8} cells/cm{sup 2}. On the other hand, the amounts of adhering cells to the minerals, except for pyrite were in a range of 77.1 to 160.8 x 10{sup 8} cells/cm{sup 2}. The bacterium adheres more to pyrite than to the other minerals, and only adheres to pyrite even if the pyrite is mixed with other minerals. Hence, T. ferrooxidans could adhere selectively to pyrite. Pyrite removal from the mineral mixtures was investigated with microbial flotation. Pyrite removal was in a range of 83.7% to 95.1% and mineral recovery was 72.9% to 100%. The grade of recovered minerals was in a range of 79.2 to 86.0% and that of rejected pyrite was in a range of 78.7 to 90.0%. These results suggest that microbial flotation can be a novel technology for mineral processing.

  19. Effect of Elevated Salt Concentrations on the Aerobic Granular Sludge Process : Linking Microbial Activity with Microbial Community Structure

    NARCIS (Netherlands)

    Bassin, J.P.; Pronk, M.; Muyzer, G.; Kleerebezem, R.; Dezotti, M.; Van Loosdrecht, M.C.M.

    2011-01-01

    The long- and short-term effects of salt on biological nitrogen and phosphorus removal processes were studied in an aerobic granular sludge reactor. The microbial community structure was investigated by PCR-denaturing gradient gel electrophoresis (DGGE) on 16S rRNA and amoA genes. PCR products

  20. Antibiotic treatment affects intestinal permeability and gut microbial composition in Wistar rats dependent on antibiotic class

    DEFF Research Database (Denmark)

    Tulstrup, Monica Vera-Lise; Christensen, Ellen Gerd; Carvalho, Vera

    2015-01-01

    Antibiotics are frequently administered orally to treat bacterial infections not necessarily related to the gastrointestinal system. This has adverse effects on the commensal gut microbial community, by disrupting the intricate balance between specific bacterial groups within this ecosystem...... potentially leading to dysbiosis. We hypothesized that modulation of community composition and function induced by antibiotics affects intestinal integrity depending on the antibiotic administered. To address this a total of 60 Wistar rats (n=12 per group) were dosed by oral gavage with either amoxicillin...... (AMX), cefataxime (CTX), vancomycin (VAN), metronidazole (MTZ), or water (CON) daily for 10-11 days. Bacterial composition, alpha diversity and cecum short chain fatty acid levels were significantly affected by AMX, CTX and VAN, and varied among antibiotic treatments. A general decrease in diversity...

  1. Screening of microorganisms for microbial enhanced oil recovery processes

    Energy Technology Data Exchange (ETDEWEB)

    Yonebayashi, H. [Japan National Oil Corp., Tokyo (Japan); Yoshida, S. [Japan Food Research Laboratiories, Tokyo (Japan). Div. of Microbiology; Ono, K. [Japan National Oil Corp., Chiba (Japan). Tech. Research Center; Enomoto, H. [Tohoku University, Sendai (Japan). Dept. of Geoscience and Tech.

    2000-01-01

    The objective of this study is to screen effective microorganisms for the Microbial Enhanced Oil Recovery process (or simply as MEOR). Samples of drilling cuttings, formation water, and soil were collected from domestic drilling sites and oil fields. Moreover, samples of activated-sludge and compost were collected from domestic sewage treatment facility and food treatment facility. At first, microorganisms in samples were investigated by incubation with different media; then they were isolated. By two stage-screening based on metabolizing ability, 4 strains (Bacillus licheniformis TRC-18-2-a, Enterobacter cloacae TRC-322, Bacillus subtilis TRC-4118, and Bacillus subtilis TRC-4126) were isolated as effective microorganisms for oil recovery. B. licheniformis TRC-18-2-a is a multifunctional microorganism possessing excellent surfactant productivity, and in addition it has gas, acid and polymer productivities. E. cloacae TRC-332 has gas and acid producing abilities. B. subtilis TRC-4118 and TRC-4126 are effective biosurfactant producers, and they reduce the interfacial tension to 0.04 and 0.12 dyne/cm, respectively. (author)

  2. Spatial variation in microbial processes controlling carbon mineralization within soils and sediments

    Energy Technology Data Exchange (ETDEWEB)

    Fendorf, Scott [Stanford Univ., CA (United States); Kleber, Markus [Oregon State Univ., Corvallis, OR (United States); Nico, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-10-19

    Soils have a defining role in global carbon cycling, having one of the largest dynamic stocks of C on earth—3300 Pg of C are stored in soils, which is three-times the amount stored in the atmosphere and more than the terrestrial land plants. An important control on soil organic matter (SOM) quantities is the mineralization rate. It is well recognized that the rate and extent of SOM mineralization is affected by climatic factors and mineral-organic matter associations. What remained elusive is to what extent constraints on microbial metabolism induced by the respiratory pathway, and specifically the electron acceptor in respiration, control overall rates of carbon mineralization in soils. Therefore, physical factors limiting oxygen diffusion such as soil texture and aggregate size (soil structure) may therefore be central controls on C mineralization rates. The goal of our research was therefore to determine if variations in microbial metabolic rates induced by anaerobic microsites in soils are a major control on SOM mineralization rates and thus storage. We performed a combination of laboratory experiments and field investigations will be performed to fulfill our research objectives. We used laboratory studies to examine fundamental factors of respiratory constraints (i.e., electron acceptor) on organic matter mineralization rates. We ground our laboratory studies with both manipulation of field samples and in-field measurements. Selection of the field sites is guided by variation in soil texture and structure while having (other environmental/soil factors constant. Our laboratory studies defined redox gradients and variations in microbial metabolism operating at the aggregate-scale (cm-scale) within soils using a novel constructed diffusion reactor. We further examined micro-scale variation in terminal electron accepting processes and resulting C mineralization rates within re-packed soils. A major outcome of our research is the ability to quantitatively place

  3. Water level changes affect carbon turnover and microbial community composition in lake sediments.

    Science.gov (United States)

    Weise, Lukas; Ulrich, Andreas; Moreano, Matilde; Gessler, Arthur; Kayler, Zachary E; Steger, Kristin; Zeller, Bernd; Rudolph, Kristin; Knezevic-Jaric, Jelena; Premke, Katrin

    2016-05-01

    Due to climate change, many lakes in Europe will be subject to higher variability of hydrological characteristics in their littoral zones. These different hydrological regimes might affect the use of allochthonous and autochthonous carbon sources. We used sandy sediment microcosms to examine the effects of different hydrological regimes (wet, desiccating, and wet-desiccation cycles) on carbon turnover. (13)C-labelled particulate organic carbon was used to trace and estimate carbon uptake into bacterial biomass (via phospholipid fatty acids) and respiration. Microbial community changes were monitored by combining DNA- and RNA-based real-time PCR quantification and terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA. The shifting hydrological regimes in the sediment primarily caused two linked microbial effects: changes in the use of available organic carbon and community composition changes. Drying sediments yielded the highest CO2 emission rates, whereas hydrological shifts increased the uptake of allochthonous organic carbon for respiration. T-RFLP patterns demonstrated that only the most extreme hydrological changes induced a significant shift in the active and total bacterial communities. As current scenarios of climate change predict an increase of drought events, frequent variations of the hydrological regimes of many lake littoral zones in central Europe are anticipated. Based on the results of our study, this phenomenon may increase the intensity and amplitude in rates of allochthonous organic carbon uptake and CO2 emissions. © FEMS 2016.

  4. Shifts in microbial populations in Rusitec fermenters as affected by the type of diet and impact of the method for estimating microbial growth (15N v. microbial DNA).

    Science.gov (United States)

    Mateos, I; Ranilla, M J; Saro, C; Carro, M D

    2017-11-01

    Rusitec fermenters are in vitro systems widely used to study ruminal fermentation, but little is known about the microbial populations establishing in them. This study was designed to assess the time evolution of microbial populations in fermenters fed medium- (MC; 50% alfalfa hay : concentrate) and high-concentrate diets (HC; 15 : 85 barley straw : concentrate). Samples from solid (SOL) and liquid (LIQ) content of fermenters were taken immediately before feeding on days 3, 8 and 14 of incubation for quantitative polymerase chain reaction and automated ribosomal intergenic spacer analysis analyses. In SOL, total bacterial DNA concentration and relative abundance of Ruminococcus flavefaciens remained unchanged over the incubation period, but protozoal DNA concentration and abundance of Fibrobacter succinogenes, Ruminococcus albus and fungi decreased and abundance of methanogenic archaea increased. In LIQ, total bacterial DNA concentration increased with time, whereas concentration of protozoal DNA and abundance of methanogens and fungi decreased. Diet×time interactions were observed for bacterial and protozoal DNA and relative abundance of F. succinogenes and R. albus in SOL, as well as for protozoal DNA in LIQ. Bacterial diversity in SOL increased with time, but no changes were observed in LIQ. The incubated diet influenced all microbial populations, with the exception of total bacteria and fungi abundance in LIQ. Bacterial diversity was higher in MC-fed than in HC-fed fermenters in SOL, but no differences were detected in LIQ. Values of pH, daily production of volatile fatty acids and CH4 and isobutyrate proportions remained stable over the incubation period, but other fermentation parameters varied with time. The relationships among microbial populations and fermentation parameters were in well agreement with those previously reported in in vivo studies. Using 15N as a microbial marker or quantifying total microbial DNA for estimating microbial protein synthesis

  5. Unveiling Microbial Carbon Cycling Processes in Key U.S. Soils using ''Omics''

    Energy Technology Data Exchange (ETDEWEB)

    Myrold, David D. [Oregon State Univ., Corvallis, OR (United States); Bottomely, Peter J. [Oregon State Univ., Corvallis, OR (United States); Jumpponen, Ari [Kansas State Univ., Manhattan, KS (United States); Rice, Charles W. [Kansas State Univ., Manhattan, KS (United States); Zeglin, Lydia H. [Kansas State Univ., Manhattan, KS (United States); David, Maude M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Jansson, Janet K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Prestat, Emmanuel [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hettich, Robert L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-09-17

    Soils process and store large amounts of C; however, considerable uncertainty still exists about the details of that influence microbial partitioning of C into soil C pools, and what are the main influential forces that control the fraction of the C input that is stabilized. The soil microbial community is genotypically and phenotypically diverse. Despite our ability to predict the kinds of regional environmental changes that will accompany global climate change, it is not clear how the microbial community will respond to climate-induced modification of precipitation and inter-precipitation intervals, and if this response will affect the fate of C deposited into soil by the local plant community. Part of this uncertainty lies with our ignorance of how the microbial community adapts genotypically and physiologically to changes in soil moisture brought about by shifts in precipitation. Our overarching goal is to harness the power of multiple meta-omics tools to gain greater understanding of the functioning of whole-soil microbial communities and their role in C cycling. We will do this by meeting the following three objectives: 1. Further develop and optimize a combination of meta-omics approaches to study how environmental factors affect microbially-mediated C cycling processes. 2. Determine the impacts of long-term changes in precipitation timing on microbial C cycling using an existing long-term field manipulation of a tallgrass prairie soil. 3. Conduct laboratory experiments that vary moisture and C inputs to confirm field observations of the linkages between microbial communities and C cycling processes. We took advantage of our state-of-the-art expertise in community “omics” to better understand the functioning soil C cycling within the Great Prairie ecosystem, including our ongoing Konza Prairie soil metagenome flagship project at JGI and the unique rainfall manipulation plots (RaMPs) established at this site more than a decade ago. We employed a systems

  6. Relating Anaerobic Digestion Microbial Community and Process Function.

    Science.gov (United States)

    Venkiteshwaran, Kaushik; Bocher, Benjamin; Maki, James; Zitomer, Daniel

    2015-01-01

    Anaerobic digestion (AD) involves a consortium of microorganisms that convert substrates into biogas containing methane for renewable energy. The technology has suffered from the perception of being periodically unstable due to limited understanding of the relationship between microbial community structure and function. The emphasis of this review is to describe microbial communities in digesters and quantitative and qualitative relationships between community structure and digester function. Progress has been made in the past few decades to identify key microorganisms influencing AD. Yet, more work is required to realize robust, quantitative relationships between microbial community structure and functions such as methane production rate and resilience after perturbations. Other promising areas of research for improved AD may include methods to increase/control (1) hydrolysis rate, (2) direct interspecies electron transfer to methanogens, (3) community structure-function relationships of methanogens, (4) methanogenesis via acetate oxidation, and (5) bioaugmentation to study community-activity relationships or improve engineered bioprocesses.

  7. Reprint of Design of synthetic microbial communities for biotechnological production processes.

    Science.gov (United States)

    Jagmann, Nina; Philipp, Bodo

    2014-12-20

    In their natural habitats microorganisms live in multi-species communities, in which the community members exhibit complex metabolic interactions. In contrast, biotechnological production processes catalyzed by microorganisms are usually carried out with single strains in pure cultures. A number of production processes, however, may be more efficiently catalyzed by the concerted action of microbial communities. This review will give an overview of organismic interactions between microbial cells and of biotechnological applications of microbial communities. It focuses on synthetic microbial communities that consist of microorganisms that have been genetically engineered. Design principles for such synthetic communities will be exemplified based on plausible scenarios for biotechnological production processes. These design principles comprise interspecific metabolic interactions via cross-feeding, regulation by interspecific signaling processes via metabolites and autoinducing signal molecules, and spatial structuring of synthetic microbial communities. In particular, the implementation of metabolic interdependencies, of positive feedback regulation and of inducible cell aggregation and biofilm formation will be outlined. Synthetic microbial communities constitute a viable extension of the biotechnological application of metabolically engineered single strains and enlarge the scope of microbial production processes. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Microbial and Sensory Quality of Freshly Processed and ...

    African Journals Online (AJOL)

    The samples were also evaluated for difference and preference. The study showed that the reconstituted beverage had better microbiological quality with detectable difference between the two samples with the fresh sample being preferred. Key words: Millet grains, Kununzaki, microbial quality, sensory quality. J Food Tech ...

  9. Set anode potentials affect the electron fluxes and microbial community structure in propionate-fed microbial electrolysis cells

    KAUST Repository

    Rao, Hari Ananda

    2016-12-09

    Anode potential has been shown to be a critical factor in the rate of acetate removal in microbial electrolysis cells (MECs), but studies with fermentable substrates and set potentials are lacking. Here, we examined the impact of three different set anode potentials (SAPs; −0.25, 0, and 0.25 V vs. standard hydrogen electrode) on the electrochemical performance, electron flux to various sinks, and anodic microbial community structure in two-chambered MECs fed with propionate. Electrical current (49–71%) and CH4 (22.9–41%) were the largest electron sinks regardless of the potentials tested. Among the three SAPs tested, 0 V showed the highest electron flux to electrical current (71 ± 5%) and the lowest flux to CH4 (22.9 ± 1.2%). In contrast, the SAP of −0.25 V had the lowest electron flux to current (49 ± 6%) and the highest flux to CH4 (41.1 ± 2%). The most dominant genera detected on the anode of all three SAPs based on 16S rRNA gene sequencing were Geobacter, Smithella and Syntrophobacter, but their relative abundance varied among the tested SAPs. Microbial community analysis implies that complete degradation of propionate in all the tested SAPs was facilitated by syntrophic interactions between fermenters and Geobacter at the anode and ferementers and hydrogenotrophic methanogens in suspension.

  10. Denitrifying bacterial communities affect current production and nitrous oxide accumulation in a microbial fuel cell.

    Science.gov (United States)

    Vilar-Sanz, Ariadna; Puig, Sebastià; García-Lledó, Arantzazu; Trias, Rosalia; Balaguer, M Dolors; Colprim, Jesús; Bañeras, Lluís

    2013-01-01

    The biocathodic reduction of nitrate in Microbial Fuel Cells (MFCs) is an alternative to remove nitrogen in low carbon to nitrogen wastewater and relies entirely on microbial activity. In this paper the community composition of denitrifiers in the cathode of a MFC is analysed in relation to added electron acceptors (nitrate and nitrite) and organic matter in the cathode. Nitrate reducers and nitrite reducers were highly affected by the operational conditions and displayed high diversity. The number of retrieved species-level Operational Taxonomic Units (OTUs) for narG, napA, nirS and nirK genes was 11, 10, 31 and 22, respectively. In contrast, nitrous oxide reducers remained virtually unchanged at all conditions. About 90% of the retrieved nosZ sequences grouped in a single OTU with a high similarity with Oligotropha carboxidovorans nosZ gene. nirS-containing denitrifiers were dominant at all conditions and accounted for a significant amount of the total bacterial density. Current production decreased from 15.0 A · m(-3) NCC (Net Cathodic Compartment), when nitrate was used as an electron acceptor, to 14.1 A · m(-3) NCC in the case of nitrite. Contrarily, nitrous oxide (N2O) accumulation in the MFC was higher when nitrite was used as the main electron acceptor and accounted for 70% of gaseous nitrogen. Relative abundance of nitrite to nitrous oxide reducers, calculated as (qnirS+qnirK)/qnosZ, correlated positively with N2O emissions. Collectively, data indicate that bacteria catalysing the initial denitrification steps in a MFC are highly influenced by main electron acceptors and have a major influence on current production and N2O accumulation.

  11. Microbiota and environmental stress: how pollution affects microbial communities in Manila clams.

    Science.gov (United States)

    Milan, M; Carraro, L; Fariselli, P; Martino, M E; Cavalieri, D; Vitali, F; Boffo, L; Patarnello, T; Bargelloni, L; Cardazzo, B

    2018-01-01

    Given the crucial role of microbiota in host development, health, and environmental interactions, genomic analyses focusing on host-microbiota interactions should certainly be considered in the investigation of the adaptive mechanisms to environmental stress. Recently, several studies suggested that microbiota associated to digestive tract is a key, although still not fully understood, player that must be considered to assess the toxicity of environmental contaminants. Bacteria-dependent metabolism of xenobiotics may indeed modulate the host toxicity. Conversely, environmental variables (including pollution) may alter the microbial community and/or its metabolic activity leading to host physiological alterations that may contribute to their toxicity. Here, 16s rRNA gene amplicon sequencing has been applied to characterize the hepatopancreas microbiota composition of the Manila clam, Ruditapes philippinarum. The animals were collected in the Venice lagoon area, which is subject to different anthropogenic pressures, mainly represented by the industrial activities of Porto Marghera (PM). Seasonal and geographic differences in clam microbiotas were explored and linked to host response to chemical stress identified in a previous study at the transcriptome level, establishing potential interactions among hosts, microbes, and environmental parameters. The obtained results showed the recurrent presence of putatively detoxifying bacterial taxa in PM clams during winter and over-representation of several metabolic pathways involved in xenobiotic degradation, which suggested the potential for host-microbial synergistic detoxifying actions. Strong interaction between seasonal and chemically-induced responses was also observed, which partially obscured such potentially synergistic actions. Seasonal variables and exposure to toxicants were therefore shown to interact and substantially affect clam microbiota, which appeared to mirror host response to environmental variation. It

  12. Comparison of seasonal soil microbial process in snow-covered temperate ecosystems of northern China.

    Directory of Open Access Journals (Sweden)

    Xinyue Zhang

    Full Text Available More than half of the earth's terrestrial surface currently experiences seasonal snow cover and soil frost. Winter compositional and functional investigations in soil microbial community are frequently conducted in alpine tundra and boreal forest ecosystems. However, little information on winter microbial biogeochemistry is known from seasonally snow-covered temperate ecosystems. As decomposer microbes may differ in their ability/strategy to efficiently use soil organic carbon (SOC within different phases of the year, understanding seasonal microbial process will increase our knowledge of biogeochemical cycling from the aspect of decomposition rates and corresponding nutrient dynamics. In this study, we measured soil microbial biomass, community composition and potential SOC mineralization rates in winter and summer, from six temperate ecosystems in northern China. Our results showed a clear pattern of increased microbial biomass C to nitrogen (N ratio in most winter soils. Concurrently, a shift in soil microbial community composition occurred with higher fungal to bacterial biomass ratio and gram negative (G- to gram positive (G+ bacterial biomass ratio in winter than in summer. Furthermore, potential SOC mineralization rate was higher in winter than in summer. Our study demonstrated a distinct transition of microbial community structure and function from winter to summer in temperate snow-covered ecosystems. Microbial N immobilization in winter may not be the major contributor for plant growth in the following spring.

  13. Microbial extracellular polymeric substances in marine biogeochemical processes

    Digital Repository Service at National Institute of Oceanography (India)

    Bhaskar, P.V.; Bhosle, N.B.

    and are found in free dissolved form, colloids, discreet partcles like TEP and/or associated with particulate matter, including cell aggregates, detritus, biofilms, microbial mats, etc. The chemical composition of EPS is influenced by various factors... of EPS in marine waters. Hence, various aspects of EPS di- cussed hereafter indicate bacterial and/or phyto origin unless specified. Characteristics of EPS Microorganisms grow in free planktonic state16,17 or are ata- ched to surfaces (natural...

  14. Elevated Atmospheric CO2 and Drought Affect Soil Microbial Community and Functional Diversity Associated with Glycine max

    Directory of Open Access Journals (Sweden)

    Junfeng Wang

    2017-12-01

    Full Text Available Abstract Under the background of climate change, the increase of atmospheric CO2 and drought frequency have been considered as significant influencers on the soil microbial communities and the yield and quality of crop. In this study, impacts of increased ambient CO2 and drought on soil microbial structure and functional diversity of a Stagnic Anthrosol were investigated in phytotron growth chambers, by testing two representative CO2 levels, three soil moisture levels, and two soil cover types (with or without Glycine max. The 16S rDNA and 18S rDNA fragments were amplified to analyze the functional diversity of fungi and bacteria. Results showed that rhizosphere microbial biomass and community structure were significantly affected by drought, but effects differed between fungi and bacteria. Drought adaptation of fungi was found to be easier than that of bacteria. The diversity of fungi was less affected by drought than that of bacteria, evidenced by their higher diversity. Severe drought reduced soil microbial functional diversity and restrained the metabolic activity. Elevated CO2 alone, in the absence of crops (bare soil, did not enhance the metabolic activity of soil microorganisms. Generally, due to the co-functioning of plant and soil microorganisms in water and nutrient use, plants have major impacts on the soil microbial community, leading to atmospheric CO2 enrichment, but cannot significantly reduce the impacts of drought on soil microorganisms.

  15. Positive affect improves working memory: implications for controlled cognitive processing.

    Science.gov (United States)

    Yang, Hwajin; Yang, Sujin; Isen, Alice M

    2013-01-01

    This study examined the effects of positive affect on working memory (WM) and short-term memory (STM). Given that WM involves both storage and controlled processing and that STM primarily involves storage processing, we hypothesised that if positive affect facilitates controlled processing, it should improve WM more than STM. The results demonstrated that positive affect, compared with neutral affect, significantly enhanced WM, as measured by the operation span task. The influence of positive affect on STM, however, was weaker. These results suggest that positive affect enhances WM, a task that involves controlled processing, not just storage processing. Additional analyses of recall and processing times and accuracy further suggest that improved WM under positive affect is not attributable to motivational differences, but results instead from improved controlled cognitive processing.

  16. Conditions and processes affecting radionuclide transport

    Science.gov (United States)

    Simmons, Ardyth M.; Neymark, Leonid A.

    2012-01-01

    Characteristics of host rocks, secondary minerals, and fluids would affect the transport of radionuclides from a previously proposed repository at Yucca Mountain, Nevada. Minerals in the Yucca Mountain tuffs that are important for retarding radionuclides include clinoptilolite and mordenite (zeolites), clay minerals, and iron and manganese oxides and hydroxides. Water compositions along flow paths beneath Yucca Mountain are controlled by dissolution reactions, silica and calcite precipitation, and ion-exchange reactions. Radionuclide concentrations along flow paths from a repository could be limited by (1) low waste-form dissolution rates, (2) low radionuclide solubility, and (3) radionuclide sorption onto geological media.

  17. Microbial Protein Production from Candida tropicalis ATCC13803 in a Submerged Batch Fermentation Process

    Directory of Open Access Journals (Sweden)

    Sahar Golaghaiee

    2017-01-01

    Full Text Available Background and Objective: Microbial protein production can resolve one of the major world challenges, i.e. lack of protein sources. Candida tropicalis growth was investigated to specify a medium to reach the highest cell proliferation and protein production.Material and Methods: Fractional factorial design and the index of signal to noise ratio were applied for optimization of microbial protein production. Optimization process was conducted based on the experimental results of Taguchi approach designs. Fermentationwas performed at 25oC and the agitation speed of 300 rpm for 70 h. Ammonium sulfate, iron sulfate, glycine and glucose concentrations were considered as process variables. Optimization of the culture medium composition was conducted in order to obtain the highest cell biomass concentration and protein content. Experiment design was performed based on the Taguchi approach and L-16 orthogonal arrays using Qualitek-4 software.Results and Conclusion: Maximum biomass of 8.72 log (CFU ml-1 was obtained using the optimized medium with 0.3, 0.15, 2 and 80 g l-1 of ammonium sulfate, iron sulfate, glycine and glucose, respectively. Iron sulfate and ammonium sulfate with 41.76% (w w-1 and 35.27% (w w-1 contributions, respectively, were recognized as the main components for cell growth. Glucose and glycine with 17.12% and 5.86% (w w-1 contributions,respectively, also affected cell production. The highest interaction severity index of +54.16% was observed between glycine and glucose while the least one of +0.43% was recorded for ammonium sulfate and glycine. A deviation of 7% between the highestpredicted cell numbers and the experimented count confirms the suitability of the applied statistical method. High protein content of 52.16% (w w-1 as well as low fat and nucleic acids content suggest that Candida tropicalis is a suitable case for commercial processes.Conflict of interest: The authors declare that there is no conflict of interest.

  18. Epigeic earthworms exert a bottleneck effect on microbial communities through gut associated processes.

    Science.gov (United States)

    Gómez-Brandón, María; Aira, Manuel; Lores, Marta; Domínguez, Jorge

    2011-01-01

    Earthworms play a critical role in organic matter decomposition because of the interactions they establish with microorganisms. The ingestion, digestion, assimilation of organic material in the gut and then casting is the first step in earthworm-microorganism interactions. The current knowledge of these direct effects is still limited for epigeic earthworm species, mainly those living in man-made environments. Here we tested whether and to what extent the earthworm Eisenia andrei is capable of altering the microbiological properties of fresh organic matter through gut associated processes; and if these direct effects are related to the earthworm diet. To address these questions we determined the microbial community structure (phospholipid fatty acid profiles) and microbial activity (fluorescein diacetate hydrolysis) in the earthworm casts derived from three types of animal manure (cow, horse and pig manure), which differed in microbial composition. The passage of the organic material through the gut of E. andrei reduced the total microbial biomass irrespective of the type of manure, and resulted in a decrease in bacterial biomass in all the manures; whilst leaving the fungi unaffected in the egested materials. However, unlike the microbial biomass, no such reduction was detected in the total microbial activity of cast samples derived from the pig manure. Moreover, no differences were found between cast samples derived from the different types of manure with regards to microbial community structure, which provides strong evidence for a bottleneck effect of worm digestion on microbial populations of the original material consumed. Our data reveal that earthworm gut is a major shaper of microbial communities, thereby favouring the existence of a reduced but more active microbial population in the egested materials, which is of great importance to understand how biotic interactions within the decomposer food web influence on nutrient cycling.

  19. Epigeic earthworms exert a bottleneck effect on microbial communities through gut associated processes.

    Directory of Open Access Journals (Sweden)

    María Gómez-Brandón

    Full Text Available BACKGROUND: Earthworms play a critical role in organic matter decomposition because of the interactions they establish with microorganisms. The ingestion, digestion, assimilation of organic material in the gut and then casting is the first step in earthworm-microorganism interactions. The current knowledge of these direct effects is still limited for epigeic earthworm species, mainly those living in man-made environments. Here we tested whether and to what extent the earthworm Eisenia andrei is capable of altering the microbiological properties of fresh organic matter through gut associated processes; and if these direct effects are related to the earthworm diet. METHODOLOGY: To address these questions we determined the microbial community structure (phospholipid fatty acid profiles and microbial activity (fluorescein diacetate hydrolysis in the earthworm casts derived from three types of animal manure (cow, horse and pig manure, which differed in microbial composition. PRINCIPAL FINDINGS: The passage of the organic material through the gut of E. andrei reduced the total microbial biomass irrespective of the type of manure, and resulted in a decrease in bacterial biomass in all the manures; whilst leaving the fungi unaffected in the egested materials. However, unlike the microbial biomass, no such reduction was detected in the total microbial activity of cast samples derived from the pig manure. Moreover, no differences were found between cast samples derived from the different types of manure with regards to microbial community structure, which provides strong evidence for a bottleneck effect of worm digestion on microbial populations of the original material consumed. CONCLUSIONS/SIGNIFICANCE: Our data reveal that earthworm gut is a major shaper of microbial communities, thereby favouring the existence of a reduced but more active microbial population in the egested materials, which is of great importance to understand how biotic interactions

  20. Pricing scheme choice: how process affects outcome

    Czech Academy of Sciences Publication Activity Database

    Shestakova, Natalia

    2010-01-01

    Roč. 20, č. 2 (2010), s. 99-129 ISSN 1211-3298 R&D Projects: GA MŠk(CZ) LC542 Institutional research plan: CEZ:MSM0021620846 Keywords : choice process * heuristics * price discrimination Subject RIV: AH - Economics http://www.cerge-ei.cz/pdf/wp/Wp411.pdf

  1. The radiotherapy affects the cognitive processes

    International Nuclear Information System (INIS)

    Anon.

    2009-01-01

    Researchers from the medical center of the free university of Amsterdam report that the radiotherapy can hinder the cognitive functions of patients affected by cerebral tumors treated after a surgery. Even low dose radiation could contribute in their opinion, to the progressive cognitive decline of patients suffering of low grade gliomas, the most commune cerebral tumor. To get these conclusions, 65 patients, whom half of them received a radiotherapy, had a neurological and psychological evaluation twelve years after their treatment. Results: 53% of patients treated by radiotherapy present disorders of attention, memory, execution and speed of information treatment against 27% of these ones that received an only surgery. The researchers conclude to the necessity to take into account this risk in the choice of treatment, or even to avoid radiotherapy in this precise case. (N.C.)

  2. Microbial and Sensory Effects of Combined High Hydrostatic Pressure and Dense Phase Carbon Dioxide Process on Feijoa Puree.

    Science.gov (United States)

    Duong, Trang; Balaban, Murat; Perera, Conrad; Bi, Xiufang

    2015-11-01

    High hydrostatic pressure (HHP) is used for microbial inactivation in foods. Addition of carbon dioxide (CO2) to HHP can improve microbial and enzyme inactivation. This study investigated microbial effects of combined HHP and CO2 on Escherichia coli, Bacillus subtilis, and Saccharomyces cerevisiae, and evaluated sensory attributes of treated feijoa fruit puree (pH 3.2). Microorganisms in their growth media and feijoa puree were treated with HHP alone (HHP), or saturated with CO2 at 1 atm (HHPcarb), or 0.4%w/w of CO2 was injected into the package (HHPcarb+CO2). Microbial samples were processed at 200 to 400 MPa, 25 °C, 2 to 6 min. Feijoa samples were processed at 600 MPa, 20 °C, 5 min, then served with and without added sucrose (10%w/w). Treated samples were analyzed for microbial viability and sensory evaluation. Addition of CO2 enhanced microbial inactivation of HHP from 1.7-log to 4.3-log reduction in E. coli at 400 MPa, 4 min, and reduction of >6.5 logs in B. subtilis (vegetative cells) starting at 200 MPa, 2 min. For yeast, HHPcarb+CO2 increased the inactivation of HHP from 4.7-log to 6.2-log reduction at 250 MPa, 4 min. The synergistic effect of CO2 with HHP increased with increasing time and pressure. HHPcarb+CO2 treatment did not alter the appearance and color, while affecting the texture and flavor of unsweetened feijoa samples. There were no differences in sensory attributes and preferences between HHPcarb+CO2 and fresh sweetened products. Addition of CO2 in HHP treatment can reduce process pressure and time, and better preserve product quality. A higher microbial inactivation of Escherichia coli, Bacillus subtilis and Saccharomyces cerevisiae by combining dense phase carbon dioxide and high hydrostatic pressure was observed. For sweetened products there were no significant differences in sensory attributes and preferences between samples treated by the combined method and the fresh samples. In conclusion, addition of CO2 in HHP treatment of juices could

  3. Redox zone II. Coupled modeling of groundwater flow, solute transport, chemical reactions and microbial processes in the Aespoe island

    Energy Technology Data Exchange (ETDEWEB)

    Samper, Javier; Molinero, Jorge; Changbing Yang; Guoxiang Zhang [Univ. Da Coruna (Spain)

    2003-12-01

    The Redox Zone Experiment was carried out at the Aespoe HRL in order to study the redox behaviour and the hydrochemistry of an isolated vertical fracture zone disturbed by the excavation of an access tunnel. Overall results and interpretation of the Redox Zone Project were reported by Banwart et al. Later, Banwart presented a summary of the hydrochemistry of the Redox Zone Experiment. Coupled groundwater flow and reactive transport models of this experiment were carried out by Molinero who proposed a revised conceptual model for the hydrogeology of the Redox Zone Experiment which could explain simultaneously measured drawdown and salinity data. The numerical model was found useful to understand the natural system. Several conclusions were drawn about the redox conditions of recharge waters, cation exchange capacity of the fracture zone and the role of mineral phases such as pyrite, calcite, hematite and goethite. This model could reproduce the measured trends of dissolved species, except for bicarbonate and sulphate which are affected by microbially-mediated processes. In order to explore the role of microbial processes, a coupled numerical model has been constructed which accounts for water flow, reactive transport and microbial processes. The results of this model is presented in this report. This model accounts for groundwater flow and reactive transport in a manner similar to that of Molinero and extends the preliminary microbial model of Zhang by accounting for microbially-driven organic matter fermentation and organic matter oxidation. This updated microbial model considers simultaneously the fermentation of particulate organic matter by yeast and the oxidation of dissolved organic matter, a product of fermentation. Dissolved organic matter is produced by yeast and serves also as a substrate for iron-reducing bacteria. Model results reproduce the observed increase in bicarbonate and sulfaphe concentration, thus adding additional evidence for the possibility

  4. Redox zone II. Coupled modeling of groundwater flow, solute transport, chemical reactions and microbial processes in the Aespoe island

    International Nuclear Information System (INIS)

    Samper, Javier; Molinero, Jorge; Changbing Yang; Guoxiang Zhang

    2003-12-01

    The Redox Zone Experiment was carried out at the Aespoe HRL in order to study the redox behaviour and the hydrochemistry of an isolated vertical fracture zone disturbed by the excavation of an access tunnel. Overall results and interpretation of the Redox Zone Project were reported by Banwart et al. Later, Banwart presented a summary of the hydrochemistry of the Redox Zone Experiment. Coupled groundwater flow and reactive transport models of this experiment were carried out by Molinero who proposed a revised conceptual model for the hydrogeology of the Redox Zone Experiment which could explain simultaneously measured drawdown and salinity data. The numerical model was found useful to understand the natural system. Several conclusions were drawn about the redox conditions of recharge waters, cation exchange capacity of the fracture zone and the role of mineral phases such as pyrite, calcite, hematite and goethite. This model could reproduce the measured trends of dissolved species, except for bicarbonate and sulphate which are affected by microbially-mediated processes. In order to explore the role of microbial processes, a coupled numerical model has been constructed which accounts for water flow, reactive transport and microbial processes. The results of this model is presented in this report. This model accounts for groundwater flow and reactive transport in a manner similar to that of Molinero and extends the preliminary microbial model of Zhang by accounting for microbially-driven organic matter fermentation and organic matter oxidation. This updated microbial model considers simultaneously the fermentation of particulate organic matter by yeast and the oxidation of dissolved organic matter, a product of fermentation. Dissolved organic matter is produced by yeast and serves also as a substrate for iron-reducing bacteria. Model results reproduce the observed increase in bicarbonate and sulfaphe concentration, thus adding additional evidence for the possibility

  5. Coupled modeling of groundwater flow solute transport, chemical reactions and microbial processes in the 'SP' island

    Energy Technology Data Exchange (ETDEWEB)

    Samper, Javier; Molinero, Jorg; Changbing, Yang; Zhang, Guoxiang

    2003-12-01

    The Redox Zone Experiment was carried out at the Aespoe HRL in order to study the redox behavior and the hydrochemistry of an isolated vertical fracture zone disturbed by the excavation of an access tunnel. Overall results and interpretation of the Redox Zone Project were reported by /Banwart et al, 1995/. Later, /Banwart et al, 1999/ presented a summary of the hydrochemistry of the Redox Zone Experiment. Coupled groundwater flow and reactive transport models of this experiment were carried out by /Molinero, 2000/ who proposed a revised conceptual model for the hydrogeology of the Redox Zone Experiment which could explain simultaneously measured drawdown and salinity data. The numerical model was found useful to understand the natural system. Several conclusions were drawn about the redox conditions of recharge waters, cation exchange capacity of the fracture zone and the role of mineral phases such as pyrite, calcite, hematite and goethite. This model could reproduce the measured trends of dissolved species, except for bicarbonate and sulfate which are affected by microbially-mediated processes. In order to explore the role of microbial processes, a coupled numerical model has been constructed which accounts for water flow, reactive transport and microbial processes. The results of this model is presented in this report. This model accounts for groundwater flow and reactive transport in a manner similar to that of /Molinero, 2000/ and extends the preliminary microbial model of /Zhang, 2001/ by accounting for microbially-driven organic matter fermentation and organic matter oxidation. This updated microbial model considers simultaneously the fermentation of particulate organic matter by yeast and the oxidation of dissolved organic matter, a product of fermentation. Dissolved organic matter is produced by yeast and serves also as a substrate for iron-reducing bacteria. Model results reproduce the observed increase in bicarbonate and sulfate concentration, thus

  6. Antibiotic Treatment Affects Intestinal Permeability and Gut Microbial Composition in Wistar Rats Dependent on Antibiotic Class.

    Directory of Open Access Journals (Sweden)

    Monica Vera-Lise Tulstrup

    Full Text Available Antibiotics are frequently administered orally to treat bacterial infections not necessarily related to the gastrointestinal system. This has adverse effects on the commensal gut microbial community, as it disrupts the intricate balance between specific bacterial groups within this ecosystem, potentially leading to dysbiosis. We hypothesized that modulation of community composition and function induced by antibiotics affects intestinal integrity depending on the antibiotic administered. To address this a total of 60 Wistar rats (housed in pairs with 6 cages per group were dosed by oral gavage with either amoxicillin (AMX, cefotaxime (CTX, vancomycin (VAN, metronidazole (MTZ, or water (CON daily for 10-11 days. Bacterial composition, alpha diversity and caecum short chain fatty acid levels were significantly affected by AMX, CTX and VAN, and varied among antibiotic treatments. A general decrease in diversity and an increase in the relative abundance of Proteobacteria was observed for all three antibiotics. Additionally, the relative abundance of Bifidobacteriaceae was increased in the CTX group and both Lactobacillaceae and Verrucomicrobiaceae were increased in the VAN group compared to the CON group. No changes in microbiota composition or function were observed following MTZ treatment. Intestinal permeability to 4 kDa FITC-dextran decreased after CTX and VAN treatment and increased following MTZ treatment. Plasma haptoglobin levels were increased by both AMX and CTX but no changes in expression of host tight junction genes were found in any treatment group. A strong correlation between the level of caecal succinate, the relative abundance of Clostridiaceae 1 family in the caecum, and the level of acute phase protein haptoglobin in blood plasma was observed. In conclusion, antibiotic-induced changes in microbiota may be linked to alterations in intestinal permeability, although the specific interactions remain to be elucidated as changes in

  7. Regulation of electron transfer processes affects phototrophic mat structure and activity

    OpenAIRE

    Ha, Phuc T.; Renslow, Ryan S.; Atci, Erhan; Reardon, Patrick N.; Lindemann, Stephen R.; Fredrickson, James K.; Call, Douglas R.; Beyenal, Haluk

    2015-01-01

    Phototrophic microbial mats are among the most diverse ecosystems in nature. These systems undergo daily cycles in redox potential caused by variations in light energy input and metabolic interactions among the microbial species. In this work, solid electrodes with controlled potentials were placed under mats to study the electron transfer processes between the electrode and the microbial mat. The phototrophic microbial mat was harvested from Hot Lake, a hypersaline, epsomitic lake located ne...

  8. Microbial biomass in faeces of dairy cows affected by a nitrogen deficient diet.

    Science.gov (United States)

    Jost, Daphne Isabel; Aschemann, Martina; Lebzien, Peter; Joergensen, Rainer Georg; Sundrum, Albert

    2013-04-01

    Since more than half of the faecal nitrogen (N) originates from microbial N, the objective of the study was to develop a method for quantitatively detecting microbial biomass and portion of living microorganisms in dairy cattle faeces, including bacteria, fungi and archaea. Three techniques were tested: (1) the chloroform fumigation extraction (CFE) method, (2) detection of the fungal cell-membrane component ergosterol and (3) analysis of the cell wall components fungal glucosamine and bacterial muramic acid. In a second step, an N deficient (ND) and an N balanced (NB) diets were compared with respect to the impacts on faecal C and N fractions, microbial indices and digestibility. The mean values of microbial biomass C and N concentrations averaged around 37 and 4.9 mg g(-1) DM, respectively. Ergosterol, together with fungal glucosamine and bacterial muramic acid, revealed a 25% fungal C in relation to the total microbial C content in dairy cattle faeces. Changes in ruminal N supply showed significant effects on faecal composition. Faecal concentrations of NDF, hemicelluloses and undigested dietary N and the total C/N ratio were significantly higher in ND treatment compared to the NB treatment. N deficiency was reflected also by a higher microbial biomass C/N ratio. It was concluded that the assessment of microbial indices provides valuable information with respect to diet effects on faecal composition and the successive decomposition. Further studies should be conducted to explore the potentials for minimising nutrient losses from faeces.

  9. Elaboration Likelihood and the Counseling Process: The Role of Affect.

    Science.gov (United States)

    Stoltenberg, Cal D.; And Others

    The role of affect in counseling has been examined from several orientations. The depth of processing model views the efficiency of information processing as a function of the extent to which the information is processed. The notion of cognitive processing capacity states that processing information at deeper levels engages more of one's limited…

  10. Microbial composition in a deep saline aquifer in the North German Basin -microbiologically induced corrosion and mineral precipitation affecting geothermal plant operation and the effects of plant downtime

    Science.gov (United States)

    Lerm, Stephanie; Westphal, Anke; Miethling-Graff, Rona; Alawi, Mashal; Seibt, Andrea; Wolfgramm, Markus; Würdemann, Hilke

    2013-04-01

    The microbial composition in fluids of a deep saline geothermal used aquifer in the North German Basin was characterized over a period of five years. The genetic fingerprinting techniques PCR-SSCP and PCR-DGGE revealed distinct microbial communities in fluids produced from the cold and warm side of the aquifer. Direct cell counting and quantification of 16S rRNA genes and dissimilatory sulfite reductase (dsrA) genes by real-time PCR proved different population sizes in fluids, showing higher abundance of Bacteria and sulfate reducing bacteria (SRB) in cold fluids compared to warm fluids. Predominating SRB in the cold well probably accounted for corrosion damage to the submersible well pump, and iron sulfide precipitates in the near wellbore area and topside facility filters. This corresponded to a lower sulfate content in fluids produced from the cold well as well as higher content of hydrogen gas that was probably released from corrosion, and maybe favoured growth of hydrogenotrophic SRB. Plant downtime significantly influenced the microbial biocenosis in fluids. Samples taken after plant restart gave indications about the processes occurring downhole during those phases. High DNA concentrations in fluids at the beginning of the restart process with a decreasing trend over time indicated a higher abundance of microbes during plant downtime compared to regular plant operation. It is likely that a gradual drop in temperature as well as stagnant conditions favoured the growth of microbes and maturation of biofilms at the casing and in pores of the reservoir rock in the near wellbore area. Furthermore, it became obvious that the microorganisms were more associated to particles then free-living. This study reflects the high influence of microbial populations for geothermal plant operation, because microbiologically induced precipitative and corrosive processes adversely affect plant reliability. Those processes may favourably occur during plant downtime due to enhanced

  11. Advances in microbial leaching processes for nickel extraction from lateritic minerals - A review

    International Nuclear Information System (INIS)

    Behra, Sunil Kumar; Mulaba-Bafubiandi, Antoine Floribert

    2015-01-01

    Lateritic nickel minerals constitute about 80% of nickel reserves in the world, but their contribution for nickel production is about 40%. The obstacles in extraction of nickel from lateritic minerals are attributed to their very complex mineralogy and low nickel content. Hence, the existing metallurgical techniques are not techno-economically feasible and environmentally sustainable for processing of such complex deposits. At this juncture, microbial mineral processing could be a benevolent approach for processing of lateritic minerals in favor of nickel extraction. The microbial mineral processing route offers many advantages over conventional metallurgical methods as the process is operated under ambient conditions and requires low energy input; thus these processes are relatively simple and environment friendly. Microbial processing of the lateritic deposits still needs improvement to make it industrially viable. Microorganisms play the pivotal role in mineral bio-processing as they catalyze the extraction of metals from minerals. So it is inevitable to explore the physiological and bio-molecular mechanisms involved in this microbe-mineral interaction. The present article offers comprehensive information about the advances in microbial processes for extraction of nickel from laterites.

  12. Advances in microbial leaching processes for nickel extraction from lateritic minerals - A review

    Energy Technology Data Exchange (ETDEWEB)

    Behra, Sunil Kumar; Mulaba-Bafubiandi, Antoine Floribert [Faculty of Engineering and the Built Environment, University of Johannesburg, (South Africa)

    2015-08-15

    Lateritic nickel minerals constitute about 80% of nickel reserves in the world, but their contribution for nickel production is about 40%. The obstacles in extraction of nickel from lateritic minerals are attributed to their very complex mineralogy and low nickel content. Hence, the existing metallurgical techniques are not techno-economically feasible and environmentally sustainable for processing of such complex deposits. At this juncture, microbial mineral processing could be a benevolent approach for processing of lateritic minerals in favor of nickel extraction. The microbial mineral processing route offers many advantages over conventional metallurgical methods as the process is operated under ambient conditions and requires low energy input; thus these processes are relatively simple and environment friendly. Microbial processing of the lateritic deposits still needs improvement to make it industrially viable. Microorganisms play the pivotal role in mineral bio-processing as they catalyze the extraction of metals from minerals. So it is inevitable to explore the physiological and bio-molecular mechanisms involved in this microbe-mineral interaction. The present article offers comprehensive information about the advances in microbial processes for extraction of nickel from laterites.

  13. Structure and function of subsurface microbial communities affecting radionuclide transport and bioimmobilization

    Energy Technology Data Exchange (ETDEWEB)

    Kostka, Joel E. [Florida State Univ., Tallahassee, FL (United States); Prakash, Om [Florida State Univ., Tallahassee, FL (United States); Green, Stefan J. [Florida State Univ., Tallahassee, FL (United States); Akob, Denise [Florida State Univ., Tallahassee, FL (United States); Jasrotia, Puja [Florida State Univ., Tallahassee, FL (United States); Kerkhof, Lee [Rutgers Univ., New Brunswick, NJ (United States); Chin, Kuk-Jeong [Georgia State Univ., Atlanta, GA (United States); Sheth, Mili [Georgia State Univ., Atlanta, GA (United States); Keller, Martin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Venkateswaran, Amudhan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Elkins, James G. [Univ. of Illinois, Urbana-Champaign, IL (United States); Stucki, Joseph W. [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2012-05-01

    Our objectives were to: 1) isolate and characterize novel anaerobic prokaryotes from subsurface environments exposed to high levels of mixed contaminants (U(VI), nitrate, sulfate), 2) elucidate the diversity and distribution of metabolically active metal- and nitrate-reducing prokaryotes in subsurface sediments, and 3) determine the biotic and abiotic mechanisms linking electron transport processes (nitrate, Fe(III), and sulfate reduction) to radionuclide reduction and immobilization. Mechanisms of electron transport and U(VI) transformation were examined under near in situ conditions in sediment microcosms and in field investigations. Field sampling was conducted at the Oak Ridge Field Research Center (ORFRC), in Oak Ridge, Tennessee. The ORFRC subsurface is exposed to mixed contamination predominated by uranium and nitrate. In short, we effectively addressed all 3 stated objectives of the project. In particular, we isolated and characterized a large number of novel anaerobes with a high bioremediation potential that can be used as model organisms, and we are now able to quantify the function of subsurface sedimentary microbial communities in situ using state-of-the-art gene expression methods (molecular proxies).

  14. New concepts of microbial treatment processes for the nitrogen removal: effect of protein and amino acids degradation.

    Science.gov (United States)

    González-Martínez, Alejandro; Calderón, Kadiya; González-López, Jesús

    2016-05-01

    High concentrations of proteins and amino acids can be found in wastewater and wastewater stream produced in anaerobic digesters, having shown that amino acids could persist over different managements for nitrogen removal affecting the nitrogen removal processes. Nitrogen removal is completely necessary because of their implications and the significant adverse environmental impact of ammonium such as eutrophication and toxicity to aquatic life on the receiving bodies. In the last decade, the treatment of effluents with high ammonium concentration through anammox-based bioprocesses has been enhanced because these biotechnologies are cheaper and more environmentally friendly than conventional technologies. However, it has been shown that the presence of important amounts of proteins and amino acids in the effluents seriously affects the microbial autotrophic consortia leading to important losses in terms of ammonium oxidation efficiency. Particularly the presence of sulfur amino acids such as methionine and cysteine has been reported to drastically decrease the autotrophic denitrification processes as well as affect the microbial community structure promoting the decline of ammonium oxidizing bacteria in favor of other phylotypes. In this context we discuss that new biotechnological processes that improve the degradation of protein and amino acids must be considered as a priority to increase the performance of the autotrophic denitrification biotechnologies.

  15. Progresses in the stable isotope studies of microbial processes associated with wetland methane production

    International Nuclear Information System (INIS)

    Li Qing; Lin Guanghui

    2013-01-01

    Methane emissions from wetlands play a key role in regulating global atmospheric methane concentration, so better understanding of microbial processes for the methane emission in wetlands is critical for developing process models and reducing uncertainty in global methane emission inventory. In this review, we describe basic microbial processes for wetland methane production and then demonstrate how stable isotope fractionation and stable isotope probing can be used to investigate the mechanisms underlying different methanogenic pathways and to quantify microbial species involved in wetland methane production. When applying stable isotope technique to calculate contributions of different pathways to the total methane production in various wetlands, the technical challenge is how to determine isotopic fractionation factors for the acetate derived methane production and carbon dioxide derived methane production. Although the application of stable isotope probing techniques to study the actual functions of different microbial organisms to methane production process is significantly superior to the traditional molecular biology method, the combination of these two technologies will be crucial for direct linking of the microbial community and functional structure with the corresponding metabolic functions, and provide new ideas for future studies. (authors)

  16. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession

    NARCIS (Netherlands)

    Dini-Andreote, Francisco; Stegen, James C.; van Elsas, Jan Dirk; Salles, Joana Falcao

    2015-01-01

    Ecological succession and the balance between stochastic and deterministic processes are two major themes within microbial ecology, but these conceptual domains have mostly developed independent of each other. Here we provide a framework that integrates shifts in community assembly processes with

  17. Technical difficulties and solutions of direct transesterification process of microbial oil for biodiesel synthesis.

    Science.gov (United States)

    Yousuf, Abu; Khan, Maksudur Rahman; Islam, M Amirul; Wahid, Zularisam Ab; Pirozzi, Domenico

    2017-01-01

    Microbial oils are considered as alternative to vegetable oils or animal fats as biodiesel feedstock. Microalgae and oleaginous yeast are the main candidates of microbial oil producers' community. However, biodiesel synthesis from these sources is associated with high cost and process complexity. The traditional transesterification method includes several steps such as biomass drying, cell disruption, oil extraction and solvent recovery. Therefore, direct transesterification or in situ transesterification, which combines all the steps in a single reactor, has been suggested to make the process cost effective. Nevertheless, the process is not applicable for large-scale biodiesel production having some difficulties such as high water content of biomass that makes the reaction rate slower and hurdles of cell disruption makes the efficiency of oil extraction lower. Additionally, it requires high heating energy in the solvent extraction and recovery stage. To resolve these difficulties, this review suggests the application of antimicrobial peptides and high electric fields to foster the microbial cell wall disruption.

  18. Microbial Community-Level Physiological Profiles (CLPP) and herbicide mineralization potential in groundwater affected by agricultural land use

    DEFF Research Database (Denmark)

    Janniche, Gry Sander; Spliid, Henrik; Albrechtsen, Hans-Jørgen

    2012-01-01

    Diffuse groundwater pollution from agricultural land use may impact the microbial groundwater community, which was investigated as Community-Level Physiological Profiles (CLPP) using EcoPlate™. Water was sampled from seven piezometers and a spring in a small agricultural catchment with diffuse......-galacturonic acid, tween 40, and 4-hydroxy benzoic acid as substrates, whereas none preferred 2-hydroxy benzoic acid, α-d-lactose, d,l-α-glycerol phosphate, α-ketobutyric acid, l-threonine and glycyl-l-glutamic acid. Principal Component Analysis of the CLPP's clustered the most agriculturally affected groundwater...... samples, indicating that the agricultural land use affects the groundwater microbial communities. Furthermore, the ability to mineralize atrazine and isoproturon, which have been used in the catchment, was also associated with this cluster....

  19. Microbial processes at the beds of glaciers and ice sheets: a look at life below the Whillans Ice Stream

    Science.gov (United States)

    Mikucki, J.; Campen, R.; Vancleave, S.; Scherer, R. P.; Coenen, J. J.; Powell, R. D.; Tulaczyk, S. M.

    2017-12-01

    Groundwater, saturated sediments and hundreds of subglacial lakes exist below the ice sheets of Antarctica. The few Antarctic subglacial environments sampled to date all contain viable microorganisms. This is a significant finding because microbes are known to be key in mediating biogeochemical cycles. In sediments, microbial metabolic activity can also result in byproducts or direct interactions with sediment particles that influence the physical and geochemical characteristics of the matrix they inhabit. Subglacial Lake Whillans (SLW), a fresh water lake under the Whillans Ice Stream that drains into the Ross Sea at its grounding zone, was recently sampled as part of the NSF-funded Whillans Ice Stream Subglacial Access Research Drilling (WISSARD) project. Sediments from both SLW and its grounding zone contain microbial taxa related to iron, sulfur, nitrogen and methane oxidizers. In addition to molecular data, biogeochemical measurements and culture based experiments on Whillans sediments support the notion that the system is chemosynthetic with energy derived in part by cycling inorganic compounds. Etch pitting and mineral precipitates on fossil sponge spicules suggest that spicules may also provide microbial nutrients in these environments. Perhaps the most widespread microbial process that affects sediment structure and mineral weathering is the production of extra polymeric substances (EPS). Several phylogenetic groups detected in Whillans sediments are known to produce EPS and we have observed its production in pure cultures enriched directly from these sediments. Our data sheds light on how microbial life persists below the Antarctic Ice Sheet despite extended isolation in icy darkness, and how these microbes may be shaping their environment.

  20. A meta-proteomics approach to study the interspecies interactions affecting microbial biofilm development in a model community

    DEFF Research Database (Denmark)

    Herschend, Jakob; Damholt, Zacharias Brimnes Visby; Marquard, Andrea Marion

    2017-01-01

    Microbial biofilms are omnipresent in nature and relevant to a broad spectrum of industries ranging from bioremediation and food production to biomedical applications. To date little is understood about how multi-species biofilm communities develop and function on a molecular level, due...... of fermentation and nitrogen pathways in Paenibacillus amylolyticus and Xanthomonas retroflexus may, however, indicate that competition for limited resources also affects community development. Overall our results demonstrate the multitude of pathways involved in biofilm formation in mixed communities....

  1. Biogeochemical Processes Controlling Microbial Reductive Precipitation of Radionuclides

    International Nuclear Information System (INIS)

    Fredrickson, James K.; Brooks, Scott C.

    2004-01-01

    This project is focused on elucidating the principal biogeochemical reactions that govern the concentrations, chemical speciation, and distribution of the redox sensitive contaminants uranium (U) and technetium (Tc) between the aqueous and solid phases. The research is designed to provide new insights into the under-explored areas of competing geochemical and microbiological oxidation-reduction reactions that govern the fate and transport of redox sensitive contaminants and to generate fundamental scientific understanding of the identity and stoichiometry of competing microbial reduction and geochemical oxidation reactions. These goals and objectives are met through a series of hypothesis-driven tasks that focus on (1) the use of well-characterized microorganisms and synthetic and natural mineral oxidants, (2) advanced spectroscopic and microscopic techniques to monitor redox transformations of U and Tc, and (3) the use of flow-through experiments to more closely approximate groundwater environments. The results are providing an improved understanding and predictive capability of the mechanisms that govern the redox dynamics of radionuclides in subsurface environments. For purposes of this poster, the results are divided into three sections: (1) influence of Ca on U(VI) bioreduction; (2) localization of biogenic UO 2 and TcO 2 ; and (3) reactivity of Mn(III/IV) oxides.

  2. Development and application of microbial selective plugging processes

    Energy Technology Data Exchange (ETDEWEB)

    Jenneman, G.E. [Phillips Petroleum Co., Bartlesville, OK (United States); Gevertz, D.; Davey, M.E. [Agouron Institute, La Jolla, CA (United States)] [and others

    1995-12-31

    Phillips Petroleum Company recently completed a microbial selective plugging (MSP) pilot at the North Burbank Unit (NBU), Shidler, Oklahoma. Nutrients were selected for the pilot that could stimulate indigenous microflora in the reservoir brine to grow and produce exopolymer. It was found that soluble corn starch polymers (e.g., maltodextrins) stimulated the indigenous bacteria to produce exopolymer, whereas simple sugars (e.g., glucose and sucrose), as well as complex media (e.g., molasses and Nutrient Broth), did not. Injection of maltodextrin into rock cores in the presence of indigenous NBU bacteria resulted in stable permeability reductions (> 90%) across the entire length, while injection of glucose resulted only in face plugging. In addition, it was found that organic phosphate esters (OPE) served as a preferable source of phosphorus for the indigenous bacteria, since orthophosphates and condensed phosphates precipitated in NBU brine at reservoir temperature (45{degrees}C). Injection of maltodextrin and ethyl acid phosphate into a producing well stimulated an increase in maltodextrin utilizing bacteria (MUB) in the back-flowed, produced fluid. Additional screens of indigenous and nonindigenous bacteria yielded several nonindigenous isolates that could synthesize polymer when growing in brine containing 6% NaCl at 45{degrees}C.

  3. Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell

    KAUST Repository

    Wang, Aijie

    2011-03-01

    Hydrogen gas production from cellulose was investigated using an integrated hydrogen production process consisting of a dark fermentation reactor and microbial fuel cells (MFCs) as power sources for a microbial electrolysis cell (MEC). Two MFCs (each 25mL) connected in series to an MEC (72mL) produced a maximum of 0.43V using fermentation effluent as a feed, achieving a hydrogen production rate from the MEC of 0.48m 3 H 2/m 3/d (based on the MEC volume), and a yield of 33.2mmol H 2/g COD removed in the MEC. The overall hydrogen production for the integrated system (fermentation, MFC and MEC) was increased by 41% compared with fermentation alone to 14.3mmol H 2/g cellulose, with a total hydrogen production rate of 0.24m 3 H 2/m 3/d and an overall energy recovery efficiency of 23% (based on cellulose removed) without the need for any external electrical energy input. © 2010 Elsevier Ltd.

  4. Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell.

    Science.gov (United States)

    Wang, Aijie; Sun, Dan; Cao, Guangli; Wang, Haoyu; Ren, Nanqi; Wu, Wei-Min; Logan, Bruce E

    2011-03-01

    Hydrogen gas production from cellulose was investigated using an integrated hydrogen production process consisting of a dark fermentation reactor and microbial fuel cells (MFCs) as power sources for a microbial electrolysis cell (MEC). Two MFCs (each 25 mL) connected in series to an MEC (72 mL) produced a maximum of 0.43 V using fermentation effluent as a feed, achieving a hydrogen production rate from the MEC of 0.48 m(3) H(2)/m(3)/d (based on the MEC volume), and a yield of 33.2 mmol H(2)/g COD removed in the MEC. The overall hydrogen production for the integrated system (fermentation, MFC and MEC) was increased by 41% compared with fermentation alone to 14.3 mmol H(2)/g cellulose, with a total hydrogen production rate of 0.24 m(3) H(2)/m(3)/d and an overall energy recovery efficiency of 23% (based on cellulose removed) without the need for any external electrical energy input. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Triclosan affects the microbial community in simulated sewage-drain-field soil and slows down xenobiotic degradation

    Energy Technology Data Exchange (ETDEWEB)

    Svenningsen, Hanne [Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Oster Voldgade 10, DK-1350 Copenhagen K (Denmark); Department of Biology, University of Copenhagen, Solvgade 83H, DK-1307 Copenhagen K (Denmark); Henriksen, Trine [Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Oster Voldgade 10, DK-1350 Copenhagen K (Denmark); Prieme, Anders [Department of Biology, University of Copenhagen, Solvgade 83H, DK-1307 Copenhagen K (Denmark); Johnsen, Anders R., E-mail: arj@geus.dk [Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Oster Voldgade 10, DK-1350 Copenhagen K (Denmark)

    2011-06-15

    Effects of the common antibacterial agent triclosan on microbial communities and degradation of domestic xenobiotics were studied in simulated sewage-drain-field soil. Cultivable microbial populations decreased 22-fold in the presence of 4 mg kg{sup -1} of triclosan, and triclosan-resistant Pseudomonas strains were strongly enriched. Exposure to triclosan also changed the general metabolic profile (Ecoplate substrate profiling) and the general profile (T-RFLP) of the microbial community. Triclosan degradation was slow at all concentrations tested (0.33-81 mg kg{sup -1}) during 50-days of incubation. Mineralization experiments ({sup 14}C-tracers) and chemical analyses (LC-MS/MS) showed that the persistence of a linear alkylbenzene sulfonate (LAS) and a common analgesic (ibuprofen) increased with increasing triclosan concentrations (0.16-100 mg kg{sup -1}). The largest effect was seen for LAS mineralization which was severely reduced by 0.16 mg kg{sup -1} of triclosan. Our findings indicate that environmentally realistic concentrations of triclosan may affect the efficiency of biodegradation in percolation systems. - Highlights: > Triclosan may enter the soil environment through sewage. > Triclosan impacts the microbial community in sewage-drain-field soil. > Triclosan-resistant pseudomonads are strongly enriched. > Degradation of co-occurring LAS and ibuprofen is reduced. - Environmentally realistic triclosan concentrations in percolation systems may reduce the biodegradation of other xenobiotics and select for triclosan-resistant bacteria.

  6. Triclosan affects the microbial community in simulated sewage-drain-field soil and slows down xenobiotic degradation

    International Nuclear Information System (INIS)

    Svenningsen, Hanne; Henriksen, Trine; Prieme, Anders; Johnsen, Anders R.

    2011-01-01

    Effects of the common antibacterial agent triclosan on microbial communities and degradation of domestic xenobiotics were studied in simulated sewage-drain-field soil. Cultivable microbial populations decreased 22-fold in the presence of 4 mg kg -1 of triclosan, and triclosan-resistant Pseudomonas strains were strongly enriched. Exposure to triclosan also changed the general metabolic profile (Ecoplate substrate profiling) and the general profile (T-RFLP) of the microbial community. Triclosan degradation was slow at all concentrations tested (0.33-81 mg kg -1 ) during 50-days of incubation. Mineralization experiments ( 14 C-tracers) and chemical analyses (LC-MS/MS) showed that the persistence of a linear alkylbenzene sulfonate (LAS) and a common analgesic (ibuprofen) increased with increasing triclosan concentrations (0.16-100 mg kg -1 ). The largest effect was seen for LAS mineralization which was severely reduced by 0.16 mg kg -1 of triclosan. Our findings indicate that environmentally realistic concentrations of triclosan may affect the efficiency of biodegradation in percolation systems. - Highlights: → Triclosan may enter the soil environment through sewage. → Triclosan impacts the microbial community in sewage-drain-field soil. → Triclosan-resistant pseudomonads are strongly enriched. → Degradation of co-occurring LAS and ibuprofen is reduced. - Environmentally realistic triclosan concentrations in percolation systems may reduce the biodegradation of other xenobiotics and select for triclosan-resistant bacteria.

  7. Inferring Group Processes from Computer-Mediated Affective Text Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Schryver, Jack C [ORNL; Begoli, Edmon [ORNL; Jose, Ajith [Missouri University of Science and Technology; Griffin, Christopher [Pennsylvania State University

    2011-02-01

    Political communications in the form of unstructured text convey rich connotative meaning that can reveal underlying group social processes. Previous research has focused on sentiment analysis at the document level, but we extend this analysis to sub-document levels through a detailed analysis of affective relationships between entities extracted from a document. Instead of pure sentiment analysis, which is just positive or negative, we explore nuances of affective meaning in 22 affect categories. Our affect propagation algorithm automatically calculates and displays extracted affective relationships among entities in graphical form in our prototype (TEAMSTER), starting with seed lists of affect terms. Several useful metrics are defined to infer underlying group processes by aggregating affective relationships discovered in a text. Our approach has been validated with annotated documents from the MPQA corpus, achieving a performance gain of 74% over comparable random guessers.

  8. Microbial processes in the Kanda Bay, a meromictic water body artifically separated from the White Sea.

    Science.gov (United States)

    Savvichev, A S; Demidenko, N A; Krasnova, E D; Kalmatskaya, O V; Kharcheva, A N; Ivanov, M V

    2017-05-01

    Sings of meromixis are found by means of microbiological and biogeochemical investigations in the southernn part of the Kanda Bay, an artificial water body separated front the White Sea with a railway dam. The concentration of oxygen in the bottom layer attained 1.9 mmol/L, intensity of the process of microbial sulfate reduction, 3.0 μmol of sulfur/(L day). The concentration of dissolved methane, 3.7 μmol/L. Isotopic composition of carbon in methane (δ 13 C (CH 4 ) =-79.2‰) indicates to its microbial genesis. At present, Kanda Bay is a sole in Russia man-made marine water body for which there are data on the rate of microbial processes responsible for formation of bottom water layer containing hydrogen sulfide and methane.

  9. The porous surface model, a novel experimental system for online quantitative observation of microbial processes under unsaturated conditions

    DEFF Research Database (Denmark)

    Dechesne, Arnaud; Or, D.; Gulez, Gamze

    2008-01-01

    Water is arguably the most important constituent of microbial microhabitats due to its control of physical and physiological processes critical to microbial activity. In natural environments, bacteria often live on unsaturated surfaces, in thin (micrometric) liquid films. Nevertheless, no experim....... The PSM constitutes a tool uniquely adapted to study the influence of liquid film geometry on microbial processes. It should therefore contribute to uncovering mechanisms of microbial adaptation to unsaturated environments.......Water is arguably the most important constituent of microbial microhabitats due to its control of physical and physiological processes critical to microbial activity. In natural environments, bacteria often live on unsaturated surfaces, in thin (micrometric) liquid films. Nevertheless......, no experimental systems are available that allow real-time observation of bacterial processes in liquid films of controlled thickness. We propose a novel, inexpensive, easily operated experimental platform, termed the porous surface model (PSM) that enables quantitative real-time microscopic observations...

  10. Monkeys preferentially process body information while viewing affective displays.

    Science.gov (United States)

    Bliss-Moreau, Eliza; Moadab, Gilda; Machado, Christopher J

    2017-08-01

    Despite evolutionary claims about the function of facial behaviors across phylogeny, rarely are those hypotheses tested in a comparative context-that is, by evaluating how nonhuman animals process such behaviors. Further, while increasing evidence indicates that humans make meaning of faces by integrating contextual information, including that from the body, the extent to which nonhuman animals process contextual information during affective displays is unknown. In the present study, we evaluated the extent to which rhesus macaques (Macaca mulatta) process dynamic affective displays of conspecifics that included both facial and body behaviors. Contrary to hypotheses that they would preferentially attend to faces during affective displays, monkeys looked for longest, most frequently, and first at conspecifics' bodies rather than their heads. These findings indicate that macaques, like humans, attend to available contextual information during the processing of affective displays, and that the body may also be providing unique information about affective states. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  11. Long-term nitrogen addition affects the phylogenetic turnover of soil microbial community responding to moisture pulse.

    Science.gov (United States)

    Liu, Chi; Yao, Minjie; Stegen, James C; Rui, Junpeng; Li, Jiabao; Li, Xiangzhen

    2017-12-13

    How press disturbance (long-term) influences the phylogenetic turnover of soil microbial communities responding to pulse disturbances (short-term) is not fully known. Understanding the complex connections between the history of environmental conditions, assembly processes and microbial community dynamics is necessary to predict microbial response to perturbation. We started by investigating phylogenetic spatial turnover (based on DNA) of soil prokaryotic communities after long-term nitrogen (N) deposition and temporal turnover (based on RNA) of communities responding to pulse by conducting short-term rewetting experiments. The results showed that moderate N addition increased ecological stochasticity and phylogenetic diversity. In contrast, high N addition slightly increased homogeneous selection and decreased phylogenetic diversity. Examining the system with higher phylogenetic resolution revealed a moderate contribution of variable selection across the whole N gradient. The moisture pulse experiment showed that high N soils had higher rates of phylogenetic turnover across short phylogenetic distances and significant changes in community compositions through time. Long-term N input history influenced spatial turnover of microbial communities, but the dominant community assembly mechanisms differed across different N deposition gradients. We further revealed an interaction between press and pulse disturbances whereby deterministic processes were particularly important following pulse disturbances in high N soils.

  12. Rhizosphere Microbial Community Composition Affects Cadmium and Zinc Uptake by the Metal-Hyperaccumulating Plant Arabidopsis halleri

    Science.gov (United States)

    Muehe, E. Marie; Weigold, Pascal; Adaktylou, Irini J.; Planer-Friedrich, Britta; Kraemer, Ute; Kappler, Andreas

    2015-01-01

    The remediation of metal-contaminated soils by phytoextraction depends on plant growth and plant metal accessibility. Soil microorganisms can affect the accumulation of metals by plants either by directly or indirectly stimulating plant growth and activity or by (im)mobilizing and/or complexing metals. Understanding the intricate interplay of metal-accumulating plants with their rhizosphere microbiome is an important step toward the application and optimization of phytoremediation. We compared the effects of a “native” and a strongly disturbed (gamma-irradiated) soil microbial communities on cadmium and zinc accumulation by the plant Arabidopsis halleri in soil microcosm experiments. A. halleri accumulated 100% more cadmium and 15% more zinc when grown on the untreated than on the gamma-irradiated soil. Gamma irradiation affected neither plant growth nor the 1 M HCl-extractable metal content of the soil. However, it strongly altered the soil microbial community composition and overall cell numbers. Pyrosequencing of 16S rRNA gene amplicons of DNA extracted from rhizosphere samples of A. halleri identified microbial taxa (Lysobacter, Streptomyces, Agromyces, Nitrospira, “Candidatus Chloracidobacterium”) of higher relative sequence abundance in the rhizospheres of A. halleri plants grown on untreated than on gamma-irradiated soil, leading to hypotheses on their potential effect on plant metal uptake. However, further experimental evidence is required, and wherefore we discuss different mechanisms of interaction of A. halleri with its rhizosphere microbiome that might have directly or indirectly affected plant metal accumulation. Deciphering the complex interactions between A. halleri and individual microbial taxa will help to further develop soil metal phytoextraction as an efficient and sustainable remediation strategy. PMID:25595759

  13. Microbial Functional Diversity, Biomass and Activity as Affected by Soil Surface Mulching in a Semiarid Farmland.

    Directory of Open Access Journals (Sweden)

    Yufang Shen

    Full Text Available Mulching is widely used to increase crop yield in semiarid regions in northwestern China, but little is known about the effect of different mulching systems on the microbial properties of the soil, which play an important role in agroecosystemic functioning and nutrient cycling. Based on a 4-year spring maize (Zea mays L. field experiment at Changwu Agricultural and Ecological Experimental Station, Shaanxi, we evaluated the responses of soil microbial activity and crop to various management systems. The treatments were NMC (no mulching with inorganic N fertilizer, GMC (gravel mulching with inorganic N fertilizer, FMC (plastic-film mulching with inorganic N fertilizer and FMO (plastic-film mulching with inorganic N fertilizer and organic manure addition. The results showed that the FMO soil had the highest contents of microbial biomass carbon and nitrogen, dehydrogenase activity, microbial activity and Shannon diversity index. The relative use of carbohydrates and amino acids by microbes was highest in the FMO soil, whereas the relative use of polymers, phenolic compounds and amines was highest in the soil in the NMC soil. Compared with the NMC, an increased but no significant trend of biomass production and nitrogen accumulation was observed under the GMC treatment. The FMC and FMO led a greater increase in biomass production than GMC and NMC. Compare with the NMC treatment, FMC increased grain yield, maize biomass and nitrogen accumulation by 62.2, 62.9 and 86.2%, but no significant difference was found between the FMO and FMC treatments. Some soil biological properties, i.e. microbial biomass carbon, microbial biomass nitrogen, being sensitive to the mulching and organic fertilizer, were significant correlated with yield and nitrogen availability. Film mulching over gravel mulching can serve as an effective measure for crop production and nutrient cycling, and plus organic fertilization additions may thus have improvements in the biological

  14. Good Manufacturing Practices and Microbial Contamination Sources in Orange Fleshed Sweet Potato Puree Processing Plant in Kenya

    OpenAIRE

    Malavi, Derick Nyabera; Muzhingi, Tawanda; Abong’, George Ooko

    2018-01-01

    Limited information exists on the status of hygiene and probable sources of microbial contamination in Orange Fleshed Sweet Potato (OFSP) puree processing. The current study is aimed at determining the level of compliance to Good Manufacturing Practices (GMPs), hygiene, and microbial quality in OFSP puree processing plant in Kenya. Intensive observation and interviews using a structured GMPs checklist, environmental sampling, and microbial analysis by standard microbiological methods were use...

  15. Microbial and preservative safety of fresh and processed fruit salads ...

    African Journals Online (AJOL)

    The producers and traders of fresh fruit and the processers should implement quality management practices and safety standards in farming, fresh fruit, processing and storage. This is to ensure safety, enhance consumption of fruits and fruit products for health of consumers and eliminate wastage. Key words: Fresh fruit, ...

  16. Quantification of microbial quality and safety in minimally processed foods

    NARCIS (Netherlands)

    Zwietering, M.H.

    2002-01-01

    To find a good equilibrium between quality and margin of safety of minimally processed foods, often various hurdles are used. Quantification of the kinetics should be used to approach an optimum processing and to select the main aspects. Due to many factors of which the exact quantitative effect is

  17. Soil microbial species loss affects plant biomass and survival of an introduced bacterial strain, but not inducible plant defences.

    Science.gov (United States)

    Kurm, Viola; van der Putten, Wim H; Pineda, Ana; Hol, W H Gera

    2018-02-12

    Plant growth-promoting rhizobacteria (PGPR) strains can influence plant-insect interactions. However, little is known about the effect of changes in the soil bacterial community in general and especially the loss of rare soil microbes on these interactions. Here, the influence of rare soil microbe reduction on induced systemic resistance (ISR) in a wild ecotype of Arabidopsis thaliana against the aphid Myzus persicae was investigated. To create a gradient of microbial abundances, soil was inoculated with a serial dilution of a microbial community and responses of Arabidopsis plants that originated from the same site as the soil microbes were tested. Plant biomass, transcription of genes involved in plant defences, and insect performance were measured. In addition, the effects of the PGPR strain Pseudomonas fluorescens SS101 on plant and insect performance were tested under the influence of the various soil dilution treatments. Plant biomass showed a hump-shaped relationship with soil microbial community dilution, independent of aphid or Pseudomonas treatments. Both aphid infestation and inoculation with Pseudomonas reduced plant biomass, and led to downregulation of PR1 (salicylic acid-responsive gene) and CYP79B3 (involved in synthesis of glucosinolates). Aphid performance and gene transcription were unaffected by soil dilution. Neither the loss of rare microbial species, as caused by soil dilution, nor Pseudomonas affect the resistance of A. thaliana against M. persicae. However, both Pseudomonas survival and plant biomass respond to rare species loss. Thus, loss of rare soil microbial species can have a significant impact on both above- and below-ground organisms. © The Author(s) 2018. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Soil microbial community composition is correlated to soil carbon processing along a boreal wetland formation gradient

    Science.gov (United States)

    Chapman, Eric; Cadillo-Quiroz, Hinsby; Childers, Daniel L.; Turetsky, Merritt R.; Waldrop, Mark P.

    2017-01-01

    Climate change is modifying global biogeochemical cycles. Microbial communities play an integral role in soil biogeochemical cycles; knowledge about microbial composition helps provide a mechanistic understanding of these ecosystem-level phenomena. Next generation sequencing approaches were used to investigate changes in microbial functional groups during ecosystem development, in response to climate change, in northern boreal wetlands. A gradient of wetlands that developed following permafrost degradation was used to characterize changes in the soil microbial communities that mediate C cycling: a bog representing an “undisturbed” system with intact permafrost, and a younger bog and an older bog that formed following the disturbance of permafrost thaw. Reference 16S rRNA databases and several diversity indices were used to assess structural differences among these communities, to assess relationships between soil microbial community composition and various environmental variables including redox potential and pH. Rates of potential CO2 and CH4 gas production were quantified to correlate sequence data with gas flux. The abundance of organic C degraders was highest in the youngest bog, suggesting higher rates of microbial processes, including potential CH4 production. In addition, alpha diversity was also highest in the youngest bog, which seemed to be related to a more neutral pH and a lower redox potential. These results could potentially be driven by increased niche differentiation in anaerobic soils. These results suggest that ecosystem structure, which was largely driven by changes in edaphic and plant community characteristics between the “undisturbed” permafrost bog and the two bogs formed following permafrost thaw, strongly influenced microbial function.

  19. Microbial Community-Level Physiological Profiles (CLPP) and herbicide mineralization potential in groundwater affected by agricultural land use

    Science.gov (United States)

    Janniche, Gry Sander; Spliid, Henrik; Albrechtsen, Hans-Jørgen

    2012-10-01

    Diffuse groundwater pollution from agricultural land use may impact the microbial groundwater community, which was investigated as Community-Level Physiological Profiles (CLPP) using EcoPlate™. Water was sampled from seven piezometers and a spring in a small agricultural catchment with diffuse herbicide and nitrate pollution. Based on the Shannon-Wiener and Simpson's diversity indices the diversity in the microbial communities was high. The response from the EcoPlates™ showed which substrates support groundwater bacteria, and all 31 carbon sources were utilized by organisms from at least one water sample. However, only nine carbon sources were utilized by all water samples: D-Mannitol, N-acetyl-D-glucosamine, putrescine, D-galacturonic acid, itaconic acid, 4-hydroxy benzoic acid, tween 40, tween 80, and L-asparagine. In all water samples the microorganisms preferred D-mannitol, D-galacturonic acid, tween 40, and 4-hydroxy benzoic acid as substrates, whereas none preferred 2-hydroxy benzoic acid, α-D-lactose, D,L-α-glycerol phosphate, α-ketobutyric acid, L-threonine and glycyl-L-glutamic acid. Principal Component Analysis of the CLPP's clustered the most agriculturally affected groundwater samples, indicating that the agricultural land use affects the groundwater microbial communities. Furthermore, the ability to mineralize atrazine and isoproturon, which have been used in the catchment, was also associated with this cluster.

  20. Optimization of process variables for the microbial degradation of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-07-18

    Jul 18, 2008 ... The optimum process conditions for maximizing phenol degradation (removal) ... cellular maintenance requirements on temperature makes it an important ..... the International Foundation for Science (IFS) for the financial ...

  1. Side Effects of Nitrification Inhibitors on Non Target Microbial Processes in Soils

    Directory of Open Access Journals (Sweden)

    Johannes Carl Gottlieb Ottow

    2011-01-01

    Full Text Available Agricultural chemicals have been used extensively in modern agriculture and toxicological studies suggest a great potential for inducing undesirable effects on non target organisms. A model experiment was conducted in order to determine side effects of three nitrification inhibitors (NIs, 3,4dimethylpyrazolephosphate = DMPP, 4-Chlor-methylpyrazole phosphate = ClMPP and dicyandiamide = DCD on non target microbial processes in soils. Side effects and dose response curve of three NIs were quantified under laboratory conditions using silty clay, loam and a sandy soils. Dehydrogenase, dimethylsulfoxide reductase as well as nitrogenase activity (NA and potential denitrification capacity were measured as common and specific non target microbial processes. The influence of 5-1000 times the base concentration, dose response curves were examined, and no observable effect level = NOEL, as well as effective dose ED10 and ED50 (10% and 50% inhibition were calculated. The NOEL for microbial non target processes were about 30–70 times higher than base concentration in all investigated soils. The potential denitrification capacity revealed to be the most sensitive parameter. ClMPP exhibited the strongest influence on the non target microbial processes in the three soils. The NOEL, ED10 and ED50 values were higher in clay than in loamy or sandy soil. The NIs was the most effective in sandy soils.

  2. Antibiotics in 16-day-old broilers temporarily affect microbial and immune parameters in the gut

    NARCIS (Netherlands)

    Wisselink, H.J.; Cornelissen, J.B.W.J.; Mevius, D.J.; Smits, M.A.; Smidt, H.; Rebel, Johanna M.J.

    2017-01-01

    Animal health benefits from a stable intestinal homeostasis, for which proper development and functioning of the intestinal microbiota and immune system are essential. It has been established that changes in microbial colonization in early life (the first 2 wk post hatch) impacts the functioning of

  3. Anaplasma phagocytophilum Dihydrolipoamide Dehydrogenase 1 Affects Host-Derived Immunopathology during Microbial Colonization

    Czech Academy of Sciences Publication Activity Database

    Chen, G.; Severo, M. S.; Sakhon, O. S.; Choy, A.; Herron, M. J.; Felsheim, R. F.; Wiryawan, H.; Liao, J.; Johns, J. L.; Munderloh, U. G.; Sutterwala, F. S.; Kotsyfakis, Michalis; Pedra, J. H. F.

    2012-01-01

    Roč. 80, č. 9 (2012), s. 3194-3205 ISSN 0019-9567 Institutional support: RVO:60077344 Keywords : ricketsia * microbial colonization * immunopathology * inflammation * signaling pathways Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.074, year: 2012 http://iai. asm .org/content/80/9/3194

  4. Microbial transformations of C and N in a boreal forest floor as affected by temperature

    NARCIS (Netherlands)

    Verburg, P.S.J.; Dam, van D.; Hefting, M.M.; Tietema, A.

    1999-01-01

    The effects of temperature on N mineralization were studied in two organic surface horizons (LF and H) of soil from a boreal forest. The soil was incubated at 5 °C and 15 °C after adding 15 N and gross N fluxes were calculated using a numerical simulation model. The model was calibrated on microbial

  5. Guidelines for Affective Signal Processing (ASP): From lab to life

    NARCIS (Netherlands)

    van den Broek, Egon; Janssen, Joris H.; Westerink, Joyce H.D.M.; Cohn, J.; Nijholt, Antinus; Pantic, Maja

    2009-01-01

    This article presents the rationale behind ACII2009’s special session: Guidelines for Affective Signal Processing (ASP): From lab to life. Although affect is embraced by both science and engineering, its recognition has not reached a satisfying level. Through a concise overview of ASP and the

  6. Microbial Communities: Tracing Growth Processes from Antarctic Lakes to Early Earth to Other Planets

    Science.gov (United States)

    Sumner, D. Y.

    2014-12-01

    Life in the Universe is dominated by microbes: they are numerically the most abundant cells in our bodies and in Earth's biosphere, and they are the only life that might be present elsewhere in our solar system. Life beyond our solar system could include macroscopic organisms, but everything we understand about the origin of life suggests it must start with microbes. Thus, understanding microbial ecosystems, in the absence of macroscopic organisms, is critical to understanding early life on Earth and life elsewhere in the Universe - if it exists. But what are the general principles of microbial ecology in the absence of predation? What happens when each cell is a chemical factory that can swap among metabolic processes in response to environmental and emergent cues? Geobiologists and astrobiologists are addressing these questions in diverse ways using both Earth's modern biosphere and its fossil record. Modern microbial communities in shallow, ice-covered lakes, Antarctica (Fig.), provide a model for high productivity microbial ecosystems with no to low predation. In these lakes, photosynthetic communities create macroscopic pinnacles and domes, sometime lithified into stromatolites. They provide an ecological, geochemical and morphological model for Precambrian microbial communities in low sedimentation, low current environments. Insights from these communities include new growth processes for ancient mats, especially some that grew prior to the oxidation of Earth's atmosphere. The diversity of biosignatures created in these communities also provides context for models of life under ice elsewhere in our solar system such as paleolakes on Mars and on icy moons. Results from the Mars Science Laboratory (MSL) team document formerly habitable fluvial and lacustrine environments. Lacustrine environments, in particular, are favorable for preserving biosignatures, and continued investigations by MSL will provide a deeper understanding of the duration of habitable

  7. Comparison of microbial community shifts in two parallel multi-step drinking water treatment processes.

    Science.gov (United States)

    Xu, Jiajiong; Tang, Wei; Ma, Jun; Wang, Hong

    2017-07-01

    Drinking water treatment processes remove undesirable chemicals and microorganisms from source water, which is vital to public health protection. The purpose of this study was to investigate the effects of treatment processes and configuration on the microbiome by comparing microbial community shifts in two series of different treatment processes operated in parallel within a full-scale drinking water treatment plant (DWTP) in Southeast China. Illumina sequencing of 16S rRNA genes of water samples demonstrated little effect of coagulation/sedimentation and pre-oxidation steps on bacterial communities, in contrast to dramatic and concurrent microbial community shifts during ozonation, granular activated carbon treatment, sand filtration, and disinfection for both series. A large number of unique operational taxonomic units (OTUs) at these four treatment steps further illustrated their strong shaping power towards the drinking water microbial communities. Interestingly, multidimensional scaling analysis revealed tight clustering of biofilm samples collected from different treatment steps, with Nitrospira, the nitrite-oxidizing bacteria, noted at higher relative abundances in biofilm compared to water samples. Overall, this study provides a snapshot of step-to-step microbial evolvement in multi-step drinking water treatment systems, and the results provide insight to control and manipulation of the drinking water microbiome via optimization of DWTP design and operation.

  8. Effects of nitrogen deposition and cattle grazing on productivity, invasion impact, and soil microbial processes in a serpentine grassland

    Science.gov (United States)

    Pasari, J.; Hernandez, D.; Selmants, P. C.; Keck, D.

    2010-12-01

    In recent decades, human activities have vastly increased the amount of biologically available nitrogen (N) in the biosphere. The resulting increase in N availability has broadly affected ecosystems through increased productivity, changes in species composition, altered nutrient cycles, and increases in invasion by exotic plant species, especially in systems that were historically low in N. California serpentine grasslands are N-limited ecosystems historically dominated by native species including several threatened and endangered plants and animals. Cattle grazing has emerged as the primary tool for controlling the impact of nitrophilic exotic grasses whose increased abundance has paralleled the regional traffic-derived increase in atmospheric N deposition. We examined the interactive effects of cattle grazing and N deposition on plant community composition, productivity, invasion resistance, and microbial processes in the Bay Area's largest serpentine grassland to determine the efficacy of current management strategies as well as the biogeochemical consequences of exotic species invasion. In the first two years of the study, aboveground net primary productivity decreased in response to grazing and increased in response to nitrogen addition. However, contrary to our hypotheses the change in productivity was not due to an increase in exotic species cover as there was little overall effect of grazing or N addition on species composition. Microbial activity was more responsive to grazing and N. Potential net N mineralization rates increased with N addition, but were not affected by grazing. In contrast, soil respiration rates were inhibited by grazing, but were not affected by N addition; suggesting strong carbon-limitation of soil microbial activity, particularly under grazing. Site differences in soil depth and grazing intensity were often more important than treatment effects. We suspect that the unusually dry conditions in the first two growing seasons inhibited

  9. Long-term high-solids anaerobic digestion of food waste: Effects of ammonia on process performance and microbial community.

    Science.gov (United States)

    Peng, Xuya; Zhang, ShangYi; Li, Lei; Zhao, Xiaofei; Ma, Yao; Shi, Dezhi

    2018-04-22

    A long-term high solids anaerobic digestion of food waste was conducted to identify microbial mechanisms of ammonia inhibition during digestion and to clarify correlations between ammonia accumulation, microbial community dynamics (diversity, composition, and interactions), and process stability. Results show that the effects of ammonia on process performance and microbial community were indirectly caused by volatile fatty acid accumulation. Excess free ammonia blocked acetate metabolism, leading to process instability. Accumulated acetate caused feedback inhibition at the acetogenesis stage, which resulted in considerable accumulation of propionate, valerate, and other long-chain fatty acids. This high concentration of volatile fatty acids reduced the abundance of syntrophic acetogenic bacteria and allowed hydrolytic fermentative bacteria to dominate. The normally interactive and orderly metabolic network was broken, which further exacerbated the process instability. These results improve the understanding of microbial mechanisms which contribute to process instability and provide guidance for the microbial management of anaerobic digesters. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Complex media from processing of agricultural crops for microbial fermentation

    DEFF Research Database (Denmark)

    Thomsen, M.H.

    2005-01-01

    , is converted to a basic, universal fermentation medium by lactic acid fermentation, is outlined. The resulting all-round fermentation medium can be used for the production of many useful fermentation products when added a carbohydrate source, which could possibly be another agricultural by-product. Two...... examples of such products-polylactic acid and L-lysine-are given. A cost calculation shows that this fermentation medium can be produced at a very low cost approximate to 1.7 Euro cent/kg, when taking into account that the green crop industry has expenses amounting to 270,000 Euro/year for disposal...... of the brown juice. A newly built lysine factory in Esbjerg, Denmark, can benefit from this process by buying a low price medium for the fermentation process instead of more expensive traditional fermentation liquids such as corn steep liquor....

  11. Community Assembly Processes of the Microbial Rare Biosphere.

    Science.gov (United States)

    Jia, Xiu; Dini-Andreote, Francisco; Falcão Salles, Joana

    2018-03-14

    Our planet teems with microorganisms that often present a skewed abundance distribution in a local community, with relatively few dominant species coexisting alongside a high number of rare species. Recent studies have demonstrated that these rare taxa serve as limitless reservoirs of genetic diversity, and perform disproportionate types of functions despite their low abundances. However, relatively little is known about the mechanisms controlling rarity and the processes promoting the development of the rare biosphere. Here, we propose the use of multivariate cut-offs to estimate rare species and phylogenetic null models applied to predefined rare taxa to disentangle the relative influences of ecoevolutionary processes mediating the assembly of the rare biosphere. Importantly, the identification of the factors controlling rare species assemblages is critical for understanding the types of rarity, how the rare biosphere is established, and how rare microorganisms fluctuate over spatiotemporal scales, thus enabling prospective predictions of ecosystem responses. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Unintentionality of affective attention across visual processing stages

    Directory of Open Access Journals (Sweden)

    Andero eUusberg

    2013-12-01

    Full Text Available Affective attention involves bottom-up perceptual selection that prioritizes motivationally significant stimuli. To clarify the extent to which this process is automatic, we investigated the dependence of affective attention on the intention to process emotional meaning. Affective attention was manipulated by presenting IAPS images with variable arousal and intentionality by requiring participants to make affective and non-affective evaluations. Polytomous rather than binary decisions were required from the participants in order to elicit relatively deep emotional processing. The temporal dynamics of prioritized processing were assessed using Early Posterior Negativity (EPN, 175-300 ms as well as P3-like (P3, 300 – 500 ms and Slow Wave (SW, 500 – 1500 ms portions of the Late Positive Potential. All analysed components were differentially sensitive to stimulus categories suggesting that they indeed reflect distinct stages of motivational significance encoding. The intention to perceive emotional meaning had no effect on EPN, an additive effect on P3, and an interactive effect on SW. We concluded that affective attention went from completely unintentional during the EPN to partially unintentional during P3 and SW where top-down signals, respectively, complemented and modulated bottom-up differences in stimulus prioritization. The findings were interpreted in light of two-stage models of visual perception by associating the EPN with large-capacity initial relevance detection and the P3 as well as SW with capacity-limited consolidation and elaboration of affective stimuli.

  13. Safety conditions and native microbial flora of three processing units in Alentejo , Portugal

    OpenAIRE

    Laranjo, Marta; Potes, M.E; Elias, M.

    2014-01-01

    Portugal as other Mediterranean countries has a great diversity of dry fermented sausages. This traditional sausage production is highly diverse and products possess very particular organoleptic characteristics, which please consumers. These sensory characteristics are related not only to the manufacturing process, but also to the house microbial flora. On the other hand, the safety of fermented products is always difficult to achieve due to their processing technology and final characteristi...

  14. PRODUCTION AND USES OF MICROBIAL ENZYMES FOR DAIRY PROCESSING

    International Nuclear Information System (INIS)

    EL-KABBANY, H.M.I.

    2008-01-01

    The isolation and identification of fungal producer from various Egyptian dairy products samples was studied. Among fungi testes, only one out of the 48 isolates was found to be positive yielded a suitable enzyme substitute (rennet) and identified as Cryphonectria parasitica (C. parasitica) and was found to be negative for mycotoxins. The highest growth and production of the crude enzyme were obtained from barley medium after an incubation period for 6-8 days at 25 0 C and pH 5. It was found also to be sensitive to gamma rays, since 2.5 kGy completely inactivated the germination of the spores while very low doses up to 0.05 kGy did not affect the production of rennet like enzyme (RLE). Precipitation of the crude enzyme produced by C. parasitica using ammonium sulphate (NH 4 ) 2 SO 4 gave the highest milk clotting activity (MCA) at 50 0 C. Further purification was achieved by using Sephadex G-100 to give pure RLE. MCA of the fungal and animal rennin proved to be essentially identical in milk containing various concentrations of CaCl 2 . An addition of 160 ppm of CaCl 2 increased the enzyme activity. The optimum temperature was 60 0 C while pre-heating thermophiles at 15 0 C for 10 minutes complete inactivation. Both rennins manifested comparable clotting activities in milk at pH 6

  15. Microbial Ecology and Process Technology of Sourdough Fermentation.

    Science.gov (United States)

    De Vuyst, Luc; Van Kerrebroeck, Simon; Leroy, Frédéric

    2017-01-01

    From a microbiological perspective, sourdough is to be considered as a specific and stressful ecosystem, harboring yeasts and lactic acid bacteria (LAB), that is used for the production of baked goods. With respect to the metabolic impact of the sourdough microbiota, acidification (LAB), flavor formation (LAB and yeasts), and leavening (yeasts and heterofermentative LAB species) are most noticeable. Three distinct types of sourdough fermentation processes can be discerned based on the inocula applied, namely backslopped ones (type 1), those initiated with starter cultures (type 2), and those initiated with a starter culture followed by backslopping (type 3). A sourdough-characteristic LAB species is Lactobacillus sanfranciscensis. A sourdough-characteristic yeast species is Candida humilis. Although it has been suggested that the microbiota of a specific sourdough may be influenced by its geographical origin, region specificity often seems to be an artefact resulting from interpretation of the research data, as those are dependent on sampling, isolation, and identification procedures. It is however clear that sourdough-adapted microorganisms are able to withstand stress conditions encountered during their growth. Based on the technological setup, type 0 (predoughs), type I (artisan bakery firm sourdoughs), type II (industrial liquid sourdoughs), and type III sourdoughs (industrial dried sourdoughs) can be distinguished. The production of all sourdoughs, independent of their classification, depends on several intrinsic and extrinsic factors. Both the flour (type, quality status, etc.) and the process parameters (fermentation temperature, pH and pH evolution, dough yield, water activity, oxygen tension, backslopping procedure and fermentation duration, etc.) determine the dynamics and outcome of (backslopped) sourdough fermentation processes. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Quantitative assessment of in situ microbial communities affecting nuclear waste disposal

    International Nuclear Information System (INIS)

    White, D.C.

    1996-01-01

    Microbes in the environments surrounding nuclear waste depositories pose several questions regarding the protection of the surrounding communities. microbes can facilitate microbially influenced corrosion (MIC), mobilize and facilitate the transport of nuclides as well as produce gaseous emissions which can compromise containment. We have developed an analysis of the extant microbiota that is independent of quantitative recovery and subsequent growth, based on signature biomarkers analysis (SBA)

  17. Dominant trees affect microbial community composition and activity in post-mining afforested soils

    Czech Academy of Sciences Publication Activity Database

    Šnajdr, Jaroslav; Dobiášová, Petra; Urbanová, Michaela; Petránková, Mirka; Cajthaml, Tomáš; Frouz, Jan; Baldrian, Petr

    2013-01-01

    Roč. 56, JAN 2013 (2013), s. 105-115 ISSN 0038-0717 R&D Projects: GA MŠk(CZ) OC10064; GA ČR GAP504/12/1288; GA MŠk 2B08023 Institutional support: RVO:61388971 ; RVO:60077344 Keywords : Enzyme activity * Litter * Microbial biomass Subject RIV: EE - Microbiology, Virology; EH - Ecology, Behaviour (BC-A) Impact factor: 4.410, year: 2013

  18. Study of the diversity of microbial communities in a sequencing batch reactor oxic-settling-anaerobic process and its modified process.

    Science.gov (United States)

    Sun, Lianpeng; Chen, Jianfan; Wei, Xiange; Guo, Wuzhen; Lin, Meishan; Yu, Xiaoyu

    2016-05-01

    To further reveal the mechanism of sludge reduction in the oxic-settling-anaerobic (OSA) process, the polymerase chain reaction - denaturing gradient gel electrophoresis protocol was used to study the possible difference in the microbial communities between a sequencing batch reactor (SBR)-OSA process and its modified process, by analyzing the change in the diversity of the microbial communities in each reactor of both systems. The results indicated that the structure of the microbial communities in aerobic reactors of the 2 processes was very different, but the predominant microbial populations in anaerobic reactors were similar. The predominant microbial population in the aerobic reactor of the SBR-OSA belonged to Burkholderia cepacia, class Betaproteobacteria, while those of the modified process belonged to the classes Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. These 3 types of microbes had a cryptic growth characteristic, which was the main cause of a greater sludge reduction efficiency achieved by the modified process.

  19. STRUCTURE AND FUNCTION OF SUBSURFACE MICROBIAL COMMUNITIES AFFECTING RADIONUCLIDE TRANSPORT AND BIOIMMOBILIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Joel E. Kostka; Lee Kerkhof; Kuk-Jeong Chin; Martin Keller; Joseph W. Stucki

    2011-06-15

    The objectives of this project were to: (1) isolate and characterize novel anaerobic prokaryotes from subsurface environments exposed to high levels of mixed contaminants (U(VI), nitrate, sulfate), (2) elucidate the diversity and distribution of metabolically active metal- and nitrate-reducing prokaryotes in subsurface sediments, and (3) determine the biotic and abiotic mechanisms linking electron transport processes (nitrate, Fe(III), and sulfate reduction) to radionuclide reduction and immobilization. Mechanisms of electron transport and U(VI) transformation were examined under near in situ conditions in sediment microcosms and in field investigations at the Oak Ridge Field Research Center (ORFRC), in Oak Ridge, Tennessee, where the subsurface is exposed to mixed contamination predominated by uranium and nitrate. A total of 20 publications (16 published or 'in press' and 4 in review), 10 invited talks, and 43 contributed seminars/ meeting presentations were completed during the past four years of the project. PI Kostka served on one proposal review panel each year for the U.S. DOE Office of Science during the four year project period. The PI leveraged funds from the state of Florida to purchase new instrumentation that aided the project. Support was also leveraged by the PI from the Joint Genome Institute in the form of two successful proposals for genome sequencing. Draft genomes are now available for two novel species isolated during our studies and 5 more genomes are in the pipeline. We effectively addressed each of the three project objectives and research highlights are provided. Task I - Isolation and characterization of novel anaerobes: (1) A wide range of pure cultures of metal-reducing bacteria, sulfate-reducing bacteria, and denitrifying bacteria (32 strains) were isolated from subsurface sediments of the Oak Ridge Field Research Center (ORFRC), where the subsurface is exposed to mixed contamination of uranium and nitrate. These isolates which

  20. Organic priority substances and microbial processes in river sediments subject to contrasting hydrological conditions.

    Science.gov (United States)

    Zoppini, Annamaria; Ademollo, Nicoletta; Amalfitano, Stefano; Casella, Patrizia; Patrolecco, Luisa; Polesello, Stefano

    2014-06-15

    Flood and drought events of higher intensity and frequency are expected to increase in arid and semi-arid regions, in which temporary rivers represent both a water resource and an aquatic ecosystem to be preserved. In this study, we explored the variation of two classes of hazardous substances (Polycyclic Aromatic Hydrocarbons and Nonylphenols) and the functioning of the microbial community in river sediments subject to hydrological fluctuations (Candelaro river basin, Italy). Overall, the concentration of pollutants (∑PAHs range 8-275ngg(-1); ∑NPs range 299-4858ngg(-1)) suggests a moderate degree of contamination. The conditions in which the sediments were tested, flow (high/low) and no flow (wet/dry/arid), were associated to significant differences in the chemical and microbial properties. The total organic carbon contribution decreased together with the stream flow reduction, while the contribution of C-PAHs and C-NPs tended to increase. NPs were relatively more concentrated in sediments under high flow, while the more hydrophobic PAHs accumulated under low and no flow conditions. Passing from high to no flow conditions, a gradual reduction of microbial processes was observed, to reach the lowest specific bacterial carbon production rates (0.06fmolCh(-1)cell(-1)), extracellular enzyme activities, and the highest doubling time (40h) in arid sediments. In conclusion, different scenarios for the mobilization of pollutants and microbial processes can be identified under contrasting hydrological conditions: (i) the mobilization of pollutants under high flow and a relatively higher probability for biodegradation; (ii) the accumulation of pollutants during low flow and lower probability for biodegradation; (iii) the drastic reduction of pollutant concentrations under dry and arid conditions, probably independently from the microbial activity (abiotic processes). Our findings let us infer that a multiple approach has to be considered for an appropriate water

  1. Microbial degradation processes in radioactive waste repository and in nuclear fuel storage areas

    International Nuclear Information System (INIS)

    Wolfram, J.H.; Rogers, R.D.; Gazso, L.G.

    1997-01-01

    The intent of the workshop organizers was to convene experts in the fields of corrosion and spent nuclear fuels. The major points which evolved from the interaction of microbiologists, material scientists, and fuel storage experts are as follows: Corrosion of basin components as well as fuel containers or cladding is occurring; Water chemistry monitoring, if done in the storage facility does not take into account the microbial component; Microbial influenced corrosion is an area that many have not considered to be an important contributor in the aging of metallurgical materials especially those exposed to a radiation field; Many observations indicate that there is a microbial or biological presence in the storage facilities but these observations have not been correlated with any deterioration or aging phenomena taking place in the storage facility; The sessions on the fundamentals of microbial influenced corrosion and biofilm pointed out that these phenomena are real, occurring on similar materials in other industries and probably are occurring in the wet storage of spent fuel; All agreed that more monitoring, testing, and education in the field of biological mediate processes be performed and financially supported; Loosing the integrity of fuel assemblies can only cause problems, relating to the future disposition of the fuel, safety concerns, and environmental issues; In other rad waste scenarios, biological processes may be playing a role, for instance in the mobility of radionuclides in soil, decomposition of organic materials of the rad waste, gas production, etc. The fundamental scientific presentations discussed the full gamut of microbial processes that relate to biological mediated effects on metallic and non-metallic materials used in the storage and containment of radioactive materials

  2. The effect of microbial activity and adsorption processes on groundwater dissolved organic carbon character and concentration

    Science.gov (United States)

    Meredith, K.; McDonough, L.; Oudone, P.; Rutlidge, H.; O'Carroll, D. M.; Andersen, M. S.; Baker, A.

    2017-12-01

    Balancing the terrestrial global carbon budget has proven to be a significant challenge. Whilst the movement of carbon in the atmosphere, rivers and oceans has been extensively studied, the potential for groundwater to act as a carbon source or sink through both microbial activity and sorption to and from mineral surfaces, is poorly understood. To investigate the biodegradable component of groundwater dissolved organic carbon (DOC), groundwater samples were collected from multiple coastal and inland sites. Water quality parameters such as pH, electrical conductivity, temperature, dissolved oxygen were measured in the field. Samples were analysed and characterised for their biodegradable DOC content using spectrofluorometric and Liquid Chromatography-Organic Carbon Detection (LC-OCD) techniques at set intervals within a 28 day period. Further to this, we performed laboratory sorption experiments on our groundwater samples using different minerals to examine the effect of adsorption processes on DOC character and concentration. Calcium carbonate, quartz and iron coated quartz were heated to 400ºC to remove potential carbon contamination, and then added at various known masses (0 mg to 10 g) to 50 mL of groundwater. Samples were then rotated for two hours, filtered at 0.2 μm and analysed by LC-OCD. This research forms part of an ongoing project which will assist in identifying the factors affecting the mobilisation, transport and removal of DOC in uncontaminated groundwater. By quantifying the relative importance of these processes, we can then determine whether the groundwater is a carbon source or sink. Importantly, this information will help guide policy and identify the need to include groundwater resources as part of the carbon economy.

  3. Structural stability, microbial biomass and community composition of sediments affected by the hydric dynamics of an urban stormwater infiltration basin. Dynamics of physical and microbial characteristics of stormwater sediment.

    Science.gov (United States)

    Badin, Anne Laure; Monier, Armelle; Volatier, Laurence; Geremia, Roberto A; Delolme, Cécile; Bedell, Jean-Philippe

    2011-05-01

    The sedimentary layer deposited at the surface of stormwater infiltration basins is highly organic and multicontaminated. It undergoes considerable moisture content fluctuations due to the drying and inundation cycles (called hydric dynamics) of these basins. Little is known about the microflora of the sediments and its dynamics; hence, the purpose of this study is to describe the physicochemical and biological characteristics of the sediments at different hydric statuses of the infiltration basin. Sediments were sampled at five time points following rain events and dry periods. They were characterized by physical (aggregation), chemical (nutrients and heavy metals), and biological (total, bacterial and fungal biomasses, and genotypic fingerprints of total bacterial and fungal communities) parameters. Data were processed using statistical analyses which indicated that heavy metal (1,841 μg/g dry weight (DW)) and organic matter (11%) remained stable through time. By contrast, aggregation, nutrient content (NH₄⁺, 53-717 μg/g DW), pH (6.9-7.4), and biological parameters were shown to vary with sediment water content and sediment biomass, and were higher consecutive to stormwater flows into the basin (up to 7 mg C/g DW) than during dry periods (0.6 mg C/g DW). Coinertia analysis revealed that the structure of the bacterial communities is driven by the hydric dynamics of the infiltration basin, although no such trend was found for fungal communities. Hydric dynamics more than rain events appear to be more relevant for explaining variations of aggregation, microbial biomass, and shift in the microbial community composition. We concluded that the hydric dynamics of stormwater infiltration basins greatly affects the structural stability of the sedimentary layer, the biomass of the microbial community living in it and its dynamics. The decrease in aggregation consecutive to rewetting probably enhances access to organic matter (OM), explaining the consecutive release

  4. Downstream Processing, Formulation Development and Antithrombotic Evaluation of Microbial Nattokinase.

    Science.gov (United States)

    Kapoor, Rohit; Harde, Harshad; Jain, Sanyog; Panda, Amulya Kumar; Panda, Bibhu Prasad

    2015-07-01

    The present research work describes the downstreaming of nattokinase (NK) produced by Bacillus subtilis under solid state fermentation; and the role of efficient oral formulation of purified NK in the management of thrombotic disorders. Molecular weight of purified NK was estimated to be 28 kDa with specific activity of 504.4 FU/mg. Acid stable nattokinase loaded chitosan nanoparticles (sNLCN) were fabricated for oral delivery of this enzyme. Box-Behnken design (BBD) was employed to investigate and validate the effect of process (independent) variables on the quality attributes (dependent variables) of nanoparticles. The integrity, conformational stability and preservation of fibrinolytic activity of NK (in both free and sNLCN forms) were established by SDS-PAGE, CD analysis and in vitro clot lytic examination, respectively. A 'tail thrombosis model' demonstrated significant decrease in frequency of thrombosis in Wistar rats upon peroral administration of sNLCN in comparison with negative control and free NK group. Furthermore, coagulation analysis, namely the measurement of prothrombin and activated partial thromboplastin time illustrated that sNLCN showed significantly (p < 0.001) higher anti-thrombotic potential in comparison to the free NK. Further, sNLCN showed anti-thrombotic profile similar to warfarin. This study signifies the potential of sNLCN in oral delivery of NK for the management of thrombotic disorders.

  5. Optimization of water curing for the preservation of chestnuts (Castanea sativa Mill.) and evaluation of microbial dynamics during process.

    Science.gov (United States)

    Blaiotta, Giuseppe; Di Capua, Marika; Romano, Annalisa; Coppola, Raffaele; Aponte, Maria

    2014-09-01

    Chestnuts are very perishable fruits, whose quality may be compromised during postharvest handling. Damage can be caused both by insects and fungi. Water curing, a commonly used postharvest method, is based on soaking fruits in water typically for about one week. Factors that affect effectiveness of water curing have only been explained partially. A decrease in pH, likely imputable to a light fermentation caused by lactic acid bacteria, may inhibit the growth of moulds. In this study a Lactobacillus pentosus strain was selected for its ability to inhibit fungi, and used as a starter culture during water curing. As second goal, a reduction of the environmental impact of the process was evaluated by using water that had been re-cycled from a previous curing treatment. Experiments were performed on pilot as well as on farm scale. In all trials, microbial dynamics were evaluated by means of a polyphasic approach including conventional and molecular-based analyses. According to results, the employment of an adjunct culture appears as a very promising opportunity. Even if no reduction in the duration of the process was achieved, waters exhibited a minor microbial complexity and fruits did not lose the natural lustre after the process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Relationships between processing delay and microbial load of broiler neck skin samples.

    Science.gov (United States)

    Lucianez, A; Holmes, M A; Tucker, A W

    2010-01-01

    The measurable microbial load on poultry carcasses during processing is determined by a number of factors including farm or origin, processing hygiene, and external temperature. This study investigated associations between carcass microbial load and progressive delays to processing. A total of 30 carcasses were delayed immediately after defeathering and before evisceration in a commercial abattoir in groups of five, and were held at ambient temperature for 1, 2, 3, 4, 6, and 8 h. Delayed carcasses were reintroduced to the processing line, and quantitative assessment of total viable count, coliforms, Staphylococcus aureus, and Pseudomonas spp. was undertaken on neck skin flap samples collected after carcass chilling and then pooled for each group. Sampling was repeated on 5 separate days, and the data were combined. Significant increases in total viable count (P = 0.001) and coliforms (P = 0.004), but not for S. aureus or Pseudomonas loads, were observed across the 8-h period of delay. In line with previous studies, there was significant variation in microbiological data according to sampling day. In conclusion, there is a significant and measurable decline in microbiological status of uneviscerated but defeathered poultry carcasses after an 8-h delay, but the variability of sampling results, reflecting the wide range of factors that impact microbial load, means that it is not possible to determine maximum or minimum acceptable periods of processing delay based on this criterion alone.

  7. Microbial Biomass and Activity in Geomorphic Features in Forested and Urban Restored and Degraded Streams

    Science.gov (United States)

    Geomorphic spatial heterogeneity affects sediment denitrification, an anaerobic microbial process that results in the loss of nitrogen (N), and other anaerobic microbial processes such as methanogenesis in urban streams. We measured sediment denitrification potential (DEA), metha...

  8. Microbial decontamination of polluted soil in a slurry process

    International Nuclear Information System (INIS)

    Geerdink, M.J.; Kleijntjens, R.H.; Loosdrecht, M.C.M. van; Luyben, K.C.A.M.

    1996-01-01

    Oil-contaminated soil (2.3--17 g/kg), even soil with high clay and silt content, was remediated microbiologically in a slurry reactor. The presence of soil, however, limits the degradation rate of oil. In contrast with results form experiments using oil dispersed in water, the relative composition of the oil components in a soil slurry after degradation was about the same as that of the original oil. Thus the composition of the degraded oil is the same as that of the original oil, which is indicative for a physical, rather than a (bio)chemical, limitation on the oil degradation rate. About 70% of the contaminant was readily available and was degraded in less than eight days. The dual injected turbulent suspension (DITS) reactor is able to combine remediation of part of the contaminated (polydisperse) soil with separation of the soil into a heavily and a lightly polluted fraction. In continuous operation, lowering the overall soil residence time from 200 to 100 h did not significantly increase the oil concentration in the effluent soil. Therefore a soil residence time of less than 100 h is feasible. With a residence time of 100 h, overall oil degradation rates at the steady state were more than 70 times faster than in a comparable land farm. After treatment in a DITS reactor, the remaining oil in the contaminated soil fraction is slowly released from the soil. From a batch experiment it was found that another 10 weeks were needed to reach the Dutch reference level of 50 mg/kg. This can be done in a process with a low energy input, such as a landfarm

  9. Microbial network of the carbonate precipitation process induced by microbial consortia and the potential application to crack healing in concrete.

    Science.gov (United States)

    Zhang, Jiaguang; Zhou, Aijuan; Liu, Yuanzhen; Zhao, Bowei; Luan, Yunbo; Wang, Sufang; Yue, Xiuping; Li, Zhu

    2017-11-06

    Current studies have employed various pure-cultures for improving concrete durability based on microbially induced carbonate precipitation (MICP). However, there have been very few reports concerned with microbial consortia, which could perform more complex tasks and be more robust in their resistance to environmental fluctuations. In this study, we constructed three microbial consortia that are capable of MICP under aerobic (AE), anaerobic (AN) and facultative anaerobic (FA) conditions. The results showed that AE consortia showed more positive effects on inorganic carbon conversion than AN and FA consortia. Pyrosequencing analysis showed that clear distinctions appeared in the community structure between different microbial consortia systems. Further investigation on microbial community networks revealed that the species in the three microbial consortia built thorough energetic and metabolic interaction networks regarding MICP, nitrate-reduction, bacterial endospores and fermentation communities. Crack-healing experiments showed that the selected cracks of the three consortia-based concrete specimens were almost completely healed in 28 days, which was consistent with the studies using pure cultures. Although the economic advantage might not be clear yet, this study highlights the potential implementation of microbial consortia on crack healing in concrete.

  10. Bacteria and archaea communities in full-scale thermophilic and mesophilic anaerobic digesters treating food wastewater: Key process parameters and microbial indicators of process instability.

    Science.gov (United States)

    Lee, Joonyeob; Shin, Seung Gu; Han, Gyuseong; Koo, Taewoan; Hwang, Seokhwan

    2017-12-01

    In this study, four different mesophilic and thermophilic full-scale anaerobic digesters treating food wastewater (FWW) were monitored for 1-2years in order to investigate: 1) microbial communities underpinning anaerobic digestion of FWW, 2) significant factors shaping microbial community structures, and 3) potential microbial indicators of process instability. Twenty-seven bacterial genera were identified as abundant bacteria underpinning the anaerobic digestion of FWW. Methanosaeta harundinacea, M. concilii, Methanoculleus bourgensis, M. thermophilus, and Methanobacterium beijingense were revealed as dominant methanogens. Bacterial community structures were clearly differentiated by digesters; archaeal community structures of each digester were dominated by one or two methanogen species. Temperature, ammonia, propionate, Na + , and acetate in the digester were significant factors shaping microbial community structures. The total microbial populations, microbial diversity, and specific bacteria genera showed potential as indicators of process instability in the anaerobic digestion of FWW. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. A wooded riparian strip set up for nitrogen removal can affect the water flux microbial composition

    Directory of Open Access Journals (Sweden)

    Mizanur Md. Rahman

    2014-02-01

    Full Text Available This research is part of a project aimed at verifying the potential of a specifically assessed wooded riparian zone in removing excess of combined nitrogen from the Zero river flow for the reduction of nutrient input into Venice Lagoon. Specific objectives were pursued to determine seasonal fluctuations of the microbial populations from the input water to a drainage ditch, conveying back the flux into the river after passing through the soil of the wooded riparian strip. The bacterial communities were determined by combined approaches involving cultivation, microscopic methods and DNA based techniques to determine both culturable and total microbial community in water. The results indicate that the size of the bacterial population, including the culturable fraction, increases from the river to the drainage ditch especially on the warm season. The multiple approach here adopted enabled also to demonstrate that the special condition created in the buffer strip supports the development and the metabolism of the microbial community. The nature of the bacterial population, in terms of phylotypes distribution, was investigated by 16S rDNA analysis indicating that the most represented genera belong to Gamma-proteobacteria, which is known to include an exceeding number of important pathogens. In spring, the effect of the buffer strip seems to significantly reduce such a sub-population. The changes observed for the total bacterial community composition become much evident in summer, as revealed by both denaturing gradient gel electrophoresis cluster analysis and by the diversity index calculation. The hydraulic management coupled to the suspension of farming practices and the development of the woody and herbaceous vegetation resulted in a condition suitable for the containment of undesired microbiota (mainly during the spring season while continuing to support denitrification activity (especially throughout the summer as verified by the total nitrogen

  12. Novel developments in butanol fermentation: Microbial genetics to agricultural substrates, process technology, and downstream processing

    Science.gov (United States)

    Butanol is the major product of acetone-butanol-ethanol (ABE; ratio 3:6:1) fermentation. It can be produced from various carbohydrates such as glucose, corn, molasses, and whey permeate (a by-product of the dairy industry) using microbial strains such as Clostridium beijerinckii and/or C. acetobuty...

  13. Diets of differentially processed wheat alter ruminal fermentation parameters and microbial populations in beef cattle.

    Science.gov (United States)

    Jiang, S Z; Yang, Z B; Yang, W R; Li, Z; Zhang, C Y; Liu, X M; Wan, F C

    2015-11-01

    The influences of differently processed wheat products on rumen fermentation, microbial populations, and serum biochemistry profiles in beef cattle were studied. Four ruminally cannulated Limousin × Luxi beef cattle (400 ± 10 kg) were used in the experiment with a 4 × 4 Latin square design. The experimental diets contained (on a DM basis) 60% corn silage as a forage source and 40% concentrate with 4 differently processed wheat products (extruded, pulverized, crushed, and rolled wheat). Concentrations of ruminal NH-N and microbial protein (MCP) in cattle fed crushed and rolled wheat were greater ( Ruminal concentrations of total VFA and acetate and the ratio of acetate to propionate decreased ( 0.05). Our findings suggest that the method of wheat processing could have a significant effect on ruminal fermentation parameters and microbial populations in beef cattle and that crushed and rolled processing is better in terms of ruminal NH-N and MCP content, acetate-to-propionate ratio, and relative abundance of rumen microorganisms.

  14. The influence of processing on the microbial risk associated with Rooibos (Aspalathus linearis) tea.

    Science.gov (United States)

    Gouws, Pieter; Hartel, Toni; van Wyk, Rudean

    2014-12-01

    This review discusses the influence of processing on the microbial risk associated with Salmonella in Rooibos tea, the identification of Salmonella and preventative and control measures to control microbial contamination. Rooibos tea, like other plant products, naturally contains a high microbial load. Downstream processing steps of these products usually help in reducing any contaminants present. Due to the delicate flavour properties and nature of Rooibos, gentle processing techniques are necessary for the production of good quality tea. However, this has a major influence on the microbiological status of the product. The presence of Salmonella in Rooibos is poorly understood. The ubiquitous distribution of Salmonella in the natural environment and its prevalence in the global food chain, the physiological adaptability, virulence of the bacterial pathogen and its serious economic impact on the food industry, emphasises the need for continued awareness and stringent controls at all levels of food production. With the advances of technology and information at hand, the processing of Rooibos needs to be re-evaluated. Since the delicate nature of Rooibos prohibits the use of harsh methods to control Salmonella, alternative methods for the steam pasteurisation of Rooibos show great potential to control Salmonella in a fast, efficient and cost-effective manner. These alternative methods will significantly improve the microbiological quality of Rooibos and provide a product that is safe to consumers. © 2014 Society of Chemical Industry.

  15. Anaerobic digestion of slaughterhouse waste: main process limitations and microbial community interactions.

    Science.gov (United States)

    Palatsi, J; Viñas, M; Guivernau, M; Fernandez, B; Flotats, X

    2011-02-01

    Fresh pig/cattle slaughterhouse waste mixtures, with different lipid-protein ratios, were characterized and their anaerobic biodegradability assessed in batch tests. The resultant methane potentials were high (270-300 L(CH4) kg(-1)(COD)) making them interesting substrates for the anaerobic digestion process. However, when increasing substrate concentrations in consecutive batch tests, up to 15 g(COD) kg(-1), a clear inhibitory process was monitored. Despite the reported severe inhibition, related to lipid content, the system was able to recover activity and successfully degrade the substrate. Furthermore, 16SrRNA gene-based DGGE results showed an enrichment of specialized microbial populations, such as β-oxidizing/proteolitic bacteria (Syntrophomonas sp., Coprothermobacter sp. and Anaerobaculum sp.), and syntrophic methanogens (Methanosarcina sp.). Consequently, the lipid concentration of substrate and the structure of the microbial community are the main limiting factors for a successful anaerobic treatment of fresh slaughterhouse waste. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Microbial load and stability of some phyto chemical compounds of selected Sudanese medicinal plant materials as affected by gamma irradiation

    International Nuclear Information System (INIS)

    Musa, H. A. A.; Ahmed, E. E. A.; Osman, G. A. M.; Ali, H. A.; Muller, J. L.

    2011-01-01

    The aim of the present study was to evaluate the effect of gamma irradiation treatment on seeds of pepper cress (lepidium sativum L), seeds of black mustard (brassica nigra L.Koch), leaves of lemon grass (cymbopogon citratus), and calyces of roselle (hibiscus sabdariffa L), pods of senna (cassia senna L) and pods prickly acacia (Acacia nilotica L.). The radiation processing was carried out at dose levels of 0, 5, 10. 15 kGy. The irradiated and control samples were analyzed for microbial load, tannins and total phenol content as well as DPPH scavenging activity. The results indicated that gamma radiation treatment significantly reduced microbial load and showed that the total microbial load decreased linearly with absorbed radiation dose. They, also, indicated maximum reduction in tannin content in lemon grass, prickly acacia and roselle. On the other hand, irradiation with 15 kGy increased the tannin and phenol contents in black mustard, pepper cress and senna and reduced the phenol content of roselle and prickly acacia. The results also revealed that gamma irradiation resulted in significant decrease of DPPH radical scavenging activity of the different studied methanolic extracts with exception of pepper cress seeds.(Author)

  17. Temporal variability in Cu speciation, phytotoxicity, and soil microbial activity of Cu-polluted soils as affected by elevated temperature.

    Science.gov (United States)

    Fu, Qing-Long; Weng, Nanyan; Fujii, Manabu; Zhou, Dong-Mei

    2018-03-01

    Global warming has obtained increasing attentions due to its multiple impacts on agro-ecosystem. However, limited efforts had been devoted to reveal the temporal variability of metal speciation and phytotoxicity of heavy metal-polluted soils affected by elevated temperature under the global warming scenario. In this study, effects of elevated temperature (15 °C, 25 °C, and 35 °C) on the physicochemical properties, microbial metabolic activities, and phytotoxicity of three Cu-polluted soils were investigated by a laboratory incubation study. Soil physicochemical properties were observed to be significantly altered by elevated temperature with the degree of temperature effect varying in soil types and incubation time. The Biolog and enzymatic tests demonstrated that soil microbial activities were mainly controlled and decreased with increasing incubation temperature. Moreover, plant assays confirmed that the phytotoxicity and Cu uptake by wheat roots were highly dependent on soil types but less affected by incubation temperature. Overall, the findings in this study have highlighted the importance of soil types to better understand the temperature-dependent alternation of soil properties, Cu speciation and bioavailability, as well as phytotoxicity of Cu-polluted soils under global warming scenario. The present study also suggests the necessary of investigating effects of soil types on the transport and accumulation of toxic elements in soil-crop systems under global warming scenario. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Microbial phylogeny determines transcriptional response of resistome to dynamic composting processes

    OpenAIRE

    Wang, Cheng; Dong, Da; Strong, P. J.; Zhu, Weijing; Ma, Zhuang; Qin, Yong; Wu, Weixiang

    2017-01-01

    Background Animal manure is a reservoir of antibiotic resistance genes (ARGs) that pose a potential health risk globally, especially for resistance to the antibiotics commonly used in livestock production (such as tetracycline, sulfonamide, and fluoroquinolone). Currently, the effects of biological treatment (composting) on the transcriptional response of manure ARGs and their microbial hosts are not well characterized. Composting is a dynamic process that consists of four distinct phases tha...

  19. Feedstocks influence on the process parameters and the microbial community in anaerobic digestion

    OpenAIRE

    Ferguson, Robert Michael William

    2013-01-01

    To improve our understanding into the key parameters controlling and regulating the microbial groups involved in the anaerobic digestion (AD) process, particularly over multiple changes in operational conditions, triplicate lab-scale digesters fed with sewage sludge were exposed to single and multiple changes in organic loading rate (OLR) using either glycerol waste (a by-product of biodiesel manufacture), or Fats oils and greace (FOG waste) collected from a restaurant grease t...

  20. Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Kjeldsen, Peter; Bogner, J.E.

    2009-01-01

    Landfill gas containing methane is produced by anaerobic degradation of organic waste. Methane is a strong greenhouse gas and landfills are one of the major anthropogenic sources of atmospheric methane. Landfill methane may be oxidized by methanotrophic microorganisms in soils or waste materials...... to predict methane emissions from landfills. Additional research and technology development is needed before methane mitigation technologies utilizing microbial methane oxidation processes can become commercially viable and widely deployed....

  1. Side Effects of Nitrification Inhibitors on Non Target Microbial Processes in Soils

    OpenAIRE

    Johannes Carl Gottlieb Ottow; Gero Benckiser; Ferisman Tindaon

    2011-01-01

    Agricultural chemicals have been used extensively in modern agriculture and toxicological studies suggest a great potential for inducing undesirable effects on non target organisms. A model experiment was conducted in order to determine side effects of three nitrification inhibitors (NIs, 3,4dimethylpyrazolephosphate = DMPP, 4-Chlormethylpyrazole phosphate = ClMPP and dicyandiamide = DCD) on non target microbial processes in soils. Side effects and dose response curve of three NIs were quanti...

  2. Predicted Bacterial Interactions Affect in Vivo Microbial Colonization Dynamics in Nematostella

    Science.gov (United States)

    Domin, Hanna; Zurita-Gutiérrez, Yazmín H.; Scotti, Marco; Buttlar, Jann; Hentschel Humeida, Ute; Fraune, Sebastian

    2018-01-01

    The maintenance and resilience of host-associated microbiota during development is a fundamental process influencing the fitness of many organisms. Several host properties were identified as influencing factors on bacterial colonization, including the innate immune system, mucus composition, and diet. In contrast, the importance of bacteria–bacteria interactions on host colonization is less understood. Here, we use bacterial abundance data of the marine model organism Nematostella vectensis to reconstruct potential bacteria–bacteria interactions through co-occurrence networks. The analysis indicates that bacteria–bacteria interactions are dynamic during host colonization and change according to the host’s developmental stage. To assess the predictive power of inferred interactions, we tested bacterial isolates with predicted cooperative or competitive behavior for their ability to influence bacterial recolonization dynamics. Within 3 days of recolonization, all tested bacterial isolates affected bacterial community structure, while only competitive bacteria increased bacterial diversity. Only 1 week after recolonization, almost no differences in bacterial community structure could be observed between control and treatments. These results show that predicted competitive bacteria can influence community structure for a short period of time, verifying the in silico predictions. However, within 1 week, the effects of the bacterial isolates are neutralized, indicating a high degree of resilience of the bacterial community. PMID:29740401

  3. Predicted Bacterial Interactions Affect in Vivo Microbial Colonization Dynamics in Nematostella

    Directory of Open Access Journals (Sweden)

    Hanna Domin

    2018-04-01

    Full Text Available The maintenance and resilience of host-associated microbiota during development is a fundamental process influencing the fitness of many organisms. Several host properties were identified as influencing factors on bacterial colonization, including the innate immune system, mucus composition, and diet. In contrast, the importance of bacteria–bacteria interactions on host colonization is less understood. Here, we use bacterial abundance data of the marine model organism Nematostella vectensis to reconstruct potential bacteria–bacteria interactions through co-occurrence networks. The analysis indicates that bacteria–bacteria interactions are dynamic during host colonization and change according to the host’s developmental stage. To assess the predictive power of inferred interactions, we tested bacterial isolates with predicted cooperative or competitive behavior for their ability to influence bacterial recolonization dynamics. Within 3 days of recolonization, all tested bacterial isolates affected bacterial community structure, while only competitive bacteria increased bacterial diversity. Only 1 week after recolonization, almost no differences in bacterial community structure could be observed between control and treatments. These results show that predicted competitive bacteria can influence community structure for a short period of time, verifying the in silico predictions. However, within 1 week, the effects of the bacterial isolates are neutralized, indicating a high degree of resilience of the bacterial community.

  4. Interactions in the Geo-Biosphere: Processes of Carbonate Precipitation in Microbial Mats

    Science.gov (United States)

    Dupraz, C.; Visscher, P. T.

    2009-12-01

    Microbial communities are situated at the interface between the biosphere, the lithosphere and the hydrosphere. These microbes are key players in the global carbon cycle, where they influence the balance between the organic and inorganic carbon reservoirs. Microbial populations can be organized in microbial mats, which can be defined as organosedimentary biofilms that are dominated by cyanobacteria, and exhibit tight coupling of element cycles. Complex interactions between mat microbes and their surrounding environment can result in the precipitation of carbonate minerals. This process refers as ‘organomineralization sensu lato' (Dupraz et al. in press), which differs from ‘biomineralization’ (e.g., in shells and bones) by lacking genetic control on the mineral product. Organomineralization can be: (1) active, when microbial metabolic reactions are responsible for the precipitation (“biologically-induced” mineralization) or (2) passive, when mineralization within a microbial organic matrix is environmentally driven (e.g., through degassing or desiccation) (“biologically-influenced” mineralization). Studying microbe-mineral interactions is essential to many emerging fields of the biogeoscience, such as the study of life in extreme environments (e.g, deep biosphere), the origin of life, the search for traces of extraterrestrial life or the seek of new carbon sink. This research approach combines sedimentology, biogeochemistry and microbiology. Two tightly coupled components that control carbonate organomineralization s.l.: (1) the alkalinity engine and (2) the extracellular organic matter (EOM), which is ultimately the location of mineral nucleation. Carbonate alkalinity can be altered both by microbial metabolism and environmental factors. In microbial mats, the net accumulation of carbonate minerals often reflect the balance between metabolic activities that consume/produce CO2 and/or organic acids. For example, photosynthesis and sulfate reduction

  5. Factors affecting the periapical healing process of endodontically treated teeth

    Directory of Open Access Journals (Sweden)

    Roberto Holland

    Full Text Available Abstract Tissue repair is an essential process that reestablishes tissue integrity and regular function. Nevertheless, different therapeutic factors and clinical conditions may interfere in this process of periapical healing. This review aims to discuss the important therapeutic factors associated with the clinical protocol used during root canal treatment and to highlight the systemic conditions associated with the periapical healing process of endodontically treated teeth. The antibacterial strategies indicated in the conventional treatment of an inflamed and infected pulp and the modulation of the host's immune response may assist in tissue repair, if wound healing has been hindered by infection. Systemic conditions, such as diabetes mellitus and hypertension, can also inhibit wound healing. The success of root canal treatment is affected by the correct choice of clinical protocol. These factors are dependent on the sanitization process (instrumentation, irrigant solution, irrigating strategies, and intracanal dressing, the apical limit of the root canal preparation and obturation, and the quality of the sealer. The challenges affecting the healing process of endodontically treated teeth include control of the inflammation of pulp or infectious processes and simultaneous neutralization of unpredictable provocations to the periapical tissue. Along with these factors, one must understand the local and general clinical conditions (systemic health of the patient that affect the outcome of root canal treatment prediction.

  6. Sourdough microbial community dynamics: An analysis during French organic bread-making processes.

    Science.gov (United States)

    Lhomme, Emilie; Urien, Charlotte; Legrand, Judith; Dousset, Xavier; Onno, Bernard; Sicard, Delphine

    2016-02-01

    Natural sourdoughs are commonly used in bread-making processes, especially for organic bread. Despite its role in bread flavor and dough rise, the stability of the sourdough microbial community during and between bread-making processes is debated. We investigated the dynamics of lactic acid bacteria (LAB) and yeast communities in traditional organic sourdoughs of five French bakeries during the bread-making process and several months apart using classical and molecular microbiology techniques. Sourdoughs were sampled at four steps of the bread-making process with repetition. The analysis of microbial density over 68 sourdough/dough samples revealed that both LAB and yeast counts changed along the bread-making process and between bread-making runs. The species composition was less variable. A total of six LAB and nine yeast species was identified from 520 and 1675 isolates, respectively. The dominant LAB species was Lactobacillus sanfranciscensis, found for all bakeries and each bread-making run. The dominant yeast species changed only once between bread-making processes but differed between bakeries. They mostly belonged to the Kazachstania clade. Overall, this study highlights the change of population density within the bread-making process and between bread-making runs and the relative stability of the sourdough species community during bread-making process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Factors affecting microbial activity in compacted clay-based sealing materials proposed for use in a deep geologic repository for used nuclear fuel

    International Nuclear Information System (INIS)

    Stroes-Gascoyne, S.; Hamon, C.J.; Dixon, D.A.; Kjartanson, B.K.

    2006-01-01

    Microbial activity in clay-based barriers immediately adjacent to metal used-fuel containers in a repository could affect the longevity of such containers. The current emphasis is, therefore, on reducing or minimizing microbial activity in such clay-based barriers through material composition design. Factors affecting microbial activity in clay-based materials were studied in large-scale and smaller-scale experiments. Results suggested that keeping water activity (a w ) values below ∼0.95 may minimize microbial activity in clay-based barrier materials. A considerably higher effective montmorillonite dry density (EMDD), which partially controls a w , is achievable for 100% bentonite than for previously proposed reference buffer materials, which contain only 50% bentonite. (author)

  8. Microbial processes need to be addressed in a competent safety case

    International Nuclear Information System (INIS)

    Pedersen, Karsten; Hallbeck, Lotta

    2014-01-01

    Biological life processes should be separated from chemical inorganic processes. This is because most life processes are running along biochemical process pathways that are very different from those of inorganic chemical processes. Many chemical processes are restricted by various reaction barriers, e.g. the reduction process of sulphate to sulphide. They are, therefore, very slow or not possible at all under conditions typical for repositories for interim storage and long-term storage of radioactive wastes. Biological processes, consequently, include many reactions that do not occur in sterile, lifeless chemical systems. This is because life has the ability to over-run activation energy barriers and other energetic circumstances that block spontaneous chemical reactions. Life is possible from -20 deg. C up to around 113 deg. C, where all life processes stop. Life is also possible within a large pH range, from pH 1 up to at least pH 12.5. Finally, many processes overlap biology and chemistry such as sulphide and ferrous iron oxidation, which occur both as chemical and biological processes. Life processes in radioactive waste interim and long-term repositories will almost exclusively be under the control of micro-organisms. Microbial processes comprise red-ox reactions with decomposition and the production of organic molecules with different electron donors, energy sources and electron acceptors. Organic carbon in wastes, buffer materials and reduced inorganic molecules such as H2 from anaerobic corrosion processes and methane from geological sources are possible electron donors and energy sources for microbial processes. During the microbial oxidation of these energy sources, micro-organisms preferentially reduce electron acceptors in a particular order. First O 2 , and thereafter nitrate, manganese(IV), ferric iron, sulphate, sulphur and carbon dioxide are reduced. Simultaneously, fermentative processes lower pH and supply the metabolising micro-organisms with

  9. Parallel factor analysis PARAFAC of process affected water

    Energy Technology Data Exchange (ETDEWEB)

    Ewanchuk, A.M.; Ulrich, A.C.; Sego, D. [Alberta Univ., Edmonton, AB (Canada). Dept. of Civil and Environmental Engineering; Alostaz, M. [Thurber Engineering Ltd., Calgary, AB (Canada)

    2010-07-01

    A parallel factor analysis (PARAFAC) of oil sands process-affected water was presented. Naphthenic acids (NA) are traditionally described as monobasic carboxylic acids. Research has indicated that oil sands NA do not fit classical definitions of NA. Oil sands organic acids have toxic and corrosive properties. When analyzed by fluorescence technology, oil sands process-affected water displays a characteristic peak at 290 nm excitation and approximately 346 nm emission. In this study, a parallel factor analysis (PARAFAC) was used to decompose process-affected water multi-way data into components representing analytes, chemical compounds, and groups of compounds. Water samples from various oil sands operations were analyzed in order to obtain EEMs. The EEMs were then arranged into a large matrix in decreasing process-affected water content for PARAFAC. Data were divided into 5 components. A comparison with commercially prepared NA samples suggested that oil sands NA is fundamentally different. Further research is needed to determine what each of the 5 components represent. tabs., figs.

  10. Exploring the nature of facial affect processing deficits in schizophrenia

    NARCIS (Netherlands)

    Wout, Mascha van 't; Aleman, Andre; Kessels, Roy P. C.; Cahn, Wiepke; Haan, Edward H. F. de; Kahn, Rene S.

    2007-01-01

    Schizophrenia has been associated with deficits in facial affect processing, especially negative emotions. However, the exact nature of the deficit remains unclear. The aim of the present study was to investigate whether schizophrenia patients have problems in automatic allocation of attention as

  11. Exploring the nature of facial affect processing deficits in schizophrenia.

    NARCIS (Netherlands)

    Wout, M. van 't; Aleman, A.; Kessels, R.P.C.; Cahn, W.; Haan, E.H.F. de; Kahn, R.S.

    2007-01-01

    Schizophrenia has been associated with deficits in facial affect processing, especially negative emotions. However, the exact nature of the deficit remains unclear. The aim of the present study was to investigate whether schizophrenia patients have problems in automatic allocation of attention as

  12. Political Expertise and Affect: Effects on News Processing.

    Science.gov (United States)

    Hsu, Mei-Ling; Price, Vincent

    1993-01-01

    Investigates interactions between political expertise and affect in shaping cognitive strategies people employ in forming reactions to newspaper stories. Finds that, in processing the news articles, political experts produced a greater number of thoughts and a larger share of arguments than did novices. Observes no predicted main effects of…

  13. Understanding aquatic microbial processes using EEM's and in-situ fluorescence sensors

    Science.gov (United States)

    Fox, Bethany; Attridge, John; Rushworth, Cathy; Cox, Tim; Anesio, Alexandre; Reynolds, Darren

    2015-04-01

    The diverse origin of dissolved organic matter (DOM) in aquatic systems is well documented within the literature. Previous literature indicates that coloured dissolved organic matter (CDOM) is, in part, transformed by aquatic microbial processes, and that dissolved organic material derived from a microbial origin exhibits tryptophan-like fluorescence. However, this phenomenon is not fully understood and very little data is available within the current literature. The overall aim of our work is to reveal the microbial-CDOM interactions that give rise to the observed tryptophan-like fluorescence. The work reported here investigates the microbial processes that occur within freshwater aquatic samples, as defined by the biochemical oxygen demand (BOD) test, as a function of the T1 peak (λex/em 280/330-370 nm). A series of standard water samples were prepared using glucose, glutamic acid, BOD dilution water and a bacterial seed (Cole-Parmer BOD microbe capsules). Samples were spiked with CDOM (derived from an environmental water body) and subjected to time resolved BOD analysis and as excitation-emission fluorescence spectroscopy. All EEM spectral data was interrogated using parallel factor analysis (PARAFAC) in an attempt to determine the presence and dominance (relative intensities) of the CDOM-related and T1-related fluorophores within the samples. In-situ fluorescence sensors (Chelsea Technologies Group Ltd.) were also used to monitor the T1 fluorescence peak (UviLux Tryptophan) and the CDOM fluorescence peak (UviLux CDOM) during experiments. Tryptophan-like fluorescence was observed (albeit transient) in both spiked and un-spiked standard water samples. By furthering our understanding of aquatic organic matter fluorescence, its origin, transformation, fate and interaction with aquatic microbiological processes, we aim to inform the design of a new generation in-situ fluorescence sensor for the monitoring of aquatic ecosystem health.

  14. Compositional Changes and Baking Performance of Rye Dough As Affected by Microbial Transglutaminase and Xylanase.

    Science.gov (United States)

    Grossmann, Isabel; Döring, Clemens; Jekle, Mario; Becker, Thomas; Koehler, Peter

    2016-07-20

    Doughs supplemented with endoxylanase (XYL) and varying amounts of microbial transglutaminase (TG) were analyzed by sequential protein extraction, quantitation of protein fractions and protein types, and determination of water-extractable arabinoxylans. With increasing TG activity, the concentration of prolamins and glutelins decreased and increased, respectively, and the prolamin-to-glutelin ratio strongly declined. The overall amount of extractable protein decreased with increasing TG level showing that cross-linking by TG provided high-molecular-weight protein aggregates. The decrease of the high-molecular-weight arabinoxylan fraction and the concurrent increase of the medium-molecular-weight fraction confirmed the degradation of arabinoxylans by XYL. However, XYL addition did not lead to significant improved cross-linking of rye proteins by TG. Volume and crumb hardness measurements of bread showed increased protein connectivity induced by XYL and TG. Significant positive effects on the final bread quality were especially obtained by XYL addition.

  15. Microbial biomass and carbon mineralization in agricultural soils as affected by pesticide addition.

    Science.gov (United States)

    Kumar, Anjani; Nayak, A K; Shukla, Arvind K; Panda, B B; Raja, R; Shahid, Mohammad; Tripathi, Rahul; Mohanty, Sangita; Rath, P C

    2012-04-01

    A laboratory study was conducted with four pesticides, viz. a fungicide (carbendazim), two insecticides (chlorpyrifos and cartap hydrochloride) and an herbicide (pretilachlor) applied to a sandy clay loam soil at a field rate to determine their effect on microbial biomass carbon (MBC) and carbon mineralization (C(min)). The MBC content of soil increased with time up to 30 days in cartap hydrochloride as well as chlorpyrifos treated soil. Thereafter, it decreased and reached close to the initial level by 90th day. However, in carbendazim treated soil, the MBC showed a decreasing trend up to 45 days and subsequently increased up to 90 days. In pretilachlor treated soil, MBC increased through the first 15 days, and thereafter decreased to the initial level. Application of carbendazim, chlorpyrifos and cartap hydrochloride decreased C(min) for the first 30 days and then increased afterwards, while pretilachlor treated soil showed an increasing trend.

  16. Does nitrogen fertilization history affects short-term microbial responses and chemical properties of soils submitted to different glyphosate concentrations?

    Directory of Open Access Journals (Sweden)

    Elodie Nivelle

    Full Text Available The use of nitrogen (N fertilizer and glyphosate-based herbicides is increasing worldwide, with agriculture holding the largest market share. The agronomic and socioeconomic utilities of glyphosate are well established; however, our knowledge of the potential effects of glyphosate applied in the presence or absence of long-term N fertilization on microbial functional activities and the availability of soil nutrients remains limited. Using an ex situ approach with soils that did (N+ or did not (N0 receive synthetic N fertilization for 6 years, we assessed the impact of different rates (no glyphosate, CK; field rate, FR; 100 × field rate, 100FR of glyphosate application on biological and chemical parameters. We observed that, after immediate application (1 day, the highest dose of glyphosate (100FR negatively affected the alkaline phosphatase (AlP activity in soils without N fertilization history and decreased the cation exchange capacity (CEC in N0 compared to CK and FR treatments with N+. Conversely, the 100FR application increased nitrate (NO3- and available phosphorus (PO43- regardless of N fertilization history. Then, after 8 and 15 days, the N+\\100FR and N+\\FR treatments exhibited the lowest values for dehydrogenase (DH and AlP activities, respectively, while urease (URE activity was mainly affected by N fertilization. After 15 days and irrespective of N fertilization history, the FR glyphosate application negatively affected the degradation of carbon substrates by microbial communities (expressed as the average well color development, AWCD. By contrast, the 100FR treatment positively affected AWCD, increasing PO43- by 5 and 16% and NO3- by 126 and 119% in the N+ and N0 treatments, respectively. In addition, the 100FR treatment resulted in an increase in the average net nitrification rate. Principal component analysis revealed that the 100FR glyphosate treatment selected microbial communities that were able to metabolize amine substrates

  17. Environmental and Microbial Features Affecting Denitrification and Anammox Hotspots in an Estuarine Ecosystem

    Science.gov (United States)

    Lisa, J.; Song, B.; Lefcheck, J. S.; Tobias, C. R.

    2016-02-01

    Biogeochemical hotspots are characterized as a few sites that exhibit extremely high reaction rates relative to surrounding area, and often account for a high percentage of the overall reaction rates in an ecosystem. Criteria for quantitatively identifying these sites have not been well established. Further, the underlying mechanisms of hotspots have been described in terms of environmental conditions, with little attention paid to the microbial community. The objectives of this study were to establish quantitative criteria to identify denitrification and anammox hotspots, and determine the underlying microbial and environmental factors responsible for elevated N2 production. We used 15N isotope pairing incubation experiments to measure denitrification and anammox rates in the New River Estuary, NC. Quantitative PCR assays of nitrous oxide reductase (nosZ Clades I and II) and hydrazine oxidoreductase (hzo) genes were conducted to estimate denitrifier and anammox abundance. Structural Equation Modeling (SEM) was used to elucidate complex causal relationships between environmental and biological variables. Denitrification hotspots, quantitatively defined as statistical outliers, accounted for 35.6% total denitrification while comprising only 7.3% of the sites. Anammox hotspots,10.6% of the sites, accounted for 60.9% of total anammox. SEM revealed increased sediment organics at lower salinities supported higher functional gene abundance, which in turn resulted in higher N2 production. Surprisingly, denitrification rates were significantly and positively correlated with nosZ Clade II gene abundance, after accounting for the non-significant contributions of the naturally more abundant nosZ Clade I, and other environmental covariates. This is the first time that a quantitative definition of biogeochemical hotspots was put forth and used to determine the importance of anammox and denitrification hotspots in estuarine nitrogen removal capacity. Despite the low area

  18. Effects of engineered nanomaterials on microbial catalyzed biogeochemical processes in sediments

    Energy Technology Data Exchange (ETDEWEB)

    Gao Jie, E-mail: jgao@perc.ufl.edu [Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611 (United States); Wang Yu; Hovsepyan, Anna [Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611 (United States); Bonzongo, Jean-Claude J., E-mail: bonzongo@ufl.edu [Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611 (United States)

    2011-02-15

    Engineered nanomaterials (ENMs) are anticipated to find use in many human activities and commercial products. Concerns are therefore being raised regarding their environmental fate and toxicological implications, which remain largely unknown. In this study, we investigate the effects of C{sub 60}, nano-Ag and CdSe quantum dots (QD) on microbial-catalyzed oxidation of organic matter in freshwater sediments. Sediment slurries spiked with sodium acetate at a final concentration of 150 mg/L were separately treated with pre-identified toxic levels of the tested ENMs. The study focused primarily on acetate oxidation by nitrate reducing bacteria. Sediment slurries were incubated under anaerobic conditions in parallel with control samples, and changes in concentrations of acetate, nitrate and nitrite tracked over time. The results showed that tested C{sub 60} concentration completely inhibited the microbial oxidation of acetate, whereas the addition of nano-Ag and CdSe QD to sediment slurries negatively affected the rates of acetate oxidation. Under conditions with nitrate as prevalent electron acceptor, reaction rates of acetate degradation decreased from 0.44 day{sup -1} in control slurries to 0.24 day{sup -1} and 0.20 day{sup -1} in slurries treated with nano-Ag and CdSe QD, respectively. These preliminary results call for further investigations on potential long-term effects of ENMs on microbial driven basic ecosystem services.

  19. Functional Enzyme-Based Approach for Linking Microbial Community Functions with Biogeochemical Process Kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Li, Minjing [School; Qian, Wei-jun [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Gao, Yuqian [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Shi, Liang [School; Liu, Chongxuan [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; School

    2017-09-28

    The kinetics of biogeochemical processes in natural and engineered environmental systems are typically described using Monod-type or modified Monod-type models. These models rely on biomass as surrogates for functional enzymes in microbial community that catalyze biogeochemical reactions. A major challenge to apply such models is the difficulty to quantitatively measure functional biomass for constraining and validating the models. On the other hand, omics-based approaches have been increasingly used to characterize microbial community structure, functions, and metabolites. Here we proposed an enzyme-based model that can incorporate omics-data to link microbial community functions with biogeochemical process kinetics. The model treats enzymes as time-variable catalysts for biogeochemical reactions and applies biogeochemical reaction network to incorporate intermediate metabolites. The sequences of genes and proteins from metagenomes, as well as those from the UniProt database, were used for targeted enzyme quantification and to provide insights into the dynamic linkage among functional genes, enzymes, and metabolites that are necessary to be incorporated in the model. The application of the model was demonstrated using denitrification as an example by comparing model-simulated with measured functional enzymes, genes, denitrification substrates and intermediates

  20. Effects of microbial processes on gas generation under expected WIPP repository conditions: Annual report through 1992

    International Nuclear Information System (INIS)

    Francis, A.J.; Gillow, J.B.

    1993-09-01

    Microbial processes involved in gas generation from degradation of the organic constituents of transuranic waste under conditions expected at the Waste Isolation Pilot Plant (WIPP) repository are being investigated at Brookhaven National Laboratory. These laboratory studies are part of the Sandia National Laboratories -- WIPP Gas Generation Program. Gas generation due to microbial degradation of representative cellulosic waste was investigated in short-term ( 6 months) experiments by incubating representative paper (filter paper, paper towels, and tissue) in WIPP brine under initially aerobic (air) and anaerobic (nitrogen) conditions. Samples from the WIPP surficial environment and underground workings harbor gas-producing halophilic microorganisms, the activities of which were studied in short-term experiments. The microorganisms metabolized a variety of organic compounds including cellulose under aerobic, anaerobic, and denitrifying conditions. In long-term experiments, the effects of added nutrients (trace amounts of ammonium nitrate, phosphate, and yeast extract), no nutrients, and nutrients plus excess nitrate on gas production from cellulose degradation

  1. Neural correlates of affect processing and aggression in methamphetamine dependence.

    Science.gov (United States)

    Payer, Doris E; Lieberman, Matthew D; London, Edythe D

    2011-03-01

    Methamphetamine abuse is associated with high rates of aggression but few studies have addressed the contributing neurobiological factors. To quantify aggression, investigate function in the amygdala and prefrontal cortex, and assess relationships between brain function and behavior in methamphetamine-dependent individuals. In a case-control study, aggression and brain activation were compared between methamphetamine-dependent and control participants. Participants were recruited from the general community to an academic research center. Thirty-nine methamphetamine-dependent volunteers (16 women) who were abstinent for 7 to 10 days and 37 drug-free control volunteers (18 women) participated in the study; subsets completed self-report and behavioral measures. Functional magnetic resonance imaging (fMRI) was performed on 25 methamphetamine-dependent and 23 control participants. We measured self-reported and perpetrated aggression and self-reported alexithymia. Brain activation was assessed using fMRI during visual processing of facial affect (affect matching) and symbolic processing (affect labeling), the latter representing an incidental form of emotion regulation. Methamphetamine-dependent participants self-reported more aggression and alexithymia than control participants and escalated perpetrated aggression more following provocation. Alexithymia scores correlated with measures of aggression. During affect matching, fMRI showed no differences between groups in amygdala activation but found lower activation in methamphetamine-dependent than control participants in the bilateral ventral inferior frontal gyrus. During affect labeling, participants recruited the dorsal inferior frontal gyrus and exhibited decreased amygdala activity, consistent with successful emotion regulation; there was no group difference in this effect. The magnitude of decrease in amygdala activity during affect labeling correlated inversely with self-reported aggression in control participants

  2. Good Manufacturing Practices and Microbial Contamination Sources in Orange Fleshed Sweet Potato Puree Processing Plant in Kenya

    Directory of Open Access Journals (Sweden)

    Derick Nyabera Malavi

    2018-01-01

    Full Text Available Limited information exists on the status of hygiene and probable sources of microbial contamination in Orange Fleshed Sweet Potato (OFSP puree processing. The current study is aimed at determining the level of compliance to Good Manufacturing Practices (GMPs, hygiene, and microbial quality in OFSP puree processing plant in Kenya. Intensive observation and interviews using a structured GMPs checklist, environmental sampling, and microbial analysis by standard microbiological methods were used in data collection. The results indicated low level of compliance to GMPs with an overall compliance score of 58%. Microbial counts on food equipment surfaces, installations, and personnel hands and in packaged OFSP puree were above the recommended microbial safety and quality legal limits. Steaming significantly (P<0.05 reduced microbial load in OFSP cooked roots but the counts significantly (P<0.05 increased in the puree due to postprocessing contamination. Total counts, yeasts and molds, Enterobacteriaceae, total coliforms, and E. coli and S. aureus counts in OFSP puree were 8.0, 4.0, 6.6, 5.8, 4.8, and 5.9 log10 cfu/g, respectively. In conclusion, equipment surfaces, personnel hands, and processing water were major sources of contamination in OFSP puree processing and handling. Plant hygiene inspection, environmental monitoring, and food safety trainings are recommended to improve hygiene, microbial quality, and safety of OFSP puree.

  3. Profiling of dynamic changes in the microbial community during the soy sauce fermentation process.

    Science.gov (United States)

    Wei, Quanzeng; Wang, Hongbin; Chen, Zhixin; Lv, Zhijia; Xie, Yufeng; Lu, Fuping

    2013-10-01

    Soy sauce is a traditional condiment manufactured by natural inoculation and mixed culture fermentation. As is well known, it is the microbial community that plays an important role in the formation of its flavors. However, to date, its dynamic changes during the long period of fermentation process are still unclear, intensively constraining the improvement and control of the soy sauce quality. In this work, we revealed the dynamic changes of the microbial community by combining a cultured dependent method and a cultured independent method of polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis. Results indicated that the two methods verified and complemented each other in profiling microbial community, and that significant dynamics of the microbial community existed during the fermentation process, especially the strong inhibition of the growth of most of the microbes when entering into the mash stage from the koji stage. In the analysis of bacterial community, Staphylococcus and Bacillus were found to be the dominant bacteria and detected in the whole fermentation process. Kurthia and Klebsiella began to appear in the koji stage and then fade away in the early stage of the mash fermentation. In the analysis of fungal community, Aspergillus sojae and Zygosaccharomyces rouxii were found to be the dominant fungi in the koji and mash fermentation, respectively. It was clearly shown that when A. sojae decreased and disappeared in the middle stage of the mash fermentation, Z. rouxii appeared and increased at the meantime. Aspergillus parasiticus, Trichosporon ovoides and Trichosporon asahii also appeared in the koji and the early period of the mash fermentation and disappeared thereafter. Similar to Z. rouxii, Millerozyma farinosa and Peronospora farinosa were also found spontaneously which appeared in the mid-late period of the mash fermentation. The principal component analysis suggested that the microbial community underwent significant changes in

  4. Relationship of microbial processes to the fate and behavior of transuranic elements in soils, plants, and animals

    International Nuclear Information System (INIS)

    Wildung, R.E.; Garland, T.R.

    1977-10-01

    This review considers the influence of soil physicochemical and microbial processes on the long-term solubility, form, and bioavailability of plutonium and other transuranic elements important in the nuclear fuel cycle. Emphasis is placed on delineation of the relationships between soil chemical and microbial processes and the role of soil microorganisms in effecting solubilization, transformation and plant/animal uptake of elements considered largely insoluble in soils strictly on the basis of their inorganic chemical characteristics

  5. Microbial processes relevant for the long-term performance of radioactive waste repositories in clays

    International Nuclear Information System (INIS)

    Meleshyn, Artur

    2012-01-01

    Document available in extended abstract form only. A number of investigations on occurrence and viability of microbes in compacted clays have been aimed at studying possible microbial effects on long-term performance of a deep geological repository (DGR) for high-level radioactive waste (HLW) and spent nuclear fuel (SF). Compacted clays are considered in current DGR designs either as a buffer material or as a host rock. The primary purpose of the present work was to qualitatively evaluate the relevance of microbial activity for the long-term performance of a DGR and to identify which safety-relevant processes and properties can be potentially influenced by this activity. The present analysis identified eight clay properties essential for maintaining safety functions of containment and retardation of the disposal system - swelling pressure, specific surface area, cation exchange capacity, anion sorption capacity, porosity, permeability, fluid pressure, plasticity - which can potentially be influenced by microbial processes in clay buffer and Clay-stone within a DGR for HLW/SF. Iron(III)- and sulphate-reducing, fermentative, methane-producing and oxidizing microbes can be considered to be present in any clay formation. Each habitat includes a massive number of microbial niches with perhaps only a small proportion of the species being metabolically active at the habitat's conditions, the remainder becoming not extinct. Moreover, clays contain electron donors and electron acceptors in amounts sufficient for these microbes to remain active during very long periods of time. Additional sources of electron donors or electron acceptors will inevitably be added to the repository system as a result of DGR excavation, placement of radioactive waste as well as backfilling and sealing of the DGR. In no case should the potential impact of microbes be underestimated based on a possible argument of comparably low biomass of the microbes in contact with metal surfaces or dissolved

  6. Flow Analysis of a Rising Crude Oil Micro-Droplet Affected by Attached Microbial Streamers

    Science.gov (United States)

    Amaro, Matthew; White, Andrew; Jalali, Maryam; Sheng, Jian

    2017-11-01

    Microfluidic experiments show bacteria flowing past a pinned crude oil droplet produce microbial aggregates and streamers on the oil-water interface. High speed DIC microscopy at 1000 fps for 1 sec with a sampling interval of 10 min captures the evolving flow and bacterial motility as well as adhesion, aggregation and streamer events. With bacteria as tracers, velocity measurements are acquired with in-house PIV-assisted PTV software. Flow fields with spatial resolution 2.5 μm are measured around an O(100) μm drop in a 700 ×700 μm window. Full budgets of the 2D Navier-Stokes equation are faithfully resolved to determine pressure gradients by performing the balance over a control volume enclosing the droplet. Pressure gradients are integrated over the border of the control region to obtain pressure profiles at the leading and trailing edges. A momentum balance can be used to determine the drag induced by the drop and any attached streamers. Cases with and without streamers and their differing flow features are presented. Additionally streamers produce nonzero curl in the pressure gradient field providing a tool for identifying the position of otherwise invisible streamers. Ongoing experiments and future applications of the tools presented here will be discussed. Funded by GoMRI, NSF, ARO.

  7. Microbial phylogeny determines transcriptional response of resistome to dynamic composting processes.

    Science.gov (United States)

    Wang, Cheng; Dong, Da; Strong, P J; Zhu, Weijing; Ma, Zhuang; Qin, Yong; Wu, Weixiang

    2017-08-16

    Animal manure is a reservoir of antibiotic resistance genes (ARGs) that pose a potential health risk globally, especially for resistance to the antibiotics commonly used in livestock production (such as tetracycline, sulfonamide, and fluoroquinolone). Currently, the effects of biological treatment (composting) on the transcriptional response of manure ARGs and their microbial hosts are not well characterized. Composting is a dynamic process that consists of four distinct phases that are distinguished by the temperature resulting from microbial activity, namely the mesophilic, thermophilic, cooling, and maturing phases. In this study, changes of resistome expression were determined and related to active microbiome profiles during the dynamic composting process. This was achieved by integrating metagenomic and time series metatranscriptomic data for the evolving microbial community during composting. Composting noticeably reduced the aggregated expression level of the manure resistome, which primarily consisted of genes encoding for tetracycline, vancomycin, fluoroquinolone, beta-lactam, and aminoglycoside resistance, as well as efflux pumps. Furthermore, a varied transcriptional response of resistome to composting at the ARG levels was highlighted. The expression of tetracycline resistance genes (tetM-tetW-tetO-tetS) decreased during composting, where distinctive shifts in the four phases of composting were related to variations in antibiotic concentration. Composting had no effect on the expression of sulfonamide and fluoroquinolone resistance genes, which increased slightly during the thermophilic phase and then decreased to initial levels. As indigenous populations switched greatly throughout the dynamic composting, the core resistome persisted and their reservoir hosts' composition was significantly correlated with dynamic active microbial phylogenetic structure. Hosts for sulfonamide and fuoroquinolone resistance genes changed notably in phylognetic structure

  8. Electrophysiological differences in the processing of affect misattribution.

    Directory of Open Access Journals (Sweden)

    Yohei Hashimoto

    Full Text Available The affect misattribution procedure (AMP was proposed as a technique to measure an implicit attitude to a prime image [1]. In the AMP, neutral symbols (e.g., a Chinese pictograph, called the target are presented, following an emotional stimulus (known as the prime. Participants often misattribute the positive or negative affect of the priming images to the targets in spite of receiving an instruction to ignore the primes. The AMP effect has been investigated using behavioral measures; however, it is difficult to identify when the AMP effect occurs in emotional processing-whether the effect may occur in the earlier attention allocation stage or in the later evaluation stage. In this study, we examined the neural correlates of affect misattribution, using event-related potential (ERP dividing the participants into two groups based on their tendency toward affect misattribution. The ERP results showed that the amplitude of P2 was larger for the prime at the parietal location in participants showing a low tendency to misattribution than for those showing a high tendency, while the effect of judging neutral targets amiss according to the primes was reflected in the late processing of targets (LPP. In addition, the topographic pattern analysis revealed that EPN-like component to targets was correlated with the difference of AMP tendency as well as P2 to primes and LPP to targets. Taken together, the mechanism of the affective misattribution was closely related to the attention allocation processing. Our findings provide neural evidence that evaluations of neutral targets are misattributed to emotional primes.

  9. Microbial ecology of Vietnamese Tra fish (Pangasius hypophthalmus) fillets during processing.

    Science.gov (United States)

    Tong Thi, Anh Ngoc; Noseda, Bert; Samapundo, Simbarashe; Nguyen, Binh Ly; Broekaert, Katrien; Rasschaert, Geertrui; Heyndrickx, Marc; Devlieghere, Frank

    2013-10-15

    There are numerous factors that can have an impact on the microbial ecology and quality of frozen Pangasius hypophthalmus fillets during processing in Vietnam. The presence of spoilage bacteria along the processing line can shorten the shelf-life of thawed frozen fish products. Therefore, the spoilage microbiota throughout the processing chain of two companies (BC: large scale factory, chlorine-based process, BW: large scale factory, water-based process and SC: small scale factory, chlorine-based process) was identified by culture-dependent techniques and 16S rRNA gene sequencing. The microbiological counts were observed to be insignificantly different (p>0.05) between BC and BW. Surprisingly, chlorine treated fillets from the SC line were revealed to have significantly higher microbial counts than potable water treated fillets at BW line. This was determined to be a result of temperature abuse during processing at SC, with temperatures even greater than 10 °C being recorded from skinning onwards. On the contrary, the microbiota related to spoilage for BC and BW lines was determined by 16S rRNA gene sequencing to be more diverse than that on the SC line. A total of 174 isolates, 20 genera and 38 species were identified along the processing chains. The genera Aeromonas, Acinetobacter, Lactococcus and Enterococcus were prevalent at various processing steps on all the processing lines evaluated. A diverse range of isolates belonging to the Enterobacteriaceae such as Providencia, Shigella, Klebsiella, Enterobacter and Wautersiella were isolated from fillets sampled on the SC line whereas Serratia was only observed on fillets sampled on the BC and BW lines. The results can be used to improve Good Manufacturing Practices for processed Pangasius fillets and to select effective measures to prolong the shelf-life of thawed Vietnamese Pangasius fillets products. © 2013.

  10. [Microbial Processes and Genesis of Methane Gas Jets in the Coastal Areas of the Crimea Peninsula].

    Science.gov (United States)

    Malakhova, T V; Kanapatskii, T A; Egorov, V N; Malakhova, L V; Artemov, Yu G; Evtushenko, D B; Gulin, S B; Pimenov, N V

    2015-01-01

    Hydroasoustic techniques were used for detection and mapping of gas jet areas in the coastal regions of the Crimean peninsula. Gas seep areas in the bays Laspi, Khersones, and Kazach'ya were chosen for detailed microbiological investigation. The first type of gas jets, observed in the Laspi Bay, was probably associated with discarge of deep thermogenic methane along the faults. Methane isotopic composition was char- acterized by Δ13C of -35.3 degrees. While elevated rates of aerobic methane oxidation were revealed in the sandy sediments adjacent to the methane release site, no evidence of bacterial mats was found. The second type of gas emission, observed in the Khersones Bay, was accompanied by formation of bacterial biofilms of the "Thiodendron" microbial community type, predominated by filamentous, spirochete-like organisms, in the areas of gas seepage. The isotopic composition of methane was there considerably lower (-60.4 degrees), indicating a considerable contribution of modern microbial methane to the gas bubbles discharged in this bay. Activity of the third type of gas emission, the seeps of the Kazach'ya Bay, probably depended directly on modern microbial processes of organic matter degradation in the upper sediment layers. The rates of sulfate reduction and methanogenesis were 260 and 34 μmol dm(-3) day(-1), respectively. Our results indicate different mechanisms responsible for formation of methane jets in the Laspi Bay and in the coastal areas of the Heracles Peninsula, where the bays Kazach'ya and Khersones are located.

  11. Biosphere processes affecting environmnetal impacts of hazardous wastes

    International Nuclear Information System (INIS)

    Watkins, B.; Broderick, M.

    1991-01-01

    ANS Consultants Limited has reviewed and assessed a number of biosphere processes which affect the environmental impact of hazardous waste disposal. Processes examined have included the long-term effects of climate change on biosphere characteristics and the transport of toxic materials in food chains; the role of soil animals and plants roots in cycling elements from depth to the soil surface; volatisation mechanisms; the transport of elements in soil with particular reference to erosion and resuspension; mechanisms for foliar contamination via irrigation waters; and organic matter decomposition in varying environmental conditions. (au)

  12. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession.

    Science.gov (United States)

    Dini-Andreote, Francisco; Stegen, James C; van Elsas, Jan Dirk; Salles, Joana Falcão

    2015-03-17

    Ecological succession and the balance between stochastic and deterministic processes are two major themes within microbial ecology, but these conceptual domains have mostly developed independent of each other. Here we provide a framework that integrates shifts in community assembly processes with microbial primary succession to better understand mechanisms governing the stochastic/deterministic balance. Synthesizing previous work, we devised a conceptual model that links ecosystem development to alternative hypotheses related to shifts in ecological assembly processes. Conceptual model hypotheses were tested by coupling spatiotemporal data on soil bacterial communities with environmental conditions in a salt marsh chronosequence spanning 105 years of succession. Analyses within successional stages showed community composition to be initially governed by stochasticity, but as succession proceeded, there was a progressive increase in deterministic selection correlated with increasing sodium concentration. Analyses of community turnover among successional stages--which provide a larger spatiotemporal scale relative to within stage analyses--revealed that changes in the concentration of soil organic matter were the main predictor of the type and relative influence of determinism. Taken together, these results suggest scale-dependency in the mechanisms underlying selection. To better understand mechanisms governing these patterns, we developed an ecological simulation model that revealed how changes in selective environments cause shifts in the stochastic/deterministic balance. Finally, we propose an extended--and experimentally testable--conceptual model integrating ecological assembly processes with primary and secondary succession. This framework provides a priori hypotheses for future experiments, thereby facilitating a systematic approach to understand assembly and succession in microbial communities across ecosystems.

  13. Smokers exhibit biased neural processing of smoking and affective images.

    Science.gov (United States)

    Oliver, Jason A; Jentink, Kade G; Drobes, David J; Evans, David E

    2016-08-01

    There has been growing interest in the role that implicit processing of drug cues can play in motivating drug use behavior. However, the extent to which drug cue processing biases relate to the processing biases exhibited to other types of evocative stimuli is largely unknown. The goal of the present study was to determine how the implicit cognitive processing of smoking cues relates to the processing of affective cues using a novel paradigm. Smokers (n = 50) and nonsmokers (n = 38) completed a picture-viewing task, in which participants were presented with a series of smoking, pleasant, unpleasant, and neutral images while engaging in a distractor task designed to direct controlled resources away from conscious processing of image content. Electroencephalogram recordings were obtained throughout the task for extraction of event-related potentials (ERPs). Smokers exhibited differential processing of smoking cues across 3 different ERP indices compared with nonsmokers. Comparable effects were found for pleasant cues on 2 of these indices. Late cognitive processing of smoking and pleasant cues was associated with nicotine dependence and cigarette use. Results suggest that cognitive biases may extend across classes of stimuli among smokers. This raises important questions about the fundamental meaning of cognitive biases, and suggests the need to consider generalized cognitive biases in theories of drug use behavior and interventions based on cognitive bias modification. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  14. Tropical forest carbon balance in a warmer world: a critical review spanning microbial- to ecosystem-scale processes

    Science.gov (United States)

    Wood, Tana E.; Cavaleri, Molly A.; Reed, Sasha C.

    2012-01-01

    Tropical forests play a major role in regulating global carbon (C) fluxes and stocks, and even small changes to C cycling in this productive biome could dramatically affect atmospheric carbon dioxide (CO2) concentrations. Temperature is expected to increase over all land surfaces in the future, yet we have a surprisingly poor understanding of how tropical forests will respond to this significant climatic change. Here we present a contemporary synthesis of the existing data and what they suggest about how tropical forests will respond to increasing temperatures. Our goals were to: (i) determine whether there is enough evidence to support the conclusion that increased temperature will affect tropical forest C balance; (ii) if there is sufficient evidence, determine what direction this effect will take; and, (iii) establish what steps should to be taken to resolve the uncertainties surrounding tropical forest responses to increasing temperatures. We approach these questions from a mass-balance perspective and therefore focus primarily on the effects of temperature on inputs and outputs of C, spanning microbial- to ecosystem-scale responses. We found that, while there is the strong potential for temperature to affect processes related to C cycling and storage in tropical forests, a notable lack of data combined with the physical, biological and chemical diversity of the forests themselves make it difficult to resolve this issue with certainty. We suggest a variety of experimental approaches that could help elucidate how tropical forests will respond to warming, including large-scale in situ manipulation experiments, longer term field experiments, the incorporation of a range of scales in the investigation of warming effects (both spatial and temporal), as well as the inclusion of a diversity of tropical forest sites. Finally, we highlight areas of tropical forest research where notably few data are available, including temperature effects on: nutrient cycling

  15. Influence of Silver nanoparticles on nutrient removal and microbial communities in SBR process after long-term exposure

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhaohan [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090 (China); Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No 43, Songfa Street, Daoli District, Harbin 150001 (China); Gao, Peng, E-mail: hitzzh@hit.edu.cn [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090 (China); Li, Moqing; Cheng, Jiaqi [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090 (China); Liu, Wei [Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No 43, Songfa Street, Daoli District, Harbin 150001 (China); Feng, Yujie, E-mail: yujief@hit.edu.cn [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090 (China)

    2016-11-01

    The widespread utilization of silver nanoparticles (AgNPs) in industrial and commercial products inevitably raises the release into wastewater that might cause potential negative impacts on sewage treatment system. In this paper, long-term exposure experiments at four levels were conducted to determine whether AgNPs caused adverse impacts on nutrient removals in sequencing batch reactors (SBRs) and changes of microbial community structure. Compared with the control reactor (without AgNPs), carbon, nitrogen and phosphorus removal in presence of 0.1 mg/L AgNPs was no difference. However, presence of 1.0 and 10 mg/L AgNPs decreased the average removal efficiencies of COD from 95.4% to 85.2% and 68.3%, ammonia nitrogen from 98.8% to 71.2% and 49%, SOP from 97.6% to 75.5% and 54.1%, respectively. It was found that AgNPs could accumulate in sludge with the distribution coefficients of 39.2–114 L/g, inhibit the protein and polysaccharide production in EPS, reduce the SOUR of sludge, and greatly increase LDH release from microbial cells. The illumina high-throughput sequencing results indicated that AgNPs concentration changed the structures of bacterial communities, associating with the effects of AgNPs on reactor performance. Sequence analyses showed that Proteobacteria, Bacteroidetes and Acidobacteria were the dominant phyla. It was notable that AgNPs addition reduced the contents of several nitrifying bacteria at genera level in sludge, leading to the lower removal of nitrogen. - Highlights: • More than 1.0 mg/L AgNPs evidently reduce COD, NH{sub 4}{sup +}-N and SOP removal in SBR process. • AgNPs decrease the protein and polysaccharide contents of EPS. • AgNPs increase LDH release for 1.46–2.41 times. • AgNPs are apt to accumulate on surface and even into microbial cells. • AgNPs levels affect microbial community structure and composition.

  16. Influence of Silver nanoparticles on nutrient removal and microbial communities in SBR process after long-term exposure

    International Nuclear Information System (INIS)

    Zhang, Zhaohan; Gao, Peng; Li, Moqing; Cheng, Jiaqi; Liu, Wei; Feng, Yujie

    2016-01-01

    The widespread utilization of silver nanoparticles (AgNPs) in industrial and commercial products inevitably raises the release into wastewater that might cause potential negative impacts on sewage treatment system. In this paper, long-term exposure experiments at four levels were conducted to determine whether AgNPs caused adverse impacts on nutrient removals in sequencing batch reactors (SBRs) and changes of microbial community structure. Compared with the control reactor (without AgNPs), carbon, nitrogen and phosphorus removal in presence of 0.1 mg/L AgNPs was no difference. However, presence of 1.0 and 10 mg/L AgNPs decreased the average removal efficiencies of COD from 95.4% to 85.2% and 68.3%, ammonia nitrogen from 98.8% to 71.2% and 49%, SOP from 97.6% to 75.5% and 54.1%, respectively. It was found that AgNPs could accumulate in sludge with the distribution coefficients of 39.2–114 L/g, inhibit the protein and polysaccharide production in EPS, reduce the SOUR of sludge, and greatly increase LDH release from microbial cells. The illumina high-throughput sequencing results indicated that AgNPs concentration changed the structures of bacterial communities, associating with the effects of AgNPs on reactor performance. Sequence analyses showed that Proteobacteria, Bacteroidetes and Acidobacteria were the dominant phyla. It was notable that AgNPs addition reduced the contents of several nitrifying bacteria at genera level in sludge, leading to the lower removal of nitrogen. - Highlights: • More than 1.0 mg/L AgNPs evidently reduce COD, NH_4"+-N and SOP removal in SBR process. • AgNPs decrease the protein and polysaccharide contents of EPS. • AgNPs increase LDH release for 1.46–2.41 times. • AgNPs are apt to accumulate on surface and even into microbial cells. • AgNPs levels affect microbial community structure and composition.

  17. Chemi-microbial processing of waste tire rubber: A project overview

    International Nuclear Information System (INIS)

    Romine, R.A.; Snowden-Swan, L.

    1993-12-01

    PNL is developing a method to use thiophillic microorganisms to devulcanize (biodesulfurize) the surface of ground rubber particles, which will improve the bonding and adhesion of the ground tire rubber into the virgin tire rubber matrix. The Chemi-microbial processing approach, introduced in this paper, is targeted at alleviating the waste tire problem in an environmentally conscious manner; it may also be applied to improve asphaltic materials and rubber and polymeric wastes to facilite their recycling. This paper outlines the logic and technical methods that will be used

  18. (1) H-MRS processing parameters affect metabolite quantification

    DEFF Research Database (Denmark)

    Bhogal, Alex A; Schür, Remmelt R; Houtepen, Lotte C

    2017-01-01

    investigated the influence of model parameters and spectral quantification software on fitted metabolite concentration values. Sixty spectra in 30 individuals (repeated measures) were acquired using a 7-T MRI scanner. Data were processed by four independent research groups with the freedom to choose their own...... + NAAG/Cr + PCr and Glu/Cr + PCr, respectively. Metabolite quantification using identical (1) H-MRS data was influenced by processing parameters, basis sets and software choice. Locally preferred processing choices affected metabolite quantification, even when using identical software. Our results......Proton magnetic resonance spectroscopy ((1) H-MRS) can be used to quantify in vivo metabolite levels, such as lactate, γ-aminobutyric acid (GABA) and glutamate (Glu). However, there are considerable analysis choices which can alter the accuracy or precision of (1) H-MRS metabolite quantification...

  19. Application of ultrasound processed images in space: assessing diffuse affectations

    Science.gov (United States)

    Pérez-Poch, A.; Bru, C.; Nicolau, C.

    The purpose of this study was to evaluate diffuse affectations in the liver using texture image processing techniques. Ultrasound diagnose equipments are the election of choice to be used in space environments as they are free from hazardous effects on health. However, due to the need for highly trained radiologists to assess the images, this imaging method is mainly applied on focal lesions rather than on non-focal ones. We have conducted a clinical study on 72 patients with different degrees of chronic hepatopaties and a group of control of 18 individuals. All subjects' clinical reports and results of biopsies were compared to the degree of affectation calculated by our computer system , thus validating the method. Full statistical results are given in the present paper showing a good correlation (r=0.61) between pathologist's report and analysis of the heterogenicity of the processed images from the liver. This computer system to analyze diffuse affectations may be used in-situ or via telemedicine to the ground.

  20. Social and nonsocial affective processing in schizophrenia - An ERP study.

    Science.gov (United States)

    Okruszek, Ł; Wichniak, A; Jarkiewicz, M; Schudy, A; Gola, M; Jednoróg, K; Marchewka, A; Łojek, E

    2016-09-01

    Despite social cognitive dysfunction that may be observed in patients with schizophrenia, the knowledge about social and nonsocial affective processing in schizophrenia is scant. The aim of this study was to examine neurophysiological and behavioural responses to neutral and negative stimuli with (faces, people) and without (animals, objects) social content in schizophrenia. Twenty-six patients with schizophrenia (SCZ) and 21 healthy controls (HC) completed a visual oddball paradigm with either negative or neutral pictures from the Nencki Affective Picture System (NAPS) as targets while EEG was recorded. Half of the stimuli within each category presented social content (faces, people). Negative stimuli with social content produced lower N2 amplitude and higher mean LPP than any other type of stimuli in both groups. Despite differences in behavioural ratings and alterations in ERP processing of affective stimuli (lack of EPN differentiation, decreased P3 to neutral stimuli) SCZ were still able to respond to specific categories of stimuli similarly to HC. The pattern of results suggests that with no additional emotion-related task demands patients with schizophrenia may present similar attentional engagement with negative social stimuli as healthy controls. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Good Manufacturing Practices and Microbial Contamination Sources in Orange Fleshed Sweet Potato Puree Processing Plant in Kenya

    Science.gov (United States)

    Abong', George Ooko

    2018-01-01

    Limited information exists on the status of hygiene and probable sources of microbial contamination in Orange Fleshed Sweet Potato (OFSP) puree processing. The current study is aimed at determining the level of compliance to Good Manufacturing Practices (GMPs), hygiene, and microbial quality in OFSP puree processing plant in Kenya. Intensive observation and interviews using a structured GMPs checklist, environmental sampling, and microbial analysis by standard microbiological methods were used in data collection. The results indicated low level of compliance to GMPs with an overall compliance score of 58%. Microbial counts on food equipment surfaces, installations, and personnel hands and in packaged OFSP puree were above the recommended microbial safety and quality legal limits. Steaming significantly (P contamination. Total counts, yeasts and molds, Enterobacteriaceae, total coliforms, and E. coli and S. aureus counts in OFSP puree were 8.0, 4.0, 6.6, 5.8, 4.8, and 5.9 log10 cfu/g, respectively. In conclusion, equipment surfaces, personnel hands, and processing water were major sources of contamination in OFSP puree processing and handling. Plant hygiene inspection, environmental monitoring, and food safety trainings are recommended to improve hygiene, microbial quality, and safety of OFSP puree. PMID:29808161

  2. Good Manufacturing Practices and Microbial Contamination Sources in Orange Fleshed Sweet Potato Puree Processing Plant in Kenya.

    Science.gov (United States)

    Malavi, Derick Nyabera; Muzhingi, Tawanda; Abong', George Ooko

    2018-01-01

    Limited information exists on the status of hygiene and probable sources of microbial contamination in Orange Fleshed Sweet Potato (OFSP) puree processing. The current study is aimed at determining the level of compliance to Good Manufacturing Practices (GMPs), hygiene, and microbial quality in OFSP puree processing plant in Kenya. Intensive observation and interviews using a structured GMPs checklist, environmental sampling, and microbial analysis by standard microbiological methods were used in data collection. The results indicated low level of compliance to GMPs with an overall compliance score of 58%. Microbial counts on food equipment surfaces, installations, and personnel hands and in packaged OFSP puree were above the recommended microbial safety and quality legal limits. Steaming significantly ( P contamination. Total counts, yeasts and molds, Enterobacteriaceae, total coliforms, and E. coli and S. aureus counts in OFSP puree were 8.0, 4.0, 6.6, 5.8, 4.8, and 5.9 log 10 cfu/g, respectively. In conclusion, equipment surfaces, personnel hands, and processing water were major sources of contamination in OFSP puree processing and handling. Plant hygiene inspection, environmental monitoring, and food safety trainings are recommended to improve hygiene, microbial quality, and safety of OFSP puree.

  3. Microbial Characterization of Table Olives Processed According to Spanish and Natural Styles

    Directory of Open Access Journals (Sweden)

    Daniela Campaniello

    2005-01-01

    Full Text Available A study on the microflora of table olives »Bella di Cerignola«, produced according to Spanish style and natural processing, is presented. The samples (olives and brines were taken at different fermentation phases; olives, before treatments, were analyzed too. pH was monitored and microbial populations were assessed by standard plate count. Determination of the following microbial groups was carried out: mesophilic bacteria, lactic acid bacteria, Enterobacteriaceae, Pseudomonadaceae, staphylococci, Micrococcaceae and yeasts. In the second phase, the identification of mesophilic bacteria, lactic acid bacteria and yeasts was performed. The amount of lactic acid bacteria and yeasts increased during the storage in all the samples, but no significant differences were observed between the two styles. At the end of fermentation an increase of Pseudomonadaceae cell load was observed, which was absent in the first phase of fermentation. The samples analyzed were extremely unsteady, therefore the addition of starter lactic acid bacteria could standardize olive processing. Lactobacillus plantarum, Bacillus spp. (mainly B. subtilis and Candida spp. were the predominant species at the end of the processing.

  4. Processes Affecting Groundwater Quality in the La Digue Aquifer, Seychelles

    Energy Technology Data Exchange (ETDEWEB)

    Alcindor, A. [Public Utilities Corporation, Victoria (Seychelles); Sacchi, E. [Dipartimento di Scienze della Terra e dell' ambiente, Universita di Pavia (Italy); Taigbenu, A. E. [University of the Witwatersrand, Johannesburg (South Africa)

    2013-07-15

    This paper presents the results obtained by the public utilities corporation (PUC), within the framework of an IAEA TC project, which aims to evaluate the potential of the la digue aquifer. Several monitoring activities and hydrochemical and isotopic surveys have been conducted. Results indicate the presence of brackish water at shallow depths, and low redox potentials, attesting to the presence of H{sub 2}S and heavy metals. Groundwater quality is affected by the concomitant presence of different adverse factors, namely aquifer characteristics, hydrogeology, and anthropogenic pressure. In addition, seawater penetrates the river course during high tides and infiltrates through the recharge area of the aquifer that is close to the actual pumping station. The positioning of non return high tide gates, an easy and low cost intervention, could enhance groundwater quality. The understanding of the main processes affecting groundwater quality helped in the identification of areas favourable for new wells, located at higher elevations. (author)

  5. Anaerobic microbial redox processes in a landfill leachate contaminated aquifer (Grindsted, Denmark)

    Science.gov (United States)

    Ludvigsen, L.; Albrechtsen, H.-J.; Heron, G.; Bjerg, P. L.; Christensen, T. H.

    1998-10-01

    The distribution of anaerobic microbial redox processes was investigated along a 305 m long transect of a shallow landfill-leachate polluted aquifer. By unamended bioassays containing sediment and groundwater, 37 samples were investigated with respect to methane production, sulfate, iron, and manganese reduction, and denitrification. Methane production was restricted to the most reduced part of the plume with rates of 0.003-0.055 nmol CH 4/g dry weight/day. Sulfate reduction was observed at rates of maximum 1.8 nmol SO 42-/g dry weight/day along with methane production in the plume, but sulfate reduction was also observed further downgradient of the landfill. Iron reduction at rates of 5-19 nmol Fe(II)/g dry weight/day was observed in only a few samples, but this may be related to a high detection limit for the iron reducing bioassay. Manganese reduction at rates of maximum 2.4 nmol Mn(II)/g dry weight/day and denitrification at rates of 0.2-37 nmol N 2O-N/g dry weight/day were observed in the less reduced part of the plume. All the redox processes were microbial processes. In many cases, several redox processes took place simultaneously, but in all samples one process dominated accounting for more than 70% of the equivalent carbon conversion. The bioassays showed that the redox zones in the plume identified from the groundwater composition (e.g. as methanogenic and sulfate reducing) locally hosted also other redox processes (e.g. iron reduction). This may have implications for the potential of the redox zone to degrade trace amounts of organic chemicals and suggests that unamended bioassays may be an important supplement to other approaches in characterizing the redox processes in an anaerobic plume.

  6. Changes in the Microbial Composition of Microbrewed Beer during the Process in the Actual Manufacturing Line.

    Science.gov (United States)

    Kim, S A; Jeon, S H; Kim, N H; Kim, H W; Lee, N Y; Cho, T J; Jung, Y M; Lee, S H; Hwang, I G; Rhee, M S

    2015-12-01

    This study investigated changes in the microbial composition of microbrewed beer during the manufacturing processes and identified potential microbial hazards, effective critical quality control points, and potential contamination routes. Comprehensive quantitative (aerobic plate count, lactic acid bacteria, fungi, acetic acid bacteria, coliforms, and Bacillus cereus) and qualitative (Escherichia coli and eight foodborne pathogens) microbiological analyses were performed using samples of raw materials (malt and manufacturing water), semiprocessed products (saccharified wort, boiled wort, and samples taken during the fermentation and maturation process), and the final product obtained from three plants. The initial aerobic plate count and lactic acid bacteria counts in malt were 5.2 and 4.3 log CFU/g, respectively. These counts were reduced to undetectable levels by boiling but were present at 2.9 and 0.9 log CFU/ml in the final product. Fungi were initially present at 3.6 log CFU/g, although again, the microbes were eliminated by boiling; however, the level in the final product was 4.6 log CFU/ml. No E. coli or foodborne pathogens (except B. cereus) were detected. B. cereus was detected at all stages, although it was not present in the water or boiled wort (total detection rate ¼ 16.4%). Results suggest that boiling of the wort is an effective microbial control measure, but careful management of raw materials and implementation of effective control measures after boiling are needed to prevent contamination of the product after the boiling step. The results of this study may constitute useful and comprehensive information regarding the microbiological quality of microbrewed beer.

  7. Spies and Bloggers: New Synthetic Biology Tools to Understand Microbial Processes in Soils and Sediments

    Science.gov (United States)

    Masiello, C. A.; Silberg, J. J.; Cheng, H. Y.; Del Valle, I.; Fulk, E. M.; Gao, X.; Bennett, G. N.

    2017-12-01

    Microbes can be programmed through synthetic biology to report on their behavior, informing researchers when their environment has triggered changes in their gene expression (e.g. in response to shifts in O2 or H2O), or when they have participated in a specific step of an elemental cycle (e.g. denitrification). This use of synthetic biology has the potential to significantly improve our understanding of microbes' roles in elemental and water cycling, because it allows reporting on the environment from the perspective of a microbe, matching the measurement scale exactly to the scale that a microbe experiences. However, synthetic microbes have not yet seen wide use in soil and sediment laboratory experiments because synthetic organisms typically report by fluorescing, making their signals difficult to detect outside the petri dish. We are developing a new suite of microbial programs that report instead by releasing easily-detected gases, allowing the real-time, noninvasive monitoring of behaviors in sediments and soils. Microbial biosensors can, in theory, be programmed to detect dynamic processes that contribute to a wide range of geobiological processes, including C cycling (biofilm production, methanogenesis, and synthesis of extracellular enzymes that degrade organic matter), N cycling (expression of enzymes that underlie different steps of the N cycle) and potentially S cycling. We will provide an overview of the potential uses of gas-reporting biosensors in soil and sediment lab experiments, and will report the development of the systematics of these sensors. Successful development of gas biosensors for laboratory use will require addressing issues including: engineering the intensity and selectivity of microbial gas production to maximize the signal to noise ratio; normalizing the gas reporter signal to cell population size, managing gas diffusion effects on signal shape; and developing multiple gases that can be used in parallel.

  8. Basaltic substrate composition affects microbial community development and acts as a source of nutrients in the deep biosphere

    Science.gov (United States)

    Bailey, B.; Sudek, L.; Templeton, A.; Staudigel, H.; Tebo, B.; Moyer, C.; Davis, R.

    2006-12-01

    Studies of the oceanic crust over the past decade have revealed that in spite of the oligotrophic nature of this environment, a diverse biosphere is present in the upper 1 km of basaltic crust. The key energy source in this setting may be the high content of transistion metals (Fe, Mn) found in the basaltic glass, but in order to discover the role of Fe and Mn in the deep biosphere, we must first determine which microbes are present and how they attain the necessary metabolites for proliferation. Our work contributes to both questions through the use of molecular microbiology techniques and the exposure of specifically designed substrates on the ocean floor. Loihi Seamount off the southeast coast of the Big Island of Hawai'i provides a unique laboratory for the study of distribution and population of microbial communities associated with iron rich environments on the ocean floor. Iron oxide flocculent material (floc) dominates the direct and diffuse hydrothermal venting areas on Loihi which makes it a prime target for understanding the role of iron in biological systems in the deep biosphere. We collected iron oxide floc and basaltic glass from pillow basalts around several hydrothermal vents on the crater rim, within the pit crater Pele's Pit, and from deep off of the southern rift zone of Loihi using the HURL PISCES IV/V submersibles. We also deployed basaltic glass sand amended with various nutrients (phosphate, oxidized and reduced iron, manganese) and recovered them in subsequent years to determine how substrate composition affects community structure. We extracted DNA from both rock and iron flocs and used t-RFLP to obtain a genetic fingerprint of the microbial communities associated with each substrate. From olivine and tholeiitic basalt enrichments, it appears that substrate composition strongly influences microbial colonization and subsequent community development even when deployed in the same conditions. Culturing efforts have yielded several iron

  9. Oral Microbial Shift: Factors affecting the Microbiome and Prevention of Oral Disease.

    Science.gov (United States)

    Dagli, Namrata; Dagli, Rushabh; Darwish, Shrouq; Baroudi, Kusai

    2016-01-01

    Recently, oral microbiome has gained popularity among scientists. Microorganisms are no longer considered as disease-producing pathogens, rather they are now considered as partners of human in maintaining health. Since ancient times, changes in our lifestyle have affected our microbiome and the balance with their human host has been perturbed. The present review includes the description about factors affecting oral microbiome and establishing symbiosis with the human host so that they contribute in maintaining health rather than eliciting diseases. A comprehensive literature search was performed on databases such as Google Scholar, PubMed and Medline until April 2015. First, articles were selected on the basis of their titles and then abstracts were screened and unwanted articles were excluded. Articles obtained from all the databases were checked and duplicate articles were removed. Articles obtained from various databases: PubMed = 35, Google Scholar=8. Out of these 43 articles, total 29 articles were finally selected for this review. The published literature suggests that the modern oral microbiome is less biodiverse, and possess more pathogenic bacterial species and lesser beneficial bacteria. The possible factors mainly responsible for this shift in microbiome were found to be change in diet, industrial revolution and indiscriminate use of antibiotics. Various changes in lifestyles have affected oral microbiome adversely and perturb the symbiosis between the microbiome and their hosts. The present oral microbiome is found to be less diverse and more pathogenic. The present review may be helpful in understanding the relationship between the microbiome and their human hosts so that microbiome contributes in maintaining healthy state of the body.

  10. Synchronous contextual irregularities affect early scene processing: replication and extension.

    Science.gov (United States)

    Mudrik, Liad; Shalgi, Shani; Lamy, Dominique; Deouell, Leon Y

    2014-04-01

    Whether contextual regularities facilitate perceptual stages of scene processing is widely debated, and empirical evidence is still inconclusive. Specifically, it was recently suggested that contextual violations affect early processing of a scene only when the incongruent object and the scene are presented a-synchronously, creating expectations. We compared event-related potentials (ERPs) evoked by scenes that depicted a person performing an action using either a congruent or an incongruent object (e.g., a man shaving with a razor or with a fork) when scene and object were presented simultaneously. We also explored the role of attention in contextual processing by using a pre-cue to direct subjects׳ attention towards or away from the congruent/incongruent object. Subjects׳ task was to determine how many hands the person in the picture used in order to perform the action. We replicated our previous findings of frontocentral negativity for incongruent scenes that started ~ 210 ms post stimulus presentation, even earlier than previously found. Surprisingly, this incongruency ERP effect was negatively correlated with the reaction times cost on incongruent scenes. The results did not allow us to draw conclusions about the role of attention in detecting the regularity, due to a weak attention manipulation. By replicating the 200-300 ms incongruity effect with a new group of subjects at even earlier latencies than previously reported, the results strengthen the evidence for contextual processing during this time window even when simultaneous presentation of the scene and object prevent the formation of prior expectations. We discuss possible methodological limitations that may account for previous failures to find this an effect, and conclude that contextual information affects object model selection processes prior to full object identification, with semantic knowledge activation stages unfolding only later on. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Succession of the functional microbial communities and the metabolic functions in maize straw composting process.

    Science.gov (United States)

    Wei, Huawei; Wang, Liuhong; Hassan, Muhammad; Xie, Bing

    2018-05-01

    Illumina MiSeq sequencing and phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) were applied to study the dynamic changes and effects of microbial community structures as well as the metabolic function of bacterial community in maize straw composting process. Results showed that humic acid contents in loosely combined humus (HA1) and stably combined humus (HA2) increased after composting and Staphylococcus, Cellulosimicrobium and Ochrobactrum possibly participated in the transformation of the process. The bacterial communities differed in different stages of the composting. Firmicutes, Proteobacteria, Bacteroidetes and Actinobacteria were reported the dominant phyla throughout the process and the relative abundance of the dominant phyla varied significantly (p composting. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Commentary: cognitive-affective mechanisms and processes in autobiographical memory.

    Science.gov (United States)

    Conway, Martin A

    2003-03-01

    This commentary highlights some of the interesting points to emerge from the preceding papers about the self, social, and directive functions of autobiographical memory. Additionally some cognitive functions are also considered and especially the way in which autobiographical memory supports, constrains, and maintains the goals of the self. Directions for future research into the self, social, directive, and cognitive-affective functions and processes of autobiographical memory are reviewed. Emphasis is placed on future research into the function of autobiographical memory in representations of attachment.

  13. Major hydrogeochemical processes in an Acid Mine Drainage affected estuary

    International Nuclear Information System (INIS)

    Asta, Maria P.; Calleja, Maria Ll.; Pérez-López, Rafael; Auqué, Luis F.

    2015-01-01

    Highlights: • Mixing of acid riverine water with alkaline seawater was studied in an estuary. • Combination of data and geochemical tools allowed modeling the water mixing. • The main geochemical processes were identified and for the first time quantified. • Water chemistry is the result of mixing, dissolution-precipitation and sorption. • Main reactions: gypsum and calcite dissolution and Al and Fe solids precipitation. - Abstract: This study provides geochemical data with the aim of identifying and quantifying the main processes occurring in an Acid Mine Drainage (AMD) affected estuary. With that purpose, water samples of the Huelva estuary were collected during a tidal half-cycle and ion–ion plots and geochemical modeling were performed to obtain a general conceptual model. Modeling results indicated that the main processes responsible for the hydrochemical evolution of the waters are: (i) the mixing of acid fluvial water with alkaline ocean water; (ii) precipitation of Fe oxyhydroxysulfates (schwertmannite) and hydroxides (ferrihydrite); (iii) precipitation of Al hydroxysulfates (jurbanite) and hydroxides (amorphous Al(OH) 3 ); (iv) dissolution of calcite; and (v) dissolution of gypsum. All these processes, thermodynamically feasible in the light of their calculated saturation states, were quantified by mass-balance calculations and validated by reaction-path calculations. In addition, sorption processes were deduced by the non-conservative behavior of some elements (e.g., Cu and Zn)

  14. Affective reactions and context-dependent processing of negations

    Directory of Open Access Journals (Sweden)

    Enrico Rubaltelli

    2008-12-01

    Full Text Available Three experiments demonstrate how the processing of negations is contingent on the evaluation context in which the negative information is presented. In addition, the strategy used to process the negations induced different affective reactions toward the stimuli, leading to inconsistency of preference. Participants were presented with stimuli described by either stating the presence of positive features (explicitly positive alternative or negating the presence of negative features (non-negative alternative. Alternatives were presented for either joint (JE or separate evaluation (SE. Experiment 1 showed that the non-negative stimuli were judged less attractive than the positive ones in JE but not in SE. Experiment 2 revealed that the non-negative stimuli induced a less clear and less positive feeling when they were paired with explicitly positive stimuli rather than evaluated separately. Non-negative options were also found less easy to judge than the positive ones in JE but not in SE. Finally, Experiment 3 showed that people process negations using two different models depending on the evaluation mode. Through a memory task, we found that in JE people process the non-negative attributes as negations of negative features, whereas in SE they directly process the non-negative attributes as positive features.

  15. Evaluation of lipid oxidation and microbial loads of suya as affected ...

    African Journals Online (AJOL)

    Meat samples used for this study were excised from leg cuts of 9 Red Sokoto bucks. They were starved for 16hours before slaughter and their carcasses randomly assigned to three post-mortem processing methods – scalding, skinning and singeing. The carcasses were opened up, eviscerated, washed and fabricated.

  16. Impacts of shallow geothermal energy production on redox processes and microbial communities.

    Science.gov (United States)

    Bonte, Matthijs; Röling, Wilfred F M; Zaura, Egija; van der Wielen, Paul W J J; Stuyfzand, Pieter J; van Breukelen, Boris M

    2013-12-17

    Shallow geothermal systems are increasingly being used to store or harvest thermal energy for heating or cooling purposes. This technology causes temperature perturbations exceeding the natural variations in aquifers, which may impact groundwater quality. Here, we report the results of laboratory experiments on the effect of temperature variations (5-80 °C) on redox processes and associated microbial communities in anoxic unconsolidated subsurface sediments. Both hydrochemical and microbiological data showed that a temperature increase from 11 °C (in situ) to 25 °C caused a shift from iron-reducing to sulfate-reducing and methanogenic conditions. Bioenergetic calculations could explain this shift. A further temperature increase (>45 °C) resulted in the emergence of a thermophilic microbial community specialized in fermentation and sulfate reduction. Two distinct maxima in sulfate reduction rates, of similar orders of magnitude (5 × 10(-10) M s(-1)), were observed at 40 and 70 °C. Thermophilic sulfate reduction, however, had a higher activation energy (100-160 kJ mol(-1)) than mesophilic sulfate reduction (30-60 kJ mol(-1)), which might be due to a trade-off between enzyme stability and activity with thermostable enzymes being less efficient catalysts that require higher activation energies. These results reveal that while sulfate-reducing functionality can withstand a substantial temperature rise, other key biochemical processes appear more temperature sensitive.

  17. Functional and compositional responses in soil microbial communities along two metal pollution gradients: does the level of historical pollution affect resistance against secondary stress?

    NARCIS (Netherlands)

    Azarbad, H.; Niklinska, M.; Nikiel, K.; van Straalen, N.M.; Röling, W.F.M.

    2015-01-01

    We examined how the exposure to secondary stressors affected the functional and compositional responses of microbial communities along two metal pollution gradients in Polish forests and whether responses were influenced by the level of metal pollution. Basal respiration rate and community

  18. Batch-batch stable microbial community in the traditional fermentation process of huyumei broad bean pastes.

    Science.gov (United States)

    Zhu, Linjiang; Fan, Zihao; Kuai, Hui; Li, Qi

    2017-09-01

    During natural fermentation processes, a characteristic microbial community structure (MCS) is naturally formed, and it is interesting to know about its batch-batch stability. This issue was explored in a traditional semi-solid-state fermentation process of huyumei, a Chinese broad bean paste product. The results showed that this MCS mainly contained four aerobic Bacillus species (8 log CFU per g), including B. subtilis, B. amyloliquefaciens, B. methylotrophicus, and B. tequilensis, and the facultative anaerobe B. cereus with a low concentration (4 log CFU per g), besides a very small amount of the yeast Zygosaccharomyces rouxii (2 log CFU per g). The dynamic change of the MCS in the brine fermentation process showed that the abundance of dominant species varied within a small range, and in the beginning of process the growth of lactic acid bacteria was inhibited and Staphylococcus spp. lost its viability. Also, the MCS and its dynamic change were proved to be highly reproducible among seven batches of fermentation. Therefore, the MCS naturally and stably forms between different batches of the traditional semi-solid-state fermentation of huyumei. Revealing microbial community structure and its batch-batch stability is helpful for understanding the mechanisms of community formation and flavour production in a traditional fermentation. This issue in a traditional semi-solid-state fermentation of huyumei broad bean paste was firstly explored. This fermentation process was revealed to be dominated by a high concentration of four aerobic species of Bacillus, a low concentration of B. cereus and a small amount of Zygosaccharomyces rouxii. Lactic acid bacteria and Staphylococcus spp. lost its viability at the beginning of fermentation. Such the community structure was proved to be highly reproducible among seven batches. © 2017 The Society for Applied Microbiology.

  19. Major hydrogeochemical processes in an acid mine drainage affected estuary.

    Science.gov (United States)

    Asta, Maria P; Calleja, Maria Ll; Pérez-López, Rafael; Auqué, Luis F

    2015-02-15

    This study provides geochemical data with the aim of identifying and quantifying the main processes occurring in an Acid Mine Drainage (AMD) affected estuary. With that purpose, water samples of the Huelva estuary were collected during a tidal half-cycle and ion-ion plots and geochemical modeling were performed to obtain a general conceptual model. Modeling results indicated that the main processes responsible for the hydrochemical evolution of the waters are: (i) the mixing of acid fluvial water with alkaline ocean water; (ii) precipitation of Fe oxyhydroxysulfates (schwertmannite) and hydroxides (ferrihydrite); (iii) precipitation of Al hydroxysulfates (jurbanite) and hydroxides (amorphous Al(OH)3); (iv) dissolution of calcite; and (v) dissolution of gypsum. All these processes, thermodynamically feasible in the light of their calculated saturation states, were quantified by mass-balance calculations and validated by reaction-path calculations. In addition, sorption processes were deduced by the non-conservative behavior of some elements (e.g., Cu and Zn). Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Affective and executive network processing associated with persuasive antidrug messages.

    Science.gov (United States)

    Ramsay, Ian S; Yzer, Marco C; Luciana, Monica; Vohs, Kathleen D; MacDonald, Angus W

    2013-07-01

    Previous research has highlighted brain regions associated with socioemotional processes in persuasive message encoding, whereas cognitive models of persuasion suggest that executive brain areas may also be important. The current study aimed to identify lateral prefrontal brain areas associated with persuasive message viewing and understand how activity in these executive regions might interact with activity in the amygdala and medial pFC. Seventy adolescents were scanned using fMRI while they watched 10 strongly convincing antidrug public service announcements (PSAs), 10 weakly convincing antidrug PSAs, and 10 advertisements (ads) unrelated to drugs. Antidrug PSAs compared with nondrug ads more strongly elicited arousal-related activity in the amygdala and medial pFC. Within antidrug PSAs, those that were prerated as strongly persuasive versus weakly persuasive showed significant differences in arousal-related activity in executive processing areas of the lateral pFC. In support of the notion that persuasiveness involves both affective and executive processes, functional connectivity analyses showed greater coactivation between the lateral pFC and amygdala during PSAs known to be strongly (vs. weakly) convincing. These findings demonstrate that persuasive messages elicit activation in brain regions responsible for both emotional arousal and executive control and represent a crucial step toward a better understanding of the neural processes responsible for persuasion and subsequent behavior change.

  1. Modelling the transport and decay processes of microbial tracers in a macro-tidal estuary.

    Science.gov (United States)

    Abu-Bakar, Amyrhul; Ahmadian, Reza; Falconer, Roger A

    2017-10-15

    The Loughor Estuary is a macro-tidal coastal basin, located along the Bristol Channel, in the South West of the U.K. The maximum spring tidal range in the estuary is up to 7.5 m, near Burry Port Harbour. This estuarine region can experience severe coastal flooding during high spring tides, including extreme flooding of the intertidal saltmarshes at Llanrhidian, as well as the lower industrial and residential areas at Llanelli and Gowerton. The water quality of this estuarine basin needs to comply with the designated standards for safe recreational bathing and shellfish harvesting industries. The waterbody however, potentially receives overloading of bacterial inputs that enter the estuarine system from both point and diffuse sources. Therefore, a microbial tracer study was carried out to get a better understanding of the faecal bacteria sources and to enable a hydro-environmental model to be refined and calibrated for both advection and dispersion transport. A two-dimensional hydro-environmental model has been refined and extended to predict the highest water level covering the intertidal floodplains of the Loughor Estuary. The validated hydrodynamic model for both water levels and currents, was included with the injected mass of microbial tracer, i.e. MS2 coliphage from upstream of the estuary, and modelled as a non-conservative tracer over several tidal cycles through the system. The calibration and validation of the transport and decay of microbial tracer was undertaken, by comparing the model results and the measured data at two different sampling locations. The refined model developed as a part of this study, was used to acquire a better understanding of the water quality processes and the potential sources of bacterial pollution in the estuary. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. The Study of Microbial Environmental Processes Related to the Natural Attenuation of Uranium at the Rifle Site using Systems-level Biology

    Energy Technology Data Exchange (ETDEWEB)

    Methe, Barbara [J. Craig Venter Inst. (JCVI), Rockville, MD (United States); Lipton, Mary [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mahadevan, Krishna [Univ. of Toronto, ON (Canada)

    2016-08-31

    Microbes exist in communities in the environment where they are fundamental drivers of global carbon, nutrient and metal cycles. In subsurface environments, they possess significant metabolic potential to affect these global cycles including the transformation of radionuclides. This study examined the influence of microbial communities in sediment zones undergoing biogeochemical cycling of carbon, nutrients and metals including natural attenuation of uranium. This study examined the relationship of both the microbiota (taxonomy) and their metabolic capacity (function) in driving carbon, nutrient and metal cycles including uranium reduction at the Department of Energy (DOE) Rifle Integrated Field Research Challenge (RIFRC). Objectives of this project were: 1) to apply systems-level biology through application of ‘metaomics’ approaches (collective analyses of whole microbial community DNA, RNA and protein) to the study of microbial environmental processes and their relationship to C, N and metals including the influence of microbial communities on uranium contaminant mobility in subsurface settings undergoing natural attenuation, 2) improve methodologies for data generation using metaomics (collectively metagenomics, metatranscriptomics and proteomics) technologies and analysis and interpretation of that data and 3) use the data generated from these studies towards microbial community-scale metabolic modeling. The strategy for examining these subsurface microbial communities was to generate sequence reads from microbial community DNA (metagenomics or whole genome shotgun sequencing (WGS)) and RNA (metatranscriptomcs or RNAseq) and protein information using proteomics. Results were analyzed independently and through computational modeling. Overall, the community model generated information on the microbial community structure that was observed using metaomic approaches at RIFRC sites and thus provides an important framework for continued community modeling

  3. New steady-state microbial community compositions and process performances in biogas reactors induced by temperature disturbances

    DEFF Research Database (Denmark)

    Luo, Gang; De Francisci, Davide; Kougias, Panagiotis

    2015-01-01

    that stochastic factors had a minor role in shaping the profile of the microbial community composition and activity in biogas reactors. On the contrary, temperature disturbance was found to play an important role in the microbial community composition as well as process performance for biogas reactors. Although...... three different temperature disturbances were applied to each biogas reactor, the increased methane yields (around 10% higher) and decreased volatile fatty acids (VFAs) concentrations at steady state were found in all three reactors after the temperature disturbances. After the temperature disturbance...... in shaping the profile of the microbial community composition and activity in biogas reactors. New steady-state microbial community profiles and reactor performances were observed in all the biogas reactors after the temperature disturbance....

  4. Impact of microbial activity on the radioactive waste disposal: long term prediction of biocorrosion processes.

    Science.gov (United States)

    Libert, Marie; Schütz, Marta Kerber; Esnault, Loïc; Féron, Damien; Bildstein, Olivier

    2014-06-01

    This study emphasizes different experimental approaches and provides perspectives to apprehend biocorrosion phenomena in the specific disposal environment by investigating microbial activity with regard to the modification of corrosion rate, which in turn can have an impact on the safety of radioactive waste geological disposal. It is found that iron-reducing bacteria are able to use corrosion products such as iron oxides and "dihydrogen" as new energy sources, especially in the disposal environment which contains low amounts of organic matter. Moreover, in the case of sulphate-reducing bacteria, the results show that mixed aerobic and anaerobic conditions are the most hazardous for stainless steel materials, a situation which is likely to occur in the early stage of a geological disposal. Finally, an integrated methodological approach is applied to validate the understanding of the complex processes and to design experiments aiming at the acquisition of kinetic data used in long term predictive modelling of biocorrosion processes. © 2013.

  5. Microbial environment affects innate immunity in two closely related earthworm species Eisenia andrei and Eisenia fetida.

    Directory of Open Access Journals (Sweden)

    Jiří Dvořák

    Full Text Available Survival of earthworms in the environment depends on their ability to recognize and eliminate potential pathogens. This work is aimed to compare the innate defense mechanisms of two closely related earthworm species, Eisenia andrei and Eisenia fetida, that inhabit substantially different ecological niches. While E. andrei lives in a compost and manure, E. fetida can be found in the litter layer in forests. Therefore, the influence of environment-specific microbiota on the immune response of both species was followed. Firstly, a reliable method to discern between E. andrei and E. fetida based on species-specific primers for cytochrome c oxidase I (COI and stringent PCR conditions was developed. Secondly, to analyze the immunological profile in both earthworm species, the activity and expression of lysozyme, pattern recognition protein CCF, and antimicrobial proteins with hemolytic function, fetidin and lysenins, have been assessed. Whereas, CCF and lysozyme showed only slight differences in the expression and activity, fetidin/lysenins expression as well as the hemolytic activity was considerably higher in E. andrei as compared to E. fetida. The expression of fetidin/lysenins in E. fetida was not affected upon the challenge with compost microbiota, suggesting more substantial changes in the regulation of the gene expression. Genomic DNA analyses revealed significantly higher level of fetidin/lysenins (determined using universal primer pairs in E. andrei compared to E. fetida. It can be hypothesized that E. andrei colonizing compost as a new habitat acquired an evolutionary selection advantage resulting in a higher expression of antimicrobial proteins.

  6. Modeling Microbial Processes in EPIC to Estimate Greenhouse Gas Emissions from soils

    Science.gov (United States)

    Schwab, D. E.; Izaurralde, R. C.; McGill, W. B.; Williams, J. R.; Schmid, E.

    2009-12-01

    Emissions of trace gases (CO2, N2O and CH4) to the atmosphere from managed terrestrial ecosystems have been contributing significantly to the warming of Earth. Trace gas production is dominated by biospheric processes. An improved knowledge of the soil-plant-atmosphere interface is of key importance for understanding trace gas dynamics. In soils, microbial metabolism plays a key role in the release or uptake of trace gases. Here we present work on the biophysical and biogeochemical model EPIC (Environmental Policy/Integrated Climate) to extend its capabilities to simulate CO2 and N2O fluxes in managed and unmanaged ecosystems. Emphasis will be given to recently developed, microbially-based, denitrification and nitrification modules. The soil-atmosphere exchange of trace gases can be measured by using various equipments, but often these measurements exhibit extreme space-time variability. We use hourly time steps to account for the variability induced by small changes in environmental conditions. Soils are often studied as macroscopic systems, although their functions are predominantly controlled at a microscopic level; i.e. the level of the microorganisms. We include these processes to the extent that these are known and can be quantitatively described. We represent soil dynamics mathematically with routines for gas diffusion, Michael Menten processes, electron budgeting and other processes such as uptake and transformations. We hypothesize that maximization of energy capture form scarce substrates using energetic favorable reactions drives evolution and that competitive advantage can result by depriving a competitor from a substrate. This Microbe Model changes concepts of production of N-containing trace gases; it unifies understanding of N oxidation and reduction, predicts production and evolution of trace gases and is consistent with observations of anaerobic ammonium oxidation.

  7. Bioelectricity generation using two chamber microbial fuel cell treating wastewater from food processing.

    Science.gov (United States)

    Mansoorian, Hossein Jafari; Mahvi, Amir Hossein; Jafari, Ahmad Jonidi; Amin, Mohammad Mehdi; Rajabizadeh, Ahmad; Khanjani, Narges

    2013-05-10

    Electricity generation from microbial fuel cells which treat food processing wastewater was investigated in this study. Anaerobic anode and aerobic cathode chambers were separated by a proton exchange membrane in a two-compartment MFC reactor. Buffer solutions and food industry wastewater were used as electrolytes in the anode and cathode chambers, respectively. The produced voltage and current intensity were measured using a digital multimeter. Effluents from the anode compartment were tested for COD, BOD5, NH3, P, TSS, VSS, SO4 and alkalinity. The maximum current density and power production were measured 527mA/m(2) and 230mW/m(2) in the anode area, respectively, at operation organic loading (OLR) of 0.364g COD/l.d. At OLR of 0.182g COD/l.d, maximum voltage and columbic efficiency production were recorded 0.475V and 21%, respectively. Maximum removal efficiency of COD, BOD5, NH3, P, TSS, VSS, SO4 and alkalinity were 86, 79, 73, 18, 68, 62, 30 and 58%, respectively. The results indicated that catalysts and mediator-less microbial fuel cells (CAML-MFC) can be considered as a better choice for simple and complete energy conversion from the wastewater of such industries and also this could be considered as a new method to offset wastewater treatment plant operating costs. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Microbial Analysis of Australian Dry Lake Cores; Analogs For Biogeochemical Processes

    Science.gov (United States)

    Nguyen, A. V.; Baldridge, A. M.; Thomson, B. J.

    2014-12-01

    Lake Gilmore in Western Australia is an acidic ephemeral lake that is analogous to Martian geochemical processes represented by interbedded phyllosilicates and sulfates. These areas demonstrate remnants of a global-scale change on Mars during the late Noachian era from a neutral to alkaline pH to relatively lower pH in the Hesperian era that continues to persist today. The geochemistry of these areas could possibly be caused by small-scale changes such as microbial metabolism. Two approaches were used to determine the presence of microbes in the Australian dry lake cores: DNA analysis and lipid analysis. Detecting DNA or lipids in the cores will provide evidence of living or deceased organisms since they provide distinct markers for life. Basic DNA analysis consists of extraction, amplification through PCR, plasmid cloning, and DNA sequencing. Once the sequence of unknown DNA is known, an online program, BLAST, will be used to identify the microbes for further analysis. The lipid analysis approach consists of phospholipid fatty acid analysis that is done by Microbial ID, which will provide direct identification any microbes from the presence of lipids. Identified microbes are then compared to mineralogy results from the x-ray diffraction of the core samples to determine if the types of metabolic reactions are consistent with the variation in composition in these analog deposits. If so, it provides intriguing implications for the presence of life in similar Martian deposits.

  9. Microbial redox processes in deep subsurface environments and the potential application of (perchlorate in oil reservoirs

    Directory of Open Access Journals (Sweden)

    Martin G Liebensteiner

    2014-09-01

    Full Text Available The ability of microorganisms to thrive under oxygen-free conditions in subsurface environments relies on the enzymatic reduction of oxidized elements, such as sulfate, ferric iron or CO2, coupled to the oxidation of inorganic or organic compounds. A broad phylogenetic and functional diversity of microorganisms from subsurface environments has been described using isolation-based and advanced molecular ecological techniques. The physiological groups reviewed here comprise iron-, manganese- and nitrate-reducing microorganisms. In the context of recent findings also the potential of chlorate and perchlorate [jointly termed (perchlorate] reduction in oil reservoirs will be discussed. Special attention is given to elevated temperatures that are predominant in the deep subsurface. Microbial reduction of (perchlorate is a thermodynamically favorable redox process, also at high temperature. However, knowledge about (perchlorate reduction at elevated temperatures is still scarce and restricted to members of the Firmicutes and the archaeon Archaeoglobus fulgidus. By analyzing the diversity and phylogenetic distribution of functional genes in (metagenome databases and combining this knowledge with extrapolations to earlier-made physiological observations we speculate on the potential of (perchlorate reduction in the subsurface and more precisely oil fields. In addition, the application of (perchlorate for bioremediation, souring control and microbial enhanced oil recovery are addressed.

  10. Influence of moisture content on microbial activity and silage quality during ensilage of food processing residues.

    Science.gov (United States)

    Zheng, Yi; Yates, Matthew; Aung, Hnin; Cheng, Yu-Shen; Yu, Chaowei; Guo, Hongyun; Zhang, Ruihong; Vandergheynst, Jean; Jenkins, Bryan M

    2011-10-01

    Seasonally produced biomass such as sugar beet pulp (SBP) and tomato pomace (TP) needs to be stored properly to meet the demand of sustainable biofuel production industries. Ensilage was used to preserve the feedstock. The effect of moisture content (MC) on the performance of ensilage and the relationship between microorganism activities and MC were investigated. For SBP, MC levels investigated were 80, 55, 30, and 10% on a wet basis. For TP, MC levels investigated were 60, 45, 30, and 10%. Organic acids, ethanol, ammonia, pH and water soluble carbohydrates (WSC) were measured to evaluate the silage quality. Ensilage improved as the MC decreased from 80 to 55% for SBP and from 60 to 45% for TP. When the MC decreased to 30%, a little microbial activity was detected for both feedstocks. Storage at 10% MC prevented all the microbial activity. The naturally occurring microorganisms in TP were found to preserve TP during silage and were isolated and determined by polymerase chain reaction (PCR). The results suggest that partial drying followed by ensilage may be a good approach for stabilization of food processing residues for biofuels production.

  11. Geophysical Monitoring of Coupled Microbial and Geochemical Processes During Stimulated Subsurface Bioremediation

    International Nuclear Information System (INIS)

    Williams, Kenneth H.; Kemna, Andreas; Wilkins, Michael J.; Druhan, Jennifer L.; Arntzen, Evan V.; N'Guessan, A. Lucie; Long, Philip E.; Hubbard, Susan S.; Banfield, Jillian F.

    2009-01-01

    Understanding how microorganisms alter their physical and chemical environment during bioremediation is hindered by our inability to resolve subsurface microbial activity with high spatial resolution. Here we demonstrate the use of a minimally invasive geophysical technique to monitor stimulated microbial activity during acetate amendment in an aquifer near Rifle, Colorado. During electrical induced polarization (IP) measurements, spatiotemporal variations in the phase response between imposed electric current and the resultant electric field correlated with changes in groundwater geochemistry accompanying stimulated iron and sulfate reduction and sulfide mineral precipitation. The magnitude of the phase response varied with measurement frequency (0.125 and 1 Hz) and was dependent upon the dominant metabolic process. The spectral effect was corroborated using a biostimulated column experiment containing Rifle sediments and groundwater. Fluids and sediments recovered from regions exhibiting an anomalous phase response were enriched in Fe(II), dissolved sulfide, and cell-associated FeS nanoparticles. The accumulation of mineral precipitates and electroactive ions altered the ability of pore fluids to conduct electrical charge, accounting for the anomalous IP response and revealing the usefulness of multifrequency IP measurements for monitoring mineralogical and geochemical changes accompanying stimulated subsurface bioremediation

  12. How do microlocal environmental variations affect microbial activities of a Pinus halepensis litter in a Mediterranean coastal area?

    Science.gov (United States)

    Qasemian, Leila; Guiral, Daniel; Farnet, Anne-Marie

    2014-10-15

    Mediterranean coastal ecosystems suffer many different types of natural and anthropogenic environmental pressure. Microbial communities, major conductors of organic matter decomposition are also subject to these environmental constraints. In this study, our aim was to understand how microbial activities vary at a small spatio-temporal scale in a Mediterranean coastal environment. Microbial activities were monitored in a Pinus halepensis litter collected from two areas, one close to (10 m) and one far from (300 m) the French Mediterranean coast. Litters were transferred from one area to the other using litterbags and studied via different microbial indicators after 2, 5 and 13 months. Microbial Basal Respiration, qCO₂, certain enzyme activities (laccase, cellulase, β-glucosidase and acid phosphatase) and functional diversity via Biolog microplates were assayed in litterbags left in the area of origin as well as in litterbags transferred from one area to the other. Results highlight that microbial activities differ significantly in this short spatial scale over time. The influence of microlocal conditions more intensified for litters situated close to the sea, especially during summer seems to have a stressful effect on microbial communities, leading to less efficient functional activities. However, microbial activities were more strongly influenced by temporal variations linked to seasonality than by location. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. The Musical Emotional Bursts: A validated set of musical affect bursts to investigate auditory affective processing.

    Directory of Open Access Journals (Sweden)

    Sébastien ePaquette

    2013-08-01

    Full Text Available The Musical Emotional Bursts (MEB consist of 80 brief musical executions expressing basic emotional states (happiness, sadness and fear and neutrality. These musical bursts were designed to be the musical analogue of the Montreal Affective Voices (MAV – a set of brief non-verbal affective vocalizations portraying different basic emotions. The MEB consist of short (mean duration: 1.6 sec improvisations on a given emotion or of imitations of a given MAV stimulus, played on a violin (n:40 or a clarinet (n:40. The MEB arguably represent a primitive form of music emotional expression, just like the MAV represent a primitive form of vocal, nonlinguistic emotional expression. To create the MEB, stimuli were recorded from 10 violinists and 10 clarinetists, and then evaluated by 60 participants. Participants evaluated 240 stimuli (30 stimuli x 4 [3 emotions + neutral] x 2 instruments by performing either a forced-choice emotion categorization task, a valence rating task or an arousal rating task (20 subjects per task; 40 MAVs were also used in the same session with similar task instructions. Recognition accuracy of emotional categories expressed by the MEB (n:80 was lower than for the MAVs but still very high with an average percent correct recognition score of 80.4%. Highest recognition accuracies were obtained for happy clarinet (92.0% and fearful or sad violin (88.0% each MEB stimuli. The MEB can be used to compare the cerebral processing of emotional expressions in music and vocal communication, or used for testing affective perception in patients with communication problems.

  14. Soil microbial abundance, activity and diversity response in two different altitude-adapted plant communities affected by wildfire in Sierra Nevada National Park (Granada, Spain)

    Science.gov (United States)

    Bárcenas-Moreno, Gema; Zavala, Lorena; Jordan, Antonio; Bååth, Erland; Mataix-Beneyto, Jorge

    2013-04-01

    Plant communities can play an important role in fire severity and post-fire ecosystem recovery due to their role as combustible and different plant-soil microorganisms interactions. Possible differences induced by plant and microorganisms response after fire could affect the general ecosystem short and long-term response and its sustainability. The main objective of this work was the evaluation of the effect of wildfire on soil microbial abundance, activity and diversity in two different plant communities associated to different altitudes in Sierra Nevada National Park (Granada, Spain). Samples were collected in two areas located on the Sierra Nevada Mountain between 1700 and 2000 m above sea level which were affected by a large wildfire in 2005. Two samplings were carried out 8 and 20 months after fire and samples were collected in both burned and unburned (control) zones in each plant community area. Area A is located at 1700m and it is formed by Quercus rotundifolia forest while area B is located at 2000 m altitude and is composed of alpine vegetation formed by creeping bearing shrubs. Microbial biomass measured by Fumigation-Extraction method followed the same trend in both areas showing slight and no significant differences between burned and unburned area during the study period while viable and cultivable bacteria abundance were markedly higher in fire affected samples than in the control ones in both samplings. Viable and cultivable filamentous fungi had different behavior depending of plant vegetation community studied showing no differences between burned and unburned area in area A while was significantly higher in burned samples than in the control ones in area B. Microbial activity monitoring with soil microbial respiration appears to had been affected immediately after fire since microbial respiration was lower in burned samples from area A than in unburned one only 8 months after fire and no significant differences were observed between burned and

  15. Russian Kefir Grains Microbial Composition and Its Changes during Production Process.

    Science.gov (United States)

    Kotova, I B; Cherdyntseva, T A; Netrusov, A I

    2016-01-01

    By combining DGGE-PCR method, classical microbiological analysis and light- and electron microscopic observations, it was found that the composition of microbial communities of central Russia regions kefir grains, starter and kefir drink include bacteria of the genera Lactobacillus, Leuconostoc and Lactococcus, and yeast anamorphs of the genera Saccharomyces, Kazachstania and Gibellulopsis. Fifteen prokaryotic and four eukaryotic pure cultures of microorganisms were isolated and identified from kefir grains. It has been shown that members of the genus Lactobacillus prevailed in kefir grains, whereas strains Leuconostoc pseudomesenteroides and Lactococcus lactis dominated in the final product - kefir drink. Yeasts contained in kefir grains in small amounts have reached a significant number of cells in the process of development of this dairy product. The possibility of reverse cell aggregation has been attempted in a mixed cultivation of all isolated pure cultures, but full formation kefir grains is not yet observed after 1.5 years of observation and reinoculations.

  16. How processing digital elevation models can affect simulated water budgets

    Science.gov (United States)

    Kuniansky, E.L.; Lowery, M.A.; Campbell, B.G.

    2009-01-01

    For regional models, the shallow water table surface is often used as a source/sink boundary condition, as model grid scale precludes simulation of the water table aquifer. This approach is appropriate when the water table surface is relatively stationary. Since water table surface maps are not readily available, the elevation of the water table used in model cells is estimated via a two-step process. First, a regression equation is developed using existing land and water table elevations from wells in the area. This equation is then used to predict the water table surface for each model cell using land surface elevation available from digital elevation models (DEM). Two methods of processing DEM for estimating the land surface for each cell are commonly used (value nearest the cell centroid or mean value in the cell). This article demonstrates how these two methods of DEM processing can affect the simulated water budget. For the example presented, approximately 20% more total flow through the aquifer system is simulated if the centroid value rather than the mean value is used. This is due to the one-third greater average ground water gradients associated with the centroid value than the mean value. The results will vary depending on the particular model area topography and cell size. The use of the mean DEM value in each model cell will result in a more conservative water budget and is more appropriate because the model cell water table value should be representative of the entire cell area, not the centroid of the model cell.

  17. Coupled Transport/Reaction Modelling of Copper Canister Corrosion Aided by Microbial Processes

    Energy Technology Data Exchange (ETDEWEB)

    Jinsong Liu [Royal Institute of Technology, Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    2006-04-15

    Copper canister corrosion is an important issue in the concept of a nuclear fuel repository. Previous studies indicate that the oxygen-free copper canister could hold its integrity for more than 100,000 years in the repository environment. Microbial processes may reduce sulphate to sulphide and considerably increase the amount of sulphides available for corrosion. In this paper, a coupled transport/reaction model is developed to account for the transport of chemical species produced by microbial processes. The corroding agents like sulphide would come not only from the groundwater flowing in a fracture that intersects the canister, but also from the reduction of sulphate near the canister. The reaction of sulphate-reducing bacteria and the transport of sulphide in the bentonite buffer are included in the model. The depth of copper canister corrosion is calculated by the model. With representative 'central values' of the concentrations of sulphate and methane at repository depth at different sites in Fennoscandian Shield the corrosion depth predicted by the model is a few millimetres during 10{sup 5} years. As the concentrations of sulphate and methane are extremely site-specific and future climate changes may significantly influence the groundwater compositions at potential repository sites, sensitivity analyses have been conducted. With a broad perspective of the measured concentrations at different sites in Sweden and in Finland, and some possible mechanisms (like the glacial meltwater intrusion and interglacial seawater intrusion) that may introduce more sulphate into the groundwater at intermediate depths during future climate changes, higher concentrations of either/both sulphate and methane than what is used as the representative 'central' values would be possible. In worst cases. locally, half of the canister thickness could possibly be corroded within 10{sup 5} years.

  18. Comparing mesophilic and thermophilic anaerobic digestion of chicken manure: Microbial community dynamics and process resilience

    International Nuclear Information System (INIS)

    Niu, Qigui; Takemura, Yasuyuki; Kubota, Kengo; Li, Yu-You

    2015-01-01

    Highlights: • Microbial community dynamics and process functional resilience were investigated. • The threshold of TAN in mesophilic reactor was higher than the thermophilic reactor. • The recoverable archaeal community dynamic sustained the process resilience. • Methanosarcina was more sensitive than Methanoculleus on ammonia inhibition. • TAN and FA effects the dynamic of hydrolytic and acidogenic bacteria obviously. - Abstract: While methane fermentation is considered as the most successful bioenergy treatment for chicken manure, the relationship between operational performance and the dynamic transition of archaeal and bacterial communities remains poorly understood. Two continuous stirred-tank reactors were investigated under thermophilic and mesophilic conditions feeding with 10%TS. The tolerance of thermophilic reactor on total ammonia nitrogen (TAN) was found to be 8000 mg/L with free ammonia (FA) 2000 mg/L compared to 16,000 mg/L (FA1500 mg/L) of mesophilic reactor. Biomethane production was 0.29 L/gV S in in the steady stage and decreased following TAN increase. After serious inhibition, the mesophilic reactor was recovered successfully by dilution and washing stratagem compared to the unrecoverable of thermophilic reactor. The relationship between the microbial community structure, the bioreactor performance and inhibitors such as TAN, FA, and volatile fatty acid was evaluated by canonical correspondence analysis. The performance of methanogenic activity and substrate removal efficiency were changed significantly correlating with the community evenness and phylogenetic structure. The resilient archaeal community was found even after serious inhibition in both reactors. Obvious dynamics of bacterial communities were observed in acidogenic and hydrolytic functional bacteria following TAN variation in the different stages

  19. The large-scale process of microbial carbonate precipitation for nickel remediation from an industrial soil.

    Science.gov (United States)

    Zhu, Xuejiao; Li, Weila; Zhan, Lu; Huang, Minsheng; Zhang, Qiuzhuo; Achal, Varenyam

    2016-12-01

    Microbial carbonate precipitation is known as an efficient process for the remediation of heavy metals from contaminated soils. In the present study, a urease positive bacterial isolate, identified as Bacillus cereus NS4 through 16S rDNA sequencing, was utilized on a large scale to remove nickel from industrial soil contaminated by the battery industry. The soil was highly contaminated with an initial total nickel concentration of approximately 900 mg kg -1 . The soluble-exchangeable fraction was reduced to 38 mg kg -1 after treatment. The primary objective of metal stabilization was achieved by reducing the bioavailability through immobilizing the nickel in the urease-driven carbonate precipitation. The nickel removal in the soils contributed to the transformation of nickel from mobile species into stable biominerals identified as calcite, vaterite, aragonite and nickelous carbonate when analyzed under XRD. It was proven that during precipitation of calcite, Ni 2+ with an ion radius close to Ca 2+ was incorporated into the CaCO 3 crystal. The biominerals were also characterized by using SEM-EDS to observe the crystal shape and Raman-FTIR spectroscopy to predict responsible bonding during bioremediation with respect to Ni immobilization. The electronic structure and chemical-state information of the detected elements during MICP bioremediation process was studied by XPS. This is the first study in which microbial carbonate precipitation was used for the large-scale remediation of metal-contaminated industrial soil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Coupled Transport/Reaction Modelling of Copper Canister Corrosion Aided by Microbial Processes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jinsong [Royal Institute of Technology, Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    2006-04-15

    Copper canister corrosion is an important issue in the concept of a nuclear fuel repository. Previous studies indicate that the oxygen-free copper canister could hold its integrity for more than 100,000 years in the repository environment. Microbial processes may reduce sulphate to sulphide and considerably increase the amount of sulphides available for corrosion. In this paper, a coupled transport/reaction model is developed to account for the transport of chemical species produced by microbial processes. The corroding agents like sulphide would come not only from the groundwater flowing in a fracture that intersects the canister, but also from the reduction of sulphate near the canister. The reaction of sulphate-reducing bacteria and the transport of sulphide in the bentonite buffer are included in the model. The depth of copper canister corrosion is calculated by the model. With representative 'central values' of the concentrations of sulphate and methane at repository depth at different sites in Fennoscandian Shield the corrosion depth predicted by the model is a few millimetres during 10{sup 5} years. As the concentrations of sulphate and methane are extremely site-specific and future climate changes may significantly influence the groundwater compositions at potential repository sites, sensitivity analyses have been conducted. With a broad perspective of the measured concentrations at different sites in Sweden and in Finland, and some possible mechanisms (like the glacial meltwater intrusion and interglacial seawater intrusion) that may introduce more sulphate into the groundwater at intermediate depths during future climate changes, higher concentrations of either/both sulphate and methane than what is used as the representative 'central' values would be possible. In worst cases. locally, half of the canister thickness could possibly be corroded within 10{sup 5} years.

  1. Coupled Transport/Reaction Modelling of Copper Canister Corrosion Aided by Microbial Processes

    International Nuclear Information System (INIS)

    Jinsong Liu

    2006-04-01

    Copper canister corrosion is an important issue in the concept of a nuclear fuel repository. Previous studies indicate that the oxygen-free copper canister could hold its integrity for more than 100,000 years in the repository environment. Microbial processes may reduce sulphate to sulphide and considerably increase the amount of sulphides available for corrosion. In this paper, a coupled transport/reaction model is developed to account for the transport of chemical species produced by microbial processes. The corroding agents like sulphide would come not only from the groundwater flowing in a fracture that intersects the canister, but also from the reduction of sulphate near the canister. The reaction of sulphate-reducing bacteria and the transport of sulphide in the bentonite buffer are included in the model. The depth of copper canister corrosion is calculated by the model. With representative 'central values' of the concentrations of sulphate and methane at repository depth at different sites in Fennoscandian Shield the corrosion depth predicted by the model is a few millimetres during 10 5 years. As the concentrations of sulphate and methane are extremely site-specific and future climate changes may significantly influence the groundwater compositions at potential repository sites, sensitivity analyses have been conducted. With a broad perspective of the measured concentrations at different sites in Sweden and in Finland, and some possible mechanisms (like the glacial meltwater intrusion and interglacial seawater intrusion) that may introduce more sulphate into the groundwater at intermediate depths during future climate changes, higher concentrations of either/both sulphate and methane than what is used as the representative 'central' values would be possible. In worst cases. locally, half of the canister thickness could possibly be corroded within 10 5 years

  2. Comparing mesophilic and thermophilic anaerobic digestion of chicken manure: Microbial community dynamics and process resilience

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Qigui; Takemura, Yasuyuki; Kubota, Kengo [Department of Civil and Environmental Engineering, Graduate School of Engineering Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Li, Yu-You, E-mail: yyli@epl1.civil.tohoku.ac.jp [Department of Civil and Environmental Engineering, Graduate School of Engineering Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi’an University of Architecture and Technology, Xi’an (China)

    2015-09-15

    Highlights: • Microbial community dynamics and process functional resilience were investigated. • The threshold of TAN in mesophilic reactor was higher than the thermophilic reactor. • The recoverable archaeal community dynamic sustained the process resilience. • Methanosarcina was more sensitive than Methanoculleus on ammonia inhibition. • TAN and FA effects the dynamic of hydrolytic and acidogenic bacteria obviously. - Abstract: While methane fermentation is considered as the most successful bioenergy treatment for chicken manure, the relationship between operational performance and the dynamic transition of archaeal and bacterial communities remains poorly understood. Two continuous stirred-tank reactors were investigated under thermophilic and mesophilic conditions feeding with 10%TS. The tolerance of thermophilic reactor on total ammonia nitrogen (TAN) was found to be 8000 mg/L with free ammonia (FA) 2000 mg/L compared to 16,000 mg/L (FA1500 mg/L) of mesophilic reactor. Biomethane production was 0.29 L/gV S{sub in} in the steady stage and decreased following TAN increase. After serious inhibition, the mesophilic reactor was recovered successfully by dilution and washing stratagem compared to the unrecoverable of thermophilic reactor. The relationship between the microbial community structure, the bioreactor performance and inhibitors such as TAN, FA, and volatile fatty acid was evaluated by canonical correspondence analysis. The performance of methanogenic activity and substrate removal efficiency were changed significantly correlating with the community evenness and phylogenetic structure. The resilient archaeal community was found even after serious inhibition in both reactors. Obvious dynamics of bacterial communities were observed in acidogenic and hydrolytic functional bacteria following TAN variation in the different stages.

  3. Microbial dynamics during industrial rearing, processing, and storage of the tropical house cricket (Gryllodes sigillatus) for human consumption.

    Science.gov (United States)

    Vandeweyer, Dries; Wynants, Enya; Crauwels, Sam; Verreth, Christel; Viaene, Nikolaas; Claes, Johan; Lievens, Bart; Van Campenhout, Leen

    2018-04-06

    In this study, the microbiota during industrial rearing, processing, and storage of the edible tropical house cricket, Gryllodes sigillatus , was investigated. To this end, samples were analyzed of the cricket feed, before feeding as well as taken from the cages, and the crickets during rearing, after harvest, and after processing into frozen, oven-dried, and smoked and subsequently oven-dried end products. Although the feed contained lower microbial numbers than the crickets, both were dominated by the same species-level operational taxonomic units as determined by Illumina Miseq sequencing. They corresponded, among others, to members of Porphyromonadaceae, Fusobacterium , Parabacteroides and Erwinia The harvested crickets contained high microbial numbers, but none of the investigated food pathogens Salmonella spp., Listeria monocytogenes , Bacillus cereus , and coagulase-positive staphylococci. However, some possible mycotoxin-producing fungi were isolated from the crickets. A post-harvest heat treatment, shortly boiling the crickets, reduced microbial numbers, but an endospore load of 2.4 log cfu/g remained. After processing, an increase in microbial counts was observed for dried and smoked plus dried crickets. Additionally, in the smoked plus dried crickets, a high abundance of a Bacillus sp. was observed. Considering the possible occurrence of food-pathogenic species from this genus, it is advised to apply a heat treatment which is sufficient to eliminate spores. Nevertheless, the microbial numbers remained constant over a six-month storage period, frozen (frozen end product) or at ambient temperature (oven-dried and smoked plus dried end products). Importance. The need for sustainable protein sources has led to the emergence of a new food sector, producing and processing edible insects into foods. However, insight into the microbial quality of this new food and into the microbial dynamics during rearing, processing and storage of edible insects is still

  4. Mechanistic and kinetic aspects of microbial inactivation in food irradiation processes

    International Nuclear Information System (INIS)

    Tukenmez, I.

    2004-01-01

    Full text: A proper reaction mechanism was searched by analyzing the inactivation processes of microorganisms during food irradiation by ionizing radiation. By employing transition-state theory, it was assumed that the overall inactivation process involves a reversible sub-lethal stress and repair reactions to form reversibly injured cell or sensitized cell, which then undergoes irreversible injury leading to dead cell. A shoulder in low dose range in survival kinetics was associated with the repair process. Depending on the postulated mechanism, kinetic model equations were derived. The kinetics of cell inactivation by irradiation was expressed as depending on irradiation dose. By using experimental data in the developed model the inactivation parameters including threshold dose, radiation yield, decimal reduction dose and minimum sterilization dose were evaluated and microbial inactivation by irradiation was simulated by using the numerical values of the parameters. Developed model and model parameters may be used for the process control and the assessment of product quality in radiation preservation of food

  5. A novel process for synthesis of spherical nanocellulose by controlled hydrolysis of microcrystalline cellulose using anaerobic microbial consortium.

    Science.gov (United States)

    Satyamurthy, P; Vigneshwaran, N

    2013-01-10

    Degradation of cellulose by anaerobic microbial consortium is brought about either by an exocellular process or by secretion of extracellular enzymes. In this work, a novel route for synthesis of nanocellulose is described where in an anaerobic microbial consortium enriched for cellulase producers is used for hydrolysis. Microcrystalline cellulose derived from cotton fibers was subjected to controlled hydrolysis by the anaerobic microbial consortium and the resultant nanocellulose was purified by differential centrifugation technique. The nanocellulose had a bimodal size distribution (43±13 and 119±9 nm) as revealed by atomic force microscopy. A maximum nanocellulose yield of 12.3% was achieved in a span of 7 days. While the conventional process of nanocellulose preparation using 63.5% (w/w) sulfuric acid resulted in the formation of whisker shaped nanocellulose with surface modified by sulfation, controlled hydrolysis by anaerobic microbial consortium yielded spherical nanocellulose also referred to as nano crystalline cellulose (NCC) without any surface modification as evidenced from Fourier transform infrared spectroscopy. Also, it scores over chemo-mechanical production of nanofibrillated cellulose by consuming less energy due to enzyme (cellulase) assisted catalysis. This implies the scope for use of microbial prepared nanocellulose in drug delivery and bio-medical applications requiring bio-compatibility. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Soil Conditions Rather Than Long-Term Exposure to Elevated CO2 Affect Soil Microbial Communities Associated with N-Cycling

    Directory of Open Access Journals (Sweden)

    Kristof Brenzinger

    2017-10-01

    Full Text Available Continuously rising atmospheric CO2 concentrations may lead to an increased transfer of organic C from plants to the soil through rhizodeposition and may affect the interaction between the C- and N-cycle. For instance, fumigation of soils with elevated CO2 (eCO2 concentrations (20% higher compared to current atmospheric concentrations at the Giessen Free-Air Carbon Dioxide Enrichment (GiFACE sites resulted in a more than 2-fold increase of long-term N2O emissions and an increase in dissimilatory reduction of nitrate compared to ambient CO2 (aCO2. We hypothesized that the observed differences in soil functioning were based on differences in the abundance and composition of microbial communities in general and especially of those which are responsible for N-transformations in soil. We also expected eCO2 effects on soil parameters, such as on nitrate as previously reported. To explore the impact of long-term eCO2 on soil microbial communities, we applied a molecular approach (qPCR, T-RFLP, and 454 pyrosequencing. Microbial groups were analyzed in soil of three sets of two FACE plots (three replicate samples from each plot, which were fumigated with eCO2 and aCO2, respectively. N-fixers, denitrifiers, archaeal and bacterial ammonia oxidizers, and dissimilatory nitrate reducers producing ammonia were targeted by analysis of functional marker genes, and the overall archaeal community by 16S rRNA genes. Remarkably, soil parameters as well as the abundance and composition of microbial communities in the top soil under eCO2 differed only slightly from soil under aCO2. Wherever differences in microbial community abundance and composition were detected, they were not linked to CO2 level but rather determined by differences in soil parameters (e.g., soil moisture content due to the localization of the GiFACE sets in the experimental field. We concluded that +20% eCO2 had little to no effect on the overall microbial community involved in N-cycling in the

  7. Soil Conditions Rather Than Long-Term Exposure to Elevated CO2 Affect Soil Microbial Communities Associated with N-Cycling.

    Science.gov (United States)

    Brenzinger, Kristof; Kujala, Katharina; Horn, Marcus A; Moser, Gerald; Guillet, Cécile; Kammann, Claudia; Müller, Christoph; Braker, Gesche

    2017-01-01

    Continuously rising atmospheric CO 2 concentrations may lead to an increased transfer of organic C from plants to the soil through rhizodeposition and may affect the interaction between the C- and N-cycle. For instance, fumigation of soils with elevated CO 2 ( e CO 2 ) concentrations (20% higher compared to current atmospheric concentrations) at the Giessen Free-Air Carbon Dioxide Enrichment (GiFACE) sites resulted in a more than 2-fold increase of long-term N 2 O emissions and an increase in dissimilatory reduction of nitrate compared to ambient CO 2 ( a CO 2 ). We hypothesized that the observed differences in soil functioning were based on differences in the abundance and composition of microbial communities in general and especially of those which are responsible for N-transformations in soil. We also expected e CO 2 effects on soil parameters, such as on nitrate as previously reported. To explore the impact of long-term e CO 2 on soil microbial communities, we applied a molecular approach (qPCR, T-RFLP, and 454 pyrosequencing). Microbial groups were analyzed in soil of three sets of two FACE plots (three replicate samples from each plot), which were fumigated with e CO 2 and a CO 2 , respectively. N-fixers, denitrifiers, archaeal and bacterial ammonia oxidizers, and dissimilatory nitrate reducers producing ammonia were targeted by analysis of functional marker genes, and the overall archaeal community by 16S rRNA genes. Remarkably, soil parameters as well as the abundance and composition of microbial communities in the top soil under e CO 2 differed only slightly from soil under a CO 2 . Wherever differences in microbial community abundance and composition were detected, they were not linked to CO 2 level but rather determined by differences in soil parameters (e.g., soil moisture content) due to the localization of the GiFACE sets in the experimental field. We concluded that +20% e CO 2 had little to no effect on the overall microbial community involved in N

  8. Bacillus licheniformis affects the microbial community and metabolic profile in the spontaneous fermentation of Daqu starter for Chinese liquor making.

    Science.gov (United States)

    Wang, Peng; Wu, Qun; Jiang, Xuejian; Wang, Zhiqiang; Tang, Jingli; Xu, Yan

    2017-06-05

    Chinese liquor is produced from spontaneous fermentation starter (Daqu) that provides the microbes, enzymes and flavors for liquor fermentation. To improve the flavor character of Daqu, we inoculated Bacillus licheniformis and studied the effect of this strain on the community structure and metabolic profile in Daqu fermentation. The microbial relative abundance changed after the inoculation, including the increase in Bacillus, Clavispora and Aspergillus, and the decrease in Pichia, Saccharomycopsis and some other genera. This variation was also confirmed by pure culture and coculture experiments. Seventy-three metabolites were identified during Daqu fermentation process. After inoculation, the average content of aromatic compounds were significantly enriched from 0.37mg/kg to 0.90mg/kg, and the average content of pyrazines significantly increased from 0.35mg/kg to 5.71mg/kg. The increase in pyrazines was positively associated with the metabolism of the inoculated Bacillus and the native genus Clavispora, because they produced much more pyrazines in their cocultures. Whereas the increase in aromatic compounds might be related to the change of in situ metabolic activity of several native genera, in particular, Aspergillus produced more aromatic compounds in cocultures with B. licheniformis. It indicated that the inoculation of B. licheniformis altered the flavor character of Daqu by both its own metabolic activity and the variation of in situ metabolic activity. Moreover, B. licheniformis inoculation influenced the enzyme activity of Daqu, including the significant increase in amylase activity (from 1.3gstarch/g/h to 1.7gstarch/g/h), and the significant decrease in glucoamylase activity (from 627.6mgglucose/g/h to 445.6mgglucose/g/h) and esterase activity (from 28.1mgethylcaproate/g/100h to 17.2mgethylcaproate/g/100h). These effects of inoculation were important factors for regulating the metabolism of microbial communities, hence for improving the flavor profile

  9. Isolation of microbial native Stumps with cellulolytic activity of a compost process

    International Nuclear Information System (INIS)

    Jaramillo G, Marisol; Ruiz V Orlando Simon; Yepes P, Maria del Socorro; Montoya C, Olga Ines

    2003-01-01

    The isolation, selection adaptation and handling of native microorganisms coming from organic waste are an alternative to avoid the accumulation and the lack of the proper use of these undesirable materials. This organic waste is a source for obtaining microbial strains, which are potentially producers of Industrial enzymes and, at the same time, it works as substrate so that these organisms can transform it into compost or organic manure. In this work, 39 native strains of microorganisms with potential cellulolytic activity coming from the organic waste of the urban and rural sector, from the Compost Plant of Marinilla Antioquia) municipality, were isolated, evaluated and purified. The waste was previously selected and then submitted to an aerobic degradation or compost. The microbial strains were isolated in a selective medium with carboxymethyl cellulose (CMC), of the phases mesophile, termophile, cooling and maturation of the compost process. Eighty-two percent (82%)of the obtained colonies were identified, in principle as Bacillus, because of their morphology and their reaction to the Gram coloration. The fungi population was seen only during the cooling phase. Then, the potential cellulolytic activity was evaluated qualitatively in a solid medium with the Congo Red coloration, with which the Beta-endoglucanase activity was evaluated through the formation of clarified zones. Such staining was applied in two mediums with CMC with and without glucose It was observed that 33.3% of the isolated organisms produced the enzyme In both mediums; however, 25.6% of microorganisms did not show the production of this enzyme, and only 15.8% did not require the inducers to produce it

  10. Forest canopy structural controls over throughfall affect soil microbial community structure in an epiphyte-laden maritime oak stand

    Science.gov (United States)

    Van Stan, J. T., II; Rosier, C. L.; Schrom, J. O.; Wu, T.; Reichard, J. S.; Kan, J.

    2014-12-01

    Identifying spatiotemporal influences on soil microbial community (SMC) structure is critical to understanding of patterns in nutrient cycling and related ecological services. Since forest canopy structure alters the spatiotemporal patterning of precipitation water and solute supplies to soils (via the "throughfall" mechanism), is it possible changes in SMC structure variability could arise from modifications in canopy elements? Our study investigates this question by monitoring throughfall water and dissolved ion supply to soils beneath a continuum of canopy structure: from a large gap (0% cover) to heavy Tillandsia usneoides L. (Spanish moss) canopy (>90% cover). Throughfall water supply diminished with increasing canopy cover, yet increased washoff/leaching of Na+, Cl-, PO43-, and SO42- from the canopy to the soils (p < 0.01). Presence of T. usneoides diminished throughfall NO3-, but enhanced NH4+, concentrations supplied to subcanopy soils. The mineral soil horizon (0-10 cm) from canopy gaps, bare canopy, and T. usneoides-laden canopy significantly differed (p < 0.05) in soil chemistry parameters (pH, Ca2+, Mg2+, CEC). PCR-DGGE banding patterns beneath similar canopy covers (experiencing similar throughfall dynamics) also produced high similarities per ANalyses Of SIMilarity (ANO-SIM), and clustered together when analyzed by Nonmetric Multidimensional Scaling (NMDS). Correlation analysis of DGGE banding patterns, throughfall dynamics, and soil chemistry yielded significant correlations (p < 0.05) between fungal communities and soil chemical properties significantly differing between canopy cover types (pH: r2 = 0.50; H+ %-base saturation: r2 = 0.48; Ca2+ %-base saturation: r2 = 0.43). Bacterial community structure correlated with throughfall NO3-, NH4+, and Ca2+ concentrations (r2 = 0.37, p = 0.16). These results suggest that modifications of forest canopy structures are capable of affecting mineral-soil horizon SMC structure via the throughfall mechanism when

  11. Detection of microbial biofilms on food processing surfaces: hyperspectral fluorescence imaging study

    Science.gov (United States)

    Jun, Won; Kim, Moon S.; Chao, Kaunglin; Lefcourt, Alan M.; Roberts, Michael S.; McNaughton, James L.

    2009-05-01

    We used a portable hyperspectral fluorescence imaging system to evaluate biofilm formations on four types of food processing surface materials including stainless steel, polypropylene used for cutting boards, and household counter top materials such as formica and granite. The objective of this investigation was to determine a minimal number of spectral bands suitable to differentiate microbial biofilm formation from the four background materials typically used during food processing. Ultimately, the resultant spectral information will be used in development of handheld portable imaging devices that can be used as visual aid tools for sanitation and safety inspection (microbial contamination) of the food processing surfaces. Pathogenic E. coli O157:H7 and Salmonella cells were grown in low strength M9 minimal medium on various surfaces at 22 +/- 2 °C for 2 days for biofilm formation. Biofilm autofluorescence under UV excitation (320 to 400 nm) obtained by hyperspectral fluorescence imaging system showed broad emissions in the blue-green regions of the spectrum with emission maxima at approximately 480 nm for both E. coli O157:H7 and Salmonella biofilms. Fluorescence images at 480 nm revealed that for background materials with near-uniform fluorescence responses such as stainless steel and formica cutting board, regardless of the background intensity, biofilm formation can be distinguished. This suggested that a broad spectral band in the blue-green regions can be used for handheld imaging devices for sanitation inspection of stainless, cutting board, and formica surfaces. The non-uniform fluorescence responses of granite make distinctions between biofilm and background difficult. To further investigate potential detection of the biofilm formations on granite surfaces with multispectral approaches, principal component analysis (PCA) was performed using the hyperspectral fluorescence image data. The resultant PCA score images revealed distinct contrast between

  12. Short-time effect of salvage harvesting on microbial soil properties in a Mediterranean area affected by a wildfire: preliminary results

    Science.gov (United States)

    Moltó, Jorge; Mataix-Solera, Jorge; Arcenegui, Victoria; Morugan, Alicia; Girona, Antonio; Garcia-orenes, Fuensanta

    2014-05-01

    In the Mediterranean region, wildfires are considered one of the main ecological factors, which, in addition to and in relation to changes in soil use, may cause soil loss and degradation, one of the most important environmental problems that humanity must face up to. As is well known, the soil-plant system is one of the key factors determining ecological recovery after the occurrence of a wildfire. Traditionally, a variety of forestry practices have been implemented on spanish sites after the incidence of a wildfire. Among them stands out the complete extraction of the burned wood, which consist in getting rid of the branches and other wooden debris using small controlled bonfires, splintering or mechanical extraction. This set of post-fire management practices is known as salvage logging or salvage harvesting. Despite the remarkable relevance and influence that this conjunction of techniques has on land management after a wildfire, very little experimental research focused on assessing the impact of salvage logging on the vegetal community has been done. Furthermore, even less research inquiring into the mode and grade of incidence that the salvage logging produces on soil properties has taken place. The aim of this research is to assess the effects that the salvage harvesting has on different soil microbial properties and other related properties. The study area is located in the Natural Park of the "Sierra de Mariola" in the province of Alicante, southeastern Spain. This location was affected by a wildfire whose extension reached more than 500 Ha in July 2012. Different post-fire treatments were proposed by the authorities, including salvage harvesting in some areas. Two different treatments were distinguished for the study, "control" (without any kind of burned wood removal) and "harvest" (where salvage logging was carried out), in each area three 4 m2 sampling plots were set up. These two treatments were established on the same slope with the same orography

  13. Relationship of microbial processes to the fate and behavior of transuranic elements in soils, plants, and animals

    International Nuclear Information System (INIS)

    Wildung, R.E.; Garland, T.R.

    1980-01-01

    Soil physicochemical and microbial processes influence the long-term solubility, form, and bioavailability of plutonium and other transuranic elements important in the nuclear fuel cycle. Consideration is given to the chemistry/microbiology of the transuranic elements in soil, emphasizing possible organic complexation reactions in soils and plants and the relationship of these phenomena to gastrointestinal absorption

  14. Microbial-processing of fruit and vegetable wastes for production of vital enzymes and organic acids: Biotechnology and scopes.

    Science.gov (United States)

    Panda, Sandeep K; Mishra, Swati S; Kayitesi, Eugenie; Ray, Ramesh C

    2016-04-01

    Wastes generated from fruits and vegetables are organic in nature and contribute a major share in soil and water pollution. Also, green house gas emission caused by fruit and vegetable wastes (FVWs) is a matter of serious environmental concern. This review addresses the developments over the last one decade on microbial processing technologies for production of enzymes and organic acids from FVWs. The advances in genetic engineering for improvement of microbial strains in order to enhance the production of the value added bio-products as well as the concept of zero-waste economy have been briefly discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Microbial export of lactic and 3-hydroxypropanoic acid : implications for industrial fermentation processes

    NARCIS (Netherlands)

    van Maris, AJA; Konings, WN; Pronk, Jack T.; Dijken, J.P. van

    2004-01-01

    Lactic acid and 3-hydroxypropanoic acid are industrially relevant microbial products. This paper reviews the current knowledge on export of these compounds from microbial cells and presents a theoretical analysis of the bioenergetics of different export mechanisms. It is concluded that export can be

  16. Recent advances in molecular techniques to study microbial communities in food-associated matrices and processes

    NARCIS (Netherlands)

    Justé, A.; Thomma, B.P.H.J.; Lievens, B.

    2008-01-01

    In the last two decades major changes have occurred in how microbial ecologists study microbial communities. Limitations associated with traditional culture-based methods have pushed for the development of culture-independent techniques, which are primarily based on the analysis of nucleic acids.

  17. Deciphering the microbial ecology in bio- gas reactors for optimizing the anaerobic digestion process

    DEFF Research Database (Denmark)

    Zhu, Xinyu

    of the basic microbial metabolism and ecology, methanogenic microbial communities were enriched in a lab-scale continuous stirred-tank reactor (CSTR) fed with synthetic feedstocks. In the experiment, the substrates used were stepwise simplified (i.e. polysaccharide, monosaccharide, short chain fatty acids...

  18. Effects of experimental drought on microbial processes in two temperate heathlands at contrasting water conditions

    DEFF Research Database (Denmark)

    Jensen, K.D.; Beier, C.; Michelsen, A.

    2003-01-01

    by a 27% reduced below ground CO(2) emission, and reduced microbial and soil solution carbon (C) and nitrogen (N) levels. In contrast, microbial activity at the wetter UK site seemed to benefit from the drought as indicated by a 22% increase in below ground CO(2) emission caused by the drought treatment...

  19. Assessment of microbial processes on gas production at radioactive low-level waste disposal sites

    International Nuclear Information System (INIS)

    Weiss, A.J.; Tate, R.L. III; Colombo, P.

    1982-05-01

    Factors controlling gaseous emanations from low level radioactive waste disposal sites are assessed. Importance of gaseous fluxes of methane, carbon dioxide, and possible hydrogen from the site, stems from the inclusion of tritium and/or carbon-14 into the elemental composition of these compounds. In that the primary source of these gases is the biodegradation of organic components of the waste material, primary emphasis of the study involved an examination of the biochemical pathways producing methane, carbon dioxide, and hydrogen, and the environmental parameters controlling the activity of the microbial community involved. Initial examination of the data indicates that the ecosystem is anaerobic. As the result of the complexity of the pathway leading to methane production, factors such as substrate availability, which limit the initial reaction in the sequence, greatly affect the overall rate of methane evolution. Biochemical transformations of methane, hydrogen and carbon dioxide as they pass through the soil profile above the trench are discussed. Results of gas studies performed at three commercial low level radioactive waste disposal sites are reviewed. Methods used to obtain trench and soil gas samples are discussed. Estimates of rates of gas production and amounts released into the atmosphere (by the GASFLOW model) are evaluated. Tritium and carbon-14 gaseous compounds have been measured in these studies; tritiated methane is the major radionuclide species in all disposal trenches studied. The concentration of methane in a typical trench increases with the age of the trench, whereas the concentration of carbon dioxide is similar in all trenches

  20. Microbial Performance of Food Safety Control and Assurance Activities in a Fresh Produce Processing Sector Measured Using a Microbial Assessment Scheme and Statistical Modeling

    DEFF Research Database (Denmark)

    Njage, Patrick Murigu Kamau; Sawe, Chemutai Tonui; Onyango, Cecilia Moraa

    2017-01-01

    assessment scheme and statistical modeling were used to systematically assess the microbial performance of core control and assurance activities in five Kenyan fresh produce processing and export companies. Generalized linear mixed models and correlated random-effects joint models for multivariate clustered...... the maximum safety level for environmental samples. Escherichia coli was detected in five of the six CSLs, including the final product. Among the processing-environment samples, the hand or glove swabs of personnel revealed a higher level of predicted contamination with E. coli, and 80% of the factories were...... of contamination with coliforms in water at the inlet than in the final rinse water. Four (80%) of the five assessed processors had poor to unacceptable counts of Enterobacteriaceae on processing surfaces. Personnel-, equipment-, and product-related hygiene measures to improve the performance of preventive...

  1. Sources and Processes Affecting Particulate Matter Pollution over North China

    Science.gov (United States)

    Zhang, L.; Shao, J.; Lu, X.; Zhao, Y.; Gong, S.; Henze, D. K.

    2015-12-01

    Severe fine particulate matter (PM2.5) pollution over North China has received broad attention worldwide in recent years. Better understanding the sources and processes controlling pollution over this region is of great importance with urgent implications for air quality policy. We will present a four-dimensional variational (4D-Var) data assimilation system using the GEOS-Chem chemical transport model and its adjoint model at 0.25° × 0.3125° horizontal resolution, and apply it to analyze the factors affecting PM2.5 concentrations over North China. Hourly surface observations of PM2.5 and sulfur dioxide (SO2) from the China National Environmental Monitoring Center (CNEMC) can be assimilated into the model to evaluate and constrain aerosol (primary and precursors) emissions. Application of the data assimilation system to the APEC period (the Asia-Pacific Economic Cooperation summit; 5-11 November 2014) shows that 46% of the PM2.5 pollution reduction during APEC ("The APEC Blue") can be attributed to meteorology conditions and the rest 54% to emission reductions due to strict emission controls. Ammonia emissions are shown to significantly contribute to PM2.5 over North China in the fall. By converting sulfuric acid and nitric acid to longer-lived ammonium sulfate and ammonium nitrate aerosols, ammonia plays an important role in promoting their regional transport influences. We will also discuss the pathways and mechanisms of external long-range transport influences to the PM2.5 pollution over North China.

  2. The Validation of Vapor Phase Hydrogen Peroxide Microbial Reduction for Planetary Protection and a Proposed Vacuum Process Specification

    Science.gov (United States)

    Chung, Shirley; Barengoltz, Jack; Kern, Roger; Koukol, Robert; Cash, Howard

    2006-01-01

    The Jet Propulsion Laboratory, in conjunction with the NASA Planetary Protection Officer, has selected the vapor phase hydrogen peroxide sterilization process for continued development as a NASA approved sterilization technique for spacecraft subsystems and systems. The goal is to include this technique, with an appropriate specification, in NPR 8020.12C as a low temperature complementary technique to the dry heat sterilization process.To meet microbial reduction requirements for all Mars in-situ life detection and sample return missions, various planetary spacecraft subsystems will have to be exposed to a qualified sterilization process. This process could be the elevated temperature dry heat sterilization process (115 C for 40 hours) which was used to sterilize the Viking lander spacecraft. However, with utilization of such elements as highly sophisticated electronics and sensors in modern spacecraft, this process presents significant materials challenges and is thus an undesirable bioburden reduction method to design engineers. The objective of this work is to introduce vapor hydrogen peroxide (VHP) as an alternative to dry heat microbial reduction to meet planetary protection requirements.The VHP process is widely used by the medical industry to sterilize surgical instruments and biomedical devices, but high doses of VHP may degrade the performance of flight hardware, or compromise material properties. Our goal for this study was to determine the minimum VHP process conditions to achieve microbial reduction levels acceptable for planetary protection.

  3. Microbial Diseases in the Teaching-learning Process of Deaf People: A Possible Dialogue

    Directory of Open Access Journals (Sweden)

    Roberta Silva Rizzo

    2014-09-01

    Full Text Available Special Education remains a major challenge in society. Thus, many methodologies and didactic-pedagogic resources have been deployed in order to further the teaching and learning process in different subjects, with emphasis on Science teaching. By understanding the importance of diseases caused by microorganisms, the game titled “Knowing the unseen world - challenging signal” was conceived as a didactic proposal to inform and enlighten deaf students from Elementary School on this subject, applying visual tools. Therefore, its construction took the National Curriculum Parameters (NCP for Natural Sciences as a guiding, and the development of the graphic art consisted of simple and low cost materials. As a result, it was obtained a teaching resource with signs of LIBRAS that meets the objectives and contents that addresses of the three main themes of the NCPs. So, this is a suggestion to work the microbial content in a less abstract and more attractive form to deaf students, providing an opportunity to address issues specified in science curriculum in order to support the teaching-learning process focused on scientific literacy and the appropriation of knowledge related to the development of skills and abilities necessary to the current society.

  4. Spatial nitrifications of microbial processes during composting of swine, cow and chicken manure

    Science.gov (United States)

    Wang, Ke; Li, Weiguang; Li, Xiangkun; Ren, Nanqi

    2015-10-01

    Composting is a widely-used method to recycle the nutrients in livestock manure for agriculture. The spatial stratifications of microbial processes inside the manure particle that determine organic and nitrogen transformation are virtually unclear. Here, we show the evolution of the interior microenvironment of swine, cow and chicken manure by using microelectrodes during forced-aeration composting. Composting has generally been regarded as an aerobic bioprocess, however, the long-existing of a large anoxic zone inside these manures was confirmed during the active phase in this study. The profile of the oxidation-reduction potential dramatically decreased first and then gradually increased. The spatial difference in the ammonia concentration was not significant, but nitrate concentration continuously decreased with depth. The anoxic condition within the manure particle was demonstrated to be a primary cause of the severe ammonia emission and the long composting period. These founding provided a new insight toward “aerobic” composting process and a sound foundation for the development of efficient composting technology.

  5. Basic abnormalities in visual processing affect face processing at an early age in autism spectrum disorder.

    Science.gov (United States)

    Vlamings, Petra Hendrika Johanna Maria; Jonkman, Lisa Marthe; van Daalen, Emma; van der Gaag, Rutger Jan; Kemner, Chantal

    2010-12-15

    A detailed visual processing style has been noted in autism spectrum disorder (ASD); this contributes to problems in face processing and has been directly related to abnormal processing of spatial frequencies (SFs). Little is known about the early development of face processing in ASD and the relation with abnormal SF processing. We investigated whether young ASD children show abnormalities in low spatial frequency (LSF, global) and high spatial frequency (HSF, detailed) processing and explored whether these are crucially involved in the early development of face processing. Three- to 4-year-old children with ASD (n = 22) were compared with developmentally delayed children without ASD (n = 17). Spatial frequency processing was studied by recording visual evoked potentials from visual brain areas while children passively viewed gratings (HSF/LSF). In addition, children watched face stimuli with different expressions, filtered to include only HSF or LSF. Enhanced activity in visual brain areas was found in response to HSF versus LSF information in children with ASD, in contrast to control subjects. Furthermore, facial-expression processing was also primarily driven by detail in ASD. Enhanced visual processing of detailed (HSF) information is present early in ASD and occurs for neutral (gratings), as well as for socially relevant stimuli (facial expressions). These data indicate that there is a general abnormality in visual SF processing in early ASD and are in agreement with suggestions that a fast LSF subcortical face processing route might be affected in ASD. This could suggest that abnormal visual processing is causative in the development of social problems in ASD. Copyright © 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  6. Regulation of electron transfer processes affects phototrophic mat structure and activity

    Science.gov (United States)

    Ha, Phuc T.; Renslow, Ryan S.; Atci, Erhan; Reardon, Patrick N.; Lindemann, Stephen R.; Fredrickson, James K.; Call, Douglas R.; Beyenal, Haluk

    2015-01-01

    Phototrophic microbial mats are among the most diverse ecosystems in nature. These systems undergo daily cycles in redox potential caused by variations in light energy input and metabolic interactions among the microbial species. In this work, solid electrodes with controlled potentials were placed under mats to study the electron transfer processes between the electrode and the microbial mat. The phototrophic microbial mat was harvested from Hot Lake, a hypersaline, epsomitic lake located near Oroville (Washington, USA). We operated two reactors: graphite electrodes were polarized at potentials of -700 mVAg/AgCl [cathodic (CAT) mat system] and +300 mVAg/AgCl [anodic (AN) mat system] and the electron transfer rates between the electrode and mat were monitored. We observed a diel cycle of electron transfer rates for both AN and CAT mat systems. Interestingly, the CAT mats generated the highest reducing current at the same time points that the AN mats showed the highest oxidizing current. To characterize the physicochemical factors influencing electron transfer processes, we measured depth profiles of dissolved oxygen (DO) and sulfide in the mats using microelectrodes. We further demonstrated that the mat-to-electrode and electrode-to-mat electron transfer rates were light- and temperature-dependent. Using nuclear magnetic resonance (NMR) imaging, we determined that the electrode potential regulated the diffusivity and porosity of the microbial mats. Both porosity and diffusivity were higher in the CAT mats than in the AN mats. We also used NMR spectroscopy for high-resolution quantitative metabolite analysis and found that the CAT mats had significantly higher concentrations of osmoprotectants such as betaine and trehalose. Subsequently, we performed amplicon sequencing across the V4 region of the 16S rRNA gene of incubated mats to understand the impact of electrode potential on microbial community structure. These data suggested that variation in the

  7. Regulation of electron transfer processes affects phototrophic mat structure and activity

    Directory of Open Access Journals (Sweden)

    Haluk eBeyenal

    2015-09-01

    Full Text Available Phototrophic microbial mats are among the most diverse ecosystems in nature. These systems undergo daily cycles in redox potential caused by variations in light energy input and metabolic interactions among the microbial species. In this work, solid electrodes with controlled potentials were placed under mats to study the electron transfer processes between the electrode and the microbial mat. The phototrophic microbial mat was harvested from Hot Lake, a hypersaline, epsomitic lake located near Oroville (Washington, USA. We operated two reactors: graphite electrodes were polarized at potentials of -700 mVAg/AgCl (cathodic mat system and +300 mVAg/AgCl (anodic mat system and the electron transfer rates between the electrode and mat were monitored. We observed a diel cycle of electron transfer rates for both anodic and cathodic mat systems. Interestingly, the cathodic mats generated the highest reducing current at the same time points that the anodic mats showed the highest oxidizing current. To characterize the physicochemical factors influencing electron transfer processes, we measured depth profiles of dissolved oxygen and sulfide in the mats using microelectrodes. We further demonstrated that the mat-to-electrode and electrode-to-mat electron transfer rates were light- and temperature-dependent. Using nuclear magnetic resonance (NMR imaging, we determined that the electrode potential regulated the diffusivity and porosity of the microbial mats. Both porosity and diffusivity were higher in the cathodic mats than in the anodic mats. We also used NMR spectroscopy for high-resolution quantitative metabolite analysis and found that the cathodic mats had significantly higher concentrations of osmoprotectants such as betaine and trehalose. Subsequently, we performed amplicon sequencing across the V4 region of the 16S rRNA gene of incubated mats to understand the impact of electrode potential on microbial community structure. These data suggested that

  8. Regulation of electron transfer processes affects phototrophic mat structure and activity.

    Science.gov (United States)

    Ha, Phuc T; Renslow, Ryan S; Atci, Erhan; Reardon, Patrick N; Lindemann, Stephen R; Fredrickson, James K; Call, Douglas R; Beyenal, Haluk

    2015-01-01

    Phototrophic microbial mats are among the most diverse ecosystems in nature. These systems undergo daily cycles in redox potential caused by variations in light energy input and metabolic interactions among the microbial species. In this work, solid electrodes with controlled potentials were placed under mats to study the electron transfer processes between the electrode and the microbial mat. The phototrophic microbial mat was harvested from Hot Lake, a hypersaline, epsomitic lake located near Oroville (Washington, USA). We operated two reactors: graphite electrodes were polarized at potentials of -700 mVAg/AgCl [cathodic (CAT) mat system] and +300 mVAg/AgCl [anodic (AN) mat system] and the electron transfer rates between the electrode and mat were monitored. We observed a diel cycle of electron transfer rates for both AN and CAT mat systems. Interestingly, the CAT mats generated the highest reducing current at the same time points that the AN mats showed the highest oxidizing current. To characterize the physicochemical factors influencing electron transfer processes, we measured depth profiles of dissolved oxygen (DO) and sulfide in the mats using microelectrodes. We further demonstrated that the mat-to-electrode and electrode-to-mat electron transfer rates were light- and temperature-dependent. Using nuclear magnetic resonance (NMR) imaging, we determined that the electrode potential regulated the diffusivity and porosity of the microbial mats. Both porosity and diffusivity were higher in the CAT mats than in the AN mats. We also used NMR spectroscopy for high-resolution quantitative metabolite analysis and found that the CAT mats had significantly higher concentrations of osmoprotectants such as betaine and trehalose. Subsequently, we performed amplicon sequencing across the V4 region of the 16S rRNA gene of incubated mats to understand the impact of electrode potential on microbial community structure. These data suggested that variation in the

  9. Physicochemical and biological quality of soil in hexavalent chromium-contaminated soils as affected by chemical and microbial remediation.

    Science.gov (United States)

    Liao, Yingping; Min, Xiaobo; Yang, Zhihui; Chai, Liyuan; Zhang, Shujuan; Wang, Yangyang

    2014-01-01

    Chemical and microbial methods are the main remediation technologies for chromium-contaminated soil. These technologies have progressed rapidly in recent years; however, there is still a lack of methods for evaluating the chemical and biological quality of soil after different remediation technologies have been applied. In this paper, microbial remediation with indigenous bacteria and chemical remediation with ferrous sulphate were used for the remediation of soils contaminated with Cr(VI) at two levels (80 and 1,276 mg kg(-1)) through a column leaching experiment. After microbial remediation with indigenous bacteria, the average concentration of water-soluble Cr(VI) in the soils was reduced to less than 5.0 mg kg(-1). Soil quality was evaluated based on 11 soil properties and the fuzzy comprehensive assessment method, including fuzzy mathematics and correlative analysis. The chemical fertility quality index was improved by one grade using microbial remediation with indigenous bacteria, and the biological fertility quality index increased by at least a factor of 6. Chemical remediation with ferrous sulphate, however, resulted in lower levels of available phosphorus, dehydrogenase, catalase and polyphenol oxidase. The result showed that microbial remediation with indigenous bacteria was more effective for remedying Cr(VI)-contaminated soils with high pH value than chemical remediation with ferrous sulphate. In addition, the fuzzy comprehensive evaluation method was proven to be a useful tool for monitoring the quality change in chromium-contaminated soils.

  10. Carbohydrate-free peach (Prunus persica and plum (Prunus domestica juice affects fecal microbial ecology in an obese animal model.

    Directory of Open Access Journals (Sweden)

    Giuliana D Noratto

    Full Text Available BACKGROUND: Growing evidence shows the potential of nutritional interventions to treat obesity but most investigations have utilized non-digestible carbohydrates only. Peach and plum contain high amounts of polyphenols, compounds with demonstrated anti-obesity effects. The underlying process of successfully treating obesity using polyphenols may involve an alteration of the intestinal microbiota. However, this phenomenon is not well understood. METHODOLOGY/PRINCIPAL FINDINGS: Obese Zucker rats were assigned to three groups (peach, plum, and control, n = 10 each, wild-type group was named lean (n = 10. Carbohydrates in the fruit juices were eliminated using enzymatic hydrolysis. Fecal samples were obtained after 11 weeks of fruit or control juice administration. Real-time PCR and 454-pyrosequencing were used to evaluate changes in fecal microbiota. Over 1,500 different Operational Taxonomic Units at 97% similarity were detected in all rats. Several bacterial groups (e.g. Lactobacillus and members of Ruminococcacea were found to be more abundant in the peach but especially in the plum group (plum juice contained 3 times more total polyphenolics compared to peach juice. Principal coordinate analysis based on Unifrac-based unweighted distance matrices revealed a distinct separation between the microbiota of control and treatment groups. These changes in fecal microbiota occurred simultaneously with differences in fecal short-chain acids concentrations between the control and treatment groups as well as a significant decrease in body weight in the plum group. CONCLUSIONS: This study suggests that consumption of carbohydrate-free peach and plum juice has the potential to modify fecal microbial ecology in an obese animal model. The separate contribution of polyphenols and non-polyphenols compounds (vitamins and minerals to the observed changes is unknown.

  11. Effect of cloacal plugging on microbial recovery from partially processed broilers.

    Science.gov (United States)

    Musgrove, M T; Cason, J A; Fletcher, D L; Stern, N J; Cox, N A; Bailey, J S

    1997-03-01

    Experiments were performed to test the contribution of bacteria contained in the intestinal tract of broilers at the beginning of processing to counts on the exterior of modified New York-dressed carcasses. Thirty-two birds were processed for each of seven replications. Within each replication, batches of four birds were electrocuted, scalded, and picked, with batches alternating between treatment and control groups. Treated birds were cloacally plugged with rayon fiber tampons prior to electrocution to prevent escape of intestinal contents during scalding and picking. Control birds were processed in the same manner, except that cloacal plugs were inserted immediately after defeathering to reduce escape of intestinal contents during sampling. Gram-negative enteric bacteria and Campylobacter spp. were enumerated on carcasses by whole carcass rinse procedure and in cecal contents. Counts were converted to log10 and subjected to analysis of variance. Cecal levels of Gram-negative enterics were significantly higher for plugged birds, but there was not a significant difference between levels of cecal Campylobacter spp. between treatment groups. Plugging before electrocution resulted in significantly lower levels (2.5 vs 3.0 log10 cfu/mL) of Campylobacter spp. and Gram-negative enteric bacteria (3.0 vs 3.4 log10 cfu/mL) in carcass rinses of treatment birds than in those of controls. All carcasses were positive for Gram-negative enterics. Cloacal plugging resulted in significantly lower incidence of Campylobacter spp. carcass contamination as determined by chi-square. Intestinal carriage of both campylobacters and Gram-negative enteric bacteria appears to influence the microbial quality of the carcass during processing.

  12. Bio-Electron-Fenton (BEF) process driven by microbial fuel cells for triphenyltin chloride (TPTC) degradation

    Energy Technology Data Exchange (ETDEWEB)

    Yong, Xiao-Yu; Gu, Dong-Yan; Wu, Yuan-Dong [College of Biotechnology and Pharmaceutical Engineering, Nanjing TECH University, Nanjing 211816 (China); Bioenergy Research Institute, Nanjing TECH University, Nanjing 211816 (China); Yan, Zhi-Ying [Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology, Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041 (China); Zhou, Jun; Wu, Xia-Yuan [College of Biotechnology and Pharmaceutical Engineering, Nanjing TECH University, Nanjing 211816 (China); Bioenergy Research Institute, Nanjing TECH University, Nanjing 211816 (China); Wei, Ping [College of Biotechnology and Pharmaceutical Engineering, Nanjing TECH University, Nanjing 211816 (China); Jia, Hong-Hua [College of Biotechnology and Pharmaceutical Engineering, Nanjing TECH University, Nanjing 211816 (China); Bioenergy Research Institute, Nanjing TECH University, Nanjing 211816 (China); Zheng, Tao, E-mail: zhengtao@ms.giec.ac.cn [Guangzhou Institute of Energy Conversion, Chinese Academy of Science, Nengyuan Road, Guangzhou 510640 (China); Yong, Yang-Chun, E-mail: ycyong@ujs.edu.cn [Biofuels Institute, School of the Environment, Jiangsu University, Zhenjiang 212013 (China); Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, Nanjing University of Science and Technology, Nanjing 210094 (China)

    2017-02-15

    Graphical abstract: Schematic diagram of the Bio-Electron-Fenton (BEF) process for TPTC degradation. - Highlights: • A Bio-Electro-Fenton process was performed for TPTC degradation. • TPTC removal efficiency achieved 78.32 ± 2.07% within 100 h. • The TPTC degradation rate (0.775 ± 0.021 μmol L{sup −1} h{sup −1}) was much higher than previous reports. - Abstract: The intensive use of triphenyltin chloride (TPTC) has caused serious environmental pollution. In this study, an effective method for TPTC degradation was proposed based on the Bio-Electron-Fenton process in microbial fuel cells (MFCs). The maximum voltage of the MFC with graphite felt as electrode was 278.47% higher than that of carbon cloth. The electricity generated by MFC can be used for in situ generation of H{sub 2}O{sub 2} to a maximum of 135.96 μmol L{sup −1} at the Fe@Fe{sub 2}O{sub 3(*)}/graphite felt composite cathode, which further reacted with leached Fe{sup 2+} to produce hydroxyl radicals. While 100 μmol L{sup −1} TPTC was added to the cathodic chamber, the degradation efficiency of TPTC reached 78.32 ± 2.07%, with a rate of 0.775 ± 0.021 μmol L{sup −1} h{sup −1}. This Bio-Electron-Fenton driving TPTC degradation might involve in Sn−C bonds breaking and the main process is probably a stepwise dephenylation until the formation of inorganic tin and CO{sub 2}. This study provides an energy saving and efficient approach for TPTC degradation.

  13. Bio-Electron-Fenton (BEF) process driven by microbial fuel cells for triphenyltin chloride (TPTC) degradation

    International Nuclear Information System (INIS)

    Yong, Xiao-Yu; Gu, Dong-Yan; Wu, Yuan-Dong; Yan, Zhi-Ying; Zhou, Jun; Wu, Xia-Yuan; Wei, Ping; Jia, Hong-Hua; Zheng, Tao; Yong, Yang-Chun

    2017-01-01

    Graphical abstract: Schematic diagram of the Bio-Electron-Fenton (BEF) process for TPTC degradation. - Highlights: • A Bio-Electro-Fenton process was performed for TPTC degradation. • TPTC removal efficiency achieved 78.32 ± 2.07% within 100 h. • The TPTC degradation rate (0.775 ± 0.021 μmol L"−"1 h"−"1) was much higher than previous reports. - Abstract: The intensive use of triphenyltin chloride (TPTC) has caused serious environmental pollution. In this study, an effective method for TPTC degradation was proposed based on the Bio-Electron-Fenton process in microbial fuel cells (MFCs). The maximum voltage of the MFC with graphite felt as electrode was 278.47% higher than that of carbon cloth. The electricity generated by MFC can be used for in situ generation of H_2O_2 to a maximum of 135.96 μmol L"−"1 at the Fe@Fe_2O_3_(_*_)/graphite felt composite cathode, which further reacted with leached Fe"2"+ to produce hydroxyl radicals. While 100 μmol L"−"1 TPTC was added to the cathodic chamber, the degradation efficiency of TPTC reached 78.32 ± 2.07%, with a rate of 0.775 ± 0.021 μmol L"−"1 h"−"1. This Bio-Electron-Fenton driving TPTC degradation might involve in Sn−C bonds breaking and the main process is probably a stepwise dephenylation until the formation of inorganic tin and CO_2. This study provides an energy saving and efficient approach for TPTC degradation.

  14. Microbial biosensors

    International Nuclear Information System (INIS)

    Le Yu; Chen, Wilfred; Mulchandani, Ashok

    2006-01-01

    A microbial biosensor is an analytical device that couples microorganisms with a transducer to enable rapid, accurate and sensitive detection of target analytes in fields as diverse as medicine, environmental monitoring, defense, food processing and safety. The earlier microbial biosensors used the respiratory and metabolic functions of the microorganisms to detect a substance that is either a substrate or an inhibitor of these processes. Recently, genetically engineered microorganisms based on fusing of the lux, gfp or lacZ gene reporters to an inducible gene promoter have been widely applied to assay toxicity and bioavailability. This paper reviews the recent trends in the development and application of microbial biosensors. Current advances and prospective future direction in developing microbial biosensor have also been discussed

  15. Changes in microbial ecology after fecal microbiota transplantation for recurrent C. difficile infection affected by underlying inflammatory bowel disease.

    Science.gov (United States)

    Khanna, Sahil; Vazquez-Baeza, Yoshiki; González, Antonio; Weiss, Sophie; Schmidt, Bradley; Muñiz-Pedrogo, David A; Rainey, John F; Kammer, Patricia; Nelson, Heidi; Sadowsky, Michael; Khoruts, Alexander; Farrugia, Stefan L; Knight, Rob; Pardi, Darrell S; Kashyap, Purna C

    2017-05-15

    Gut microbiota play a key role in maintaining homeostasis in the human gut. Alterations in the gut microbial ecosystem predispose to Clostridium difficile infection (CDI) and gut inflammatory disorders such as inflammatory bowel disease (IBD). Fecal microbiota transplantation (FMT) from a healthy donor can restore gut microbial diversity and pathogen colonization resistance; consequently, it is now being investigated for its ability to improve inflammatory gut conditions such as IBD. In this study, we investigated changes in gut microbiota following FMT in 38 patients with CDI with or without underlying IBD. There was a significant change in gut microbial composition towards the donor microbiota and an overall increase in microbial diversity consistent with previous studies after FMT. FMT was successful in treating CDI using a diverse set of donors, and varying degrees of donor stool engraftment suggesting that donor type and degree of engraftment are not drivers of a successful FMT treatment of CDI. However, patients with underlying IBD experienced an increased number of CDI relapses (during a 24-month follow-up) and a decreased growth of new taxa, as compared to the subjects without IBD. Moreover, the need for IBD therapy did not change following FMT. These results underscore the importance of the existing gut microbial landscape as a decisive factor to successfully treat CDI and potentially for improvement of the underlying pathophysiology in IBD. FMT leads to a significant change in microbial diversity in patients with recurrent CDI and complete resolution of symptoms. Stool donor type (related or unrelated) and degree of engraftment are not the key for successful treatment of CDI by FMT. However, CDI patients with IBD have higher proportion of the original community after FMT and lack of improvement of their IBD symptoms and increased episodes of CDI on long-term follow-up.

  16. In situ exposure to low herbicide concentrations affects microbial population composition and catabolic gene frequency in an aerobic shallow aquifer

    DEFF Research Database (Denmark)

    de Lipthay, J.R.; Tuxen, Nina; Johnsen, Kaare

    2003-01-01

    and were analyzed for the presence of general microbial populations, Pseudomonas bacteria, and specific phenoxy acid degraders. Both culture-dependent and culture-independent methods were applied. The abundance of microbial phenoxy acid degraders (10(0) to 10(4) g(-1) sediment) was determined by most...... measured by either PCR or plating on selective agar media was higher in sediments subjected to high levels of phenoxy acid. Furthermore, high numbers of CFU compared to direct counting of 4',6-diamidino-2-phenylindole-stained cells in the microscope suggested an increased culturability of the indigenous...

  17. Effect of sous vide processing on physicochemical, ultrastructural, microbial and sensory changes in vacuum packaged chicken sausages.

    Science.gov (United States)

    Naveena, B M; Khansole, Panjab S; Shashi Kumar, M; Krishnaiah, N; Kulkarni, Vinayak V; Deepak, S J

    2017-01-01

    The processing of sous vide chicken sausages was optimized under vacuum packaging condition and cooking at 100 ℃ for 30 min (SV30), 60 min (SV60) and 120 min (SV120) and compared with aerobically cooked control at 100 ℃ for 30 min. Sous vide processing of chicken sausages (SV30) produced higher (p emulsion ultra-structure due to SV30 processing relative to control sausages. Sous vide processing of chicken sausages enriched with rosemary diterpene phenols retained the freshness and quality up to 120 days during storage at 4 ± 1 ℃ relative to control sausages that were spoiled on 20th day. Lipid oxidation and microbial growth remained below the spoilage levels for all the SV-processed sausages throughout the storage and addition of rosemary diterpene mixture at 0.02% v/w reduced the microbial growth and improved (p < 0.05) the sensory attributes. Our results demonstrate that sous vide processing minimizes lipid oxidation and microbial growth of chicken sausages with improved product quality and shelf-life at 4 ± 1 ℃. © The Author(s) 2016.

  18. Sulfur-oxidizing bacteria dominate the microbial diversity shift during the pyrite and low-grade pyrolusite bioleaching process.

    Science.gov (United States)

    Han, Yifan; Ma, Xiaomei; Zhao, Wei; Chang, Yunkang; Zhang, Xiaoxia; Wang, Xingbiao; Wang, Jingjing; Huang, Zhiyong

    2013-10-01

    The microbial ecology of the pyrite-pyrolusite bioleaching system and its interaction with ore has not been well-described. A 16S rRNA gene clone library was created to evaluate changes in the microbial community at different stages of the pyrite-pyrolusite bioleaching process in a shaken flask. The results revealed that the bacterial community was disturbed after 5 days of the reaction. Phylogenetic analysis of 16S rRNA sequences demonstrated that the predominant microorganisms were members of a genus of sulfur-oxidizing bacteria, Thiomonas sp., that subsequently remained dominant during the bioleaching process. Compared with iron-oxidizing bacteria, sulfur-oxidizing bacteria were more favorable to the pyrite-pyrolusite bioleaching system. Decreased pH due to microbial acid production was an important condition for bioleaching efficiency. Iron-oxidizing bacteria competed for pyrite reduction power with Mn(IV) in pyrolusite under specific conditions. These results extend our knowledge of microbial dynamics during pyrite-pyrolusite bioleaching, which is a key issue to improve commercial applications. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. The Influence of Parameters Affecting Boron Removal by Electrocoagulation Process

    KAUST Repository

    Zeboudji, B.; Drouiche, Nadjib; Lounici, Hakim; Mameri, Nabil; Ghaffour, NorEddine

    2013-01-01

    , this process requires chemical addition and important additional investment, operation and maintenance, and energy costs. Electrocoagulation (EC) process can be used to achieve such low boron concentration. In this work, the removal of boron from aqueous

  20. High microbial loads found in minimally-processed sliced mushrooms from Italian market

    Directory of Open Access Journals (Sweden)

    Haiyang Jiang

    2018-04-01

    Full Text Available There is an increased consumer interest in minimally processed vegetables that has led to the development of products, such as pre-cut sliced mushrooms. Few data are available on the hygienic condition and the presence of foodborne pathogens in such products. Therefore, the current study aimed to evaluate the safety and hygienic characteristics of both ready-to-eat and ready-to-cook, pre-cut sliced mushrooms obtained from a local Italian market. For the evaluation of the hygienic condition, the aerobic mesophilic bacteria, aerobic psychrotrophic bacteria and Escherichia coli enumerations were performed. Salmonella spp., Listeria monocytogenes and Campylobacter spp. were considered in the assessment of the foodborne pathogens. High microbial loads were detected, including counts higher than 5 log CFU/g for E. coli and 6 log CFU/g for the other bacteria counts considered, but no pathogens were found. Ready-to-eat and ready-to-cook products differed only for aerobic mesophilic counts (7.87 and 8.26 log CFU/g, respectively, P=0.003. Strategies to enhance the hygienic level of the mushrooms, particularly the ready-to-eat products, are needed.

  1. Identification of bacteria used for microbial enhanced oil recovery process by fluorescence in situ hybridization technique

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, K.; Tanaka, S.; Otsuka, M. [Kansai Research Institute, Kyoto (Japan). Lifescience Lab.; Yonebayashi, H. [Japan National Oil Corp., Chiba (Japan). Tech. Research Center; Enomoto, H. [Tohoku University, Sendai (Japan). Dept. of Geoscience and Tech.

    2000-01-01

    A fluorescence in situ hybridization (FISH) technique using 16S rRNA-targeted oligonucleotide probes was developed for rapid detection of microorganisms for use in the microbial enhancement of oil recovery (MEOR) process. Two microorganisms, Enterobacter cloacae TRC-322 and Bacillus licheniformis TRC-18-2-a, were selected from a collection of Enterobacter sp. and Bacillus sp. which were screened in previous studies as candidate microorganisms for injection, and were used for this experiment. Oligonucleotide probes, design based on specific sequences in the 16S rRNA gene were labeled with either fluorescein isothiocyanate (FITC), or 6-car-boxy-X-rhodamine (ROX), and were allowed to hybridize with fixed cells of the two microorganisms noted above. The fluorescence signal emitted from each microorganism cells could clearly be detected by an epifluorescence microscope. Moreover, E. cloacae TRC-322 and B, licheniformis TRC-18-2-a, suspended in actual reservoir brine, including inorganic salts, oil and aboriginal cells of the reservoir brine, could be detected directly by this hybridization method, without the need for cultivation and isolation. (author)

  2. High microbial loads found in minimally-processed sliced mushrooms from Italian market.

    Science.gov (United States)

    Jiang, Haiyang; Miraglia, Dino; Ranucci, David; Donnini, Domizia; Roila, Rossana; Branciari, Raffaella; Li, Cheng

    2018-03-31

    There is an increased consumer interest in minimally processed vegetables that has led to the development of products, such as pre-cut sliced mushrooms. Few data are available on the hygienic condition and the presence of foodborne pathogens in such products. Therefore, the current study aimed to evaluate the safety and hygienic characteristics of both ready-to-eat and ready-to-cook, pre-cut sliced mushrooms obtained from a local Italian market. For the evaluation of the hygienic condition, the aerobic mesophilic bacteria, aerobic psychrotrophic bacteria and Escherichia coli enumerations were performed. Salmonella spp., Listeria monocytogenes and Campylobacter spp. were considered in the assessment of the foodborne pathogens. High microbial loads were detected, including counts higher than 5 log CFU/g for E. coli and 6 log CFU/g for the other bacteria counts considered, but no pathogens were found. Ready-to-eat and ready-to-cook products differed only for aerobic mesophilic counts (7.87 and 8.26 log CFU/g, respectively, P=0.003). Strategies to enhance the hygienic level of the mushrooms, particularly the ready-to-eat products, are needed.

  3. The microbial community in a high-temperature enhanced biological phosphorus removal (EBPR process

    Directory of Open Access Journals (Sweden)

    Ying Hui Ong

    2016-01-01

    Full Text Available An enhanced biological phosphorus removal (EBPR process operated at a relatively high temperature, 28 °C, removed 85% carbon and 99% phosphorus from wastewater over a period of two years. This study investigated its microbial community through fluorescent in situ hybridization (FISH and clone library generation. Through FISH, considerably more Candidatus “Accumulibacter phosphatis” (Accumulibacter-polyphosphate accumulating organisms (PAOs than Candidatus ‘Competibacter phosphatis’ (Competibacter-glycogen accumulating organisms were detected in the reactor, at 36 and 7% of total bacterial population, respectively. A low ratio of Glycogen/Volatile Fatty Acid of 0.69 further indicated the dominance of PAOs in the reactor. From clone library generated, 26 operational taxonomy units were retrieved from the sludge and a diverse population was shown, comprising Proteobacteria (69.6%, Actinobacteria (13.7%, Bacteroidetes (9.8%, Firmicutes (2.94%, Planctomycetes (1.96%, and Acidobacteria (1.47%. Accumulibacter are the only recognized PAOs revealed by the clone library. Both the clone library and FISH results strongly suggest that Accumulibacter are the major PAOs responsible for the phosphorus removal in this long-term EBPR at relatively high temperature.

  4. Evaluating the Metal Tolerance Capacity of Microbial Communities Isolated from Alberta Oil Sands Process Water.

    Directory of Open Access Journals (Sweden)

    Mathew L Frankel

    Full Text Available Anthropogenic activities have resulted in the intensified use of water resources. For example, open pit bitumen extraction by Canada's oil sands operations uses an estimated volume of three barrels of water for every barrel of oil produced. The waste tailings-oil sands process water (OSPW-are stored in holding ponds, and present an environmental concern as they are comprised of residual hydrocarbons and metals. Following the hypothesis that endogenous OSPW microbial communities have an enhanced tolerance to heavy metals, we tested the capacity of planktonic and biofilm populations from OSPW to withstand metal ion challenges, using Cupriavidus metallidurans, a known metal-resistant organism, for comparison. The toxicity of the metals toward biofilm and planktonic bacterial populations was determined by measuring the minimum biofilm inhibitory concentrations (MBICs and planktonic minimum inhibitory concentrations (MICs using the MBEC ™ assay. We observed that the OSPW community and C. metallidurans had similar tolerances to 22 different metals. While thiophillic elements (Te, Ag, Cd, Ni were found to be most toxic, the OSPW consortia demonstrated higher tolerance to metals reported in tailings ponds (Al, Fe, Mo, Pb. Metal toxicity correlated with a number of physicochemical characteristics of the metals. Parameters reflecting metal-ligand affinities showed fewer and weaker correlations for the community compared to C. metallidurans, suggesting that the OSPW consortia may have developed tolerance mechanisms toward metals present in their environment.

  5. Using integrated environmental modeling to automate a process-based Quantitative Microbial Risk Assessment

    Science.gov (United States)

    Integrated Environmental Modeling (IEM) organizes multidisciplinary knowledge that explains and predicts environmental-system response to stressors. A Quantitative Microbial Risk Assessment (QMRA) is an approach integrating a range of disparate data (fate/transport, exposure, an...

  6. Using Integrated Environmental Modeling to Automate a Process-Based Quantitative Microbial Risk Assessment (presentation)

    Science.gov (United States)

    Integrated Environmental Modeling (IEM) organizes multidisciplinary knowledge that explains and predicts environmental-system response to stressors. A Quantitative Microbial Risk Assessment (QMRA) is an approach integrating a range of disparate data (fate/transport, exposure, and...

  7. Atmospheric plasma processes for microbial inactivation: food applications and stress response in Listeria monocytogenes

    OpenAIRE

    Gozzi, Giorgia

    2015-01-01

    This PhD thesis is focused on cold atmospheric plasma treatments (GP) for microbial inactivation in food applications. In fact GP represents a promising emerging technology alternative to the traditional methods for the decontamination of foods. The objectives of this work were to evaluate: - the effects of GP treatments on microbial inactivation in model systems and in real foods; - the stress response in L. monocytogenes following exposure to different GP treatments. As far as t...

  8. Microbial Biotransformation of a Polyphenol-Rich Potato Extract Affects Antioxidant Capacity in a Simulated Gastrointestinal Model

    Directory of Open Access Journals (Sweden)

    Joelle Khairallah

    2018-03-01

    Full Text Available A multistage human gastrointestinal model was used to digest a polyphenol-rich potato extract containing chlorogenic acid, caffeic acid, ferulic acid, and rutin as the primary polyphenols, to assess for their microbial biotransformation and to measure changes in antioxidant capacity in up to 24 h of digestion. The biotransformation of polyphenols was assessed by liquid chromatography–mass spectrometry. Antioxidant capacity was measured by the ferric reducing antioxidant power (FRAP assay. Among the colonic reactors, parent (polyphenols were detected in the ascending (AC, but not the transverse (TC or descending (DC colons. The most abundant microbial phenolic metabolites in all colonic reactors included derivatives of propionic acid, acetic acid, and benzoic acid. As compared to the baseline, an earlier increase in antioxidant capacity (T = 8 h was seen in the stomach and small intestine vessels as compared to the AC (T = 16 h and TC and DC (T = 24 h. The increase in antioxidant capacity observed in the DC and TC can be linked to the accumulation of microbial smaller-molecular-weight phenolic catabolites, as the parent polyphenolics had completely degraded in those vessels. The colonic microbial digestion of potato-based polyphenols could lead to improved colonic health, as this generates phenolic metabolites with significant antioxidant potential.

  9. Organic matter quantity and source affects microbial community structure and function following volcanic eruption on Kasatochi Island, Alaska

    Science.gov (United States)

    Zeglin, Lydia H.; Wang, Bronwen; Waythomas, Christopher F.; Rainey, Frederick; Talbot, Sandra L.

    2016-01-01

    In August 2008, Kasatochi volcano erupted and buried a small island in pyroclastic deposits and fine ash; since then, microbes, plants and birds have begun to re-colonize the initially sterile surface. Five years post-eruption, bacterial 16S rRNA gene and fungal internal transcribed spacer (ITS) copy numbers and extracellular enzyme activity (EEA) potentials were one to two orders of magnitude greater in pyroclastic materials with organic matter (OM) inputs relative to those without, despite minimal accumulation of OM (eruptive surfaces with OM inputs had the highest β-glucosidase, phosphatase, NAGase and cellobiohydrolase activities, and had microbial population sizes approaching those in reference soils. In contrast, the strongest factor determining bacterial community composition was the dominance of plants versus birds as OM input vectors. Although soil pH ranged from 3.9 to 7.0, and %C ranged 100×, differentiation between plant- and bird-associated microbial communities suggested that cell dispersal or nutrient availability are more likely drivers of assembly than pH or OM content. This study exemplifies the complex relationship between microbial cell dispersal, soil geochemistry, and microbial structure and function; and illustrates the potential for soil microbiota to be resilient to disturbance.

  10. Different types of stainless steel used in equipment in meat plants do not affect the initial microbial transfer, including pathogens, from pork skin.

    Science.gov (United States)

    Larivière-Gauthier, Guillaume; Quessy, Sylvain; Fournaise, Sylvain; Letellier, Ann; Fravalo, Philippe

    2015-07-01

    This study describes and measures the impact of different compositions and finishes of stainless steel used in equipment in the meat industry on the transfer of natural flora and selected pathogens from artificially contaminated pork skin. It is known that the adhesion to surfaces of Listeria monocytogenes and Salmonella, 2 pathogens frequently found in contaminated pork meat, depends on the nature and roughness of the surface. Our results show no statistically significant differences in microbial transfer regardless of the types of stainless steel considered, with the highest measured transfer difference being 0.18 log colony-forming units (CFUs)/800 cm(2). Moreover, no differences in total microbial community were observed after transfer on the 5 types of stainless steel using single-strand conformation polymorphism (SSCP). It was concluded that the different characteristics of the stainless steel tested did not affect the initial bacterial transfer in this study.

  11. Influences of Witnessed Affect on Information Processing in Children.

    Science.gov (United States)

    Bugental, Daphne Blunt; And Others

    1992-01-01

    Autonomic responses of 5- to 10-year-old children were measured while the children watched a videotape in which a doctor and child expressed negative, neutral, or positive affect. For 5- and 6-year-old children, autonomic responses were greatest while watching, and errors in subsequent memory tasks greatest after watching, the negative affect…

  12. Influences of Coupled Hydrologic and Microbial Processes on River Corridor Biogeochemistry and Ecology

    Science.gov (United States)

    Scheibe, T. D.; Song, H. S.; Stegen, J.; Graham, E.; Bao, J.; Goldman, A.; Zhou, T.; Crump, A.; Hou, Z.; Hammond, G. E.; Chen, X.; Huang, M.; Zhang, X.; Nelson, W. C.; Garayburu-Caruso, V. A.

    2017-12-01

    The exchange of water between rivers and surrounding subsurface environments (hydrologic exchange flows or HEFs) is a vital aspect of river ecology and watershed function. HEFs play a key role in water quality, nutrient cycling, and ecosystem health, and they modulate water temperatures and enhance exchange of terrestrial and aquatic nutrients, which lead to elevated biogeochemical activity. However, these coupled hydrologic and microbiological processes are not well understood, particularly in the context of large managed river systems with highly variable discharge, and are poorly represented in system-scale quantitative models. Using the 75 km Hanford Reach of the Columbia River as the research domain, we apply high-resolution flow simulations supported by field observations to understand how variable river discharge interacts with hydromorphic and hydrogeologic structures to generate HEFs and distributions of subsurface residence times. We combine this understanding of hydrologic processes with microbiological activity measurements and reactive transport models to elucidate the holistic impacts of variable discharge on river corridor (surface and subsurface) ecosystems. In particular, our project seeks to develop and test new conceptual and numerical models that explicitly incorporate i) the character (chemical speciation and thermodynamics) of natural organic matter as it varies along flow paths and through mixing of groundwater and surface water, and ii) the history-dependent response of microbial communities to varying time scales of inundation associated with fluctuations in river discharge. The results of these high-resolution mechanistic models are guiding formulation and parameterization of reduced-order models applicable at reach to watershed scales. New understanding of coupled hydrology and microbiology in the river corridor will play a key role in reduction of uncertainties associated with major Earth system biogeochemical fluxes, improving

  13. Effect of high hydrostatic pressure processing on the background microbial loads and quality of cantaloupe puree.

    Science.gov (United States)

    Mukhopadhyay, Sudarsan; Sokorai, Kimberly; Ukuku, Dike; Fan, Xuetong; Juneja, Vijay

    2017-01-01

    The objective of this study was to investigate and evaluate the effects of high hydrostatic pressure (HHP) applied to cantaloupe puree (CP) on microbial loads and product quality during storage for 10days at 4°C. Freshly prepared, double sealed and double bagged CP (ca. 5g) was pressure treated at 300, 400 and 500MPa at 8°C and 15°C for 5min. Microflora populations, soluble solid content, pH, color, antioxidant activity, appearance and aroma were measured at 1, 6, and 10d of storage. Results showed that high pressure treatment of 300MPa (8°C and 15°C) resulted in reduction of total aerobic plate count from 3.3 to 1.8logCFU/g. The treatment reduced the populations of native aerobic plate count to non-detectable levels (detection limit 1logCFU/g) at 400MPa and 500MPa pressures at 15°C. Pressure treatment completely inactivated mold and yeast in puree below the limits of detection at day 1 and no regrowth was observed during 10days of storage at 4°C while mold and yeast in untreated puree survived during the storage. High pressure treatment did not show any adverse impact on physical properties as soluble solid content (SSC, 11.2°Brix) and acidity (pH, 6.9). The instrumental color parameters (L*, a*, b*) were affected due to HHP treatment creating a slightly lighter product, compared to control, as indicated by higher L.* and lower a* values. However the change was not detected by the sensory panel while evaluating appearance scores. Pressure treatment did not affect the antioxidant capacity of puree product compared to control. Visual appearance and sniffing aroma test by panel revealed no adverse changes in the sensory parameters as a result of HHP treatment. HHP method described in this study appears to be a promising way to inactivate spoilage microorganisms in the cantaloupe puree and maintain quality. This study provides a viable option for preservation and marketing this product. Published by Elsevier Ltd.

  14. Affect and Persuasion: Effects on Motivation for Information Processing.

    Science.gov (United States)

    Leach, Mark M; Stoltenberg, Cal D.

    The relationship between mood and information processing, particularly when reviewing the Elaboration Likelihood Model of persuasion, lacks conclusive evidence. This study was designed to investigate the hypothesis that information processing would be greater for mood-topic congruence than non mood-topic congruence. Undergraduate students (N=216)…

  15. Optimization of preservation and processing of sea anemones for microbial community analysis using molecular tools.

    Science.gov (United States)

    Rocha, Joana; Coelho, Francisco J R C; Peixe, Luísa; Gomes, Newton C M; Calado, Ricardo

    2014-11-11

    For several years, knowledge on the microbiome associated with marine invertebrates was impaired by the challenges associated with the characterization of bacterial communities. With the advent of culture independent molecular tools it is possible to gain new insights on the diversity and richness of microorganisms associated with marine invertebrates. In the present study, we evaluated if different preservation and processing methodologies (prior to DNA extraction) can affect the bacterial diversity retrieved from snakelocks anemone Anemonia viridis. Denaturing gradient gel electrophoresis (DGGE) community fingerprints were used as proxy to determine the bacterial diversity retrieved (H'). Statistical analyses indicated that preservation significantly affects H'. The best approach to preserve and process A. viridis biomass for bacterial community fingerprint analysis was flash freezing in liquid nitrogen (preservation) followed by the use of a mechanical homogenizer (process), as it consistently yielded higher H'. Alternatively, biomass samples can be processed fresh followed by cell lyses using a mechanical homogenizer or mortar &pestle. The suitability of employing these two alternative procedures was further reinforced by the quantification of the 16S rRNA gene; no significant differences were recorded when comparing these two approaches and the use of liquid nitrogen followed by processing with a mechanical homogenizer.

  16. The process-related dynamics of microbial community during a simulated fermentation of Chinese strong-flavored liquor.

    Science.gov (United States)

    Zhang, Yanyan; Zhu, Xiaoyu; Li, Xiangzhen; Tao, Yong; Jia, Jia; He, Xiaohong

    2017-09-15

    Famous Chinese strong-flavored liquor (CSFL) is brewed by microbial consortia in a special fermentation pit (FT). However, the fermentation process was not fully understood owing to the complicate community structure and metabolism. In this study, the process-related dynamics of microbial communities and main flavor compounds during the 70-day fermentation process were investigated in a simulated fermentation system. A three-phase model was proposed to characterize the process of the CSFL fermentation. (i) In the early fermentation period (1-23 days), glucose was produced from macromolecular carbohydrates (e.g., starch). The prokaryotic diversity decreased significantly. The Lactobacillaceae gradually predominated in the prokaryotic community. In contrast, the eukaryotic diversity rose remarkably in this stage. Thermoascus, Aspergillus, Rhizopus and unidentified Saccharomycetales were dominant eukaryotic members. (ii) In the middle fermentation period (23-48 days), glucose concentration decreased while lactate acid and ethanol increased significantly. Prokaryotic community was almost dominated by the Lactobacillus, while eukaryotic community was mainly comprised of Thermoascus, Emericella and Aspergillus. (iii) In the later fermentation period (48-70 days), the concentrations of ethyl esters, especially ethyl caproate, increased remarkably. The CSFL fermentation could undergo three stages: saccharification, glycolysis and esterification. Saccharomycetales, Monascus, and Rhizopus were positively correlated to glucose concentration (P fermentation, were observed firstly. This study observed comprehensive dynamics of microbial communities during the CSFL fermentation, and it further revealed the correlations between some crucial microorganisms and flavoring chemicals (FCs). The results from this study help to design effective strategies to manipulate microbial consortia for fermentation process optimization in the CSFL brew practice.

  17. Nitrogen cycling processes and microbial community composition in bed sediments in the Yukon River at Pilot Station

    Science.gov (United States)

    Repert, Deborah A.; Underwood, Jennifer C.; Smith, Richard L.; Song, Bongkeun

    2014-01-01

    Information on the contribution of nitrogen (N)-cycling processes in bed sediments to river nutrient fluxes in large northern latitude river systems is limited. This study examined the relationship between N-cycling processes in bed sediments and N speciation and loading in the Yukon River near its mouth at the Bering Sea. We conducted laboratory bioassays to measure N-cycling processes in sediment samples collected over distinct water cycle seasons. In conjunction, the microbial community composition in the bed sediments using genes involved in N-cycling (narG, napA, nosZ, and amoA) and 16S rRNA gene pyrosequences was examined. Temporal variation was observed in net N mineralization, nitrate uptake, and denitrification rate potentials and correlated strongly with sediment carbon (C) and extractable N content and microbial community composition rather than with river water nutrient concentrations. The C content of the bed sediment was notably impacted by the spring flood, ranging from 1.1% in the midst of an ice-jam to 0.1% immediately after ice-out, suggesting a buildup of organic material (OM) prior to scouring of the bed sediments during ice break up. The dominant members of the microbial community that explained differences in N-processing rates belonged to the genera Crenothrix,Flavobacterium, and the family of Comamonadaceae. Our results suggest that biogeochemical processing rates in the bed sediments appear to be more coupled to hydrology, nutrient availability in the sediments, and microbial community composition rather than river nutrient concentrations at Pilot Station.

  18. A network model shows the importance of coupled processes in the microbial N cycle in the Cape Fear River Estuary

    Science.gov (United States)

    Hines, David E.; Lisa, Jessica A.; Song, Bongkeun; Tobias, Craig R.; Borrett, Stuart R.

    2012-06-01

    Estuaries serve important ecological and economic functions including habitat provision and the removal of nutrients. Eutrophication can overwhelm the nutrient removal capacity of estuaries and poses a widely recognized threat to the health and function of these ecosystems. Denitrification and anaerobic ammonium oxidation (anammox) are microbial processes responsible for the removal of fixed nitrogen and diminish the effects of eutrophication. Both of these microbial removal processes can be influenced by direct inputs of dissolved inorganic nitrogen substrates or supported by microbial interactions with other nitrogen transforming pathways such as nitrification and dissimilatory nitrate reduction to ammonium (DNRA). The coupling of nitrogen removal pathways to other transformation pathways facilitates the removal of some forms of inorganic nitrogen; however, differentiating between direct and coupled nitrogen removal is difficult. Network modeling provides a tool to examine interactions among microbial nitrogen cycling processes and to determine the within-system history of nitrogen involved in denitrification and anammox. To examine the coupling of nitrogen cycling processes, we built a nitrogen budget mass balance network model in two adjacent 1 cm3 sections of bottom water and sediment in the oligohaline portion of the Cape Fear River Estuary, NC, USA. Pathway, flow, and environ ecological network analyses were conducted to characterize the organization of nitrogen flow in the estuary and to estimate the coupling of nitrification to denitrification and of nitrification and DNRA to anammox. Centrality analysis indicated NH4+ is the most important form of nitrogen involved in removal processes. The model analysis further suggested that direct denitrification and coupled nitrification-denitrification had similar contributions to nitrogen removal while direct anammox was dominant to coupled forms of anammox. Finally, results also indicated that partial

  19. Alterations in soil microbial activity and N-transformation processes due to sulfadiazine loads in pig-manure

    International Nuclear Information System (INIS)

    Kotzerke, Anja; Sharma, Shilpi; Schauss, Kristina; Heuer, Holger; Thiele-Bruhn, Soeren; Smalla, Kornelia; Wilke, Berndt-Michael; Schloter, Michael

    2008-01-01

    Most veterinary drugs enter the environment via manure application. However, it is unclear how these substances interact with soil biota. Therefore, it was the aim of the present study to investigate the effects of manure containing different concentrations of the antibiotic sulfadiazine (SDZ) on the soil microbial communities. It was shown that manure alone has a stimulating effect on microbial activity. Only potential nitrification was negatively influenced by manure application. The addition of SDZ to the manure reduced microbial activity. Depending on the SDZ concentration, levels of activity were in the range of the control soil without manure application. Also, selected processes in nitrogen turnover were negatively influenced by the addition of SDZ to the manure, with nitrification being the only exception. The effects were visible for up to 4 days after application of the manure with or without SDZ and were correlated with the bioavailability of the antibiotic. - This study gives first insights into the effects of manure containing the antibiotic sulfadiazine on microbial activity and nitrogen transformation potentials in soil

  20. Targeted quantification of functional enzyme dynamics in environmental samples for microbially mediated biogeochemical processes: Targeted quantification of functional enzyme dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Li, Minjing [School of Environmental Studies, China University of Geosciences, Wuhan 430074 People' s Republic of China; Gao, Yuqian [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Qian, Wei-Jun [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Shi, Liang [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Liu, Yuanyuan [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Nelson, William C. [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Nicora, Carrie D. [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Resch, Charles T. [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Thompson, Christopher [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Yan, Sen [School of Environmental Studies, China University of Geosciences, Wuhan 430074 People' s Republic of China; Fredrickson, James K. [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Zachara, John M. [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Liu, Chongxuan [Pacific Northwest National Laboratory, Richland, WA 99354 USA; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055 People' s Republic of China

    2017-07-13

    Microbially mediated biogeochemical processes are catalyzed by enzymes that control the transformation of carbon, nitrogen, and other elements in environment. The dynamic linkage between enzymes and biogeochemical species transformation has, however, rarely been investigated because of the lack of analytical approaches to efficiently and reliably quantify enzymes and their dynamics in soils and sediments. Herein, we developed a signature peptide-based technique for sensitively quantifying dissimilatory and assimilatory enzymes using nitrate-reducing enzymes in a hyporheic zone sediment as an example. Moreover, the measured changes in enzyme concentration were found to correlate with the nitrate reduction rate in a way different from that inferred from biogeochemical models based on biomass or functional genes as surrogates for functional enzymes. This phenomenon has important implications for understanding and modeling the dynamics of microbial community functions and biogeochemical processes in environments. Our results also demonstrate the importance of enzyme quantification for the identification and interrogation of those biogeochemical processes with low metabolite concentrations as a result of faster enzyme-catalyzed consumption of metabolites than their production. The dynamic enzyme behaviors provide a basis for the development of enzyme-based models to describe the relationship between the microbial community and biogeochemical processes.

  1. Effect of combination processing on the microbial, chemical and sensory quality of ready-to-eat (RTE) vegetable pulav

    International Nuclear Information System (INIS)

    Kumar, R.; George, Johnsy; Rajamanickam, R.; Nataraju, S.; Sabhapathy, S.N.; Bawa, A.S.

    2011-01-01

    Effect of irradiation in combination with retort processing on the shelf life and safety aspects of an ethnic Indian food product like vegetable pulav was investigated. Gamma irradiation of RTE vegetable pulav was carried out at different dosage rates with 60 Co followed by retort processing. The combination processed samples were analysed for microbiological, chemical and sensory characteristics. Microbiological analysis indicated that irradiation in combination with retort processing has significantly reduced the microbial loads whereas the chemical and sensory analysis proved that this combination processing is effective in retaining the properties even after storage for one year at ambient conditions. The results also indicated that a minimum irradiation dosage at 4.0 kGy along with retort processing at an F 0 value of 2.0 is needed to achieve the desired shelf life with improved organoleptic qualities. - Highlights: → A combination processing involving gamma irradiation and retort processing. → Combination processing reduced microbial loads. → Minimum dose of 4.0 kGy together with retort processing at F 0 -2.0 is required to achieve commercial sterility.

  2. Effect of combination processing on the microbial, chemical and sensory quality of ready-to-eat (RTE) vegetable pulav

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, R., E-mail: kumardfrl@gmail.com [Defence Food Research Laboratory, Mysore, Karnataka 570011 (India); George, Johnsy; Rajamanickam, R.; Nataraju, S.; Sabhapathy, S.N.; Bawa, A.S. [Defence Food Research Laboratory, Mysore, Karnataka 570011 (India)

    2011-12-15

    Effect of irradiation in combination with retort processing on the shelf life and safety aspects of an ethnic Indian food product like vegetable pulav was investigated. Gamma irradiation of RTE vegetable pulav was carried out at different dosage rates with {sup 60}Co followed by retort processing. The combination processed samples were analysed for microbiological, chemical and sensory characteristics. Microbiological analysis indicated that irradiation in combination with retort processing has significantly reduced the microbial loads whereas the chemical and sensory analysis proved that this combination processing is effective in retaining the properties even after storage for one year at ambient conditions. The results also indicated that a minimum irradiation dosage at 4.0 kGy along with retort processing at an F{sub 0} value of 2.0 is needed to achieve the desired shelf life with improved organoleptic qualities. - Highlights: > A combination processing involving gamma irradiation and retort processing. > Combination processing reduced microbial loads. > Minimum dose of 4.0 kGy together with retort processing at F{sub 0}-2.0 is required to achieve commercial sterility.

  3. Drying process strongly affects probiotics viability and functionalities.

    Science.gov (United States)

    Iaconelli, Cyril; Lemetais, Guillaume; Kechaou, Noura; Chain, Florian; Bermúdez-Humarán, Luis G; Langella, Philippe; Gervais, Patrick; Beney, Laurent

    2015-11-20

    Probiotic formulations are widely used and are proposed to have a variety of beneficial effects, depending on the probiotic strains present in the product. The impact of drying processes on the viability of probiotics is well documented. However, the impact of these processes on probiotics functionality remains unclear. In this work, we investigated variations in seven different bacterial markers after various desiccation processes. Markers were composed of four different viability evaluation (combining two growth abilities and two cytometric measurements) and in three in vitro functionalities: stimulation of IL-10 and IL-12 production by PBMCs (immunomodulation) and bacterial adhesion to hexadecane. We measured the impact of three drying processes (air-drying, freeze-drying and spray-drying), without the use of protective agents, on three types of probiotic bacteria: Bifidobacterium bifidum, Lactobacillus plantarum and Lactobacillus zeae. Our results show that the bacteria respond differently to the three different drying processes, in terms of viability and functionality. Drying methods produce important variations in bacterial immunomodulation and hydrophobicity, which are correlated. We also show that adherence can be stimulated (air-drying) or inhibited (spray-drying) by drying processes. Results of a multivariate analysis show no direct correlation between bacterial survival and functionality, but do show a correlation between probiotic responses to desiccation-rewetting and the process used to dry the bacteria. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Peatland Microbial Communities and Decomposition Processes in the James Bay Lowlands, Canada

    Science.gov (United States)

    Preston, Michael D.; Smemo, Kurt A.; McLaughlin, James W.; Basiliko, Nathan

    2012-01-01

    Northern peatlands are a large repository of atmospheric carbon due to an imbalance between primary production by plants and microbial decomposition. The James Bay Lowlands (JBL) of northern Ontario are a large peatland-complex but remain relatively unstudied. Climate change models predict the region will experience warmer and drier conditions, potentially altering plant community composition, and shifting the region from a long-term carbon sink to a source. We collected a peat core from two geographically separated (ca. 200 km) ombrotrophic peatlands (Victor and Kinoje Bogs) and one minerotrophic peatland (Victor Fen) located near Victor Bog within the JBL. We characterized (i) archaeal, bacterial, and fungal community structure with terminal restriction fragment length polymorphism of ribosomal DNA, (ii) estimated microbial activity using community level physiological profiling and extracellular enzymes activities, and (iii) the aeration and temperature dependence of carbon mineralization at three depths (0–10, 50–60, and 100–110 cm) from each site. Similar dominant microbial taxa were observed at all three peatlands despite differences in nutrient content and substrate quality. In contrast, we observed differences in basal respiration, enzyme activity, and the magnitude of substrate utilization, which were all generally higher at Victor Fen and similar between the two bogs. However, there was no preferential mineralization of carbon substrates between the bogs and fens. Microbial community composition did not correlate with measures of microbial activity but pH was a strong predictor of activity across all sites and depths. Increased peat temperature and aeration stimulated CO2 production but this did not correlate with a change in enzyme activities. Potential microbial activity in the JBL appears to be influenced by the quality of the peat substrate and the presence of microbial inhibitors, which suggests the existing peat substrate will have a large

  5. Attention affects visual perceptual processing near the hand.

    Science.gov (United States)

    Cosman, Joshua D; Vecera, Shaun P

    2010-09-01

    Specialized, bimodal neural systems integrate visual and tactile information in the space near the hand. Here, we show that visuo-tactile representations allow attention to influence early perceptual processing, namely, figure-ground assignment. Regions that were reached toward were more likely than other regions to be assigned as foreground figures, and hand position competed with image-based information to bias figure-ground assignment. Our findings suggest that hand position allows attention to influence visual perceptual processing and that visual processes typically viewed as unimodal can be influenced by bimodal visuo-tactile representations.

  6. Process Formulations And Curing Conditions That Affect Saltstone Properties

    Energy Technology Data Exchange (ETDEWEB)

    Reigel, M. M.; Pickenheim, B. R.; Daniel, W. E.

    2012-09-28

    The first objective of this study was to analyze saltstone fresh properties to determine the feasibility of reducing the formulation water to premix (w/p) ratio while varying the amount of extra water and admixtures used during processing at the Saltstone Production Facility (SPF). The second part of this study was to provide information for understanding the impact of curing conditions (cure temperature, relative humidity (RH)) and processing formulation on the performance properties of cured saltstone.

  7. A meta-proteomics approach to study the interspecies interactions affecting microbial biofilm development in a model community

    DEFF Research Database (Denmark)

    Herschend, Jakob; Damholt, Zacharias Brimnes Visby; Marquard, Andrea Marion

    2017-01-01

    Microbial biofilms are omnipresent in nature and relevant to a broad spectrum of industries ranging from bioremediation and food production to biomedical applications. To date little is understood about how multi-species biofilm communities develop and function on a molecular level, due to the co......Microbial biofilms are omnipresent in nature and relevant to a broad spectrum of industries ranging from bioremediation and food production to biomedical applications. To date little is understood about how multi-species biofilm communities develop and function on a molecular level, due...... to the complexity of these biological systems. Here we apply a meta-proteomics approach to investigate the mechanisms influencing biofilm formation in a model consortium of four bacterial soil isolates; Stenotrophomonas rhizophila, Xanthomonas retroflexus, Microbacterium oxydans and Paenibacillus amylolyticus...

  8. Assessment of microbial processes on radionuclide mobility in shallow land burial

    International Nuclear Information System (INIS)

    Colombo, P.; Tate, R.L. III; Weiss, A.J.

    1982-07-01

    The impact of microbial metabolism of the organic substituents of low level radioactive wastes on radionuclide mobility in disposal sites, the nature of the microbial transformations involved in this metabolism and the effect of the prevailing environmental parameters on the quantities and types of metabolic intermediates accumulated were examined. Since both aerobic and anaerobic periods can occur during trench ecosystem development, oxidation capacities of the microbial community in the presence and absence of oxygen were analyzed. Results of gas studies performed at three commercial low level radioactive waste disposal sites were reviewed. Several deficiencies in available data were determined. Further research needs are suggested. This assessment has demonstrated that the biochemical capabilities expressed within the low level radioactive waste disposal site are common to a wide variety of soil bacteria. Hence, assuming trenches would not be placed in sites with such extreme abiotic conditions that all microbial activity is precluded, the microbial populations needed for colonization and decomposition of the organic waste substances are readily provided from the waste itself and from the soil of existing and any proposed disposal sites. Indeed, considering the ubiquity of occurrence of the microorganisms responsible for waste decomposition and the chemical nature of the organic waste material, long-term prevention of biodecomposition is difficult, if not impossible

  9. Effect of different film packaging on microbial growth in minimally processed cactus pear (Opuntia ficus-indica).

    Science.gov (United States)

    Palma, A; Mangia, N P; Fadda, A; Barberis, A; Schirra, M; D'Aquino, S

    2013-01-01

    Microorganisms are natural contaminants of fresh produce and minimally processed products, and contamination arises from a number of sources, including the environment, postharvest handling and processing. Fresh-cut products are particularly susceptible to microbial contaminations because of the changes occurring in the tissues during processing. In package gas composition of modified atmosphere packaging (MAP) in combination with low storage temperatures besides reducing physiological activity of packaged produce, can also delay pathogen growth. Present study investigated on the effect of MAPs, achieved with different plastic films, on microbial growth of minimally processed cactus pear (Opuntio ficus-indica) fruit. Five different plastic materials were used for packaging the manually peeled fruit. That is: a) polypropylene film (Termoplast MY 40 micron thickness, O2 transmission rate 300 cc/m2/24h); b) polyethylene film (Bolphane BHE, 11 micron thickness, O2 transmission rate 19000 cc/m2/24h); c) polypropylene laser-perforated films (Mach Packaging) with 8, 16 or 32 100-micron holes. Total aerobic psychrophilic, mesophilic microorganisms, Enterobacteriaceae, yeast, mould populations and in-package CO2, O2 and C2H4 were determined at each storage time. Different final gas compositions, ranging from 7.8 KPa to 17.1 KPa O2, and 12.7 KPa to 2.6 KPa CO2, were achieved with MY and micro perforated films, respectively. Differences were detected in the mesophilic, Enterobacteriaceae and yeast loads, while no difference was detected in psychrophilic microorganisms. At the end of storage, microbial load in fruits sealed with MY film was significantly lower than in those sealed with BHE and micro perforated films. Furthermore, fruits packed with micro-perforated films showed the highest microbial load. This occurrence may in part be related to in-package gas composition and in part to a continuous contamination of microorganisms through micro-holes.

  10. [Decomposition of corpses--a microbial degradation process with special reference to mummification, formation of adipocere and incomplete putrified corpes].

    Science.gov (United States)

    Schoenen, Dirk

    2013-01-01

    Decomposition of the human body is a microbial process. It is influenced by the environmental situation and it depends to a high degree on the exchange of substances between the corpse and the environment. Mummification occurs at low humidity or frost. Adipocere arises from lack of oxygen, incomplete putrified corpses develop when there is no exchange of air or water between the corpse and the environment.

  11. Dynamic modelling of processes in rivers affected by precipitation runoff

    DEFF Research Database (Denmark)

    Jacobsen, Judith L.

    1997-01-01

    In this thesis, models for the dynamics of oxygen and organic matter in receiving waters (such as rivers and creeks), which are affected by rain, are developed. A time series analysis framework is used, but presented with special emphasis on continuous time state space models. Also, the concept o....... In most models, precipitation in the form of rain have been included to study the impact from this. Finally, the future and industrial perspectives are presented, along with a list of suggestions for future research related to the subjects considered in this thesis....

  12. Stabilization of red fruit-based smoothies by high-pressure processing. Part A. Effects on microbial growth, enzyme activity, antioxidant capacity and physical stability.

    Science.gov (United States)

    Hurtado, Adriana; Guàrdia, Maria Dolors; Picouet, Pierre; Jofré, Anna; Ros, José María; Bañón, Sancho

    2017-02-01

    Non-thermal pasteurization by high-pressure processing (HPP) is increasingly replacing thermal processing (TP) to maintain the properties of fresh fruit products. However, most of the research on HPP-fruit products only partially addresses fruit-pressure interaction, which limits its practical interest. The objective of this study was to assess the use of a mild HPP treatment to stabilize red fruit-based smoothies (microbial, enzymatic, oxidative and physical stability). HPP (350 MPa/10 °C/5 min) was slightly less effective than TP (85 °C/7 min) in inactivating microbes (mesophilic and psychrophilic bacteria, coliforms, yeasts and moulds) in smoothies kept at 4 °C for up to 28 days. The main limitation of using HPP was its low efficacy in inactivating oxidative (polyphenol oxidase and peroxidase) and hydrolytic (pectin methyl esterase) enzymes. Data on antioxidant status, colour parameters, browning index, transmittance, turbidity and viscosity confirmed that the HPP-smoothies have a greater tendency towards oxidation and clarification, which might lead to undesirable sensory and nutritional changes (see Part B). The microbial quality of smoothies was adequately controlled by mild HPP treatment without affecting their physical-chemical characteristics; however, oxidative and hydrolytic enzymes are highly pressure-resistant, which suggests that additional strategies should be used to stabilize smoothies. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  13. Temporal factors affecting somatosensory-auditory interactions in speech processing

    Directory of Open Access Journals (Sweden)

    Takayuki eIto

    2014-11-01

    Full Text Available Speech perception is known to rely on both auditory and visual information. However, sound specific somatosensory input has been shown also to influence speech perceptual processing (Ito et al., 2009. In the present study we addressed further the relationship between somatosensory information and speech perceptual processing by addressing the hypothesis that the temporal relationship between orofacial movement and sound processing contributes to somatosensory-auditory interaction in speech perception. We examined the changes in event-related potentials in response to multisensory synchronous (simultaneous and asynchronous (90 ms lag and lead somatosensory and auditory stimulation compared to individual unisensory auditory and somatosensory stimulation alone. We used a robotic device to apply facial skin somatosensory deformations that were similar in timing and duration to those experienced in speech production. Following synchronous multisensory stimulation the amplitude of the event-related potential was reliably different from the two unisensory potentials. More importantly, the magnitude of the event-related potential difference varied as a function of the relative timing of the somatosensory-auditory stimulation. Event-related activity change due to stimulus timing was seen between 160-220 ms following somatosensory onset, mostly around the parietal area. The results demonstrate a dynamic modulation of somatosensory-auditory convergence and suggest the contribution of somatosensory information for speech processing process is dependent on the specific temporal order of sensory inputs in speech production.

  14. Monitoring of the microbial communities involved in the soy sauce manufacturing process by PCR-denaturing gradient gel electrophoresis.

    Science.gov (United States)

    Tanaka, Yasushi; Watanabe, Jun; Mogi, Yoshinobu

    2012-08-01

    Soy sauce is a traditional seasoning produced through the fermentation of soybeans and wheat using microbes. In this study, the microbial communities involved in the soy sauce manufacturing process were analyzed by PCR-Denaturing Gradient Gel Electrophoresis (PCR-DGGE). The bacterial DGGE profile indicated that the bacterial microbes in the koji were Weissella cibaria (Weissella confusa, Weissella kimchii, Weissella salipiscis, Lactobacillus fermentum, Lactobacillus plantarum, Lactobacillus iners, or Streptococcus thermophilus), Staphylococcus gallinarum (or Staphylococcus xylosus), and Staphylococcus kloosii. In addition to these bacteria, Tetragenococcus halophilus was also detected in the mash during lactic acid fermentation. The fungal DGGE profile indicated that the fungal microbes in the koji were not only Aspergillus oryzae but also several yeasts. In the mash, Zygosaccharomyces rouxii appeared in the early fermentation stage, Candida etchellsii (or Candida nodaensis) and Candida versatilis were detected at the middle fermentation stage, and Candida etchellsii was detected at the mature fermentation stage. These results suggest that the microbial communities present during the soy sauce manufacturing process change drastically throughout its production. This is the first report to reveal the microbial communities involved in the soy sauce manufacturing process using a culture-independent method. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  15. Enzymatic biodiesel synthesis. Key factors affecting efficiency of the process

    Energy Technology Data Exchange (ETDEWEB)

    Szczesna Antczak, Miroslawa; Kubiak, Aneta; Antczak, Tadeusz; Bielecki, Stanislaw [Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Technical University of Lodz, Stefanowskiego 4/10, 90-924 Lodz (Poland)

    2009-05-15

    Chemical processes of biodiesel production are energy-consuming and generate undesirable by-products such as soaps and polymeric pigments that retard separation of pure methyl or ethyl esters of fatty acids from glycerol and di- and monoacylglycerols. Enzymatic, lipase-catalyzed biodiesel synthesis has no such drawbacks. Comprehension of the latter process and an appreciable progress in production of robust preparations of lipases may soon result in the replacement of chemical catalysts with enzymes in biodiesel synthesis. Engineering of enzymatic biodiesel synthesis processes requires optimization of such factors as: molar ratio of substrates (triacylglycerols: alcohol), temperature, type of organic solvent (if any) and water activity. All of them are correlated with properties of lipase preparation. This paper reports on the interplay between the crucial parameters of the lipase-catalyzed reactions carried out in non-aqueous systems and the yield of biodiesel synthesis. (author)

  16. The Influence of Parameters Affecting Boron Removal by Electrocoagulation Process

    KAUST Repository

    Zeboudji, B.

    2013-04-01

    Boron removal in seawater desalination presents a particular challenge. In seawater reverse osmosis (SWRO) systems boron removal at low concentration (<0.5 mg/L) is usually achieved by a second pass using brackish water RO membranes. However, this process requires chemical addition and important additional investment, operation and maintenance, and energy costs. Electrocoagulation (EC) process can be used to achieve such low boron concentration. In this work, the removal of boron from aqueous solution was carried out by EC process using aluminum and iron electrodes. Several operating parameters on the removal efficiency such as initial pH, current density, initial boron ion concentration, feed concentration, gap between electrodes, and electrode material, were investigated. In the case of bipolar electrocoagulation (BEC), an optimum removal efficiency of 96% corresponding to a final boron concentration of 0.4 mg/L was achieved at a current density of 6 mA/cm2 and pH = 8 using aluminum electrodes. The concentration of NaCl was 2,500 mg/L and the gap between the electrodes of 0.5 cm. Furthermore, a comparison between monopolar electrocoagulation (MEC) and BEC using both aluminum and iron electrodes was carried out. Results showed that the BEC process has reduced the current density applied to obtain high level of boron removal in a short reaction time compared to MEC process. The high performance of the EC showed that the process could be used to reduce boron concentration to acceptable levels at low-cost and more environmentally friendly. © 2013 Copyright Taylor and Francis Group, LLC.

  17. Genome-Enabled Modeling of Biogeochemical Processes Predicts Metabolic Dependencies that Connect the Relative Fitness of Microbial Functional Guilds

    Science.gov (United States)

    Brodie, E.; King, E.; Molins, S.; Karaoz, U.; Steefel, C. I.; Banfield, J. F.; Beller, H. R.; Anantharaman, K.; Ligocki, T. J.; Trebotich, D.

    2015-12-01

    Pore-scale processes mediated by microorganisms underlie a range of critical ecosystem services, regulating carbon stability, nutrient flux, and the purification of water. Advances in cultivation-independent approaches now provide us with the ability to reconstruct thousands of genomes from microbial populations from which functional roles may be assigned. With this capability to reveal microbial metabolic potential, the next step is to put these microbes back where they belong to interact with their natural environment, i.e. the pore scale. At this scale, microorganisms communicate, cooperate and compete across their fitness landscapes with communities emerging that feedback on the physical and chemical properties of their environment, ultimately altering the fitness landscape and selecting for new microbial communities with new properties and so on. We have developed a trait-based model of microbial activity that simulates coupled functional guilds that are parameterized with unique combinations of traits that govern fitness under dynamic conditions. Using a reactive transport framework, we simulate the thermodynamics of coupled electron donor-acceptor reactions to predict energy available for cellular maintenance, respiration, biomass development, and enzyme production. From metagenomics, we directly estimate some trait values related to growth and identify the linkage of key traits associated with respiration and fermentation, macromolecule depolymerizing enzymes, and other key functions such as nitrogen fixation. Our simulations were carried out to explore abiotic controls on community emergence such as seasonally fluctuating water table regimes across floodplain organic matter hotspots. Simulations and metagenomic/metatranscriptomic observations highlighted the many dependencies connecting the relative fitness of functional guilds and the importance of chemolithoautotrophic lifestyles. Using an X-Ray microCT-derived soil microaggregate physical model combined

  18. Organic matter processing by microbial communities throughout the Atlantic water column as revealed by metaproteomics

    DEFF Research Database (Denmark)

    Bergauer, Kristin; Fernandez-Guerra, Antonio; Garcia, Juan A L

    2018-01-01

    The phylogenetic composition of the heterotrophic microbial community is depth stratified in the oceanic water column down to abyssopelagic layers. In the layers below the euphotic zone, it has been suggested that heterotrophic microbes rely largely on solubilized particulate organic matter...... as a carbon and energy source rather than on dissolved organic matter. To decipher whether changes in the phylogenetic composition with depth are reflected in changes in the bacterial and archaeal transporter proteins, we generated an extensive metaproteomic and metagenomic dataset of microbial communities...... collected from 100- to 5,000-m depth in the Atlantic Ocean. By identifying which compounds of the organic matter pool are absorbed, transported, and incorporated into microbial cells, intriguing insights into organic matter transformation in the deep ocean emerged. On average, solute transporters accounted...

  19. Hemp fibres: Enzymatic effect of microbial processing on fibre bundle structure

    DEFF Research Database (Denmark)

    Thygesen, Anders; Liu, Ming; Meyer, Anne S.

    2013-01-01

    The effects of microbial pretreatment on hemp fibres were evaluated after microbial retting using the white rot fungi Ceriporiopsis subvermispora and Phlebia radiata Cel 26 and water retting. Based on chemical composition, P. radiata Cel 26 showed the highest selectivity for pectin and lignin...... degradation and lowest cellulose loss (14%) resulting in the highest cellulose content (78.4%) for the treated hemp fibres. The pectin and lignin removal after treatment with P. radiata Cel 26 were of the order 82% and 50%, respectively. Aligned epoxy-matrix composites were made from hemp fibres defibrated...... with the microbial retting to evaluate the effects on their ultrastructure. SEM microscopy of the composites showed low porosity on the fibre surfaces after defibration with P. radiata Cel 26 and C. subvermispora indicating good epoxy polymer impregnation. In contrast, fibres treated by water retting and the raw...

  20. Relating Anaerobic Digestion Microbial Community and Process Function : Supplementary Issue: Water Microbiology

    Directory of Open Access Journals (Sweden)

    Kaushik Venkiteshwaran

    2015-01-01

    Full Text Available Anaerobic digestion (AD involves a consortium of microorganisms that convert substrates into biogas containing methane for renewable energy. The technology has suffered from the perception of being periodically unstable due to limited understanding of the relationship between microbial community structure and function. The emphasis of this review is to describe microbial communities in digesters and quantitative and qualitative relationships between community structure and digester function. Progress has been made in the past few decades to identify key microorganisms influencing AD. Yet, more work is required to realize robust, quantitative relationships between microbial community structure and functions such as methane production rate and resilience after perturbations. Other promising areas of research for improved AD may include methods to increase/control (1 hydrolysis rate, (2 direct interspecies electron transfer to methanogens, (3 community structure–function relationships of methanogens, (4 methanogenesis via acetate oxidation, and (5 bioaugmentation to study community–activity relationships or improve engineered bioprocesses.

  1. Social Process Variables Affecting Reading Performance in Delayed Readers.

    Science.gov (United States)

    Lorton, Mary; Kukuk, Christopher

    1978-01-01

    Examines the relationship between 14 social process variables and the reading performances of 180 slow learners, ages 7-15. Finds that two of those factors (brith trauma and being held back in school) emerge as predictors of reading comprehension, word recognition, and spelling. (RL)

  2. Key Process Parameters Affecting Performance of Electro-Coagulation.

    Czech Academy of Sciences Publication Activity Database

    Krystyník, Pavel; Tito, Duarte Novaes

    2017-01-01

    Roč. 117, JUL (2017), s. 106-112 ISSN 0255-2701 R&D Projects: GA TA ČR TA04020130 Institutional support: RVO:67985858 Keywords : electrocoagulation * dosing concentration * current density Subject RIV: CI - Industrial Chemistry, Chemical Engineering OBOR OECD: Chemical process engineering Impact factor: 2.234, year: 2016

  3. Stimulus Characteristics Affect Humor Processing in Individuals with Asperger Syndrome

    Science.gov (United States)

    Samson, Andrea C.; Hegenloh, Michael

    2010-01-01

    The present paper aims to investigate whether individuals with Asperger syndrome (AS) show global humor processing deficits or whether humor comprehension and appreciation depends on stimulus characteristics. Non-verbal visual puns, semantic and Theory of Mind cartoons were rated on comprehension, funniness and the punchlines were explained. AS…

  4. Psychometric Characteristics of the EEAA (Scale of Affective Strategies in the Learning Process)

    Science.gov (United States)

    Villardón-Gallego, Lourdes; Yániz, Concepción

    2014-01-01

    Introduction: Affective strategies for coping with affective states linked to the learning process may be oriented toward controlling emotions or toward controlling motivation. Both types affect performance, directly and indirectly. The objective of this research was to design an instrument for measuring the affective strategies used by university…

  5. Development of a Chlorine Dosing Strategy for Fresh Produce Washing Process to Maintain Microbial Food Safety and Minimize Residual Chlorine.

    Science.gov (United States)

    Chen, Xi; Hung, Yen-Con

    2018-05-22

    The residual free chlorine level in fresh produce wash solution is closely correlated to the chemical and microbial safety of produce. Excess amount of free chlorine can quickly react with organic matters to form hazardous disinfection by-products (DBPs) above EPA-permitted levels, whereas deficiency of residual chlorine in produce wash solution may result in incompletely removing pathogens on produce. The purpose of this study was to develop a chlorine dosing strategy to optimize the chlorine dosage during produce washing process without impacting the microbial safety of fresh produce. Prediction equations were developed to estimate free chlorine needed to reach targeted residual chlorine at various sanitizer pH and organic loads, and then validated using fresh-cut iceberg lettuce and whole strawberries in an automated produce washer. Validation results showed that equations successfully predicted the initial chlorine concentration needed to achieve residual chlorine at 10, 30, 60, and 90 mg/L for both lettuce and strawberry washing processes, with the root mean squared error at 4.45 mg/L. The Escherichia coli O157:H7 reductions only slightly increased on iceberg lettuce and strawberries with residual chlorine increasing from 10 to 90 mg/L, indicating that lowering residual chlorine to 10 mg/L would not compromise the antimicrobial efficacy of chlorine-based sanitizer. Based on the prediction equations and E. coli O157:H7 reduction results, a chlorine dosing strategy was developed to help the produce industry to maintain microbial inactivation efficacy without adding excess amount of free chlorine. The chlorine dosing strategy can be used for fresh produce washing process to enhance the microbial food safety and minimize the DBPs formation potential. © 2018 Institute of Food Technologists®.

  6. Integrated systems for biopolymers and bioenergy production from organic waste and by-products: a review of microbial processes.

    Science.gov (United States)

    Pagliano, Giorgia; Ventorino, Valeria; Panico, Antonio; Pepe, Olimpia

    2017-01-01

    Recently, issues concerning the sustainable and harmless disposal of organic solid waste have generated interest in microbial biotechnologies aimed at converting waste materials into bioenergy and biomaterials, thus contributing to a reduction in economic dependence on fossil fuels. To valorize biomass, waste materials derived from agriculture, food processing factories, and municipal organic waste can be used to produce biopolymers, such as biohydrogen and biogas, through different microbial processes. In fact, different bacterial strains can synthesize biopolymers to convert waste materials into valuable intracellular (e.g., polyhydroxyalkanoates) and extracellular (e.g., exopolysaccharides) bioproducts, which are useful for biochemical production. In particular, large numbers of bacteria, including Alcaligenes eutrophus , Alcaligenes latus , Azotobacter vinelandii , Azotobacter chroococcum , Azotobacter beijerincki , methylotrophs, Pseudomonas spp., Bacillus spp., Rhizobium spp., Nocardia spp., and recombinant Escherichia coli , have been successfully used to produce polyhydroxyalkanoates on an industrial scale from different types of organic by-products. Therefore, the development of high-performance microbial strains and the use of by-products and waste as substrates could reasonably make the production costs of biodegradable polymers comparable to those required by petrochemical-derived plastics and promote their use. Many studies have reported use of the same organic substrates as alternative energy sources to produce biogas and biohydrogen through anaerobic digestion as well as dark and photofermentation processes under anaerobic conditions. Therefore, concurrently obtaining bioenergy and biopolymers at a reasonable cost through an integrated system is becoming feasible using by-products and waste as organic carbon sources. An overview of the suitable substrates and microbial strains used in low-cost polyhydroxyalkanoates for biohydrogen and biogas

  7. Effects of grain source, grain processing, and protein degradability on rumen kinetics and microbial protein synthesis in Boer kids.

    Science.gov (United States)

    Brassard, M-E; Chouinard, P Y; Berthiaume, R; Tremblay, G F; Gervais, R; Martineau, R; Cinq-Mars, D

    2015-11-01

    Microbial protein synthesis in the rumen would be optimized when dietary carbohydrates and proteins have synchronized rates and extent of degradation. The aim of this study was to evaluate the effect of varying ruminal degradation rate of energy and nitrogen sources on intake, nitrogen balance, microbial protein yield, and kinetics of nutrients in the rumen of growing kids. Eight Boer goats (38.2 ± 3.0 kg) were used. The treatments were arranged in a split-plot Latin square design with grain sources (barley or corn) forming the main plots (squares). Grain processing methods and levels of protein degradability formed the subplots in a 2 × 2 factorial arrangement for a total of 8 dietary treatments. The grain processing method was rolling for barley and cracking for corn. Levels of protein degradability were obtained by feeding untreated soybean meal (SBM) or heat-treated soybean meal (HSBM). Each experimental period lasted 21 d, consisting of a 10-d adaptation period, a 7-d digestibility determination period, and a 4-d rumen evacuation and sampling period. Kids fed with corn had higher purine derivatives (PD) excretion when coupled with SBM compared with HSBM and the opposite occurred with barley-fed kids ( ≤ 0.01). Unprocessed grain offered with SBM led to higher PD excretion than with HSBM whereas protein degradability had no effect when processed grain was fed ( ≤ 0.03). Results of the current experiment with high-concentrate diets showed that microbial N synthesis could be maximized in goat kids by combining slowly fermented grains (corn or unprocessed grains) with a highly degradable protein supplement (SBM). With barley, a more rapidly fermented grain, a greater microbial N synthesis was observed when supplementing a low-degradable protein (HSBM).

  8. The radiotherapy affects the cognitive processes; La radiotherapie affecte la cognition

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2009-10-15

    Researchers from the medical center of the free university of Amsterdam report that the radiotherapy can hinder the cognitive functions of patients affected by cerebral tumors treated after a surgery. Even low dose radiation could contribute in their opinion, to the progressive cognitive decline of patients suffering of low grade gliomas, the most commune cerebral tumor. To get these conclusions, 65 patients, whom half of them received a radiotherapy, had a neurological and psychological evaluation twelve years after their treatment. Results: 53% of patients treated by radiotherapy present disorders of attention, memory, execution and speed of information treatment against 27% of these ones that received an only surgery. The researchers conclude to the necessity to take into account this risk in the choice of treatment, or even to avoid radiotherapy in this precise case. (N.C.)

  9. Genomic GC-content affects the accuracy of 16S rRNA gene sequencing bsed microbial profiling due to PCR bias

    DEFF Research Database (Denmark)

    Laursen, Martin F.; Dalgaard, Marlene Danner; Bahl, Martin Iain

    2017-01-01

    Profiling of microbial community composition is frequently performed by partial 16S rRNA gene sequencing on benchtop platforms following PCR amplification of specific hypervariable regions within this gene. Accuracy and reproducibility of this strategy are two key parameters to consider, which may...... be influenced during all processes from sample collection and storage, through DNA extraction and PCR based library preparation to the final sequencing. In order to evaluate both the reproducibility and accuracy of 16S rRNA gene based microbial profiling using the Ion Torrent PGM platform, we prepared libraries...... be explained partly by premature read truncation, but to larger degree their genomic GC-content, which correlated negatively with the observed relative abundances, suggesting a PCR bias against GC-rich species during library preparation. Increasing the initial denaturation time during the PCR amplification...

  10. Microbial impact on metallic corrosion processes: case of iron reducing bacteria

    International Nuclear Information System (INIS)

    Esnault, Loic; Jullien, Michel; Libert, Marie; Mustin, Christian

    2010-01-01

    corrosion product alteration, magnetite and hematite mainly (c). For that, an optimised method of H2 measure at weak pressure has been realised by gaseous phase chromatography coupled with a sensitive pressure captor. - H 2 + Fe 3+ magnetite → Fe 2+ solution + 2H + (c) The interest of this study is to determine and to understand the reactivity of one model microbe species, the ferric-reducing bacterium 'Schewanella oneidensis strain MR-1', on a Fe(0) corrosion and these corrosion products (magnetite, hematite mainly) in presence or not of clay minerals (bentonite MX80). The introduction of short-term experiments in the scattered environment (batch) over reactivity Iron-bacteria with or without clay mineral is here studied through a kinetic study of H 2 bio-consumed or product, chemical analysis in solution, and by use a crystallo-chemistry tool (XRD and SEM). The main results are bio-alteration of corrosion products with development of ferri-reducing bacterial community. This microbial alteration entails an increase of aqueous corrosion by consumption of corrosion products (passivation layer). In such condition, corrosion process could be reactivated. (authors)

  11. Insight into the prevalence and distribution of microbial contamination to evaluate water management in the fresh produce processing industry.

    Science.gov (United States)

    Holvoet, Kevin; Jacxsens, Liesbeth; Sampers, Imca; Uyttendaele, Mieke

    2012-04-01

    This study provided insight into the degree of microbial contamination in the processing chain of prepacked (bagged) lettuce in two Belgian fresh-cut produce processing companies. The pathogens Salmonella and Listeria monocytogenes were not detected. Total psychrotrophic aerobic bacterial counts (TPACs) in water samples, fresh produce, and environmental samples suggested that the TPAC is not a good indicator of overall quality and best manufacturing practices during production and processing. Because of the high TPACs in the harvested lettuce crops, the process water becomes quickly contaminated, and subsequent TPACs do not change much throughout the production process of a batch. The hygiene indicator Escherichia coli was used to assess the water management practices in these two companies in relation to food safety. Practices such as insufficient cleaning and disinfection of washing baths, irregular refilling of the produce wash baths with water of good microbial quality, and the use of high product/water ratios resulted in a rapid increase in E. coli in the processing water, with potential transfer to the end product (fresh-cut lettuce). The washing step in the production of fresh-cut lettuce was identified as a potential pathway for dispersion of microorganisms and introduction of E. coli to the end product via cross-contamination. An intervention step to reduce microbial contamination is needed, particularly when no sanitizers are used as is the case in some European Union countries. Thus, from a food safety point of view proper water management (and its validation) is a critical point in the fresh-cut produce processing industry.

  12. Infiltration and runoff generation processes in fire-affected soils

    Science.gov (United States)

    Moody, John A.; Ebel, Brian A.

    2014-01-01

    Post-wildfire runoff was investigated by combining field measurements and modelling of infiltration into fire-affected soils to predict time-to-start of runoff and peak runoff rate at the plot scale (1 m2). Time series of soil-water content, rainfall and runoff were measured on a hillslope burned by the 2010 Fourmile Canyon Fire west of Boulder, Colorado during cyclonic and convective rainstorms in the spring and summer of 2011. Some of the field measurements and measured soil physical properties were used to calibrate a one-dimensional post-wildfire numerical model, which was then used as a ‘virtual instrument’ to provide estimates of the saturated hydraulic conductivity and high-resolution (1 mm) estimates of the soil-water profile and water fluxes within the unsaturated zone.Field and model estimates of the wetting-front depth indicated that post-wildfire infiltration was on average confined to shallow depths less than 30 mm. Model estimates of the effective saturated hydraulic conductivity, Ks, near the soil surface ranged from 0.1 to 5.2 mm h−1. Because of the relatively small values of Ks, the time-to-start of runoff (measured from the start of rainfall),  tp, was found to depend only on the initial soil-water saturation deficit (predicted by the model) and a measured characteristic of the rainfall profile (referred to as the average rainfall acceleration, equal to the initial rate of change in rainfall intensity). An analytical model was developed from the combined results and explained 92–97% of the variance of  tp, and the numerical infiltration model explained 74–91% of the variance of the peak runoff rates. These results are from one burned site, but they strongly suggest that  tp in fire-affected soils (which often have low values of Ks) is probably controlled more by the storm profile and the initial soil-water saturation deficit than by soil hydraulic properties.

  13. Short-sludge age EBPR processMicrobial and biochemical process characterisation during reactor start-up and operation

    DEFF Research Database (Denmark)

    Valverde Pérez, Borja; Wágner, Dorottya Sarolta; Lóránt, Bálint

    2016-01-01

    . In this paper, we report the start-up and operation of a short-SRT enhanced biological phosphorus removal (EBPR) system operated as a sequencing batch reactor (SBR) fed with preclarified municipal wastewater, which is supplemented with propionate. The microbial community was analysed via 16S rRNA amplicon...

  14. Microbially induced carbonate precipitation (MICP) by denitrification as ground improvement method - Process control in sand column experiments

    Science.gov (United States)

    Pham, Vinh; van Paassen, Leon; Nakano, Akiko; Kanayama, Motohei; Heimovaara, Timo

    2013-04-01

    Calcite precipitation induced by microbes has been proven to be efficient in stabilizing granular soils, especially with urea hydrolysis, as it has been successfully demonstrated in a pilot application 2010. However, as a byproduct highly concentrated ammonium chloride (NH4Cl) solution is produced, which has to be removed and disposed and forms a significant disadvantage of the technique that makes an alternative process like denitrification preferred. The proof of principle of microbially induced calcite precipitation (MICP) by denitrification has been demonstrated by Van Paassen et al (2010) who suggested that instead of producing waste as a byproduct, different pre-treated waste streams could be used as substrates for in situ growth of denitrifying bacteria and simultaneous cementation without producing waste to be removed. In this study sand column experiments are performed in which calcium carbonate was successfully precipitated by indigenous denitrifying micro-organisms, which were supplied weekly with a pulse of a substrate solution containing calcium acetate and calcium nitrate. Besides the production of calcite and the growth of bacteria in biofilms, the reduction of nitrate resulted in the production of (nitrogen) gas. It was observed that this gas partly fills up the pore space and consequently contributed to a reduction of the permeability of the treated sand. The presence of gas in the pore space affected the flow of the injected substrates and influenced to the distribution of calcium carbonate. The effect of the mean particle size (D50) on the flow and transport of solutes and gas in the porous media has been evaluated by treating several columns with varying grain size distribution and comparing the change in permeability after each incubation period and analyzing the distribution of the gas throughout the columns using X-ray computed tomography (CT) scanning. The present results show that there is a considerable decrease of permeability - a

  15. Acute physical exercise affected processing efficiency in an auditory attention task more than processing effectiveness.

    Science.gov (United States)

    Dutke, Stephan; Jaitner, Thomas; Berse, Timo; Barenberg, Jonathan

    2014-02-01

    Research on effects of acute physical exercise on performance in a concurrent cognitive task has generated equivocal evidence. Processing efficiency theory predicts that concurrent physical exercise can increase resource requirements for sustaining cognitive performance even when the level of performance is unaffected. This hypothesis was tested in a dual-task experiment. Sixty young adults worked on a primary auditory attention task and a secondary interval production task while cycling on a bicycle ergometer. Physical load (cycling) and cognitive load of the primary task were manipulated. Neither physical nor cognitive load affected primary task performance, but both factors interacted on secondary task performance. Sustaining primary task performance under increased physical and/or cognitive load increased resource consumption as indicated by decreased secondary task performance. Results demonstrated that physical exercise effects on cognition might be underestimated when only single task performance is the focus.

  16. Habitat Complexity in Aquatic Microcosms Affects Processes Driven by Detritivores.

    Directory of Open Access Journals (Sweden)

    Lorea Flores

    Full Text Available Habitat complexity can influence predation rates (e.g. by providing refuge but other ecosystem processes and species interactions might also be modulated by the properties of habitat structure. Here, we focussed on how complexity of artificial habitat (plastic plants, in microcosms, influenced short-term processes driven by three aquatic detritivores. The effects of habitat complexity on leaf decomposition, production of fine organic matter and pH levels were explored by measuring complexity in three ways: 1. as the presence vs. absence of habitat structure; 2. as the amount of structure (3 or 4.5 g of plastic plants; and 3. as the spatial configuration of structures (measured as fractal dimension. The experiment also addressed potential interactions among the consumers by running all possible species combinations. In the experimental microcosms, habitat complexity influenced how species performed, especially when comparing structure present vs. structure absent. Treatments with structure showed higher fine particulate matter production and lower pH compared to treatments without structures and this was probably due to higher digestion and respiration when structures were present. When we explored the effects of the different complexity levels, we found that the amount of structure added explained more than the fractal dimension of the structures. We give a detailed overview of the experimental design, statistical models and R codes, because our statistical analysis can be applied to other study systems (and disciplines such as restoration ecology. We further make suggestions of how to optimise statistical power when artificially assembling, and analysing, 'habitat complexity' by not confounding complexity with the amount of structure added. In summary, this study highlights the importance of habitat complexity for energy flow and the maintenance of ecosystem processes in aquatic ecosystems.

  17. Recent advances and strategies in process and strain engineering for the production of butyric acid by microbial fermentation.

    Science.gov (United States)

    Luo, Hongzhen; Yang, Rongling; Zhao, Yuping; Wang, Zhaoyu; Liu, Zheng; Huang, Mengyu; Zeng, Qingwei

    2018-04-01

    Butyric acid is an important platform chemical, which is widely used in the fields of food, pharmaceutical, energy, etc. Microbial fermentation as an alternative approach for butyric acid production is attracting great attention as it is an environmentally friendly bioprocessing. However, traditional fermentative butyric acid production is still not economically competitive compared to chemical synthesis route, due to the low titer, low productivity, and high production cost. Therefore, reduction of butyric acid production cost by utilization of alternative inexpensive feedstock, and improvement of butyric acid production and productivity has become an important target. Recently, several advanced strategies have been developed for enhanced butyric acid production, including bioprocess techniques and metabolic engineering methods. This review provides an overview of advances and strategies in process and strain engineering for butyric acid production by microbial fermentation. Additionally, future perspectives on improvement of butyric acid production are also proposed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Phytase Production and Development of an Ideal Dephytinization Process for Amelioration of Food Nutrition Using Microbial Phytases.

    Science.gov (United States)

    Jain, Jinender; Singh, Bijender

    2017-04-01

    Development of an ideal process for reduction of food phytates using microbial phytases is a demanding task by all food and feed industries all over the world. Phytase production by Bacillus subtilis subsp. subtilis JJBS250 isolated from soil sample was optimized in submerged fermentation using statistical tools. Among all the culture variables tested, sucrose, sodium phytate and Tween-80 were identified as the most significant variables using the Placket-Burman design. Further optimization of these variables resulted in a 6.79-fold improvement in phytase production (7170 U/L) as compared to unoptimized medium. Supplementation of microbial phytases (fungal and bacterial) resulted in improved bioavailability of nutritional components with the concomitant liberation of inorganic phosphorus, reducing sugar, soluble protein and amino acids, thus mitigating anti-nutritional properties of phytic acid.

  19. Effect of high hydrostatic pressure processing on the background microbial loads and quality of cantaloupe puree

    Science.gov (United States)

    The objective of this study was to investigate and evaluate the effects of high hydrostatic pressure (HHP) applied to cantaloupe puree (CP) on microbial loads and product quality during storage for 10 days at 4 degrees C. Freshly prepared, double sealed and double bagged CP (ca. 5 g) was pressure tr...

  20. Suprasegmental information affects processing of talking faces at birth.

    Science.gov (United States)

    Guellai, Bahia; Mersad, Karima; Streri, Arlette

    2015-02-01

    From birth, newborns show a preference for faces talking a native language compared to silent faces. The present study addresses two questions that remained unanswered by previous research: (a) Does the familiarity with the language play a role in this process and (b) Are all the linguistic and paralinguistic cues necessary in this case? Experiment 1 extended newborns' preference for native speakers to non-native ones. Given that fetuses and newborns are sensitive to the prosodic characteristics of speech, Experiments 2 and 3 presented faces talking native and nonnative languages with the speech stream being low-pass filtered. Results showed that newborns preferred looking at a person who talked to them even when only the prosodic cues were provided for both languages. Nonetheless, a familiarity preference for the previously talking face is observed in the "normal speech" condition (i.e., Experiment 1) and a novelty preference in the "filtered speech" condition (Experiments 2 and 3). This asymmetry reveals that newborns process these two types of stimuli differently and that they may already be sensitive to a mismatch between the articulatory movements of the face and the corresponding speech sounds. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Sensitivity analysis on parameters and processes affecting vapor intrusion risk

    KAUST Repository

    Picone, Sara

    2012-03-30

    A one-dimensional numerical model was developed and used to identify the key processes controlling vapor intrusion risks by means of a sensitivity analysis. The model simulates the fate of a dissolved volatile organic compound present below the ventilated crawl space of a house. In contrast to the vast majority of previous studies, this model accounts for vertical variation of soil water saturation and includes aerobic biodegradation. The attenuation factor (ratio between concentration in the crawl space and source concentration) and the characteristic time to approach maximum concentrations were calculated and compared for a variety of scenarios. These concepts allow an understanding of controlling mechanisms and aid in the identification of critical parameters to be collected for field situations. The relative distance of the source to the nearest gas-filled pores of the unsaturated zone is the most critical parameter because diffusive contaminant transport is significantly slower in water-filled pores than in gas-filled pores. Therefore, attenuation factors decrease and characteristic times increase with increasing relative distance of the contaminant dissolved source to the nearest gas diffusion front. Aerobic biodegradation may decrease the attenuation factor by up to three orders of magnitude. Moreover, the occurrence of water table oscillations is of importance. Dynamic processes leading to a retreating water table increase the attenuation factor by two orders of magnitude because of the enhanced gas phase diffusion. © 2012 SETAC.

  2. From neurons to epidemics: How trophic coherence affects spreading processes

    Science.gov (United States)

    Klaise, Janis; Johnson, Samuel

    2016-06-01

    Trophic coherence, a measure of the extent to which the nodes of a directed network are organised in levels, has recently been shown to be closely related to many structural and dynamical aspects of complex systems, including graph eigenspectra, the prevalence or absence of feedback cycles, and linear stability. Furthermore, non-trivial trophic structures have been observed in networks of neurons, species, genes, metabolites, cellular signalling, concatenated words, P2P users, and world trade. Here, we consider two simple yet apparently quite different dynamical models—one a susceptible-infected-susceptible epidemic model adapted to include complex contagion and the other an Amari-Hopfield neural network—and show that in both cases the related spreading processes are modulated in similar ways by the trophic coherence of the underlying networks. To do this, we propose a network assembly model which can generate structures with tunable trophic coherence, limiting in either perfectly stratified networks or random graphs. We find that trophic coherence can exert a qualitative change in spreading behaviour, determining whether a pulse of activity will percolate through the entire network or remain confined to a subset of nodes, and whether such activity will quickly die out or endure indefinitely. These results could be important for our understanding of phenomena such as epidemics, rumours, shocks to ecosystems, neuronal avalanches, and many other spreading processes.

  3. Affect

    NARCIS (Netherlands)

    Cetinic, M.; Diamanti, J.; Szeman, I.; Blacker, S.; Sully, J.

    2017-01-01

    This chapter historicizes four divergent but historically contemporaneous genres of affect theory – romantic, realist, speculative, and materialist. While critics credited with the turn to affect in the 1990s wrote largely in the wake of poststructuralism from the perspective of gender and queer

  4. Site- and horizon-specific patterns of microbial community structure and enzyme activities in permafrost-affected soils of Greenland

    DEFF Research Database (Denmark)

    Gittel, Antje; Barta, Jiri; Kohoutova, Iva

    2014-01-01

    topsoils”), resulting from a decrease in fungal abundance compared to recent (“unburied”) topsoils. Actinobacteria (in particular Intrasporangiaceae) accounted for a major fraction of the microbial community in buried topsoils, but were only of minor abundance in all other soil horizons. It was indicated...... that the distribution pattern of Actinobacteria and a variety of other bacterial classes was related to the activity of phenol oxidases and peroxidases supporting the hypothesis that bacteria might resume the role of fungi in oxidative enzyme production and degradation of phenolic and other complex substrates...

  5. Integrated microbial processes for biofuels and high value-added products: the way to improve the cost effectiveness of biofuel production.

    Science.gov (United States)

    da Silva, Teresa Lopes; Gouveia, Luísa; Reis, Alberto

    2014-02-01

    The production of microbial biofuels is currently under investigation, as they are alternative sources to fossil fuels, which are diminishing and their use has a negative impact on the environment. However, so far, biofuels derived from microbes are not economically competitive. One way to overcome this bottleneck is the use of microorganisms to transform substrates into biofuels and high value-added products, and simultaneously taking advantage of the various microbial biomass components to produce other products of interest, as an integrated process. In this way, it is possible to maximize the economic value of the whole process, with the desired reduction of the waste streams produced. It is expected that this integrated system makes the biofuel production economically sustainable and competitive in the near future. This review describes the investigation on integrated microbial processes (based on bacteria, yeast, and microalgal cultivations) that have been experimentally developed, highlighting the importance of this approach as a way to optimize microbial biofuel production process.

  6. Microbial community structure in a thermophilic aerobic digester used as a sludge pretreatment process for the mesophilic anaerobic digestion and the enhancement of methane production.

    Science.gov (United States)

    Jang, Hyun Min; Park, Sang Kyu; Ha, Jeong Hyub; Park, Jong Moon

    2013-10-01

    An effective two-stage sewage sludge digestion process, consisting of thermophilic aerobic digestion (TAD) followed by mesophilic anaerobic digestion (MAD), was developed for efficient sludge reduction and methane production. Using TAD as a biological pretreatment, the total volatile suspended solid reduction (VSSR) and methane production rate (MPR) in the MAD reactor were significantly improved. According to denaturing gradient gel electrophoresis (DGGE) analysis, the results indicated that the dominant bacteria species such as Ureibacillus thermophiles and Bacterium thermus in TAD were major routes for enhancing soluble organic matter. TAD pretreatment using a relatively short SRT of 1 day showed highly increased soluble organic products and positively affected an increment of bacteria populations which performed interrelated microbial metabolisms with methanogenic species in the MAD; consequently, a quantitative real-time PCR indicated greatly increased Methanosarcinales (acetate-utilizing methanogens) in the MAD, resulting in enhanced methane production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Experimental warming differentially affects microbial structure and activity in two contrasted moisture sites in a Sphagnum-dominated peatland.

    Science.gov (United States)

    Delarue, Frédéric; Buttler, Alexandre; Bragazza, Luca; Grasset, Laurent; Jassey, Vincent E J; Gogo, Sébastien; Laggoun-Défarge, Fatima

    2015-04-01

    Several studies on the impact of climate warming have indicated that peat decomposition/mineralization will be enhanced. Most of these studies deal with the impact of experimental warming during summer when prevalent abiotic conditions are favorable to decomposition. Here, we investigated the effect of experimental air warming by open-top chambers (OTCs) on water-extractable organic matter (WEOM), microbial biomasses and enzymatic activities in two contrasted moisture sites named Bog and Fen sites, the latter considered as the wetter ones. While no or few changes in peat temperature and water content appeared under the overall effect of OTCs, we observed that air warming smoothed water content differences and led to a decrease in mean peat temperature at the warmed Bog sites. This thermal discrepancy between the two sites led to contrasting changes in microbial structure and activities: a rise in hydrolytic activity at the warmed Bog sites and a relative enhancement of bacterial biomass at the warmed Fen sites. These features were not associated with any change in WEOM properties namely carbon and sugar contents and aromaticity, suggesting that air warming did not trigger any shift in OM decomposition. Using various tools, we show that the use of single indicators of OM decomposition can lead to fallacious conclusions. Lastly, these patterns may change seasonally as a consequence of complex interactions between groundwater level and air warming, suggesting the need to improve our knowledge using a high time-resolution approach. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Factors affecting the performance of a single-chamber microbial fuel cell-type biological oxygen demand sensor.

    Science.gov (United States)

    Yang, Gai-Xiu; Sun, Yong-Ming; Kong, Xiao-Ying; Zhen, Feng; Li, Ying; Li, Lian-Hua; Lei, Ting-Zhou; Yuan, Zhen-Hong; Chen, Guan-Yi

    2013-01-01

    Microbial fuel cells (MFCs) are devices that exploit microorganisms as biocatalysts to degrade organic matter or sludge present in wastewater (WW), and thereby generate electricity. We developed a simple, low-cost single-chamber microbial fuel cell (SCMFC)-type biochemical oxygen demand (BOD) sensor using carbon felt (anode) and activated sludge, and demonstrated its feasibility in the construction of a real-time BOD measurement system. Further, the effects of anodic pH and organic concentration on SCMFC performance were examined, and the correlation between BOD concentration and its response time was analyzed. Our results demonstrated that the SCMFC exhibited a stable voltage after 132 min following the addition of synthetic WW (BOD concentration: 200 mg/L). Notably, the response signal increased with an increase in BOD concentration (range: 5-200 mg/L) and was found to be directly proportional to the substrate concentration. However, at higher BOD concentrations (>120 mg/L) the response signal remained unaltered. Furthermore, we optimized the SCMFC using synthetic WW, and tested it with real WW. Upon feeding real WW, the BOD values exhibited a standard deviation from 2.08 to 8.3% when compared to the standard BOD5 method, thus demonstrating the practical applicability of the developed system to real treatment effluents.

  9. Microbial load and phytochemicals stability of camel hay (Cymbopogon Schoenanthus L) leaves as affected by gamma irradiation

    International Nuclear Information System (INIS)

    Musa, H. A. A.; Ahmed, E. E.; Osman, G. A. M.; Ludwig-muller, J.

    2010-01-01

    The influence of gamma irradiation on microbial load and chemical quality of camel hay (Cymbopogon schoenanthus) leaves was evaluated at doses of 0, 5,10, and 15 kGy in a cobalt-60 package irradiator. The results revealed that, immediately after irradiation, gamma irradiation was found to cause significant reduction in microbial load proportionate to the doses delivered. TLC analysis indicated that irradiation of camel hay leaves extract with 15 kGy doses of gamma radiation had no effect on flavonoids concentrations, however, increase in total phenols and tannins was observed. In addition, the chemical constituents of camel hay leaves as represented by HPLC retention time (min) at different wave lengths showed that the compounds of retention time 8.42, 29.08, 8.38, 16.93, 14.80 and 42.80 min remained approximately unchanged, while the compound of retention times 16.95 min was eliminated. The compounds of retention times 9.66, 2.03 and 29.35 min were decreased from 16.56 to 11.77, 14.06 to 9.88 and 8.25 to 2.88 min respectively. An increase in the chemical constituents, was observed in the compounds of the retention times 14.37 and 35.42 min from 33.76 to 40.11 and 5.64 to 10.05, respectively. (Author)

  10. Lessons learned from the Febex in situ test: geochemical processes associated to the microbial degradation and gas generation

    International Nuclear Information System (INIS)

    Fernandez, A. M.; Sanchez, D.M.; Melon, A.; Mingarro, M.; Wieczorek, K.

    2012-01-01

    Document available in extended abstract form only. Compacted bentonites are considered as backfill and sealing material in most high-level radioactive waste disposal (HLW) concepts because of their physico-chemical properties. Although they are very stable in their original natural ambient, any change in the physico-chemical, geochemical and mineralogical conditions may influence in their functions. Therefore, numerous studies have been performed during years in order to evaluate the bentonite barrier behaviour affected by thermo-hydro-mechanical and geochemical processes in tests at different scales. One of the key parameters in the safety assessment of a nuclear waste repository is the redox conditions of the bentonite pore water in the near field, due to their effect on the mobility and sorption of a lot of radionuclides. Among the factors that influence the Eh of the pore water are: a) the amount of oxygen in the barrier and in the clay-rocks, b) the type of existing minerals sensible to the redox potential, c) the production of radiolytic oxidants and reductants, d) the type and rate of the metal corrosion, f) the existence of organic matter, and e) the presence and viability of micro-organisms. However, the microbiological processes have not been taken into account during a lot of years because it is was thought that the microbial growth and activity at repository conditions are improbable due to: the low water activity as a consequence of the heat and the pore water salinity, the reduced space for their growth due to the compaction degree and swelling of the bentonite, etc. Different studies have shown that the microorganisms stop their activity at a w 2 MPa, low availability of water, small pore size 3 or a pore water salinity > 100 g NaCl/L. Nevertheless, during the transitory phase of the bentonite saturation, some modifications occur in the salinity of the pore water, the initial dry densities due to the hydration process, the swelling pressures, and the

  11. Sustainable resource recovery and energy conversion processes using microbial electrochemical technologies

    Science.gov (United States)

    Yates, Matthew D.

    Microbial Electrochemical Technologies (METs) are emerging technological platforms for the conversion of waste into usable products. METs utilize naturally occurring bacteria, called exoelectrogens, capable of transferring electrons to insoluble terminal electron acceptors. Electron transfer processes in the exoelectrogen Geobacter sulfurreducens were exploited here to develop sustainable processes for synthesis of industrially and socially relevant end products. The first process examined was the removal of soluble metals from solution to form catalytic nanoparticles and nanoporous structures. The second process examined was the biocatalytic conversion of electrons into hydrogen gas using electrons supplied directly to an electrode. Nanoparticle formation is desirable because materials on the nanoscale possess different physical, optical, electronic, and mechanical properties compared to bulk materials. In the first process, soluble palladium was used to form catalytic palladium nanoparticles using extracellular electron transfer (EET) processes of G. sulfurreducens, typically the dominant member of mixedculture METs. Geobacter cells reduced the palladium extracellularly using naturally produced pili, which provided extracellular adsorption and reduction sites to help delay the diffusion of soluble metals into the cell. The extracellular reduction prevented cell inactivation due to formation of intracellular particles, and therefore the cells could be reused in multiple palladium reduction cycles. A G. sulfurreducens biofilm was next investigated as a biotemplate for the formation of a nanoporous catalytic palladium structure. G. sulfurreducens biofilms have a dense network of pili and extracellular cytochromes capable of high rates of electron transfer directly to an electrode surface. These pili and cytochromes provide a dense number of reduction sites for nanoparticle formation without the need for any synthetic components. The cells within the biofilm also can

  12. Preliminary investigation of processes that affect source term identification

    International Nuclear Information System (INIS)

    Wickliff, D.S.; Solomon, D.K.; Farrow, N.D.

    1991-09-01

    Solid Waste Storage Area (SWSA) 5 is known to be a significant source of contaminants, especially tritium ( 3 H), to the White Oak Creek (WOC) watershed. For example, Solomon et al. (1991) estimated the total 3 H discharge in Melton Branch (most of which originates in SWSA 5) for the 1988 water year to be 1210 Ci. A critical issue for making decisions concerning remedial actions at SWSA 5 is knowing whether the annual contaminant discharge is increasing or decreasing. Because (1) the magnitude of the annual contaminant discharge is highly correlated to the amount of annual precipitation (Solomon et al., 1991) and (2) a significant lag may exist between the time of peak contaminant release from primary sources (i.e., waste trenches) and the time of peak discharge into streams, short-term stream monitoring by itself is not sufficient for predicting future contaminant discharges. In this study we use 3 H to examine the link between contaminant release from primary waste sources and contaminant discharge into streams. By understanding and quantifying subsurface transport processes, realistic predictions of future contaminant discharge, along with an evaluation of the effectiveness of remedial action alternatives, will be possible. The objectives of this study are (1) to characterize the subsurface movement of contaminants (primarily 3 H) with an emphasis on the effects of matrix diffusion; (2) to determine the relative strength of primary vs secondary sources; and (3) to establish a methodology capable of determining whether the 3 H discharge from SWSA 5 to streams is increasing or decreasing

  13. Drugs affecting prelamin A processing: Effects on heterochromatin organization

    International Nuclear Information System (INIS)

    Mattioli, Elisabetta; Columbaro, Marta; Capanni, Cristina; Santi, Spartaco; Maraldi, Nadir M.; D'Apice, M. Rosaria; Novelli, Giuseppe; Riccio, Massimo; Squarzoni, Stefano; Foisner, Roland; Lattanzi, Giovanna

    2008-01-01

    Increasing interest in drugs acting on prelamin A has derived from the finding of prelamin A involvement in severe laminopathies. Amelioration of the nuclear morphology by inhibitors of prelamin A farnesylation has been widely reported in progeroid laminopathies. We investigated the effects on chromatin organization of two drugs inhibiting prelamin A processing by an ultrastructural and biochemical approach. The farnesyltransferase inhibitor FTI-277 and the non-peptidomimetic drug N-acetyl-S-farnesyl-L-cysteine methylester (AFCMe) were administered to cultured control human fibroblasts for 6 or 18 h. FTI-277 interferes with protein farnesylation causing accumulation of non-farnesylated prelamin A, while AFCMe impairs the last cleavage of the lamin A precursor and is expected to accumulate farnesylated prelamin A. FTI-277 caused redistribution of heterochromatin domains at the nuclear interior, while AFCMe caused loss of heterochromatin domains, increase of nuclear size and nuclear lamina thickening. At the biochemical level, heterochromatin-associated proteins and LAP2α were clustered at the nuclear interior following FTI-277 treatment, while they were unevenly distributed or absent in AFCMe-treated nuclei. The reported effects show that chromatin is an immediate target of FTI-277 and AFCMe and that dramatic remodeling of chromatin domains occurs following treatment with the drugs. These effects appear to depend, at least in part, on the accumulation of prelamin A forms, since impairment of prelamin A accumulation, here obtained by 5-azadeoxycytidine treatment, abolishes the chromatin effects. These results may be used to evaluate downstream effects of FTIs or other prelamin A inhibitors potentially useful for the therapy of laminopathies

  14. Microbial processes and communities in sediment samples along a transect across the Lusi mud volcano, Indonesia

    Science.gov (United States)

    Krueger, Martin; Straaten, Nontje; Mazzini, Adriano

    2015-04-01

    The Lusi eruption represents one of the largest ongoing sedimentary hosted geothermal systems. This eruption started in 2006 following to a 6.3 M earthquake that stroke Java Island. Since then it has been spewing boiling mud from a central crater with peaks reaching 180.000 m3 per day. Today an area of about 8 km2 is covered by locally dried mud breccia where a network of hundreds of satellite seeping pools is active. Numerous investigations focused on the study of offshore microbial colonies that commonly thrive at offshore methane seeps and mud volcanoes, however very little has been done for onshore seeping structures. Lusi represents a unique opportunity to complete a comprehensive study of onshore microbial communities fed by the seepage of CH4 and CO2 as well as of heavier liquid hydrocarbons originating from several km below the surface. We conducted a sampling campaign at the Lusi site collecting samples of fresh mud close to the erupting crater using a remote controlled drone. In addition we completed a transect towards outer parts of the crater to collect older, weathered samples for comparison. In all samples active microorganisms were present. The highest activities for CO2 and CH4 production as well as for CH4 oxidation and hydrocarbon degradation were observed in medium-age mud samples collected roughly in the middle of the transect. Rates for aerobic methane oxidation were high, as was the potential of the microbial communities to degrade hydrocarbons (oils, alkanes, BTEX tested). The data suggests a transition of microbial populations from an anaerobic, hydrocarbon-driven metabolism in fresher samples from center or from small seeps to more generalistic, aerobic microbial communities in older, more consolidated sediments. Currently, the microbial communities in the different sediment samples are analyzed using quantitative PCR and T-RFLP combined with MiSeq sequencing. This study represents an initial step to better understand onshore seepage

  15. Diets high in resistant starch and arabinoxylan modulate digestion processes and SCFA pool size in the large intestine and faecal microbial composition in pigs.

    Science.gov (United States)

    Nielsen, Tina S; Lærke, Helle N; Theil, Peter K; Sørensen, Jens F; Saarinen, Markku; Forssten, Sofia; Knudsen, Knud E Bach

    2014-12-14

    The effects of a high level of dietary fibre (DF) either as arabinoxylan (AX) or resistant starch (RS) on digestion processes, SCFA concentration and pool size in various intestinal segments and on the microbial composition in the faeces were studied in a model experiment with pigs. A total of thirty female pigs (body weight 63.1 (sem 4.4) kg) were fed a low-DF, high-fat Western-style control diet (WSD), an AX-rich diet (AXD) or a RS-rich diet (RSD) for 3 weeks. Diet significantly affected the digestibility of DM, protein, fat, NSP and NSP components, and the arabinose:xylose ratio, as well as the disappearance of NSP and AX in the large intestine. RS was mainly digested in the caecum. AX was digested at a slower rate than RS. The digesta from AXD-fed pigs passed from the ileum to the distal colon more than twice as fast as those from WSD-fed pigs, with those from RSD-fed pigs being intermediate (PEubacterium rectale, Bifidobacterium spp. and Lactobacillus spp. in the faeces sampled at week 3 of the experimental period (P< 0.05). In the caecum, proximal and mid colon, AXD feeding resulted in a 3- to 5-fold higher pool size of butyrate compared with WSD feeding, with the RSD being intermediate (P <0.001). In conclusion, the RSD and AXD differently affected digestion processes compared with the WSD, and the AXD most efficiently shifted the microbial composition towards butyrogenic species in the faeces and increased the large-intestinal butyrate pool size.

  16. Markers of Microbial Translocation and Immune Activation Predict Cognitive Processing Speed in Heavy-Drinking Men Living with HIV

    Directory of Open Access Journals (Sweden)

    Mollie A. Monnig

    2017-09-01

    Full Text Available HIV infection and alcohol use disorder are associated with deficits in neurocognitive function. Emerging evidence points to pro-inflammatory perturbations of the gut-brain axis as potentially contributing to neurocognitive impairment in the context of HIV and chronic heavy alcohol use. This study examined whether plasma markers of microbial translocation (LPS from the gastrointestinal tract and related immune activation (sCD14, EndoCAb were associated with neurocognition in 21 men living with HIV who were virally suppressed on antiretroviral therapy. All participants met federal criteria for heavy drinking and were enrolled in a randomized controlled trial (RCT of a brief alcohol intervention. This secondary analysis utilized blood samples and cognitive scores (learning, memory, executive function, verbal fluency, and processing speed obtained at baseline and three-month follow-up of the RCT. In generalized estimating equation models, LPS, sCD14, and EndoCAb individually were significant predictors of processing speed. In a model with all biomarkers, higher LPS and sCD14 both remained significant predictors of lower processing speed. These preliminary findings suggest that inflammation stemming from HIV and/or alcohol could have negative effects on the gut-brain axis, manifested as diminished processing speed. Associations of microbial translocation and immune activation with processing speed in heavy-drinking PLWH warrant further investigation in larger-scale studies.

  17. Ageing processes and soil microbial community effects on the biodegradation of soil 13C-2,4-D nonextractable residues

    International Nuclear Information System (INIS)

    Lerch, T.Z.; Dignac, M.-F.; Nunan, N.; Barriuso, E.; Mariotti, A.

    2009-01-01

    The biodegradation of nonextractable residues (NER) of pesticides in soil is still poorly understood. The aim of this study was to evaluate the influence of NER ageing and fresh soil addition on the microbial communities responsible for their mineralisation. Soil containing either 15 or 90-day-old NER of 13 C-2,4-D (NER15 and NER90, respectively) was incubated for 90 days with or without fresh soil. The addition of fresh soil had no effect on the mineralisation of NER90 or of SOM, but increased the extent and rate of NER15 mineralisation. The analyses of 13 C-enriched FAME (fatty acids methyl esters) profiles showed that the fresh soil amendment only influenced the amount and structure of microbial populations responsible for the biodegradation of NER15. By coupling biological and chemical analyses, we gained some insight into the nature and the biodegradability of pesticide NER. - Ageing processes influence the NER mineralisation rate and the microbial population involved.

  18. Deriving site-specific soil clean-up values for metals and metalloids: rationale for including protection of soil microbial processes.

    Science.gov (United States)

    Kuperman, Roman G; Siciliano, Steven D; Römbke, Jörg; Oorts, Koen

    2014-07-01

    Although it is widely recognized that microorganisms are essential for sustaining soil fertility, structure, nutrient cycling, groundwater purification, and other soil functions, soil microbial toxicity data were excluded from the derivation of Ecological Soil Screening Levels (Eco-SSL) in the United States. Among the reasons for such exclusion were claims that microbial toxicity tests were too difficult to interpret because of the high variability of microbial responses, uncertainty regarding the relevance of the various endpoints, and functional redundancy. Since the release of the first draft of the Eco-SSL Guidance document by the US Environmental Protection Agency in 2003, soil microbial toxicity testing and its use in ecological risk assessments have substantially improved. A wide range of standardized and nonstandardized methods became available for testing chemical toxicity to microbial functions in soil. Regulatory frameworks in the European Union and Australia have successfully incorporated microbial toxicity data into the derivation of soil threshold concentrations for ecological risk assessments. This article provides the 3-part rationale for including soil microbial processes in the development of soil clean-up values (SCVs): 1) presenting a brief overview of relevant test methods for assessing microbial functions in soil, 2) examining data sets for Cu, Ni, Zn, and Mo that incorporated soil microbial toxicity data into regulatory frameworks, and 3) offering recommendations on how to integrate the best available science into the method development for deriving site-specific SCVs that account for bioavailability of metals and metalloids in soil. Although the primary focus of this article is on the development of the approach for deriving SCVs for metals and metalloids in the United States, the recommendations provided in this article may also be applicable in other jurisdictions that aim at developing ecological soil threshold values for protection of

  19. MbT-Tool: An open-access tool based on Thermodynamic Electron Equivalents Model to obtain microbial-metabolic reactions to be used in biotechnological process.

    Science.gov (United States)

    Araujo, Pablo Granda; Gras, Anna; Ginovart, Marta

    2016-01-01

    Modelling cellular metabolism is a strategic factor in investigating microbial behaviour and interactions, especially for bio-technological processes. A key factor for modelling microbial activity is the calculation of nutrient amounts and products generated as a result of the microbial metabolism. Representing metabolic pathways through balanced reactions is a complex and time-consuming task for biologists, ecologists, modellers and engineers. A new computational tool to represent microbial pathways through microbial metabolic reactions (MMRs) using the approach of the Thermodynamic Electron Equivalents Model has been designed and implemented in the open-access framework NetLogo. This computational tool, called MbT-Tool (Metabolism based on Thermodynamics) can write MMRs for different microbial functional groups, such as aerobic heterotrophs, nitrifiers, denitrifiers, methanogens, sulphate reducers, sulphide oxidizers and fermenters. The MbT-Tool's code contains eighteen organic and twenty inorganic reduction-half-reactions, four N-sources (NH4 (+), NO3 (-), NO2 (-), N2) to biomass synthesis and twenty-four microbial empirical formulas, one of which can be determined by the user (CnHaObNc). MbT-Tool is an open-source program capable of writing MMRs based on thermodynamic concepts, which are applicable in a wide range of academic research interested in designing, optimizing and modelling microbial activity without any extensive chemical, microbiological and programing experience.

  20. MbT-Tool: An open-access tool based on Thermodynamic Electron Equivalents Model to obtain microbial-metabolic reactions to be used in biotechnological process

    Directory of Open Access Journals (Sweden)

    Pablo Araujo Granda

    2016-01-01

    Full Text Available Modelling cellular metabolism is a strategic factor in investigating microbial behaviour and interactions, especially for bio-technological processes. A key factor for modelling microbial activity is the calculation of nutrient amounts and products generated as a result of the microbial metabolism. Representing metabolic pathways through balanced reactions is a complex and time-consuming task for biologists, ecologists, modellers and engineers. A new computational tool to represent microbial pathways through microbial metabolic reactions (MMRs using the approach of the Thermodynamic Electron Equivalents Model has been designed and implemented in the open-access framework NetLogo. This computational tool, called MbT-Tool (Metabolism based on Thermodynamics can write MMRs for different microbial functional groups, such as aerobic heterotrophs, nitrifiers, denitrifiers, methanogens, sulphate reducers, sulphide oxidizers and fermenters. The MbT-Tool's code contains eighteen organic and twenty inorganic reduction-half-reactions, four N-sources (NH4+, NO3−, NO2−, N2 to biomass synthesis and twenty-four microbial empirical formulas, one of which can be determined by the user (CnHaObNc. MbT-Tool is an open-source program capable of writing MMRs based on thermodynamic concepts, which are applicable in a wide range of academic research interested in designing, optimizing and modelling microbial activity without any extensive chemical, microbiological and programing experience.

  1. Microbial processes in North Atlantic pelagic sediments, and potential risks of deep-sea waste disposal

    International Nuclear Information System (INIS)

    Bolliger, R.; Hanselmann, K.W.; Bachofen, R.

    1989-01-01

    From the results for waste disposal on deep sea sediments, it was concluded: As waste canisters are buried in the sediment to a depth of 15 to 20 cm, they are in contact with the zone that contains the highest potential bacterial activity through a relatively large surface. An input of oxidizable organic matter to the sediment surface zone will stimulate microbial activity and therefore increase the risk for solubilization and redistribution of elements in the ocean water. Waste canisters lying on the sediment surface cut off the oxygen supply from the ocean water and ease the shift to anaerobiosis. This initiates microbial activities through which metals are changed into their mobile species as a consequence of the altered environmental redox potential. The risk for steel corrosion by hydrogen sulfide, which could be produced by sulfate reducing bacteria, is minimal since this physiological group is not active in the North Atlantic sediments examined

  2. Natural attenuation process via microbial oxidation of arsenic in a high Andean watershed.

    Science.gov (United States)

    Leiva, Eduardo D; Rámila, Consuelo d P; Vargas, Ignacio T; Escauriaza, Cristian R; Bonilla, Carlos A; Pizarro, Gonzalo E; Regan, John M; Pasten, Pablo A

    2014-01-01

    Rivers in northern Chile have arsenic (As) concentrations at levels that are toxic for humans and other organisms. Microorganism-mediated redox reactions have a crucial role in the As cycle; the microbial oxidation of As (As(III) to As(V)) is a critical transformation because it favors the immobilization of As in the solid phase. We studied the role of microbial As oxidation for controlling the mobility of As in the extreme environment found in the Chilean Altiplano (i.e., > 4000 meters above sea level (masl) and Azufre River sub-basin, where the natural attenuation of As from hydrothermal discharge (pH 4-6) was observed. As(III) was actively oxidized by a microbial consortium, leading to a significant decrease in the dissolved As concentrations and a corresponding increase in the sediment's As concentration downstream of the hydrothermal source. In-situ oxidation experiments demonstrated that the As oxidation required biological activity, and microbiological molecular analysis confirmed the presence of As(III)-oxidizing groups (aroA-like genes) in the system. In addition, the pH measurements and solid phase analysis strongly suggested that the As removal mechanism involved adsorption or coprecipitation with Fe-oxyhydroxides. Taken together, these results indicate that the microorganism-mediated As oxidation contributed to the attenuation of As concentrations and the stabilization of As in the solid phase, therefore controlling the amount of As transported downstream. This study is the first to demonstrate the microbial oxidation of As in Altiplano basins and its relevance in the immobilization of As. © 2013.

  3. Effect of continuous oleate addition on microbial communities involved in anaerobic digestion process

    DEFF Research Database (Denmark)

    Baserba, Manel Garrido; Angelidaki, Irini; Karakashev, Dimitar Borisov

    2012-01-01

    bacterial consortium related to functional specialization of the species towards oleate degradation. For the archaeal domain, the sequences were affiliated within Euryarchaeota phylum with three major groups (Methanosarcina, Methanosaeta and Methanobacterium genera). Results obtained in this study deliver...... a comprehensive picture on oleate degrading microbial communities in high organic strength wastewater. The findings might be utilized for development of strategies for biogas production from lipid-riched wastes....

  4. Effect of microbial processes on transuranium elements behaviour in soil, plants and animal organism

    International Nuclear Information System (INIS)

    Uajldung, R.Eh.; Garlend, T.P.

    1985-01-01

    Results of preliminary studies discussed in the present paper bring about the supposition that concentration and chemical from of an element in a plant play an essential role in variation of its availability for animals consuming plants. That is why any assessment of long-term behaviour of transuranium elements in terrestrialenvironment should be based on determination of factors affecting solubility and forms of soluble compounds in soil. These factors include concentration and chemical form of the element migrating to soil; effect of the properties of soil on element distribution between solid and liquid phases; effect soil processes on kinetics of sorption reactions, concentration of transuranium elements, forms of soluble and non-soluble chemical compounds

  5. Succession of microbial community and enhanced mechanism of a ZVI-based anaerobic granular sludge process treating chloronitrobenzenes wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Liang, E-mail: felix79cn@hotmail.com [Department of Environmental Engineering, Zhejiang University, Hangzhou 310058 (China); Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058 (China); Jin, Jie [Department of Environmental Engineering, Zhejiang University, Hangzhou 310058 (China); Lin, Haizhuan [Department of Environmental Engineering, Zhejiang University, Hangzhou 310058 (China); Wenzhou Environmental Protection Design Scientific Institute, Wenzhou 325000 (China); Gao, Kaituo [Department of Environmental Engineering, Zhejiang University, Hangzhou 310058 (China); Xu, Xiangyang, E-mail: xuxy@zju.edu.cn [Department of Environmental Engineering, Zhejiang University, Hangzhou 310058 (China); Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058 (China)

    2015-03-21

    Highlights: • The combined ZVI–UASB process was established for the degradation of chloronitrobenzenes. • There were the better shock resistance and buffering capacity for anaerobic acidification in the combined process. • Novel ZVI-based anaerobic granular sludge (ZVI–AGS) was successfully developed. • Adaptive shift of microbial community was significant in ZVI-based anaerobic granular sludge system. - Abstract: The combined zero-valent iron (ZVI) and upflow anaerobic sludge blanket (UASB) process is established for the treatment of chloronitrobenzenes (ClNBs) wastewater, and the succession of microbial community and its enhanced mechanism are investigated in the study. Results showed that compared with the control UASB (R1), the stable COD removal, ClNBs transformation, and dechlorination occurred in the combined system (R2) when operated at influent COD and 3,4-Dichloronitrobenzene (3,4-DClNB) loading rates of 4200–7700 g m{sup −3} d{sup −1} and 6.0–70.0 g m{sup −3} d{sup −1}, and R2 had the better shock resistance and buffering capacity for the anaerobic acidification. The dechlorination for the intermediate products of p-chloroanaline (p-ClAn) to analine (AN) occurred in R2 reactor after 45 days, whereas it did not occur in R1 after a long-term operation. The novel ZVI-based anaerobic granular sludge (ZVI–AGS) was successfully developed in the combined system, and higher microbial activities including ClNB transformation and H{sub 2}/CH{sub 4} production were achieved simultaneously. The dominant bacteria were closely related to the groups of Megasphaera, Chloroflexi, and Clostridium, and the majority of archaea were correlated with the groups of Methanosarcinalesarchaeon, Methanosaetaconcilii, and Methanothrixsoehngenii, which are capable of reductively dechlorinating PCB, HCB, and TCE in anaerobic niche and EPS secretion.

  6. Succession of microbial community and enhanced mechanism of a ZVI-based anaerobic granular sludge process treating chloronitrobenzenes wastewater

    International Nuclear Information System (INIS)

    Zhu, Liang; Jin, Jie; Lin, Haizhuan; Gao, Kaituo; Xu, Xiangyang

    2015-01-01

    Highlights: • The combined ZVI–UASB process was established for the degradation of chloronitrobenzenes. • There were the better shock resistance and buffering capacity for anaerobic acidification in the combined process. • Novel ZVI-based anaerobic granular sludge (ZVI–AGS) was successfully developed. • Adaptive shift of microbial community was significant in ZVI-based anaerobic granular sludge system. - Abstract: The combined zero-valent iron (ZVI) and upflow anaerobic sludge blanket (UASB) process is established for the treatment of chloronitrobenzenes (ClNBs) wastewater, and the succession of microbial community and its enhanced mechanism are investigated in the study. Results showed that compared with the control UASB (R1), the stable COD removal, ClNBs transformation, and dechlorination occurred in the combined system (R2) when operated at influent COD and 3,4-Dichloronitrobenzene (3,4-DClNB) loading rates of 4200–7700 g m −3 d −1 and 6.0–70.0 g m −3 d −1 , and R2 had the better shock resistance and buffering capacity for the anaerobic acidification. The dechlorination for the intermediate products of p-chloroanaline (p-ClAn) to analine (AN) occurred in R2 reactor after 45 days, whereas it did not occur in R1 after a long-term operation. The novel ZVI-based anaerobic granular sludge (ZVI–AGS) was successfully developed in the combined system, and higher microbial activities including ClNB transformation and H 2 /CH 4 production were achieved simultaneously. The dominant bacteria were closely related to the groups of Megasphaera, Chloroflexi, and Clostridium, and the majority of archaea were correlated with the groups of Methanosarcinalesarchaeon, Methanosaetaconcilii, and Methanothrixsoehngenii, which are capable of reductively dechlorinating PCB, HCB, and TCE in anaerobic niche and EPS secretion

  7. Fermented liquid feed - Feed processing has a big impact on microbial degradation of free lysine during fermentation

    DEFF Research Database (Denmark)

    Canibe, Nuria; Jensen, Bent Borg

    2010-01-01

    In order to investigate the influence of feed processing on the microbial degradation of free lysine during fermentation of liquid feed, a study at laboratory scale was carried out. Based on a standard Danish grower diet with extra free amino acids added, two treatments were prepared: treatment 1...... a few hours of fermentation, the levels in both treatments became similar. The concentration of acetic acid was higher in the mixture containing the mash feed than in that containing the pelleted feed. The disappearance of free lysine was much higher when mash feed was fermented than when the same...

  8. First evaluation of alkylpyrazine application as a novel method to decrease microbial contaminations in processed meat products.

    Science.gov (United States)

    Schöck, Matthias; Liebminger, Stefan; Berg, Gabriele; Cernava, Tomislav

    2018-04-03

    Every year about 20% of the globally produced meat gets lost due to microbial spoilage. Nevertheless, the demand for processed meat is constantly rising and producers are searching for novel strategies to reduce microbial contaminations in their products. In the present study, we evaluated the applicability of alkylpyrazines as antimicrobial agents. These fragrant molecules naturally occur in different vegetables, fruits, roasted nut and meat. Several pyrazine derivatives are readily added to processed products for flavoring purposes in the food industry. To evaluate their potential for application, two derivatives were tested for their antimicrobial activity against meat-associated bacterial contaminants and chicken meat as a whole. Isolates assigned to Carnobacteriaceae, Enterobacteriaceae, Listeriaceae, and Moraxellaceae were substantially inhibited in the pilot tests. Moreover, treatments of pyrazine-susceptible isolates resulted in 4-log reductions in bacterial cell counts. The effect was more pronounced when the model contaminants were exposed to higher concentrations of 5-isobutyl-2,3-dimethylpyrazine. In a first small-scale application with processed chicken meat, it was demonstrated that the antimicrobial effects of 2-isobutyl-3-methylpyrazine can be improved by additionally lowering the water activity on the meat surface when maltodextrin is used as a carrier substance. At low pyrazine dosages, the number of viable bacteria was decreased up to 95% in comparison to the corresponding controls. A complementary imaging method that was developed to assess the efficacy on the product, reinforced the applicability of this two-component system.

  9. Characterization of microbial community in the two-stage process for hydrogen and methane production from food waste

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Chun-Feng [School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Ebie, Yoshitaka [National Institute for Environmental Studies, Tsukuba 305-8506 (Japan); Xu, Kai-Qin [National Institute for Environmental Studies, Tsukuba 305-8506 (Japan); State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072 (China); Li, Yu-You [Department of Civil and Environmental Engineering, Tohoku University, Sendai 980-8579 (Japan); Inamori, Yuhei [Faculty of Symbiotic Systems Science, Fukushima University, Fukushima 960-1296 (Japan)

    2010-08-15

    The structure of a microbial community in the two-stage process for H{sub 2} and CH{sub 4} production from food waste was investigated by a molecular biological approach. The process was a continuous combined thermophilic acidogenic hydrogenesis and mesophilic (RUN1) or thermophilic (RUN2) methanogenesis with recirculation of the digested sludge. A two-phase process suggested in this study effectively separate H{sub 2}-producing bacteria from methanogenic archaea by optimization of design parameters such as pH, hydraulic retention time (HRT) and temperature. Galore microbial diversity was found in the thermophilic acidogenic hydrogenesis, Clostridium sp. strain Z6 and Thermoanaerobacterium thermosaccharolyticum were considered to be the dominant thermophilic H{sub 2}-producing bacteria. The hydrogenotrophic methanogens were inhibited in thermophilic methanogenesis, whereas archaeal rDNAs were higher in the thermophilic methanogenesis than those in mesophilic methanogenesis. The yields of H{sub 2} and CH{sub 4} were in equal range depending on the characteristics of food waste, whereas effluent water quality indicators were different obviously in RUN1 and RUN2. The results indicated that hydrolysis and removal of food waste were higher in RUN2 than RUN1. (author)

  10. Agricultural management legacy affects microbial energetics, resource utilization and active bacterial community membership during 13C-glucose consumption

    Science.gov (United States)

    Helgason, B. L.; Levy-Booth, D.; Arcand, M. M.

    2017-12-01

    Over the long-term, differences in soil management can result in fundamental changes in biogeochemical cycling. The Alternative Cropping Systems (ACS) Study at Scott, SK, Canada (est. 1994) compares organic (ORG) vs. conventionally (CON) managed crop rotations in a loamy Typic Borall. Nitrogen (N) and phosphorus (P) deficiency in the ORG systems have limited crop growth and thus plant carbon (C) inputs for over two decades, ultimately resulting in a C deficiency which has further altered biogeochemical cycling. We conducted a short-term microcosm experiment using 13C-glucose stable isotope probing (SIP) of DNA to test whether ORG soils have greater microbial C use efficiency due to long term resource limitation. Glucose-utilizing populations were dominated by Proteobacteria and Actinobacteria, with differing species-level identities and physiological capacities between CON and ORG systems. Of the 13C-utilizing taxa, relative abundance of Proteobacteria was greater in CON while Actinobacteria (and notably Firmicutes) were more dominant in ORG soils. Using isothermal calorimetry, we measured a thermodynamic efficiency (ηeff) of 0.68, which was not significantly different between soils indicating that the metabolic cost of glucose utilization was similar in CON and ORG soils. In spite of this, differential abundance analysis of 13C-labelled OTUs revealed that ORG soils had distinct active bacterial populations that were positively correlated with ηeff, ηsoil (glucose energy retained in soil) and primed soil organic matter (pSOM). In contrast, differentially abundant OTUs in the CON soils were negatively correlated with measures of thermodynamic efficiency but positively correlated with glucose-derived heat and CO2 production as well as NO3- and PO4- availability. ORG bacterial communities may co-metabolize other resources (N and P) from SOM to meet their metabolic requirements during glucose utilization, while the active bacteria in the CON soils could access these

  11. Processes of microbial pesticide degradation in rapid sand filters for treatment of drinking water

    DEFF Research Database (Denmark)

    Hedegaard, Mathilde Jørgensen; Albrechtsen, Hans-Jørgen

    Aerobic rapid sand filters for treatment of groundwater at waterworks were investigated for the ability to remove pesticides. The potential, kinetics and mechanisms of microbial pesticide removal was investigated in microcosms consisting of filter sand, treated water and pesticides in initial...... concentrations of 0.04-2.4 μg/L. The pesticides were removed from the water in microcosms with filter sand from all three investigated sand filters. Within the experimental periode of six to 13 days, 65-85% of the bentazone, 86-93% of the glyphosate, 97-99% of the p-nitrophenol was removed from the water phase...

  12. Affect of different ICT processing parameters to the quality of tomograms

    International Nuclear Information System (INIS)

    Zhou Jiang; Sun Lingxia; Ye Yunchang

    2009-01-01

    The quality of ICT tomograms is affected by detecting processing parameters and image processing methods besides the performances of ICT systems. Optimal processing parameters and image processing methods can promote not only the quality of tomogram but also the resolution. Some research work was carried out about processing parameters and image processing methods including choice of collimator, filter, false color composite image. And some examples were given in this paper, which can provide the ICT analyst with reference. (authors)

  13. Methane-yielding microbial communities processing lactate-rich substrates: a piece of the anaerobic digestion puzzle.

    Science.gov (United States)

    Detman, Anna; Mielecki, Damian; Pleśniak, Łukasz; Bucha, Michał; Janiga, Marek; Matyasik, Irena; Chojnacka, Aleksandra; Jędrysek, Mariusz-Orion; Błaszczyk, Mieczysław K; Sikora, Anna

    2018-01-01

    Anaerobic digestion, whose final products are methane and carbon dioxide, ensures energy flow and circulation of matter in ecosystems. This naturally occurring process is used for the production of renewable energy from biomass. Lactate, a common product of acidic fermentation, is a key intermediate in anaerobic digestion of biomass in the environment and biogas plants. Effective utilization of lactate has been observed in many experimental approaches used to study anaerobic digestion. Interestingly, anaerobic lactate oxidation and lactate oxidizers as a physiological group in methane-yielding microbial communities have not received enough attention in the context of the acetogenic step of anaerobic digestion. This study focuses on metabolic transformation of lactate during the acetogenic and methanogenic steps of anaerobic digestion in methane-yielding bioreactors. Methane-yielding microbial communities instead of pure cultures of acetate producers were used to process artificial lactate-rich media to methane and carbon dioxide in up-flow anaerobic sludge blanket reactors. The media imitated the mixture of acidic products found in anaerobic environments/digesters where lactate fermentation dominates in acidogenesis. Effective utilization of lactate and biogas production was observed. 16S rRNA profiling was used to examine the selected methane-yielding communities. Among Archaea present in the bioreactors, the order Methanosarcinales predominated. The acetoclastic pathway of methane formation was further confirmed by analysis of the stable carbon isotope composition of methane and carbon dioxide. The domain Bacteria was represented by Bacteroidetes , Firmicutes , Proteobacteria , Synergistetes , Actinobacteria , Spirochaetes , Tenericutes , Caldithrix , Verrucomicrobia , Thermotogae , Chloroflexi , Nitrospirae, and Cyanobacteria. Available genome sequences of species and/or genera identified in the microbial communities were searched for genes encoding the lactate

  14. Diets high in resistent starch and arabinoxylan modulate digestion processes and SCFA pool size in the large intestine and faecal microbial composition in pigs

    DEFF Research Database (Denmark)

    Nielsen, Tina Skau; Lærke, Helle Nygaard; Theil, Peter Kappel

    2014-01-01

    The effects of a high level of dietary fibre (DF) either as arabinoxylan (AX) or resistant starch (RS) on digestion processes, SCFA concentration and pool size in various intestinal segments and on the microbial composition in the faeces were studied in a model experiment with pigs. A total...... resulted in a 3- to 5-fold higher pool size of butyrate compared with WSD feeding, with the RSD being intermediate (P microbial composition towards butyrogenic...

  15. Carbon use efficiency (CUE) and biomass turnover of soil microbial communities as affected by bedrock, land management and soil temperature and moisture

    Science.gov (United States)

    Zheng, Qing; Hu, Yuntao; Richter, Andreas; Wanek, Wolfgang

    2017-04-01

    Soil microbial carbon use efficiency (CUE), defined as the proportion of organic C taken up that is allocated to microbial growth, represents an important synthetic representation of microbial community C metabolism that describes the flux partitioning between microbial respiration and growth. Therefore, studying microbial CUE is critical for the understanding of soil C cycling. Microbial CUE is thought to vary with environmental conditions (e.g. temperature and soil moisture). Microbial CUE is thought to decrease with increasing temperature and declining soil moisture, as the latter may trigger stress responses (e.g. the synthesis of stress metabolites), which may consequently lower microbial community CUE. However, these effects on microbial CUE have not been adequately measured so far due to methodological restrictions. The most widely used methods for microbial CUE estimation are based on tracing 13C-labeled substrates into microbial biomass and respiratory CO2, approaches that are known to overestimate microbial CUE of native organic matter in soil. Recently, a novel substrate-independent approach based on the measurement of (i) respiration rates and (ii) the incorporation rates of 18O from labelled water into newly formed microbial DNA has been developed in our laboratory for measuring microbial CUE. This approach overcomes the shortcomings of previously used methods and has already been shown to yield realistic estimations of soil microbial CUE. This approach can also be applied to concurrently measure microbial biomass turnover rates, which also influence the sequestration of soil organic C. Microbial turnover rates are also thought to be impacted by environmental factors, but rarely have been directly measured so far. Here, we aimed at determining the short-term effects of environmental factors (soil temperature and soil moisture) on microbial CUE and microbial biomass turnover rates based on the novel 18O approach. Soils from three land-use types (arable

  16. Composting of waste paint sludge containing melamine resin as affected by nutrients and gypsum addition and microbial inoculation

    International Nuclear Information System (INIS)

    Tian Yongqiang; Chen Liming; Gao Lihong; Michel, Frederick C.; Wan Caixia; Li Yebo; Dick, Warren A.

    2012-01-01

    Melamine formaldehyde resins have hard and durable properties and are found in many products, including automobile paints. These resins contain high concentrations of nitrogen and, if properly composted, can yield valuable products. We evaluated the effects of starter compost, nutrients, gypsum and microbial inoculation on composting of paint sludge containing melamine resin. A bench-scale composting experiment was conducted at 55 °C for 91 days and then at 30 °C for an additional 56 days. After 91 days, the composts were inoculated with a mixed population of melamine-degrading microorganisms. Melamine resin degradation after the entire 147 days of composting varied between 73 and 95% for the treatments with inoculation of microorganisms compared to 55–74% for the treatments without inoculation. Degradation was also enhanced by nutrients and gypsum additions. Our results infer that large scale composting of melamine resins in paint sludge is possible. - Highlights: ► Melamine resin in waste paint sludges could be efficiently composted at bench scale. ► Melamine resin degradation after 147 days of composting was 73–95% complete. ► Nutrients, gypsum and melamine-degrading microorganisms increased composting rate. ► Melamine degradation products first increased and then decreased in the compost. ► Final compost was enriched in nitrogen and other essential plant nutrients. - Melamine resin in waste paint sludges was efficiently composted at bench scale, with finished composts having low levels of heavy metals and enriched in plant nutrients.

  17. Microbial transglutaminase treatment in pasta-production does not affect the immunoreactivity of gliadin with celiac disease patients' sera.

    Science.gov (United States)

    Ruh, Tobias; Ohsam, Jürgen; Pasternack, Ralf; Yokoyama, Keiichi; Kumazawa, Yoshiyuki; Hils, Martin

    2014-07-30

    The effect of microbial transglutaminase (MTG)-treatment of pasta-dough on the immunoreactivity with celiac disease patient's sera has been investigated. Modification by MTG has been proven by determination of the MTG reaction product ε-(γ-glutamyl)lysine (3.63 μmol/g protein), which was not detectable in non-MTG-treated pasta. Antigenicity has been analyzed by immunoblotting and ELISA using gliadin-extracts from pasta and MTG-treated pasta. Immunoblotting showed that the antibody-population (antigliadin antibodies and antideamidated gliadin antibodies) of the sera is specific for every individual patient. Immunoblotting and ELISA showed that there is no difference in immunoreactivity of gliadin extracted from pasta and MTG-pasta. Recognition pattern and intensity in Western blot as well as antibody titer has also been identical even for sera with a high antideamidated gliadin antibody titer. These results indicate no difference between pasta-gliadin and MTG-pasta-gliadin and especially no increased deamidation in pasta-gliadin by MTG-treatment.

  18. QMRAcatch - faecal microbial quality of water resources in a river-floodplain area affected by urban sources and recreational visitors

    Science.gov (United States)

    Derx, Julia; Schijven, Jack; Sommer, Regina; Kirschner, Alexander; Farnleitner, Andreas H.; Blaschke, Alfred Paul

    2016-04-01

    QMRAcatch, a tool to simulate microbial water quality including infection risk assessment, was previously developed and successfully tested at a Danube river site (Schijven et al. 2015). In the tool concentrations of target faecal microorganisms and viruses (TMVs) are computed at a point of interest (PI) along the main river and the floodplain river at daily intervals for a one year period. Even though faecal microbial pathogen concentrations in water resources are usually below the sample limit of detection, this does not ensure, that the water quality complies with a certain required health based target. The aim of this study was therefore to improve the predictability of relevant human pathogenic viruses, i.e. enterovirus and norovirus, in the studied river/floodplain area. This was done by following an innovative calibration strategy based on human-associated microbial source tracking (MST) marker data which were determined following the HF183 TaqMan assay (Green et al. 2011). The MST marker is strongly associated with human faeces and communal sewage, occurring there in numbers by several magnitudes higher than for human enteric pathogens (Mayer et al 2015). The calibrated tool was then evaluated with measured enterovirus concentrations at the PI and in the floodplain river. In the simulation tool the discharges of 5 wastewater treatment plants (WWTPs) were considered with point discharges along a 200 km reach of the Danube river. The MST marker and target virus concentrations at the PI at a certain day were computed based on the concentrations of the previous day, plus the wastewater concentrations times the WWTP discharge divided by the river discharge. A ratio of the river width was also considered, over which the MST marker and virus particles have fully mixed with river water. In the tool, the excrements from recreational visitors frequenting the floodplain area every day were assumed to be homogeneously distributed in the area. A binomial distributed

  19. Electrochemically active microorganisms from an acid mine drainage-affected site promote cathode oxidation in microbial fuel cells

    KAUST Repository

    Rojas, Claudia; Vargas, Ignacio T.; Bruns, Mary Ann; Regan, John M.

    2017-01-01

    The limited database of acidophilic or acidotolerant electrochemically active microorganisms prevents advancements on microbial fuel cells (MFCs) operated under low pH. In this study, three MFCs were used to enrich cathodic biofilms using acid mine drainage (AMD) sediments as inoculum. Linear sweep voltammetry showed cathodic current plateaus of 5.5 (± 0.7) mA at about − 170 mV vs Ag/AgCl and 8.5 (± 0.9) mA between − 500 mV to − 450 mV vs Ag/AgCl for biofilms developed on small graphite fiber brushes. After gamma irradiation, biocathodes exhibited a decrease in current density approaching that of abiotic controls. Electrochemical impedance spectroscopy showed six-fold lower charge transfer resistance with viable biofilm. Pyrosequencing data showed that Proteobacteria and Firmicutes dominated the biofilms. Acidithiobacillus representatives were enriched in some biocathodes, supporting the potential importance of these known iron and sulfur oxidizers as cathodic biocatalysts. Other acidophilic chemolithoautotrophs identified included Sulfobacillus and Leptospirillum species. The presence of chemoautotrophs was consistent with functional capabilities predicted by PICRUSt related to carbon fixation pathways in prokaryotic microorganisms. Acidophilic or acidotolerant heterotrophs were also abundant; however, their contribution to cathodic performance is unknown. This study directs subsequent research efforts to particular groups of AMD-associated bacteria that are electrochemically active on cathodes.

  20. Electrochemically active microorganisms from an acid mine drainage-affected site promote cathode oxidation in microbial fuel cells

    KAUST Repository

    Rojas, Claudia

    2017-08-03

    The limited database of acidophilic or acidotolerant electrochemically active microorganisms prevents advancements on microbial fuel cells (MFCs) operated under low pH. In this study, three MFCs were used to enrich cathodic biofilms using acid mine drainage (AMD) sediments as inoculum. Linear sweep voltammetry showed cathodic current plateaus of 5.5 (± 0.7) mA at about − 170 mV vs Ag/AgCl and 8.5 (± 0.9) mA between − 500 mV to − 450 mV vs Ag/AgCl for biofilms developed on small graphite fiber brushes. After gamma irradiation, biocathodes exhibited a decrease in current density approaching that of abiotic controls. Electrochemical impedance spectroscopy showed six-fold lower charge transfer resistance with viable biofilm. Pyrosequencing data showed that Proteobacteria and Firmicutes dominated the biofilms. Acidithiobacillus representatives were enriched in some biocathodes, supporting the potential importance of these known iron and sulfur oxidizers as cathodic biocatalysts. Other acidophilic chemolithoautotrophs identified included Sulfobacillus and Leptospirillum species. The presence of chemoautotrophs was consistent with functional capabilities predicted by PICRUSt related to carbon fixation pathways in prokaryotic microorganisms. Acidophilic or acidotolerant heterotrophs were also abundant; however, their contribution to cathodic performance is unknown. This study directs subsequent research efforts to particular groups of AMD-associated bacteria that are electrochemically active on cathodes.

  1. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system

    Science.gov (United States)

    Anantharaman, Karthik; Brown, Christopher T.; Hug, Laura A.; Sharon, Itai; Castelle, Cindy J.; Probst, Alexander J.; Thomas, Brian C.; Singh, Andrea; Wilkins, Michael J.; Karaoz, Ulas; Brodie, Eoin L.; Williams, Kenneth H.; Hubbard, Susan S.; Banfield, Jillian F.

    2016-01-01

    The subterranean world hosts up to one-fifth of all biomass, including microbial communities that drive transformations central to Earth's biogeochemical cycles. However, little is known about how complex microbial communities in such environments are structured, and how inter-organism interactions shape ecosystem function. Here we apply terabase-scale cultivation-independent metagenomics to aquifer sediments and groundwater, and reconstruct 2,540 draft-quality, near-complete and complete strain-resolved genomes that represent the majority of known bacterial phyla as well as 47 newly discovered phylum-level lineages. Metabolic analyses spanning this vast phylogenetic diversity and representing up to 36% of organisms detected in the system are used to document the distribution of pathways in coexisting organisms. Consistent with prior findings indicating metabolic handoffs in simple consortia, we find that few organisms within the community can conduct multiple sequential redox transformations. As environmental conditions change, different assemblages of organisms are selected for, altering linkages among the major biogeochemical cycles. PMID:27774985

  2. Multi-Level Contact Oxidation Process Performance When Treating Automobile Painting Wastewater: Pollutant Removal Efficiency and Microbial Community Structures

    Directory of Open Access Journals (Sweden)

    Yufang Zhu

    2017-11-01

    Full Text Available This study applied a multi-level contact oxidation process system in a pilot-scale experiment to treat automobile painting wastewater. The experimental wastewater had been pre-treated through a series of physicochemical methods, but the water still contained a high concentration of chemical oxygen demand (COD and had poor biodegradability. After the biological treatment, the COD concentration of effluent could stay below 300 mg/L. The study analyzed the effects of hydraulic residence time (HRT on COD, ammonia nitrogen (NH4+-N, and total nitrogen (TN. The optimal HRT was 8 h; at that time, removal efficiencies of COD, ammonia nitrogen, and total nitrogen were 83.8%, 86.3%, and 65%, respectively. The system also greatly reduced excess sludge production; the removal efficiency was 82.8% with a HRT of 8 h. The study applied high-throughput pyrosequencing technology to evaluate the microbial diversity and community structures in distinct stages of the biological reactor. The relevance between process performance and microbial community structure was analyzed at the phylum and class level. The abundant Firmicutes made a large contribution to improving the biodegradability of painting wastewater through hydrolysis acidification and reducing sludge production through fermentation in the biological reactor.

  3. Facial affect processing and depression susceptibility: cognitive biases and cognitive neuroscience.

    Science.gov (United States)

    Bistricky, Steven L; Ingram, Rick E; Atchley, Ruth Ann

    2011-11-01

    Facial affect processing is essential to social development and functioning and is particularly relevant to models of depression. Although cognitive and interpersonal theories have long described different pathways to depression, cognitive-interpersonal and evolutionary social risk models of depression focus on the interrelation of interpersonal experience, cognition, and social behavior. We therefore review the burgeoning depressive facial affect processing literature and examine its potential for integrating disciplines, theories, and research. In particular, we evaluate studies in which information processing or cognitive neuroscience paradigms were used to assess facial affect processing in depressed and depression-susceptible populations. Most studies have assessed and supported cognitive models. This research suggests that depressed and depression-vulnerable groups show abnormal facial affect interpretation, attention, and memory, although findings vary based on depression severity, comorbid anxiety, or length of time faces are viewed. Facial affect processing biases appear to correspond with distinct neural activity patterns and increased depressive emotion and thought. Biases typically emerge in depressed moods but are occasionally found in the absence of such moods. Indirect evidence suggests that childhood neglect might cultivate abnormal facial affect processing, which can impede social functioning in ways consistent with cognitive-interpersonal and interpersonal models. However, reviewed studies provide mixed support for the social risk model prediction that depressive states prompt cognitive hypervigilance to social threat information. We recommend prospective interdisciplinary research examining whether facial affect processing abnormalities promote-or are promoted by-depressogenic attachment experiences, negative thinking, and social dysfunction.

  4. Dietary fat sources affect feed intake, digestibility, rumen microbial populations, energy partition and methane emissions in different beef cattle genotypes.

    Science.gov (United States)

    Kaewpila, C; Sommart, K; Mitsumori, M

    2018-03-20

    The mitigation of enteric methane emission in beef cattle production is important for reducing feed energy loss and increasing environmental sustainability. The main objective of this study was to evaluate the effect of different oilseeds included in fermented total mixed rations (whole soyabean seed (SBS, control), whole kapok seed (KPS) and cracked oil palm fruit (OPF)) on feed intake, digestibility, rumen microbial populations, energy partition and methane emissions in different cattle genotypes (Charolais crossbred v. Japanese Black crossbred). Three Charolais crossbred and three Japanese Black crossbred bulls were studied in a replicated 3×3 Latin square experimental design; genotypes were analysed in separate squares including three periods of 21 days each and three dietary oilseed treatments fed ad libitum. The cattle were placed in a metabolic cage equipped with a ventilated head box respiration system for evaluating digestibility and energy balance. As compared with Charolais crossbred individuals, Japanese Black crossbred bulls showed consistently lower dry matter intake (15.5%, P0.05) or diet (P>0.05) under the experimental conditions and ranged from 5.8% to 6.0% of gross energy intake. This value is lower than that reported by the Intergovernmental Panel on Climate Change (6.5%) for cattle fed with low-quality crop residues or by-products. Thus, our results imply that the Japanese Black crossbred cattle consume less feed and emits less enteric methane than the Charolais crossbred does, mainly owing to its lower ME requirement for maintenance. The OPF diet could be used to replace SBS for high beef production, although further studies are required to evaluate their application across a wide range of beef production systems.

  5. Microbial communities associated with uranium in-situ recovery mining process are related to acid mine drainage assemblages.

    Science.gov (United States)

    Coral, Thomas; Descostes, Michaël; De Boissezon, Hélène; Bernier-Latmani, Rizlan; de Alencastro, Luiz Felippe; Rossi, Pierre

    2018-07-01

    A large fraction (47%) of the world's uranium is mined by a technique called "In Situ Recovery" (ISR). This mining technique involves the injection of a leaching fluid (acidic or alkaline) into a uranium-bearing aquifer and the pumping of the resulting solution through cation exchange columns for the recovery of dissolved uranium. The present study reports the in-depth alterations brought to autochthonous microbial communities during acidic ISR activities. Water samples were collected from a uranium roll-front deposit that is part of an ISR mine in operation (Tortkuduk, Kazakhstan). Water samples were obtained at a depth of ca 500 m below ground level from several zones of the Uyuk aquifer following the natural redox zonation inherited from the roll front deposit, including the native mineralized orebody and both upstream and downstream adjacent locations. Samples were collected equally from both the entrance and the exit of the uranium concentration plant. Next-generation sequencing data showed that the redox gradient shaped the community structures, within the anaerobic, reduced, and oligotrophic habitats of the native aquifer zones. Acid injection induced drastic changes in the structures of these communities, with a large decrease in both cell numbers and diversity. Communities present in the acidified (pH values acid mine drainage, with the dominance of Sulfobacillus sp., Leptospirillum sp. and Acidithiobacillus sp., as well as the archaean Ferroplasma sp. Communities located up- and downstream of the mineralized zone under ISR and affected by acidic fluids were blended with additional facultative anaerobic and acidophilic microorganisms. These mixed biomes may be suitable communities for the natural attenuation of ISR mining-affected subsurface through the reduction of metals and sulfate. Assessing the effect of acidification on the microbial community is critical to evaluating the potential for natural attenuation or active bioremediation strategies

  6. Hydrogen production from sugar beet juice using an integrated biohydrogen process of dark fermentation and microbial electrolysis cell.

    Science.gov (United States)

    Dhar, Bipro Ranjan; Elbeshbishy, Elsayed; Hafez, Hisham; Lee, Hyung-Sool

    2015-12-01

    An integrated dark fermentation and microbial electrochemical cell (MEC) process was evaluated for hydrogen production from sugar beet juice. Different substrate to inoculum (S/X) ratios were tested for dark fermentation, and the maximum hydrogen yield was 13% of initial COD at the S/X ratio of 2 and 4 for dark fermentation. Hydrogen yield was 12% of initial COD in the MEC using fermentation liquid end products as substrate, and butyrate only accumulated in the MEC. The overall hydrogen production from the integrated biohydrogen process was 25% of initial COD (equivalent to 6 mol H2/mol hexoseadded), and the energy recovery from sugar beet juice was 57% using the combined biohydrogen. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Microbial processes associated with roots of bulbous rush coated with iron plaques

    Energy Technology Data Exchange (ETDEWEB)

    Kusel, K.; Chabbi, A.; Trinkwalter, T. [University of Bayreuth, Bayreuth (Germany). BITOEK

    2003-11-01

    The objectives of this work were to enumerate the microbes involved in the turnover of iron and organic root exudates in the rhizoplane, to investigate the effect of oxygen and pH on the utilization of these exudates by the rhizobacteria, and to study the ability of the root-colonizing microbiota to reduce sulfate. Enumeration studies done at pH 3 demonstrated that 10{sup 6} Fe(III) reducers and 10{sup 7} Fe(II) oxidizers g (fresh wt root){sup -1} were associated with Juncus roots. When roots were incubated in goethite-containing medium without and with supplemental glucose, Fe(II) was formed at rates approximating 1.1 mmol g (fresh wt root) {sup -1} d{sup -1} and 3.6 mmol g (fresh wt root){sup -1} d{sup -1} under anoxic conditions, respectively. These results suggest that a rapid microbially mediated cycling of iron occurs in the rhizosphere of Juncus roots under changing redox conditions. Most-probable-number estimates of aerobes and anaerobes capable of consuming root exudates at pH 3 were similar in the rhizosphere sediment and in Juncus roots, but numbers of aerobes were significantly higher than those of anaerobes. At pH 3, supplemental organic exudates were primarily subject to aerobic oxidation to CO{sub 2} and not subject to fermentation. However, at pH 4.5, root exudates were also rapidly utilized under anoxic conditions. Root-associated sulfate reduction was not observed at pH 3 to 4.5 but was observed at pH 4.9. The pH increased during all root-incubation studies both under oxic and anoxic conditions. Thus, as result of the microbial turnover of organic root exudates, pH and CO{sub 2} levels might be elevated at the root surface and favor Juncus plants to colonize acidic habitats.

  8. Polyhydroxyalkanoate synthesis by mixed microbial consortia cultured on fermented dairy manure: Effect of aeration on process rates/yields and the associated microbial ecology.

    Science.gov (United States)

    Coats, Erik R; Watson, Benjamin S; Brinkman, Cynthia K

    2016-12-01

    Polyhydroxyalkanoates (PHAs) are biodegradable polymers that can substitute for petroleum-based plastics in a variety of applications. One avenue to commercial PHA production involves coupling waste-based synthesis with the use of mixed microbial consortia (MMC). In this regard, production requires maximizing the enrichment of a MMC capable of feast-famine PHA synthesis, with the metabolic response induced through imposition of aerobic-dynamic feeding (ADF) conditions. However, the concept of PHA production in complex matrices remains unrefined; process operational improvements are needed, along with an enhanced understanding of the MMC. Research presented herein investigated the effect of aeration on feast-famine PHA synthesis, with four independent aeration state systems studied; MMC were fed volatile fatty acid (VFA)-rich fermented dairy manure. Regardless of the aeration state, all MMC exhibited a feast-famine response based on observed carbon cycling. Moreover, there was no statistical difference in PHA synthesis rates, with q PHA ranging from 0.10 to 0.19 CmmolPHA gVSS -1 min -1 ; VFA uptake rates exhibited similar statistical indifferences. PHA production assessments on the enriched MMC resulted in maximum intracellular concentrations ranging from 22.5 to 90.7% (mgPHA mgVSS -1 ); at maximum concentration, the mean hydroxyvalerate mol content was 73 ± 0.6%. While a typical feast-famine dissolved oxygen (DO) pattern was observed at maximum aeration, less resolution was observed at decreasing aeration rates, suggesting that DO may not be an optimal process monitoring parameter. At lower aeration states, nitrogen cycling patterns, supported by molecular investigations targeting AOBs and NOBs, indicate that NO 2 and NO 3 sustained feast-famine PHA synthesis. Next-generation sequencing analysis of the respective MMC revealed numerous and diverse genera exhibiting the potential to achieve PHA synthesis, suggesting functional redundancy embedded in the diverse

  9. Bioelectricity Generation and Bioremediation of an Azo-Dye in a Microbial Fuel Cell Coupled Activated Sludge Process

    Science.gov (United States)

    Khan, Mohammad Danish; Abdulateif, Huda; Ismail, Iqbal M.; Sabir, Suhail; Khan, Mohammad Zain

    2015-01-01

    Simultaneous bioelectricity generation and dye degradation was achieved in the present study by using a combined anaerobic-aerobic process. The anaerobic system was a typical single chambered microbial fuel cell (SMFC) which utilizes acid navy blue r (ANB) dye along with glucose as growth substrate to generate electricity. Four different concentrations of ANB (50, 100, 200 and 400 ppm) were tested in the SMFC and the degradation products were further treated in an activated sludge post treatment process. The dye decolorization followed pseudo first order kinetics while the negative values of the thermodynamic parameter ∆G (change in Gibbs free energy) shows that the reaction proceeds with a net decrease in the free energy of the system. The coulombic efficiency (CE) and power density (PD) attained peak values at 10.36% and 2,236 mW/m2 respectively for 200 ppm of ANB. A further increase in ANB concentrations results in lowering of cell potential (and PD) values owing to microbial inhibition at higher concentrations of toxic substrates. Cyclic voltammetry studies revealed a perfect redox reaction was taking place in the SMFC. The pH, temperature and conductivity remain 7.5–8.0, 27(±2°C and 10.6–18.2 mS/cm throughout the operation. The biodegradation pathway was studied by the gas chromatography coupled with mass spectroscopy technique, suggested the preferential cleavage of the azo bond as the initial step resulting in to aromatic amines. Thus, a combined anaerobic-aerobic process using SMFC coupled with activated sludge process can be a viable option for effective degradation of complex dye substrates along with energy (bioelectricity) recovery. PMID:26496083

  10. Microbial community and treatment ability investigation in AOAO process for the optoelectronic wastewater treatment using PCR-DGGE biotechnology.

    Science.gov (United States)

    Chen, Hsi-Jien; Lin, Yi-Zi; Fanjiang, Jen-Mao; Fan, Chihhao

    2013-04-01

    This study aimed to explore the microbial community variation and treatment ability of a full-scale anoxic-aerobic-anoxic-aerobic (AOAO) process used for optoelectronic wastewater treatment. The sludge samples in the biological treatment units were collected and subsequently subjected to polymerase chain reaction (PCR) amplification and denaturing gradient gel electrophoresis identification and the wastewater components such as BOD5 and NH3-N were evaluated during the processes. The group specific primers selected were targeting at the kingdom Bacteria, the Acidobacterium, the α-proteobacteria, the β-proteobacteria ammonia oxidizers, Actinobacteria and methyllotrophs, and the 16S rDNA clone libraries were established. Ten different clones were obtained using the Bacteria primers and eight different clones were obtained using the β-proteobacteria ammonia oxidizer primers. Over 95 % of BOD5 and 90 % of NH3-N were removed from the system. The microbial community analysis showed that the Janthinobacterium sp. An8 and Nitrosospira sp. were the dominant species throughout the AOAO process. Across the whole clone library, six clones showed closely related to Janthinobacterium sp. and these species seemed to be the dominant species with more than 50 % occupancy of the total population. Nitrosospira sp. was the predominant species within the β-proteobacteria and occupied more than 30 % of the total population in the system. These two strains were the novel species specific to the AOAO process for optoelectronic treatment, and they were found strongly related to the system capability of removing aquatic contaminants by inspecting the wastewater concentration variation across the system.

  11. 10 years of BAWLing into affective and aesthetic processes in reading: what are the echoes?

    Science.gov (United States)

    Jacobs, Arthur M.; Võ, Melissa L.-H.; Briesemeister, Benny B.; Conrad, Markus; Hofmann, Markus J.; Kuchinke, Lars; Lüdtke, Jana; Braun, Mario

    2015-01-01

    Reading is not only “cold” information processing, but involves affective and aesthetic processes that go far beyond what current models of word recognition, sentence processing, or text comprehension can explain. To investigate such “hot” reading processes, standardized instruments that quantify both psycholinguistic and emotional variables at the sublexical, lexical, inter-, and supralexical levels (e.g., phonological iconicity, word valence, arousal-span, or passage suspense) are necessary. One such instrument, the Berlin Affective Word List (BAWL) has been used in over 50 published studies demonstrating effects of lexical emotional variables on all relevant processing levels (experiential, behavioral, neuronal). In this paper, we first present new data from several BAWL studies. Together, these studies examine various views on affective effects in reading arising from dimensional (e.g., valence) and discrete emotion features (e.g., happiness), or embodied cognition features like smelling. Second, we extend our investigation of the complex issue of affective word processing to words characterized by a mixture of affects. These words entail positive and negative valence, and/or features making them beautiful or ugly. Finally, we discuss tentative neurocognitive models of affective word processing in the light of the present results, raising new issues for future studies. PMID:26089808

  12. Dynamics of microbial community during the extremely long-term fermentation process of a traditional soy sauce.

    Science.gov (United States)

    Yang, Yang; Deng, Yue; Jin, Yulan; Liu, Yanxi; Xia, Baixue; Sun, Qun

    2017-08-01

    Soy sauce produced by long-term natural fermentation is a traditional specialty in Asia, with a reputation for superior quality and rich flavour. In this study, both culture-dependent and culture-independent approaches were used to investigate the microbial diversity and community dynamics during an extremely long-term (up to 4 years) natural fermentation of Xianshi Soy Sauce, a national intangible cultural heritage. Genera of Bacillus, Aspergillus and Cladosporium were detected by both methods above. The relative abundance of the genera Bacillus and Weissella was significantly higher in the late stage than in the early one, while the genera Klebsiella and Shimwellia were opposite (P fermentation time, while there was a fair homogeneousness among samples of the same year, especially during the late fermentation stage. The clustering analysis tended to separate the fermented mashes of the 4th year from the earlier stages, suggesting the necessity of the long fermentation period for developing distinctive microbiota and characteristic quality-related compounds. This is the first report to explore the temporal changes in microbial dynamics over a period of 4 years in traditional fermentation of soy sauce, and this work illustrated the importance of isolation of appropriate strains to be used as starter cultures in brewing processes. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  13. Microbial process for the preparation of acetic acid as well as solvent for its extraction from the fermentation broth

    Science.gov (United States)

    Gaddy, James L.; Clausen, Edgar C.; Ko, Ching-Whan; Wade, Leslie E.; Wikstrom, Carl V.

    2002-01-01

    A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. This solvent is substantially devoid of mono-alkyl amines and alcohols. Solvent mixtures formed of such a modified solvent with a desired cosolvent, preferably a low boiling hydrocarbon which forms an azeotrope with water are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.

  14. A novel process-based model of microbial growth: self-inhibition in Saccharomyces cerevisiae aerobic fed-batch cultures.

    Science.gov (United States)

    Mazzoleni, Stefano; Landi, Carmine; Cartenì, Fabrizio; de Alteriis, Elisabetta; Giannino, Francesco; Paciello, Lucia; Parascandola, Palma

    2015-07-30

    Microbial population dynamics in bioreactors depend on both nutrients availability and changes in the growth environment. Research is still ongoing on the optimization of bioreactor yields focusing on the increase of the maximum achievable cell density. A new process-based model is proposed to describe the aerobic growth of Saccharomyces cerevisiae cultured on glucose as carbon and energy source. The model considers the main metabolic routes of glucose assimilation (fermentation to ethanol and respiration) and the occurrence of inhibition due to the accumulation of both ethanol and other self-produced toxic compounds in the medium. Model simulations reproduced data from classic and new experiments of yeast growth in batch and fed-batch cultures. Model and experimental results showed that the growth decline observed in prolonged fed-batch cultures had to be ascribed to self-produced inhibitory compounds other than ethanol. The presented results clarify the dynamics of microbial growth under different feeding conditions and highlight the relevance of the negative feedback by self-produced inhibitory compounds on the maximum cell densities achieved in a bioreactor.

  15. Macroscopic brain dynamics during verbal and pictorial processing of affective stimuli.

    Science.gov (United States)

    Keil, Andreas

    2006-01-01

    Emotions can be viewed as action dispositions, preparing an individual to act efficiently and successfully in situations of behavioral relevance. To initiate optimized behavior, it is essential to accurately process the perceptual elements indicative of emotional relevance. The present chapter discusses effects of affective content on neural and behavioral parameters of perception, across different information channels. Electrocortical data are presented from studies examining affective perception with pictures and words in different task contexts. As a main result, these data suggest that sensory facilitation has an important role in affective processing. Affective pictures appear to facilitate perception as a function of emotional arousal at multiple levels of visual analysis. If the discrimination between affectively arousing vs. nonarousing content relies on fine-grained differences, amplification of the cortical representation may occur as early as 60-90 ms after stimulus onset. Affectively arousing information as conveyed via visual verbal channels was not subject to such very early enhancement. However, electrocortical indices of lexical access and/or activation of semantic networks showed that affectively arousing content may enhance the formation of semantic representations during word encoding. It can be concluded that affective arousal is associated with activation of widespread networks, which act to optimize sensory processing. On the basis of prioritized sensory analysis for affectively relevant stimuli, subsequent steps such as working memory, motor preparation, and action may be adjusted to meet the adaptive requirements of the situation perceived.

  16. Neural processing associated with cognitive and affective Theory of Mind in adolescents and adults.

    Science.gov (United States)

    Sebastian, Catherine L; Fontaine, Nathalie M G; Bird, Geoffrey; Blakemore, Sarah-Jayne; Brito, Stephane A De; McCrory, Eamon J P; Viding, Essi

    2012-01-01

    Theory of Mind (ToM) is the ability to attribute thoughts, intentions and beliefs to others. This involves component processes, including cognitive perspective taking (cognitive ToM) and understanding emotions (affective ToM). This study assessed the distinction and overlap of neural processes involved in these respective components, and also investigated their development between adolescence and adulthood. While data suggest that ToM develops between adolescence and adulthood, these populations have not been compared on cognitive and affective ToM domains. Using fMRI with 15 adolescent (aged 11-16 years) and 15 adult (aged 24-40 years) males, we assessed neural responses during cartoon vignettes requiring cognitive ToM, affective ToM or physical causality comprehension (control). An additional aim was to explore relationships between fMRI data and self-reported empathy. Both cognitive and affective ToM conditions were associated with neural responses in the classic ToM network across both groups, although only affective ToM recruited medial/ventromedial PFC (mPFC/vmPFC). Adolescents additionally activated vmPFC more than did adults during affective ToM. The specificity of the mPFC/vmPFC response during affective ToM supports evidence from lesion studies suggesting that vmPFC may integrate affective information during ToM. Furthermore, the differential neural response in vmPFC between adult and adolescent groups indicates developmental changes in affective ToM processing.

  17. Study of individual and group affective processes in the crew of a simulated mission to Mars: Positive affectivity as a valuable indicator of changes in the crew affectivity

    Science.gov (United States)

    Poláčková Šolcová, Iva; Lačev, Alek; Šolcová, Iva

    2014-07-01

    The success of a long-duration space mission depends on various technical demands as well as on the psychological (cognitive, affective, and motivational) adaptation of crewmembers and the quality of interactions within the crew. We examined the ways crewmembers of a 520-day simulated spaceflight to Mars (held in the Institute for Biomedical Problems, in Moscow) experienced and regulated their moods and emotions. Results show that crewmembers experienced predominantly positive emotions throughout their 520-day isolation and the changes in mood of the crewmembers were asynchronous and balanced. The study suggests that during the simulation, crewmembers experienced and regulated their emotions differently than they usually do in their everyday life. In isolation, crewmembers preferred to suppress and neutralize their negative emotions and express overtly only emotions with positive valence. Although the affective processes were almost invariable throughout the simulation, two periods of time when the level of positive emotions declined were identified. Regarding the findings, the paper suggests that changes in positive affectivity could be a more valuable indicator of human experience in demanding but professional environments than changes in negative affectivity. Finally, the paper discusses the phenomenology of emotions during a real space mission.

  18. Exploring Microbial Processes with Thermal-Hydrological Models of the Eastern Flank of the Juan de Fuca Ridge

    Science.gov (United States)

    Weathers, T. S.; Fisher, A. T.; Winslow, D. M.; Stauffer, P. H.; Gable, C. W.

    2017-12-01

    The flanks of mid-ocean ridges experience coupled flows of fluid, heat, and solutes that are critical for a wide range of global processes, including the cycling of carbon and nutrients, which supports a vast crustal biosphere. Only a few ridge-flank sites have been studied in detail; hydrogeologic conditions and processes in the volcanic crust are best understood on the eastern flank of the Juan de Fuca Ridge. This area has been extensively explored with decades of drilling, submersible, observatory, and survey expeditions and experiments, including the first hole-to-hole tracer injection experiment in the ocean crust. This study describes the development of reactive transport simulations for this ridge-flank setting using three-dimensional coupled (thermal-hydrological) models of crustal-scale circulation, beginning with the exploration of tracer transport. The prevailing flow direction is roughly south to north as a result of outcrop-to-outcrop flow, with a bulk flow rate in the range of meters/year. However, tracer was detected 500 m south ("upstream") from the injection borehole during the first year following injection. This may be explained by local mixing and/or formation fluid discharge from the southern borehole during and after injection. The constraints and parameters required to fit the observed tracer behavior can be used as a basis for modeling reactive transport processes such as nutrient delivery or microbial community evolution as a function of fluid flow. For example, the sulfate concentration in fluid samples from Baby Bare outcrop ( 8 km south of the tracer transport experiment) was 17.8 mmol/kg, whereas at Mama Bare outcrop ( 8 km to north of the tracer transport experiment) the sulfate concentration was 16.3 mmol/mg. By integrating laboratory-derived sulfate reduction rates from microbial samples originating from Juan de Fuca borehole observatories into reactive transport models, we can explore the range of microbial activity that supports

  19. Review of vegetable fermentations with particular emphasis on processing modifications, microbial ecology, and spoilage

    Science.gov (United States)

    The consumption of vegetables is widespread in the world and represents a major component of the human diet. Microorganisms (mainly lactic acid bacteria, yeasts, Enterobacteriaceae, Propionibacterium and Clostridium species) play a significant role in vegetable fermentations, affecting the quality a...

  20. Urban Effects on Microbial Processes and Food Webs in Coastal Watershed Streams

    Science.gov (United States)

    We conducted a stream survey in the Narragansett Bay Watershed that targeted a gradient of development intensity and examined how associated changes in nutrients, carbon, and stressors affected periphyton and macroinvertebrates. Concentrations of nutrients, cations, and anions we...

  1. Attachment affects social information processing: Specific electrophysiological effects of maternal stimuli.

    Science.gov (United States)

    Wu, Lili; Gu, Ruolei; Zhang, Jianxin

    2016-01-01

    Attachment is critical to each individual. It affects the cognitive-affective processing of social information. The present study examines how attachment affects the processing of social information, specifically maternal information. We assessed the behavioral and electrophysiological responses to maternal information (compared to non-specific others) in a Go/No-go Association Task (GNAT) with 22 participants. The results illustrated that attachment affected maternal information processing during three sequential stages of information processing. First, attachment affected visual perception, reflected by enhanced P100 and N170 elicited by maternal information as compared to others information. Second, compared to others, mother obtained more attentional resources, reflected by faster behavioral response to maternal information and larger P200 and P300. Finally, mother was evaluated positively, reflected by shorter P300 latency in a mother + good condition as compared to a mother + bad condition. These findings indicated that the processing of attachment-relevant information is neurologically differentiated from other types of social information from an early stage of perceptual processing to late high-level processing.

  2. Relation between facial affect recognition and configural face processing in antipsychotic-free schizophrenia.

    Science.gov (United States)

    Fakra, Eric; Jouve, Elisabeth; Guillaume, Fabrice; Azorin, Jean-Michel; Blin, Olivier

    2015-03-01

    Deficit in facial affect recognition is a well-documented impairment in schizophrenia, closely connected to social outcome. This deficit could be related to psychopathology, but also to a broader dysfunction in processing facial information. In addition, patients with schizophrenia inadequately use configural information-a type of processing that relies on spatial relationships between facial features. To date, no study has specifically examined the link between symptoms and misuse of configural information in the deficit in facial affect recognition. Unmedicated schizophrenia patients (n = 30) and matched healthy controls (n = 30) performed a facial affect recognition task and a face inversion task, which tests aptitude to rely on configural information. In patients, regressions were carried out between facial affect recognition, symptom dimensions and inversion effect. Patients, compared with controls, showed a deficit in facial affect recognition and a lower inversion effect. Negative symptoms and lower inversion effect could account for 41.2% of the variance in facial affect recognition. This study confirms the presence of a deficit in facial affect recognition, and also of dysfunctional manipulation in configural information in antipsychotic-free patients. Negative symptoms and poor processing of configural information explained a substantial part of the deficient recognition of facial affect. We speculate that this deficit may be caused by several factors, among which independently stand psychopathology and failure in correctly manipulating configural information. PsycINFO Database Record (c) 2015 APA, all rights reserved.

  3. Changes in attentional processing and affective reactivity in pregnancy and postpartum

    Directory of Open Access Journals (Sweden)

    Gollan JK

    2014-11-01

    Full Text Available Jackie K Gollan, Laina Rosebrock, Denada Hoxha, Katherine L Wisner Asher Center for the Study and Treatment of Depressive Disorders, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA Abstract: The aim of this review is to provide an overview of the research in attentional processing and affective reactivity in pregnancy and postpartum to inform future research. Numerous changes occur in attentional processing and affective reactivity across the childbearing period. This review focuses on the definition and methods of measuring attentional processing and affective reactivity. We discuss research studies that have examined the changes in these two processes during the perinatal phases of pregnancy and postpartum, with and without depression and anxiety. We evaluate the importance of using multiple levels of measurement, including physiological and neuroimaging techniques, to study these processes via implicit and explicit tasks. Research that has identified regions of brain activation using functional magnetic resonance imaging as well as other physiological assessments is integrated into the discussion. The importance of using sophisticated methodological techniques in future studies, such as multiple mediation models, for the purpose of elucidating mechanisms of change during these processes in pregnancy and postpartum is emphasized. We conclude with a discussion of the effect of these processes on maternal psychological functioning and infant outcomes. These processes support a strategy for individualizing treatment for pregnant and postpartum women suffering from depression and anxiety. Keywords: attentional processing, emotion, affective reactivity, depression, pregnancy, postpartum

  4. Sulfur in serpentinized oceanic peridotites: Serpentinization processes and microbial sulfate reduction

    Science.gov (United States)

    Alt, J.C.; Shanks, Wayne C.

    1998-01-01

    The mineralogy, contents, and isotopic compositions of sulfur in oceanic serpentinites reflect variations in temperatures and fluid fluxes. Serpentinization of serpentinization of Iberian Margin peridotites occurred at low temperatures (???20??-200??C) and high water/rock ratios. Complete serpentinization and consumption of ferrous iron allowed evolution to higher fO2. Microbial reduction of seawater sulfate resulted in addition of low-??34S sulfide (-15 to -43???) and formation of higher-sulfur assemblages that include valleriite and pyrite. The high SO4/total S ratio of Hess Deep serpentinites (0.89) results in an increase of total sulfur and high ??34S of total sulfur (mean ??? 8???). In contrast, Iberian Margin serpentinites gained large amounts of 34S-poor sulfide (mean total S = 3800 ppm), and the high sulfide/total S ratio (0.61) results in a net decrease in ??34S of total sulfur (mean ??? -5???). Thus serpentinization is a net sink for seawater sulfur, but the amount fixed and its isotopic composition vary significantly. Serpentinization may result in uptake of 0.4-14 ?? 1012 g S yr-1 from the oceans, comparable to isotopic exchange in mafic rocks of seafloor hydrothermal systems and approaching global fluxes of riverine sulfate input and sedimentary sulfide output.

  5. The chemical properties and microbial community characterization of the thermophilic microaerobic pretreatment process.

    Science.gov (United States)

    Fu, Shan-Fei; He, Shuai; Shi, Xiao-Shuang; Katukuri, Naveen Reddy; Dai, Meng; Guo, Rong-Bo

    2015-12-01

    Thermophilic microaerobic pretreatment (TMP) was recently reported as an efficient pretreatment method of anaerobic digestion (AD). In this study, the chemical properties and microbial community were characterized to reveal how TMP working. Compared with thermophilic treatment under anaerobic condition (TMP0), cellulase activity obviously improved under microaerobic condition (TMP1), which was 10.9-49.0% higher than that of TMP0. Reducing sugar, SCOD and VFAs concentrations of TMP1 were 2.6-8.9%, 1.8-4.8% and 13.8-24% higher than those of TMP0, respectively. TMP gave obvious rise to phylum Firmicutes, which associated with extracellular enzymes production. The proportion of class Bacilli (belongs to phylum Firmicutes and mainly acts during hydrolysis) in TMP1 was 124.89% higher than that of TMP0, which reflected the greater hydrolytic ability under microaerobic condition. The improved abundance of phylum Firmicutes (especially class Bacilli, order Bacillales) under microaerobic condition could be the fundamental reason for the improved AD performance of thermophilic microaerobic pretreated corn straw. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Thinking back about a positive event: The impact of processing style on positive affect

    Directory of Open Access Journals (Sweden)

    Sabine eNelis

    2015-03-01

    Full Text Available The manner in which individuals recall an autobiographical positive life event has affective consequences. Two studies addressed the processing styles during positive memory recall in a non-clinical sample. Participants retrieved a positive memory which was self-generated (Study 1, n = 70 or experimenter-chosen (i.e., academic achievement, Study 2, n = 159, followed by the induction of one of three processing styles (between-subjects: In Study 1, a ‘concrete/imagery’ vs. ‘abstract/verbal’ processing style was compared. In Study 2, a ‘concrete/imagery’, ‘abstract/verbal’, and ‘comparative/verbal’ processing style were compared. The processing of a personal memory in a concrete/imagery-based way led to a larger increase in positive affect compared to abstract/verbal processing in Study 1, as well as compared to comparative/verbal thinking in Study 2. Results of Study 2 further suggest that it is making unfavourable verbal comparisons that may hinder affective benefits to positive memories (rather then general abstract/verbal processing per se. The comparative/verbal thinking style failed to lead to improvements in positive affect, and with increasing levels of depressive symptoms it had a more negative impact on change in positive affect. We found no evidence that participant’s tendency to have dampening thoughts in response to positive affect in daily life contributed to the affective impact of positive memory recall. The results support the potential for current trainings in boosting positive memories and mental imagery, and underline the search for parameters that determine at times deleterious outcomes of abstract/verbal memory processing in the face of positive information.

  7. Influence of co-substrate on textile wastewater treatment and microbial community changes in the anaerobic biological sulfate reduction process

    Energy Technology Data Exchange (ETDEWEB)

    Rasool, Kashif; Mahmoud, Khaled A. [Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, PO BOX 5825, Doha (Qatar); Lee, Dae Sung, E-mail: daesung@knu.ac.kr [Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 702-701 (Korea, Republic of)

    2015-12-15

    Highlights: • Textile wastewater treatment performance was investigated with different co-substrates. • Dye biodegradation and biotransformation enhanced with lactate as co-substrate. • Sulfate removal significantly decreased under limited co-substrate concentration. • Changes in microbial community structure were studied using bar-coded pyrosequencing. • Lactate as co-substrate showed the highest relative abundance of sulfate reducing bacteria. - Abstract: This study investigated the anaerobic treatment of sulfate-rich synthetic textile wastewater in three sulfidogenic sequential batch reactors (SBRs). The experimental protocol was designed to examine the effect of three different co-substrates (lactate, glucose, and ethanol) and their concentrations on wastewater treatment performance. Sulfate reduction and dye degradation were improved when lactate and ethanol were used as electron donors, as compared with glucose. Moreover, under co-substrate limited concentrations, color, sulfate, and chemical oxygen demand (COD) removal efficiencies were declined. By reducing co-substrate COD gradually from 3000 to 500 mg/L, color removal efficiencies were decreased from 98.23% to 78.46%, 63.37%, and 69.10%, whereas, sulfate removal efficiencies were decreased from 98.42%, 82.35%, and 87.0%, to 30.27%, 21.50%, and 10.13%, for lactate, glucose, and ethanol fed reactors, respectively. Fourier transform infrared spectroscopy (FTIR) and total aromatic amine analysis revealed lactate to be a potential co-substrate for further biodegradation of intermediate metabolites formed after dye degradation. Pyrosequencing analysis showed that microbial community structure was significantly affected by the co-substrate. The reactor with lactate as co-substrate showed the highest relative abundance of sulfate reducing bacteria (SRBs), followed by ethanol, whereas the glucose-fed reactor showed the lowest relative abundance of SRB.

  8. Influence of co-substrate on textile wastewater treatment and microbial community changes in the anaerobic biological sulfate reduction process

    International Nuclear Information System (INIS)

    Rasool, Kashif; Mahmoud, Khaled A.; Lee, Dae Sung

    2015-01-01

    Highlights: • Textile wastewater treatment performance was investigated with different co-substrates. • Dye biodegradation and biotransformation enhanced with lactate as co-substrate. • Sulfate removal significantly decreased under limited co-substrate concentration. • Changes in microbial community structure were studied using bar-coded pyrosequencing. • Lactate as co-substrate showed the highest relative abundance of sulfate reducing bacteria. - Abstract: This study investigated the anaerobic treatment of sulfate-rich synthetic textile wastewater in three sulfidogenic sequential batch reactors (SBRs). The experimental protocol was designed to examine the effect of three different co-substrates (lactate, glucose, and ethanol) and their concentrations on wastewater treatment performance. Sulfate reduction and dye degradation were improved when lactate and ethanol were used as electron donors, as compared with glucose. Moreover, under co-substrate limited concentrations, color, sulfate, and chemical oxygen demand (COD) removal efficiencies were declined. By reducing co-substrate COD gradually from 3000 to 500 mg/L, color removal efficiencies were decreased from 98.23% to 78.46%, 63.37%, and 69.10%, whereas, sulfate removal efficiencies were decreased from 98.42%, 82.35%, and 87.0%, to 30.27%, 21.50%, and 10.13%, for lactate, glucose, and ethanol fed reactors, respectively. Fourier transform infrared spectroscopy (FTIR) and total aromatic amine analysis revealed lactate to be a potential co-substrate for further biodegradation of intermediate metabolites formed after dye degradation. Pyrosequencing analysis showed that microbial community structure was significantly affected by the co-substrate. The reactor with lactate as co-substrate showed the highest relative abundance of sulfate reducing bacteria (SRBs), followed by ethanol, whereas the glucose-fed reactor showed the lowest relative abundance of SRB.

  9. Loneliness in late-life depression: structural and functional connectivity during affective processing.

    Science.gov (United States)

    Wong, N M L; Liu, H-L; Lin, C; Huang, C-M; Wai, Y-Y; Lee, S-H; Lee, T M C

    2016-09-01

    Late-life depression (LLD) in the elderly was reported to present with emotion dysregulation accompanied by high perceived loneliness. Previous research has suggested that LLD is a disorder of connectivity and is associated with aberrant network properties. On the other hand, perceived loneliness is found to adversely affect the brain, but little is known about its neurobiological basis in LLD. The current study investigated the relationships between the structural connectivity, functional connectivity during affective processing, and perceived loneliness in LLD. The current study included 54 participants aged >60 years of whom 31 were diagnosed with LLD. Diffusion tensor imaging (DTI) data and task-based functional magnetic resonance imaging (fMRI) data of an affective processing task were collected. Network-based statistics and graph theory techniques were applied, and the participants' perceived loneliness and depression level were measured. The affective processing task included viewing affective stimuli. Structurally, a loneliness-related sub-network was identified across all subjects. Functionally, perceived loneliness was related to connectivity differently in LLD than that in controls when they were processing negative stimuli, with aberrant networking in subcortical area. Perceived loneliness was identified to have a unique role in relation to the negative affective processing in LLD at the functional brain connectional and network levels. The findings increas our understanding of LLD and provide initial evidence of the neurobiological mechanisms of loneliness in LLD. Loneliness might be a potential intervention target in depressive patients.

  10. Energy-neutral sustainable nutrient recovery incorporated with the wastewater purification process in an enlarged microbial nutrient recovery cell

    Science.gov (United States)

    Sun, Dongya; Gao, Yifan; Hou, Dianxun; Zuo, Kuichang; Chen, Xi; Liang, Peng; Zhang, Xiaoyuan; Ren, Zhiyong Jason; Huang, Xia

    2018-04-01

    Recovery of nutrient resources from the wastewater is now an inevitable strategy to maintain the supply of both nutrient and water for our huge population. While the intensive energy consumption in conventional nutrient recovery technologies still remained as the bottleneck towards the sustainable nutrient recycle. This study proposed an enlarged microbial nutrient recovery cell (EMNRC) which was powered by the energy contained in wastewater and achieved multi-cycle nutrient recovery incorporated with in situ wastewater treatment. With the optimal recovery solution of 3 g/L NaCl and the optimal volume ratio of wastewater to recovery solution of 10:1, >89% of phosphorus and >62% of ammonium nitrogen were recovered into struvite. An extremely low water input ratio of water. It was proved the EMNRC system was a promising technology which could utilize the chemical energy contained in wastewater itself and energy-neutrally recover nutrient during the continuous wastewater purification process.

  11. Effect of Temperature on Precipitation Rate of Calcium Carbonate Produced through Microbial Metabolic Process of Bio Materials

    Directory of Open Access Journals (Sweden)

    Prima Yane Putri

    2016-09-01

    Full Text Available Concrete is the most widely used construction material in civil engineering. But plain concrete is a brittle material and has little resistance to cracking. The cracking in concrete promotes deterioration such as the corrosion of reinforcing rebar, therefore, repair in filling the crack is often carried out. Recently, repair methods using bio-based materials associated with microbial metabolic processes leading to precipitation of calcium carbonate have been intensively studied. In this study, influencing factors on the precipitation rate depending on the constituents of bio-based material comprising yeast, glucose and calcium acetate mixed in tris buffer solution was examined for improving the rate of initial reactions. In addition, effect of temperature change on the amount of calcium carbonate precipitation was also investigated. The precipitates were identified by X-ray diffraction. It was shown that the increase of temperature lead to a change on calcium carbonate precipitation and caused the pH decrease under 7.0.

  12. Gender effects in alcohol dependence: an fMRI pilot study examining affective processing.

    Science.gov (United States)

    Padula, Claudia B; Anthenelli, Robert M; Eliassen, James C; Nelson, Erik; Lisdahl, Krista M

    2015-02-01

    Alcohol dependence (AD) has global effects on brain structure and function, including frontolimbic regions regulating affective processing. Preliminary evidence suggests alcohol blunts limbic response to negative affective stimuli and increases activation to positive affective stimuli. Subtle gender differences are also evident during affective processing. Fourteen abstinent AD individuals (8 F, 6 M) and 14 healthy controls (9 F, 5 M), ages 23 to 60, were included in this facial affective processing functional magnetic resonance imaging pilot study. Whole-brain linear regression analyses were performed, and follow-up analyses examined whether AD status significantly predicted depressive symptoms and/or coping. Fearful Condition-The AD group demonstrated reduced activation in the right medial frontal gyrus, compared with controls. Gender moderated the effects of AD in bilateral inferior frontal gyri. Happy Condition-AD individuals had increased activation in the right thalamus. Gender moderated the effects of AD in the left caudate, right middle frontal gyrus, left paracentral lobule, and right lingual gyrus. Interactive AD and gender effects for fearful and happy faces were such that AD men activated more than control men, but AD women activated less than control women. Enhanced coping was associated with greater activation in right medial frontal gyrus during fearful condition in AD individuals. Abnormal affective processing in AD may be a marker of alcoholism risk or a consequence of chronic alcoholism. Subtle gender differences were observed, and gender moderated the effects of AD on neural substrates of affective processing. AD individuals with enhanced coping had brain activation patterns more similar to controls. Results help elucidate the effects of alcohol, gender, and their interaction on affective processing. Copyright © 2015 by the Research Society on Alcoholism.

  13. GeoChip-based analysis of the microbial community functional structures in simultaneous desulfurization and denitrification process.

    Science.gov (United States)

    Yu, Hao; Chen, Chuan; Ma, Jincai; Liu, Wenzong; Zhou, Jizhong; Lee, Duu-Jong; Ren, Nanqi; Wang, Aijie

    2014-07-01

    The elemental sulfur (S°) recovery was evaluated in the presence of nitrate in two development models of simultaneous desulfurization and denitrification (SDD) process. At the loading rates of 0.9 kg S/(m³·day) for sulfide and 0.4 kg N/(m³·day) for nitrate, S° conversion rate was 91.1% in denitrifying sulfide removal (DSR) model which was higher than in integrated simultaneous desulfurization and denitrification (ISDD) model (25.6%). A comprehensive analysis of functional diversity, structure and metabolic potential of microbial communities was examined in two models by using functional gene array (GeoChip 2.0). GeoChip data indicated that diversity indices, community structure, and abundance of functional genes were distinct between two models. Diversity indices (Simpson's diversity index (1/D) and Shannon-Weaver index (H')) of all detected genes showed that with elevated influent loading rate, the functional diversity decreased in ISDD model but increased in DSR model. In contrast to ISDD model, the overall abundance of dsr genes was lower in DSR model, while some functional genes targeting from nitrate-reducing sulfide-oxidizing bacteria (NR-SOB), such as Thiobacillus denitrificans, Sulfurimonas denitrificans, and Paracoccus pantotrophus were more abundant in DSR model which were highly associated with the change of S(0) conversion rate obtained in two models. The results obtained in this study provide additional insights into the microbial metabolic mechanisms involved in ISDD and DSR models, which in turn will improve the overall performance of SDD process. Copyright © 2014. Published by Elsevier B.V.

  14. Differentiation in the microbial ecology and activity of suspended and attached bacteria in a nitritation-anammox process.

    Science.gov (United States)

    Park, Hongkeun; Sundar, Suneethi; Ma, Yiwei; Chandran, Kartik

    2015-02-01

    A directed differentiation between the biofilm and suspension was observed in the molecular microbial ecology and gene expression of different bacteria in a biofilm nitritation-anammox process operated at varying hydraulic residence times (HRT) and nitrogen loading rates (NLR). The highest degree of enrichment observed in the biofilm was of anaerobic ammonia-oxidizing bacteria (AMX) followed by that of Nitrospira spp. related nitrite-oxidizing bacteria (NOB). For AMX, a major shift from Candidatus "Brocadia fulgida" to Candidatus "Kuenenia stuttgartiensis" in both suspension and biofilm was observed with progressively shorter HRT, using discriminatory biomarkers targeting the hydrazine synthase (hzsA) gene. In parallel, expression of the hydrazine oxidoreductase gene (hzo), a functional biomarker for AMX energy metabolism, became progressively prominent in the biofilm. A marginal but statistically significant enrichment in the biofilm was observed for Nitrosomonas europaea related ammonia-oxidizing bacteria (AOB). In direct contrast to AMX, the gene expression of ammonia monooxygenase subunit A (amoA), a functional biomarker for AOB energy metabolism, progressively increased in suspension. Using gene expression and biomass concentration measures in conjunction, it was determined that signatures of AOB metabolism were primarily present in the biofilm throughout the study. On the other hand, AMX metabolism gradually shifted from being uniformly distributed in both the biofilm and suspension to primarily the biofilm at shorter HRTs and higher NLRs. These results therefore highlight the complexity and key differences in the microbial ecology, gene expression and activity between the biofilm and suspension of a nitritation-anammox process and the biokinetic and metabolic drivers for such niche segregation. © 2014 Wiley Periodicals, Inc.

  15. Bioaugmentation of anaerobic sludge digestion with iron-reducing bacteria: process and microbial responses to variations in hydraulic retention time.

    Science.gov (United States)

    Baek, Gahyun; Kim, Jaai; Shin, Seung Gu; Lee, Changsoo

    2016-01-01

    Although anaerobic digestion (AD) is a widely used option to manage waste activated sludge (WAS), there are some drawbacks related to its slow reaction rate and low energy productivity. This study examined an anaerobic WAS digester, augmented with an iron-reducing microbial consortium, relative to changes in microbial community structure and process performance at decreasing hydraulic retention times (HRTs) of 20 to 10 days. The enhanced methanation performance (approximately 40 % increase in methane yield) by the bioaugmentation was sustained until the HRT was decreased to 12.5 days, under Fe(3+)-rich conditions (ferric oxyhydroxide, 20 mM Fe). Enhanced iron-reducing activity was evidenced by the increased Fe(2+) to total Fe ratio maintained above 50 % during the stable operational phases. A further decrease in HRT to 10 days resulted in a significant performance deterioration, along with a drop in the Fe(2+) to total Fe ratio to bacteria (IRBs) was identified by denaturing gradient gel electrophoresis (DGGE), with Spirochaetaceae- and Thauera-related organisms being dominant members, and clear dominance shifts among them with respect to decrease in HRT were observed. Lowering HRT led to evident shifts in bacterial community structure likely associated with washout of IRBs, leading to decreases in iron respiration activity and AD performance at a lower HRT. The bacterial community structure shifted dynamically over phases, and the community transitions correlated well with the changes in process performance. Overall, the combined biostimulation and bioaugmentation investigated in this study proved effective for enhanced methane recovery from anaerobic WAS digestion, which suggests an interesting potential for high-rate AD.

  16. Microbial effects

    International Nuclear Information System (INIS)

    Sharpe, V.J.

    1985-10-01

    The long term safety and integrity of radioactive waste disposal sites proposed for use by Ontario Hydro may be affected by the release of radioactive gases. Microbes mediate the primary pathways of waste degradation and hence an assessment of their potential to produce gaseous end products from the breakdown of low level waste was performed. Due to a number of unknown variables, assumptions were made regarding environmental and waste conditions that controlled microbial activity; however, it was concluded that 14 C and 3 H would be produced, albeit over a long time scale of about 1500 years for 14 C in the worst case situation

  17. A Pontine Region is a Neural Correlate of the Human Affective Processing Network