WorldWideScience

Sample records for microbial phenolic acids

  1. Effect of Bioprocessing on the In Vitro Colonic Microbial Metabolism of Phenolic Acids from Rye Bran Fortified Breads

    DEFF Research Database (Denmark)

    Koistinen, Ville M; Nordlund, Emilia; Katina, Kati

    2017-01-01

    in an in vitro colon model, the metabolites were analyzed using two different methods applying mass spectrometry. While phenolic acids were released more extensively from the bioprocessed bran bread and ferulic acid had consistently higher concentrations in the bread type during fermentation, there were only......Cereal bran is an important source of dietary fiber and bioactive compounds, such as phenolic acids. We aimed to study the phenolic acid metabolism of native and bioprocessed rye bran fortified refined wheat bread and to elucidate the microbial metabolic route of phenolic acids. After incubation...

  2. Influence of phenolic compounds on rumen microbial activity

    International Nuclear Information System (INIS)

    Vitti, D.M.S.S.; Abdalla, A.L.; Silva Filho, J.C.

    1985-01-01

    An 'in vitro' experiment is carried out to examine the effect of tannic acid on rumen microbial activity, due to the toxicity of phenolic acids on many microrganisms. Rumen content is incubated with sodium bicarbonate, glucose and different quantities of tannic acid. 1 μCi of 32 p-labelled phosphate is added and after 6 hours the incorporated activity is measured. (M.A.C.) [pt

  3. [Effect of soil phenolic acids on soil microbe of coal-mining depressed land after afforestation restoration by different tree species].

    Science.gov (United States)

    Ji, Li; Yang, Li Xue

    2017-12-01

    Phenolic acids are one of the most important factors that influence microbial community structure. Investigating the dynamic changes of phenolic acids and their relationship with the microbial community structure in plantation soils with different tree species could contribute to better understanding and revealing the mechanisms of microbial community changes under afforestation restoration in coal-mining subsidence areas. In this study, plantations of three conifer and one deciduous species (Pinus koraiensis, Larix gmelinii, Pinus sylvestris var. mongolica, and Populus ussuriensis) were established on abandoned coal-mining subsidence areas in Baoshan District, Shuangyashan City. The contents of soil phenols, 11 types of phenolic acids, and microbial communities in all plots were determined. The results showed that the contents of soil complex phenol in plantations were significantly higher than that of abandoned land overall. Specifically, soils in larch and poplar plantations had higher contents of complex phenol, while soils in larch and Korean pine plantations had greater contents of total phenol. Moreover, soil in the P. koraiensis plantation had a higher content of water-soluble phenol compared with abandoned lands. The determination of 11 phenolic acids indicated that the contents of ferulic acid, abietic acid, β-sitosterol, oleanolic acid, shikimic acid, linoleic acid, and stearic acid were higher in plantation soils. Although soil phenol contents were not related with soil microbial biomass, the individual phenolic acids showed a significant relationship with soil microbes. Ferulic acid, abietic acid, and β-sitosterol showed significant promoting effects on soil microbial biomass, and they showed positive correlations with fungi and fungi/bacteria ratio. These three phenolic acids had higher contents in the poplar plantation, suggesting that poplar affo-restation had a beneficial effect on soil quality in coal-mining subsidence areas.

  4. Effect of gamma-irradiation on the phenolic acids of some Indian spices

    International Nuclear Information System (INIS)

    Variyar, P.S.; Bandyopadhyay, C.; Thomas, P.

    1998-01-01

    Five commercially important spices, namely cinnamon, clove, cardamom, nutmeg and mace, were subjected to gamma-irradiation using a dose of 10 kGy, which is recommended for microbial decontamination. Various phenolic acids present in these spices were analysed by high-performance liquid chromatography (HPLC). In clove and nutmeg, quantitatively significant changes were noted in some of the phenolic acids upon irradiation. The content of gallic and syringic acids in irradiated clove increased by 2.2- and 4.4-fold respectively, whereas in irradiated nutmeg many of the phenolic acids showed wide increases and decreases in the range of two- to sixfold compared with the control samples. No qualitative and major quantitative changes were, however, observed in the phenolic acids of cinnamon, cardamom and mace upon irradiation. The possibility that gamma-radiation induced breakdown of tannins could be responsible for the changes in phenolic acids content of clove and nutmeg is discussed

  5. Effects of furan derivatives and phenolic compounds on electricity generation in microbial fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Catal, Tunc [Department of Biological and Ecological Engineering, Oregon State University, 116 Gilmore Hall, Corvallis, OR 97331 (United States); Department of Wood Science and Engineering, Oregon State University, 102 97331, Corvallis, OR (United States); Department of Molecular Biology and Genetics, Istanbul Technical University, 34469-Maslak, Istanbul (Turkey); Fan, Yanzhen; Liu, Hong [Department of Biological and Ecological Engineering, Oregon State University, 116 Gilmore Hall, Corvallis, OR 97331 (United States); Li, Kaichang [Department of Wood Science and Engineering, Oregon State University, 102 97331, Corvallis, OR (United States); Bermek, Hakan [Department of Molecular Biology and Genetics, Istanbul Technical University, 34469-Maslak, Istanbul (Turkey)

    2008-05-15

    Lignocellulosic biomass is an attractive fuel source for MFCs due to its renewable nature and ready availability. Furan derivatives and phenolic compounds could be potentially formed during the pre-treatment process of lignocellulosic biomass. In this study, voltage generation from these compounds and the effects of these compounds on voltage generation from glucose in air-cathode microbial fuel cells (MFCs) were examined. Except for 5-hydroxymethyl furfural (5-HMF), all the other compounds tested were unable to be utilized directly for electricity production in MFCs in the absence of other electron donors. One furan derivate, 5-HMF and two phenolic compounds, trans-cinnamic acid and 3,5-dimethoxy-4-hydroxy-cinnamic acid did not affect electricity generation from glucose at a concentration up to 10 mM. Four phenolic compounds, including syringaldeyhde, vanillin, trans-4-hydroxy-3-methoxy, and 4-hydroxy cinnamic acids inhibited electricity generation at concentrations above 5 mM. Other compounds, including 2-furaldehyde, benzyl alcohol and acetophenone, inhibited the electricity generation even at concentrations less than 0.2 mM. This study suggests that effective electricity generation from the hydrolysates of lignocellulosic biomass in MFCs may require the employment of the hydrolysis methods with low furan derivatives and phenolic compounds production, or the removal of some strong inhibitors prior to the MFC operation, or the improvement of bacterial tolerance against these compounds through the enrichment of new bacterial cultures or genetic modification of the bacterial strains. (author)

  6. Effects of furan derivatives and phenolic compounds on electricity generation in microbial fuel cells

    Science.gov (United States)

    Catal, Tunc; Fan, Yanzhen; Li, Kaichang; Bermek, Hakan; Liu, Hong

    Lignocellulosic biomass is an attractive fuel source for MFCs due to its renewable nature and ready availability. Furan derivatives and phenolic compounds could be potentially formed during the pre-treatment process of lignocellulosic biomass. In this study, voltage generation from these compounds and the effects of these compounds on voltage generation from glucose in air-cathode microbial fuel cells (MFCs) were examined. Except for 5-hydroxymethyl furfural (5-HMF), all the other compounds tested were unable to be utilized directly for electricity production in MFCs in the absence of other electron donors. One furan derivate, 5-HMF and two phenolic compounds, trans-cinnamic acid and 3,5-dimethoxy-4-hydroxy-cinnamic acid did not affect electricity generation from glucose at a concentration up to 10 mM. Four phenolic compounds, including syringaldeyhde, vanillin, trans-4-hydroxy-3-methoxy, and 4-hydroxy cinnamic acids inhibited electricity generation at concentrations above 5 mM. Other compounds, including 2-furaldehyde, benzyl alcohol and acetophenone, inhibited the electricity generation even at concentrations less than 0.2 mM. This study suggests that effective electricity generation from the hydrolysates of lignocellulosic biomass in MFCs may require the employment of the hydrolysis methods with low furan derivatives and phenolic compounds production, or the removal of some strong inhibitors prior to the MFC operation, or the improvement of bacterial tolerance against these compounds through the enrichment of new bacterial cultures or genetic modification of the bacterial strains.

  7. Efficient Enzymatic Synthesis of Phenolic Ester by Increasing Solubility of Phenolic Acids in Ionic Liquids

    DEFF Research Database (Denmark)

    Yang, Zhiyong; Guo, Zheng; Xu, Xuebing

    Compounds from phenolic acid family are well known natural antioxidants, but the application of phenolic acids as antioxidants in industry is limited due to the relatively low solubility in oil-based media. The properties of phenolic acids can be modified through enzymatic lipophilization...... and modified phenolic acids will have amphiphilic property, therefore they can be localized at oil-water or water-oil phase where oxidation is considered to occur frequently. It had been reported that immobilized Candida Antarctica lipase B was the most effective biocatalyst for the various esterification...... reactions, and it had been widely used for esterification of various phenolic acids with fatty alcohol or triglycerides. However, the conversion of phenolic acids is low due to low solubility in hydrophobic solvents and hindrance effect of unsaturated side chain towards the enzyme. Our studies show...

  8. Assessment of active bacteria metabolizing phenolic acids in the peanut (Arachis hypogaea L.) rhizosphere.

    Science.gov (United States)

    Liu, Jinguang; Wang, Xingxiang; Zhang, Taolin; Li, Xiaogang

    2017-12-01

    Phenolic acids can enhance the mycotoxin production and activities of hydrolytic enzymes related to pathogenicity of soilborne fungus Fusarium oxysporum. However, characteristics of phenolic acid-degrading bacteria have not been investigated. The objectives of this study were to isolate and characterize bacteria capable of growth on benzoic and vanillic acids as the sole carbon source in the peanut rhizosphere. Twenty-four bacteria were isolated, and the identification based on 16S rRNA gene sequencing revealed that pre-exposure to phenolic acids before sowing shifted the dominant culturable bacterial degraders from Arthrobacter to Burkholderia stabilis-like isolates. Both Arthrobacter and B. stabilis-like isolates catalysed the aromatic ring cleavage via the ortho pathway, and Arthrobacter isolates did not exhibit higher C12O enzyme activity than B. stabilis-like isolates. The culture filtrate of Fusarium sp. ACCC36194 caused a strong inhibition of Arthrobacter growth but not B. stabilis-like isolates. Additionally, Arthrobacter isolates responded differently to the culture filtrates of B. stabilis-like isolates. The Arthrobacter isolates produced higher indole acetic acid (IAA) levels than B. stabilis-like isolates, but B. stabilis-like isolates were also able to produce siderophores, solubilize mineral phosphate, and exert an antagonistic activity against peanut root rot pathogen Fusarium sp. ACCC36194. Results indicate that phenolic acids can shift their dominant culturable bacterial degraders from Arthrobacter to Burkholderia species in the peanut rhizosphere, and microbial interactions might lead to the reduction of culturable Arthrobacter. Furthermore, increasing bacterial populations metabolizing phenolic acids in monoculture fields might be a control strategy for soilborne diseases caused by Fusarium spp. Copyright © 2017 Elsevier GmbH. All rights reserved.

  9. Wine phenolic compounds influence the production of volatile phenols by wine-related lactic acid bacteria.

    Science.gov (United States)

    Silva, I; Campos, F M; Hogg, T; Couto, J A

    2011-08-01

    To evaluate the effect of wine phenolic compounds on the production of volatile phenols (4-vinylphenol [4VP] and 4-ethylphenol [4EP]) from the metabolism of p-coumaric acid by lactic acid bacteria (LAB). Lactobacillus plantarum, Lactobacillus collinoides and Pediococcus pentosaceus were grown in MRS medium supplemented with p-coumaric acid, in the presence of different phenolic compounds: nonflavonoids (hydroxycinnamic and benzoic acids) and flavonoids (flavonols and flavanols). The inducibility of the enzymes involved in the p-coumaric acid metabolism was studied in resting cells. The hydroxycinnamic acids tested stimulated the capacity of LAB to synthesize volatile phenols. Growth in the presence of hydroxycinnamic acids, especially caffeic acid, induced the production of 4VP by resting cells. The hydroxybenzoic acids did not significantly affect the behaviour of the studied strains. Some of the flavonoids showed an effect on the production of volatile phenols, although strongly dependent on the bacterial species. Relatively high concentrations (1 g l(-1) ) of tannins inhibited the synthesis of 4VP by Lact. plantarum. Hydroxycinnamic acids were the main compounds stimulating the production of volatile phenols by LAB. The results suggest that caffeic and ferulic acids induce the synthesis of the cinnamate decarboxylase involved in the metabolism of p-coumaric acid. On the other hand, tannins exert an inhibitory effect. This study highlights the capacity of LAB to produce volatile phenols and that this activity is markedly influenced by the phenolic composition of the medium. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  10. Phenolic biotransformations during conversion of ferulic acid to vanillin by lactic acid bacteria.

    Science.gov (United States)

    Kaur, Baljinder; Chakraborty, Debkumar; Kumar, Balvir

    2013-01-01

    Vanillin is widely used as food additive and as a masking agent in various pharmaceutical formulations. Ferulic acid is an important precursor of vanillin that is available in abundance in cell walls of cereals like wheat, corn, and rice. Phenolic biotransformations can occur during growth of lactic acid bacteria (LAB), and their production can be made feasible using specialized LAB strains that have been reported to produce ferulic acid esterases. The present study aimed at screening a panel of LAB isolates for their ability to release phenolics from agrowaste materials like rice bran and their biotransformation to industrially important compounds such as ferulic acid, 4-ethyl phenol, vanillic acid, vanillin, and vanillyl alcohol. Bacterial isolates were evaluated using ferulic acid esterase, ferulic acid decarboxylase, and vanillin dehydrogenase assays. This work highlights the importance of lactic acid bacteria in phenolic biotransformations for the development of food grade flavours and additives.

  11. Phenolic Biotransformations during Conversion of Ferulic Acid to Vanillin by Lactic Acid Bacteria

    Science.gov (United States)

    Kaur, Baljinder; Kumar, Balvir

    2013-01-01

    Vanillin is widely used as food additive and as a masking agent in various pharmaceutical formulations. Ferulic acid is an important precursor of vanillin that is available in abundance in cell walls of cereals like wheat, corn, and rice. Phenolic biotransformations can occur during growth of lactic acid bacteria (LAB), and their production can be made feasible using specialized LAB strains that have been reported to produce ferulic acid esterases. The present study aimed at screening a panel of LAB isolates for their ability to release phenolics from agrowaste materials like rice bran and their biotransformation to industrially important compounds such as ferulic acid, 4-ethyl phenol, vanillic acid, vanillin, and vanillyl alcohol. Bacterial isolates were evaluated using ferulic acid esterase, ferulic acid decarboxylase, and vanillin dehydrogenase assays. This work highlights the importance of lactic acid bacteria in phenolic biotransformations for the development of food grade flavours and additives. PMID:24066293

  12. Changes in Phenolic Acid Content in Maize during Food Product Processing.

    Science.gov (United States)

    Butts-Wilmsmeyer, Carrie J; Mumm, Rita H; Rausch, Kent D; Kandhola, Gurshagan; Yana, Nicole A; Happ, Mary M; Ostezan, Alexandra; Wasmund, Matthew; Bohn, Martin O

    2018-04-04

    The notion that many nutrients and beneficial phytochemicals in maize are lost due to food product processing is common, but this has not been studied in detail for the phenolic acids. Information regarding changes in phenolic acid content throughout processing is highly valuable because some phenolic acids are chemopreventive agents of aging-related diseases. It is unknown when and why these changes in phenolic acid content might occur during processing, whether some maize genotypes might be more resistant to processing induced changes in phenolic acid content than other genotypes, or if processing affects the bioavailability of phenolic acids in maize-based food products. For this study, a laboratory-scale processing protocol was developed and used to process whole maize kernels into toasted cornflakes. High-throughput microscale wet-lab analyses were applied to determine the concentrations of soluble and insoluble-bound phenolic acids in samples of grain, three intermediate processing stages, and toasted cornflakes obtained from 12 ex-PVP maize inbreds and seven hybrids. In the grain, insoluble-bound ferulic acid was the most common phenolic acid, followed by insoluble-bound p-coumaric acid and soluble cinnamic acid, a precursor to the phenolic acids. Notably, the ferulic acid content was approximately 1950 μg/g, more than ten-times the concentration of many fruits and vegetables. Processing reduced the content of the phenolic acids regardless of the genotype. Most changes occurred during dry milling due to the removal of the bran. The concentration of bioavailable soluble ferulic and p-coumaric acid increased negligibly due to thermal stresses. Therefore, the current dry milling based processing techniques used to manufacture many maize-based foods, including breakfast cereals, are not conducive for increasing the content of bioavailable phenolics in processed maize food products. This suggests that while maize is an excellent source of phenolics, alternative

  13. Phenolic Biotransformations during Conversion of Ferulic Acid to Vanillin by Lactic Acid Bacteria

    Directory of Open Access Journals (Sweden)

    Baljinder Kaur

    2013-01-01

    Full Text Available Vanillin is widely used as food additive and as a masking agent in various pharmaceutical formulations. Ferulic acid is an important precursor of vanillin that is available in abundance in cell walls of cereals like wheat, corn, and rice. Phenolic biotransformations can occur during growth of lactic acid bacteria (LAB, and their production can be made feasible using specialized LAB strains that have been reported to produce ferulic acid esterases. The present study aimed at screening a panel of LAB isolates for their ability to release phenolics from agrowaste materials like rice bran and their biotransformation to industrially important compounds such as ferulic acid, 4-ethyl phenol, vanillic acid, vanillin, and vanillyl alcohol. Bacterial isolates were evaluated using ferulic acid esterase, ferulic acid decarboxylase, and vanillin dehydrogenase assays. This work highlights the importance of lactic acid bacteria in phenolic biotransformations for the development of food grade flavours and additives.

  14. Retardation of quality changes in camel meat sausages by phenolic compounds and phenolic extracts.

    Science.gov (United States)

    Maqsood, Sajid; Manheem, Kusaimah; Abushelaibi, Aisha; Kadim, Isam Tawfik

    2016-11-01

    Impact of tannic acid (TA), date seed extract (DSE), catechin (CT) and green tea extract (GTE) on lipid oxidation, microbial load and textural properties of camel meat sausages during 12 days of refrigerated storage was investigated. TA and CT showed higher activities in all antioxidative assays compared to DSE and GTE. Lipid oxidation and microbial growth was higher for control sausages when compared to other samples. TA and CT at a level of 200 mg/kg were more effective in retarding lipid oxidation and lowering microbial count (P < 0.05). Sausages treated with TA and DSE were found to have higher hardness, gumminess and chewiness values compared to other treatments (P < 0.05). Addition of different phenolic compounds or extract did not influence the sensory color of sausages. Furthermore, sensory quality was also found to be superior in TA and CT treated sausages. Therefore, pure phenolic compounds (TA and CT) proved to be more effective in retaining microbial and sensorial qualities of camel meat sausages compared to phenolic extracts (GTE and DSE) over 12 days of storage at 4°C. © 2016 Japanese Society of Animal Science.

  15. Association between Dietary Phenolic Acids and Hypertension in a Mediterranean Cohort

    Directory of Open Access Journals (Sweden)

    Justyna Godos

    2017-09-01

    Full Text Available Background: Certain foods rich in phenolic acids have been shown to reduce the risk of hypertension, but evidence from epidemiological studies focused on dietary phenolic acid intake is scarce. The aim of this study was to determine the association between dietary phenolic acid intake, as well as their major food sources, and hypertension in a Mediterranean cohort. Methods: Demographic and dietary data of 2044 adults living in Southern Italy were collected. Food frequency questionnaires and Phenol-Explorer were used to calculate dietary intake of polyphenols. Multivariate logistic regression analyses were used to test associations. Results: The mean intake of total phenolic acids in the cohort was 362.6 mg/day. Individuals in the highest quartile of phenolic acid intake (median intake = 522.2 mg/day were less likely to have hypertension (OR (odds ratio = 0.68, 95% CI (confidence interval: 0.46, 1.00. When taking into account individual subclasses of phenolic acids, only hydroxyphenylacetic acid was inversely associated with hypertension (highest vs. lowest quartile, OR = 0.63, 95% CI: 0.40, 0.96. Among dietary sources of phenolic acids considered in the analysis, only beer was significantly inversely associated with hypertension (highest vs. lowest quartile, OR = 0.32, 95% CI: 0.15, 0.68. Conclusions: The findings of this study suggest that dietary phenolic acids may be inversely associated with hypertension, irrespectively of their dietary source.

  16. Association between Dietary Phenolic Acids and Hypertension in a Mediterranean Cohort.

    Science.gov (United States)

    Godos, Justyna; Sinatra, Dario; Blanco, Isabella; Mulè, Serena; La Verde, Melania; Marranzano, Marina

    2017-09-27

    Certain foods rich in phenolic acids have been shown to reduce the risk of hypertension, but evidence from epidemiological studies focused on dietary phenolic acid intake is scarce. The aim of this study was to determine the association between dietary phenolic acid intake, as well as their major food sources, and hypertension in a Mediterranean cohort. Demographic and dietary data of 2044 adults living in Southern Italy were collected. Food frequency questionnaires and Phenol-Explorer were used to calculate dietary intake of polyphenols. Multivariate logistic regression analyses were used to test associations. The mean intake of total phenolic acids in the cohort was 362.6 mg/day. Individuals in the highest quartile of phenolic acid intake (median intake = 522.2 mg/day) were less likely to have hypertension (OR (odds ratio) = 0.68, 95% CI (confidence interval): 0.46, 1.00). When taking into account individual subclasses of phenolic acids, only hydroxyphenylacetic acid was inversely associated with hypertension (highest vs. lowest quartile, OR = 0.63, 95% CI: 0.40, 0.96). Among dietary sources of phenolic acids considered in the analysis, only beer was significantly inversely associated with hypertension (highest vs. lowest quartile, OR = 0.32, 95% CI: 0.15, 0.68). The findings of this study suggest that dietary phenolic acids may be inversely associated with hypertension, irrespectively of their dietary source.

  17. Polyphasic characterization of a PCP-to-phenol dechlorinating microbial community enriched from paddy soil

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Naoko [EcoTopia Science Institute, Nagoya University Nagoya 464-8603 (Japan)]. E-mail: ysd75@esi.nagoya-u.ac.jp; Yoshida, Yukina [Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); Handa, Yuko [Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); Kim, Hyo-Keun [Korea Ginseng and Tobacco Research Institute, Taejon 305-345 (Korea, Republic of); Ichihara, Shigeyuki [Faculty of Agriculture, Meijo University, Nagoya 468-8502 (Japan); Katayama, Arata [EcoTopia Science Institute, Nagoya University Nagoya 464-8603 (Japan); Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan)

    2007-08-01

    Dechlorination of PCP has been observed previously under anaerobic condition in paddy soil. However, there is poor information about the dechlorination pathway of PCP and the microbial community associated with the PCP dechlorination in paddy soil. In this study, an anaerobic microbial community dechlorinating PCP was enriched by serial transfers from a paddy soil using a medium containing PCP, lactate and the steam-sterilized paddy soil. The enriched microbial community dechlorinated PCP completely to phenol under the anaerobic condition by a dechlorinating pathway as follows; PCP {sup {yields}} 2,3,4,5-tetrachlorophenol {sup {yields}} 3,4,5-trichlorophenol {sup {yields}} 3,5-dichlorophenol {sup {yields}} 3-chlorophenol {sup {yields}} phenol. Intermediate products such as 3-chlorophenol were not accumulated, which were immediately dechlorinated to phenol. The enriched microbial community was characterized physiologically by testing the effects of electron donors and electron acceptors on the dechlorinating activity. The dechlorinating activity was promoted with lactate, pyruvate, and hydrogen as electron donors but not with acetate. Electron acceptors, nitrate and sulphate, inhibited the dechlorinating activity competitively but not iron (III). The microbial group associated with the anaerobic dechlorination was characterized by the effect of specific inhibitors on the PCP dechlorination. Effects of specific metabolic inhibitors and antibiotics indicated the involvement of Gram-positive spore-forming bacteria with the PCP dechlorinating activity, which was represented as bacteria of phylum Firmicutes. The structure of the microbial community was characterized by fluorescence in situ hybridization, quinone profiling, and PCR-DGGE (denaturing gel gradient electrophoresis). The combined results indicated the predominance of Clostridium species of phylum Firmicutes in the microbial community. Desulfitobacterium spp. known as anaerobic Gram-positive spore

  18. Polyphasic characterization of a PCP-to-phenol dechlorinating microbial community enriched from paddy soil

    International Nuclear Information System (INIS)

    Yoshida, Naoko; Yoshida, Yukina; Handa, Yuko; Kim, Hyo-Keun; Ichihara, Shigeyuki; Katayama, Arata

    2007-01-01

    Dechlorination of PCP has been observed previously under anaerobic condition in paddy soil. However, there is poor information about the dechlorination pathway of PCP and the microbial community associated with the PCP dechlorination in paddy soil. In this study, an anaerobic microbial community dechlorinating PCP was enriched by serial transfers from a paddy soil using a medium containing PCP, lactate and the steam-sterilized paddy soil. The enriched microbial community dechlorinated PCP completely to phenol under the anaerobic condition by a dechlorinating pathway as follows; PCP → 2,3,4,5-tetrachlorophenol → 3,4,5-trichlorophenol → 3,5-dichlorophenol → 3-chlorophenol → phenol. Intermediate products such as 3-chlorophenol were not accumulated, which were immediately dechlorinated to phenol. The enriched microbial community was characterized physiologically by testing the effects of electron donors and electron acceptors on the dechlorinating activity. The dechlorinating activity was promoted with lactate, pyruvate, and hydrogen as electron donors but not with acetate. Electron acceptors, nitrate and sulphate, inhibited the dechlorinating activity competitively but not iron (III). The microbial group associated with the anaerobic dechlorination was characterized by the effect of specific inhibitors on the PCP dechlorination. Effects of specific metabolic inhibitors and antibiotics indicated the involvement of Gram-positive spore-forming bacteria with the PCP dechlorinating activity, which was represented as bacteria of phylum Firmicutes. The structure of the microbial community was characterized by fluorescence in situ hybridization, quinone profiling, and PCR-DGGE (denaturing gel gradient electrophoresis). The combined results indicated the predominance of Clostridium species of phylum Firmicutes in the microbial community. Desulfitobacterium spp. known as anaerobic Gram-positive spore-forming bacteria dechlorinating PCP were not detected by PCR using a

  19. Accumulation of Phenolic Compounds and Expression Profiles of Phenolic Acid Biosynthesis-Related Genes in Developing Grains of White, Purple, and Red Wheat.

    Science.gov (United States)

    Ma, Dongyun; Li, Yaoguang; Zhang, Jian; Wang, Chenyang; Qin, Haixia; Ding, Huina; Xie, Yingxin; Guo, Tiancai

    2016-01-01

    Polyphenols in whole grain wheat have potential health benefits, but little is known about the expression patterns of phenolic acid biosynthesis genes and the accumulation of phenolic acid compounds in different-colored wheat grains. We found that purple wheat varieties had the highest total phenolic content (TPC) and antioxidant activity. Among phenolic acid compounds, bound ferulic acid, vanillic, and caffeic acid levels were significantly higher in purple wheat than in white and red wheat, while total soluble phenolic acid, soluble ferulic acid, and vanillic acid levels were significantly higher in purple and red wheat than in white wheat. Ferulic acid and syringic acid levels peaked at 14 days after anthesis (DAA), whereas p-coumaric acid and caffeic acid levels peaked at 7 DAA, and vanillic acid levels gradually increased during grain filling and peaked near ripeness (35 DAA). Nine phenolic acid biosynthesis pathway genes (TaPAL1, TaPAL2, TaC3H1, TaC3H2, TaC4H, Ta4CL1, Ta4CL2, TaCOMT1, and TaCOMT2) exhibited three distinct expression patterns during grain filling, which may be related to the different phenolic acids levels. White wheat had higher phenolic acid contents and relatively high gene expression at the early stage, while purple wheat had the highest phenolic acid contents and gene expression levels at later stages. These results suggest that the expression of phenolic acid biosynthesis genes may be closely related to phenolic acids accumulation.

  20. Antioxidant capacity and phenolic acids of virgin coconut oil.

    Science.gov (United States)

    Marina, A M; Man, Y B Che; Nazimah, S A H; Amin, I

    2009-01-01

    The antioxidant properties of virgin coconut oil produced through chilling and fermentation were investigated and compared with refined, bleached and deodorized coconut oil. Virgin coconut oil showed better antioxidant capacity than refined, bleached and deodorized coconut oil. The virgin coconut oil produced through the fermentation method had the strongest scavenging effect on 1,1-diphenyl-2-picrylhydrazyl and the highest antioxidant activity based on the beta-carotene-linoleate bleaching method. However, virgin coconut oil obtained through the chilling method had the highest reducing power. The major phenolic acids detected were ferulic acid and p-coumaric acid. Very high correlations were found between the total phenolic content and scavenging activity (r=0.91), and between the total phenolic content and reducing power (r=0.96). There was also a high correlation between total phenolic acids and beta-carotene bleaching activity. The study indicated that the contribution of antioxidant capacity in virgin coconut oil could be due to phenolic compounds.

  1. Phenolic acids as bioindicators of fly ash deposit revegetation.

    Science.gov (United States)

    Djurdjević, L; Mitrović, M; Pavlović, P; Gajić, G; Kostić, O

    2006-05-01

    The floristic composition, the abundance, and the cover of pioneer plant species of spontaneously formed plant communities and the content of total phenolics and phenolic acids, as humus constituents, of an ash deposit after 7 years of recultivation were studied. The restoration of both the soil and the vegetation on the ash deposits of the "Nikola Tesla-A" thermoelectric power plant in Obrenovac (Serbia) is an extremely slow process. Unfavorable physical and chemical characteristics, the toxicity of fly ash, and extreme microclimatic conditions prevented the development of compact plant cover. The abundance and cover of plants increased from the central part of the deposit towards its edges (ranging from 1-80%). Festuca rubra L., Crepis setosa Hall., Erigeron canadensis L., Cirsium arvense (L.) Scop., Calamagrostis epigeios (L.) Roth., and Tamarix gallica L. were the most abundant species, thus giving the highest cover. Humus generated during the decomposition process of plant remains represents a completely new product absent in the ash as the starting material. The amount of total phenolics and phenolic acids (38.07-185.16 microg/g of total phenolics and 4.12-27.28 microg/g of phenolic acids) in fly ash increased from the center of the deposit towards its edges in correlation with the increase in plant abundance and cover. Ash samples contained high amounts of ferulic, vanillic, and p-coumaric acid, while the content of both p-hydroxybenzoic and syringic acid was relatively low. The presence of phenolic acids indicates the ongoing process of humus formation in the ash, in which the most abundant pioneer plants of spontaneously formed plant communities play the main role. Phenolic compounds can serve as reliable bioindicators in an assessment of the success of the recultivation process of thermoelectric power plants' ash deposits.

  2. Phenolic aminocarboxylic acids as gallium-binding radiopharmaceuticals

    International Nuclear Information System (INIS)

    Hunt, F.C.

    1984-01-01

    The phenolic aminocarboxylic acids ethylenediamine di [o-hydroxyphenylacetic acid] (EDDHA) and N,N'-bis [2-hydroxybenzyl] ethylenediamine N,N'-diacetic acid (HBED) form gallium complexes having high stability constants which enable them to resist exchange of gallium with plasma transferrin. 67 Ga complexes were synthesized with these ligands, placing substituent groups in the phenolic ring to direct excretion via the renal or hepatobiliary route. The amount of 67 Ga-Br-EDDHA excreted via the hepatobiliary route was comparable with that of some of the sup(99m)Tc agents. Excretion of 67 Ga-Br-HBED was similar but with delayed transit from the liver. 67 Ga COOH-EDDHA was excreted exclusively via the renal route. These findings provide a basis for developing new 67 Ga or 68 Ga radiopharmaceuticals, the latter for use in positron emission tomography, using these phenolic aminocarboxylates. (orig.) [de

  3. Phenolic aminocarboxylic acids as gallium-binding radiopharmaceuticals.

    Science.gov (United States)

    Hunt, F C

    1984-06-01

    The phenolic aminocarboxylic acids ethylenediamine di [o-hydroxyphenylacetic acid] (EDDHA) and N,N'-bis [2-hydroxybenzyl] ethylenediamine N,N'-diacetic acid (HBED) form gallium complexes having high stability constants which enable them to resist exchange of gallium with plasma transferrin. 67Ga complexes were synthesized with these ligands, placing substituent groups in the phenolic ring to direct excretion via the renal or hepatobiliary route. The amount of 67Ga-Br-EDDHA excreted via the hepatobiliary route was comparable with that of some of the 99mTc agents. Excretion of 67Ga-Br-HBED was similar but with delayed transit from the liver. 67Ga COOH-EDDHA was excreted exclusively via the renal route. These findings provide a basis for developing new 67Ga or 68Ga radiopharmaceuticals, the latter for use in positron emission tomography, using these phenolic aminocarboxylates.

  4. Effect of processing on phenolic acids composition and radical scavenging capacity of barley pasta.

    Science.gov (United States)

    De Paula, Rosanna; Rabalski, Iwona; Messia, Maria Cristina; Abdel-Aal, El-Sayed M; Marconi, Emanuele

    2017-12-01

    Phenolic acids, total phenolics content and DPPH radical scavenging capacity in raw ingredients, fresh and dried spaghetti, and in uncooked and cooked spaghetti were evaluated and compared with semolina spaghetti as a reference. Ferulic acid was the major phenolic acid found in the free and bound phenolic extracts in all the investigated pasta samples. The addition of barley flour into pasta at incorporation levels of 30, 50 and 100% increased phenolic acids and total phenolics content. Pasta processing did not significantly affect the total phenolics content and free radical scavenging capacity, but a significant reduction in total phenolic acids measured by HPLC was found. Drying process differently affected individual phenolic compounds in the free and bound fractions, and thus, the total phenolic acids content. Free vanillic, caffeic and p-coumaric acids did not significantly change, while p-hydroxybenzoic and ferulic acids of the free extracts showed higher values compared to the corresponding fresh pasta. Cooking did not greatly affect total phenolic acids, more leading to conserving free and bound phenolic compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Phenolic Acids, Phenolic Aldehydes and Furanic Derivatives in Oak Chips: American vs. French Oaks

    OpenAIRE

    Cabrita, M.J.; Barrocas Dias, C.; Costa Freitas, A.M.

    2011-01-01

    Phenolic acids (gallic, vanillic, syringic and ellagic acids), phenolic aldehydes (vanillin, syringaldehyde, coniferaldehyde and sinapaldehyde) and furanic derivatives (furfural, 5-methylfurfural and 5-hydroxymethylfurfural) were quantified in commercial American and French oak chips. Chips with different sizes and toast degrees were used. Compounds were extracted directly from the wood samples in order to determine possible differences among woods as well as toast degree. Likewise, the compo...

  6. Phenolic aminocarboxylic acids as gallium-binding radiopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, F.C.

    1984-06-01

    The phenolic aminocarboxylic acids ethylenediamine di (o-hydroxyphenylacetic acid) (EDDHA) and N,N'-bis (2-hydroxybenzyl) ethylenediamine N,N'-diacetic acid (HBED) form gallium complexes having high stability constants which enable them to resist exchange of gallium with plasma transferrin. /sup 67/Ga complexes were synthesized with these ligands, placing substituent groups in the phenolic ring to direct excretion via the renal or hepatobiliary route. The amount of /sup 67/Ga-Br-EDDHA excreted via the hepatobiliary route was comparable with that of some of the sup(99m)Tc agents. Excretion of /sup 67/Ga-Br-HBED was similar but with delayed transit from the liver. /sup 67/Ga COOH-EDDHA was excreted exclusively via the renal route. These findings provide a basis for developing new /sup 67/Ga or /sup 68/Ga radiopharmaceuticals, the latter for use in positron emission tomography, using these phenolic aminocarboxylates.

  7. Behavior of phenolic substances in the decaying process of plants. V. Elution of heavy metals with phenolic acids from soil

    Energy Technology Data Exchange (ETDEWEB)

    Shindo, H; Kuwatsuka, S

    1977-01-01

    The relationship between the elution of heavy metals with phenolic substances and the chemical structure of phenolic substances, as well as the interaction between phenolic substances and metals were studied using batch and column methods. The elution of 3 metals (Fe, Al and Mn) with 4 phenolic acids (rho-hydroxybenzoic, salicylic, ..cap alpha..-resorcylic, and protocatechuic acids) and phthalic acid were investigated using 3 different soils. The results are as follows: (1) The elution of heavy metals was largely influenced by the chemical structures of the phenolic acids. Protocatechuic, salicylic, and phthalic acids which had different chelating sites easily extracted iron, aluminum, and manganese from the soils. Hydroxybenzoic and ..cap alpha..-resorcylic acids which had no chelating sites contributed little to the elution process. (2) In many cases protocatechuic acid showed a stronger affinity to iron than to aluminum, but salicylic acid showed the opposite trend. The affinity of phthalic acid to metals was much less than that of both phenolic acids. (3) The elution of heavy metals was also influenced by the soil pH. The amounts of heavy metals eluted with protocatechuic acid increased as the soil pH increased. The amounts eluted with salicylic and phthalic acids increased as the soil pH decreased. (4) The results suggested that chelating phenolics such as protocatechuic and salicylic acids, which were exuded from plant residues or produced during the decaying process of plant residues, eluted heavy metals such as iron, aluminum and manganese from soil particles and accelerated the downward movement of these metal ions.

  8. Interaction of milk whey protein with common phenolic acids

    Science.gov (United States)

    Zhang, Hao; Yu, Dandan; Sun, Jing; Guo, Huiyuan; Ding, Qingbo; Liu, Ruihai; Ren, Fazheng

    2014-01-01

    Phenolics-rich foods such as fruit juices and coffee are often consumed with milk. In this study, the interactions of α-lactalbumin and β-lactoglobulin with the phenolic acids (chlorogenic acid, caffeic acid, ferulic acid, and coumalic acid) were examined. Fluorescence, CD, and FTIR spectroscopies were used to analyze the binding modes, binding constants, and the effects of complexation on the conformation of whey protein. The results showed that binding constants of each whey protein-phenolic acid interaction ranged from 4 × 105 to 7 × 106 M-n and the number of binding sites n ranged from 1.28 ± 0.13 to 1.54 ± 0.34. Because of these interactions, the conformation of whey protein was altered, with a significant reduction in the amount of α-helix and an increase in the amounts of β-sheet and turn structures.

  9. Phenolic acid composition and antioxidant properties of Malaysian honeys.

    Science.gov (United States)

    Khalil, M I; Alam, N; Moniruzzaman, M; Sulaiman, S A; Gan, S H

    2011-08-01

    The phenolic acid and flavonoid contents of Malaysian Tualang, Gelam, and Borneo tropical honeys were compared to those of Manuka honey. Ferric reducing/antioxidant power assay (FRAP) and the 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical-scavenging activities were also quantified. All honey extracts exhibited high phenolic contents (15.21 ± 0.51- 42.23 ± 0.64 mg/kg), flavonoid contents (11.52 ± 0.27- 25.31 ± 0.37 mg/kg), FRAP values (892.15 ± 4.97- 363.38 ± 10.57 μM Fe[II]/kg), and high IC₅₀ of DPPH radical-scavenging activities (5.24 ± 0.40- 17.51 ± 0.51 mg/mL). Total of 6 phenolic acids (gallic, syringic, benzoic, trans-cinnamic, p-coumaric, and caffeic acids) and 5 flavonoids (catechin, kaempferol, naringenin, luteolin, and apigenin) were identified. Among the Malaysian honey samples, Tualang honey had the highest contents of phenolics, and flavonoids, and DPPH radical-scavenging activities. We conclude that among Malaysian honey samples, Tualang honey is the richest in phenolic acids, and flavonoid compounds, which have strong free radical-scavenging activities. © 2011 Institute of Food Technologists®

  10. Phenolic acids potentiate colistin-mediated killing of Acinetobacter baumannii by inducing redox imbalance.

    Science.gov (United States)

    Ajiboye, Taofeek O; Skiebe, Evelyn; Wilharm, Gottfried

    2018-05-01

    Phenolic acids with catechol groups are good prooxidants because of their low redox potential. In this study, we provided data showing that phenolic acids, caffeic acid, gallic acid and protocatechuic acid, enhanced colistin-mediated bacterial death by inducing redox imbalance. The minimum inhibitory concentrations of these phenolic acids against Acinetobacter baumannii AB5075 were considerably lowered for ΔsodB and ΔkatG mutants. Checkerboard assay shows synergistic interactions between colistin and phenolic acids. The phenolic acids exacerbated colistin-induced oxidative stress in A. baumannii AB5075 through increased superoxide anion generation, NAD + /NADH and ADP/ATP ratio. In parallel, the level of reduced glutathione was significantly lowered. We conclude that phenolic acids potentiate colistin-induced oxidative stress in A. baumannii AB5075 by increasing ROS generation, energy metabolism and electron transport chain activity with a concomitant decrease in glutathione. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  11. Intestinal release and uptake of phenolic antioxidant diferulic acids

    DEFF Research Database (Denmark)

    Andreasen, Mette Findal; Kroon, P A; Williamson, G

    2001-01-01

    Diferulic acids are potent antioxidants and are abundant structural components of plant cell walls, especially in cereal brans. As such, they are part of many human and animal diets and may contribute to the beneficial effect of cereal brans on health. However, these phenolics are ester-linked to......Diferulic acids are potent antioxidants and are abundant structural components of plant cell walls, especially in cereal brans. As such, they are part of many human and animal diets and may contribute to the beneficial effect of cereal brans on health. However, these phenolics are ester...... system. Our results suggest that the phenolic antioxidant diferulic acids are bioavailable. Udgivelsesdato: 2001-Aug-1...

  12. Identification of the free phenolic profile of Adlay bran by UPLC-QTOF-MS/MS and inhibitory mechanisms of phenolic acids against xanthine oxidase.

    Science.gov (United States)

    Lin, Lianzhu; Yang, Qingyun; Zhao, Kun; Zhao, Mouming

    2018-07-01

    Adlay bran free phenolic extract has been previously demonstrated to possess potent xanthine oxidase (XOD) inhibitory activity. The aims of this study were to characterize the free phenolic profile of adlay bran and investigate the structure-activity relationship, underlying mechanism and interaction of phenolic acids as XOD inhibitors. A total of twenty phenolics including ten phenolic acids, two coumarins, two phenolic aldedhyes and six flavonoids were identified in a phenolic compound-guided separation by UPLC-QTOF-MS/MS. Adlay bran free phenolic extract possessed strong XOD inhibitory activity related to hydroxycinnamic acids with methoxyl groups. The hydrogen bonding and hydrophobic interactions were the main forces in the binding of adlay phenolics to XOD. Sinapic acid, identified in adlay bran for the first time, possessed strong XOD inhibitory activity in a mixed non-competitive manner, and synergistic effects with other adlay phenolic acids at low concentrations, and would be a promising agent for preventing and treating hyperuricemia. Copyright © 2018. Published by Elsevier Ltd.

  13. Possible regulation of sterol biosynthesis by phenolic acids

    International Nuclear Information System (INIS)

    Ranganathan, S.; Ramasarma, T.

    1974-01-01

    To test whether the phenolic acids, metabolites of tyrosine, regulate the biosynthesis of cholesterol, influence of phenolic acids on the incorporation of mevalonate-2- 14 C into sterols by rat liver and brain homogenate systems has been investigated in vitro. Results show that the combined presence of the aromatic ring and the carboxyl group in the compound under investigation inhibited the incorporation of labelled mevalonate. (M.G.B.)

  14. Content of phenolic acids and ferulic acid dehydrodimers in 17 rye (Secale cereale L.) varieties

    DEFF Research Database (Denmark)

    Andreasen, M. F.; Christensen, L. P.; Meyer, Anne Boye Strunge

    2000-01-01

    of the analyzed components were observed among the different rye varieties and also between different harvest years. However, the content of phenolic acids in the analyzed rye varieties was narrow compared to cereals such as wheat and barley. The concentration of ferulic acid, the most abundant phenolic acid...

  15. Bioactivities, biosynthesis and biotechnological production of phenolic acids in Salvia miltiorrhiza.

    Science.gov (United States)

    Shi, Min; Huang, Fenfen; Deng, Changping; Wang, Yao; Kai, Guoyin

    2018-05-10

    Salvia miltiorrhiza (Danshen in Chinese), is a well-known traditional Chinese medicinal plant, which is used as not only human medicine but also health-promotion food. Danshen has been extensively used for the treatment of various cardiovascular and cerebrovascular diseases. As a major group of bioactive constituents from S. miltiorrhiza, water-soluble phenolic acids such as salvianolic acid B possessed good bioactivities including antioxidant, anti-inflammatory, anti-cancer and other health-promoting activities. It is of significance to improve the production of phenolic acids by modern biotechnology approaches to meet the increasing market demand. Significant progresses have been made in understanding the biosynthetic pathway and regulation mechanism of phenolic acids in S.miltiorrhiza, which will facilitate the process of targeted metabolic engineering or synthetic biology. Furthermore, multiple biotechnology methods such as in vitro culture, elicitation, hairy roots, endophytic fungi and bioreactors have been also used to obtain pharmaceutically active phenolic acids from S. miltiorrhiza. In this review, recent advances in bioactivities, biosynthetic pathway and biotechnological production of phenolic acid ingredients were summarized and future prospective was also discussed.

  16. Phenolic acid changes during Orobanche parasitism on faba bean ...

    African Journals Online (AJOL)

    The present work is intended to provide further information on broomrape parasitism based on phenolic acid changes in either the host plant(s) or in each of the host and the parasite in the host-parasite system. Detection of phenolic acids was carried out using high performance liquid chromatography (HPLC) in the host ...

  17. Synthesis, characterization, bioactivity and potential application of phenolic acid grafted chitosan: A review.

    Science.gov (United States)

    Liu, Jun; Pu, Huimin; Liu, Shuang; Kan, Juan; Jin, Changhai

    2017-10-15

    In recent years, increasing attention has been paid to the grafting of phenolic acid onto chitosan in order to enhance the bioactivity and widen the application of chitosan. Here, we present a comprehensive overview on the recent advances of phenolic acid grafted chitosan (phenolic acid-g-chitosan) in many aspects, including the synthetic method, structural characterization, biological activity, physicochemical property and potential application. In general, four kinds of techniques including carbodiimide based coupling, enzyme catalyzed grafting, free radical mediated grafting and electrochemical methods are frequently used for the synthesis of phenolic acid-g-chitosan. The structural characterization of phenolic acid-g-chitosan can be determined by several instrumental methods. The physicochemical properties of chitosan are greatly altered after grafting. As compared with chitosan, phenolic acid-g-chitosan exhibits enhanced antioxidant, antimicrobial, antitumor, anti-allergic, anti-inflammatory, anti-diabetic and acetylcholinesterase inhibitory activities. Notably, phenolic acid-g-chitosan shows potential applications in many fields as coating agent, packing material, encapsulation agent and bioadsorbent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Oxidation of phenolic acid derivatives by soil and its relevance to allelopathic activity.

    Science.gov (United States)

    Ohno, T

    2001-01-01

    Previous studies have suggested that phenolic acids from legume green manures may contribute to weed control through allelopathy. The objectives of this study were to investigate the oxidation reactions of phenolic acids in soil and to determine the subsequent effects of oxidation upon phytotoxicity. Soils were reacted for 18 h with 0.25 mmol L(-1) benzoic and cinnamic acid derivative solutions and Mn release from the suspension was used as a marker for phenolic acid oxidation. The extent of oxidation in soil suspensions was in the order of 3,4dihydroxy- > 4-hydroxy-3-methoxy- > 4-hydroxy-approximately 2-hydroxy-substituted benzoic and cinnamic acids. The same ranking was observed for cyclic voltammetry peak currents of the cinnamic acid derivatives. This suggests that the oxidation of phenolic acids is controlled by the electron transfer step from the sorbed phenolic acid to the metal oxide. A bioassay experiment showed that the 4-hydroxy-, 4-hydroxy-3-methoxy-, and 3,4-dihydroxy-substituted cinnamic acids were bioactive at 0.25 mmol L(-1) concentration. Reaction with soil for 18 h resulted in the elimination of bioactivity of these three cinnamic acids at the 5% significance level. The oxidative reactivity of phenolic acids may limit the potential of allelopathy as a component of an integrated weed management system. However, the initial phytotoxicity after soil incorporation may coincide with the early, critical stage of weed emergence and establishment, so that allelopathic phenolic acids may still play a role in weed management despite their reactivity in soil systems.

  19. Phenolic composition and antioxidant potential of grain legume seeds: A review.

    Science.gov (United States)

    Singh, Balwinder; Singh, Jatinder Pal; Kaur, Amritpal; Singh, Narpinder

    2017-11-01

    Legumes are a good source of bioactive phenolic compounds which play significant roles in many physiological as well as metabolic processes. Phenolic acids, flavonoids and condensed tannins are the primary phenolic compounds that are present in legume seeds. Majority of the phenolic compounds are present in the legume seed coats. The seed coat of legume seeds primarily contains phenolic acids and flavonoids (mainly catechins and procyanidins). Gallic and protocatechuic acids are common in kidney bean and mung bean. Catechins and procyanidins represent almost 70% of total phenolic compounds in lentils and cranberry beans (seed coat). The antioxidant activity of phenolic compounds is in direct relation with their chemical structures such as number as well as position of the hydroxyl groups. Processing mostly leads to the reduction of phenolic compounds in legumes owing to chemical rearrangements. Phenolic content also decreases due to leaching of water-soluble phenolic compounds into the cooking water. The health benefits of phenolic compounds include acting as anticarcinogenic, anti-thrombotic, anti-ulcer, anti-artherogenic, anti-allergenic, anti-inflammatory, antioxidant, immunemodulating, anti-microbial, cardioprotective and analgesic agents. This review provides comprehensive information of phenolic compounds identified in grain legume seeds along with discussing their antioxidant and health promoting activities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Characterization of Free, Conjugated, and Bound Phenolic Acids in Seven Commonly Consumed Vegetables

    Directory of Open Access Journals (Sweden)

    Yuan Gao

    2017-11-01

    Full Text Available Phenolic acids are thought to be beneficial for human health and responsible for vegetables’ health-promoting properties. Free, conjugated, and bound phenolic acids of seven commonly consumed vegetables, including kidney bean, cow pea, snow pea, hyacinth bean, green soy bean, soybean sprouts and daylily, from the regions of Beijing, Hangzhou, and Guangzhou, were identified and quantified by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS. Three vegetables, namely green soy bean, soybean sprouts, and daylily (Hemerocallis fulva L., from the Beijing region contained higher concentrations of total phenolic acids than those from the Hangzhou and Guangzhou regions. The results indicated that the phenolic acid content in the seven vegetables appeared to be species-dependent. The highest content of phenolic acids was found in daylily, followed by green soy bean, while the least amounts were identified in kidney bean and hyacinth bean. Typically, phenolic acids are predominantly found in conjugated forms. Principle component analysis (PCA revealed some key compounds that differentiated the seven vegetables. Green soy bean, compared to the other six vegetables, was characterized by higher levels of syringic acid, ferulic acid, vanillic acid, and sinapic acid. Other compounds, particularly p-coumaric acid, neochlorogenic acid, and caffeic acid, exhibited significantly higher concentrations in daylily. In addition, p-coumaric acid was the characteristic substance in cow pea. Results from this study can contribute to the development of vegetables with specific phytochemicals and health benefits.

  1. Characterization of Free, Conjugated, and Bound Phenolic Acids in Seven Commonly Consumed Vegetables.

    Science.gov (United States)

    Gao, Yuan; Ma, Shuai; Wang, Meng; Feng, Xiao-Yuan

    2017-11-01

    Phenolic acids are thought to be beneficial for human health and responsible for vegetables' health-promoting properties. Free, conjugated, and bound phenolic acids of seven commonly consumed vegetables, including kidney bean, cow pea, snow pea, hyacinth bean, green soy bean, soybean sprouts and daylily, from the regions of Beijing, Hangzhou, and Guangzhou, were identified and quantified by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Three vegetables, namely green soy bean, soybean sprouts, and daylily ( Hemerocallis fulva L.), from the Beijing region contained higher concentrations of total phenolic acids than those from the Hangzhou and Guangzhou regions. The results indicated that the phenolic acid content in the seven vegetables appeared to be species-dependent. The highest content of phenolic acids was found in daylily, followed by green soy bean, while the least amounts were identified in kidney bean and hyacinth bean. Typically, phenolic acids are predominantly found in conjugated forms. Principle component analysis (PCA) revealed some key compounds that differentiated the seven vegetables. Green soy bean, compared to the other six vegetables, was characterized by higher levels of syringic acid, ferulic acid, vanillic acid, and sinapic acid. Other compounds, particularly p -coumaric acid, neochlorogenic acid, and caffeic acid, exhibited significantly higher concentrations in daylily. In addition, p -coumaric acid was the characteristic substance in cow pea. Results from this study can contribute to the development of vegetables with specific phytochemicals and health benefits.

  2. Kinetic study of adsorption and degradation of aniline, benzoic acid, phenol, and diuron in soil suspensions

    International Nuclear Information System (INIS)

    Dao, T.H.; Lavy, T.L.

    1987-01-01

    Laboratory studies were conducted to investigate the effects of low temperature and accelerated soil-solution contact on soil adsorption of labile organic chemicals. The authors measured the kinetics of adsorption and degradation of 14 C-aniline, 14 C-benzoic acid, 14 C-phenol, and 14 C-diuron in the solution phase at 3 and 22 0 C. In the initial stages of reactions, the adsorption of all four chemicals was instantaneous at both temperatures under accelerated soil and solution mixing. A steady state was observed after the onset of equilibrium for the adsorption reaction for all compounds within 10 to 30 min. Its length varied according to the expected order of susceptibility to microbial degradation, i.e., diuron > aniline > phenol ≥ benzoate. It was apparent that the steady-state period without or in combination with low temperature could be advantageously used to obtain adsorption measurements in microbially active systems. A mechanistic sorption-catalyzed degradation model was evaluated to uncouple mathematically these processes. The model described satisfactorily the disappearance of labile chemicals in soil suspensions. Numerical analysis allowed the concurrent determination of adsorption, desorption, and biodegradation rate coefficients

  3. 40 CFR 721.3800 - Formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene...

    Science.gov (United States)

    2010-07-01

    ... polyoxyethylene fatty acid, ester with styrenated phenol, ethylene oxide adduct. 721.3800 Section 721.3800... Formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene oxide adduct. (a... generically as formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene...

  4. Vanillin production from simple phenols by wine-associated lactic acid bacteria.

    Science.gov (United States)

    Bloem, A; Bertrand, A; Lonvaud-Funel, A; de Revel, G

    2007-01-01

    The ability of lactic acid bacteria (LAB) to metabolize certain phenolic precursors to vanillin was investigated. Gas chromatography-mass spectrometry (GC-MS) or HPLC was used to evaluate the biosynthesis of vanillin from simple phenolic precursors. LAB were not able to form vanillin from eugenol, isoeugenol or vanillic acid. However Oenococcus oeni or Lactobacillus sp. could convert ferulic acid to vanillin, but in low yield. Only Lactobacillus sp. or Pediococcus sp. strains were able to produce significant quantities of 4-vinylguaiacol from ferulic acid. Moreover, LAB reduced vanillin to the corresponding vanillyl alcohol. The transformation of phenolic compounds tested by LAB could not explain the concentrations of vanillin observed during LAB growth in contact with wood. Important details of the role of LAB in the conversion of phenolic compounds to vanillin have been elucidated. These findings contribute to the understanding of malolactic fermentation in the production of aroma compounds.

  5. Upgrading of straw hydrolysate for production of hydrogen and phenols in a microbial electrolysis cell (MEC)

    DEFF Research Database (Denmark)

    Thygesen, Anders; Marzorati, Massimo; Boon, Nico

    2011-01-01

    In a microbial electrolysis cell (MEC), hydrolysate produced by hydrothermal treatment of wheat straw was used for hydrogen production during selective recovery of phenols. The average H2 production rate was 0.61 m3 H2/m3 MEC·day and equivalent to a rate of 0.40 kg COD/m3 MEC·day. The microbial...... the energy content in the consumed compounds and the cell voltage of 0.7 V. The highest hydrogen production was equivalent to 0.8 kg COD/m3 MEC·day and was obtained at pH 7–8 and 25°C. Accumulation of 53% w/v phenolic compounds in the liquor was obtained by stepwise addition of the hydrolysate during...

  6. Effects of different cellulases on the release of phenolic acids from rice straw during saccharification.

    Science.gov (United States)

    Xue, Yiyun; Wang, Xiahui; Chen, Xingxuan; Hu, Jiajun; Gao, Min-Tian; Li, Jixiang

    2017-06-01

    Effects of different cellulases on the release of phenolic acids from rice straw during saccharification were investigated in this study. All cellulases tested increased the contents of phenolic acids during saccharification. However, few free phenolic acids were detected, as they were present in conjugated form after saccharification when the cellulases from Trichoderma reesei, Trichoderma viride and Aspergillus niger were used. On the other hand, phenolic acids were present in free form when the Acremonium cellulolyticus cellulase was used. Assays of enzyme activity showed that, besides high cellulase activity, the A. cellulolyticus cellulase exhibited high feruloyl esterase (FAE) activity. A synergistic interaction between FAE and cellulase led to the increase in free phenolic acids, and thus an increase in antioxidative and antiradical activities of the phenolic acids. Moreover, a cost estimation demonstrated the feasibility of phenolic acids as value-added products to reduce the total production cost of ethanol. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Effect of temperature on the anaerobic degradation of phenol and the microbial community

    International Nuclear Information System (INIS)

    Leven, L.; Schnurer, A.

    2009-01-01

    The residue produced during anaerobic digestion of organic waste is rich in nutrient and can be used as fertiliser However, one concern is the content of organic pollutants, as these may influence the soil fertility negatively and should therefore only occur at low levels. In this study, the effect of the process temperature on the anaerobic degradation of different phenolic compounds was investigated. Phenols have been shown to have a negative impact on soil microbial activity and can appear in anaerobic bioreactors both as components of the in-going substrate, and as intermediates during degradation of different complex aromatic compounds. (Author)

  8. Phenolic acids as bioindicators of fly ash deposit revegetation

    Energy Technology Data Exchange (ETDEWEB)

    L. Djurdjevic; M. Mitrovic; P. Pavlovic; G. Gajic; O. Kostic [Institute for Biological Research ' Sinisa Stankovic,' Belgrade (Serbia and Montenegro). Department of Ecology

    2006-05-15

    The floristic composition, the abundance, and the cover of pioneer plant species of spontaneously formed plant communities and the content of total phenolics and phenolic acids, as humus constituents, of an ash deposit after 7 years of recultivation were studied. The restoration of both the soil and the vegetation on the ash deposits of the 'Nikola Tesla-A' thermoelectric power plant in Obrenovac (Serbia) is an extremely slow process. Unfavorable physical and chemical characteristics, the toxicity of fly ash, and extreme microclimatic conditions prevented the development of compact plant cover. The abundance and cover of plants increased from the central part of the deposit towards its edges. Festuca rubra L., Crepis setosa Hall., Erigeron canadensis L., Cirsium arvense (L.) Scop., Calamagrostis epigeios (L.) Roth., and Tamarix gallica L. were the most abundant species, thus giving the highest cover. Humus generated during the decomposition process of plant remains represents a completely new product absent in the ash as the starting material. The amount of total phenolics and phenolic acids in fly ash increased from the center of the deposit towards its edges in correlation with the increase in plant abundance and cover. The presence of phenolic acids indicates the ongoing process of humus formation in the ash, in which the most abundant pioneer plants of spontaneously formed plant communities play the main role. Phenolic compounds can serve as reliable bioindicators in an assessment of the success of the recultivation process of thermoelectric power plants' ash deposits.

  9. Phenolic Acids from Wheat Show Different Absorption Profiles in Plasma: A Model Experiment with Catheterized Pigs

    DEFF Research Database (Denmark)

    Nørskov, Natalja; Hedemann, Mette Skou; Theil, Peter Kappel

    2013-01-01

    The concentration and absorption of the nine phenolic acids of wheat were measured in a model experiment with catheterized pigs fed whole grain wheat and wheat aleurone diets. Six pigs in a repeated crossover design were fitted with catheters in the portal vein and mesenteric artery to study...... the absorption of phenolic acids. The difference between the artery and the vein for all phenolic acids was small, indicating that the release of phenolic acids in the large intestine was not sufficient to create a porto-arterial concentration difference. Although, the porto-arterial difference was small...... consumed. Benzoic acid derivatives showed low concentration in the plasma (phenolic acids, likely because it is an intermediate in the phenolic acid metabolism...

  10. Effects of abscisic acid, gibberellin, ethylene and their interactions on production of phenolic acids in salvia miltiorrhiza bunge hairy roots.

    Science.gov (United States)

    Liang, Zongsuo; Ma, Yini; Xu, Tao; Cui, Beimi; Liu, Yan; Guo, Zhixin; Yang, Dongfeng

    2013-01-01

    Salvia miltiorrhiza is one of the most important traditional Chinese medicinal plants because of its excellent performance in treating coronary heart disease. Phenolic acids mainly including caffeic acid, rosmarinic acid and salvianolic acid B are a group of active ingredients in S. miltiorrhiza. Abscisic acid (ABA), gibberellin (GA) and ethylene are three important phytohormones. In this study, effects of the three phytohormones and their interactions on phenolic production in S. miltiorrhiza hairy roots were investigated. The results showed that ABA, GA and ethylene were all effective to induce production of phenolic acids and increase activities of PAL and TAT in S. miltiorrhiza hairy roots. Effects of phytohormones were reversed by their biosynthetic inhibitors. Antagonistic actions between the three phytohormones played important roles in the biosynthesis of phenolic acids. GA signaling is necessary for ABA and ethylene-induced phenolic production. Yet, ABA and ethylene signaling is probably not necessary for GA3-induced phenolic production. The complex interactions of phytohormones help us reveal regulation mechanism of secondary metabolism and scale-up production of active ingredients in plants.

  11. Microbial degradation of plant leachate alters lignin phenols and trihalomethane precursors

    Science.gov (United States)

    Pellerin, Brian A.; Hernes, Peter J.; Saraceno, John Franco; Spencer, Robert G.M.; Bergamaschi, Brian A.

    2010-01-01

    Although the importance of vascular plant-derived dissolved organic carbon (DOC) in freshwater systems has been studied, the role of leached DOC as precursors of disinfection byproducts (DBPs) during drinking water treatment is not well known. Here we measured the propensity of leachates from four crops and four aquatic macrophytes to form trihalomethanes (THMs)—a regulated class of DBPs—before and after 21 d of microbial degradation. We also measured lignin phenol content and specific UV absorbance (SUVA254) to test the assumption that aromatic compounds from vascular plants are resistant to microbial degradation and readily form DBPs. Leaching solubilized 9 to 26% of total plant carbon, which formed 1.93 to 6.72 mmol THM mol C-1 However, leachate DOC concentrations decreased by 85 to 92% over the 21-d incubation, with a concomitant decrease of 67 to 92% in total THM formation potential. Carbon-normalized THM yields in the residual DOC pool increased by 2.5 times on average, consistent with the preferential uptake of nonprecursor material. Lignin phenol concentrations decreased by 64 to 96% over 21 d, but a lack of correlation between lignin content and THM yields or SUVA254 suggested that lignin-derived compounds are not the source of increased THM precursor yields in the residual DOC pool. Our results indicate that microbial carbon utilization alters THM precursors in ecosystems with direct plant leaching, but more work is needed to identify the specific dissolved organic matter components with a greater propensity to form DBPs and affect watershed management, drinking water quality, and human health.

  12. [Effects of different amendments on contents of phenolic acids and specific microbes in rhizosphere of Pseudostellaria heterophylla.

    Science.gov (United States)

    Wu, Lin Kun; Wu, Hong Miao; Zhu, Quan; Chen, Jun; Wang, Juan Ying; Wu, Yan Hong; Lin, Sheng; Lin, Wen Xiong

    2016-11-18

    Pseudostellaria heterophylla is a perennial herbaceous plant in the family Caryophyllaceae. The tuberous roots of P. heterophylla are highly valued in traditional Chinese medicine and have a high market demand. However, extended monoculture of P. heterophylla results in a significant decline in the biomass and quality, and escalates disease and pest problems. Therefore, it is important to understand the underlying mechanism and biocontrol methods for consecutive monoculture problems. With "Zheshen 2" as an experimental material, the changes in the contents of main nutrients in soil, phenolic acids and specific microbes under monoculture and different amendments were analyzed by using high performance liquid chromatography (HPLC) and qPCR. The results showed that consecutive monoculture of P. heterophylla led to a decrease in yield by 43.5% while the microbial fertilizer treatment and the paddy-upland rotation could relieve the consecutive monoculture problems. Available nitrogen, available phosphorus, available potassium and total potassium were significantly higher in the consecutively monocultured soils than in the newly planted soils. But consecutive monoculture resulted in soil acidification. HPLC analysis showed that conse-cutive monoculture of this plant did not lead to a consistent accumulation of soil phenolic acids. At middle stage of root expansion and at harvest stage, most of phenolic acids were even higher in the newly planted soils than in the consecutively monocultured soils. Furthermore, qPCR analysis showed that the amounts of three specific pathogens identified previously (i.e. Fusarium oxysporum, Talaromyces helicus, Kosakonia sacchari) were significantly higher in the consecutively monocultured soils than in the newly planted soils. However, the microbial fertilizer treatment and the paddy-upland rotation resulted in a significant decline in the population of these specific pathogens and improved the soil environment. In conclusion, the

  13. Methods for extraction and determination of phenolic acids in medicinal plants: a review.

    Science.gov (United States)

    Arceusz, Agnieszka; Wesolowski, Marek; Konieczynski, Pawel

    2013-12-01

    Phenolic acids constitute a group of potentially immunostimulating compounds. They occur in all medicinal plants and are widely used in phytotherapy and foods of plant origin. In recent years, phenolic acids have attracted much interest owing to their biological functions. This paper reviews the extraction and determination methods of phenolic acids in medicinal plants over the last 10 years. Although Soxhlet extraction and ultrasonic assisted extraction (UAE) are commonly used for the extraction of phenolic acids from plant materials, alternative techniques such as supercritical fluid extraction (SFE), and accelerated solvent extraction (ASE) can also be used. After extraction, phenolic acids are determined usually by liquid chromatography (LC) owing to the recent developments in this technique, especially when it is coupled with mass spectrometry (MS). Also detection systems are discussed, including UV-Vis, diode array, electrochemical and fluorimetric. Other popular techniques for the analysis of this group of secondary metabolites are gas chromatography coupled with mass spectrometry (GC-MS) and capillary electrophoresis (CE).

  14. Salicylic Acid Alters Antioxidant and Phenolics Metabolism in ...

    African Journals Online (AJOL)

    Key words: Antioxidant enzymes; Catharanthus roseus; indole alkaloids; phenolic metabolism; salicylic acid; salinity stress. Abbreviations: CAT - catalase; Chl - chlorophyll; Car - carotenoids; DTNB - 5,5-dithiobis-2-nitrobenzoic acid; GR - glutathione reductase; GST - Glutathione-S-transferase; H2O2 - hydrogen peroxide; ...

  15. The Conjugates of Phenolic Acids in Lichens of the Order Lecanorales

    Directory of Open Access Journals (Sweden)

    T. N. NIKOLAEVA

    2014-06-01

    Full Text Available Lichens are symbiotic associations of a fungus (usually an ascomycete and a photobiont, which may be an alga and/or a cyanobacterium. Lichens dominate on about 6–8% of land surface, mainly in the habitats with severe climatic conditions. Lichenized fungi are among the pioneer vegetation on bare rock or soil. Mat-forming species contribute substantially to the soil cover in tundras and high mountain elevations. Lichens are rich in water-soluble compounds which can be leached-out the lichen thalli with atmospheric depositions. We have recently described the occurrence of water-soluble phenolics in lichens (Zagoskina et al 2013. These compounds can play important role in the ecosystem functioning and primary soil formation (weathering, humification. The aim of this work was to study qualitative composition of water-soluble phenolics in the lichen species widespread in the soil cover of tundra zone. The air-dried thalli of Alectoria ochroleuca, Cetraria islandica, C.nigricans, C.nivalis, Cladonia arbuscula and C.stellaris were homogenized to powder and used for the study. Lichens were collected in Khibiny mountains, Kola Peninsula in August 2013. Phenolic compounds were extracted by distilled water (1h, 30C and analyzed by TLC before and after the acid hydrolysis. It was found that all the lichens under the study contained the conjugates of phenol carboxylic acids. We have identified that non-phenolic part in some of these conjugates was represented by sugars and amino acids. The TLC of the hydrolizates of water extracts revealed occurrence of p-oxybenzoic acid in all of the species studied. The lichens Cetraria islandica, С.nigricans and Cladonia stellaris contained also vanillic acid. These phenolic acids are widespread in plant kingdom and are known as products of lignin decomposition in higher plants. The physiological role of water-soluble phenolics in lichens as well as their environmental role are need to be understood in future studies.

  16. Effect of postharvest methyl jasmonate treatment on fatty acid composition and phenolic acid content in olive fruits during storage.

    Science.gov (United States)

    Flores, Gema; Blanch, Gracia Patricia; Del Castillo, María Luisa Ruiz

    2017-07-01

    The nutritional effects of both table olives and olive oil are attributed not only to their fatty acids but also to antioxidant phenolics such as phenolic acids. Delays in oil processing usually result in undesirable oxidation and hydrolysis processes leading to formation of free fatty acids. These alterations create the need to process oil immediately after olive harvest. However, phenolic content decreases drastically during olive storage resulting in lower quality oil. In the present study we propose postharvest methyl jasmonate treatment as a mean to avoid changes in fatty acid composition and losses of phenolic acids during olive storage. Contents of fatty acids and phenolic acids were estimated in methyl jasmonate treated olives throughout 30-day storage, as compared with those of untreated olives. Significant decreases of saturated fatty acids were observed in treated samples whereas increases of oleic, linoleic and linolenic acids were respectively measured (i.e. from 50.8% to 64.5%, from 7.2% to 9.1% and from 1.5% to 9.3%). Also, phenolic acid contents increased significantly in treated olives. Particularly, increases of gallic acid from 1.35 to 6.29 mg kg -1 , chlorogenic acid from 9.18 to 16.21 mg kg -1 , vanillic acid from 9.61 to 16.99 mg kg -1 , caffeic acid from 5.12 to 12.55 mg kg -1 , p-coumaric acid from 0.96 to 5.31 mg kg -1 and ferulic acid from 4.05 to 10.43 mg kg -1 were obtained. Methyl jasmonate treatment is proposed as an alternative postharvest technique to traditional methods to guarantee olive oil quality when oil processing is delayed and olive fruits have to necessarily to be stored. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  17. Influence of rye flour enzymatic biotransformation on the antioxidant capacity and transepithelial transport of phenolic acids.

    Science.gov (United States)

    de Lima, Fabíola Aliaga; Martins, Isabela Mateus; Faria, Ana; Calhau, Conceição; Azevedo, Joana; Fernandes, Iva; Mateus, Nuno; Macedo, Gabriela Alves

    2018-03-01

    Phenolic acids have been reported to play a role on the antioxidant activity and other important biological activities. However, as most polyphenolics in food products are either bound to cellular matrices or present as free polymeric forms, the way they are absorbed has not been totally clear until now. Hydrolytic enzymes may act to increase functionalities in polyphenolic-rich foods, enhancing the bioaccessibility of phenolic compounds and minerals from whole grains. The aim of this study was to evaluate the action of tannin acyl hydrolase (tannase) on the total phenols, phenolic acid profile, antioxidant capacity and in vitro bioaccessibility of phenolic acids found in whole rye flour (RF). Besides increasing total phenols and the antioxidant capacity, tannase treatment increased the amounts of ferulic, sinapic and vanillic acids identified in RF, evidencing a new type of feruloyl esterase catalytic action of tannase. Vanillic and sinapic acids in tannase-treated whole rye flour (RFT) were higher than RF after in vitro gastrointestinal digestion, and higher amounts of transported vanillic acid through the Caco-2 monolayer were detected in RFT. However, the bioaccessibility and the transport efficiency of RF phenolic acids were higher than RFT. Underutilized crops like rye and rye-derived products may be an important source of phenolic acids. The tannase biotransformation, even influencing the total phenolics and antioxidant capacity of RF, did not increase the bioaccessibility of phenolic acids under the experimental conditions of this study.

  18. Of the major phenolic acids formed during human microbial fermentation of tea, citrus, and soy flavonoid supplements, only 3,4-dihydroxyphenylacetic acid has antiproliferative activity

    NARCIS (Netherlands)

    Gao, K.; Xu, A.; Krul, C.A.M.; Venema, K.; Liu, Y.; Niu, Y.; Lu, J.; Bensoussan, L.; Seeram, N.P.; Heber, D.; Henning, S.M.

    2006-01-01

    Dietary flavonoids are poorly absorbed from the gastrointestinal tract. Colonic bacteria convert flavonoids into smaller phenolic acids (PA), which can be absorbed into the circulation and may contribute to the chemopreventive activity of the parent compounds. The purpose of our study was to

  19. Ionic liquid-assisted solublization for improved enzymatic esterification of phenolic acids

    DEFF Research Database (Denmark)

    Yang, Zhiyong; Guo, Zheng; Xu, Xuebing

    2012-01-01

    in a binary system, which is composed of ionic liquid tOMA•TFA (trioctylmethylammonium Trifluoroacetate) and octanol. Ionic liquid tOMA•TFA has great solubility towards most of phenolic acid. The strategy of increasing the solubility of phenolic in ionic liquid tOMA•TFA was proved to be an efficient way...... for increasing conversion of phenolic acids. The mixture ratio between tOMA•TFA and octanol was varied from 1:4 to 1:16 (v/v), it was found that the highest conversion of dihydrocaffeic acid (DHCA) was achieved when tOMA•TFA and octanol was mixed as 1:12 (v/v). It was also found that conversion of DHCA at 70 o...

  20. Ruminal Methane Production on Simple Phenolic Acids Addition in in Vitro Gas Production Method

    Directory of Open Access Journals (Sweden)

    A. Jayanegara

    2009-04-01

    Full Text Available Methane production from ruminants contributes to total global methane production, which is an important contributor to global warming. In this experiment, six sources of simple phenolic acids (benzoic, cinnamic, phenylacetic, caffeic, p-coumaric and ferulic acids at two different levels (2 and 5 mM added to hay diet were evaluated for their potential to reduce enteric methane production using in vitro Hohenheim gas production method. The measured variables were gas production, methane, organic matter digestibility (OMD, and short chain fatty acids (SCFA. The results showed that addition of cinnamic, caffeic, p-coumaric and ferulic acids at 5 mM significantly (P p-coumaric > ferulic > cinnamic. The addition of simple phenols did not significantly decrease OMD. Addition of simple phenols tends to decrease total SCFA production. It was concluded that methane decrease by addition of phenolic acids was relatively small, and the effect of phenolic acids on methane decrease depended on the source and concentration applied.

  1. Microbial Biotransformation of a Polyphenol-Rich Potato Extract Affects Antioxidant Capacity in a Simulated Gastrointestinal Model

    Directory of Open Access Journals (Sweden)

    Joelle Khairallah

    2018-03-01

    Full Text Available A multistage human gastrointestinal model was used to digest a polyphenol-rich potato extract containing chlorogenic acid, caffeic acid, ferulic acid, and rutin as the primary polyphenols, to assess for their microbial biotransformation and to measure changes in antioxidant capacity in up to 24 h of digestion. The biotransformation of polyphenols was assessed by liquid chromatography–mass spectrometry. Antioxidant capacity was measured by the ferric reducing antioxidant power (FRAP assay. Among the colonic reactors, parent (polyphenols were detected in the ascending (AC, but not the transverse (TC or descending (DC colons. The most abundant microbial phenolic metabolites in all colonic reactors included derivatives of propionic acid, acetic acid, and benzoic acid. As compared to the baseline, an earlier increase in antioxidant capacity (T = 8 h was seen in the stomach and small intestine vessels as compared to the AC (T = 16 h and TC and DC (T = 24 h. The increase in antioxidant capacity observed in the DC and TC can be linked to the accumulation of microbial smaller-molecular-weight phenolic catabolites, as the parent polyphenolics had completely degraded in those vessels. The colonic microbial digestion of potato-based polyphenols could lead to improved colonic health, as this generates phenolic metabolites with significant antioxidant potential.

  2. Physiological and functional diversity of phenol degraders isolated from phenol-grown aerobic granules: Phenol degradation kinetics and trichloroethylene co-metabolic activities.

    Science.gov (United States)

    Zhang, Yi; Tay, Joo Hwa

    2016-03-15

    Aerobic granule is a novel form of microbial aggregate capable of degrading toxic and recalcitrant substances. Aerobic granules have been formed on phenol as the growth substrate, and used to co-metabolically degrade trichloroethylene (TCE), a synthetic solvent not supporting aerobic microbial growth. Granule formation process, rate limiting factors and the comprehensive toxic effects of phenol and TCE had been systematically studied. To further explore their potential at the level of microbial population and functions, phenol degraders were isolated and purified from mature granules in this study. Phenol and TCE degradation kinetics of 15 strains were determined, together with their TCE transformation capacities and other physiological characteristics. Isolation in the presence of phenol and TCE exerted stress on microbial populations, but the procedure was able to preserve their diversity. Wide variation was found with the isolates' kinetic behaviors, with the parameters often spanning 3 orders of magnitude. Haldane kinetics described phenol degradation well, and the isolates exhibited actual maximum phenol-dependent oxygen utilization rates of 9-449 mg DO g DW(-1) h(-1), in phenol concentration range of 4.8-406 mg L(-1). Both Michaelis-Menten and Haldane types were observed for TCE transformation, with the actual maximum rate of 1.04-21.1 mg TCE g DW(-1) h(-1) occurring between TCE concentrations of 0.42-4.90 mg L(-1). The TCE transformation capacities and growth yields on phenol ranged from 20-115 mg TCE g DW(-1) and 0.46-1.22 g DW g phenol(-1), respectively, resulting in TCE transformation yields of 10-70 mg TCE g phenol(-1). Contact angles of the isolates were between 34° and 82°, suggesting both hydrophobic and hydrophilic cell surface. The diversity in the isolates is a great advantage, as it enables granules to be versatile and adaptive under different operational conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Poly(N-vinylimidazole/ethylene glycol dimethacrylate) for the purification and isolation of phenolic acids

    Energy Technology Data Exchange (ETDEWEB)

    Schemeth, Dieter; Noël, Jean-Christophe [Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University of Innsbruck, CCB—Center of Chemistry and Biomedicine, Innrain 80-82, 6020 Innsbruck (Austria); Jakschitz, Thomas [Austrian Drug Screening Institute, Innrain 66a, 6020 Innsbruck (Austria); Rainer, Matthias, E-mail: m.rainer@uibk.ac.at [Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University of Innsbruck, CCB—Center of Chemistry and Biomedicine, Innrain 80-82, 6020 Innsbruck (Austria); Tessadri, Richard [Institute of Mineralogy and Petrography, Leopold-Franzens University of Innsbruck, Innrain 52, 6020 Innsbruck (Austria); Huck, Christian W. [Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University of Innsbruck, CCB—Center of Chemistry and Biomedicine, Innrain 80-82, 6020 Innsbruck (Austria); Bonn, Günther K. [Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University of Innsbruck, CCB—Center of Chemistry and Biomedicine, Innrain 80-82, 6020 Innsbruck (Austria); Austrian Drug Screening Institute, Innrain 66a, 6020 Innsbruck (Austria)

    2015-07-23

    Highlights: • Free-radical polymerization of protonable vinylimidazole with EGMDA. • Polymer-optimization by maximum loading capacity of phenolic acids. • Performs better than SiO{sub 2} and Al{sub 2}O{sub 3} in normal phase mode using acetonitrile. • Performs equal or even better in anion-exchange mode compared to Oasis-MAX. • Efficient purification of phenolic compounds from crude extract. - Abstract: In this study we report the novel polymeric resin poly(N-vinyl imidazole/ethylene glycol dimethacrylate) for the purification and isolation of phenolic acids. The monomer to crosslinker ratio and the porogen composition were optimized for isolating phenolic acids diluted in acetonitrile at normal phase chromatography conditions, first. Acetonitrile serves as polar, aprotic solvent, dissolving phenolic acids but not interrupting interactions with the stationary phase due to the approved Hansen solubility parameters. The optimized resin demonstrated high loading capacities and adsorption abilities particularly for phenolic acids in both, acetonitrile and aqueous solutions. The adsorption behavior of aqueous standards can be attributed to ion exchange effects due to electrostatic interactions between protonated imidazole residues and deprotonated phenolic acids. Furthermore, adsorption experiments and subsequent curve fittings provide information of maximum loading capacities of single standards according to the Langmuir adsorption model. Recovery studies of the optimized polymer in the normal-phase and ion-exchange mode illustrate the powerful isolation properties for phenolic acids and are comparable or even better than typical, commercially available solid phase extraction materials. In order to prove the applicability, a highly complex extract of rosemary leaves was purified by poly(N-vinyl imidazole/ethylene glycol dimethacrylate) and the isolated compounds were identified using UHPLC–qTOF-MS.

  4. Metabolism of Fructophilic Lactic Acid Bacteria Isolated from the Apis mellifera L. Bee Gut: Phenolic Acids as External Electron Acceptors

    Science.gov (United States)

    Filannino, Pasquale; Addante, Rocco; Pontonio, Erica; Gobbetti, Marco

    2016-01-01

    ABSTRACT Fructophilic lactic acid bacteria (FLAB) are strongly associated with the gastrointestinal tracts (GITs) of Apis mellifera L. worker bees due to the consumption of fructose as a major carbohydrate. Seventy-seven presumptive lactic acid bacteria (LAB) were isolated from GITs of healthy A. mellifera L. adults, which were collected from 5 different geographical locations of the Apulia region of Italy. Almost all of the isolates showed fructophilic tendencies: these isolates were identified as Lactobacillus kunkeei (69%) or Fructobacillus fructosus (31%). A high-throughput phenotypic microarray targeting 190 carbon sources was used to determine that 83 compounds were differentially consumed. Phenotyping grouped the strains into two clusters, reflecting growth performance. The utilization of phenolic acids, such as p-coumaric, caffeic, syringic, or gallic acids, as electron acceptors was investigated in fructose-based medium. Almost all FLAB strains showed tolerance to high phenolic acid concentrations. p-Coumaric acid and caffeic acid were consumed by all FLAB strains through reductases or decarboxylases. Syringic and gallic acids were partially metabolized. The data collected suggest that FLAB require external electron acceptors to regenerate NADH. The use of phenolic acids as external electron acceptors by the 4 FLAB showing the highest phenolic acid reductase activity was investigated in glucose-based medium supplemented with p-coumaric acid. Metabolic responses observed through a phenotypic microarray suggested that FLAB may use p-coumaric acid as an external electron acceptor, enhancing glucose dissimilation but less efficiently than other external acceptors such as fructose or pyruvic acid. IMPORTANCE Fructophilic lactic acid bacteria (FLAB) remain to be fully explored. This study intends to link unique biochemical features of FLAB with their habitat. The quite unique FLAB phenome within the group lactic acid bacteria (LAB) may have practical relevance

  5. Fatty acids, phenols content, and antioxidant activity in Ibervillea sonorae callus cultures

    OpenAIRE

    Estrada-Zúñiga, M.E.; Arano-Varela, H.; Buendía-González, L.; Orozco-Villafuerte, J.

    2012-01-01

    Ibervillea sonorae callus cultures were established in order to produce fatty acids (lauric, myristic, pentadecanoic, palmitic and stearic acids) and phenolic compounds. Highest callus induction (100%) was obtained in treatments containing 2.32 or 4.65 μM Kinetin (KIN) with 2.26 or 6.80 μM 2,4-Dichlorophenoxyacetic acid (2,4-D). Highest fatty acids (FA) production (48.57 mg g-1), highest total phenol content (TPC; 57.1 mg gallic acid equivalents [GAE] g-1) and highest antioxidant activity (EC...

  6. Potentiometric investigation of acid dissociation and anionic homoconjugation equilibria of substituted phenols in dimethyl sulfoxide[Substituted phenols; Acid-base equilibria; Dimethyl sulfoxide (DMSO); Potentiometry

    Energy Technology Data Exchange (ETDEWEB)

    Czaja, Malgorzata; Kozak, Anna; Makowski, Mariusz; Chmurzynski, Lech. E-mail: lech@chemik.chem.univ.gda.pl

    2003-10-01

    Standard acidity constants, K{sub a}{sup DMSO} (HA), expressed as pK{sub a}{sup DMSO} (HA) values, and anionic homoconjugation constants, K{sup DMSO}{sub AHA{sup -}}, (in the form of lg K{sup DMSO}{sub AHA{sup -}} values) have been determined for 11 substituted phenol-phenolate systems a polar protophilic aprotic solvent, dimethyl sulfoxide (DMSO) with a potentiometric titration. A linear relationship has been determined between lg K{sup DMSO}{sub AHA{sup -}} and pK{sub a}{sup DMSO} (HA). The tendency towards anionic homoconjugation in these systems increases with increasing pK{sub a}{sup DMSO} (HA) that is with declining phenol acidity. The pK{sub a}{sup DMSO} (HA) are correlated with both pK{sub a}{sup W} (HA) water and other polar non-aqeous solvents.

  7. Evaluation of the Antiradical Properties of Phenolic Acids

    Science.gov (United States)

    Koroleva, Olga; Torkova, Anna; Nikolaev, Ilya; Khrameeva, Ekaterina; Fedorova, Tatyana; Tsentalovich, Mikhail; Amarowicz, Ryszard

    2014-01-01

    Antioxidant capacity (AOC) against peroxyl radical and 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS) radical cation was measured for a series of p-hydroxybenzoic (HB) and p-hydroxycinnamic (HC) acids at different pH. Quantum-chemical computation was performed using Gaussian 3.0 software package to calculate the geometry and energy parameters of the same compounds. Significant correlations were revealed between AOC and a number of calculated parameters. The most significant AOC descriptors for the studied compounds against peroxyl radical were found to be HOMO energy, rigidity (η) and Mulliken charge on the carbon atom in m-position to the phenolic hydroxyl. The most significant descriptor of the antioxidant properties against the ABTS radical cation at pH 7.40 is electron transfer enthalpy from the phenolate ion. The mechanism of AOC realization has been proposed for HB and HC acids against both radicals. PMID:25229820

  8. Graphene oxide for solid-phase extraction of bioactive phenolic acids.

    Science.gov (United States)

    Hou, Xiudan; Wang, Xusheng; Sun, Yingxin; Wang, Licheng; Guo, Yong

    2017-05-01

    A solid-phase extraction (SPE) method for the efficient analysis of trace phenolic acids (PAs, caffeic acid, ferulic acid, protocatechuic acid, cinnamic acid) in urine was established. In this work, a graphene oxide (GO) coating was grafted onto pure silica to be investigated as SPE material. The prepared GO surface had a layered and wrinkled structure that was rough and well organized, which could provide more open adsorption sites. Owing to its hydrophilicity and polarity, GO showed higher extraction efficiency toward PAs than reduced GO did, in agreement with the theoretical calculation results performed by Gaussian 09 software. The adsorption mechanism of PAs on GO@Sil was also investigated through static state and kinetic state adsorption experiments, which showed a monolayer surface adsorption. Extraction capacity of the as-prepared material was optimized using the response surface methodology. Under the optimized conditions, the as-established method provided wide linearity range (2-50 μg L -1 for protocatechuic acid and 1-50 μg L -1 for caffeic acid, ferulic acid, and cinnamic acid) and low limits of detection (0.25-1 μg L -1 ). Finally, the established method was applied for the analysis of urine from two healthy volunteers. The results indicate that the prepared material is a practical, cost-effective medium for the extraction and determination of phenolic acids in complex matrices. Graphical Abstract A graphene oxide coating was grafted onto pure silica as the SPE material for the extraction of phenolic acids in urines and the extraction mechanism was also mainly investigated.

  9. Phenolic acids and flavonoids of peanut by-products: Antioxidant capacity and antimicrobial effects.

    Science.gov (United States)

    de Camargo, Adriano Costa; Regitano-d'Arce, Marisa Aparecida Bismara; Rasera, Gabriela Boscariol; Canniatti-Brazaca, Solange Guidolin; do Prado-Silva, Leonardo; Alvarenga, Verônica Ortiz; Sant'Ana, Anderson S; Shahidi, Fereidoon

    2017-12-15

    Peanut skin (PS) and meal from dry-blanched peanuts (MDBP) were evaluated as sources of phenolic compounds. PS rendered the highest total phenolic content, antioxidant capacity towards ABTS radical cation, DPPH and hydroxyl radicals as well as reducing power. Phenolic acids were present in PS and MDBP whereas proanthocyanidins and monomeric flavonoids were found only in PS as identified by HPLC-DAD-ESI-MS n . Procyanidin-rich extracts prevented oxidation in non-irradiated and gamma-irradiated fish model system. Both extracts inhibited the growth of gram-positive (Bacillus cereus, Staphylococcus aureus, Listeria monocytogenes, Geobacillus stearothermophilus) and gram-negative bacteria (Pseudomonas aeruginosa, Pseudomonas fluorescens, Salmonella Enteritidis, Salmonella Typhimurium, Escherichia coli). Regardless of the strain, phenolic acid-rich extracts showed the lowest minimum inhibitory capacity (MIC); therefore presenting higher antibacterial effect. The MIC of phenolic acid-rich extracts (24-49μgphenolics/mL) was higher but comparable to Ampicillin (10μg/mL). Thus, phenolics in PS and MDBP may serve as antioxidants and antimicrobial compounds. Copyright © 2017. Published by Elsevier Ltd.

  10. Apple juice composition: sugar, nonvolatile acid, and phenolic profiles.

    Science.gov (United States)

    Lee, H S; Wrolstad, R E

    1988-01-01

    Apples from Michigan, Washington, Argentina, Mexico, and New Zealand were processed into juice; the 8 samples included Golden Delicious, Jonathan, Granny Smith, and McIntosh varieties. Liquid chromatography was used for quantitation of sugars (glucose, fructose, sucrose, and sorbitol), nonvolatile acids (malic, quinic, citric, shikimic, and fumaric), and phenolics (chlorogenic acid and hydroxymethylfurfural [HMF]). Other determinations included pH, 0Brix, and L-malic acid. A number of compositional indices for these authentic juices, e.g., chlorogenic acid content, total malic - L-malic difference, and the HMF:chlorogenic ratio, were at variance with recommended standards. The phenolic profile was shown to be particularly influenced by gelatin fining, with peak areas decreasing by as much as 50%. The L-malic:total malic ratio serves as a better index for presence of synthetic malic acid than does the difference between the 2 determinations. No apparent differences in chemical composition could be attributed to geographic origin.

  11. Bioavailability and pharmacokinetic profile of grape pomace phenolic compounds in humans.

    Science.gov (United States)

    Castello, Fabio; Costabile, Giuseppina; Bresciani, Letizia; Tassotti, Michele; Naviglio, Daniele; Luongo, Delia; Ciciola, Paola; Vitale, Marilena; Vetrani, Claudia; Galaverna, Gianni; Brighenti, Furio; Giacco, Rosalba; Del Rio, Daniele; Mena, Pedro

    2018-05-15

    Grape pomace, the major byproduct of the wine and juice industry, is a relevant source of bioactive phenolic compounds. However, polyphenol bioavailability in humans is not well understood, and the inter-individual variability in the production of phenolic metabolites has not been comprehensively assessed to date. The pharmacokinetic and excretive profiles of phenolic metabolites after the acute administration of a drink made from red grape pomace was here investigated in ten volunteers. A total of 35 and 28 phenolic metabolites were quantified in urine and plasma, respectively. The main circulating metabolites included phenyl-γ-valerolactones, hydroxybenzoic acids, simple phenols, hydroxyphenylpropionic acids, hydroxycinnamates, and (epi)catechin phase II conjugates. A high inter-individual variability was shown both in urine and plasma samples, and different patterns of circulating metabolites were unravelled by applying unsupervised multivariate analysis. Besides the huge variability in the production of microbial metabolites of colonic origin, an important variability was observed due to phase II conjugates. These results are of interest to further understand the potential health benefits of phenolic metabolites on individual basis. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Bioelectricity generation from coconut husk retting wastewater in fed batch operating microbial fuel cell by phenol degrading microorganism

    International Nuclear Information System (INIS)

    Jayashree, C.; Arulazhagan, P.; Adish Kumar, S.; Kaliappan, S.; Yeom, Ick Tae; Rajesh Banu, J.

    2014-01-01

    Dual chamber microbial fuel cell (MFC) operated at fed batch mode for the treatment of retting wastewater has potently achieved both current generation and phenol removal. Hydraulic retention time (HRT) of the reactor was varied from 40 days to 10 days. COD (chemical oxygen demand) removal was 91% at 40 days HRT, with an initial COD concentration of 530 ± 50 g m −3 . Retting wastewater with an initial phenol concentration of 320 ± 60 g m −3 procured a highest phenol removal of 93% at 40 days HRT of the microbial fuel cell. Maximum power density of 362 mW m −2 was achieved using retting wastewater at HRT of 20 days with an internal resistance of 150 Ω in a dual chambered MFC. The bacterial strains in anode region, reported to be responsible for potential phenol removal, were identified as Ochrobactrum sp. RA1 (KJ408266), Ochrobactrum sp. RA2 (KJ408267) and Pesudomonas aeruginosa RA3 (KJ408268) using phylogenetic analysis. The study reveals that, dual chambered MFC effectively removed the phenol from retting wastewater along with power generation. - Highlights: • Maximum power density of 362 mW m −2 (150 Ω) was achieved at HRT of 20 days. • 91% COD removal and 93% phenol removal was observed at HRT of 40 days. • 25% coulombic efficiency was achieved in treatment of retting wastewater with MFC. • Phylogenetic analysis detect phenol degrading Ochrobactrum sp.RA1 in anode biofilm. • In addition, Ochrobactrum sp.RA2 and Pseudomonas aeruginosa RA3 were also isolated

  13. Bifunctional viscous nanovesicles co-loaded with resveratrol and gallic acid for skin protection against microbial and oxidative injuries.

    Science.gov (United States)

    Vitonyte, Justina; Manca, Maria Letizia; Caddeo, Carla; Valenti, Donatella; Peris, Josè Esteban; Usach, Iris; Nacher, Amparo; Matos, Maria; Gutiérrez, Gemma; Orrù, Germano; Fernàndez-Busquets, Xavier; Fadda, Anna Maria; Manconi, Maria

    2017-05-01

    Resveratrol and gallic acid were co-loaded in phospholipid vesicles aiming at protecting the skin from external injuries, such as oxidative stress and microbial infections. Liposomes were prepared using biocompatible phospholipids dispersed in water. To improve vesicle stability and applicability, the phospholipids and the phenols were dispersed in water/propylene glycol or water/glycerol, thus obtaining PEVs and glycerosomes, respectively. The vesicles were characterized by size, morphology, physical stability, and their therapeutic efficacy was investigated in vitro. The vesicles were spherical, unilamellar and small in size: liposomes and glycerosomes were around 70nm in diameter, while PEVs were larger (∼170nm). The presence of propylene glycol or glycerol increased the viscosity of the vesicle systems, positively affecting their stability. The ability of the vesicles to promote the accumulation of the phenols (especially gallic acid) in the skin was demonstrated, as well as their low toxicity and great ability to protect keratinocytes and fibroblasts from oxidative damage. Additionally, an improvement of the antimicrobial activity of the phenols was shown against different skin pathogens. The co-loading of resveratrol and gallic acid in modified phospholipid vesicles represents an innovative, bifunctional tool for preventing and treating skin affections. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. The phenolic acids of some species of the Oenothera L. genus

    Directory of Open Access Journals (Sweden)

    Tadeusz Krzaczek

    2014-01-01

    Full Text Available The occurence and approximative quantitative proportions of the phenolic acids in four species of the Oenothera L. genus was determined by the method of TLC and HPLC. In all species of Oenothera L. genus the permanent occurrence of acids: 2-hydroxy-4-metoxybenzoic, salicylic, ferulic, syringic, vanillic, p-coumaric, p-hydroxybenzoic, p-hydroxyphenylacetic, γ-rezorcil, gentysic, protocatechuic, caffeic and gallic has been confirmed. Whereas the other phenolic acids: o-coumaric, o-hydroxyphenylacetic and pirocatechuic were found in some species of the Oenothera L. genus only.

  15. Phenolic acids and antioxidant activity of wheat species: a review

    Directory of Open Access Journals (Sweden)

    Leváková Ľudmila

    2017-10-01

    Full Text Available Wheat (genus Triticum is considered to be an important source of polyphenols, plant secondary metabolites with numerous health-promoting effects. Many phytochemicals are responsible for the high antioxidant activity of whole grain products. However, there is a lack of information about composition of phenolic acids and their concentrations in different Triticum species. Despite the fact that the increased consumption of whole grain cereals and whole grain-based products has been closely related to reduced risk of chronic diseases, bioactive compounds found in whole grain cereals have not achieved as much attention as the bioactive compounds in vegetables and fruits. Recent studies have revealed that the content of bioactive compounds and antioxidant capacity of whole grain cereals have been regularly undervalued in the literature, because they contain more polyphenols and other phytochemicals than was reported in the past. Phenolic acids represent a large group of bioactive compounds in cereals. These compounds play a significant role in the possible positive effects of the human diet rich in whole grain cereals, especially in wheat and provide health benefits associated with demonstrably diminished risk of chronic disease development. Ferulic acid, the primary and the most abundant phenolic acid contained in wheat grain, is mainly responsible for the antioxidant activity of wheat, particularly bran fraction. In this paper, selected phenolic compounds in wheat, their antioxidant activity and health benefits related to consumption of whole grain cereals are reviewed.

  16. Bioactive phenolic acids from Scorzonera radiata Fisch.

    Directory of Open Access Journals (Sweden)

    N Tsevegsuren

    2014-09-01

    Full Text Available Chromatographic separation of the crude extract obtained from the aerial parts of the Mongolian medicinal plant Scorzonera radiata yielded five new dihydrostilbenes [4], two new flavonoids, one new quinic acid derivative, as well as twenty known compounds including eight quinic acid derivatives, four flavonoids, two coumarins, five simple benzoic acids, and one monoterpene glycoside. We present here results on isolation and structural identification some active phenolic compounds from the Scorzonera radiata - eight quinic acid derivatives (quinic acid, 4,5-dicaffeoylquinic acid, 4,5-dicaffeoyl-epi-quinic acid, 3,5-dicaffeoylquinic acid, 3,5-dicaffeoyl-epi-quinic acid, chlorogenic acid, 5-p-coumaroylquinic acid (trans, 5-p-coumaroylquinic acid (cis. Quinic acid derivatives exhibited antioxidative activity.DOI: http://dx.doi.org/10.5564/mjc.v12i0.177 Mongolian Journal of Chemistry Vol.12 2011: 78-84

  17. Antioxidant Activities of Selected Berries and Their Free, Esterified, and Insoluble-Bound Phenolic Acid Contents

    Science.gov (United States)

    2018-01-01

    To explore the potential of berries as natural sources of bioactive compounds, the quantities of free, esterified, and insoluble-bound phenolic acids in a number of berries were determined. In addition, the antioxidant activities of the berries were determined using 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity, ferric reducing antioxidant power, and Trolox equivalent antioxidant capacity assays, in addition to determination of their metal ion chelating activities. Furthermore, several phenolic compounds were detected using high-performance liquid chromatography. Of the 6 tested berries, black chokeberry and blackberry exhibited the strongest antioxidant activities, and the various berry samples were found to contain catechin, caffeic acid, p-coumaric acid, epicatechin, vanillic acid, quercitrin, resveratrol, morin, naringenin, and apigenin. Moreover, the antioxidant activities and total phenolic contents of the fractions containing insoluble-bound phenolic acids were higher than those containing the free and esterified phenolic acids. The results imply that the insoluble-bound fractions of these berries are important natural sources of antioxidants for the preparation of functional food ingredients and preventing diseases associated with oxidative stress. PMID:29662846

  18. Electricity generation by microbial fuel cells fuelled with wheat straw hydrolysate

    DEFF Research Database (Denmark)

    Thygesen, Anders; Poulsen, Finn Willy; Angelidaki, Irini

    2011-01-01

    Electricity production from microbial fuel cells fueled with hydrolysate produced by hydrothermal treatment of wheat straw can achieve both energy production and domestic wastewater purification. The hydrolysate contained mainly xylan, carboxylic acids, and phenolic compounds. Power generation...... in 95% degradation of the xylan and glucan. The study demonstrates that lignocellulosic hydrolysate can be used for co-treatment with domestic wastewater for power generation in microbial fuel cells....... density with the hydrolysate was higher than the one with only xylan (120 mW m−2) and carboxylic acids as fuel. The higher power density can be caused by the presence of phenolic compounds in the hydrolysates, which could mediate electron transport. Electricity generation with the hydrolysate resulted...

  19. Comparative evaluation of volatiles, phenolics, sugars, organic acids and antioxidant properties of Sel-42 and Tainung papaya varieties.

    Science.gov (United States)

    Kelebek, Hasim; Selli, Serkan; Gubbuk, Hamide; Gunes, Esma

    2015-04-15

    The present study was designed to determine the phenolic compounds, organic acids, sugars, aroma profiles and antioxidant properties of Sel-42 and Tainung papayas grown in Turkey. High-performance liquid chromatography/electrospray ionisation tandem mass spectrometry (HPLC-ESI-MS/MS) method was used for the phenolic compounds analysis. Twelve phenolic compounds were identified and quantified in the samples. The total phenolic content of Sel-42 was clearly higher than that of Tainung. Protocatechuic acid-hexoside, gallic acid-deoxyhexoside, ferulic acid and chlorogenic acids were the most abundant phenolics in both cultivars. Aroma composition of papaya was analysed by gas chromatography-mass spectrometry (GC-MS). A total of 46 and 42 aroma compounds, including esters, alcohols, terpenes, lactones, acids, carbonyl compounds, and volatile phenols were identified in the Sel-42 and Tainung, respectively. The significant linear correlation was confirmed between the values for the total phenolic content and antioxidant activity of papaya extracts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. [Correlation of molecular weight and nanofiltration mass transfer coefficient of phenolic acid composition from Salvia miltiorrhiza].

    Science.gov (United States)

    Li, Cun-Yu; Wu, Xin; Gu, Jia-Mei; Li, Hong-Yang; Peng, Guo-Ping

    2018-04-01

    Based on the molecular sieving and solution-diffusion effect in nanofiltration separation, the correlation between initial concentration and mass transfer coefficient of three typical phenolic acids from Salvia miltiorrhiza was fitted to analyze the relationship among mass transfer coefficient, molecular weight and concentration. The experiment showed a linear relationship between operation pressure and membrane flux. Meanwhile, the membrane flux was gradually decayed with the increase of solute concentration. On the basis of the molecular sieving and solution-diffusion effect, the mass transfer coefficient and initial concentration of three phenolic acids showed a power function relationship, and the regression coefficients were all greater than 0.9. The mass transfer coefficient and molecular weight of three phenolic acids were negatively correlated with each other, and the order from high to low is protocatechualdehyde >rosmarinic acid> salvianolic acid B. The separation mechanism of nanofiltration for phenolic acids was further clarified through the analysis of the correlation of molecular weight and nanofiltration mass transfer coefficient. The findings provide references for nanofiltration separation, especially for traditional Chinese medicine with phenolic acids. Copyright© by the Chinese Pharmaceutical Association.

  1. Flavonoids and Phenolic Acids from Oregano: Occurrence, Biological Activity and Health Benefits

    OpenAIRE

    Erick P. Gutiérrez-Grijalva; Manuel A. Picos-Salas; Nayely Leyva-López; Marilyn S. Criollo-Mendoza; Gabriela Vazquez-Olivo; J. Basilio Heredia

    2017-01-01

    Several herb species classified as oregano have been widely used in folk medicine to alleviate inflammation-related diseases, respiratory and digestive disorders, headaches, rheumatism, diabetes and others. These potential health benefits are partially attributed to the phytochemical compounds in oregano such as flavonoids (FL) and phenolic acids (PA). Flavonoids and phenolic acids are among the most abundant and most studied phytochemicals in oregano species. Epidemiological, in vitro and in...

  2. Structure Properties and Mechanisms of Action of Naturally Originated Phenolic Acids and Their Derivatives against Human Viral Infections.

    Science.gov (United States)

    Wu, Yi-Hang; Zhang, Bing-Yi; Qiu, Li-Peng; Guan, Rong-Fa; Ye, Zi-Hong; Yu, Xiao-Ping

    2017-01-01

    A great effort has been made to develop efficacious antiviral drugs, but many viral infections are still lack of efficient antiviral therapies so far. The related exploration of natural products to fight viruses has been raised in recent years. Natural compounds with structural diversity and complexity offer a great chance to find new antiviral agents. Particularly, phenolic acids have attracted considerable attention owing to their potent antiviral abilities and unique mechanisms. The aim of this review is to report new discoveries and updates pertaining to antiviral phenolic acids. The relevant references on natural phenolic acids were searched. The antiviral phenolic acids were classified according to their structural properties and antiviral types. Meanwhile, the antiviral characteristics and structure-activity relationships of phenolic acids and their derivatives were summarized. The review finds that natural phenolic acids and their derivatives possessed potent inhibitory effects on multiple virus in humans such as human immunodeficiency virus, hepatitis C virus, hepatitis B virus, herpes simplex virus, influenza virus and respiratory syncytial virus. In particular, caffeic acid/gallic acid and their derivatives exhibited outstanding antiviral properties by a variety of modes of action. Naturally derived phenolic acids especially caffeic acid/gallic acid and their derivatives may be regarded as novel promising antiviral leads or candidates. Additionally, scarcely any of these compounds has been used as antiviral treatment in clinical practice. Therefore, these phenolic acids with diverse skeletons and mechanisms provide us an excellent resource for finding novel antiviral drugs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Characterization of microbial metabolism of Syrah grape products in an in vitro colon model using targeted and non-targeted analytical approaches.

    Science.gov (United States)

    Aura, Anna-Marja; Mattila, Ismo; Hyötyläinen, Tuulia; Gopalacharyulu, Peddinti; Cheynier, Veronique; Souquet, Jean-Marc; Bes, Magali; Le Bourvellec, Carine; Guyot, Sylvain; Orešič, Matej

    2013-03-01

    Syrah red grapes are used in the production of tannin-rich red wines. Tannins are high molecular weight molecules, proanthocyanidins (PAs), and poorly absorbed in the upper intestine. In this study, gut microbial metabolism of Syrah grape phenolic compounds was investigated. Syrah grape pericarp was subjected to an enzymatic in vitro digestion model, and red wine and grape skin PA fraction were prepared. Microbial conversion was screened using an in vitro colon model with faecal microbiota, by measurement of short-chain fatty acids by gas chromatography (GC) and microbial phenolic metabolites using GC with mass detection (GC-MS). Red wine metabolites were further profiled using two-dimensional GC mass spectrometry (GCxGC-TOFMS). In addition, the effect of PA structure and dose on conversion efficiency was investigated by GC-MS. Red wine exhibited a higher degree of C1-C3 phenolic acid formation than PA fraction or grape pericarp powders. Hydroxyphenyl valeric acid (flavanols and PAs as precursors) and 3,5-dimethoxy-4-hydroxybenzoic acid (anthocyanin as a precursor) were identified from the red wine metabolite profile. In the absence of native grape pericarp or red wine matrix, the isolated PAs were found to be effective in the dose-dependent inhibition of microbial conversions and short-chain fatty acid formation. Metabolite profiling was complementary to targeted analysis. The identified metabolites had biological relevance, because the structures of the metabolites resembled fragments of their grape phenolic precursors or were in agreement with literature data.

  4. Sulfuric acid functional zirconium (or aluminum) incorporated mesoporous MCM-48 solid acid catalysts for alkylation of phenol with tert-butyl alcohol

    International Nuclear Information System (INIS)

    Jiang, Tingshun; Cheng, Jinlian; Liu, Wangping; Fu, Lie; Zhou, Xuping; Zhao, Qian; Yin, Hengbo

    2014-01-01

    Several zirconium (or aluminum) incorporated mesoporous MCM-48 solid acid catalysts (SO 4 2− /Zr-MCM-48 and SO 4 2− /Al-MCM-48) were prepared by the impregnation method and their physicochemical properties were characterized by means of XRD, FT-IR, TEM, NH 3 -TPD and N 2 physical adsorption. Also, the catalytic activities of these solid acid catalysts were evaluated by the alkylation of phenol with tert-butyl alcohol. The effect of weight hour space velocity (WHSV), reaction time and reaction temperature on catalytic properties was also studied. The results show that the SO 4 2− /Zr-MCM-48 and SO 4 2− /Al-MCM-48 still have good mesoporous structure and long range ordering. Compared with the Zr (or Al)–MCM-48 samples, SO 4 2− /Zr-MCM-48 and SO 4 2− /Al-MCM-48 solid acid catalysts have strong acidity and exhibit high activities in alkylation reaction of phenol with tert-butyl alcohol. The SO 4 2− /Zr-MCM-48-25 (molar ratio of Si/Zr=0.04) catalyst was found to be the most promising and gave the highest phenol conversion among all catalysts. A maximum phenol conversion of 91.6% with 4-tert-butyl phenol (4-TBP) selectivity of 81.8% was achieved when the molar ratio of tert-butyl alcohol:phenol is 2:1, reaction time is 2 h, the WHSV is 2 h −1 and the reaction temperature is 140 °C. - Highlights: • Sulfuric acid functional mesoporous solid acid catalysts were prepared via impregnation method. • The alkylation of phenol with tert-butyl alcohol was carried out over these solid acid catalysts. • The catalytic activity of SO 4 2− /Zr-MCM-48-25 catalyst is much higher than that of the others. • A maximum phenol conversion of 91.6% was achieved under optimum reaction conditions for SO 4 2− /Zr-MCM-48-25

  5. Phenolics and essential mineral profile of organic acid pretreated unripe banana flour.

    Science.gov (United States)

    Anyasi, Tonna A; Jideani, Afam I O; Mchau, Godwin R A

    2018-02-01

    Banana fruit (Musa spp) though rich in essential minerals, has also been implicated for the presence of phytochemicals which nonetheless beneficial, can also act as mineral inhibitors when in forms such as phenolic compounds, phytates and tannins. This study assayed the essential macro and trace minerals as well as phenolic compounds present in unripe banana flour (UBF) obtained from the pulp of four different cultivars. Unripe banana flour was processed by oven drying in a forced air oven dryer at 70°C upon pretreatment with ascorbic, citric and lactic acid. Organic acid pretreatment was done separately on each unripe banana cultivar at concentrations of 10, 15 and 20g/L. Phenolic compounds were profiled using liquid chromatography mass spectrometry electrospray ion (LC-MS-ESI) while essential minerals were determined using inductively coupled plasma atomic emission spectroscopy (ICP-AES) and mass spectroscopy (ICP-MS) respectively. Results of LC-MS-ESI assay of phenolics revealed the presence of flavonoids: epicatechin and myricetin 3-O-rhamnosyl-glucoside in varying concentrations in UBF. Essential mineral profile indicated that Zinc had the least occurrence of 3.55mg/kg (ppotassium was the most abundant mineral at 14746.73mg/kg in UBF of all four banana cultivars. Correlation between phenolic compounds and essential minerals using Pearson's Correlation Coefficient test revealed weak and inverse association between flavonoids and most macro and trace minerals present in UBF samples. Organic acid pretreatment thus exhibited little effect on phenolics and essential minerals of UBF samples, though, inhibitory influence of phenolic compounds was recorded on essential minerals. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Intestinal release and uptake of phenolic antioxidant diferulic acids

    DEFF Research Database (Denmark)

    Andreasen, Mette Findal; Kroon, P A; Williamson, G

    2001-01-01

    Diferulic acids are potent antioxidants and are abundant structural components of plant cell walls, especially in cereal brans. As such, they are part of many human and animal diets and may contribute to the beneficial effect of cereal brans on health. However, these phenolics are ester-linked to......Diferulic acids are potent antioxidants and are abundant structural components of plant cell walls, especially in cereal brans. As such, they are part of many human and animal diets and may contribute to the beneficial effect of cereal brans on health. However, these phenolics are ester...... in oil. Our study also reveals that human and rat colonic microflora contain esterase activity able to release 5-5-, 8-O-4-, and 8-5-diferulic acids from model compounds and dietary cereal brans, hence providing a mechanism for release of dietary diferulates prior to absorption of the free acids....... In addition, cell-free extracts from human and rat small intestine mucosa exhibited esterase activity towards diferulate esters. Hence, we have shown that esterified diferulates can be released from cereal brans by intestinal enzymes, and that free diferulic acids can be absorbed and enter the circulatory...

  7. HPLC determination of phenolic acids, flavonoids and juglone in walnut leaves.

    Science.gov (United States)

    Nour, Violeta; Trandafir, Ion; Cosmulescu, Sina

    2013-10-01

    A high-performance liquid chromatographic method with gradient elution and diode-array detection was developed to quantify free phenolic acids (gallic, vanillic, chlorogenic, caffeic, syringic, p-coumaric, ferulic, sinapic, salycilic, elagic and trans-cinnamic), flavonoids (catechin, epicatechin, rutin, myricetin and quercetin) and juglone in walnut leaves. Chromatographic separation was performed on a Hypersil Gold C18 column (5 µm particle size, 250 × 4.6 mm) and detection was conducted at three different wavelengths (254, 278 and 300 nm) according to the absorption maxima of the analyzed compounds. Validation procedures were conducted and the method was proven to be precise, accurate and sensitive. The developed method has been applied to analyze walnut leaves samples from nine different cultivars, with the same agricultural, geographical and climatic conditions. The experimental results revealed high concentrations of myricetin, catechin hydrate and rutin, and low concentrations of quercetin and epicatechin aglycones. Ellagic acid was established as the dominating phenolic acid of walnut leaves, followed by trans-cinnamic, chlorogenic and caffeic acids. Juglone content varied between 44.55 and 205.12 mg/100 g fresh weight. Significant differences were detected among cultivars for the concentration levels of phenolics.

  8. Flavonoids and phenolic acids from pearl millet (Pennisetum glaucum based foods and their functional implications

    Directory of Open Access Journals (Sweden)

    Vanisha S Nambiar

    2012-07-01

    Full Text Available Background: Pearl millet (Pennisetum glaucum, considered a poor man’s cereal, may be a repository of dietary antioxidants, especially flavonoids and phenolic acids, which provide bioactive mechanisms to reduce free radical induced oxidative stress and probably play a role in the prevention of ageing and various diseases associated with oxidative stress, such as cancer, cardiovascular, and neurodegenerative diseases.Objective: The present study focused on the identification of individual flavonoids and phenolic acids from seven commercial varieties of pearl millet and five samples of pearl millet-based traditional recipes of Banaskantha, Gujarat, India.Methods: Total phenols were determined by the Folin-Ciocalteu method, and individual polyphenol separation included the isolation and identification of (a flavonoids, (b phenolic acids, and (c glycoflavones involving interaction with diagnostic reagents and paper chromatographic separation of compounds and their UV-visible spectroscopic studies including hypsochromic and bathchromic shifts with reagents such as AlCl3, AlCl3/HCl, NaOMe, NaOAc,and NaOAc/H3PO3. Five traditional recipes consumed in the pearl millet producing belt of Banaskantha, Gujarat, India, were standardized in the laboratory and analyzed for phenol and individual flavonoids. Results: Total phenols in raw samples ranged from 268.5 - 420mg/100g of DW and 247.5 -Functional Foods in Health and Disease 2012, 2(7:251-264335mg/100g of DW in cooked recipes. The commonly identified flavonoids were tricin, acacetin, 3, 4 Di-OMe luteolin, and 4-OMe tricin. Five phenolic acids were identified: namely vanilic acid, syringic acid, melilotic acid, para-hydroxyl benzoic acid, and salicylic acid.Conclusion: The presence of flavonoids, such as tricin, acacetin, 3, 4 Di-OMe luteolin, and 4-OMe tricin, indicate the chemopreventive efficacy of pearl millet. They may be inversely related to mortality from coronary heart disease and to the incidence

  9. Ascorbic acid, β-carotene, total phenolic compound and ...

    African Journals Online (AJOL)

    A two year study at Alexandria University compared ascorbic acid, β-carotene, total phenolic compound, nitrite content and microbiological quality of orange and strawberry fruits grown under organic and conventional management techniques to see if producers concerns are valid. Organically grown oranges and ...

  10. Green tea yogurt: major phenolic compounds and microbial growth.

    Science.gov (United States)

    Amirdivani, Shabboo; Baba, Ahmad Salihin Hj

    2015-07-01

    The purpose of this study was to evaluate fermentation of milk in the presence of green tea (Camellia sinensis) with respect to changes in antioxidant activity, phenolic compounds and the growth of lactic acid bacteria. Pasteurized full fat cow's milk and starter culture were incubated at 41 °C in the presence of two different types of green tea extracts. The yogurts formed were refrigerated (4 °C) for further analysis. The total phenolic content was highest (p yogurt (MGT) followed by steam-treated green tea (JGT) and plain yogurts. Four major compounds in MGTY and JGTY were detected. The highest concentration of major phenolic compounds in both samples was related to quercetin-rhamnosylgalactoside and quercetin-3-O-galactosyl-rhamnosyl-glucoside for MGTY and JGTY respectively during first 7 day of storage. Diphenyl picrylhydrazyl and ferric reducing antioxidant power methods showed highest antioxidant capacity in MGTY, JGTY and PY. Streptococcus thermophillus and Lactobacillus spp. were highest in MGTY followed by JGTY and PY. This paper evaluates the implementation of green tea yogurt as a new product with functional properties and valuable component to promote the growth of beneficial yogurt bacteria and prevention of oxidative stress by enhancing the antioxidant activity of yogurt.

  11. [The content of phenolic acids in the edible parts of selected varieties of apples].

    Science.gov (United States)

    Malik, Agnieszka; Kiczorowska, Bozena; Zdyb, Justyna

    2009-01-01

    Fruits and vegetables are essential sources of many nutritive substances which are necessary for normal function of the organism. One of the mostly consumed fruits in many European countries, including Poland is apples. The prohealthy properties of apples are associated with the contents of polyphenolic compounds, thus including in parts phenolic acids which have antioxidant properties. The concentration of these compounds depends on many factors such as variety climate and soil conditions, maturity as well as agro technical operations. The aim of this investigation was to compare the concentrations of phenolic acids and epicatechin in the varieties of apple Champion and Jonica, which were collected from different orchards around Lublin. The phenolic compounds were assayed using a Symmetry column carrier RP-C18 (Waters) integrated with a high pressure liquid chromatography apparatus. The dominant phenolic acids found in the Champion variety was chlorogenic acid, whereas in the Jonica variety, chlorogenic and homovanilic acids were the dominate once. The highest concentrations of chlorogenic acid was detected in the pulp of an apple (Jonica variety) collected from the orchards around the cities of Puławy and Lublin, whereas homovanilic acid was the highest in the other samples collected from the orchards in the vicinity of Stryjno and Góry Markuszowskie. Among the Jonica and Champion varieties of apples collected from various orchards in the vicinity of Lublin, the highest content of epicatechin (13,12 mg/kg) was found in the pulps of Champions variety collected in Puławy. In general, the Champion variety was the best source of phenolic acids and epicatechin compared to the Jonica variety independent of the harvest zone.

  12. Peracetic Acid Depolymerization of Biorefinery Lignin for Production of Selective Monomeric Phenolic Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ruoshui [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Guo, Mond [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Lin, Kuan-ting [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Hebert, Vincent R. [Food and Environmental Laboratory, Washington State, University-TriCities, 2710 Crimson Way Richland WA 99354 USA; Zhang, Jinwen [Wood Materials and Engineering Laboratory, Washington State University, Pullman WA 99164 USA; Wolcott, Michael P. [Wood Materials and Engineering Laboratory, Washington State University, Pullman WA 99164 USA; Quintero, Melissa [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Ramasamy, Karthikeyan K. [Chemical and Biological Process Development Group, Pacific Northwest National Laboratory, Richland WA 99354 USA; Chen, Xiaowen [National Bioenergy Center, National Renewable Energy Lab, 1617 Cole Blvd Golden CO 80127 USA; Zhang, Xiao [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA

    2016-07-04

    Lignin is the largest source of renewable material with an aromatic skeleton. However, due to the recalcitrant and heterogeneous nature of the lignin polymer, it has been a challenge to effectively depolymerize lignin and produce high-value chemicals with high selectivity. In this study, a highly efficient lignin-to-monomeric phenolic compounds (MPC) conversion method based on peracetic acid (PAA) treatment was reported. PAA treatment of two biorefinery lignin samples, diluted acid pretreated corn stover lignin (DACSL) and steam exploded spruce lignin (SESPL), led to complete solubilization and production of selective hydroxylated monomeric phenolic compounds (MPC-H) and monomeric phenolic acid compounds (MPC-A) including 4-hydroxy-2-methoxyphenol, p-hydroxybenzoic acid, vanillic acid, syringic acid, and 3,4-dihydroxybenzoic acid. The maximized MPC yields obtained were 18 and 22 % based on the initial weight of the lignin in SESPL and DACSL, respectively. However, we found that the addition of niobium pentoxide catalyst to PAA treatment of lignin can significantly improve the MPC yields up to 47 %. The key reaction steps and main mechanisms involved in this new lignin-to-MPC valorization pathway were investigated and elucidated.

  13. Peracetic Acid Depolymerization of Biorefinery Lignin for Production of Selective Monomeric Phenolic Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ruoshui [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Guo, Mond [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Lin, Kuan-ting [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Hebert, Vincent R. [Food and Environmental Laboratory, Washington State, University-TriCities, 2710 Crimson Way Richland WA 99354 USA; Zhang, Jinwen [Wood Materials and Engineering Laboratory, Washington State University, Pullman WA 99164 USA; Wolcott, Michael P. [Wood Materials and Engineering Laboratory, Washington State University, Pullman WA 99164 USA; Quintero, Melissa [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Ramasamy, Karthikeyan K. [Chemical and Biological Process Development Group, Pacific Northwest National Laboratory, Richland WA 99354 USA; Chen, Xiaowen [National Bioenergy Center, National Renewable Energy Lab, 1617 Cole Blvd Golden CO 80127 USA; Zhang, Xiao [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA

    2016-07-04

    Lignin is the largest source of renewable material with an aromatic skeleton. However, due to the recalcitrant and heterogeneous nature of the lignin polymer as well as its complex side chain structures, it has been a challenge to effectively depolymerize lignin and produce high value chemicals with high selectivity. In this study, a highly efficient lignin-to-monomeric phenolic compounds (MPC) conversion method based on peracetic acid (PAA) treatment was reported. PAA treatment of two biorefinery lignin samples, diluted acid pretreated corn stover lignin (DACSL) and steam exploded spruce lignin (SESPL), led to complete solubilization and production of selective hydroxylated monomeric phenolic compounds (MPC-H) and monomeric phenolic acid compounds (MPC-A) inclduing 4-hydroxy-2-methoxyphenol, p-hydroxybenzoic acid, vanillic acid, syringic acid, and 3,4-dihydroxybenzoic acid. The maximized MPCs yields obtained were 18% and 22% based on the initial weight of the lignin in SESPL and DACSL respectively. However, we found that the addition of niobium pentoxide catalyst to PAA treatment of lignin can significantly improve the MPC yields up to 47%. The key reaction steps and main mechanisms involved in this new lignin-to-MPC valorization pathway were investigated and elucidated.

  14. Effect of Storage Temperature on Vitamin C, Total Phenolics, UPLC Phenolic Acid Profile and Antioxidant Capacity of Eleven Potato (Solanum tuberosum Varieties

    Directory of Open Access Journals (Sweden)

    Joseph Hubert Yamdeu Galani

    2017-03-01

    Full Text Available Storage of potato tubers at low temperature affects their metabolism and may alter their phytochemical properties. There is a need to elucidate the changes in antioxidant compounds, activity and enzymes during storage of tubers. Eleven Indian potato varieties were evaluated for antioxidant parameters, after 0, 30, 60 and 90 days of storage at room temperature, 15 °C and 4 °C. Total phenolics (0.0786–0.1546 mg gallic acid equivalents⋅g−1 FW and vitamin C content (0.0828–0.2416 mg⋅g−1 FW varied among the varieties and were different with storage temperature; their levels fluctuated during storage but remained above the initial level until the last day of observation. Phenolic acid profiling by UPLC identified 12 compounds among which the most abundant was chlorogenic acid followed by gallic acid, sinapic acid and ellagic acid. Except para-coumaric acid which decreased at 4 °C, all the phenolic acids increased with storage. Caffeic acid, chlorogenic acid, protocatechuic acid and gallic acid mostly correlated with total phenolic content (r = 0.456, 0.482, 0.588 and 0.620, respectively. Antioxidant activity against both DPPH and ABTS radicals increased during the initial days of storage and then dropped to a level comparable or lower than the original value, irrespective of the storage temperature. Correlation study revealed that chlorogenic acid, gallic acid and ferulic acid mostly contributed to antioxidant activity. Activity of both antioxidant enzymes, superoxide dismutase and ascorbate peroxidase, increased initially but then decreased to values lower than the initial level and were not influenced by storage temperature. Correlation with antioxidant activity indicated that the enhancement of reactive oxygen scavenging species in cold stored tubers could result mainly from ascorbate peroxidase activity. Our results demonstrate that storage temperature adversely influences the metabolism and the content of

  15. Flavonoids and Phenolic Acids from Oregano: Occurrence, Biological Activity and Health Benefits.

    Science.gov (United States)

    Gutiérrez-Grijalva, Erick P; Picos-Salas, Manuel A; Leyva-López, Nayely; Criollo-Mendoza, Marilyn S; Vazquez-Olivo, Gabriela; Heredia, J Basilio

    2017-12-26

    Several herb species classified as oregano have been widely used in folk medicine to alleviate inflammation-related diseases, respiratory and digestive disorders, headaches, rheumatism, diabetes and others. These potential health benefits are partially attributed to the phytochemical compounds in oregano such as flavonoids (FL) and phenolic acids (PA). Flavonoids and phenolic acids are among the most abundant and most studied phytochemicals in oregano species. Epidemiological, in vitro and in vivo experiments have related long-term consumption of dietary FL and PA with a decreased risk of incidence of chronic diseases. The aim of this manuscript is to summarize the latest studies on the identification and distribution of flavonoids and phenolic compounds from oregano species and their potential antioxidant, anti-inflammatory and anti-cancer health benefits.

  16. Anti-biofilm potential of phenolic acids: the influence of environmental pH and intrinsic physico-chemical properties.

    Science.gov (United States)

    Silva, Sara; Costa, Eduardo M; Horta, Bruno; Calhau, Conceição; Morais, Rui M; Pintado, M Manuela

    2016-09-13

    Phenolic acids are a particular group of small phenolic compounds which have exhibited some anti-biofilm activity, although the link between their activity and their intrinsic pH is not clear. Therefore, the present work examined the anti-biofilm activity (inhibition of biomass and metabolic activity) of phenolic acids in relation to the environmental pH, as well as other physico-chemical properties. The results indicate that, while Escherichia coli was not inhibited by the phenolic acids, both methicillin resistant Staphylococcus aureus and methicillin resistant Staphylococcus epidermidis were susceptible to the action of all phenolic acids, with the pH playing a relevant role in the activity: a neutral pH favored MRSE inhibition, while acidic conditions favored MRSA inhibition. Some links between molecular polarity and size were associated only with their potential as metabolic inhibitors, with the overall interactions hinting at a membrane-based mechanism for MRSA and a cytoplasmic effect for MRSE.

  17. Sulfuric acid functional zirconium (or aluminum) incorporated mesoporous MCM-48 solid acid catalysts for alkylation of phenol with tert-butyl alcohol

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Tingshun, E-mail: tshjiang@mail.ujs.edu.cn; Cheng, Jinlian; Liu, Wangping; Fu, Lie; Zhou, Xuping; Zhao, Qian; Yin, Hengbo

    2014-10-15

    Several zirconium (or aluminum) incorporated mesoporous MCM-48 solid acid catalysts (SO{sub 4}{sup 2−}/Zr-MCM-48 and SO{sub 4}{sup 2−}/Al-MCM-48) were prepared by the impregnation method and their physicochemical properties were characterized by means of XRD, FT-IR, TEM, NH{sub 3}-TPD and N{sub 2} physical adsorption. Also, the catalytic activities of these solid acid catalysts were evaluated by the alkylation of phenol with tert-butyl alcohol. The effect of weight hour space velocity (WHSV), reaction time and reaction temperature on catalytic properties was also studied. The results show that the SO{sub 4}{sup 2−}/Zr-MCM-48 and SO{sub 4}{sup 2−}/Al-MCM-48 still have good mesoporous structure and long range ordering. Compared with the Zr (or Al)–MCM-48 samples, SO{sub 4}{sup 2−}/Zr-MCM-48 and SO{sub 4}{sup 2−}/Al-MCM-48 solid acid catalysts have strong acidity and exhibit high activities in alkylation reaction of phenol with tert-butyl alcohol. The SO{sub 4}{sup 2−}/Zr-MCM-48-25 (molar ratio of Si/Zr=0.04) catalyst was found to be the most promising and gave the highest phenol conversion among all catalysts. A maximum phenol conversion of 91.6% with 4-tert-butyl phenol (4-TBP) selectivity of 81.8% was achieved when the molar ratio of tert-butyl alcohol:phenol is 2:1, reaction time is 2 h, the WHSV is 2 h{sup −1} and the reaction temperature is 140 °C. - Highlights: • Sulfuric acid functional mesoporous solid acid catalysts were prepared via impregnation method. • The alkylation of phenol with tert-butyl alcohol was carried out over these solid acid catalysts. • The catalytic activity of SO{sub 4}{sup 2−}/Zr-MCM-48-25 catalyst is much higher than that of the others. • A maximum phenol conversion of 91.6% was achieved under optimum reaction conditions for SO{sub 4}{sup 2−}/Zr-MCM-48-25.

  18. Polyphenols and phenolic acids in sweet potato (Ipomoea batatas L. roots

    Directory of Open Access Journals (Sweden)

    Janette Musilová

    2017-01-01

    Full Text Available Sweet potato (Ipomoea batatas L. is one of the most important food crops in the world. They are rich in polyphenols, proteins, vitamins, minerals and some functional microcomponents. Polyphenols are bioactive compounds, which can protect the human body from the oxidative stress which may cause many diseases including cancer, aging and cardiovascular problems.The polyphenol content is two to three times higher than in some common vegetables. Total polyphenols (determined spectrophotometrically and phenolic acids (i.e. caffeic acid, chlorogenic acid and isomers - using high performance liquid chromatography contents were determined in three varieties of sweet potatoes (O´Henry - white, Beauregard-orange and 414-purple. Phenolic compounds contents were determined in raw peeled roots, jackets of raw roots and water steamed sweet potato roots. For all analysis lyophilised samples were used. Total polyphenol content ranged from 1161 (O´Henry, flesh-raw to 13998 (414, peel-raw mg.kg-1 dry matter, caffeic acid content from the non-detected values (414, flesh-raw to 320.7 (Beauregard, peel-raw mg.kg-1 dry matter and 3-caffeoylquinic acid content from 57.57 (O´Henry, flesh-raw to 2392 (414, peel-raw mg.kg-1 dry matter. Statistically significant differences (p ≤0.05 existed between varieties, morphological parts of the root, or raw and heat-treated sweet potato in phenolic compounds contents.

  19. Gluconic Acid: Properties, Applications and Microbial Production

    Directory of Open Access Journals (Sweden)

    Sumitra Ramachandran

    2006-01-01

    Full Text Available Gluconic acid is a mild organic acid derived from glucose by a simple oxidation reaction. The reaction is facilitated by the enzyme glucose oxidase (fungi and glucose dehydrogenase (bacteria such as Gluconobacter. Microbial production of gluconic acid is the preferred method and it dates back to several decades. The most studied and widely used fermentation process involves the fungus Aspergillus niger. Gluconic acid and its derivatives, the principal being sodium gluconate, have wide applications in food and pharmaceutical industry. This article gives a review of microbial gluconic acid production, its properties and applications.

  20. In Vitro Bioaccessibility of Phenolic Acids from a Commercial Aleurone-Enriched Bread Compared to a Whole Grain Bread.

    Science.gov (United States)

    Dall'Asta, Margherita; Bresciani, Letizia; Calani, Luca; Cossu, Marta; Martini, Daniela; Melegari, Camilla; Del Rio, Daniele; Pellegrini, Nicoletta; Brighenti, Furio; Scazzina, Francesca

    2016-01-13

    Wheat aleurone, due to its potentially higher bioaccessibility and bioavailability of micronutrients and phenolic acids, could represent a useful ingredient in the production of commonly consumed cereal-based food. The aim of the present study was to investigate the in vitro bioaccessibility of phenolic acids both from an aleurone-enriched bread and from a whole grain bread. The two bread samples were firstly characterized for the phenolic acid content. An in vitro digestion was then performed in order to evaluate the release of phenolic acids. The results obtained suggest that the bioaccessibility of the phenolic acids in the aleurone-enriched bread is higher than in the whole grain bread. These in vitro results suggest the potential use of aleurone in the production of foods, and this may represent an attractive possibility to vehicle nutritionally interesting components to consumers.

  1. In Vitro Bioaccessibility of Phenolic Acids from a Commercial Aleurone-Enriched Bread Compared to a Whole Grain Bread

    Directory of Open Access Journals (Sweden)

    Margherita Dall’Asta

    2016-01-01

    Full Text Available Wheat aleurone, due to its potentially higher bioaccessibility and bioavailability of micronutrients and phenolic acids, could represent a useful ingredient in the production of commonly consumed cereal-based food. The aim of the present study was to investigate the in vitro bioaccessibility of phenolic acids both from an aleurone-enriched bread and from a whole grain bread. The two bread samples were firstly characterized for the phenolic acid content. An in vitro digestion was then performed in order to evaluate the release of phenolic acids. The results obtained suggest that the bioaccessibility of the phenolic acids in the aleurone-enriched bread is higher than in the whole grain bread. These in vitro results suggest the potential use of aleurone in the production of foods, and this may represent an attractive possibility to vehicle nutritionally interesting components to consumers.

  2. Potential Use of Phenolic Acids as Anti-Candida Agents: A Review

    Science.gov (United States)

    Teodoro, Guilherme R.; Ellepola, Kassapa; Seneviratne, Chaminda J.; Koga-Ito, Cristiane Y.

    2015-01-01

    There has been a sharp rise in the occurrence of Candida infections and associated mortality over the last few years, due to the growing body of immunocompromised population. Limited number of currently available antifungal agents, undesirable side effects and toxicity, as well as emergence of resistant strains pose a considerable clinical challenge for the treatment of candidiasis. Therefore, molecules that derived from natural sources exhibiting considerable antifungal properties are a promising source for the development of novel anti-candidal therapy. Phenolic compounds isolated from natural sources possess antifungal properties of interest. Particularly, phenolic acids have shown promising in vitro and in vivo activity against Candida species. However, studies on their mechanism of action alone or in synergism with known antifungals are still scarce. This review attempts to discuss the potential use, proposed mechanisms of action and limitations of the phenolic acids in anti-candidal therapy. PMID:26733965

  3. 40 CFR 721.3700 - Fatty acid, ester with styrenated phenol, ethylene oxide adduct.

    Science.gov (United States)

    2010-07-01

    ... phenol, ethylene oxide adduct. 721.3700 Section 721.3700 Protection of Environment ENVIRONMENTAL..., ethylene oxide adduct. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as fatty acid, ester with styrenated phenol, ethylene oxide...

  4. Flavonoids and Phenolic Acids from Oregano: Occurrence, Biological Activity and Health Benefits

    Directory of Open Access Journals (Sweden)

    Erick P. Gutiérrez-Grijalva

    2017-12-01

    Full Text Available Several herb species classified as oregano have been widely used in folk medicine to alleviate inflammation-related diseases, respiratory and digestive disorders, headaches, rheumatism, diabetes and others. These potential health benefits are partially attributed to the phytochemical compounds in oregano such as flavonoids (FL and phenolic acids (PA. Flavonoids and phenolic acids are among the most abundant and most studied phytochemicals in oregano species. Epidemiological, in vitro and in vivo experiments have related long-term consumption of dietary FL and PA with a decreased risk of incidence of chronic diseases. The aim of this manuscript is to summarize the latest studies on the identification and distribution of flavonoids and phenolic compounds from oregano species and their potential antioxidant, anti-inflammatory and anti-cancer health benefits.

  5. Conversion of hydroxycinnamic acids into volatile phenols in a synthetic medium and in red wine by Dekkera bruxellensis

    Directory of Open Access Journals (Sweden)

    Maria João Cabrita

    2012-03-01

    Full Text Available The conversion of p-coumaric acid, ferulic acid, and caffeic acid into 4-ethylphenol, 4-ethylguaiacol and 4-ethylcatechol was studied in Dekkera bruxellensis ISA 1791 under defined conditions in a synthetic medium and in a red wine. Liquid chromatography (HPLC-DAD was used to quantify the phenolic acids, and gas chromatography (GC coupled to a FID detector was used to quantify volatile phenols using a novel analytical methodology that does not require sample derivatization. Identification was achieved by gas chromatography-mass detection (GC-MS. The results show that phenolic acids concentration decreases while volatile phenols concentration increases. The proportion of caffeic acid taken up by Dekkera bruxellensis is lower than that for p-coumaric or ferulic acid; therefore less 4-ethylcatechol is formed. More important, 4-ethylcathecol synthesis by Dekkera bruxellensis in wine has never been demonstrated so far. These results contribute decisively to a better understanding of the origin of the volatile phenols in wines. The accumulation of these compounds in wine is nowadays regarded as one of the key factors of quality control.

  6. Peracetic Acid Depolymerization of Biorefinery Lignin for Production of Selective Monomeric Phenolic Compounds.

    Science.gov (United States)

    Ma, Ruoshui; Guo, Mond; Lin, Kuan-Ting; Hebert, Vincent R; Zhang, Jinwen; Wolcott, Michael P; Quintero, Melissa; Ramasamy, Karthikeyan K; Chen, Xiaowen; Zhang, Xiao

    2016-07-25

    Lignin is the largest source of renewable material with an aromatic skeleton. However, due to the recalcitrant and heterogeneous nature of the lignin polymer, it has been a challenge to effectively depolymerize lignin and produce high-value chemicals with high selectivity. In this study, a highly efficient lignin-to-monomeric phenolic compounds (MPC) conversion method based on peracetic acid (PAA) treatment was reported. PAA treatment of two biorefinery lignin samples, diluted acid pretreated corn stover lignin (DACSL) and steam exploded spruce lignin (SESPL), led to complete solubilization and production of selective hydroxylated monomeric phenolic compounds (MPC-H) and monomeric phenolic acid compounds (MPC-A) including 4-hydroxy-2-methoxyphenol, p-hydroxybenzoic acid, vanillic acid, syringic acid, and 3,4-dihydroxybenzoic acid. The maximized MPC yields obtained were 18 and 22 % based on the initial weight of the lignin in SESPL and DACSL, respectively. However, we found that the addition of niobium pentoxide catalyst to PAA treatment of lignin can significantly improve the MPC yields up to 47 %. The key reaction steps and main mechanisms involved in this new lignin-to-MPC valorization pathway were investigated and elucidated. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Effects of the traditional method and an alternative parboiling process on the fatty acids, vitamin E, γ-oryzanol and phenolic acids of glutinous rice.

    Science.gov (United States)

    Thammapat, Pornpisanu; Meeso, Naret; Siriamornpun, Sirithon

    2016-03-01

    The impacts of traditional and alternative parboiling processes on the concentrations of fatty acids, tocopherol, tocotrienol, γ-oryzanol and phenolic acids in glutinous rice were investigated. Differences between the two methods were the soaking temperatures and the steaming methods. Results showed that parboiling processes significantly increased the concentrations of saturated fatty acids (SFA), mono-unsaturated fatty acids (MUFA), γ-oryzanol, γ-tocotrienol and total phenolic acids (TPA) in glutinous rice, while α-tocopherol, γ-tocopherol and polyunsaturated fatty acids (PUFA) decreased (p-oryzanol by three or fourfold compared with the level of γ-oryzanol in raw rice. Parboiling caused both adverse and favorable effects on phenolic acids content (p-oryzanol, hydrobenzoic acid, hydroxycinnamic acid and TPA compared to the traditional method. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Effect of drying of figs (Ficus carica L.) on the contents of sugars, organic acids, and phenolic compounds.

    Science.gov (United States)

    Slatnar, Ana; Klancar, Urska; Stampar, Franci; Veberic, Robert

    2011-11-09

    Fresh figs were subjected to two different drying processes: sun-drying and oven-drying. To assess their effect on the nutritional and health-related properties of figs, sugars, organic acids, single phenolics, total phenolics, and antioxidant activity were determined before and after processing. Samples were analyzed three times in a year, and phenolic compounds were determined using high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS). In figs, monomer sugars predominate, which is important nutritional information, and the content of sugars as well as organic acids in fresh figs was lower than in dried fruits. However, the best sugar/organic acid ratio was measured after the sun-drying process. Analysis of individual phenolic compounds revealed a higher content of all phenolic groups determined after the oven-drying process, with the exception of cyanidin-3-O-rutinoside. Similarly, higher total phenolic content and antioxidant activity were detected after the drying process. With these results it can be concluded that the differences in analyzed compounds in fresh and dried figs are significant. The differences between the sun-dried and oven-dried fruits were determined in organic acids, sugars, chlorogenic acid, catechin, epicatechin, kaempferol-3-O-glucoside, luteolin-8-C-glucoside, and total phenolic contents. The results indicate that properly dried figs can be used as a good source of phenolic compounds.

  9. Influence of phenolic compounds on the growth and arginine deiminase system in a wine lactic acid bacterium

    Directory of Open Access Journals (Sweden)

    María R. Alberto

    2012-03-01

    Full Text Available The influence of seven phenolic compounds, normally present in wine, on the growth and arginine deiminase system (ADI of Lactobacillus hilgardii X1B, a wine lactic acid bacterium, was established. This system provides energy for bacterial growth and produces citrulline that reacts with ethanol forming the carcinogen ethyl carbamate (EC, found in some wines. The influence of phenolic compounds on bacterial growth was compound dependent. Growth and final pH values increased in presence of arginine. Arginine consumption decreased in presence of protocatechuic and gallic acids (31 and 17%, respectively and increased in presence of quercetin, rutin, catechin and the caffeic and vanillic phenolic acids (between 10 and 13%, respectively. ADI enzyme activities varied in presence of phenolic compounds. Rutin, quercetin and caffeic and vanillic acids stimulated the enzyme arginine deiminase about 37-40%. Amounts of 200 mg/L gallic and protocatechuic acids inhibited the arginine deiminase enzyme between 53 and 100%, respectively. Ornithine transcarbamylase activity was not modified at all concentrations of phenolic compounds. As gallic and protocatechuic acids inhibited the arginine deiminase enzyme that produces citrulline, precursor of EC, these results are important considering the formation of toxic compounds.

  10. Dietary Consumption of Phenolic Acids and Prostate Cancer: A Case-Control Study in Sicily, Southern Italy

    Directory of Open Access Journals (Sweden)

    Giorgio Ivan Russo

    2017-12-01

    Full Text Available Dietary polyphenols gained the interest of the scientific community due to their wide content in a variety of plant-derived foods and beverages commonly consumed, such as fruits, vegetables, coffee, tea, and cocoa. We aimed to investigate whether there was an association between dietary phenolic acid consumption and prostate cancer (PCa in South Italy. We conducted a population-based case-control study from January 2015 to December 2016 in a single institution of the municipality of Catania, southern Italy (Registration number: 41/2015. Patients with elevated PSA and/or suspicious PCa underwent transperineal prostate biopsy. A total of 118 histopathological-verified PCa cases were collected and a total of 222 controls were selected from a sample of 2044 individuals. Dietary data were collected by using two food frequency questionnaires and data on the phenolic acids content in foods was obtained from the Phenol-Explorer database (www.phenol-explorer.eu. Association between dietary intake of phenolic acids and PCa was calculated through logistic regression analysis. We found lower levels of caffeic acid (2.28 mg/day vs. 2.76 mg/day; p < 0.05 and ferulic acid (2.80 mg/day vs. 4.04 mg/day; p < 0.01 in PCa when compared to controls. The multivariate logistic regression showed that both caffeic acid (OR = 0.32; p < 0.05 and ferulic acid (OR = 0.30; p < 0.05 were associated with reduced risk of PCa. Higher intake of hydroxybenzoic acids and caffeic acids were associated with lower risk of advanced PCa. High intake of caffeic acid and ferulic acid may be associated with reduced risk of PCa.

  11. Dietary Consumption of Phenolic Acids and Prostate Cancer: A Case-Control Study in Sicily, Southern Italy.

    Science.gov (United States)

    Russo, Giorgio Ivan; Campisi, Daniele; Di Mauro, Marina; Regis, Federica; Reale, Giulio; Marranzano, Marina; Ragusa, Rosalia; Solinas, Tatiana; Madonia, Massimo; Cimino, Sebastiano; Morgia, Giuseppe

    2017-12-05

    Dietary polyphenols gained the interest of the scientific community due to their wide content in a variety of plant-derived foods and beverages commonly consumed, such as fruits, vegetables, coffee, tea, and cocoa . We aimed to investigate whether there was an association between dietary phenolic acid consumption and prostate cancer (PCa) in South Italy. We conducted a population-based case-control study from January 2015 to December 2016 in a single institution of the municipality of Catania, southern Italy (Registration number: 41/2015). Patients with elevated PSA and/or suspicious PCa underwent transperineal prostate biopsy. A total of 118 histopathological-verified PCa cases were collected and a total of 222 controls were selected from a sample of 2044 individuals. Dietary data were collected by using two food frequency questionnaires and data on the phenolic acids content in foods was obtained from the Phenol-Explorer database (www.phenol-explorer.eu). Association between dietary intake of phenolic acids and PCa was calculated through logistic regression analysis. We found lower levels of caffeic acid (2.28 mg/day vs. 2.76 mg/day; p < 0.05) and ferulic acid (2.80 mg/day vs. 4.04 mg/day; p < 0.01) in PCa when compared to controls. The multivariate logistic regression showed that both caffeic acid (OR = 0.32; p < 0.05) and ferulic acid (OR = 0.30; p < 0.05) were associated with reduced risk of PCa. Higher intake of hydroxybenzoic acids and caffeic acids were associated with lower risk of advanced PCa. High intake of caffeic acid and ferulic acid may be associated with reduced risk of PCa.

  12. Analysis of Phenolic Acids of Jerusalem Artichoke (Helianthus tuberosus L. Responding to Salt-Stress by Liquid Chromatography/Tandem Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Fujia Chen

    2014-01-01

    Full Text Available Plant phenolics can have applications in pharmaceutical and other industries. To identify and quantify the phenolic compounds in Helianthus tuberosus leaves, qualitative analysis was performed by a reversed phase high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS and quantitative analysis by HPLC. Ten chlorogenic acids (CGAs were identified (3-o-caffeoylquinic acid, two isomers of caffeoylquinic acid, caffeic acid, p-coumaroyl-quinic acid, feruloylquinic acid, 3,4-dicaffeoyquinic acid, 3,5-dicaffeoylquinic acid, 1,5-dicaffeoylquinic acid, and 4,5-dicaffeoylquinic acid by comparing their retention times, UV-Vis absorption spectra, and MS/MS spectra with standards. In addition, four other phenolic compounds, including caffeoyl glucopyranose, isorhamnetin glucoside, kaempferol glucuronide, and kaempferol-3-o-glucoside, were tentatively identified in Helianthus tuberosus leaves for the first time. The 3-o-caffeoylquinic acid (7.752 mg/g DW, 4,5-dicaffeoylquinic acid (5.633 mg/g DW, and 3,5-dicaffeoylquinic acid (4.900 mg/g DW were the major phenolic compounds in leaves of Helianthus tuberosus cultivar NanYu in maturity. The variations in phenolic concentrations and proportions in Helianthus tuberosus leaves were influenced by genotype and plant growth stage. Cultivar NanYu had the highest concentration of phenolic compounds, in particular 3-o-caffeoylquinic acid and 4,5-dicaffeoylquinic acid compared with the other genotypes (wild accession and QingYu. Considering various growth stages, the concentration of total phenolics in cultivar NanYu was higher at flowering stage (5.270 mg/g DW than at budding and tuber swelling stages. Cultivar NanYu of Helianthus tuberosus is a potential source of natural phenolics that may play an important role in the development of pharmaceuticals.

  13. Performance of structured lipids incorporating selected phenolic and ascorbic acids.

    Science.gov (United States)

    Gruczynska, Eliza; Przybylski, Roman; Aladedunye, Felix

    2015-04-15

    Conditions applied during frying require antioxidant which is stable at these conditions and provides protection for frying oil and fried food. Novel structured lipids containing nutraceuticals and antioxidants were formed by enzymatic transesterification, exploring canola oil and naturally occurring antioxidants such as ascorbic and selected phenolic acids as substrates. Lipozyme RM IM lipase from Rhizomucor miehei was used as biocatalyst. Frying performance and oxidative stability of the final transesterification products were evaluated. The novel lipids showed significantly improved frying performance compared to canola oil. Oxidative stability assessment of the structured lipids showed significant improvement in resistance to oxidative deterioration compared to original canola oil. Interestingly, the presence of ascorbic acid in an acylglycerol structure protected α-tocopherol against thermal degradation, which was not observed for the phenolic acids. Developed structured lipids containing nutraceuticals and antioxidants may directly affect nutritional properties of lipids also offering nutraceutical ingredients for food formulation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Phenol-Sulfuric Acid Method for Total Carbohydrates

    Science.gov (United States)

    Nielsen, S. Suzanne

    The phenol-sulfuric acid method is a simple and rapid colorimetric method to determine total carbohydrates in a sample. The method detects virtually all classes of carbohydrates, including mono-, di-, oligo-, and polysaccharides. Although the method detects almost all carbohydrates, the absorptivity of the different carbohydrates varies. Thus, unless a sample is known to contain only one carbohydrate, the results must be expressed arbitrarily in terms of one carbohydrate.

  15. Phenolation of vegetable oils

    Directory of Open Access Journals (Sweden)

    ZORAN S. PETROVIĆ

    2011-04-01

    Full Text Available Novel bio-based compounds containing phenols suitable for the syn­thesis of polyurethanes were prepared. The direct alkylation of phenols with different vegetable oils in the presence of superacids (HBF4, triflic acid as ca­talysts was studied. The reaction kinetics was followed by monitoring the de­crease of the double bond content (iodine value with time. In order to under­stand the mechanism of the reaction, phenol was alkylated with model com­pounds. The model compounds containing one internal double bond were 9-oc­tadecene and methyl oleate and those with three double bonds were triolein and high oleic safflower oil (82 % oleic acid. It was shown that the best structures for phenol alkylation are fatty acids with only one double bond (oleic acid. Fatty acids with two double bonds (linoleic acid and three double bonds (lino­lenic acid lead to polymerized oils by a Diels–Alder reaction, and to a lesser extent to phenol alkylated products. The reaction product of direct alkylation of phenol with vegetable oils is a complex mixture of phenol alkylated with poly­merized oil (30–60 %, phenyl esters formed by transesterification of phenol with triglyceride ester bonds (<10 % and unreacted oil (30 %. The phenolated vegetable oils are new aromatic–aliphatic bio-based raw materials suitable for the preparation of polyols (by propoxylation, ethoxylation, Mannich reactions for the preparation of polyurethanes, as intermediates for phenolic resins or as bio-based antioxidants.

  16. Simultaneous determination of phenolic acids and flavonoids in Chenopodium formosanum Koidz. (djulis) by HPLC-DAD-ESI-MS/MS.

    Science.gov (United States)

    Hsu, B Y; Lin, S W; Inbaraj, B Stephen; Chen, B H

    2017-01-05

    A high performance liquid chromatography-diode array detection-tandem mass spectrometry method (HPLC-DAD-MS/MS) was developed for simultaneous determination of phenolic acids and flavonoids in djulis (Chenopodium formosanum Koidz.), a traditional Chinese herb reported to possess vital biological activities. A high yield of phenolic acids and flavonoids was attained by employing 50% ethanol in water as the extraction solvent and shaking in a 60°C water bath for 3h. A total of 8 phenolic acids and 14 flavonoids were separated and identified within 55min by using a Poroshell 120 EC-C18 column with detection at 280nm, flow rate at 0.8mL/min, column temperature at 35°C, and a gradient solvent system of 0.1% formic acid in water and acetonitrile. Two internal standards caffeic acid and kaempferol-3-O-rutinoside were used for quantitation of phenolic acids and flavonoids in djulis respectively. The amounts of phenolic acids ranged from 11.5±0.8μg/g (caffeoyl-putrescine-derivative (2)) to 1855.3±16.9μg/g (hydroxylphenylacetic acid pentoside), while the flavonoids ranged from 19.93±2.29μg/g (quercetin-3-O-(coumaryl)-rutinoside-pentoside (1)) to 257.3±2.05μg/g (rutin-O-pentoside (2)). A high recovery (89.68-97.20%) and high reproducibility was obtained for both phenolic acids and flavonoids with the relative standard deviation (RSD) for the latter ranging from 0.09-8.22% (intra-day variability) and 0.80-8.48% (inter-day variability). This method may be applied to determination of both phenolic acids and flavonoids in food products and Chinese herbs. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Effects of Phenolic Acids on the Growth and Production of T-2 and HT-2 Toxins by Fusarium langsethiae and F. sporotrichioides.

    Science.gov (United States)

    Ferruz, Elena; Atanasova-Pénichon, Vessela; Bonnin-Verdal, Marie-Noëlle; Marchegay, Gisèle; Pinson-Gadais, Laëtitia; Ducos, Christine; Lorán, Susana; Ariño, Agustín; Barreau, Christian; Richard-Forget, Florence

    2016-04-04

    The effect of natural phenolic acids was tested on the growth and production of T-2 and HT-2 toxins by Fusarium langsethiae and F. sporotrichioides, on Mycotoxin Synthetic medium. Plates treated with 0.5 mM of each phenolic acid (caffeic, chlorogenic, ferulic and p-coumaric) and controls without phenolic acid were incubated for 14 days at 25 °C. Fungal biomass of F. langsethiae and F. sporotrichioides was not reduced by the phenolic acids. However, biosynthesis of T-2 toxin by F. langsethiae was significantly reduced by chlorogenic (23.1%) and ferulic (26.5%) acids. Production of T-2 by F. sporotrichioides also decreased with ferulic acid by 23% (p phenolic acids had a variable effect on fungal growth and mycotoxin production, depending on the strain and the concentration and type of phenolic acid assayed.

  18. Antineurodegenerative effect of phenolic extracts and caffeic acid derivatives in romaine lettuce on neuron-like PC-12 cells.

    Science.gov (United States)

    Im, Sung-Eun; Yoon, Hyungeun; Nam, Tae-Gyu; Heo, Ho Jin; Lee, Chang Yong; Kim, Dae-Ok

    2010-08-01

    In recent decades, romaine lettuce has been one of the fastest growing vegetables with respect to its consumption and production. An understanding is needed of the effect of major phenolic phytochemicals from romaine lettuce on biological protection for neuron-like PC-12 cells. Phenolics in fresh romaine lettuce were extracted, and then its total phenolics and total antioxidant capacity were measured spectrophotometrically. Neuroprotective effects of phenolic extract of romaine lettuce and its pure caffeic acid derivatives (caffeic, chicoric, chlorogenic, and isochlorogenic acids) in PC-12 cells were evaluated using two different in vitro methods: lactate dehydrogenase release and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction assays. Total phenolics and total antioxidant capacity of 100 g of fresh romaine lettuce averaged 22.7 mg of gallic acid equivalents and 31.0 mg of vitamin C equivalents, respectively. The phenolic extract of romaine lettuce protected PC-12 cells against oxidative stress caused by H(2)O(2) in a dose-dependent manner. Isochlorogenic acid, one of the phenolics in romaine lettuce, showed stronger neuroprotection than the other three caffeic acid derivatives also found in the lettuce. Although romaine lettuce had lower levels of phenolics and antioxidant capacity compared to other common vegetables, its contribution to total antioxidant capacity and antineurodegenerative effect in human diets would be higher because of higher amounts of its daily per capita consumption compared to other common vegetables.

  19. Structural analysis of Bacillus pumilus phenolic acid decarboxylase, a lipocalin-fold enzyme

    International Nuclear Information System (INIS)

    Matte, Allan; Grosse, Stephan; Bergeron, Hélène; Abokitse, Kofi; Lau, Peter C. K.

    2010-01-01

    The crystal structure of phenolic acid decarboxylase from B. pumilus strain UI-670 has been determined and refined at 1.69 Å resolution. The enzyme is a dimer, with each subunit adopting a β-barrel structure belonging to the lipocalin fold. The decarboxylation of phenolic acids, including ferulic and p-coumaric acids, to their corresponding vinyl derivatives is of importance in the flavouring and polymer industries. Here, the crystal structure of phenolic acid decarboxylase (PAD) from Bacillus pumilus strain UI-670 is reported. The enzyme is a 161-residue polypeptide that forms dimers both in the crystal and in solution. The structure of PAD as determined by X-ray crystallography revealed a β-barrel structure and two α-helices, with a cleft formed at one edge of the barrel. The PAD structure resembles those of the lipocalin-fold proteins, which often bind hydrophobic ligands. Superposition of structurally related proteins bound to their cognate ligands shows that they and PAD bind their ligands in a conserved location within the β-barrel. Analysis of the residue-conservation pattern for PAD-related sequences mapped onto the PAD structure reveals that the conservation mainly includes residues found within the hydrophobic core of the protein, defining a common lipocalin-like fold for this enzyme family. A narrow cleft containing several conserved amino acids was observed as a structural feature and a potential ligand-binding site

  20. Identification/quantification of free and bound phenolic acids in peel and pulp of apples (Malus domestica) using high resolution mass spectrometry (HRMS).

    Science.gov (United States)

    Lee, Jihyun; Chan, Bronte Lee Shan; Mitchell, Alyson E

    2017-01-15

    Free and bound phenolic acids were measured in the pulp and peel of four varieties of apples using high resolution mass spectrometry. Twenty-five phenolic acids were identified and included: 8 hydroxybenzoic acids, 11 hydroxycinnamic acids, 5 hydroxyphenylacetic acids, and 1 hydoxyphenylpropanoic acid. Several phenolics are tentatively identified for the first time in apples and include: methyl gallate, ethyl gallate, hydroxy phenyl acetic acid, three phenylacetic acid isomers, 3-(4-hydroxyphenyl)propionic acid, and homoveratric acid. With exception of chlorogenic and caffeic acid, most phenolic acids were quantified for the first time in apples. Significant varietal differences (pacids were higher in the pulp as compared to apple peel (dry weight) in all varieties. Coumaroylquinic, protocatechuic, 4-hydroxybenzoic, vanillic and t-ferulic acids were present in free forms. With exception of chlorogenic acid, all other phenolic acids were present only as bound forms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Effects of phenolic acid structures on meadow hay digestibility

    NARCIS (Netherlands)

    Rodrigues, M.A.M.; Guedes, C.M.; Cone, J.W.; Gelder, van A.H.; Ferreira, L.M.M.; Sequeira, C.A.

    2007-01-01

    The objectives were to evaluate effects of phenolic acid content and composition on the digestibility of six meadow hays from Northern Portugal. Digestibility was assessed by gas production, in vitro and in situ degradation methods. Four cows fed diets at energy maintenance were used for in situ

  2. Mixed Phenolic Acids Mediated Proliferation of Pathogens Talaromyces helicus and Kosakonia sacchari in Continuously Monocultured Radix pseudostellariae Rhizosphere Soil

    Science.gov (United States)

    Wu, Hongmiao; Wu, Linkun; Wang, Juanying; Zhu, Quan; Lin, Sheng; Xu, Jiahui; Zheng, Cailiang; Chen, Jun; Qin, Xianjin; Fang, Changxun; Zhang, Zhixing; Azeem, Saadia; Lin, Wenxiong

    2016-01-01

    Radix pseudostellariae L. is a common and popular Chinese medication. However, continuous monoculture has increased its susceptibility to severe diseases. We identified two pathogenic microorganisms, Talaromyces helicus M. (KU355274) and Kosakonia sacchari W. (KU324465), and their antagonistic bacterium, Bacillus pumilus Z. in rhizosphere soil of continuously monocultured R. pseudostellariae. Nine types of phenolic acids were identified both in the rhizosphere soil and in culture medium under sterile conditions. A syringic acid and phenolic acid mixture significantly promoted the growth of T. helicus and K. sacchari. T. helicus could utilize eight types of phenolic acids, whereas K. sacchari could only use four phenolic acids. K. sacchari produced protocatechuic acid when consuming vanillin. Protocatechuic acid negatively affected the growth of B. pumilus. The 3A-DON toxin produced by T. helicus promoted the growth of K. sacchari and inhibited growth of B. pumilus at low concentrations. These data help explain why phenolic exudates mediate a microflora shift and structure disorder in the rhizosphere soil of continuously monocultured R. pseudostellariae and lead to increased replanting disease incidence. PMID:27014250

  3. How to Plant Apple Trees to Reduce Replant Disease in Apple Orchard: A Study on the Phenolic Acid of the Replanted Apple Orchard.

    Directory of Open Access Journals (Sweden)

    Chengmiao Yin

    Full Text Available Apple replant disease (ARD is an important problem in the production of apple. The phenolic acid is one of the causes of ARD. How phenolic acid affects the ARD was not well known. In this study, we analyzed the type, concentration and annual dynamic variation of phenolic acid in soil from three replanted apple orchards using an accelerated solvent extraction system with high performance liquid chromatography (ASE-HPLC. We found that the type and concentration of phenolic acid were significantly differed among different seasons, different sampling positions and different soil layers. Major types of phenolic acid in three replanted apple orchards were phlorizin, benzoic acid and vanillic aldehyde. The concentration of phenolic acid was highest in the soil of the previous tree holes and it was increased from the spring to autumn. Moreover, phenolic acid was primarily distributed in 30-60 cm soil layer in the autumn, while it was most abundant in 0-30 cm soil layer in the spring. Our results suggest that phlorizin, benzoic acid and vanillic aldehyde may be the key phenolic acid that brought about ARD in the replanted apple orchard.

  4. Separation of phenolic acids from sugarcane rind by online solid-phase extraction with high-speed counter-current chromatography.

    Science.gov (United States)

    Geng, Ping; Fang, Yingtong; Xie, Ronglong; Hu, Weilun; Xi, Xingjun; Chu, Qiao; Dong, Genlai; Shaheen, Nusrat; Wei, Yun

    2017-02-01

    Sugarcane rind contains some functional phenolic acids. The separation of these compounds from sugarcane rind is able to realize the integrated utilization of the crop and reduce environment pollution. In this paper, a novel protocol based on interfacing online solid-phase extraction with high-speed counter-current chromatography (HSCCC) was established, aiming at improving and simplifying the process of phenolic acids separation from sugarcane rind. The conditions of online solid-phase extraction with HSCCC involving solvent system, flow rate of mobile phase as well as saturated extent of absorption of solid-phase extraction were optimized to improve extraction efficiency and reduce separation time. The separation of phenolic acids was performed with a two-phase solvent system composed of butanol/acetic acid/water at a volume ratio of 4:1:5, and the developed online solid-phase extraction with HSCCC method was validated and successfully applied for sugarcane rind, and three phenolic acids including 6.73 mg of gallic acid, 10.85 mg of p-coumaric acid, and 2.78 mg of ferulic acid with purities of 60.2, 95.4, and 84%, respectively, were obtained from 150 mg sugarcane rind crude extracts. In addition, the three different elution methods of phenolic acids purification including HSCCC, elution-extrusion counter-current chromatography and back-extrusion counter-current chromatography were compared. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Acid-base interactions in microbial adhesion to hexadecane and chloroform

    NARCIS (Netherlands)

    Bos, R; Busscher, HJ; Geertsema-Doornbusch, GI; Van Der Mei, HC; Mittal, KL

    2000-01-01

    Acid-base interactions play an important role in adhesion, including microbial adhesion to surfaces. Qualitatively acid-base interactions in microbial adhesion can be demonstrated by comparing adhesion to hexadecane (a negatively charged interface in aqueous solutions, unable to exert acid-base

  6. Identification of phenolic acids and flavonoids in monofloral honey from Bangladesh by high performance liquid chromatography: determination of antioxidant capacity.

    Science.gov (United States)

    Moniruzzaman, Mohammed; Yung An, Chua; Rao, Pasupuleti Visweswara; Hawlader, Mohammad Nurul Islam; Azlan, Siti Amirah Binti Mohd; Sulaiman, Siti Amrah; Gan, Siew Hua

    2014-01-01

    The aim of the present study was to characterize the phenolic acids, flavonoids, and antioxidant properties of monofloral honey collected from five different districts in Bangladesh. A new high performance liquid chromatography (HPLC) equipped with a UV detector method was developed for the identification of the phenolic acids and flavonoids. A total of five different phenolic acids were identified, with the most abundant being caffeic acid, benzoic acid, gallic acid, followed by chlorogenic acid and trans-cinnamic acid. The flavonoids, kaempferol, and catechin were most abundant, followed by myricetin and naringenin. The mean moisture content, total sugar content, and color characteristics of the honey samples were 18.36 ± 0.95%, 67.40 ± 5.63 g/100 g, and 129.27 ± 34.66 mm Pfund, respectively. The mean total phenolic acids, total flavonoid content, and proline content were 199.20 ± 135.23, 46.73 ± 34.16, and 556.40 ± 376.86 mg/kg, respectively, while the mean FRAP values and DPPH radical scavenging activity were 327.30 ± 231.87 μM Fe (II)/100 g and 36.95 ± 20.53%, respectively. Among the different types of honey, kalijira exhibited the highest phenolics and antioxidant properties. Overall, our study confirms that all the investigated honey samples are good sources of phenolic acids and flavonoids with good antioxidant properties.

  7. Reevaluation of the phenol-sulfuric acid reaction for the estimation of hexoses and pentoses.

    Science.gov (United States)

    Rao, P; Pattabiraman, T N

    1989-08-15

    Evidence is provided to show that in the conventional phenol-sulfuric acid reaction procedure, phenol underwent sulfonation in situ and the phenolsulfonic acid formed decreased the color intensity for hydroxymethyl furfural (HMF), furfural, and many hexoses and pentoses tested. A modified method is described to overcome this problem in which phenol was added after the dehydration of carbohydrates by sulfuric acid and after cooling the system. The color intensity around 475-485 nm for different compounds was fairly proportional to the amount of furfural derivatives (absorption at 310-320 nm) formed from the sugars in the modified method unlike in the conventional procedure. The studies also show that for condensation of HMF derivatives with phenol, heat is not necessary. The color intensity in the modified method also increased compared to that in the conventional method. The increase in the modified method compared to that in the conventional method was 6.0-fold for furfural, 9.1-fold for hydroxymethyl furfural, 3.7-fold for fructose, 2.3-fold for xylose, and 2.0-fold for glucose and arabinose. The possible reasons for this differential increase are discussed.

  8. Determining Total Phenolics, Anthocyanin Content and Ascorbic Acid Content in Some Plum Genotypes Grown in Ardahan Ecological Conditions

    Directory of Open Access Journals (Sweden)

    Z. T. ABACI

    2014-06-01

    Full Text Available In this study, total phenol content, total anthocyanin content, brix, pH, titrable acidity and total ascorbic acid content in the five plum genotypes cultivated in Ardahan City are determined and sustenance of the plums are revealed. Total phenol content was determined with folin-ciocalteu’s method, total anthocyanin content was determined with pH differential method and total ascorbic acid was determined with 2,6-dichlorophenolindophenol method.It is detected that the genotype with the highest brix content (%13.9 and lowest acidity (%0.98 is cancur, the genotype with the lowest brix content (%11 and highest acidity (%2.06 is wild plum, the genotype with the highest content of total anthocyanin, total phenolic substance and ascorbic acid is the wild plum and the genotype with the least content of these is the water plum. As a result of the study, it is revealed that the plum fruit has high levels of phenolic substance, anthocyanin and ascorbic acid content, so it has a high sustenance.

  9. Enhanced production of phenolic acids in cell suspension culture of Salvia leriifolia Benth. using growth regulators and sucrose.

    Science.gov (United States)

    Modarres, Masoomeh; Esmaeilzadeh Bahabadi, Sedigheh; Taghavizadeh Yazdi, Mohammad Ehsan

    2018-04-01

    Salvia leriifolia Benth. (Lamiaceae) is an endangered medicinal plant with hypoglycemic, anti-inflammatory and analgesic properties. Many of the beneficial effects of Salvia spp. are attributed to the phenolic compounds. In the present study, an efficient procedure has been developed for establishment of cell suspension culture of S. leriifolia as a strategy to obtain an in vitro phenolic acids producing cell line for the first time. The effect of growth regulators and various concentrations of sucrose have been analyzed, to optimize biomass growth and phenolic acids production. The callus used for this purpose was obtained from leaves of 15-day-old in vitro seedlings, on Murashige and Skoog (MS) basal medium supplemented with different hormone balances including benzylaminopurine (BAP) and indole butyric acid (IBA); 2,4-dichlorophenoxyacetic acid (2,4-D) and kinetin (KIN); naphthaleneacetic acid (NAA) and BAP. Modified MS medium supplemented with 5 mg/L BAP and 5 mg/L NAA was the optimal condition for callus formation with the highest induction rate (100%), the best callus growth and the highest phenolic acids content. No callus induction was observed in combinations of IBA and BAP. Cell suspension cultures were established by transferring 0.5 g of callus to 30 mL liquid MS medium supplemented with 5 mg/L BAP and 5 mg/L NAA. Dynamics of phenolic acids production has been investigated during the growth cycle of the suspension cultures. The maximum content of caffeic acid and salvianolic acid B were observed on the 15th day of the cultivation cycle while the highest amount of rosmarinic acid was observed on the first day. In response to various sucrose concentrations, cell cultures with 40 g/L sucrose not only produced the highest dry biomass but also the highest induction of caffeic acid and salvianolic acid B. The highest amount of rosmarinic acid was observed in media containing 50 g/L sucrose. These prepared cell suspension cultures provided a useful

  10. Processing ‘Ataulfo’ Mango into Juice Preserves the Bioavailability and Antioxidant Capacity of Its Phenolic Compounds

    Directory of Open Access Journals (Sweden)

    Ana Elena Quirós-Sauceda

    2017-09-01

    Full Text Available The health-promoting effects of phenolic compounds depend on their bioaccessibility from the food matrix and their consequent bioavailability. We carried out a randomized crossover pilot clinical trial to evaluate the matrix effect (raw flesh and juice of ‘Ataulfo’ mango on the bioavailability of its phenolic compounds. Twelve healthy male subjects consumed a dose of mango flesh or juice. Blood was collected for six hours after consumption, and urine for 24 h. Plasma and urine phenolics were analyzed by electrochemical detection coupled to high performance liquid chromatography (HPLC-ECD. Five compounds were identified and quantified in plasma. Six phenolic compounds, plus a microbial metabolite (pyrogallol were quantified in urine, suggesting colonic metabolism. The maximum plasma concentration (Cmax occurred 2–4 h after consumption; excretion rates were maximum at 8–24 h. Mango flesh contributed to greater protocatechuic acid absorption (49%, mango juice contributed to higher chlorogenic acid absorption (62%. Our data suggests that the bioavailability and antioxidant capacity of mango phenolics is preserved, and may be increased when the flesh is processed into juice.

  11. Combining bar adsorptive microextraction with capillary electrophoresis--application for the determination of phenolic acids in food matrices.

    Science.gov (United States)

    da Rosa Neng, Nuno; Sequeiros, Rute C P; Florêncio Nogueira, José Manuel

    2014-09-01

    In this contribution, bar adsorptive microextraction coated with a mixed-mode anion exchange/RP followed by liquid desorption was combined for the first time with a capillary electrophoresis-diode array detection system (BAμE(MAX)-LD/CE-DAD), for the determination of phenolic acids in food matrices, using chlorogenic, ferulic, cumaric, and caffeic acids as model compounds. Assays performed in aqueous media spiked at the 0.8 mg/L level yielded average recoveries up to 40% for all four phenolic acids, under optimized experimental conditions. The analytical performance showed also good precision (RSD 0.9900). By using the standard addition method, the application to food matrices such as green tea, red fruit juice, and honey allowed very good performances for the determination of minor amounts of phenolic acids. The proposed methodology proved to be a suitable alternative for the analysis of polar to ionic compounds, showing to be easy to implement, reliable, sensitive, and requiring a low sample volume to determine phenolic acids in food samples. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Effect of phenols and carboxylic acids on photochromism of 1-alkyl-2-(arylazo)imidazoles

    International Nuclear Information System (INIS)

    Gayen, Pallab; Sinha, Chittaranjan

    2012-01-01

    Light irradiated trans-to-cis isomerization of 1-alkyl-2-(arylazo)imidazole in the presence of phenol, catechol, benzoic acid and salicylic acid (called co-factors) has been studied in this work. The rate of trans→cis photoisomerization is decreased in the presence of co-factor in the medium and is dependent on the concentration of active quotient about photochrome. The decrease in rate follows catechol>benzoic acid>phenol>salicylic acid. This trend is due to the effects of dissociation ability of –O–H/–COOH, intermolecular association of the molecules etc. The reverse change, cis-to-trans, is very slow in light irradiation and has been carried out by a thermal process in the dark. The quantum yield of isomerization follows the same sequence of effects of co-factors. - Highlights: ► Photoisomerisation of 1-alkyl-2-(arylazo)imidazoles, trans-to-cis, is described in this work. ► The process is sensitive to the environment of the photochrome and the solution. ► The rate of photoisomerization decreases as catechol>benzoic acid>phenol>salicylic acid. ► The reverse isomerization, cis-to-trans is very slow with light and has been carried out with heat. ► The activation energy is less than these values when carried out in fresh solution only.

  13. Experimental design for extraction and quantification of phenolic compounds and organic acids in white "Vinho Verde" grapes.

    Science.gov (United States)

    Dopico-García, M S; Valentão, P; Guerra, L; Andrade, P B; Seabra, R M

    2007-01-30

    An experimental design was applied for the optimization of extraction and clean-up processes of phenolic compounds and organic acids from white "Vinho Verde" grapes. The developed analytical method consisted in two steps: first a solid-liquid extraction of both phenolic compounds and organic acids and then a clean-up step using solid-phase extraction (SPE). Afterwards, phenolic compounds and organic acids were determined by high-performance liquid chromatography (HPLC) coupled to a diode array detector (DAD) and HPLC-UV, respectively. Plackett-Burman design was carried out to select the significant experimental parameters affecting both the extraction and the clean-up steps. The identified and quantified phenolic compounds were: quercetin-3-O-glucoside, quercetin-3-O-rutinoside, kaempferol-3-O-rutinoside, isorhamnetin-3-O-glucoside, quercetin, kaempferol and epicatechin. The determined organic acids were oxalic, citric, tartaric, malic, shikimic and fumaric acids. The obtained results showed that the most important variables were the temperature (40 degrees C) and the solvent (acid water at pH 2 with 5% methanol) for the extraction step and the type of sorbent (C18 non end-capped) for the clean-up step.

  14. Dietary phenolic acids reverse insulin resistance, hyperglycaemia, dyslipidaemia, inflammation and oxidative stress in high-fructose diet-induced metabolic syndrome rats.

    Science.gov (United States)

    Ibitoye, Oluwayemisi B; Ajiboye, Taofeek O

    2017-12-20

    This study investigated the influence of caffeic, ferulic, gallic and protocatechuic acids on high-fructose diet-induced metabolic syndrome in rats. Oral administration of the phenolic acids significantly reversed high-fructose diet-mediated increase in body mass index and blood glucose. Furthermore, phenolic acids restored high-fructose diet-mediated alterations in metabolic hormones (insulin, leptin and adiponectin). Similarly, elevated tumour necrosis factor-α, interleukin-6 and -8 were significantly lowered. Administration of phenolic acids restored High-fructose diet-mediated increase in the levels of lipid parameters and indices of atherosclerosis, cardiac and cardiovascular diseases. High-fructose diet-mediated decrease in activities of antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glucose 6-phosphate dehydrogenase) and increase in oxidative stress biomarkers (reduced glutathione, lipid peroxidation products, protein oxidation and fragmented DNA) were significantly restored by the phenolic acids. The result of this study shows protective influence of caffeic acid, ferulic acid, gallic acid and protocatechuic acid in high-fructose diet-induced metabolic syndrome.

  15. Hydrodeoxygenation of phenols as lignin models under acid-free conditions with carbon-supported platinum catalysts.

    Science.gov (United States)

    Ohta, Hidetoshi; Kobayashi, Hirokazu; Hara, Kenji; Fukuoka, Atsushi

    2011-11-28

    Carbon-supported Pt catalysts are highly active and reusable for the aqueous-phase hydrodeoxygenation of phenols as lignin models without adding any acids. It is suggested that Pt/carbon facilitates the hydrogenation of phenols and the hydrogenolysis of the resulting cyclohexanols.

  16. The role of humic and fulvic acids in the phototransformation of phenolic compounds in seawater

    International Nuclear Information System (INIS)

    Calza, P.; Vione, D.; Minero, C.

    2014-01-01

    Humic substances (HS) are known to act as photosensitizers toward the transformation of pollutants in the surface layer of natural waters. This study focused on the role played by HS toward the transformation of xenobiotics in seawater, with the purpose of assessing the prevailing degradation routes. Phenol was chosen as model xenobiotic and its transformation was investigated under simulated sunlight in the presence of terrestrial or marine humic and fulvic acids, in pure water at pH 8, artificial seawater (ASW) or natural seawater (NSW). The following parameters were determined: (1) the phenol degradation rate; (2) the variation in HS concentration with irradiation time; (3) the production of transformation products; (4) the influence of iron species on the transformation process. Faster transformation of phenol was observed with humic acids (HA) compared to fulvic acids (SRFA), and transformation induced by both HA and SRFA was faster in ASW than that in pure water. These observations can be explained by assuming an interplay between different competing and sometimes opposite processes, including the competition between chloride, bromide and dissolved oxygen for reaction with HS triplet states. The analysis of intermediates formed in the different matrices under study showed the formation of several hydroxylated (hydroquinone, 1,4-benzoquinone, resorcinol) and condensed compounds (2,2′-bisphenol, 4,4′-bisphenol, 4-phenoxyphenol). Although 1,4-benzoquinone was the main transformation product, formation of condensed molecules was significant with both HA and SRFA. Experiments on natural seawater spiked with HS confirmed the favored formation of condensed products, suggesting a key role of humic matter in dimerization reactions occurring in saline water. - Highlights: • Phenol transformation in seawater can be photosensitized by humic substances. • Dimeric species are peculiar intermediates formed in the process. • Phenol degradation occurred faster with

  17. The role of humic and fulvic acids in the phototransformation of phenolic compounds in seawater

    Energy Technology Data Exchange (ETDEWEB)

    Calza, P., E-mail: paola.calza@unito.it; Vione, D.; Minero, C.

    2014-09-15

    Humic substances (HS) are known to act as photosensitizers toward the transformation of pollutants in the surface layer of natural waters. This study focused on the role played by HS toward the transformation of xenobiotics in seawater, with the purpose of assessing the prevailing degradation routes. Phenol was chosen as model xenobiotic and its transformation was investigated under simulated sunlight in the presence of terrestrial or marine humic and fulvic acids, in pure water at pH 8, artificial seawater (ASW) or natural seawater (NSW). The following parameters were determined: (1) the phenol degradation rate; (2) the variation in HS concentration with irradiation time; (3) the production of transformation products; (4) the influence of iron species on the transformation process. Faster transformation of phenol was observed with humic acids (HA) compared to fulvic acids (SRFA), and transformation induced by both HA and SRFA was faster in ASW than that in pure water. These observations can be explained by assuming an interplay between different competing and sometimes opposite processes, including the competition between chloride, bromide and dissolved oxygen for reaction with HS triplet states. The analysis of intermediates formed in the different matrices under study showed the formation of several hydroxylated (hydroquinone, 1,4-benzoquinone, resorcinol) and condensed compounds (2,2′-bisphenol, 4,4′-bisphenol, 4-phenoxyphenol). Although 1,4-benzoquinone was the main transformation product, formation of condensed molecules was significant with both HA and SRFA. Experiments on natural seawater spiked with HS confirmed the favored formation of condensed products, suggesting a key role of humic matter in dimerization reactions occurring in saline water. - Highlights: • Phenol transformation in seawater can be photosensitized by humic substances. • Dimeric species are peculiar intermediates formed in the process. • Phenol degradation occurred faster with

  18. Dynamics in the concentrations of health-promoting compounds: lupeol, mangiferin and different phenolic acids during postharvest ripening of mango fruit.

    Science.gov (United States)

    Vithana, Mekhala Dk; Singh, Zora; Johnson, Stuart K

    2018-03-01

    Mango fruit (Mangifera indica L.) is renowned for its pleasant taste and as a rich source of health beneficial compounds. The aim of this study was to investigate the changes in concentrations of health-promoting compounds, namely ascorbic acid, carotenoids, antioxidants, lupeol, mangiferin, total phenols and individual phenolic acids, as well as ethylene production and respiration rates during climacteric ripening in 'Kensington Pride' and 'R2E2' mango fruit. The climacteric ethylene and respiration peaks were noted on the third day of the fruit ripening period. The concentrations of total carotenoids in the pulp, total antioxidants in both pulp and peel, and total phenols of the peel, lupeol and mangiferin were significantly elevated, whereas the concentration of ascorbic acid declined during post-climacteric ripening. Gallic, chlorogenic and vanillic acids were identified as the major phenolic acids in both pulp and peel of 'Kensington Pride' and 'R2E2' mangoes. The concentrations of phenolic acids (gallic, chlorogenic, vanillic, ferulic and caffeic acids) also increased during the post-climacteric phase. The concentrations of all phenolic compounds were several-fold higher in the peel than pulp. Mangoes at post-climacteric ripening phase offer the highest concentrations of health-promoting compounds. Peel, at this stage of fruit ripening, could be exploited as a good source for extraction of these compounds. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  19. Potentiometric investigation of acid dissociation and anionic homoconjugation equilibria of substituted phenols in dimethyl sulfoxide

    International Nuclear Information System (INIS)

    Czaja, Malgorzata; Kozak, Anna; Makowski, Mariusz; Chmurzynski, Lech.

    2003-01-01

    Standard acidity constants, K a DMSO (HA), expressed as pK a DMSO (HA) values, and anionic homoconjugation constants, K DMSO AHA - , (in the form of lg K DMSO AHA - values) have been determined for 11 substituted phenol-phenolate systems a polar protophilic aprotic solvent, dimethyl sulfoxide (DMSO) with a potentiometric titration. A linear relationship has been determined between lg K DMSO AHA - and pK a DMSO (HA). The tendency towards anionic homoconjugation in these systems increases with increasing pK a DMSO (HA) that is with declining phenol acidity. The pK a DMSO (HA) are correlated with both pK a W (HA) water and other polar non-aqeous solvents

  20. Sensitive determination of phenolic acids in extra-virgin olive oil by capillary zone electrophoresis.

    Science.gov (United States)

    Carrasco Pancorbo, Alegría; Cruces-Blanco, Carmen; Segura Carretero, Antonio; Fernández Gutiérrez, Alberto

    2004-11-03

    A sensitive, rapid, efficient, and reliable method for the separation and determination of phenolic acids by capillary zone electrophoresis has been carried out. A detailed method optimization was carried out to separate 14 different compounds by studying parameters such as pH, type and concentration of buffer, applied voltage, and injection time. The separation was performed within 16 min, using a 25 mM sodium borate buffer (pH 9.6) at 25 kV with 8 s of hydrodynamic injection. With this method and using a liquid-liquid extraction system, with recovery values around 95%, it has been possible to detect small quantities of phenolic acids in olive oil samples. This is apparently the first paper showing the quantification of this specific family of phenolic compounds in virgin olive oil samples.

  1. Antibacterial activity of sphagnum acid and other phenolic compounds found in Sphagnum papillosum against food-borne bacteria.

    Science.gov (United States)

    Mellegård, H; Stalheim, T; Hormazabal, V; Granum, P E; Hardy, S P

    2009-07-01

    To identify the phenolic compounds in the leaves of Sphagnum papillosum and examine their antibacterial activity at pH appropriate for the undissociated forms. Bacterial counts of overnight cultures showed that whilst growth of Staphylococcus aureus 50084 was impaired in the presence of milled leaves, the phenol-free fraction of holocellulose of S. papillosum had no bacteriostatic effect. Liquid chromatography-mass spectrometry analysis of an acetone-methanol extract of the leaves detected eight phenolic compounds. Antibacterial activity of the four dominating phenols specific to Sphagnum leaves, when assessed in vitro as minimal inhibitory concentrations (MICs), were generally >2.5 mg ml(-1). MIC values of the Sphagnum-specific compound 'sphagnum acid' [p-hydroxy-beta-(carboxymethyl)-cinnamic acid] were >5 mg ml(-1). No synergistic or antagonistic effects of the four dominating phenols were detected in plate assays. Sphagnum-derived phenolics exhibit antibacterial activity in vitro only at concentrations far in excess of those found in the leaves. We have both identified the phenolic compounds in S. papillosum and assessed their antibacterial activity. Our data indicate that phenolic compounds in isolation are not potent antibacterial agents and we question their potency against food-borne pathogens.

  2. Identification and Quantification of Avenanthramides and Free and Bound Phenolic Acids in Eight Cultivars of Husked Oat ( Avena sativa L) from Finland.

    Science.gov (United States)

    Multari, Salvatore; Pihlava, Juha-Matti; Ollennu-Chuasam, Priscilla; Hietaniemi, Veli; Yang, Baoru; Suomela, Jukka-Pekka

    2018-03-21

    Finland is the second largest oat producer in Europe. Despite the existing knowledge of phenolics in oat, there is little information on the phenolic composition of oats from Finland. The aim of the study was to investigate the concentrations of free and bound phenolic acids, as well as avenanthramides in eight Finnish cultivars of husked oat ( Avena sativa L.). Seven phenolic acids and one phenolic aldehyde were identified, including, in decreasing order of abundance: p-coumaric, ferulic, cinnamic, syringic, vanillic, 2,4-dihydroxybenzoic, and o-coumaric acids and syringaldehyde. Phenolic acids were mostly found as bound compounds. Significant varietal differences ( p phenolic acids, with the lowest level found in cv. 'Viviana' (1202 ± 52.9 mg kg -1 ) and the highest in cv. 'Akseli' (1687 ± 80.2 mg kg -1 ). Avenanthramides (AVNs) 2a, 2p, and 2f were the most abundant. Total AVNs levels ranged from 26.7 ± 1.44 to 185 ± 12.5 mg kg -1 in cv. 'Avetron' and 'Viviana', respectively.

  3. Phenolic acids, anthocyanins, proanthocyanidins, antioxidant activity, minerals and their correlations in non-pigmented, red, and black rice.

    Science.gov (United States)

    Shao, Yafang; Hu, Zhanqiang; Yu, Yonghong; Mou, Renxiang; Zhu, Zhiwei; Beta, Trust

    2018-01-15

    Soluble-free, soluble-conjugated, insoluble-bound phenolics and antioxidant activity, flavonoid (TFC), proanthocyanidins (TPAC), anthocyanins and minerals of fifteen whole rice grains with different colors were investigated. Soluble-free protocatechuic and vanillic acids were only quantified in black rice, which had the most quantities. Non-pigmented rice had no detectable conjugated protocatechuic and 2,5-dihydroxybenzoic acids both of which were found in black and red rice, respectively. The main bound phenolic acids were ferulic and p-coumaric, as well as 2,5-dihydroxybenzoic in red rice and protocatechuic and vanillic acids in black rice. Soluble-conjugated phenolics, TFC, and anthocyanins were negatively correlated with L ∗ , b ∗ , C and H° values. TPAC was positively correlated with a ∗ (Pblack rice groups. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Effect of phenols and carboxylic acids on photochromism of 1-alkyl-2-(arylazo)imidazoles

    Energy Technology Data Exchange (ETDEWEB)

    Gayen, Pallab [Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032 (India); Sinha, Chittaranjan, E-mail: c_r_sinha@yahoo.com [Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032 (India)

    2012-09-15

    Light irradiated trans-to-cis isomerization of 1-alkyl-2-(arylazo)imidazole in the presence of phenol, catechol, benzoic acid and salicylic acid (called co-factors) has been studied in this work. The rate of trans{yields}cis photoisomerization is decreased in the presence of co-factor in the medium and is dependent on the concentration of active quotient about photochrome. The decrease in rate follows catechol>benzoic acid>phenol>salicylic acid. This trend is due to the effects of dissociation ability of -O-H/-COOH, intermolecular association of the molecules etc. The reverse change, cis-to-trans, is very slow in light irradiation and has been carried out by a thermal process in the dark. The quantum yield of isomerization follows the same sequence of effects of co-factors. - Highlights: Black-Right-Pointing-Pointer Photoisomerisation of 1-alkyl-2-(arylazo)imidazoles, trans-to-cis, is described in this work. Black-Right-Pointing-Pointer The process is sensitive to the environment of the photochrome and the solution. Black-Right-Pointing-Pointer The rate of photoisomerization decreases as catechol>benzoic acid>phenol>salicylic acid. Black-Right-Pointing-Pointer The reverse isomerization, cis-to-trans is very slow with light and has been carried out with heat. Black-Right-Pointing-Pointer The activation energy is less than these values when carried out in fresh solution only.

  5. Effect of maceration duration on physicochemical characteristics, organic acid, phenolic compounds and antioxidant activity of red wine from Vitis vinifera L. Karaoglan.

    Science.gov (United States)

    Kocabey, N; Yilmaztekin, M; Hayaloglu, A A

    2016-09-01

    Effects of different maceration times (5, 10 and 15 days) on composition, phenolic compounds and antioxidant activities of red wines made from the Vitis vinifera L. Karaoglan grown in Malatya were investigated. Maceration duration changed some chemical constituents and color of Karaoglan red wines. A linear relationship was observed between antioxidant activity of wine and maceration duration. Major organic acid was tartaric acid which was at the highest concentration in wine macerated for 10 days. A total of 25 phenolic compounds was determined in wine samples. Within these phenolics; procyanidin B2, trans -caftaric acid, gallic acid, trans -caffeic acid, (+) catechin, (-) epicatechin and quercetin-3- O -glucoside were the most abundant phenolics regardless of maceration duration. In general, extended maceration duration resulted in increase in the concentration of phenolic compounds, reflecting the antioxidant activities of wine. In conclusion, the highest concentrations of total and individual phenolic compounds as well as antioxidant activities were found in wines macerated for 15 days.

  6. Bioprocessing of wheat bran in whole wheat bread increases the bioavailability of phenolic acids in men and exerts antiinflammatory effects ex vivo.

    Science.gov (United States)

    Mateo Anson, Nuria; Aura, Anna-Marja; Selinheimo, Emilia; Mattila, Ismo; Poutanen, Kaisa; van den Berg, Robin; Havenaar, Robert; Bast, Aalt; Haenen, Guido R M M

    2011-01-01

    Whole grain consumption has been linked to a lower risk of metabolic syndrome, which is normally associated with a low-grade chronic inflammation. The benefits of whole grain are in part related to the inclusion of the bran, rich in phenolic acids and fiber. However, the phenols are poorly bioaccessible from the cereal matrix. The aim of the present study was to investigate the effect of bioprocessing of the bran in whole wheat bread on the bioavailability of phenolic acids, the postprandial plasma antioxidant capacity, and ex vivo antiinflammatory properties. After consumption of a low phenolic acid diet for 3 d and overnight fasting, 8 healthy men consumed 300 g of whole wheat bread containing native bran (control bread) or bioprocessed bran (bioprocessed bread) in a cross-over design. Urine and blood samples were collected for 24 h to analyze the phenolic acids and metabolites. Trolox equivalent antioxidant capacity was measured in plasma. Cytokines were measured in blood after ex vivo stimulation with LPS. The bioavailabilities of ferulic acid, vanillic acid, sinapic acid, and 3,4-dimethoxybenzoic acid from the bioprocessed bread were 2- to 3-fold those from the control bread. Phenylpropionic acid and 3-hydroxyphenylpropionic acid were the main colonic metabolites of the nonbioaccessible phenols. The ratios of pro-:antiinflammatory cytokines were significantly lower in LPS-stimulated blood after the consumption of the bioprocessed bread. In conclusion, bioprocessing can remarkably increase the bioavailability of phenolic acids and their circulating metabolites, compounds which have immunomodulatory effects ex vivo.

  7. How to Plant Apple Trees to Reduce Replant Disease in Apple Orchard: A Study on the Phenolic Acid of the Replanted Apple Orchard

    OpenAIRE

    Yin, Chengmiao; Xiang, Li; Wang, Gongshuai; Wang, Yanfang; Shen, Xiang; Chen, Xuesen; Mao, Zhiquan

    2016-01-01

    Apple replant disease (ARD) is an important problem in the production of apple. The phenolic acid is one of the causes of ARD. How phenolic acid affects the ARD was not well known. In this study, we analyzed the type, concentration and annual dynamic variation of phenolic acid in soil from three replanted apple orchards using an accelerated solvent extraction system with high performance liquid chromatography (ASE-HPLC). We found that the type and concentration of phenolic acid were significa...

  8. Antiproliferative and apoptotic effects of selective phenolic acids on T47D human breast cancer cells: potential mechanisms of action

    International Nuclear Information System (INIS)

    Kampa, Marilena; Boskou, Dimitrios; Gravanis, Achille; Castanas, Elias; Alexaki, Vassilia-Ismini; Notas, George; Nifli, Artemissia-Phoebe; Nistikaki, Anastassia; Hatzoglou, Anastassia; Bakogeorgou, Efstathia; Kouimtzoglou, Elena; Blekas, George

    2004-01-01

    The oncoprotective role of food-derived polyphenol antioxidants has been described but the implicated mechanisms are not yet clear. In addition to polyphenols, phenolic acids, found at high concentrations in a number of plants, possess antioxidant action. The main phenolic acids found in foods are derivatives of 4-hydroxybenzoic acid and 4-hydroxycinnamic acid. This work concentrates on the antiproliferative action of caffeic acid, syringic acid, sinapic acid, protocatechuic acid, ferulic acid and 3,4-dihydroxy-phenylacetic acid (PAA) on T47D human breast cancer cells, testing their antioxidant activity and a number of possible mechanisms involved (interaction with membrane and intracellular receptors, nitric oxide production). The tested compounds showed a time-dependent and dose-dependent inhibitory effect on cell growth with the following potency: caffeic acid > ferulic acid = protocatechuic acid = PAA > sinapic acid = syringic acid. Caffeic acid and PAA were chosen for further analysis. The antioxidative activity of these phenolic acids in T47D cells does not coincide with their inhibitory effect on tumoral proliferation. No interaction was found with steroid and adrenergic receptors. PAA induced an inhibition of nitric oxide synthase, while caffeic acid competes for binding and results in an inhibition of aryl hydrocarbon receptor-induced CYP1A1 enzyme. Both agents induce apoptosis via the Fas/FasL system. Phenolic acids exert a direct antiproliferative action, evident at low concentrations, comparable with those found in biological fluids after ingestion of foods rich in phenolic acids. Furthermore, the direct interaction with the aryl hydrocarbon receptor, the nitric oxide synthase inhibition and their pro-apoptotic effect provide some insights into their biological mode of action

  9. In-vial liquid-liquid microextraction-capillary electrophoresis method for the determination of phenolic acids in vegetable oils.

    Science.gov (United States)

    Abu Bakar, Nur Bahiyah; Makahleh, Ahmad; Saad, Bahruddin

    2012-09-12

    An in-vial liquid-liquid microextraction method was developed for the selective extraction of the phenolic acids (caffeic, gallic, cinnamic, ferulic, chlorogenic, syringic, vanillic, benzoic, p-hydroxybenzoic, 2,4-dihydroxybenzoic, o-coumaric, m-coumaric and p-coumaric) in vegetable oil samples. The optimised extraction conditions for 20 g sample were: volume of diluent (n-hexane), 2 mL; extractant, methanol: 5 mM sodium hydroxide (60:40; v/v); volume of extractant, 300 μL (twice); vortex, 1 min; centrifugation, 5 min. Recoveries for the studied phenolic acids were 80.1-119.5%. The simultaneous determination of the phenolic acid extracts was investigated by capillary electrophoresis (CE). Separations were carried out on a bare fused-silica capillary (50 μm i.d.× 40 cm length) involving 25 mM sodium tetraborate (pH 9.15) and 5% methanol as CE background electrolyte in the normal polarity mode, voltage of 30 kV, temperature of 25°C, injection time of 4s (50 mbar) and electropherograms were recorded at 200 nm. The phenolic acids were successfully separated in less than 10 min. The validated in-vial LLME-CE method was applied to the determination of phenolic acids in vegetable oil samples (extra virgin olive oil, virgin olive oil, pure olive oil, walnut oil and grapeseed oil). The developed method shows significant advantages over the current methods as lengthy evaporation step is not required. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Study of the interactions between Eu(III) and Al2O3 particles in the presence of phenolic acids

    International Nuclear Information System (INIS)

    Moreau, P.

    2012-01-01

    In the framework of environmental pollution by radionuclides, this work was focused on the interactions occurring in systems containing europium(III) - as a chemical analogue for the actinides Am(III) and Cm(III) -, phenolic acids - lignin degradation products and anti-fungi, naturally occurring in soils, and alumina - representative of sorption sites found in the environment. This study was conducted at different scales of description: the macroscopic scale - to quantify Eu(III) and/or phenolic acids adsorption onto the mineral surface -, and the microscopic scale - to study the chemical environment of Eu(III) using Time-Resolved Luminescence Spectroscopy (TRLS). First, the binary systems, i.e. systems containing only two entities among the three previously cited, were characterized. Complexation constants of Eu(III) by three phenolic acids (4-hydroxybenzoic, 3,4-dihydroxybenzoic, and 3,4,5-trihydroxybenzoic acids) were determined and quantum calculations (DFT) were carried out on La(III)-acid complex analogues. Sorption of the acids onto aluminol sites was modelled using surface complexation concepts. Analyses of two ternary systems (containing 4-hydroxybenzoic and 3,4-dihydroxybenzoic acids) revealed synergistic processes for Eu(III) and phenolic acids sorption onto Al 2 O 3 . A spectral fingerprint of ternary complex involving Eu(III)/4-hydroxybenzoic acid/Al 2 O 3 surface sites was evidenced. (author) [fr

  11. Potentiometric studies on mixed-ligand chelates of uranyl ion with carboxylic acid phenolic acids

    International Nuclear Information System (INIS)

    Bandiwadekar, S.P.; Chavar, A.M.

    1988-01-01

    Mixed ligand complexes of UO 2 2+ with bidentate carboxylic and phenolic acids have been studied potentiometrically at 30 ± 0.1degC and μ=0.2M (NaClO 4 ). 1:1 and 1:2 complexes of UO 2 2+ with phthalic acid (PTHA), maleic acid (MAE), malonic acid (MAL), quinolinic acid (QA), 5-sulphosalicylic acid (5-SSA), salicylic acid (SA), and only 1:1 complexes in the case of mandelic acid (MAD) have been detected. The formation of 1:1:1 mixed ligand complexes has been inferred from simultaneous equilibria in the present study. The values of ΔlogK, Ksub(DAL), Ksub(2LA) or Ksub(2AL) for the ternary complexes have been calculated. The stabilities of mixed ligand complexes depend on the size of the chelate ring and the stabilities of the binary complexes. (author). 15 refs

  12. Membrane-Based Separation of Phenol/Water Mixtures Using Ionically and Covalently Cross-Linked Ethylene-Methacrylic Acid Copolymers

    Directory of Open Access Journals (Sweden)

    Alexander Mixa

    2008-01-01

    Full Text Available Membrane-based separation of phenol/water mixtures with concentrations of phenol between 3 wt% and 8 wt% in the feed has been performed with nonmodified as well as cross-linked ethylene-methacrylic acid (E-MAA copolymers with different amounts of methacrylic acid. As cross-linking agents, aluminium acetyl acetonate, which leads to ionically cross-linked membranes, and 2,3,5,6-tetramethyl-1,4-phenylene diamine and glycerine digycidether, leading to covalently cross-linked membranes, have been used. Generally, it was found that with increasing phenol content in the feed, the total flux is increasing whereas the enrichment factor is decreasing. Using nonmodified membranes with higher methacrylic acid monomer content in the polymer, lower fluxes and higher enrichment factors were observed. Investigation of different cross-linked membranes showed that with high phenol concentration in the feed, ionic cross-linking seems to be very promising. Furthermore, variation of feed temperature shows that ionically cross-linked membranes reached higher fluxes as well as higher enrichment factors at elevated temperatures. The temperature-dependent data were fitted based on an Arrhenius-type equation, and activation energies for the permeation of phenol and water through the membrane were calculated.

  13. The relationship between odd- and branched-chain fatty acids and microbial nucleic acid bases in rumen

    Directory of Open Access Journals (Sweden)

    Keyuan Liu

    2017-11-01

    Full Text Available Objective This study aims to identify the relationship between odd- and branched-chain fatty acids (OBCFAs and microbial nucleic acid bases in the rumen, and to establish a model to accurately predict microbial protein flow by using OBCFA. Methods To develop the regression equations, data on the rumen contents of individual cows were obtained from 2 feeding experiments. In the first experiment, 3 rumen-fistulated dry dairy cows arranged in a 3×3 Latin square were fed diets of differing forage to concentration ratios (F:C. The second experiment consisted of 9 lactating Holstein dairy cows of similar body weights at the same stage of pregnancy. For each lactation stage, 3 cows with similar milk production were selected. The rumen contents were sampled at 4 time points of every two hours after morning feeding 6 h, and then to analyse the concentrations of OBCFA and microbial nucleic acid bases in the rumen samples. Results The ruminal bacteria nucleic acid bases were significantly influenced by feeding diets of differing forge to concentration ratios and lactation stages of dairy cows (p<0.05. The concentrations of OBCFAs, especially odd-chain fatty acids and C15:0 isomers, strongly correlated with the microbial nucleic acid bases in the rumen (p<0.05. The equations of ruminal microbial nucleic acid bases established by ruminal OBCFAs contents showed a good predictive capacity, as indicated by reasonably low standard errors and high R-squared values. Conclusion This finding suggests that the rumen OBCFA composition could be used as an internal marker of rumen microbial matter.

  14. Effects of NaCl and soaking temperature on the phenolic compounds, α-tocopherol, γ-oryzanol and fatty acids of glutinous rice.

    Science.gov (United States)

    Thammapat, Pornpisanu; Meeso, Naret; Siriamornpun, Sirithon

    2015-05-15

    Soaking is one of the important steps of the parboiling process. In this study, we investigated the effect of changes in different sodium chloride (NaCl) content (0%, 1.5% and 3.0% NaCl, w/v) of soaking media and soaking temperatures (30°C, 45°C and 60°C) on the phenolic compounds (α-tocopherol, γ-oryzanol) and on the fatty acids of glutinous rice, compared with unsoaked samples. Overall, the total phenolic content, total phenolic acids, γ-oryzanol, saturated fatty acid and mono-unsaturated fatty acid of the glutinous rice showed an increasing trend as NaCl content and soaking temperature increased, while α-tocopherol and polyunsaturated fatty acids decreased. Soaking at 3.0% NaCl provided the highest total phenolic content, total phenolic acids and γ-oryzanol (0.2mg GAE/g, 63.61 μg/g and 139.76 mg/100g, respectively) for the soaking treatments tested. Nevertheless, the amount of α-tocopherol and polyunsaturated fatty acid were found to be the highest (18.30/100g and 39.74%, respectively) in unsoaked rice. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Soil microbial community responses to acid exposure and neutralization treatment.

    Science.gov (United States)

    Shin, Doyun; Lee, Yunho; Park, Jeonghyun; Moon, Hee Sun; Hyun, Sung Pil

    2017-12-15

    Changes in microbial community induced by acid shock were studied in the context of potential release of acids to the environment due to chemical accidents. The responses of microbial communities in three different soils to the exposure to sulfuric or hydrofluoric acid and to the subsequent neutralization treatment were investigated as functions of acid concentration and exposure time by using 16S-rRNA gene based pyrosequencing and DGGE (Denaturing Gradient Gel Electrophoresis). Measurements of soil pH and dissolved ion concentrations revealed that the added acids were neutralized to different degrees, depending on the mineral composition and soil texture. Hydrofluoric acid was more effectively neutralized by the soils, compared with sulfuric acid at the same normality. Gram-negative ß-Proteobacteria were shown to be the most acid-sensitive bacterial strains, while spore-forming Gram-positive Bacilli were the most acid-tolerant. The results of this study suggest that the Gram-positive to Gram-negative bacterial ratio may serve as an effective bio-indicator in assessing the impact of the acid shock on the microbial community. Neutralization treatments helped recover the ratio closer to their original values. The findings of this study show that microbial community changes as well as geochemical changes such as pH and dissolved ion concentrations need to be considered in estimating the impact of an acid spill, in selecting an optimal remediation strategy, and in deciding when to end remedial actions at the acid spill impacted site. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Biodegradation of phenol, salicylic acid, benzenesulfonic acid, and iomeprol by Pseudomonas fluorescens in the capillary fringe.

    Science.gov (United States)

    Hack, Norman; Reinwand, Christian; Abbt-Braun, Gudrun; Horn, Harald; Frimmel, Fritz H

    2015-12-01

    Mass transfer and biological transformation phenomena in the capillary fringe were studied using phenol, salicylic acid, benzenesulfonic acid, and the iodinated X-ray contrast agent iomeprol as model organic compounds and the microorganism strain Pseudomonas fluorescens. Three experimental approaches were used: Batch experiments (uniform water saturation and transport by diffusion), in static columns (with a gradient of water saturation and advective transport in the capillaries) and in a flow-through cell (with a gradient of water saturation and transport by horizontal and vertical flow: 2-dimension flow-through microcosm). The reactors employed for the experiments were filled with quartz sand of defined particle size distribution (dp=200...600 μm, porosity ε=0.42). Batch experiments showed that phenol and salicylic acid have a high, whereas benzenesulfonic acid and iomeprol have a quite low potential for biodegradation under aerobic conditions and in a matrix nearly close to water saturation. Batch experiments under anoxic conditions with nitrate as electron acceptor revealed that the biodegradation of the model compounds was lower than under aerobic conditions. Nevertheless, the experiments showed that the moisture content was also responsible for an optimized transport in the liquid phase of a porous medium. Biodegradation in the capillary fringe was found to be influenced by both the moisture content and availability of the dissolved substrate, as seen in static column experiments. The gas-liquid mass transfer of oxygen also played an important role for the biological activity. In static column experiments under aerobic conditions, the highest biodegradation was found in the capillary fringe (e.g. βt/β0 (phenol)=0 after t=6 d) relative to the zone below the water table and unsaturated zone. The highest biodegradation occurred in the flow-through cell experiment where the height of the capillary fringe was largest. Copyright © 2015 Elsevier B.V. All rights

  17. Boric acid as cost-effective and recyclable catalyst for trimethylsilyl protection and deprotection of alcohols and phenols

    Energy Technology Data Exchange (ETDEWEB)

    Rostami, Amin; Akradi, Jamal; Ahmad-Jangi, Firoz, E-mail: a_rostami372@yahoo.co [University of Kurdistan, Sanandaj (Iran, Islamic Republic of). Faculty of Science. Dept. of Chemistry

    2010-07-01

    Boric acid has been used as a green, selective and recyclable catalyst for trimethysilylation of alcohols and phenols using hexamethyldisilazane in acetonitrile. Deprotection of trimethylsilyl ethers to their parent alcohols and phenols was also achieved using this catalyst in water at room temperature. The salient features of this methodology are cheap processing, mild acidity conditions, excellent yields of products and easy availability of the catalyst. (author)

  18. Rapid analysis of phenolic acids in beverages by UPLC–MS/MS

    Czech Academy of Sciences Publication Activity Database

    Grúz, Jiří; Novák, Ondřej; Strnad, Miroslav

    2008-01-01

    Roč. 111, č. 3 (2008), s. 789-794 ISSN 0308-8146 R&D Projects: GA AV ČR KAN200380801 Institutional research plan: CEZ:AV0Z50380511 Keywords : Phenolic acids * Beverages * Wine Subject RIV: EC - Immunology Impact factor: 2.696, year: 2008

  19. Microbial activity in an acid resin deposit: Biodegradation potential and ecotoxicology in an extremely acidic hydrocarbon contamination

    International Nuclear Information System (INIS)

    Kloos, Karin; Schloter, Michael; Meyer, Ortwin

    2006-01-01

    Acid resins are residues produced in a recycling process for used oils that was in use in the forties and fifties of the last century. The resin-like material is highly contaminated with mineral oil hydrocarbons, extremely acidic and co-contaminated with substituted and aromatic hydrocarbons, and heavy metals. To determine the potential for microbial biodegradation the acid resin deposit and its surroundings were screened for microbial activity by soil respiration measurements. No microbial activity was found in the core deposit. However, biodegradation of hydrocarbons was possible in zones with a lower degree of contamination surrounding the deposit. An extreme acidophilic microbial community was detected close to the core deposit. With a simple ecotoxicological approach it could be shown that the pure acid resin that formed the major part of the core deposit, was toxic to the indigenous microflora due to its extremely low pH of 0-1. - Acidity is the major toxic factor of the extremely hydrophobic and acidic mixed contamination found in an acid resin deposit

  20. Increases in Phenolic, Fatty Acid, and Phytosterol Contents and Anticancer Activities of Sweet Potato after Fermentation by Lactobacillus acidophilus.

    Science.gov (United States)

    Shen, Yixiao; Sun, Haiyan; Zeng, Haiying; Prinyawiwatukul, Witoon; Xu, Wenqing; Xu, Zhimin

    2018-03-21

    Phenolic, fatty acid, and phytosterol contents in sweet potato (SP) fermented by Lactobacillus acidophilus were evaluated and compared with those of raw and boiled SPs. The differences in the profiles and levels of phenolics between the raw and boiled SPs were not as significant as the differences between those and the fermented SP. The levels of caffeic acid and 3,5-dicaffeoylquinic acid in fermented SP were more than 4 times higher than those in raw and boiled SPs. Two phenolics, p-coumaric acid and ferulic acid, which were not detected in either raw or boiled SP, were found in fermented SP. The level of each fatty acid or phytosterol increased in fermented SP and decreased in boiled SP. Among the hydrophilic and lipophilic extracts obtained from raw and fermented SPs, the hydrophilic extract of fermented SP exhibited the highest capability of inhibiting cancer-cell PC-12 proliferation. However, each of the extracts had very low cytotoxicities to normal-monkey-kidney-cell growth. The results indicated that SP fermented by L. acidophilus significantly increased free antioxidant-rich phenolics and inhibited cancer-cell-proliferation activity without cytotoxicity to normal cells.

  1. Comparison of phenolic acids and flavonoids contents in various cultivars and parts of common lavender (Lavandula angustifolia) derived from Poland.

    Science.gov (United States)

    Adaszyńska-Skwirzyńska, M; Dzięcioł, M

    2017-11-01

    The aim of study was to compare the content of phenolic acids and flavonoids in two cultivars of Lavandula angustifolia: 'Blue River' and 'Ellagance Purple', including flowers and leafy stalks. Total phenolics and total flavonoids contents were determined by UV-Vis spectroscopy. The contents of total phenolics in leafy stalks (3.71-4.06 mg g -1 d.m.) were higher than in flowers (1.13-1.14 mg g -1 d.m.). Similarly, higher total contents of flavonoids were determined in leafy stalks (3.41-3.51 mg g -1 d.m.), as compared with flowers (0.86-0.91 mg g -1 d.m.). Phenolic acids and flavonoids were identified and quantified using HPLC and UPLC methods. Three phenolic acids were determined: rosmarinic, ferulic and caffeic acid. Lavender extracts contained also flavonoids from group of apigenin, luteolin and quercetin. Higher amounts of luteolin diglucuronide and luteolin glucuronide were found in leafy stalks in comparison to flowers. Obtained results indicate that leafy stalks of lavender can be also valuable source of antioxidant compounds.

  2. Kinetics of the Degradation of Anthocyanins, Phenolic Acids and Flavonols During Heat Treatments of Freeze-Dried Sour Cherry Marasca Paste

    Directory of Open Access Journals (Sweden)

    Zoran Zorić

    2014-01-01

    Full Text Available The effect of heating temperature (80–120 °C and processing time (5–50 min on the stability of anthocyanins (cyanidin-3-glucosylrutinoside, cyanidin-3-rutinoside and cyanidin- 3-glucoside, quercetin-3-glucoside and phenolic acids (chlorogenic, neochlorogenic, p-coumaric and ferulic acids in freeze-dried Marasca sour cherry pastes was studied. The degradation rates of individual anthocyanins, quercetin-3-glucoside and phenolic acids followed the first order reaction kinetics. Cyanidin-3-glucoside was found to be the most unstable among the anthocyanins, together with p-coumaric and neochlorogenic acids among other phenols. Activation energies for anthocyanin degradation ranged from 42 (cyanidin-3-glucosylrutinoside to 55 kJ/mol (cyanidin-3-glucoside, and for other phenols from 8.12 (chlorogenic acid to 27 kJ/mol (neochlorogenic acid. By increasing the temperature from 80 to 120 °C, the reaction rate constant of cyanidin-3-glucosylrutinoside increased from 2.2·10–2 to 8.5·10–2 min–1, of p-coumaric acid from 1.12·10–2 to 2.5·10–2 min–1 and of quercetin-3-glucoside from 1.5·10–2 to 2.6·10–2 min–1. The obtained results demonstrate that at 80°C the half-life of anthocyanins ranges from 32.10 min for cyanidin-3-glucosylrutinoside to 45.69 min for cyanidin-3-rutinoside, and of other phenolic compounds from 43.39 for neochlorogenic acid to 66.99 min for chlorogenic acid. The results show that the heating temperature and duration affect the anthocyanins considerably more than the other phenols in terms of degradation.

  3. Rice antioxidants: phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, γ-oryzanol, and phytic acid

    Science.gov (United States)

    Goufo, Piebiep; Trindade, Henrique

    2014-01-01

    Epidemiological studies suggested that the low incidence of certain chronic diseases in rice-consuming regions of the world might be associated with the antioxidant compound contents of rice. The molecules with antioxidant activity contained in rice include phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, γ-oryzanol, and phytic acid. This review provides information on the contents of these compounds in rice using a food composition database built from compiling data from 316 papers. The database provides access to information that would have otherwise remained hidden in the literature. For example, among the four types of rice ranked by color, black rice varieties emerged as those exhibiting the highest antioxidant activities, followed by purple, red, and brown rice varieties. Furthermore, insoluble compounds appear to constitute the major fraction of phenolic acids and proanthocyanidins in rice, but not of flavonoids and anthocyanins. It is clear that to maximize the intake of antioxidant compounds, rice should be preferentially consumed in the form of bran or as whole grain. With respect to breeding, japonica rice varieties were found to be richer in antioxidant compounds compared with indica rice varieties. Overall, rice grain fractions appear to be rich sources of antioxidant compounds. However, on a whole grain basis and with the exception of γ-oryzanol and anthocyanins, the contents of antioxidants in other cereals appear to be higher than those in rice. PMID:24804068

  4. Rice antioxidants: phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, γ-oryzanol, and phytic acid.

    Science.gov (United States)

    Goufo, Piebiep; Trindade, Henrique

    2014-03-01

    Epidemiological studies suggested that the low incidence of certain chronic diseases in rice-consuming regions of the world might be associated with the antioxidant compound contents of rice. The molecules with antioxidant activity contained in rice include phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, γ-oryzanol, and phytic acid. This review provides information on the contents of these compounds in rice using a food composition database built from compiling data from 316 papers. The database provides access to information that would have otherwise remained hidden in the literature. For example, among the four types of rice ranked by color, black rice varieties emerged as those exhibiting the highest antioxidant activities, followed by purple, red, and brown rice varieties. Furthermore, insoluble compounds appear to constitute the major fraction of phenolic acids and proanthocyanidins in rice, but not of flavonoids and anthocyanins. It is clear that to maximize the intake of antioxidant compounds, rice should be preferentially consumed in the form of bran or as whole grain. With respect to breeding, japonica rice varieties were found to be richer in antioxidant compounds compared with indica rice varieties. Overall, rice grain fractions appear to be rich sources of antioxidant compounds. However, on a whole grain basis and with the exception of γ-oryzanol and anthocyanins, the contents of antioxidants in other cereals appear to be higher than those in rice.

  5. Simultaneous HPLC determination of flavonoids and phenolic acids profile in Pêra-Rio orange juice.

    Science.gov (United States)

    Mesquita, E; Monteiro, M

    2018-04-01

    The aim of this study was to develop and validate an HPLC-DAD method to evaluate the phenolic compounds profile of organic and conventional Pêra-Rio orange juice. The proposed method was validated for 10 flavonoids and 6 phenolic acids. A wide linear range (0.01-223.4μg·g -1 ), good accuracy (79.5-129.2%) and precision (CV≤3.8%), low limits of detection (1-22ng·g -1 ) and quantification (0.7-7.4μg), and overall ruggedness were attained. Good recovery was achieved for all phenolic compounds after extraction and cleanup. The method was applied to organic and conventional Pêra-Rio orange juices from beginning, middle and end of the 2016 harvest. Flavones rutin, nobiletin and tangeretin, and flavanones hesperidin, narirutin and eriocitrin were identified and quantified in all organic and conventional juices. Identity was confirmed by mass spectrometry. Nineteen non-identified phenolic compounds were quantified based on DAD spectra characteristic of the chemical class: 7 cinnamic acid derivatives, 6 flavanones and 6 flavones. The phenolic compounds profile of Pêra-Rio orange juices changed during the harvest; levels increased in organic orange juices, and decreased or were about the same in conventional orange juices. Phenolic compounds levels were higher in organic (0.5-1143.7mg·100g -1 ) than in conventional orange juices (0.5-689.7mg·100g -1 ). PCA differentiated organic from conventional FS and NFC juices, and conventional FCOJ from conventional FS and NFC juices, thus differentiating cultivation and processing. Copyright © 2017. Published by Elsevier Ltd.

  6. Antioxidant capacity and contents of phenols, ascorbic acid, β-carotene and lycopene in lettuce

    OpenAIRE

    Zdravković Jasmina M.; Aćamović-Đoković Gordana S.; Mladenović Jelena D.; Pavlović Radoš M.; Zdravković Milan S.

    2014-01-01

    The antioxidant activity of three lettuce varieties (Lactuca sativa L.) Emerald, Vera and Neva, cultivated in two kinds of protected spaces, a glasshouse and a plastic greenhouse, under controlled conditions, was determined. The content of antioxidant compounds: total phenols, flavonoids, L-ascorbic acid, ß-carotene and lycopene, were determined in ethanolic extracts of the lettuce with spectrophotometric methods. The largest content of total phenols (78.98...

  7. Absorbability, Mechanism and Structure-Property Relationship of Three Phenolic Acids from the Flowers of Trollius chinensis

    Directory of Open Access Journals (Sweden)

    Xiu-Wen Wu

    2014-11-01

    Full Text Available The absorption properties, mechanism of action, and structure-property relationship of three phenolic acids isolated from the flowers of Trollius chinensis Bunge, namely, proglobeflowery acid (PA, globeflowery acid (GA and trolloside (TS, were investigated using the human Caco-2 cell monolayer model. The results showed that these three phenolic acids were transported across the Caco-2 cell monolayer in a time and concentration dependent manner at the Papp level of 10−5 cm/s, and their extent of absorption correlated with their polarity and molecular weight. In conclusion, all three of these compounds were easily absorbed through passive diffusion, which implied their high bioavailability and significant contribution to the effectiveness of T. chinensis.

  8. Phytochemical Profiling of Flavonoids, Phenolic Acids, Terpenoids, and Volatile Fraction of a Rosemary (Rosmarinus officinalis L.) Extract.

    Science.gov (United States)

    Mena, Pedro; Cirlini, Martina; Tassotti, Michele; Herrlinger, Kelli A; Dall'Asta, Chiara; Del Rio, Daniele

    2016-11-19

    This paper presents a comprehensive analysis of the phytochemical profile of a proprietary rosemary ( Rosmarinus officinalis L.) extract rich in carnosic acid. A characterization of the (poly)phenolic and volatile fractions of the extract was carried out using mass spectrometric techniques. The (poly)phenolic composition was assessed by ultra-high performance liquid chromatography-electrospray ionization-mass spectrometry (UHPLC-ESI-MS n ) and a total of 57 compounds were tentatively identified and quantified, 14 of these being detected in rosemary extract for the first time. The rosemary extract contained 24 flavonoids (mainly flavones, although flavonols and flavanones were also detected), 5 phenolic acids, 24 diterpenoids (carnosic acid, carnosol, and rosmanol derivatives), 1 triterpenoid (betulinic acid), and 3 lignans (medioresinol derivatives). Carnosic acid was the predominant phenolic compound. The volatile profile of the rosemary extract was evaluated by head space solid-phase microextraction (HS-SPME) linked to gas chromatography-mass spectrometry (GC-MS). Sixty-three volatile molecules (mainly terpenes, alcohols, esters, aldehydes, and ketones) were identified. This characterization extends the current knowledge on the phytochemistry of Rosmarinus officinalis and is, to our knowledge, the broadest profiling of its secondary metabolites to date. It can assist in the authentication of rosemary extracts or rosemary-containing products or in testing its bioactivity. Moreover, this methodological approach could be applied to the study of other plant-based food ingredients.

  9. Methyl Jasmonate and Salicylic Acid Induced Oxidative Stress and Accumulation of Phenolics in Panax ginseng Bioreactor Root Suspension Cultures

    Directory of Open Access Journals (Sweden)

    Kee-Yoeup Paek

    2007-03-01

    Full Text Available To investigate the enzyme variations responsible for the synthesis of phenolics, 40 day-old adventitious roots of Panax ginseng were treated with 200 μM methyl jasmonate (MJ or salicylic acid (SA in a 5 L bioreactor suspension culture (working volume 4 L. Both treatments caused an increase in the carbonyl and hydrogen peroxide (H2O2 contents, although the levels were lower in SA treated roots. Total phenolic, flavonoid, ascorbic acid, non-protein thiol (NPSH and cysteine contents and 1,1-diphenyl-2-picrylhydrazyl (DPPH radical reducing activity were increased by MJ and SA. Fresh weight (FW and dry weight (DW decreased significantly after 9 days of exposure to SA and MJ. The highest total phenolics (62%, DPPH activity (40%, flavonoids (88%, ascorbic acid (55%, NPSH (33%, and cysteine (62% contents compared to control were obtained after 9 days in SA treated roots. The activities of glucose 6-phosphate dehydrogenase, phenylalanine ammonia lyase, substrate specific peroxidases (caffeic acid peroxidase, quercetin peroxidase and ferulic acid peroxidase were higher in MJ treated roots than the SA treated ones. Increased shikimate dehydrogenase, chlorogenic acid peroxidase and β-glucosidase activities and proline content were observed in SA treated roots than in MJ ones. Cinnamyl alcohol dehydrogenase activity remained unaffected by both MJ and SA. These results strongly indicate that MJ and SA induce the accumulation of phenolic compounds in ginseng root by altering the phenolic synthesis enzymes.

  10. Microbial Ecology and Evolution in the Acid Mine Drainage Model System.

    Science.gov (United States)

    Huang, Li-Nan; Kuang, Jia-Liang; Shu, Wen-Sheng

    2016-07-01

    Acid mine drainage (AMD) is a unique ecological niche for acid- and toxic-metals-adapted microorganisms. These low-complexity systems offer a special opportunity for the ecological and evolutionary analyses of natural microbial assemblages. The last decade has witnessed an unprecedented interest in the study of AMD communities using 16S rRNA high-throughput sequencing and community genomic and postgenomic methodologies, significantly advancing our understanding of microbial diversity, community function, and evolution in acidic environments. This review describes new data on AMD microbial ecology and evolution, especially dynamics of microbial diversity, community functions, and population genomes, and further identifies gaps in our current knowledge that future research, with integrated applications of meta-omics technologies, will fill. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Microbial production of poly-γ-glutamic acid.

    Science.gov (United States)

    Sirisansaneeyakul, Sarote; Cao, Mingfeng; Kongklom, Nuttawut; Chuensangjun, Chaniga; Shi, Zhongping; Chisti, Yusuf

    2017-09-05

    Poly-γ-glutamic acid (γ-PGA) is a natural, biodegradable and water-soluble biopolymer of glutamic acid. This review is focused on nonrecombinant microbial production of γ-PGA via fermentation processes. In view of its commercial importance, the emphasis is on L-glutamic acid independent producers (i.e. microorganisms that do not require feeding with the relatively expensive amino acid L-glutamic acid to produce γ-PGA), but glutamic acid dependent production is discussed for comparison. Strategies for improving production, reducing costs and using renewable feedstocks are discussed.

  12. Inhibition of Fusarium Growth and Mycotoxin Production in Culture Medium and in Maize Kernels by Natural Phenolic Acids.

    Science.gov (United States)

    Ferruz, Elena; Loran, Susana; Herrera, Marta; Gimenez, Isabel; Bervis, Noemi; Barcena, Carmen; Carramiñana, Juan Jose; Juan, Teresa; Herrera, Antonio; Ariño, Agustin

    2016-10-01

    The possible role of natural phenolic compounds in inhibiting fungal growth and toxin production has been of recent interest as an alternative strategy to the use of chemical fungicides for the maintenance of food safety. Fusarium is a worldwide fungal genus mainly associated with cereal crops. The most important Fusarium mycotoxins are trichothecenes, zearalenone, and fumonisins. This study was conducted to evaluate the potential of four natural phenolic acids (caffeic, ferulic, p-coumaric, and chlorogenic) for the control of mycelial growth and mycotoxin production by six toxigenic species of Fusarium . The addition of phenolic acids to corn meal agar had a marked inhibitory effect on the radial growth of all Fusarium species at levels of 2.5 to 10 mM in a dose-response pattern, causing total inhibition (100%) in all species except F. sporotrichioides and F. langsethiae . However, the effects of phenolic acids on mycotoxin production in maize kernels were less evident than the effects on growth. The fungal species differed in their responses to the phenolic acid treatments, and significant reductions in toxin concentrations were observed only for T-2 and HT-2 (90% reduction) and zearalenone (48 to 77% reduction). These results provide data that could be used for developing pre- and postharvest strategies for controlling Fusarium infection and subsequent toxin production in cereal grains.

  13. Microbial Propionic Acid Production

    Directory of Open Access Journals (Sweden)

    R. Axayacatl Gonzalez-Garcia

    2017-05-01

    Full Text Available Propionic acid (propionate is a commercially valuable carboxylic acid produced through microbial fermentation. Propionic acid is mainly used in the food industry but has recently found applications in the cosmetic, plastics and pharmaceutical industries. Propionate can be produced via various metabolic pathways, which can be classified into three major groups: fermentative pathways, biosynthetic pathways, and amino acid catabolic pathways. The current review provides an in-depth description of the major metabolic routes for propionate production from an energy optimization perspective. Biological propionate production is limited by high downstream purification costs which can be addressed if the target yield, productivity and titre can be achieved. Genome shuffling combined with high throughput omics and metabolic engineering is providing new opportunities, and biological propionate production is likely to enter the market in the not so distant future. In order to realise the full potential of metabolic engineering and heterologous expression, however, a greater understanding of metabolic capabilities of the native producers, the fittest producers, is required.

  14. Phenolic acids inhibit the formation of advanced glycation end products in food simulation systems depending on their reducing powers and structures.

    Science.gov (United States)

    Chen, Hengye; Virk, Muhammad Safiullah; Chen, Fusheng

    2016-06-01

    The concentration of advanced glycation end products (AGEs) in foods, which are formed by Maillard reaction, has demonstrated as risk factors associated with many chronic diseases. The AGEs inhibitory activities of five common phenolic acids (protocatechuic acid, dihydroferulic acid, p-coumaric acid, p-hydroxybenzoic acid and salicylic acid) with different chemical properties had been investigated in two food simulation systems (glucose-bovine serum albumin (BSA) and oleic acid-BSA). The results substantiated that the AGEs inhibitory abilities of phenolic acids in the oleic acid BSA system were much better than the glucose-BSA system for their strong reducing powers and structures. Among them, dihydrogenferulic acid showed strong inhibition of AGEs formation in oleic acid-BSA system at 0.01 mg/mL compared to nonsignificant AGEs inhibitory effect in oleic acid-BSA system at 10-fold higher concentration (0.1 mg/mL). This study suggests that edible plants rich in phenolic acids may be used as AGEs inhibitor during high-fat cooking.

  15. Organic Acids Regulation of Chemical-Microbial Phosphorus Transformations in Soils.

    Science.gov (United States)

    Menezes-Blackburn, Daniel; Paredes, Cecilia; Zhang, Hao; Giles, Courtney D; Darch, Tegan; Stutter, Marc; George, Timothy S; Shand, Charles; Lumsdon, David; Cooper, Patricia; Wendler, Renate; Brown, Lawrie; Blackwell, Martin; Wearing, Catherine; Haygarth, Philip M

    2016-11-01

    We have used an integrated approach to study the mobility of inorganic phosphorus (P) from soil solid phase as well as the microbial biomass P and respiration at increasing doses of citric and oxalic acid in two different soils with contrasting agronomic P status. Citric or oxalic acids significantly increased soil solution P concentrations for doses over 2 mmol kg -1 . However, low organic acid doses (<2 mmol kg -1 ) were associated with a steep increase in microbial biomass P, which was not seen for higher doses. In both soils, treatment with the tribasic citric acid led to a greater increase in soil solution P than the dibasic oxalic acid, likely due to the rapid degrading of oxalic acids in soils. After equilibration of soils with citric or oxalic acids, the adsorbed-to-solution distribution coefficient (K d ) and desorption rate constants (k -1 ) decreased whereas an increase in the response time of solution P equilibration (T c ) was observed. The extent of this effect was shown to be both soil and organic acid specific. Our results illustrate the critical thresholds of organic acid concentration necessary to mobilize sorbed and precipitated P, bringing new insight on how the exudation of organic acids regulate chemical-microbial soil phosphorus transformations.

  16. Production of novel antioxidative phenolic amides through heterologous expression of the plant’s chlorogenic acid biosynthesis genes in yeast

    NARCIS (Netherlands)

    Moglia, A.; Comino, C.; Lanteri, S.; Vos, de C.H.; Waard, de P.; Beek, van T.A.; Goitre, L.; Retta, S.F.; Beekwilder, M.J.

    2010-01-01

    Phenolic esters like chlorogenic acid play an important role in therapeutic properties of many plant extracts. We aimed to produce phenolic esters in baker’s yeast, by expressing tobacco 4CL and globe artichoke HCT. Indeed yeast produced phenolic esters. However, the primary product was identified

  17. The effect of prefermentative addition of gallic acid and ellagic acid on the red wine color, copigmentation and phenolic profiles during wine aging.

    Science.gov (United States)

    Zhang, Xin-Ke; He, Fei; Zhang, Bo; Reeves, Malcolm J; Liu, Yue; Zhao, Xu; Duan, Chang-Qing

    2018-04-01

    Though non-anthocyanin phenolics normally do not have red color, they affect the red color expression in the copigmentation of red wines. In this study, the influence of prefermentative addition of 300mg/L gallic acid and ellagic acid, as cofactors, on aging dry red wines had been systematically evaluated at the industrial scales from the perspectives of color, phenolic profiles and copigmentation effects of anthocyanins. Red wines made with these two compounds exhibited better color properties than the control, having better CIELAB chromatic parameters. Additionally, significantly higher levels of detectable anthocyanins and copigmented anthocyanin ratio had been observed. Wines with ellagic acid showed better chromatic properties and phenolic profiles than wines with gallic acid, as shown in previous theoretical results. Anti-copigmentation phenomenon was noticed and elucidated. These practical results confirmed that ellagic acid was the better cofactor, and would give more additional guidance for the production of high quality wine. Malvidin-3-O-glucoside (PubChem CID: 443,652); Petunidin-3-O-glucoside (PubChem CID: 443,651); Delphinidin-3-O-glucoside (PubChem CID: 443,650); Peonidin-3-O-glucoside (PubChem CID: 443,654); Ellagic acid (PubChem CID: 5,281,855); Gallic acid (PubChem CID: 370); Quercetin (PubChem CID: 443,654); Caffeic acid (PubChem CID: 689,043); (+)-catechin (PubChem CID: 9064); Vanillic acid (PubChem CID: 8468). Copyright © 2017. Published by Elsevier Ltd.

  18. [Phenolic acid derivatives from Bauhinia glauca subsp. pernervosa].

    Science.gov (United States)

    Zhao, Qiao-Li; Wu, Zeng-Bao; Zheng, Zhi-Hui; Lu, Xin-Hua; Liang, Hong; Cheng, Wei; Zhang, Qing-Ying; Zhao, Yu-Ying

    2011-08-01

    To study the chemical constituents of Bauhinia glauca subsp. pernervosa, eleven phenolic acids were isolated from a 95% ethanol extract by using a combination of various chromatographic techniques including column chromatography over silica gel, ODS, MCI, Sephadex LH-20, and semi-preparative HPLC. By spectroscopic techniques including 1H NMR, 13C NMR, 2D NMR, and HR-ESI-MS, these compounds were identified as isopropyl O-beta-(6'-O-galloyl)-glucopyranoside (1), ethyl O-beta-(6'-O-galloyl)-glucopyranoside (2), 3, 4, 5-trimethoxyphenyl-(6'-O-galloyl)-O-beta-D-glucopyranoside (3), 3, 4, 5-trimethoxyphenyl-beta-D-glucopyranoside (4), gallic acid (5), methyl gallate (6), ethyl gallate (7), protocatechuic acid (8), 3, 5-dimethoxy-4-hydroxybenzoic acid (9), erigeside C (10) and glucosyringic acid (11). Among them, compound 1 is a new polyhydroxyl compound; compounds 2, 10, and 11 were isolated from the genus Bauhinia for the first time, and the other compounds were isolated from the plant for the first time. Compounds 6 and 8 showed significant protein tyrosine phosphatase1B (PTP1B) inhibitory activity in vitro with the IC50 values of 72.3 and 54.1 micromol x L(-1), respectively.

  19. Effect of environmental conditions on the fatty acid fingerprint of microbial communities

    Science.gov (United States)

    Biryukov, Mikhail; Dippold, Michaela; Kuzyakov, Yakov

    2014-05-01

    Lipid biomarkers, especially phospholipids, are routinely used to characterize microbial community structure in environmental samples. Interpretations of these fingerprints mainly depend on rare results of pure cultures which were cultivated under standardized batch conditions. However, membrane lipids (e.g. phopholipid biomarker) build up the interface between microorganisms and their environment and consequently are prone to be adapted according to the environmental conditions. We cultivated several bacteria, isolated from soil (gram-positive and gram-negative) under various conditions e.g. C supply and temperature regimes. Effect of growth conditions on phospholipids fatty acid (PLFA) as well as neutral lipid fatty acids (NLFA) and glycolipid fatty acids (GLFA) was investigated by conventional method of extraction and derivatization, followed by assessments with gas chromatography mass spectrometry (GC-MS). In addition, phospholipids were measured as intact molecules by ultra high performance liquid chromatography - quadrupole - time of flight mass spectrometer (UHPLC-Q-ToF) to further assess the composition of headgroups with fatty acids residues and their response on changing environmental conditions. PLFA fingerprints revealed a strong effect of growth stage, C supply and temperature e.g. decrease of temperature increased the amount of branched and/or unsaturated fatty acids to maintain the membrane fluidity. This strongly changes the ratio of specific to unspecific fatty acids depending on environmental conditions. Therefore, amounts of specific fatty acids cannot be used to assess biomass of a functional microbial group in soil. Intracellular neutral lipids depended less on environmental conditions reflecting a more stable biomarker group but also showed less specific fatty acids then PLFA. Therefore, combination of several lipid classes is suggested as more powerful tool to assess amounts and functionality of environmental microbial communities. Further

  20. Utilization of Low-Cost Ellagitannins for Ellagic Acid Production and Antimicrobial Phenolics Enhancing By Aspergillus awamorii and Aspergillus oryzae

    International Nuclear Information System (INIS)

    El-Bialy, H.A.; Abd EL-Aziz, A.B.

    2009-01-01

    Three fungal strains, Aspergillus awamorii A 9 , Aspergillus awamorii A 2 3 and Aspergillus oryzae O 2 , were selected out of ten fungal strains for their activeness in converting pomegranate peel ellagitannins into ellagic acid. When pomegranate peel was fermented by Aspergillus awamorii A 9 , the highest yields of ellagic acid (7.93±0.23 mg/g solid substrate) and total soluble phenolics (14.61±0.36 mg/g solid substrate) were produced at 5 and 10 days of incubation, respectively. Also, blue berry pomace, red grape pomace, strawberry pomace were evaluated as low cost ellagitannin sources for ellagic acid and soluble phenolics production. The antimicrobial activity of soluble phenolics extracted from fermented pomegranate peel and strawberry pomace was tested against two food-borne pathogens (Escherichia coli and Salmonella typhimurium). This study also revealed that 3 kGy enhanced the activity of antimicrobial phenolics

  1. Phenolic Acid Content and Antioxidant Properties of Extruded Corn Snacks Enriched with Kale

    Science.gov (United States)

    Kasprzak, Kamila; Oniszczuk, Tomasz; Waksmundzka-Hajnos, Monika; Nowak, Renata; Polak, Renata

    2018-01-01

    Prohealth food contains specific components which have positive influence on the health and well-being of the consumer. An important position among bioactive compounds occurs for polyphenols. Many results have indicated that an increased intake of phenolic compounds may reduce the risk of cardiovascular diseases and type 2 diabetes. The objective of the study was production of extruded corn snacks with addition (0, 2, 4, 6, and 8%) of kale (Brassica oleracea L. var. sabellica)—a polyphenol-rich plant. Afterwards, high-performance liquid chromatography-mass spectrometry (LC-ESI-MS/MS) and antioxidant activity analyses of snack extracts were performed. In the corn snacks enriched with kale, fifteen phenolic acids were indicated. These were protocatechuic, 4-OH-benzoic, vanillic, trans-caffeic, cis-caffeic, trans-p-coumaric, cis-p-coumaric, trans-ferulic, cis-ferulic, salicylic, gentisic, syringic, 3-OH-cinnamic, trans-sinapic, and cis-sinapic acids. Both the qualitative and quantitative content of polyphenols increased with the addition of B. oleracea. Data from spectrophotometric analyses of the samples showed high DPPH radical scavenging potential of snacks enriched with 4, 6, and 8% of kale. Snacks enriched with kale contain high level of phenolic acids and, therefore, have great potential to make a valuable source of natural antioxidants. High-temperature short-time extrusion-cooking process had no negative impact on polyphenol's activity. PMID:29507816

  2. Phenolic Acid Content and Antioxidant Properties of Extruded Corn Snacks Enriched with Kale

    Directory of Open Access Journals (Sweden)

    Kamila Kasprzak

    2018-01-01

    Full Text Available Prohealth food contains specific components which have positive influence on the health and well-being of the consumer. An important position among bioactive compounds occurs for polyphenols. Many results have indicated that an increased intake of phenolic compounds may reduce the risk of cardiovascular diseases and type 2 diabetes. The objective of the study was production of extruded corn snacks with addition (0, 2, 4, 6, and 8% of kale (Brassica oleracea L. var. sabellica—a polyphenol-rich plant. Afterwards, high-performance liquid chromatography-mass spectrometry (LC-ESI-MS/MS and antioxidant activity analyses of snack extracts were performed. In the corn snacks enriched with kale, fifteen phenolic acids were indicated. These were protocatechuic, 4-OH-benzoic, vanillic, trans-caffeic, cis-caffeic, trans-p-coumaric, cis-p-coumaric, trans-ferulic, cis-ferulic, salicylic, gentisic, syringic, 3-OH-cinnamic, trans-sinapic, and cis-sinapic acids. Both the qualitative and quantitative content of polyphenols increased with the addition of B. oleracea. Data from spectrophotometric analyses of the samples showed high DPPH radical scavenging potential of snacks enriched with 4, 6, and 8% of kale. Snacks enriched with kale contain high level of phenolic acids and, therefore, have great potential to make a valuable source of natural antioxidants. High-temperature short-time extrusion-cooking process had no negative impact on polyphenol’s activity.

  3. Phenolic Acid Content and Antioxidant Properties of Extruded Corn Snacks Enriched with Kale.

    Science.gov (United States)

    Kasprzak, Kamila; Oniszczuk, Tomasz; Wójtowicz, Agnieszka; Waksmundzka-Hajnos, Monika; Olech, Marta; Nowak, Renata; Polak, Renata; Oniszczuk, Anna

    2018-01-01

    Prohealth food contains specific components which have positive influence on the health and well-being of the consumer. An important position among bioactive compounds occurs for polyphenols. Many results have indicated that an increased intake of phenolic compounds may reduce the risk of cardiovascular diseases and type 2 diabetes. The objective of the study was production of extruded corn snacks with addition (0, 2, 4, 6, and 8%) of kale ( Brassica oleracea L. var. sabellica )-a polyphenol-rich plant. Afterwards, high-performance liquid chromatography-mass spectrometry (LC-ESI-MS/MS) and antioxidant activity analyses of snack extracts were performed. In the corn snacks enriched with kale, fifteen phenolic acids were indicated. These were protocatechuic, 4-OH-benzoic, vanillic, trans -caffeic, cis -caffeic, trans -p-coumaric, cis -p-coumaric, trans -ferulic, cis -ferulic, salicylic, gentisic, syringic, 3-OH-cinnamic, trans -sinapic, and cis -sinapic acids. Both the qualitative and quantitative content of polyphenols increased with the addition of B. oleracea . Data from spectrophotometric analyses of the samples showed high DPPH radical scavenging potential of snacks enriched with 4, 6, and 8% of kale. Snacks enriched with kale contain high level of phenolic acids and, therefore, have great potential to make a valuable source of natural antioxidants. High-temperature short-time extrusion-cooking process had no negative impact on polyphenol's activity.

  4. Phenolic acids, anthocyanins, and antioxidant capacity in rice (Oryza sativa L.) grains at four stages of development after flowering.

    Science.gov (United States)

    Shao, Yafang; Xu, Feifei; Sun, Xiao; Bao, Jinsong; Beta, Trust

    2014-01-15

    This study investigated differences in total phenolic content (TPC), antioxidant capacity, and phenolic acids in free, conjugated and bound fractions of white (unpolished), red and black rice at 1-, 2-, and 3-weeks of grain development after flowering and at maturity. Unlike the TPC (mg/100g) of white rice (14.6-33.4) and red rice (66.8-422.2) which was significantly higher at 1-week than at later stages, the TPC of black rice (56.5-82.0) was highest at maturity. The antioxidant capacity measured by DPPH radical scavenging and ORAC methods generally followed a similar trend as TPC. Only black rice had detectable anthocyanins (26.5-174.7mg/100g). Cyanidin-3-glucoside (C3G) and peonidin-3-glucoside (P3G) were the main anthocyanins in black rice showing significantly higher levels at 2- and 3-weeks than at 1-week development and at maturity. At all stages, the phenolic acids existed mainly in the bound form as detected by HPLC and confirmed by LC-MS/MS. Black rice (20.1-31.7mg/100g) had higher total bound phenolic acids than white rice and red rice (7.0-11.8mg/100g). Protocatechuic acid was detected in red rice and black rice with relatively high levels at 1-week development (1.41mg/100g) and at maturity (4.48mg/100g), respectively. Vanillic acid (2.4-5.4mg/100g) was detected only in black rice where it peaked at maturity. p-Coumaric acid (black rice. Ferulic acid (4.0-17.9mg/100g), the most abundant bound phenolic acid, had an inconsistent trend with higher levels being observed in black rice where it peaked at maturity. Isoferulic acid levels (0.8-1.6mg/100g) were generally low with slightly elevated values being observed at maturity. Overall black rice had higher total bound phenolic acids than white and red rice while white rice at all stages of development after flowering. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. [Research of preparation craft of Danshen phenolic acid fast release unit in multi-drug delivery system of Tongmai micro-pellets].

    Science.gov (United States)

    Chen, Bin; Xiao, Wei; Jia, Xiao-Bin; Huang, Yang

    2012-07-01

    To prepare Danshen phenolic acid fast release micro-pellets and study its preparation craft. The factors which could impact yield, extrude shaping, dissolution of Danshen phenolic acid micro-pellets such as wetting agent, drug loading dose, adjuvant, lactose dose, disintegrant, CMS-Na dose and wetting agent dose was investigated. The optimum preparation craft of Danshen phenolic acid fast release micro-pellets was screened out by orhogonal design. Formula of Danshen phenolic acid fast release micro-pellets was calculated as volume dose 50 g. The formula was as follows: principal agent 22.5 g, lactose 5 g, CMS-Na 2 g, MCC 20.5 g, 27 mL 30% ethanol as wetting agent. Extrusion-spheronization was applied. The optimum conditions were screened out as follows: extrusion frequency (25 Hz), spheronization machine frequency (50 Hz), spheronization time (4 min). The process was scientific and rational. The preparation is stable settles basis for multi-drug delivery system of Tongmai micro-pellets.

  6. HPLC PROFILING OF PHENOLIC ACIDS AND FLAVONOIDS AND EVALUATION OF ANTI-LIPOXYGENASE AND ANTIOXIDANT ACTIVITIES OF AQUATIC VEGETABLE LIMNOCHARIS FLAVA.

    Science.gov (United States)

    Ooh, Keng-fei; Ong, Hean-Chooi; Wong, Fai-Chu; Chai, Tsun-Thai

    2015-01-01

    Limnocharis flava is an edible wetland plant, whose phenolic acid and flavonoid compositions as well as bioactivities were underexplored. This study analyzed the profiles of selected hydroxybenzoic acids, hydroxycinnamic acids and flavonoids in the aqueous extracts of L. flava leaf, rhizome and root by high performance liquid chromatography (HPLC). Anti-lipoxygenase and antioxidant (iron chelating, 2,2-diphenyl-l-picrylhydrazyl (DPPH) radical scavenging, and nitric oxide (NO) scavenging) activities of the extracts were also evaluated. Leaf extract had the highest phenolic contents, being most abundant in p-hydroxybenzoic acid (3861.2 nmol/g dry matter), ferulic acid (648.8 nmol/g dry matter), and rutin (4110.7 nmol/g dry matter). Leaf extract exhibited the strongest anti-lipoxygenase (EC50 6.47 mg/mL), iron chelating (EC50 6.65 mg/mL), DPPH scavenging (EC50 15.82 mg/mL) and NO scavenging (EC50 3.80 mg/mL) activities. Leaf extract also had the highest ferric reducing ability. This is the most extensive HPLC profiling of phenolic acids and flavonoids in L.flava to date. In conclusion, L. flava leaf is a source of health-promoting phenolics, anti-lipoxygenase agents and antioxidants.

  7. Effects of roasting temperature and duration on fatty acid composition, phenolic composition, Maillard reaction degree and antioxidant attribute of almond (Prunus dulcis) kernel.

    Science.gov (United States)

    Lin, Jau-Tien; Liu, Shih-Chun; Hu, Chao-Chin; Shyu, Yung-Shin; Hsu, Chia-Ying; Yang, Deng-Jye

    2016-01-01

    Roasting treatment increased levels of unsaturated fatty acids (linoleic, oleic and elaidic acids) as well as saturated fatty acids (palmitic and stearic acids) in almond (Prunus dulcis) kernel oils with temperature (150 or 180 °C) and duration (5, 10 or 20 min). Nonetheless, higher temperature (200 °C) and longer duration (10 or 20 min) roasting might result in breakdown of fatty acids especially for unsaturated fatty acids. Phenolic components (total phenols, flavonoids, condensed tannins and phenolic acids) of almond kernels substantially lost in the initial phase; afterward these components gradually increased with roasting temperature and duration. Similar results also observed for their antioxidant activities (scavenging DPPH and ABTS(+) radicals and ferric reducing power). The changes of phenolic acid and flavonoid compositions were also determined by HPLC. Maillard reaction products (estimated with non-enzymatic browning index) also increased with roasting temperature and duration; they might also contribute to enhancing the antioxidant attributes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Engineering microbial fatty acid metabolism for biofuels and biochemicals

    DEFF Research Database (Denmark)

    Marella, Eko Roy; Holkenbrink, Carina; Siewers, Verena

    2017-01-01

    microbial catalysis. This review summarizes the recent advances in the engineering of microbial metabolism for production of fatty acid-derived products. We highlight the efforts in engineering the central carbon metabolism, redox metabolism, controlling the chain length of the products, and obtaining...

  9. Effect of citric acid and microbial phytase on serum enzyme activities ...

    African Journals Online (AJOL)

    Effect of citric acid and microbial phytase on serum enzyme activities and plasma minerals retention in broiler chicks. ... African Journal of Biotechnology ... An experiment was conducted to study the effect of microbial phytase supplementation and citric acid in broiler chicks fed corn-soybean meal base diets on enzyme ...

  10. Determination of phenolic acids in seeds of black cumin, flax, pomegranate and pumpkin and their by-products

    Directory of Open Access Journals (Sweden)

    Krimer-Malešević Vera M.

    2016-01-01

    Full Text Available Ten phenolic acids, contained in the seeds of black cumin (Nigella sativa L., flax (Linum usitatissimum L., pomegranate (Punica granatum L. and pumpkin (Cucurbita pepo L. and their oil industry by-products, separated into the free, esterified, and insoluble-bound forms, were quantitatively analysed by reverse phase high performance liquid chromatography with photodiode array detector. The chromatographic data were interpreted using Principal Component Analysis (PCA. The PCA model with three principal components (PC1-PC2-PC3 fitted well with 12 examined plant samples, allowing their division into groups according to their origin. The total phenolic variables could be represented by two PCs and for the pattern recognition of the analysed samples, 13 phenolic variables are sufficient, including: free, esterified and insoluble-bound forms of gallic and syringic acids, free vanillic, insoluble bound p-coumaric, esterified p-hydroxybenzaldehide, and free and insoluble-bound forms of p-hydroxybenzoic and trans-synapic acids. This might have potential application in simplified screening of phenolic compounds in seeds and their oil industry by-products or in food component analysis or authenticity detection in such plant materials.[Projekat Ministarstva nauke Republike Srbije, br. III 46010

  11. Influence of different nominal molecular weight fractions of humic acids on phenol oxidation by permanganate.

    Science.gov (United States)

    He, Di; Guan, Xiaohong; Ma, Jun; Yu, Min

    2009-11-01

    The effects of humic acid (HA) and its different nominal molecular weight (NMW) fractions on the phenol oxidation by permanganate were studied. Phenol oxidation by permanganate was enhanced by the presence of HA at pH 4-8, while slightly inhibited at pH 9-10. The effects of HA on phenol oxidation by permanganate were dependent on HA concentration and permanganate/phenol molar ratios. The high NMW fractions of HA enhanced phenol oxidation by permanganate at pH 7 more significantly than the low fractions of HA. The apparent second-order rate constants of phenol oxidation by permanganate in the presence of HA correlated well with their specific ultraviolet absorption (SUVA) at 254 nm and specific violet absorption (SVA) at 465 or 665 nm. High positive correlation coefficients (R(2) > 0.72) implied that pi-electrons of HA strongly influenced the reactivity of phenol towards permanganate oxidation which agreed well with the information provided by fluorescence spectroscopy. The FTIR analysis indicated that the HA fractions rich in aliphatic character, polysaccharide-like substances, and the amount of carboxylate groups had less effect on phenol oxidation by permanganate. The negative correlation between the rate constants of phenol oxidation by permanganate and O/C ratios suggested that the oxidation of phenol increased with a decrease in the content of oxygen-containing functional groups.

  12. Identification of Phenolic Acids and Changes in their Content during Fermentation and Ageing of White Wines Pošip and Rukatac

    Directory of Open Access Journals (Sweden)

    Tomislav Lovrić

    2002-01-01

    Full Text Available Identification of phenolic acids was performed and changes in their content during the production of autochthonous Croatian white wines Pošip and Rukatac (Vitis vinifera, L. were registered. In both varieties (Pošip, Rukatac the following phenolic acids were identified: gallic, protocatechuic and vanillic acids as hydroxybenzoic acids; and caffeic, p-coumaric and ferulic acids as hydroxycinnamic acids. It was found that there is a difference between hydroxybenzoic acid group and hydroxycinnamic acid group content and between their influences on the wine colour (colour intensity and hue.

  13. 40 CFR 721.6181 - Fatty acid, reaction product with substituted oxirane, formaldehyde-phenol polymer glycidyl ether...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fatty acid, reaction product with... Specific Chemical Substances § 721.6181 Fatty acid, reaction product with substituted oxirane, formaldehyde... as fatty acid, reaction product with substituted oxirane, formaldehyde-phenol polymer glycidyl ether...

  14. Electricity generation and removal performance of a microbial fuel cell using sulfonated poly (ether ether ketone) as proton exchange membrane to treat phenol/acetone wastewater.

    Science.gov (United States)

    Wu, Hao; Fu, Yu; Guo, Chunyu; Li, Yanbo; Jiang, Nanzhe; Yin, Chengri

    2018-07-01

    The microbial fuel cell (MFC) has emerged as a promising technology for wastewater treatment and energy recovery, but the expensive cost of proton exchange membranes (PEMs) is a problem that need to be solved. In this study, a two-chamber MFC based on our self-made PEM sulfonated poly (ether ether ketone) membrane was set up to treat phenol/acetone wastewater and synchronously generate power. The maximum output voltage was 240-250 mV. Using phenol and acetone as substrates, the power generation time in an operation cycle was 289 h. The MFC exhibited good removal performance, with no phenol or acetone detected, respectively, when the phenol concentration was lower than 50 mg/L and the acetone concentration was lower than 100 mg/L. This study provides a cheap and eco-friendly way to treat phenol/acetone wastewater and generate useful energy by MFC technology. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. The relationship between odd- and branched-chain fatty acids and microbial nucleic acid bases in rumen.

    Science.gov (United States)

    Liu, Keyuan; Hao, Xiaoyan; Li, Yang; Luo, Guobin; Zhang, Yonggen; Xin, Hangshu

    2017-11-01

    This study aims to identify the relationship between odd- and branched-chain fatty acids (OBCFAs) and microbial nucleic acid bases in the rumen, and to establish a model to accurately predict microbial protein flow by using OBCFA. To develop the regression equations, data on the rumen contents of individual cows were obtained from 2 feeding experiments. In the first experiment, 3 rumen-fistulated dry dairy cows arranged in a 3×3 Latin square were fed diets of differing forage to concentration ratios (F:C). The second experiment consisted of 9 lactating Holstein dairy cows of similar body weights at the same stage of pregnancy. For each lactation stage, 3 cows with similar milk production were selected. The rumen contents were sampled at 4 time points of every two hours after morning feeding 6 h, and then to analyse the concentrations of OBCFA and microbial nucleic acid bases in the rumen samples. The ruminal bacteria nucleic acid bases were significantly influenced by feeding diets of differing forge to concentration ratios and lactation stages of dairy cows (pacids and C15:0 isomers, strongly correlated with the microbial nucleic acid bases in the rumen (pacid bases established by ruminal OBCFAs contents showed a good predictive capacity, as indicated by reasonably low standard errors and high R-squared values. This finding suggests that the rumen OBCFA composition could be used as an internal marker of rumen microbial matter.

  16. Omega-3 fatty acids, phenolic compounds and antioxidant characteristics of chia oil supplemented margarine.

    Science.gov (United States)

    Nadeem, Muhammad; Imran, Muhammad; Taj, Imran; Ajmal, Muhammad; Junaid, Muhammad

    2017-05-31

    Chia (Salvia hispanica L.) is known as power house of omega fatty acids which has great health benefits. It contains up to 78% linolenic acid (ω-3) and 18% linoleic acid (ω-6), which could be a great source of omega-3 fatty acids for functional foods. Therefore, in this study, margarines were prepared with supplementation of different concentrations of chia oil to enhance omega-3 fatty acids, antioxidant characteristics and oxidative stability of the product. Margarines were formulated from non-hydrogenated palm oil, palm kernel and butter. Margarines were supplemented with 5, 10, 15 and 20% chia oil (T 1 , T 2 , T 3 and T 4 ), respectively. Margarine without any addition of chia oil was kept as control. Margarine samples were stored at 5 °C for a period of 90 days. Physico-chemical (fat, moisture, refractive index, melting point, solid fat index, fatty acids profile, total phenolic contents, DPPH free radical scavenging activity, free fatty acids and peroxide value) and sensory characteristics were studied at the interval of 45 days. The melting point of T 1 , T 2 , T 3 and T 4 developed in current investigation were 34.2, 33.8, 33.1 and 32.5 °C, respectively. The solid fat index of control, T 1 , T 2 , T 3 and T 4 were 47.21, 22.71, 20.33, 18.12 and 16.58%, respectively. The α-linolenic acid contents in T 1 , T 2 , T 3 and T 4 were found 2.92, 5.85, 9.22, 12.29%, respectively. The concentration of eicosanoic acid in T 2 , T 3 and T 4 was 1.82, 3.52, 6.43 and 9.81%, respectively. The content of docosahexanoic acid in T 2 , T 3 and T 4 was present 1.26, 2.64, 3.49 and 5.19%, respectively. The omega-3 fatty acids were not detected in the control sample. Total phenolic contents of control, T 1 , T 2 , T 3 and T 4 samples were 0.27, 2.22, 4.15, 7.23 and 11.42 mg GAE/mL, respectively. DPPH free radical scavenging activity for control, T 1 , T 2 , T 3 and T 4 was noted 65.8, 5.37, 17.82, 24.95, 45.42 and 62.8%, respectively. Chlorogenic acid, caffeic acid

  17. Cytotoxicity of flavonoid glycosides, flavonoids and phenolic acids from Inula oculus-christi on mammalian cell lines

    Directory of Open Access Journals (Sweden)

    Ralitsa K. Veleva

    2016-12-01

    Full Text Available Herbs of the genus Inula are well known in traditional medicine. Their extracts are used as expectorants, antitussives, bactericides as well as for the treatment of lung inflammation and have shown to possess anti-inflammatory and secretolytic activity. Experimental research findings indicate the anti-tumor effect of certain components of extracts from Inula cappa and Inula britannicа and those from Inula racemosa have antimicrobial and antidiabetic activity. We have directed our efforts on investigating the effects of different extracts from Inula oculus-christi, enriched with certain groups of biologically active substances - flavonoid glycosides (A, phenolic acids (B, flavonoid glycosides and phenolic acids (C, flavonoids and phenolic acids (D. The effect of these extracts on normal (MDCK ІІ and RPE1 and carcinoma cell lines (A549 and HepG2 was evaluated. We have performed cytotoxicity study (crystal violet assay as well as morphological analysis of changes induced by the extracts. Among the tumor cell lines HepG2 show greater sensitivity. Surprisingly extract C has no significant influence on both cancer cell lines.

  18. Phenolic Composition and Evaluation of the Antimicrobial Activity of Free and Bound Phenolic Fractions from a Peruvian Purple Corn (Zea mays L.) Accession.

    Science.gov (United States)

    Gálvez Ranilla, Lena; Christopher, Ashish; Sarkar, Dipayan; Shetty, Kalidas; Chirinos, Rosana; Campos, David

    2017-12-01

    Beneficial effects on overall gut health by phenolic bioactives-rich foods are potentially due to their modulation of probiotic gut bacteria and antimicrobial activity against pathogenic bacteria. Based on this rationale, the effect of the free and bound phenolic fractions from a Peruvian purple corn accession AREQ-084 on probiotic lactic acid bacteria such as Lactobacillus helveticus and Bifidobacterium longum and the gastric cancer-related pathogen Helicobacter pylori was evaluated. The free and bound phenolic composition was also determined by ultra-performance liquid chromatography. Anthocyanins were the major phenolic compounds (310.04 mg cyanidin-3-glucoside equivalents/100 g dry weight, DW) in the free phenolic fraction along with hydroxycinnamic acids such as p-coumaric acid derivatives, followed by caffeic and ferulic acid derivatives. The bound phenolic form had only hydroxycinnamic acids such as ferulic acid, p-coumaric acid, and a ferulic acid derivative with ferulic acid being the major phenolic compound (156.30 mg/100 g DW). These phenolic compounds were compatible with beneficial probiotic lactic acid bacteria such as L. helveticus and B. longum as these bacteria were not inhibited by the free and bound phenolic fractions at 10 to 50 mg/mL and 10 mg/mL of sample doses, respectively. However, the pathogenic H. pylori was also not inhibited by both purple corn phenolic forms at same above sample doses. This study provides the preliminary base for the characterization of phenolic compounds of Peruvian purple corn biodiversity and its potential health benefits relevant to improving human gut health. This study provides insights that Peruvian purple corn accession AREQ-084 can be targeted as a potential source of health-relevant phenolic compounds such as anthocyanins along with hydroxycinnamic acids linked to its dietary fiber fraction. Additionally, these phenolic fractions did not affect the gut health associated beneficial bacteria nor the pathogenic

  19. Determination of volatile, phenolic, organic acid and sugar components in a Turkish cv. Dortyol (Citrus sinensis L. Osbeck) orange juice.

    Science.gov (United States)

    Kelebek, Hasim; Selli, Serkan

    2011-08-15

    Orange flavour is the results of a natural combination of volatile compounds in a well-balanced system including sugars, acids and phenolic compounds. This paper reports the results of the first determination of aroma, organic acids, sugars, and phenolic components in Dortyol yerli orange juices. A total of 58 volatile components, including esters (nine), terpenes (19), terpenols (13), aldehydes (two), ketones (three), alcohols (four) and acids (eight) were identified and quantified in Dortyol yerli orange juice by GC-FID and GC-MS. Organic acids, sugars and phenolic compositions were also determined by HPLC methods. The major organic acid and sugar found were citric acid and sucrose, respectively. With regard to phenolics, 14 compounds were identified and quantified in the orange juice. Terpenes and terpenols were found as the main types of volatile components in Dortyol yerli orange juice. In terms of aroma contribution to orange juice, 12 compounds were prominent based on the odour activity values (OAVs). The highest OAV values were recorded for ethyl butanoate, nootkatone, linalool and DL-limonene. When we compare the obtained results of cv. Dortyol orange juice with the other orange juice varieties, the composition of Dortyol orange juice was similar to Valencia and Navel orange juices. Copyright © 2011 Society of Chemical Industry.

  20. Contents of carboxylic acids and two phenolics and antioxidant activity of dried portuguese wild edible mushrooms.

    Science.gov (United States)

    Ribeiro, Barbara; Rangel, Joana; Valentão, Patrícia; Baptista, Paula; Seabra, Rosa M; Andrade, Paula B

    2006-11-01

    The organic acids and phenolics compositions of nine wild edible mushrooms species (Suillus bellini, Tricholomopsis rutilans, Hygrophorus agathosmus, Amanita rubescens, Russula cyanoxantha, Boletus edulis, Tricholoma equestre, Suillus luteus, and Suillus granulatus) were determined by HPLC-UV and HPLC-DAD, respectively. The antioxidant potential of these species was also assessed by using the DPPH* scavenging assay. The results showed that all of the species presented a profile composed of at least five organic acids: oxalic, citric, malic, quinic, and fumaric acids. In a general way, the pair of malic plus quinic acids were the major compounds. Only very small amounts of two phenolic compounds were found in some of the analyzed species: p-hydroxybenzoic acid (in A. rubescens, R. cyanoxantha, and T. equestre) and quercetin (in S. luteus and S. granulatus). All of the species exhibited a concentration-dependent scavenging ability against DPPH*. T. rutilans revealed the highest antioxidant capacity.

  1. Substituent effect of phenolic aldehyde inhibition on alcoholic fermentation by Saccharomyces cerevisiae

    Science.gov (United States)

    Rui Xie; Maobing Tu; Thomas Elder

    2016-01-01

    Phenolic compounds significantly inhibit microbial fermentation of biomass hydrolysates. To understand thequantitative structure-inhibition relationship of phenolic aldehydes on alcoholic fermentation, the effect of 11 differentsubstituted benzaldehydes on the final ethanol yield was examined. The results showed that the degree of phenolic...

  2. Phenolic Compounds in Brassica Vegetables

    Directory of Open Access Journals (Sweden)

    Pablo Velasco

    2010-12-01

    Full Text Available Phenolic compounds are a large group of phytochemicals widespread in the plant kingdom. Depending on their structure they can be classified into simple phenols, phenolic acids, hydroxycinnamic acid derivatives and flavonoids. Phenolic compounds have received considerable attention for being potentially protective factors against cancer and heart diseases, in part because of their potent antioxidative properties and their ubiquity in a wide range of commonly consumed foods of plant origin. The Brassicaceae family includes a wide range of horticultural crops, some of them with economic significance and extensively used in the diet throughout the world. The phenolic composition of Brassica vegetables has been recently investigated and, nowadays, the profile of different Brassica species is well established. Here, we review the significance of phenolic compounds as a source of beneficial compounds for human health and the influence of environmental conditions and processing mechanisms on the phenolic composition of Brassica vegetables.

  3. Rapid profiling of polymeric phenolic acids in Salvia miltiorrhiza by hybrid data-dependent/targeted multistage mass spectrometry acquisition based on expected compounds prediction and fragment ion searching.

    Science.gov (United States)

    Shen, Yao; Feng, Zijin; Yang, Min; Zhou, Zhe; Han, Sumei; Hou, Jinjun; Li, Zhenwei; Wu, Wanying; Guo, De-An

    2018-04-01

    Phenolic acids are the major water-soluble components in Salvia miltiorrhiza (>5%). According to previous studies, many of them contribute to the cardiovascular effects and antioxidant effects of S. miltiorrhiza. Polymeric phenolic acids can be considered as the tanshinol derived metabolites, e.g., dimmers, trimers, and tetramers. A strategy combined with tanshinol-based expected compounds prediction, total ion chromatogram filtering, fragment ion searching, and parent list-based multistage mass spectrometry acquisition by linear trap quadropole-orbitrap Velos mass spectrometry was proposed to rapid profile polymeric phenolic acids in S. miltiorrhiza. More than 480 potential polymeric phenolic acids could be screened out by this strategy. Based on the fragment information obtained by parent list-activated data dependent multistage mass spectrometry acquisition, 190 polymeric phenolic acids were characterized by comparing their mass information with literature data, and 18 of them were firstly detected from S. miltiorrhiza. Seven potential compounds were tentatively characterized as new polymeric phenolic acids from S. miltiorrhiza. This strategy facilitates identification of polymeric phenolic acids in complex matrix with both selectivity and sensitivity, which could be expanded for rapid discovery and identification of compounds from complex matrix. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Impact of simulated acid rain on soil microbial community function in Masson pine seedlings

    Directory of Open Access Journals (Sweden)

    Lin Wang

    2014-09-01

    Conclusion: The results obtained indicated that the higher acid load decreased the soil microbial activity and no effects on soil microbial diversity assessed by Biolog of potted Masson pine seedlings. Simulated acid rain also changed the metabolic capability of the soil microbial community.

  5. The effect of drying temperatures on antioxidant activity, phenolic compounds, fatty acid composition and tocopherol contents in citrus seed and oils.

    Science.gov (United States)

    Al Juhaimi, Fahad; Özcan, Mehmet Musa; Uslu, Nurhan; Ghafoor, Kashif

    2018-01-01

    In this study, the effect of drying temperature on antioxidant activity, phenolic compounds, fatty acid composition and tocopherol content of citrus seeds and oils were studied. Kinnow mandarin seed, dried at 60 °C, exhibited the highest antioxidant activity. Orlendo orange seed had the maximum total phenolic content and α-tocopherol content, with a value of 63.349 mg/100 g and 28.085 mg/g (control samples), respectively. The antioxidant activity of Orlendo orange seed (63.349%) was higher than seeds of Eureka lemon (55.819%) and Kinnow mandarin (28.015%), while the highest total phenolic content was found in seeds of Kinnow mandarin, followed by Orlendo orange and Eureka lemon (113.132). 1.2-Dihydroxybenzene (13.171), kaempferol (10.780), (+)-catechin (9.341) and isorhamnetin (7.592) in mg/100 g were the major phenolic compounds found in Kinnow mandarin. Among the unsaturated fatty acids, linoleic acid was the most abundant acid in all oils, which varied from 44.4% (dried at 80 °C) to 46.1% (dried at 70 °C), from 39.0% (dried at 60 °C) to 40.0% (dried at 70 °C). The total phenolic content, antioxidant activity and phenolic compounds of citrus seeds and tocopherol content of seed oils were significantly affected by drying process and varied depending on the drying temperature.

  6. Biodegradation of phenol in batch and continuous flow microbial fuel cells with rod and granular graphite electrodes.

    Science.gov (United States)

    Moreno, Lyman; Nemati, Mehdi; Predicala, Bernardo

    2018-01-01

    Phenol biodegradation was evaluated in batch and continuous flow microbial fuel cells (MFCs). In batch-operated MFCs, biodegradation of 100-1000 mg L -1 phenol was four to six times faster when graphite granules were used instead of rods (3.5-4.8 mg L -1  h -1 vs 0.5-0.9 mg L -1  h -1 ). Similarly maximum phenol biodegradation rates in continuous MFCs with granular and single-rod electrodes were 11.5 and 0.8 mg L -1  h -1 , respectively. This superior performance was also evident in terms of electrochemical outputs, whereby continuous flow MFCs with granular graphite electrodes achieved maximum current and power densities (3444.4 mA m -3 and 777.8 mW m -3 ) that were markedly higher than those with single-rod electrodes (37.3 mA m -3 and 0.8 mW m -3 ). Addition of neutral red enhanced the electrochemical outputs to 5714.3 mA m -3 and 1428.6 mW m -3 . Using the data generated in the continuous flow MFC, biokinetic parameters including μ m , K S , Y and K e were determined as 0.03 h -1 , 24.2 mg L -1 , 0.25 mg cell (mg phenol) -1 and 3.7 × 10 -4  h -1 , respectively. Access to detailed kinetic information generated in MFC environmental conditions is critical in the design, operation and control of large-scale treatment systems utilizing MFC technology.

  7. Infusions of artichoke and milk thistle represent a good source of phenolic acids and flavonoids.

    Science.gov (United States)

    Pereira, Carla; Barros, Lillian; Carvalho, Ana Maria; Santos-Buelga, Celestino; Ferreira, Isabel C F R

    2015-01-01

    Cynara scolymus L. (artichoke) and Silybum marianum (L.) Gaertn (milk thistle) are two herbs well-known for their efficiency in the prevention/treatment of liver injuries, among other chronic diseases. Therefore, the aim of this work was to characterize specific bioactive components, phenolic compounds, in hydromethanolic extracts but also in infusions (the most commonly used preparations) obtained from the whole plant of milk thistle and artichoke. The phenolic profiles were accessed using HPLC-DAD-MS/ESI. Infusions of both species presented higher phenolic contents than the hydromethanolic extracts. Milk thistle presented a similar phenolic composition between the two preparations, revealing only differences in the quantities obtained. Nevertheless, artichoke revealed a slightly different profile considering infusion and hydromethanolic extracts. Apigenin-7-O-glucuronide was the major flavonoid found in milk thistle, while luteolin-7-O-glucuronide was the most abundant in artichoke. Therefore, infusions of both artichoke and milk thistle represent a good source of bioactive compounds, especially phenolic acids and flavonoids.

  8. Analysis of organic acids and phenols of interest in the wine industry using Langmuir-Blodgett films based on functionalized nanoparticles.

    Science.gov (United States)

    Medina-Plaza, C; García-Cabezón, C; García-Hernández, C; Bramorski, C; Blanco-Val, Y; Martín-Pedrosa, F; Kawai, T; de Saja, J A; Rodríguez-Méndez, M L

    2015-01-01

    A chemically modified electrode consisting of Langmuir-Blodgett (LB) films of n-dodecanethiol functionalized gold nanoparticles (SDODAuNP-LB), was investigated as a voltammetric sensor of organic and phenolic acids of interest in the wine industry. The nanostructured films demonstrated interfacial properties being able to detect the main organic acids present in grapes and wines (tartaric, malic, lactic and citric). Compared to a bare ITO electrode, the modified electrodes exhibited a shift of the reduction potential in the less positive direction and a marked enhancement in the current response. Moreover, the increased electrocatalytic properties made it possible to distinguish between the different dissociable protons of polyprotic acids. The SDODAuNP-LB sensor was also able to provide enhanced responses toward aqueous solutions of phenolic acids commonly found in wines (caffeic and gallic acids). The presence of nanoparticles increased drastically the sensitivity toward organic acids and phenolic compounds. Limits of detection as low as 10(-6) mol L(-1) were achieved. Efficient catalytic activity was also observed in mixtures of phenolic acid/tartaric in the range of pHs typically found in wines. In such mixtures, the electrode was able to provide simultaneous information about the acid and the phenol concentrations with a complete absence of interferences. The excellent sensing properties shown by these sensors could be attributed to the electrocatalytic properties of the nanoparticles combined with the high surface to volume ratio and homogeneity provided by the LB technique used for the immobilization. Moreover, the LB technique also provided an accurate method to immobilize the gold nanoparticles giving rise to stable and reproducible sensors showing repeatability lower than 2% and reproducibility lower than 4% for all the compounds analyzed. Copyright © 2014. Published by Elsevier B.V.

  9. Phytochemical phenolics in organically grown vegetables.

    Science.gov (United States)

    Young, Janice E; Zhao, Xin; Carey, Edward E; Welti, Ruth; Yang, Shie-Shien; Wang, Weiqun

    2005-12-01

    Fruit and vegetable intake is inversely correlated with risks for several chronic diseases in humans. Phytochemicals, and in particular, phenolic compounds, present in plant foods may be partly responsible for these health benefits through a variety of mechanisms. Since environmental factors play a role in a plant's production of secondary metabolites, it was hypothesized that an organic agricultural production system would increase phenolic levels. Cultivars of leaf lettuce, collards, and pac choi were grown either on organically certified plots or on adjacent conventional plots. Nine prominent phenolic agents were quantified by HPLC, including phenolic acids (e. g. caffeic acid and gallic acid) and aglycone or glycoside flavonoids (e. g. apigenin, kaempferol, luteolin, and quercetin). Statistically, we did not find significant higher levels of phenolic agents in lettuce and collard samples grown organically. The total phenolic content of organic pac choi samples as measured by the Folin-Ciocalteu assay, however, was significantly higher than conventional samples (p lettuce and collards, the organic system provided an increased opportunity for insect attack, resulting in a higher level of total phenolic agents in pac choi.

  10. The effects of oxidative stress on phenolic composition and ...

    African Journals Online (AJOL)

    Twenty phenolic compounds (apigenin, caffeic acid, p-coumaric acid, gallic acid, ... quercetin, rutin hydrate, vanillic acid, ferulic acid, salicylic acid, sinapic acid, ... phenolic molecules biosynthesis and activation of antioxidant metabolism on ...

  11. Analysis of organic acids and phenols of interest in the wine industry using Langmuir–Blodgett films based on functionalized nanoparticles

    International Nuclear Information System (INIS)

    Medina-Plaza, C.; García-Cabezón, C.; García-Hernández, C.; Bramorski, C.; Blanco-Val, Y.; Martín-Pedrosa, F.; Kawai, T.; Saja, J.A. de; Rodríguez-Méndez, M.L.

    2015-01-01

    Highlights: • For the first time functionalized NPs immobilized in LB films have been used as voltammetric sensors. • Films showed excellent electrocatalytic properties toward phenols and acids found in wines. • Improved performance is due to combination of electrocatalytic NPs with the high surface/volume of LB films. • The potential applications in the wine industry have been evidenced. - Abstract: A chemically modified electrode consisting of Langmuir–Blodgett (LB) films of n-dodecanethiol functionalized gold nanoparticles (S DOD AuNP-LB), was investigated as a voltammetric sensor of organic and phenolic acids of interest in the wine industry. The nanostructured films demonstrated interfacial properties being able to detect the main organic acids present in grapes and wines (tartaric, malic, lactic and citric). Compared to a bare ITO electrode, the modified electrodes exhibited a shift of the reduction potential in the less positive direction and a marked enhancement in the current response. Moreover, the increased electrocatalytic properties made it possible to distinguish between the different dissociable protons of polyprotic acids. The S DOD AuNP-LB sensor was also able to provide enhanced responses toward aqueous solutions of phenolic acids commonly found in wines (caffeic and gallic acids). The presence of nanoparticles increased drastically the sensitivity toward organic acids and phenolic compounds. Limits of detection as low as 10 −6 mol L −1 were achieved. Efficient catalytic activity was also observed in mixtures of phenolic acid/tartaric in the range of pHs typically found in wines. In such mixtures, the electrode was able to provide simultaneous information about the acid and the phenol concentrations with a complete absence of interferences. The excellent sensing properties shown by these sensors could be attributed to the electrocatalytic properties of the nanoparticles combined with the high surface to volume ratio and homogeneity

  12. Analysis of organic acids and phenols of interest in the wine industry using Langmuir–Blodgett films based on functionalized nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Medina-Plaza, C. [Department of Inorganic Chemistry, Engineers School, Universidad de Valladolid (Spain); García-Cabezón, C. [Department of Materials Science, Engineers School, Universidad de Valladolid (Spain); García-Hernández, C.; Bramorski, C. [Department of Inorganic Chemistry, Engineers School, Universidad de Valladolid (Spain); Blanco-Val, Y.; Martín-Pedrosa, F. [Department of Materials Science, Engineers School, Universidad de Valladolid (Spain); Kawai, T. [Department of Industrial Chemistry, Tokyo University of Science (Japan); Saja, J.A. de [Department of Condensed Matter Physics, Universidad de Valladolid (Spain); Rodríguez-Méndez, M.L., E-mail: mluz@eii.uva.es [Department of Inorganic Chemistry, Engineers School, Universidad de Valladolid (Spain)

    2015-01-01

    Highlights: • For the first time functionalized NPs immobilized in LB films have been used as voltammetric sensors. • Films showed excellent electrocatalytic properties toward phenols and acids found in wines. • Improved performance is due to combination of electrocatalytic NPs with the high surface/volume of LB films. • The potential applications in the wine industry have been evidenced. - Abstract: A chemically modified electrode consisting of Langmuir–Blodgett (LB) films of n-dodecanethiol functionalized gold nanoparticles (S{sub DOD}AuNP-LB), was investigated as a voltammetric sensor of organic and phenolic acids of interest in the wine industry. The nanostructured films demonstrated interfacial properties being able to detect the main organic acids present in grapes and wines (tartaric, malic, lactic and citric). Compared to a bare ITO electrode, the modified electrodes exhibited a shift of the reduction potential in the less positive direction and a marked enhancement in the current response. Moreover, the increased electrocatalytic properties made it possible to distinguish between the different dissociable protons of polyprotic acids. The S{sub DOD}AuNP-LB sensor was also able to provide enhanced responses toward aqueous solutions of phenolic acids commonly found in wines (caffeic and gallic acids). The presence of nanoparticles increased drastically the sensitivity toward organic acids and phenolic compounds. Limits of detection as low as 10{sup −6} mol L{sup −1} were achieved. Efficient catalytic activity was also observed in mixtures of phenolic acid/tartaric in the range of pHs typically found in wines. In such mixtures, the electrode was able to provide simultaneous information about the acid and the phenol concentrations with a complete absence of interferences. The excellent sensing properties shown by these sensors could be attributed to the electrocatalytic properties of the nanoparticles combined with the high surface to volume ratio

  13. Microbial granulation for lactic acid production

    DEFF Research Database (Denmark)

    Kim, Dong-Hoon; Lee, Mo-Kwon; Hwang, Yuhoon

    2016-01-01

    This work investigated the formation of microbial granules to boost the productivity of lactic acid (LA). The flocculated form of LA-producing microbial consortium, dominated by Lactobacillus sp. (91.5% of total sequence), was initially obtained in a continuous stirred-tank reactor (CSTR), which...... increased, reaching 67 g L-fermenter−1h−1 at HRT 0.17 h. The size of LA-producing granules and hydrophobicity gradually increased with decrease in HRT, reaching 6.0 mm and 60%, respectively. These biogranules were also found to have high settling velocities and low porosities, ranging 2.69-4.73 cm s−1 and 0...

  14. Anti-tumour potential of a gallic acid-containing phenolic fraction from Oenothera biennis.

    Science.gov (United States)

    Pellegrina, Chiara Dalla; Padovani, Giorgia; Mainente, Federica; Zoccatelli, Gianni; Bissoli, Gaetano; Mosconi, Silvia; Veneri, Gianluca; Peruffo, Angelo; Andrighetto, Giancarlo; Rizzi, Corrado; Chignola, Roberto

    2005-08-08

    A phenolic fraction purified form defatted seeds of Oenothera biennis promoted selective apoptosis of human and mouse bone marrow-derived cell lines following first-order kinetics through a caspase-dependent pathway. In non-leukemia tumour cell lines, such as human colon carcinoma CaCo(2) cells and mouse fibrosarcoma WEHI164 cells, this fraction inhibited (3)H-thymidine incorporation but not cell death or cell cycle arrest. Human peripheral blood mononuclear cells showed low sensitivity to treatment. Single bolus injection of the phenolic fraction could delay the growth of established myeloma tumours in syngeneic animals. HPLC and mass spectrometry analysis revealed that the fraction contains gallic acid. However, the biological activity of the fraction differs from the activity of this phenol and hence it should be attributed to other co-purified molecules which remain still unidentified.

  15. D:L-AMINO Acids and the Turnover of Microbial Biomass

    Science.gov (United States)

    Lomstein, B. A.; Braun, S.; Mhatre, S. S.; Jørgensen, B. B.

    2015-12-01

    Decades of ocean drilling have demonstrated wide spread microbial life in deep sub-seafloor sediment, and surprisingly high microbial cell numbers. Despite the ubiquity of life in the deep biosphere, the large community sizes and the low energy fluxes in the vast buried ecosystem are still poorly understood. It is not know whether organisms of the deep biosphere are specifically adapted to extremely low energy fluxes or whether most of the observed cells are in a maintenance state. Recently we developed and applied a new culture independent approach - the D:L-amino acid model - to quantify the turnover times of living microbial biomass, microbial necromass and mean metabolic rates. This approach is based on the built-in molecular clock in amino acids that very slowly undergo chemical racemization until they reach an even mixture of L- and D- forms, unless microorganisms spend energy to keep them in the L-form that dominates in living organisms. The approach combines sensitive analyses of amino acids, the unique bacterial endospore marker (dipicolinic acid) with racemization dynamics of stereo-isomeric amino acids. Based on a heating experiment, we recently reported kinetic parameters for racemization of aspartic acid, glutamic acid, serine and alanine in bulk sediment from Aarhus Bay, Denmark. The obtained racemization rate constants were faster than the racemization rate constants of free amino acids, which we have previously applied in Holocene sediment from Aarhus Bay and in up to 10 mio yr old sediment from ODP Leg 201. Another important input parameter for the D:L-amino acid model is the cellular carbon content. It has recently been suggested that the cellular carbon content most likely is lower than previously thought. In recognition of these new findings, previously published data based on the D:L-amino acid model were recalculated and will be presented together with new data from an Arctic Holocene setting with constant sub-zero temperatures.

  16. Reinvestigation of the role of humic acid in the oxidation of phenols by permanganate.

    Science.gov (United States)

    Sun, Bo; Zhang, Jing; Du, Juanshan; Qiao, Junlian; Guan, Xiaohong

    2013-12-17

    Humic acid (HA) affects the oxidation of phenolic compounds by permanganate, but the role of HA in the oxidation of phenols by permanganate is far from clear. The mechanisms by which HA influences the oxidation of phenols by permanganate at pH 5.0-9.0 were systematically examined in this study. The presence of HA enhanced the oxidation of phenolic compounds by permanganate at pH ≤7.0, with greater enhancement at lower pH values. The presence of HA facilitated the in situ formation of MnO2, implying the importance of reductive moieties of HA in this reaction. This was supported by the finding that HA preoxidized by ozone showed enhancements in the oxidation of phenols by permanganate at pH 5.0-6.0 smaller than those seen with pristine HA. The good correlation between HA-induced improvement in the oxidation rates of phenols by permanganate and those by preformed colloidal MnO2 at pH 5.0 confirmed that contribution of MnO2 formed in situ for the oxidation of phenols under this condition. The differences in the influence of Na2S2O3 and HA on the oxidation of phenol by permanganate revealed the fact that the continuous generation of fresh MnO2 and stabilization of the MnO2 formed in situ by HA were crucial for the HA-induced enhancement of the oxidation of phenols by permanganate at pH ≤7.0. The consumption of permanganate by HA and the poor oxidation ability of in situ-generated MnO2 under alkaline conditions resulted in the slightly negative effect of HA on the degradation rates of phenols by permanganate at pH >7.0.

  17. Soluble and cell wall-bound phenolic acids and ferulic acid dehydrodimers in rye flour and five bread model systems: insight into mechanisms of improved availability.

    Science.gov (United States)

    Dynkowska, Wioletta M; Cyran, Malgorzata R; Ceglińska, Alicja

    2015-03-30

    The bread-making process influences bread components, including phenolics that significantly contribute to its antioxidant properties. Five bread model systems made from different rye cultivars were investigated to compare their impact on concentration of ethanol-soluble (free and ester-bound) and insoluble phenolics. Breads produced by a straight dough method without acid addition (A) and three-stage sourdough method with 12 h native starter preparation (C) exhibited the highest, genotype-dependent concentrations of free phenolic acids. Dough acidification by direct acid addition (method B) or by gradual production during prolonged starter fermentation (24 and 48 h, for methods D and E) considerably decreased their level. However, breads B were enriched in soluble ester-bound fraction. Both direct methods, despite substantial differences in dough pH, caused a similar increase in the amount of insoluble ester-bound fraction. The contents of phenolic fractions in rye bread were positively related to activity level of feruloyl esterase and negatively to those of arabinoxylan-hydrolysing enzymes in wholemeal flour. The solubility of rye bread phenolics may be enhanced by application of a suitable bread-making procedure with respect to rye cultivar, as the mechanisms of this process are also governed by a response of an individual genotype with specific biochemical profile. © 2014 The Authors. Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  18. Schizosaccharomyces pombe and Saccharomyces cerevisiae yeasts in sequential fermentations: Effect on phenolic acids of fermented Kei-apple (Dovyalis caffra L.) juice.

    Science.gov (United States)

    Minnaar, P P; Jolly, N P; Paulsen, V; Du Plessis, H W; Van Der Rijst, M

    2017-09-18

    Kei-apple (Dovyalis caffra) is an evergreen tree indigenous to Southern Africa. The fruit contains high concentrations of l-malic acid, ascorbic acid, and phenolic acids. Kei-apple juice was sequentially inoculated with Schizosaccharomyces pombe and Saccharomyces cerevisiae yeasts. A reference fermentation using only S. cerevisiae was included. The fermentation was monitored by recording mass loss. At the end of fermentation, twelve untrained judges conducted free choice aroma profiling on the fruit wines. The Kei-apple juice and wines were analysed for total titratable acidity, total soluble solids, pH, alcohol, l-malic acid, and phenolic acids. Total titratable acidity was ca. 70% lower in Kei-apple wines produced with S. pombe+S. cerevisiae than in Kei-apple juice. Kei-apple wines produced with S. pombe+S. cerevisiae showed substantially lower concentrations of l-malic acid than Kei-apple wines produced with S. cerevisiae only. Wines produced with S. cerevisiae only proved higher in phenolic acid concentrations than wines produced with S. pombe+S. cerevisiae. Chlorogenic acid was the most abundant phenolic acid measured in the Kei-apple wines, followed by protocatechuic acid. Judges described the Kei-apple wines produced with S. pombe+S. cerevisiae as having noticeable off-odours, while wines produced with S. cerevisiae were described as fresh and fruity. Kei-apple wines (S. pombe+S. cerevisiae and S. cerevisiae) were of comparable vegetative and organic character. Saccharomyces cerevisiae produced Kei-apple wine with increased caffeic, chlorogenic, protocatechuic, and sinapic acids, whereas S. pombe+S. cerevisiae produced Kei-apple wines with increased ferulic, and p-coumaric acids and low l-malic acid. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Identification and characterization of phenol hydroxylase from phenol-degrading Candida tropicalis strain JH8.

    Science.gov (United States)

    Long, Yan; Yang, Sheng; Xie, Zhixiong; Cheng, Li

    2014-09-01

    The gene phhY encoding phenol hydroxylase from Candida tropicalis JH8 was cloned, sequenced, and expressed in Escherichia coli. The gene phhY contained an open reading frame of 2130 bp encoding a polypeptide of 709 amino acid residues. From its sequence analysis, it is a member of a family of flavin-containing aromatic hydroxylases and shares 41% amino acid identity with phenol hydroxylase from Trichosporon cutaneum. The recombinant phenol hydroxylase exists as a homotetramer structure with a native molecular mass of 320 kDa. Recombinant phenol hydroxylase was insensitive to pH treatment; its optimum pH was at 7.6. The optimum temperature for the enzyme was 30 °C, and its activity was rapidly lost at temperatures above 60 °C. Under the optimal conditions with phenol as substrate, the K(m) and V(max) of recombinant phenol hydroxylase were 0.21 mmol·L(-1) and 0.077 μmol·L(-1)·min(-1), respectively. This is the first paper presenting the cloning and expression in E. coli of the phenol hydroxylase gene from C. tropicalis and the characterization of the recombinant phenol hydroxylase.

  20. Determination of Phenolic Acids and Flavonoids in Taraxacum formosanum Kitam by Liquid Chromatography-Tandem Mass Spectrometry Coupled with a Post-Column Derivatization Technique

    Directory of Open Access Journals (Sweden)

    Hung-Ju Chen

    2011-12-01

    Full Text Available A liquid chromatography-tandem mass spectrometry method (LC-MS/MS was developed for the determination of phenolic acids and flavonoids in a medicinal Chinese herb Taraxacum formosanum Kitam. Initially, both phenolic acids and flavonoids were extracted with 50% ethanol in a water-bath at 60 °C for 3 h and eventually separated into acidic fraction and neutral fraction by using a C18 cartridge. A total of 29 compounds were separated within 68 min by employing a Gemini C18 column and a gradient solvent system of 0.1% formic acid and acetonitrile at a flow rate of 1.0 mL/min. Based on the retention behavior as well as absorption and mass spectra, 19 phenolic acids and 10 flavonoids were identified and quantified in T. formosanum, with the former ranging from 14.1 μg/g to 10,870.4 μg/g, and the latter from 9.9 μg/g to 325.8 μg/g. For further identification of flavonoids, a post-column derivatization method involving shift reagents such as sodium acetate or aluminum chloride was used and the absorption spectral characteristics without or with shift reagents were compared. An internal standard syringic acid was used for quantitation of phenolic acids, whereas (± naringenin was found suitable for quantitation of flavonoids. The developed LC-MS/MS method showed high reproducibility, as evident from the relative standard deviation (RSD values for intra-day and inter-day variability being 1.0–6.8% and 2.0–7.7% for phenolic acids and 3.7–7.4% and 1.5–8.1% for flavonoids, respectively, and thus may be applied for simultaneous determination of phenolic acids and flavonoids in Chinese herb and nutraceuticals.

  1. Anthocyanins, phenolics and antioxidant capacity after fresh storage of blueberry treated with edible coatings.

    Science.gov (United States)

    Chiabrando, Valentina; Giacalone, Giovanna

    2015-05-01

    The influence of different edible coatings on total phenolic content, total anthocyanin and antioxidant capacity in highbush blueberry (Vaccinium corymbosum L. cv Berkeley and O'Neal) was investigated, mainly for industrial applications. Also titratable acidity, soluble solids content, firmness and weight loss of berries were determined at harvest and at 15-day intervals during 45 storage days at 0 °C, in order to optimize coating composition. Application of chitosan coating delayed the decrease in anthocyanin content, phenolic content and antioxidant capacity. Coating samples showed no significant reduction in the weight loss during storage period. In cv Berkeley, the use of alginate coating showed a positive effect on firmness, titratable acidity and maintained surface lightness of treated berries. In cv O'Neal, no significant differences in total soluble solids content were found, and the chitosan-coated berries showed the minimum firmness losses. In both cultivars, the addition of chitosan to coatings decreases the microbial growth rate.

  2. Quality Control of Gamma Irradiated Dwarf Mallow (Malva neglecta Wallr.) Based on Color, Organic Acids, Total Phenolics and Antioxidant Parameters.

    Science.gov (United States)

    Pinela, José; Barros, Lillian; Antonio, Amilcar L; Carvalho, Ana Maria; Oliveira, M Beatriz P P; Ferreira, Isabel C F R

    2016-04-08

    This study addresses the effects of gamma irradiation (1, 5 and 8 kGy) on color, organic acids, total phenolics, total flavonoids, and antioxidant activity of dwarf mallow (Malva neglecta Wallr.). Organic acids were analyzed by ultra fast liquid chromatography (UFLC) coupled to a photodiode array (PDA) detector. Total phenolics and flavonoids were measured by the Folin-Ciocalteu and aluminium chloride colorimetric methods, respectively. The antioxidant activity was evaluated based on the DPPH(•) scavenging activity, reducing power, β-carotene bleaching inhibition and thiobarbituric acid reactive substances (TBARS) formation inhibition. Analyses were performed in the non-irradiated and irradiated plant material, as well as in decoctions obtained from the same samples. The total amounts of organic acids and phenolics recorded in decocted extracts were always higher than those found in the plant material or hydromethanolic extracts, respectively. The DPPH(•) scavenging activity and reducing power were also higher in decocted extracts. The assayed irradiation doses affected differently the organic acids profile. The levels of total phenolics and flavonoids were lower in the hydromethanolic extracts prepared from samples irradiated at 1 kGy (dose that induced color changes) and in decocted extracts prepared from those irradiated at 8 kGy. The last samples also showed a lower antioxidant activity. In turn, irradiation at 5 kGy favored the amounts of total phenolics and flavonoids. Overall, this study contributes to the understanding of the effects of irradiation in indicators of dwarf mallow quality, and highlighted the decoctions for its antioxidant properties.

  3. Improved bioavailability of dietary phenolic acids in whole grain barley and oat groat following fermentation with probiotic Lactobacillus acidophilus , Lactobacillus johnsonii , and Lactobacillus reuteri.

    Science.gov (United States)

    Hole, Anastasia S; Rud, Ida; Grimmer, Stine; Sigl, Stefanie; Narvhus, Judith; Sahlstrøm, Stefan

    2012-06-27

    The aim of this study was to improve the bioavailability of the dietary phenolic acids in flours from whole grain barley and oat groat following fermentation with lactic acid bacteria (LAB) exhibiting high feruloyl esterase activity (FAE). The highest increase of free phenolic acids was observed after fermentation with three probiotic strains, Lactobacillus johnsonii LA1, Lactobacillus reuteri SD2112, and Lactobacillus acidophilus LA-5, with maximum increases from 2.55 to 69.91 μg g(-1) DM and from 4.13 to 109.42 μg g(-1) DM in whole grain barley and oat groat, respectively. Interestingly, higher amounts of bound phenolic acids were detected after both water treatment and LAB fermentation in whole grain barley, indicating higher bioaccessibility, whereas some decrease was detected in oat groat. To conclude, cereal fermentation with specific probiotic strains can lead to significant increase of free phenolic acids, thereby improving their bioavailability.

  4. Antibacterial, Antiradical Potential and Phenolic Compounds of Thirty-One Polish Mushrooms.

    Directory of Open Access Journals (Sweden)

    Natalia Nowacka

    Full Text Available Among many sources of natural bioactive substances, mushrooms constitute a huge and almost unexplored group. Fungal compounds have been repeatedly reported to exert biological effects which have prompted their use in pharmaceutical and cosmetic industry. Therefore, the aim of this study was analysis of chemical composition and biological activity of 31 wild growing mushroom species (including saprophytic and parasitic from Poland.Qualitative and quantitative LC-ESI-MS/MS analysis of fourteen phenolic acids in the mushrooms analysed was performed. Moreover, total phenolic content was determined by the modified Folin-Ciocalteau method. Antioxidative activity of ethanolic extracts towards DPPH• free radical was examined. Antibacterial activity against Gram-positive (S. epidermidis, S. aureus, B. subtilis, M. luteus and Gram-negative (E. coli, K. pneumoniae, P. aeruginosa, P. mirabilis microbial strains was analyzed.As a result, the first such broad report on polyphenolic composition, antiradical and antimicrobial potential of wild growing Polish mushrooms was developed. Mushroom extracts were found to contain both benzoic (protocatechuic, 4-OH-benzoic, vanillic, syringic and cinnamic acid derivatives (caffeic, p-coumaric, ferulic. Total phenolic content in mushrooms ranged between 2.79 and 53.13 mg gallic acid equivalent /g of dried extract in Trichaptum fuscoviolaceum and Fomes fomentarius, respectively. Fungi showed much differentiated antiradical activity, from highly active F. fomentarius to poorly effective Russula fragilis (IC50 1.39 to 120.54 mg per mg DPPH•, respectively. A quite considerable relationship between phenolic content and antiradical activity has been demonstrated. Mushrooms varied widely in antimicrobial potential (MIC from 0.156 to 5 mg/ml. Generally, a slightly higher activity against Gram-positive than Gram-negative strains was observed. This is the first study concerning the chemical composition and biological activity

  5. The use of silica gel prepared by sol-gel method and polyurethane foam as microbial carriers in the continuous degradation of phenol.

    Science.gov (United States)

    Brányik, T; Kuncová, G; Páca, J

    2000-08-01

    A mixed microbial culture was immobilized by entrapment into silica gel (SG) and entrapment/ adsorption on polyurethane foam (PU) and ceramic foam. The phenol degradation performance of the SG biocatalyst was studied in a packed-bed reactor (PBR), packed-bed reactor with ceramic foam (PBRC) and fluidized-bed reactor (FBR). In continuous experiments the maximum degradation rate of phenol (q(s)max) decreased in the order: PBRC (598 mg l(-1) h(-1)) > PBR (PU, 471 mg l(-1)h(-1)) > PBR(SG, 394 mg l(-1) h(-1)) > FBR (PU, 161 mg l(-1) h(-1)) > FBR (SG, 91 mg l(-1) h(-1)). The long-term use of the SG biocatalyst in continuous phenol degradation resulted in the formation of a 100-200 microm thick layer with a high cell density on the surface of the gel particles. The abrasion of the surface layer in the FBR contributed to the poor degradation performance of this reactor configuration. Coating the ceramic foam with a layer of cells immobilized in colloidal SiO2 enhanced the phenol degradation efficiency during the first 3 days of the PBRC operation, in comparison with untreated ceramic packing.

  6. Application of HPLC and ESI-MS techniques in the analysis of phenolic acids and flavonoids from green leafy vegetables (GLVs

    Directory of Open Access Journals (Sweden)

    B. Ramesh Kumar

    2017-12-01

    Full Text Available Diets containing high proportions of fruits and vegetables reduce the risk of onset of chronic diseases. The role of herbal medicines in improving human health is gaining popularity over the years, which also increases the need for safety and efficiency of these products. Green leafy vegetables (GLVs are the richest source of phenolic compounds with excellent antioxidant properties. Increased consumption of diets containing phenolic compounds may give positive and better results to human health and significantly improves the immune system. Highly selective, susceptible and versatile analytical techniques are necessary for extraction, identification, and quantification of phenolic compounds from plant extracts, which helps to utilize their important biological properties. Recent advances in the pre-treatment procedures, separation techniques and spectrometry methods are used for qualitative and quantitative analysis of phenolic compounds. The online coupling of liquid chromatography with mass spectrometry (LC–MS has become a useful tool in the metabolic profiling of plant samples. In this review, the separation and identification of phenolic acids and flavonoids from GLVs by LC–MS have been discussed along with the general extraction procedures and other sources of mass spectrometer used. The review is devoted to the understanding of the structural configuration, nature and accumulation pattern of phenolic acids and flavonoids in plants and to highlighting the recent developments in the chemical investigation of these compounds by chromatographic and spectroscopic techniques. It concludes with the advantages of the combination of these two methods and prospects. Keywords: Green leafy vegetables, Phenolic acids, Flavonoids, HPLC, ESI-MS

  7. Phenolic compounds and fatty acids from acorns (Quercus spp.), the main dietary constituent of free-ranged Iberian pigs.

    Science.gov (United States)

    Cantos, Emma; Espín, Juan Carlos; López-Bote, Clemente; de la Hoz, Lorenzo; Ordóñez, Juan A; Tomás-Barberán, Francisco A

    2003-10-08

    The aim of the present work was to identify and quantify the phenolic compounds and fatty acids in acorns from Quercus ilex, Quercus rotundifolia, and Quercus suber. The concentration of oleic acid was >63% of total fatty acids in all cases, followed by palmitic and linoleic acids at similar concentrations (12-20%). The concentrations of alpha-tocopherol in Q. rotundifolia, Q. ilex, and Q. suber were 19, 31, and 38 mg/kg of dry matter (DM), respectively, whereas the concentrations of gamma-tocopherol were 113, 66, and 74 mg/kg of DM, respectively. Thirty-two different phenolic compounds were distinguished. All of them were gallic acid derivatives, in the form of either galloyl esters of glucose, combinations of galloyl and hexahydroxydiphenoyl esters of glucose, tergallic O- or C-glucosides, or ellagic acid derivatives. Several tergallic acid C-glucosides were also present in the extracts obtained from Q. suber. Acorns from Q. ilex and Q. rotundifolia showed similar polyphenol patterns mainly with gallic acid-like spectra. Chromatograms of Q. suber showed mainly polyphenols with ellagic acid-like spectra. Valoneic acid dilactone was especially abundant in Q. suber skin. The contribution of skin to the total phenolics of the acorn was relatively small in Q. rotundifolia and Q. ilex but relatively high in Q. suber. Skin extracts from Q. suber, Q. rotundifolia, and Q. ilex showed 1.3, 1.4, and 1.0 antioxidant efficiencies, respectively (compared to that of butylhydroxyanisole). Endosperm extracts showed lower capacity to prevent lipid peroxidation than skin extracts.

  8. Organic acid production from starchy waste by rumen derived microbial communities

    OpenAIRE

    Ayudthaya, S. P. N.; Van De Weijer, Antonius H. P.; Van Gelder, Antonie H.; Stams, Alfons Johannes Maria; De Vos, Willem M.; Plugge, Caroline M.

    2017-01-01

    Microbiology Centennial Symposium 2017 - Exploring Microbes for the Quality of Life (Book of Abstracts) Converting organic waste to energy carriers and valuable products such as organic acids (OA) using microbial fermentation is one of the sustainable options of renewable energy. Substrate and inoculum are important factors in optimizing the fermentation. In this study, we investigated organic acid production and microbial composition shift during the fermentation of starchy (p...

  9. Radical Scavenging Capacity of Methanolic Phillyrea latifolia L. Extract: Anthocyanin and Phenolic Acids Composition of Fruits

    Directory of Open Access Journals (Sweden)

    Naciye Erkan

    2013-01-01

    Full Text Available Radical scavenging capacity of a crude methanolic extract from the fruits of Phillyrea latifolia L., commonly known as green olive tree or mock privet, was investigated with reference to anthocyanin standards, as flavonoids, and phenolic acid standards, as phenylpropanoids. Characterization with high performance liquid chromatography-diode array detection (HPLC-DAD indicated the presence of keracyanin, kuromanin, cyanidin, ferulic acid, caffeic acid and rosmarinic acid at amounts of 289.1, 90.4, 191.4, 225.2, 221.2 and 190.1 mg/100 g fresh weight (FW of fruits, respectively. Chlorogenic and p-coumaric acids were found to exist in lower amounts. Trolox equivalent antioxidant capacity (TEAC and IC50 values of the plant extract were found to be 1.8 mM Trolox equivalents (TE/g FW of fruits and 69.4 µg/mL, respectively, indicating the close radical scavenging activity of the extract to those of keracyanin and p-coumaric acid. The crude methanolic P. latifolia L. fruit extract was seen to be fairly potent in radical scavenging. Total phenolic content (TPC of the plant extract was found to be 1652.9 mg gallic acid equivalent (GAE/100 g FW of fruits.

  10. The Influence of Prefermentative Addition of Gallic Acid on the Phenolic Composition and Chromatic Characteristics of Cabernet Sauvignon Wines.

    Science.gov (United States)

    Liu, Yue; Zhang, Bo; He, Fei; Duan, Chang-Qing; Shi, Ying

    2016-07-01

    In this study, the prefermentative addition of gallic acid in Cabernet Sauvignon red winemaking was performed. The influence of gallic acid addition on wine phenolic composition, the ratio of copigmentation, and the color parameters were monitored throughout the winemaking process. The results showed that the prefermentative addition of gallic acid enhanced the extraction of total anthocyanins and the copigmentation effect, producing wines with more darkness, redness, yellowness, and saturation. Moreover, the addition of gallic acid contributed to the concentration of total phenolic acids. However, it had a negative effect on the concentrations of flavonols and flavan-3-ols in the final wines. Thus, the prefermentative addition of gallic acid at appropriate levels might be a promising enological technology to obtain wines with high color quality and aging potential. © 2016 Institute of Food Technologists®

  11. Interaction of hydrated electron with dietary flavonoids and phenolic acids. Rate constants and transient spectra studied by pulse radiolysis

    International Nuclear Information System (INIS)

    Cai, Zhongli; Li, Xifeng; Katsumura, Yosuke

    2000-01-01

    The reaction rate constants and transient spectra of 11 flavonoids and 4 phenolic acids reacting with e aq - at neutral pH were measured. The results suggest that C 4 keto group is the active site for e aq - to attack on flavonoids and phenolic acids, while the o-dihydroxy structure in B-ring, the C 2,3 double bond, the C 3 -OH group and glycosylation have little effects on the e aq - scavenging activities. (author)

  12. Influence of humic acids of different origins on oxidation of phenol and chlorophenols by permanganate

    International Nuclear Information System (INIS)

    He Di; Guan Xiaohong; Ma Jun; Yang Xue; Cui Chongwei

    2010-01-01

    The influences of humic acids (HAs) of different origins, including two commercial HAs, three soil HAs and one aquatic HA, on phenols oxidation by permanganate were studied. The apparent second-order rate constants of 2-chlorophenol (2-CP)/phenol oxidation by permanganate in the presence of HAs at pH 7 followed the order of commercial HA (Shanghai) > soil HAs > commercial HA (Fluka) > aquatic HA. Moreover, the commercial HA (Shanghai) could accelerate the oxidation of different chlorophenols (CP) significantly under neutral condition. The FTIR analysis demonstrated greater content of C=C moieties and less amount of carboxylate, aliphatic groups and polysaccharide-like substances in soil HAs than in aqueous HA, suggesting that the increase of aromaticity in HA was beneficial to the oxidation of phenols by permanganate. The apparent second-order rate constants of 2-CP/phenol oxidation by permanganate in the presence of HAs correlated well with specific visible absorption (SVA) at 665 nm of HAs. High positive correlation coefficients (R 2 > 0.75) implied that π-electrons of HA strongly influenced the reactivity of 2-CP/phenol towards permanganate oxidation, which agreed well with positive correlation between Fluorescence Regional Integration (FRI) and the apparent second-order rate constants. The π-π interaction between HAs and phenols, the steric hindrance effect and the dissociation of phenols may affect the oxidation of phenols by permanganate in the presence of HA at pH = 7.0.

  13. Influence of humic acids of different origins on oxidation of phenol and chlorophenols by permanganate.

    Science.gov (United States)

    He, Di; Guan, Xiaohong; Ma, Jun; Yang, Xue; Cui, Chongwei

    2010-10-15

    The influences of humic acids (HAs) of different origins, including two commercial HAs, three soil HAs and one aquatic HA, on phenols oxidation by permanganate were studied. The apparent second-order rate constants of 2-chlorophenol (2-CP)/phenol oxidation by permanganate in the presence of HAs at pH 7 followed the order of commercial HA (Shanghai)>soil HAs>commercial HA (Fluka)>aquatic HA. Moreover, the commercial HA (Shanghai) could accelerate the oxidation of different chlorophenols (CP) significantly under neutral condition. The FTIR analysis demonstrated greater content of CC moieties and less amount of carboxylate, aliphatic groups and polysaccharide-like substances in soil HAs than in aqueous HA, suggesting that the increase of aromaticity in HA was beneficial to the oxidation of phenols by permanganate. The apparent second-order rate constants of 2-CP/phenol oxidation by permanganate in the presence of HAs correlated well with specific visible absorption (SVA) at 665 nm of HAs. High positive correlation coefficients (R(2)>0.75) implied that pi-electrons of HA strongly influenced the reactivity of 2-CP/phenol towards permanganate oxidation, which agreed well with positive correlation between Fluorescence Regional Integration (FRI) and the apparent second-order rate constants. The pi-pi interaction between HAs and phenols, the steric hindrance effect and the dissociation of phenols may affect the oxidation of phenols by permanganate in the presence of HA at pH=7.0. 2010 Elsevier B.V. All rights reserved.

  14. Influence of humic acids of different origins on oxidation of phenol and chlorophenols by permanganate

    Energy Technology Data Exchange (ETDEWEB)

    He Di, E-mail: hedy1997@hotmail.com [State Key Lab of Urban Water Resource and Environment (HIT), Harbin Institute of Technology, Harbin (China); Guan Xiaohong, E-mail: hitgxh@126.com [State Key Lab of Urban Water Resource and Environment (HIT), Harbin Institute of Technology, Harbin (China); Ma Jun, E-mail: majun@hit.edu.cn [State Key Lab of Urban Water Resource and Environment (HIT), Harbin Institute of Technology, Harbin (China); Yang Xue, E-mail: yangxue1_ok@163.com [State Key Lab of Urban Water Resource and Environment (HIT), Harbin Institute of Technology, Harbin (China); Cui Chongwei, E-mail: cuichongwei1991@126.com [State Key Lab of Urban Water Resource and Environment (HIT), Harbin Institute of Technology, Harbin (China)

    2010-10-15

    The influences of humic acids (HAs) of different origins, including two commercial HAs, three soil HAs and one aquatic HA, on phenols oxidation by permanganate were studied. The apparent second-order rate constants of 2-chlorophenol (2-CP)/phenol oxidation by permanganate in the presence of HAs at pH 7 followed the order of commercial HA (Shanghai) > soil HAs > commercial HA (Fluka) > aquatic HA. Moreover, the commercial HA (Shanghai) could accelerate the oxidation of different chlorophenols (CP) significantly under neutral condition. The FTIR analysis demonstrated greater content of C=C moieties and less amount of carboxylate, aliphatic groups and polysaccharide-like substances in soil HAs than in aqueous HA, suggesting that the increase of aromaticity in HA was beneficial to the oxidation of phenols by permanganate. The apparent second-order rate constants of 2-CP/phenol oxidation by permanganate in the presence of HAs correlated well with specific visible absorption (SVA) at 665 nm of HAs. High positive correlation coefficients (R{sup 2} > 0.75) implied that {pi}-electrons of HA strongly influenced the reactivity of 2-CP/phenol towards permanganate oxidation, which agreed well with positive correlation between Fluorescence Regional Integration (FRI) and the apparent second-order rate constants. The {pi}-{pi} interaction between HAs and phenols, the steric hindrance effect and the dissociation of phenols may affect the oxidation of phenols by permanganate in the presence of HA at pH = 7.0.

  15. Phenolic compounds in Ross Sea water

    Science.gov (United States)

    Zangrando, Roberta; Barbaro, Elena; Gambaro, Andrea; Barbante, Carlo; Corami, Fabiana; Kehrwald, Natalie; Capodaglio, Gabriele

    2016-04-01

    Phenolic compounds are semi-volatile organic compounds produced during biomass burning and lignin degradation in water. In atmospheric and paleoclimatic ice cores studies, these compounds are used as biomarkers of wood combustion and supply information on the type of combusted biomass. Phenolic compounds are therefore indicators of paleoclimatic interest. Recent studies of Antarctic aerosols highlighted that phenolic compounds in Antarctica are not exclusively attributable to biomass burning but also derive from marine sources. In order to study the marine contribution to aerosols we developed an analytical method to determine the concentration of vanillic acid, vanillin, p-coumaric acid, syringic acid, isovanillic acid, homovanillic acid, syringaldehyde, acetosyringone and acetovanillone present in dissolved and particle phases in Sea Ross waters using HPLC-MS/MS. The analytical method was validated and used to quantify phenolic compounds in 28 sea water samples collected during a 2012 Ross Sea R/V cruise. The observed compounds were vanillic acid, vanillin, acetovanillone and p-coumaric acid with concentrations in the ng/L range. Higher concentrations of analytes were present in the dissolved phase than in the particle phase. Sample concentrations were greatest in the coastal, surficial and less saline Ross Sea waters near Victoria Land.

  16. Effects of simulated acid rain on microbial characteristics in a lateritic red soil.

    Science.gov (United States)

    Xu, Hua-qin; Zhang, Jia-en; Ouyang, Ying; Lin, Ling; Quan, Guo-ming; Zhao, Ben-liang; Yu, Jia-yu

    2015-11-01

    A laboratory experiment was performed to examine the impact of simulated acid rain (SAR) on nutrient leaching, microbial biomass, and microbial activities in a lateritic red soil in South China. The soil column leaching experiment was conducted over a 60-day period with the following six SAR pH treatments (levels): 2.5, 3.0, 3.5, 4.0, 4.5, and 5.0 and one control treatment (pH = 7). Compared with the control treatment, the concentrations of soil organic matter, total nitrogen, total phosphorus, total potassium, soil microbial biomass carbon (MBC), soil microbial biomass nitrogen (MBN), and average well color density (AWCD) in the Ecoplates were all significantly decreased by leaching with SAR at different pH levels. The decrease in MBC and MBN indicated that acid rain reduced the soil microbial population, while the decrease in AWCD revealed that acid rain had a negative effect on soil bacterial metabolic function. Soil basal respiration increased gradually from pH 4.0 to 7.0 but decreased dramatically from pH 2.5 to 3.0. The decrease in soil nutrient was the major reason for the change of soil microbial functions. A principal component analysis showed that the major carbon sources used by the bacteria were carbohydrates and carboxylic acids.

  17. Hydrodeoxygenation of phenol over Pd catalysts by in-situ generated hydrogen from aqueous reforming of formic acid

    DEFF Research Database (Denmark)

    Zeng, Ying; Wang, Ze; Lin, Weigang

    2016-01-01

    Hydrodeoxygenation of phenol, as model compound of bio-oil, was investigated over Pd catalysts, using formic acid as a hydrogen donor. The order of activity for deoxygenation of phenol with Pd catalysts was found to be: Pd/SiO2 > Pd/MCM-41 > Pd/CA > Pd/Al2O3 > Pd/HY approximate to Pd/ZrO2 ≈ Pd...

  18. Studies on (acid + base) equilibria in substituted (phenol + n-butylamine) systems in acetonitrile

    Energy Technology Data Exchange (ETDEWEB)

    Kozak, A. [Department of General Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland); Czaja, M. [Department of General Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland); Chmurzynski, L. [Department of General Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland)]. E-mail: lech@chem.univ.gda.pl

    2005-08-15

    (Acid + base) equilibria, including molecular heteroconjugation ones, between n-butylamine and one of the following phenols: 2-nitrophenol, 3-nitrophenol, 4-nitrophenol, 2,4-dinitrophenol, 2,5-dinitrophenol, 3-chlorophenol, 4-chlorophenol, 2,3,4,5,6-pentachlorophenol and 2,4,6-tribromophenol have been studied potentiometrically in a protophobic polar aprotic solvent, acetonitrile. Among the phenols studied, 2,5-dinitrophenol exhibited the strongest tendency towards formation of asymmetric hydrogen bonds with n-butylamine, whereas a weakest complex was formed with 2-nitrophenol. In the (n-butylamine + 2,3,4,5,6-pentachlorophenol) and (n-butylamine + 2,4-dinitrophenol) systems proton transfer reactions occurred.

  19. Microbial export of lactic and 3-hydroxypropanoic acid : implications for industrial fermentation processes

    NARCIS (Netherlands)

    van Maris, AJA; Konings, WN; Pronk, Jack T.; Dijken, J.P. van

    2004-01-01

    Lactic acid and 3-hydroxypropanoic acid are industrially relevant microbial products. This paper reviews the current knowledge on export of these compounds from microbial cells and presents a theoretical analysis of the bioenergetics of different export mechanisms. It is concluded that export can be

  20. Anti-inflammatory activities and potential mechanisms of phenolic acids isolated from Salvia miltiorrhiza f. alba roots in THP-1 macrophages.

    Science.gov (United States)

    Liu, Haimei; Ma, Shuli; Xia, Hongrui; Lou, Hongxiang; Zhu, Faliang; Sun, Longru

    2018-05-08

    The roots of Salvia miltiorrhiza f. alba (Lamiaceae) (RSMA) are used as the Danshen, a traditional Chinese medicine, to treat the vascular diseases at local clinics, especially for the remedy of thromboangiitis obliterans (TAO) more than 100 years. Phenolic acids are one of the major effective constituents of RSMA, and some studies have linked phenolic acids with anti-inflammatory functions. The purpose of this research was to isolate phenolic acids from RSMA and investigate their anti-inflammatory effects and potential mechanisms. Nine already known compounds were obtained from RSMA. Their structures were elucidated through the spectroscopic analysis and comparing the reported data. The anti-inflammatory effects and potential mechanisms were investigated in LPS-stimulated THP-1 cells, using salvianolic acid B (SalB) as the positive control. The enzyme-linked immunosorbent assays (ELISA) were used to determine the secretory protein levels of interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). And quantitative real-time polymerase chain reaction (qRT-PCR) was used to analyze the mRNA levels of these inflammatory cytokines. The expression of TLR4, p65, p-p65, IκBα, and p-IκBα were measured using western blot. All these compounds, except for rosmarinic acid (5) and isosalvianolic acid (6) for IL-6 protein levels, rosmarinic acid-o-β-D-glucopyranoside (3) for IL-6 mRNA, and rosmarinic acid-o-β-D-glucopyranoside (3), rosmarinic acid (5) and isosalvianolic acid (6) for TNF-α mRNA levels, remarkably inhibited the production of TNF-α, IL-1β, and IL-6 at the concentration of 5 and 25μM in the mRNA and protein levels. Lithospermic acid (7) showed the strongest inhibitory effect among them and was similar to that of SalB. In particular, lithospermic acid (7) and SalB markedly downregulated the expressions of TLR4, p-p65, and p-IκBα induced by LPS in THP-1 macrophages. All the phenolic acids displayed anti-inflammatory properties

  1. In Vitro Antioxidant Activities of Phenols and Oleanolic Acid from Mango Peel and Their Cytotoxic Effect on A549 Cell Line

    Directory of Open Access Journals (Sweden)

    Xuelian Bai

    2018-06-01

    Full Text Available Mango peel, the main by-product of juice processing, possesses appreciable quantities of bioactive phenolic compounds and is worthy of further utilization. The present work reports for the first time the HPLC analysis and in vitro antioxidant evaluation of mango peel phenols (MPPs and their cytotoxic effect on the A549 lung cancer cell line. These results indicated that mango peel has the total phenolic content of 723.2 ± 0.93 mg·kg−1 dry mango peel (DMP, which consisted mainly of vanillic aldehyde, caffeic acid, chlorogenic acid, gallic acid, procyanidin B2 and oleanolic acid. Antioxidant assays showed that MPPs had strong antioxidant activities, with 92 ± 4.2% of DPPH radical scavenging rate, 79 ± 2.5% of ABTS radical inhibition rate and 4.7 ± 0.5 μM Trolox equivalents per kg−1 DMP of ferric reducing power. Gallic acid possess a stronger antioxidant capacity than other phenols. In vitro cytotoxic tests suggested that mango peel extract (MPE had an IC50 value of 15 mg·mL−1 and MPPs had a stronger inhibitory effect on the A549 cell line. Oleanolic acid exhibited the strongest cytotoxicity, with an IC50 value of 4.7 μM, which was similar with that of the positive control 5-fluorouracil.

  2. Comparative Study of the Use of Trichloroacetic Acid and Phenolic Acid in the Treatment of Atrophic-Type Acne Scars.

    Science.gov (United States)

    Dalpizzol, Mariana; Weber, Magda B; Mattiazzi, Anna Paula F; Manzoni, Ana Paula D

    2016-03-01

    Many therapies involving varying degrees of complexity have been used to treat acne scars, but none is considered the gold standard treatment. A comparative evaluation of 88% phenol and 90% trichloroacetic acid (TCA) applied using the chemical reconstruction of skin scars (CROSS) technique. A nonrandomized, single-blinded self-controlled clinical trial was conducted among patients with ice pick-type and boxcar-type atrophic acne scars. Using 88% phenol on the left hemiface and 90% TCA on the right hemiface was adopted as the standard practice of the CROSS technique. The dermatological quality of life index (DLQI) questionnaire, acne scar grading scale Échelle d´Evaluation Clinique des Cicatrices d'Acne (ECCA), and evaluation of improvement were performed pretreatment and post-treatment. Regarding ECCA, significant differences were found in pretreatment and post-treatment (p < .001). Regarding tolerance to pain, it was found that the discomfort felt with 90% TCA was significantly less than that felt with 88% phenol (p = .020). Regarding the quality of life measured with the DLQI, the results showed that the mean score in post-treatment assessment was significantly lower than that in the pretreatment assessment (p < .05). Hypochromia and enlargement scar were only seen after the use of 90% TCA. This study confirmed the efficacy of both TCA and phenol for treating such scars, with less severe complications from the use of phenol.

  3. Antioxidant capacity and contents of phenols, ascorbic acid, β-carotene and lycopene in lettuce

    Directory of Open Access Journals (Sweden)

    Zdravković Jasmina M.

    2014-01-01

    Full Text Available The antioxidant activity of three lettuce varieties (Lactuca sativa L. Emerald, Vera and Neva, cultivated in two kinds of protected spaces, a glasshouse and a plastic greenhouse, under controlled conditions, was determined. The content of antioxidant compounds: total phenols, flavonoids, L-ascorbic acid, ß-carotene and lycopene, were determined in ethanolic extracts of the lettuce with spectrophotometric methods. The largest content of total phenols (78.98 ± 0.67 mg GAE/g of dry extract was found in ethanolic extract of the lettuce variety Neva cultivated in a plastic greenhouse, whereas the largest content of flavonoids (35.45 ± 0.95 mg RU/g of dry extract was displayed in the lettuce Emerald cultivated in a glasshouse. It was observed that the lettuce cultivated in the glasshouse contained a somewhat higher content of L-ascorbic acid than the lettuce same variety from plastic greenhouse. The content of lycopene in the examined lettuce is negligible, and the content of ß-carotene is low. On the other hand, the high content of phenolic components causes favourable antioxidant properties found in all varieties of examined lettuce. [Projekat Ministarstva nauke Republike Srbije, br. TR 31059: A new concept in breeding vegetable cultivars and hybrids designed for sustainable growing systems using biotechnological methods

  4. TDDFT calculations and photoacoustic spectroscopy experiments used to identify phenolic acid functional biomolecules in Brazilian tropical fruits in natura

    Science.gov (United States)

    Lourenço Neto, M.; Agra, K. L.; Suassuna Filho, J.; Jorge, F. E.

    2018-03-01

    Time-dependent density functional theory (TDDFT) calculations of electronic transitions have been widely used to determine molecular structures. The excitation wavelengths and oscillator strengths obtained with the hybrid exchange-correlation functional B3LYP in conjunction with the ADZP basis set are employed to simulate the UV-Vis spectra of eight phenolic acids. Experimental and theoretical UV-Vis spectra reported previously in the literature are compared with our results. The fast, sensitive and non-destructive technique of photoacoustic spectroscopy (PAS) is used to determine the UV-Vis spectra of four Brazilian tropical fresh fruits in natura. Then, the PAS along with the TDDFT results are for the first time used to investigate and identify the presence of phenolic acids in the fruits studied in this work. This theoretical method with this experimental technique show to be a powerful and cheap tool to detect the existence of phenolic acids in fruits, vegetables, cereals, and grains. Comparison with high performance liquid chromatography results, when available, is also carried out.

  5. Effect of gamma radiation on the microbiological and physicochemical parameters and on the phenolic compounds of a fruit residue flour during storage

    International Nuclear Information System (INIS)

    Aranha, Jessica Bomtorin; Negri, Talita Costa; Martin, José Guilherme Prado; Spoto, Marta Helena Fillet

    2017-01-01

    Agroindustrial residues have high levels of nutrients, but are little exploited for consumption because they require prior treatment to ensure microbiological safety. Irradiation is an effective process for the reduction of microbial counts with maintenance of the product characteristics. The objective of this study was to evaluate the effect of irradiation on the microbiological quality, physicochemical properties and phenolic compounds of a fruit residue flour during storage. The flour was obtained from dehydrated residues of pineapple, melon, papaya and apple, which were submitted to irradiation doses of (0, 1, 2 and 3 kGy). The microbiological (coliforms, moulds, yeast and Salmonella sp. counts) and physicochemical (pH, titratable acidity, soluble solids, water activity, colour parameters L⁎, a⁎ and b⁎ and phenolic compounds) parameters were evaluated after 0, 7, 14 and 21 days of storage. All the irradiation treatments reduced the microbial count, and the presence of Salmonella sp was not detected in any of the samples. The acidity and pH showed changes during storage. The soluble solids and water activity showed no significant differences between the doses during storage. The phenolic compounds were preserved by the application of irradiation. The colour of the flour samples darkened slightly with irradiation. It was concluded that the most effective doses for the maintenance of the microbiological quality and physicochemical characteristics of the flour were 2 and 3 kGy. (author)

  6. Phenolic metabolites in carnivorous plants: Inter-specific comparison and physiological studies.

    Science.gov (United States)

    Kováčik, Jozef; Klejdus, Bořivoj; Repčáková, Klára

    2012-03-01

    Despite intensive phytochemical research, data related to the accumulation of phenols in carnivorous plants include mainly qualitative reports. We have quantified phenolic metabolites in three species: Drosera capensis, Dionaea muscipula and Nepenthes anamensis in the "leaf" (assimilatory part) and the "trap" (digestive part). For comparison, commercial green tea was analysed. Phenylalanine ammonia-lyase (PAL) activities in Dionaea and Nepenthes were higher in the trap than in the leaf while the opposite was found in Drosera. Soluble phenols and majority of phenolic acids were mainly accumulated in the trap among species. Flavonoids were abundant in Drosera and Dionaea traps but not in Nepenthes. Phenolic acids were preferentially accumulated in a glycosidically-bound form and gallic acid was the main metabolite. Green tea contained more soluble phenols and phenolic acids but less quercetin. In vitro experiments with Drosera spathulata revealed that nitrogen deficiency enhances PAL activity, accumulation of phenols and sugars while PAL inhibitor (2-aminoindane-2-phosphonic acid) depleted phenols and some amino acids (but free phenylalanine and sugars were elevated). Possible explanations in physiological, biochemical and ecological context are discussed. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  7. Microbial communities in acid water environments of two mines, China

    Energy Technology Data Exchange (ETDEWEB)

    Shengmu, Xiao; Xuehui, Xie [College of Environmental Science and Engineering, Donghua University, Shanghai (China); Jianshe, Liu [College of Environmental Science and Engineering, Donghua University, Shanghai (China); School of Resources Processing and Bioengineering, Central South University, Changsha (China)], E-mail: xiaoshengmu@gmail.com

    2009-03-15

    To understand the compositions and structures of microbial communities in different acid-aqueous environments, a PCR-based cloning approach was used. A total of five samples were collected from two mines in China. Two samples, named as G1 and G2, were acid mine drainage (AMD) samples and from Yunfu sulfide mine in Guangdong province, China. The rest of the three samples named as D1, DY and D3, were from three sites undertaking bioleaching in Yinshan lead-zinc mine in Jiangxi province, China. Phylogenetic analysis revealed that bacteria in the five samples fell into six putative divisions, which were {alpha}-Proteobacteria, {beta}-Proteobacteria, {gamma}-Proteobacteria, Firmicutes, Actinobacteria and Nitrospira. Archaea was only detected in the three samples from Yinshan lead-zinc mine, which fell into two phylogenentic divisions, Thermoplsma and Ferroplasma. In addition, the results of principal component analysis (PCA) suggested that more similar the geochemical properties in samples were, more similar microbial community structures in samples were. - Microbial community compositions in acid-aqueous environments from Chinese mines were studied, and the relationship with geochemical properties was obtained.

  8. Microbial communities in acid water environments of two mines, China

    International Nuclear Information System (INIS)

    Xiao Shengmu; Xie Xuehui; Liu Jianshe

    2009-01-01

    To understand the compositions and structures of microbial communities in different acid-aqueous environments, a PCR-based cloning approach was used. A total of five samples were collected from two mines in China. Two samples, named as G1 and G2, were acid mine drainage (AMD) samples and from Yunfu sulfide mine in Guangdong province, China. The rest of the three samples named as D1, DY and D3, were from three sites undertaking bioleaching in Yinshan lead-zinc mine in Jiangxi province, China. Phylogenetic analysis revealed that bacteria in the five samples fell into six putative divisions, which were α-Proteobacteria, β-Proteobacteria, γ-Proteobacteria, Firmicutes, Actinobacteria and Nitrospira. Archaea was only detected in the three samples from Yinshan lead-zinc mine, which fell into two phylogenentic divisions, Thermoplsma and Ferroplasma. In addition, the results of principal component analysis (PCA) suggested that more similar the geochemical properties in samples were, more similar microbial community structures in samples were. - Microbial community compositions in acid-aqueous environments from Chinese mines were studied, and the relationship with geochemical properties was obtained

  9. Interaction of hydrated electron with dietary flavonoids and phenolic acids. Rate constants and transient spectra studied by pulse radiolysis

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Zhongli; Li, Xifeng; Katsumura, Yosuke [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab

    2000-03-01

    The reaction rate constants and transient spectra of 11 flavonoids and 4 phenolic acids reacting with e{sub aq}{sup -} at neutral pH were measured. The results suggest that C{sub 4} keto group is the active site for e{sub aq}{sup -} to attack on flavonoids and phenolic acids, while the o-dihydroxy structure in B-ring, the C{sub 2,3} double bond, the C{sub 3}-OH group and glycosylation have little effects on the e{sub aq}{sup -} scavenging activities. (author)

  10. Impact of High-Power Pulsed Light on Microbial Contamination, Health Promoting Components and Shelf Life of Strawberries

    Directory of Open Access Journals (Sweden)

    Irina Buchovec

    2013-01-01

    Full Text Available The aim of this work is to evaluate the impact of high-power pulsed light (HPPL on the microbial control and nutritional properties of strawberries. Berries were treated with HPPL and afterwards analyzed in terms of microbial contamination, shelf life extension, antioxidant capacity, firmness, total phenolic, total anthocyanin and ascorbic acid content, and colour. Results indicate that the decontamination of strawberries by HPPL was significant compared to control. Naturally distributed mesophilic bacteria on the surface of strawberries were inactivated by 2.2 log, and inoculated Bacillus cereus and Listeria monocytogenes were inactivated by 1.5 and 1.1 log, respectively. Yeasts/microfungi distributed on the surface of strawberries were inactivated by 1 log. The shelf life of treated strawberries was extended by 2 days. The increase of temperature on the surface of fruit never exceeded 42 °C. No significantly important differences were observed in total phenolic, total anthocyanin and ascorbic acid content, and antioxidant capacity of strawberry fruits before and after pulsed light treatment. Moreover, no impact on the strawberry colour or firmness was found after HPPL treatment. In conclusion, HPPL is fast, effective, non-thermal and environmentally friendly technique which can be applied for microbial control of strawberries.

  11. Development of an analytical method for separation of phenolic acids by ultra-performance convergence chromatography (UPC2) using a column packed with a sub-2-μm particle.

    Science.gov (United States)

    Jiang, Hai; Yang, Liu; Xing, Xudong; Yan, Meiling; Guo, Xinyue; Yang, Bingyou; Wang, Qiu-Hong; Kuang, Hai-Xue

    2018-05-10

    Phenolic acids are important active components of certain Traditional Chinese Medicines (TCM) and have a wide range of biological effects. Separation and purification of phenolic acids remains challenging due to difficulties with quality control using existing chromatographic methods The purpose of this study was to compare the effects of different chromatographic columns and conditions for the separation of phenolic acids. The BEH column was determined to be optimal, providing efficient separation in the shortest time (17.00 min) using gradient elution with carbon dioxide as the mobile phase, methanol/acetonitrile (70:30, v/v) with 1% TFA as the modifier, and a flow rate of 0.8 mL/min. Good peak shapes were obtained, and the peak asymmetry values were close to 1.00 for all phenolic acids. The resolution was more than 2.83 for all separated peaks. The developed method was subsequently applied to the determination of phenolic acids in Xanthii Fructus. These results are beneficial for quality control and standardization of herbal drugs using UPC 2 , providing an efficient, rapid and environmentally friendly scientific basis for future analysis of phenolic acids. Copyright © 2018. Published by Elsevier B.V.

  12. Fatty acids, essential oil, and phenolics modifications of black cumin fruit under NaCl stress conditions.

    Science.gov (United States)

    Bourgou, Soumaya; Bettaieb, Iness; Saidani, Moufida; Marzouk, Brahim

    2010-12-08

    This research evaluated the effect of saline conditions on fruit yield, fatty acids, and essential oils compositions and phenolics content of black cumin (Nigella sativa). This plant is one of the most commonly found aromatics in the Mediterranean kitchen. Increasing NaCl levels to 60 mM decreased significantly the fruits yield by 58% and the total fatty acids amount by 35%. Fatty acids composition analysis indicated that linoleic acid was the major fatty acid (58.09%) followed by oleic (19.21%) and palmitic (14.77%) acids. Salinity enhanced the linoleic acid percentage but did not affect the unsaturation degree of the fatty acids pool and thus the oil quality. The essential oil yield was 0.39% based on the dry weight and increased to 0.53, 0.56, and 0.72% at 20, 40, and 60 mM NaCl. Salinity results on the modification of the essential oil chemotype from p-cymene in controls to γ-terpinene/p-cymene in salt-stressed plants. The amounts of total phenolics were lower in the treated plants. Salinity decreased mainly the amount of the major class, benzoics acids, by 24, 29, and 44% at 20, 40, and 60 mM NaCl. The results suggest that salt treatment may regulate bioactive compounds production in black cumin fruits, influencing their nutritional and industrial values.

  13. Concentration of phenolic acids and flavonoids in aronia melanocarpa (choke berry) juice by osmotic membrane distillation

    DEFF Research Database (Denmark)

    Fjerbæk Søtoft, Lene; Christensen, Knud Villy; Horn, Vibeke G

    2009-01-01

    melanocarpa is among the red fruits with the highest content of antioxidants [2] and has gained must interest due to the content of phenolic acids, procyanidins and polyphenolic compounds as anthocyanins [3]. In this study, osmotic membrane distillation (OMD) has been tested for the concentration of not only...... sugars, but in particular potentially bioactive components such as phenolic acids and flavonoids. OMD is carried out on 37 kg aronia juice at 30°C and the juice is concentrated from 12 wt% to 74 wt% dry matter. The juice is filtered to remove kernels, peel residues etc before concentration by OMD...

  14. Interaction between Wine Phenolic Acids and Salivary Proteins by Saturation-Transfer Difference Nuclear Magnetic Resonance Spectroscopy (STD-NMR) and Molecular Dynamics Simulations.

    Science.gov (United States)

    Ferrer-Gallego, Raúl; Hernández-Hierro, José Miguel; Brás, Natércia F; Vale, Nuno; Gomes, Paula; Mateus, Nuno; de Freitas, Victor; Heredia, Francisco J; Escribano-Bailón, María Teresa

    2017-08-09

    The interaction between phenolic compounds and salivary proteins is highly related to the astringency perception. Recently, it has been proven the existence of synergisms on the perceived astringency when phenolic acids were tested as mixtures in comparison to individual compounds, maintaining constant the total amount of the stimulus. The interactions between wine phenolic acids and the peptide fragment IB7 12 have been studied by saturation-transfer difference (STD) NMR spectroscopy. This technique provided the dissociation constants and the percentage of interaction between both individual and mixtures of hydroxybenzoic and hydroxycinnamic acids and the model peptide. It is noteworthy that hydroxybenzoic acids showed higher affinity for the peptide than hydroxycinnamic acids. To obtain further insights into the mechanisms of interaction, molecular dynamics simulations have been performed. Results obtained not only showed the ability of these compounds to interact with salivary proteins but also may justify the synergistic effect observed in previous sensory studies.

  15. Agricultural by-products with bioactive effects: A multivariate approach to evaluate microbial and physicochemical changes in a fresh pork sausage enriched with phenolic compounds from olive vegetation water.

    Science.gov (United States)

    Fasolato, Luca; Carraro, Lisa; Facco, Pierantonio; Cardazzo, Barbara; Balzan, Stefania; Taticchi, Agnese; Andreani, Nadia Andrea; Montemurro, Filomena; Martino, Maria Elena; Di Lecce, Giuseppe; Toschi, Tullia Gallina; Novelli, Enrico

    2016-07-02

    The use of phenolic compounds derived from agricultural by-products could be considered as an eco-friendly strategy for food preservation. In this study a purified phenol extract from olive vegetation water (PEOVW) was explored as a potential bioactive ingredient for meat products using Italian fresh sausage as food model. The research was developed in two steps: first, an in vitro delineation of the extract antimicrobial activities was performed, then, the PEOVW was tested in the food model to investigate the possible application in food manufacturing. The in vitro tests showed that PEOVW clearly inhibits the growth of food-borne pathogens such as Listeria monocytogenes and Staphylococcus aureus. The major part of Gram-positive strains was inhibited at the low concentrations (0.375-3mg/mL). In the production of raw sausages, two concentrates of PEOVW (L1: 0.075% and L2: 0.15%) were used taking into account both organoleptic traits and the bactericidal effects. A multivariate statistical approach allowed the definition of the microbial and physicochemical changes of sausages during the shelf life (14days). In general, the inclusion of the L2 concentration reduced the growth of several microbial targets, especially Staphylococcus spp. and LABs (2log10CFU/g reduction), while the increasing the growth of yeasts was observed. The reduction of microbial growth could be involved in the reduced lipolysis of raw sausages supplemented with PEOVW as highlighted by the lower amount of diacylglycerols. Moisture and aw had a significant effect on the variability of microbiological features, while food matrix (the sausages' environment) can mask the effects of PEOVW on other targets (e.g. Pseudomonas). Moreover, the molecular identification of the main representative taxa collected during the experimentation allowed the evaluation of the effects of phenols on the selection of bacteria. Genetic data suggested a possible strain selection based on storage time and the addition of

  16. Phenolic acids, hydrolyzable tannins, and antioxidant activity of geopropolis from the stingless bee Melipona fasciculata Smith.

    Science.gov (United States)

    Dutra, Richard Pereira; Abreu, Bruno Vinicius de Barros; Cunha, Mayara Soares; Batista, Marisa Cristina Aranha; Torres, Luce Maria Brandão; Nascimento, Flavia Raquel Fernandes; Ribeiro, Maria Nilce Sousa; Guerra, Rosane Nassar Meireles

    2014-03-26

    Geopropolis is a mixture of plant resins, waxes, and soil produced by the stingless bee Melipona fasciculata Smith. This paper describes the antioxidant activity and chemical composition of geopropolis produced by M. fasciculata. The total phenolic content determined with the Folin-Ciocalteu reagent was highest in the ethyl acetate fraction and hydroalcoholic extract. Antioxidant activity was assayed by the in vitro DPPH, ABTS, and FRAP assays. The hydroalcoholic extract and fractions of geopropolis, except for the hexane fraction, exhibited antioxidant activity against DPPH, ABTS, and FRAP. The phenolic compounds were identified by HPLC-DAD-MS on the basis of the evaluation of their UV-vis absorption maxima (λmax) and mass spectral analysis. Eleven compounds belonging to the classes of phenolic acids and hydrolyzable tannins (gallotannins and ellagitannins) were tentatively identified. These compounds are responsible for the antioxidant activity and high phenolic content of geopropolis produced by M. fasciculata.

  17. Global identification of the full-length transcripts and alternative splicing related to phenolic acid biosynthetic genes in Salvia miltiorrhiza

    Directory of Open Access Journals (Sweden)

    Zhichao eXu

    2016-02-01

    Full Text Available Salvianolic acids are among the main bioactive components in Salvia miltiorrhiza, and their biosynthesis has attracted widespread interest. However, previous studies on the biosynthesis of phenolic acids using next-generation sequencing platforms are limited with regard to the assembly of full-length transcripts. Based on hybrid-seq (next-generation and single molecular real-time sequencing of the S. miltiorrhiza root transcriptome, we experimentally identified 15 full-length transcripts and 4 alternative splicing events of enzyme-coding genes involved in the biosynthesis of rosmarinic acid. Moreover, we herein demonstrate that lithospermic acid B accumulates in the phloem and xylem of roots, in agreement with the expression patterns of the identified key genes related to rosmarinic acid biosynthesis. According to co-expression patterns, we predicted that 6 candidate cytochrome P450s and 5 candidate laccases participate in the salvianolic acid pathway. Our results provide a valuable resource for further investigation into the synthetic biology of phenolic acids in S. miltiorrhiza.

  18. Acid-deposition research program. Volume 2. Effects of acid-forming emissions on soil microorganisms and microbially-mediated processes

    Energy Technology Data Exchange (ETDEWEB)

    Visser, S.; Danielson, R.M.; Parr, J.F.

    1987-02-01

    The interactions of soil physical, chemical, and biological processes are ultimately expressed in a soil's fertility and its capacity for plant production. Consequently, much of the research conducted to date regarding the impact of acid-forming pollutants on soil properties has been geared towards possible effects on plant productivity. This trend continues in this paper where the effects of acidic deposition on microbial communities are reviewed in relation to potential impact on plant growth. The objectives of the review are to discuss: (1) The effects of acid-forming emissions (primarily S-containing pollutants) on microbial community structure with emphasis on qualitative and quantitative aspects; (2) The effects of acidic deposition on microbially mediated processes (i.e., community functions); (3) Acidification effects of pollutants on symbiotic and disease-causing microorganisms. The symbionts discussed include ectomycorrhizal fungi, vesicular-arbuscular mycorrhizal fungi, and N/sub 2/-fixing bacteria, particularly Rhizobium, while the disease-causing microorganisms will include those responsible for foliage, stem, and root diseases.

  19. Studies on potential effects of fumaric acid on rumen microbial fermentation, methane production and microbial community.

    Science.gov (United States)

    Riede, Susanne; Boguhn, Jeannette; Breves, Gerhard

    2013-01-01

    The greenhouse gas methane (CH4) contributes substantially to global climate change. As a potential approach to decrease ruminal methanogenesis, the effects of different dosages of fumaric acid (FA) on ruminal microbial metabolism and on the microbial community (archaea, bacteria) were studied using a rumen simulation technique (RUSITEC). FA acts as alternative hydrogen acceptor diverting 2H from methanogenesis of archaea towards propionate formation of bacteria. Three identical trials were conducted with 12 fermentation vessels over a period of 14 days. In each trial, four fermentation vessels were assigned to one of the three treatment groups differing in FA dosage: low fumaric acid (LFA), high fumaric acid (HFA) and without FA (control). FA was continuously infused with the buffer. Grass silage and concentrate served as substrate. FA led to decreases in pH and to higher production rates of total short chain fatty acids (SCFA) mediated by increases in propionate for LFA of 1.69 mmol d(-1) and in propionate and acetate production for HFA of 4.49 and 1.10 mmol d(-1), respectively. Concentrations of NH3-N, microbial crude protein synthesis, their efficiency, degradation of crude nutrients and detergent fibre fraction were unchanged. Total gas and CH4 production were not affected by FA. Effects of FA on structure of microbial community by means of single strand conformation polymorphism (SSCP) analyses could not be detected. Given the observed increase in propionate production and the unaffected CH4 production it can be supposed that the availability of reduction equivalents like 2H was not limited by the addition of FA in this study. It has to be concluded from the present study that the application of FA is not an appropriate approach to decrease the ruminal CH4 production.

  20. Early diagenesis of mangrove leaves in a tropical estuary: Molecular-level analyses of neutral sugars and lignin-derived phenols

    Science.gov (United States)

    Benner, Ronald; Weliky, Karen; Hedges, John I.

    1990-07-01

    Leaves of the red mangrove, Rhizophora mangle, were collected from trees and submerged sediments in a tropical mangrove swamp in the Bahamas. Weight-to-area measurements indicated that the most highly degraded black-colored leaves had undergone a 36% loss in ash-free dry weight (AFDW). Green leaves were characterized by an abundance of cyclitols (8.5% AFDW), glucose-rich aldose mixtures (20% AFDW) and relatively low yields of lignin-derived phenols (2% AFDW). Cyclitols were rapidly lost from senescing and submerged decomposing leaves, whereas the overall yields of aldoses and lignin-derived phenols remained fairly constant throughout the various stages of leaf decay. Decomposition patterns were therefore unusual in that lignin was lost at about the same rate as polysaccharides. Variable loss rates were observed within the individual aldoses, indicating the following stability series (most to least stable) for submerged leaves: hemicelluloses > cellulose > pectins and gums. Compositional patterns of lignin-derived phenols remained fairly constant throughout decomposition and were characterized by unusually high acid-to-aldehyde ratios (0.4) in all leaf samples. A laboratory leaching experiment was conducted with senescent leaf material to estimate the contribution of leaching to the observed compositional patterns. Assuming the amounts and patterns of materials leached in the laboratory experiment were similar to those for field degraded leaves, we estimated that leaching could account for 58% of the mass loss, 97% of the cyclitol loss, 46% of the aldose polysaccharide loss and 74% of the lignin loss. Microbial degradation appeared to be responsible for about half of the overall mass and polysaccharide loss. Vanillyl phenols were leached in preference to syringyl phenols and the vanillic acid-to-vanillin ratio for the leachate was very high (0.7). These results indicate that high acid-to-aldehyde ratios are not necessarily indicative of microbial oxidation and

  1. Radical-Scavenging Activity of Thiols, Thiobarbituric Acid Derivatives and Phenolic Antioxidants Determined Using the Induction Period Method for Radical Polymerization of Methyl Methacrylate

    Directory of Open Access Journals (Sweden)

    Seiichiro Fujisawa

    2012-04-01

    Full Text Available The radical-scavenging activities of two thiols, eight (thiobarbituric acid derivatives and six chain-breaking phenolic antioxidants were investigated using the induction period method for polymerization of methyl methacrylate (MMA initiated by thermal decomposition of 2,2’-azobisisobutyronitrile (AIBN and monitored by differential scanning calorimetry (DSC. The induction period (IP for the thiols 2-mercaptoethanol (ME and 2-mercapto-1-methylimidazole (MMI was about half that for phenolic antioxidants. Except for the potent inhibitor 5,5-dimethyl-2-thiobarbituric acid (3, the IP for thiobarbituric acid derivatives was about one tenth of that for phenolic antioxidants. The IP for 1,3,5-trimethyl-2-thiobarbituric acid (1 and 5-allyl-1, 3-dimethyl-2-thiobarbituric acid (7 was less than that of the control, possibly due to inhibition by a small amount of atmospheric oxygen in the DSC container. The ratio of the chain inhibition to that of chain propagation (CI/CP for the thiols and thiobarbituric acid compounds except for 1, 3 and 7 was about 10 times greater or greater than that for phenolic compounds. A kinetic chain length (KCL about 10% greater than that of the control was observed for 1, suggesting that 1 had chain transfer reactivity in the polymerization of MMA. The average molecular weight of polymers formed from thiobarbituric acid derivatives is discussed.

  2. Effect of operational strategies on activated sludge’s acclimation to phenol, subsequent aerobic granulation, and accumulation of polyhydoxyalkanoates

    Energy Technology Data Exchange (ETDEWEB)

    Wosman, Afrida; Lu, Yuhao; Sun, Supu; Liu, Xiang [Department of Environmental Science and Engineering, Fudan University, 220 Handan Road, Yangpu District, Shanghai, 200433 (China); Wan, Chunli, E-mail: hitwan@163.com [Department of Environmental Science and Engineering, Fudan University, 220 Handan Road, Yangpu District, Shanghai, 200433 (China); Zhang, Yi, E-mail: sybil_zhang@yahoo.com [Department of Environmental Science and Engineering, Fudan University, 220 Handan Road, Yangpu District, Shanghai, 200433 (China); Lee, Duu-Jong [Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Tay, JooHwa [Department of Civil Engineering, University of Calgary, Calgary, AB T2N 1N4 (Canada)

    2016-11-05

    Highlights: • Activated sludge was acclimated to phenol with 2 different strategies. • Acclimated sludge later underwent aerobic granulation process. • Sludge acclimated with phenol only degraded phenol and formed granules faster. • Sludge acclimated with phenol + acetate formed more stable and robust granules. • Both sludge exhibited significant PHA accumulation in early granulation stage. - Abstract: Aerobic granules, a relative novel form of microbial aggregate, are capable of degrading many toxic organic pollutants. Appropriate strategy is needed to acclimate seed sludge to the toxic compounds for successful granulation. In this study, two distinct strategies, i.e. mixed or single carbon sources, were experimented to obtain phenol-acclimated sludge. Their effects on reactor performance, biomass characteristics, microbial population and the granulation process were analyzed. Sludge fed with phenol alone exhibited faster acclimation and earlier appearance of granules, but possibly lower microbial diversity and reactor stability. Using a mixture of acetate and phenol in the acclimation stage, on the other hand, led to a reactor with slower phenol degradation and granulation, but eventual formation of strong and stable aerobic granules. In addition, the content of intracellular polyhydoxyakanoates (PHA) was also monitored, and significant accumulation was observed during the pre-granulation stage, where PHA >50% of dry weight was observed in both reactors.

  3. Effect of operational strategies on activated sludge’s acclimation to phenol, subsequent aerobic granulation, and accumulation of polyhydoxyalkanoates

    International Nuclear Information System (INIS)

    Wosman, Afrida; Lu, Yuhao; Sun, Supu; Liu, Xiang; Wan, Chunli; Zhang, Yi; Lee, Duu-Jong; Tay, JooHwa

    2016-01-01

    Highlights: • Activated sludge was acclimated to phenol with 2 different strategies. • Acclimated sludge later underwent aerobic granulation process. • Sludge acclimated with phenol only degraded phenol and formed granules faster. • Sludge acclimated with phenol + acetate formed more stable and robust granules. • Both sludge exhibited significant PHA accumulation in early granulation stage. - Abstract: Aerobic granules, a relative novel form of microbial aggregate, are capable of degrading many toxic organic pollutants. Appropriate strategy is needed to acclimate seed sludge to the toxic compounds for successful granulation. In this study, two distinct strategies, i.e. mixed or single carbon sources, were experimented to obtain phenol-acclimated sludge. Their effects on reactor performance, biomass characteristics, microbial population and the granulation process were analyzed. Sludge fed with phenol alone exhibited faster acclimation and earlier appearance of granules, but possibly lower microbial diversity and reactor stability. Using a mixture of acetate and phenol in the acclimation stage, on the other hand, led to a reactor with slower phenol degradation and granulation, but eventual formation of strong and stable aerobic granules. In addition, the content of intracellular polyhydoxyakanoates (PHA) was also monitored, and significant accumulation was observed during the pre-granulation stage, where PHA >50% of dry weight was observed in both reactors.

  4. Antifungal activity of extracts and phenolic compounds from ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-17

    Jun 17, 2009 ... Key words: Barringtonia racemosa, antifungal, HPLC, phenolic acids, flavonoids. ... Among them, phenolic acids and flavonoids have been the object of .... on the previous method as described by Crozier et al. ... Quantification.

  5. Determination of Phenolic Compounds in Wines

    Directory of Open Access Journals (Sweden)

    Charalampos Proestos

    2012-04-01

    Full Text Available Normal 0 false false false MicrosoftInternetExplorer4 Wine contains natural antioxidants such as phenolic compounds also known as bioactive compounds. Samples of commercially available Greek wines were analyzed in order to determine this phenolic content. For the analysis, Reversed Phase-High Performance Liquid Chromatography (RP-HPLC coupled with a multiwavelength Ultraviolet/visible (UV/vis detector was used. The most abundant phenolic substances detected were (+-catechin (13.5-72.4 mg L-1 , gallic acid (0.40-99.47 mg L-1 and caffeic acid (0.87-33.48 mg L-1. The principal component analysis (PCA technique was used to study differentiation among wines according to their production area. Red wines contained more phenolic substances than white ones. Differences of the phenolic composition in wines of the same cultivar were investigated too.

  6. Effect of Soil Amendments on Microbial Resilience Capacity of Acid Soil Under Copper Stress.

    Science.gov (United States)

    Mounissamy, Vassanda Coumar; Kundu, Samaresh; Selladurai, Rajendiran; Saha, Jayanta Kumar; Biswas, Ashish Kumar; Adhikari, Tapan; Patra, Ashok Kumar

    2017-11-01

    An incubation study was undertaken to study microbial resilience capacity of acid soil amended with farmyard manure (FYM), charcoal and lime under copper (Cu) perturbation. Copper stress significantly reduced enzymatic activities and microbial biomass carbon (MBC) in soil. Percent reduction in microbial activity of soil due to Cu stress was 74.7% in dehydrogenase activity, 59.9% in MBC, 48.2% in alkaline phosphatase activity and 15.1% in acid phosphatase activity. Soil treated with FYM + charcoal showed highest resistance index for enzymatic activities and MBC. Similarly, the highest resilience index for acid phosphatase activity was observed in soil amended with FYM (0.40), whereas FYM + charcoal-treated soil showed the highest resilience indices for alkaline, dehydrogenase activity and MBC: 0.50, 0.22 and 0.25, respectively. This investigation showed that FYM and charcoal application, either alone or in combination, proved to be better than lime with respect to microbial functional resistance and resilience of acid soil under Cu perturbation.

  7. Identification and Quantification of Flavonoids and Phenolic Acids in Burr Parsley (Caucalis platycarpos L., Using High-Performance Liquid Chromatography with Diode Array Detection and Electrospray Ionization Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Ana Mornar

    2009-07-01

    Full Text Available A sensitive method coupling high-performance liquid chromatography (HPLC with diode-array detector (DAD and electrospray ionization mass spectrometry (MS was optimized for the separation and identification of phenolic acids, flavonoid glycosides and flavonoid aglycones in the extract of burr parsley (Caucalis platycarpos L.. Fragmentation behavior of flavonoid glycosides and phenolic acids were investigated using ion trap mass spectrometry in negative electrospray ionization. The MS, MSn and UV data together with HPLC retention time (TR of phenolic acids and flavonoids allowed structural characterization of these compounds. Caffeoylquinic acid (CQA isomers, p-coumaroyl-quinic acids (p-CoQA, feruloylquinic acids (FQA, dicaffeoylquinic acids (diCQA, luteolin-7-O-rutinoside, apigenin-7-O-rutinoside as well as isolated chrysoeriol-7-O-rutinoside have been identified as constituents of C. platycarpos for the first time. An accurate, precise and sensitive LC-DAD method for quantification of four phenolic acids (3-O-caffeoylquinic, caffeic, p-coumaric, o-coumaric acid, four flavonoid glycosides (luteolin-7-O-glucoside, apigenin-7-O-glucoside, quercetin-3-O-galactoside, quercetin-3-O-rhamnoside, and three flavonoid aglycones (luteolin, apigenin, chrysoeriol in C. platycarpos extract was validated in terms of linearity, limit of detection, limit of quantification, precision and accuracy. 3-O-caffeoylquinic acid was the predominant phenolic acid and luteolin-7-O-glucoside was the predominant flavonoid glycoside.

  8. Phenolic content variability and its chromosome location in tritordeum

    Science.gov (United States)

    Navas-Lopez, José F.; Ostos-Garrido, Francisco J.; Castillo, Almudena; Martín, Antonio; Gimenez, Maria J.; Pistón, Fernando

    2014-01-01

    For humans, wheat is the most important source of calories, but it is also a source of antioxidant compounds that are involved in the prevention of chronic disease. Among the antioxidant compounds, phenolic acids have great potential to improve human health. In this paper we evaluate the effect of environmental and genetic factors on the phenolics content in the grain of a collection of tritordeums with different cytoplasm and chromosome substitutions. To this purpose, tritordeum flour was used for extraction of the free, conjugates and bound phenolic compounds. These phenolic compounds were identified and quantified by RP-HPLC and the results were analyzed by univariate and multivariate methods. This is the first study that describes the composition of phenolic acids of the amphiploid tritordeum. As in wheat, the predominant phenolic compound is ferulic acid. In tritordeum there is great variability for the content of phenolic compounds and the main factor which determines its content is the genotype followed by the environment, in this case included in the year factor. Phenolic acid content is associated with the substitution of chromosome DS1D(1Hch) and DS2D(2Hch), and the translocation 1RS/1BL in tritordeum. The results show that there is high potential for further improving the quality and quantity of phenolics in tritordeum because this amphiploid shows high variability for the content of phenolic compounds. PMID:24523725

  9. Separation of phenolic acids from monosaccharides by low-pressure nanofiltration integrated with laccase pre-treatments

    DEFF Research Database (Denmark)

    Luo, Jianquan; Zeuner, Birgitte; Morthensen, Sofie Thage

    2015-01-01

    (e.g. dimers and trimers) were mainly responsible for the adsorption fouling. Free laccase treatment was preferred since it was prone to produce large polymeric products while the biocatalytic membrane with immobilized laccase was not suitable as it generated smaller polymers by in-situ product...... monosaccharides (xylose, arabinose, glucose). Four commercial NF membranes (NF270, NP030, NTR7450 and NP010) were evaluated at different pH values and with various laccase pre-treatments (for polymerization of phenolic acids). The results showed that with increasing pH, the retentions of phenolic acids by NF...... could be polymerized by laccase and then completely retained by the NF membranes via size exclusion at pH 5.15. The formation of large polymeric products by laccase could alleviate the irreversible fouling in/on a NF membrane and decrease the monosaccharide retention, while the small polymeric products...

  10. Determination of the Acid Dissociation Constant of a Phenolic Acid by High Performance Liquid Chromatography: An Experiment for the Upper Level Analytical Chemistry Laboratory

    Science.gov (United States)

    Raboh, Ghada

    2018-01-01

    A high performance liquid chromatography (HPLC) experiment for the upper level analytical chemistry laboratory is described. The students consider the effect of mobile-phase composition and pH on the retention times of ionizable compounds in order to determine the acid dissociation constant, K[subscript a], of a phenolic acid. Results are analyzed…

  11. Microbial diversity and metabolite composition of Belgian red-brown acidic ales.

    Science.gov (United States)

    Snauwaert, Isabel; Roels, Sanne P; Van Nieuwerburg, Filip; Van Landschoot, Anita; De Vuyst, Luc; Vandamme, Peter

    2016-03-16

    Belgian red-brown acidic ales are sour and alcoholic fermented beers, which are produced by mixed-culture fermentation and blending. The brews are aged in oak barrels for about two years, after which mature beer is blended with young, non-aged beer to obtain the end-products. The present study evaluated the microbial community diversity of Belgian red-brown acidic ales at the end of the maturation phase of three subsequent brews of three different breweries. The microbial diversity was compared with the metabolite composition of the brews at the end of the maturation phase. Therefore, mature brew samples were subjected to 454 pyrosequencing of the 16S rRNA gene (bacteria) and the internal transcribed spacer region (yeasts) and a broad range of metabolites was quantified. The most important microbial species present in the Belgian red-brown acidic ales investigated were Pediococcus damnosus, Dekkera bruxellensis, and Acetobacter pasteurianus. In addition, this culture-independent analysis revealed operational taxonomic units that were assigned to an unclassified fungal community member, Candida, and Lactobacillus. The main metabolites present in the brew samples were L-lactic acid, D-lactic acid, and ethanol, whereas acetic acid was produced in lower quantities. The most prevailing aroma compounds were ethyl acetate, isoamyl acetate, ethyl hexanoate, and ethyl octanoate, which might be of impact on the aroma of the end-products. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. The impact of drying techniques on phenolic compound, total phenolic content and antioxidant capacity of oat flour tarhana.

    Science.gov (United States)

    Değirmencioğlu, Nurcan; Gürbüz, Ozan; Herken, Emine Nur; Yıldız, Aysun Yurdunuseven

    2016-03-01

    In this study, the changes in phenolic composition, total phenolic content, and antioxidant capacity of tarhanas supplemented with oat flour (OF) at the levels of 20-100% (w/w) after three drying treatments (sun-, oven-, and microwave drying) were investigated. A total of seventeen phenolic standards have been screened in tarhanas, and the most abundant flavonol and phenolic acid compounds were kaempferol (23.62mg/g) and 3-hydroxy-4-metoxy cinnamic acid (9.60mg/g). The total phenolic content amount gradually increased with the addition of OF to tarhana, but decidedly higher total phenolic content was found in samples oven dried at 55°C as compared with other methods. The microwave- and oven dried tarhana samples showed higher TEACDPPH and TEACABTS values than those dried with the other methods, respectively, in higher OF amounts. Consequently, oven- and microwave-drying can be recommended to retain the highest for phenolic compounds as well as maximal antioxidant capacity in OF supplemented tarhana samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Quorum Quenching and Microbial Control through Phenolic Extract of Eugenia Uniflora Fruits.

    Science.gov (United States)

    Rodrigues, Adeline Conceição; Zola, Flávia Guimarães; Ávila Oliveira, Brígida D'; Sacramento, Nayara Thais Barbosa; da Silva, Elis Regina; Bertoldi, Michele Corrêa; Taylor, Jason Guy; Pinto, Uelinton Manoel

    2016-10-01

    We describe the characterization of the centesimal composition, mineral and phenolic content of Eugenia uniflora fruit and the determination of the antioxidant, antimicrobial and quorum quenching activities of the pulp phenolic extract. Centesimal composition was determined according to standard methods; trace elements were measured by total reflection X-ray fluorescence spectroscopy. The phenolic compounds were extracted by solid-phase chromatography and quantified by spectrophotometry. Antioxidant activity was determined by using 3 different methods. Antimicrobial activity was evaluated against a panel of foodborne microorganisms and antiquorum sensing activity in Chromobacterium violaceum was performed by measuring inhibition of quorum sensing dependent violacein production. The centesimal composition (per 100 g of pulp) was as follows: protein 3.68 ± 0.21 g, lipids 0.02 ± 0.03 g, carbohydrates 10.31 g and fiber 2.06 g. Trace elements (mg/g of pulp) were determined as: K 0.90, Ca 3.36, Fe 0.60, Zn 0.17, Cl 0.56, Cr 0.06, Ni 0.04, and Cu 0.07. The pulp is a source of phenolic compounds and presents antioxidant activity similar to other berries. The fruit phenolic extract inhibited all tested bacteria. We also found that the fruit phenolic extract at low subinhibitory concentrations inhibited up to 96% of violacein production in C. violaceum, likely due to the fruit's phenolic content. This study shows the contribution of E. uniflora phenolic compounds to the antioxidant, antimicrobial and the newly discovered quorum quenching activity, all of which could be used by the food and pharmaceutical industries to develop new functional products. © 2016 Institute of Food Technologists®.

  14. Phenolic acids significantly contribute to antioxidant potency of Gynostemma pentaphyllum aqueous and methanol extracts

    Czech Academy of Sciences Publication Activity Database

    Samec, D.; Valek-Zulj, L.; Martinez, S.; Grúz, Jiří; Piljac, A.; Piljac-Žegarac, J.

    2016-01-01

    Roč. 84, JUN (2016), s. 104-107 ISSN 0926-6690 R&D Projects: GA ČR GA14-34792S; GA MŠk(CZ) LO1204; GA MŠk LK21306 Institutional support: RVO:61389030 Keywords : Gynostemma pentaphyllum * Phenolic acids * Mass spectrometry Subject RIV: CE - Biochemistry Impact factor: 3.181, year: 2016

  15. Comparative metagenomic and metatranscriptomic analyses of microbial communities in acid mine drainage.

    Science.gov (United States)

    Chen, Lin-xing; Hu, Min; Huang, Li-nan; Hua, Zheng-shuang; Kuang, Jia-liang; Li, Sheng-jin; Shu, Wen-sheng

    2015-07-01

    The microbial communities in acid mine drainage have been extensively studied to reveal their roles in acid generation and adaption to this environment. Lacking, however, are integrated community- and organism-wide comparative gene transcriptional analyses that could reveal the response and adaptation mechanisms of these extraordinary microorganisms to different environmental conditions. In this study, comparative metagenomics and metatranscriptomics were performed on microbial assemblages collected from four geochemically distinct acid mine drainage (AMD) sites. Taxonomic analysis uncovered unexpectedly high microbial biodiversity of these extremely acidophilic communities, and the abundant taxa of Acidithiobacillus, Leptospirillum and Acidiphilium exhibited high transcriptional activities. Community-wide comparative analyses clearly showed that the AMD microorganisms adapted to the different environmental conditions via regulating the expression of genes involved in multiple in situ functional activities, including low-pH adaptation, carbon, nitrogen and phosphate assimilation, energy generation, environmental stress resistance, and other functions. Organism-wide comparative analyses of the active taxa revealed environment-dependent gene transcriptional profiles, especially the distinct strategies used by Acidithiobacillus ferrivorans and Leptospirillum ferrodiazotrophum in nutrients assimilation and energy generation for survival under different conditions. Overall, these findings demonstrate that the gene transcriptional profiles of AMD microorganisms are closely related to the site physiochemical characteristics, providing clues into the microbial response and adaptation mechanisms in the oligotrophic, extremely acidic environments.

  16. A comparative evaluation of different types of microbial electrolysis desalination cells for malic acid production.

    Science.gov (United States)

    Liu, Guangli; Zhou, Ying; Luo, Haiping; Cheng, Xing; Zhang, Renduo; Teng, Wenkai

    2015-12-01

    The aim of this study was to investigate different microbial electrolysis desalination cells for malic acid production. The systems included microbial electrolysis desalination and chemical-production cell (MEDCC), microbial electrolysis desalination cell (MEDC) with bipolar membrane and anion exchange membrane (BP-A MEDC), MEDC with bipolar membrane and cation exchange membrane (BP-C MEDC), and modified microbial desalination cell (M-MDC). The microbial electrolysis desalination cells performed differently in terms of malic acid production and energy consumption. The MEDCC performed best with the highest malic acid production rate (18.4 ± 0.6 mmol/Lh) and the lowest energy consumption (0.35 ± 0.14 kWh/kg). The best performance of MEDCC was attributable to the neutral pH condition in the anode chamber, the lowest internal resistance, and the highest Geobacter percentage of the anode biofilm population among all the reactors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Recycling of phenolic compounds in Borneo's tropical peat swamp forests.

    Science.gov (United States)

    Yule, Catherine M; Lim, Yau Yan; Lim, Tse Yuen

    2018-02-07

    Tropical peat swamp forests (TPSF) are globally significant carbon stores, sequestering carbon mainly as phenolic polymers and phenolic compounds (particularly as lignin and its derivatives) in peat layers, in plants, and in the acidic blackwaters. Previous studies show that TPSF plants have particularly high levels of phenolic compounds which inhibit the decomposition of organic matter and thus promote peat accumulation. The studies of phenolic compounds are thus crucial to further understand how TPSF function with respect to carbon sequestration. Here we present a study of cycling of phenolic compounds in five forests in Borneo differing in flooding and acidity, leaching of phenolic compounds from senescent Macaranga pruinosa leaves, and absorption of phenolics by M. pruinosa seedlings. The results of the study show that total phenolic content (TPC) in soil and leaves of three species of Macaranga were highest in TPSF followed by freshwater swamp forest and flooded limestone forest, then dry land sites. Highest TPC values were associated with acidity (in TPSF) and waterlogging (in flooded forests). Moreover, phenolic compounds are rapidly leached from fallen senescent leaves, and could be reabsorbed by tree roots and converted into more complex phenolics within the leaves. Extreme conditions-waterlogging and acidity-may facilitate uptake and synthesis of protective phenolic compounds which are essential for impeded decomposition of organic matter in TPSF. Conversely, the ongoing drainage and degradation of TPSF, particularly for conversion to oil palm plantations, reverses the conditions necessary for peat accretion and carbon sequestration.

  18. Extracellular laccase production and phenolic degradation by an olive mill wastewater isolate

    Directory of Open Access Journals (Sweden)

    R. Kumar

    2018-03-01

    Full Text Available Olive mill wastewater (OMWW presents a challenge to the control of effluents due to the presence of a high organic load, antimicrobial agents (monomeric-polymeric phenols, volatile acids, polyalcohols, and tannins, salinity and acidity. In this study, the production of extracellular laccase, monomeric or polymeric phenol, from an OMWW isolate based on its ability to biodegrade phenols and gallic acid as a model of phenolic compounds in OMWW was investigated. Phylogenetic analysis of the 16S RNA gene sequences identified the bacterial isolate (Acinetobacter REY as being closest to Acinetobacter pittii. This isolate exhibited a constitutive production of extracellular laccase with an activity of 1.5 and 1.3 U ml/L when supplemented with the inducers CuSO4 and CuSO4+phenols, respectively. Batch experiments containing minimal media supplemented with phenols or gallic acid as the sole carbon and energy source were performed in order to characterize their phenolic biodegradability. Acinetobacter REY was capable of biodegrading up to 200 mg/L of phenols and gallic acid both after 10 h and 72 h, respectively.

  19. Inhibitory effects of phenolic compounds of rice straw formed by saccharification during ethanol fermentation by Pichia stipitis.

    Science.gov (United States)

    Wang, Xiahui; Tsang, Yiu Fai; Li, Yuhao; Ma, Xiubing; Cui, Shouqing; Zhang, Tian-Ao; Hu, Jiajun; Gao, Min-Tian

    2017-11-01

    In this study, it was found that the type of phenolic acids derived from rice straw was the major factor affecting ethanol fermentation by Pichia stipitis. The aim of this study was to investigate the inhibitory effect of phenolic acids on ethanol fermentation with rice straw. Different cellulases produced different ratios of free phenolic acids to soluble conjugated phenolic acids, resulting in different fermentation efficiencies. Free phenolic acids exhibited much higher inhibitory effect than conjugated phenolic acids. The flow cytometry results indicated that the damage to cell membranes was the primary mechanism of inhibition of ethanol fermentation by phenolic acids. The removal of free phenolic acids from the hydrolysates increased ethanol productivity by 2.0-fold, indicating that the free phenolic acids would be the major inhibitors formed during saccharification. The integrated process for ethanol and phenolic acids may constitute a new strategy for the production of low-cost ethanol. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Methanol Extracts of 28 Hieracium Species from the Balkan Peninsula - Comparative LC-MS Analysis, Chemosystematic Evaluation of their Flavonoid and Phenolic Acid Profiles and Antioxidant Potentials.

    Science.gov (United States)

    Milutinović, Violeta; Niketić, Marjan; Ušjak, Ljuboš; Nikolić, Dejan; Krunić, Aleksej; Zidorn, Christian; Petrović, Silvana

    2018-01-01

    Hieracium s. str. represents one of the largest and most complex genera of flowering plants. As molecular genetics seems unlikely to disentangle intricate relationships within this reticulate species complex, analysis of flavonoids and phenolic acids, known as good chemosystematic markers, promise to be more reliable. Data about pharmacological activity of Hieracium species are scarce. Evaluation of the chemosystematic significance of flavonoids and phenolic acids of methanol extracts of aerial flowering parts of 28 Hieracium species from the Balkans. Additionally, investigation of antioxidant potentials of the extracts. Comparative qualitative and quantitative analysis of flavonoids and phenolic acids was performed by LC-MS. Multivariate statistical data analysis included non-metric multidimensional scaling (nMDS), unweighted pair-group arithmetic averages (UPGMA) and principal component analysis (PCA). Antioxidant activity was evaluated using three colorimetric tests. Dominant phenolics in almost all species were luteolin type flavonoids, followed by phenolic acids. Although the investigated Hieracium species share many compounds, the current classification of the genus was supported by nMDS and UPGMA analyses with a good resolution to the group level. Hieracium naegelianum was clearly separated from the other investigated species. Spatial and ecological distances of the samples were likely to influence unexpected differentiation of some groups within H. sect. Pannosa. The vast majority of dominant compounds significantly contributed to differences between taxa. The antioxidant potential of the extracts was satisfactory and in accordance with their phenolics composition. Comparative LC-MS analysis demonstrated that flavonoids and phenolic acids are good indicators of chemosystematic relationships within Hieracium, particularly between non-hybrid species and groups from the same location. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley

  1. Structure-thermodynamics-antioxidant activity relationships of selected natural phenolic acids and derivatives: an experimental and theoretical evaluation.

    Science.gov (United States)

    Chen, Yuzhen; Xiao, Huizhi; Zheng, Jie; Liang, Guizhao

    2015-01-01

    Phenolic acids and derivatives have potential biological functions, however, little is known about the structure-activity relationships and the underlying action mechanisms of these phenolic acids to date. Herein we investigate the structure-thermodynamics-antioxidant relationships of 20 natural phenolic acids and derivatives using DPPH• scavenging assay, density functional theory calculations at the B3LYP/6-311++G(d,p) levels of theory, and quantitative structure-activity relationship (QSAR) modeling. Three main working mechanisms (HAT, SETPT and SPLET) are explored in four micro-environments (gas-phase, benzene, water and ethanol). Computed thermodynamics parameters (BDE, IP, PDE, PA and ETE) are compared with the experimental radical scavenging activities against DPPH•. Available theoretical and experimental investigations have demonstrated that the extended delocalization and intra-molecular hydrogen bonds are the two main contributions to the stability of the radicals. The C = O or C = C in COOH, COOR, C = CCOOH and C = CCOOR groups, and orthodiphenolic functionalities are shown to favorably stabilize the specific radical species to enhance the radical scavenging activities, while the presence of the single OH in the ortho position of the COOH group disfavors the activities. HAT is the thermodynamically preferred mechanism in the gas phase and benzene, whereas SPLET in water and ethanol. Furthermore, our QSAR models robustly represent the structure-activity relationships of these explored compounds in polar media.

  2. Assessing wines based on total phenols, phenolic acids and ...

    African Journals Online (AJOL)

    The aim of this study was to investigate the phenolic profile of some red wines produced from native Turkish grape varieties (Vitis vinifera Öküzgözü, V. vinifera Boğazkere and V. vinifera Shiraz) and some red fruit wines produced from pomegranate (Punica granatum L.), myrtle (Myrtus communis L.) and black mulberry ...

  3. Conversion of Uric Acid into Ammonium in Oil-Degrading Marine Microbial Communities: a Possible Role of Halomonads

    KAUST Repository

    Gertler, Christoph

    2015-04-29

    Uric acid is a promising hydrophobic nitrogen source for biostimulation of microbial activities in oil-impacted marine environments. This study investigated metabolic processes and microbial community changes in a series of microcosms using sediment from the Mediterranean and the Red Sea amended with ammonium and uric acid. Respiration, emulsification, ammonium and protein concentration measurements suggested a rapid production of ammonium from uric acid accompanied by the development of microbial communities containing hydrocarbonoclastic bacteria after 3 weeks of incubation. About 80 % of uric acid was converted to ammonium within the first few days of the experiment. Microbial population dynamics were investigated by Ribosomal Intergenic Spacer Analysis and Illumina sequencing as well as by culture-based techniques. Resulting data indicated that strains related to Halomonas spp. converted uric acid into ammonium, which stimulated growth of microbial consortia dominated by Alcanivorax spp. and Pseudomonas spp. Several strains of Halomonas spp. were isolated on uric acid as the sole carbon source showed location specificity. These results point towards a possible role of halomonads in the conversion of uric acid to ammonium utilized by hydrocarbonoclastic bacteria. © 2015 Springer Science+Business Media New York

  4. Conversion of Uric Acid into Ammonium in Oil-Degrading Marine Microbial Communities: a Possible Role of Halomonads

    KAUST Repository

    Gertler, Christoph; Bargiela, Rafael; Mapelli, Francesca; Han, Xifang; Chen, Jianwei; Hai, Tran; Amer, Ranya A.; Mahjoubi, Mouna; Malkawi, Hanan Issa; Magagnini, Mirko; Cherif, Ameur; Abdel-Fattah, Yasser Refaat; Kalogerakis, Nicolas E.; Daffonchio, Daniele; Ferrer, Manuel; Golyshin, Peter N.

    2015-01-01

    Uric acid is a promising hydrophobic nitrogen source for biostimulation of microbial activities in oil-impacted marine environments. This study investigated metabolic processes and microbial community changes in a series of microcosms using sediment from the Mediterranean and the Red Sea amended with ammonium and uric acid. Respiration, emulsification, ammonium and protein concentration measurements suggested a rapid production of ammonium from uric acid accompanied by the development of microbial communities containing hydrocarbonoclastic bacteria after 3 weeks of incubation. About 80 % of uric acid was converted to ammonium within the first few days of the experiment. Microbial population dynamics were investigated by Ribosomal Intergenic Spacer Analysis and Illumina sequencing as well as by culture-based techniques. Resulting data indicated that strains related to Halomonas spp. converted uric acid into ammonium, which stimulated growth of microbial consortia dominated by Alcanivorax spp. and Pseudomonas spp. Several strains of Halomonas spp. were isolated on uric acid as the sole carbon source showed location specificity. These results point towards a possible role of halomonads in the conversion of uric acid to ammonium utilized by hydrocarbonoclastic bacteria. © 2015 Springer Science+Business Media New York

  5. Phenolics content and antioxidant capacity of commercial red fruit juices

    Directory of Open Access Journals (Sweden)

    Mitić Milan N.

    2011-01-01

    Full Text Available The content of phenolics: total phenols (TP, flavonoids (TF, anthocyanins (TA and hydroxicinnamic acid as well as the total antioxidant capacity (TAC in nine commercial red fruit juices (sour cherry, black currant, red grape produced in Serbia were evaluated. The total compounds content was measured by spectrophotometric methods, TAC was determined using DPPH assays, and individual anthocyanins and hydroxycinnamic acids was determined using HPLC-DAD methods. Among the examined fruit juices, the black currant juices contained the highest amounts of all groups of the phenolics and exhibited strong antioxidant capacity. The amount of anthocyanins determined by HPLC method ranged from 92.36 to 512.73 mg/L in red grape and black currant juices, respectively. The anthocyanins present in the investigated red fruit juices were derivatives of cyanidin, delphinidin, petunidin, peonidin and malvidin. The predominant phenolic acid was neoclorogenic acid in sour cherry, caffeic acid in black currant, and p-coumaric acid in black grape juices. Generally, the red fruit juices produced in the Serbia are a rich source of the phenolic, which show evident antioxidant capacity.

  6. Effect of ascorbic acid and dehydration on concentrations of total phenolics, antioxidant capacity, anthocyanins, and color in fruits.

    Science.gov (United States)

    Rababah, Taha M; Ereifej, Khalil I; Howard, L

    2005-06-01

    The purpose of this investigation was to report on the total phenolics, anthocyanins, and oxygen radical absorbance capacity (ORAC) of strawberry, peach, and apple, the influence of dehydration and ascorbic acid treatments on the levels of these compounds, and the effect of these treatments on fruit color. Results showed that fresh strawberry had the highest levels for total phenolics [5317.9 mg of chlorogenic acid equivalents (CAE)/kg], whereas lower levels were found in fresh apple and peach (3392.1 and 1973.1 mg of CAE/kg, respectively), and for anthocyanins (138.8 mg/kg), whereas lower levels were found in fresh apple and peaches (11.0 and 18.9 mg/kg, respectively; fresh strawberry had an ORAC value of 62.9 mM/kg Trolox equivalents. The fresh apple and peach were found to have ORAC values of 14.7 and 11.4 mM/kg of Trolox equivalents, respectively. The color values indicated that the addition of 0.1% ascorbic acid increased the lightness (L) and decreased the redness (a) and yellowness (b) color values of fresh strawberry, peach, and apple, sliced samples, and the puree made from them. Also, results showed that dehydration is a good method to keep the concentrations of total phenolics and anthocyanins and ORAC values at high levels.

  7. Effects of Organic and Conventional Growth Systems on the Content of Flavonoids in Onions and Phenolic Acids in Carrots and Potatoes

    DEFF Research Database (Denmark)

    Soltoft, M.; Nielsen, J.; Lauren, K.H.

    2010-01-01

    The demand for organic food products is steadily increasing partly due to the expected health benefits of organic food consumption. Polyphenols, such as flavonoids and phenolic acids, are a group of secondary plant metabolites with presumably beneficial health effects, and contents in plants....... The contents of flavonoids and phenolic acids in plants were analyzed by pressurized liquid extraction and high-performance liquid chromatography ultraviolet quantification. In onions and carrots, no statistically significant differences between growth systems were found for any of the analyzed polyphenols...

  8. Application of HPLC and ESI-MS techniques in the analysis of phenolic acids and flavonoids from green leafy vegetables (GLVs)

    Institute of Scientific and Technical Information of China (English)

    Ramesh Kumar Bonta

    2017-01-01

    Diets containing high proportions of fruits and vegetables reduce the risk of onset of chronic diseases.The role of herbal medicines in improving human health is gaining popularity over the years,which also increases the need for safety and efficiency of these products.Green leafy vegetables(GLVs)are the richest source of phenolic compounds with excellent antioxidant properties. Increased consumption of diets containing phenolic compounds may give positive and better results to human health and significantly improves the immune system.Highly selective,susceptible and versatile analytical techniques are necessary for extraction,identifica-tion, and quantification of phenolic compounds from plant extracts, which helps to utilize their important biological properties. Recent advances in the pre-treatment procedures, separation techniques and spectro-metry methods are used for qualitative and quantitative analysis of phenolic compounds.The online coupling of liquid chromatography with mass spectrometry(LC–MS)has become a useful tool in the metabolic profiling of plant samples.In this review,the separation and identification of phenolic acids and flavonoids from GLVs by LC–MS have been discussed along with the general extraction procedures and other sources of mass spectrometer used. The review is devoted to the understanding of the structural configuration, nature and accumulation pattern of phenolic acids and flavonoids in plants and to highlighting the recent developments in the chemical investigation of these compounds by chromatographic and spectroscopic techniques.It concludes with the advantages of the combination of these two methods and prospects.

  9. Application of HPLC and ESI-MS techniques in the analysis of phenolic acids and flavonoids from green leafy vegetables (GLVs).

    Science.gov (United States)

    Kumar, B Ramesh

    2017-12-01

    Diets containing high proportions of fruits and vegetables reduce the risk of onset of chronic diseases. The role of herbal medicines in improving human health is gaining popularity over the years, which also increases the need for safety and efficiency of these products. Green leafy vegetables (GLVs) are the richest source of phenolic compounds with excellent antioxidant properties. Increased consumption of diets containing phenolic compounds may give positive and better results to human health and significantly improves the immune system. Highly selective, susceptible and versatile analytical techniques are necessary for extraction, identification, and quantification of phenolic compounds from plant extracts, which helps to utilize their important biological properties. Recent advances in the pre-treatment procedures, separation techniques and spectrometry methods are used for qualitative and quantitative analysis of phenolic compounds. The online coupling of liquid chromatography with mass spectrometry (LC-MS) has become a useful tool in the metabolic profiling of plant samples. In this review, the separation and identification of phenolic acids and flavonoids from GLVs by LC-MS have been discussed along with the general extraction procedures and other sources of mass spectrometer used. The review is devoted to the understanding of the structural configuration, nature and accumulation pattern of phenolic acids and flavonoids in plants and to highlighting the recent developments in the chemical investigation of these compounds by chromatographic and spectroscopic techniques. It concludes with the advantages of the combination of these two methods and prospects.

  10. Bioreversible Derivatives of Phenol. 2. Reactivity of Carbonate Esters with Fatty Acid-like Structures Towards Hydrolysis in Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Claus Larsen

    2007-10-01

    Full Text Available A series of model phenol carbonate ester prodrugs encompassing derivatives with fatty acid-like structures were synthesized and their stability as a function of pH (range 0.4 – 12.5 at 37°C in aqueous buffer solutions investigated. The hydrolysis rates in aqueous solutions differed widely, depending on the selected pro-moieties (alkyl and aryl substituents. The observed reactivity differences could be rationalized by the inductive and steric properties of the substituent groups when taking into account that the mechanism of hydrolysis may change when the type of pro-moiety is altered, e.g. n-alkyl vs. t-butyl. Hydrolysis of the phenolic carbonate ester 2-(phenoxycarbonyloxy-acetic acid was increased due to intramolecular catalysis, as compared to the derivatives synthesized from ω-hydroxy carboxylic acids with longer alkyl chains. The carbonate esters appear to be less reactive towards specific acid and base catalyzed hydrolysis than phenyl acetate. The results underline that it is unrealistic to expect that phenolic carbonate ester prodrugs can be utilized in ready to use aqueous formulations. The stability of the carbonate ester derivatives with fatty acid-like structures, expected to interact with the plasma protein human serum albumin, proved sufficient for further in vitro and in vivo evaluation of the potential of utilizing HSA binding in combination with the prodrug approach for optimization of drug pharmacokinetics.

  11. Process for the treatment of hydrocarbons containing acidic or phenolic substances

    Energy Technology Data Exchange (ETDEWEB)

    1949-03-15

    A process for the treatment of hydrocarbon substances containing acidic or phenolic substances, such as the pyrogenation products of wood, lignite peat, coals, shales, and the like consists in passing the vapours of the substances to be treated over a layer of molten metal whereby a first pyrogenous decomposition of the said vapours in their gaseous phase is obtained. The decomposed gases then pass over a layer of a basic alkaline earth salt heated to a temperature sufficient to maintain the substances in a vaporous condition and the salt in a reactive state.

  12. Total phenolics and total flavonoids in selected Indian medicinal plants.

    Science.gov (United States)

    Sulaiman, C T; Balachandran, Indira

    2012-05-01

    Plant phenolics and flavonoids have a powerful biological activity, which outlines the necessity of their determination. The phenolics and flavonoids content of 20 medicinal plants were determined in the present investigation. The phenolic content was determined by using Folin-Ciocalteu assay. The total flavonoids were measured spectrophotometrically by using the aluminium chloride colorimetric assay. The results showed that the family Mimosaceae is the richest source of phenolics, (Acacia nilotica: 80.63 mg gallic acid equivalents, Acacia catechu 78.12 mg gallic acid equivalents, Albizia lebbeck 66.23 mg gallic acid equivalents). The highest total flavonoid content was revealed in Senna tora which belongs to the family Caesalpiniaceae. The present study also shows the ratio of flavonoids to the phenolics in each sample for their specificity.

  13. Determination of phenol in tar

    Energy Technology Data Exchange (ETDEWEB)

    Dierichs, A; Heinichen, G

    1955-01-01

    During low-temperature carbonization of lignite, the phenols and other oxygenated compounds appear both in the aqueous-process liquor and in the tar. Measurements of these oxygenated components resulting from low-temperature carbonization may serve as a parameter for the classification of lignites. However, such measurements are complicated by the instability of the tar and the complex nature of some of the acidic substances. Difficulties with the previous methods of analysis are reviewed. The present method outlines separation of aqueous-process liquor from lignite tar in a Fischer retort, followed by determination of phenols and fatty acids in the tar phase. The jacketed tar receiver is washed with 300 milliliter xylol and treated with aqueous caustic washes. Neutral oils are separated from the aqueous alkali solution. It is then extracted with ether and finally acidified with HCl. Solids are filtered off, and phenols and fatty acids are separated by Na/sub 2/CO/sub 3/ solution.

  14. Exogenously applied abscisic acid to Yan73 (V. vinifera) grapes enhances phenolic content and antioxidant capacity of its wine.

    Science.gov (United States)

    Xi, Zhu-Mei; Meng, Jiang-Fei; Huo, Shan-Shan; Luan, Li-Ying; Ma, Li-Na; Zhang, Zhen-Wen

    2013-06-01

    Yan73 is a 'teinturier' red wine variety cultivated in China and widely used in winemaking to strengthen red wine colour. The objective of this study was to evaluate the effect of exogenous abscisic acid (ABA) applied to the grapevine cluster on the antioxidant capacity and phenolic content of the wine made from Yan73. Two hundred mg/l ABA was applied on Yan73 grapevine cluster during veraison. As they mature, these ABA-treated and untreated grape berries were transformed into wines, respectively, and the phenolic content and antioxidant capacity of these wines were compared. The results showed that phenolic content (total phenolics, tannins, flavonoids and anthocyanins) and antioxidant capacity were higher in the wine produced with ABA-treated Yan73 grapes than those in the wine from untreated grapes. Compared to Cabernet Sauvignon wine, Yan73 wine had higher phenolic content and stronger antioxidant capacity. These strongly suggest that exogenously applied ABA to Yan73 grapes can enhance phenolic content and antioxidant capacity of its wine, and Yan73 wine has the higher utilization value and potential for development.

  15. Evaluation of phenolic profile, enzyme inhibitory and antimicrobial activities of Nigella sativa L. seed extracts

    Directory of Open Access Journals (Sweden)

    Anela Topcagic

    2017-11-01

    Full Text Available Black cumin (Nigella sativa L. [N.sativa] seed extracts demonstrated numerous beneficial biological effects including, among others, antidiabetic, anticancer, immunomodulatory, antimicrobial, anti-inflammatory, antihypertensive, and antioxidant activity. To better understand the phytochemical composition of N. sativa seeds, methanol seed extracts were analyzed for phenolic acid and flavonoid content. Furthermore, we tested N. sativa methanol, n-hexane, and aqueous seed extracts for their inhibitory activity against butyrylcholinesterase (BChE and catalase (CAT as well as for antimicrobial activity against several bacterial and a yeast strains. The phenolic content of N. sativa was analyzed using ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS. The inhibition of BChE was assessed by modified Ellman’s method, and the inhibition of CAT was determined by monitoring hydrogen peroxide consumption. The extracts were tested against Bacillus subtilis, Staphylococcus aureus, Salmonella enterica, and Escherichia coli using the agar diffusion method. The UHPLC-MS/MS method allowed the identification and quantification of 23 phenolic compounds within 15 minutes. The major components found in N. sativa seed extract were sinapinic acid (7.22 ± 0.73 µg/mg as a phenolic acid and kaempferol (11.74 ± 0.92 µg/mg as a flavonoid. All extracts showed inhibitory activity against BChE, with methanol seed extract demonstrating the highest inhibitory activity (inhibitory concentration 50% [IC50] 79.11 ± 6.06 µg/ml. The methanol seed extract also showed strong inhibitory activity against CAT with an IC50 value of 6.61 ± 0.27 µg/ml. Finally, the methanol extract exhibited considerable inhibitory activity against the tested microbial strains. Overall, this is the first study to investigate the ability of black cumin seed extracts to inhibit CAT. Our results indicate that N. sativa seed can be considered as an effective inhibitor

  16. Oxidizability of unsaturated fatty acids and of a non-phenolic lignin structure in the manganese peroxidase-dependent lipid peroxidation system

    Science.gov (United States)

    Alexander N. Kapich; Tatyana V. Korneichik; Annele Hatakka; Kenneth E. Hammel

    2010-01-01

    Unsaturated fatty acids have been proposed to mediate the oxidation of recalcitrant, non-phenolic lignin structures by fungal manganese peroxidases (MnP), but their precise role remains unknown. We investigated the oxidizability of three fatty acids with varying degrees of polyunsaturation (linoleic, linolenic, and arachidonic acids) by measuring conjugated dienes...

  17. Characterization of fatty acid-producing wastewater microbial communities using next generation sequencing technologies

    Science.gov (United States)

    While wastewater represents a viable source of bacterial biodiesel production, very little is known on the composition of these microbial communities. We studied the taxonomic diversity and succession of microbial communities in bioreactors accumulating fatty acids using 454-pyro...

  18. Techniques for Analysis of Plant Phenolic Compounds

    Directory of Open Access Journals (Sweden)

    Thomas H. Roberts

    2013-02-01

    Full Text Available Phenolic compounds are well-known phytochemicals found in all plants. They consist of simple phenols, benzoic and cinnamic acid, coumarins, tannins, lignins, lignans and flavonoids. Substantial developments in research focused on the extraction, identification and quantification of phenolic compounds as medicinal and/or dietary molecules have occurred over the last 25 years. Organic solvent extraction is the main method used to extract phenolics. Chemical procedures are used to detect the presence of total phenolics, while spectrophotometric and chromatographic techniques are utilized to identify and quantify individual phenolic compounds. This review addresses the application of different methodologies utilized in the analysis of phenolic compounds in plant-based products, including recent technical developments in the quantification of phenolics.

  19. CORRELATION AMONG PHENOLIC, TOXIC METALS AND ...

    African Journals Online (AJOL)

    Preferred Customer

    in food and related products is essential for understanding their nutritive importance. .... (prepared solution), with 0.1 M nitric acid in order to check the linearity. ..... Shahidi, F.; Naczk, M. Food Phenolics: An overview in Food Phenolics: Sources ...

  20. Effects of Increasing Doses of UV-B on Main Phenolic Acids Content, Antioxidant Activity and Estimated Biomass in Lavandin (Lavandula x intermedia).

    Science.gov (United States)

    Usano-Alemany, Jaime; Panjai, Lachinee

    2015-07-01

    Lavandin is a well-known aromatic plant cultivated mainly for its valuable essential oil. Nonetheless, little attention has been paid so far to the quantification of other natural products such as polyphenols. Accordingly, we examined the effect of increasing doses of UV-B radiation on the main phenolic content, antioxidant activity and estimated biomass of one year old lavandin pots compared with pots grown outdoors. Significantly higher total phenolic content and concentration of main polyphenols have been found in outdoor plants. Rosmarinic acid has been described as the major phenolic compound in methanolic extracts (max. 25.9 ± 9.7 mg/g(-1) DW). Furthermore, we found that increasing doses of UV-B promote the plant growth of this species as well as the accumulation of phenolic compounds although with less antioxidant capacity in scavenging DPPH radicals. On the other hand, our results showed a remarkable variability among individual plants regarding the content of major phenolic acids. The application of UV-B doses during plant growth could be a method to promote biomass in this species along with the promotion of higher content of valuable secondary metabolites.

  1. Mechanistic Effects of Water on the Fe-Catalyzed Hydrodeoxygenation of Phenol. The Role of Brønsted Acid Sites

    Energy Technology Data Exchange (ETDEWEB)

    Hensley, Alyssa J. R. [The; amp, Linda Voiland School of Chemical Engineering and Bioengineering, ∥Department of Physics; Institute for Integrated Catalysis and §Fundamental and; Wang, Yong [The; amp, Linda Voiland School of Chemical Engineering and Bioengineering, ∥Department of Physics; Institute for Integrated Catalysis and §Fundamental and; Mei, Donghai [The; amp, Linda Voiland School of Chemical Engineering and Bioengineering, ∥Department of Physics; Institute for Integrated Catalysis and §Fundamental and; McEwen, Jean-Sabin [The; amp, Linda Voiland School of Chemical Engineering and Bioengineering, ∥Department of Physics; Institute for Integrated Catalysis and §Fundamental and

    2018-01-30

    A mechanistic understanding of the roles of water is essential for developing highly active and selective catalysts for hydrodeoxygenation (HDO) reactions since water is ubiquitous in such reaction systems. Here, we present a study for phenol HDO on Fe catalysts using density functional theory which examines the effect of water on three elementary pathways for phenol HDO using an explicit solvation model. The presence of water is found to significantly decrease activation barriers required by hydrogenation reactions via two pathways. First, the proton transfer in the hydrogen bonding network of the liquid water phase is nearly barrierless, which significantly promotes the direct through space tautomerization of phenol. Second, due to the high degree of oxophilicity on Fe, liquid water molecules are found to be easily dissociated into surface hydroxyl groups that can act as Brønsted acid sites. These sites dramatically promote hydrogenation reactions on the Fe surface. As a result, the hydrogen assisted dehydroxylation becomes the dominant phenol HDO pathway. This work provides new fundamental insights into aqueous phase HDO of biomass-derived oxygenates over Fe-based catalysts; e.g., the activity of Fe-based catalysts can be optimized by tuning the surface coverage of Brønsted acid sites via surface doping.

  2. A yearly spraying of olive mill wastewater on agricultural soil over six successive years: impact of different application rates on olive production, phenolic compounds, phytotoxicity and microbial counts.

    Science.gov (United States)

    Magdich, Salwa; Jarboui, Raja; Rouina, Béchir Ben; Boukhris, Makki; Ammar, Emna

    2012-07-15

    Olive mill wastewater (OMW) spraying effects onto olive-tree fields were investigated. Three OMW levels (50, 100 and 200 m(3)ha(-1)year(-1)) were applied over six successive years. Olive-crop yields, phenolic compounds progress, phytotoxicity and microbial counts were studied at different soil depths. Olive yield showed improvements with OMW level applied. Soil polyphenolic content increased progressively in relation to OMW levels in all the investigated layers. However, no significant difference was noted in lowest treatment rate compared to the control field. In the soil upper-layers (0-40 cm), five phenolic compounds were identified over six consecutive years of OMW-spraying. In all the soil-layers, the radish germination index exceeded 85%. However, tomato germination test values decreased with the applied OMW amount. For all treatments, microbial counts increased with OMW quantities and spraying frequency. Matrix correlation showed a strong relationship between soil polyphenol content and microorganisms, and a negative one to tomato germination index. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Organic acid production from potato starch waste fermentation by rumen microbial communities from Dutch and Thai dairy cows

    NARCIS (Netherlands)

    Palakawong Na Ayudthaya, Susakul; De Weijer, Van Antonius H.P.; Gelder, Van Antonie H.; Stams, Alfons J.M.; Vos, De Willem M.; Plugge, Caroline M.

    2018-01-01

    Background: Exploring different microbial sources for biotechnological production of organic acids is important. Dutch and Thai cow rumen samples were used as inocula to produce organic acid from starch waste in anaerobic reactors. Organic acid production profiles were determined and microbial

  4. Phenolic Profiles and Antioxidant Activity of Germinated Legumes

    Directory of Open Access Journals (Sweden)

    Do Tan Khang

    2016-04-01

    Full Text Available Bioactive compounds, which are naturally produced in plants, have been concerned with the food and pharmaceutical industries because of the pharmacological effects on humans. In this study, the individual phenolics of six legumes during germination and antioxidant capacity from sprout extracts were determined. It was found that the phenolic content significantly increased during germination in all legumes. Peanuts showed the strongest antioxidant capacity in both the DPPH• (1,1-diphenyl-2-picrylhydrazyl method and the reducing power assay (32.51% and 84.48%, respectively. A total of 13 phenolic acids were detected and quantified. There were 11 phenolic constituents identified in adzuki beans; 10 in soybeans; 9 in black beans, mung beans, and white cowpeas; and 7 compounds in peanuts. Sinapic acid and cinnamic acid were detected in all six legume sprouts, and their quantities in germinated peanuts were the highest (247.9 µg·g−1 and 62.9 µg·g−1, respectively. The study reveals that, among the investigated legumes, germinated peanuts and soybeans obtained maximum phenolics and antioxidant capacity.

  5. Suitability of antioxidant capacity, flavonoids and phenolic acids for floral authentication of honey. Impact of industrial thermal treatment.

    Science.gov (United States)

    Escriche, Isabel; Kadar, Melinda; Juan-Borrás, Marisol; Domenech, Eva

    2014-01-01

    Total antioxidant activity, physicochemical parameters, and the profile of flavonoids and phenolic acid compounds were evaluated for: their ability to distinguish between the botanical origins of four types of Spanish honey, the impact of industrial thermal treatment, and the effect of the year of collection. Citrus honey had the lowest levels of all the analysed variables, then rosemary and polyfloral, and honeydew the highest ones. Botanical origin affects the profile of flavonoids and phenolic compounds sufficiently to permit discrimination thanks to the predominance of particular compounds such as: hesperetin (in citrus honey); kaempferol, chrysin, pinocembrin, caffeic acid and naringenin (in rosemary honey) and myricetin, quercetin, galangin and particularly p-coumaric acid (in honeydew honey). The impact of industrial thermal treatments is lower than the expected variability as a consequence of the year of collection, though neither factor has enough influence to alter these constituent compounds to the point of affecting the discrimination of honey by botanical origin. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Comparison of total phenolic content and composition of individual ...

    African Journals Online (AJOL)

    A successful peanut breeding to obtain genotypes with greater phenolic content requires information on type and content of phenolic compounds in parental peanut genotypes. The aim of this study was to investigate the total phenolic contents and phenolic acid profiles of 15 Valencia-type peanut genotypes both in peanut ...

  7. PHENOLIC COMPOUNDS OF WATER-ETHANOLIC EXTRACT OF MENTHA LONGIFOLIA L

    Directory of Open Access Journals (Sweden)

    O. A. Grebennikova

    2014-01-01

    Full Text Available The article represents data about qualitative and quantitative composition of phenolic compounds in water-ethanol extract of perspective clone of Mentha longifolia L. of NBE-NSC selection. Phenolic substances content in water-ethanol extract amounted to 3003.3 mg/100g. 13 components were determined in the extract. The extract contains caffeic acid, chlorogenic acid isomers, rosmarinic acid and glycosides of luteolin. Rosmarinic acid (50.2% prevails among phenolic substances of Mentha longifolia extract. The conclusion is that the use of this extract is possible to create products with high biological value

  8. Fluctuations in phenolic content, ascorbic acid and total carotenoids and antioxidant activity of fruit beverages during storage

    Directory of Open Access Journals (Sweden)

    C. Castro-López

    2016-09-01

    Full Text Available Stability of the total phenolic content, ascorbic acid, total carotenoids and antioxidant activity in eight fruit beverages was analyzed. The influence of storage temperature (4, 8 and 11 °C during the product shelf-life (20 days was evaluated. Pomegranate Juice presented the highest values for antioxidant activity by DPPH·− assay (552.93 ± 6.00 GAE μg mL−1, total carotenoids (3.18 ± 0.11 βCE μg mL−1, and total phenolic content (3967.07 ± 2.47 GAE μg mL−1; while Splash Blend recorded the highest levels of ascorbic acid (607.39 ± 2.13 AAE μg mL−1. The antioxidant capacity was stable at 4 and 8 °C for the first 8 days of storage; while carotenoids and ascorbic acid were slightly degraded through the storage time, possibly due to oxidation and/or reactions with other compounds. The results suggest that the observed variation during testing could be related to storage conditions of the final product.

  9. A new approach to microbial production of gallic acid.

    Science.gov (United States)

    Bajpai, Bhakti; Patil, Shridhar

    2008-10-01

    In a new approach to microbial gallic acid production by Aspergillus fischeri MTCC 150, 40gL(-1) of tannic acid was added in two installments during the bioconversion phase of the process (25gL(-1) and 15gL(-1) at 32 and 44h respectively). The optimum parameters for the bioconversion phase were found to be temperature: 35°C, pH: slightly acidic (3.3-3.5), aeration: nil and agitation: 250 rpm. A maximum of 71.4% conversion was obtained after 71h fermentation with 83.3% product recovery. The yield was 7.35 g of gallic acid per g of biomass accumulated and the fermenter productivity was 0.56 g of gallic acid produced per liter of medium per hour.

  10. Support for Natural Small-Molecule Phenols as Anxiolytics

    Directory of Open Access Journals (Sweden)

    Xiaohong Wang

    2017-12-01

    Full Text Available Natural small-molecule phenols (NSMPs share some bioactivities. The anxiolytic activity of NSMPs is attracting attention in the scientific community. This paper provides data supporting the hypothesis that NSMPs are generally anxiolytic. The anxiolytic activities of seven simple phenols, including phloroglucinol, eugenol, protocatechuic aldehyde, vanillin, thymol, ferulic acid, and caffeic acid, were assayed with the elevated plus maze (EPM test in mice. The oral doses were 5, 10 and 20 mg/kg, except for phloroglucinol for which the doses were 2.5, 5 and 10 mg/kg. All tested phenols had anxiolytic activity in mice. The phenolic hydroxyl group in 4-hydroxycinnamic acid (4-OH CA was essential for the anxiolytic activity in the EPM test in mice and rats compared to 4-chlorocinnamic acid (4-Cl CA. The in vivo spike recording of rats’ hippocampal neurons also showed significant differences between 4-OH CA and 4-Cl CA. Behavioral and neuronal spike recording results converged to indicate the hippocampal CA1 region might be a part of the anxiolytic pathways of 4-OH CA. Therefore, our study provides further experimental data supporting NSMPs sharing anxiolytic activity, which may have general implications for phytotherapy because small phenols occur extensively in herbal medicines.

  11. Fourier transform infrared spectroscopy as a metabolite fingerprinting tool for monitoring the phenotypic changes in complex bacterial communities capable of degrading phenol.

    Science.gov (United States)

    Wharfe, Emma S; Jarvis, Roger M; Winder, Catherine L; Whiteley, Andrew S; Goodacre, Royston

    2010-12-01

    The coking process produces great volumes of wastewater contaminated with pollutants such as cyanides, sulfides and phenolics. Chemical and physical remediation of this wastewater removes the majority of these pollutants; however, these processes do not remove phenol and thiocyanate. The removal of these compounds has been effected during bioremediation with activated sludge containing a complex microbial community. In this investigation we acquired activated sludge from an industrial bioreactor capable of degrading phenol. The sludge was incubated in our laboratory and monitored for its ability to degrade phenol over a 48 h period. Multiple samples were taken across the time-course and analysed by Fourier transform infrared (FT-IR) spectroscopy. FT-IR was used as a whole-organism fingerprinting approach to monitor biochemical changes in the bacterial cells during the degradation of phenol. We also investigated the ability of the activated sludge to degrade phenol following extended periods (2-131 days) of storage in the absence of phenol. A reduction was observed in the ability of the microbial community to degrade phenol and this was accompanied by a detectable biochemical change in the FT-IR fingerprint related to cellular phenotype of the microbial community. In the absence of phenol a decrease in thiocyanate vibrations was observed, reflecting the ability of these communities to degrade this substrate. Actively degrading communities showed an additional new band in their FT-IR spectra that could be attributed to phenol degradation products from the ortho- and meta-cleavage of the aromatic ring. This study demonstrates that FT-IR spectroscopy when combined with chemometric analysis is a very powerful high throughput screening approach for assessing the metabolic capability of complex microbial communities. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  12. Changes of phenolic profiles and antioxidant activity in canaryseed (Phalaris canariensis L.) during germination.

    Science.gov (United States)

    Chen, Zhijie; Yu, Lilei; Wang, Xinkun; Gu, Zhenxin; Beta, Trust

    2016-03-01

    Canaryseed is an important cereal crop in western Canada. The changes of the total phenolic content (TPC), antioxidant activities, phenolic acid profiles (free and bound) of canaryseed during germination were investigated in the present study. The growth properties also were investigated. Fresh weight, shoot length and root length increased, whereas dry mass of canaryseed decreased during germination. A 22.3% loss of dry matter was observed at 120h of germination. The total phenolic content and antioxidant activities of free and bound extracts showed a general trend of germinated seeds>raw seeds>soaked seeds. Free, bound and total phenolic content significantly increased 1042%, 120% and 741% at the end of germination as compared to raw seeds (pphenolic content and antioxidant activities. TPC and ORAC values showed the highest correlation (r=0.9984). Six phenolic acids in free phenolic extracts and seven phenolic acids in bound phenolic extracts were detected, respectively. Bound ferulic acid, the dominant phenolic acid in canaryseed, significantly increased during germination (p<0.05). Study showed that germination provided a new approach to further develop canaryseed as a functional food for human consumption. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Microbial CH4 and N2O consumption in acidic wetlands

    Directory of Open Access Journals (Sweden)

    Steffen eKolb

    2012-03-01

    Full Text Available Acidic wetlands are global sources of the atmospheric greenhouse gases methane (CH4, and nitrous oxide (N2O. Consumption of both atmospheric gases has been observed in various acidic wetlands, but information on the microbial mechanisms underlying these phenomena is scarce. A substantial amount of CH4 is consumed in sub soil by aerobic methanotrophs at anoxic–oxic interfaces (e.g., tissues of Sphagnum mosses, rhizosphere of vascular plant roots. Methylocystis-related species are likely candidates that are involved in the consumption of atmospheric CH4 in acidic wetlands. Oxygen availability regulates the activity of methanotrophs of acidic wetlands. Other parameters impacting on the methanotroph-mediated CH4 consumption have not been systematically evaluated. N2O is produced and consumed by microbial denitrification, thus rendering acidic wetlands as temporary sources or sinks for N2O. Denitrifier communities in such ecosystems are diverse, and largely uncultured and/or new, and environmental factors that control their consumption activity are unresolved. Analyses of the composition of N2O reductase genes in acidic wetlands suggest that acid-tolerant Proteobacteria have the potential to mediate N2O consumption in such soils. Thus, the fragmented current state of knowledge raises open questions concerning methanotrophs and dentrifiers that consume atmospheric CH4 and N2O in acidic wetlands.

  14. Temporary reduction of radiation does not permanently reduce flavonoid glycosides and phenolic acids in red lettuce.

    Science.gov (United States)

    Becker, Christine; Kläring, Hans-Peter; Kroh, Lothar W; Krumbein, Angelika

    2013-11-01

    Applying transparent daytime screens in greenhouses in cool seasons reduces the amount of energy needed for heating, but also the solar radiation available for crops. This can reduce yield and product quality of leafy vegetables because of constrained photosynthesis and altered biosynthesis. To study this, we cultivated five-week old red leaf lettuce (Lactuca sativa L.) for four weeks in growth chambers under a photosynthetic photon flux density (PPFD) of 225 and 410 μmol m(-2) s(-1), respectively. Some plants were exchanged between radiation intensities after two weeks. We investigated the concentration of five flavonoid glycosides, three caffeic acid derivatives, reducing sugars as well as plant growth. Remarkably, no significant influence of radiation intensity on the concentration of phenolic acids or anthocyanin glycosides was observed. In contrast, quercetin and luteolin glycoside concentration was between 14 and 34% lower in plants growing under lower compared to higher PPFD. Already after two weeks of cultivation, plants grown under lower PPFD contained less quercetin and luteolin glycosides but they completely compensated if subsequently transferred to higher PPFD until harvest. Hence, marketable lettuce heads which experienced temporary shading followed by an unshaded phase did not contain lower concentrations of flavonoid glycosides or phenolic acids. Also, there was no reduction of head mass in this variant. Our results suggest that saving energy in early growth stages is feasible without losses in yield or health promoting phenolic substances. In addition, there was a close correlation between the concentration of reducing sugars and some flavonoid glycosides, indicating a close metabolic connection between their biosynthesis and the availability of carbohydrates. Copyright © 2013 The Authors. Published by Elsevier Masson SAS.. All rights reserved.

  15. Phenolics of Arbutus unedo L. (Ericaceae) fruits: identification of anthocyanins and gallic acid derivatives.

    Science.gov (United States)

    Pawlowska, Agata Maria; De Leo, Marinella; Braca, Alessandra

    2006-12-27

    Arbutus unedo L., the strawberry tree (Ericaceae family), is an evergreen shrub or small tree, typical of the Mediterranean fringe and climate. The aim of the present study was to evaluate the profile of the phenolic constituents of A. unedo fruits. Seven compounds were purified by Sephadex LH-20 column chromatography of the MeOH extract followed by HPLC and were characterized as arbutin, beta-D-glucogalline, gallic acid 4-O-beta-D-glucopyranoside, 3-O-galloylquinic acid, 5-O-galloylquinic acid, 3-O-galloylshikimic acid, and 5-O-galloylshikimic acid, by means of NMR and ESI-MS analyses. Moreover, LC-PDA-MS analysis of the red pigment of A. unedo fruits revealed the presence of three anthocyanins recognized as cyanidin 3-O-beta-D-galactopyranoside, delphinidin 3-O-beta-D-glucopyranoside, and cyanidin 3-O-beta-D-arabinopyranoside. These pigments were also quantified.

  16. Phenolic compounds of green tea: Health benefits and technological application in food

    Directory of Open Access Journals (Sweden)

    José Manuel Lorenzo

    2016-08-01

    Full Text Available Green tea has been an important beverage for humans since ancient times, widely consumed and considered to have health benefits by traditional medicine in Asian countries. Green tea phenolic compounds are predominately composed of catechin derivatives, although other compounds such as flavonols and phenolic acids are also present in lower proportion. The bioactivity exerted by these compounds has been associated with reduced risk of severe illnesses such as cancer, cardiovascular and neurodegenerative diseases. Particularly, epigallocatechin gallate has been implicated in alteration mechanisms with protective effect in these diseases as indicated by several studies about the effect of green tea consumption and mechanistic explanation through in vitro and in vivo experiments. The biological activity of green tea phenolic compounds also promotes a protective effect by antioxidant mechanisms in biological and food systems, preventing the oxidative damage by acting over either precursors or reactive species. Extraction of phenolic compounds influences the antioxidant activity and promotes adequate separation from green tea leaves to enhance the yield and/or antioxidant activity. Application of green tea phenolic compounds is of great interest because the antioxidant status of the products is enhanced and provides the product with additional antioxidant activity or reduces the undesirable changes of oxidative reactions while processing or storing food. In this scenario, meat and meat products are greatly influenced by oxidative deterioration and microbial spoilage, leading to reduced shelf life. Green tea extracts rich in phenolic compounds have been applied to increase shelf life with comparable effect to synthetic compounds, commonly used by food industry. Green tea has great importance in general health in technological application, however more studies are necessary to elucidate the impact in pathways related to other diseases and food

  17. Dietary induced serum phenolic acids promote bone growth via p38 MAPK / Beta-Catenin Canonical Wnt signaling

    Science.gov (United States)

    Diet and nutritional status are critical factors that influences bone development. In this report, we demonstrate that a mixture of phenolic acids found in the serum of young rats fed blueberries (BB), significantly stimulated osteoblast differentiation, resulting in significantly increased bone mas...

  18. Synergistic anti-Campylobacter jejuni activity of fluoroquinolone and macrolide antibiotics with phenolic compounds

    Science.gov (United States)

    Oh, Euna; Jeon, Byeonghwa

    2015-01-01

    The increasing resistance of Campylobacter to clinically important antibiotics, such as fluoroquinolones and macrolides, is a serious public health problem. The objective of this study is to investigate synergistic anti-Campylobacter jejuni activity of fluoroquinolones and macrolides in combination with phenolic compounds. Synergistic antimicrobial activity was measured by performing a checkerboard assay with ciprofloxacin and erythromycin in the presence of 21 phenolic compounds. Membrane permeability changes in C. jejuni by phenolic compounds were determined by measuring the level of intracellular uptake of 1-N-phenylnaphthylamine (NPN). Antibiotic accumulation assays were performed to evaluate the level of ciprofloxacin accumulation in C. jejuni. Six phenolic compounds, including p-coumaric acid, sinapic acid, caffeic acid, vanillic acid, gallic acid, and taxifolin, significantly increased the susceptibility to ciprofloxacin and erythromycin in several human and poultry isolates. The synergistic antimicrobial effect was also observed in ciprofloxacin- and erythromycin-resistant C. jejuni strains. The phenolic compounds also substantially increased membrane permeability and antibiotic accumulation in C. jejuni. Interestingly, some phenolic compounds, such as gallic acid and taxifolin, significantly reduced the expression of the CmeABC multidrug efflux pump. Phenolic compounds increased the NPN accumulation in the cmeB mutant, indicating phenolic compounds may affect the membrane permeability. In this study, we successfully demonstrated that combinational treatment of C. jejuni with antibiotics and phenolic compounds synergistically inhibits C. jejuni by impacting both antimicrobial influx and efflux. PMID:26528273

  19. In vitro assessment of potential intestinal absorption of some phenolic families and carboxylic acids from commercial instant coffee samples.

    Science.gov (United States)

    López-Froilán, R; Ramírez-Moreno, E; Podio, N S; Pérez-Rodríguez, M L; Cámara, M; Baroni, M V; Wunderlin, D A; Sánchez-Mata, M C

    2016-06-15

    Coffee is one of the most consumed beverages in the world, being a source of bioactive compounds as well as flavors. Hydroxycinnamic acids, flavonols, and carboxylic acids have been studied in the samples of instant coffee commercialized in Spain. The studies about contents of food components should be complemented with either in vitro or in vivo bioaccessibility studies to know the amount of food components effectively available for functions in the human body. In this sense, a widely used in vitro model has been applied to assess the potential intestinal absorption of phenolic compounds and organic acids. The contents of hydroxycinnamic acids and flavonols were higher in instant regular coffee samples than in the decaffeinated ones. Bioaccessible phenolic compounds in most analyzed samples account for 20-25% of hydroxycinnamic acids and 17-26% of flavonols. This could mean that a great part of them can remain in the gut, acting as potential in situ antioxidants. Quinic, acetic, pyroglutamic, citric and fumaric acids were identified in commercial instant coffee samples. Succinic acid was found in the coffee blend containing chicory. All carboxylic acids showed a very high bioaccessibility. Particularly, acetic acid and quinic acid were found in higher contents in the samples treated with the in vitro simulation of gastrointestinal processes, compared to the original ones, which can be explained by their cleavage from chlorogenic acid during digestion. This is considered as a positive effect, since quinic acid is considered as an antioxidant inducer.

  20. Determination of flavonoids, phenolic acid and polyalcohol in Butea monosperma and Hedychium coronarium by semi-preparative HPLC Photo Diode Array (PDA Detector

    Directory of Open Access Journals (Sweden)

    Jignasu P. Mehta

    2014-12-01

    Full Text Available The semi preparative HPLC method with PDA Detector was proposed for the determination of one phenolic acid, three flavonoids and one polyalcohol from Butea monosperma and Hedychium coronarium in gradient elution system. The influence of composition of the mobile phase concentration of the mix modifier and temperature on the separation of gallic acid, quercetin, iso-butrin, butrin and eugenol for 90 min was studied. Two different gradient programmes were used to separate these components. The lower limit of quantification of phenolic acid, flavonoids and eugenol is 0.050–0.150 μg/mL and was determined by the least square method and a good correlation was obtained for all separated components.

  1. Comparison of Phenolics and Phenolic Acid Profiles in Conjunction with Oxygen Radical Absorbing Capacity (ORAC) in Berries of Vaccinium arctostaphylos L. and V. myrtillus L.

    Czech Academy of Sciences Publication Activity Database

    Colak, N.; Torun, H.; Grúz, Jiří; Strnad, Miroslav; Šubrtová, Michaela; Inceer, H.; Ayaz, F. A.

    2016-01-01

    Roč. 66, č. 2 (2016), s. 85-91 ISSN 1230-0322 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : blueberry * bilberry * phenolic acids Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.276, year: 2016 http://www.degruyter.com/view/j/pjfns.2016.66.issue-2/pjfns-2015-0053/pjfns-2015-0053.xml

  2. Effect of Phenolic Compounds from Elderflowers on Glucose- and Fatty Acid Uptake in Human Myotubes and HepG2-Cells

    Directory of Open Access Journals (Sweden)

    Giang Thanh Thi Ho

    2017-01-01

    Full Text Available Type 2 diabetes (T2D is manifested by progressive metabolic impairments in tissues such as skeletal muscle and liver, and these tissues become less responsive to insulin, leading to hyperglycemia. In the present study, stimulation of glucose and oleic acid uptake by elderflower extracts, constituents and metabolites were tested in vitro using the HepG2 hepatocellular liver carcinoma cell line and human skeletal muscle cells. Among the crude extracts, the 96% EtOH extract showed the highest increase in glucose and oleic acid uptake in human skeletal muscle cells and HepG2-cells. The flavonoids and phenolic acids contained therein were potent stimulators of glucose and fatty acid uptake in a dose-dependent manner. Most of the phenolic constituents and several of the metabolites showed high antioxidant activity and showed considerably higher α-amylase and α-glucosidase inhibition than acarbose. Elderflower might therefore be valuable as a functional food against diabetes.

  3. Cold-pressed pumpkin seed (Cucurbita pepo L. oils from the central Anatolia region of Turkey: Characterization of phytosterols, squalene, tocols, phenolic acids, carotenoids and fatty acid bioactive compounds

    Directory of Open Access Journals (Sweden)

    G. Akin

    2018-03-01

    Full Text Available There is a growing interest in cold-pressed oils because they present high contents of bioactive compounds. These oils have the characteristic properties of seeds and are specific products of their regions. The aim of this study was to determine the compositions and contents of fatty acids, phytosterols, squalene, tocols, phenolic acids, carotenoids and phenolic bioactives, and the free radical scavenging as well as antioxidant activities of cold-pressed pumpkin (Cucurbita pepo L. seed oils. Oil samples from raw pumpkin seeds cultivated in four different central Anatolia regions of Turkey were prepared using a laboratory screw-pressing machine. The results indicate that cold-pressed pumpkin seed oils (PSO have excellent quality with high contents of polyunsaturated fatty acids (%ΣPUFAs (53.60 ±0.06-53.73 ±0.05, total phytosterols (782.1±9.7–805.2 ±11.3 mg/100 g oil, squalene (591.3±10.6–632.5±11.4 mg/100 g oil, tocols (97.79 ±0.76?94.29 ±0.34 mg/100 g oil, phenolic acids (22.73 ±0.41–23.98 ±0.46 mg/100 g oil, carotenoids (6.95 ±0.03–7.60 ±0.03 mg/100 g oil, total phenolics (3.96 ±0.13 –5.82±0.15 mg GAE/100 g, free radical-scavenging activity (5.70 ±0.13?7.35 ±0.15 mg GAE/100 g and total antioxidant activity (26.67±0.97-38.89±1.41 mg GAE/100 g values. Thus, this study demonstrates that the cold- pressed PSOs from the central Anatolia regions of Turkey are an excellent source of natural bioactive compounds, free of chemical contaminants and nutritious.

  4. Selection of optimum ionic liquid solvents for flavonoid and phenolic acids extraction

    Science.gov (United States)

    Rahman, N. R. A.; Yunus, N. A.; Mustaffa, A. A.

    2017-06-01

    Phytochemicals are important in improving human health with their functions as antioxidants, antimicrobials and anticancer agents. However, the quality of phytochemicals extract relies on the efficiency of extraction process. Ionic liquids (ILs) have become a research phenomenal as extraction solvent due to their unique properties such as unlimited range of ILs, non-volatile, strongly solvating and may become either polarity. In phytochemical extraction, the determination of the best solvent that can extract highest yield of solute (phytochemical) is very important. Therefore, this study is conducted to determine the best IL solvent to extract flavonoids and phenolic acids through a property prediction modeling approach. ILs were selected from the imidazolium-based anion for alkyl chains ranging from ethyl > octyl and cations consisting of Br, Cl, [PF6], BF4], [H2PO4], [SO4], [CF3SO3], [TF2N] and [HSO4]. This work are divided into several stages. In Stage 1, a Microsoft Excel-based database containing available solubility parameter values of phytochemicals and ILs including its prediction models and their parameters has been established. The database also includes available solubility data of phytochemicals in IL, and activity coefficient models, for solid-liquid phase equilibrium (SLE) calculations. In Stage 2, the solubility parameter values of the flavonoids (e.g. kaempferol, quercetin and myricetin) and phenolic acids (e.g. gallic acid and caffeic acid) are determined either directly from database or predicted using Stefanis and Marrero-Gani group contribution model for the phytochemicals. A cation-anion contribution model is used for IL. In Stage 3, the amount of phytochemicals extracted can be determined by using SLE relationship involving UNIFAC-IL model. For missing parameters (UNIFAC-IL), they are regressed using available solubility data. Finally, in Stage 4, the solvent candidates are ranked and five ILs, ([OMIM] [TF2N], [HeMIM] [TF2N], [HMIM] [TF2N

  5. Phytochemical Profiling of Flavonoids, Phenolic Acids, Terpenoids, and Volatile Fraction of a Rosemary (Rosmarinus officinalis L. Extract

    Directory of Open Access Journals (Sweden)

    Pedro Mena

    2016-11-01

    Full Text Available This paper presents a comprehensive analysis of the phytochemical profile of a proprietary rosemary (Rosmarinus officinalis L. extract rich in carnosic acid. A characterization of the (polyphenolic and volatile fractions of the extract was carried out using mass spectrometric techniques. The (polyphenolic composition was assessed by ultra-high performance liquid chromatography-electrospray ionization-mass spectrometry (UHPLC-ESI-MSn and a total of 57 compounds were tentatively identified and quantified, 14 of these being detected in rosemary extract for the first time. The rosemary extract contained 24 flavonoids (mainly flavones, although flavonols and flavanones were also detected, 5 phenolic acids, 24 diterpenoids (carnosic acid, carnosol, and rosmanol derivatives, 1 triterpenoid (betulinic acid, and 3 lignans (medioresinol derivatives. Carnosic acid was the predominant phenolic compound. The volatile profile of the rosemary extract was evaluated by head space solid-phase microextraction (HS-SPME linked to gas chromatography-mass spectrometry (GC-MS. Sixty-three volatile molecules (mainly terpenes, alcohols, esters, aldehydes, and ketones were identified. This characterization extends the current knowledge on the phytochemistry of Rosmarinus officinalis and is, to our knowledge, the broadest profiling of its secondary metabolites to date. It can assist in the authentication of rosemary extracts or rosemary-containing products or in testing its bioactivity. Moreover, this methodological approach could be applied to the study of other plant-based food ingredients.

  6. Bio-based phenolic-branched-chain fatty acid isomers synthesized from vegetable oils and natural monophenols using modified h+-ferrierite zeolite

    Science.gov (United States)

    A new group of phenolic branched-chain fatty acids (n-PBC-FA), hybrid molecules of natural monophenols (i.e., thymol, carvacrol and creosote) and mixed fatty acid (i.e., derived from soybean and safflower oils), were efficiently produced through a process known as arylation. The reaction involves a...

  7. Ultrasound-assisted MnO2 catalyzed homolysis of peracetic acid for phenol degradation: The assessment of process chemistry and kinetics

    NARCIS (Netherlands)

    Rokhina, E.V.; Makarova, K.; Lathinen, M.; Golovina, E.A.; As, van H.; Virkutyte, J.

    2013-01-01

    The combination of peracetic acid (PAA) and heterogeneous catalyst (MnO2) was used for the degradation of phenol in an aqueous solution in the presence of ultrasound irradiation (US). As a relevant source of free radicals (e.g. OH), peracetic acid was comprehensively studied by means of electron

  8. The reactivity of natural phenols

    Energy Technology Data Exchange (ETDEWEB)

    Denisov, Evgenii T; Denisova, Taisa G [Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Region (Russian Federation)

    2009-11-30

    This review surveys physicochemical data of natural phenols published in recent years. The structures of some compounds of this class are given. A complete set of the dissociation energies of the O-H bonds for 71 natural phenols is presented. Kinetic characteristics of the reactions of peroxyl, alkyl and thiyl radicals with natural phenols, exchange reactions of phenoxyl radicals with phenols and reactions of phenoxyl radicals with lipids, hydroperoxides, cysteine and ascorbic acid are compiled and described systematically. The reactivity of phenols in radical reactions and the factors that determine the reactivity (the enthalpy of reaction, triplet repulsion, the electronegativities of atoms at the reaction centre, the presence of pi-electrons adjacent to the reaction centre, the radii of atoms at the reaction centre, steric hindrance, the force constants of the reacting bonds) are discussed. An important role of hydrogen bonding between surrounding molecules and the OH groups of natural phenols in decreasing their reactivities is noted.

  9. Segregation and Alteration of Phenolic and Aliphatic Components of Root and Leaf Litter by Detritivores and Microbes

    Science.gov (United States)

    Filley, T. R.; Altmann, J.; Szlavecz, K. A.; Kalbitz, K.; Gamblin, D.; Nierop, K.

    2012-12-01

    The physical and microbial transformation of plant detritus in the litter layer and soil is accompanied by chemical separation of progressively soluble fractions and their movement into the rhizosphere driving subsequent soil processes. We investigated the combined action of specific detritivores, microbial decay, and leaching on the chemical separation of plant aromatic and aliphatic components from root, wood, and leaf tissue using 13C-TMAH thermochemolysis. This method enabled the simultaneous analysis of hydrolyzable tannin and lignin fragments, substituted fatty acids, and condensed tannin composition and revealed process-specific chemical transformations to plant secondary compounds. Long-term incubation and field sampling demonstrated how plant residues are progressively leached of the water soluble, oxidized fragments generated through decay. The residues appeared only slightly altered, in the case of brown rot wood, or enriched in aliphatic fragments, in the case of leaf and root tissue. Water extractable fractions were always selectively dominated by polyphenolics, either as demethylated lignin or tannins, and nearly devoid of aliphatic materials, despite high concentrations in the starting materials. Additionally, for plant materials with high tannin contents, such as pine needles, consumption and passage through some arthropod guts revealed what appeared to be microbially-mediated methylation of phenols, and a loss of tannins in leachates. These findings are indications for an in-situ phenol detoxification mechanism. This research provides important information regarding the links between biochemical decay and the chemical nature of organic matter removed and remaining in the soil profile.

  10. Microbial diversity and metabolic networks in acid mine drainage habitats

    Directory of Open Access Journals (Sweden)

    Celia eMendez-Garcia

    2015-05-01

    Full Text Available Acid mine drainage (AMD emplacements are low-complexity natural systems. Low-pH conditions appear to be the main factor underlying the limited diversity of the microbial populations thriving in these environments, although temperature, ionic composition, total organic carbon and dissolved oxygen are also considered to significantly influence their microbial life. This natural reduction in diversity driven by extreme conditions was reflected in several studies on the microbial populations inhabiting the various micro-environments present in such ecosystems. Early studies based on the physiology of the autochthonous microbiota and the growing success of omics technologies have enabled a better understanding of microbial ecology and function in low-pH mine outflows; however, complementary omics-derived data should be included to completely describe their microbial ecology. Furthermore, recent updates on the distribution of eukaryotes and ultra-micro-archaea demand their inclusion in the microbial characterisation of AMD systems. In this review, we present a complete overview of the bacterial, archaeal (including ultra-micro-archaeal and eukaryotic diversity in these ecosystems and include a thorough depiction of the metabolism and element cycling in AMD habitats. We also review different metabolic network structures at the organismal level, which is necessary to disentangle the role of each member of the AMD communities described thus far.

  11. Production of microbial oil with high oleic acid content by Trichosporon capitatum

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hong; Zong, Minhua [State Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510640 (China); Li, Yuanyuan; Chen, Lei [School of Biosciences and Bioengineering, South China University of Technology, Guangzhou 510640 (China)

    2011-01-15

    Microbial oils with high unsaturated fatty acids content, especially oleic acid content, are good feedstock for high quality biodiesel production. Trichosporon capitatum was found to accumulate lipid with around 80% oleic acid and 89% total unsaturated fatty acids content on nitrogen-limited medium. In order to improve its lipid yield, effects of medium components and culture conditions on cell growth and lipid accumulation were investigated. Optimization of media resulted in a 61% increase in the lipid yield of T. capitatum after cultivation at 28 C and 160 rpm for 6 days. In addition, T. capitatum could grow well on cane molasses and afford a lipid yield comparable to that on synthetic nitrogen-limited medium. The biodiesel from the microbial oil produced by T. capitatum on cane molasses displayed a low cold filter plugging point (-15 C), and so T. capitatum might be a promising strain to provide lipid suitable for high quality biodiesel production. (author)

  12. Predicting taxonomic and functional structure of microbial communities in acid mine drainage.

    Science.gov (United States)

    Kuang, Jialiang; Huang, Linan; He, Zhili; Chen, Linxing; Hua, Zhengshuang; Jia, Pu; Li, Shengjin; Liu, Jun; Li, Jintian; Zhou, Jizhong; Shu, Wensheng

    2016-06-01

    Predicting the dynamics of community composition and functional attributes responding to environmental changes is an essential goal in community ecology but remains a major challenge, particularly in microbial ecology. Here, by targeting a model system with low species richness, we explore the spatial distribution of taxonomic and functional structure of 40 acid mine drainage (AMD) microbial communities across Southeast China profiled by 16S ribosomal RNA pyrosequencing and a comprehensive microarray (GeoChip). Similar environmentally dependent patterns of dominant microbial lineages and key functional genes were observed regardless of the large-scale geographical isolation. Functional and phylogenetic β-diversities were significantly correlated, whereas functional metabolic potentials were strongly influenced by environmental conditions and community taxonomic structure. Using advanced modeling approaches based on artificial neural networks, we successfully predicted the taxonomic and functional dynamics with significantly higher prediction accuracies of metabolic potentials (average Bray-Curtis similarity 87.8) as compared with relative microbial abundances (similarity 66.8), implying that natural AMD microbial assemblages may be better predicted at the functional genes level rather than at taxonomic level. Furthermore, relative metabolic potentials of genes involved in many key ecological functions (for example, nitrogen and phosphate utilization, metals resistance and stress response) were extrapolated to increase under more acidic and metal-rich conditions, indicating a critical strategy of stress adaptation in these extraordinary communities. Collectively, our findings indicate that natural selection rather than geographic distance has a more crucial role in shaping the taxonomic and functional patterns of AMD microbial community that readily predicted by modeling methods and suggest that the model-based approach is essential to better understand natural

  13. Improvement in Flavonoids and Phenolic Acids Production and Pharmaceutical Quality of Sweet Basil (Ocimum basilicum L.) by Ultraviolet-B Irradiation.

    Science.gov (United States)

    Ghasemzadeh, Ali; Ashkani, Sadegh; Baghdadi, Ali; Pazoki, Alireza; Jaafar, Hawa Z E; Rahmat, Asmah

    2016-09-09

    Sweet basil (Ocimum basilicum Linnaeus) is aromatic herb that has been utilized in traditional medicine. To improve the phytochemical constituents and pharmaceutical quality of sweet basil leaves, ultraviolet (UV)-B irradiation at different intensities (2.30, 3.60, and 4.80 W/m²) and durations (4, 6, 8, and 10-h) was applied at the post-harvest stage. Total flavonoid content (TFC) and total phenolic content (TPC) were measured using spectrophotometric method, and individual flavonoids and phenolic acids were identified using ultra-high performance liquid chromatography. As a key enzyme for the metabolism of flavonoids, chalcone synthase (CHS) activity, was measured using a CHS assay. Antioxidant activity and antiproliferative activity of extracts against a breast cancer cell line (MCF-7) were evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH) assays and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays, respectively. UV-B irradiation at an intensity of 3.60 W/m² increased TFC approximately 0.85-fold and also increased quercetin (0.41-fold), catechin (0.85-fold), kaempferol (0.65-fold) rutin (0.68-fold) and luteolin (1.00-fold) content. The highest TPC and individual phenolic acid (gallic acid, cinnamic acid and ferulic acid) was observed in the 3.60 W/m² of UV-B treatment. Cinnamic acid and luteolin were not detected in the control plants, production being induced by UV-B irradiation. Production of these secondary metabolites was also significantly influenced by the duration of UV-B irradiation. Irradiation for 8-h led to higher TFC, TPC and individual flavonoids and phenolic acids than for the other durations (4, 8, and 10-h) except for cinnamic acid, which was detected at higher concentration when irradiated for 6-h. Irradiation for 10-h significantly decreased the secondary metabolite production in sweet basil leaves. CHS activity was induced by UV-B irradiation and highest activity was observed at 3.60 W/m² of UV-B irradiation. UV

  14. Improvement in Flavonoids and Phenolic Acids Production and Pharmaceutical Quality of Sweet Basil (Ocimum basilicum L. by Ultraviolet-B Irradiation

    Directory of Open Access Journals (Sweden)

    Ali Ghasemzadeh

    2016-09-01

    Full Text Available Sweet basil (Ocimum basilicum Linnaeus is aromatic herb that has been utilized in traditional medicine. To improve the phytochemical constituents and pharmaceutical quality of sweet basil leaves, ultraviolet (UV-B irradiation at different intensities (2.30, 3.60, and 4.80 W/m2 and durations (4, 6, 8, and 10-h was applied at the post-harvest stage. Total flavonoid content (TFC and total phenolic content (TPC were measured using spectrophotometric method, and individual flavonoids and phenolic acids were identified using ultra-high performance liquid chromatography. As a key enzyme for the metabolism of flavonoids, chalcone synthase (CHS activity, was measured using a CHS assay. Antioxidant activity and antiproliferative activity of extracts against a breast cancer cell line (MCF-7 were evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH assays and MTT (3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assays, respectively. UV-B irradiation at an intensity of 3.60 W/m2 increased TFC approximately 0.85-fold and also increased quercetin (0.41-fold, catechin (0.85-fold, kaempferol (0.65-fold rutin (0.68-fold and luteolin (1.00-fold content. The highest TPC and individual phenolic acid (gallic acid, cinnamic acid and ferulic acid was observed in the 3.60 W/m2 of UV-B treatment. Cinnamic acid and luteolin were not detected in the control plants, production being induced by UV-B irradiation. Production of these secondary metabolites was also significantly influenced by the duration of UV-B irradiation. Irradiation for 8-h led to higher TFC, TPC and individual flavonoids and phenolic acids than for the other durations (4, 8, and 10-h except for cinnamic acid, which was detected at higher concentration when irradiated for 6-h. Irradiation for 10-h significantly decreased the secondary metabolite production in sweet basil leaves. CHS activity was induced by UV-B irradiation and highest activity was observed at 3.60 W/m2 of UV-B irradiation. UV

  15. Antioxidant activity of phenolic acids and esters present in red wine on human Low-Density Lipoproteins

    Science.gov (United States)

    Urizzi, P.; Monje, M.-C.; Souchard, J.-P.; Abella, A.; Chalas, J.; Lindenbaum, A.; Vergnes, L.; Labidalle, S.; Nepveu, F.

    1999-01-01

    To evaluate the antioxidant activity of different phenolic acids and their esters, three types of experiments have been used. Electron paramagnetic resonance (EPR) quantitative analysis was carried out using the acetaldehyde/xanthine oxidase system and Fenton's reaction to generate superoxide and hydroxyl radicals, respectively. In a second test, hydroperoxides generated by Cu2+-catalysed oxidation of low density lipoproteins (LDL) were quantified by a modified iodometric method. In a third assay, LDL were oxidized with Esterbauer's method and modified LDL species were quantified by HPLC. The results show that the esterified phenolic derivatives present a better antioxidant activity, on the lipoperoxidation of LDL, than the corresponding phenolic acids. Trois expériences ont été menées afin d'évaluer l'activité antioxydante de différents acides et de leurs esters. Une analyse quantitative par résonance paramagnétique électronique (RPE) a été réalisée en utilisant le système acétaldéhyde/xanthine oxydase et la réaction de Fenton générant, respectivement, les radicaux superoxyde et hydroxyle. Dans un second test, les hydroperoxydes générés par une réaction d'oxydation des lipoprotéines de basse densité (LDL) catalysée par Cu2+ ont été quantifiés par une méthode iodométrique modifiée. Dans une troisième étude, les LDL ont été oxydées par la méthode d'Esterbauer et les espèces oxydées ont été quantifiées par HPLC. Les résultats montrent que les dérivés estérifiés présentent une activité antioxydante contre la lipoperoxydation des LDL bien plus importante que celle des acides phénoliques correspondants.

  16. Phenolic Acids Profiles and Cellular Antioxidant Activity in Tortillas Produced from Mexican Maize Landrace Processed by Nixtamalization and Lime Extrusion Cooking.

    Science.gov (United States)

    Gaxiola-Cuevas, Nallely; Mora-Rochín, Saraid; Cuevas-Rodriguez, Edith Oliva; León-López, Liliana; Reyes-Moreno, Cuauhtémoc; Montoya-Rodríguez, Alvaro; Milán-Carrillo, Jorge

    2017-09-01

    Phenolic acids profiles, chemical antioxidant activities (ABTS and ORAC), as well as cellular antioxidant activity (CAA) of tortilla of Mexican native maize landraces elaborated from nixtamalization and lime cooking extrusion processes were studied. Both cooking procedures decreased total phenolics, chemicals antioxidant activity when compared to raw grains. Extruded tortillas retained 79.6-83.5%, 74.1-77.6% and 79.8-80.5% of total phenolics, ABTS and ORAC values, respectively, compared to 47.8-49.8%, 41.3-42.3% and 43.7-44.4% assayed in traditional tortillas, respectively. Approximately 72.5-88.2% of ferulic acid in raw grains and their tortillas were in the bound form. Regarding of the CAA initially found in raw grains, the retained percentage for traditional and extruded tortillas ranged from 47.4 to 48.7% and 72.8 to 77.5%, respectively. These results suggest that Mexican maize landrace used in this study could be considered for the elaboration of nixtamalized and extruded food products with nutraceutical potential.

  17. Differences in the Phenolic Composition and Antioxidant Properties between Vitis coignetiae and Vitis vinifera Seeds Extracts

    Directory of Open Access Journals (Sweden)

    Ryszard Amarowicz

    2013-03-01

    Full Text Available Phenolic compounds were extracted from European and Japanese grapevine species (Vitis vinifera and V. coignetiae seeds using 80% methanol or 80% acetone. The total content of phenolic compounds was determined utilizing Folin-Ciocalteu’s phenol reagent, while the content of tannins was assayed by the vanillin and BSA precipitation methods. Additionally, the DPPH free radical and ABTS cation radical scavenging activities and the reduction power of the extracts were measured. The HPLC method was applied to determine the phenolic compounds, such as phenolic acids and catechins. The seeds contained large amounts of tannins and gallic acid and observable quantities of catechins, p-coumaric, ferulic and caffeic acids. The dominant form of phenolic acids in the extracts was the ester-bound form. The content of total phenolics was higher in the European grape V. vinifera seeds, which also contained more tannins, catechins and phenolic acids, except for caffeic acid. Extracts from V. vinifera seeds showed better radical scavenger properties and stronger reducing power. The total contents of phenolic compounds and tannins in acetone extracts were higher than in methanolic extracts. Acetone extracts also exhibited stronger antiradical properties as well as stronger reducing power.

  18. Comparative analysis of bioactive phenolic compounds composition from 26 medicinal plants

    Directory of Open Access Journals (Sweden)

    Oksana Sytar

    2018-05-01

    Full Text Available Bioactive phenolic compounds are powerful antioxidants in traditionally used medicinal and industrial crop plants and have attracted increased interest in the last years in their application and role in non-destructive methodology for pre-screening analysis of some stress factors. In this study the qualitative target was linked with future possible applications of received data for improving non-destructive methodology as well as for improving existing knowledge regarding antioxidant content in some plant species. Comparative analysis of total phenolics, flavonoid contents, phenolic acid composition, and antioxidant activity in known east central Europe medicinal and industrial crop plants of 26 species of families Asteraceae, Rosaceae and Lamiaceae was done. Among the investigated leaf extracts the highest total phenolic, total flavonoid contents and antioxidant activity have been seen for Stachys byzantine L. (Lamiaceae, Calendula officinalis L. (Asteraceae and for Potentilla recta L. (Rosaceae. The highest syringic acid content has been found in the leaf extracts of plant family Asteraceae – in the range from 0.782 to 5.078 mg g−1 DW. The representative’s family Rosaceae has a higher content of p-anisic acid in the range 0.334–3.442 mg g−1DW compared to the leaf extracts of families Lamiaceae and Asteraceae. The comparative study showed significant differences of content of phenolic acids in the leaf extracts of different representative’s families Rosaceae, Asteraceae and Lamiaceae. We suggest that the presence of some phenolic acids can be used as a possible marker for family botanical specifications of representative families Asteraceae and Rosaceae. It was supposed that some pharmacological effects can be connected with the analyzed data. Keywords: Phenolic compounds, Flavonoids, Phenolic acids, Antioxidant activity, Asteraceae, Rosaceae, Lamiaceae

  19. Evaluation of Antioxidant Properties of Phenolics Extracted from Ananas comosus L.

    Directory of Open Access Journals (Sweden)

    Adhikarimayum HARIPYAREE

    2010-06-01

    Full Text Available Phenolics were extracted from the fruit tissues of Ananas comosus L. var. queen, cv. �Meitei Keehom�, a variety of pineapple grown in Manipur, India, after skin peeling, purified and their antioxidant properties were analyzed. The antioxidant properties were assessed based on the ability of fruit phenolics in absolute methanol to scavenge DPPH, superoxide anion radicals and hydroxyl radicals and compared to antioxidant compounds like ascorbic acid and pyragallol. Pineapple fruit phenolics scavenged DPPH, superioxide anion radicals and hydroxyl radicals in a dose dependent way. In DPPH assay, the IC50 values of pineapple phenolics, ascorbic acid and pyragallol were 12.2?g/ml, 17.82?g/ml and 15.92?g/ml respectively. In superoxide anion and hydroxyl radical scavenging activities, the IC50 values of pineapple phenolics were 11.42?g/ml and 55.292?g/ml, for ascorbic acid 49.62?g/ml, 48.52?g/ml and that of pyragallol was 15.672?g/ml and 60.62?g/ml. The IC50 value was lowest in pineapple phenolics than ascorbic acid and pyragallol in DPPH and superoxide anion assays. But it is higher than ascorbic acid and lower than pyragallol in hydroxyl radical assay. The lower the IC50 values, the higher the antioxidant activities. The phenolics extracted from this variety of pineapple exhibit excellent free radical scavenging activity. The result shows that pineapple and its active constituents may be used in further antioxidative therapy.

  20. Evaluation of Antioxidant Properties of Phenolics Extracted from Ananas comosus L.

    Directory of Open Access Journals (Sweden)

    Adhikarimayum HARIPYAREE

    2010-06-01

    Full Text Available Phenolics were extracted from the fruit tissues of Ananas comosus L. var. queen, cv. Meitei Keehom, a variety of pineapple grown in Manipur, India, after skin peeling, purified and their antioxidant properties were analyzed. The antioxidant properties were assessed based on the ability of fruit phenolics in absolute methanol to scavenge DPPH, superoxide anion radicals and hydroxyl radicals and compared to antioxidant compounds like ascorbic acid and pyragallol. Pineapple fruit phenolics scavenged DPPH, superioxide anion radicals and hydroxyl radicals in a dose dependent way. In DPPH assay, the IC50 values of pineapple phenolics, ascorbic acid and pyragallol were 12.2?g/ml, 17.82?g/ml and 15.92?g/ml respectively. In superoxide anion and hydroxyl radical scavenging activities, the IC50 values of pineapple phenolics were 11.42?g/ml and 55.292?g/ml, for ascorbic acid 49.62?g/ml, 48.52?g/ml and that of pyragallol was 15.672?g/ml and 60.62?g/ml. The IC50 value was lowest in pineapple phenolics than ascorbic acid and pyragallol in DPPH and superoxide anion assays. But it is higher than ascorbic acid and lower than pyragallol in hydroxyl radical assay. The lower the IC50 values, the higher the antioxidant activities. The phenolics extracted from this variety of pineapple exhibit excellent free radical scavenging activity. The result shows that pineapple and its active constituents may be used in further antioxidative therapy.

  1. Microbial production of hyaluronic acid: current state, challenges, and perspectives

    Directory of Open Access Journals (Sweden)

    Liu Long

    2011-11-01

    Full Text Available Abstract Hyaluronic acid (HA is a natural and linear polymer composed of repeating disaccharide units of β-1, 3-N-acetyl glucosamine and β-1, 4-glucuronic acid with a molecular weight up to 6 million Daltons. With excellent viscoelasticity, high moisture retention capacity, and high biocompatibility, HA finds a wide-range of applications in medicine, cosmetics, and nutraceuticals. Traditionally HA was extracted from rooster combs, and now it is mainly produced via streptococcal fermentation. Recently the production of HA via recombinant systems has received increasing interest due to the avoidance of potential toxins. This work summarizes the research history and current commercial market of HA, and then deeply analyzes the current state of microbial production of HA by Streptococcus zooepidemicus and recombinant systems, and finally discusses the challenges facing microbial HA production and proposes several research outlines to meet the challenges.

  2. Quality Markers of Functional Tomato Juice with Added Apple Phenolic Antioxidants

    Directory of Open Access Journals (Sweden)

    Laura Massini

    2016-02-01

    Full Text Available Using natural antioxidants instead of synthetic additives for food stabilisation is at the forefront of research in food formulation. Matrix interactions and stability studies of the incorporated foods are necessary prior to further processing. In this study, apple peel phenolics were added to a commercial bottled tomato juice. The juice was opened and then stored in the presence of air in the headspace at 4 °C for four days to assess its physical-chemical stability (pH, turbidity, colour and total phenolic content and nutritional content (ascorbic acid and total carotenoids; it was also stored at 4 °C for 10 days for the microbiological analysis. The antimicrobial capacity of the phenolic extracts was tested against a range of food borne pathogens and spoilage microorganisms. Results showed that apple peel phenolics could form complexes with colloidal pectins thus increasing the turbidity, even though this effect was not significant during the four-day storage; the colour of the enriched juice was brighter with enhanced yellowness due to added pigments such as flavonol glycosides. The presence of other natural antioxidants (ascorbic acid and carotenoids in tomato juice was not affected by the addition of peel phenolics. Ascorbic acid was partially reduced during storage in all the juice samples; however, the presence of the added peel phenolics whose amount remained constant over time significantly contributed to a higher radical scavenging capacity compared to the control. The microbiological spoilage of the opened tomato juice was also delayed by two to three days in the presence of apple peel phenolics compared to the control. The antimicrobial capacity was due to a bacteriostatic effect of the phenolic extracts mostly against the growth of yeasts; the antimicrobial capacity was related to the acidity of phenolic acids and the presence of apple flavonoids such as flavan-3-ols.

  3. Distribution of major sugars, acids, and total phenols in juice of five grapevine (Vitis spp.) cultivars at different stages of berry development

    Energy Technology Data Exchange (ETDEWEB)

    Sabir, A.; Kafkas, E.; Tangolar, S.

    2010-07-01

    The juices of five grapevine cultivars cultivated in a typical Mediterranean climate were analyzed for sugars, organic acids, and phenols at four distinct stages of berry development. When the unripe berries were almost in full size, the glucose and fructose contents, based on HPLC detection, ranged from 13.3 to 30.7 g L{sup -}1 and from 8.3 to 23.7 g L{sup -}1 for Muscat of Alexandria and Muscat of Hamburg, respectively. At this stage, tartaric acid concentration was between 10.3 (Italia) and 12.3 g L{sup -}1 (Muscat of Alexandria), while the level of total phenols was low. Up to veraison, there were slight reductions in organic acids, while sugar content increased slightly. However, dramatic changes in all genotypes were apparent after veraison. Slight reductions were determined in the glucose and fructose levels of Italia prior to final analysis, possibly indicating this cultivars sensitivity to late harvest. In the final analysis, glucose and fructose content varied from 86.4 (Italia) to 107.0 g L-1 (Muscat of Hamburg), and from 73.1 (Italia) to 94.1 g L{sup -}1 (Alphonse Lavallee), respectively. Tartaric acid content of ripe berries was between 3.8 (Alphonse Lavallee) and 5.2 g L{sup -}1 (Isabella) with a mean value of 4.6 g L{sup -}1, and phenol content of mature berries ranged from 2253 to 2847 mg L{sup -}1. This study provides valuable information for further understanding the sugar, acid and total phenol changes that occur in some grape cultivars during berry maturation. Therefore, these results will be useful for future research on the biochemistry of the grape berry. (Author) 22 refs.

  4. TLC analysis of some phenolic compounds in kombucha beverage

    Directory of Open Access Journals (Sweden)

    Malbaša Radomir V.

    2004-01-01

    Full Text Available Black and green tea contains a wide range of natural phenolic compounds Flavanoids and their glycosides, catechins and the products of their condensation, and phenolic acids are the most important. Kombucha beverage is obtained by fermentation of tea fungus on black or green tea sweetened with sucrose. The aim of this paper was to investigate the composition of some phenolic compounds, catechin, epicatechin, quercetin, myricetin, gallic and tanic acid, and monitoring of their status during tea fungus fermentation. The method used for this study was thin layer chromatography with two different systems. The main phenolic compounds in the samples with green tea were catechin and epicatechin, and in the samples with black tea it was quercetin.

  5. Bioprocessing of wheat bran in whole wheat bread increases the bioavailability of phenolic acids in men and exerts antiinflammatory effects ex vivo 1-3

    NARCIS (Netherlands)

    Mateo Anson, N.; Aura, A.-M.; Selinheimo, E.; Mattila, I.; Poutanen, K.; Berg, R. van den; Havenaar, R.; Bast, A.; Haenen, G.R.M.M.

    2011-01-01

    Whole grain consumption has been linked to a lower risk of metabolic syndrome, which is normally associated with a lowgrade chronic inflammation. The benefits of whole grain are in part related to the inclusion of the bran, rich in phenolic acids and fiber. However, the phenols are poorly

  6. Phenolic compounds participating in mulberry juice sediment formation during storage.

    Science.gov (United States)

    Zou, Bo; Xu, Yu-Juan; Wu, Ji-Jun; Yu, Yuan-Shan; Xiao, Geng-Sheng

    The stability of clarified juice is of great importance in the beverage industry and to consumers. Phenolic compounds are considered to be one of the main factors responsible for sediment formation. The aim of this study is to investigate the changes in the phenolic content in clarified mulberry juice during storage. Hence, separation, identification, quantification, and analysis of the changes in the contents of phenolic compounds, both free and bound forms, in the supernatant and sediments of mulberry juice, were carried out using high performance liquid chromatographic system, equipped with a photo-diode array detector (HPLC-PDA) and HPLC coupled with quadrupole-time of flight mass spectrometric (HPLC-QTOF-MS/MS) techniques. There was an increase in the amount of sediment formed over the period of study. Total phenolic content of supernatant, as well as free phenolic content in the extracts of the precipitate decreased, whereas the bound phenolic content in the sediment increased. Quantitative estimation of individual phenolic compounds indicated high degradation of free anthocyanins in the supernatant and sediment from 938.60 to 2.30 mg/L and 235.60 to 1.74 mg/g, respectively. A decrease in flavonoids in the supernatant was also observed, whereas the contents of bound forms of gallic acid, protocatechuic acid, caffeic acid, and rutin in the sediment increased. Anthocyanins were the most abundant form of phenolics in the sediment, and accounted for 67.2% of total phenolics after 8 weeks of storage. These results revealed that phenolic compounds, particularly anthocyanins, were involved in the formation of sediments in mulberry juice during storage.

  7. Microbial electrochemical monitoring of volatile fatty acids during anaerobic digestion

    DEFF Research Database (Denmark)

    Jin, Xiangdan; Angelidaki, Irini; Zhang, Yifeng

    2016-01-01

    Volatile fatty acid (VFA) concentration is known as an important indicator to control and optimize anaerobic digestion (AD) process. In this study, an innovative VFA biosensor was developed based on the principle of a microbial desalination cell. The correlation between current densities and VFA...

  8. Phenolics and Plant Allelopathy

    Directory of Open Access Journals (Sweden)

    De-An Jiang

    2010-12-01

    Full Text Available Phenolic compounds arise from the shikimic and acetic acid (polyketide metabolic pathways in plants. They are but one category of the many secondary metabolites implicated in plant allelopathy. Phenolic allelochemicals have been observed in both natural and managed ecosystems, where they cause a number of ecological and economic problems, such as declines in crop yield due to soil sickness, regeneration failure of natural forests, and replanting problems in orchards. Phenolic allelochemical structures and modes of action are diverse and may offer potential lead compounds for the development of future herbicides or pesticides. This article reviews allelopathic effects, analysis methods, and allelopathic mechanisms underlying the activity of plant phenolic compounds. Additionally, the currently debated topic in plant allelopathy of whether catechin and 8-hydroxyquinoline play an important role in Centaurea maculata and Centaurea diffusa invasion success is discussed. Overall, the main purpose of this review is to highlight the allelopacthic potential of phenolic compounds to provide us with methods to solve various ecology problems, especially in regard to the sustainable development of agriculture, forestry, nature resources and environment conservation.

  9. Impact of Microbial Growth on Subsurface Perfluoroalkyl Acid Transport

    Science.gov (United States)

    Weathers, T. S.; Higgins, C. P.; Sharp, J.

    2014-12-01

    The fate and transport of poly and perfluoroalkyl substances (PFASs) in the presence of active microbial communities has not been widely investigated. These emerging contaminants are commonly utilized in aqueous film-forming foams (AFFF) and have often been detected in groundwater. This study explores the transport of a suite of perfluorocarboxylic acids and perfluoroalkylsulfonates, including perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), in microbially active settings. Single point organic carbon normalized sorption coefficients derived by exposing inactive cellular material to PFASs result in more than an order of magnitude increase in sorption compared to soil organic carbon sorption coefficients found in literature. For example, the sorption coefficients for PFOS are 4.05±0.07 L/kg and 2.80±0.08 L/kg for cellular organic carbon and soil organic carbon respectively. This increase in sorption, coupled with enhanced extracellular polymeric substance production observed during growth of a common hydrocarbon degrading soil microbe exposed to source-level concentrations of PFASs (10 mg/L of 11 analytes, 110 mg/L total) may result in PFAS retardation in situ. To address the upscaling of this phenomenon, flow-through columns packed with low-organic carbon sediment and biostimulated with 10 mg/L glucose were exposed to PFAS concentrations from 15 μg/L to 10 mg/L of each 11 analytes. Breakthrough and tailing of each analyte was measured and modeled with Hydrus-1D to explore sorption coefficients over time for microbially active columns.

  10. Microbial reverse-electrodialysis chemical-production cell for acid and alkali production

    KAUST Repository

    Zhu, Xiuping; Hatzell, Marta C.; Cusick, Roland D.; Logan, Bruce E.

    2013-01-01

    A new type of bioelectrochemical system, called a microbial reverse-electrodialysis chemical-production cell (MRCC), was developed to produce acid and alkali using energy derived from organic matter (acetate) and salinity gradients (NaCl solutions

  11. An Efficient Synthesis of Phenols via Oxidative Hydroxylation of Arylboronic Acids Using (NH42S2O8

    Directory of Open Access Journals (Sweden)

    Claudia A. Contreras-Celedón

    2014-01-01

    Full Text Available A mild and efficient method for the ipso-hydroxylation of arylboronic acids to the corresponding phenols was developed using (NH42S2O8 as an oxidizing agent. The reactions were performed under metal-, ligand-, and base-free conditions.

  12. Electrochemical Behavior and Antioxidant and Prooxidant Activity of Natural Phenolics

    Directory of Open Access Journals (Sweden)

    Marija Todorović

    2007-10-01

    Full Text Available We have investigated the electrochemical oxidation of a number natural phenolics (salicylic acid, m-hydroxybenzoic acid, p-hydroxybenzoic acid, protocatechuic acid, o-coumaric acid, m-coumaric acid, p-coumaric acid, caffeic acid, quercetin and rutin using cyclic voltammetry. The antioxidant properties of these compounds were also studied. A structural analysis of the tested phenolics suggests that multiple OH substitution and conjugation are important determinants of the free radical scavenging activity and electrochemical behavior. Compounds with low oxidation potentials (Epa lower than 0.45 showed antioxidant activity, whereas compounds with high Epa values (>0.45 act as prooxidants.

  13. Colour Evaluation, Bioactive Compound Content, Phenolic Acid Profiles and in Vitro Biological Activity of Passerina del Frusinate White Wines: Influence of Pre-Fermentative Skin Contact Times.

    Science.gov (United States)

    Carbone, Katya; Fiordiponti, Luciano

    2016-07-22

    Passerina del Frusinate is an autochthonous wine grape variety, which grows in the Lazio region that is currently being evaluated by local wine producers. In this study, colour properties (CIELab coordinates), bioactive compounds (total polyphenols and flavan-3-ols), HPLC-DAD phenolic acid profiles and in vitro biological activity of monovarietal Passerina del Frusinate white wines and the effect of different maceration times (0, 18 and 24 h) were evaluated based on these parameters. Results highlighted statistically significant differences for almost all analysed parameters due to a strong influence of the pre-fermentative skin contact time. The flavan content of macerated wines was six times higher than that of the control, while total polyphenols were 1.5 times higher. According to their phytochemical content, macerated wines showed the highest antiradical capacity tested by means of DPPH(•) and ABTS(+•) assays. Besides, prolonged maceration resulted in a reduction of CIELab coordinates as well as of the content of phenolic substances and antiradical capacity. Among the phenolic acids analysed, the most abundant were vanillic acid and caffeic acid; the latter proved to be the most susceptible to degradation as a result of prolonged maceration. Passerina del Frusinate appears as a phenol-rich white wine with a strong antioxidant potential similar to that of red wines.

  14. Effect of cultivar and variety on phenolic compounds and antioxidant activity of cherry wine.

    Science.gov (United States)

    Xiao, Zuobing; Fang, Lingling; Niu, Yunwei; Yu, Haiyan

    2015-11-01

    To compare the influence of cultivar and variety on the phenolic compounds and antioxidant activity (AA) of cherry wines, total phenolic (TP), total flavonoid (TF), total anthocyanin (TA), total tannin (TT), five individual phenolic acids, and AA were determined. An ultra-performance liquid chromatography tandem mass spectrometry (HPLC-DAD/ESI-MS) method was developed for the determination of gallic acid (GAE), p-hydroxybenzoic acid (PHB), chlorogenic acid (CHL), vanillic acid (VAN), and caffeic acid (CAF). A principal component analysis (PCA) and a cluster analysis (CA) were used to analyze differences related to cultivar and variety. The TP, TF, TA, TT, and AA of samples sourced from the Shandong province of China were higher than those from the Jiangsu province. The PCA and CA results showed that phenolic compounds in cherry wines were closely related to cultivar and variety and that cultivar had more influence on the phenolic compounds of cherry wines than variety. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Content of Phenolic Compounds in the Genus Carduus L. from Bulgaria

    Directory of Open Access Journals (Sweden)

    Iliya Zhelev

    2013-12-01

    Full Text Available Phytochemical screening of the content of total polyphenols, flavonoids, phenolic acids and anthocyanins in Bulgarian Carduus L. species was carried out. The plant materials (inflorescences from all of the 14 species found in Bulgaria has been collected from natural habitats from different floristic regions, during the period 2011-2013. Chemical analysis of the specimens was carried out in accordance with 11 Russian and 7 European Pharmacopoeia. For some of the plant species the obtained results are the first published data about content of phenolic compounds. The content of flavonoids (1,8-3,2% and total phenols(1,7-2,3% was higher in comparison with this of phenolic acids (0,6-2,4% and anthocyanins (0,5-1,5%. The highest content of total phenols and antocyanins was determined in the Carduus thracicus. The three species Carduus thoermeri, Carduus nutans and Carduus candicans ssp. globifer were characterized with the highest content of flavonoids. The highest content of phenolic acids was determined in the Carduus armatus.

  16. Lag phase and biomass determination of Rhodococcus pyridinivorans GM3 for degradation of phenol

    Science.gov (United States)

    Al-Defiery, M. E. J.; Reddy, G.

    2018-05-01

    Among various techniques available for removal of phenol, biodegradation is an eco-friendly and cost effective method. Thus, it is required to understand the process of biodegradation of phenol, such as investigate on lag phase and biomass concentration. Phenol degrading bacteria were isolated from soil samples of industrial sites in enriched mineral salts medium (MSM) with phenol as a sole source of energy and carbon. One isolate of potential phenol degradation from consortium for phenol degrading studies was identified as Rhodococcus pyridinivorans GM3. Lag phase and biomass determination of R. pyridinivorans GM3 was studied with different phenol concentrations under pH 8.5 at temperature 32 Co and 200 rpm. Microbial biomass was directly proportional to increasing phenol concentration between 1.0 to 2.0 g/L with a maximum dry biomass of 1.745 g/L was noted after complete degradation of 2.0 g/L phenol in 48 hours.

  17. Changes of the phenolic compounds and antioxidant activities in germinated adlay seeds.

    Science.gov (United States)

    Xu, Lei; Wang, Pei; Ali, Barkat; Yang, Na; Chen, Yisheng; Wu, Fengfeng; Xu, Xueming

    2017-09-01

    Over the years, germinated adlay products have been used as both food source and folk medicine. This study investigated the changes of total phenolic content (TPC), total flavonoid content (TFC), antioxidant activities, and phenolic acid profiles of adlay seed during germination. Results revealed that phenolic compounds and antioxidant activities varied with the germination stages. Germination significantly increased the free form phenolic and flavonoid contents by 112.5% and 168.3%, respectively. However, both of the bound form phenolic and flavonoid contents significantly decreased after germination. Phenolic acid compositions were quantified via HPLC analysis, and the levels of vanillic, p-coumaric, caffeic, hydroxybenzoic and protocatechuic acids in the free phenolic extracts were found to be significantly increased. The improvement of the free and total phenolic and flavonoid contents by the germination process led to a significant enhancement of the antioxidant activities (evaluated by the ABTS, FRAP and ORAC assays). The TPC showed the highest correlation with ORAC values (r = 0.9979). Germinated adlay had higher free and total phenolic and flavonoid contents, and antioxidant activities than ungerminated adlay. This study indicates that germinated adlay could be a promising functional food, more suitable for human consumption. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  18. Phenolic profiles and antioxidant activity of Turkish Tombul hazelnut samples (natural, roasted, and roasted hazelnut skin).

    Science.gov (United States)

    Pelvan, Ebru; Olgun, Elmas Öktem; Karadağ, Ayşe; Alasalvar, Cesarettin

    2018-04-01

    The phenolic profiles and antioxidant status of hazelnut samples [natural (raw) hazelnut, roasted hazelnut, and roasted hazelnut skin] were compared. Free and bound (ester-linked and glycoside-linked) phenolic acids were examined using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Comprehensive identification of phenolics was carried out using Q-exactive hybrid quadrupole-orbitrap mass spectrometer (Q-OT-MS). Samples were also assessed for their total phenolics and antioxidant activities using three different assays. Ten free and bound phenolic acids were quantified in hazelnut samples. Roasted hazelnut skin contained the highest content of total phenolic acids, followed by natural and roasted hazelnuts. The majority of phenolic acids were present in the bound form. Using a Q-OT-MS, 22 compounds were tentatively identified, 16 of which were identified for the first time in hazelnut samples. The newly identified compounds consisted of flavonoids, phenolic acids and related compounds, hydrolysable tannins and related compounds, and other phenolics. Three antioxidant assays demonstrated similar trends that roasted hazelnut skin rendered the highest activity. The present work suggests that roasted hazelnut skin is a rich source of phenolics and can be considered as a value-added co-product for use as functional food ingredient and antioxidant. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Comparison of phenolic acid profiles and anti-inflammatory effects of two major species of blueberries in the US

    Science.gov (United States)

    Blueberries (BB) contain high levels of polyphenols. Among them, phenolic acids (PAs) have been recently suggested as a group of important bioactive compounds. Highbush BB (Vaccinium corymbosum) and lowbush “wild" BB (Vaccinium angustifolium) are two predominant species in North America. The first o...

  20. Sacha Inchi (Plukenetia volubilis): a seed source of polyunsaturated fatty acids, tocopherols, phytoserols, phenolic compounds and antioxidant capacity

    NARCIS (Netherlands)

    Chirinos, R.; Zuloeta, G.; Pedreschi Plasencia, R.P.

    2013-01-01

    Fatty acids (FA), phytosterols, tocopherols, phenolic compounds, total carotenoids and hydrophilic and lipophilic ORAC antioxidant capacities were evaluated in 16 cultivars of Sacha inchi (SI) seeds with the aim to valorise them and offer more information on the functional properties of SI seeds. A

  1. Antioxidant activity of phenolic compounds in lentil seeds (Lens culinaris L.

    Directory of Open Access Journals (Sweden)

    Dragišić-Maksimović Jelena

    2010-01-01

    Full Text Available The antioxidant activities of methanol extracts of lentil seeds (Lens culinaris L. have been investigated in this work. Scarce reference data describe lentil seeds as rich in polyphenols, which are reported to exhibit bioactive properties due to their capability to reduce or quench reactive oxygen species. The content and composition of phenolics is highly dependent of the cultivars, environments/growth conditions and method of analysis. Therefore, this study is an effort in investigation of phenolics content and composition in lentil seeds trying to prove the contribution of identified phenolics to antioxidant capacity. HPLC measurements revealed that lentil seeds contain gallic acid, epicatechin, catechin, protocatechuic acid, rutin, p-coumaric acid and umbeliferone. Their DPPH radical scavenging activity was in descending order from gallic acid to umbeliferone. The presented results contribute to knowledge of the implications in dietary intake of phenolic compounds from lentil seeds.

  2. [Effects of nitrogen application rate on faba bean fusarium wilt and rhizospheric microbial metabolic functional diversity].

    Science.gov (United States)

    Dong, Yan; Yang, Zhi-xian; Dong, Kun; Tang, Li; Zheng, Yi; Hu, Guo-bin

    2013-04-01

    A field plot experiment was conducted to study the effects of different nitrogen (N) application rates on the microbial functional diversity in faba bean rhizosphere and the relationships between the microbial functional diversity and the occurrence of faba bean fusarium wilt. Four nitrogen application rates were installed, i. e. , N0(0 kg hm-2 , N1 (56. 25 kg hm-2) , N2(112. 5 kg hm-2), and N3 (168.75 kg hm-2), and Biolog microbial analysis system was applied to study the damage of faba bean fusarium wilt and the rhizospheric microbial metabolic functional diversity. Applying N (N1 N2, and N3) decreased the disease index of faba bean fusarium wilt and the quantity of Fusarium oxysporum significantly, and increased the quantities of bacteria and actinomyces and the ratios of bacteria/fungi and actinomyces/fungi significantly, with the peak values of bacteria and actinomyces, bacteria/fungi, and actinomyces/fungi, and the lowest disease index and F. oxysporum density in N2. As compared with N0, applying N increased the AWCD value significantly, but the effects of different N application rates on the ability of rhizospheric microbes in utilizing six types of carbon sources had definite differences. Under the application of N, the utilization rates of carbohydrates, carboxylic acids, and amino acids by the rhizospheric microbes were higher. Principal component analysis demonstrated that applying N changed the rhizospheric microbial community composition obviously, and the carbohydrates, carboxylic acids, and amino acids were the sensitive carbon sources differentiating the changes of the microbial community induced by N application. Applying N inhibited the utilization of carbohydrates and carboxylic acids but improved the utilization of amino acids and phenolic acids by the rhizospheric microbes, which could be one of the main reasons of applying N being able to reduce the harm of faba bean fusarium wilt. It was suggested that rationally applying N could increase the

  3. Chemical characteristics of fulvic acids from Arctic surface waters: Microbial contributions and photochemical transformations

    Science.gov (United States)

    Cory, Rose M.; McKnight, Diane M.; Chin, Yu-Ping; Miller, Penney; Jaros, Chris L.

    2007-12-01

    Dissolved organic matter (DOM) originating from the extensive Arctic tundra is an important source of organic material to the Arctic Ocean. Chemical characteristics of whole water dissolved organic matter (DOM) and the fulvic acid fraction of DOM were studied from nine surface waters in the Arctic region of Alaska to gain insight into the extent of microbial and photochemical transformation of this DOM. All the fulvic acids had a strong terrestrial/higher plant signature, with uniformly depleted δ13C values of -28‰, and low fluorescence indices around 1.3. Several of the measured chemical characteristics of the Arctic fulvic acids were related to water residence time, a measure of environmental exposure to sunlight and microbial activity. For example, fulvic acids from Arctic streams had higher aromatic contents, higher specific absorbance values, lower nitrogen content, lower amino acid-like fluorescence and were more depleted in δ15N relative to fulvic acids isolated from lake and coastal surface waters. The differences in the nitrogen signature between the lake and coastal fulvic acids compared to the stream fulvic acids indicated that microbial contributions to the fulvic acid pool increased with increasing water residence time. The photo-lability of the fulvic acids was positively correlated with water residence time, suggesting that the fulvic acids isolated from source waters with larger water residence times (i.e., lakes and coastal waters) have experienced greater photochemical degradation than the stream fulvic acids. In addition, many of the initial differences in fulvic acid chemical characteristics across the gradient of water residence times were consistent with changes observed in fulvic acid photolysis experiments. Taken together, results from this study suggest that photochemical processes predominantly control the chemical character of fulvic acids in Arctic surface waters. Our findings show that hydrologic transport in addition to

  4. Enhanced degradation of Herbicide Isoproturon in wheat rhizosphere by salicylic acid.

    Science.gov (United States)

    Lu, Yi Chen; Zhang, Shuang; Miao, Shan Shan; Jiang, Chen; Huang, Meng Tian; Liu, Ying; Yang, Hong

    2015-01-14

    This study investigated the herbicide isoproturon (IPU) residues in soil, where wheat was cultivated and sprayed with salicylic acid (SA). Provision of SA led to a lower level of IPU residues in rhizosphere soil compared to IPU treatment alone. Root exudation of tartaric acid, malic acid, and oxalic acids was enhanced in rhizosphere soil with SA-treated wheat. We examined the microbial population (e.g., biomass and phospholipid fatty acid), microbial structure, and soil enzyme (catalase, phenol oxidase, and dehydrogenase) activities, all of which are associated with soil activity and were activated in rhizosphere soil of SA-treated wheat roots. We further assessed the correlation matrix and principal component to figure out the association between the IPU degradation and soil activity. Finally, six IPU degraded products (derivatives) in rhizosphere soil were characterized using ultraperformance liquid chromatography with a quadrupole-time-of-flight tandem mass spectrometer (UPLC/Q-TOF-MS/MS). A relatively higher level of IPU derivatives was identified in soil with SA-treated wheat than in soil without SA-treated wheat plants.

  5. Profiling of the Major Phenolic Compounds and Their Biosynthesis Genes in Sophora flavescens Aiton

    Directory of Open Access Journals (Sweden)

    Jeongyeo Lee

    2018-01-01

    Full Text Available Sophorae Radix (Sophora flavescens Aiton has long been used in traditional medicine in East Asia due to the various biological activities of its secondary metabolites. Endogenous contents of phenolic compounds (phenolic acid, flavonol, and isoflavone and the main bioactive compounds of Sophorae Radix were analyzed based on the qualitative HPLC analysis and evaluated in different organs and at different developmental stages. In total, 11 compounds were detected, and the composition of the roots and aerial parts (leaves, stems, and flowers was significantly different. trans-Cinnamic acid and p-coumaric acid were observed only in the aerial parts. Large amounts of rutin and maackiain were detected in the roots. Four phenolic acid compounds (benzoic acid, caffeic acid, ferulic acid, and chlorogenic acid and four flavonol compounds (kaempferol, catechin hydrate, epicatechin, and rutin were higher in aerial parts than in roots. To identify putative genes involved in phenolic compounds biosynthesis, a total of 41 transcripts were investigated. Expression patterns of these selected genes, as well as the multiple isoforms for the genes, varied by organ and developmental stage, implying that they are involved in the biosynthesis of various phenolic compounds both spatially and temporally.

  6. Phenolic Amides Are Potent Inhibitors of De Novo Nucleotide Biosynthesis.

    Science.gov (United States)

    Pisithkul, Tippapha; Jacobson, Tyler B; O'Brien, Thomas J; Stevenson, David M; Amador-Noguez, Daniel

    2015-09-01

    An outstanding challenge toward efficient production of biofuels and value-added chemicals from plant biomass is the impact that lignocellulose-derived inhibitors have on microbial fermentations. Elucidating the mechanisms that underlie their toxicity is critical for developing strategies to overcome them. Here, using Escherichia coli as a model system, we investigated the metabolic effects and toxicity mechanisms of feruloyl amide and coumaroyl amide, the predominant phenolic compounds in ammonia-pretreated biomass hydrolysates. Using metabolomics, isotope tracers, and biochemical assays, we showed that these two phenolic amides act as potent and fast-acting inhibitors of purine and pyrimidine biosynthetic pathways. Feruloyl or coumaroyl amide exposure leads to (i) a rapid buildup of 5-phosphoribosyl-1-pyrophosphate (PRPP), a key precursor in nucleotide biosynthesis, (ii) a rapid decrease in the levels of pyrimidine biosynthetic intermediates, and (iii) a long-term generalized decrease in nucleotide and deoxynucleotide levels. Tracer experiments using (13)C-labeled sugars and [(15)N]ammonia demonstrated that carbon and nitrogen fluxes into nucleotides and deoxynucleotides are inhibited by these phenolic amides. We found that these effects are mediated via direct inhibition of glutamine amidotransferases that participate in nucleotide biosynthetic pathways. In particular, feruloyl amide is a competitive inhibitor of glutamine PRPP amidotransferase (PurF), which catalyzes the first committed step in de novo purine biosynthesis. Finally, external nucleoside supplementation prevents phenolic amide-mediated growth inhibition by allowing nucleotide biosynthesis via salvage pathways. The results presented here will help in the development of strategies to overcome toxicity of phenolic compounds and facilitate engineering of more efficient microbial producers of biofuels and chemicals. Copyright © 2015, Pisithkul et al.

  7. Phenolic Amides Are Potent Inhibitors of De Novo Nucleotide Biosynthesis

    Science.gov (United States)

    Pisithkul, Tippapha; Jacobson, Tyler B.; O'Brien, Thomas J.; Stevenson, David M.

    2015-01-01

    An outstanding challenge toward efficient production of biofuels and value-added chemicals from plant biomass is the impact that lignocellulose-derived inhibitors have on microbial fermentations. Elucidating the mechanisms that underlie their toxicity is critical for developing strategies to overcome them. Here, using Escherichia coli as a model system, we investigated the metabolic effects and toxicity mechanisms of feruloyl amide and coumaroyl amide, the predominant phenolic compounds in ammonia-pretreated biomass hydrolysates. Using metabolomics, isotope tracers, and biochemical assays, we showed that these two phenolic amides act as potent and fast-acting inhibitors of purine and pyrimidine biosynthetic pathways. Feruloyl or coumaroyl amide exposure leads to (i) a rapid buildup of 5-phosphoribosyl-1-pyrophosphate (PRPP), a key precursor in nucleotide biosynthesis, (ii) a rapid decrease in the levels of pyrimidine biosynthetic intermediates, and (iii) a long-term generalized decrease in nucleotide and deoxynucleotide levels. Tracer experiments using 13C-labeled sugars and [15N]ammonia demonstrated that carbon and nitrogen fluxes into nucleotides and deoxynucleotides are inhibited by these phenolic amides. We found that these effects are mediated via direct inhibition of glutamine amidotransferases that participate in nucleotide biosynthetic pathways. In particular, feruloyl amide is a competitive inhibitor of glutamine PRPP amidotransferase (PurF), which catalyzes the first committed step in de novo purine biosynthesis. Finally, external nucleoside supplementation prevents phenolic amide-mediated growth inhibition by allowing nucleotide biosynthesis via salvage pathways. The results presented here will help in the development of strategies to overcome toxicity of phenolic compounds and facilitate engineering of more efficient microbial producers of biofuels and chemicals. PMID:26070680

  8. Mixture-amount design and response surface modeling to assess the effects of flavonoids and phenolic acids on developmental performance of Anastrepha ludens.

    Science.gov (United States)

    Pascacio-Villafán, Carlos; Lapointe, Stephen; Williams, Trevor; Sivinski, John; Niedz, Randall; Aluja, Martín

    2014-03-01

    Host plant resistance to insect attack and expansion of insect pests to novel hosts may to be modulated by phenolic compounds in host plants. Many studies have evaluated the role of phenolics in host plant resistance and the effect of phenolics on herbivore performance, but few studies have tested the joint effect of several compounds. Here, we used mixture-amount experimental design and response surface modeling to study the effects of a variety of phenolic compounds on the development and survival of Mexican fruit fly (Anastrepha ludens [Loew]), a notorious polyphagous pest of fruit crops that is likely to expand its distribution range under climate change scenarios. (+)- Catechin, phloridzin, rutin, chlorogenic acid, and p-coumaric acid were added individually or in mixtures at different concentrations to a laboratory diet used to rear individuals of A. ludens. No effect was observed with any mixture or concentration on percent pupation, pupal weight, adult emergence, or survival from neonate larvae to adults. Larval weight, larval and pupal developmental time, and the prevalence of adult deformities were affected by particular mixtures and concentrations of the compounds tested. We suggest that some combinations/concentrations of phenolic compounds could contribute to the management of A. ludens. We also highlight the importance of testing mixtures of plant secondary compounds when exploring their effects upon insect herbivore performance, and we show that mixture-amount design is a useful tool for this type of experiments.

  9. Effect of fiber sources on fatty acids profile, glycemic index, and phenolic compound content of in vitro digested fortified wheat bread.

    Science.gov (United States)

    Kurek, Marcin Andrzej; Wyrwisz, Jarosław; Karp, Sabina; Wierzbicka, Agnieszka

    2018-05-01

    In this study, some dietary fiber (DF) sources were investigated as fortifiers of wheat bread: oat (OB), flax (FB), and apple (AB). Adding oat and flax fibers to bread significantly changed the fatty acid profiles. OB was highest in oleic acid (33.83% of lipids) and linoleic acid (24.31% of lipids). Only in FB, γ-linolenic fatty acid was present in a significant amount-18.32%. The bioaccessibility trails revealed that the DF slow down the intake of saturated fatty acids. PUFA were least bioaccessible from all fatty acids groups in the range of (72% in OB to 87% in FB). The control bread had the greatest value (80.5) and was significantly higher than values for OB, FB, and AB in terms of glycemic index. OB, FB and AB addition led to obtain low glycemic index. AB had a significant highest value of total phenolic (897.2 mg/kg) with the lowest values in FB (541.2 mg/kg). The only significant lowering of caloric values in this study was observed in AB. The study could address the gap in the area of research about taking into consideration glycemic index, fatty acid profile and phenolic content in parallel in terms of DF application in breads.

  10. Quantitative analysis of phenol and alkylphenols in Brazilian coal tar

    Directory of Open Access Journals (Sweden)

    Elina Bastos Caramão

    2004-04-01

    Full Text Available The main purpose of this work is the identification and quantification of phenolic compounds in coal tar samples from a ceramics factory in Cocal (SC, Brazil. The samples were subjected to preparative scale liquid chromatography, using Amberlyst A-27TM ion-exchange resin as stationary phase. The fractions obtained were classified as "acids" and "BN" (bases and neutrals. The identification and quantification of phenols, in the acid fraction, was made by gas chromatography coupled to mass spectrometry (GC/MS. Nearly twenty-five phenols were identified in the samples and nine of them were also quantified. The results showed that coal tar has large quantities of phenolic compounds of industrial interest.

  11. Antioxidative activity and emulsifying properties of cuttlefish skin gelatin modified by oxidised phenolic compounds

    NARCIS (Netherlands)

    Aewsiri, T.; Benjakul, S.; Visessanguan, W.; Eun, J.B.; Wierenga, P.A.; Gruppen, H.

    2009-01-01

    Antioxidative activity and emulsifying properties of cuttlefish skin gelatin modified by different oxidised phenolic compounds including caffeic acid, ferulic acid and tannic acid at different concentrations were investigated. Oxidised phenolic compounds were covalently attached to gelatin as

  12. Phenolic compounds and antioxidant activity of kernels and shells of Mexican pecan (Carya illinoinensis).

    Science.gov (United States)

    de la Rosa, Laura A; Alvarez-Parrilla, Emilio; Shahidi, Fereidoon

    2011-01-12

    The phenolic composition and antioxidant activity of pecan kernels and shells cultivated in three regions of the state of Chihuahua, Mexico, were analyzed. High concentrations of total extractable phenolics, flavonoids, and proanthocyanidins were found in kernels, and 5-20-fold higher concentrations were found in shells. Their concentrations were significantly affected by the growing region. Antioxidant activity was evaluated by ORAC, DPPH•, HO•, and ABTS•-- scavenging (TAC) methods. Antioxidant activity was strongly correlated with the concentrations of phenolic compounds. A strong correlation existed among the results obtained using these four methods. Five individual phenolic compounds were positively identified and quantified in kernels: ellagic, gallic, protocatechuic, and p-hydroxybenzoic acids and catechin. Only ellagic and gallic acids could be identified in shells. Seven phenolic compounds were tentatively identified in kernels by means of MS and UV spectral comparison, namely, protocatechuic aldehyde, (epi)gallocatechin, one gallic acid-glucose conjugate, three ellagic acid derivatives, and valoneic acid dilactone.

  13. Colour Evaluation, Bioactive Compound Content, Phenolic Acid Profiles and in Vitro Biological Activity of Passerina del Frusinate White Wines: Influence of Pre-Fermentative Skin Contact Times

    Directory of Open Access Journals (Sweden)

    Katya Carbone

    2016-07-01

    Full Text Available Passerina del Frusinate is an autochthonous wine grape variety, which grows in the Lazio region that is currently being evaluated by local wine producers. In this study, colour properties (CIELab coordinates, bioactive compounds (total polyphenols and flavan-3-ols, HPLC-DAD phenolic acid profiles and in vitro biological activity of monovarietal Passerina del Frusinate white wines and the effect of different maceration times (0, 18 and 24 h were evaluated based on these parameters. Results highlighted statistically significant differences for almost all analysed parameters due to a strong influence of the pre-fermentative skin contact time. The flavan content of macerated wines was six times higher than that of the control, while total polyphenols were 1.5 times higher. According to their phytochemical content, macerated wines showed the highest antiradical capacity tested by means of DPPH• and ABTS+• assays. Besides, prolonged maceration resulted in a reduction of CIELab coordinates as well as of the content of phenolic substances and antiradical capacity. Among the phenolic acids analysed, the most abundant were vanillic acid and caffeic acid; the latter proved to be the most susceptible to degradation as a result of prolonged maceration. Passerina del Frusinate appears as a phenol-rich white wine with a strong antioxidant potential similar to that of red wines.

  14. The acidic functional groups of humic acid

    Energy Technology Data Exchange (ETDEWEB)

    Shanxiang, Li; Shuhe, Sun; Zhai Zongxi, Wu Qihu

    1983-09-01

    The acidic functional groups content, pK value, DELTAH and DELTAS of humic acid (HA) and nitro-humic acid (NHA) were determined by potentiometry, conductometry and calorimetric titration. The thermodynamic parameters of carboxylic groups and phenolic hydroxyl groups of humic acid are similar to that of simple hydroxy-benzoic acid. The configuration sites of acidic functional groups in humic acid from different coals are different. The carbonyl groups on aromatic rings are probably ortho to phenolic -OH for HA and NHA extracted from Huangxian's brown coal and Japanese lignite, while those from Lingshi's weathered coal are not. The weak -COOH groups of the latter possess higher chemical activity. The -COOH content in HA increases, phenolic -OH group decreases and the chemical acidity of acidic functional groups increases when HA is oxidized by nitric acid. (14 refs.)

  15. The Influence of Tallow on Rumen Metabolism, Microbial Biomass Synthesis and Fatty Acid Composition of Bacteria and Protozoa

    DEFF Research Database (Denmark)

    Weisbjerg, Martin Riis; Børsting, Christian Friis; Hvelplund, Torben

    1992-01-01

    Rumen metabolism, microbial biomass synthesis and microbial long chain fatty acid composition were studied in lactating cows fed at two levels of dry matter intake (L, 8.6 kg DM and H, 12.6 kg DM) with 0, 4 and 6% added tallow at the low feed level (L0, L4 and L6) and 0, 2, 4 and 6% at the high...... feed level (H0, H2, H4 and H6). Fibre digestibility was not significantly affected by tallow addition. Increasing tallow level in the diet decreased the total VFA concentration, the ratio of acetic acid to propionic acid and the ammonia concentration in the rumen. Crude fat and fatty acid content...... in bacterial and protozoal dry matter increased with increased tallow level, especially due to an increase in fatty acids originating from the feeds. Microbial synthesis in the rumen and flow of amino acids to the duodenum was highest for medium fat intake at the high feed level....

  16. The microbial communities and potential greenhouse gas production in boreal acid sulphate, non-acid sulphate, and reedy sulphidic soils

    Energy Technology Data Exchange (ETDEWEB)

    Šimek, Miloslav, E-mail: misim@upb.cas.cz [Biology Centre AS CR, v. v. i., Institute of Soil Biology, 370 05 České Budějovice (Czech Republic); University of South Bohemia, Faculty of Science, 370 05 České Budějovice (Czech Republic); Virtanen, Seija; Simojoki, Asko [Department of Food and Environmental Sciences, University of Helsinki, FI-00014 Helsinki (Finland); Chroňáková, Alica; Elhottová, Dana; Krištůfek, Václav [Biology Centre AS CR, v. v. i., Institute of Soil Biology, 370 05 České Budějovice (Czech Republic); Yli-Halla, Markku [Department of Food and Environmental Sciences, University of Helsinki, FI-00014 Helsinki (Finland)

    2014-01-01

    Acid sulphate (AS) soils along the Baltic coasts contain significant amounts of organic carbon and nitrogen in their subsoils. The abundance, composition, and activity of microbial communities throughout the AS soil profile were analysed. The data from a drained AS soil were compared with those from a drained non-AS soil and a pristine wetland soil from the same region. Moreover, the potential production of methane, carbon dioxide, and nitrous oxide from the soils was determined under laboratory conditions. Direct microscopic counting, glucose-induced respiration (GIR), whole cell hybridisation, and extended phospholipid fatty acid (PLFA) analysis confirmed the presence of abundant microbial communities in the topsoil and also in the deepest Cg2 horizon of the AS soil. The patterns of microbial counts, biomass and activity in the profile of the AS soil and partly also in the non-AS soil therefore differed from the general tendency of gradual decreases in soil profiles. High respiration in the deepest Cg2 horizon of the AS soil (5.66 μg C g{sup − 1} h{sup − 1}, as compared to 2.71 μg C g{sup − 1} h{sup − 1} in a top Ap horizon) is unusual but reasonable given the large amount of organic carbon in this horizon. Nitrous oxide production peaked in the BCgc horizon of the AS and in the BC horizon of the non-AS soil, but the peak value was ten-fold higher in the AS soil than in the non-AS soil (82.3 vs. 8.6 ng N g{sup − 1}d{sup − 1}). The data suggest that boreal AS soils on the Baltic coast contain high microbial abundance and activity. This, together with the abundant carbon and total and mineral nitrogen in the deep layers of AS soils, may result in substantial gas production. Consequently, high GHG emissions could occur, for example, when the generally high water table is lowered because of arable farming. - Highlights: •Boreal acid sulphate soils contain large amounts of organic C and N in subsoils. •Microbial communities throughout the acid

  17. Standardization of Tragopogon graminifolius DC. Extract Based on Phenolic Compounds and Antioxidant Activity

    Directory of Open Access Journals (Sweden)

    Mohammad Hosein Farzaei

    2014-01-01

    Full Text Available Tragopogon graminifolius DC. (TG, Compositae family, is traditionally used for the treatment of various diseases like gastrointestinal and hepatic disorders. The aim of the present study is to standardize extracts from TG used for preparation of different dosage forms in traditional Iranian medicine (TIM based on phenolic compounds. For this purpose, total phenolic content and some phenolic compounds were determined in ethanolic extracts from aerial part and root of TG by HPLC method. Furthermore, antioxidant activity was evaluated using DPPH-HPLC methods. Caffeic acid, gallic acid, ρ-coumaric acid, ferulic acid, and catechin were detected in root and aerial part of TG. ρ-Coumaric acid (6.357 ± 0.014 mg·g−1 was dominant phenolic compound in aerial part followed by ferulic acid (1.24 ± 0.018 mg·g−1. Also, ρ-coumaric acid (2.685 ± 0.031 mg·g−1 was highly abundant in root, followed by catechin (2.067 ± 0.021 mg·g−1. Antioxidant activity of root extract (460.45 ± 0.78 µg Vit.E.E·mL−1 was better than that of aerial part. Generally, phenolic compounds are one of the major constituents of TG and could be used as markers for standardization of dosage forms prepared from this plant. Also, TG demonstrated significant antioxidant activity using DPPH-HPLC method. Phenolic compounds of TG may be responsible for its marked antioxidant properties.

  18. Bioavailability and metabolism of phenolic compounds from wholegrain wheat and aleurone-rich wheat bread.

    Science.gov (United States)

    Bresciani, Letizia; Scazzina, Francesca; Leonardi, Roberto; Dall'Aglio, Elisabetta; Newell, Michael; Dall'Asta, Margherita; Melegari, Camilla; Ray, Sumantra; Brighenti, Furio; Del Rio, Daniele

    2016-11-01

    This work aimed at investigating absorption, metabolism, and bioavailability of phenolic compounds after consumption of wholegrain bread or bread enriched with an aleurone fraction. Two commercially available breads were consumed by 15 participants on three occasions and matched for either the amount of ferulic acid in the bread or the amount of bread consumed. Urine was collected for 48 h from all the volunteers for phenolic metabolite quantification. Blood samples were collected for 24 h following bread consumption in five participants. A total of 12 and 4 phenolic metabolites were quantified in urine and plasma samples, respectively. Metabolites were sulfate and glucuronic acid conjugates of phenolic acids, and high concentrations of ferulic acid-4'-O-sulfate, dihydroferulic acid-4'-O-sulfate, and dihydroferulic acid-O-glucuronide were observed. The bioavailability of ferulic acid was significantly higher from the aleurone-enriched bread when all ferulic acid metabolites were accounted for. The study shows that low amounts of aleurone-enriched bread resulted in equivalent plasma levels of ferulic acid as wholegrain bread. This could suggest that, if the absorbed phenolic metabolites after wholegrain product intake exert health benefits, equal levels could be reached through the consumption of lower doses of refined products enriched in aleurone fraction. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Phenolic Compounds and Antioxidant Activity of Phalaenopsis Orchid Hybrids

    Directory of Open Access Journals (Sweden)

    Truong Ngoc Minh

    2016-09-01

    Full Text Available Phalaenopsis spp. is the most commercially and economically important orchid, but their plant parts are often left unused, which has caused environmental problems. To date, reports on phytochemical analyses were most available on endangered and medicinal orchids. The present study was conducted to determine the total phenolics, total flavonoids, and antioxidant activity of ethanol extracts prepared from leaves and roots of six commercial hybrid Phalaenopsis spp. Leaf extracts of “Chian Xen Queen” contained the highest total phenolics with a value of 11.52 ± 0.43 mg gallic acid equivalent per g dry weight and the highest total flavonoids (4.98 ± 0.27 mg rutin equivalent per g dry weight. The antioxidant activity of root extracts evaluated by DPPH (2,2-diphenyl-1-picrylhydrazyl free radical scavenging assay and β-carotene bleaching method was higher than those of the leaf extracts. Eleven phenolic compounds were identified, namely, protocatechuic acid, p-hydroxybenzoic acid, vanillic acid, caffeic acid, syringic acid, vanillin, ferulic acid, sinapic acid, p-coumaric acid, benzoic acid, and ellagic acid. Ferulic, p-coumaric and sinapic acids were concentrated largely in the roots. The results suggested that the root extracts from hybrid Phalaenopsis spp. could be a potential source of natural antioxidants. This study also helps to reduce the amount of this orchid waste in industrial production, as its roots can be exploited for pharmaceutical purposes.

  20. Free and Bound Phenolic Compound Content and Antioxidant Activity of Different Cultivated Blue Highland Barley Varieties from the Qinghai-Tibet Plateau.

    Science.gov (United States)

    Yang, Xi-Juan; Dang, Bin; Fan, Ming-Tao

    2018-04-11

    In this study, the polyphenols composition and antioxidant properties of 12 blue highland barley varieties planted on the Qinghai-Tibet Plateau area were measured. The contents of the free, bound and total phenolic acids varied between 166.20-237.60, 170.10-240.75 and 336.29-453.94 mg of gallic acid equivalents per 100 g of dry weight (DW) blue highland barley grains, while the free and bound phenolic acids accounted for 50.09% and 49.91% of the total phenolic acids, respectively. The contents of the free, bound and total flavones varied among 20.61-25.59, 14.91-22.38 and 37.91-47.98 mg of catechin equivalents per 100 g of dry weight (DW) of blue highland barley grains, while the free and bound flavones accounted for 55.90% and 44.10% of the total flavones, respectively. The prominent phenolic compounds in the blue hulless barley grains were gallic acid, benzoic acid, syringic acid, 4-coumaric acid, naringenin, hesperidin, rutin, (+)-catechin and quercetin. Among these, protocatechuic acid, chlorogenic acid and (+)-catechin were the major phenolic compounds in the free phenolics extract. The most abundant bound phenolics were gallic acid, benzoic acid, syringic acid, 4-coumaric acid, benzoic acid, dimethoxybenzoic acid, naringenin, hesperidin, quercetin and rutin. The average contribution of the bound phenolic extract to the DPPH • free radical scavenging capacity was higher than 86%, that of free phenolic extract to the ABTS •+ free radical scavenging capacity was higher than 79%, and that of free phenolic (53%) to the FRAP antioxidant activity was equivalent to that of the bound phenol extract (47%). In addition, the planting environment exerts a very important influence on the polyphenol composition, content and antioxidant activity of blue highland barley. The correlation analysis showed that 2,4-hydroxybenzoic acid and protocatechuic acid were the main contributors to the DPPH • and ABTS •+ free radical scavenging capacity in the free phenolic extract

  1. Capillary electrophoretic determination of selected phenolic compounds in humic substances of well waters and fertilizers.

    Science.gov (United States)

    Chen, Mei-Ying; Chang, Yan-Zin; Lu, Fung-Jou; Chen, Jian-Lian

    2010-01-01

    Humic substances (HS) from well waters, fertilizers, and synthetic phenolic polymers were characterized by elemental and UV-VIS spectroscopic analyses. Capillary zone electrophoresis (CZE) with UV absorption detection was used to analyze the lignin-derived phenolic distribution in the degradation residues after alkaline CuO oxidation of HS samples. Eleven phenols with p-acetyl, vanillyl and syringyl substituents were selected to optimize the CZE parameters. For well waters and fertilizers, the content of phenolic fragments was in agreement with the findings of the elemental and spectroscopic measurements. Additionally, parameters derived from the vanillic acid/vanilline, syringyl acid/syringaldehyde, p-hydroxyl/vanillyl and syringyl/vanillyl ratios matched analogous studies on dissolved organic matter from natural waters and on humic acids from terrestrial substances. The amount of phenolic monomer bonded within two synthetic HS polymers was found to be 25.9% protocatechuic acid and 71.3% gallic acid.

  2. Comparative study on liquefaction of creosote and chromated copper arsenate (CCA)-treated wood and untreated southern pine wood: effects of acid catalyst content, liquefaction time, temperature, and phenol to wood ratio

    Science.gov (United States)

    Hui Pan; Chung-Yun Hse; Todd F. Shupe

    2009-01-01

    Creosote- and chromated copper arsenate (CCA)-treated wood waste and untreated southern pine wood were liquefied with phenol and sulfuric acid. The effects of sulfuric acid content, liquefaction time, liquefaction temperature, and phenol to wood ratio on liquefaction rate (i.e., wood residue content) were investigated and analyzed by analysis of variance (...

  3. The Protective Effect of Whole Honey and Phenolic Extract on Oxidative DNA Damage in Mice Lymphocytes Using Comet Assay.

    Science.gov (United States)

    Cheng, Ni; Wang, Yuan; Cao, Wei

    2017-12-01

    In this study, the antioxidant activity and the protective effect against hydrogen peroxide-induced DNA damage were assessed for five honeys of different botanical origin. Seven phenolic acids were detected in the honey samples. Ferulic acid was the most abundant phenolic acid detected in longan honey, jujube honey and buckwheat honey. Ellagic acid, p-hydroxybenzoic acid and protocatechuic acid were the main phenolic acids detected in vitex honey. Of all honey samples tested, the highest total phenolic content and antioxidant activity were found in buckwheat honey, whereas the lowest total phenolic content and antioxidant activity were found in locust honey. Treatment with hydrogen peroxide induced a 62% increase in tail DNA in mice lymphocytes, and all studied honeys significantly inhibited this effect (P Phenolic extracts of honey displayed greater protective effects than whole honey in comet assay. The hydrogen peroxide-generated increase in 8-hydroxy-2-deoxyguanosine (8-OHdG) was effectively inhibited by the honeys studied (P phenolic acids of honey can penetrate into lymphocytes and protect DNA from oxidative damage by scavenging hydrogen peroxide and/or chelating ferrous ions.

  4. Accumulation of solvent-soluble and solvent-insoluble antioxidant phenolics in edible bean sprouts: implication of germination

    Directory of Open Access Journals (Sweden)

    Ren-You Gan

    2016-08-01

    Full Text Available Background: Edible bean sprouts are popular fresh vegetables widely recognized for their nutritional quality. However, while their antioxidant capacity and phenolic composition in both solvent-soluble and solvent-insoluble extracts has not been systematically evaluated. Methods: The antioxidant capacity and phenolic composition in both solvent-soluble and solvent-insoluble fractions of 12 cultivars of edible bean sprouts were evaluated, and relationships of antioxidant capacity and total phenolic content were also analyzed. Results: Sprouts demonstrated a wide range of antioxidant capacity and total phenolic content, with lower but substantial antioxidant capacity and total phenolic content in the solvent-insoluble fractions. Highest levels were found in the green mung bean sprout. Phenolic compounds, such as catechin, ellagic acid, ferulic acid, gallic acid and p-coumaric acid were widely detected in these sprouts. Additionally, a positive correlation was discovered between antioxidant capacity and total phenolic content in these edible bean sprouts. Conclusions: Germination generally resulted in the accumulation of antioxidant phenolics in the most edible bean sprouts. Edible bean sprouts with high antioxidant phenolics can be valuable natural sources of dietary antioxidants for the prevention of oxidative stress-related chronic diseases.

  5. Sugars, organic acids, and phenolic compounds of ancient grape cultivars (Vitis vinifera L.) from Igdir province of Eastern Turkey.

    Science.gov (United States)

    Eyduran, Sadiye Peral; Akin, Meleksen; Ercisli, Sezai; Eyduran, Ecevit; Maghradze, David

    2015-01-13

    The Eurasian grapevine (Vitis vinifera L.) is the most widely cultivated and economically important horticultural crop in the world. As a one of the origin area, Anatolia played an important role in the diversification and spread of the cultivated form V. vinifera ssp. vinifera cultivars and also the wild form V. vinifera ssp. sylvestris ecotypes. Although several biodiversity studies have been conducted with local cultivars in different regions of Anatolia, no information has been reported so far on the biochemical (organic acids, sugars, phenolic acids, vitamin C) and antioxidant diversity of local historical table V. vinifera cultivars grown in Igdir province. In this work, we studied these traits in nine local table grape cultivars viz. 'Beyaz Kismis' (synonym name of Sultanina or Thompson seedless), 'Askeri', 'El Hakki', 'Kirmizi Kismis', 'Inek Emcegi', 'Hacabas', 'Kerim Gandi', 'Yazen Dayi', and 'Miskali' spread in the Igdir province of Eastern part of Turkey. Variability of all studied parameters is strongly influenced by cultivars (P grape cultivars grown in Igdir province of Eastern part of Turkey contained diverse and valuable sugars, organic acids, phenolic acids, Vitamin C values and demonstrated important antioxidant capacity for human health benefits. Further preservation and use of this gene pool will be helpful to avoid genetic erosion and to promote continued agriculture in the region.

  6. Antibacterial Activity of Phenolic Compounds Against the Phytopathogen Xylella fastidiosa

    OpenAIRE

    Maddox, Christina E.; Laur, Lisa M.; Tian, Li

    2010-01-01

    Xylella fastidiosa is a pathogenic bacterium that causes diseases in many crop species, which leads to considerable economic loss. Phenolic compounds (a group of secondary metabolites) are widely distributed in plants and have shown to possess antimicrobial properties. The anti-Xylella activity of 12 phenolic compounds, representing phenolic acid, coumarin, stilbene and flavonoid, was evaluated using an in vitro agar dilution assay. Overall, these phenolic compounds were effective in inhibiti...

  7. Defensive strategies in Geranium sylvaticum, Part 2: Roles of water-soluble tannins, flavonoids and phenolic acids against natural enemies.

    Science.gov (United States)

    Tuominen, Anu

    2013-11-01

    Geranium sylvaticum is a common herbaceous plant in Fennoscandia, which has a unique phenolic composition. Ellagitannins, proanthocyanidins, galloylglucoses, gallotannins, galloyl quinic acids and flavonoids possess variable distribution in its different organs. These phenolic compounds are thought to have an important role in plant-herbivore interactions. The aim of this study was to quantify these different water-soluble phenolic compounds and measure the biological activity of the eight organs of G. sylvaticum. Compounds were characterized and quantified using HPLC-DAD/MS, in addition, total proanthocyanidins were determined by BuOH-HCl assay and total phenolics by the Folin-Ciocalteau method. Two in vitro biological activity measurements were used: the prooxidant activity was measured by the browning assay and antioxidant activity by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. Organ extracts were fractionated using column chromatography on Sephadex LH-20 and the activities of fractions was similarly measured to evaluate which polyphenol groups contributed the most to the biological activity of each organ. The data on the activity of fractions were examined by multivariate data analysis. The water-soluble extracts of leaves and pistils, which contained over 30% of the dry weight as ellagitannins, showed the highest pro-oxidant activity among the organ extracts. Fraction analysis revealed that flavonoids and galloyl quinic acids also exhibited high pro-oxidant activity. In contrast, the most antioxidant active organ extracts were those of the main roots and hairy roots that contained high amounts of proanthocyanidins in addition to ellagitannins. Analysis of the fractions showed that especially ellagitannins and galloyl quinic acids have high antioxidant activity. We conclude that G. sylvaticum allocates a significant amount of tannins in those plant parts that are important to the fitness of the plant and susceptible to natural enemies, i

  8. [Role of the vitamin factor in preventing phenol poisoning].

    Science.gov (United States)

    Skvortsova, R I; Pozniakovskiĭ, V M; Agarkova, I A

    1981-01-01

    Experiments on rats were made to examine the effect of vitamin B1, pantothenic and ascorbic acids on the acetylation system and some characteristics of protein metabolism under chronic exposure to phenol. Inhibition of phenol vapours led to inhibition of the acetylation on the 105th day of the experiment, to accumulation of pyruvic acid by the blood and diurnal urine, to elevation of cholesterol content in the blood serum. The total content of protein and protein fractions in the blood serum remained unchanged. Additional vitaminization of the animals with thiamine (150 micrograms), calcium pantothenate (650 micrograms) or with their mixture containing ascorbic acid (2 mg) resulted in normalization of the test characteristics of carbohydrate and fat metabolism. The data obtained and the clinical trials carried out by the authors suggest introduction of the physiological doses of thiamine, calcium pantothenate and ascorbic acid into the diet of the workers in order to prevent phenol poisonings more effectively.

  9. Silicon induces changes in antifungal phenolic acids, flavonoids, and key phenylpropanoid pathway genes during the interaction between miniature roses and the biotrophic pathogen Podosphaera pannosa

    DEFF Research Database (Denmark)

    Shetty, Radhakrishna; Fretté, Xavier; Jensen, Birgit

    2011-01-01

    pathogen inoculation induced gene expression and primed the accumulation of several phenolics compared with the uninoculated Si- control. Chlorogenic acid was the phenolic acid detected in the highest concentration, with an increase of more than 80% in Si+ inoculated compared with Si- uninoculated plants....... Among the quantified flavonoids, rutin and quercitrin were detected in the highest concentrations, and the rutin concentration increased more than 20-fold in Si+ inoculated compared with Si- uninoculated plants. Both rutin and chlorogenic acid had antimicrobial effects on P. pannosa, evidenced...... by reduced conidial germination and appressorium formation of the pathogen, both after spray application and infiltration into leaves. The application of rutin and chlorogenic acid reduced powdery mildew severity by 40% to 50%, and observation of an effect after leaf infiltration indicated that these two...

  10. Soil microbial community structure and function responses to successive planting of Eucalyptus.

    Science.gov (United States)

    Chen, Falin; Zheng, Hua; Zhang, Kai; Ouyang, Zhiyun; Li, Huailin; Wu, Bing; Shi, Qian

    2013-10-01

    Many studies have shown soil degradation after the conversion of native forests to exotic Eucalyptus plantations. However, few studies have investigated the long-term impacts of short-rotation forestry practices on soil microorganisms. The impacts of Eucalyptus successive rotations on soil microbial communities were evaluated by comparing phospholipid fatty acid (PLFA) abundances, compositions, and enzyme activities of native Pinus massoniana plantations and adjacent 1st, 2nd, 3rd, 4th generation Eucalyptus plantations. The conversion from P. massoniana to Eucalyptus plantations significantly decreased soil microbial community size and enzyme activities, and increased microbial physiological stress. However, the PLFA abundances formed "u" shaped quadratic functions with Eucalyptus plantation age. Alternatively, physiological stress biomarkers, the ratios of monounsaturated to saturated fatty acid and Gram+ to Gram- bacteria, formed "n"' shaped quadratic functions, and the ratio of cy17:0 to 16:1omega7c decreased with plantation age. The activities of phenol oxidase, peroxidase, and acid phosphatase increased with Eucalyptus plantation age, while the cellobiohydrolase activity formed "u" shaped quadratic functions. Soil N:P, alkaline hydrolytic nitrogen, soil organic carbon, and understory cover largely explained the variation in PLFA profiles while soil N:P, alkaline hydrolytic nitrogen, and understory cover explained most of the variability in enzyme activity. In conclusion, soil microbial structure and function under Eucalyptus plantations were strongly impacted by plantation age. Most of the changes could be explained by altered soil resource availability and understory cover associated with successive planting of Eucalyptus. Our results highlight the importance of plantation age for assessing the impacts of plantation conversion as well as the importance of reducing disturbance for plantation management.

  11. Effect of acid rain on soil microbial processes

    International Nuclear Information System (INIS)

    Myrold, D.D.; Nason, G.E.

    1992-01-01

    Acid rain is real; the pH of precipitation in many areas of the world is below its normal equilibrium value, and concentrations of inorganic N and S are elevated above background. The impact of acid rain on soil microbial processes is less clear. This is largely because of the chemical buffering of the soil ecosystem and the inherent resiliency and redundancy of soil microorganisms. Microorganisms have an amazing capacity to adapt to new situations, which is enhanced by their ability to evolve under selection pressure. Their resilience is a function of both the large number of microorganisms present in a given volume of soil and their high growth rate relative to macroorganisms. This suggests that microorganisms are likely to be able to adapt more quickly to acidification than plants or animals, which may be one reason why symbiotic associations, such as ectomycorrhizae, are more susceptible to acid inputs than their saprophytic counterparts

  12. Antioxidant and Cytoprotective Effects of Tibetan Tea and Its Phenolic Components

    Directory of Open Access Journals (Sweden)

    Hong Xie

    2018-01-01

    Full Text Available Tibetan tea (Kangzhuan is an essential beverage of the Tibetan people. In this study, a lyophilized aqueous extract of Tibetan tea (LATT was prepared and analyzed by HPLC. The results suggested that there were at least five phenolic components, including gallic acid, and four catechins (i.e., (+-catechin, (−-catechin gallate (CG, (−-epicatechin gallate (ECG, and (−-epigallocatechin gallate. Gallic acid, the four catechins, and LATT were then comparatively investigated by four antioxidant assays: ferric reducing antioxidant power, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide radical (PTIO• scavenging, 1,1-diphenyl-2-picryl-hydrazl radical scavenging, and 2,2′-azino-bis(3-ethylbenzo-thiazoline-6-sulfonic acid radical scavenging assays. In these assays, LATT, along with the five phenolic components, increased their antioxidant effects in a concentration-dependent manner; however, the half maximal scavenging concentrations of ECG were always lower than those of CG. Gallic acid and the four catechins were also suggested to chelate Fe2+ based on UV-visible spectral analysis. Ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UPLC−ESI−Q−TOF−MS/MS analysis suggested that, when mixed with PTIO•, the five phenolic components could yield two types of radical adduct formation (RAF products (i.e., tea phenolic dimers and tea phenolic-PTIO• adducts. In a flow cytometry assay, (+-catechin and LATT was observed to have a cytoprotective effect towards oxidative-stressed bone marrow-derived mesenchymal stem cells. Based on this evidence, we concluded that LATT possesses antioxidative or cytoprotective properties. These effects may mainly be attributed to the presence of phenolic components, including gallic acid and the four catechins. These phenolic components may undergo electron transfer, H+-transfer, and Fe2+-chelating pathways to exhibit

  13. Antioxidant and Cytoprotective Effects of Tibetan Tea and Its Phenolic Components.

    Science.gov (United States)

    Xie, Hong; Li, Xican; Ren, Zhenxing; Qiu, Weimin; Chen, Jianlan; Jiang, Qian; Chen, Ban; Chen, Dongfeng

    2018-01-24

    Tibetan tea (Kangzhuan) is an essential beverage of the Tibetan people. In this study, a lyophilized aqueous extract of Tibetan tea ( LATT ) was prepared and analyzed by HPLC. The results suggested that there were at least five phenolic components, including gallic acid, and four catechins (i.e., (+)-catechin, (-)-catechin gallate ( CG ), (-)-epicatechin gallate ( ECG ), and (-)-epigallocatechin gallate). Gallic acid, the four catechins, and LATT were then comparatively investigated by four antioxidant assays: ferric reducing antioxidant power, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide radical (PTIO•) scavenging, 1,1-diphenyl-2-picryl-hydrazl radical scavenging, and 2,2'-azino-bis(3-ethylbenzo-thiazoline-6-sulfonic acid) radical scavenging assays. In these assays, LATT, along with the five phenolic components, increased their antioxidant effects in a concentration-dependent manner; however, the half maximal scavenging concentrations of ECG were always lower than those of CG . Gallic acid and the four catechins were also suggested to chelate Fe 2+ based on UV-visible spectral analysis. Ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UPLC-ESI-Q-TOF-MS/MS) analysis suggested that, when mixed with PTIO•, the five phenolic components could yield two types of radical adduct formation (RAF) products (i.e., tea phenolic dimers and tea phenolic-PTIO• adducts). In a flow cytometry assay, (+)-catechin and LATT was observed to have a cytoprotective effect towards oxidative-stressed bone marrow-derived mesenchymal stem cells. Based on this evidence, we concluded that LATT possesses antioxidative or cytoprotective properties. These effects may mainly be attributed to the presence of phenolic components, including gallic acid and the four catechins. These phenolic components may undergo electron transfer, H⁺-transfer, and Fe 2+ -chelating pathways to exhibit antioxidative or

  14. Interactions of β-Conglycinin (7S with Different Phenolic Acids—Impact on Structural Characteristics and Proteolytic Degradation of Proteins

    Directory of Open Access Journals (Sweden)

    Jing Gan

    2016-10-01

    Full Text Available p-Coumalic acid (PCA, caffeic acid (CA, gallic acid (GA and chlorogenic acid (CGA are the major phenolic acids that co-exist with soy protein components in foodstuffs. Surprisingly, there are only a handful of reports that describe their interaction with β-Conglycinin (7S, a major soy protein. In this report, we investigated the interaction between phenolic acids and soy protein 7S and observed an interaction between each of these phenolic acids and soy protein 7S, which was carried out by binding. Further analysis revealed that the binding activity of the phenolic acids was structure dependent. Here, the binding affinity of CA and GA towards 7S was found to be stronger than that of PCA, because CA and GA have one more hydroxyl group. Interestingly, the binding of phenolic acids with soy protein 7S did not affect protein digestion by pepsin and trypsin. These findings aid our understanding of the relationship between different phenolic acids and proteins in complex food systems.

  15. Discriminated release of phenolic substances from red wine grape skins (Vitis vinifera L.) by multicomponent enzymes treatment

    DEFF Research Database (Denmark)

    Arnous, Anis; Meyer, Anne S.

    2010-01-01

    Detailed insight into the effects of enzymatic treatments on grape phenolics is of significant importance for grape processing for wine making. This study examined the release of phenols during enzymatic (pectinolytic and cellulolytic) degradation of the cell wall polysaccharides in skins of Merlot...... the enzymatic treatment; phenolic acids, including hydroxybenzoic acids and hydroxycinnamic acids, were released as a function of monosaccharides liberation, i.e. as a function of the enzyme catalyzed cell wall degradation of the skins, and with some of the phenolic acids perhaps released from the lignin...

  16. Integrated phospholipidomics and transcriptomics analysis of Saccharomyces cerevisiae with enhanced tolerance to a mixture of acetic acid, furfural, and phenol

    Science.gov (United States)

    A mixture of acetic acid, furfural and phenol (AFP), three representative lignocellulose derived inhibitors, significantly inhibited the growth and bioethanol production of Saccharomyces cerevisiae. In order to uncover mechanisms behind the enhanced tolerance of an inhibitor-tolerant S.cerevisiae s...

  17. Wheat bread enriched with green coffee - In vitro bioaccessibility and bioavailability of phenolics and antioxidant activity.

    Science.gov (United States)

    Świeca, Michał; Gawlik-Dziki, Urszula; Dziki, Dariusz; Baraniak, Barbara

    2017-04-15

    The potential bioaccessibility and bioavailability of phenolics, caffeine and antioxidant activity of wheat bread enriched with green coffee were studied. Supplementation enhanced nutraceutical potential by improving phenolic content and lipid protecting capacity. The simulated-digestion-released phenolics (mainly caffeic acid, syringic acid and vanillic acid) from bread, also caused significant qualitative changes (chlorogenic acids were cleaved and significant amounts of caffeic acid and ferulic acid were determined). Compared to the control, for the bread with 1% and 5% of the functional component the contents of phenolics were 1.6 and 3.33 times higher. Also, an approximately 2.3-fold increase in antioxidant activity was found in bread containing 5% of the supplement. The compounds responsible for antioxidant potential have high bioaccessibility but poor bioavailability. The qualitative composition of the phenolic fraction has a key role in developing the antioxidant potential of bread; however, caffeine and synergism between antioxidants are also important considerations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Antioxidant activity of selected phenols estimated by ABTS and FRAP methods

    Directory of Open Access Journals (Sweden)

    Izabela Biskup

    2013-09-01

    Full Text Available Introduction: Phenols are the most abundant compounds in nature. They are strong antioxidants. Too high level of free radicals leads to cell and tissue damage, which may cause asthma, Alzheimer disease, cancers, etc. Taking phenolics with the diet as supplements or natural medicines is important for homeostasis of the organism. Materials and methods: The ten most popular water soluble phenols were chosen for the experiment to investigate their antioxidant properties using ABTS radical scavenging capacity assay and ferric reducing antioxidant potential (FRAP assay. Results and discussion: Antioxidant properties of selected phenols in the ABTS test expressed as IC50 ranged from 4.332 μM to 852.713 μM (for gallic acid and 4- hydroxyphenylacetic acid respectively. Antioxidant properties in the FRAP test are expressed as μmol Fe2 /ml. All examined phenols reduced ferric ions at concentration 1.00 x 10-3 mg/ml. Both methods are very useful for determination of antioxidant capacity of water soluble phenols.

  19. Identification and characterisation of phenolic compounds extracted from Moroccan olive mill wastewater

    Directory of Open Access Journals (Sweden)

    Inass Leouifoudi

    2014-06-01

    Full Text Available Olive mill wastewater, hereafter noted as OMWW was tested for its composition in phenolic compounds according to geographical areas of olive tree, i.e. the plain and the mountainous areas of Tadla-Azilal region (central Morocco. Biophenols extraction with ethyl acetate was efficient and the phenolic extract from the mountainous areas had the highest concentration of total phenols' content. Fourier-Transform-Middle Infrared (FT-MIR spectroscopy of the extracts revealed vibration bands corresponding to acid, alcohol and ketone functions. Additionally, HPLC-ESI-MS analyses showed that phenolic alcohols, phenolic acids, flavonoids, secoiridoids and derivatives and lignans represent the most abundant phenolic compounds. Nüzhenide, naringenin and long chain polymeric substances were also detected. Mountainous areas also presented the most effective DPPH scavenging potential compared to plain areas; IC50 values were 11.7 ± 5.6 µg/ml and 30.7 ± 4.4 µg/ml, respectively. OMWW was confirmed as a rich source of natural phenolic antioxidant agents.

  20. Bound phenolic compounds and antioxidant properties of whole grain and bran of white, red and black rice.

    Science.gov (United States)

    Pang, Yuehan; Ahmed, Sulaiman; Xu, Yanjie; Beta, Trust; Zhu, Zhiwei; Shao, Yafang; Bao, Jinsong

    2018-02-01

    Total phenolic content (TPC), individual phenolic acid and antioxidant capacity of whole grain and bran fraction 18 rices with different bran color were investigated. The levels of TPC in bound fractions were significantly higher than those in the free fractions either in the whole grains or brans. The main bound phenolic acids in white rice samples were ferulic acid, p-coumaric acid, and isoferulic acid, and in pigmented rice samples were ferulic acid, p-coumaric acid, and vanillic acid. The protocatechuic acid and 2,5-dihydroxybenzoic acid were not detected in white samples. The content of gallic acid, protocatechuic acid, 2,5-dihydroxybenzoic acid, ferulic acid, sinapic acid had significantly positive correlations with TPC and antioxidant capacity. This study found much wider diversity in the phenolics and antioxidant capacity in the whole grain and brans of rice, and will provide new opportunities to further improvement of rice with enhanced levels of the phytochemicals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Content of insoluble bound phenolics in millets and their contribution to antioxidant capacity.

    Science.gov (United States)

    Chandrasekara, Anoma; Shahidi, Fereidoon

    2010-06-09

    Soluble and insoluble-bound phenolic extracts of several varieties of millet (kodo, finger, foxtail, proso, pearl, and little millets) whole grains were evaluated for their phenolic contents and antioxidative efficacy using trolox equivalent antioxidant capacity (TEAC), reducing power (RP), and beta-carotene-linoleate model system as well as ferrous chelating activity. In addition, ferulic and p-coumaric acids were present in soluble and bound phenolic fractions of millets, and their contents were determined using high-performance liquid chromatography (HPLC) and HPLC-mass spectrometry (MS). Kodo millet had the highest total phenolic content, whereas proso millet possessed the least. All millet varieties showed high antioxidant activities, although the order of their efficacy was assay dependent. HPLC analysis of millet phenolic extracts demonstrated that the bound fractions contained more ferulic and p-coumaric acids compared to their soluble counterparts. The results of this study showed that soluble as well as bound fractions of millet grains are rich sources of phenolic compounds with antioxidant, metal chelating, and reducing power. The potential of whole millets as natural sources of antioxidants depends on the variety used. The importance of the insoluble bound fraction of millet as a source of ferulic acid and p-coumaric acid was established, and their contribution to the total phenolic content must be taken into account in the assessment of the antioxidant activity of millets.

  2. Evaluation of Antioxidant Properties and Phenolic Composition of Fruit Tea Infusions

    Directory of Open Access Journals (Sweden)

    Saliha Şahin

    2013-09-01

    Full Text Available The popularity of fruit tea is increasing in the world because of its antioxidant properties and attractive taste. The aim of this study was to determine and compare the antioxidant property and phenolic composition of 16 different fruit teas. The antioxidant property and total phenol content of fruit teas depending on the extraction condition (water temperature were examined using the ABTS (2,2-azinobis[3-ethylbenzothiazoline-6-sulphonic acid] method and the Folin-Ciocalteu method, respectively. The contents of total flavonoid and total anthocyanin of fruit teas was determined by using the UV/Vis spectrophotometric method. The phenolic composition was determined and quantified by using high performance liquid chromatography and photodiode array detection (HPLC-PDA. The highest total phenol content and antioxidant capacity were determined in pomegranate (I. The highest contents of total flavonoid and total anthocyanin were determined in peach (III and blackberry (I, respectively. Chlorogenic acid, quercetin, myricetin, rutin, rosmarinic acid and ferulic acid were determined in fruit teas. A water temperature of 100 °C was the most effective to extract the highest contents of total phenols, total flavonoids, total anthocyanins and the highest antioxidant capacity in 16 different fruit teas. The purpose of this study was to determine the effect of water temperature on the extraction and quantify the various phenolic compounds in fruit teas by HPLC method for industrial application in producing the extracts.

  3. Effect of cultivar on phenolic levels, anthocyanin composition, and antioxidant properties in purple basil (Ocimum basilicum L.).

    Science.gov (United States)

    Flanigan, Patrick M; Niemeyer, Emily D

    2014-12-01

    In this study, we determined the effect of cultivar on total and individual anthocyanin concentrations and phenolic acid levels in eight purple basil varieties and examined the relationship between anthocyanin content, phenolic acid composition, and antioxidant properties. Cultivar had a significant influence on total anthocyanin concentrations as well as individual anthocyanin composition. The four major basil anthocyanins (labelled A-D) were quantified and cultivar had a statistically significant effect on anthocyanins B (p<0.01), C (p<0.01), and D (p<0.01), but not on anthocyanin A (p=0.94). Cultivar did not have a significant effect on total phenolic levels, although it did influence the concentration of some individual phenolic acids, including caftaric (p=0.03) and chicoric (p=0.04) acids. Although total phenolic and anthocyanin levels correlated with measured FRAP antioxidant capacities, for some cultivars the individual phenolic acid and anthocyanin composition was also an important factor affecting the antioxidant properties. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. The effects of bud load and regulated deficit irrigation on sugar, organic acid, phenolic compounds and antioxidant activity of Razakı table grape berries

    Directory of Open Access Journals (Sweden)

    Tangolar Semih

    2015-01-01

    Full Text Available This study aims at assessing the effects of increased bud load and irrigation applications on berry quality of the Razakı table grape. Two Regulated Deficit Irrigation (RDI having different irrigation levels (RDI-I and RDI-II based on the growth stages, in addition to a non-irrigated control treatment together with two different bud load practices (K-normal and 2K-two-fold buds of the normal were examined for their effects on quality attributes such as sugar and organic acids contents, phenolic compounds as well as antioxidant capacity of the berries. The non-irrigated vines had highest sugar level (198.86 g/kg in the first year (2013 of the experiment whilst the sugar content of the berries was increased with irrigation (RDI-II in 2014. However the highest organic acid (7.10 g/kg was recorded from the RDI-II treatment in 2013 whereas those of from non-irrigated vines were highest (7.81 g/kg in 2014. Considering the sugar and organic acid content of the berries, bud load effects were not significant. The total phenolic acids were higher under non-irrigated and 2K bud load conditions. Antioxidant activity of berries was increased with RDI-I irrigation and 2K practices in the first year (2013 although no significant effect was recorded in the second year of the experiment. In all applications, glucose among the sugars, tartaric acid among the organic acids, catechin and epicatechin among the phenolic compounds were detected to be higher compared to other components in berries.

  5. Effect of processing on phenolic composition of dough and bread fractions made from refined and whole wheat flour of three wheat varieties.

    Science.gov (United States)

    Lu, Yingjian; Luthria, Devanand; Fuerst, E Patrick; Kiszonas, Alecia M; Yu, Liangli; Morris, Craig F

    2014-10-29

    This study investigated the effect of breadmaking on the assay of phenolic acids from flour, dough, and bread fractions of three whole and refined wheat varieties. Comparison of the efficacy of two commonly used methods for hydrolysis and extraction of phenoilc acids showed that yields of total phenolic acids (TPA) were 5-17% higher among all varieties and flour types when samples were directly hydrolyzed in the presence of ascorbate and EDTA as compared to the method separating free, soluble conjugates and bound, insoluble phenolic acids. Ferulic acid (FA) was the predominant phenolic acid, accounting for means of 59 and 81% of TPA among all refined and whole wheat fractions, respectively. All phenolic acids measured were more abundant in whole wheat than in refined samples. Results indicated that the total quantified phenolic acids did not change significantly when breads were prepared from refined and whole wheat flour. Thus, the potential phytochemical health benefits of total phenolic acids appear to be preserved during bread baking.

  6. Comparative analysis of bioactive phenolic compounds composition from 26 medicinal plants.

    Science.gov (United States)

    Sytar, Oksana; Hemmerich, Irene; Zivcak, Marek; Rauh, Cornelia; Brestic, Marian

    2018-05-01

    Bioactive phenolic compounds are powerful antioxidants in traditionally used medicinal and industrial crop plants and have attracted increased interest in the last years in their application and role in non-destructive methodology for pre-screening analysis of some stress factors. In this study the qualitative target was linked with future possible applications of received data for improving non-destructive methodology as well as for improving existing knowledge regarding antioxidant content in some plant species. Comparative analysis of total phenolics, flavonoid contents, phenolic acid composition, and antioxidant activity in known east central Europe medicinal and industrial crop plants of 26 species of families Asteraceae , Rosaceae and Lamiaceae was done. Among the investigated leaf extracts the highest total phenolic, total flavonoid contents and antioxidant activity have been seen for Stachys byzantine L. ( Lamiaceae ), Calendula officinalis L. ( Asteraceae ) and for Potentilla recta L. ( Rosaceae ). The highest syringic acid content has been found in the leaf extracts of plant family Asteraceae - in the range from 0.782 to 5.078 mg g -1  DW. The representative's family Rosaceae has a higher content of p-anisic acid in the range 0.334-3.442 mg g -1 DW compared to the leaf extracts of families Lamiaceae and Asteraceae . The comparative study showed significant differences of content of phenolic acids in the leaf extracts of different representative's families Rosaceae , Asteraceae and Lamiaceae . We suggest that the presence of some phenolic acids can be used as a possible marker for family botanical specifications of representative families Asteraceae and Rosaceae . It was supposed that some pharmacological effects can be connected with the analyzed data.

  7. Chilean prosopis mesocarp flour: phenolic profiling and antioxidant activity.

    Science.gov (United States)

    Schmeda-Hirschmann, Guillermo; Quispe, Cristina; Soriano, Maria Del Pilar C; Theoduloz, Cristina; Jiménez-Aspée, Felipe; Pérez, Maria Jorgelina; Cuello, Ana Soledad; Isla, Maria Inés

    2015-04-17

    In South America, the mesocarp flour of Prosopis species plays a prominent role as a food resource in arid areas. The aim of this work was the characterization of the phenolic antioxidants occurring in the pod mesocarp flour of Chilean Prosopis. Samples were collected in the Copiapo, Huasco and Elqui valleys from the north of Chile. The samples of P. chilensis flour exhibited a total phenolic content ranging between 0.82-2.57 g gallic acid equivalents/100 g fresh flour weight. The highest antioxidant activity, measured by the DPPH assay, was observed for samples from the Huasco valley. HPLC-MS/MS analysis allowed the tentative identification of eight anthocyanins and 13 phenolic compounds including flavonol glycosides, C-glycosyl flavones and ellagic acid derivatives. The antioxidant activity and the phenolic composition in the flour suggest that this ancient South American resource may have potential as a functional food.

  8. Analysis of phenolic compounds for poultry feed by supercritical fluid chromatography

    Science.gov (United States)

    Phenolic compounds have generated interest as components in functional feed formulations due to their anti-oxidant, anti-microbial, and anti-fungal properties. These compounds may have greater significance in the future as the routine use of antibiotics is reduced and the prevalence of resistant bac...

  9. Phylogenetic and functional diversity of metagenomic libraries of phenol degrading sludge from petroleum refinery wastewater treatment system.

    Science.gov (United States)

    Silva, Cynthia C; Hayden, Helen; Sawbridge, Tim; Mele, Pauline; Kruger, Ricardo H; Rodrigues, Marili Vn; Costa, Gustavo Gl; Vidal, Ramon O; Sousa, Maíra P; Torres, Ana Paula R; Santiago, Vânia Mj; Oliveira, Valéria M

    2012-03-27

    In petrochemical refinery wastewater treatment plants (WWTP), different concentrations of pollutant compounds are received daily in the influent stream, including significant amounts of phenolic compounds, creating propitious conditions for the development of particular microorganisms that can rapidly adapt to such environment. In the present work, the microbial sludge from a refinery WWTP was enriched for phenol, cloned into fosmid vectors and pyrosequenced. The fosmid libraries yielded 13,200 clones and a comprehensive bioinformatic analysis of the sequence data set revealed a complex and diverse bacterial community in the phenol degrading sludge. The phylogenetic analyses using MEGAN in combination with RDP classifier showed a massive predominance of Proteobacteria, represented mostly by the genera Diaphorobacter, Pseudomonas, Thauera and Comamonas. The functional classification of phenol degrading sludge sequence data set generated by MG-RAST showed the wide metabolic diversity of the microbial sludge, with a high percentage of genes involved in the aerobic and anaerobic degradation of phenol and derivatives. In addition, genes related to the metabolism of many other organic and xenobiotic compounds, such as toluene, biphenyl, naphthalene and benzoate, were found. Results gathered herein demonstrated that the phenol degrading sludge has complex phylogenetic and functional diversities, showing the potential of such community to degrade several pollutant compounds. This microbiota is likely to represent a rich resource of versatile and unknown enzymes which may be exploited for biotechnological processes such as bioremediation.

  10. The Role of Microbial Amino Acid Metabolism in Host Metabolism

    Directory of Open Access Journals (Sweden)

    Evelien P. J. G. Neis

    2015-04-01

    Full Text Available Disruptions in gut microbiota composition and function are increasingly implicated in the pathogenesis of obesity, insulin resistance, and type 2 diabetes mellitus. The functional output of the gut microbiota, including short-chain fatty acids and amino acids, are thought to be important modulators underlying the development of these disorders. Gut bacteria can alter the bioavailability of amino acids by utilization of several amino acids originating from both alimentary and endogenous proteins. In turn, gut bacteria also provide amino acids to the host. This could have significant implications in the context of insulin resistance and type 2 diabetes mellitus, conditions associated with elevated systemic concentrations of certain amino acids, in particular the aromatic and branched-chain amino acids. Moreover, several amino acids released by gut bacteria can serve as precursors for the synthesis of short-chain fatty acids, which also play a role in the development of obesity. In this review, we aim to compile the available evidence on the contribution of microbial amino acids to host amino acid homeostasis, and to assess the role of the gut microbiota as a determinant of amino acid and short-chain fatty acid perturbations in human obesity and type 2 diabetes mellitus.

  11. GALLIC ACID: A PHENOLIC ACID AND ITS ANTIOXIDANT ACTIVITY FROM STEM BARK OF CHLOROFORM EXTRACTS OF SYZYGIUM LITORALE (BLUME AMSHOFF (MYRTACEAE

    Directory of Open Access Journals (Sweden)

    Tukiran Tukiran

    2016-11-01

    Full Text Available A phenolic acid had been isolated from chloroform soluble fractions of a methanol extract of stem bark of Syzygium litorale, Fam. Myrtaceae. The structure of the isolated compound was elucidated and established as gallic acid through extensive spectroscopic studies (UV-Vis, FTIR, and NMR and by comparison with literature data and authentic sample. This is the first report of the isolation of compound from this plant, although it has previously been found in Myrtaceae family such as S. aromaticum, S. cumini, S. polyanthum, S. cordatum, etc. The chloroform fraction, isolated compound, and vitamin C showed very strong antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH with IC50 value of 23.2, 7.5, and 12.5 mg/mL, respectively.

  12. Isolation and identification of phenolic antioxidants in black rice bran.

    Science.gov (United States)

    Jun, Hyun-Il; Shin, Jae-Wook; Song, Geun-Seoup; Kim, Young-Soo

    2015-02-01

    Black rice bran contains phenolic compounds of a high antioxidant activity. In this study, the 40% acetone extract of black rice bran was sequentially fractionated to obtain 5 fractions. Out of the 5 fractions, ethyl acetate fraction was subfractionated using the Sephadex LH-20 chromatography. The antioxidant activity of phenolic compounds in the extracts was investigated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical assay, 2,2-azino-bis-(3-ethylenebenzothiozoline-6-sulfonic acid) (ABTS) radical cation assay, reducing power. The subfraction 2 from ethyl acetate fraction had the highest total phenolic contents (TPC) (816.0 μg/mg) and the lowest EC50 values (47.8 μg/mL for DPPH radical assay, 112.8 μg/mL for ABTS radical cation assay, and 49.2 μg/mL for reducing power). These results were 3.1, 1.3, and 2.6 times lower than those of butylated hydroxytoluene (BHT), respectively. At a concentration of 100 μg/mL, the antioxidant activity and TPC of various extracts was closely correlated, with correlation coefficients (R(2) ) higher than 0.86. The major phenolic acid in subfraction 2 was identified as ferulic acid (178.3 μg/mg) by HPLC and LC-ESI/MS/MS analyses. Our finding identified ferulic acid as a major phenolic compound in black rice bran, and supports the potential use of black rice bran as a natural source of antioxidant. © 2015 Institute of Food Technologists®

  13. Prey-induced changes in the accumulation of amino acids and phenolic metabolites in the leaves of Drosera capensis L.

    Science.gov (United States)

    Kováčik, Jozef; Klejdus, Bořivoj; Stork, František; Hedbavny, Josef

    2012-04-01

    Effect of prey feeding (ants Formica fusca) on the quantitative changes in the accumulation of free amino acids, soluble proteins, phenolic metabolites and mineral nutrients in the leaves of carnivorous plant Drosera capensis was studied. Arginine was the most abundant compound in Drosera leaves, while proline was abundant in ants. The amount of the majority of amino acids and their sum were elevated in the fed leaves after 3 and 21 days, and the same, but with further enhancement after 21 days, was observed in ants. Accumulation of amino acids also increased in young non-fed leaves of fed plants. Soluble proteins decreased in ants, but were not enhanced in fed leaves. This confirms the effectiveness of sundew's enzymatic machinery in digestion of prey and suggests that amino acids are not in situ deposited, but rather are allocated within the plant. The content of total soluble phenols, flavonoids and two selected flavonols (quercetin and kaempferol) was not affected by feeding in Drosera leaves, indicating that their high basal level was sufficient for the plant's metabolism and prey-induced changes were mainly N based. The prey also showed to be an important source of other nutrients besides N, and a stimulation of root uptake of some mineral nutrients is assumed (Mg, Cu, Zn). Accumulation of Ca and Na was not affected by feeding.

  14. Amino Acid Usage Is Asymmetrically Biased in AT- and GC-Rich Microbial Genomes

    DEFF Research Database (Denmark)

    Bohlin, Jon; Brynildsrud, Ola Brønstad; Vesth, Tammi Camilla

    2013-01-01

    frequencies were distributed in over 2000 microbial genomes and how these distributions were affected by base compositional changes. In addition, we wanted to know how genome-wide amino acid usage was biased in the different genomes and how changes to base composition and mutations affected this bias...... purifying selection than genomes with higher AAUB. Conclusion: Genomic base composition has a substantial effect on both amino acid- and codon frequencies in bacterial genomes. While phylogeny influenced amino acid usage more in GC-rich genomes, AT-content was driving amino acid usage in AT-rich genomes. We...

  15. Microbial Community Structure and Arsenic Biogeochemistry in an Acid Vapor-Formed Spring in Tengchong Geothermal Area, China.

    Science.gov (United States)

    Jiang, Zhou; Li, Ping; Jiang, Dawei; Dai, Xinyue; Zhang, Rui; Wang, Yanhong; Wang, Yanxin

    2016-01-01

    Arsenic biogeochemistry has been studied extensively in acid sulfate-chloride hot springs, but not in acid sulfate hot springs with low chloride. In this study, Zhenzhuquan in Tengchong geothermal area, a representative acid sulfate hot spring with low chloride, was chosen to study arsenic geochemistry and microbial community structure using Illumina MiSeq sequencing. Over 0.3 million 16S rRNA sequence reads were obtained from 6-paired parallel water and sediment samples along its outflow channel. Arsenic oxidation occurred in the Zhenxhuquan pool, with distinctly high ratios of arsenate to total dissolved arsenic (0.73-0.86). Coupled with iron and sulfur oxidation along the outflow channel, arsenic accumulated in downstream sediments with concentrations up to 16.44 g/kg and appeared to significantly constrain their microbial community diversity. These oxidations might be correlated with the appearance of some putative functional microbial populations, such as Aquificae and Pseudomonas (arsenic oxidation), Sulfolobus (sulfur and iron oxidation), Metallosphaera and Acidicaldus (iron oxidation). Temperature, total organic carbon and dissolved oxygen significantly shaped the microbial community structure of upstream and downstream samples. In the upstream outflow channel region, most microbial populations were microaerophilic/anaerobic thermophiles and hyperthermophiles, such as Sulfolobus, Nocardia, Fervidicoccus, Delftia, and Ralstonia. In the downstream region, aerobic heterotrophic mesophiles and thermophiles were identified, including Ktedonobacteria, Acidicaldus, Chthonomonas and Sphingobacteria. A total of 72.41-95.91% unassigned-genus sequences were derived from the downstream high arsenic sediments 16S rRNA clone libraries. This study could enable us to achieve an integrated understanding on arsenic biogeochemistry in acid hot springs.

  16. Reactions of linoleic acid peroxyl radicals with phenolic antioxidants: a pulse radiolysis study

    International Nuclear Information System (INIS)

    Erben-Russ, Michael; Bors, Wolf; Saran, Manfred

    1987-01-01

    Linoleic acid peroxyl radicals (LOO) can be viewed as model intermediates occurring during lipid peroxidation processes. Formation and reactions of these species were investigated in aqueous alkaline solution using pulse radiolysis combined with kinetic spectroscopy. Irradiation of linoleic acid in N 2 O/O 2 -saturated solutions leads to a mixture of peroxyl radical isomers; reaction of 13-hydroperoxylinoleic acid (13-LOOH) with azide radicals in N 2 O-saturated solution produces 13-LOO radicals specifically. These peroxyl radicals cannot be observed directly, but their reactions with kaempferol and quercetin, acting as radical-scavenging antioxidants, produced strongly absorbing aroxyl radicals (ArO). The same aroxyl radicals were generated by OH and N 3 with rate constants exceeding 10 9 dm 3 mol -1 s -1 . Applying a reaction scheme that includes competing generation and decay reactions of both LOO and ArO radicals, individual rate constants were derived for LOO reactions with the phenols (> 10 7 dm 3 mol -1 s-? 1 ), with aroxyl radicals to form covalent adducts (> 10 8 dm 3 mol -1 s -1 ), as well as for their bimilecular decay (3.0 x 10 8 dm 3 mol -1 s -1 ). These results demonstrate high reactivity of fatty acid peroxyl radicals and flavone antioxidants in aqueous solution. (author)

  17. Interaction of phenolic antioxidants and hydroxyl radicals

    International Nuclear Information System (INIS)

    Wang Wenfeng; Luo Jian; Yao Side; Lian Zhirui; Zhang Jiashan; Lin Nianyun

    1992-01-01

    Based on pulse radiolysis of aqueous solutions of four phenolic antioxidants including green tea polyphenols, quercetin, caffeic acid and sinapic acid the rate constants for reactions of OH and the antioxidants were determined. And green tea polyphenols and quercetin are the strongest antioxidants

  18. Interaction of phenolic antioxidants and hydroxyl radicals

    International Nuclear Information System (INIS)

    Wang, W.F.; Luo, J.; Yao, S.D.; Lian, Z.R.; Zhang, J.S.; Lin, N.Y.

    1993-01-01

    Based on pulse radiolysis of aqueous solutions of four phenolic antioxidants including green tea polyphenols, quercetin, caffeic acid and sinapic acid the rate constants for reactions of OH and the antioxidants were determined. Green tea polyphenols and quercetin are the strongest antioxidants. (author)

  19. Antimicrobial and enhancement of the antibiotic activity by phenolic compounds: Gallic acid, caffeic acid and pyrogallol.

    Science.gov (United States)

    Lima, Valéria N; Oliveira-Tintino, Cícera D M; Santos, Enaide S; Morais, Luís P; Tintino, Saulo R; Freitas, Thiago S; Geraldo, Yuri S; Pereira, Raimundo L S; Cruz, Rafael P; Menezes, Irwin R A; Coutinho, Henrique D M

    2016-10-01

    The indiscriminate use of antimicrobial drugs has increased the spectrum of exposure of these organisms. In our studies, these phenolic compounds were evaluated: gallic acid, caffeic acid and pyrogallol. The antibacterial, antifungal and modulatory of antibiotic activities of these compounds were assayed using microdilution method of Minimum Inhibitory Concentration (MIC) to bacteria and Minimum Fungicide Concentration (MFC) to fungi. The modulation was made by comparisons of the MIC and MFC of the compounds alone and combined with drugs against bacteria and fungi respectively, using a sub-inhibitory concentration of 128 μg/mL of substances (MIC/8). All substances not demonstrated clinically relevant antibacterial activity with a MIC above ≥1024 μg/mL. As a result, we observed that the caffeic acid presented a potentiating antibacterial effect over the 3 groups of bacteria studied. Pyrogallol showed a synergistic effect with two of the antibiotics tested, but only against Staphylococcus aureus. In general, caffeic acid was the substance that presented with the greatest number of antibiotics and with the greatest number of bacteria. In relation to the antifungal activity of all the compounds, the verified results were ≥1024 μg/mL, not demonstrating significant activity. Regarding potentiation of the effect of fluconazole, was observed synergistic effect only when assayed against Candida tropicalis, with all substances. Therefore, as can be seen, the compounds presented as substances that can be promising potentiating agents of antimicrobial drugs, even though they do not have direct antibacterial and antifungal action. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Antioxidant potential of water hyacinth (Eichornia crassipes): In vitro antioxidant activity and phenolic composition

    DEFF Research Database (Denmark)

    Surendraraj, Alagarsamy; Farvin, Sabeena; Anandan, R.

    2011-01-01

    The aims of the present study were (a) to extract and quantify the main phenolic acids and tocopherols from the petiole, leaf and flowers of Eichornia crassipes, (b) to evaluate the antioxidant capacity of the extracts in four in vitro systems (DPPH radical scavenging ability, iron chelating...... the various parts of E. crassipes. Out of the 11 phenolic acids analysed, ethanolic extracts contained high amounts gallic, protocatechuic, gentisic and phydroxybenzoic acid, whereas, water extracts contained less amounts of varied number of phenolic acids. Ethanolic extracts of flower, which contained...... the highest total phenolic content, were found to have high DPPH radical scavenging activity and reducing power. Ethanolic extracts of leaf were found to have high Fe2+ chelating activity and inhibited lipid peroxidation in liposomes and fish oil. Our results demonstrate that E. crassipes, an underutilized...

  1. Chilean Prosopis Mesocarp Flour: Phenolic Profiling and Antioxidant Activity

    Directory of Open Access Journals (Sweden)

    Guillermo Schmeda-Hirschmann

    2015-04-01

    Full Text Available In South America, the mesocarp flour of Prosopis species plays a prominent role as a food resource in arid areas. The aim of this work was the characterization of the phenolic antioxidants occurring in the pod mesocarp flour of Chilean Prosopis. Samples were collected in the Copiapo, Huasco and Elqui valleys from the north of Chile. The samples of P. chilensis flour exhibited a total phenolic content ranging between 0.82–2.57 g gallic acid equivalents/100 g fresh flour weight. The highest antioxidant activity, measured by the DPPH assay, was observed for samples from the Huasco valley. HPLC-MS/MS analysis allowed the tentative identification of eight anthocyanins and 13 phenolic compounds including flavonol glycosides, C-glycosyl flavones and ellagic acid derivatives. The antioxidant activity and the phenolic composition in the flour suggest that this ancient South American resource may have potential as a functional food.

  2. Characterisation of phenolics, betanins and antioxidant activities in seeds of three Chenopodium quinoa Willd. genotypes.

    Science.gov (United States)

    Tang, Yao; Li, Xihong; Zhang, Bing; Chen, Peter X; Liu, Ronghua; Tsao, Rong

    2015-01-01

    Quinoa (Chenopodium quinoa Willd.) is known for its exceptional nutritional value and potential health benefits. The present study identified the composition of different forms of extractable phenolics and betacyanins of quinoa cultivars in white, red and black, and how they contribute to antioxidant activities. Results showed that at least 23 phenolic compounds were found in either free or conjugated forms (liberated by alkaline and/or acid hydrolysis); the majority of which were phenolic acids, mainly vanillic acid, ferulic acid and their derivatives as well as main flavonoids quercetin, kaempferol and their glycosides. Betacyanins, mainly betanin and isobetanin, were confirmed for the first time to be the pigments of the red and black quinoa seeds, instead of anthocyanins. Darker quinoa seeds had higher phenolic concentration and antioxidant activity. Findings of these phenolics, along with betacyanins in this study add new knowledge to the functional components of quinoa seeds of different cultivar background. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  3. Investigating Hydrogen Bonding in Phenol Using Infrared Spectroscopy and Computational Chemistry

    Science.gov (United States)

    Fedor, Anna M.; Toda, Megan J.

    2014-01-01

    The hydrogen bonding of phenol can be used as an introductory model for biological systems because of its structural similarities to tyrosine, a para-substituted phenol that is an amino acid essential to the synthesis of proteins. Phenol is able to form hydrogen bonds readily in solution, which makes it a suitable model for biological…

  4. Changes in the flavonoid and phenolic acid contents and antioxidant activity of red leaf lettuce (Lollo Rosso) due to cultivation under plastic films varying in ultraviolet transparency.

    Science.gov (United States)

    García-Macías, Paulina; Ordidge, Matthew; Vysini, Eleni; Waroonphan, Saran; Battey, Nicholas H; Gordon, Michael H; Hadley, Paul; John, Philip; Lovegrove, Julie A; Wagstaffe, Alexandra

    2007-12-12

    Red leaf lettuce (Lollo Rosso) was grown under three types of plastic films that varied in transparency to UV radiation (designated as UV block, UV low, and UV window). Flavonoid composition was determined by high-performance liquid chromatography (HPLC), total phenolics by the Folin-Ciocalteu assay, and antioxidant capacity by the oxygen radical absorbance capacity (ORAC) assay. Exposure to increased levels of UV radiation during cultivation caused the leaves to redden and increased concentrations of total phenols and the main flavonoids, quercetin and cyanidin glycosides, as well as luteolin conjugates and phenolic acids. The total phenol content increased from 1.6 mg of gallic acid equivalents (GAE)/g of fresh weight (FW) for lettuce grown under UV block film to 2.9 and 3.5 mg of GAE/g of FW for lettuce grown under the UV low and UV window films. The antioxidant activity was also higher in lettuce exposed to higher levels of UV radiation with ORAC values of 25.4 and 55.1 micromol of Trolox equivalents/g of FW for lettuce grown under the UV block and UV window films, respectively. The content of phenolic acids, quantified as caffeic acid, was also different, ranging from 6.2 to 11.1 micromol/g of FW for lettuce cultivated under the lowest and highest UV exposure plastic films, respectively. Higher concentrations of the flavonoid glycosides were observed with increased exposure to UV radiation, as demonstrated by the concentrations of aglycones after hydrolysis, which were cyanidin (ranging from 165 to 793 microg/g), quercetin (ranging from 196 to 880 microg/g), and luteolin (ranging from 19 to 152 microg/g). The results demonstrate the potential of the use of UV-transparent plastic as a means of increasing beneficial flavonoid content of red leaf lettuce when the crop is grown in polytunnels.

  5. Phenolic profile and effect of growing area on Pistacia lentiscus seed oil.

    Science.gov (United States)

    Mezni, Faten; Slama, Awatef; Ksouri, Riadh; Hamdaoui, Ghaith; Khouja, Mohamed Larbi; Khaldi, Abdelhamid

    2018-08-15

    In this investigation, we aimed to study, for the first time, the phenolic composition of Pistacia lentiscus seed oils from different growing areas. Extraction of the phenolic fraction from oils was done by methanol/water. Phenolic profiles were determined using chromatographic analysis by High Performance Liquid Chromatography (HPLC-DAD/MSD) and its quantification was done using an internal standard which is unidentified in the studied oil (syringic acid). Forty phenolic compounds were quantified and only eighteen of them were identified. The eight studied oils showed different phenolic profiles. The total phenols amount varied from 538.03 mg/kg oil in Jbel Masour oils to 4260.57 mg/kg oil in oils from Kef Erraai. The highest amount of secoiridoids was reached by Bouchoucha oil containing 366.71 mg/kg oil of Oleuropein aglycon. Oils from Kef Erraai locality contained the highest concentrations in flavonols (377.44 mg/kg oil) and in phenolic acids (2762.67 mg/kg oil). Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Enzymatic grafting of simple phenols on flax and sisal pulp fibres using laccases.

    Science.gov (United States)

    Aracri, Elisabetta; Fillat, Amanda; Colom, José F; Gutiérrez, Ana; Del Río, José C; Martínez, Angel T; Vidal, Teresa

    2010-11-01

    Flax and sisal pulps were treated with two laccases (from Pycnoporus cinnabarinus, PcL and Trametes villosa, TvL, respectively), in the presence of different phenolic compounds (syringaldehyde, acetosyringone and p-coumaric acid in the case of flax pulp, and coniferaldehyde, sinapaldehyde, ferulic acid and sinapic acid in the case of sisal pulp). In most cases the enzymatic treatments resulted in increased kappa number of pulps suggesting the incorporation of the phenols into fibres. The covalent binding of these compounds to fibres was evidenced by the analysis of the treated pulps, after acetone extraction, by pyrolysis coupled with gas chromatography/mass spectrometry in the absence and/or in the presence of tetramethylammonium hydroxide (TMAH) as methylating agent. The highest extents of phenol incorporation were observed with the p-hydroxycinnamic acids, p-coumaric and ferulic acids. The present work shows for the first time the use of analytical pyrolysis as an effective approach to study fibre functionalization by laccase-induced grafting of phenols. Copyright 2010 Elsevier Ltd. All rights reserved.

  7. Utilization of subsurface microbial electrochemical systems to elucidate the mechanisms of competition between methanogenesis and microbial iron(III)/humic acid reduction in Arctic peat soils

    Science.gov (United States)

    Friedman, E. S.; Miller, K.; Lipson, D.; Angenent, L. T.

    2012-12-01

    High-latitude peat soils are a major carbon reservoir, and there is growing concern that previously dormant carbon from this reservoir could be released to the atmosphere as a result of continued climate change. Microbial processes, such as methanogenesis and carbon dioxide production via iron(III) or humic acid reduction, are at the heart of the carbon cycle in Arctic peat soils [1]. A deeper understanding of the factors governing microbial dominance in these soils is crucial for predicting the effects of continued climate change. In previous years, we have demonstrated the viability of a potentiostatically-controlled subsurface microbial electrochemical system-based biosensor that measures microbial respiration via exocellular electron transfer [2]. This system utilizes a graphite working electrode poised at 0.1 V NHE to mimic ferric iron and humic acid compounds. Microbes that would normally utilize these compounds as electron acceptors donate electrons to the electrode instead. The resulting current is a measure of microbial respiration with the electrode and is recorded with respect to time. Here, we examine the mechanistic relationship between methanogenesis and iron(III)- or humic acid-reduction by using these same microbial-three electrode systems to provide an inexhaustible source of alternate electron acceptor to microbes in these soils. Chamber-based carbon dioxide and methane fluxes were measured from soil collars with and without microbial three-electrode systems over a period of four weeks. In addition, in some collars we simulated increased fermentation by applying acetate treatments to understand possible effects of continued climate change on microbial processes in these carbon-rich soils. The results from this work aim to increase our fundamental understanding of competition between electron acceptors, and will provide valuable data for climate modeling scenarios. 1. Lipson, D.A., et al., Reduction of iron (III) and humic substances plays a major

  8. Phenolic acid content and radical scavenging activity of extracts from medlar (Mespilus germanica L.) fruit at different stages of ripening

    Czech Academy of Sciences Publication Activity Database

    Grúz, Jiří; Ayaz, F. A.; Torun, H.; Strnad, Miroslav

    2011-01-01

    Roč. 124, č. 1 (2011), s. 271-277 ISSN 0308-8146 R&D Projects: GA AV ČR KAN200380801 Institutional research plan: CEZ:AV0Z50380511 Keywords : Phenolic acids * HPLC * Mass spectrometry * Fruit * Ripening Subject RIV: EF - Botanics Impact factor: 3.655, year: 2011

  9. Different flour microbial communities drive to sourdoughs characterized by diverse bacterial strains and free amino acid profiles

    Directory of Open Access Journals (Sweden)

    GIUSEPPE CELANO

    2016-11-01

    Full Text Available This work aimed to investigate whether different microbial assemblies in flour may influence the microbiological and biochemical characteristics of traditional sourdough. To reach this purpose, members of lactic acid bacteria, enterobacteria, and yeasts were isolated from durum wheat flour. Secondly, the isolated microorganisms (Pediococcus pentosaceus, Saccharomyces cerevisiae, Pantoea agglomerans, and Escherichia hermanni were inoculated in doughs prepared with irradiated flour (gamma rays at 10 kGy, so that eight different microbial assemblies were obtained. Two non-inoculated controls were prepared, one of which (C-IF using irradiated flour and the other (C using non-irradiated flour.As shown by plate counts, irradiation of flour caused total inactivation of yeasts and a decrease of all the other microbial populations. However acidification occurred also in the dough C-IF, due to metabolic activity of P. pentosaceus that had survived irradiation. After six fermentations, P. pentosaceus was the dominant lactic acid bacterium species in all the sourdoughs produced with irradiated flour (IF. Yet, IF-based sourdoughs broadly differed from each other in terms of strains of P. pentosaceus, probably due to the different microorganisms initially inoculated. Quantitative and qualitative differences of free amino acids concentration were found among the sourdoughs, possibly because of different microbial communities. In addition, as shown by culture-independent analysis (16S metagenetics, irradiation of flour lowered and modified microbial diversity of sourdough ecosystem.

  10. FATTY ACID STABLE ISOTOPE INDICATORS OF MICROBIAL CARBON SOURCE IN TROPICAL SOILS

    Science.gov (United States)

    The soil microbial community plays an important role in tropical ecosystem functioning because of its importance in the soil organic matter (SOM) cycle. We have measured the stable carbon isotopic ratio (delta13C) of individual phospholipid fatty acids (PLFAs) in a variety of tr...

  11. Antioxidant properties and principal phenolic phytochemicals of Indian medicinal plants from Asclepiadoideae and Periplocoideae.

    Science.gov (United States)

    Surveswaran, Siddharthan; Cai, Yi-Zhong; Xing, Jie; Corke, Harold; Sun, Mei

    2010-02-01

    The subfamily Asclepiadoideae (Apocynaceae) and the closely-related Periplocoideae are sources of many indigenous Indian medicinal plants. We surveyed antioxidant properties and total phenolic and flavonoid contents of 15 samples, representing 12 Indian medicinal plant species from these subfamilies. Total antioxidant assay was performed using the 2,2-azinobis-3-ethylbenzothiazoline-6-sulfonic acid and ferric-reducing antioxidant power methods. Total phenolic and flavonoid contents were measured using colourimetric methods. Principal phenolic compounds were detected by liquid chromatography-mass spectrometry (LC-MS). The highest antioxidant capacity and high levels of total phenolics and flavonoids were found in the leaves of Decalepis hamiltonii. The stems of Sarcostemma brevistigma exhibited the highest xanthine oxidase (XO) inhibitory activity. The roots of Hemidesmus indicus showed the highest OH(-) radical scavenging activity. In general, Periplocoideae members exhibited higher antioxidant activity than Asclepiadoideae members. The highly significant and positive correlations (R > 0.914) between total antioxidant capacity parameters and total phenolic content indicated that the phenolic compounds contributed significantly to the antioxidant activity of the tested plant samples. The principal phenolic phytochemicals from these plants were identified by LC-MS, including flavonoids, phenolic acids and phenolic terpenoids. Chlorogenic acid and rutin were detected in almost all of the plant samples. The LC-MS analysis provided full fingerprints of the principal phenolic compounds in the medicinal plants from these two subfamilies, which are useful for their authentication and quality evaluation.

  12. Preharvest treatments with malic, oxalic, and acetylsalicylic acids affect the phenolic composition and antioxidant capacity of coriander, dill and parsley.

    Science.gov (United States)

    El-Zaeddi, Hussein; Calín-Sánchez, Ángel; Nowicka, Paulina; Martínez-Tomé, Juan; Noguera-Artiaga, Luis; Burló, Francisco; Wojdyło, Aneta; Carbonell-Barrachina, Ángel A

    2017-07-01

    The effects of a preharvest treatment with malic (MA), oxalic (OA), or acetylsalicylic (ASA) acid at three concentrations (1, 2 and 3mM) on the bioactivity and antioxidant capacity of coriander, dill, and parsley were investigated. The antioxidant capacity of the herbs extracts was assayed by spectrophotometric methods by using three different analytical methods: ORAC, FRAP, and ABTS; the effects of treatments were very positive in coriander, produced intermediate results in dill, and no effects were found in parsley plants. Polyphenol compounds were identified by LC-MS-QTof and quantified by UPLC-PDA-FL. Thirty phenolic compounds were identified in these three herbs. The major compounds were (i) coriander: dimethoxycinnamoyl hexoside and quercetin-3-O-rutinoside, (ii) dill: neochlorogenic acid and quercetin glucuronide, and (iii) parsley: apigenin-7-apiosylglucoside (apiin) and isorhamnetin-3-O-hexoside. The application of these three organic acids favored the accumulation of phenolic compounds in coriander plants, but had no significant positive effects on dill and parsley. The treatments leading to the best results in all three plants were the application of MA or OA at 1mM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Estimating the carbohydrate content of various forms of tobacco by phenol-sulfuric acid method.

    Science.gov (United States)

    Jain, Vardhaman Mulchand; Karibasappa, Gundabaktha Nagappa; Dodamani, Arun Suresh; Mali, Gaurao Vasant

    2017-01-01

    Due to consumption of various forms of tobacco in large amounts by Indian population, it has become a cause of concern for major oral diseases. In 2008, the WHO named tobacco as the world's single greatest cause of preventable death. It is also known that certain amount of carbohydrates are incorporated in processed tobacco to make it acceptable for consumption. Thus, its role in oral diseases becomes an important question at this point of time. Through this study, it is attempted to find out the carbohydrate content of various forms of tobacco by phenol-sulfuric acid method. Tobacco products selected for the study were Nandi hookah tambakhu (A), photo brand budhaa Punjabi snuff (B), Miraj (C), Gai-chhap tambakhu (D), Hanuman-chhap Pandharpuri tambakhu (E), and Hathi-chhap Bidi (F). The samples were decoded and transported to laboratory and tested at various concentrations by phenol-sulfuric acid method followed by ultraviolet spectrophotometry to determine their absorbance. The present study showed Hathi-chhap bidi/sample F had a maximum absorbance (1.995) at 10 μg/ml which is a smoking form of tobacco followed by rest all smokeless forms of tobacco, i.e. sample C (0.452), sample B (0.253), sample D (0.077), sample E (-0.018), and sample A (-0.127), respectively. As the concentration of tobacco sample increases, their absorbance increases which in turn is suggestive of increase in its carbohydrate concentration. Carbohydrates in the form of sugars, either inherently present or added in it during manufacturing can serve as a risk factor for higher incidence of dental caries.

  14. Antioxidative and antiradical properties of plant phenolics.

    Science.gov (United States)

    Sroka, Zbigniew

    2005-01-01

    The plant phenolic compounds such as flavonoids, tannins and phenolic acids appeared to be strong antiradical and antioxidant compounds. The number of hydroxy groups and the presence of a 2,3-double bond and orthodiphenolic structure enhance antiradical and antioxidative activity of flavonoids. The glycosylation, blocking the 3-OH group in C-ring, lack of a hydroxy group or the presence of only a methoxy group in B-ring have a decreasing effect on antiradical or antioxidative activity of these compounds. Tannins show strong antioxidative properties. Some tannins in red wine or gallate esters were proved to have antioxidative effect in vivo. The number of hydroxy groups connected with the aromatic ring, in ortho or para position relative to each other, enhance antioxidative and antiradical activity of phenolic acids. The substitution of a methoxy group in ortho position to the OH in monophenols seems to favour the antioxidative activity of the former.

  15. Phenolic acid intake, delivered via moderate champagne wine consumption, improves spatial working memory via the modulation of hippocampal and cortical protein expression/activation.

    Science.gov (United States)

    Corona, Giulia; Vauzour, David; Hercelin, Justine; Williams, Claire M; Spencer, Jeremy P E

    2013-11-10

    While much data exist for the effects of flavonoid-rich foods on spatial memory in rodents, there are no such data for foods/beverages predominantly containing hydroxycinnamates and phenolic acids. To address this, we investigated the effects of moderate Champagne wine intake, which is rich in these components, on spatial memory and related mechanisms relative to the alcohol- and energy-matched controls. In contrast to the isocaloric and alcohol-matched controls, supplementation with Champagne wine (1.78 ml/kg BW, alcohol 12.5% vol.) for 6 weeks led to an improvement in spatial working memory in aged rodents. Targeted protein arrays indicated that these behavioral effects were paralleled by the differential expression of a number of hippocampal and cortical proteins (relative to the isocaloric control group), including those involved in signal transduction, neuroplasticity, apoptosis, and cell cycle regulation. Western immunoblotting confirmed the differential modulation of brain-derived neurotrophic factor, cAMP response-element-binding protein (CREB), p38, dystrophin, 2',3'-cyclic-nucleotide 3'-phosphodiesterase, mammalian target of rapamycin (mTOR), and Bcl-xL in response to Champagne supplementation compared to the control drink, and the modulation of mTOR, Bcl-xL, and CREB in response to alcohol supplementation. Our data suggest that smaller phenolics such as gallic acid, protocatechuic acid, tyrosol, caftaric acid, and caffeic acid, in addition to flavonoids, are capable of exerting improvements in spatial memory via the modulation in hippocampal signaling and protein expression. Changes in spatial working memory induced by the Champagne supplementation are linked to the effects of absorbed phenolics on cytoskeletal proteins, neurotrophin expression, and the effects of alcohol on the regulation of apoptotic events in the hippocampus and cortex.

  16. Environmental effect and fate of selected phenols in aquatic ecosystems using microcosm approaches

    International Nuclear Information System (INIS)

    Portier, R.J.; Chen, H.M.; Meyers, S.P.

    1983-01-01

    Microbiological studies, together with physicochemical analyses of selected industrial source phenols of environmental significance, were conducted in continuous flow and carbon metabolism microcosms to determine the behavior of these priority pollutants in soil and sediment-water systems typical of coastal wetlands. Phenols used included 4- nitrophenol, 2,4,6-trichlorophenol, 2-chlorophenol, and phenol. The organophosphate, 14 C-UL-Methyl Parathion, was used as a benchmark toxicant control while 14 C-Ring-Phenol was employed for all phenolic compound additions. Microbial diversity, ATP, and specific enzyme systems (i.e., phosphatase, dehydrogenase) were continuously monitored along with 14 CO 2 expiration and 14 C assimilation by the cellular component. Residual analysis of all microcosm tests employed procedures using combined gas chromatography/high-performance liquid chromatography. Statistical analyses were conducted of variations of testing criteria, along with a ranking profile of relative biotransformation and biodegradation potential. Data presented confirm the validity of microcosm approaches and related correlation analysis in toxic substance fate investigations. 17 references, 6 figures, 1 table

  17. Phenolic Profiles and Antioxidant Activity of Lotus Root Varieties

    Directory of Open Access Journals (Sweden)

    Yang Yi

    2016-06-01

    Full Text Available Lotus root attracts increasing attention mainly because of its phenolic compounds known as natural antioxidants. Its thirteen varieties were systematically analyzed on the content, distribution, composition and antioxidant activity of phenolic compounds for a better understanding of this aquatic vegetable. The respective mean contents of total phenolics in their flesh, peel and nodes were 1.81, 4.30 and 7.35 mg gallic acid equivalents (GAE/g fresh weight (FW, and those of total flavonoids were 3.35, 7.69 and 15.58 mg rutin equivalents/g FW. The phenolic composition determined by a high-performance liquid chromatography method varied significantly among varieties and parts. The phenolics of flesh were mainly composed of gallocatechin and catechin; those of peel and node were mainly composed of gallocatechin, gallic acid, catechin and epicatechin. The antioxidant activities of phenolic extracts in increasing order were flesh, peel and node; their mean concentrations for 50% inhibition of 2,2-diphenyl-1-picrylhydrazyl radical were 46.00, 26.43 and 21.72 µg GAE/mL, and their mean values representing ferric reducing antioxidant power were 75.91, 87.66 and 100.43 µg Trolox equivalents/100 µg GAE, respectively. “Zoumayang”, “Baheou”, “No. 5 elian” and “Guixi Fuou” were the hierarchically clustered varieties with relatively higher phenolic content and stronger antioxidant activity as compared with the others. Especially, their nodes and peels are promising sources of antioxidants for human nutrition.

  18. Digestibility of (Poly)phenols and Antioxidant Activity in Raw and Cooked Cactus Cladodes ( Opuntia ficus-indica).

    Science.gov (United States)

    De Santiago, Elsy; Pereira-Caro, Gema; Moreno-Rojas, José Manuel; Cid, Concepción; De Peña, María-Paz

    2018-05-29

    This study aims to investigate whether heat treatment applied to cactus cladodes influences the bioaccessibility of their (poly)phenolic compounds after simulated gastric and intestinal digestion. A total of 45 (poly)phenols were identified and quantified in raw and cooked cactus cladodes by ultra high performance liquid chromatography photodiode array detector high resolution mass spectrometry. Both flavonoids (60-68% total), mainly isorhamnetin derivatives, and phenolic acids (32-40%) with eucomic acids as the predominant ones significantly ( p < 0.05) increased with microwaving and griddling processes. After in vitro gastrointestinal digestion, 55-64% of the total (poly)phenols of cooked cactus cladodes remained bioaccessible versus 44% in raw samples. Furthermore, digestive conditions and enzymes degraded or retained more flavonoids (37-63% bioaccessibility) than phenolic acids (56-87% bioaccessibility). Microwaved cactus cladodes contributed the highest amount of (poy)phenols (143.54 mg/g dm) after gastrointestinal process, followed by griddled samples (133.98 mg/g dm), showing the highest antioxidant capacity. Additionally, gastrointestinal digestion induced isomerizations among the three stereoisomeric forms of piscidic and eucomic acids.

  19. Intestinal Permeability and Cellular Antioxidant Activity of Phenolic Compounds from Mango (Mangifera indica cv. Ataulfo) Peels.

    Science.gov (United States)

    Pacheco-Ordaz, Ramón; Antunes-Ricardo, Marilena; Gutiérrez-Uribe, Janet A; González-Aguilar, Gustavo A

    2018-02-08

    Mango ( Mangifera indica cv. Ataulfo) peel contains bound phenolics that may be released by alkaline or acid hydrolysis and may be converted into less complex molecules. Free phenolics from mango cv. Ataulfo peel were obtained using a methanolic extraction, and their cellular antioxidant activity (CAA) and permeability were compared to those obtained for bound phenolics released by alkaline or acid hydrolysis. Gallic acid was found as a simple phenolic acid after alkaline hydrolysis along with mangiferin isomers and quercetin as aglycone and glycosides. Only gallic acid, ethyl gallate, mangiferin, and quercetin were identified in the acid fraction. The acid and alkaline fractions showed the highest CAA (60.5% and 51.5%) when tested at 125 µg/mL. The value of the apparent permeability coefficient (Papp) across the Caco-2/HT-29 monolayer of gallic acid from the alkaline fraction was higher (2.61 × 10 -6 cm/s) than in the other fractions and similar to that obtained when tested pure (2.48 × 10 -6 cm/s). In conclusion, mango peels contain bound phenolic compounds that, after their release, have permeability similar to pure compounds and exert an important CAA. This finding can be applied in the development of nutraceuticals using this important by-product from the mango processing industry.

  20. Theoretical prediction of pKa in methanol: testing SM8 and SMD models for carboxylic acids, phenols, and amines.

    Science.gov (United States)

    Miguel, Elizabeth L M; Silva, Poliana L; Pliego, Josefredo R

    2014-05-29

    Methanol is a widely used solvent for chemical reactions and has solvation properties similar to those of water. However, the performance of continuum solvation models in this solvent has not been tested yet. In this report, we have investigated the performance of the SM8 and SMD models for pKa prediction of 26 carboxylic acids, 24 phenols, and 23 amines in methanol. The gas phase contribution was included at the X3LYP/TZVPP+diff//X3LYP/DZV+P(d) level. Using the proton exchange reaction with acetic acid, phenol, and ammonia as reference species leads to RMS error in the range of 1.4 to 3.6 pKa units. This finding suggests that the performance of the continuum models for methanol is similar to that found for aqueous solvent. Application of simple empirical correction through a linear equation leads to accurate pKa prediction, with uncertainty less than 0.8 units with the SM8 method. Testing with the less expensive PBE1PBE/6-311+G** method results in a slight improvement in the results.

  1. Argania spinosa var. mutica and var. apiculata: variation of fatty-acid composition, phenolic content, and antioxidant and α-amylase-inhibitory activities among varieties, organs, and development stages.

    Science.gov (United States)

    El Adib, Saifeddine; Aissi, Oumayma; Charrouf, Zoubida; Ben Jeddi, Fayçal; Messaoud, Chokri

    2015-09-01

    Argania spinosa includes two varieties, var. apiculata and var. mutica. These argan varieties were introduced into Tunisia in ancient times and are actually cultivated in some botanic gardens. Little is known about the chemical differentiation among these argan varieties. Hence, the aim of this study was to determine the fatty-acid composition, the total phenolic and flavonoid contents, and the antioxidant and α-amylase-inhibitory activities of leaf, seed, and pulp extracts of both argan varieties harvested during the months of January to April. The fatty-acid distribution was found to depend on the argan variety, the plant organ, and the harvest time. Significant variations in the phenolic contents were observed between the investigated varieties as well as between leaves, pulps, and seeds of each variety. As expected, phenolic compounds were found to be contributors to the antioxidant and α-amylase-inhibitory activities of both argan varieties. The chemical differentiation observed among the two argan varieties, based mainly on the fatty-acid composition, might have some chemotaxonomic value. Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.

  2. Antimicrobial Activity of Fatty Acid Salts Against Microbial in Koji-Muro

    Directory of Open Access Journals (Sweden)

    Tanaka Aya

    2016-01-01

    Full Text Available Aspergillus niger and Aspergillus oryzae are used as koji fungi in the spot of the brewing. Since koji-muro (room for making koji was a low level of airtightness, microbial contamination has long been a concern to the alcoholic beverage production. Therefore, we focused on the fatty acid salt which is the main component of soap. Fatty acid salts have been reported to show some antibacterial and antifungal activity. This study aimed to find the effectiveness of the fatty acid salt in koji-muro. Nine fatty acid salts were tested. The result, C12K was antibacterial effect against B. subtilis. C10K and C12K was antifungal effect against R. oryzae. These results suggest C12K has potential in the field of koji-muro.

  3. Total phenolics, carotenoids, ascorbic acid, and antioxidant properties of fresh-cut mango (Mangifera indica L., cv. Tommy Atkin) as affected by infrared heat treatment.

    Science.gov (United States)

    Sogi, D S; Siddiq, M; Roidoung, S; Dolan, K D

    2012-11-01

    Mango (Mangifera indica L.) is a major tropical fruit that has not been exploited for fresh-cut or minimally processed products on a scale similar to apples, pineapples, or melons. The objective of this study was to investigate the effect of infrared (IR) treatment on total phenolics, carotenoids, ascorbic acid, and antioxidant properties of fresh-cut cubes from 'Tommy Atkin' mangoes. Mango cubes were IR treated (5, 10, 15 min) and evaluated at 4-d intervals during 16-d storage at 4 ± 1 °C. Total phenolics, carotenoids, and ascorbic acid content in fresh-cut control mango cubes were 43.33, 1.37, and 15.97 mg/100 g FW, respectively. IR treatments increased total phenolics (59.23 to 71.16 mg/100 g FW) and decreased ascorbic acid (12.14 to 15.38 mg/100 g, FW). Total carotenoids showed a mixed trend (1.13 to 1.66 mg/100 g, FW). The IR treatment showed a significant positive impact on antioxidant properties (μM TE/100 g, FW) of mango cubes, as assayed by ABTS (261.5 compared with 338.0 to 416.4), DPPH (270.5 compared with 289.4 to 360.5), and ORAC (6686 compared with 8450 to 12230). Total phenolics, carotenoids, ascorbic acid, and antioxidant capacity decreased over 16-d storage. However, IR treated samples had consistently higher ABTS, DPPH, and total phenolics during storage. It was demonstrated that IR treatment can be effectively used in improving antioxidant properties of fresh-cut mangoes with minimal effect on the visual appearance. Various methods/treatments are in use for extending the quality of fresh-cut fruits, including mild heat treatment. This study explored the application of infrared (IR) heat for processing fresh-cut mango cubes and evaluated its effect on vitamin C and antioxidant capacity during 16-d storage. This is the first study reporting on the use of IR heat in fresh-cut fruits. IR treatment was shown to be effective in retaining antioxidant properties of fresh-cut mango cubes with minimal effect on the visual appearance. © 2012 Institute

  4. Microbial Community Structure and Arsenic Biogeochemistry in an Acid Vapor-Formed Spring in Tengchong Geothermal Area, China.

    Directory of Open Access Journals (Sweden)

    Zhou Jiang

    Full Text Available Arsenic biogeochemistry has been studied extensively in acid sulfate-chloride hot springs, but not in acid sulfate hot springs with low chloride. In this study, Zhenzhuquan in Tengchong geothermal area, a representative acid sulfate hot spring with low chloride, was chosen to study arsenic geochemistry and microbial community structure using Illumina MiSeq sequencing. Over 0.3 million 16S rRNA sequence reads were obtained from 6-paired parallel water and sediment samples along its outflow channel. Arsenic oxidation occurred in the Zhenxhuquan pool, with distinctly high ratios of arsenate to total dissolved arsenic (0.73-0.86. Coupled with iron and sulfur oxidation along the outflow channel, arsenic accumulated in downstream sediments with concentrations up to 16.44 g/kg and appeared to significantly constrain their microbial community diversity. These oxidations might be correlated with the appearance of some putative functional microbial populations, such as Aquificae and Pseudomonas (arsenic oxidation, Sulfolobus (sulfur and iron oxidation, Metallosphaera and Acidicaldus (iron oxidation. Temperature, total organic carbon and dissolved oxygen significantly shaped the microbial community structure of upstream and downstream samples. In the upstream outflow channel region, most microbial populations were microaerophilic/anaerobic thermophiles and hyperthermophiles, such as Sulfolobus, Nocardia, Fervidicoccus, Delftia, and Ralstonia. In the downstream region, aerobic heterotrophic mesophiles and thermophiles were identified, including Ktedonobacteria, Acidicaldus, Chthonomonas and Sphingobacteria. A total of 72.41-95.91% unassigned-genus sequences were derived from the downstream high arsenic sediments 16S rRNA clone libraries. This study could enable us to achieve an integrated understanding on arsenic biogeochemistry in acid hot springs.

  5. The determination of vitamin C, organic acids, phenolic compounds concentration of Red and Golden delicious apple grown in Lorestan province

    Directory of Open Access Journals (Sweden)

    ebrahim Falahi

    2013-08-01

    Results: Ascorbic acid concentrations in Red and Golden delicious apples were 9.49 and 9.09 mg and 9.29 mg in total per 100 grams. Malic acid concentrations in Red and Golden delicious apples were 0.26 and 0.27 and citric acid concentrations in Red and Golden delicious apples were 0.28 mg per 100 grams in both cultivars. Acidity of Red delicious was 4 and Golden delicious was about 3.7. The acidity of Red delicious was higher than the Golden one. α-farensene was the most phenolic compound in both cultivars. Conclusion: Finally, apple cultivars grown in Lorestan have 3 times more ascorbic acid than the amount which mentioned in Iranian Food Consumption Table. There were no significant relation about malic and citric acid in both cultivars.

  6. Comparative total phenolic content, anti-lipase and antioxidant ...

    African Journals Online (AJOL)

    Total phenol values are expressed in terms of Gallic acid equivalent (w/w of dry mass). Aframomum melegueta exhibited the highest phenolic content of 60.4 ± 2.36 mgGAE/g, a percentage antioxidant activity of 86.6 % at 200μg/ml and percentage lipase inhibition of 89% at 1mg/ml while Aframomum danielli revealed a total ...

  7. Bioconversion of Biomass-Derived Phenols Catalyzed by Myceliophthora thermophila Laccase

    Directory of Open Access Journals (Sweden)

    Anastasia Zerva

    2016-04-01

    Full Text Available Biomass-derived phenols have recently arisen as an attractive alternative for building blocks to be used in synthetic applications, due to their widespread availability as an abundant renewable resource. In the present paper, commercial laccase from the thermophilic fungus Myceliophthora thermophila was used to bioconvert phenol monomers, namely catechol, pyrogallol and gallic acid in water. The resulting products from catechol and gallic acid were polymers that were partially characterized in respect to their optical and thermal properties, and their average molecular weight was estimated via solution viscosity measurements and GPC. FT-IR and 1H-NMR data suggest that phenol monomers are connected with ether or C–C bonds depending on the starting monomer, while the achieved molecular weight of polycatechol is found higher than the corresponding poly(gallic acid. On the other hand, under the same condition, pyrogallol was dimerized in a pure red crystalline compound and its structure was confirmed by 1H-NMR as purpurogallin. The herein studied green synthesis of enzymatically synthesized phenol polymers or biological active compounds could be exploited as an alternative synthetic route targeting a variety of applications.

  8. Effects of cooking methods on phenolic compounds in xoconostle (Opuntia joconostle).

    Science.gov (United States)

    Cortez-García, Rosa María; Ortiz-Moreno, Alicia; Zepeda-Vallejo, Luis Gerardo; Necoechea-Mondragón, Hugo

    2015-03-01

    Xoconostle, the acidic cactus pear fruit of Opuntia joconostle of the Cactaceae family, is the source of several phytochemicals, such as betalain pigments and numerous phenolic compounds. The aim of the present study was to analyze the effect of four cooking procedures (i.e., boiling, grilling, steaming and microwaving) on the total phenolic content (TPC) and antioxidant activity (measured by ABTS, DPPH, reducing power, and BCBA) of xoconostle. In addition, HPLC-DAD analyses were performed to identify and quantify individual phenolic compounds. After microwaving and steaming xoconostle, the TPC remained the same that in fresh samples, whereas both grilling and boiling produced a significant, 20% reduction (p ≤ 0.05). Total flavonoids remained unchanged in boiled and grilled xoconostle, but steaming and microwaving increased the flavonoid content by 13 and 20%, respectively. Steaming and microwaving did not produce significant changes in the antioxidant activity of xoconostle, whereas boiling and grilling result in significant decreases. The phenolic acids identified in xoconostle fruits were gallic, vanillic, 4-hydroxybenzoic, syringic, ferulic and protocatechuic acids; the flavonoids identified were epicatechin, catechin, rutin, quercitrin, quercetin and kaempferol. Based on the results, steaming and microwaving are the most suitable methods for retaining the highest level of phenolic compounds and flavonoids in xoconostle.

  9. Effect of phenolic extracts on trans fatty acid formation during frying

    Directory of Open Access Journals (Sweden)

    Gamel, TH

    1999-12-01

    Full Text Available Olive oil (blend of refined and virgin and sunflower oil containing added methanol phenolic extracts of dry rosemary and olive vegetable water or the synthetic antioxidant BHA in combination with the extracts, were used in a frying process. Eight frying operations were performed at 180 °C with 24 hr intervals between fryings. During the frying period the trans fatty acids (TFA by capillary column gas chromatography (CC-GC were determined. Trans fatty acids of oleic and linoleic were increased with frying time in both the control oil samples. The rosemary additives (extracts alone and in combination with BHA decreased the level of trans fatty acids (mainly elaidic acid, while the addition of olive vegetable water did not have any effect.

    Aceite de oliva (mezcla de virgen y refinado y aceite de girasol con extractos fenólicos de romero seco y aguas de vegetación de aceituna, o con el antioxidante sintético BHA en combinación con los extractos, se usaron en proceso de fritura. Se realizaron 8 operaciones de fritura a 180°C con intervalos de 24 h. Se determinaron los ácidos grasos trans (TFA por cromatografía de gases en columna capilar (CC-GC. Los ácidos grasos trans de oleico y linoleico aumentaron con el tiempo de fritura en las muestras de aceite control. Los extractos de romero, solos y en combinación con BHA, disminuyeron los niveles de ácidos grasos trans (principalmente ácido elaídico mientras que la adicción de aguas de vegetación de aceituna no tuvo ningún efecto.

  10. Acidolysis small molecular phenolic ether used as accelerator in photosensitive diazonaphthaquinone systems

    Science.gov (United States)

    Zhou, Haihua; Zou, Yingquan

    2006-03-01

    The photosensitive compounds in the photosensitive coatings of positive PS plates are the diazonaphthaquinone derivatives. Some acidolysis small molecular phenolic ethers, which were synthesized by some special polyhydroxyl phenols with vinyl ethyl ether, are added in the positive diazonaphthaquinone photosensitive composition to improve its sensitivity, composed with photo-acid-generators. The effects to the photosensitivity, anti-alkali property, anti-isopropyl alcohol property, dot resolution and line resolution of the coatings are studied with different additive percent of the special phenolic ethers. In the conventional photosensitive diazonaphthaquinone systems for positive PS plates, the photosensitivity is improved without negative effects to resolution, anti-alkali and anti-isopropyl alcohol properties when added about 5% of the special acidolysis phenolic ethers, EAAE or DPHE, composed with photo-acid-generators.

  11. Microbial biosensors for environmental monitoring

    Directory of Open Access Journals (Sweden)

    David VOGRINC

    2015-12-01

    Full Text Available Microbial biosensors are analytical devices capable of sensing substances in the environment due to the specific biological reaction of the microorganism or its parts. Construction of a microbial biosensor requires knowledge of microbial response to the specific analyte. Linking this response with the quantitative data, using a transducer, is the crucial step in the construction of a biosensor. Regarding the transducer type, biosensors are divided into electrochemical, optical biosensors and microbial fuel cells. The use of the proper configuration depends on the selection of the biosensing element. With the use of transgenic E. coli strains, bioluminescence or fluorescence based biosensors were developed. Microbial fuel cells enable the use of the heterogeneous microbial populations, isolated from wastewater. Different microorganisms are used for different pollutants – pesticides, heavy metals, phenolic compounds, organic waste, etc. Biosensing enables measurement of their concentration and their toxic or genotoxic effects on the microbes. Increasing environmental awareness has contributed to the increase of interest for biomonitoring. Although technologies, such as bioinformatics and genetic engineering, allow us to design complex and efficient microbial biosensors for environmental pollutants, the transfer of the laboratory work to the field still remains a problem to solve.

  12. Effects of acid deposition on microbial processes in natural waters

    International Nuclear Information System (INIS)

    Gilmour, C.C.

    1992-01-01

    Biogeochemical processes mediated by microorganisms are not adversely affected by the acidification of natural waters to the same extent as are the life cycles of higher organisms. Basic processes, e.g., primary production and organic matter decomposition, are not slowed in moderately acidified systems and do not generally decline above a pH of 5. More specifically, the individual components of the carbon, nitrogen, and sulfur cycles are, with few exceptions, also acid resistant. The influence of acid deposition on microbial processes is more often stimulation of nitrogen and sulfur cycling, often leading to alkalinity production, which mitigates the effect of strong acid deposition. Bacterial sulfate reduction and denitrification in sediments are two of the major processes that can be stimulated by sulfate and nitrate deposition, respectively, and result in ANC (acid-neutralizing capacity) generation. One of the negative effects of acid deposition is increased mobilization and bioaccumulation of some metals. Bacteria appear to play an important role, especially in mercury cycling, with acidification leading to increased bacterial methylation of mercury and subsequent bioaccumulation in higher organisms

  13. Reactions of linoleic acid peroxyl radicals with phenolic antioxidants: a pulse radiolysis study

    Energy Technology Data Exchange (ETDEWEB)

    Erben-Russ, M.; Bors, W.; Saran, M.

    1987-09-01

    Linoleic acid peroxyl radicals (LOO) can be viewed as model intermediates occurring during lipid peroxidation processes. Formation and reactions of these species were investigated in aqueous alkaline solution using pulse radiolysis combined with kinetic spectroscopy. Irradiation of linoleic acid in N/sub 2/O/O/sub 2/-saturated solutions leads to a mixture of peroxyl radical isomers; reaction of 13-hydroperoxylinoleic acid (13-LOOH) with azide radicals in N/sub 2/O-saturated solution produces 13-LOO radicals specifically. These peroxyl radicals cannot be observed directly, but their reactions with kaempferol and quercetin, acting as radical-scavenging antioxidants, produced strongly absorbing aroxyl radicals (ArO). The same aroxyl radicals were generated by OH and N/sub 3/ with rate constants exceeding 10/sup 9/ dm/sup 3/ mol/sup -1/ s/sup -1/. Applying a reaction scheme that includes competing generation and decay reactions of both LOO and ArO radicals, individual rate constants were derived for LOO reactions with the phenols (> 10/sup 7/ dm/sup 3/ mol/sup -1/ s-./sup 1/), with aroxyl radicals to form covalent adducts (> 10/sup 8/ dm/sup 3/ mol/sup -1/ s/sup -1/), as well as for their bimilecular decay (3.0 x 10/sup 8/ dm/sup 3/ mol/sup -1/ s/sup -1/). These results demonstrate high reactivity of fatty acid peroxyl radicals and flavone antioxidants in aqueous solution.

  14. Recent advances and strategies in process and strain engineering for the production of butyric acid by microbial fermentation.

    Science.gov (United States)

    Luo, Hongzhen; Yang, Rongling; Zhao, Yuping; Wang, Zhaoyu; Liu, Zheng; Huang, Mengyu; Zeng, Qingwei

    2018-04-01

    Butyric acid is an important platform chemical, which is widely used in the fields of food, pharmaceutical, energy, etc. Microbial fermentation as an alternative approach for butyric acid production is attracting great attention as it is an environmentally friendly bioprocessing. However, traditional fermentative butyric acid production is still not economically competitive compared to chemical synthesis route, due to the low titer, low productivity, and high production cost. Therefore, reduction of butyric acid production cost by utilization of alternative inexpensive feedstock, and improvement of butyric acid production and productivity has become an important target. Recently, several advanced strategies have been developed for enhanced butyric acid production, including bioprocess techniques and metabolic engineering methods. This review provides an overview of advances and strategies in process and strain engineering for butyric acid production by microbial fermentation. Additionally, future perspectives on improvement of butyric acid production are also proposed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Catalytic hydrodeoxygenation of 2-methoxy phenol and dibenzofuran over Pt/mesoporous zeolites

    International Nuclear Information System (INIS)

    Lee, Hyung Won; Jun, Bo Ram; Kim, Hannah; Kim, Do Heui; Jeon, Jong-Ki; Park, Sung Hoon; Ko, Chang Hyun; Kim, Tae-Wan; Park, Young-Kwon

    2015-01-01

    The hydrodeoxygenation of 2-methoxy phenol and dibenzofuran, which are representative model compounds of bio-oil, was performed using two different Pt/mesoporous zeolite catalysts, Pt/mesoporous Y and Pt/mesoporous MFI. The reforming of 2-methoxy phenol and dibenzofuran via catalytic hydrodeoxygenation was investigated using a batch reactor at 40 bar and 250 °C. The characteristics of the catalysts were analyzed by N 2 adsorption-desorption, X-ray diffraction, and NH 3 temperature programmed desorption. Pt/mesoporous zeolite catalysts containing both strong acid sites and mesopores showed the higher conversion of 2-methoxy phenol than Pt/SiO 2 and Pt/Si-MCM-48 with no acid sites, Pt/γ-Al 2 O 3 , and a mixture of mesoporous Y and Pt/SiO 2 , indicating the importance of both Pt and strong acid sites for high catalytic activity. Among the two Pt/mesoporous zeolite catalysts tested, the conversion of 2-methoxy phenol to cyclohexane over Pt/mesoporous Y was much higher than that over the Pt/mesoporous MFI. This was attributed to the better textural properties, such as surface area, pore volume and micropore size, compared to those of Pt/mesoporous MFI. The catalytic conversions of dibenzofuran obtained using two Pt/mesoporous zeolite catalysts were similar and the main products were 1,1′-bicyclohexyl, cyclopentylmethyl-cyclohexane and cyclohexane. In addition, the reaction mechanisms of 2-methoxy phenol and dibenzofuran over Pt/mesoporous zeolite were suggested. - Highlights: • HDO of 2-methoxy phenol and dibenzofuran was performed over Pt/mesoporous zeolites. • Pt/mesoporous zeolites have mesopores and strong acid sites. • Main product of HDO of 2-methoxy phenol was cyclohexane. • Main products of HDO of dibenzofuran were bicyclohexyl (BCH), i-BCH, and cyclohexane

  16. Microbial functional diversity of a shrubland soil experimentally burned and treated with two post-fire stabilization techniques (straw mulch and seeding

    Directory of Open Access Journals (Sweden)

    M.T. Fonturbel

    2013-01-01

    Full Text Available The study examined the effect of two post-fire stabilization treatments (seeding and mulching on microbial diversity of a shrubland area of Galicia after an experimental fire. The soil was a Leptosol developed over granite with a slope of 38-54% and the soil microbial functional diversity was assessed using Biolog substrate utilization EcoPlates (Biolog Inc., Hayward, CA, USA. Soil samples were taken from the A horizon (0-5 cm depth at different sampling times over one year after the experimental fire. The results indicated that immediately after the fire there were significant differences in the categorized substrate utilization pattern between the microbial communities of the burnt soil treatments and the corresponding unburnt control. The burned soils exhibited significant higher values for the utilization of carboxylic acids, amino acids, carbohydrates and phenolic compounds, suggesting that the microbial community in the burned soils could be favoured by the increase in available C and nutrients following the experimental fire. These changes in the categorized substrate utilization pattern were attenuated with time; thus, one year after the fire, similar values for utilization of different C sources were observed for all unburned and burnt soils. With respect to post-fire treatments only the mulching showed an effect on the C utilization pattern.

  17. Phylogenetic trends in phenolic metabolism of milkweeds (Asclepias): evidence for escalation.

    Science.gov (United States)

    Agrawal, Anurag A; Salminen, Juha-Pekka; Fishbein, Mark

    2009-03-01

    Although plant-defense theory has long predicted patterns of chemical defense across taxa, we know remarkably little about the evolution of defense, especially in the context of directional phylogenetic trends. Here we contrast the production of phenolics and cardenolides in 35 species of milkweeds (Asclepias and Gomphocarpus). Maximum-likelihood analyses of character evolution revealed three major patterns. First, consistent with the defense-escalation hypothesis, the diversification of the milkweeds was associated with a trend for increasing phenolic production; this pattern was reversed (a declining evolutionary trend) for cardenolides, toxins sequestered by specialist herbivores. Second, phylogenetically independent correlations existed among phenolic classes across species. For example, coumaric acid derivatives showed negatively correlated evolution with caffeic acid derivatives, and this was likely driven by the fact that the former are used as precursors for the latter. In contrast, coumaric acid derivatives were positively correlated with flavonoids, consistent with competition for the precursor p-coumaric acid. Finally, of the phenolic classes, only flavonoids showed correlated evolution (positive) with cardenolides, consistent with a physiological and evolutionary link between the two via malonate. Thus, this study presents a rigorous test of the defense-escalation hypothesis and a novel phylogenetic approach to understanding the long-term persistence of physiological constraints on secondary metabolism.

  18. Phospholipid fatty acid patterns of microbial communities in paddy soil under different fertilizer treatments

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qi-chun; WANG Guang-huo; YAO Huai-ying

    2007-01-01

    The microbial communities under irrigated rice cropping with different fertilizer treatments, including control (CK), PK, NK, NP, NPK fertilization, were investigated using phospholipid fatty acid (PLFA) profile method. The results of this study revealed that the fertilizer practice had an impact on the community structure of specific microbial groups. The principal components analysis (PCA) showed that proportion of the actinomycete PLFAs (10Me 18:0 and 10Me 16:0) were the lowest in the PK treatment and the highest in the NPK treatment, which means that soil nitrogen status affected the diversity of actinomycetes, whereas nitrogen cycling was related to the actinomycets. Under CK treatment, the ratio of Gram-positive to Gram-negative bacteria was lower compared with that in fertilizer addition treatments, indicating that fertilizer application stimulated Gram-positive bacterial population in paddy soil. The fatty acid 18:2ω6, 9, which is considered to be predominantly of fungal origin, was at low level in all the treatments. The ratio of cy19:0 to 18:1ω7, which has been proposed as an indicator of stress conditions, decreased in PK treatment. Changes of soil microbial community under different fertilizer treatments of paddy soil were detected in this study; however, the causes that lead to changes in the microbial community still needs further study.

  19. Intestinal Permeability and Cellular Antioxidant Activity of Phenolic Compounds from Mango (Mangifera indica cv. Ataulfo Peels

    Directory of Open Access Journals (Sweden)

    Ramón Pacheco-Ordaz

    2018-02-01

    Full Text Available Mango (Mangifera indica cv. Ataulfo peel contains bound phenolics that may be released by alkaline or acid hydrolysis and may be converted into less complex molecules. Free phenolics from mango cv. Ataulfo peel were obtained using a methanolic extraction, and their cellular antioxidant activity (CAA and permeability were compared to those obtained for bound phenolics released by alkaline or acid hydrolysis. Gallic acid was found as a simple phenolic acid after alkaline hydrolysis along with mangiferin isomers and quercetin as aglycone and glycosides. Only gallic acid, ethyl gallate, mangiferin, and quercetin were identified in the acid fraction. The acid and alkaline fractions showed the highest CAA (60.5% and 51.5% when tested at 125 µg/mL. The value of the apparent permeability coefficient (Papp across the Caco-2/HT-29 monolayer of gallic acid from the alkaline fraction was higher (2.61 × 10−6 cm/s than in the other fractions and similar to that obtained when tested pure (2.48 × 10−6 cm/s. In conclusion, mango peels contain bound phenolic compounds that, after their release, have permeability similar to pure compounds and exert an important CAA. This finding can be applied in the development of nutraceuticals using this important by-product from the mango processing industry.

  20. Intestinal Permeability and Cellular Antioxidant Activity of Phenolic Compounds from Mango (Mangifera indica cv. Ataulfo) Peels

    Science.gov (United States)

    Pacheco-Ordaz, Ramón; González-Aguilar, Gustavo A.

    2018-01-01

    Mango (Mangifera indica cv. Ataulfo) peel contains bound phenolics that may be released by alkaline or acid hydrolysis and may be converted into less complex molecules. Free phenolics from mango cv. Ataulfo peel were obtained using a methanolic extraction, and their cellular antioxidant activity (CAA) and permeability were compared to those obtained for bound phenolics released by alkaline or acid hydrolysis. Gallic acid was found as a simple phenolic acid after alkaline hydrolysis along with mangiferin isomers and quercetin as aglycone and glycosides. Only gallic acid, ethyl gallate, mangiferin, and quercetin were identified in the acid fraction. The acid and alkaline fractions showed the highest CAA (60.5% and 51.5%) when tested at 125 µg/mL. The value of the apparent permeability coefficient (Papp) across the Caco-2/HT-29 monolayer of gallic acid from the alkaline fraction was higher (2.61 × 10−6 cm/s) than in the other fractions and similar to that obtained when tested pure (2.48 × 10−6 cm/s). In conclusion, mango peels contain bound phenolic compounds that, after their release, have permeability similar to pure compounds and exert an important CAA. This finding can be applied in the development of nutraceuticals using this important by-product from the mango processing industry. PMID:29419800

  1. Microbial quality and bioactive constituents of sweet peppers from sustainable production systems.

    Science.gov (United States)

    Marín, Alicia; Gil, María I; Flores, Pilar; Hellín, Pilar; Selma, María V

    2008-12-10

    Integrated, organic, and soil-less production systems are the principal production practices that have emerged to encourage more sustainable agricultural practices and safer edible plants, reducing inputs of plaguicides, pesticides, and fertilizers. Sweet peppers grown commercially under integrated, organic, and soil-less production systems were compared to study the influence of these sustainable production systems on the microbial quality and bioactive constituents (vitamin C, individual and total carotenoids, hydroxycinnamic acids, and flavonoids). The antioxidant composition of peppers was analyzed at green and red maturity stages and at three harvest times (initial, middle, and late season). Irrigation water, manure, and soil were shown to be potential transmission sources of pathogens to the produce. Coliform counts of soil-less peppers were up to 2.9 log units lower than those of organic and integrated peppers. Soil-less green and red peppers showed maximum vitamin C contents of 52 and 80 mg 100 g(-1) fresh weight (fw), respectively, similar to those grown in the organic production system. Moreover, the highest content of total carotenoids was found in the soil-less red peppers, which reached a maximum of 148 mg 100 g(-1) fw, while slightly lower contents were found in integrated and organic red peppers. Hydroxycinnamic acids and flavonoids represented 15 and 85% of the total phenolic content, respectively. Total phenolic content, which ranged from 1.2 to 4.1 mg 100 g(-1) fw, was significantly affected by the harvest time but not by the production system assayed. Soil-less peppers showed similar or even higher concentrations of bioactive compounds (vitamin C, provitamin A, total carotenoid, hydroxycinnamic acids, and flavonoids) than peppers grown under organic and integrated practices. Therefore, in the commercial conditions studied, soil-less culture was a more suitable alternative than organic or integrated practices, because it improved the microbial

  2. Profiling and quantification of phenolic compounds in Camellia seed oils: Natural tea polyphenols in vegetable oil.

    Science.gov (United States)

    Wang, Xiaoqin; Zeng, Qiumei; Del Mar Contreras, María; Wang, Lijuan

    2017-12-01

    In Asia, tea seed oils (seed oils from Camellia oleifera, C. chekiangoleosa, and C. sinensis) are used in edible, medicinal, and cosmetic applications. However, these oils differ in their fatty acid contents, and there is little known about their phenolic compounds. Here we analyzed the phenolic compounds of seed oils from three species gathered from 15 regions of China. Twenty-four phenolic compounds were characterized by HPLC-Q-TOF-MS, including benzoic acids (6), cinnamic acids (6), a hydroxyphenylacetic acid, flavanols (4), flavonols (3), flavones (2), and dihydroflavonoids (2). Some of these phenolic compounds had not previously been reported from C. sinensis (20), C. oleifera (15), and C. chekiangoleosa (24) seed oils. Quantification was done by HPLC-QqQ-MS using 24 chemical standards. The total concentrations in the studied samples ranged from 20.56 to 88.56μg/g. Phenolic acids were the most abundant class, accounting for 76.2-90.4%, with benzoic acid, found at up to 18.87μg/g. The concentration of catechins, typical of tea polyphenols, ranged between 2.1% and 9.7%, while the other flavonoids varied from 4.2% to 17.8%. Although the cultivation region affected the phenolic composition of the Camellia seed oils, in our hierarchical clustering analysis, the samples clustered according to species. The phenolic composition of the seed oils from C. oleifera and C. chekiangoelosa were similar. We found that the phenolic categories in Camellia seed oils were similar to tea polyphenols, thereby identifying a source of liposoluble tea polyphenols and potentially accounting for some of the reported activities of these oils. In addition, this work provides basic data that allows distinction of various Camellia seed oils, as well as improvements to be made in their quality standards. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Investigating Marine Dissolved Organic Matter Fluorescence Transformations with Organic Geochemical Proxies in a Growth and Degradation Experiment using Amino Acids, Amino Sugars, and Phenols

    Science.gov (United States)

    Shields, M. R.; Bianchi, T. S.; Osburn, C. L.; Kinsey, J. D.; Ziervogel, K.; Schnetzer, A.

    2017-12-01

    The origin and mechanisms driving the formation of fluorescent dissolved organic matter (FDOM) in the open ocean remain unclear. Although recent studies have attempted to deconvolve the chemical composition and source of marine FDOM, these studies have been qualitative in nature. Here, we investigate these transformations using a more quantitative biomarker approach in a controlled growth and degradation experiment. In this experiment, a natural assemblage of phytoplankton was collected off the coast of North Carolina and incubated within roller bottles containing 0.2 µm-filtered North Atlantic surface water amended with f/2 nutrients. Samples were collected at the beginning (day 0), during exponential growth (day 13), stationary (day 20), and degradation (day 62) phases of the phytoplankton incubation. Amino acids, amino sugars, and phenolic compounds of the dissolved (DOM) were measured in conjunction with enzyme assays and bacterial counts to track shifts in OM quality as FDOM formed and was then transformed throughout the experiment. The results from the chemical analyses showed that the OM composition changed significantly from the initial and exponential phases to the stationary and degradation phases of the experiment. The percentage of aromatic amino acids to the total amino acid pool increased significantly during the exponential phase of phytoplankton growth, but then decreased significantly during the stationary and degradation phases. This increase was positively correlated to the fractional contribution of the protein-like peak in fluorescence to the total FDOM fluorescence. An increase in the concentration of amino acid degradation products during the stationary and degradation phases suggests that compositional changes in OM were driven by microbial transformation. This was further supported by a concurrent increase in total enzyme activity and increase in "humic-like" components of the FDOM. These findings link the properties and formation of FDOM

  4. Antioxidant capacity changes and phenolic profile of Echinacea purpurea, nettle (Urtica dioica L.), and dandelion (Taraxacum officinale) after application of polyamine and phenolic biosynthesis regulators.

    Science.gov (United States)

    Hudec, Jozef; Burdová, Mária; Kobida, L'ubomír; Komora, Ladislav; Macho, Vendelín; Kogan, Grigorij; Turianica, Ivan; Kochanová, Radka; Lozek, Otto; Habán, Miroslav; Chlebo, Peter

    2007-07-11

    The changes of the antioxidant (AOA) and antiradical activities (ARA) and the total contents of phenolics, anthocyanins, flavonols, and hydroxybenzoic acid in roots and different aerial sections of Echinacea purpurea, nettle, and dandelion, after treatment with ornithine decarboxylase inhibitor, a polyamine inhibitor (O-phosphoethanolamine, KF), and a phenol biosynthesis stimulator (carboxymethyl chitin glucan, CCHG) were analyzed spectrophotometrically; hydroxycinnamic acids content was analyzed by RP-HPLC with UV detection. Both regulators increased the AOA measured as inhibition of peroxidation (IP) in all herb sections, with the exception of Echinacea stems after treatment with KF. In root tissues IP was dramatically elevated mainly after CCHG application: 8.5-fold in Echinacea, 4.14-fold in nettle, and 2.08-fold in dandelion. ARA decrease of Echinacea leaves treated with regulators was in direct relation only with cichoric acid and caftaric acid contents. Both regulators uphold the formation of cinnamic acid conjugates, the most expressive being that of cichoric acid after treatment with CCHG in Echinacea roots from 2.71 to 20.92 mg g(-1). There was a strong relationship between increase of the total phenolics in all sections of Echinacea, as well as in the studied sections of dandelion, and the anthocyanin content.

  5. Transcriptional Profiles of SmWRKY Family Genes and Their Putative Roles in the Biosynthesis of Tanshinone and Phenolic Acids in Salvia miltiorrhiza

    Directory of Open Access Journals (Sweden)

    Haizheng Yu

    2018-05-01

    Full Text Available Salvia miltiorrhiza Bunge is a Chinese traditional herb for treating cardiovascular and cerebrovascular diseases, and tanshinones and phenolic acids are the dominated medicinal and secondary metabolism constituents of this plant. WRKY transcription factors (TFs can function as regulators of secondary metabolites biosynthesis in many plants. However, studies on the WRKY that regulate tanshinones and phenolics biosynthesis are limited. In this study, 69 SmWRKYs were identified in the transcriptome database of S. miltiorrhiza, and phylogenetic analysis indicated that some SmWRKYs had closer genetic relationships with other plant WRKYs, which were involved in secondary metabolism. Hairy roots of S. miltiorrhiza were treated by methyl jasmonate (MeJA to detect the dynamic change trend of SmWRKY, biosynthetic genes, and medicinal ingredients accumulation. Base on those date, a correlation analysis using Pearson’s correlation coefficient was performed to construct gene-to-metabolite network and identify 9 SmWRKYs (SmWRKY1, 7, 19, 29, 45, 52, 56, 58, and 68, which were most likely to be involved in tanshinones and phenolic acids biosynthesis. Taken together, this study has provided a significant resource that could be used for further research on SmWRKY in S. miltiorrhiza and especially could be used as a cue for further investigating SmWRKY functions in secondary metabolite accumulation.

  6. Microbial release of ferulic and p-coumaric acids from forages and their digestibility in lactating cows fed total mixed rations with different forage combinations.

    Science.gov (United States)

    Cao, Bin-Bin; Jin, Xin; Yang, Hong-Jian; Li, Sheng-Li; Jiang, Lin-Shu

    2016-01-30

    Ferulic acid (FA) and p-coumaric acid (PCA) are widely distributed in graminaceous plant cell walls. This study investigated the in vitro and in vivo digestibility of ester-linked FA (FAest) and PCA (PCAest) in lactating dairy cows. Regarding corn stover, ensiled corn stover, whole corn silage, Chinese wild ryegrass and alfalfa hay with different phenolic acid profiles, the in vitro rumen digestibility of forage FAest and PCAest was negatively correlated with the ether-linked FA content and original PCA/FA ratio in the forages. The concentration of both phenolic acids in culture fluids was low after a 72 h incubation, and the mixed rumen microorganisms metabolized nearly all phenolic acids released into the culture fluids. FAest digestibility in the whole digestive tract was negatively correlated with dietary PCA/FA ratio, but a converse result occurred with dietary PCAest digestibility. The digestibility in either the rumen or the whole digestive tract was greater for FAest than for PCAest. Forage PCAest in comparison with FAest is not easily digested in either the rumen or the whole digestive tract, and they were negatively affected by forage FAeth content and lignification extent indicated by the original dietary PCA/FA ratio. © 2015 Society of Chemical Industry.

  7. Effect of Bile Alcohols on the Microbial 7α-dehydroxylation of Chenodeoxycholic acid

    OpenAIRE

    Lindqvist, A.; Midtvedt, T.; Skrede, S.; Sjövall, J.

    2011-01-01

    The effect of bile alcohols on the microbial 7α-dehydroxylation of chenodeoxycholic acid was investigated. Bile alcohols isolated from urine of patients with cerebrotendinous xanthomatosis were added to anaerobic incubations of rat faecal microflora or isolated 'Strain II' with [14C]chenodeoxycholic acid, and the formation of labelled metabolites was measured by high-performance liquid chromatography after 7 d of incubation. The 7α-dehydroxylation by rat faecal microflora was inhi...

  8. Chromatographical analysis of phenolic acids in some species of Polygonum L. genus. Part 1 Qualitative analysis by two-dimensional thin layer chromatography (TLC

    Directory of Open Access Journals (Sweden)

    Helena D. Smolarz

    2014-01-01

    Full Text Available The Two-Dimensional Thin Layer Chromatography method has been used for the separation and identification of phenolic acids from six taxons of Pohygonum L. genus. The following acids were found: caffeic, p-coumaric, ferulic, p-hydroxybenzoic, m-hydroxybenzoic, vanillic, syringic, p-hydroxyphenylacetic, o-hydroxyphenylacetic, synapic, melillotic, salicylic, gentisic, elagic, gallic, chlorogenic, protocatechuic and homoprotocatechuic. Gallic, ferulic, vanillic, p-coumaric and p-hydroxybenzoic acids were isolated from herb Polygonum convolvulus L. using column chromatography.

  9. Comparative analysis of microbial community of novel lactic acid fermentation inoculated with different undefined mixed cultures.

    Science.gov (United States)

    Liang, Shaobo; Gliniewicz, Karol; Mendes-Soares, Helena; Settles, Matthew L; Forney, Larry J; Coats, Erik R; McDonald, Armando G

    2015-03-01

    Three undefined mixed cultures (activated sludge) from different municipal wastewater treatment plants were used as seeds in a novel lactic acid fermentation process fed with potato peel waste (PPW). Anaerobic sequencing batch fermenters were run under identical conditions to produce predominantly lactic acid. Illumina sequencing was used to examine the 16S rRNA genes of bacteria in the three seeds and fermenters. Results showed that the structure of microbial communities of three seeds were different. All three fermentation products had unique community structures that were dominated (>96%) by species of the genus Lactobacillus, while members of this genus constituted undefined mixed cultures were robust and resilient, which provided engineering prospects for the microbial utilization of carbohydrate wastes to produce lactic acid. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Antioxidant potential of water hyacinth (Eichornia crassipes): In vitro antioxidant activity and phenolic composition

    DEFF Research Database (Denmark)

    Surendraraj, A.; Farvin, Sabeena; Anandan, R.

    2013-01-01

    The aims of the present study were (a) to extract and quantify the main phenolic acids and tocopherols from the petiole, leaves, and flowers of Eichornia crassipes; (b) to evaluate the antioxidant capacity of the extracts in four in vitro systems (1,1-diphenyl-2-pycryl-hydrazyl [DPPH] radical...... and in the antioxidant activities of extracts from the various parts of E. crassipes. Out of the 11 phenolic acids analyzed, ethanolic extracts contained high amounts of gallic, protocatechuic, gentisic, and p-hydroxybenzoic acid, whereas, water extracts contained less amounts of a varied number of phenolic acids...... oil. Our results demonstrate that E. crassipes, an underutilized aquatic weed, could be a potential natural antioxidant source for food, feed, and pharmaceutical applications. © 2013 Copyright Taylor & Francis Group, LLC....

  11. Preparative Separation of Phenolic Compounds from Halimodendron halodendron by High-Speed Counter-Current Chromatography

    OpenAIRE

    Wang, Jihua; Gao, Haifeng; Zhao, Jianglin; Wang, Qi; Zhou, Ligang; Han, Jianguo; Yu, Zhu; Yang, Fuyu

    2010-01-01

    Three phenolic compounds, p-hydroxybenzoic acid (1), isorhamnetin-3-O-β-D-rutinoside (2), and 3,3'-di-O-methylquercetin (5), along with a phenolic mixture were successfully separated from the ethyl acetate crude extract of Halimodendron halodendron by high-speed counter-current chromatography (HSCCC) with chloroform-methanol-water-acetic acid (4:3:2:0.05, v/v) as the two-phase solvent system. The phenolic mixture from HSCCC was further separated by preparative HPLC and purified by Sephadex LH...

  12. Automated solid-phase extraction of phenolic acids using layered double hydroxide-alumina-polymer disks.

    Science.gov (United States)

    Ghani, Milad; Palomino Cabello, Carlos; Saraji, Mohammad; Manuel Estela, Jose; Cerdà, Víctor; Turnes Palomino, Gemma; Maya, Fernando

    2018-01-26

    The application of layered double hydroxide-Al 2 O 3 -polymer mixed-matrix disks for solid-phase extraction is reported for the first time. Al 2 O 3 is embedded in a polymer matrix followed by an in situ metal-exchange process to obtain a layered double hydroxide-Al 2 O 3 -polymer mixed-matrix disk with excellent flow-through properties. The extraction performance of the prepared disks is evaluated as a proof of concept for the automated extraction using sequential injection analysis of organic acids (p-hydroxybenzoic acid, 3,4-dihydroxybenzoic acid, gallic acid) following an anion-exchange mechanism. After the solid-phase extraction, phenolic acids were quantified by reversed-phase high-performance liquid chromatography with diode-array detection using a core-shell silica-C18 stationary phase and isocratic elution (acetonitrile/0.5% acetic acid in pure water, 5:95, v/v). High sensitivity and reproducibility were obtained with limits of detection in the range of 0.12-0.25 μg/L (sample volume, 4 mL), and relative standard deviations between 2.9 and 3.4% (10 μg/L, n = 6). Enrichment factors of 34-39 were obtained. Layered double hydroxide-Al 2 O 3 -polymer mixed-matrix disks had an average lifetime of 50 extractions. Analyte recoveries ranged from 93 to 96% for grape juice and nonalcoholic beer samples. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Chlorogenic acid, quercetin-3-rutinoside and black tea phenols are extensively metabolized in humans

    NARCIS (Netherlands)

    Olthof, Margreet R.; Hollman, Peter C H; Buijsman, Michel N C P; Van Amelsvoort, Johan M M; Katan, Martijn B.

    2003-01-01

    Dietary phenols are antioxidants, and their consumption might contribute to the prevention of cardiovascular disease. Coffee and tea are major dietary sources of phenols. Dietary phenols are metabolized extensively in the body. Lack of quantitative data on their metabolites hinders a proper

  14. Uptake and/or utilization of two simple phenolic acids by Cucumis sativus

    International Nuclear Information System (INIS)

    Shann, J.R.

    1986-01-01

    The uptake of ferulic acid (FA) and p-hydroxybenzoic acid (p-HBA) from solutions (0.1 to 1.00 mM, pH 4.0 to 7.0), was determined for intact and excised roots of Cucumis sativus. Uptake methods based on high performance liquid chromatographic (HPLC) analysis of phenolic acid depletion from solution were compared to those radioisotopic methods employing [U-ring- 14 C]FA or p-HBA. Although radiotracer methods more accurately reflected actual uptake of the compounds by cucumber seedlings, HPLC solution depletion methods may be useful in the elucidation of trends over very limited periods of time. The uptake of FA was unaffected by the presence of p-HBA. The uptake of p-HBA was reduced by 30% in the presence of FA when compared to the uptake from solutions containing p-HBA alone. Ferulic acid acts both as an allelopathic agent and precursor in the endogenous process of lignification. To evaluate the involvement of exogenous FA in lignin biosynthesis, roots of hydroponically grown cucumber seedlings were exposed to concentrations of FA labeled with [U-ring- 14 C]FA. Radiotracer was distributed throughout the seedling. A quantitative change in lignification occurred in treated seedlings. In roots and stems, the level of lignin increased with the number of exposures and as the concentrations of exogenous FA increased. Radiotracer was found in the residues of lignin isolated from seedling tissue treated with [U-ring- 14 C]FA. This suggested the utilization of the exogenously applied FA in the endogenous process of lignification

  15. Alternative natural seasoning to improve the microbial stability of low-salt beef patties.

    Science.gov (United States)

    García-Lomillo, Javier; González-SanJosé, M A Luisa; Del Pino-García, Raquel; Rivero-Pérez, M A Dolores; Muñiz-Rodríguez, Pilar

    2017-07-15

    The meat industry is seeking new strategies to reduce the sodium content of meat products without shortening their shelf-life. Natural seasonings as salt alternatives are more appreciated than chemical preservatives and also enable the incorporation of interesting nutrients. The present work studies the potential of a new red wine pomace seasoning (RWPS), derived from wine pomace, to inhibit spoilage growth in beef patties with different salt levels (2%, 1.5% and 1%) held in storage at 4°C. The use of RWPS (2% w/w) improved the microbial stability of the patties, delaying total aerobic mesophilic, and lactic acid bacteria growth, especially in samples with low salt levels. Satisfactory results were obtained in modified-atmosphere and air-packaged patties. RWPS also enabled the incorporation of fiber and phenolic compounds, and increased potassium and calcium levels. In summary, RWPS presented an interesting potential as a seasoning in meat products, enabling salt reduction without compromising their microbial stability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Structure of a microbial community in soil after prolonged addition of low levels of simulated acid rain

    Science.gov (United States)

    Pennanen; Fritze; Vanhala; Kiikkila; Neuvonen; Baath

    1998-06-01

    Humus samples were collected 12 growing seasons after the start of a simulated acid rain experiment situated in the subarctic environment. The acid rain was simulated with H2SO4, a combination of H2SO4 and HNO3, and HNO3 at two levels of moderate acidic loads close to the natural anthropogenic pollution levels of southern Scandinavia. The higher levels of acid applications resulted in acidification, as defined by humus chemistry. The concentrations of base cations decreased, while the concentrations of exchangeable H+, Al, and Fe increased. Humus pH decreased from 3.83 to 3.65. Basal respiration decreased with decreasing humus pH, and total microbial biomass, measured by substrate-induced respiration and total amount of phospholipid fatty acids (PLFA), decreased slightly. An altered PLFA pattern indicated a change in the microbial community structure at the higher levels of acid applications. In general, branched fatty acids, typical of gram-positive bacteria, increased in the acid plots. PLFA analysis performed on the bacterial community growing on agar plates also showed that the relative amount of PLFA specific for gram-positive bacteria increased due to the acidification. The changed bacterial community was adapted to the more acidic environment in the acid-treated plots, even though bacterial growth rates, estimated by thymidine and leucine incorporation, decreased with pH. Fungal activity (measured as acetate incorporation into ergosterol) was not affected. This result indicates that bacteria were more affected than fungi by the acidification. The capacity of the bacterial community to utilize 95 different carbon sources was variable and only showed weak correlations to pH. Differences in the toxicities of H2SO4 and HNO3 for the microbial community were not found.

  17. Antioxidant effects of phenolic rye (Secale cereale L.) extracts, monomeric hydroxycinnamates, and ferulic acid dehydrodimers on human low-density lipoproteins

    DEFF Research Database (Denmark)

    Andreasen, Mette Findal; Landbo, A K; Christensen, L P

    2001-01-01

    Dietary antioxidants that protect low-density lipoprotein (LDL) from oxidation may help to prevent atherosclerosis and coronary heart disease. The antioxidant activities of purified monomeric and dimeric hydroxycinnamates and of phenolic extracts from rye (whole grain, bran, and flour) were...... investigated using an in vitro copper-catalyzed human LDL oxidation assay. The most abundant ferulic acid dehydrodimer (diFA) found in rye, 8-O-4-diFA, was a slightly better antioxidant than ferulic acid and p-coumaric acid. The antioxidant activity of the 8-5-diFA was comparable to that of ferulic acid......, but neither 5-5-diFA nor 8-5-benzofuran-diFA inhibited LDL oxidation when added at 10-40 microM. The antioxidant activity of the monomeric hydroxycinnamates decreased in the following order: caffeic acid > sinapic acid > ferulic acid > p-coumaric acid. The antioxidant activity of rye extracts...

  18. Riboflavin Phototransformation on the Changes of Antioxidant Capacities in Phenolic Compounds.

    Science.gov (United States)

    Song, Juhee; Seol, Nam Gyu; Kim, Mi-Ja; Lee, JaeHwan

    2016-08-01

    Eight phenolic compounds including: p-coumaric acid, vanillic acid, caffeic acid, chlorogenic acid, trolox, quercetin, curcumin, and resveratrol were treated with riboflavin (RF) photosensitization and in vitro antioxidant capacities of the mixtures were determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2' azino bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), and ferric reducing antioxidant power (FRAP) assays. Mixtures containing p-coumaric acid and vanillic acid under RF photosensitization showed increases in ferric ion reducing ability and radical scavenging activity of DPPH, whereas mixtures of other compounds had decreases in both radical scavenging ability and ferric reducing antioxidant power. Hydroxycoumaric acid and conjugated hydroxycoumaric and coumaric acids were tentatively identified from RF photosensitized p-coumaric acid, whereas dimmers of vanillic acid were tentatively identified from RF photosensitized vanillic acid. RF photosensitization may be a useful method to enhance antioxidant properties like ferric ion reducing abilities of some selected phenolic compounds. © 2016 Institute of Food Technologists®

  19. Comparative Analysis of the Antioxidant Capacities and Phenolic Compounds of Oat and Buckwheat Vinegars During Production Processes.

    Science.gov (United States)

    Yu, Xiao; Yang, Mei; Dong, Jilin; Shen, Ruiling

    2018-03-01

    This study aimed to explore the dynamic changes in the antioxidant activities and phenolic acid profiles of oat and buckwheat vinegars during different production stages. The results showed that both oat and buckwheat vinegar products comparably attenuated D-galactose-induced oxidative damage in mice serum and liver, indicating no obvious dose dependence within the tested concentrations. However, oat vinegar product revealed more favorable in vitro antioxidant activities than those in buckwheat vinegar product as evaluated by 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging abilities. Moreover, the alcoholic fermentation, acetic acid fermentation and fumigating induced successive increase in DPPH radical scavenging abilities and phenolic acid contents of the fermentation substrates of oat and buckwheat vinegars. Importantly, the different fermentation processes of oat and buckwheat vinegars were accompanied by the dynamic migration and transformation of specific phenolic acids across bound, esterified and free fractions. Thus, the antioxidant activities of oat and buckwheat vinegars could be improved through targeted modulation of the generation of specific phenolic acid fractions during production processes. We had evaluated the in vitro and in vivo antioxidant activities and phenolic acid contents of oat and buckwheat vinegars, and further explored the dynamic changes of bound, esterified and free phenolic acid fractions during successive fermentation processes of oat and buckwheat vinegars. This study provided the theoretical guidance for obtaining minor grain vinegar with the optimal antioxidant activities through targeted modulation of fermentation processes. © 2018 Institute of Food Technologists®.

  20. Radiation induced chemical changes of phenolic compounds in strawberries

    Energy Technology Data Exchange (ETDEWEB)

    Breitfellner, F.; Solar, S. E-mail: sonja.solar@univie.ac.at; Sontag, G

    2003-06-01

    In unirradiated strawberries four phenolic acids (gallic acid, p-coumaric acid, caffeic acid and 4-hydroxybenzoic acid), the flavonoids (+)-catechin, (-)-epicatechin and glycosides from kaempferol and quercetin were determined by reversed phase chromatography with diode array detection. Characteristic linear dose/concentration relationships were found for 4-hydroxybenzoic acid and two unidentified compounds. One of them may be usable as marker to prove an irradiation treatment.

  1. Radiation induced chemical changes of phenolic compounds in strawberries

    International Nuclear Information System (INIS)

    Breitfellner, F.; Solar, S.; Sontag, G.

    2003-01-01

    In unirradiated strawberries four phenolic acids (gallic acid, p-coumaric acid, caffeic acid and 4-hydroxybenzoic acid), the flavonoids (+)-catechin, (-)-epicatechin and glycosides from kaempferol and quercetin were determined by reversed phase chromatography with diode array detection. Characteristic linear dose/concentration relationships were found for 4-hydroxybenzoic acid and two unidentified compounds. One of them may be usable as marker to prove an irradiation treatment

  2. Incorporating Geochemical And Microbial Kinetics In Reactive Transport Models For Generation Of Acid Rock Drainage

    Science.gov (United States)

    Andre, B. J.; Rajaram, H.; Silverstein, J.

    2010-12-01

    Acid mine drainage, AMD, results from the oxidation of metal sulfide minerals (e.g. pyrite), producing ferrous iron and sulfuric acid. Acidophilic autotrophic bacteria such as Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans obtain energy by oxidizing ferrous iron back to ferric iron, using oxygen as the electron acceptor. Most existing models of AMD do not account for microbial kinetics or iron geochemistry rigorously. Instead they assume that oxygen limitation controls pyrite oxidation and thus focus on oxygen transport. These models have been successfully used for simulating conditions where oxygen availability is a limiting factor (e.g. source prevention by capping), but have not been shown to effectively model acid generation and effluent chemistry under a wider range of conditions. The key reactions, oxidation of pyrite and oxidation of ferrous iron, are both slow kinetic processes. Despite being extensively studied for the last thirty years, there is still not a consensus in the literature about the basic mechanisms, limiting factors or rate expressions for microbially enhanced oxidation of metal sulfides. An indirect leaching mechanism (chemical oxidation of pyrite by ferric iron to produce ferrous iron, with regeneration of ferric iron by microbial oxidation of ferrous iron) is used as the foundation of a conceptual model for microbially enhanced oxidation of pyrite. Using literature data, a rate expression for microbial consumption of ferrous iron is developed that accounts for oxygen, ferrous iron and pH limitation. Reaction rate expressions for oxidation of pyrite and chemical oxidation of ferrous iron are selected from the literature. A completely mixed stirred tank reactor (CSTR) model is implemented coupling the kinetic rate expressions, speciation calculations and flow. The model simulates generation of AMD and effluent chemistry that qualitatively agrees with column reactor and single rock experiments. A one dimensional reaction

  3. Potential for food-drug interactions by dietary phenolic acids on human organic anion transporters 1 (SLC22A6), 3 (SLC22A8), and 4 (SLC22A11).

    Science.gov (United States)

    Wang, Li; Sweet, Douglas H

    2012-10-15

    Phenolic acids exert beneficial health effects such as anti-oxidant, anti-carcinogenic, and anti-inflammatory activities and show systemic exposure after consumption of common fruits, vegetables, and beverages. However, knowledge regarding which components convey therapeutic benefits and the mechanism(s) by which they cross cell membranes is extremely limited. Therefore, we determined the inhibitory effects of nine food-derived phenolic acids, p-coumaric acid, ferulic acid, gallic acid, gentisic acid, 4-hydroxybenzoic acid, protocatechuic acid, sinapinic acid, syringic acid, and vanillic acid, on human organic anion transporter 1 (hOAT1), hOAT3, and hOAT4. In the present study, inhibition of OAT-mediated transport of prototypical substrates (1 μM) by phenolic acids (100 μM) was examined in stably expressing cell lines. All compounds significantly inhibited hOAT3 transport, while just ferulic, gallic, protocatechuic, sinapinic, and vanillic acid significantly blocked hOAT1 activity. Only sinapinic acid inhibited hOAT4 (~35%). For compounds exhibiting inhibition > ~60%, known clinical plasma concentration levels and plasma protein binding in humans were examined to select compounds to evaluate further with dose-response curves (IC(50) values) and drug-drug interaction (DDI) index determinations. IC(50) values ranged from 1.24 to 18.08 μM for hOAT1 and from 7.35 to 87.36 μM for hOAT3. Maximum DDI indices for gallic and gentisic acid (≫0.1) indicated a very strong potential for DDIs on hOAT1 and/or hOAT3. This study indicates that gallic acid from foods or supplements, or gentisic acid from salicylate-based drug metabolism, may significantly alter the pharmacokinetics (efficacy and toxicity) of concomitant therapeutics that are hOAT1 and/or hOAT3 substrates. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Total phenols, flavonoids, anthocyanins, ascorbic acid contents and ...

    African Journals Online (AJOL)

    mmpa

    2014-03-05

    Mar 5, 2014 ... for Rhamnus kurdica Boiss in flowering were evaluated in this work. The polar extraction of ... INTRODUCTION. Antioxidant activity is essential for life, to counteract the strongly ... balance (Erkan et al., 2011). Phenolic ... were procured from Sigma-Aldrich Chemie (Steinheim, Germany). Analytical grade ...

  5. Radiation induced chemical changes of phenolic compounds in strawberries

    International Nuclear Information System (INIS)

    Breitfellner, F.; Solar, S.; Sontag, G.

    2002-01-01

    Complete text of publication follows. The investigations were directed to the determination of the effect of γ-irradiation on various phenolic compounds in strawberries in dependence of dose. A significant decrease of these compounds during irradiation could reduce their beneficial effect on health, which are based on their antioxidative and anticarcinogenic properties. On the other hand hydroxilation of phenolic acids has been proposed as a promising method to distinguish between irradiated and not irradiated fruits and vegetables. Irradiated and not irradiated strawberry samples were homogenized, centrifuged and chromatographically purified from matrix components on polyamide columns. For determination of hydroxybenzoic and hydroxycinnamic acids, which are present as esters or as glycosides, the samples had to be acid/base hydrolized prior to purification. The individual compounds were separated by reversed phase chromatography and detected by means of a diode-array-detector. Peak identification was based on both UV-Vis-spectra and retention times compared with those of standards. In hydrolized samples four phenolic acids [gallic acid, 4-hydroxybenzoic acid, p-coumaric acid and caffeic acid] were identified. Only 4-hydroxybenzoic acid was affected by irradiation (build up with dose). Five flavonoids were detected in non hydrolized samples [(+)-catechin, (-)-epicatechin, kaempferol-3-glucoside, quercetin-3-glucoside and, in trace quantities, quercetin-3-galactoside], the concentration of the catechines and of kaempferol-3-glucoside decreased as irradiation dose increased, whereas those of quercetin-3-glucoside remained unchanged. In addition two as yet unclassified compounds showed a significant change of concentration upon irradiation. One of them (m/e = 450) is decreasing, one (m/e = 318) is increasing to the fivefold at a dose of 6 kGy

  6. Studies on the Simultaneous Formation of Aroma-Active and Toxicologically Relevant Vinyl Aromatics from Free Phenolic Acids during Wheat Beer Brewing.

    Science.gov (United States)

    Langos, Daniel; Granvogl, Michael

    2016-03-23

    During the brewing process of wheat beer, the desired aroma-active vinyl aromatics 2-methoxy-4-vinylphenol and 4-vinylphenol as well as the undesired and toxicologically relevant styrene are formed from their respective precursors, free ferulic acid, p-coumaric acid, and cinnamic acid, deriving from the malts. Analysis of eight commercial wheat beers revealed high concentrations of 2-methoxy-4-vinylphenol and 4-vinylphenol always in parallel with high concentrations of styrene or low concentrations of the odorants in parallel with low styrene concentrations, suggesting a similar pathway. To better understand the formation of these vinyl aromatics, each process step of wheat beer brewing and the use of different strains of Saccharomyces cerevisiae were evaluated. During wort boiling, only a moderate decarboxylation of free phenolic acids and formation of desired and undesired vinyl aromatics were monitored due to the thermal treatment. In contrast, this reaction mainly occurred enzymatically catalyzed during fermentation with S. cerevisiae strain W68 with normal Pof(+) activity (phenolic off-flavor) resulting in a wheat beer eliciting the typical aroma requested by consumers due to high concentrations of 2-methoxy-4-vinylphenol (1790 μg/L) and 4-vinylphenol (937 μg/L). Unfortunately, also a high concentration of undesired styrene (28.3 μg/L) was observed. Using a special S. cerevisiae strain without Pof(+) activity resulted in a significant styrene reduction (beer aroma.

  7. Phenolic profile and fermentation patterns of different commercial gluten-free pasta during in vitro large intestine fermentation.

    Science.gov (United States)

    Rocchetti, Gabriele; Lucini, Luigi; Chiodelli, Giulia; Giuberti, Gianluca; Gallo, Antonio; Masoero, Francesco; Trevisan, Marco

    2017-07-01

    The fate of phenolic compounds, along with short-chain fatty acids (SCFAs) production kinetics, was evaluated on six different commercial gluten-free (GF) pasta samples varying in ingredient compositions, focussing on the in vitro faecal fermentation after the gastrointestinal digestion. A general reduction of both total phenolics and reducing power was observed in all samples, together with a substantial change in phenolic profile over 24h of faecal fermentation, with differences among GF pasta samples. Flavonoids, hydroxycinnamics and lignans degraded over time, with a concurrent increase in low-molecular-weight phenolic acids (hydroxybenzoic acids), alkylphenols, hydroxybenzoketones and tyrosols. Interestingly, discriminant analysis also identified several alkyl derivatives of resorcinol as markers of the changes in phenolic profile during in vitro fermentation. Furthermore, degradation pathways of phenolics by intestinal microbiota have been proposed. Considering the total SCFAs and butyrate production during the in vitro fermentation, different fermentation kinetics were observed among GF pasta post-hydrolysis residues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Microbial Production of Malic Acid from Biofuel-Related Coproducts and Biomass

    Directory of Open Access Journals (Sweden)

    Thomas P. West

    2017-04-01

    Full Text Available The dicarboxylic acid malic acid synthesized as part of the tricarboxylic acid cycle can be produced in excess by certain microorganisms. Although malic acid is produced industrially to a lesser extent than citric acid, malic acid has industrial applications in foods and pharmaceuticals as an acidulant among other uses. Only recently has the production of this organic acid from coproducts of industrial bioprocessing been investigated. It has been shown that malic acid can be synthesized by microbes from coproducts generated during biofuel production. More specifically, malic acid has been shown to be synthesized by species of the fungus Aspergillus on thin stillage, a coproduct from corn-based ethanol production, and on crude glycerol, a coproduct from biodiesel production. In addition, the fungus Ustilago trichophora has also been shown to produce malic acid from crude glycerol. With respect to bacteria, a strain of the thermophilic actinobacterium Thermobifida fusca has been shown to produce malic acid from cellulose and treated lignocellulosic biomass. An alternate method of producing malic acid is to use agricultural biomass converted to syngas or biooil as a substrate for fungal bioconversion. Production of poly(β-l-malic acid by strains of Aureobasidium pullulans from agricultural biomass has been reported where the polymalic acid is subsequently hydrolyzed to malic acid. This review examines applications of malic acid, metabolic pathways that synthesize malic acid and microbial malic acid production from biofuel-related coproducts, lignocellulosic biomass and poly(β-l-malic acid.

  9. HPLC-UV-ESI-MS analysis of phenolic compounds and antioxidant properties of Hypericum undulatum shoot cultures and wild-growing plants.

    Science.gov (United States)

    Rainha, Nuno; Koci, Kamila; Coelho, Ana Varela; Lima, Elisabete; Baptista, José; Fernandes-Ferreira, Manuel

    2013-02-01

    LC-UV and LC-MS analysis were used to study the phenolic composition of water extracts of Hypericum undulatum (HU) shoot cultures and wild-growing (WG) plants. Total phenolic content (TPC), determined using the Folin-Ciocalteu assay, and the antioxidant activity measured by two complementary methods were also performed for each sample. Mass spectrometry revealed several phenolics acids with quinic acid moieties, flavonols, mostly quercetin, luteolin and apigenin glycosides, flavan-3-ols (catechin and epicatechin) and the xanthonoid mangiferin. Differences in phenolic composition profile and TPC were found between the samples. The major phenolic in HU culture-growing (CG) samples is chlorogenic acid, followed by epicatechin, quercitrin and isoquercitrin. The WG plants presents hyperoside as the main phenolic, followed by isoquercitrin, chlorogenic acid and quercetin. The TPC and antioxidant activity were higher in samples from WG plants. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Radiation shielding phenolic fibers and method of producing same

    International Nuclear Information System (INIS)

    Ohtomo, K.

    1976-01-01

    A radiation shielding phenolic fiber is described comprising a filamentary phenolic polymer consisting predominantly of a sulfonic acid group-containing cured novolak resin and a metallic atom having a great radiation shielding capacity, the metallic atom being incorporated in the polymer by being chemically bound in the ionic state in the novolak resin. A method for the production of the fiber is discussed

  11. Phenolic Compounds of Cereals and Their Antioxidant Capacity.

    Science.gov (United States)

    Van Hung, Pham

    2016-01-01

    Phenolic compounds play an important role in health benefits because of their highly antioxidant capacity. In this review, total phenolic contents (TPCs), phenolic acid profile and antioxidant capacity of the extracted from wheat, corn, rice, barley, sorghum, rye, oat, and millet, which have been recently reported, are summarized. The review shows clearly that cereals contain a number of phytochemicals including phenolics, flavonoids, anthocyanins, etc. The phytochemicals of cereals significantly exhibit antioxidant activity as measured by trolox equivalent antioxidant capacity (TEAC), 2,2-diphenyl-1-picrylhydrazyl radical scavenging, reducing power, oxygen radical absorbance capacity (ORAC), inhibition of oxidation of human low-density lipoprotein (LDL) cholesterol and DNA, Rancimat, inhibition of photochemilumenescence (PCL), and iron(II) chelation activity. Thus, the consumption of whole grains is considered to have significantly health benefits in prevention from chronic diseases such as cardiovascular disease, diabetes, and cancer because of the contribution of phenolic compounds existed. In addition, the extracts from cereal brans are considered to be used as a source of natural antioxidants.

  12. Degradation of 3-phenoxybenzoic acid by a Bacillus sp.

    Directory of Open Access Journals (Sweden)

    Shaohua Chen

    Full Text Available 3-Phenoxybenzoic acid (3-PBA is of great environmental concern with regards to endocrine disrupting activity and widespread occurrence in water and soil, yet little is known about microbial degradation in contaminated regions. We report here that a new bacterial strain isolated from soil, designated DG-02, was shown to degrade 95.6% of 50 mg·L(-1 3-PBA within 72 h in mineral salt medium (MSM. Strain DG-02 was identified as Bacillus sp. based on the morphology, physio-biochemical tests and 16S rRNA sequence. The optimum conditions for 3-PBA degradation were determined to be 30.9°C and pH 7.7 using response surface methodology (RSM. The isolate converted 3-PBA to produce 3-(2-methoxyphenoxy benzoic acid, protocatechuate, phenol, and 3,4-dihydroxy phenol, and subsequently transformed these compounds with a q(max, K(s and K(i of 0.8615 h(-1, 626.7842 mg·L(-1 and 6.7586 mg·L(-1, respectively. A novel microbial metabolic pathway for 3-PBA was proposed on the basis of these metabolites. Inoculation of strain DG-02 resulted in a higher degradation rate on 3-PBA than that observed in the non-inoculated soil. Moreover, the degradation process followed the first-order kinetics, and the half-life (t(1/2 for 3-PBA was greatly reduced as compared to the non-inoculated control. This study highlights an important potential application of strain DG-02 for the in situ bioremediation of 3-PBA contaminated environments.

  13. New aspects of the antioxidant properties of phenolic acids: a combined theoretical and experimental approach.

    Science.gov (United States)

    Anouar, E; Kosinová, P; Kozlowski, D; Mokrini, R; Duroux, J L; Trouillas, P

    2009-09-21

    Ferulic acid is widely distributed in the leaves and seeds of cereals as well as in coffee, apples, artichokes, peanuts, oranges and pineapples. Like numerous other natural polyphenols it exhibits antioxidant properties. It is known to act as a free radical scavenger by H atom transfer from the phenolic OH group. In the present joint experimental and theoretical studies we studied a new mechanism to explain such activities. Ferulic acid can indeed act by radical addition on the alpha,beta-double bond. On the basis of the identification of metabolites formed in an oxidative radiolytic solution and after DFT calculations, we studied the thermodynamic and kinetic aspects of this reaction. Addition and HAT reactions were treated as competitive reactions. The possibility of dimer formation was also investigated from a theoretical point of view; the high barriers we obtained contribute to explaining why we did not observe those compounds as major radiolytic compounds. The DPPH free radical scavenging capacity of ferulic acid and the oxidative products was measured and is discussed on the basis of DFT calculations (BDEs and spin densities).

  14. Comparative effects of sulfuric and nitric acid rain on litter decomposition and soil microbial community in subtropical plantation of Yangtze River Delta region.

    Science.gov (United States)

    Liu, Xin; Zhang, Bo; Zhao, Wenrui; Wang, Ling; Xie, Dejin; Huo, Wentong; Wu, Yanwen; Zhang, Jinchi

    2017-12-01

    Acid rain is mainly caused by dissolution of sulfur dioxide and nitrogen oxides in the atmosphere, and has a significant negative effect on ecosystems. The relative composition of acid rain is changing gradually from sulfuric acid rain (SAR) to nitric acid rain (NAR) with the rapidly growing amount of nitrogen deposition. In this study, we investigated the impact of simulated SAR and NAR on litter decomposition and the soil microbial community over four seasons since March 2015. Results first showed that the effects of acid rain on litter decomposition and soil microbial were positive in the early period of the experiment, except for SAR on soil microbes. Second, soil pH with NAR decreased more rapidly with the amount of acid rain increased in summer than with SAR treatments. Only strongly acid rain (both SAR and NAR) was capable of depressing litter decomposition and its inhibitory effect was stronger on leaf than on fine root litter. Meanwhile, NAR had a higher inhibitory effect on litter decomposition than SAR. Third, in summer, autumn and winter, PLFAs were negatively impacted by the increased acidity level resulting from both SAR and NAR. However, higher acidity level of NAR (pH=2.5) had the strongest inhibitory impact on soil microbial activity, especially in summer. In addition, Gram-negative bacteria (cy19:0) and fungi (18:1ω9) were more sensitive to both SAR and NAR, and actinomycetes was more sensitive to SAR intensity. Finally, soil total carbon, total nitrogen and pH were the most important soil property factors affecting soil microbial activity, and high microbial indices (fungi/bacteria) with high soil pH. Our results suggest that the ratio of SO 4 2- to NO 3 - in acid rain is an important factor which could affect litter decomposition and soil microbial in subtropical forest of China. Copyright © 2017. Published by Elsevier B.V.

  15. Phenol Biodegradation by Free and Immobilized Candida tropicalis RETL-Crl on Coconut Husk and Loofah Packed in Biofilter Column

    International Nuclear Information System (INIS)

    Shazryenna, D; Ruzanna, R; Jessica, M S; Piakong, M T

    2015-01-01

    Phenols and its derivatives are environmental pollutant commonly found in many industrial effluents. It is toxic in nature and causes various health hazards. However, they are poorly removed in conventional biological processes due to their toxicity. Immobilization of microbial cells has received increasing interest in the field of waste treatment and creates opportunities in a wide range of sectors including environmental pollution control. Live cells of phenol-degrading yeast, Candida tropicalis RETL-Crl, were immobilized on coconut husk and loofah by adsorption. The immobolized particle was packed into biofilter column which used for continuous treatment of a phenol with initial phenol concentration of 3mM. Both loofah and coconut husk have similar phenol biodegradation rate of 0.0188 gL −1 h −1 within 15 hours to achieve a phenol removal efficiency of 100%. However loofah have lower biomass concentration of 4.22 gL −1 compared to biomass concentration on coconut husk, 4.39 gL −1 . Coconut husk contain higher biomass concentration which makes it better support material than loofah. Fibrous matrices such as loofah and coconut husk provide adequate supporting surfaces for cell adsorption, due to their high specific surface area. Therefore, coconut husk and loofah being an agricultural waste product have the potential to be used as low-cost adsorbent and support matrix for microbial culture immobilization for the removal of organic pollutant from wastewater. (paper)

  16. Microbial communities, processes and functions in acid mine drainage ecosystems.

    Science.gov (United States)

    Chen, Lin-xing; Huang, Li-nan; Méndez-García, Celia; Kuang, Jia-liang; Hua, Zheng-shuang; Liu, Jun; Shu, Wen-sheng

    2016-04-01

    Acid mine drainage (AMD) is generated from the oxidative dissolution of metal sulfides when water and oxygen are available largely due to human mining activities. This process can be accelerated by indigenous microorganisms. In the last several decades, culture-dependent researches have uncovered and validated the roles of AMD microorganisms in metal sulfides oxidation and acid generation processes, and culture-independent studies have largely revealed the diversity and metabolic potentials and activities of AMD communities, leading towards a full understanding of the microbial diversity, functions and interactions in AMD ecosystems. This review describes the diversity of microorganisms and their functions in AMD ecosystems, and discusses their biotechnological applications in biomining and AMD bioremediation according to their capabilities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Enhancement of Phenolic Production and Antioxidant Activity from Buckwheat Leaves by Subcritical Water Extraction.

    Science.gov (United States)

    Kim, Dong-Shin; Kim, Mi-Bo; Lim, Sang-Bin

    2017-12-01

    To enhance the production of phenolic compounds with high antioxidant activity and reduce the level of phototoxic fagopyrin, buckwheat leaves were extracted with subcritical water (SW) at 100~220°C for 10~50 min. The major phenolic compounds were quercetin, gallic acid, and protocatechuic acid. The cumulative amount of individual phenolic compounds increased with increasing extraction temperature from 100°C to 180°C and did not change significantly at 200°C and 220°C. The highest yield of individual phenolic compounds was 1,632.2 μg/g dry sample at 180°C, which was 4.7-fold higher than that (348.4 μg/g dry sample) at 100°C. Total phenolic content and total flavonoid content increased with increasing extraction temperature and decreased with increasing extraction time, and peaked at 41.1 mg gallic acid equivalents/g and 26.9 mg quercetin equivalents/g at 180°C/10 min, respectively. 2,2-Diphenyl-1-picrylhydrazyl free radical scavenging activity and ferric reducing ability of plasma reached 46.4 mg ascorbic acid equivalents/g and 72.3 mmol Fe 2+ /100 g at 180°C/10 min, respectively. The fagopyrin contents were reduced by 92.5~95.7%. Color values L * and b * decreased, and a * increased with increasing extraction temperature. SW extraction enhanced the yield of phenolic compounds with high antioxidant activity and reduced the fagopyrin content from buckwheat leaves.

  18. Penanganan limbah industri dengan cara immobilisasi microbial cell

    Directory of Open Access Journals (Sweden)

    Prayitno Prayitno

    1997-12-01

    Full Text Available An immobilized microbial cell is a physical confinement or localization of intact cell to a certain defined region of space with the preservation of some desired catalytic activity. The immobilization cell process has been increasingly used, one of those is for waste water treatment industry. Microbial entrapping process one of the method for the microbial cell immobilization by using some carrier such as collagen, gelatin, alginate, carragena and cellulose tri acetat at the time being is commonly used. Immobilization cell is effective enough for waste water treatment containing toxic substance such as phenol and by using immobilization cell, secondary sedimentation tanks is no longer used.

  19. Identification of Catechin, Syringic Acid, and Procyanidin B2 in Wine as Stimulants of Gastric Acid Secretion.

    Science.gov (United States)

    Liszt, Kathrin Ingrid; Eder, Reinhard; Wendelin, Sylvia; Somoza, Veronika

    2015-09-09

    Organic acids of wine, in addition to ethanol, have been identified as stimulants of gastric acid secretion. This study characterized the influence of other wine compounds, particularly phenolic compounds, on proton secretion. Forty wine parameters were determined in four red wines and six white wines, including the contents of organic acids and phenolic compounds. The secretory activity of the wines was determined in a gastric cell culture model (HGT-1 cells) by means of a pH-sensitive fluorescent dye. Red wines stimulated proton secretion more than white wines. Lactic acid and the phenolic compounds syringic acid, catechin, and procyanidin B2 stimulated proton secretion and correlated with the pro-secretory effect of the wines. Addition of the phenolic compounds to the least active white wine sample enhanced its proton secretory effect by 65 ± 21% (p astringent tasting phenolic compounds in wine contribute to its stimulatory effect on gastric acid secretion.

  20. Helichrysum monizii Lowe: phenolic composition and antioxidant potential.

    Science.gov (United States)

    Gouveia, Sandra; Castilho, Paula C

    2012-01-01

    In Madeira Archipelago there are four endemic Helichyrsum species and three of them are used in the traditional medicine. Helichrysum monizii is a rare endemism with very scarce information available concerning its uses in the local traditional medicine. The aim of this work was to study for the first time Helichrysum monizii in terms of its antioxidant capacity and the identification of the phenolic compounds to which that activity is due. Three different methods of extraction were performed and total phenolic and flavonoid contents of extracts were correlated to radical scavenging and antioxidant capacity by DPPH, ABTS, FRAP and β-carotene assays. An HPLC-DAD-ESI/MS(n) method was employed for the separation and identification of the phenolic and flavonoid components. The results revealed a high antioxidant potential mainly related to the phenolic profile of the plant. Polar components of methanol extracts of Helichrsyum monizii were detected by a high-performance liquid chromatography/electrospray ionisation tandem mass spectrometry (HPLC-DAD-ESI/MS(n) ) method. Thirty-three compounds were identified and 19 of them were identified as quinic acid derivatives. The high antioxidant potential Helichrysum monizii was for the first time established. Dicaffeoylquinic acids are the main responsible for that activity. Copyright © 2011 John Wiley & Sons, Ltd.