WorldWideScience

Sample records for microbial biomass enzyme

  1. Phosphorus fractions, microbial biomass and enzyme activities in ...

    African Journals Online (AJOL)

    Potohar, northern Punjab, Pakistan in September, 2008 and analysed for P fractions and microbial parameters including microbial biomass C, microbial biomass N, microbial biomass P, and activities of dehydrogenase and alkaline phosphatase enzymes. The average size of different P fractions (% of total P) in the soils ...

  2. Effects of uranium on soil microbial biomass carbon, enzymes, plant biomass and microbial diversity in yellow soils

    International Nuclear Information System (INIS)

    Yan, X.; Zhang, Y.; Luo, X.; Yu, L.

    2016-01-01

    We conducted an experiment to investigate the effects of uranium (U) on soil microbial biomass carbon (MBC), enzymes, plant biomass and microbial diversity in yellow soils under three concentrations: 0 mg kg"-"1 (T1, control), 30 mg kg"-"1 (T2) and 60 mg kg"-"1 (T3). Under each treatment, elevated U did not reduce soil MBC or plant biomass, but inhibited the activity of the soil enzymes urease (UR), dehydrogenase (DH) and phosphatase (PHO). The microbial diversity was different, with eight dominant phyla in T1 and six in T2 and T3. Furthermore, Proteobacteria and material X were both detected in each treatment site (T1, T2 and T3). Pseudomonas sp. was the dominant strain, followed by Acidiphilium sp. This initial study provided valuable data for further research toward a better understanding of U contamination in yellow soils in China. (authors)

  3. Dynamic relationships between microbial biomass, respiration, inorganic nutrients and enzyme activities: informing enzyme based decomposition models

    Directory of Open Access Journals (Sweden)

    Daryl L Moorhead

    2013-08-01

    Full Text Available We re-examined data from a recent litter decay study to determine if additional insights could be gained to inform decomposition modeling. Rinkes et al. (2013 conducted 14-day laboratory incubations of sugar maple (Acer saccharum or white oak (Quercus alba leaves, mixed with sand (0.4% organic C content or loam (4.1% organic C. They measured microbial biomass C, carbon dioxide efflux, soil ammonium, nitrate, and phosphate concentrations, and β-glucosidase (BG, β-N-acetyl-glucosaminidase (NAG, and acid phosphatase (AP activities on days 1, 3, and 14. Analyses of relationships among variables yielded different insights than original analyses of individual variables. For example, although respiration rates per g soil were higher for loam than sand, rates per g soil C were actually higher for sand than loam, and rates per g microbial C showed little difference between treatments. Microbial biomass C peaked on day 3 when biomass-specific activities of enzymes were lowest, suggesting uptake of litter C without extracellular hydrolysis. This result refuted a common model assumption that all enzyme production is constitutive and thus proportional to biomass, and/or indicated that part of litter decay is independent of enzyme activity. The length and angle of vectors defined by ratios of enzyme activities (BG/NAG versus BG/AP represent relative microbial investments in C (length, and N and P (angle acquiring enzymes. Shorter lengths on day 3 suggested low C limitation, whereas greater lengths on day 14 suggested an increase in C limitation with decay. The soils and litter in this study generally had stronger P limitation (angles > 45˚. Reductions in vector angles to < 45˚ for sand by day 14 suggested a shift to N limitation. These relational variables inform enzyme-based models, and are usually much less ambiguous when obtained from a single study in which measurements were made on the same samples than when extrapolated from separate studies.

  4. [Effects of altitudes on soil microbial biomass and enzyme activity in alpine-gorge regions.

    Science.gov (United States)

    Cao, Rui; Wu, Fu Zhong; Yang, Wan Qin; Xu, Zhen Feng; Tani, Bo; Wang, Bin; Li, Jun; Chang, Chen Hui

    2016-04-22

    In order to understand the variations of soil microbial biomass and soil enzyme activities with the change of altitude, a field incubation was conducted in dry valley, ecotone between dry valley and mountain forest, subalpine coniferous forest, alpine forest and alpine meadow from 1563 m to 3994 m of altitude in the alpine-gorge region of western Sichuan. The microbial biomass carbon and nitrogen, and the activities of invertase, urease and acid phosphorus were measured in both soil organic layer and mineral soil layer. Both the soil microbial biomass and soil enzyme activities showed the similar tendency in soil organic layer. They increased from 2158 m to 3028 m, then decreased to the lowest value at 3593 m, and thereafter increased until 3994 m in the alpine-gorge region. In contrast, the soil microbial biomass and soil enzyme activities in mineral soil layer showed the trends as, the subalpine forest at 3028 m > alpine meadow at 3994 m > montane forest ecotone at 2158 m > alpine forest at 3593 m > dry valley at 1563 m. Regardless of altitudes, soil microbial biomass and soil enzyme activities were significantly higher in soil organic layer than in mineral soil layer. The soil microbial biomass was significantly positively correlated with the activities of the measured soil enzymes. Moreover, both the soil microbial biomass and soil enzyme activities were significantly positively correlated with soil water content, organic carbon, and total nitrogen. The activity of soil invertase was significantly positively correlated with soil phosphorus content, and the soil acid phosphatase was so with soil phosphorus content and soil temperature. In brief, changes in vegetation and other environmental factors resulting from altitude change might have strong effects on soil biochemical properties in the alpine-gorge region.

  5. Changes in Soil Enzyme Activities and Microbial Biomass after Revegetation in the Three Gorges Reservoir, China

    Directory of Open Access Journals (Sweden)

    Qingshui Ren

    2018-05-01

    Full Text Available Soil enzymes and microbes are central to the decomposition of plant and microbial detritus, and play important roles in carbon, nitrogen, and phosphorus biogeochemistry cycling at the ecosystem level. In the present study, we characterized the soil enzyme activity and microbial biomass in revegetated (with Taxodium distichum (L. Rich. and Cynodon dactylon (L. Pers. versus unplanted soil in the riparian zone of the Three Gorges Dam Reservoir (TGDR, in order to quantify the effect of revegetation on the edaphic microenvironment after water flooding in situ. After revegetation, the soil physical and chemical properties in revegetated soil showed significant differences to those in unplanted soil. The microbial biomass carbon and phosphorus in soils of T. distichum were significantly higher than those in C. dactylon and unplanted soils, respectively. The microbial biomass nitrogen in revegetated T. distichum and C. dactylon soils was significantly increased by 273% and 203%, respectively. The enzyme activities of T. distichum and C. dactylon soils displayed no significant difference between each other, but exhibited a great increase compared to those of the unplanted soil. Elements ratio (except C/N (S did not vary significantly between T. distichum and C. dactylon soils; meanwhile, a strong community-level elemental homeostasis in the revegetated soils was found. The correlation analyses demonstrated that only microbial biomass carbon and phosphorus had a significantly positive relationship with soil enzyme activities. After revegetation, both soil enzyme activities and microbial biomasses were relatively stable in the T. distichum and C. dactylon soils, with the wooded soil being more superior. The higher enzyme activities and microbial biomasses demonstrate the C, N, and P cycling and the maintenance of soil quality in the riparian zone of the TGDR.

  6. [Effects of bio-crust on soil microbial biomass and enzyme activities in copper mine tailings].

    Science.gov (United States)

    Chen, Zheng; Yang, Gui-de; Sun, Qing-ye

    2009-09-01

    Bio-crust is the initial stage of natural primary succession in copper mine tailings. With the Yangshanchong and Tongguanshan copper mine tailings in Tongling City of Anhui Province as test objects, this paper studied the soil microbial biomass C and N and the activities of dehydrogenase, catalase, alkaline phosphatase, and urease under different types of bio-crust. The bio-crusts improved the soil microbial biomass and enzyme activities in the upper layer of the tailings markedly. Algal crust had the best effect in improving soil microbial biomass C and N, followed by moss-algal crust, and moss crust. Soil microflora also varied with the type of bio-crust. No'significant difference was observed in the soil enzyme activities under the three types of bio-crust. Soil alkaline phosphatase activity was significantly positively correlated with soil microbial biomass and dehydrogenase and urease activities, but negatively correlated with soil pH. In addition, moss rhizoid could markedly enhance the soil microbial biomass and enzyme activities in moss crust rhizoid.

  7. Tracking dynamics of plant biomass composting by changes in substrate structure, microbial community, and enzyme activity

    Directory of Open Access Journals (Sweden)

    Wei Hui

    2012-04-01

    Full Text Available Abstract Background Understanding the dynamics of the microbial communities that, along with their secreted enzymes, are involved in the natural process of biomass composting may hold the key to breaking the major bottleneck in biomass-to-biofuels conversion technology, which is the still-costly deconstruction of polymeric biomass carbohydrates to fermentable sugars. However, the complexity of both the structure of plant biomass and its counterpart microbial degradation communities makes it difficult to investigate the composting process. Results In this study, a composter was set up with a mix of yellow poplar (Liriodendron tulipifera wood-chips and mown lawn grass clippings (85:15 in dry-weight and used as a model system. The microbial rDNA abundance data obtained from analyzing weekly-withdrawn composted samples suggested population-shifts from bacteria-dominated to fungus-dominated communities. Further analyses by an array of optical microscopic, transcriptional and enzyme-activity techniques yielded correlated results, suggesting that such population shifts occurred along with early removal of hemicellulose followed by attack on the consequently uncovered cellulose as the composting progressed. Conclusion The observed shifts in dominance by representative microbial groups, along with the observed different patterns in the gene expression and enzymatic activities between cellulases, hemicellulases, and ligninases during the composting process, provide new perspectives for biomass-derived biotechnology such as consolidated bioprocessing (CBP and solid-state fermentation for the production of cellulolytic enzymes and biofuels.

  8. Tracking dynamics of plant biomass composting by changes in substrate structure, microbial community, and enzyme activity

    Science.gov (United States)

    2012-01-01

    Background Understanding the dynamics of the microbial communities that, along with their secreted enzymes, are involved in the natural process of biomass composting may hold the key to breaking the major bottleneck in biomass-to-biofuels conversion technology, which is the still-costly deconstruction of polymeric biomass carbohydrates to fermentable sugars. However, the complexity of both the structure of plant biomass and its counterpart microbial degradation communities makes it difficult to investigate the composting process. Results In this study, a composter was set up with a mix of yellow poplar (Liriodendron tulipifera) wood-chips and mown lawn grass clippings (85:15 in dry-weight) and used as a model system. The microbial rDNA abundance data obtained from analyzing weekly-withdrawn composted samples suggested population-shifts from bacteria-dominated to fungus-dominated communities. Further analyses by an array of optical microscopic, transcriptional and enzyme-activity techniques yielded correlated results, suggesting that such population shifts occurred along with early removal of hemicellulose followed by attack on the consequently uncovered cellulose as the composting progressed. Conclusion The observed shifts in dominance by representative microbial groups, along with the observed different patterns in the gene expression and enzymatic activities between cellulases, hemicellulases, and ligninases during the composting process, provide new perspectives for biomass-derived biotechnology such as consolidated bioprocessing (CBP) and solid-state fermentation for the production of cellulolytic enzymes and biofuels. PMID:22490508

  9. Soil Microbial Biomass, Basal Respiration and Enzyme Activity of Main Forest Types in the Qinling Mountains

    Science.gov (United States)

    Cheng, Fei; Peng, Xiaobang; Zhao, Peng; Yuan, Jie; Zhong, Chonggao; Cheng, Yalong; Cui, Cui; Zhang, Shuoxin

    2013-01-01

    Different forest types exert essential impacts on soil physical-chemical characteristics by dominant tree species producing diverse litters and root exudates, thereby further regulating size and activity of soil microbial communities. However, the study accuracy is usually restricted by differences in climate, soil type and forest age. Our objective is to precisely quantify soil microbial biomass, basal respiration and enzyme activity of five natural secondary forest (NSF) types with the same stand age and soil type in a small climate region and to evaluate relationship between soil microbial and physical-chemical characters. We determined soil physical-chemical indices and used the chloroform fumigation-extraction method, alkali absorption method and titration or colorimetry to obtain the microbial data. Our results showed that soil physical-chemical characters remarkably differed among the NSFs. Microbial biomass carbon (Cmic) was the highest in wilson spruce soils, while microbial biomass nitrogen (Nmic) was the highest in sharptooth oak soils. Moreover, the highest basal respiration was found in the spruce soils, but mixed, Chinese pine and spruce stands exhibited a higher soil qCO2. The spruce soils had the highest Cmic/Nmic ratio, the greatest Nmic/TN and Cmic/Corg ratios were found in the oak soils. Additionally, the spruce soils had the maximum invertase activity and the minimum urease and catalase activities, but the maximum urease and catalase activities were found in the mixed stand. The Pearson correlation and principle component analyses revealed that the soils of spruce and oak stands obviously discriminated from other NSFs, whereas the others were similar. This suggested that the forest types affected soil microbial properties significantly due to differences in soil physical-chemical features. PMID:23840671

  10. [Study on soil enzyme activities and microbial biomass carbon in greenland irrigated with reclaimed water].

    Science.gov (United States)

    Pan, Neng; Hou, Zhen-An; Chen, Wei-Ping; Jiao, Wen-Tao; Peng, Chi; Liu, Wen

    2012-12-01

    The physicochemical properties of soils might be changed under the long-term reclaimed water irrigation. Its effects on soil biological activities have received great attentions. We collected surface soil samples from urban green spaces and suburban farmlands of Beijing. Soil microbial biomass carbon (SMBC), five types of soil enzyme activities (urease, alkaline phosphatase, invertase, dehydrogenase and catalase) and physicochemical indicators in soils were measured subsequently. SMBC and enzyme activities from green land soils irrigated with reclaimed water were higher than that of control treatments using drinking water, but the difference is not significant in farmland. The SMBC increased by 60.1% and 14.2% than those control treatments in 0-20 cm soil layer of green land and farmland, respectively. Compared with their respective controls, the activities of enzymes in 0-20 cm soil layer of green land and farmland were enhanced by an average of 36.7% and 7.4%, respectively. Investigation of SMBC and enzyme activities decreased with increasing of soil depth. Significantly difference was found between 0-10 cm and 10-20 cm soil layer in green land. Soil biological activities were improved with long-term reclaimed water irrigation in Beijing.

  11. Field and lab conditions alter microbial enzyme and biomass dynamics driving decomposition of the same leaf litter

    Directory of Open Access Journals (Sweden)

    Zachary L Rinkes

    2013-09-01

    Full Text Available Fluctuations in climate and edaphic factors influence field decomposition rates and preclude a complete understanding of how microbial communities respond to plant litter quality. In contrast, laboratory microcosms isolate the intrinsic effects of litter chemistry and microbial community from extrinsic effects of environmental variation. Used together, these paired approaches provide mechanistic insights to decomposition processes. In order to elucidate the microbial mechanisms underlying how environmental conditions alter the trajectory of decay, we characterized microbial biomass, respiration, enzyme activities, and nutrient dynamics during early (< 10% mass loss, mid- (10-40% mass loss, and late (> 40% mass loss decay in parallel field and laboratory litter bag incubations for deciduous tree litters with varying recalcitrance (dogwood < maple < maple-oak mixture < oak. In the field, mass loss was minimal (< 10% over the first 50 days (January-February, even for labile litter types, despite above-freezing soil temperatures and adequate moisture during these winter months. In contrast, microcosms displayed high C mineralization rates in the first week. During mid-decay, the labile dogwood and maple litters in the field had higher mass loss per unit enzyme activity than the lab, possibly due to leaching of soluble compounds. Microbial biomass to litter mass (B:C ratios peaked in the field during late decay, but B:C ratios declined between mid- and late decay in the lab. Thus, microbial biomass did not have a consistent relationship with litter quality between studies. Higher oxidative enzyme activities in oak litters in the field, and higher nitrogen (N accumulation in the lab microcosms occurred in late decay. We speculate that elevated N suppressed fungal activity and/or biomass in microcosms. Our results suggest that differences in microbial biomass and enzyme dynamics alter the decay trajectory of the same leaf litter under field and lab

  12. Field and lab conditions alter microbial enzyme and biomass dynamics driving decomposition of the same leaf litter.

    Science.gov (United States)

    Rinkes, Zachary L; Sinsabaugh, Robert L; Moorhead, Daryl L; Grandy, A Stuart; Weintraub, Michael N

    2013-01-01

    Fluctuations in climate and edaphic factors influence field decomposition rates and preclude a complete understanding of how microbial communities respond to plant litter quality. In contrast, laboratory microcosms isolate the intrinsic effects of litter chemistry and microbial community from extrinsic effects of environmental variation. Used together, these paired approaches provide mechanistic insights to decomposition processes. In order to elucidate the microbial mechanisms underlying how environmental conditions alter the trajectory of decay, we characterized microbial biomass, respiration, enzyme activities, and nutrient dynamics during early (40% mass loss) decay in parallel field and laboratory litter bag incubations for deciduous tree litters with varying recalcitrance (dogwood litter types, despite above-freezing soil temperatures and adequate moisture during these winter months. In contrast, microcosms displayed high C mineralization rates in the first week. During mid-decay, the labile dogwood and maple litters in the field had higher mass loss per unit enzyme activity than the lab, possibly due to leaching of soluble compounds. Microbial biomass to litter mass (B:C) ratios peaked in the field during late decay, but B:C ratios declined between mid- and late decay in the lab. Thus, microbial biomass did not have a consistent relationship with litter quality between studies. Higher oxidative enzyme activities in oak litters in the field, and higher nitrogen (N) accumulation in the lab microcosms occurred in late decay. We speculate that elevated N suppressed fungal activity and/or biomass in microcosms. Our results suggest that differences in microbial biomass and enzyme dynamics alter the decay trajectory of the same leaf litter under field and lab conditions.

  13. Enzyme activities and microbial biomass in topsoil layer during spontaneous succession in spoil heaps after brown coal mining

    Czech Academy of Sciences Publication Activity Database

    Baldrian, Petr; Trögl, Josef; Frouz, Jan; Šnajdr, Jaroslav; Valášková, Vendula; Merhautová, Věra; Cajthaml, Tomáš; Herinková, Jana

    2008-01-01

    Roč. 40, č. 9 (2008), s. 2107-2115 ISSN 0038-0717 R&D Projects: GA MŠk LC06066 Institutional research plan: CEZ:AV0Z50200510; CEZ:AV0Z60660521 Keywords : enzyme activity * lignocellulose * microbial biomass Subject RIV: EH - Ecology, Behaviour Impact factor: 2.926, year: 2008

  14. Microbial biomass carbon and enzyme activities of urban soils in Beijing.

    Science.gov (United States)

    Wang, Meie; Markert, Bernd; Shen, Wenming; Chen, Weiping; Peng, Chi; Ouyang, Zhiyun

    2011-07-01

    To promote rational and sustainable use of soil resources and to maintain the urban soil quality, it is essential to assess urban ecosystem health. In this study, the microbiological properties of urban soils in Beijing and their spatial distribution patterns across the city were evaluated based on measurements of microbial biomass carbon and urease and invertase activities of the soils for the purpose of assessing the urban ecosystem health of Beijing. Grid sampling design, normal Kriging technique, and the multiple comparisons among different land use types were used in soil sampling and data treatment. The inherent chemical characteristics of urban soils in Beijing, e.g., soil pH, electronic conductivity, heavy metal contents, total N, P and K contents, and soil organic matter contents were detected. The size and diversity of microbial community and the extent of microbial activity in Beijing urban soils were measured as the microbial biomass carbon content and the ratio of microbial biomass carbon content to total soil organic carbon. The microbial community health measured in terms of microbial biomass carbon, urease, and invertase activities varied with the organic substrate and nutrient contents of the soils and were not adversely affected by the presence of heavy metals at p urban soils influenced the nature and activities of the microbial communities.

  15. The effect of D123 wheat as a companion crop on soil enzyme activities, microbial biomass and microbial communities in the rhizosphere of watermelon.

    Science.gov (United States)

    Xu, Weihui; Wang, Zhigang; Wu, Fengzhi

    2015-01-01

    The growth of watermelon is often threatened by Fusarium oxysporum f. sp. niveum (Fon) in successively monocultured soil, which results in economic loss. The objective of this study was to investigate the effect of D123 wheat as a companion crop on soil enzyme activities, microbial biomass and microbial communities in the rhizosphere of watermelon and to explore the relationship between the effect and the incidence of wilt caused by Fon. The results showed that the activities of soil polyphenol oxidase, urease and invertase were increased, the microbial biomass nitrogen (MBN) and microbial biomass phosphorus (MBP) were significantly increased, and the ratio of MBC/MBN was decreased (P Fusarium wilt was also decreased in the watermelon/wheat companion system. In conclusion, this study indicated that D123 wheat as a companion crop increased soil enzyme activities and microbial biomass, decreased the Fon population, and changed the relative abundance of microbial communities in the rhizosphere of watermelon, which may be related to the reduction of Fusarium wilt in the watermelon/wheat companion system.

  16. The effect of D123 wheat as a companion crop on soil enzyme activities, microbial biomass and microbial communities in the rhizosphere of watermelon

    Directory of Open Access Journals (Sweden)

    Wei Hui Xu

    2015-09-01

    Full Text Available The growth of watermelon is often threatened by Fusarium oxysporum f. sp. niveum (Fon in successively monocultured soil, which results in economic loss. The objective of this study was to investigate the effect of D123 wheat as a companion crop on soil enzyme activities, microbial biomass and microbial communities in the rhizosphere of watermelon and to explore the relationship between the effect and the incidence of wilt caused by Fon. The results showed that the activities of soil polyphenol oxidase, urease and invertase were increased, the microbial biomass nitrogen (MBN and microbial biomass phosphorus (MBP were significantly increased, and the ratio of MBC/MBN was decreased (P<0.05. Real-time PCR analysis showed that the Fon population declined significantly in the watermelon/wheat companion system compared with the monoculture system (P<0.05. The analysis of microbial communities showed that the relative abundance of microbial communities was changed in the rhizosphere of watermelon. Compared with the monoculture system, the relative abundances of Alphaproteobacteria, Actinobacteria, Gemmatimonadetes and Sordariomycetes were increased, and the relative abundances of Gammaproteobacteria, Sphingobacteria, Cytophagia, Pezizomycetes, and Eurotiomycetes were decreased in the rhizosphere of watermelon in the watermelon/wheat companion system; importantly, the incidence of Fusarium wilt was also decreased in the watermelon/wheat companion system. In conclusion, this study indicated that D123 wheat as a companion crop increased soil enzyme activities and microbial biomass, decreased the Fon population, and changed the relative abundance of microbial communities in the rhizosphere of watermelon, which may be related to the reduction of Fusarium wilt in the watermelon/wheat companion system.

  17. 11 Soil Microbial Biomass

    African Journals Online (AJOL)

    186–198. Insam H. (1990). Are the soil microbial biomass and basal respiration governed by the climatic regime? Soil. Biol. Biochem. 22: 525–532. Insam H. D. and Domsch K. H. (1989). Influence of microclimate on soil microbial biomass. Soil Biol. Biochem. 21: 211–21. Jenkinson D. S. (1988). Determination of microbial.

  18. Temporal variations in microbial biomass C and cellulolytic enzyme activity in arable soils: effects of organic matter input

    DEFF Research Database (Denmark)

    Debosz, K.; Rasmussen, Peter Have; Pedersen, A. R.

    1999-01-01

    Temporal variations in soil microbial biomass C concentration and in activity of extracellular enzymes of the cellulolytic complex were investigated in a field experiment after eight years of cultivation with either low organic matter input (low-OM) or high organic matter input (high-OM). The cul......Temporal variations in soil microbial biomass C concentration and in activity of extracellular enzymes of the cellulolytic complex were investigated in a field experiment after eight years of cultivation with either low organic matter input (low-OM) or high organic matter input (high......-OM). The cultivation systems differed in whether their source of fertiliser was mainly mineral or organic, in whether a winter cover crop was grown, and whether straw was mulched or removed. Sampling occurred at approximately monthly intervals, over a period of two years. Distinct temporal variations in microbial......) and an endocellulase activity of 44.2 +/- 1.1 nmol g(-1) h(-1). (C) 1999 Elsevier Science B.V. All rights reserved....

  19. Contrasting effects of ammonium and nitrate additions on the biomass of soil microbial communities and enzyme activities in subtropical China

    Directory of Open Access Journals (Sweden)

    C. Zhang

    2017-10-01

    Full Text Available The nitrate to ammonium ratios in nitrogen (N compounds in wet atmospheric deposits have increased over the recent past, which is a cause for some concern as the individual effects of nitrate and ammonium deposition on the biomass of different soil microbial communities and enzyme activities are still poorly defined. We established a field experiment and applied ammonium (NH4Cl and nitrate (NaNO3 at monthly intervals over a period of 4 years. We collected soil samples from the ammonium and nitrate treatments and control plots in three different seasons, namely spring, summer, and fall, to evaluate the how the biomass of different soil microbial communities and enzyme activities responded to the ammonium (NH4Cl and nitrate (NaNO3 applications. Our results showed that the total contents of phospholipid fatty acids (PLFAs decreased by 24 and 11 % in the ammonium and nitrate treatments, respectively. The inhibitory effects of ammonium on Gram-positive bacteria (G+ and bacteria, fungi, actinomycetes, and arbuscular mycorrhizal fungi (AMF PLFA contents ranged from 14 to 40 % across the three seasons. We also observed that the absolute activities of C, N, and P hydrolyses and oxidases were inhibited by ammonium and nitrate, but that nitrate had stronger inhibitory effects on the activities of acid phosphatase (AP than ammonium. The activities of N-acquisition specific enzymes (enzyme activities normalized by total PLFA contents were about 21 and 43 % lower in the ammonium and nitrate treatments than in the control, respectively. However, the activities of P-acquisition specific enzymes were about 19 % higher in the ammonium treatment than in the control. Using redundancy analysis (RDA, we found that the measured C, N, and P hydrolysis and polyphenol oxidase (PPO activities were positively correlated with the soil pH and ammonium contents, but were negatively correlated with the nitrate contents. The PLFA biomarker contents were positively

  20. Contrasting effects of ammonium and nitrate additions on the biomass of soil microbial communities and enzyme activities in subtropical China

    Science.gov (United States)

    Zhang, Chuang; Zhang, Xin-Yu; Zou, Hong-Tao; Kou, Liang; Yang, Yang; Wen, Xue-Fa; Li, Sheng-Gong; Wang, Hui-Min; Sun, Xiao-Min

    2017-10-01

    The nitrate to ammonium ratios in nitrogen (N) compounds in wet atmospheric deposits have increased over the recent past, which is a cause for some concern as the individual effects of nitrate and ammonium deposition on the biomass of different soil microbial communities and enzyme activities are still poorly defined. We established a field experiment and applied ammonium (NH4Cl) and nitrate (NaNO3) at monthly intervals over a period of 4 years. We collected soil samples from the ammonium and nitrate treatments and control plots in three different seasons, namely spring, summer, and fall, to evaluate the how the biomass of different soil microbial communities and enzyme activities responded to the ammonium (NH4Cl) and nitrate (NaNO3) applications. Our results showed that the total contents of phospholipid fatty acids (PLFAs) decreased by 24 and 11 % in the ammonium and nitrate treatments, respectively. The inhibitory effects of ammonium on Gram-positive bacteria (G+) and bacteria, fungi, actinomycetes, and arbuscular mycorrhizal fungi (AMF) PLFA contents ranged from 14 to 40 % across the three seasons. We also observed that the absolute activities of C, N, and P hydrolyses and oxidases were inhibited by ammonium and nitrate, but that nitrate had stronger inhibitory effects on the activities of acid phosphatase (AP) than ammonium. The activities of N-acquisition specific enzymes (enzyme activities normalized by total PLFA contents) were about 21 and 43 % lower in the ammonium and nitrate treatments than in the control, respectively. However, the activities of P-acquisition specific enzymes were about 19 % higher in the ammonium treatment than in the control. Using redundancy analysis (RDA), we found that the measured C, N, and P hydrolysis and polyphenol oxidase (PPO) activities were positively correlated with the soil pH and ammonium contents, but were negatively correlated with the nitrate contents. The PLFA biomarker contents were positively correlated with soil

  1. Conditioning biomass for microbial growth

    Science.gov (United States)

    Bodie, Elizabeth A; England, George

    2015-03-31

    The present invention relates to methods for improving the yield of microbial processes that use lignocellulose biomass as a nutrient source. The methods comprise conditioning a composition comprising lignocellulose biomass with an enzyme composition that comprises a phenol oxidizing enzyme. The conditioned composition can support a higher rate of growth of microorganisms in a process. In one embodiment, a laccase composition is used to condition lignocellulose biomass derived from non-woody plants, such as corn and sugar cane. The invention also encompasses methods for culturing microorganisms that are sensitive to inhibitory compounds in lignocellulose biomass. The invention further provides methods of making a product by culturing the production microorganisms in conditioned lignocellulose biomass.

  2. Enzymes for improved biomass conversion

    Science.gov (United States)

    Brunecky, Roman; Himmel, Michael E.

    2016-02-02

    Disclosed herein are enzymes and combinations of the enzymes useful for the hydrolysis of cellulose and the conversion of biomass. Methods of degrading cellulose and biomass using enzymes and cocktails of enzymes are also disclosed.

  3. [Influence of different slope position and profile in Disporopsis pernyi forest land on soil microbial biomass and enzyme activity in southwest Karst mountain of China ].

    Science.gov (United States)

    Qin, Hua-Jun; He, Bing-Hui; Zhao, Xuan-chi; Li, Yuan; Mao, Wen-tao; Zeng, Qing-ping

    2014-09-01

    Soil microbial biomass and enzyme activity are important parameters to evaluate the quality of the soil environment. The goal of this study was to determine the influence of different slope position and section in Disporopsis pernyi forest land on the soil microbial biomass and enzyme activity in southwest Karst Mountain. In this study, we chose the Dip forest land at Yunfo village Chengdong town Liangping country Chongqing Province as the study object, to analyze the influence of three different slope positions [Up Slope(US), Middle Slope(MS), Below Slope(BS)] and two different sections-upper layer(0-15 cm) and bottom layer(15-30 cm) on the soil microbial biomass carbon (SMBC), soil microbial biomass nitrogen (SMBN), microbial carbon entropy (qMBC), microbial nitrogen entropy (qMBN) , catalase(CAT), alkaline phosphatase (ALK), urease(URE), and invertase(INV). The results showed that the same trend (BS > MS > US) was found for SMBC, SMBN, qMBC, qMBN, CAT and INV of upper soil layer, while a different trend (BS > US > MS) was observed for ALK. In addition, another trend (MS > US > BS) was observed for URE. The same trend (BS > MS >US) was observed for SMBN, qMBN, CAT, ALK, URE and INV in bottom layer, but a different trend (MS > BS > US) was observed for SMBC and qMBC. The SMBC, SMBN, CAT, ALK, URE and INV manifested as upper > bottom with reduction of the section, while qMBC and qMBN showed the opposite trend. Correlation analysis indicated that there were significant (P <0.05) or highly significant (P < 0.01) positive correlations among SMBC in different slope position and section, soil enzyme activity and moisture. According to the two equations of regression analysis, SMBC tended to increase with the increasing CAT and ALK, while decreased with the increasing pH. Then SMBN tended to increase with the increasing URE and INV.

  4. Effects of Nitrogen and Water on Soil Enzyme Activity and Soil Microbial Biomass in Stipa baicalensis Steppe,Inner Mongolia of North China

    Directory of Open Access Journals (Sweden)

    WANG Jie

    2014-06-01

    Full Text Available In this paper, eight nitrogen treatments were applied at 0 g·m -2(N0, 1.5 g·m -2(N15, 3.0 g·m -2(N30, 5.0 g·m -2(N50, 10.0 g·m -2(N100, 15.0 g·m -2(N150, 20.0 g·m -2(N200, 30.0 g·m -2(N300 as NH 4 NO 3 and adding water to simulate summer rainfall of 100 mm, the interactive experiment was set to explore the effects of nitrogen and water addition in Stipa baicalensis steppe on soil nutrients, enzyme activities and soil microbial biomass. The results showed that the nitrogen and water addition changed soil physico-chemical factors obviously, the content of soil total organic carbon, total nitrogen, nitrate nitrogen and ammonium nitrogen increased along with the increasing of application rate of nitrogen, on the contrary, the soil pH value had decreasing trend. Appropriate application of nitrogen could enhance the activity of urease and catalase but decreased the activity of polyphenol oxidase. Nitrogen and water addition had significant effect on soil microbial biomass C and N. Higher level of N fertilizer significantly reduced microbial biomass C, and the microbial biomass N was on the rise with the application rate of nitrogen. The addition of water could slow the inhibition of nitrogen to microorganism and increase the microbial biomass C and N. A closed relationship existed in soil nutrient, activities of soil enzyme and soil microbial biomass C and N. The significantly positive correlation existed between total N, organic C, nitrate N and catalase, significantly negative correlation between nitrate N, ammonium N, total N and polyphenol oxidase. Microbial biomass N was significantly positive correlated with total N, nitrate N, ammonium N, catalase, phosphatase, and was negative correlated with polyphenol oxidase. Microbial biomass C was significantly positive correlated with polyphenol oxidase, and was negative correlated with catalase.

  5. [Effects of different application rates of calcium cyanamide on soil microbial biomass and enzyme activity in cucumber continuous cropping].

    Science.gov (United States)

    Zhang, Xue-peng; Ning, Tang-yuan; Yang, Yan; Sun, Tao; Zhang, Shu-min; Wang, Bin

    2015-10-01

    A 2-year field experiment was conducted to study the effects of CaCN2 combined with cucumber straw retention on soil microbial biomass carbon (SMBC) , soil microbial biomass nitrogen (SMBN) and soil enzyme activities under cucumber continuous cropping system. Four treatments were used in this study as follows: CK (null CaCN2), CaCN2-90 (1350 kg CaCN2 . hm-2) CaCN2-60 (900 kg CaCN2 . hm-2), CaCN2-30 (450 kg CaCN2 . hm-2). The results indicated that, compared with the other treatments, CaCN2-90 treatment significantly decreased SMBC in 0-10 cm soil layer at seedling stage, but increased SMBC in 0-20 cm soil layer after early-fruit stage. Compared with CK, CaCN2 increased SMBC in 0-20 cm soil layer at late-fruit stage, and increased SMBN in 0-10 cm soil layer at mid- and late-fruit stages, however there was no significant trend among CaCN2 treatments in the first year (2012), while in the second year (2013) SMBN increased with the increasing CaCN2 amount after mid-fruit stage. CaCN2 increased straw decaying and nutrients releasing, and also increased soil organic matter. Furthermore, the CaCN2-90 could accelerate straw decomposition. Compared with CK, CaCN2 effectively increased soil urease, catalase and polyphenol oxidase activity. The soil urease activity increased while the polyphenol oxidase activity decreased with the increase of CaCN2, and CaCN2-60 could significantly improve catalase activity. Soil organic matter, urease activity and catalase activity had significant positive correlations with SMBC and SMBN. However, polyphenol oxidase activity was negatively correlated to SMBC and SMBN. Our findings indicated that CaCN2 application at 900 kg . hm-2 combined with cucumber straw retention could effectively improve soil environment, alleviating the soil obstacles under the cucumber continuous cropping system.

  6. Long-term effects of aided phytostabilisation of trace elements on microbial biomass and activity, enzyme activities, and composition of microbial community in the Jales contaminated mine spoils

    Energy Technology Data Exchange (ETDEWEB)

    Renella, Giancarlo [Department of Soil Science and Plant Nutrition, University of Florence, Piazzale delle Cascine 28, I-50144 Florence (Italy)], E-mail: giancarlo.renella@unifi.it; Landi, Loretta; Ascher, Judith; Ceccherini, Maria Teresa; Pietramellara, Giacomo; Mench, Michel; Nannipieri, Paolo [Department of Soil Science and Plant Nutrition, University of Florence, Piazzale delle Cascine 28, I-50144 Florence (Italy)

    2008-04-15

    We studied the effectiveness of remediation on microbial endpoints, namely microbial biomass and activity, microbial and plant species richness, of an As-contaminated mine spoil, amended with compost (C) alone and in combination with beringite (B) or zerovalent iron grit (Z), to increase organic matter content and reduce trace elements mobility, and to allow Holcus lanatus and Pinus pinaster growth. Untreated spoil showed the lowest microbial biomass and activity and hydrolase activities, and H. lanatus as sole plant species, whereas the presented aided phytostabilisation option, especially CBZ treatment, significantly increased microbial biomass and activity and allowed colonisation by several plant species, comparable to those of an uncontaminated sandy soil. Microbial species richness was only increased in spoils amended with C alone. No clear correlation occurred between trace element mobility and microbial parameters and plant species richness. Our results indicate that the choice of indicators of soil remediation practices is a bottleneck. - Organo-mineral amendment and revegetation of a gold mine spoil increased microbial activity but did not increase microbial species richness.

  7. Long-term effects of aided phytostabilisation of trace elements on microbial biomass and activity, enzyme activities, and composition of microbial community in the Jales contaminated mine spoils

    International Nuclear Information System (INIS)

    Renella, Giancarlo; Landi, Loretta; Ascher, Judith; Ceccherini, Maria Teresa; Pietramellara, Giacomo; Mench, Michel; Nannipieri, Paolo

    2008-01-01

    We studied the effectiveness of remediation on microbial endpoints, namely microbial biomass and activity, microbial and plant species richness, of an As-contaminated mine spoil, amended with compost (C) alone and in combination with beringite (B) or zerovalent iron grit (Z), to increase organic matter content and reduce trace elements mobility, and to allow Holcus lanatus and Pinus pinaster growth. Untreated spoil showed the lowest microbial biomass and activity and hydrolase activities, and H. lanatus as sole plant species, whereas the presented aided phytostabilisation option, especially CBZ treatment, significantly increased microbial biomass and activity and allowed colonisation by several plant species, comparable to those of an uncontaminated sandy soil. Microbial species richness was only increased in spoils amended with C alone. No clear correlation occurred between trace element mobility and microbial parameters and plant species richness. Our results indicate that the choice of indicators of soil remediation practices is a bottleneck. - Organo-mineral amendment and revegetation of a gold mine spoil increased microbial activity but did not increase microbial species richness

  8. Seasonal Variation in Soil Microbial Biomass, Bacterial Community Composition and Extracellular Enzyme Activity in Relation to Soil Respiration in a Northern Great Plains Grassland

    Science.gov (United States)

    Wilton, E.; Flanagan, L. B.

    2014-12-01

    Soil respiration rate is affected by seasonal changes in temperature and moisture, but is this a direct effect on soil metabolism or an indirect effect caused by changes in microbial biomass, bacterial community composition and substrate availability? In order to address this question, we compared continuous measurements of soil and plant CO2 exchange made with an automatic chamber system to analyses conducted on replicate soil samples collected on four dates during June-August. Microbial biomass was estimated from substrate-induced respiration rate, bacterial community composition was determined by 16S rRNA amplicon pyrosequencing, and β-1,4-N-acetylglucosaminidase (NAGase) and phenol oxidase enzyme activities were assayed fluorometrically or by absorbance measurements, respectively. Soil microbial biomass declined from June to August in strong correlation with a progressive decline in soil moisture during this time period. Soil bacterial species richness and alpha diversity showed no significant seasonal change. However, bacterial community composition showed a progressive shift over time as measured by Bray-Curtis dissimilarity. In particular, the change in community composition was associated with increasing relative abundance in the alpha and delta classes, and declining abundance of the beta and gamma classes of the Proteobacteria phylum during June-August. NAGase showed a progressive seasonal decline in potential activity that was correlated with microbial biomass and seasonal changes in soil moisture. In contrast, phenol oxidase showed highest potential activity in mid-July near the time of peak soil respiration and ecosystem photosynthesis, which may represent a time of high input of carbon exudates into the soil from plant roots. This input of exudates may stimulate the activity of phenol oxidase, a lignolytic enzyme involved in the breakdown of soil organic matter. These analyses indicated that seasonal change in soil respiration is a complex

  9. Tillage and manure effect on soil microbial biomass and respiration ...

    African Journals Online (AJOL)

    The objective of this study was to determine the influence of both tillage and liquid pig manure application on soil microbial biomass, enzyme activities and microbial respiration in a meadow soil. The results obtained did not show any significant effect of tillage and manure on microbial biomass carbon (C) and nitrogen (N) ...

  10. Microbial surface displayed enzymes based biofuel cell utilizing degradation products of lignocellulosic biomass for direct electrical energy.

    Science.gov (United States)

    Fan, Shuqin; Hou, Chuantao; Liang, Bo; Feng, Ruirui; Liu, Aihua

    2015-09-01

    In this work, a bacterial surface displaying enzyme based two-compartment biofuel cell for the direct electrical energy conversion from degradation products of lignocellulosic biomass is reported. Considering that the main degradation products of the lignocellulose are glucose and xylose, xylose dehydrogenase (XDH) displayed bacteria (XDH-bacteria) and glucose dehydrogenase (GDH) displayed bacteria (GDH-bacteria) were used as anode catalysts in anode chamber with methylene blue as electron transfer mediator. While the cathode chamber was constructed with laccase/multi-walled-carbon nanotube/glassy-carbon-electrode. XDH-bacteria exhibited 1.75 times higher catalytic efficiency than GDH-bacteria. This assembled enzymatic fuel cell exhibited a high open-circuit potential of 0.80 V, acceptable stability and energy conversion efficiency. Moreover, the maximum power density of the cell could reach 53 μW cm(-2) when fueled with degradation products of corn stalk. Thus, this finding holds great potential to directly convert degradation products of biomass into electrical energy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Spatial variability of enzyme activities and microbial biomass in the upper layers of Quercus petraea forest soil

    Czech Academy of Sciences Publication Activity Database

    Šnajdr, Jaroslav; Valášková, Vendula; Merhautová, Věra; Herinková, Jana; Cajthaml, Tomáš; Baldrian, Petr

    2008-01-01

    Roč. 40, č. 9 (2008), s. 2068-2075 ISSN 0038-0717 R&D Projects: GA MŠk LC06066; GA MZe QH72216; GA AV ČR KJB600200516 Institutional research plan: CEZ:AV0Z50200510 Keywords : enzyme activity * forest soil * lignocellulose Subject RIV: EE - Microbiology, Virology Impact factor: 2.926, year: 2008

  12. Cellulase enzyme and biomass utilization

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-03

    Jun 3, 2009 ... human population grows and economic development. However, the current .... conditions and the production cost of the related enzyme system. Therefore ... Given the importance of this enzyme to these so many industries,.

  13. Soil microbial biomass in an agroforestry system of Northeast Brazil

    Directory of Open Access Journals (Sweden)

    Rosane C. Rodrigues

    2015-01-01

    Full Text Available Agroforestry systems (AFS are considered alternative land use options to help prevent soil degradation and improve soil microbial biomass and organic C status. However, it is unclear how different densities of babassu palm [Attalea speciosa (syn. Orbignya phalerata], which is an important tree in Northeast Brazil, affect the soil microbial biomass. We investigated the soil microbial biomass C and activity under AFS with different densities of babassu palm associated with Brachiaria brizantha grass. Soil microbial biomass C (MBC, soil microbial biomass N (MBN, MBC:total organic C ratio, fluorescein diacetate hydrolysis and dehydrogenase activity showed highest values in plots with high density of babassu palm. On the other hand, the respiratory quotient (qCO2 was significantly greater in plots without babassu palm. Brachiaria brizantha in monoculture may promote C losses from the soil, but AFS with high density of babassu palm may increase the potential of soils to accumulate C.Keywords: Enzyme activity, tropical soil, babassu palm, silvopastoral system, soil quality.DOI: 10.17138/TGFT(341-48

  14. [Soil soluble organic matter, microbial biomass, and enzyme activities in forest plantations in degraded red soil region of Jiangxi Province, China].

    Science.gov (United States)

    Jiang, Yu-mei; Chen, Cheng-long; Xu, Zhi-hong; Liu, Yuan-qiu; Ouyang, Jing; Wang, Fang

    2010-09-01

    Taking the adjacent 18-year-old pure Pinus massoniana pure forest (I), P. massoniana, Liquidamber fomosana, and Schima superba mixed forest (II), S. superba pure forest (III), L. fomosana (IV) pure forest, and natural restoration fallow land (CK) in Taihe County of Jiangxi Province as test sites, a comparative study was made on their soil soluble organic carbon (SOC) and nitrogen (SON), soil microbial biomass C (MBC) and N (MBN), and soil urease and asparaginase activities. In 0-10 cm soil layer, the pool sizes of SOC, SON, MBC, and MBN at test sites ranged in 354-1007 mg x kg(-1), 24-73 mg x kg(-1), 203-488 mg x kg(-1), and 24-65 mg x kg(-1), and the soil urease and asparaginase activities were 95-133 mg x kg(-1) x d(-1) and 58-113 mg x kg(-1) x d(-1), respectively. There were significant differences in the pool sizes of SOC, SON, MBC, and MBN and the asparaginase activity among the test sites, but no significant difference was observed in the urease activity. The pool sizes of SOC and SON were in the order of IV > CK > III > I > II, those of MBC and MBN were in the order of CK > IV > III > I > II, and asparaginase activity followed the order of IV > CK > III > II > I. With the increase of soil depth, the pool sizes of SOC, SON, MBC, and MBN and the activities of soil asparaginase and urease decreased. In 0-20 cm soil layer, the SOC, SON, MBC, MBN, total C, and total N were highly correlated with each other, soil asparaginase activity was highly correlated with SOC, SON, TSN, total C, total N, MBC, and MBN, and soil urease activity was highly correlated with SON, TSN, total C, MBC and MBN.

  15. Applications of Microbial Enzymes in Food Industry

    Directory of Open Access Journals (Sweden)

    Binod Parameswaran

    2018-01-01

    Full Text Available The use of enzymes or microorganisms in food preparations is an age-old process. With the advancement of technology, novel enzymes with wide range of applications and specificity have been developed and new application areas are still being explored. Microorganisms such as bacteria, yeast and fungi and their enzymes are widely used in several food preparations for improving the taste and texture and they offer huge economic benefits to industries. Microbial enzymes are the preferred source to plants or animals due to several advantages such as easy, cost-effective and consistent production. The present review discusses the recent advancement in enzyme technology for food industries. A comprehensive list of enzymes used in food processing, the microbial source of these enzymes and the wide range of their application are discussed.

  16. Renewable biofuels bioconversion of lignocellulosic biomass by microbial community

    CERN Document Server

    Rana, Vandana

    2017-01-01

    This book offers a complete introduction for novices to understand key concepts of biocatalysis and how to produce in-house enzymes that can be used for low-cost biofuels production. The authors discuss the challenges involved in the commercialization of the biofuel industry, given the expense of commercial enzymes used for lignocellulose conversion. They describe the limitations in the process, such as complexity of lignocellulose structure, different microbial communities’ actions and interactions for degrading the recalcitrant structure of lignocellulosic materials, hydrolysis mechanism and potential for bio refinery. Readers will gain understanding of the key concepts of microbial catalysis of lignocellulosic biomass, process complexities and selection of microbes for catalysis or genetic engineering to improve the production of bioethanol or biofuel.

  17. Activity assessment of microbial fibrinolytic enzymes.

    Science.gov (United States)

    Kotb, Essam

    2013-08-01

    Conversion of fibrinogen to fibrin inside blood vessels results in thrombosis, leading to myocardial infarction and other cardiovascular diseases. In general, there are four therapy options: surgical operation, intake of antiplatelets, anticoagulants, or fibrinolytic enzymes. Microbial fibrinolytic enzymes have attracted much more attention than typical thrombolytic agents because of the expensive prices and the side effects of the latter. The fibrinolytic enzymes were successively discovered from different microorganisms, the most important among which is the genus Bacillus. Microbial fibrinolytic enzymes, especially those from food-grade microorganisms, have the potential to be developed as functional food additives and drugs to prevent or cure thrombosis and other related diseases. There are several assay methods for these enzymes; this may due to the insolubility of substrate, fibrin. Existing assay methods can be divided into three major groups. The first group consists of assay of fibrinolytic activity with natural proteins as substrates, e.g., fibrin plate methods. The second and third groups of assays are suitable for kinetic studies and are based on the determination of hydrolysis of synthetic peptide esters. This review will deal primarily with the microorganisms that have been reported in literature to produce fibrinolytic enzymes and the first review discussing the methods used to assay the fibrinolytic activity.

  18. Biomass and enzyme activity of two soil transects at King George Island, Maritime Antarctica

    Czech Academy of Sciences Publication Activity Database

    Tscherko, D.; Bölter, M.; Beyer, L.; Chen, J.; Elster, Josef; Kandeler, E.; Kuhn, D.; Blume, H. P.

    2003-01-01

    Roč. 35, č. 1 (2003), s. 34-47 ISSN 1523-0430 R&D Projects: GA ČR GA205/94/0156; GA AV ČR KSK6005114 Institutional research plan: CEZ:AV0Z6005908 Keywords : Maritime Antarctica * microbial soil biomass * enzyme activity Subject RIV: EF - Botanics Impact factor: 0.954, year: 2003

  19. Microbial genetic engineering and enzyme technology

    Energy Technology Data Exchange (ETDEWEB)

    Hollenberg, C.P.; Sahm, H.

    1987-01-01

    In a series of up-to-date contributions BIOTEC 1 has experts discussing the current topics in microbial gene technology and enzyme technology and speculating on future developments. Bacterial and yeast systems for the production of interferons, growth hormone or viral antigenes are described as well as the impact of gene technology on plants. Exciting is the prospect of degrading toxic compounds in our environment by microorganisms tuned in the laboratory. Enzymes are the most effective catalysts we know. They exhibit a very high substrate- and stereospecificity. These properties make enzymes extremely attractive as industrial catalysts, leading to new production processes that are non-polluting and save both energy and raw materials. (orig.) With 135 figs., 36 tabs.

  20. Targeted quantification of functional enzyme dynamics in environmental samples for microbially mediated biogeochemical processes: Targeted quantification of functional enzyme dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Li, Minjing [School of Environmental Studies, China University of Geosciences, Wuhan 430074 People' s Republic of China; Gao, Yuqian [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Qian, Wei-Jun [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Shi, Liang [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Liu, Yuanyuan [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Nelson, William C. [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Nicora, Carrie D. [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Resch, Charles T. [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Thompson, Christopher [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Yan, Sen [School of Environmental Studies, China University of Geosciences, Wuhan 430074 People' s Republic of China; Fredrickson, James K. [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Zachara, John M. [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Liu, Chongxuan [Pacific Northwest National Laboratory, Richland, WA 99354 USA; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055 People' s Republic of China

    2017-07-13

    Microbially mediated biogeochemical processes are catalyzed by enzymes that control the transformation of carbon, nitrogen, and other elements in environment. The dynamic linkage between enzymes and biogeochemical species transformation has, however, rarely been investigated because of the lack of analytical approaches to efficiently and reliably quantify enzymes and their dynamics in soils and sediments. Herein, we developed a signature peptide-based technique for sensitively quantifying dissimilatory and assimilatory enzymes using nitrate-reducing enzymes in a hyporheic zone sediment as an example. Moreover, the measured changes in enzyme concentration were found to correlate with the nitrate reduction rate in a way different from that inferred from biogeochemical models based on biomass or functional genes as surrogates for functional enzymes. This phenomenon has important implications for understanding and modeling the dynamics of microbial community functions and biogeochemical processes in environments. Our results also demonstrate the importance of enzyme quantification for the identification and interrogation of those biogeochemical processes with low metabolite concentrations as a result of faster enzyme-catalyzed consumption of metabolites than their production. The dynamic enzyme behaviors provide a basis for the development of enzyme-based models to describe the relationship between the microbial community and biogeochemical processes.

  1. Development of a commercial enzymes system for lignocellulosic biomass saccharification

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Manoj

    2012-12-20

    DSM Innovation Inc., in its four year effort was able to evaluate and develop its in-house DSM fungal cellulolytic enzymes system to reach enzyme efficiency mandates set by DoE Biomass program MYPP goals. DSM enzyme cocktail is uniquely active at high temperature and acidic pH, offering many benefits and product differentiation in 2G bioethanol production. Under this project, strain and process development, ratio optimization of enzymes, protein and genetic engineering has led to multitudes of improvement in productivity and efficiency making development of a commercial enzyme system for lignocellulosic biomass saccharification viable. DSM is continuing further improvement by additional biodiversity screening, protein engineering and overexpression of enzymes to continue to further lower the cost of enzymes for saccharification of biomass.

  2. Effect of microbial enzyme allocation strategies on stoichiometry of soil organic matter (SOM) decomposition

    Science.gov (United States)

    Wutzler, Thomas

    2014-05-01

    We explored different strategies of soil microbial community to invest resources into extracellular enzymes by conceptual modelling. Similar to the EEZY model by Moorhead et al. (2012), microbial community can invest into two separate pools of enzymes that depolymerize two different SOM pools. We show that with assuming that a fixed fraction of substrate uptake is allocated to enzymes, the microbial dynamics decouples from decomposition dynamics. We propose an alternative formulation where investment into enzymes is proportional to microbial biomass. Next, we show that the strategy of optimizing stoichiometry of decomposition flux according to microbial biomass stoichiometry yield less microbial growth than the strategy of optimizing revenue of the currently limiting element. However, both strategies result in better usage of the resources, i.e. less C overflow or N mineralization, than the strategy of equal allocation to both enzymes. Further, we discuss effects of those strategies on decomposition of SOM and priming at different time scales and discuss several abstractions from the detailed model dynamics for usage in larger scale models.

  3. Microbial nitrilases: versatile, spiral forming, industrial enzymes.

    Science.gov (United States)

    Thuku, R N; Brady, D; Benedik, M J; Sewell, B T

    2009-03-01

    The nitrilases are enzymes that convert nitriles to the corresponding acid and ammonia. They are members of a superfamily, which includes amidases and occur in both prokaryotes and eukaryotes. The superfamily is characterized by having a homodimeric building block with a alpha beta beta alpha-alpha beta beta alpha sandwich fold and an active site containing four positionally conserved residues: cys, glu, glu and lys. Their high chemical specificity and frequent enantioselectivity makes them attractive biocatalysts for the production of fine chemicals and pharmaceutical intermediates. Nitrilases are also used in the treatment of toxic industrial effluent and cyanide remediation. The superfamily enzymes have been visualized as dimers, tetramers, hexamers, octamers, tetradecamers, octadecamers and variable length helices, but all nitrilase oligomers have the same basic dimer interface. Moreover, in the case of the octamers, tetradecamers, octadecamers and the helices, common principles of subunit association apply. While the range of industrially interesting reactions catalysed by this enzyme class continues to increase, research efforts are still hampered by the lack of a high resolution microbial nitrilase structure which can provide insights into their specificity, enantioselectivity and the mechanism of catalysis. This review provides an overview of the current progress in elucidation of structure and function in this enzyme class and emphasizes insights that may lead to further biotechnological applications.

  4. Assessment of microbial activity and biomass in different soils exposed to nicosulfuron

    Directory of Open Access Journals (Sweden)

    Ljiljana Šantrić

    2014-09-01

    Full Text Available The effects of the herbicide nicosulfuron on the abundance of cellulolytic and proteolytic microorganisms, activity of β-glucosidase and protease enzymes, and microbial phosphorus biomass were examined. A laboratory bioassay was set up on two types of agricultural soils differing in physicochemical properties. The following concentrations were tested: 0.3, 0.6, 3.0 and 30.0 mg a.i./kg of soil. Samples were collected 3, 7, 14, 30 and 45 days after treatment with nicosulfuron. The results showed that nicosulfuron significantly reduced the abundance of cellulolytic microorganisms in both soils, as well as microbial biomass phosphorus in sandy loam soil. The herbicide was found to stimulate β-glucosidase and protease activity in both types of soil and microbial biomass phosphorus in loamy soil. Proteolytic microorganisms remained unaffected by nicosulfuron.

  5. Role of Bioreactors in Microbial Biomass and Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Liang [Chongqing University, Chongqing, China; Zhang, Biao [Chongqing University, Chongqing, China; Zhu, Xun [Chongqing University, Chongqing, China; Chang, Haixing [Chongqing University of Technology; Ou, Shawn [ORNL; Wang, HONG [Chongqing University, Chongqing, China

    2018-04-01

    Bioenergy is the world’s largest contributor to the renewable and sustainable energy sector, and it plays a significant role in various energy industries. A large amount of research has contributed to the rapidly evolving field of bioenergy and one of the most important topics is the use of the bioreactor. Bioreactors play a critical role in the successful development of technologies for microbial biomass cultivation and energy conversion. In this chapter, after a brief introduction to bioreactors (basic concepts, configurations, functions, and influencing factors), the applications of the bioreactor in microbial biomass, microbial biofuel conversion, and microbial electrochemical systems are described. Importantly, the role and significance of the bioreactor in the bioenergy process are discussed to provide a better understanding of the use of bioreactors in managing microbial biomass and energy conversion.

  6. Extraction of solubles from plant biomass for use as microbial growth stimulant and methods related thereto

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Ming Woei

    2015-12-08

    A method for producing a microbial growth stimulant (MGS) from a plant biomass is described. In one embodiment, an ammonium hydroxide solution is used to extract a solution of proteins and ammonia from the biomass. Some of the proteins and ammonia are separated from the extracted solution to provide the MGS solution. The removed ammonia can be recycled and the proteins are useful as animal feeds. In one embodiment, the method comprises extracting solubles from pretreated lignocellulosic biomass with a cellulase enzyme-producing growth medium (such T. reesei) in the presence of water and an aqueous extract.

  7. Structural Studies of Biomass Degrading Enzyme Systems

    Energy Technology Data Exchange (ETDEWEB)

    Lunin, Vladimir V.; Alahuhta, Markus; Brunecky, Roman; Donohoe, Bryon; Xu, Qi; Bomble, Yannick J.; Himmel, Michael E.

    2014-08-05

    Renewable energy today comprises wind, photovoltaics, geothermal, and biofuels. Biomass is the leading source of renewable, sustainable energy used for the production of liquid transportation fuels. While the focus is shifting today from the ethanol towards next generation or advanced biofuels the real challenge however remains the same: reducing the recalcitrance of biomass to deconstruction, which yields the sugars needed for further processing.

  8. Seasonal variability of microbial biomass phosphorus in urban soils.

    Science.gov (United States)

    Halecki, W; Gąsiorek, M

    2015-01-01

    Urban soils have been formed through human activities. Seasonal evaluation with time-control procedure are essential for plant, and activity of microorganisms. Therefore, these processes are crucial in the urban area due to geochemical changes in the past years. The purpose of this study was to investigate the changes of content of microbial biomass phosphorus (P) in the top layer of soils throughout the season. In this research, the concentration of microbial biomass P ranged from 0.01 to 6.29 mg·kg(-1). We used single-factor repeated-measure analysis of variance to test the effect of season on microbial biomass P content of selected urban soils. We found no statistically significant differences between the concentration of microbial biomass P in the investigated urban and sub-urban soils during the growing season. This analysis explicitly recognised that environmental urban conditions are steady. Specifically, we have studied how vegetation seasonality and ability of microbial biomass P are useful for detecting quality deviations, which affect the equilibrium of urban soil. In conclusion, seasonal variability of the stringency of assurance across the different compounds of soil reveals, as expected, the stable condition of the urban soils. Seasonal responses in microbial biomass P under urban soil use should establish a framework as a reference to the activity of the microorganisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Microbial dynamics and enzyme activities in tropical Andosols depending on land use and nutrient inputs

    Science.gov (United States)

    Mganga, Kevin; Razavi, Bahar; Kuzyakov, Yakov

    2015-04-01

    Microbial decomposition of soil organic matter is mediated by enzymes and is a key source of terrestrial CO2 emissions. Microbial and enzyme activities are necessary to understand soil biochemical functioning and identify changes in soil quality. However, little is known about land use and nutrients availability effects on enzyme activities and microbial processes, especially in tropical soils of Africa. This study was conducted to examine how microbial and enzyme activities differ between different land uses and nutrient availability. As Andosols of Mt. Kilimanjaro are limited by nutrient concentrations, we hypothesize that N and P additions will stimulate enzyme activity. N and P were added to soil samples (0-20 cm) representing common land use types in East Africa: (1) savannah, (2) maize fields, (3) lower montane forest, (4) coffee plantation, (5) grasslands and (6) traditional Chagga homegardens. Total CO2 efflux from soil, microbial biomass and activities of β-glucosidase, cellobiohydrolase, chitinase and phosphatase involved in C, N and P cycling, respectively was monitored for 60 days. Total CO2 production, microbial biomass and enzyme activities varied in the order forest soils > grassland soils > arable soils. Increased β-glucosidase and cellobiohydrolase activities after N addition of grassland soils suggest that microorganisms increased N uptake and utilization to produce C-acquiring enzymes. Low N concentration in all soils inhibited chitinase activity. Depending on land use, N and P addition had an inhibitory or neutral effect on phosphatase activity. We attribute this to the high P retention of Andosols and low impact of N and P on the labile P fractions. Enhanced CO2 production after P addition suggests that increased P availability could stimulate soil organic matter biodegradation in Andosols. In conclusion, land use and nutrients influenced soil enzyme activities and microbial dynamics and demonstrated the decline in soil quality after landuse

  10. Limitations of ATP as a measure of microbial biomass

    African Journals Online (AJOL)

    limits the use of ATP as a measure of microbial biomass. S. AIr. J. Zool. 1982, 17: 93 - 95. Beraming van die totale .... only micro-organisms present in the experimental culture, but these were later succeeded by a large ... a value of 49: I by the last day of the experiment. Estimates of the total living biomass of the heterotro-.

  11. Discovery of enzymes for toluene synthesis from anoxic microbial communities

    DEFF Research Database (Denmark)

    Beller, Harry R.; Rodrigues, Andria V.; Zargar, Kamrun

    2018-01-01

    Microbial toluene biosynthesis was reported in anoxic lake sediments more than three decades ago, but the enzyme catalyzing this biochemically challenging reaction has never been identified. Here we report the toluene-producing enzyme PhdB, a glycyl radical enzyme of bacterial origin that catalyzes...... phenylacetate decarboxylation, and its cognate activating enzyme PhdA, a radical S-adenosylmethionine enzyme, discovered in two distinct anoxic microbial communities that produce toluene. The unconventional process of enzyme discovery from a complex microbial community (>300,000 genes), rather than from...... a microbial isolate, involved metagenomics- and metaproteomics-enabled biochemistry, as well as in vitro confirmation of activity with recombinant enzymes. This work expands the known catalytic range of glycyl radical enzymes (only seven reaction types had been characterized previously) and aromatic...

  12. Impact of Wildfire on Microbial Biomass in Critical Zone Observatory

    Science.gov (United States)

    Murphy, M. A.; Fairbanks, D.; Chorover, J.; Gallery, R. E.; Rich, V. I.

    2014-12-01

    The recovery of the critical zone following disturbances such as wildfire is not fully understood. Wildfires have increased in size and intensity in western US forests in recent years and these fires influence soil microbial communities, both in composition and overall biomass. Studies have typically shown a 50% post-fire decline in overall microbial biomass (µg per g soil) that can persist for years. There is however, some variability in the severity of biomass decline, and its relationship with burn severity and landscape position have not yet been studied. Since microbial biomass has a cascade of impacts in soil systems, from helping control the rate and diversity the biogeochemical processes occurring, to promoting soil fertility, to impacting the nature and structure of soil carbon (C), fire's lasting impact on it is one mechanistic determinant of the overall post-fire recovery of impacted ecosystems. Additionally, microbial biomass measurements hold potential for testing and incorporation into land surface models (NoahMP, CLM, etc.) in order to improve estimates of long-term effects of climate change and disturbances such as fire on the C cycle. In order to refine our understanding of the impact of fire on microbial biomass and then relate that to biogeochemical processes and ecosystem recovery, we used chloroform fumigation extraction to quantify total microbial biomass C (Cmic ). One year after the June 2013 Thompson Ridge fire in the Jemez River Basin Critical Zone Observatory, we are measuring the Cmic of 22 sites across a gradient of burn severities and 4 control unburned sites, from six depth intervals at each site (0-2, 2-5, 5-10, 10-20, 20-30, and 30-40 cm). We hypothesize that the decrease in microbial biomass in burned sites relative to control sites will correlate with changes in soil biogeochemistry related to burn severity; and that the extent of the impact on biomass will be inversely related to depth in the soil column. Additionally, as the

  13. Microbial keratinases: industrial enzymes with waste management potential.

    Science.gov (United States)

    Verma, Amit; Singh, Hukum; Anwar, Shahbaz; Chattopadhyay, Anirudha; Tiwari, Kapil K; Kaur, Surinder; Dhilon, Gurpreet Singh

    2017-06-01

    Proteases are ubiquitous enzymes that occur in various biological systems ranging from microorganisms to higher organisms. Microbial proteases are largely utilized in various established industrial processes. Despite their numerous industrial applications, they are not efficient in hydrolysis of recalcitrant, protein-rich keratinous wastes which result in environmental pollution and health hazards. This paved the way for the search of keratinolytic microorganisms having the ability to hydrolyze "hard to degrade" keratinous wastes. This new class of proteases is known as "keratinases". Due to their specificity, keratinases have an advantage over normal proteases and have replaced them in many industrial applications, such as nematicidal agents, nitrogenous fertilizer production from keratinous waste, animal feed and biofuel production. Keratinases have also replaced the normal proteases in the leather industry and detergent additive application due to their better performance. They have also been proved efficient in prion protein degradation. Above all, one of the major hurdles of enzyme industrial applications (cost effective production) can be achieved by using keratinous waste biomass, such as chicken feathers and hairs as fermentation substrate. Use of these low cost waste materials serves dual purposes: to reduce the fermentation cost for enzyme production as well as reducing the environmental waste load. The advent of keratinases has given new direction for waste management with industrial applications giving rise to green technology for sustainable development.

  14. Microbial biomass dynamics dominate N cycle responses to warming in a sub-arctic peatland

    Science.gov (United States)

    Weedon, J. T.; Aerts, R.; Kowalchuk, G. K.; van Bodegom, P. M.

    2012-04-01

    The balance of primary production and decomposition in sub-arctic peatlands may shift with climate change. Nitrogen availability will modulate this shift, but little is known about the drivers of soil nitrogen dynamics in these environments, and how they are influenced by rising soil temperatures. We used a long-term open top chamber warming experiment in Abisko, Sweden, to test for the interactive effects of spring warming, summer warming and winter snow addition on soil organic and inorganic nitrogen fluxes, potential activities of carbon and nitrogen cycle enzymes, and the structure of the soil-borne microbial communities. Summer warming increased the flux of soil organic nitrogen over the growing season, while simultaneously causing a seasonal decrease in microbial biomass, suggesting that N flux is driven by large late-season dieback of microbes. This change in N cycle dynamics was not reflected in any of the measured potential enzyme activities. Moreover, the soil microbial community structure was stable across treatments, suggesting non-specific microbial dieback. To further test whether the observed patterns were driven by direct temperature effects or indirect effects (via microbial biomass dynamics), we conducted follow-up controlled experiments in soil mesocosms. Experimental additions of dead microbial cells had stronger effects on N pool sizes and enzyme activities than either plant litter addition or a 5 °C alteration in incubation temperatures. Peat respiration was positively affected by both substrate addition and higher incubation temperatures, but the temperature-only effect was not sufficient to account for the increases in respiration observed in previous field experiments. We conclude that warming effects on peatland N cycling (and to some extent C cycling) are dominated by indirect effects, acting through alterations to the seasonal flux of microbe-derived organic matter. We propose that climate change models of soil carbon and nitrogen

  15. Measurement and characteristics of microbial biomass in forest soils

    International Nuclear Information System (INIS)

    Vance, E.D.

    1986-01-01

    The soil microbial biomass is the primary agent responsible for the breakdown and mineralization of soil organic matter and plays a major role in regulating nutrient availability to plants. In this study, methods for measuring biomass in soil were compared and tested in forest soils ranging in pH from 3.2 to 7.2. A good relationship between biomass C measured using the chloroform fumigation-incubation method and soil ATP or microbial biomass C by direct microscopy was found in soils at or above pH 4.2. The fumigation-incubation method consistently underestimated biomass C in soils below pH 4.2, however. Hypotheses for the breakdown of the fumigation-incubation method in strongly acid soils were tested by using an alterative fumigant, measuring the proportion of added 14 C labelled fungi and bacteria decomposed in fumigated soils (k/sub C/), and by studying the effect of large, non-fumigated soil inocula on the flush of respiration following fumigation. These studies indicated that the failure of the method in strongly acid soils was due to inhibited decomposition of non-microbial soil organic matter by the microbial recolonizing population following fumigation. A modified method for measuring biomass C by fumigation-incubation in acid soils is proposed

  16. BIOMASS AND MICROBIAL ACTIVITY UNDER DIFFERENT FOREST COVERS

    Directory of Open Access Journals (Sweden)

    Rafael Malfitano Braga

    2016-06-01

    Full Text Available This study evaluated the soil fertility, biomass and microbial activity of the soil under forest cover of Eucalyptus grandis, Eucalyptus pilularis, Eucalyptus cloeziana and Corymbia maculata; Pinus Caribbean var. hondurensis, 40 years old, and a fragment of Semideciduous Forest, located on the campus of the Federal University of Lavras. In soil samples collected in the 0-5 cm layer were determined fertility parameters, basal respiration and microbial biomass carbon. The results showed that for the species E. grandis and E. cloeziana the carbon of biomass microbial content was higher than for any other ecosystem evaluated, and equal to those observed under native forest. In contrast, the ground under Pinus had the lowest microbiological indexes. Under C. maculata and E. pilularis the contents were intermediate for this parameter. The basal respiration of all ecosystems was equal. The fertility level was very low in all types of evaluated vegetation.

  17. Functional Enzyme-Based Approach for Linking Microbial Community Functions with Biogeochemical Process Kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Li, Minjing [School; Qian, Wei-jun [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Gao, Yuqian [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Shi, Liang [School; Liu, Chongxuan [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; School

    2017-09-28

    The kinetics of biogeochemical processes in natural and engineered environmental systems are typically described using Monod-type or modified Monod-type models. These models rely on biomass as surrogates for functional enzymes in microbial community that catalyze biogeochemical reactions. A major challenge to apply such models is the difficulty to quantitatively measure functional biomass for constraining and validating the models. On the other hand, omics-based approaches have been increasingly used to characterize microbial community structure, functions, and metabolites. Here we proposed an enzyme-based model that can incorporate omics-data to link microbial community functions with biogeochemical process kinetics. The model treats enzymes as time-variable catalysts for biogeochemical reactions and applies biogeochemical reaction network to incorporate intermediate metabolites. The sequences of genes and proteins from metagenomes, as well as those from the UniProt database, were used for targeted enzyme quantification and to provide insights into the dynamic linkage among functional genes, enzymes, and metabolites that are necessary to be incorporated in the model. The application of the model was demonstrated using denitrification as an example by comparing model-simulated with measured functional enzymes, genes, denitrification substrates and intermediates

  18. Measures of Microbial Biomass for Soil Carbon Decomposition Models

    Science.gov (United States)

    Mayes, M. A.; Dabbs, J.; Steinweg, J. M.; Schadt, C. W.; Kluber, L. A.; Wang, G.; Jagadamma, S.

    2014-12-01

    Explicit parameterization of the decomposition of plant inputs and soil organic matter by microbes is becoming more widely accepted in models of various complexity, ranging from detailed process models to global-scale earth system models. While there are multiple ways to measure microbial biomass, chloroform fumigation-extraction (CFE) is commonly used to parameterize models.. However CFE is labor- and time-intensive, requires toxic chemicals, and it provides no specific information about the composition or function of the microbial community. We investigated correlations between measures of: CFE; DNA extraction yield; QPCR base-gene copy numbers for Bacteria, Fungi and Archaea; phospholipid fatty acid analysis; and direct cell counts to determine the potential for use as proxies for microbial biomass. As our ultimate goal is to develop a reliable, more informative, and faster methods to predict microbial biomass for use in models, we also examined basic soil physiochemical characteristics including texture, organic matter content, pH, etc. to identify multi-factor predictive correlations with one or more measures of the microbial community. Our work will have application to both microbial ecology studies and the next generation of process and earth system models.

  19. Quantitative analysis of microbial biomass yield in aerobic bioreactor.

    Science.gov (United States)

    Watanabe, Osamu; Isoda, Satoru

    2013-12-01

    We have studied the integrated model of reaction rate equations with thermal energy balance in aerobic bioreactor for food waste decomposition and showed that the integrated model has the capability both of monitoring microbial activity in real time and of analyzing biodegradation kinetics and thermal-hydrodynamic properties. On the other hand, concerning microbial metabolism, it was known that balancing catabolic reactions with anabolic reactions in terms of energy and electron flow provides stoichiometric metabolic reactions and enables the estimation of microbial biomass yield (stoichiometric reaction model). We have studied a method for estimating real-time microbial biomass yield in the bioreactor during food waste decomposition by combining the integrated model with the stoichiometric reaction model. As a result, it was found that the time course of microbial biomass yield in the bioreactor during decomposition can be evaluated using the operational data of the bioreactor (weight of input food waste and bed temperature) by the combined model. The combined model can be applied to manage a food waste decomposition not only for controlling system operation to keep microbial activity stable, but also for producing value-added products such as compost on optimum condition. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  20. Enzyme and methodology for the treatment of a biomass

    Science.gov (United States)

    Thompson, Vicki S.; Thompson, David N.; Schaller, Kastli D.; Apel, William A.

    2010-06-01

    An enzyme isolated from an extremophilic microbe, and a method for utilizing same is described, and wherein the enzyme displays optimum enzymatic activity at a temperature of greater than about 80.degree. C., and a pH of less than about 2, and further may be useful in methodology including pretreatment of a biomass so as to facilitate the production of an end product.

  1. Finding Biomass Degrading Enzymes Through an Activity-Correlated Quantitative Proteomics Platform (ACPP)

    Science.gov (United States)

    Ma, Hongyan; Delafield, Daniel G.; Wang, Zhe; You, Jianlan; Wu, Si

    2017-04-01

    The microbial secretome, known as a pool of biomass (i.e., plant-based materials) degrading enzymes, can be utilized to discover industrial enzyme candidates for biofuel production. Proteomics approaches have been applied to discover novel enzyme candidates through comparing protein expression profiles with enzyme activity of the whole secretome under different growth conditions. However, the activity measurement of each enzyme candidate is needed for confident "active" enzyme assignments, which remains to be elucidated. To address this challenge, we have developed an Activity-Correlated Quantitative Proteomics Platform (ACPP) that systematically correlates protein-level enzymatic activity patterns and protein elution profiles using a label-free quantitative proteomics approach. The ACPP optimized a high performance anion exchange separation for efficiently fractionating complex protein samples while preserving enzymatic activities. The detected enzymatic activity patterns in sequential fractions using microplate-based assays were cross-correlated with protein elution profiles using a customized pattern-matching algorithm with a correlation R-score. The ACPP has been successfully applied to the identification of two types of "active" biomass-degrading enzymes (i.e., starch hydrolysis enzymes and cellulose hydrolysis enzymes) from Aspergillus niger secretome in a multiplexed fashion. By determining protein elution profiles of 156 proteins in A. niger secretome, we confidently identified the 1,4-α-glucosidase as the major "active" starch hydrolysis enzyme (R = 0.96) and the endoglucanase as the major "active" cellulose hydrolysis enzyme (R = 0.97). The results demonstrated that the ACPP facilitated the discovery of bioactive enzymes from complex protein samples in a high-throughput, multiplexing, and untargeted fashion.

  2. Development of enzymes and enzyme systems by genetic engineering to convert biomass to sugars

    Science.gov (United States)

    TITLE Development of Enzymes and Enzyme Systems by Genetic Engineering to Convert Biomass to Sugars ABSTRACT Plant cellulosic material is one of the most viable renewable resources for the world’s fuel and chemical feedstock needs. Currently ethanol derived from corn starch is the most common li...

  3. Membrane bioreactor biomass characteristics and microbial yield at ...

    African Journals Online (AJOL)

    In this study, a laboratory-scale MBR and SBR were operated in parallel and at very low MCRTs (3 d, 2 d, 1 d and 0.5 d) to assess the relative bioreactor performance, biomass characteristics, and microbial yield. This study confirmed that the MBR maintains higher solids levels and better overall effluent quality than ...

  4. Contrasting effects of biochar versus manure on soil microbial communities and enzyme activities in an Aridisol.

    Science.gov (United States)

    Elzobair, Khalid A; Stromberger, Mary E; Ippolito, James A; Lentz, Rodrick D

    2016-01-01

    Biochar can increase microbial activity, alter microbial community structure, and increase soil fertility in arid and semi-arid soils, but at relatively high rates that may be impractical for large-scale field studies. This contrasts with organic amendments such as manure, which can be abundant and inexpensive if locally available, and thus can be applied to fields at greater rates than biochar. In a field study comparing biochar and manure, a fast pyrolysis hardwood biochar (22.4 Mg ha(-1)), dairy manure (42 Mg ha(-1) dry wt), a combination of biochar and manure at the aforementioned rates, or no amendment (control) was applied to an Aridisol (n=3) in fall 2008. Plots were annually cropped to corn (Zea maize L.). Surface soils (0-30 cm) were sampled directly under corn plants in late June 2009 and early August 2012, and assayed for microbial community fatty acid methyl ester (FAME) profiles and six extracellular enzyme activities involved in soil C, N, and P cycling. Arbuscular mycorrhizal (AM) fungal colonization was assayed in corn roots in 2012. Biochar had no effect on microbial biomass, community structure, extracellular enzyme activities, or AM fungi root colonization of corn. In the short-term, manure amendment increased microbial biomass, altered microbial community structure, and significantly reduced the relative concentration of the AM fungal biomass in soil. Manure also reduced the percent root colonization of corn by AM fungi in the longer-term. Thus, biochar and manure had contrasting short-term effects on soil microbial communities, perhaps because of the relatively low application rate of biochar. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Nitrogen amendment of green waste impacts microbial community, enzyme secretion and potential for lignocellulose decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Chaowei; Harrold, Duff R.; Claypool, Joshua T.; Simmons, Blake A.; Singer, Steven W.; Simmons, Christopher W.; VanderGheynst, Jean S.

    2017-01-01

    Microorganisms involved in biomass deconstruction are an important resource for organic waste recycling and enzymes for lignocellulose bioconversion. The goals of this paper were to examine the impact of nitrogen amendment on microbial community restructuring, secretion of xylanases and endoglucanases, and potential for biomass deconstruction. Communities were cultivated aerobically at 55 °C on green waste (GW) amended with varying levels of NH4Cl. Bacterial and fungal communities were determined using 16S rRNA and ITS region gene sequencing and PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) was applied to predict relative abundance of genes involved in lignocellulose hydrolysis. Nitrogen amendment significantly increased secretion of xylanases and endoglucanases, and microbial activity; enzyme activities and cumulative respiration were greatest when nitrogen level in GW was between 4.13–4.56 wt% (g/g), but decreased with higher nitrogen levels. The microbial community shifted to one with increasing potential to decompose complex polymers as nitrogen increased with peak potential occurring between 3.79–4.45 wt% (g/g) nitrogen amendment. Finally, the results will aid in informing the management of nitrogen level to foster microbial communities capable of secreting enzymes that hydrolyze recalcitrant polymers in lignocellulose and yield rapid decomposition of green waste.

  6. Strategies for enhancing the effectiveness of metagenomic-based enzyme discovery in lignocellulytic microbial communities

    Energy Technology Data Exchange (ETDEWEB)

    DeAngelis, K.M.; Gladden, J.G.; Allgaier, M.; D' haeseleer, P.; Fortney, J.L.; Reddy, A.; Hugenholtz, P.; Singer, S.W.; Vander Gheynst, J.; Silver, W.L.; Simmons, B.; Hazen, T.C.

    2010-03-01

    Producing cellulosic biofuels from plant material has recently emerged as a key U.S. Department of Energy goal. For this technology to be commercially viable on a large scale, it is critical to make production cost efficient by streamlining both the deconstruction of lignocellulosic biomass and fuel production. Many natural ecosystems efficiently degrade lignocellulosic biomass and harbor enzymes that, when identified, could be used to increase the efficiency of commercial biomass deconstruction. However, ecosystems most likely to yield relevant enzymes, such as tropical rain forest soil in Puerto Rico, are often too complex for enzyme discovery using current metagenomic sequencing technologies. One potential strategy to overcome this problem is to selectively cultivate the microbial communities from these complex ecosystems on biomass under defined conditions, generating less complex biomass-degrading microbial populations. To test this premise, we cultivated microbes from Puerto Rican soil or green waste compost under precisely defined conditions in the presence dried ground switchgrass (Panicum virgatum L.) or lignin, respectively, as the sole carbon source. Phylogenetic profiling of the two feedstock-adapted communities using SSU rRNA gene amplicon pyrosequencing or phylogenetic microarray analysis revealed that the adapted communities were significantly simplified compared to the natural communities from which they were derived. Several members of the lignin-adapted and switchgrass-adapted consortia are related to organisms previously characterized as biomass degraders, while others were from less well-characterized phyla. The decrease in complexity of these communities make them good candidates for metagenomic sequencing and will likely enable the reconstruction of a greater number of full length genes, leading to the discovery of novel lignocellulose-degrading enzymes adapted to feedstocks and conditions of interest.

  7. Imidacloprid application changes microbial dynamics and enzymes in rice soil.

    Science.gov (United States)

    Mahapatra, Bibhab; Adak, Totan; Patil, Naveen K B; Pandi G, Guru P; Gowda, G Basana; Jambhulkar, N N; Yadav, Manoj Kumar; Panneerselvam, P; Kumar, Upendra; Munda, Sushmita; Jena, Mayabini

    2017-10-01

    Extensive use of imidacloprid in rice ecosystem may alter dynamics of microorganisms and can change soil biochemical properties. The objective of this study was to assess the effect of imidacloprid on growth and activities of microbes in tropical rice soil ecosystem. Four treatments, namely, recommended dose (at 25g a.i. ha -1 , RD), double the recommended dose (at 50g a.i. ha -1 , 2RD), five times the recommended dose (at 125g a.i. ha -1 , 5RD) & ten times the recommended dose (at 250g a.i. ha -1 , 10RD) along with control were imposed under controlled condition. Dissipation half lives of imidacloprid in soil were 19.25, 20.38, 21.65 and 33.00 days for RD, 2RD, 5RD and 10RD, respectively. In general bacteria, actinomycetes, fungi and phosphate solubilising bacteria population were disturbed due to imidacloprid application. Changes in diversity indices within bacterial community confirmed that imidacloprid application significantly affected distribution of bacteria. Total soil microbial biomass carbon content was reduced on imidacloprid application. Except dehydrogenase and alkaline phosphatase activities, all other soil enzymes namely, β-glycosidase, fluorescien diacetate hydrolase, acid phosphatase and urease responded negatively to imidacloprid application. The extent of negative effect of imidacloprid depends on dose and exposure time. This study concludes imidacloprid application had transient negative effects on soil microbes. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Research and Application of Marine Microbial Enzymes: Status and Prospects

    Science.gov (United States)

    Zhang, Chen; Kim, Se-Kwon

    2010-01-01

    Over billions of years, the ocean has been regarded as the origin of life on Earth. The ocean includes the largest range of habitats, hosting the most life-forms. Competition amongst microorganisms for space and nutrients in the marine environment is a powerful selective force, which has led to evolution. The evolution prompted the marine microorganisms to generate multifarious enzyme systems to adapt to the complicated marine environments. Therefore, marine microbial enzymes can offer novel biocatalysts with extraordinary properties. This review deals with the research and development work investigating the occurrence and bioprocessing of marine microbial enzymes. PMID:20631875

  9. Soluble inhibitors/deactivators of cellulase enzymes from lignocellulosic biomass.

    Science.gov (United States)

    Kim, Youngmi; Ximenes, Eduardo; Mosier, Nathan S; Ladisch, Michael R

    2011-04-07

    Liquid hot water, steam explosion, and dilute acid pretreatments of lignocellulose generate soluble inhibitors which hamper enzymatic hydrolysis as well as fermentation of sugars to ethanol. Toxic and inhibitory compounds will vary with pretreatment and include soluble sugars, furan derivatives (hydroxymethyl fulfural, furfural), organic acids (acetic, formic and, levulinic acid), and phenolic compounds. Their effect is seen when an increase in the concentration of pretreated biomass in a hydrolysis slurry results in decreased cellulose conversion, even though the ratio of enzyme to cellulose is kept constant. We used lignin-free cellulose, Solka Floc, combined with mixtures of soluble components released during pretreatment of wood, to prove that the decrease in the rate and extent of cellulose hydrolysis is due to a combination of enzyme inhibition and deactivation. The causative agents were extracted from wood pretreatment liquid using PEG surfactant, activated charcoal or ethyl acetate and then desorbed, recovered, and added back to a mixture of enzyme and cellulose. At enzyme loadings of either 1 or 25mg protein/g glucan, the most inhibitory components, later identified as phenolics, decreased the rate and extent of cellulose hydrolysis by half due to both inhibition and precipitation of the enzymes. Full enzyme activity occurred when the phenols were removed. Hence detoxification of pretreated woods through phenol removal is expected to reduce enzyme loadings, and therefore reduce enzyme costs, for a given level of cellulose conversion. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. The survival strategy of the soil microbial biomass

    Science.gov (United States)

    Brookes, Philip; Kemmitt, Sarah; Dungait, Jennifer; Xu, Jianming

    2014-05-01

    The soil microbial biomass (biomass) is defined as the sum of the masses of all soil microorganisms > 5000 µm3 (e.g. fungi, bacteria, protozoa, yeasts, actinomycetes and algae). Typically comprising about 1 to 3 % of total soil organic matter (SOM), the biomass might be though to live in a highly substrate-rich environment. However, the SOM is, normally, only exceedingly slowly available to the biomass. However the biomass can survive for months or even years on this meagre energy source. Not surprisingly, therefore, the biomass exhibits many features typical of a dormant or resting population. These include a very low rate of basal and specific respiration, a slow rate of cell division (about once every six months on average) and slow turnover rate. These are clearly adaptations to existing in an environment where substrate availability is very low. Yet, paradoxically, the biomass, in soils worldwide, has an adenosine triphosphate (ATP) concentration (around 10 to 12 µmol ATP g-1 biomass C), and an Adenylate Energy Charge (AEC = [(ATP) + (0.5 ADP)]/[(ATP)+(ADP) + (AMP)]) which are typical of microorganisms growing exponentially in a chemostat. This sets us several questions. Firstly, under the condition of extremely limited substrate availability in soil, why does the biomass not mainly exist as spores, becoming active, by increasing both its ATP concentration and AEC, when substrate (plant and animal residues) becomes available? We surmise that a spore strategy may put organisms at a competitive disadvantage, compared to others which are prepared to invest energy, maintaining high ATP and ATP, to take advantage of a 'food event' as soon as it becomes available. Secondly, since SOM is available (although only very slowly) to the biomass, why have some groups not evolved the ability to mineralize it faster, obtain more energy, and so gain a competitive advantage? We believe that the reason why organisms do not use this strategy is, simply, that they cannot. Our

  11. Microbial respiration per unit microbial biomass increases with carbon-to-nutrient ratios in soils

    Science.gov (United States)

    Spohn, Marie; Chodak, Marcin

    2015-04-01

    The ratio of carbon-to-nutrient in forest floors is usually much higher than the ratio of carbon-to-nutrient that soil microorganisms require for their nutrition. In order to understand how this mismatch affects carbon cycling, the respiration rate per unit soil microbial biomass carbon - the metabolic quotient (qCO2) - was studied. This was done in a field study (Spohn and Chodak, 2015) and in a meta-analysis of published data (Spohn, 2014). Cores of beech, spruce, and mixed spruce-beech forest soils were cut into slices of 1 cm from the top of the litter layer down to 5 cm in the mineral soil, and the relationship between the qCO2 and the soil carbon-to-nitrogen (C:N) and the soil carbon-to-phosphorus (C:P) ratio was analyzed. We found that the qCO2 was positively correlated with soil C:N ratio in spruce soils (R = 0.72), and with the soil C:P ratio in beech (R = 0.93), spruce (R = 0.80) and mixed forest soils (R = 0.96). We also observed a close correlation between the qCO2 and the soil C concentration in all three forest types. Yet, the qCO2 decreased less with depth than the C concentration in all three forest types, suggesting that the change in qCO2 is not only controlled by the soil C concentration. We conclude that microorganisms increase their respiration rate per unit biomass with increasing soil C:P ratio and C concentration, which adjusts the substrate to their nutritional demands in terms of stoichiometry. In an analysis of literature data, I tested the effect of the C:N ratio of soil litter layers on microbial respiration in absolute terms and per unit microbial biomass C. For this purpose, a global dataset on the microbial respiration rate per unit microbial biomass C - termed the metabolic quotient (qCO2) - was compiled form literature data. It was found that the qCO2 in the soil litter layers was positively correlated with the litter C:N ratio and negatively related with the litter nitrogen (N) concentration. The positive relation between the qCO2

  12. Functional diversity of carbohydrate-active enzymes enabling a bacterium to ferment plant biomass.

    Science.gov (United States)

    Boutard, Magali; Cerisy, Tristan; Nogue, Pierre-Yves; Alberti, Adriana; Weissenbach, Jean; Salanoubat, Marcel; Tolonen, Andrew C

    2014-11-01

    Microbial metabolism of plant polysaccharides is an important part of environmental carbon cycling, human nutrition, and industrial processes based on cellulosic bioconversion. Here we demonstrate a broadly applicable method to analyze how microbes catabolize plant polysaccharides that integrates carbohydrate-active enzyme (CAZyme) assays, RNA sequencing (RNA-seq), and anaerobic growth screening. We apply this method to study how the bacterium Clostridium phytofermentans ferments plant biomass components including glucans, mannans, xylans, galactans, pectins, and arabinans. These polysaccharides are fermented with variable efficiencies, and diauxies prioritize metabolism of preferred substrates. Strand-specific RNA-seq reveals how this bacterium responds to polysaccharides by up-regulating specific groups of CAZymes, transporters, and enzymes to metabolize the constituent sugars. Fifty-six up-regulated CAZymes were purified, and their activities show most polysaccharides are degraded by multiple enzymes, often from the same family, but with divergent rates, specificities, and cellular localizations. CAZymes were then tested in combination to identify synergies between enzymes acting on the same substrate with different catalytic mechanisms. We discuss how these results advance our understanding of how microbes degrade and metabolize plant biomass.

  13. Microbial nitrilases: versatile, spiral forming, industrial enzymes

    CSIR Research Space (South Africa)

    Thuku, RN

    2009-03-01

    Full Text Available such case is the NAD+ synthetase from Mycobacterium tuberculosis (Bellinzoni et al., 2005). This enzyme relies on an associated amino-terminal amidase domain in order to utilize glutamine as a source of nitrogen and liberate ammonia which is required...

  14. High Potential Source for Biomass Degradation Enzyme Discovery and Environmental Aspects Revealed through Metagenomics of Indian Buffalo Rumen

    Directory of Open Access Journals (Sweden)

    K. M. Singh

    2014-01-01

    Full Text Available The complex microbiomes of the rumen functions as an effective system for plant cell wall degradation, and biomass utilization provide genetic resource for degrading microbial enzymes that could be used in the production of biofuel. Therefore the buffalo rumen microbiota was surveyed using shot gun sequencing. This metagenomic sequencing generated 3.9 GB of sequences and data were assembled into 137270 contiguous sequences (contigs. We identified potential 2614 contigs encoding biomass degrading enzymes including glycoside hydrolases (GH: 1943 contigs, carbohydrate binding module (CBM: 23 contigs, glycosyl transferase (GT: 373 contigs, carbohydrate esterases (CE: 259 contigs, and polysaccharide lyases (PE: 16 contigs. The hierarchical clustering of buffalo metagenomes demonstrated the similarities and dissimilarity in microbial community structures and functional capacity. This demonstrates that buffalo rumen microbiome was considerably enriched in functional genes involved in polysaccharide degradation with great prospects to obtain new molecules that may be applied in the biofuel industry.

  15. Increased resiliency and activity of microbial mediated carbon cycling enzymes in diversified bioenergy cropping systems

    Science.gov (United States)

    Upton, R.; Bach, E.; Hofmockel, K. S.

    2017-12-01

    Microbes are mediators of soil carbon (C) and are influenced in membership and activity by nitrogen (N) fertilization and inter-annual abiotic factors. Microbial communities and their extracellular enzyme activities (EEA) are important parameters that influence ecosystem C cycling properties and are often included in microbial explicit C cycling models. In an effort to generate model relevant, empirical findings, we investigated how both microbial community structure and C degrading enzyme activity are influenced by inter-annual variability and N inputs in bioenergy crops. Our study was performed at the Comparison of Biofuel Systems field-site from 2011 to 2014, in three bioenergy cropping systems, continuous corn (CC) and two restored prairies, both fertilized (FP) and unfertilized (P). We hypothesized microbial community structure would diverge during the prairie restoration, leading to changes in C cycling enzymes over time. Using a sequencing approach (16S and ITS) we determined the bacterial and fungal community structure response to the cropping system, fertilization, and inter-annual variability. Additionally, we used EEA of β-glucosidase, cellobiohydrolase, and β-xylosidase to determine inter-annual and ecosystem impacts on microbial activity. Our results show cropping system was a main effect for microbial community structure, with corn diverging from both prairies to be less diverse. Inter-annual changes showed that a drought occurring in 2012 significantly impacted microbial community structure in both the P and CC, decreasing microbial richness. However, FP increased in microbial richness, suggesting the application of N increased resiliency to drought. Similarly, the only year in which C cycling enzymes were impacted by ecosystem was 2012, with FP supporting higher potential enzymatic activity then CC and P. The highest EEA across all ecosystems occurred in 2014, suggesting the continued root biomass and litter build-up in this no till system

  16. Microbial Community Activity And Plant Biomass Are Insensitive To Passive Warming In A Semiarid Ecosystem

    Science.gov (United States)

    Espinosa, N. J.; Fehmi, J. S.; Rasmussen, C.; Gallery, R. E.

    2017-12-01

    Soil microorganisms drive biogeochemical and nutrient cycling through the production of extracellular enzymes that facilitate organic matter decomposition and the flux of large amounts of carbon dioxide to the atmosphere. Although dryland ecosystems occupy over 40% of land cover and are projected to expand due to climate change, much of our current understanding of these processes comes from mesic temperate ecosystems. Understanding the responses of these globally predominant dryland ecosystems is therefore important yet complicated by co-occurring environmental changes. For example, the widespread and pervasive transition from grass to woody dominated landscapes is changing the hydrology, fire regimes, and carbon storage potential of semiarid ecosystems. In this study, we used a novel passive method of warming to conduct a warming experiment with added plant debris as either woodchip or biochar, to simulate different long-term carbon additions that accompany woody plant encroachment in semiarid ecosystems. The response of heterotrophic respiration, plant biomass, and microbial activity was monitored bi-annually. We hypothesized that the temperature manipulations would have direct and indirect effects on microbial activity. Warmer soils directly reduce the activity of soil extracellular enzymes through denaturation and dehydration of soil pores and indirectly through reducing microbe-available substrates and plant inputs. Overall, reduction in extracellular enzyme activity may reduce decomposition of coarse woody debris and potentially enhance soil carbon storage in semiarid ecosystems. For all seven hydrolytic enzymes examined as well as heterotrophic respiration, there was no consistent or significant response to experimental warming, regardless of seasonal climatic and soil moisture variation. The enzyme results observed here are consistent with the few other experimental results for warming in semiarid ecosystems and indicate that the controls over soil

  17. Identification of novel biomass-degrading enzymes from genomic dark matter: Populating genomic sequence space with functional annotation.

    Science.gov (United States)

    Piao, Hailan; Froula, Jeff; Du, Changbin; Kim, Tae-Wan; Hawley, Erik R; Bauer, Stefan; Wang, Zhong; Ivanova, Nathalia; Clark, Douglas S; Klenk, Hans-Peter; Hess, Matthias

    2014-08-01

    Although recent nucleotide sequencing technologies have significantly enhanced our understanding of microbial genomes, the function of ∼35% of genes identified in a genome currently remains unknown. To improve the understanding of microbial genomes and consequently of microbial processes it will be crucial to assign a function to this "genomic dark matter." Due to the urgent need for additional carbohydrate-active enzymes for improved production of transportation fuels from lignocellulosic biomass, we screened the genomes of more than 5,500 microorganisms for hypothetical proteins that are located in the proximity of already known cellulases. We identified, synthesized and expressed a total of 17 putative cellulase genes with insufficient sequence similarity to currently known cellulases to be identified as such using traditional sequence annotation techniques that rely on significant sequence similarity. The recombinant proteins of the newly identified putative cellulases were subjected to enzymatic activity assays to verify their hydrolytic activity towards cellulose and lignocellulosic biomass. Eleven (65%) of the tested enzymes had significant activity towards at least one of the substrates. This high success rate highlights that a gene context-based approach can be used to assign function to genes that are otherwise categorized as "genomic dark matter" and to identify biomass-degrading enzymes that have little sequence similarity to already known cellulases. The ability to assign function to genes that have no related sequence representatives with functional annotation will be important to enhance our understanding of microbial processes and to identify microbial proteins for a wide range of applications. © 2014 Wiley Periodicals, Inc.

  18. Respiration, microbial biomass and soil phosphatase activity in two agroecosystems and one forest in Turrialba, Costa Rica

    Directory of Open Access Journals (Sweden)

    Wuellins Durango

    2015-06-01

    Full Text Available In order to evaluate some microbiological and biochemical characteristics, a comparative study was carried out, as related to 3 different land uses in Ultisols located in Grano de Oro, Turrialba, Costa Rica. Three soil management systems were selected (two agroecosystems, coffee and coffee-banana and forest. In each farm, 4 composite soil samples were collected, on which microbial biomass and respiration, and phosphatase enzyme activity analysis were performed. The microbial biomass in forest was statistically higher (423 mg C kg-1 compared to those in agroecosystems coffee and coffee-banana (77 and 111 mg C kg-1 respectively. Microbial respiration did not show differences due to land management (580, 560 and 570 μg CO2 g-1.day-1 in coffee, coffee-banana and forest systems, respectively. It was also determined that the enzyme phosphatase activity in forest soils was statistically higher (4432 μg p-NP g-1.h-1. The data suggest that soil conditions in the forest favor greater microbial activity and phosphatase biomass, as compared to agricultural systems.

  19. Elevated atmospheric CO2 increases microbial growth rates and enzymes activity in soil

    Science.gov (United States)

    Blagodatskaya, Evgenia; Blagodatsky, Sergey; Dorodnikov, Maxim; Kuzyakov, Yakov

    2010-05-01

    Increasing the belowground translocation of assimilated carbon by plants grown under elevated CO2 can cause a shift in the structure and activity of the microbial community responsible for the turnover of organic matter in soil. We investigated the long-term effect of elevated CO2 in the atmosphere on microbial biomass and specific growth rates in root-free and rhizosphere soil. The experiments were conducted under two free air carbon dioxide enrichment (FACE) systems: in Hohenheim and Braunschweig, as well as in the intensively managed forest mesocosm of the Biosphere 2 Laboratory (B2L) in Oracle, AZ. Specific microbial growth rates (μ) were determined using the substrate-induced respiration response after glucose and/or yeast extract addition to the soil. We evaluated the effect of elevated CO2 on b-glucosidase, chitinase, phosphatase, and sulfatase to estimate the potential enzyme activity after soil amendment with glucose and nutrients. For B2L and both FACE systems, up to 58% higher μ were observed under elevated vs. ambient CO2, depending on site, plant species and N fertilization. The μ-values increased linearly with atmospheric CO2 concentration at all three sites. The effect of elevated CO2 on rhizosphere microorganisms was plant dependent and increased for: Brassica napus=Triticum aestivumyeast extract then for those growing on glucose, i.e. the effect of elevated CO2 was smoothed on rich vs. simple substrate. So, the r/K strategies ratio can be better revealed by studying growth on simple (glucose) than on rich substrate mixtures (yeast extract). After adding glucose, enzyme activities under elevated CO2 were 1.2-1.9-fold higher than under ambient CO2. This indicates the increased activity of microorganisms, which leads to accelerated C turnover in soil under elevated CO2. Our results clearly showed that the functional characteristics of the soil microbial community (i.e. specific growth rates and enzymes activity) rather than total microbial biomass

  20. Soil Rhizosphere Microbial Communities and Enzyme Activities under Organic Farming in Alabama

    Directory of Open Access Journals (Sweden)

    Zachary Senwo

    2011-07-01

    Full Text Available Evaluation of the soil rhizosphere has been limited by the lack of robust assessments that can explore the vast complex structure and diversity of soil microbial communities. Our objective was to combine fatty acid methyl ester (FAME and pyrosequencing techniques to evaluate soil microbial community structure and diversity. In addition, we evaluated biogeochemical functionality of the microbial communities via enzymatic activities of nutrient cycling. Samples were taken from a silt loam at 0–10 and 10–20 cm in an organic farm under lettuce (Lactuca sativa, potato (Solanum tuberosum, onion (Allium cepa L, broccoli (Brassica oleracea var. botrytis and Tall fescue pasture grass (Festuca arundinacea. Several FAMEs (a15:0, i15:0, i15:1, i16:0, a17:0, i17:0, 10Me17:0, cy17:0, 16:1ω5c and 18:1ω9c varied among the crop rhizospheres. FAME profiles of the soil microbial community under pasture showed a higher fungal:bacterial ratio compared to the soil under lettuce, potato, onion, and broccoli. Soil under potato showed higher sum of fungal FAME indicators compared to broccoli, onion and lettuce. Microbial biomass C and enzyme activities associated with pasture and potato were higher than the other rhizospheres. The lowest soil microbial biomass C and enzyme activities were found under onion. Pyrosequencing revealed significant differences regarding the maximum operational taxonomic units (OTU at 3% dissimilarity level (roughly corresponding to the bacterial species level at 0–10 cm (581.7–770.0 compared to 10–20 cm (563.3–727.7 soil depths. The lowest OTUs detected at 0–10 cm were under broccoli (581.7; whereas the lowest OTUs found at 10–20 cm were under potato (563.3. The predominant phyla (85% in this soil at both depths were Bacteroidetes (i.e., Flavobacteria, Sphingobacteria, and Proteobacteria. Flavobacteriaceae and Xanthomonadaceae were predominant under broccoli. Rhizobiaceae, Hyphomicrobiaceae, and Acidobacteriaceae were more

  1. Biochemical characterization of thermophilic lignocellulose degrading enzymes and their potential for biomass bioprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Zambare, Vasudeo; Zambare, Archana; Christopher, Lew P. [Center for Bioprocessing Research & Development, South Dakota School of Mines and Technology, Rapid City 57701, SD (United States); Muthukumarappan, Kasiviswanath [Center for Bioprocessing Research & Development, South Dakota State University, Brookings 57007, SD (United States)

    2011-07-01

    . This could have important implications in the enzymatic breakdown of lignocellulosic biomass for the establishment of a robust and cost-efficient process for production of cellulosic ethanol. To the best of our knowledge, this work represents the first report in literature on biochemical characterization of lignocellulose-degrading enzymes from a thermophilic microbial consortium.

  2. Enzyme Amplified Detection of Microbial Cell Wall Components

    Science.gov (United States)

    Wainwright, Norman R.

    2004-01-01

    This proposal is MBL's portion of NASA's Johnson Space Center's Astrobiology Center led by Principal Investigator, Dr. David McKay, entitled: 'Institute for the Study of Biomarkers in Astromaterials.' Dr. Norman Wainwright is the principal investigator at MBL and is responsible for developing methods to detect trace quantities of microbial cell wall chemicals using the enzyme amplification system of Limulus polyphemus and other related methods.

  3. A meta-analysis of soil microbial biomass responses to forest disturbances

    Directory of Open Access Journals (Sweden)

    Sandra Robin Holden

    2013-06-01

    Full Text Available Climate warming is likely to increase the frequency and severity of forest disturbances, with uncertain consequences for soil microbial communities and their contribution to ecosystem C dynamics. To address this uncertainty, we conducted a meta-analysis of 139 published soil microbial responses to forest disturbances. These disturbances included abiotic (fire, harvesting, storm and biotic (insect, pathogen disturbances. We hypothesized that soil microbial biomass would decline following forest disturbances, but that abiotic disturbances would elicit greater reductions in microbial biomass than biotic disturbances. In support of this hypothesis, across all published studies, disturbances reduced soil microbial biomass by an average of 29.4%. However, microbial responses differed between abiotic and biotic disturbances. Microbial responses were significantly negative following fires, harvest, and storms (48.7%, 19.1%, and 41.7% reductions in microbial biomass, respectively. In contrast, changes in soil microbial biomass following insect infestation and pathogen-induced tree mortality were non-significant, although biotic disturbances were poorly represented in the literature. When measured separately, fungal and bacterial responses to disturbances mirrored the response of the microbial community as a whole. Changes in microbial abundance following disturbance were significantly positively correlated with changes in microbial respiration. We propose that the differential effect of abiotic and biotic disturbances on microbial biomass may be attributable to differences in soil disruption and organic C removal from forests among disturbance types. Altogether, these results suggest that abiotic forest disturbances may significantly decrease soil microbial abundance, with corresponding consequences for microbial respiration. Further studies are needed on the effect of biotic disturbances on forest soil microbial communities and soil C dynamics.

  4. Microbial respiration and kinetics of extracellular enzymes activities through rhizosphere and detritusphere at agricultural site

    Science.gov (United States)

    Löppmann, Sebastian; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2014-05-01

    Rhizosphere and detritusphere are soil microsites with very high resource availability for microorganisms affecting their biomass, composition and functions. In the rhizosphere low molecular compounds occur with root exudates and low available polymeric compounds, as belowground plant senescence. In detritusphere the substrate for decomposition is mainly a polymeric material of low availability. We hypothesized that microorganisms adapted to contrasting quality and availability of substrates in the rhizosphere and detritusphere are strongly different in affinity of hydrolytic enzymes responsible for decomposition of organic compounds. According to common ecological principles easily available substrates are quickly consumed by microorganisms with enzymes of low substrate affinity (i.e. r-strategists). The slow-growing K-strategists with enzymes of high substrate affinity are better adapted for growth on substrates of low availability. Estimation of affinity of enzyme systems to the substrate is based on Michaelis-Menten kinetics, reflecting the dependency of decomposition rates on substrate amount. As enzymes-mediated reactions are substrate-dependent, we further hypothesized that the largest differences in hydrolytic activity between the rhizosphere and detritusphere occur at substrate saturation and that these differences are smoothed with increasing limitation of substrate. Affected by substrate limitation, microbial species follow a certain adaptation strategy. To achieve different depth gradients of substrate availability 12 plots on an agricultural field were established in the north-west of Göttingen, Germany: 1) 4 plots planted with maize, reflecting lower substrate availability with depth; 2) 4 unplanted plots with maize litter input (0.8 kg m-2 dry maize residues), corresponding to detritusphere; 3) 4 bare fallow plots as control. Maize litter was grubbed homogenously into the soil at the first 5 cm to ensure comparable conditions for the herbivore and

  5. Soil plus root respiration and microbial biomass following water, nitrogen, and phosphorus application at a high arctic semi desert

    DEFF Research Database (Denmark)

    Illeris, Lotte; Michelsen, Anders; Jonasson, Sven Evert

    2003-01-01

    CO2 emmision, Decomposition, Microbial biomass carbon, Soil organic matter, Tundra, Water and nutrient limitation......CO2 emmision, Decomposition, Microbial biomass carbon, Soil organic matter, Tundra, Water and nutrient limitation...

  6. Microbial degradation of coconut coir dust for biomass production

    Energy Technology Data Exchange (ETDEWEB)

    Uyenco, F.R.; Ochoa, J.A.K.

    Several species of white-rot fungi were studied for its ability to degrade the lignocellulose components of coir dust at optimum conditions. The most effective fungi was Phanerochaeta chrysosporium UPCC 4003. This organism degraded the lignocellulose complex of coir dust at a rate of about 25 percent in 4 weeks. The degradation process was carried on with minimal nitrogen concentration, coconut water supplementation and moisture levels between 85-90 percent. Shake flask cultures of the degraded coir dust using cellulolytic fungi were not effective. In fermentor cultures with Chaetomium cellulolyticum UPCC 3934, supplemented coir dust was converted into a microbial biomass product (MBP) with 15.58 percent lignin, 19.20 percent cellulose and 18.87 percent protein. More work is being done on the utilization of coir dust on a low technology.

  7. [Microbial biomass and growth kinetics of microorganisms in chernozem soils under different farm land use modes].

    Science.gov (United States)

    Blagodatskiĭ, S A; Bogomolova, I N; Blagodatskaia, E V

    2008-01-01

    The carbon content of microbial biomass and the kinetic characteristics of microbial respiration response to substrate introduction have been estimated for chernozem soils of different farm lands: arable lands used for 10, 46, and 76 years, mowed fallow land, non-mowed fallow land, and woodland. Microbial biomass and the content of microbial carbon in humus (Cmic/Corg) decreased in the following order: soils under forest cenoses-mowed fallow land-10-year arable land-46- and 75-year arable land. The amount of microbial carbon in the long-plowed horizon was 40% of its content in the upper horizon of non-mowed fallow land. Arable soils were characterized by a lower metabolic diversity of microbial community and by the highest portion of microorganisms able to grow directly on glucose introduced into soil. The effects of different scenarios of carbon sequestration in soil on the reserves and activity of microbial biomass are discussed.

  8. Mineralogical controls on microbial biomass accumulation on two tropical soils

    Science.gov (United States)

    Block, K. A.; Pena, S. A.; Katz, A.; Gottlieb, P.; Volta, A.

    2017-12-01

    The characteristics of soil organic matter (SOM) generated by microbes and associated with minerals are not well defined. This information is critical to reducing uncertainty in climate models related to C cycling and ecosystem feedbacks. The resistance to degradation of mineral-associated SOM is influenced by aggregate structure, mineral chemistry and microbial community. In this work we examine the influence of mineral composition, including amorphous coatings on the biomass yield and aggregate structure through thermogravimetric analysis, X-ray diffraction and electron microscopy. Two soil organisms, Pseudomonas phaseolicola, and Streptomyces griseosporus, were each incubated over a 72-hour period in minimal media with the cultured under the same conditions. In all samples, approximately half of the sample mass loss occurred between 175 ºC - 375 ºC, which we attribute to biomolecules accumulated on the mineral surfaces. We observed a slightly larger mass loss in the Inceptisol than in the Oxisol, most of which corresponded to compounds that underwent pyrolysis at 300 ºC. HRTEM micrographs and TEM-EDS image maps showing the spatial relationship of microbial necromass to soil minerals will be reported.

  9. Does microbial biomass affect pelagic ecosystem efficiency? An experimental study.

    Science.gov (United States)

    Wehr, J D; Le, J; Campbell, L

    1994-01-01

    Bacteria and other microorganisms in the pelagic zone participate in the recycling of organic matter and nutrients within the water column. The microbial loop is thought to enhance ecosystem efficiency through rapid recycling and reduced sinking rates, thus reducing the loss of nutrients contained in organisms remaining within the photic zone. We conducted experiments with lake communities in 5400-liter mesocosms, and measured the flux of materials and nutrients out of the water column. A factorial design manipulated 8 nutrient treatments: 4 phosphorus levels × 2 nitrogen levels. Total sedimentation rates were greatest in high-N mesocosms; within N-surplus communities, [Symbol: see text]1 µM P resulted in 50% increase in total particulate losses. P additions without added N had small effects on nutrient losses from the photic zone; +2 µM P tanks received 334 mg P per tank, yet after 14 days lost only 69 mg more particulate-P than did control communities. Nutrient treatments resulted in marked differences in phytoplankton biomass (twofold N effect, fivefold P effect in +N mesocosms only), bacterioplankton densities (twofold N-effect, twofold P effects in -N and +N mesocosms), and the relative importance of autotrophic picoplankton (maximum in high NY mesocosms). Multiple regression analysis found that of 8 plankton and water chemistry variables, the ratio of autotrophic picoplankton to total phytoplankton (measured as chlorophyll α) explained the largest portion of the total variation in sedimentation loss rates (65% of P-flux, 57% of N-flux, 26% of total flux). In each case, systems with greater relative importance of autotrophic picoplankton had significantly reduced loss rates. In contrast, greater numbers of planktonic bacteria were associated with increased sedimentation rates and lower system efficiency. We suggest that different microbial components may have contrasting effects on the presumed enhanced efficiency provided by the microbial loop.

  10. Technological advances and applications of hydrolytic enzymes for valorization of lignocellulosic biomass.

    Science.gov (United States)

    Manisha; Yadav, Sudesh Kumar

    2017-12-01

    Hydrolytic enzymes are indispensable tools in the production of various foodstuffs, drugs, and consumables owing to their applications in almost every industrial process nowadays. One of the foremost areas of interest involving the use of hydrolytic enzymes is in the transformation of lignocellulosic biomass into value added products. However, limitations of the processes due to inadequate enzyme activity and stability with a narrow range of pH and temperature optima often limit their effective usage. The innovative technologies, involving manipulation of enzyme activity and stability through mutagenesis, genetic engineering and metagenomics lead to a major leap in all the fields using hydrolytic enzymes. This article provides recent advancement towards the isolation and use of microbes for lignocellulosic biomass utilisation, microbes producing the hydrolytic enzymes, the modern age technologies used to manipulate and enhance the hydrolytic enzyme activity and the applications of such enzymes in value added products development from lignocellulosic biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Plant carbohydrate binding module enhances activity of hybrid microbial cellulase enzyme

    Directory of Open Access Journals (Sweden)

    Caitlin Siobhan Byrt

    2012-11-01

    Full Text Available A synthetic, highly active cellulase enzyme suitable for in planta production may be a valuable tool for biotechnological approaches to develop transgenic biofuel crops with improved digestibility. Here, we demonstrate that the addition of a plant derived carbohydrate binding module (CBM to a synthetic glycosyl hydrolase (GH improved the activity of the hydrolase in releasing sugar from plant biomass. A CEL-HYB1-CBM enzyme was generated by fusing a hybrid microbial cellulase, CEL-HYB1, with the carbohydrate-binding module (CBM of the tomato (Solanum lycopersicum SlCel9C1 cellulase. CEL-HYB1 and CEL-HYB1-CBM enzymes were produced in vitro using Pichia pastoris and the activity of these enzymes was tested using CMC, MUC and native crystalline cellulose assays. The presence of the CBM substantially improved the endo-glucanase activity of CEL-HYB1, especially against the native crystalline cellulose encountered in Sorghum plant cell walls. These results indicate that addition of an endogenous plant derived CBM to cellulase enzymes may enhance hydrolytic activity.

  12. Microbial and biochemical studies on phytase enzyme in some microorganisms

    International Nuclear Information System (INIS)

    Abdelbary, N.A.

    1997-01-01

    Mixed calcium and magnesium salts of phytic acid myoinositol hexa phosphoric acid are widely distributed in food stuffs of plant origin, they may bind essential proteins, phospholipids and microelements to form indigestible compounds. In this concern, destruction of phytic acid and its salts by different methods is very important, one of them is by using microbial phytase. This study aims to produce phytase enzyme from microorganisms and study the best conditions of production and purification and also the properties of the partially purified phytase. 22 figs., 29 tabs., 61 refs

  13. Where do the immunostimulatory effects of oral proteolytic enzymes ('systemic enzyme therapy') come from? Microbial proteolysis as a possible starting point.

    Science.gov (United States)

    Biziulevicius, Gediminas A

    2006-01-01

    Enteric-coated proteolytic enzyme preparations like Wobenzym and Phlogenzym are widely used for the so-called 'systemic enzyme therapy' both in humans and animals. Numerous publications reveal that oral proteolytic enzymes are able to stimulate directly the activity of immune competent cells as well as to increase efficiency of some of their products. But origins of the immunostimulatory effects of oral proteolytic enzymes are still unclear. The hypothesis described here suggests that it may be proteolysis of intestinal microorganisms that makes the immune competent cells to work in the immunostimulatory manner. The hypothesis was largely formed by several scientific observations: First, microbial lysis products (lipopolysaccharides, muropeptides and other peptidoglycan fragments, beta-glucans, etc.) are well known for their immunostimulatory action. Second, a normal human being hosts a mass of intestinal microorganisms equivalent to about 1 kg. The biomass (mainly due to naturally occurring autolysis) continuously supplies the host's organism with immunostimulatory microbial cell components. Third, the immunostimulatory effects resulting from the oral application of exogenously acting antimicrobial (lytic) enzyme preparations, such as lysozyme and lysosubtilin, are likely to be a result of the action of microbial lysis products. Fourth, cell walls of most microorganisms contain a considerable amount of proteins/peptides, a possible target for exogenous proteolytic enzymes. In fact, several authors have already shown that a number of proteases possess an ability to lyse the microbial cells in vitro. Fifth, the pretreatment of microbial cells (at least of some species) in vitro with proteolytic enzymes makes them more sensitive to the lytic action of lysozyme and, otherwise, pretreatment with lysozyme makes them more susceptible to proteolytic degradation. Sixth, exogenous proteases, when in the intestines, may participate in final steps of food-protein digestion

  14. Strategies for enzyme saving during saccharification of pretreated lignocellulo-starch biomass: effect of enzyme dosage and detoxification chemicals

    Directory of Open Access Journals (Sweden)

    M.G. Mithra

    2017-08-01

    Full Text Available Two strategies leading to enzyme saving during saccharification of pretreated lignocellulo-starch biomass (LCSB was investigated which included reducing enzyme dosage by varying their levels in enzyme cocktails and enhancing the fermentable sugar yield in enzyme-reduced systems using detoxification chemicals. Time course release of reducing sugars (RS during 24–120 h was significantly higher when an enzyme cocktail containing full dose of cellulase (16 FPU/g cellulose along with half dose each of xylanase (1.5 mg protein/g hemicelluloses and Stargen (12.5 μl/g biomass was used to saccharify conventional dilute sulphuric acid (DSA pretreated biomass compared to a parallel system where only one-fourth the dose of the latter two enzymes was used. The reduction in RS content in the 120 h saccharified mash to the extent of 3–4 g/L compared to the system saccharified with full complement of the three enzymes could be overcome considerably by supplementing the system (half dose of two enzymes with detoxification chemical mix incorporating Tween 20, PEG 4000 and sodium borohydride. Microwave (MW-assisted DSA pretreated biomass on saccharification with enzyme cocktail having full dose of cellulase and half dose of Stargen along with detoxification chemicals gave significantly higher RS yield than DSA pretreated system saccharified using three enzymes. The study showed that xylanase could be eliminated during saccharification of MW-assisted DSA pretreated biomass without affecting RS yield when detoxification chemicals were also supplemented. The Saccharification Efficiency and Overall Conversion Efficiency were also high for the MW-assisted DSA pretreated biomass. Since whole slurry saccharifcation of pretreated biomass is essential to conserve fermentable sugars in LCSB saccharification, detoxification of soluble inhibitors is equally important as channelling out of insoluble lignin remaining in the residue. As one of the major factors contributing

  15. GENPLAT: an automated platform for biomass enzyme discovery and cocktail optimization.

    Science.gov (United States)

    Walton, Jonathan; Banerjee, Goutami; Car, Suzana

    2011-10-24

    The high cost of enzymes for biomass deconstruction is a major impediment to the economic conversion of lignocellulosic feedstocks to liquid transportation fuels such as ethanol. We have developed an integrated high throughput platform, called GENPLAT, for the discovery and development of novel enzymes and enzyme cocktails for the release of sugars from diverse pretreatment/biomass combinations. GENPLAT comprises four elements: individual pure enzymes, statistical design of experiments, robotic pipeting of biomass slurries and enzymes, and automated colorimeteric determination of released Glc and Xyl. Individual enzymes are produced by expression in Pichia pastoris or Trichoderma reesei, or by chromatographic purification from commercial cocktails or from extracts of novel microorganisms. Simplex lattice (fractional factorial) mixture models are designed using commercial Design of Experiment statistical software. Enzyme mixtures of high complexity are constructed using robotic pipeting into a 96-well format. The measurement of released Glc and Xyl is automated using enzyme-linked colorimetric assays. Optimized enzyme mixtures containing as many as 16 components have been tested on a variety of feedstock and pretreatment combinations. GENPLAT is adaptable to mixtures of pure enzymes, mixtures of commercial products (e.g., Accellerase 1000 and Novozyme 188), extracts of novel microbes, or combinations thereof. To make and test mixtures of ˜10 pure enzymes requires less than 100 μg of each protein and fewer than 100 total reactions, when operated at a final total loading of 15 mg protein/g glucan. We use enzymes from several sources. Enzymes can be purified from natural sources such as fungal cultures (e.g., Aspergillus niger, Cochliobolus carbonum, and Galerina marginata), or they can be made by expression of the encoding genes (obtained from the increasing number of microbial genome sequences) in hosts such as E. coli, Pichia pastoris, or a filamentous fungus such

  16. Microbial conversion of biomass into bio-based polymers.

    Science.gov (United States)

    Kawaguchi, Hideo; Ogino, Chiaki; Kondo, Akihiko

    2017-12-01

    The worldwide market for plastics is rapidly growing, and plastics polymers are typically produced from petroleum-based chemicals. The overdependence on petroleum-based chemicals for polymer production raises economic and environmental sustainability concerns. Recent progress in metabolic engineering has expanded fermentation products from existing aliphatic acids or alcohols to include aromatic compounds. This diversity provides an opportunity to expand the development and industrial uses of high-performance bio-based polymers. However, most of the biomonomers are produced from edible sugars or starches that compete directly with food and feed uses. The present review focuses on recent progress in the microbial conversion of biomass into bio-based polymers, in which fermentative products from renewable feedstocks serve as biomonomers for the synthesis of bio-based polymers. In particular, the production of biomonomers from inedible lignocellulosic feedstocks by metabolically engineered microorganisms and the synthesis of bio-based engineered plastics from the biological resources are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. A Compilation of Global Soil Microbial Biomass Carbon, Nitrogen, and Phosphorus Data

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides the concentrations of soil microbial biomass carbon (C), nitrogen (N) and phosphorus (P), soil organic carbon, total nitrogen, and total...

  18. Bioaugmentation for Electricity Generation from Corn Stover Biomass Using Microbial Fuel Cells

    KAUST Repository

    Wang, Xin; Feng, Yujie; Wang, Heming; Qu, Youpeng; Yu, Yanling; Ren, Nanqi; Li, Nan; Wang, Elle; Lee, He; Logan, Bruce E.

    2009-01-01

    of microbial consortia specifically acclimated for biomass breakdown. A mixed culture that was developed to have a high saccharification rate with corn stover was added to singlechamber, air-cathode MFCs acclimated for power production using glucose. The MFC

  19. Enzyme Characterization of Cellulase and Hemicellulases Component Enzymes and Saccharification of Ionic Liquid Pretreated Lignocellulosic Biomass

    Science.gov (United States)

    Lignocellulosic biomass is comprised of cellulose and hemicellulose, sources of polysaccharides, and lignin, a macromolecule with extensive aromaticity. Terrestrial biomass can provide a renewable carbon based feedstock for fuel and chemical production. However, recalcitrance of biomass to deconstru...

  20. A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xiaofeng [ORNL; Thornton, Peter E [ORNL; Post, Wilfred M [ORNL

    2013-01-01

    Soil microbes play a pivotal role in regulating land-atmosphere interactions; the soil microbial biomass carbon (C), nitrogen (N), phosphorus (P) and C:N:P stoichiometry are important regulators for soil biogeochemical processes; however, the current knowledge on magnitude, stoichiometry, storage, and spatial distribution of global soil microbial biomass C, N, and P is limited. In this study, 3087 pairs of data points were retrieved from 281 published papers and further used to summarize the magnitudes and stoichiometries of C, N, and P in soils and soil microbial biomass at global- and biome-levels. Finally, global stock and spatial distribution of microbial biomass C and N in 0-30 cm and 0-100 cm soil profiles were estimated. The results show that C, N, and P in soils and soil microbial biomass vary substantially across biomes; the fractions of soil nutrient C, N, and P in soil microbial biomass are 1.6% in a 95% confidence interval of (1.5%-1.6%), 2.9% in a 95% confidence interval of (2.8%-3.0%), and 4.4% in a 95% confidence interval of (3.9%-5.0%), respectively. The best estimates of C:N:P stoichiometries for soil nutrients and soil microbial biomass are 153:11:1, and 47:6:1, respectively, at global scale, and they vary in a wide range among biomes. Vertical distribution of soil microbial biomass follows the distribution of roots up to 1 m depth. The global stock of soil microbial biomass C and N were estimated to be 15.2 Pg C and 2.3 Pg N in the 0-30 cm soil profiles, and 21.2 Pg C and 3.2 Pg N in the 0-100 cm soil profiles. We did not estimate P in soil microbial biomass due to data shortage and insignificant correlation with soil total P and climate variables. The spatial patterns of soil microbial biomass C and N were consistent with those of soil organic C and total N, i.e. high density in northern high latitude, and low density in low latitudes and southern hemisphere.

  1. Microbial Biomass Changes during Decomposition of Plant Residues in a Lixisol

    Directory of Open Access Journals (Sweden)

    Kachaka, SK.

    2003-01-01

    Full Text Available A lixisol was amended with four different alley cropping species: Senna siamea, Leucaena leucocephala, Dactyladenia barteri and Flemingia macrophylla. Soil samples were incubated for 140 days at 25 °C and the soil microbial biomass was determined by the ninhydrin extraction method along the incubation period. The soil microbial biomass values ranged between 80 and 600 mg.kg-1 and followed, in all cases, the decreasing order: Leucaena> Senna> Flemingia> Dactyladenia.

  2. Microbial enzyme activities of peatland soils in south central Alaska lowlands

    Science.gov (United States)

    Microbial enzyme activities related to carbon and nutrient acquisition were measured on Alaskan peatland soils as indicators of nutrient limitation and biochemical sustainability. Peat decomposition is mediated by microorganisms and enzymes that in turn are limited by various ph...

  3. Biomassa microbiana e atividade enzimática em solos sob vegetação nativa e sistemas agrícolas anuais e perenes na região de Primavera do Leste (MT Microbial biomass and enzyme activities in soils under native vegetation and under annual and perennial cropping systems at the Primavera do Leste region - Mato Grosso State

    Directory of Open Access Journals (Sweden)

    M. Matsuoka

    2003-06-01

    microbial biomass and enzyme activities in soils under native vegetation (known as "Cerradão" and in soils under annual and perennial cropping systems. Soil samples were collected, at the beginning of the rainy season, at two depths (0-5 and 5-20 cm in areas under a vineyard (row and between rows, annual crops (soybean and native vegetation. The parameters evaluated were soil microbial biomass carbon (MBC, readily mineralizable carbon (microbial respiration and the soil enzymes beta-glucosidase, acid phosphatase and arylsulfatase. In relation to the native area, at the two depths reductions of up to 70% in the MBC were observed in the annual and perennial cropping systems. The soil management conducted in the area between the rows of the vineyard along with the presence of the grass Eleusine indica, as a cover crop, favored an increase in the levels of readily mineralizable carbon, and the beta-glucosidase and arilsulfatase activities. The P content of the soil under Cerradão, at the two depths, reduced the levels of acid phosphatase activities as compared to other places of the Cerrados region. Nevertheless, at the 0-5 cm depth the phosphatase activity of the Cerradão area was greater than in the annual crops, showing the importance of this enzyme on organic P cycling in native ecosystems. The results confirmed the sensibility of microbiological and biochemical parameters to evaluate changes that occurred in soil as a consequence of different management systems.

  4. Thermoascus aurantiacus is a promising source of enzymes for biomass deconstruction under thermophilic conditions

    Directory of Open Access Journals (Sweden)

    McClendon Shara D

    2012-07-01

    Full Text Available Abstract Background Thermophilic fungi have attracted increased interest for their ability to secrete enzymes that deconstruct biomass at high temperatures. However, development of thermophilic fungi as enzyme producers for biomass deconstruction has not been thoroughly investigated. Comparing the enzymatic activities of thermophilic fungal strains that grow on targeted biomass feedstocks has the potential to identify promising candidates for strain development. Thielavia terrestris and Thermoascus aurantiacus were chosen for characterization based on literature precedents. Results Thermoascus aurantiacus and Thielavia terrestris were cultivated on various biomass substrates and culture supernatants assayed for glycoside hydrolase activities. Supernatants from both cultures possessed comparable glycoside hydrolase activities when incubated with artificial biomass substrates. In contrast, saccharifications of ionic liquid pretreated switchgrass (Panicum virgatum revealed that T. aurantiacus enzymes released more glucose than T. terrestris enzymes over a range of protein mass loadings and temperatures. Temperature-dependent saccharifications demonstrated that the T. aurantiacus proteins retained higher levels of activity compared to a commercial enzyme mixture sold by Novozymes, Cellic CTec2, at elevated temperatures. Enzymes secreted by T. aurantiacus released glucose at similar protein loadings to CTec2 on dilute acid, ammonia fiber expansion, or ionic liquid pretreated switchgrass. Proteomic analysis of the T. aurantiacus culture supernatant revealed dominant glycoside hydrolases from families 5, 7, 10, and 61, proteins that are key enzymes in commercial cocktails. Conclusions T. aurantiacus produces a complement of secreted proteins capable of higher levels of saccharification of pretreated switchgrass than T. terrestris enzymes. The T. aurantiacus enzymatic cocktail performs at the same level as commercially available enzymatic cocktail for

  5. Thermoascus aurantiacus is a promising source of enzymes for biomass deconstruction under thermophilic conditions.

    Science.gov (United States)

    McClendon, Shara D; Batth, Tanveer; Petzold, Christopher J; Adams, Paul D; Simmons, Blake A; Singer, Steven W

    2012-07-28

    Thermophilic fungi have attracted increased interest for their ability to secrete enzymes that deconstruct biomass at high temperatures. However, development of thermophilic fungi as enzyme producers for biomass deconstruction has not been thoroughly investigated. Comparing the enzymatic activities of thermophilic fungal strains that grow on targeted biomass feedstocks has the potential to identify promising candidates for strain development. Thielavia terrestris and Thermoascus aurantiacus were chosen for characterization based on literature precedents. Thermoascus aurantiacus and Thielavia terrestris were cultivated on various biomass substrates and culture supernatants assayed for glycoside hydrolase activities. Supernatants from both cultures possessed comparable glycoside hydrolase activities when incubated with artificial biomass substrates. In contrast, saccharifications of ionic liquid pretreated switchgrass (Panicum virgatum) revealed that T. aurantiacus enzymes released more glucose than T. terrestris enzymes over a range of protein mass loadings and temperatures. Temperature-dependent saccharifications demonstrated that the T. aurantiacus proteins retained higher levels of activity compared to a commercial enzyme mixture sold by Novozymes, Cellic CTec2, at elevated temperatures. Enzymes secreted by T. aurantiacus released glucose at similar protein loadings to CTec2 on dilute acid, ammonia fiber expansion, or ionic liquid pretreated switchgrass. Proteomic analysis of the T. aurantiacus culture supernatant revealed dominant glycoside hydrolases from families 5, 7, 10, and 61, proteins that are key enzymes in commercial cocktails. T. aurantiacus produces a complement of secreted proteins capable of higher levels of saccharification of pretreated switchgrass than T. terrestris enzymes. The T. aurantiacus enzymatic cocktail performs at the same level as commercially available enzymatic cocktail for biomass deconstruction, without strain development or

  6. Combinatorial discovery of enzymes with utility in biomass transformation

    Science.gov (United States)

    Fox, Brian G; Elsen, Nathaniel L

    2015-02-03

    Methods for the cell-free identification of polypeptide and polypeptide combinations with utility in biomass transformation, as well as specific novel polypeptides and cell-free systems containing polypeptide combinations discovered by such methods are disclosed.

  7. Effect of citric acid and microbial phytase on serum enzyme activities ...

    African Journals Online (AJOL)

    Effect of citric acid and microbial phytase on serum enzyme activities and plasma minerals retention in broiler chicks. ... African Journal of Biotechnology ... An experiment was conducted to study the effect of microbial phytase supplementation and citric acid in broiler chicks fed corn-soybean meal base diets on enzyme ...

  8. High levels of maize in broiler diets with or without microbial enzyme ...

    African Journals Online (AJOL)

    Over the feeding period (21 d), there was an increase in feed intake as maize inclusion level (MIL) increased in diets, while supplementation with microbial enzyme improved feed intake only in the MM diet. There was an improvement in live weight (LW) in chickens with increased MIL in their diets. The microbial enzyme ...

  9. Ambient ultraviolet radiation in the Arctic reduces root biomass and alters microbial community composition but has no effects on microbial biomass

    DEFF Research Database (Denmark)

    Rinnan, R.; Keinänen, M.M.; Kasurinen, A.

    2005-01-01

    We assessed the effects of ambient solar ultraviolet (UV) radiation on below-ground parameters in an arctic heath in north-eastern Greenland. We hypothesized that the current UV fluxes would reduce root biomass and mycorrhizal colonization and that these changes would lead to lower soil microbial...... biomass and altered microbial community composition. These hypotheses were tested on cored soil samples from a UV reduction experiment with three filter treatments (Mylar, 60% UV-B reduction; Lexan, up to 90% UV-B reduction+UV-A reduction; UV transparent Teflon, filter control) and an open control...... treatment in two study sites after 3 years' manipulation. Reduction of both UV-A and UV-B radiation caused over 30% increase in the root biomass of Vaccinium uliginosum, which was the dominant plant species. UV reduction had contrasting effects on ericoid mycorrhizal colonization of V. uliginosum roots...

  10. Alterations in soil microbial community composition and biomass following agricultural land use change.

    Science.gov (United States)

    Zhang, Qian; Wu, Junjun; Yang, Fan; Lei, Yao; Zhang, Quanfa; Cheng, Xiaoli

    2016-11-04

    The effect of agricultural land use change on soil microbial community composition and biomass remains a widely debated topic. Here, we investigated soil microbial community composition and biomass [e.g., bacteria (B), fungi (F), Arbuscular mycorrhizal fungi (AMF) and Actinomycete (ACT)] using phospholipid fatty acids (PLFAs) analysis, and basal microbial respiration in afforested, cropland and adjacent uncultivated soils in central China. We also investigated soil organic carbon and nitrogen (SOC and SON), labile carbon and nitrogen (LC and LN), recalcitrant carbon and nitrogen (RC and RN), pH, moisture, and temperature. Afforestation averaged higher microbial PLFA biomass compared with cropland and uncultivated soils with higher values in top soils than deep soils. The microbial PLFA biomass was strongly correlated with SON and LC. Higher SOC, SON, LC, LN, moisture and lower pH in afforested soils could be explained approximately 87.3% of total variation of higher total PLFAs. Afforestation also enhanced the F: B ratios compared with cropland. The basal microbial respiration was higher while the basal microbial respiration on a per-unit-PLFA basis was lower in afforested land than adjacent cropland and uncultivated land, suggesting afforestation may increase soil C utilization efficiency and decrease respiration loss in afforested soils.

  11. Biomass degrading enzymes from Penicillium – cloning and characterization

    DEFF Research Database (Denmark)

    Krogh, Kristian Bertel Rømer

    2008-01-01

    . Størstedelen af den forskning, der er foregået indenfor cellulosenedbrydende enzymer er med enzymer produceret af svampen Trichoderma reesei. Under mit Ph.D.studium har jeg undersøgt biomassenedbrydende enzymer fra forskellige Penicillium arter. Hovedvægten af forskningen har været indenfor...... cellulosenedbrydende enzymer.Penicillium arter er blandt de hyppigst forekommende mikroorganismer i skovjord, hvori der netop nedbrydes store mængder plantemateriale. Ved en sammenligning af produktionen af biomassenedbrydende enzymer fra forskellige Penicillium arter blev der fundet flere interessante enzymsystemer...... reaktionstid ved den enzymatisk hydrolyse hvor de enkelte sukkermolekyler bliver frigivet, hvorfor enzymstabilitet er særdeles væsentlig, når et rentabelt cellulosenedbrydende enzymsystem skal sammensættes. De nødvendige enzymer for en fuldstændig hydrolyse af cellulose blev oprenset, klonet, produceret...

  12. Recent trends in ionic liquid (IL) tolerant enzymes and microorganisms for biomass conversion.

    Science.gov (United States)

    Portillo, Maria Del Carmen; Saadeddin, Anas

    2015-01-01

    Second generation biofuel production depends on lignocellulosic (LC) biomass transformation into simple sugars and their subsequent fermentation into alcohols. However, the main obstacle in this process is the efficient breakdown of the recalcitrant cellulose to sugar monomers. Hence, efficient feedstock pretreatment and hydrolysis are necessary to produce a cost effective biofuel. Recently, ionic liquids (ILs) have been recognized as a promising solvent able to dissolve different biomass feedstocks, providing higher sugar yields. However, most of the hydrolytic enzymes and microorganisms are inactivated, completely or partially, in the presence of even low concentrations of IL, making necessary the discovery of novel hydrolytic enzymes and fermentative microorganisms that are tolerant to ILs. In this review, the current state and the challenges of using ILs as a pretreatment of LC biomass was evaluated, underlining the advances in the discovery and identification of new IL-tolerant enzymes and microorganisms that could improve the bioprocessing of biomass to fuels and chemicals.

  13. Early-branching Gut Fungi Possess A Large, And Comprehensive Array Of Biomass-Degrading Enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, Kevin V.; Haitjema, Charles; Henske, John K.; Gilmore, Sean P.; Borges-Rivera, Diego; Lipzen, Anna; Brewer, Heather M.; Purvine, Samuel O.; Wright, Aaron T.; Theodorou, Michael K.; Grigoriev, Igor V.; Regev, Aviv; Thompson, Dawn; O' Malley, Michelle A.

    2016-03-11

    The fungal kingdom is the source of almost all industrial enzymes in use for lignocellulose bioprocessing. Its more primitive members, however, remain relatively unexploited. We developed a systems-level approach that integrates RNA-Seq, proteomics, phenotype and biochemical studies of relatively unexplored early-branching free-living fungi. Anaerobic gut fungi isolated from herbivores produce a large array of biomass-degrading enzymes that synergistically degrade crude, unpretreated plant biomass, and are competitive with optimized commercial preparations from Aspergillus and Trichoderma. Compared to these model platforms, gut fungal enzymes are unbiased in substrate preference due to a wealth of xylan-degrading enzymes. These enzymes are universally catabolite repressed, and are further regulated by a rich landscape of noncoding regulatory RNAs. Furthermore, we identified several promising sequence divergent enzyme candidates for lignocellulosic bioprocessing.

  14. Production of microbial biomass protein by sequential culture fermentation of Arachniotus sp., and Candida utilis

    International Nuclear Information System (INIS)

    Ahmed, S.; Ahmad, F.; Hashmi, A.S.

    2010-01-01

    Sequential culture fermentation by Arachniotus sp. at 35 deg. C for 72 h and followed by Candida utilis fermentation at 35 deg. C for 72 h more resulted in higher production of microbial biomass protein. 6% (w/v) corn stover, 0.0075% CaCl/sub 2/.2H/sub 2/O, 0.005% MgSO/sub 4/.7H/sub 2/O, 0.01% KH/sub 2/PO/sub 4/, C:N ratio of 30:1 and 1% molasses gave higher microbial biomass protein production by the sequential culture fermentation of Arachniotus sp., and C. utilis. The mixed microbial biomass protein produced in the 75-L fermentor contained 16.41%, 23.51%, 10.9%, 12.11% and 0.12% true protein, crude protein, crude fiber, ash and RNA content, respectively. The amino acid profile of final mixed microbial biomass protein showed that it was enriched with essential amino acids. Thus, the potential utilization of corn stover can minimize the cost for growth of these microorganisms and enhance microbial biomass protein production by sequential culture fermentation. (author)

  15. Microbial biomass in compost during colonization of Agaricus bisporus

    NARCIS (Netherlands)

    Vos, Aurin M.; Heijboer, Amber; Boschker, Henricus T.S.; Bonnet, Barbara; Lugones, Luis G.; Wösten, Han A.B.

    2017-01-01

    Agaricus bisporus mushrooms are commercially produced on a microbe rich compost. Here, fungal and bacterial biomass was quantified in compost with and without colonization by A. bisporus. Chitin content, indicative of total fungal biomass, increased during a 26-day period from 576 to 779 nmol

  16. The contribution of microbial biomass to the adsorption of radioiodide in soils

    International Nuclear Information System (INIS)

    Bors, J.; Martens, R.

    1992-01-01

    The contribution of soil microbial biomass to the sorption and migration of radiodide in soil has been investigated. In two arable soils, a chernozem and a podzol, the numbers of microorganisms were either reduced by biocidal treatment or increased by addition of nutrient sources. Radioiodide ( 125 I - ) adsorption by the pretreated soils was measured, relative to untreated soil samples, in aqueous suspensions containing iodide by estimating the distribution coefficient (K d ) after eight days of incubation. A reduction of biomass to about 10% of its original level drastically decreased adsorption. Elevated levels of microbial biomass (up to 126%) increased adsorption but the increase was not always correlated with biomass level. A closer correlation between soil biomass and adsorption was observed when the concentration of radioiodide in the suspension was increased by several orders of magnitude. Conditions such as anarobiosis and elevated temperatures which are known to influence the activity and survival of microorganisms also exerted an effect on radioiodide sorption. In accordance with the relationship described here between radioiodide adsorption and microbial biomass, migration in water saturated soil columns was influenced by the quantity of microorganisms present. However, high biomass contents obviously caused anaerobic conditions in the system, leading to increased leaching of radioiodide. (author)

  17. The contribution of microbial biomass to the adsorption of radioiodide in soils

    Energy Technology Data Exchange (ETDEWEB)

    Bors, J. (Niedersaechsisches Inst. fuer Radiooekologie, Hannover (Germany)); Martens, R. (Bundesforschungsanstalt fuer Landwirtschaft, Braunschweig (Germany). Inst. fuer Biochemie des Bodens)

    1992-01-01

    The contribution of soil microbial biomass to the sorption and migration of radiodide in soil has been investigated. In two arable soils, a chernozem and a podzol, the numbers of microorganisms were either reduced by biocidal treatment or increased by addition of nutrient sources. Radioiodide ({sup 125}I{sup -}) adsorption by the pretreated soils was measured, relative to untreated soil samples, in aqueous suspensions containing iodide by estimating the distribution coefficient (K{sub d}) after eight days of incubation. A reduction of biomass to about 10% of its original level drastically decreased adsorption. Elevated levels of microbial biomass (up to 126%) increased adsorption but the increase was not always correlated with biomass level. A closer correlation between soil biomass and adsorption was observed when the concentration of radioiodide in the suspension was increased by several orders of magnitude. Conditions such as anarobiosis and elevated temperatures which are known to influence the activity and survival of microorganisms also exerted an effect on radioiodide sorption. In accordance with the relationship described here between radioiodide adsorption and microbial biomass, migration in water saturated soil columns was influenced by the quantity of microorganisms present. However, high biomass contents obviously caused anaerobic conditions in the system, leading to increased leaching of radioiodide. (author).

  18. Microbial biomass in faeces of dairy cows affected by a nitrogen deficient diet.

    Science.gov (United States)

    Jost, Daphne Isabel; Aschemann, Martina; Lebzien, Peter; Joergensen, Rainer Georg; Sundrum, Albert

    2013-04-01

    Since more than half of the faecal nitrogen (N) originates from microbial N, the objective of the study was to develop a method for quantitatively detecting microbial biomass and portion of living microorganisms in dairy cattle faeces, including bacteria, fungi and archaea. Three techniques were tested: (1) the chloroform fumigation extraction (CFE) method, (2) detection of the fungal cell-membrane component ergosterol and (3) analysis of the cell wall components fungal glucosamine and bacterial muramic acid. In a second step, an N deficient (ND) and an N balanced (NB) diets were compared with respect to the impacts on faecal C and N fractions, microbial indices and digestibility. The mean values of microbial biomass C and N concentrations averaged around 37 and 4.9 mg g(-1) DM, respectively. Ergosterol, together with fungal glucosamine and bacterial muramic acid, revealed a 25% fungal C in relation to the total microbial C content in dairy cattle faeces. Changes in ruminal N supply showed significant effects on faecal composition. Faecal concentrations of NDF, hemicelluloses and undigested dietary N and the total C/N ratio were significantly higher in ND treatment compared to the NB treatment. N deficiency was reflected also by a higher microbial biomass C/N ratio. It was concluded that the assessment of microbial indices provides valuable information with respect to diet effects on faecal composition and the successive decomposition. Further studies should be conducted to explore the potentials for minimising nutrient losses from faeces.

  19. Forest wildfire increases soil microbial biomass C:N:P stoichiometry in long-term effects

    Science.gov (United States)

    Zhou, Xuan

    2017-04-01

    Boreal forest fire strongly influences carbon (C) stock in permafrost soil by thawing permafrost table which accelerated microbe decomposition process. We studied soil microbial biomass stoichiometry in a gradient of four (3 yr, 25 yr, 46 yr and more than 100 yr) ages since fire in Canada boreal forest. Soil microbial biomass (MB) in long-term after fire is significantly higher than in short-term. MB C and nitrogen (N) were mainly dominated by corresponding soil element concentration and inorganic P, while MB phosphorus (P) changes were fully explained by soil N. Fire ages and soil temperature positively increased MB N and P, indicating the negative impact by fire. Microbial C:N:P gradually increased with fire ages from 15:2:1 to 76:6:1 and then drop down to 17:2:1 in the oldest fire ages. The degree of homeostasis of microbial C, N and P are close to 1 indicates non-homoeostasis within microbial elements, while it of C:N:P is close to 8 shows a strong homeostasis within element ratios and proved microbial stoichiometric ratio is not driven by soil element ratios. In conclusion, i) microbial biomass elements highly depends on soil nutrient supply rather than fire ages; ii) wildfire decreased microbial stoichiometry immediate after fire but increased with years after fire (YF) which at least 3 times higher than > 100 fire ages; iii) microbial biomass C, N and P deviated from strict homeostasis but C:N:P ratio reflects stronger homeostasis.

  20. Application of next-generation sequencing methods for microbial monitoring of anaerobic digestion of lignocellulosic biomass.

    Science.gov (United States)

    Bozan, Mahir; Akyol, Çağrı; Ince, Orhan; Aydin, Sevcan; Ince, Bahar

    2017-09-01

    The anaerobic digestion of lignocellulosic wastes is considered an efficient method for managing the world's energy shortages and resolving contemporary environmental problems. However, the recalcitrance of lignocellulosic biomass represents a barrier to maximizing biogas production. The purpose of this review is to examine the extent to which sequencing methods can be employed to monitor such biofuel conversion processes. From a microbial perspective, we present a detailed insight into anaerobic digesters that utilize lignocellulosic biomass and discuss some benefits and disadvantages associated with the microbial sequencing techniques that are typically applied. We further evaluate the extent to which a hybrid approach incorporating a variation of existing methods can be utilized to develop a more in-depth understanding of microbial communities. It is hoped that this deeper knowledge will enhance the reliability and extent of research findings with the end objective of improving the stability of anaerobic digesters that manage lignocellulosic biomass.

  1. Short-term parasite-infection alters already the biomass, activity and functional diversity of soil microbial communities

    Science.gov (United States)

    Li, Jun-Min; Jin, Ze-Xin; Hagedorn, Frank; Li, Mai-He

    2014-11-01

    Native parasitic plants may be used to infect and control invasive plants. We established microcosms with invasive Mikania micrantha and native Coix lacryma-jobi growing in mixture on native soils, with M. micrantha being infected by parasitic Cuscuta campestris at four intensity levels for seven weeks to estimate the top-down effects of plant parasitism on the biomass and functional diversity of soil microbial communities. Parasitism significantly decreased root biomass and altered soil microbial communities. Soil microbial biomass decreased, but soil respiration increased at the two higher infection levels, indicating a strong stimulation of soil microbial metabolic activity (+180%). Moreover, a Biolog assay showed that the infection resulted in a significant change in the functional diversity indices of soil microbial communities. Pearson correlation analysis indicated that microbial biomass declined significantly with decreasing root biomass, particularly of the invasive M. micrantha. Also, the functional diversity indices of soil microbial communities were positively correlated with soil microbial biomass. Therefore, the negative effects on the biomass, activity and functional diversity of soil microbial community by the seven week long plant parasitism was very likely caused by decreased root biomass and root exudation of the invasive M. micrantha.

  2. The hemicellulolytic enzyme arsenal of Thermobacillus xylanilyticus depends on the composition of biomass used for growth

    Directory of Open Access Journals (Sweden)

    Rakotoarivonina Harivony

    2012-12-01

    Full Text Available Abstract Background Thermobacillus xylanilyticus is a thermophilic and highly xylanolytic bacterium. It produces robust and stable enzymes, including glycoside hydrolases and esterases, which are of special interest for the development of integrated biorefineries. To investigate the strategies used by T. xylanilyticus to fractionate plant cell walls, two agricultural by-products, wheat bran and straw (which differ in their chemical composition and tissue organization, were used in this study and compared with glucose and xylans. The ability of T. xylanilyticus to grow on these substrates was studied. When the bacteria used lignocellulosic biomass, the production of enzymes was evaluated and correlated with the initial composition of the biomass, as well as with the evolution of any residues during growth. Results Our results showed that T. xylanilyticus is not only able to use glucose and xylans as primary carbon sources but can also use wheat bran and straw. The chemical compositions of both lignocellulosic substrates were modified by T. xylanilyticus after growth. The bacteria were able to consume 49% and 20% of the total carbohydrates in bran and straw, respectively, after 24 h of growth. The phenolic and acetyl ester contents of these substrates were also altered. Bacterial growth on both lignocellulosic biomasses induced hemicellulolytic enzyme production, and xylanase was the primary enzyme secreted. Debranching activities were differentially produced, as esterase activities were more important to bacterial cultures grown on wheat straw; arabinofuranosidase production was significantly higher in bacterial cultures grown on wheat bran. Conclusion This study provides insight into the ability of T. xylanilyticus to grow on abundant agricultural by-products, which are inexpensive carbon sources for enzyme production. The composition of the biomass upon which the bacteria grew influenced their growth, and differences in the biomass provided

  3. Mycelial growth interactions and mannan-degrading enzyme ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-05-18

    May 18, 2009 ... enzymes (Frost and Moss, 1987). However, microbial enzymes are more in use due to cheaper substrates and ease of process modification. In microbial enzyme and biomass production, defined mixed culture method in which more than one organism grows simultaneously can result in increased biomass ...

  4. Microbial Functional Diversity, Biomass and Activity as Affected by Soil Surface Mulching in a Semiarid Farmland.

    Directory of Open Access Journals (Sweden)

    Yufang Shen

    Full Text Available Mulching is widely used to increase crop yield in semiarid regions in northwestern China, but little is known about the effect of different mulching systems on the microbial properties of the soil, which play an important role in agroecosystemic functioning and nutrient cycling. Based on a 4-year spring maize (Zea mays L. field experiment at Changwu Agricultural and Ecological Experimental Station, Shaanxi, we evaluated the responses of soil microbial activity and crop to various management systems. The treatments were NMC (no mulching with inorganic N fertilizer, GMC (gravel mulching with inorganic N fertilizer, FMC (plastic-film mulching with inorganic N fertilizer and FMO (plastic-film mulching with inorganic N fertilizer and organic manure addition. The results showed that the FMO soil had the highest contents of microbial biomass carbon and nitrogen, dehydrogenase activity, microbial activity and Shannon diversity index. The relative use of carbohydrates and amino acids by microbes was highest in the FMO soil, whereas the relative use of polymers, phenolic compounds and amines was highest in the soil in the NMC soil. Compared with the NMC, an increased but no significant trend of biomass production and nitrogen accumulation was observed under the GMC treatment. The FMC and FMO led a greater increase in biomass production than GMC and NMC. Compare with the NMC treatment, FMC increased grain yield, maize biomass and nitrogen accumulation by 62.2, 62.9 and 86.2%, but no significant difference was found between the FMO and FMC treatments. Some soil biological properties, i.e. microbial biomass carbon, microbial biomass nitrogen, being sensitive to the mulching and organic fertilizer, were significant correlated with yield and nitrogen availability. Film mulching over gravel mulching can serve as an effective measure for crop production and nutrient cycling, and plus organic fertilization additions may thus have improvements in the biological

  5. Assessment of tillage systems in organic farming: influence of soil structure on microbial biomass. First results

    OpenAIRE

    Vian, Jean François; Peigné, Joséphine; Chaussod, Rémi; Roger-Estrade, Jean

    2007-01-01

    Soil tillage modifies environmental conditions of soil microorganisms and their ability to release nitrogen. We compare the influence of reduced tillage (RT) and mouldboard ploughing (MP) on the soil microbial functioning in organic farming. In order to connect soil structure generated by these tillage systems on the soil microbial biomass we adopt a particular sampling scheme based on the morphological characterisation of the soil structure by the description of the soil profile. This method...

  6. Metal impacts on microbial biomass in the anoxic sediments of a contaminated lake

    Energy Technology Data Exchange (ETDEWEB)

    Gough, Heidi L.; Dahl, Amy L.; Nolan, Melissa A.; Gaillard, Jean-Francois; Stahl, David A.

    2008-04-26

    Little is known about the long-term impacts of metal contamination on the microbiota of anoxic lake sediments. In this study, we examined microbial biomass and metals (arsenic, cadmium, chromium, copper, iron, lead, manganese, and zinc) in the sediments of Lake DePue, a backwater lake located near a former zinc smelter. Sediment core samples were examined using two independent measures for microbial biomass (total microscopic counts and total phospholipid-phosphate concentrations), and for various fractions of each metal (pore water extracts, sequential extractions, and total extracts of all studied metals and zinc speciation by X-ray absorption fine structure (XAFS). Zinc concentrations were up to 1000 times higher than reported for sediments in the adjacent Illinois River, and ranged from 21,400 mg/kg near the source to 1,680 mg/kg near the river. However, solid metal fractions were not well correlated with pore water concentrations, and were not good predictors of biomass concentrations. Instead, biomass, which varied among sites by as much as two-times, was inversely correlated with concentrations of pore water zinc and arsenic as established by multiple linear regression. Monitoring of other parameters known to naturally influence biomass in sediments (e.g., organic carbon concentrations, nitrogen concentrations, pH, sediment texture, and macrophytes) revealed no differences that could explain observed biomass trends. This study provides strong support for control of microbial abundance by pore water metal concentrations in contaminated freshwater sediments.

  7. Ecological Insights into the Dynamics of Plant Biomass-Degrading Microbial Consortia.

    Science.gov (United States)

    Jiménez, Diego Javier; Dini-Andreote, Francisco; DeAngelis, Kristen M; Singer, Steven W; Salles, Joana Falcão; van Elsas, Jan Dirk

    2017-10-01

    Plant biomass (PB) is an important resource for biofuel production. However, the frequent lack of efficiency of PB saccharification is still an industrial bottleneck. The use of enzyme cocktails produced from PB-degrading microbial consortia (PB-dmc) is a promising approach to optimize this process. Nevertheless, the proper use and manipulation of PB-dmc depends on a sound understanding of the ecological processes and mechanisms that exist in these communities. This Opinion article provides an overview of arguments as to how spatiotemporal nutritional fluxes influence the successional dynamics and ecological interactions (synergism versus competition) between populations in PB-dmc. The themes of niche occupancy, 'sugar cheaters', minimal effective consortium, and the Black Queen Hypothesis are raised as key subjects that foster our appraisal of such systems. Here we provide a conceptual framework that describes the critical topics underpinning the ecological basis of PB-dmc, giving a solid foundation upon which further prospective experimentation can be developed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Diversity of Microbial Carbohydrate-Active enZYmes (CAZYmes) Associated with Freshwater and Soil Samples from Caatinga Biome.

    Science.gov (United States)

    Andrade, Ana Camila; Fróes, Adriana; Lopes, Fabyano Álvares Cardoso; Thompson, Fabiano L; Krüger, Ricardo Henrique; Dinsdale, Elizabeth; Bruce, Thiago

    2017-07-01

    Semi-arid and arid areas occupy about 33% of terrestrial ecosystems. However, little information is available about microbial diversity in the semi-arid Caatinga, which represents a unique biome that extends to about 11% of the Brazilian territory and is home to extraordinary diversity and high endemism level of species. In this study, we characterized the diversity of microbial genes associated with biomass conversion (carbohydrate-active enzymes, or so-called CAZYmes) in soil and freshwater of the Caatinga. Our results showed distinct CAZYme profiles in the soil and freshwater samples. Glycoside hydrolases and glycosyltransferases were the most abundant CAZYme families, with glycoside hydrolases more dominant in soil (∼44%) and glycosyltransferases more abundant in freshwater (∼50%). The abundances of individual glycoside hydrolase, glycosyltransferase, and carbohydrate-binding module subfamilies varied widely between soil and water samples. A predominance of glycoside hydrolases was observed in soil, and a higher contribution of enzymes involved in carbohydrate biosynthesis was observed in freshwater. The main taxa associated with the CAZYme sequences were Planctomycetia (relative abundance in soil, 29%) and Alphaproteobacteria (relative abundance in freshwater, 27%). Approximately 5-7% of CAZYme sequences showed low similarity with sequences deposited in non-redundant databases, suggesting putative homologues. Our findings represent a first attempt to describe specific microbial CAZYme profiles for environmental samples. Characterizing these enzyme groups associated with the conversion of carbohydrates in nature will improve our understanding of the significant roles of enzymes in the carbon cycle. We identified a CAZYme signature that can be used to discriminate between soil and freshwater samples, and this signature may be related to the microbial species adapted to the habitat. The data show the potential ecological roles of the CAZYme repertoire and

  9. Ethanol, biomass and enzyme production for whey waste abatement

    Energy Technology Data Exchange (ETDEWEB)

    Maiorella, B L; Castillo, F J

    1984-08-01

    Methods of ethanol, biomass, and lactase production are evaluated for the treatment of whey waste. These processes can all reduce the whey BOD load of 35,000 ppm by at least 90%. Plant designs are evaluated at the scale of 25,000 l whey per day, corresponding to the output of a typical independent cheese factory. Ethanol production is the most practical of the alternatives evaluated and the waste treatment would add 7.3 US cents per kilogramme to the cost of cheese manufacture. 57 references.

  10. Enzyme Enhanced Protein Recovery from Green Biomass Pulp

    DEFF Research Database (Denmark)

    Dotsenko, Gleb; Lange, Lene

    2017-01-01

    of local protein resources based on upgrade from e.g. green plant biomass. In present work we consider different strategies for protein recovery from white clover and ryegrass screw press pulps, using aqueous extraction, as well as carbohydrases and proteases enhanced extraction. Protein recovery...... in these studies was determined as a yield of solubilized protein with regard to the total protein in a screw press pulp. Aqueous extraction at pH 8.0 resulted in approx. 40 % protein recovery, while proteases application (Savinase 16.0L, Novozymes) enabled twice higher protein yield. Application of plant cell...... pulp proteolyzates, generated by Savinase 16.0L protease....

  11. Effects of vegetation type on microbial biomass carbon and nitrogen in subalpine mountain forest soils.

    Science.gov (United States)

    Ravindran, Anita; Yang, Shang-Shyng

    2015-08-01

    Microbial biomass plays an important role in nutrient transformation and conservation of forest and grassland ecosystems. The objective of this study was to determine the microbial biomass among three vegetation types in subalpine mountain forest soils of Taiwan. Tatachia is a typical high-altitude subalpine temperate forest ecosystem in Taiwan with an elevation of 1800-3952 m and consists of three vegetation types: spruce, hemlock, and grassland. Three plots were selected in each vegetation type. Soil samples were collected from the organic layer, topsoil, and subsoil. Microbial biomass carbon (Cmic) was determined by the chloroform fumigation-extraction method, and microbial biomass nitrogen (Nmic) was determined from the total nitrogen (Ntot) released during fumigation-extraction. Bacteria, actinomycetes, fungi, cellulolytic microbes, phosphate-solubilizing microbes, and nitrogen-fixing microbes were also counted. The Cmic and Nmic were highest in the surface soil and declined with the soil depth. These were also highest in spruce soils, followed by in hemlock soils, and were lowest in grassland soils. Cmic and Nmic had the highest values in the spring season and the lowest values in the winter season. Cmic and Nmic had significantly positive correlations with total organic carbon (Corg) and Ntot. Contributions of Cmic and Nmic, respectively, to Corg and Ntot indicated that the microbial biomass was immobilized more in spruce and hemlock soils than in grassland soils. Microbial populations of the tested vegetation types decreased with increasing soil depth. Cmic and Nmic were high in the organic layer and decreased with the depth of layers. These values were higher for spruce and hemlock soils than for grassland soils. Positive correlations were observed between Cmic and Nmic and between Corg and Ntot. Copyright © 2014. Published by Elsevier B.V.

  12. Trichoderma Biofertilizer Links to Altered Soil Chemistry, Altered Microbial Communities, and Improved Grassland Biomass

    Directory of Open Access Journals (Sweden)

    Fengge Zhang

    2018-04-01

    Full Text Available In grasslands, forage and livestock production results in soil nutrient deficits as grasslands typically receive no nutrient inputs, leading to a loss of grassland biomass. The application of mature compost has been shown to effectively increase grassland nutrient availability. However, research on fertilization regime influence and potential microbial ecological regulation mechanisms are rarely conducted in grassland soil. We conducted a two-year experiment in meadow steppe grasslands, focusing on above- and belowground consequences of organic or Trichoderma biofertilizer applications and potential soil microbial ecological mechanisms underlying soil chemistry and microbial community responses. Grassland biomass significantly (p = 0.019 increased following amendment with 9,000 kg ha−1 of Trichoderma biofertilizer (composted cattle manure + inoculum compared with other assessed organic or biofertilizer rates, except for BOF3000 (fertilized with 3,000 kg ha−1 biofertilizer. This rate of Trichoderma biofertilizer treatment increased soil antifungal compounds that may suppress pathogenic fungi, potentially partially responsible for improved grassland biomass. Nonmetric multidimensional scaling (NMDS revealed soil chemistry and fungal communities were all separated by different fertilization regime. Trichoderma biofertilizer (9,000 kg ha−1 increased relative abundances of Archaeorhizomyces and Trichoderma while decreasing Ophiosphaerella. Trichoderma can improve grassland biomass, while Ophiosphaerella has the opposite effect as it may secrete metabolites causing grass necrosis. Correlations between soil properties and microbial genera showed plant-available phosphorus may influence grassland biomass by increasing Archaeorhizomyces and Trichoderma while reducing Ophiosphaerella. According to our structural equation modeling (SEM, Trichoderma abundance was the primary contributor to aboveground grassland biomass. Our results suggest Trichoderma

  13. Trichoderma Biofertilizer Links to Altered Soil Chemistry, Altered Microbial Communities, and Improved Grassland Biomass.

    Science.gov (United States)

    Zhang, Fengge; Huo, Yunqian; Cobb, Adam B; Luo, Gongwen; Zhou, Jiqiong; Yang, Gaowen; Wilson, Gail W T; Zhang, Yingjun

    2018-01-01

    In grasslands, forage and livestock production results in soil nutrient deficits as grasslands typically receive no nutrient inputs, leading to a loss of grassland biomass. The application of mature compost has been shown to effectively increase grassland nutrient availability. However, research on fertilization regime influence and potential microbial ecological regulation mechanisms are rarely conducted in grassland soil. We conducted a two-year experiment in meadow steppe grasslands, focusing on above- and belowground consequences of organic or Trichoderma biofertilizer applications and potential soil microbial ecological mechanisms underlying soil chemistry and microbial community responses. Grassland biomass significantly ( p = 0.019) increased following amendment with 9,000 kg ha -1 of Trichoderma biofertilizer (composted cattle manure + inoculum) compared with other assessed organic or biofertilizer rates, except for BOF3000 (fertilized with 3,000 kg ha -1 biofertilizer). This rate of Trichoderma biofertilizer treatment increased soil antifungal compounds that may suppress pathogenic fungi, potentially partially responsible for improved grassland biomass. Nonmetric multidimensional scaling (NMDS) revealed soil chemistry and fungal communities were all separated by different fertilization regime. Trichoderma biofertilizer (9,000 kg ha -1 ) increased relative abundances of Archaeorhizomyces and Trichoderma while decreasing Ophiosphaerella . Trichoderma can improve grassland biomass, while Ophiosphaerella has the opposite effect as it may secrete metabolites causing grass necrosis. Correlations between soil properties and microbial genera showed plant-available phosphorus may influence grassland biomass by increasing Archaeorhizomyces and Trichoderma while reducing Ophiosphaerella . According to our structural equation modeling (SEM), Trichoderma abundance was the primary contributor to aboveground grassland biomass. Our results suggest Trichoderma

  14. Characterization of three plant biomass-degrading microbial consortia by metagenomics- and metasecretomics-based approaches

    NARCIS (Netherlands)

    Jiménez, Diego Javier; Brossi, Maria Julia de Lima; Schuckel, Julia; Kracun, Stjepan Kresimir; Willats, William George Tycho; van Elsas, Jan Dirk

    2016-01-01

    The selection of microbes by enrichment on plant biomass has been proposed as an efficient way to develop new strategies for lignocellulose saccharification. Here, we report an in-depth analysis of soil-derived microbial consortia that were trained to degrade once-used wheat straw (WS1-M),

  15. Soil microbial biomass, activity and community composition along altitudinal gradients in the High Arctic (Billefjorden, Svalbard)

    Czech Academy of Sciences Publication Activity Database

    Kotas, P.; Šantrůčková, H.; Elster, Josef; Kaštovská, E.

    2018-01-01

    Roč. 15, č. 6 (2018), s. 1879-1894 ISSN 1726-4170 R&D Projects: GA MŠk(CZ) LM2015075 Grant - others:GA MŠk LM2010009 Institutional support: RVO:67985939 Keywords : ecosystem * High Arctic * soil microbial biomass Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 3.851, year: 2016

  16. Winter climate change affects growing-season soil microbial biomass and activity in northern hardwood forests

    Science.gov (United States)

    Jorge Durán; Jennifer L. Morse; Peter M. Groffman; John L. Campbell; Lynn M. Christenson; Charles T. Driscoll; Timothy J. Fahey; Melany C. Fisk; Myron J. Mitchell; Pamela H. Templer

    2014-01-01

    Understanding the responses of terrestrial ecosystems to global change remains a major challenge of ecological research. We exploited a natural elevation gradient in a northern hardwood forest to determine how reductions in snow accumulation, expected with climate change, directly affect dynamics of soil winter frost, and indirectly soil microbial biomass and activity...

  17. Effects of 1-Alkyl-3-Methylimidazolium Nitrate on Soil Physical and Chemical Properties and Microbial Biomass.

    Science.gov (United States)

    Zhou, Tongtong; Wang, Jun; Ma, Zhiqiang; Du, Zhongkun; Zhang, Cheng; Zhu, Lusheng; Wang, Jinhua

    2018-05-01

    Ionic liquids (ILs), also called room temperature ILs, are widely applied in many fields on the basis of their unique physical and chemical properties. However, numerous ILs may be released into and gradually accumulate in the environment due to their extensive use and absolute solubility. The effects of 1-alkyl-3-methylimidazolium nitrate ([C n mim]NO 3 , n = 4, 6, 8) on soil pH, conductivity, cation exchange capacity, microbial biomass carbon, and microbial biomass nitrogen were examined at the doses of 1, 10, and 100 mg/kg on days 10, 20, 30, and 40. The results demonstrated that the soil pH decreased and the conductivity increased with increasing IL doses. No significant differences were observed in the soil cation-exchange capacity. All three of the tested ILs decreased the soil microbial biomass carbon and nitrogen. Additionally, there were few differences among the ILs with different alkyl chain lengths on the tested indicators except for the microbial biomass nitrogen. The present study addressed a gap in the literature regarding the effects of the aforementioned ILs with different alkyl side chains on the physicochemical properties of soil, and the results could provide the basic data for future studies on their toxicity to soil organisms, such as earthworms and soil microbes.

  18. Recombinant protein production facility for fungal biomass-degrading enzymes using the yeast Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Mireille eHaon

    2015-09-01

    Full Text Available Filamentous fungi are the predominant source of lignocellulolytic enzymes used in industry for the transformation of plant biomass into high-value molecules and biofuels. The rapidity with which new fungal genomic and post-genomic data are being produced is vastly outpacing functional studies. This underscores the critical need for developing platforms dedicated to the recombinant expression of enzymes lacking confident functional annotation, a prerequisite to their functional and structural study. In the last decade, the yeast Pichia pastoris has become increasingly popular as a host for the production of fungal biomass-degrading enzymes, and particularly carbohydrate-active enzymes (CAZymes. This study aimed at setting-up a platform to easily and quickly screen the extracellular expression of biomass-degrading enzymes in Pichia pastoris. We first used three fungal glycoside hydrolases that we previously expressed using the protocol devised by Invitrogen to try different modifications of the original protocol. Considering the gain in time and convenience provided by the new protocol, we used it as basis to set-up the facility and produce a suite of fungal CAZymes (glycoside hydrolases, carbohydrate esterases and auxiliary activity enzyme families out of which more than 70% were successfully expressed. The platform tasks range from gene cloning to automated protein purifications and activity tests, and is open to the CAZyme users’ community.

  19. Soil microbial biomass, activity and community composition along altitudinal gradients in the High Arctic (Billefjorden, Svalbard

    Directory of Open Access Journals (Sweden)

    P. Kotas

    2018-03-01

    Full Text Available The unique and fragile High Arctic ecosystems are vulnerable to global climate warming. The elucidation of factors driving microbial distribution and activity in arctic soils is essential for a comprehensive understanding of ecosystem functioning and its response to environmental change. The goals of this study were to investigate microbial biomass and activity, microbial community structure (MCS, and their environmental controls in soils along three elevational transects in the coastal mountains of Billefjorden, central Svalbard. Soils from four different altitudes (25, 275, 525 and 765 m above sea level were analyzed for a suite of characteristics including temperature regimes, organic matter content, base cation availability, moisture, pH, potential respiration, and microbial biomass and community structure using phospholipid fatty acids (PLFAs. We observed significant spatial heterogeneity of edaphic properties among transects, resulting in transect-specific effects of altitude on most soil parameters. We did not observe any clear elevation pattern in microbial biomass, and microbial activity revealed contrasting elevational patterns between transects. We found relatively large horizontal variability in MCS (i.e., between sites of corresponding elevation in different transects, mainly due to differences in the composition of bacterial PLFAs, but also a systematic altitudinal shift in MCS related to different habitat preferences of fungi and bacteria, which resulted in high fungi-to-bacteria ratios at the most elevated sites. The biological soil crusts on these most elevated, unvegetated sites can host microbial assemblages of a size and activity comparable to those of the arctic tundra ecosystem. The key environmental factors determining horizontal and vertical changes in soil microbial properties were soil pH, organic carbon content, soil moisture and Mg2+ availability.

  20. Soil microbial biomass, activity and community composition along altitudinal gradients in the High Arctic (Billefjorden, Svalbard)

    Science.gov (United States)

    Kotas, Petr; Šantrůčková, Hana; Elster, Josef; Kaštovská, Eva

    2018-03-01

    The unique and fragile High Arctic ecosystems are vulnerable to global climate warming. The elucidation of factors driving microbial distribution and activity in arctic soils is essential for a comprehensive understanding of ecosystem functioning and its response to environmental change. The goals of this study were to investigate microbial biomass and activity, microbial community structure (MCS), and their environmental controls in soils along three elevational transects in the coastal mountains of Billefjorden, central Svalbard. Soils from four different altitudes (25, 275, 525 and 765 m above sea level) were analyzed for a suite of characteristics including temperature regimes, organic matter content, base cation availability, moisture, pH, potential respiration, and microbial biomass and community structure using phospholipid fatty acids (PLFAs). We observed significant spatial heterogeneity of edaphic properties among transects, resulting in transect-specific effects of altitude on most soil parameters. We did not observe any clear elevation pattern in microbial biomass, and microbial activity revealed contrasting elevational patterns between transects. We found relatively large horizontal variability in MCS (i.e., between sites of corresponding elevation in different transects), mainly due to differences in the composition of bacterial PLFAs, but also a systematic altitudinal shift in MCS related to different habitat preferences of fungi and bacteria, which resulted in high fungi-to-bacteria ratios at the most elevated sites. The biological soil crusts on these most elevated, unvegetated sites can host microbial assemblages of a size and activity comparable to those of the arctic tundra ecosystem. The key environmental factors determining horizontal and vertical changes in soil microbial properties were soil pH, organic carbon content, soil moisture and Mg2+ availability.

  1. Microbial production of raw starch digesting enzymes | Sun | African ...

    African Journals Online (AJOL)

    Raw starch digesting enzymes refer to enzymes that can act directly on raw starch granules below the gelatinization temperature of starch. With the view of energy-saving, a worldwide interest has been focused on raw starch digesting enzymes in recent years, especially since the oil crisis of 1973. Raw starch digesting ...

  2. Microbial biomass and activity in subsurface sediments from Vejen, Denmark

    DEFF Research Database (Denmark)

    Albrechtsen, Hans-Jørgen; Winding, Anne

    1992-01-01

    Subsurface sediment samples were collected from 4 to 31 m below landsurface in glacio-fluvial sediments from the Quaternary period. The samples were described in terms of pH, electrical conductivity, chloride concentration, organic matter content, and grain size distribution. Viable counts...... for mineralization of 14C-labelled compounds varied from 0.2 to 2.3 × 10−3 ml/(dpm · day) for acetate, and from 0 to 2.0 × 10−3 ml/(dpm · day) for phenol. Sediment texture influenced the total number of bacteria and potential for mineralization; with increasing content of clay and silt and decreasing content of sand...... a single abiotic parameter that could explain the variation of size and activity of the microbial population. The microbial data obtained in these geologically young sediments were compared to literature data from older sediments, and this comparison showed that age and type of geological formation might...

  3. Microbial Biodiesel Production by Direct Transesterification of Rhodotorula glutinis Biomass

    Directory of Open Access Journals (Sweden)

    I-Ching Kuan

    2018-04-01

    Full Text Available (1 Background: Lipids derived from oleaginous microbes have become promising alternative feedstocks for biodiesel. This is mainly because the lipid production rate from microbes is one to two orders of magnitude higher than those of energy crops. However, the conventional process for converting these lipids to biodiesel still requires a large amount of energy and organic solvents; (2 Methods: In this study, an oleaginous yeast, Rhodotorula glutinis, was used for direct transesterification without lipid pre-extraction to produce biodiesel, using sulfuric acid or sodium hydroxide as a catalyst. Such processes decreased the amount of energy and organic solvents required simultaneously; (3 Results: When 1 g of dry R. glutinis biomass was subject to direct transesterification in 20 mL of methanol catalyzed by 0.6 M H2SO4 at 70 °C for 20 h, the fatty acid methyl ester (FAME yield reached 111%. Using the same amount of biomass and methanol loading but catalyzed by 1 g/L NaOH at 70 °C for 10 h, the FAME yield reached 102%. The acid-catalyzed process showed a superior moisture tolerance; when the biomass contained 70% moisture, the FAME yield was 43% as opposed to 34% of the base-catalyzed counterpart; (4 Conclusions: Compared to conventional transesterification, which requires lipid pre-extraction, direct transesterification not only simplifies the process and shortens the reaction time, but also improves the FAME yield.

  4. Applying functional metagenomics to search for novel lignocellulosic enzymes in a microbial consortium derived from a thermophilic composting phase of sugarcane bagasse and cow manure.

    Science.gov (United States)

    Colombo, Lívia Tavares; de Oliveira, Marcelo Nagem Valério; Carneiro, Deisy Guimarães; de Souza, Robson Assis; Alvim, Mariana Caroline Tocantins; Dos Santos, Josenilda Carlos; da Silva, Cynthia Canêdo; Vidigal, Pedro Marcus Pereira; da Silveira, Wendel Batista; Passos, Flávia Maria Lopes

    2016-09-01

    Environments where lignocellulosic biomass is naturally decomposed are sources for discovery of new hydrolytic enzymes that can reduce the high cost of enzymatic cocktails for second-generation ethanol production. Metagenomic analysis was applied to discover genes coding carbohydrate-depleting enzymes from a microbial laboratory subculture using a mix of sugarcane bagasse and cow manure in the thermophilic composting phase. From a fosmid library, 182 clones had the ability to hydrolyse carbohydrate. Sequencing of 30 fosmids resulted in 12 contigs encoding 34 putative carbohydrate-active enzymes belonging to 17 glycosyl hydrolase (GH) families. One third of the putative proteins belong to the GH3 family, which includes β-glucosidase enzymes known to be important in the cellulose-deconstruction process but present with low activity in commercial enzyme preparations. Phylogenetic analysis of the amino acid sequences of seven selected proteins, including three β-glucosidases, showed low relatedness with protein sequences deposited in databases. These findings highlight microbial consortia obtained from a mixture of decomposing biomass residues, such as sugar cane bagasse and cow manure, as a rich resource of novel enzymes potentially useful in biotechnology for saccharification of lignocellulosic substrate.

  5. Microbial plankton communities in the coastal southeastern Black Sea: biomass, composition and trophic interactions

    Directory of Open Access Journals (Sweden)

    Ulgen Aytan

    2018-04-01

    Full Text Available Summary: We investigated biomass and composition of the pico-, nano- and microplankton communities in a coastal station of the southeastern Black Sea during 2011. We also examined trophic interactions within these communities from size-fractionated dilution experiments in February, June and December. Autotrophic and heterotrophic biomasses showed similar seasonal trends, with a peak in June, but heterotrophs dominated throughout the year. Autotrophic biomass was mainly comprised by nanoflagellates and diatoms in the first half of the year, and by dinoflagellates and Synechococcus spp. in the second half. Heterotrophic biomass was mostly dominated by heterotrophic bacteria, followed by nanoflagellates and microzooplankton. Dilution experiments suggest that nano- and microzooplankton were significant consumers of autotrophs and heterotrophic bacteria. More than 100% of bacterial production was consumed by grazers in all experiments, while 46%, 21% and 30% of daily primary production were consumed in February, June and December, respectively. In February, autotrophs were the main carbon source, but in December, it was heterotrophic bacteria. An intermediate situation was observed in June, with similar carbon flows from autotrophs and heterotrophic bacteria. Size-fraction dilution experiments suggested that heterotrophic nanoflagellates are an important link between the high heterotrophic bacterial biomass and microzooplankton. In summary, these results indicate that nano- and microzooplankton were responsible for comprising a significant fraction of total microbial plankton biomass, standing stocks, growth and grazing processes. This suggests that in 2011, the microbial food web was an important compartment of the planktonic food web in the coastal southeastern Black Sea. Keywords: Phytoplankton, Microzooplankton, Carbon biomass, Microbial food web, Grazing, Black Sea

  6. Production by Tobacco Transplastomic Plants of Recombinant Fungal and Bacterial Cell-Wall Degrading Enzymes to Be Used for Cellulosic Biomass Saccharification

    Directory of Open Access Journals (Sweden)

    Paolo Longoni

    2015-01-01

    Full Text Available Biofuels from renewable plant biomass are gaining momentum due to climate change related to atmospheric CO2 increase. However, the production cost of enzymes required for cellulosic biomass saccharification is a major limiting step in this process. Low-cost production of large amounts of recombinant enzymes by transgenic plants was proposed as an alternative to the conventional microbial based fermentation. A number of studies have shown that chloroplast-based gene expression offers several advantages over nuclear transformation due to efficient transcription and translation systems and high copy number of the transgene. In this study, we expressed in tobacco chloroplasts microbial genes encoding five cellulases and a polygalacturonase. Leaf extracts containing the recombinant enzymes showed the ability to degrade various cell-wall components under different conditions, singly and in combinations. In addition, our group also tested a previously described thermostable xylanase in combination with a cellulase and a polygalacturonase to study the cumulative effect on the depolymerization of a complex plant substrate. Our results demonstrate the feasibility of using transplastomic tobacco leaf extracts to convert cell-wall polysaccharides into reducing sugars, fulfilling a major prerequisite of large scale availability of a variety of cell-wall degrading enzymes for biofuel industry.

  7. Production by Tobacco Transplastomic Plants of Recombinant Fungal and Bacterial Cell-Wall Degrading Enzymes to Be Used for Cellulosic Biomass Saccharification.

    Science.gov (United States)

    Longoni, Paolo; Leelavathi, Sadhu; Doria, Enrico; Reddy, Vanga Siva; Cella, Rino

    2015-01-01

    Biofuels from renewable plant biomass are gaining momentum due to climate change related to atmospheric CO2 increase. However, the production cost of enzymes required for cellulosic biomass saccharification is a major limiting step in this process. Low-cost production of large amounts of recombinant enzymes by transgenic plants was proposed as an alternative to the conventional microbial based fermentation. A number of studies have shown that chloroplast-based gene expression offers several advantages over nuclear transformation due to efficient transcription and translation systems and high copy number of the transgene. In this study, we expressed in tobacco chloroplasts microbial genes encoding five cellulases and a polygalacturonase. Leaf extracts containing the recombinant enzymes showed the ability to degrade various cell-wall components under different conditions, singly and in combinations. In addition, our group also tested a previously described thermostable xylanase in combination with a cellulase and a polygalacturonase to study the cumulative effect on the depolymerization of a complex plant substrate. Our results demonstrate the feasibility of using transplastomic tobacco leaf extracts to convert cell-wall polysaccharides into reducing sugars, fulfilling a major prerequisite of large scale availability of a variety of cell-wall degrading enzymes for biofuel industry.

  8. Assessment of natural sepiolite on cadmium stabilization, microbial communities, and enzyme activities in acidic soil.

    Science.gov (United States)

    Sun, Yuebing; Sun, Guohong; Xu, Yingming; Wang, Lin; Liang, Xuefeng; Lin, Dasong; Hu, Fazhi

    2013-05-01

    A pot trial was conducted to assess the efficiency of sepiolite-induced cadmium (Cd) immobilization in ultisoils. Under Cd concentrations of 1.25, 2.5, and 5 mg kg(-1), the available Cd in the soil after the application of 1-10 % sepiolite decreased by a maximum of 44.4, 23.0, and 17.0 %, respectively, compared with no sepiolite treatments. The increase in the values of soil enzyme activities and microbial number proved that a certain metabolic recovery occurred after sepiolite treatment. The dry biomass of spinach (Spinacia oleracea) increased with increasing sepiolite concentration in the soil. However, the concentration (dry weight) of Cd in the spinach shoots decreased with the increase in sepiolite dose, with maximum reduction of 92.2, 90.0, and 84.9 %, respectively, compared with that of unamended soils. Under a Cd level of 1.25 mg kg(-1), the Cd concentration in the edible parts of spinach at 1 % sepiolite amendment was lower than 0.2 mg kg(-1) fresh weight, the maximum permissible concentration (MPC) of Cd in vegetable. Even at higher Cd concentrations (2.5 and 5 mg kg(-1)), safe spinach was produced when the sepiolite treatment was up to 5 %. The results showed that sepiolite-assisted remediation could potentially succeed on a field scale by decreasing Cd entry into the food chain.

  9. Microbial Enzyme Activity and Carbon Cycling in Grassland Soil Fractions

    Science.gov (United States)

    Allison, S. D.; Jastrow, J. D.

    2004-12-01

    Extracellular enzymes are necessary to degrade complex organic compounds present in soils. Using physical fractionation procedures, we tested whether old soil carbon is spatially isolated from degradative enzymes across a prairie restoration chronosequence in Illinois, USA. We found that carbon-degrading enzymes were abundant in all soil fractions, including macroaggregates, microaggregates, and the clay fraction, which contains carbon with a mean residence time of ~200 years. The activities of two cellulose-degrading enzymes and a chitin-degrading enzyme were 2-10 times greater in organic matter fractions than in bulk soil, consistent with the rapid turnover of these fractions. Polyphenol oxidase activity was 3 times greater in the clay fraction than in the bulk soil, despite very slow carbon turnover in this fraction. Changes in enzyme activity across the restoration chronosequence were small once adjusted for increases in soil carbon concentration, although polyphenol oxidase activity per unit carbon declined by 50% in native prairie versus cultivated soil. These results are consistent with a `two-pool' model of enzyme and carbon turnover in grassland soils. In light organic matter fractions, enzyme production and carbon turnover both occur rapidly. However, in mineral-dominated fractions, both enzymes and their carbon substrates are immobilized on mineral surfaces, leading to slow turnover. Soil carbon accumulation in the clay fraction and across the prairie restoration chronosequence probably reflects increasing physical isolation of enzymes and substrates on the molecular scale, rather than the micron to millimeter scale.

  10. Influence of diligent disintegration on anaerobic biomass and performance of microbial fuel cell.

    Science.gov (United States)

    Divyalakshmi, Palanisamy; Murugan, Devaraj; Rai, Chockalingam Lajapathi

    2017-12-01

    To enhance the performance of microbial fuel cells (MFC) by increasing the surface area of cathode and diligent mechanical disintegration of anaerobic biomass. Tannery effluent and anaerobic biomass were used. The increase in surface area of the cathode resulted in 78% COD removal, with the potential, current density, power density and coulombic efficiency of 675 mV, 147 mA m -2 , 33 mW m -2 and 3.5%, respectively. The work coupled with increased surface area of the cathode with diligent mechanical disintegration of the biomass, led to a further increase in COD removal of 82% with the potential, current density, power density and coulombic efficiency of 748 mV, 229 mA m -2 , 78 mW m -2 and 6% respectively. Mechanical disintegration of the biomass along with increased surface area of cathode enhances power generation in vertical MFC reactors using tannery effluent as fuel.

  11. Colloid-based multiplexed method for screening plant biomass-degrading glycoside hydrolase activities in microbial communities

    Energy Technology Data Exchange (ETDEWEB)

    Reindl, W.; Deng, K.; Gladden, J.M.; Cheng, G.; Wong, A.; Singer, S.W.; Singh, S.; Lee, J.-C.; Yao, J.-S.; Hazen, T.C.; Singh, A.K; Simmons, B.A.; Adams, P.D.; Northen, T.R.

    2011-05-01

    The enzymatic hydrolysis of long-chain polysaccharides is a crucial step in the conversion of biomass to lignocellulosic biofuels. The identification and characterization of optimal glycoside hydrolases is dependent on enzyme activity assays, however existing methods are limited in terms of compatibility with a broad range of reaction conditions, sample complexity, and especially multiplexity. The method we present is a multiplexed approach based on Nanostructure-Initiator Mass Spectrometry (NIMS) that allowed studying several glycolytic activities in parallel under diverse assay conditions. Although the substrate analogs carried a highly hydrophobic perfluorinated tag, assays could be performed in aqueous solutions due colloid formation of the substrate molecules. We first validated our method by analyzing known {beta}-glucosidase and {beta}-xylosidase activities in single and parallel assay setups, followed by the identification and characterization of yet unknown glycoside hydrolase activities in microbial communities.

  12. A Broader View: Microbial Enzymes and Their Relevance in Industries, Medicine, and Beyond

    Science.gov (United States)

    Bose, Sutapa; Rai, Vivek

    2013-01-01

    Enzymes are the large biomolecules that are required for the numerous chemical interconversions that sustain life. They accelerate all the metabolic processes in the body and carry out a specific task. Enzymes are highly efficient, which can increase reaction rates by 100 million to 10 billion times faster than any normal chemical reaction. Due to development in recombinant technology and protein engineering, enzymes have evolved as an important molecule that has been widely used in different industrial and therapeutical purposes. Microbial enzymes are currently acquiring much attention with rapid development of enzyme technology. Microbial enzymes are preferred due to their economic feasibility, high yields, consistency, ease of product modification and optimization, regular supply due to absence of seasonal fluctuations, rapid growth of microbes on inexpensive media, stability, and greater catalytic activity. Microbial enzymes play a major role in the diagnosis, treatment, biochemical investigation, and monitoring of various dreaded diseases. Amylase and lipase are two very important enzymes that have been vastly studied and have great importance in different industries and therapeutic industry. In this review, an approach has been made to highlight the importance of different enzymes with special emphasis on amylase and lipase in the different industrial and medical fields. PMID:24106701

  13. Annual Removal of Aboveground Plant Biomass Alters Soil Microbial Responses to Warming

    Directory of Open Access Journals (Sweden)

    Kai Xue

    2016-09-01

    Full Text Available Clipping (i.e., harvesting aboveground plant biomass is common in agriculture and for bioenergy production. However, microbial responses to clipping in the context of climate warming are poorly understood. We investigated the interactive effects of grassland warming and clipping on soil properties and plant and microbial communities, in particular, on microbial functional genes. Clipping alone did not change the plant biomass production, but warming and clipping combined increased the C4 peak biomass by 47% and belowground net primary production by 110%. Clipping alone and in combination with warming decreased the soil carbon input from litter by 81% and 75%, respectively. With less carbon input, the abundances of genes involved in degrading relatively recalcitrant carbon increased by 38% to 137% in response to either clipping or the combined treatment, which could weaken long-term soil carbon stability and trigger positive feedback with respect to warming. Clipping alone also increased the abundance of genes for nitrogen fixation, mineralization, and denitrification by 32% to 39%. Such potentially stimulated nitrogen fixation could help compensate for the 20% decline in soil ammonium levels caused by clipping alone and could contribute to unchanged plant biomass levels. Moreover, clipping tended to interact antagonistically with warming, especially with respect to effects on nitrogen cycling genes, demonstrating that single-factor studies cannot predict multifactorial changes. These results revealed that clipping alone or in combination with warming altered soil and plant properties as well as the abundance and structure of soil microbial functional genes. Aboveground biomass removal for biofuel production needs to be reconsidered, as the long-term soil carbon stability may be weakened.

  14. Taxonomic and Functional Responses of Soil Microbial Communities to Annual Removal of Aboveground Plant Biomass

    Science.gov (United States)

    Guo, Xue; Zhou, Xishu; Hale, Lauren; Yuan, Mengting; Feng, Jiajie; Ning, Daliang; Shi, Zhou; Qin, Yujia; Liu, Feifei; Wu, Liyou; He, Zhili; Van Nostrand, Joy D.; Liu, Xueduan; Luo, Yiqi; Tiedje, James M.; Zhou, Jizhong

    2018-01-01

    Clipping, removal of aboveground plant biomass, is an important issue in grassland ecology. However, few studies have focused on the effect of clipping on belowground microbial communities. Using integrated metagenomic technologies, we examined the taxonomic and functional responses of soil microbial communities to annual clipping (2010–2014) in a grassland ecosystem of the Great Plains of North America. Our results indicated that clipping significantly (P microbial respiration rates. Annual temporal variation within the microbial communities was much greater than the significant changes introduced by clipping, but cumulative effects of clipping were still observed in the long-term scale. The abundances of some bacterial and fungal lineages including Actinobacteria and Bacteroidetes were significantly (P microbial communities were significantly correlated with soil respiration and plant productivity. Intriguingly, clipping effects on microbial function may be highly regulated by precipitation at the interannual scale. Altogether, our results illustrated the potential of soil microbial communities for increased soil organic matter decomposition under clipping land-use practices. PMID:29904372

  15. Rapid optimization of enzyme mixtures for deconstruction of diverse pretreatment/biomass feedstock combinations

    Directory of Open Access Journals (Sweden)

    Walton Jonathan D

    2010-10-01

    Full Text Available Abstract Background Enzymes for plant cell wall deconstruction are a major cost in the production of ethanol from lignocellulosic biomass. The goal of this research was to develop optimized synthetic mixtures of enzymes for multiple pretreatment/substrate combinations using our high-throughput biomass digestion platform, GENPLAT, which combines robotic liquid handling, statistical experimental design and automated Glc and Xyl assays. Proportions of six core fungal enzymes (CBH1, CBH2, EG1, β-glucosidase, a GH10 endo-β1,4-xylanase, and β-xylosidase were optimized at a fixed enzyme loading of 15 mg/g glucan for release of Glc and Xyl from all combinations of five biomass feedstocks (corn stover, switchgrass, Miscanthus, dried distillers' grains plus solubles [DDGS] and poplar subjected to three alkaline pretreatments (AFEX, dilute base [0.25% NaOH] and alkaline peroxide [AP]. A 16-component mixture comprising the core set plus 10 accessory enzymes was optimized for three pretreatment/substrate combinations. Results were compared to the performance of two commercial enzymes (Accellerase 1000 and Spezyme CP at the same protein loadings. Results When analyzed with GENPLAT, corn stover gave the highest yields of Glc with commercial enzymes and with the core set with all pretreatments, whereas corn stover, switchgrass and Miscanthus gave comparable Xyl yields. With commercial enzymes and with the core set, yields of Glc and Xyl were highest for grass stovers pretreated by AP compared to AFEX or dilute base. Corn stover, switchgrass and DDGS pretreated with AFEX and digested with the core set required a higher proportion of endo-β1,4-xylanase (EX3 and a lower proportion of endo-β1,4-glucanase (EG1 compared to the same materials pretreated with dilute base or AP. An optimized enzyme mixture containing 16 components (by addition of α-glucuronidase, a GH11 endoxylanase [EX2], Cel5A, Cel61A, Cip1, Cip2, β-mannanase, amyloglucosidase,

  16. Evaluation of gastrointestinal bacterial population for the production of holocellulose enzymes for biomass deconstruction.

    Science.gov (United States)

    Asem, Dhaneshwaree; Leo, Vincent Vineeth; Passari, Ajit Kumar; Tonsing, Mary Vanlalhruaii; Joshi, J Beslin; Uthandi, Sivakumar; Hashem, Abeer; Abd Allah, Elsayed Fathi; Singh, Bhim Pratap

    2017-01-01

    The gastrointestinal (GI) habitat of ruminant and non-ruminant animals sustains a vast ensemble of microbes that are capable of utilizing lignocellulosic plant biomass. In this study, an indigenous swine (Zovawk) and a domesticated goat (Black Bengal) were investigated to isolate bacteria having plant biomass degrading enzymes. After screening and enzymatic quantification of eighty-one obtained bacterial isolates, Serratia rubidaea strain DBT4 and Aneurinibacillus aneurinilyticus strain DBT87 were revealed as the most potent strains, showing both cellulase and xylanase production. A biomass utilization study showed that submerged fermentation (SmF) of D2 (alkaline pretreated pulpy biomass) using strain DBT4 resulted in the most efficient biomass deconstruction with maximum xylanase (11.98 U/mL) and FPase (0.5 U/mL) activities (55°C, pH 8). The present study demonstrated that bacterial strains residing in the gastrointestinal region of non-ruminant swine are a promising source for lignocellulose degrading microorganisms that could be used for biomass conversion.

  17. Evaluation of gastrointestinal bacterial population for the production of holocellulose enzymes for biomass deconstruction.

    Directory of Open Access Journals (Sweden)

    Dhaneshwaree Asem

    Full Text Available The gastrointestinal (GI habitat of ruminant and non-ruminant animals sustains a vast ensemble of microbes that are capable of utilizing lignocellulosic plant biomass. In this study, an indigenous swine (Zovawk and a domesticated goat (Black Bengal were investigated to isolate bacteria having plant biomass degrading enzymes. After screening and enzymatic quantification of eighty-one obtained bacterial isolates, Serratia rubidaea strain DBT4 and Aneurinibacillus aneurinilyticus strain DBT87 were revealed as the most potent strains, showing both cellulase and xylanase production. A biomass utilization study showed that submerged fermentation (SmF of D2 (alkaline pretreated pulpy biomass using strain DBT4 resulted in the most efficient biomass deconstruction with maximum xylanase (11.98 U/mL and FPase (0.5 U/mL activities (55°C, pH 8. The present study demonstrated that bacterial strains residing in the gastrointestinal region of non-ruminant swine are a promising source for lignocellulose degrading microorganisms that could be used for biomass conversion.

  18. Seasonality of fibrolytic enzyme activity in herbivore microbial ...

    African Journals Online (AJOL)

    2012-08-21

    Aug 21, 2012 ... liberating end-products such as volatile fatty acids. Cellulase enzyme ... All the other common chemicals such as glacial acetic acid, sodium azide .... specific activity was observed among animal species and between seasons ...

  19. A survey of Opportunities for Microbial Conversion of Biomass to Hydrocarbon Compatible Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Jovanovic, Iva; Jones, Susanne B.; Santosa, Daniel M.; Dai, Ziyu; Ramasamy, Karthikeyan K.; Zhu, Yunhua

    2010-09-01

    Biomass is uniquely able to supply renewable and sustainable liquid transportation fuels. In the near term, the Biomass program has a 2012 goal of cost competitive cellulosic ethanol. However, beyond 2012, there will be an increasing need to provide liquid transportation fuels that are more compatible with the existing infrastructure and can supply fuel into all transportation sectors, including aviation and heavy road transport. Microbial organisms are capable of producing a wide variety of fuel and fuel precursors such as higher alcohols, ethers, esters, fatty acids, alkenes and alkanes. This report surveys liquid fuels and fuel precurors that can be produced from microbial processes, but are not yet ready for commercialization using cellulosic feedstocks. Organisms, current research and commercial activities, and economics are addressed. Significant improvements to yields and process intensification are needed to make these routes economic. Specifically, high productivity, titer and efficient conversion are the key factors for success.

  20. Effects of elevated nitrogen deposition on soil microbial biomass carbon in major subtropical forests of southern China

    Institute of Scientific and Technical Information of China (English)

    Hui WANG; Jiangming MO; Xiankai LU; Jinghua XUE; Jiong LI; Yunting FANG

    2009-01-01

    The effects of elevated nitrogen deposition on soil microbial biomass carbon (C) and extractable dissolved organic carbon (DOC) in three types of forest of southern China were studied in November, 2004 and June, 2006. Plots were established in a pine forest (PF), a mixed pine and broad-leaved forest (MF) and monsoon evergreen broad-leaved forest (MEBF) in the Dinghushan Nature Reserve. Nitrogen treatments included a control (no N addition), low N (50 kg N/(hm2.a)), medium N (100 kg N/ (hm2. a)) and high N (150 kg N/(hm2. a)). Microbial biomass C and extractable DOC were determined using a chloro-form fumigation-extraction method. Results indicate that microbial biomass C and extractable DOC were higher in June, 2006 than in November, 2004 and higher in the MEBF than in the PF or the MF. The response of soil microbial biomass C and extractable DOC to nitrogen deposition varied depending on the forest type and the level of nitrogen treatment. In the PF or MF forests, no significantly different effects of nitrogen addition were found on soil microbial biomass C and extractable DOC. In the MEBF, however, the soil microbial biomass C generally decreased with increased nitrogen levels and high nitrogen addition significantly reduced soil microbial biomass C. The response of soil extractable DOC to added nitrogen in the MEBF shows the opposite trend to soil microbial biomass C. These results suggest that nitrogen deposition may increase the accumulation of soil organic carbon in the MEBF in the study region.

  1. PRODUCTION AND USES OF MICROBIAL ENZYMES FOR DAIRY PROCESSING

    International Nuclear Information System (INIS)

    EL-KABBANY, H.M.I.

    2008-01-01

    The isolation and identification of fungal producer from various Egyptian dairy products samples was studied. Among fungi testes, only one out of the 48 isolates was found to be positive yielded a suitable enzyme substitute (rennet) and identified as Cryphonectria parasitica (C. parasitica) and was found to be negative for mycotoxins. The highest growth and production of the crude enzyme were obtained from barley medium after an incubation period for 6-8 days at 25 0 C and pH 5. It was found also to be sensitive to gamma rays, since 2.5 kGy completely inactivated the germination of the spores while very low doses up to 0.05 kGy did not affect the production of rennet like enzyme (RLE). Precipitation of the crude enzyme produced by C. parasitica using ammonium sulphate (NH 4 ) 2 SO 4 gave the highest milk clotting activity (MCA) at 50 0 C. Further purification was achieved by using Sephadex G-100 to give pure RLE. MCA of the fungal and animal rennin proved to be essentially identical in milk containing various concentrations of CaCl 2 . An addition of 160 ppm of CaCl 2 increased the enzyme activity. The optimum temperature was 60 0 C while pre-heating thermophiles at 15 0 C for 10 minutes complete inactivation. Both rennins manifested comparable clotting activities in milk at pH 6

  2. Winery biomass waste degradation by sequential sonication and mixed fungal enzyme treatments.

    Science.gov (United States)

    Karpe, Avinash V; Dhamale, Vijay V; Morrison, Paul D; Beale, David J; Harding, Ian H; Palombo, Enzo A

    2017-05-01

    To increase the efficiency of winery-derived biomass biodegradation, grape pomace was ultrasonicated for 20min in the presence of 0.25M, 0.5Mand1.0MKOH and 1.0MNaOH. This was followed by treatment with a 1:1 (v/v) mix of crude enzyme preparation derived from Phanerochaete chrysosporium and Trametes versicolor for 18h and a further 18h treatment with a 60:14:4:2 percent ratio combination of enzymes derived from Aspergillus niger: Penicillium chrysogenum: Trichoderma harzianum: P. citrinum, repsectively. Process efficiency was evaluated by its comparison to biological only mixed fungal degradation over 16days. Ultrasonication treatment with 0.5MKOH followed by mixed enzyme treatment yielded the highest lignin degradation of about 13%. Cellulase, β-glucosidase, xylanase, laccase and lignin peroxidase activities of 77.9, 476, 5,390.5, 66.7 and 29,230.7U/mL, respectively, were observed during biomass degradation. Gas chromatography-mass spectrometry (GC-MS) analysis of the degraded material identified commercially important compounds such as gallic acid, lithocholic acid, glycolic acid and lactic acid which were generated in considerable quantities. Thus, the combination of sonication pre-treatment and enzymatic degradation has the potential to considerably improve the breakdown of agricultural biomass and produce commercially useful compounds in markedly less time (<40h) with respect to biological only degradation (16days). Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Use and improvement of microbial redox enzymes for environmental purposes

    Directory of Open Access Journals (Sweden)

    Ballesteros Antonio

    2004-08-01

    Full Text Available Abstract Industrial development may result in the increase of environmental risks. The enzymatic transformation of polluting compounds to less toxic or even innocuous products is an alternative to their complete removal. In this regard, a number of different redox enzymes are able to transform a wide variety of toxic pollutants, such as polynuclear aromatic hydrocarbons, phenols, azo dyes, heavy metals, etc. Here, novel information on chromate reductases, enzymes that carry out the reduction of highly toxic Cr(VI to the less toxic insoluble Cr(III, is discussed. In addition, the properties and application of bacterial and eukaryotic proteins (lignin-modifying enzymes, peroxidases and cytochromes useful in environmental enzymology is also discussed.

  4. Continuous exposure of pesticides in an aquifer changes microbial biomass, diversity and degradation potential

    DEFF Research Database (Denmark)

    de Lipthay, J. R.; Johnsen, K.; Aamand, J.

    2000-01-01

    We studied in situ effects of pesticide exposure on microbial degradation potential and community structure of aquifer sediments. Sediment samples pre-exposed to pesticides were significantly different to non-exposed control samples. Pre-exposed sediment showed an increased degradation potential ...... towards phenoxyalcanoic acid herbicides as well as impact on microbial diversity was observed. Furthermore, bacterial biomass was changed, e.g. increased numbers of phenoxyalcanoic acid degraders in pesticide exposed sediment.......We studied in situ effects of pesticide exposure on microbial degradation potential and community structure of aquifer sediments. Sediment samples pre-exposed to pesticides were significantly different to non-exposed control samples. Pre-exposed sediment showed an increased degradation potential...

  5. Analysis of Low-Biomass Microbial Communities in the Deep Biosphere.

    Science.gov (United States)

    Morono, Y; Inagaki, F

    2016-01-01

    Over the past few decades, the subseafloor biosphere has been explored by scientific ocean drilling to depths of about 2.5km below the seafloor. Although organic-rich anaerobic sedimentary habitats in the ocean margins harbor large numbers of microbial cells, microbial populations in ultraoligotrophic aerobic sedimentary habitats in the open ocean gyres are several orders of magnitude less abundant. Despite advances in cultivation-independent molecular ecological techniques, exploring the low-biomass environment remains technologically challenging, especially in the deep subseafloor biosphere. Reviewing the historical background of deep-biosphere analytical methods, the importance of obtaining clean samples and tracing contamination, as well as methods for detecting microbial life, technological aspects of molecular microbiology, and detecting subseafloor metabolic activity will be discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Earthworms facilitate the stabilization of pelletized dewatered sludge through shaping microbial biomass and activity and community.

    Science.gov (United States)

    Fu, Xiaoyong; Cui, Guangyu; Huang, Kui; Chen, Xuemin; Li, Fusheng; Zhang, Xiaoyu; Li, Fei

    2016-03-01

    In this study, the effect of earthworms on microbial features during vermicomposting of pelletized dewatered sludge (PDS) was investigated through comparing two degradation systems with and without earthworm E isenia fetida involvement. After 60 days of experimentation, a relatively stable product with low organic matter and high nitrate and phosphorous was harvested when the earthworms were involved. During the process, earthworms could enhance microbial activity and biomass at the initial stage and thus accelerating the rapid decomposition of PDS. The end products of vermicomposting allowed the lower values of bacterial and eukaryotic densities comparison with those of no earthworm addition. In addition, the presence of earthworms modified the bacterial and fungal diversity, making the disappearances of some pathogens and specific decomposing bacteria of recalcitrant substrates in the vermicomposting process. This study evidences that earthworms can facilitate the stabilization of PDS through modifying microbial activity and number and community during vermicomposting.

  7. Effects of lead and cadmium nitrate on biomass and substrate utilization pattern of soil microbial communities.

    Science.gov (United States)

    Muhammad, Akmal; Xu, Jianming; Li, Zhaojun; Wang, Haizhen; Yao, Huaiying

    2005-07-01

    A study was conducted to evaluate the effects of different concentrations of lead (Pb) and cadmium (Cd) applied as their nitrates on soil microbial biomass carbon (C(mic)) and nitrogen (N(mic)), and substrate utilization pattern of soil microbial communities. The C(mic) and N(mic) contents were determined at 0, 14, 28, 42 and 56 days after heavy metal application (DAA). The results showed a significant decline in the C(mic) for all Pb and Cd amended soils from the start to 28 DAA. From 28 to 56 DAA, C(mic) contents changed non-significantly for all other treatments except for 600 mgkg(-1) Pb and 100 mgkg(-1) Cd in which it declined significantly from 42 to 56 DAA. The N(mic) contents also decreased significantly from start to 28 DAA for all other Pb and Cd treatments except for 200 mgkg(-1) Pb which did not show significant difference from the control. Control and 200 mgkg(-1) Pb had significantly lower soil microbial biomass C:N ratio as compared with other Pb treatments from 14 to 42 DAA, however at 56 DAA, only 1000 mgkg(-1) Pb showed significantly higher C:N ratio compared with other treatments. No significant difference in C:N ratio for all Cd treated soils was seen from start to 28 DAA, however from 42 to 56 DAA, 100 mgkg(-1) Pb showed significantly higher C:N ratio compared with other treatments. On 56 DAA, substrate utilization pattern of soil microbial communities was determined by inoculating Biolog ECO plates. The results indicated that Pb and Cd addition inhibited the functional activity of soil microbial communities as indicated by the intensity of average well color development (AWCD) during 168 h of incubation. Multivariate analysis of sole carbon source utilization pattern demonstrated that higher levels of heavy metal application had significantly affected soil microbial community structure.

  8. Extracellular enzyme activity assay as indicator of soil microbial functional diversity and activity

    DEFF Research Database (Denmark)

    Hendriksen, Niels Bohse; Winding, Anne

    2012-01-01

    Extracellular enzyme activity assay as indicator of soil microbial functional diversity and activity Niels Bohse Hendriksen, Anne Winding. Department of Environmental Science, Aarhus University, 4000 Roskilde, Denmark Soils provide numerous essential ecosystem services such as carbon cycling...... of soil microbial functions is still needed. In soil, enzymes originate from a variety of organisms, notably fungi and bacteria and especially hydrolytic extracellular enzymes are of pivotal importance for decomposition of organic substrates and biogeochemical cycling. Their activity will reflect...... the functional diversity and activity of the microorganisms involved in decomposition processes. Their activity has been measured by the use of fluorogenic model substrates e.g. methylumbelliferyl (MUF) substrates for a number of enzymes involved in the degradation of polysacharides as cellulose, hemicellulose...

  9. Effects of supplemental microbial phytase enzyme on performance ...

    African Journals Online (AJOL)

    This experiment was conducted to investigate the effects of supplemental phytase in a corn-wheatsoybean meal basal diet on phosphorus (P) digestibility and performance of broiler chicks. 378 one-day old broiler chicks (Ross 308) were allocated to 3×3 factorial arrangements with three levels of phytase enzyme (0, 500 ...

  10. Starch modification with microbial alpha-glucanotransferase enzymes

    NARCIS (Netherlands)

    van der Maarel, Marc J. E. C.; Leemhuis, Hans

    2013-01-01

    Starch is an agricultural raw material used in many food and industrial products. It is present in granules that vary in shape in the form of amylose and amylopectin. Starch-degrading enzymes are used on a large scale in the production of sweeteners (high fructose corn syrup) and concentrated

  11. Inorganic phosphorus fertilizer ameliorates maize growth by reducing metal uptake, improving soil enzyme activity and microbial community structure.

    Science.gov (United States)

    Wu, Wencheng; Wu, Jiahui; Liu, Xiaowen; Chen, Xianbin; Wu, Yingxin; Yu, Shixiao

    2017-09-01

    Recently, several studies have showed that both organic and inorganic fertilizers are effective in immobilizing heavy metals at low cost, in comparison to other remediation strategies for heavy metal-contaminated farmlands. A pot trial was conducted in this study to examine the effects of inorganic P fertilizer and organic fertilizer, in single application or in combination, on growth of maize, heavy metal availabilities, enzyme activities, and microbial community structure in metal-contaminated soils from an electronic waste recycling region. Results showed that biomass of maize shoot and root from the inorganic P fertilizer treatments were respectively 17.8 and 10.0 folds higher than the un-amended treatments (CK), while the biomass in the organic fertilizer treatments was only comparable to the CK. In addition, there were decreases of 85.0% in Cd, 74.3% in Pb, 66.3% in Cu, and 91.9% in Zn concentrations in the roots of maize grown in inorganic P fertilizer amended soil. Consistently, urease and catalase activities in the inorganic P fertilizer amended soil were 3.3 and 2.0 times higher than the CK, whereas no enhancement was observed in the organic fertilizer amended soil. Moreover, microbial community structure was improved by the application of inorganic P fertilizer, but not by organic fertilizer; the beneficial microbial groups such as Kaistobacter and Koribacter were most frequently detected in the inorganic P fertilizer amended soil. The negligible effect from the organic fertilizer might be ascribed to the decreased pH value in soils. The results suggest that the application of inorganic P fertilizer (or in combination with organic fertilizer) might be a promising strategy for the remediation of heavy metals contaminated soils in electronic waste recycling region. Copyright © 2017. Published by Elsevier Inc.

  12. Development of over-production strain of saccharification enzyme and biomass pretreatment by proton beam irradiation

    International Nuclear Information System (INIS)

    Kim, S. W.; Lee, J. Y.; Song, Y. S.; Lee, S. J.; Shin, H. Y.; Kim, S. B.

    2010-04-01

    When lignocellulosic biomass converts to ethanol, enzyme takes lots of part of whole cost. Therefore, cellulase production is one of the important processes for the successful enzymatic conversion of cellulosic biomass to ethanol. Among cellulolytic enzymes, cellulase is multi-complex enzyme containing endo-glucanase, exo-glucanase and β-glucosidase. Cellulolyticfungi, Trichodema reesei is well known to produce the highest yields of cellulase. Especially, suitable cellulase composition was important for the effective saccharification of lignocellulosic biomass and strain having high level production of cellulase should be developed for hydrolysis. For efficient ethanol production, hemicellullase of Aspergillus also develop to use xylose generated from saccharification of biomass. In this study, pretreatment process of rice straw using proton beam irradiation (PBI) was carried out for enhancement of enzyme digestibility at different proton beam doses. Also, PBI pretreatment on ammonia soaking treated (SAA, Soaking aqueous ammonia) rice straw was conducted to solve the problem that is micro-structural inhibition of rice straw. Optimal dosages of proton beam on rice straw and SAA treated rice straw for efficient recovery of sugar were 15 KGy and 3 KGy, respectively. Enzymatic saccharification of PBI treated rice straw and SAA rice straw was conducted for the guidance of NREL standard procedure. Analysis using X-ray diffractometry (XRD) for crystallinity index was carried out and CrI found to be 33.38% of control and 35.72% of 15 KGy. Also, CrI was determined to be 67.11% of control and approximately 65.58% of 3 kGy dose in PBI pretreatment on SAA treated rice straw. The result of sugar recovery of both was approximately 70 % and 91 % of theoretical glucose contents, respectively. The initial reaction rate was increased from 7.610 -4 g·l -1 ·s -1 of 15 KGy (PBI pretreated rice straw) to 9.710 -4 g·l -1 ·s -1 (3 KGy PBI pretreated SAA rice straw). The selection of

  13. Characterization of three plant biomass-degrading microbial consortia by metagenomics- and metasecretomics-based approaches

    DEFF Research Database (Denmark)

    Jiménez, Diego Javier; Brossi, Maria Julia de Lima; Schückel, Julia

    2016-01-01

    ). The highest degradation rates of lignin (~59 %) were observed with SG-M, whereas CS-M showed a high consumption of cellulose and hemicellulose. Analyses of the carbohydrate-active enzymes in the three microbial consortia showed the dominance of glycosyl hydrolases (e.g. of families GH3, GH43, GH13, GH10, GH29......), switchgrass (SG-M) and corn stover (CS-M) under aerobic and mesophilic conditions. Molecular fingerprintings, bacterial 16S ribosomal RNA (rRNA) gene amplicon sequencing and metagenomic analyses showed that the three microbial consortia were taxonomically distinct. Based on the taxonomic affiliation...

  14. Effect of buctril super (Bromoxynil herbicide on soil microbial biomass and bacterial population

    Directory of Open Access Journals (Sweden)

    Zafar Abbas

    2014-02-01

    Full Text Available The present study aimed to evaluate the effect of bromoxynil herbicide on soil microorganisms, with the hypothesis that this herbicide caused suppression in microbial activity and biomass by exerting toxic effect on them. Nine sites of Punjab province (Pakistan those had been exposed to bromoxynil herbicide for about last ten years designated as soil 'A' were surveyed in 2011 and samples were collected and analyzed for Microbial Biomass Carbon (MBC, Biomass Nitrogen (MBN, Biomass Phosphorus (MBP and bacterial population. Simultaneously, soil samples from the same areas those were not exposed to herbicide designated as soil 'B' were taken. At all the sites MBC, MBN and MBP ranged from 131 to 457, 1.22 to 13.1 and 0.59 to 3.70 µg g-1 in the contaminated soils (Soil A, which was 187 to 573, 1.70 to 14.4 and 0.72 to 4.12 µg g-1 in the soils without contamination (soil B. Bacterial population ranged from 0.67 to 1.84x10(8 and 0.87 to 2.37x10(8 cfu g-1 soil in the soils A and B, respectively. Bromoxynil residues ranged from 0.09 to 0.24 mg kg-1 at all the sites in soil A. But no residues were detected in the soil B. Due to lethal effect of bromoxynil residues on the above parameters, considerable decline in these parameters was observed in the contaminated soils. Results depicted that the herbicide had left toxic effects on soil microbial parameters, thus confirmed that continuous use of this herbicide affected the quality of soil and sustainable crop production.

  15. Microbial enzyme-catalyzed processes in soils and their analysis

    Czech Academy of Sciences Publication Activity Database

    Baldrian, Petr

    2009-01-01

    Roč. 55, č. 9 (2009), s. 370-378 ISSN 1214-1178 R&D Projects: GA MŠk LC06066; GA MŠk OC 155; GA MŠk OC08050; GA MZe QH72216 Institutional research plan: CEZ:AV0Z50200510 Keywords : assay methods * extracellular enzymes * ecology Subject RIV: EE - Microbiology, Virology Impact factor: 0.697, year: 2009

  16. Biomass assessment of microbial surface communities by means of hyperspectral remote sensing data.

    Science.gov (United States)

    Rodríguez-Caballero, Emilio; Paul, Max; Tamm, Alexandra; Caesar, Jennifer; Büdel, Burkhard; Escribano, Paula; Hill, Joachim; Weber, Bettina

    2017-05-15

    Dryland vegetation developed morphological and physiological strategies to cope with drought. However, as aridity increases, vascular plant coverage gets sparse and microbially-dominated surface communities (MSC), comprising cyanobacteria, algae, lichens and bryophytes together with heterotropic bacteria, archaea and fungi, gain relevance. Nevertheless, the relevance of MSC net primary productivity has only rarely been considered in ecosystem scale studies, and detailed information on their contribution to the total photosynthetic biomass reservoir is largely missing. In this study, we mapped the spatial distribution of two different MSC (biological soil crusts and quartz fields hosting hypolithic crusts) at two different sites within the South African Succulent Karoo (Soebatsfontein and Knersvlakte). Then we characterized both types of MSC in terms of chlorophyll content, and combining these data with the biocrust and quartz field maps, we estimated total biomass values of MSCs and their spatial patterns within the two different ecosystems. Our results revealed that MSC are important vegetation components of the South African Karoo biome, revealing clear differences between the two sites. At Soebatsfontein, MSC occurred as biological soil crusts (biocrusts), which covered about one third of the landscape reaching an overall biomass value of ~480gha -1 of chlorophyll a+b at the landscape scale. In the Knersvlakte, which is characterized by harsher environmental conditions (i.e. higher solar radiation and potential evapotranspiration), MSC occurred as biocrusts, but also formed hypolithic crusts growing on the lower soil-immersed parts of translucent quartz pebbles. Whereas chlorophyll concentrations of biocrusts and hypolithic crusts where insignificantly lower in the Knersvlakte, the overall MSC biomass reservoir was by far larger with ~780gha -1 of chlorophyll a+b. Thus, the complementary microbially-dominated surface communities promoted biomass formation within

  17. Microbial respiration and extracellular enzyme activity in sediments from the Gulf of Mexico hypoxic zone

    Science.gov (United States)

    This study explores the relationship between sediment chemistry (TC, TN, TP) and microbial respiration (DHA) and extracellular enzyme activity (EEA) across the Gulf of Mexico (GOM) hypoxic zone. TC, TN, and TP were all positively correlated with each other (r=0.19-0.68). DHA was ...

  18. High-solids enrichment of thermophilic microbial communities and their enzymes on bioenergy feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, A. P.; Allgaier, M.; Singer, S.W.; Hazen, T.C.; Simmons, B.A.; Hugenholtz, P.; VanderGheynst, J.S.

    2011-04-01

    Thermophilic microbial communities that are active in a high-solids environment offer great potential for the discovery of industrially relevant enzymes that efficiently deconstruct bioenergy feedstocks. In this study, finished green waste compost was used as an inoculum source to enrich microbial communities and associated enzymes that hydrolyze cellulose and hemicellulose during thermophilic high-solids fermentation of the bioenergy feedstocks switchgrass and corn stover. Methods involving the disruption of enzyme and plant cell wall polysaccharide interactions were developed to recover xylanase and endoglucanase activity from deconstructed solids. Xylanase and endoglucanase activity increased by more than a factor of 5, upon four successive enrichments on switchgrass. Overall, the changes for switchgrass were more pronounced than for corn stover; solids reduction between the first and second enrichments increased by a factor of four for switchgrass while solids reduction remained relatively constant for corn stover. Amplicon pyrosequencing analysis of small-subunit ribosomal RNA genes recovered from enriched samples indicated rapid changes in the microbial communities between the first and second enrichment with the simplified communities achieved by the third enrichment. The results demonstrate a successful approach for enrichment of unique microbial communities and enzymes active in a thermophilic high-solids environment.

  19. High levels of maize in broiler diets with or without microbial enzyme ...

    African Journals Online (AJOL)

    mbhuiya3

    2013-03-13

    Mar 13, 2013 ... High levels of maize in broiler diets with or without microbial enzyme .... to improve carbohydrate digestion and availability of phosphorus from ... grinding machine and stored at –4 ºC in airtight containers for chemical analysis ...

  20. Optimizing Cofactor Specificity of Oxidoreductase Enzymes for the Generation of Microbial Production Strains—OptSwap

    DEFF Research Database (Denmark)

    King, Zachary A.; Feist, Adam

    2013-01-01

    Central oxidoreductase enzymes (eg, dehydrogenases, reductases) in microbial metabolism often have preferential binding specificity for one of the two major currency metabolites NAD(H) and NADP(H). These enzyme specificities result in a division of the metabolic functionality of the currency...... specificities of oxidoreductase enzyme and complementary reaction knockouts. Using the Escherichia coli genome-scale metabolic model iJO1366, OptSwap predicted eight growth-coupled production designs with significantly greater product yields or substrate-specific productivities than designs predicted with gene...

  1. Looking inside the box: using Raman microspectroscopy to deconstruct microbial biomass stoichiometry one cell at a time

    Science.gov (United States)

    Hall, Edward K.; Singer, Gabriel A.; Pölzl, Marvin; Hämmerle, Ieda; Schwarz, Christian; Daims, Holger; Maixner, Frank; Battin, Tom J.

    2011-01-01

    Stoichiometry of microbial biomass is a key determinant of nutrient recycling in a wide variety of ecosystems. However, little is known about the underlying causes of variance in microbial biomass stoichiometry. This is primarily because of technological constraints limiting the analysis of macromolecular composition to large quantities of microbial biomass. Here, we use Raman microspectroscopy (MS), to analyze the macromolecular composition of single cells of two species of bacteria grown on minimal media over a wide range of resource stoichiometry. We show that macromolecular composition, determined from a subset of identified peaks within the Raman spectra, was consistent with macromolecular composition determined using traditional analytical methods. In addition, macromolecular composition determined by Raman MS correlated with total biomass stoichiometry, indicating that analysis with Raman MS included a large proportion of a cell's total macromolecular composition. Growth phase (logarithmic or stationary), resource stoichiometry and species identity each influenced each organism's macromolecular composition and thus biomass stoichiometry. Interestingly, the least variable peaks in the Raman spectra were those responsible for differentiation between species, suggesting a phylogenetically specific cellular architecture. As Raman MS has been previously shown to be applicable to cells sampled directly from complex environments, our results suggest Raman MS is an extremely useful application for evaluating the biomass stoichiometry of environmental microorganisms. This includes the ability to partition microbial biomass into its constituent macromolecules and increase our understanding of how microorganisms in the environment respond to resource heterogeneity.

  2. The ecological effects of different loading rates of metalaxyl on microbial biomass in unplanted and planted soils under field conditions

    Directory of Open Access Journals (Sweden)

    M. Mansourzadeh

    2016-05-01

    Full Text Available Fungicides are most widely used pesticides in Iran and the world. Application of fungicides may affect the populations and activity of soil microorganisms, particularly fungi, with a consequence for soil fertility and crop growth. In the current study, the effects of different levels of metalaxyl on soil microbial biomass carbon (C and nitrogen (N, microbial biomass C/N ratio and metabolic quotient under field conditions were assessed. Two levels of metalaxyl (30 and 60 kg.ha-1 were applied in planted soils with corn and unplanted calcareous soils, using a split-plots experiment in a completely randomized design with three replications. The C and N contents in soil microbial biomass as well as metabolic quotient were measured at 30 and 90 days after the onset of the experiment. Results showed that in cultivated soils metalaxyl application at 30 kg.ha-1 increased (15-80% significantly (p≤0.01 the amounts of microbial biomass C and N at both intervals (except microbial biomass C at 90 days compared to the control soil (0 kg.ha-1, while in uncultivated soils both microbial biomass C and N reduced by almost 1-34%. Microbial biomass C/N ratios in unplanted soils decreased (15 and 53% with increasing loading rates of metalaxyl, without a clear effect in cultivated soils. On the other hand, metabolic quotient values reduced (48% at 30 and 60 kg.ha-1 metalaxyl in corn-cultivated soils when compared to untreated soils while in uncultivated soils metalaxyl rate at 30 kg.a-1 had the greatest values at 30 days, and increased with increasing the levels of metalaxyl at 90 days. In summary, application of metalaxyl can either reduce or increase soil biological indices, and the direction and changes are depended upon the application rate of metalaxyl, time elapsed since metalaxyl application and the presence or absence of plant.

  3. Metagenomic insights into the rumen microbial fibrolytic enzymes in Indian crossbred cattle fed finger millet straw.

    Science.gov (United States)

    Jose, V Lyju; Appoothy, Thulasi; More, Ravi P; Arun, A Sha

    2017-12-01

    The rumen is a unique natural habitat, exhibiting an unparalleled genetic resource of fibrolytic enzymes of microbial origin that degrade plant polysaccharides. The objectives of this study were to identify the principal plant cell wall-degrading enzymes and the taxonomic profile of rumen microbial communities that are associated with it. The cattle rumen microflora and the carbohydrate-active enzymes were functionally classified through a whole metagenomic sequencing approach. Analysis of the assembled sequences by the Carbohydrate-active enzyme analysis Toolkit identified the candidate genes encoding fibrolytic enzymes belonging to different classes of glycoside hydrolases(11,010 contigs), glycosyltransferases (6366 contigs), carbohydrate esterases (4945 contigs), carbohydrate-binding modules (1975 contigs), polysaccharide lyases (480 contigs), and auxiliary activities (115 contigs). Phylogenetic analysis of CAZyme encoding contigs revealed that a significant proportion of CAZymes were contributed by bacteria belonging to genera Prevotella, Bacteroides, Fibrobacter, Clostridium, and Ruminococcus. The results indicated that the cattle rumen microbiome and the CAZymes are highly complex, structurally similar but compositionally distinct from other ruminants. The unique characteristics of rumen microbiota and the enzymes produced by resident microbes provide opportunities to improve the feed conversion efficiency in ruminants and serve as a reservoir of industrially important enzymes for cellulosic biofuel production.

  4. Integrative computational approach for genome-based study of microbial lipid-degrading enzymes.

    Science.gov (United States)

    Vorapreeda, Tayvich; Thammarongtham, Chinae; Laoteng, Kobkul

    2016-07-01

    Lipid-degrading or lipolytic enzymes have gained enormous attention in academic and industrial sectors. Several efforts are underway to discover new lipase enzymes from a variety of microorganisms with particular catalytic properties to be used for extensive applications. In addition, various tools and strategies have been implemented to unravel the functional relevance of the versatile lipid-degrading enzymes for special purposes. This review highlights the study of microbial lipid-degrading enzymes through an integrative computational approach. The identification of putative lipase genes from microbial genomes and metagenomic libraries using homology-based mining is discussed, with an emphasis on sequence analysis of conserved motifs and enzyme topology. Molecular modelling of three-dimensional structure on the basis of sequence similarity is shown to be a potential approach for exploring the structural and functional relationships of candidate lipase enzymes. The perspectives on a discriminative framework of cutting-edge tools and technologies, including bioinformatics, computational biology, functional genomics and functional proteomics, intended to facilitate rapid progress in understanding lipolysis mechanism and to discover novel lipid-degrading enzymes of microorganisms are discussed.

  5. Ultrasonic disintegration of microalgal biomass and consequent improvement of bioaccessibility/bioavailability in microbial fermentation.

    Science.gov (United States)

    Jeon, Byong-Hun; Choi, Jeong-A; Kim, Hyun-Chul; Hwang, Jae-Hoon; Abou-Shanab, Reda Ai; Dempsey, Brian A; Regan, John M; Kim, Jung Rae

    2013-01-01

    Microalgal biomass contains a high level of carbohydrates which can be biochemically converted to biofuels using state-of-the-art strategies that are almost always needed to employ a robust pretreatment on the biomass for enhanced energy production. In this study, we used an ultrasonic pretreatment to convert microalgal biomass (Scenedesmus obliquus YSW15) into feasible feedstock for microbial fermentation to produce ethanol and hydrogen. The effect of sonication condition was quantitatively evaluated with emphases on the characterization of carbohydrate components in microalgal suspension and on subsequent production of fermentative bioenergy. Scenedesmus obliquus YSW15 was isolated from the effluent of a municipal wastewater treatment plant. The sonication durations of 0, 10, 15, and 60 min were examined under different temperatures at a fixed frequency and acoustic power resulted in morphologically different states of microalgal biomass lysis. Fermentation was performed to evaluate the bioenergy production from the non-sonicated and sonicated algal biomasses after pretreatment stage under both mesophilic (35°C) and thermophilic (55°C) conditions. A 15 min sonication treatment significantly increased the concentration of dissolved carbohydrates (0.12 g g(-1)), which resulted in an increase of hydrogen/ethanol production through microbial fermentation. The bioconvertibility of microalgal biomass sonicated for 15 min or longer was comparable to starch as a control, indicating a high feasibility of using microalgae for fermentative bioenergy production. Increasing the sonication duration resulted in increases in both algal surface hydrophilicity and electrostatic repulsion among algal debris dispersed in aqueous solution. Scanning electron microscope images supported that ruptured algal cell allowed fermentative bacteria to access the inner space of the cell, evidencing an enhanced bioaccessibility. Sonication for 15 min was the best for fermentative

  6. Thermotolerant and mesophylic fungi from sugarcane bagasse and their prospection for biomass-degrading enzyme production

    Directory of Open Access Journals (Sweden)

    Bruna Silveira Lamanes dos Santos

    2015-09-01

    Full Text Available Nineteen fungi and seven yeast strains were isolated from sugarcane bagasse piles from an alcohol plant located at Brazilian Cerrado and identified up to species level on the basis of the gene sequencing of 5.8S-ITS and 26S ribosomal DNA regions. Four species were identified: Kluyveromyces marxianus, Aspergillus niger, Aspergillus sydowii and Aspergillus fumigatus, and the isolates were screened for the production of key enzymes in the saccharification of lignocellulosic material. Among them, three strains were selected as good producers of hemicellulolitic enzymes: A. niger (SBCM3, A. sydowii (SBCM7 and A. fumigatus (SBC4. The best β-xylosidase producer was A. niger SBCM3 strain. This crude enzyme presented optimal activity at pH 3.5 and 55 °C (141 U/g. For β-glucosidase and xylanase the best producer was A. fumigatus SBC4 strain, whose enzymes presented maximum activity at 60 °C and pH 3.5 (54 U/g and 4.0 (573 U/g, respectively. All these crude enzymes presented stability around pH 3.0–8.0 and up to 60 °C, which can be very useful in industrial processes that work at high temperatures and low pHs. These enzymes also exhibited moderate tolerance to ethanol and the sugars glucose and xylose. These similar characteristics among these fungal crude enzymes suggest that they can be used synergistically in cocktails in future studies of biomass conversion with potential application in several biotechnological sectors.

  7. Effects of inorganic and organic amendment on soil chemical properties, enzyme activities, microbial community and soil quality in yellow clayey soil.

    Directory of Open Access Journals (Sweden)

    Zhanjun Liu

    Full Text Available Understanding the effects of external organic and inorganic components on soil fertility and quality is essential for improving low-yielding soils. We conducted a field study over two consecutive rice growing seasons to investigate the effect of applying chemical fertilizer (NPK, NPK plus green manure (NPKG, NPK plus pig manure (NPKM, and NPK plus straw (NPKS on the soil nutrient status, enzyme activities involved in C, N, P, and S cycling, microbial community and rice yields of yellow clayey soil. Results showed that the fertilized treatments significantly improved rice yields over the first three experimental seasons. Compared with the NPK treatment, organic amendments produced more favorable effects on soil productivity. Notably, the NPKM treatment exhibited the highest levels of nutrient availability, microbial biomass carbon (MBC, activities of most enzymes and the microbial community. This resulted in the highest soil quality index (SQI and rice yield, indicating better soil fertility and quality. Significant differences in enzyme activities and the microbial community were observed among the treatments, and redundancy analysis showed that MBC and available N were the key determinants affecting the soil enzyme activities and microbial community. The SQI score of the non-fertilized control (0.72 was comparable to that of the NPK (0.77, NPKG (0.81 and NPKS (0.79 treatments but significantly lower compared with NPKM (0.85. The significant correlation between rice yield and SQI suggests that SQI can be a useful to quantify soil quality changes caused by different agricultural management practices. The results indicate that application of NPK plus pig manure is the preferred option to enhance SOC accumulation, improve soil fertility and quality, and increase rice yield in yellow clayey soil.

  8. End-to-end gene fusions and their impact on the production of multifunctional biomass degrading enzymes

    International Nuclear Information System (INIS)

    Rizk, Mazen; Antranikian, Garabed; Elleuche, Skander

    2012-01-01

    Highlights: ► Multifunctional enzymes offer an interesting approach for biomass degradation. ► Size and conformation of separate constructs play a role in the effectiveness of chimeras. ► A connecting linker allows for maximal flexibility and increased thermostability. ► Genes with functional similarities are the best choice for fusion candidates. -- Abstract: The reduction of fossil fuels, coupled with its increase in price, has made the search for alternative energy resources more plausible. One of the topics gaining fast interest is the utilization of lignocellulose, the main component of plants. Its primary constituents, cellulose and hemicellulose, can be degraded by a series of enzymes present in microorganisms, into simple sugars, later used for bioethanol production. Thermophilic bacteria have proven to be an interesting source of enzymes required for hydrolysis since they can withstand high and denaturing temperatures, which are usually required for processes involving biomass degradation. However, the cost associated with the whole enzymatic process is staggering. A solution for cost effective and highly active production is through the construction of multifunctional enzyme complexes harboring the function of more than one enzyme needed for the hydrolysis process. There are various strategies for the degradation of complex biomass ranging from the regulation of the enzymes involved, to cellulosomes, and proteins harboring more than one enzymatic activity. In this review, the construction of multifunctional biomass degrading enzymes through end-to-end gene fusions, and its impact on production and activity by choosing the enzymes and linkers is assessed.

  9. Microbial Production of Malic Acid from Biofuel-Related Coproducts and Biomass

    Directory of Open Access Journals (Sweden)

    Thomas P. West

    2017-04-01

    Full Text Available The dicarboxylic acid malic acid synthesized as part of the tricarboxylic acid cycle can be produced in excess by certain microorganisms. Although malic acid is produced industrially to a lesser extent than citric acid, malic acid has industrial applications in foods and pharmaceuticals as an acidulant among other uses. Only recently has the production of this organic acid from coproducts of industrial bioprocessing been investigated. It has been shown that malic acid can be synthesized by microbes from coproducts generated during biofuel production. More specifically, malic acid has been shown to be synthesized by species of the fungus Aspergillus on thin stillage, a coproduct from corn-based ethanol production, and on crude glycerol, a coproduct from biodiesel production. In addition, the fungus Ustilago trichophora has also been shown to produce malic acid from crude glycerol. With respect to bacteria, a strain of the thermophilic actinobacterium Thermobifida fusca has been shown to produce malic acid from cellulose and treated lignocellulosic biomass. An alternate method of producing malic acid is to use agricultural biomass converted to syngas or biooil as a substrate for fungal bioconversion. Production of poly(β-l-malic acid by strains of Aureobasidium pullulans from agricultural biomass has been reported where the polymalic acid is subsequently hydrolyzed to malic acid. This review examines applications of malic acid, metabolic pathways that synthesize malic acid and microbial malic acid production from biofuel-related coproducts, lignocellulosic biomass and poly(β-l-malic acid.

  10. Optimization studies for the bioconversion of Jerusalem artichoke tubers to ethanol and microbial biomass

    Energy Technology Data Exchange (ETDEWEB)

    Margaritis, A.; Bajpai, P.; Cannell, E.

    1981-01-01

    A total of 8 yeast and other microbial cultures were grown in the extract derived from the tubers of Jerusalem artichoke (Helianthus tuberosus) and screened according to the following optimization criteria: rates and yields of ethanol production, rates and yields of biomass production, and percent of original sugars utilized during fermentation. Batch growth kinetic parameters were also determined for the cultures studied. Kluyveromyces marxianus UCD (FST) 55-82 had the highest specific growth rate, 0.41/h, with a high ethanol yield, 88% of theoretical.

  11. DETERMINATION OF ENZYMES PRODUCED BY CERIPORIOPSIS SUBVERMISPORA DURING PRETREATMENT OF DIFFERENT BIOMASS SOURCES

    Directory of Open Access Journals (Sweden)

    Miroslav Ondrejovič

    2012-02-01

    Full Text Available The aim of this paper was to study of lignocellulolytic enzymes producing by Ceriporiopsis subvermispora during its cultivation on three types of plant biomass differentiated by chemical composition and physical properties (wheat straw, pine and poplar wood. The activity of lignocellulolytic enzymes in cultivation medium was determined by catalytic transformation of their natural substrates to products which were detected by photometric methods. Cellulase activities were very low while xylanases predominated. Wheat straw was best substrate for production of cellulases (4.38 U/mL and xylanases (23.34 U/mL. The maximum activity of cellulase and xylanase was reached at 8th and 3rd day, respectively. Laccase activity reached the maximum after 16 days and then gradually decreased. The best substrate for production of laccases was poplar wood (1.67 U/mL.

  12. Assessment of Soil Health in Urban Agriculture: Soil Enzymes and Microbial Properties

    Directory of Open Access Journals (Sweden)

    Avanthi Deshani Igalavithana

    2017-02-01

    Full Text Available Urban agriculture has been recently highlighted with the increased importance for recreation in modern society; however, soil quality and public health may not be guaranteed because of continuous exposure to various pollutants. The objective of this study was to evaluate the soil quality of urban agriculture by soil microbial assessments. Two independent variables, organic and inorganic fertilizers, were considered. The activities of soil enzymes including dehydrogenase, β-glucosidase, arylsulfatase, urease, alkaline and acid phosphatases were used as indicators of important microbial mediated functions and the soil chemical properties were measured in the soils applied with organic or inorganic fertilizer for 10 years. Fatty acid methyl ester analysis was applied to determine the soil microbial community composition. Relatively higher microbial community richness and enzyme activities were found in the organic fertilizers applied soils as compared to the inorganic fertilizers applied soils. Principal component analysis explained the positive influence of organic fertilizers on the microbial community. The application of organic fertilizers can be a better alternative compared to inorganic fertilizers for the long-term health and security of urban agriculture.

  13. Effects of Biochar on Soil Microbial Biomass after Four Years of Consecutive Application in the North China Plain

    Science.gov (United States)

    Zhang, Qing-zhong; Dijkstra, Feike A.; Liu, Xing-ren; Wang, Yi-ding; Huang, Jian; Lu, Ning

    2014-01-01

    The long term effect of biochar application on soil microbial biomass is not well understood. We measured soil microbial biomass carbon (MBC) and nitrogen (MBN) in a field experiment during a winter wheat growing season after four consecutive years of no (CK), 4.5 (B4.5) and 9.0 t biochar ha−1 yr−1 (B9.0) applied. For comparison, a treatment with wheat straw residue incorporation (SR) was also included. Results showed that biochar application increased soil MBC significantly compared to the CK treatment, and that the effect size increased with biochar application rate. The B9.0 treatment showed the same effect on MBC as the SR treatment. Treatments effects on soil MBN were less strong than for MBC. The microbial biomass C∶N ratio was significantly increased by biochar. Biochar might decrease the fraction of biomass N mineralized (K N), which would make the soil MBN for biochar treatments underestimated, and microbial biomass C∶N ratios overestimated. Seasonal fluctuation in MBC was less for biochar amended soils than for CK and SR treatments, suggesting that biochar induced a less extreme environment for microorganisms throughout the season. There was a significant positive correlation between MBC and soil water content (SWC), but there was no significant correlation between MBC and soil temperature. Biochar amendments may therefore reduce temporal variability in environmental conditions for microbial growth in this system thereby reducing temporal fluctuations in C and N dynamics. PMID:25025330

  14. Effects of biochar on soil microbial biomass after four years of consecutive application in the north China Plain.

    Directory of Open Access Journals (Sweden)

    Qing-zhong Zhang

    Full Text Available The long term effect of biochar application on soil microbial biomass is not well understood. We measured soil microbial biomass carbon (MBC and nitrogen (MBN in a field experiment during a winter wheat growing season after four consecutive years of no (CK, 4.5 (B4.5 and 9.0 t biochar ha(-1 yr(-1 (B9.0 applied. For comparison, a treatment with wheat straw residue incorporation (SR was also included. Results showed that biochar application increased soil MBC significantly compared to the CK treatment, and that the effect size increased with biochar application rate. The B9.0 treatment showed the same effect on MBC as the SR treatment. Treatments effects on soil MBN were less strong than for MBC. The microbial biomass C∶N ratio was significantly increased by biochar. Biochar might decrease the fraction of biomass N mineralized (KN, which would make the soil MBN for biochar treatments underestimated, and microbial biomass C∶N ratios overestimated. Seasonal fluctuation in MBC was less for biochar amended soils than for CK and SR treatments, suggesting that biochar induced a less extreme environment for microorganisms throughout the season. There was a significant positive correlation between MBC and soil water content (SWC, but there was no significant correlation between MBC and soil temperature. Biochar amendments may therefore reduce temporal variability in environmental conditions for microbial growth in this system thereby reducing temporal fluctuations in C and N dynamics.

  15. Effects of microbial enzymes on starch and hemicellulose degradation in total mixed ration silages

    Directory of Open Access Journals (Sweden)

    Tingting Ning

    2017-02-01

    Full Text Available Objective This study investigated the association of enzyme-producing microbes and their enzymes with starch and hemicellulose degradation during fermentation of total mixed ration (TMR silage. Methods The TMRs were prepared with soybean curd residue, alfalfa hay (ATMR or Leymus chinensis hay (LTMR, corn meal, soybean meal, vitamin-mineral supplements, and salt at a ratio of 25:40:30:4:0.5:0.5 on a dry matter basis. Laboratory-scale bag silos were randomly opened after 1, 3, 7, 14, 28, and 56 days of ensiling and subjected to analyses of fermentation quality, carbohydrates loss, microbial amylase and hemicellulase activities, succession of dominant amylolytic or hemicellulolytic microbes, and their microbial and enzymatic properties. Results Both ATMR and LTMR silages were well preserved, with low pH and high lactic acid concentrations. In addition to the substantial loss of water soluble carbohydrates, loss of starch and hemicellulose was also observed in both TMR silages with prolonged ensiling. The microbial amylase activity remained detectable throughout the ensiling in both TMR silages, whereas the microbial hemicellulase activity progressively decreased until it was inactive at day 14 post-ensiling in both TMR silages. During the early stage of fermentation, the main amylase-producing microbes were Bacillus amyloliquefaciens (B. amyloliquefaciens, B. cereus, B. licheniformis, and B. subtilis in ATMR silage and B. flexus, B. licheniformis, and Paenibacillus xylanexedens (P. xylanexedens in LTMR silage, whereas Enterococcus faecium was closely associated with starch hydrolysis at the later stage of fermentation in both TMR silages. B. amyloliquefaciens, B. licheniformis, and B. subtilis and B. licheniformis, B. pumilus, and P. xylanexedens were the main source of microbial hemicellulase during the early stage of fermentation in ATMR and LTMR silages, respectively. Conclusion The microbial amylase contributes to starch hydrolysis during the

  16. Integrated cellulosic enzymes hydrolysis and fermentative advanced yeast bioconversion solution ready for biomass biorefineries

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Manoj [DSM Innovation, Inc., San Francisco, CA (United States)

    2011-05-04

    These are slides from this conference. Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

  17. Vertical Integration of Biomass Saccharification of Enzymes for Sustainable Cellulosic Biofuel Production in a Biorefinery

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Manoj [DSM Innovation, Inc., San Francisco, CA (United States)

    2011-05-09

    These are a set of slides from this conference. Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

  18. Bioaugmentation for Electricity Generation from Corn Stover Biomass Using Microbial Fuel Cells

    KAUST Repository

    Wang, Xin

    2009-08-01

    Corn stover is usually treated by an energy-intensive or expensive process to extract sugars for bioenergy production. However, it is possible to directly generate electricity from corn stover in microbial fuel cells (MFCs) through the addition of microbial consortia specifically acclimated for biomass breakdown. A mixed culture that was developed to have a high saccharification rate with corn stover was added to singlechamber, air-cathode MFCs acclimated for power production using glucose. The MFC produced a maximum power of 331 mW/ m 2 with the bioaugmented mixed culture and corn stover, compared to 510 mW/m2 using glucose. Denaturing gradient gel electrophoresis (DGGE) showed the communities continued to evolve on both the anode and corn stover biomass over 60 days, with several bacteria identified including Rhodopseudomonas palustris. The use of residual solids from the steam exploded corn stover produced 8% more power (406 mW/m2) than the raw corn stover. These results show that it is possible to directly generate electricity from waste corn stover in MFCs through bioaugmentation using naturally occurring bacteria. © 2009 American Chemical Society.

  19. Responses of microbial biomass carbon and nitrogen to experimental warming: a meta-analysis

    Science.gov (United States)

    Xu, W.; Yuan, W.

    2017-12-01

    Soil microbes play important roles in regulating terrestrial carbon and nitrogen cycling and strongly influence feedbacks of ecosystem to global warming. However, the inconsistent responses of microbial biomass carbon (MBC) and nitrogen (MBN) to experimental warming have been observed, and the response on ratio between MBC and MBN (MBC:MBN) has not been identified. This meta-analysis synthesized the warming experiments at 58 sites globally to investigate the responses of MBC:MBN to climate warming. Our results showed that warming significantly increased MBC by 3.61 ± 0.80% and MBN by 5.85 ± 0.90% and thus decreased the MBC:MBN by 3.34 ± 0.66%. MBC showed positive responses to warming but MBN exhibited negative responses to warming at low warming magnitude (2°C) the results were inverted. The different effects of warming magnitude on microbial biomass resulted from the warming-induced decline in soil moisture and substrate supply. Moreover, MBC and MBN had strong positive responses to warming at the mid-term (3-4 years) or short-term (1-2 years) duration, but the responses tended to decrease at long-term (≥ 5 years) warming duration. This study fills the knowledge gap on the responses of MBC:MBN to warming and may benefit the development of coupled carbon and nitrogen models.

  20. Earthworms (Amynthas spp. increase common bean growth, microbial biomass, and soil respiration

    Directory of Open Access Journals (Sweden)

    Julierme Zimmer Barbosa

    2017-10-01

    Full Text Available Few studies have evaluated the effect of earthworms on plants and biological soil attributes, especially among legumes. The objective of this study was to evaluate the influence of earthworms (Amynthas spp. on growth in the common bean (Phaseolus vulgaris L. and on soil biological attributes. The experiment was conducted in a greenhouse using a completely randomized design with five treatments and eight repetitions. The treatments consisted of inoculation with five different quantities of earthworms of the genus Amynthas (0, 2, 4, 6, and 8 worms per pot. Each experimental unit consisted of a plastic pot containing 4 kg of soil and two common bean plants. The experiment was harvested 38 days after seedling emergence. Dry matter and plant height, soil respiration, microbial respiration, microbial biomass, and metabolic quotient were determined. Earthworm recovery in our study was high in number and mass, with all values above 91.6% and 89.1%, respectively. In addition, earthworm fresh biomass decreased only in the treatment that included eight earthworms per pot. The presence of earthworms increased the plant growth and improved soil biological properties, suggesting that agricultural practices that favor the presence of these organisms can be used to increase the production of common bean, and the increased soil CO2 emission caused by the earthworms can be partially offset by the addition of common bean crop residues to the soil.

  1. Microbial biomass and soil fauna during the decomposition of cover crops in no-tillage system

    Directory of Open Access Journals (Sweden)

    Luciano Colpo Gatiboni

    2011-08-01

    Full Text Available The decomposition of plant residues is a biological process mediated by soil fauna, but few studies have been done evaluating its dynamics in time during the process of disappearance of straw. This study was carried out in Chapecó, in southern Brazil, with the objective of monitoring modifications in soil fauna populations and the C content in the soil microbial biomass (C SMB during the decomposition of winter cover crop residues in a no-till system. The following treatments were tested: 1 Black oat straw (Avena strigosa Schreb.; 2 Rye straw (Secale cereale L.; 3 Common vetch straw (Vicia sativa L.. The cover crops were grown until full flowering and then cut mechanically with a rolling stalk chopper. The soil fauna and C content in soil microbial biomass (C SMB were assessed during the period of straw decomposition, from October 2006 to February 2007. To evaluate C SMB by the irradiation-extraction method, soil samples from the 0-10 cm layer were used, collected on eight dates, from before until 100 days after residue chopping. The soil fauna was collected with pitfall traps on seven dates up to 85 days after residue chopping. The phytomass decomposition of common vetch was faster than of black oat and rye residues. The C SMB decreased during the process of straw decomposition, fastest in the treatment with common vetch. In the common vetch treatment, the diversity of the soil fauna was reduced at the end of the decomposition process.

  2. Controlled expression of pectic enzymes in Arabidopsis thaliana enhances biomass conversion without adverse effects on growth.

    Science.gov (United States)

    Tomassetti, Susanna; Pontiggia, Daniela; Verrascina, Ilaria; Reca, Ida Barbara; Francocci, Fedra; Salvi, Gianni; Cervone, Felice; Ferrari, Simone

    2015-04-01

    Lignocellulosic biomass from agriculture wastes is a potential source of biofuel, but its use is currently limited by the recalcitrance of the plant cell wall to enzymatic digestion. Modification of the wall structural components can be a viable strategy to overcome this bottleneck. We have previously shown that the expression of a fungal polygalacturonase (pga2 from Aspergillus niger) in Arabidopsis and tobacco plants reduces the levels of de-esterified homogalacturonan in the cell wall and significantly increases saccharification efficiency. However, plants expressing pga2 show stunted growth and reduced biomass production, likely as a consequence of an extensive loss of pectin integrity during the whole plant life cycle. We report here that the expression in Arabidopsis of another pectic enzyme, the pectate lyase 1 (PL1) of Pectobacterium carotovorum, under the control of a chemically inducible promoter, results, after induction of the transgene, in a saccharification efficiency similar to that of plants expressing pga2. However, lines with high levels of transgene induction show reduced growth even in the absence of the inducer. To overcome the problem of plant fitness, we have generated Arabidopsis plants that express pga2 under the control of the promoter of SAG12, a gene expressed only during senescence. These plants expressed pga2 only at late stages of development, and their growth was comparable to that of WT plants. Notably, leaves and stems of transgenic plants were more easily digested by cellulase, compared to WT plants, only during senescence. Expression of cell wall-degrading enzymes at the end of the plant life cycle may be therefore a useful strategy to engineer crops unimpaired in biomass yield but improved for bioconversion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Soil microbial biomass under different management and tillage systems of permanent intercropped cover species in an orange orchard

    Directory of Open Access Journals (Sweden)

    Elcio Liborio Balota

    2011-12-01

    Full Text Available To mitigate soil erosion and enhance soil fertility in orange plantations, the permanent protection of the inter-rows by cover species has been suggested. The objective of this study was to evaluate alterations in the microbial biomass, due to different soil tillage systems and intercropped cover species between rows of orange trees. The soil of the experimental area previously used as pasture (Brachiaria humidicola was an Ultisol (Typic Paleudult originating from Caiuá sandstone in the northwestern part of the State of Paraná, Brazil. Two soil tillage systems were evaluated: conventional tillage (CT in the entire area and strip tillage (ST (strip width 2 m, in combination with different ground cover management systems. The citrus cultivar 'Pera' orange (Citrus sinensis grafted onto 'Rangpur' lime rootstock was used. Soil samples were collected after five years of treatment from a depth of 0-15 cm, under the tree canopy and in the inter-row, in the following treatments: (1 CT and an annual cover crop with the leguminous species Calopogonium mucunoides; (2 CT and a perennial cover crop with the leguminous peanut Arachis pintoi; (3 CT and an evergreen cover crop with Bahiagrass Paspalum notatum; (4 CT and a cover crop with spontaneous Brachiaria humidicola grass vegetation; and (5 ST and maintenance of the remaining grass (pasture of Brachiaria humidicola. Soil tillage and the different cover species influenced the microbial biomass, both under the tree canopy and in the inter-row. The cultivation of brachiaria increased C and N in the microbial biomass, while bahiagrass increased P in the microbial biomass. The soil microbial biomass was enriched in N and P by the presence of ground cover species and according to the soil P content. The grass species increased C, N and P in the soil microbial biomass from the inter-row more than leguminous species.

  4. Effects of fire on soil nitrogen dynamics and microbial biomass in savannas of Central Brazil

    Directory of Open Access Journals (Sweden)

    Nardoto Gabriela Bielefeld

    2003-01-01

    Full Text Available The objective of this work was to study the effects of fire on net N mineralization and soil microbial biomass in burned and unburned cerrado stricto sensu sites. The study was carried out from April 1998 to April 2000. The pH values were significantly higher in the burned site while soil moisture content was significantly higher in the unburned site (P<0.05. The soil C/N ratio was 22/1 and the available NO3-N ranged between 1.5 and 2.8 mg kg-¹ dry weight. However, the NH4-N concentration ranged between 3 and 34 mg kg-1 dry weight in the burned site and between 3 and 22 mg kg-1 dry weight in the unburned site. The NH4-N increased after fire, but no significant changes were observed for NO3-N (P<0.05. The NO3-N accumulation occurred in short periods during the rainy season. The rates of net N mineralization increased during the rainy season while reductions in soil microbial biomass were observed at both sites. This suggested that the peak in microbial activities occurred with the first rain events, with an initial net immobilization followed by net mineralization. Both sites presented the same pattern for mineralization/immobilization, however, the amount of inorganic-N cycled annually in unburned site was 14.7 kg ha-1 per year while the burned site presented only 3.8 kg ha-¹ of inorganic-N, one year after the burning.

  5. Microbial P450 Enzymes in Bioremediation and Drug Discovery: Emerging Potentials and Challenges.

    Science.gov (United States)

    Bhattacharya, Sukanta S; Yadav, Jagjit S

    2018-01-01

    Cytochrome P450 enzymes are a structurally conserved but functionally diverse group of heme-containing mixed function oxidases found across both prokaryotic and eukaryotic forms of the microbial world. Microbial P450s are known to perform diverse functions ranging from the synthesis of cell wall components to xenobiotic/drug metabolism to biodegradation of environmental chemicals. Conventionally, many microbial systems have been reported to mimic mammalian P450-like activation of drugs and were proposed as the in-vitro models of mammalian drug metabolism. Recent reports suggest that native or engineered forms of specific microbial P450s from these and other microbial systems could be employed for desired specific biotransformation reactions toward natural and synthetic (drug) compounds underscoring their emerging potential in drug improvement and discovery. On the other hand, microorganisms particularly fungi and actinomycetes have been shown to possess catabolic P450s with unusual potential to degrade toxic environmental chemicals including persistent organic pollutants (POPs). Wood-rotting basidiomycete fungi in particular have revealed the presence of exceptionally large P450 repertoire (P450ome) in their genomes, majority of which are however orphan (with no known function). Our pre- and post-genomic studies have led to functional characterization of several fungal P450s inducible in response to exposure to several environmental toxicants and demonstration of their potential in bioremediation of these chemicals. This review is an attempt to summarize the postgenomic unveiling of this versatile enzyme superfamily in microbial systems and investigation of their potential to synthesize new drugs and degrade persistent pollutants, among other biotechnological applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Qualitative Analysis of Microbial Dynamics during Anaerobic Digestion of Microalgal Biomass in a UASB Reactor

    Directory of Open Access Journals (Sweden)

    Anna Doloman

    2017-01-01

    Full Text Available Anaerobic digestion (AD is a microbiologically coordinated process with dynamic relationships between bacterial players. Current understanding of dynamic changes in the bacterial composition during the AD process is incomplete. The objective of this research was to assess changes in bacterial community composition that coordinates with anaerobic codigestion of microalgal biomass cultivated on municipal wastewater. An upflow anaerobic sludge blanket reactor was used to achieve high rates of microalgae decomposition and biogas production. Samples of the sludge were collected throughout AD and extracted DNA was subjected to next-generation sequencing using methanogen mcrA gene specific and universal bacterial primers. Analysis of the data revealed that samples taken at different stages of AD had varying bacterial composition. A group consisting of Bacteroidales, Pseudomonadales, and Enterobacteriales was identified to be putatively responsible for the hydrolysis of microalgal biomass. The methanogenesis phase was dominated by Methanosarcina mazei. Results of observed changes in the composition of microbial communities during AD can be used as a road map to stimulate key bacterial species identified at each phase of AD to increase yield of biogas and rate of substrate decomposition. This research demonstrates a successful exploitation of methane production from microalgae without any biomass pretreatment.

  7. Qualitative Analysis of Microbial Dynamics during Anaerobic Digestion of Microalgal Biomass in a UASB Reactor

    Science.gov (United States)

    Doloman, Anna; Soboh, Yousef; Walters, Andrew J.; Sims, Ronald C.

    2017-01-01

    Anaerobic digestion (AD) is a microbiologically coordinated process with dynamic relationships between bacterial players. Current understanding of dynamic changes in the bacterial composition during the AD process is incomplete. The objective of this research was to assess changes in bacterial community composition that coordinates with anaerobic codigestion of microalgal biomass cultivated on municipal wastewater. An upflow anaerobic sludge blanket reactor was used to achieve high rates of microalgae decomposition and biogas production. Samples of the sludge were collected throughout AD and extracted DNA was subjected to next-generation sequencing using methanogen mcrA gene specific and universal bacterial primers. Analysis of the data revealed that samples taken at different stages of AD had varying bacterial composition. A group consisting of Bacteroidales, Pseudomonadales, and Enterobacteriales was identified to be putatively responsible for the hydrolysis of microalgal biomass. The methanogenesis phase was dominated by Methanosarcina mazei. Results of observed changes in the composition of microbial communities during AD can be used as a road map to stimulate key bacterial species identified at each phase of AD to increase yield of biogas and rate of substrate decomposition. This research demonstrates a successful exploitation of methane production from microalgae without any biomass pretreatment. PMID:29259629

  8. Biomass production from electricity using ammonia as an electron carrier in a reverse microbial fuel cell.

    Directory of Open Access Journals (Sweden)

    Wendell O Khunjar

    Full Text Available The storage of renewable electrical energy within chemical bonds of biofuels and other chemicals is a route to decreasing petroleum usage. A critical challenge is the efficient transfer of electrons into a biological host that can covert this energy into high energy organic compounds. In this paper, we describe an approach whereby biomass is grown using energy obtained from a soluble mediator that is regenerated electrochemically. The net result is a separate-stage reverse microbial fuel cell (rMFC that fixes CO₂ into biomass using electrical energy. We selected ammonia as a low cost, abundant, safe, and soluble redox mediator that facilitated energy transfer to biomass. Nitrosomonas europaea, a chemolithoautotroph, was used as the biocatalyst due to its inherent capability to utilize ammonia as its sole energy source for growth. An electrochemical reactor was designed for the regeneration of ammonia from nitrite, and current efficiencies of 100% were achieved. Calculations indicated that overall bioproduction efficiency could approach 2.7±0.2% under optimal electrolysis conditions. The application of chemolithoautotrophy for industrial bioproduction has been largely unexplored, and results suggest that this and related rMFC platforms may enable biofuel and related biochemical production.

  9. Photosynthetic microbial desalination cells (PMDCs) for clean energy, water and biomass production.

    Science.gov (United States)

    Kokabian, Bahareh; Gude, Veera Gnaneswar

    2013-12-01

    Current microbial desalination cell (MDC) performances are evaluated with chemical catalysts such as ferricyanide, platinum catalyzed air-cathodes or aerated cathodes. All of these methods improve power generation potential in MDCs, however, they are not preferable for large scale applications due to cost, energy and environmental toxicity issues. In this study, performance of microbial desalination cells with an air cathode and an algae biocathode (Photosynthetic MDC - PMDC) were evaluated, both under passive conditions (no mechanical aeration or mixing). The results indicate that passive algae biocathodes perform better than air cathodes and enhance COD removal and utilize treated wastewater as the growth medium to obtain valuable biomass for high value bioproducts. Maximum power densities of 84 mW m(-3) (anode volume) or 151 mW m(-3) (biocathode volume) and a desalination rate of 40% were measured with 0.9 : 1 : 0.5 volumetric ratios of anode, desalination and algae biocathode chambers respectively. This first proof-of-concept study proves that the passive mechanisms can be beneficial in enhancing the sustainability of microbial desalination cells.

  10. A stepwise-cluster microbial biomass inference model in food waste composting

    International Nuclear Information System (INIS)

    Sun Wei; Huang, Guo H.; Zeng Guangming; Qin Xiaosheng; Sun Xueling

    2009-01-01

    A stepwise-cluster microbial biomass inference (SMI) model was developed through introducing stepwise-cluster analysis (SCA) into composting process modeling to tackle the nonlinear relationships among state variables and microbial activities. The essence of SCA is to form a classification tree based on a series of cutting or mergence processes according to given statistical criteria. Eight runs of designed experiments in bench-scale reactors in a laboratory were constructed to demonstrate the feasibility of the proposed method. The results indicated that SMI could help establish a statistical relationship between state variables and composting microbial characteristics, where discrete and nonlinear complexities exist. Significance levels of cutting/merging were provided such that the accuracies of the developed forecasting trees were controllable. Through an attempted definition of input effects on the output in SMI, the effects of the state variables on thermophilic bacteria were ranged in a descending order as: Time (day) > moisture content (%) > ash content (%, dry) > Lower Temperature (deg. C) > pH > NH 4 + -N (mg/Kg, dry) > Total N (%, dry) > Total C (%, dry); the effects on mesophilic bacteria were ordered as: Time > Upper Temperature (deg. C) > Total N > moisture content > NH 4 + -N > Total C > pH. This study made the first attempt in applying SCA to mapping the nonlinear and discrete relationships in composting processes.

  11. Nitrogen fractions in the microbial biomass in soils of southern Brazil

    Directory of Open Access Journals (Sweden)

    F. A.O. Camargo

    1999-03-01

    Full Text Available The reaction of nitrogen compounds with ninhydrin can be used as an indicator of cytoplasmic materials released from microbial cells killed by fumigation. Total-N, ninhydrin-reactive-N (NR-N, ammonium-N (A-N, and α-amino-N in the microbial biomass of soils from the State of Rio Grande do Sul, Brazil, were determined, in 1996, in 0.5 mol L-1 K2SO4 extracts of fumigated and non-fumigated soils. Total-N varied from 20.3 to 104.4 mg kg-1 and the ninhydrin-reactive-N corresponded, in average, to 27% of this. The ninhydrin-reactive-N was made up of 67% ammonium-N and 33% aminoacids with the amino group at the α-carbon position. It was concluded that colorimetric analysis of NR-N and A-N may be used as a direct measure of microbial N in soil. This simple and rapid procedure is adequate for routine analyses.

  12. Microbial respiration, but not biomass, responded linearly to increasing light fraction organic matter input: Consequences for carbon sequestration.

    Science.gov (United States)

    Rui, Yichao; Murphy, Daniel V; Wang, Xiaoli; Hoyle, Frances C

    2016-10-18

    Rebuilding 'lost' soil carbon (C) is a priority in mitigating climate change and underpinning key soil functions that support ecosystem services. Microorganisms determine if fresh C input is converted into stable soil organic matter (SOM) or lost as CO 2 . Here we quantified if microbial biomass and respiration responded positively to addition of light fraction organic matter (LFOM, representing recent inputs of plant residue) in an infertile semi-arid agricultural soil. Field trial soil with different historical plant residue inputs [soil C content: control (tilled) = 9.6 t C ha -1 versus tilled + plant residue treatment (tilled + OM) = 18.0 t C ha -1 ] were incubated in the laboratory with a gradient of LFOM equivalent to 0 to 3.8 t C ha -1 (0 to 500% LFOM). Microbial biomass C significantly declined under increased rates of LFOM addition while microbial respiration increased linearly, leading to a decrease in the microbial C use efficiency. We hypothesise this was due to insufficient nutrients to form new microbial biomass as LFOM input increased the ratio of C to nitrogen, phosphorus and sulphur of soil. Increased CO 2 efflux but constrained microbial growth in response to LFOM input demonstrated the difficulty for C storage in this environment.

  13. Metabolic enzyme cost explains variable trade-offs between microbial growth rate and yield.

    Directory of Open Access Journals (Sweden)

    Meike T Wortel

    2018-02-01

    Full Text Available Microbes may maximize the number of daughter cells per time or per amount of nutrients consumed. These two strategies correspond, respectively, to the use of enzyme-efficient or substrate-efficient metabolic pathways. In reality, fast growth is often associated with wasteful, yield-inefficient metabolism, and a general thermodynamic trade-off between growth rate and biomass yield has been proposed to explain this. We studied growth rate/yield trade-offs by using a novel modeling framework, Enzyme-Flux Cost Minimization (EFCM and by assuming that the growth rate depends directly on the enzyme investment per rate of biomass production. In a comprehensive mathematical model of core metabolism in E. coli, we screened all elementary flux modes leading to cell synthesis, characterized them by the growth rates and yields they provide, and studied the shape of the resulting rate/yield Pareto front. By varying the model parameters, we found that the rate/yield trade-off is not universal, but depends on metabolic kinetics and environmental conditions. A prominent trade-off emerges under oxygen-limited growth, where yield-inefficient pathways support a 2-to-3 times higher growth rate than yield-efficient pathways. EFCM can be widely used to predict optimal metabolic states and growth rates under varying nutrient levels, perturbations of enzyme parameters, and single or multiple gene knockouts.

  14. D:L-AMINO Acids and the Turnover of Microbial Biomass

    Science.gov (United States)

    Lomstein, B. A.; Braun, S.; Mhatre, S. S.; Jørgensen, B. B.

    2015-12-01

    Decades of ocean drilling have demonstrated wide spread microbial life in deep sub-seafloor sediment, and surprisingly high microbial cell numbers. Despite the ubiquity of life in the deep biosphere, the large community sizes and the low energy fluxes in the vast buried ecosystem are still poorly understood. It is not know whether organisms of the deep biosphere are specifically adapted to extremely low energy fluxes or whether most of the observed cells are in a maintenance state. Recently we developed and applied a new culture independent approach - the D:L-amino acid model - to quantify the turnover times of living microbial biomass, microbial necromass and mean metabolic rates. This approach is based on the built-in molecular clock in amino acids that very slowly undergo chemical racemization until they reach an even mixture of L- and D- forms, unless microorganisms spend energy to keep them in the L-form that dominates in living organisms. The approach combines sensitive analyses of amino acids, the unique bacterial endospore marker (dipicolinic acid) with racemization dynamics of stereo-isomeric amino acids. Based on a heating experiment, we recently reported kinetic parameters for racemization of aspartic acid, glutamic acid, serine and alanine in bulk sediment from Aarhus Bay, Denmark. The obtained racemization rate constants were faster than the racemization rate constants of free amino acids, which we have previously applied in Holocene sediment from Aarhus Bay and in up to 10 mio yr old sediment from ODP Leg 201. Another important input parameter for the D:L-amino acid model is the cellular carbon content. It has recently been suggested that the cellular carbon content most likely is lower than previously thought. In recognition of these new findings, previously published data based on the D:L-amino acid model were recalculated and will be presented together with new data from an Arctic Holocene setting with constant sub-zero temperatures.

  15. Microbial communities in litter and soil - particles size fractionation, C- and N-pools and soil enzymes

    International Nuclear Information System (INIS)

    Stemmer, M.; Gerzabek, M.H.; Pichlmayer, F.; Kandeler, E.

    1995-08-01

    In this study we try to correlate C and N pool investigations to enzyme activities in particle size fractions of soils. Soil incubations in the lab (for one year) simulate two different conventional tillage treatments : (i) soil mixed with maize straw (GSF-mixed) and (ii) soil with maize straw lying on the top (home-mixed). The control soil is incubated without any amendment. The separation of the particle size fractions (2000 - 200 μm, 200 - 63 μm, 63 - 2 μm, 2 - 0.1 μm and 0.1 - 0 μm) is realized by a combination of wet-sieving and centrifugation. To disrupt aggregates we use a defined low-energy ultrasonication, which partly preserves microaggregates. The decomposition of organic C during the incubation can be observed clearly, the small amount of N in the added maize straw complicates the analysis. The isotopic measurements of δ13C and δ15N provide valuable additional informations in this context. Both enzymes, saccharase and xylanase, seem to react in a more sensitive way on the incorporation of the maize litter, than the chemical analysis of the pools. The saccharase activity, which seems to be a sensitive indicator for microbial biomass, shows different behaviour between the mix- and top-treatment. The xylanase activity is mainly located in the coarse sand fraction, this extracellular enzyme might be adsorbed by the particulate organic matter. The transfer of adhering coatings and small particles of the added maize to small sized particles during the fractionation procedure and the 'passive role' of the silt fraction, which could be due to the used method, are nonexpected results. (author)

  16. Soil respiration, microbial biomass and exoenzyme activity in switchgrass stands under nitrogen fertilization management and climate warming.

    Science.gov (United States)

    Jian, S.; Li, J.; de Koff, J.; Celada, S.; Mayes, M. A.; Wang, G.; Guo, C.

    2016-12-01

    Switchgrass (Panicum virgatum L.), as a model bioenergy crop, received nitrogen fertilizers for increasing its biomass yields. Studies rarely investigate the interactive effects of nitrogen fertilization and climate warming on soil microbial activity and carbon cycling in switchgrass cropping systems. Enhanced nitrogen availability under fertilization can alter rates of soil organic matter decomposition and soil carbon emissions to the atmosphere and thus have an effect on climate change. Here, we assess soil CO2 emission, microbial biomass and exoenzyme activities in two switchgrass stands with no fertilizer and 60 lbs N / acre. Soils were incubated at 15 ºC and 20 ºC for 180-day. Dry switchgrass plant materials were added to incubation jars and the 13C stable isotopic probing technique was used to monitor soil CO2 respiration derived from relatively labile litter and indigenous soil. Measurements of respiration, δ13C of respiration, microbial biomass carbon and exoenzyme activity were performed on days 1, 5, 10, 15, 30, 60, 90, 120, 150 and 180. Soil respiration rate was greater in the samples incubated at 20 ºC as compared to those incubated at 15 ºC. Exoenzyme activities were significantly altered by warming, litter addition and nitrogen fertilization. There was a significant interactive effect of nitrogen fertilization and warming on the proportion of CO2 respired from soils such that nitrogen fertilization enhanced warming-induced increase by 12.0% (Pmineralization. Fertilization increased soil microbial biomass carbon at both temperatures (9.0% at 15 ºC and 14.5% at 20 ºC). Our preliminary analysis suggested that warming effects on enhanced soil respiration can be further increased with elevated fertilizer input via greater microbial biomass and exoenzyme activity. In addition to greater biomass yield under N fertilization, this study informs potential soil carbon loss from stimulated soil respiration under nitrogen fertilization and warming in

  17. Microbial biomass and carbon mineralization in agricultural soils as affected by pesticide addition.

    Science.gov (United States)

    Kumar, Anjani; Nayak, A K; Shukla, Arvind K; Panda, B B; Raja, R; Shahid, Mohammad; Tripathi, Rahul; Mohanty, Sangita; Rath, P C

    2012-04-01

    A laboratory study was conducted with four pesticides, viz. a fungicide (carbendazim), two insecticides (chlorpyrifos and cartap hydrochloride) and an herbicide (pretilachlor) applied to a sandy clay loam soil at a field rate to determine their effect on microbial biomass carbon (MBC) and carbon mineralization (C(min)). The MBC content of soil increased with time up to 30 days in cartap hydrochloride as well as chlorpyrifos treated soil. Thereafter, it decreased and reached close to the initial level by 90th day. However, in carbendazim treated soil, the MBC showed a decreasing trend up to 45 days and subsequently increased up to 90 days. In pretilachlor treated soil, MBC increased through the first 15 days, and thereafter decreased to the initial level. Application of carbendazim, chlorpyrifos and cartap hydrochloride decreased C(min) for the first 30 days and then increased afterwards, while pretilachlor treated soil showed an increasing trend.

  18. Soil-derived microbial consortia enriched with different plant biomass reveal distinct players acting in lignocellulose degradation

    NARCIS (Netherlands)

    de Lima Brossi, Maria Julia; Jiménez Avella, Diego; Cortes Tolalpa, Larisa; van Elsas, Jan

    Here, we investigated how different plant biomass, and-for one substrate-pH, drive the composition of degrader microbial consortia. We bred such consortia from forest soil, incubated along nine aerobic sequential - batch enrichments with wheat straw (WS1, pH 7.2; WS2, pH 9.0), switchgrass (SG, pH

  19. Effects of phosphorus addition on soil microbial biomass and community composition in three forest types in tropical China

    DEFF Research Database (Denmark)

    Liu, Lei; Gundersen, Per; Zhang, Tao

    2012-01-01

    Elevated nitrogen (N) deposition in humid tropical regions may aggravate phosphorus (P) deficiency in forest on old weathered soil found in these regions. From January 2007 to August 2009, we studied the responses of soil microbial biomass and community composition to P addition (in two monthly...

  20. Microbial biomass and bacterial functional diversity in forest soils: effects of organic matter removal, compaction, and vegetation control

    Science.gov (United States)

    Qingchao Li; H. Lee Allen; Arthur G. Wollum

    2004-01-01

    The effects of organic matter removal, soil compaction, and vegetation control on soil microbial biomass carbon, nitrogen, C-to-N ratio, and functional diversity were examined in a 6-year loblolly pine plantation on a Coastal Plain site in eastern North Carolina, USA. This experimental plantation was established as part of the US Forest Service's Long Term Soil...

  1. Effects of microcystins contamination on soil enzyme activities and microbial community in two typical lakeside soils.

    Science.gov (United States)

    Cao, Qing; Steinman, Alan D; Su, Xiaomei; Xie, Liqiang

    2017-12-01

    A 30-day indoor incubation experiment was conducted to investigate the effects of different concentrations of microcystin (1, 10, 100 and 1000 μg eq. MC-LR L -1 ) on soil enzyme activity, soil respiration, physiological profiles, potential nitrification, and microbial abundance (total bacteria, total fungi, ammonia-oxidizing bacteria and archaea) in two lakeside soils in China (Soil A from the lakeside of Lake Poyanghu at Jiujiang; Soil B from the lakeside of Lake Taihu at Suzhou). Of the enzymes tested, only phenol oxidase activity was negatively affected by microcystin application. In contrast, dehydrogenase activity was stimulated in the 1000 μg treatment, and a stimulatory effect also occurred with soil respiration in contaminated soil. The metabolic profiles of the microbial communities indicated that overall carbon metabolic activity in the soils treated with high microcystin concentrations was inhibited, and high concentrations of microcystin also led to different patterns of potential carbon utilization. High microcystin concentrations (100, 1000 μg eq. MC-LR L -1 in Soil A; 10, 100 1000 μg eq. MC-LR L -1 in Soil B) significantly decreased soil potential nitrification rate. Furthermore, the decrease in soil potential nitrification rate was positively correlated with the decrease of the amoA gene abundance, which corresponds to the ammonia-oxidizing bacterial community. We conclude that application of microcystin-enriched irrigation water can significantly impact soil microbial community structure and function. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: how far are we?

    Science.gov (United States)

    Wei, Ren; Zimmermann, Wolfgang

    2017-11-01

    Petroleum-based plastics have replaced many natural materials in their former applications. With their excellent properties, they have found widespread uses in almost every area of human life. However, the high recalcitrance of many synthetic plastics results in their long persistence in the environment, and the growing amount of plastic waste ending up in landfills and in the oceans has become a global concern. In recent years, a number of microbial enzymes capable of modifying or degrading recalcitrant synthetic polymers have been identified. They are emerging as candidates for the development of biocatalytic plastic recycling processes, by which valuable raw materials can be recovered in an environmentally sustainable way. This review is focused on microbial biocatalysts involved in the degradation of the synthetic plastics polyethylene, polystyrene, polyurethane and polyethylene terephthalate (PET). Recent progress in the application of polyester hydrolases for the recovery of PET building blocks and challenges for the application of these enzymes in alternative plastic waste recycling processes will be discussed. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  3. Compounds Released from Biomass Deconstruction: Understanding Their Effect on Cellulose Enzyme Hydrolysis and Their Biological Activity

    Science.gov (United States)

    Djioleu, Angele Mezindjou

    The effect of compounds produced during biomass pretreatment on cellulolytic enzyme was investigated. Liquid prehydrolyzates were prepared by pretreating switchgrass using 24 combinations of temperature, time, and sulfuric acid concentration based on a full factorial design. Temperature was varied from 140°C to 180°C; time ranged from 10 to 40 min; and the sulfuric acid concentrations were 0.5% or 1% (v/v). Identified products in the prehydrolyzates included xylose, glucose, hydroxymethylfurfural (HMF), furfural, acetic acid, formic acid, and phenolic compounds at concentration ranging from 0 to 21.4 g/L. Pretreatment conditions significantly affected the concentrations of compounds detected in prehydrolyzates. When assayed in the presence of switchgrass prehydrolyzates against model substrates, activities of cellulase, betaglucosidase, and exoglucanase, were significantly reduced by at least 16%, 31.8%, and 57.8%, respectively, as compared to the control. A strong positive correlation between inhibition of betaglucosidase and concentration of glucose, acetic acid, and furans in prehydrolyzate was established. Exoglucanase inhibition correlated with the presence of phenolic compounds and acetic acid. The prehydrolyzate, prepared at 160°C, 30 min, and 1% acid, was fractionated by centrifugal partition chromatography (CPC) into six fractions; the inhibition effect of these fractions on betaglucosidase and exoglucanase was determined. The initial hydrolysis rate of cellobiose by betaglucosidase was significantly reduced by the CPC sugar-rich fraction; however, exoglucanase was deactivated by the CPC phenolic-rich fraction. Finally, biological activities of water-extracted compounds from sweetgum bark and their effect on cellulase was investigated. It was determined that 12% of solid content of the bark extract could be accounted by phenolic compounds with gallic acid identified as the most concentrated phytochemical. Sweetgum bark extract inhibited Staphylococcus

  4. [Dynamics of microbial biomass carbon and nitrogen during foliar litter decomposition under artificial forest gap in Pinus massoniana plantation.

    Science.gov (United States)

    Zhang, Ming Jin; Chen, Liang Hua; Zhang, Jian; Yang, Wan Qin; Liu, Hua; Li, Xun; Zhang, Yan

    2016-03-01

    Nowadays large areas of plantations have caused serious ecological problems such as soil degradation and biodiversity decline. Artificial tending thinning and construction of mixed forest are frequently used ways when we manage plantations. To understand the effect of this operation mode on nutrient cycle of plantation ecosystem, we detected the dynamics of microbial bio-mass carbon and nitrogen during foliar litter decomposition of Pinus massoniana and Toona ciliate in seven types of gap in different sizes (G 1 : 100 m 2 , G 2 : 225 m 2 , G 3 : 400 m 2 , G 4 : 625 m 2 , G 5 : 900 m 2 , G 6 : 1225 m 2 , G 7 : 1600 m 2 ) of 42-year-old P. massoniana plantations in a hilly area of the upper Yang-tze River. The results showed that small and medium-sized forest gaps(G 1 -G 5 ) were more advantageous for the increment of microbial biomass carbon and nitrogen in the process of foliar litter decomposition. Along with the foliar litter decomposition during the experiment (360 d), microbial biomass carbon (MBC), microbial biomass nitrogen (MBN) in P. massoniana foliar litter and MBN in T. ciliata foliar litter first increased and then decreased, and respectively reached the maxima 9.87, 0.22 and 0.80 g·kg -1 on the 180 th d. But the peak (44.40 g·kg -1 ) of MBC in T. ciliata foliar litter appeared on the 90 th d. Microbial biomass carbon and nitrogen in T. ciliate was significantly higher than that of P. massoniana during foliar litter decomposition. Microbial biomass carbon and nitrogen in foliar litter was not only significantly associated with average daily temperature and the water content of foliar litter, but also closely related to the change of the quality of litter. Therefore, in the thinning, forest gap size could be controlled in the range of from 100 to 900 m 2 to facilitate the increase of microbial biomass carbon and nitrogen in the process of foliar litter decomposition, accelerate the decomposition of foliar litter and improve soil fertility of plantations.

  5. Live Cell Discovery of Microbial Vitamin Transport and Enzyme-Cofactor Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Lindsey N.; Koech, Phillip K.; Plymale, Andrew E.; Landorf, Elizabeth V.; Konopka, Allan; Collart, Frank; Lipton, Mary S.; Romine, Margaret F.; Wright, Aaron T.

    2016-02-02

    The rapid completion of microbial genomes is inducing a conundrum in functional gene discovery. Novel methods are critically needed to shorten the gap between characterizing a microbial genome and experimentally validating bioinformatically-predicted functions. Of particular importance are transport mechanisms, used to shuttle nutrients and metabolites across cell mem-branes, such as B vitamins, which are indispensable to metabolic reactions crucial to the survival of diverse microbes ranging from members of environmental microbial communities to human pathogens. Methods to accurately assign function and specificity for a wide range of experimentally unidentified and/or predicted membrane-embedded transport proteins, and characterization of intra-cellular enzyme-cofactor/nutrient associations are needed to enable a significantly improved understanding of microbial biochemis-try and physiology, how microbes associate with others, and how they sense and respond to environmental perturbations. Chemical probes derived from B vitamins B1, B2, and B7 have allowed us to experimentally address the aforementioned needs by identifying B vitamin transporters and intracellular protein-cofactor associations through live cell labeling of the filamentous anoxygenic pho-toheterotroph, Chloroflexus aurantiacus J-10-fl, known for both B vitamin biosynthesis and environmental salvage. Our probes provide a unique opportunity to directly link cellular activity and protein function back to ecosystem and/or host dynamics by iden-tifying B vitamin transport and disposition mechanisms required for survival.

  6. Optimisation of synergistic biomass-degrading enzyme systems for efficient rice straw hydrolysis using an experimental mixture design.

    Science.gov (United States)

    Suwannarangsee, Surisa; Bunterngsook, Benjarat; Arnthong, Jantima; Paemanee, Atchara; Thamchaipenet, Arinthip; Eurwilaichitr, Lily; Laosiripojana, Navadol; Champreda, Verawat

    2012-09-01

    Synergistic enzyme system for the hydrolysis of alkali-pretreated rice straw was optimised based on the synergy of crude fungal enzyme extracts with a commercial cellulase (Celluclast™). Among 13 enzyme extracts, the enzyme preparation from Aspergillus aculeatus BCC 199 exhibited the highest level of synergy with Celluclast™. This synergy was based on the complementary cellulolytic and hemicellulolytic activities of the BCC 199 enzyme extract. A mixture design was used to optimise the ternary enzyme complex based on the synergistic enzyme mixture with Bacillus subtilis expansin. Using the full cubic model, the optimal formulation of the enzyme mixture was predicted to the percentage of Celluclast™: BCC 199: expansin=41.4:37.0:21.6, which produced 769 mg reducing sugar/g biomass using 2.82 FPU/g enzymes. This work demonstrated the use of a systematic approach for the design and optimisation of a synergistic enzyme mixture of fungal enzymes and expansin for lignocellulosic degradation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Screening and Molecular Identification of New Microbial Strains for Production of Enzymes of Biotechnological Interest

    Directory of Open Access Journals (Sweden)

    Imen Ghazala

    Full Text Available ABSTRACT: This research focused on isolation, identification and characterization of new strains of fungi and bacteria, which were able to produce extracellular xylanase, mannanase, pectinase and α-amylase. Fungi isolates were identified on the basis of analyses of 18S gene sequencing and internal transcribed spacer region. The closest phylogenetic neighbors according to 18S gene sequence and ITS region data for the two isolates M1 and SE were Aspergillus fumigatus and Aspergillus sydowii, respectively. I4 was identified as Bacillus mojavensis on the basis of the 16S rRNA gene sequencing and biochemical properties. The enzyme production was evaluated by cultivating the isolated microorganisms in liquid-state bioprocess using wheat bran as carbon source. Two fungi (M1, and SE and one bacterium (I4 strains were found to be xylanase producer, and several were proven to be outstanding producers of microbial xylanase. The strains producing xylanase secreted variable amounts of starch-debranching enzymes and produced low level β-mannan-degrading enzyme systems. The bacterium strain was found to be capable of producing pectinolytic enzymes on wheat bran at high level. Some of the strains have good potential for use as sources of important industrial enzymes.

  8. Assimilable organic carbon (AOC in soil water extracts using Vibrio harveyi BB721 and its implication for microbial biomass.

    Directory of Open Access Journals (Sweden)

    Jincai Ma

    Full Text Available Assimilable organic carbon (AOC is commonly used to measure the growth potential of microorganisms in water, but has not yet been investigated for measuring microbial growth potential in soils. In this study, a simple, rapid, and non-growth based assay to determine AOC in soil was developed using a naturally occurring luminous strain Vibrio harveyi BB721 to determine the fraction of low molecular weight organic carbon in soil water extract. Calibration of the assay was achieved by measuring the luminescence intensity of starved V. harveyi BB721 cells in the late exponential phase with a concentration range from 0 to 800 µg l(-1 glucose (equivalent to 0-16.0 mg glucose C kg(-1 soil with the detection limit of 10 µg l(-1 equivalent to 0.20 mg glucose C kg(-1 soil. Results showed that bioluminescence was proportional to the concentration of glucose added to soil. The luminescence intensity of the cells was highly pH dependent and the optimal pH was about 7.0. The average AOC concentration in 32 soils tested was 2.9±2.2 mg glucose C kg(-1. Our data showed that AOC levels in soil water extracts were significantly correlated (P<0.05 with microbial biomass determined as microbial biomass carbon, indicating that the AOC concentrations determined by the method developed might be a good indicator of soil microbial biomass. Our findings provide a new approach that may be used to determine AOC in environmental samples using a non-growth bioluminescence based assay. Understanding the levels of AOC in soil water extract provides new insights into our ability to estimate the most available carbon pool to bacteria in soil that may be easily assimilated into cells for many metabolic processes and suggest possible the links between AOC, microbial regrowth potential, and microbial biomass in soils.

  9. Exploration of soil metagenome diversity for prospection of enzymes involved in lignocellulosic biomass conversion

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, T.M.; Squina, F.M. [Laboratorio Nacional de Luz Sincrotron (LNLS), Campinas, SP (Brazil); Paixao, D.A.A.; Franco Cairo, J.P.L.; Buchli, F.; Ruller, R. [Laboratorio Nacional de Ciencia e Tecnologia do Bioetanol (CTBE), Campinas, SP (Brazil); Prade, R. [Oklahoma State University, Sillwater, OK (United States)

    2012-07-01

    Full text: Metagenomics allows access to genetic information encoded in DNA of microorganisms recalcitrant to cultivation. They represent a reservoir of novel biocatalyst with potential application in environmental friendly techniques aiming to overcome the dependence on fossil fuels and also to diminish air and water pollution. The focus of our work is the generation of a tool kit of lignocellulolytic enzymes from soil metagenome, which could be used for second generation ethanol production. Environmental samples were collected at a sugarcane field after harvesting, where it is expected that the microbial population involved on lignocellulose degradation was enriched due to the presence of straws covering the soil. Sugarcane Bagasse-Degrading-Soil (SBDS) metagenome was massively-parallel-454-Roche-sequenced. We identified a full repertoire of genes with significant match to glycosyl hydrolases catalytic domain and carbohydrate-binding modules. Soil metagenomics libraries cloned into pUC19 were screened through functional assays. CMC-agar screening resulted in positive clones, revealing new cellulases coding genes. Through a CMC-zymogram it was possible to observe that one of these genes, nominated as E-1, corresponds to an enzyme that is secreted to the extracellular medium, suggesting that the cloned gene carried the original signal peptide. Enzymatic assays and analysis through capillary electrophoresis showed that E-1 was able to cleave internal glycosidic bonds of cellulose. New rounds of functional screenings through chromogenic substrates are being conducted aiming the generation of a library of lignocellulolytic enzymes derived from soil metagenome, which may become key component for development of second generation biofuels. (author)

  10. Cultivation of Podospora anserina on soybean hulls results in an efficient enzyme cocktail for plant biomass hydrolysis

    NARCIS (Netherlands)

    Mäkelä, Miia R; Bouzid, Ourdia; Ruiz-Robleto, J.; Post, Harm|info:eu-repo/dai/nl/341667374; Peng, Mao; Heck, Albert|info:eu-repo/dai/nl/105189332; Altelaar, Maarten|info:eu-repo/dai/nl/304833517; de Vries, Ronald P|info:eu-repo/dai/nl/186324960

    2017-01-01

    The coprophilic ascomycete fungus Podospora anserina was cultivated on three different plant biomasses, i.e. cotton seed hulls (CSH), soybean hulls (SBH) and acid-pretreated wheat straw (WS) for four days, and the potential of the produced enzyme mixtures was compared in the enzymatic

  11. Response of broiler chickens to diets containing artificially dried high-moisture maize supplemented with microbial enzymes

    OpenAIRE

    Bhuiyan, M.M; Islam, A.F; Iji, P.A

    2010-01-01

    The effect of feeding high-moisture maize grains dried in the sun or artificially in a forced draught oven at 80, 90 or 100 ºC for 24 hours and supplemented with microbial enzymes (Avizyme 1502 and Phyzyme XP) on growth performance, visceral organs, tissue protein, enzyme activity and gut development was investigated in a broiler growth trial. Feed intake (FI) up to 21 days decreased as a results of oven drying of grains whereas supplementation with microbial enzymes increased FI compared to ...

  12. Colonization Habitat Controls Biomass, Composition, and Metabolic Activity of Attached Microbial Communities in the Columbia River Hyporheic Corridor

    Energy Technology Data Exchange (ETDEWEB)

    Stern, Noah; Ginder-Vogel, Matthew; Stegen, James C.; Arntzen, Evan; Kennedy, David W.; Larget, Bret R.; Roden, Eric E.; Kostka, Joel E.

    2017-06-09

    Hydrologic exchange plays a critical role in biogeochemical cycling within the hyporheic zone (the interface between river water and groundwater) of riverine ecosystems. Such exchange may set limits on the rates of microbial metabolism and impose deterministic selection on microbial communities that adapt to dynamically changing dissolved organic carbon (DOC) sources. This study examined the response of attached microbial communities (in situcolonized sand packs) from groundwater, hyporheic, and riverbed habitats within the Columbia River hyporheic corridor to “cross-feeding” with either groundwater, river water, or DOC-free artificial fluids. Our working hypothesis was that deterministic selection duringin situcolonization would dictate the response to cross-feeding, with communities displaying maximal biomass and respiration when supplied with their native fluid source. In contrast to expectations, the major observation was that the riverbed colonized sand had much higher biomass and respiratory activity, as well as a distinct community structure, compared with those of the hyporheic and groundwater colonized sands. 16S rRNA gene amplicon sequencing revealed a much higher proportion of certain heterotrophic taxa as well as significant numbers of eukaryotic algal chloroplasts in the riverbed colonized sand. Significant quantities of DOC were released from riverbed sediment and colonized sand, and separate experiments showed that the released DOC stimulated respiration in the groundwater and piezometer colonized sand. These results suggest that the accumulation and degradation of labile particulate organic carbon (POC) within the riverbed are likely to release DOC, which may enter the hyporheic corridor during hydrologic exchange, thereby stimulating microbial activity and imposing deterministic selective pressure on the microbial community composition.

    IMPORTANCEThe influence of river water

  13. Radiocesium storage in soil microbial biomass of undisturbed alpine meadow soils and its relation to 137Cs soil-plant transfer

    International Nuclear Information System (INIS)

    Stemmer, Michael; Hromatka, Angelika; Lettner, Herbert; Strebl, Friederike

    2005-01-01

    This study focuses on radiocesium storage in soil microbial biomass of undisturbed alpine meadow sites and its relation to the soil-to-plant transfer. Soil and plant samples were taken in August 1999 from an altitude transect (800-1600 m.a.s.l.) at Gastein valley, Austria. Soil samples were subdivided into 3-cm layers for analyses of total, K 2 SO 4 -extractable and microbially stored 137 Cs. Microbial biomass was measured by the fumigation extraction method, and fungal biomass was quantified using ergosterol as biomarker molecule. In general, the quantity of 137 Cs stored in the living soil microbial biomass was relatively small. At the high-altitude meadows, showing high amounts of fungal biomass, microbially stored 137 Cs amounted to 0.64 ± 0.14 kBq m -2 which corresponds to about 1.2-2.7% of the total 137 Cs soil inventory. At lower altitudes, microbial 137 Cs content was distinctly smaller and in most cases not measurable at all using the fumigation extraction method. However, a positive correlation between the observed soil-to-plant aggregated transfer factor, microbially stored 137 Cs and fungal biomass was found, which indicates a possible role of fungal biomass in the storage and turnover of 137 Cs in soils and in the 137 Cs uptake by plants

  14. Generation of Electricity and Analysis of Microbial Communities in Wheat Straw Biomass-Powered Microbial Fuel Cells

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Min, Booki; Huang, L.

    2009-01-01

    Electricity generation from wheat straw hydrolysate and the microbial ecology of electricity producing microbial communities developed in two chamber microbial fuel cells (MFCs) were investigated. Power density reached 123 mW/m2 with an initial hydrolysate concentration of 1000 mg-COD/L while...

  15. Soil microbial species loss affects plant biomass and survival of an introduced bacterial strain, but not inducible plant defences.

    Science.gov (United States)

    Kurm, Viola; van der Putten, Wim H; Pineda, Ana; Hol, W H Gera

    2018-02-12

    Plant growth-promoting rhizobacteria (PGPR) strains can influence plant-insect interactions. However, little is known about the effect of changes in the soil bacterial community in general and especially the loss of rare soil microbes on these interactions. Here, the influence of rare soil microbe reduction on induced systemic resistance (ISR) in a wild ecotype of Arabidopsis thaliana against the aphid Myzus persicae was investigated. To create a gradient of microbial abundances, soil was inoculated with a serial dilution of a microbial community and responses of Arabidopsis plants that originated from the same site as the soil microbes were tested. Plant biomass, transcription of genes involved in plant defences, and insect performance were measured. In addition, the effects of the PGPR strain Pseudomonas fluorescens SS101 on plant and insect performance were tested under the influence of the various soil dilution treatments. Plant biomass showed a hump-shaped relationship with soil microbial community dilution, independent of aphid or Pseudomonas treatments. Both aphid infestation and inoculation with Pseudomonas reduced plant biomass, and led to downregulation of PR1 (salicylic acid-responsive gene) and CYP79B3 (involved in synthesis of glucosinolates). Aphid performance and gene transcription were unaffected by soil dilution. Neither the loss of rare microbial species, as caused by soil dilution, nor Pseudomonas affect the resistance of A. thaliana against M. persicae. However, both Pseudomonas survival and plant biomass respond to rare species loss. Thus, loss of rare soil microbial species can have a significant impact on both above- and below-ground organisms. © The Author(s) 2018. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Changes in microbial populations and enzyme activities during the bioremediation of oil-contaminated soil.

    Science.gov (United States)

    Lin, Xin; Li, Xiaojun; Sun, Tieheng; Li, Peijun; Zhou, Qixing; Sun, Lina; Hu, Xiaojun

    2009-10-01

    In the process of bioremediation in the soil contaminated by different oil concentrations, the changes in the microbial numbers (bacteria and fungi) and the enzyme (catalase (CAT), polyphenol oxidase (PPO) and lipase) activities were evaluated over a 2-year period. The results showed that the microbial numbers after 2-year bioremediation were one to ten times higher than those in the initial. The changes in the bacterial and the fungal populations were different during the bioremediation, and the highest microbial numbers for bacteria and fungi were 5.51 x 10(9) CFU g(-1) dry soil in treatment 3 (10,000 mg kg(-1)) in the initial and 5.54 x 10(5) CFU g(-1) dry soil in treatment 5 (50,000 mg kg(-1)) after the 2-year bioremediation period, respectively. The CAT and PPO activities in the contaminated soil decreased with increasing oil concentration, while the lipase activity increased. The activities of CAT and PPO improved after the bioremediation, but lipase activity was on the contrary. The CAT activity was more sensible to the oil than others, and could be alternative to monitor the bioremediation process.

  17. Unravelling the Interactions between Hydrolytic and Oxidative Enzymes in Degradation of Lignocellulosic Biomass by Sporothrix carnis under Various Fermentation Conditions

    Directory of Open Access Journals (Sweden)

    Olusola A. Ogunyewo

    2016-01-01

    Full Text Available The mechanism underlying the action of lignocellulolytic enzymes in biodegradation of lignocellulosic biomass remains unclear; hence, it is crucial to investigate enzymatic interactions involved in the process. In this study, degradation of corn cob by Sporothrix carnis and involvement of lignocellulolytic enzymes in biodegradation were investigated over 240 h cultivation period. About 60% degradation of corn cob was achieved by S. carnis at the end of fermentation. The yields of hydrolytic enzymes, cellulase and xylanase, were higher than oxidative enzymes, laccase and peroxidase, over 144 h fermentation period. Maximum yields of cellulase (854.4 U/mg and xylanase (789.6 U/mg were at 96 and 144 h, respectively. Laccase and peroxidase were produced cooperatively with maximum yields of 489.06 U/mg and 585.39 U/mg at 144 h. Drastic decline in production of cellulase at 144 h (242.01 U/mg and xylanase at 192 h (192.2 U/mg indicates that they play initial roles in biodegradation of lignocellulosic biomass while laccase and peroxidase play later roles. Optimal degradation of corn cob (76.6% and production of hydrolytic and oxidative enzymes were achieved with 2.5% inoculum at pH 6.0. Results suggest synergy in interactions between the hydrolytic and oxidative enzymes which can be optimized for improved biodegradation.

  18. Root carbon decomposition and microbial biomass response at different soil depths

    Science.gov (United States)

    Rumpel, C.

    2012-12-01

    The relationship between root litter addition and soil organic matter (SOM) formation in top- versus subsoils is unknown. The aim of this study was to investigate root litter decomposition and stabilisation in relation to microbial parameters in different soil depths. Our conceptual approach included incubation of 13C-labelled wheat roots at 30, 60 and 90 cm soil depth for 36 months under field conditions. Quantitative root carbon contribution to SOM was assessed, changes of bulk root chemistry studied by solid-state 13C NMR spectroscopy and lignin content and composition was assessed after CuO oxidation. Compound-specific isotope analysis allowed to assess the role of root lignin for soil C storage in the different soil depths. Microbial biomass and community structure was determined after DNA extraction. After three years of incubation, O-alkyl C most likely assigned to polysaccharides decreased in all soil depth compared to the initial root material. The degree of root litter decomposition assessed by the alkyl/O-alkyl ratio decreased with increasing soil depth, while aryl/O-alkyl ratio was highest at 60 cm depth. Root-derived lignin showed depth specific concentrations (30 fungi contribution increased after root litter addition. Their community structure changed after root litter addition and showed horizon specific dynamics. Our study shows that root litter addition can contribute to C storage in subsoils but did not influence C storage in topsoil. We conclude that specific conditions of single soil horizons have to be taken into account if root C dynamics are to be fully understood.

  19. Biomass

    Science.gov (United States)

    Bernard R. Parresol

    2001-01-01

    Biomass, the contraction for biological mass, is the amount of living material provided by a given area or volume of the earth's surface, whether terrestrial or aquatic. Biomass is important for commercial uses (e.g., fuel and fiber) and for national development planning, as well as for scientific studies of ecosystem productivity, energy and nutrient flows, and...

  20. Carbon use efficiency (CUE) and biomass turnover of soil microbial communities as affected by bedrock, land management and soil temperature and moisture

    Science.gov (United States)

    Zheng, Qing; Hu, Yuntao; Richter, Andreas; Wanek, Wolfgang

    2017-04-01

    Soil microbial carbon use efficiency (CUE), defined as the proportion of organic C taken up that is allocated to microbial growth, represents an important synthetic representation of microbial community C metabolism that describes the flux partitioning between microbial respiration and growth. Therefore, studying microbial CUE is critical for the understanding of soil C cycling. Microbial CUE is thought to vary with environmental conditions (e.g. temperature and soil moisture). Microbial CUE is thought to decrease with increasing temperature and declining soil moisture, as the latter may trigger stress responses (e.g. the synthesis of stress metabolites), which may consequently lower microbial community CUE. However, these effects on microbial CUE have not been adequately measured so far due to methodological restrictions. The most widely used methods for microbial CUE estimation are based on tracing 13C-labeled substrates into microbial biomass and respiratory CO2, approaches that are known to overestimate microbial CUE of native organic matter in soil. Recently, a novel substrate-independent approach based on the measurement of (i) respiration rates and (ii) the incorporation rates of 18O from labelled water into newly formed microbial DNA has been developed in our laboratory for measuring microbial CUE. This approach overcomes the shortcomings of previously used methods and has already been shown to yield realistic estimations of soil microbial CUE. This approach can also be applied to concurrently measure microbial biomass turnover rates, which also influence the sequestration of soil organic C. Microbial turnover rates are also thought to be impacted by environmental factors, but rarely have been directly measured so far. Here, we aimed at determining the short-term effects of environmental factors (soil temperature and soil moisture) on microbial CUE and microbial biomass turnover rates based on the novel 18O approach. Soils from three land-use types (arable

  1. Two Strategies for Microbial Production of an Industrial Enzyme-Alpha-Amylase

    Science.gov (United States)

    Bernhardsdotter, Eva C. M. J.; Garriott, Owen; Pusey, Marc L.; Ng, Joseph D.

    2003-01-01

    Extremophiles are microorganisms that thrive in, from an anthropocentric view, extreme environments including hot springs, soda lakes and arctic water. This ability of survival at extreme conditions has rendered extremophiles to be of interest in astrobiology, evolutionary biology as well as in industrial applications. Of particular interest to the biotechnology industry are the biological catalysts of the extremophiles, the extremozymes, whose unique stabilities at extreme conditions make them potential sources of novel enzymes in industrial applications. There are two major approaches to microbial enzyme production. This entails enzyme isolation directly from the natural host or creating a recombinant expression system whereby the targeted enzyme can be overexpressed in a mesophilic host. We are employing both methods in the effort to produce alpha-amylases from a hyperthermophilic archaeon (Thermococcus) isolated from a hydrothermal vent in the Atlantic Ocean, as well as from alkaliphilic bacteria (Bacillus) isolated from a soda lake in Tanzania. Alpha-amylases catalyze the hydrolysis of internal alpha-1,4-glycosidic linkages in starch to produce smaller sugars. Thermostable alpha-amylases are used in the liquefaction of starch for production of fructose and glucose syrups, whereas alpha-amylases stable at high pH have potential as detergent additives. The alpha-amylase encoding gene from Thermococcus was PCR amplified using carefully designed primers and analyzed using bioinformatics tools such as BLAST and Multiple Sequence Alignment for cloning and expression in E.coli. Four strains of Bacillus were grown in alkaline starch-enriched medium of which the culture supernatant was used as enzyme source. Amylolytic activity was detected using the starch-iodine method.

  2. Polyphenols as enzyme inhibitors in different degraded peat soils: Implication for microbial metabolism in rewetted peatlands

    Science.gov (United States)

    Zak, Dominik; Roth, Cyril; Gelbrecht, Jörg; Fenner, Nathalie; Reuter, Hendrik

    2015-04-01

    Recently, more than 30,000 ha of drained minerotrophic peatlands (= fens) in NE Germany were rewetted to restore their ecological functions. Due to an extended drainage history, a re-establishment of their original state is not expected in the short-term. Elevated concentrations of dissolved organic carbon, ammonium and phosphate have been measured in the soil porewater of the upper degraded peat layers of rewetted fens at levels of one to three orders higher than the values in pristine systems; an indicator of increased microbial activity in the upper degraded soil layers. On the other hand there is evidence that the substrate availability within the degraded peat layer is lowered since the organic matter has formerly been subject to intense decomposition over the decades of drainage and intense agricultural use of the areas. Previously however, it was suggested that inhibition of hydrolytic enzymes by polyphenolic substances is suspended during aeration of peat soils mainly due to the decomposition of the inhibiting polyphenols by oxidising enzymes such as phenol oxidase. Accordingly we hypothesised a lack of enzyme inhibiting polyphenols in degraded peat soils of rewetted fens compared to less decomposed peat of more natural fens. We collected both peat samples at the soil surface (0-20 cm) and fresh roots of dominating vascular plants and mosses (as peat parent material) from five formerly drained rewetted sites and five more natural sites of NE Germany and NW Poland. Less decomposed peat and living roots were used to obtain an internal standard for polyphenol analysis and to run enzyme inhibition tests. For all samples we determined the total phenolic contents and in addition we distinguished between the contents of hydrolysable and condensed tannic substances. From a methodical perspective the advantage of internal standards compared to the commercially available standards cyanidin chloride and tannic acid became apparent. Quantification with cyanidin or

  3. The Impact of Extreme Weather Events on Dissolved Organic Matter and Microbial Biomass of chernozem soils

    Science.gov (United States)

    Müller, Ann-Christin; Blagodatskaya, Evgenia

    2017-04-01

    The aim of this experiment was to study the impact of the extreme weather events freezing-thawing and drying-rewetting on C-, N- and P-dynamics in dissolved organic matter and microbial biomass. The three variants of a chernozem soil (Voronezh region, Russia) are (1) fertilized maize cropping, (2) unfertilized maize cropping and (3) a bare fallow. After both abiotic perturbations the respiration rates were generally lower in the freezing-thawing than in the drying-rewetting treatment, due to the lower temperature. The elevated respiration came along with the decay of organic matter, which was also manifested in increased mineralization of C, N and P immediately after rewetting. However, freezing-thawing had significantly less impact on C-, N- and P-mobilization. We conclude that drying-rewetting leads to an initially increased mobilization of C, N and P, which becomes obvious as increased amounts of DOM immediately after rewetting. Freezing-thawing does not affect mobilization in the same way. There, only an increased mobilization of C can be observed. Especially concerning N and P, the reaction is dependent on the form of use/cropping in both treatments.

  4. Grasslands and Croplands Have Different Microbial Biomass Carbon Levels per Unit of Soil Organic Carbon

    Directory of Open Access Journals (Sweden)

    Terence P. McGonigle

    2017-07-01

    Full Text Available Primarily using cropped systems, previous studies have reported a positive linear relationship between microbial biomass carbon (MBC and soil organic carbon (SOC. We conducted a meta-analysis to explore this relationship separately for grasslands and croplands using available literature. Studies were limited to those using fumigation–extraction for MBC for field samples. Trials were noted separately where records were distinct in space or time. Grasslands were naturally occurring, restored, or seeded. Cropping systems were typical of the temperate zone. MBC had a positive linear response to increasing SOC that was significant in both grasslands (p < 0.001; r2 = 0.76 and croplands (p < 0.001; r2 = 0.48. However, MBC increased 2.5-fold more steeply per unit of increasing SOC for grassland soils, as compared to the corresponding response in cropland soils. Expressing MBC as a proportion of SOC across the regression overall, slopes corresponded to 2.7% for grasslands and 1.1% for croplands. The slope of the linear relationship for grasslands was significantly (p = 0.0013 steeper than for croplands. The difference between the two systems is possibly caused by a greater proportion of SOC in grasslands being active rather than passive, relative to that in croplands, with that active fraction promoting the formation of MBC.

  5. Microbial Tyrosinases: Promising Enzymes for Pharmaceutical, Food Bioprocessing, and Environmental Industry

    Directory of Open Access Journals (Sweden)

    Kamal Uddin Zaidi

    2014-01-01

    Full Text Available Tyrosinase is a natural enzyme and is often purified to only a low degree and it is involved in a variety of functions which mainly catalyse the o-hydroxylation of monophenols into their corresponding o-diphenols and the oxidation of o-diphenols to o-quinones using molecular oxygen, which then polymerizes to form brown or black pigments. The synthesis of o-diphenols is a potentially valuable catalytic ability and thus tyrosinase has attracted a lot of attention with respect to industrial applications. In environmental technology it is used for the detoxification of phenol-containing wastewaters and contaminated soils, as biosensors for phenol monitoring, and for the production of L-DOPA in pharmaceutical industries, and is also used in cosmetic and food industries as important catalytic enzyme. Melanin pigment synthesized by tyrosinase has found applications for protection against radiation cation exchangers, drug carriers, antioxidants, antiviral agents, or immunogen. The recombinant V. spinosum tryosinase protein can be used to produce tailor-made melanin and other polyphenolic materials using various phenols and catechols as starting materials. This review compiles the recent data on biochemical and molecular properties of microbial tyrosinases, underlining their importance in the industrial use of these enzymes. After that, their most promising applications in pharmaceutical, food processing, and environmental fields are presented.

  6. The desorption of Phosphorous (32 P) fixed on iron and aluminum oxy-hydroxide surfaces by the soil microbial biomass

    International Nuclear Information System (INIS)

    Araujo, Lilian Maria Cesar de.

    1995-02-01

    This work determines whether the soil microbial biomass, with an ample supply of available C, can utilize P adsorber in the surfaces of oxy-hydroxides of Fe or Al of soil-P deficient soils. To simulate the surfaces of the natural Fe and Al compounds, synthetic oxy-hydroxides of Fe and Al, impregnated in strips of filter paper, and containing P tagged with 32 P, were used. (author). 60 refs., 7 figs., 7 tabs

  7. Genome-centric metatranscriptomes and ecological roles of the active microbial populations during cellulosic biomass anaerobic digestion.

    Science.gov (United States)

    Jia, Yangyang; Ng, Siu-Kin; Lu, Hongyuan; Cai, Mingwei; Lee, Patrick K H

    2018-01-01

    Although anaerobic digestion for biogas production is used worldwide in treatment processes to recover energy from carbon-rich waste such as cellulosic biomass, the activities and interactions among the microbial populations that perform anaerobic digestion deserve further investigations, especially at the population genome level. To understand the cellulosic biomass-degrading potentials in two full-scale digesters, this study examined five methanogenic enrichment cultures derived from the digesters that anaerobically digested cellulose or xylan for more than 2 years under 35 or 55 °C conditions. Metagenomics and metatranscriptomics were used to capture the active microbial populations in each enrichment culture and reconstruct their meta-metabolic network and ecological roles. 107 population genomes were reconstructed from the five enrichment cultures using a differential coverage binning approach, of which only a subset was highly transcribed in the metatranscriptomes. Phylogenetic and functional convergence of communities by enrichment condition and phase of fermentation was observed for the highly transcribed populations in the metatranscriptomes. In the 35 °C cultures grown on cellulose, Clostridium cellulolyticum -related and Ruminococcus -related bacteria were identified as major hydrolyzers and primary fermenters in the early growth phase, while Clostridium leptum -related bacteria were major secondary fermenters and potential fatty acid scavengers in the late growth phase. While the meta-metabolism and trophic roles of the cultures were similar, the bacterial populations performing each function were distinct between the enrichment conditions. Overall, a population genome-centric view of the meta-metabolism and functional roles of key active players in anaerobic digestion of cellulosic biomass was obtained. This study represents a major step forward towards understanding the microbial functions and interactions at population genome level during the

  8. Abrolhos bank reef health evaluated by means of water quality, microbial diversity, benthic cover, and fish biomass data.

    Directory of Open Access Journals (Sweden)

    Thiago Bruce

    Full Text Available The health of the coral reefs of the Abrolhos Bank (Southwestern Atlantic was characterized with a holistic approach using measurements of four ecosystem components: (i inorganic and organic nutrient concentrations, [1] fish biomass, [1] macroalgal and coral cover and (iv microbial community composition and abundance. The possible benefits of protection from fishing were particularly evaluated by comparing sites with varying levels of protection. Two reefs within the well-enforced no-take area of the National Marine Park of Abrolhos (Parcel dos Abrolhos and California were compared with two unprotected coastal reefs (Sebastião Gomes and Pedra de Leste and one legally protected but poorly enforced coastal reef (the "paper park" of Timbebas Reef. The fish biomass was lower and the fleshy macroalgal cover was higher in the unprotected reefs compared with the protected areas. The unprotected and protected reefs had similar seawater chemistry. Lower vibrio CFU counts were observed in the fully protected area of California Reef. Metagenome analysis showed that the unprotected reefs had a higher abundance of archaeal and viral sequences and more bacterial pathogens, while the protected reefs had a higher abundance of genes related to photosynthesis. Similar to other reef systems in the world, there was evidence that reductions in the biomass of herbivorous fishes and the consequent increase in macroalgal cover in the Abrolhos Bank may be affecting microbial diversity and abundance. Through the integration of different types of ecological data, the present study showed that protection from fishing may lead to greater reef health. The data presented herein suggest that protected coral reefs have higher microbial diversity, with the most degraded reef (Sebastião Gomes showing a marked reduction in microbial species richness. It is concluded that ecological conditions in unprotected reefs may promote the growth and rapid evolution of opportunistic

  9. Black Nitrogen as a source for the built-up of microbial biomass in soils

    Science.gov (United States)

    López-Martín, María; Milter, Anja; Knicker, Heike

    2016-04-01

    In areas with frequent wildfires, soil organic nitrogen (SON) is sequestered in pyrogenic organic matter (PyOM) due to heat-induced transformation of proteinaceous compounds into N-heterocycles, i.e. pyrrole, imidazole and indole compounds. These newly formed structures, known as Black Nitrogen (BN), have been assumed to be hardly degradable by microorganisms, thus being efficiently sequestered from the N cycle. On the other hand, a previous study showed that nitrogen of BN can be used by plants for the built-up of their biomass (de la Rosa and Knicker 2011). Thus, BN may play an important role as an N source during the recovery of the forest after a fire event. In order to obtain a more profound understanding of the role of BN within the N cycle in soils, we studied the bioavailability and incorporation of N derived from PyOM into microbial amino acids. For that, pots with soil from a burnt and an unburnt Cambisol located under a Mediterranean forest were covered with different amendments. The toppings were mixtures of unlabeled KNO3 with 15N labeled grass or 15N-labeled PyOM from burned grass and K15NO3 mixed with unlabeled grass material or PyOM. The pots were kept in the greenhouse under controlled conditions for 16 months and were sampled after 0.5, 1, 5, 8 and 16 months. From all samples the amino acids were extracted after hydrolysis (6 M HCl, 22 h, 110 °C) and quantified via gas chromatography mass spectrometry (GC/MS). The fate of 15N was followed by isotopic ratio mass spectrometry (IRMS). The results show that the contribution of extractable amino acids to total soil organic matter was always higher in the unburnt than in the burnt soil. However, with ongoing incubation their amount decreased. Already after 0.5 months, some PyOM-derived 15N was incorporated into the extractable amino acids and the amount increased with experiment time. Since this can only occur after prior microbial degradation of PyOM our results clearly support a lower biochemical

  10. [Effects of adding straw carbon source to root knot nematode diseased soil on soil microbial biomass and protozoa abundance].

    Science.gov (United States)

    Zhang, Si-Hui; Lian, Jian-Hong; Cao, Zhi-Ping; Zhao, Li

    2013-06-01

    A field experiment with successive planting of tomato was conducted to study the effects of adding different amounts of winter wheat straw (2.08 g x kg(-1), 1N; 4.16 g x kg(-1), 2N; and 8.32 g x kg(-1), 4N) to the soil seriously suffered from root knot nematode disease on the soil microbial biomass and protozoa abundance. Adding straw carbon source had significant effects on the contents of soil microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN) and the abundance of soil protozoa, which all decreased in the order of 4N > 2N > 1N > CK. The community structure of soil protozoa also changed significantly under straw addition. In the treatments with straw addition, the average proportion of fagellate, amoeba, and ciliates accounted for 36.0%, 59.5%, and 4.5% of the total protozoa, respectively. Under the same adding amounts of wheat straw, there was an increase in the soil MBC and MBN contents, MBC/MBN ratio, and protozoa abundance with increasing cultivation period.

  11. Seasonal and diel variability in dissolved DNA and in microbial biomass and activity in a subtropical estuary

    International Nuclear Information System (INIS)

    Paul, J.H.; Deflaun, M.F.; Jeffrey, W.H.; David, A.W.

    1988-01-01

    Dissolved DNA and microbial biomass and activity parameters were measured over a 15-month period at three stations along a salinity gradient in Tampa Bay, Fla. Dissolved DNA showed seasonal variation, with minimal values in December and January and maximal values in summer months (July and August). This pattern of seasonal variation followed that of particulate DNA and water temperature and did not correlate with bacterioplankton (direct counts and [ 3 H] thymidine incorporation) or phytoplankton (chlorophyll α and 14 CO 2 fixation) biomass and activity. Microautotrophic populations showed maxima in the spring and fall, whereas microheterotrophic activity was greatest in late summer (September). Both autotrophic and heterotrophic microbial activity was greatest at the high estuarine (low salinity) station and lowest at the mouth of the bay (high salinity station), irrespective of season. Dissolved DNA carbon and phosphorus constituted 0.11 +/- 0.05% of the dissolved organic carbon and 6.6 +/- 6.5% of the dissolved organic phosphorus, respectively. Strong diel periodicity was noted in dissolved DNA and in microbial activity in Bayboro Harbor during the dry season. A noon maximum in primary productivity was followed by an 8 p.m. maximum in heterotrophic activity and a midnight maximum in dissolved DNA. This diel periodicity was less pronounced in the wet season, when microbial parameters were strongly influenced by episodic inputs of freshwater

  12. Influence of soil management practices and substrate availability on microbial biomass and its activities in some haplic luvisols

    Energy Technology Data Exchange (ETDEWEB)

    Friedel, Jurgen K [University Hohenheeim, Stuttgart (Germany)

    1996-07-01

    Soil microbial biomass and activities are sensitive indicators of management effects. Higher contents of microbial biomass and higher activities, for example, are found with crop rotations in contrast to bare fallow and mono culture systems. The main reason for these differences is a higher input of crop and root residues in crop rotation systems, leading to more microbial available substrate. The objectives of this study were to describe indices for microbial available substrate in arable soils depending on management practices, and to relate them with soil microbial biomass and activities. At two locations (Muttergarten and hinger Hof near the University of Hohenheim, Stuttgart, SW-Germany), adenosine triphosphate (ATP) contents and microbial activities were measured in haplic Luviosls. As indices for microbial available substrate, water soluble organic carbon compounds in soils were determined and decomposable young soil organic matter was calculated from organic fertilizers and crop and root residues using empirical decomposition functions. Higher ATP contents and microbial activities were observed along with organic fertilization (liquid cattle manure) than with mineral fertilization. Shallow cultivation with a rotary cultivator led to higher values of microbial properties in the upper part of the Ap horizon than ploughing. Soil microbial parameters were higher in plots under a rape-cereals crop rotation, compared to a legumes-cereals crop rotation. Microbial biomass and its activities were related more closely to decomposable young soil organic matter than to soil humus content or to any other soil property. Water soluble organic carbon compounds did not prove as an indicator of microbial available substrate. [Spanish] La biomasa y la actividad microbianas son indicadores sensibles de los efectos del manejo del suelo. Por ejemplo, con la rotacion de cultivos se obtiene un contenido y una actividad mayores de la biomasa microbiana en contraste con el simple

  13. Seasonal variations and effects of nutrient applications on N and P and microbial biomass under two temperate heathland plants

    DEFF Research Database (Denmark)

    Nielsen, Pia Lund; Andresen, Louise Christoffersen; Michelsen, Anders

    2009-01-01

    . The microbial biomass on the other hand was positively related to soil water content in fertilized plots indicating that this was due to an indirect effect of enhanced nutrient availability. Microbial N and P pools were respectively 1000 and 100 times higher than the pool of inorganic N and P, and microbes...... this process. In this study the soil properties under two dominant heathland plants, the dwarf shrub Calluna vulgaris and the grass Deschampsia flexuosa, were investigated, with focus on nutrient content in the organic top soil and soil microbes during the main growing season and effects of nutrient amendments...... therefore may play an important role in regulating plant nutrient supply. Judged from responses of inorganic and microbial N and P concentrations to added N and P, N seemed to limit C. vulgaris and soil microbes below while P seemed to limit D. flexuosa and soil microbes below this species. There were lower...

  14. Microbial biomass and biological activity of soils and soil-like bodies in coastal oases of Antarctica

    Science.gov (United States)

    Nikitin, D. A.; Marfenina, O. E.; Kudinova, A. G.; Lysak, L. V.; Mergelov, N. S.; Dolgikh, A. V.; Lupachev, A. V.

    2017-09-01

    The method of luminescent microscopy has been applied to study the structure of the microbial biomass of soils and soil-like bodies in East (the Thala Hills and Larsemann Hills oases) and West (Cape Burks, Hobbs coast) Antarctica. According to Soil Taxonomy, the studied soils mainly belong to the subgroups of Aquic Haploturbels, Typic Haploturbels, Typic Haplorthels, and Lithic Haplorthels. The major contribution to their microbial biomass belongs to fungi. The highest fungal biomass (up to 790 μg C/g soil) has been found in the soils with surface organic horizons in the form of thin moss/lichen litters, in which the development of fungal mycelium is most active. A larger part of fungal biomass (70-98%) is represented by spores. For the soils without vegetation cover, the accumulation of bacterial and fungal biomass takes place in the horizons under surface desert pavements. In the upper parts of the soils without vegetation cover and in the organic soil horizons, the major part (>60%) of fungal mycelium contains protective melanin pigments. Among bacteria, the high portion (up to 50%) of small filtering forms is observed. A considerable increase (up to 290.2 ± 27 μg C/g soil) in the fungal biomass owing to the development of yeasts has been shown for gley soils (gleyzems) developing from sapropel sediments under subaquatic conditions and for the algal-bacterial mat on the bottom of the lake (920.7 ± 46 μg C/g soil). The production of carbon dioxide by the soils varies from 0.47 to 2.34 μg C-CO2/(g day). The intensity of nitrogen fixation in the studied samples is generally low: from 0.08 to 55.85 ng C2H4/(g day). The intensity of denitrification varies from 0.09 to 19.28 μg N-N2O/(g day).

  15. Planktonic food web structure at a coastal time-series site: I. Partitioning of microbial abundances and carbon biomass

    Science.gov (United States)

    Caron, David A.; Connell, Paige E.; Schaffner, Rebecca A.; Schnetzer, Astrid; Fuhrman, Jed A.; Countway, Peter D.; Kim, Diane Y.

    2017-03-01

    Biogeochemistry in marine plankton communities is strongly influenced by the activities of microbial species. Understanding the composition and dynamics of these assemblages is essential for modeling emergent community-level processes, yet few studies have examined all of the biological assemblages present in the plankton, and benchmark data of this sort from time-series studies are rare. Abundance and biomass of the entire microbial assemblage and mesozooplankton (>200 μm) were determined vertically, monthly and seasonally over a 3-year period at a coastal time-series station in the San Pedro Basin off the southwestern coast of the USA. All compartments of the planktonic community were enumerated (viruses in the femtoplankton size range [0.02-0.2 μm], bacteria + archaea and cyanobacteria in the picoplankton size range [0.2-2.0 μm], phototrophic and heterotrophic protists in the nanoplanktonic [2-20 μm] and microplanktonic [20-200 μm] size ranges, and mesozooplankton [>200 μm]. Carbon biomass of each category was estimated using standard conversion factors. Plankton abundances varied over seven orders of magnitude across all categories, and total carbon biomass averaged approximately 60 μg C l-1 in surface waters of the 890 m water column over the study period. Bacteria + archaea comprised the single largest component of biomass (>1/3 of the total), with the sum of phototrophic protistan biomass making up a similar proportion. Temporal variability at this subtropical station was not dramatic. Monthly depth-specific and depth-integrated biomass varied 2-fold at the station, while seasonal variances were generally web structure and function at this coastal observatory.

  16. Metatranscriptomics Reveals the Functions and Enzyme Profiles of the Microbial Community in Chinese Nong-Flavor Liquor Starter

    Directory of Open Access Journals (Sweden)

    Yuhong Huang

    2017-09-01

    Full Text Available Chinese liquor is one of the world's best-known distilled spirits and is the largest spirit category by sales. The unique and traditional solid-state fermentation technology used to produce Chinese liquor has been in continuous use for several thousand years. The diverse and dynamic microbial community in a liquor starter is the main contributor to liquor brewing. However, little is known about the ecological distribution and functional importance of these community members. In this study, metatranscriptomics was used to comprehensively explore the active microbial community members and key transcripts with significant functions in the liquor starter production process. Fungi were found to be the most abundant and active community members. A total of 932 carbohydrate-active enzymes, including highly expressed auxiliary activity family 9 and 10 proteins, were identified at 62°C under aerobic conditions. Some potential thermostable enzymes were identified at 50, 62, and 25°C (mature stage. Increased content and overexpressed key enzymes involved in glycolysis and starch, pyruvate and ethanol metabolism were detected at 50 and 62°C. The key enzymes of the citrate cycle were up-regulated at 62°C, and their abundant derivatives are crucial for flavor generation. Here, the metabolism and functional enzymes of the active microbial communities in NF liquor starter were studied, which could pave the way to initiate improvements in liquor quality and to discover microbes that produce novel enzymes or high-value added products.

  17. Immobilization of microbial cell and yeast cell and its application to biomass conversion using radiation techniques

    International Nuclear Information System (INIS)

    Kaetsu, Isao; Kumakura, Minoru; Fujimura, Takashi; Kasai, Noboru; Tamada, Masao

    1987-01-01

    The recent results of immobilization of cellulase-producing cells and ethanol-fermentation yeast by radiation were reported. The enzyme of cellulase produced by immobilized cells was used for saccharification of lignocellulosic wastes and immobilized yeast cells were used for fermentation reaction from glucose to ethanol. The wastes such as chaff and bagasse were treated by γ-ray or electron-beam irradiation in the presence of alkali and subsequent mechanical crushing, to form a fine powder less than 50 μm in diameter. On the other hand, Trichoderma reesei as a cellulase-producing microbial cell was immobilized on a fibrous carrier having a specific porous structure and cultured to produce cellulase. The enzymatic saccharification of the pretreated waste was carried out using the produced cellulase. The enhanced fermentation process to produce ethanol from glucose with the immobilized yeast by radiation was also studied. The ethanol productivity of immobilized growing yeast cells thus obtained was thirteen times that of free yeast cells in a 1:1 volume of liquid medium to immobilized yeast cells. (author)

  18. Immobilization of microbial cell and yeast cell and its application to biomass conversion using radiation techniques

    Science.gov (United States)

    Kaetsu, Isao; Kumakura, Minoru; Fujimura, Takashi; Kasai, Noboru; Tamada, Masao

    The recent results of immobilization of cellulase-producing cells and ethanol-fermentation yeast by radiation were reported. The enzyme of cellulase produced by immobilized cells was used for saccharification of lignocellulosic wastes and immobilized yeast cells were used for fermentation reaction from glucose to ethanol. The wastes such as chaff and bagasse were treated by γ-ray or electron-beam irradiation in the presence of alkali and subsequent mechanical crushing, to form a fine powder less than 50 μm in diameter. On the other hand, Trichoderma reesei as a cellulase-producing microbial cell was immobilized on a fibrous carrier having a specific porous structure and cultured to produce cellulase. The enzymatic saccharification of the pretreated waste was carried out using the produced cellulase. The enhanced fermentation process to produce ethanol from glucose with the immobilized yeast by radiation was also studied. The ethanol productivity of immobilized growing yeast cells thus obtained was thirteen times that of free yeast cells in a 1:1 volume of liquid medium to immobilized yeast cells.

  19. Development of over-production strain of saccharification enzyme and biomass pretreatment by proton beam irradiation

    International Nuclear Information System (INIS)

    Kim, S. O.; Lee, J. Y.; Song, Y. S.; Shin, H. S.

    2009-04-01

    - The first year : Pre-treatment of biomass by proton beam irradiation and characterization of the pretreated biomass by IR and SEM - The second year : Strain development by proton beam irradiation for the production of cellulase and hemicellulase - The third year : Optimization of Saccharification process by cellulase and hemicellulase

  20. Microbial Biomass and Activity in Geomorphic Features in Forested and Urban Restored and Degraded Streams

    Science.gov (United States)

    Geomorphic spatial heterogeneity affects sediment denitrification, an anaerobic microbial process that results in the loss of nitrogen (N), and other anaerobic microbial processes such as methanogenesis in urban streams. We measured sediment denitrification potential (DEA), metha...

  1. Adapting enzyme-based microbial water quality analysis to remote areas in low-income countries.

    Science.gov (United States)

    Abramson, Adam; Benami, Maya; Weisbrod, Noam

    2013-09-17

    Enzyme-substrate microbial water tests, originally developed for efficiency gains in laboratory settings, are potentially useful for on-site analysis in remote settings. This is especially relevant in developing countries where water quality is a pressing concern and qualified laboratories are rare. We investigated one such method, Colisure, first for sensitivity to incubation temperatures in order to explore alternative incubation techniques appropriate for remote areas, and then in a remote community of Zambia for detection of total coliforms and Escherichia coli in drinking-water samples. We sampled and analyzed 352 water samples from source, transport containers and point-of-use from 164 random households. Both internal validity (96-100%) and laboratory trials (zero false negatives or positives at incubation between 30 and 40 °C) established reliability under field conditions. We therefore recommend the use of this and other enzyme-based methods for remote applications. We also found that most water samples from wells accessing groundwater were free of E. coli whereas most samples from surface sources were fecally contaminated. We further found very low awareness among the population of the high levels of recontamination in household storage containers, suggesting the need for monitoring and treatment beyond the water source itself.

  2. Afforestation impacts microbial biomass and its natural {sup 13}C and {sup 15}N abundance in soil aggregates in central China

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Junjun; Zhang, Qian; Yang, Fan; Lei, Yao; Zhang, Quanfa; Cheng, Xiaoli, E-mail: xlcheng@fudan.edu.cn

    2016-10-15

    We investigated soil microbial biomass and its natural abundance of δ{sup 13}C and δ{sup 15}N in aggregates (> 2000 μm, 250–2000 μm, 53–250 μm and < 53 μm) of afforested (implementing woodland and shrubland plantations) soils, adjacent croplands and open area (i.e., control) in the Danjiangkou Reservoir area of central China. The afforested soils averaged higher microbial biomass carbon (MBC) and nitrogen (MBN) levels in all aggregates than in open area and cropland, with higher microbial biomass in micro-aggregates (< 250 μm) than in macro-aggregates (> 2000 μm). The δ{sup 13}C of soil microbial biomass was more enriched in woodland soils than in other land use types, while δ{sup 15}N of soil microbial biomass was more enriched compared with that of organic soil in all land use types. The δ{sup 13}C and δ{sup 15}N of microbial biomass were positively correlated with the δ{sup 13}C and δ{sup 15}N of organic soil across aggregates and land use types, whereas the {sup 13}C and {sup 15}N enrichment of microbial biomass exhibited linear decreases with the corresponding C:N ratio of organic soil. Our results suggest that shifts in the natural {sup 13}C and {sup 15}N abundance of microbial biomass reflect changes in the stabilization and turnover of soil organic matter (SOM) and thereby imply that afforestation can greatly impact SOM accumulation over the long-term. - Highlights: • Afforested soils averaged higher microbial biomass in all aggregates than cropland. • Microbial biomass was higher in micro-aggregates than in macro-aggregates. • δ{sup 13}C and δ{sup 15}N of microbe positively correlated with δ{sup 13}C and δ{sup 15}N of organic soil. • {sup 13}C and {sup 15}N enrichment of microbe was negatively related to with soil C:N ratio.

  3. Enzyme

    Science.gov (United States)

    Enzymes are complex proteins that cause a specific chemical change in all parts of the body. For ... use them. Blood clotting is another example of enzymes at work. Enzymes are needed for all body ...

  4. Leaf-Cutter Ant Fungus Gardens Are Biphasic Mixed Microbial Bioreactors That Convert Plant Biomass to Polyols with Biotechnological Applications

    Science.gov (United States)

    Somera, Alexandre F.; Lima, Adriel M.; dos Santos-Neto, Álvaro J.; Lanças, Fernando M.

    2015-01-01

    Leaf-cutter ants use plant matter to culture the obligate mutualistic basidiomycete Leucoagaricus gongylophorus. This fungus mediates ant nutrition on plant resources. Furthermore, other microbes living in the fungus garden might also contribute to plant digestion. The fungus garden comprises a young sector with recently incorporated leaf fragments and an old sector with partially digested plant matter. Here, we show that the young and old sectors of the grass-cutter Atta bisphaerica fungus garden operate as a biphasic solid-state mixed fermenting system. An initial plant digestion phase occurred in the young sector in the fungus garden periphery, with prevailing hemicellulose and starch degradation into arabinose, mannose, xylose, and glucose. These products support fast microbial growth but were mostly converted into four polyols. Three polyols, mannitol, arabitol, and inositol, were secreted by L. gongylophorus, and a fourth polyol, sorbitol, was likely secreted by another, unidentified, microbe. A second plant digestion phase occurred in the old sector, located in the fungus garden core, comprising stocks of microbial biomass growing slowly on monosaccharides and polyols. This biphasic operation was efficient in mediating symbiotic nutrition on plant matter: the microbes, accounting for 4% of the fungus garden biomass, converted plant matter biomass into monosaccharides and polyols, which were completely consumed by the resident ants and microbes. However, when consumption was inhibited through laboratory manipulation, most of the plant polysaccharides were degraded, products rapidly accumulated, and yields could be preferentially switched between polyols and monosaccharides. This feature might be useful in biotechnology. PMID:25911490

  5. Production of L-lactic Acid from Biomass Wastes Using Scallop Crude Enzymes and Novel Lactic Acid Bacterium

    Science.gov (United States)

    Yanagisawa, Mitsunori; Nakamura, Kanami; Nakasaki, Kiyohiko

    In the present study, biomass waste raw materials including paper mill sludge, bamboo, sea lettuce, and shochu residue (from a distiller) and crude enzymes derived from inedible and discarded scallop parts were used to produce L-lactic acid for the raw material of biodegradable plastic poly-lactic acid. The activities of cellulase and amylase in the crude enzymes were 22 and 170units/L, respectively, and L-lactic acid was produced from every of the above mentioned biomass wastes, by the method of liquid-state simultaneous saccharification and fermentation (SSF) . The L-lactic acid concentrations produced from sea lettuce and shochu residue, which contain high concentration of starch were 3.6 and 9.3g/L, respectively, and corresponded to greater than 25% of the conversion of glucans contained in these biomass wastes. Furthermore, using the solid state SSF method, concentrations as high as 13g/L of L-lactic acid were obtained from sea lettuce and 26g/L were obtained from shochu residue.

  6. Effects of nitrogen and phosphorus additions on soil microbial biomass and community structure in two reforested tropical forests.

    Science.gov (United States)

    Liu, Lei; Gundersen, Per; Zhang, Wei; Zhang, Tao; Chen, Hao; Mo, Jiangming

    2015-09-23

    Elevated nitrogen (N) deposition may aggravate phosphorus (P) deficiency in forests in the warm humid regions of China. To our knowledge, the interactive effects of long-term N deposition and P availability on soil microorganisms in tropical replanted forests remain unclear. We conducted an N and P manipulation experiment with four treatments: control, N addition (15 g N m(-2)·yr(-1)), P addition (15 g P m(-2)·yr(-1)), and N and P addition (15 + 15 g N and P m(-2)·yr(-1), respectively) in disturbed (planted pine forest with recent harvests of understory vegetation and litter) and rehabilitated (planted with pine, but mixed with broadleaf returning by natural succession) forests in southern China. Nitrogen addition did not significantly affect soil microbial biomass, but significantly decreased the abundance of gram-negative bacteria PLFAs in both forest types. Microbial biomass increased significantly after P addition in the disturbed forest but not in the rehabilitated forest. No interactions between N and P additions on soil microorganisms were observed in either forest type. Our results suggest that microbial growth in replanted forests of southern China may be limited by P rather than by N, and this P limitation may be greater in disturbed forests.

  7. Fungal Enzymes and Yeasts for Conversion of Plant Biomass to Bioenergy and High-Value Products

    DEFF Research Database (Denmark)

    Lange, Lene

    2017-01-01

    Fungi and fungal enzymes play important roles in the new bioeconomy. Enzymes from filamentous fungi can unlock the potential of recalcitrant lignocellulose structures of plant cell walls as a new resource, and fungi such as yeast can produce bioethanol from the sugars released after enzyme treatm...... contributed to mycology and environmental research? Future perspectives and approaches are listed, highlighting the importance of fungi in development of the bioeconomy.......Fungi and fungal enzymes play important roles in the new bioeconomy. Enzymes from filamentous fungi can unlock the potential of recalcitrant lignocellulose structures of plant cell walls as a new resource, and fungi such as yeast can produce bioethanol from the sugars released after enzyme...... treatment. Such processes reflect inherent characteristics of the fungal way of life, namely, that fungi as heterotrophic organisms must break down complex carbon structures of organic materials to satisfy their need for carbon and nitrogen for growth and reproduction. This chapter describes major steps...

  8. Nitrogen deposition and management practices increase soil microbial biomass carbon but decrease diversity in Moso bamboo plantations

    Science.gov (United States)

    Li, Quan; Song, Xinzhang; Gu, Honghao; Gao, Fei

    2016-06-01

    Because microbial communities play a key role in carbon (C) and nitrogen (N) cycling, changes in the soil microbial community may directly affect ecosystem functioning. However, the effects of N deposition and management practices on soil microbes are still poorly understood. We studied the effects of these two factors on soil microbial biomass carbon (MBC) and community composition in Moso bamboo plantations using high-throughput sequencing of the 16S rRNA gene. Plantations under conventional (CM) or intensive management (IM) were subjected to one of four N treatments for 30 months. IM and N addition, both separately and in combination, significantly increased soil MBC while decreasing bacterial diversity. However, increases in soil MBC were inhibited when N addition exceeded 60 kg N•ha-1•yr-1. IM increased the relative abundances of Actinobacteria and Crenarchaeota but decreased that of Acidobacteria. N addition increased the relative abundances of Acidobacteria, Crenarchaeota, and Actinobacteria but decreased that of Proteobacteria. Soil bacterial diversity was significantly related to soil pH, C/N ratio, and nitrogen and available phosphorus content. Management practices exerted a greater influence over regulation of the soil MBC and microbial diversity compared to that of N deposition in Moso bamboo plantations.

  9. Microbial-processing of fruit and vegetable wastes for production of vital enzymes and organic acids: Biotechnology and scopes.

    Science.gov (United States)

    Panda, Sandeep K; Mishra, Swati S; Kayitesi, Eugenie; Ray, Ramesh C

    2016-04-01

    Wastes generated from fruits and vegetables are organic in nature and contribute a major share in soil and water pollution. Also, green house gas emission caused by fruit and vegetable wastes (FVWs) is a matter of serious environmental concern. This review addresses the developments over the last one decade on microbial processing technologies for production of enzymes and organic acids from FVWs. The advances in genetic engineering for improvement of microbial strains in order to enhance the production of the value added bio-products as well as the concept of zero-waste economy have been briefly discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Abundance and biomass responses of microbial food web components to hydrology and environmental gradients within a floodplain of the River Danube.

    Science.gov (United States)

    Palijan, Goran

    2012-07-01

    This study investigated the relationships of time-dependent hydrological variability and selected microbial food web components. Samples were collected monthly from the Kopački Rit floodplain in Croatia, over a period of 19 months, for analysis of bacterioplankton abundance, cell size and biomass; abundance of heterotrophic nanoflagellates and nanophytoplankton; and concentration of chlorophyll a. Similar hydrological variability at different times of the year enabled partition of seasonal effects from hydrological changes on microbial community properties. The results suggested that, unlike some other studies investigating sites with different connectivity, bacterioplankton abundance, and phytoplankton abundance and biomass increased during lentic conditions. At increasing water level, nanophytoplankton showed lower sensitivity to disturbance in comparison with total phytoplankton biomass: this could prolong autotrophic conditions within the floodplain. Bacterioplankton biomass, unlike phytoplankton, was not impacted by hydrology. The bacterial biomass less affected by hydrological changes can be an important additional food component for the floodplain food web. The results also suggested a mechanism controlling bacterial cell size independent of hydrology, as bacterial cell size was significantly decreased as nanoflagellate abundance increased. Hydrology, regardless of seasonal sucession, has the potential to structure microbial food webs, supporting microbial development during lentic conditions. Conversely, other components appear unaffected by hydrology or may be more strongly controlled by biotic interactions. This research, therefore, adds to understanding on microbial food web interactions in the context of flood and flow pulses in river-floodplain ecosystems.

  11. Linking diagnostic features to soil microbial biomass and respiration in agricultural grassland soil

    NARCIS (Netherlands)

    Richter, A.; Huallacháin, D.O.; Doyle, E.; Clipson, N.; Leeuwen, Van J.P.; Heuvelink, G.B.; Creamer, R.E.

    2018-01-01

    The functional potential of soil ecosystems can be predicted from the activity and abundance of the microbial community in relation to key soil properties. When describing microbial community dynamics, soil physicochemical properties have traditionally been used. The extent of correlations between

  12. Fire Effects on Microbial Enzyme Activities in Larch Forests of the Siberian Arctic

    Science.gov (United States)

    Ludwig, S.; Alexander, H. D.; Bulygina, E. B.; Mann, P. J.; Natali, S.

    2012-12-01

    Arctic forest ecosystems are warming at an accelerated rate relative to lower latitudes, with global implications for C cycling within these regions. As climate continues to warm and dry, wildfire frequency and severity are predicted to increase, creating a positive feedback to climate warming. Increased fire activity will also influence the microenvironment experienced by soil microbes in disturbed soils. Because soil microbes regulate carbon (C) and nitrogen (N) cycling between terrestrial ecosystems and the atmosphere, it is important to understand microbial response to fires, particularly in the understudied larch forests in the Siberian Arctic. In this project, we created experimental burn plots in a mature larch forest in the Kolyma River watershed of Northeastern Siberia. Plots were burned at several treatments: control (no burn), low, moderate, and severe. After, 1 and 8 d post-fire, we measured soil organic layer depth, soil organic matter (SOM) content, soil moisture, and CO2 flux from the plots. Additionally, we leached soils and measured dissolved organic carbon (DOC), total dissolved nitrogen (TDN), NH4, NO3, soluble reactive phosphorus (SRP), and chromophoric dissolved organic matter (CDOM). Furthermore, we measured extracellular activity of four enzymes involved in soil C and nutrient cycling (leucine aminopeptidase (LAP), β-glucosidase, phosphatase, and phenol oxidase). One day post-fire, LAP activity was similarly low in all treatments, but by 8 d post-fire, LAP activity was lower in burned plots compared to control plots, likely due to increased nitrogen content with increasing burn severity. Phosphatase activity decreased with burn severity 1 d post-fire, but after 8 d, moderate and severe burn plots exhibited increased phosphatase activity. Coupled with trends in LAP activity, this suggests a switch in nutrient limitation from N to phosphorus that is more pronounced with burn severity. β-glucosidase activity similarly decreased with burn

  13. Reduced Nutrient Excretion and Environmental Microbial Load with the Addition of a Combination of Enzymes and Direct-Fed Microbials to the Diet of Broiler Chickens

    Directory of Open Access Journals (Sweden)

    MFFM Praes

    2016-03-01

    Full Text Available Abstract This study evaluated the effects of the dietary inclusion of an enzyme blend and a direct-fed microbials in broiler diets on litter production and quality. In total, 900 Cobb 500(r broiler chicks were distributed according to a completely randomized design into 4 treatments and 9 replicates of 25 birds each. Broilers were reared from 1 to 42 days of age. The treatments consisted of the following diets: NC: negative control; DFM: NC + 500 ppm of direct-fed microbials product (DFM, containing Bacillus subtilis and Bacillus licheniformis; ENZ: diet formulated with an enzyme blend (20 ppm phytase, 200 ppm protease and 200 ppm of xylanase; DFM+E: ENZ + DFM. Birds and litter were weighed at the start and end of the rearing period, for litter production and waste ratio (Rw determination. Litter samples were analyzed for dry matter (DM content, total and thermotolerant coliform counts, nutrient composition (nitrogen (N, phosphorous (P and potassium (K, and fiber fraction (neutral detergent fiber (NDF, acid detergent fiber (ADF and lignin. The dietary inclusion of the evaluated additivesdid not influence litter production or Rw; however, ADF (%, NDF (kg and kg/kg DM litter, and total and thermotolerant coliform counts were reduced, and N content increased in the litter. The diets containing enzymes (ENZ and DFM+E reduced litter P content. The addition of exogenous enzymes and their combination with a DFM based on Bacillus spp .Did not affect waste production, and reduced litter microbial load, and the contents of P and insoluble fiber in the litter.

  14. Continuous enzymatic hydrolysis of lignocellulosic biomass with simultaneous detoxification and enzyme recovery.

    Science.gov (United States)

    Gurram, Raghu N; Menkhaus, Todd J

    2014-07-01

    Recovering hydrolysis enzymes and/or alternative enzyme addition strategies are two potential mechanisms for reducing the cost during the biochemical conversion of lignocellulosic materials into renewable biofuels and biochemicals. Here, we show that enzymatic hydrolysis of acid-pretreated pine wood with continuous and/or fed-batch enzyme addition improved sugar conversion efficiencies by over sixfold. In addition, specific activity of the hydrolysis enzymes (cellulases, hemicellulases, etc.) increased as a result of continuously washing the residual solids with removal of glucose (avoiding the end product inhibition) and other enzymatic inhibitory compounds (e.g., furfural, hydroxymethyl furfural, organic acids, and phenolics). As part of the continuous hydrolysis, anion exchange resin was tested for its dual application of simultaneous enzyme recovery and removal of potential enzymatic and fermentation inhibitors. Amberlite IRA-96 showed favorable adsorption profiles of inhibitors, especially furfural, hydroxymethyl furfural, and acetic acid with low affinity toward sugars. Affinity of hydrolysis enzymes to adsorb onto the resin allowed for up to 92 % of the enzymatic activity to be recovered using a relatively low-molar NaCl wash solution. Integration of an ion exchange column with enzyme recovery into the proposed fed-batch hydrolysis process can improve the overall biorefinery efficiency and can greatly reduce the production costs of lignocellulosic biorenewable products.

  15. Influence of Inoculation, Nitrogen and Phosphorus Levels on Wheat Growth and Soil Microbial Biomass-N Using 15N Techniques

    International Nuclear Information System (INIS)

    Galal, Y.G.; El-Ghandour, I.A.; Abdel Raouf, A.M.; Osman, M.E.

    2003-01-01

    Pot experiment was carried out with wheat that cultivated in virgin sandy soil and inoculated with Rhizobium (Rh), mycorrhizea (VAM) and mixture of both. The objective of this work was to verify the potential of these inoculum on wheat production, nutrient acquisition and microbial biomass N (MBN) contribution as affected by N and P fertilizers levels. MBN was detected through the fumigation-extraction method. Nitrogen and phosphorus fertilizers were applied at three levels, 0; 25 ppm N and 3.3 ppm P and 50 ppm N and 6.6 ppm P in the form of ( 15 NH 4 ) 2 SO 4 , 5% atom excess and super-phosphate, respectively. The effect of inoculation and chemical fertilizers on dry matter (DM), N and P uptake (shoot and grain) and MBN were traced. The obtained data revealed that the highest DM and N uptake by wheat shoot were recorded with the dual inoculation (Rh + VAM) at the highest level of N and P fertilizers. The highest grain yield was detected with single inoculum of AM fungi while N and P uptake were with dual inoculation at the same rate of fertilizers. Inoculation with Rh either alone or in combination with VAM have a positive and stimulative effect on wheat growth and N and P uptake indicating the possibilities of extending the use of symbiotic microorganisms to be applied with cereals. The fluctuation in the soil microbial biomass N did not gave a chance to recognize, exactly, the impact of inoculation and/or fertilization levels

  16. Trace Metal Requirements for Microbial Enzymes Involved in the Production and Consumption of Methane and Nitrous Oxide

    Science.gov (United States)

    Glass, Jennifer B.; Orphan, Victoria J.

    2011-01-01

    Fluxes of greenhouse gases to the atmosphere are heavily influenced by microbiological activity. Microbial enzymes involved in the production and consumption of greenhouse gases often contain metal cofactors. While extensive research has examined the influence of Fe bioavailability on microbial CO2 cycling, fewer studies have explored metal requirements for microbial production and consumption of the second- and third-most abundant greenhouse gases, methane (CH4), and nitrous oxide (N2O). Here we review the current state of biochemical, physiological, and environmental research on transition metal requirements for microbial CH4 and N2O cycling. Methanogenic archaea require large amounts of Fe, Ni, and Co (and some Mo/W and Zn). Low bioavailability of Fe, Ni, and Co limits methanogenesis in pure and mixed cultures and environmental studies. Anaerobic methane oxidation by anaerobic methanotrophic archaea (ANME) likely occurs via reverse methanogenesis since ANME possess most of the enzymes in the methanogenic pathway. Aerobic CH4 oxidation uses Cu or Fe for the first step depending on Cu availability, and additional Fe, Cu, and Mo for later steps. N2O production via classical anaerobic denitrification is primarily Fe-based, whereas aerobic pathways (nitrifier denitrification and archaeal ammonia oxidation) require Cu in addition to, or possibly in place of, Fe. Genes encoding the Cu-containing N2O reductase, the only known enzyme capable of microbial N2O conversion to N2, have only been found in classical denitrifiers. Accumulation of N2O due to low Cu has been observed in pure cultures and a lake ecosystem, but not in marine systems. Future research is needed on metalloenzymes involved in the production of N2O by enrichment cultures of ammonia oxidizing archaea, biological mechanisms for scavenging scarce metals, and possible links between metal bioavailability and greenhouse gas fluxes in anaerobic environments where metals may be limiting due to sulfide

  17. Site- and horizon-specific patterns of microbial community structure and enzyme activities in permafrost-affected soils of Greenland

    Science.gov (United States)

    Gittel, Antje; Bárta, Jiří; Kohoutová, Iva; Schnecker, Jörg; Wild, Birgit; Čapek, Petr; Kaiser, Christina; Torsvik, Vigdis L.; Richter, Andreas; Schleper, Christa; Urich, Tim

    2014-01-01

    Permafrost-affected soils in the Northern latitudes store huge amounts of organic carbon (OC) that is prone to microbial degradation and subsequent release of greenhouse gasses to the atmosphere. In Greenland, the consequences of permafrost thaw have only recently been addressed, and predictions on its impact on the carbon budget are thus still highly uncertain. However, the fate of OC is not only determined by abiotic factors, but closely tied to microbial activity. We investigated eight soil profiles in northeast Greenland comprising two sites with typical tundra vegetation and one wet fen site. We assessed microbial community structure and diversity (SSU rRNA gene tag sequencing, quantification of bacteria, archaea and fungi), and measured hydrolytic and oxidative enzyme activities. Sampling site and thus abiotic factors had a significant impact on microbial community structure, diversity and activity, the wet fen site exhibiting higher potential enzyme activities and presumably being a hot spot for anaerobic degradation processes such as fermentation and methanogenesis. Lowest fungal to bacterial ratios were found in topsoils that had been relocated by cryoturbation (“buried topsoils”), resulting from a decrease in fungal abundance compared to recent (“unburied”) topsoils. Actinobacteria (in particular Intrasporangiaceae) accounted for a major fraction of the microbial community in buried topsoils, but were only of minor abundance in all other soil horizons. It was indicated that the distribution pattern of Actinobacteria and a variety of other bacterial classes was related to the activity of phenol oxidases and peroxidases supporting the hypothesis that bacteria might resume the role of fungi in oxidative enzyme production and degradation of phenolic and other complex substrates in these soils. Our study sheds light on the highly diverse, but poorly-studied communities in permafrost-affected soils in Greenland and their role in OC degradation. PMID

  18. High activity and low temperature optima of extracellular enzymes in Arctic sediments: implications for carbon cycling by heterotrophic microbial communities

    DEFF Research Database (Denmark)

    Arnosti, C.; Jørgensen, BB

    2003-01-01

    The rate of the initial step in microbial remineralization of organic carbon, extracellular enzymatic hydrolysis, was investigated as a function of temperature in permanently cold sediments from 2 fjords on the west coast of Svalbard (Arctic Ocean). We used 4 structurally distinct polysaccharides...... hydrolysis in order to determine the relative temperature responses of the initial and terminal steps in microbial remineralization of carbon. The temperature optimum of sulfate reduction, 21degreesC, was considerably lower than previous reports of sulfate reduction in marine sediments, but is consistent...... with recent studies of psychrophilic sulfate reducers isolated from Svalbard sediments. A calculation of potential carbon flow into the microbial food chain demonstrated that the activity of just one type of polysaccharide-hydrolyzing enzyme could in theory supply 21 to 100% of the carbon consumed via sulfate...

  19. Accessory enzymes influence cellulase hydrolysis of the model substrate and the realistic lignocellulosic biomass.

    Science.gov (United States)

    Sun, Fubao Fuebiol; Hong, Jiapeng; Hu, Jinguang; Saddler, Jack N; Fang, Xu; Zhang, Zhenyu; Shen, Song

    2015-11-01

    The potential of cellulase enzymes in the developing and ongoing "biorefinery" industry has provided a great motivation to develop an efficient cellulase mixture. Recent work has shown how important the role that the so-called accessory enzymes can play in an effective enzymatic hydrolysis. In this study, three newest Novozymes Cellic CTec cellulase preparations (CTec 1/2/3) were compared to hydrolyze steam pretreated lignocellulosic substrates and model substances at an identical FPA loading. These cellulase preparations were found to display significantly different hydrolytic performances irrelevant with the FPA. And this difference was even observed on the filter paper itself when the FPA based assay was revisited. The analysis of specific enzyme activity in cellulase preparations demonstrated that different accessory enzymes were mainly responsible for the discrepancy of enzymatic hydrolysis between diversified substrates and various cellulases. Such the active role of accessory enzymes present in cellulase preparations was finally verified by supplementation with β-glucosidase, xylanase and lytic polysaccharide monooxygenases AA9. This paper provides new insights into the role of accessory enzymes, which can further provide a useful reference for the rational customization of cellulase cocktails in order to realize an efficient conversion of natural lignocellulosic substrates. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Effect of dry mycelium of Penicillium chrysogenum fertilizer on soil microbial community composition, enzyme activities and snap bean growth.

    Science.gov (United States)

    Wang, Bing; Liu, Huiling; Cai, Chen; Thabit, Mohamed; Wang, Pu; Li, Guomin; Duan, Ziheng

    2016-10-01

    The dry mycelium fertilizer (DMF) was produced from penicillin fermentation fungi mycelium (PFFM) following an acid-heating pretreatment to degrade the residual penicillin. In this study, it was applied into soil as fertilizer to investigate its effects on soil properties, phytotoxicity, microbial community composition, enzyme activities, and growth of snap bean in greenhouse. As the results show, pH, total nitrogen, total phosphorus, total potassium, and organic matter of soil with DMF treatments were generally higher than CON treatment. In addition, the applied DMF did not cause heavy metal and residual drug pollution of the modified soil. The lowest GI values (<0.3) were recorded at DMF8 (36 kg DMF/plat) on the first days after applying the fertilizer, indicating that severe phytotoxicity appeared in the DMF8-modified soil. Results of microbial population and enzyme activities illustrated that DMF was rapidly decomposed and the decomposition process significantly affected microbial growth and enzyme activities. The DMF-modified soil phytotoxicity decreased at the late fertilization time. DMF1 was considered as the optimum amount of DMF dose based on principal component analysis scores. Plant height and plant yield of snap bean were remarkably enhanced with the optimum DMF dose.

  1. Effects of Hurricane-Felled Tree Trunks on Soil Carbon, Nitrogen, Microbial Biomass, and Root Length in a Wet Tropical Forest

    Directory of Open Access Journals (Sweden)

    D. Jean Lodge

    2016-11-01

    Full Text Available Decaying coarse woody debris can affect the underlying soil either by augmenting nutrients that can be exploited by tree roots, or by diminishing nutrient availability through stimulation of microbial nutrient immobilization. We analyzed C, N, microbial biomass C and root length in closely paired soil samples taken under versus 20–50 cm away from large trunks of two species felled by Hugo (1989 and Georges (1998 three times during wet and dry seasons over the two years following the study conducted by Georges. Soil microbial biomass, % C and % N were significantly higher under than away from logs felled by both hurricanes (i.e., 1989 and 1998, at all sampling times and at both depths (0–10 and 10–20 cm. Frass from wood boring beetles may contribute to early effects. Root length was greater away from logs during the dry season, and under logs in the wet season. Root length was correlated with microbial biomass C, soil N and soil moisture (R = 0.36, 0.18, and 0.27, respectively; all p values < 0.05. Microbial biomass C varied significantly among seasons but differences between positions (under vs. away were only suggestive. Microbial C was correlated with soil N (R = 0.35. Surface soil on the upslope side of the logs had significantly more N and microbial biomass, likely from accumulation of leaf litter above the logs on steep slopes. We conclude that decaying wood can provide ephemeral resources that are exploited by tree roots during some seasons.

  2. Biogas production: litter from broilers receiving direct-fed microbials and an enzyme blend

    Directory of Open Access Journals (Sweden)

    Maria Fernanda Ferreira Menegucci Praes

    Full Text Available ABSTRACT The effect of additives used in the feed of broilers on anaerobic bio-digestion of poultry litter was evaluated. Four diets were used: NC: negative control; DFM: NC + 500 ppm direct-fed microbials (DFM containing Bacillus subtilis and Bacillus licheniformis; ENZ: diet formulated with an enzyme blend (20 ppm phytase, 200 ppm protease and 200 ppm xylanase; DFM+E: ENZ + DFM. Substrates for the anaerobic bio-digestion were prepared with litter from each treatment, containing 4 % total solids (TS. These were used in 16 continuous bio-digesters with a 2 kg d−1 load, to determine the production and potential biogas production and composition during an 85-day period. Influent and effluent samples were collected for the amounts of TS and volatile solids (VS, fiber fraction (neutral detergent fiber [NDF], acid detergent fiber [ADF] and lignin, nutrients (N, P and K, and total and thermotolerant coliforms to be determined. For all treatments a reduction in the following effluents was observed as follows: TS (49, 48, 48 and 50 % VS (70, 54, 55 and 62 % NDF (91, 90, 95 and 96 % ADF (89, 88, 93 and 94 % and lignin (80, 76, 89 and 88 %. The efficiency of the treatment for coliforms in bio-digesters was higher than 90 % in the 85-day period in all treatment groups. There was a reduction in biogas and methane production when DFM (5500 and 4000 mL and DFM + E (5800 and 4100 mL were used, compared to treatments NC (6300 mL and 4400 and ENZ (6400 and 4500 mL. The potential production of reduced TS and VS was higher in ENZ (1:00 and 1.74 106 mL kg−1 when compared to NC (0.88 and 1:02 106 mL kg−1, DFM (0.80 and 1:40 106 mL kg−1 and DFM + E (0.88 1:25 and 106 mL kg−1. The additives did not affect the percentage of methane production, and all treatments showed values higher than 70 %. Adding enzymes to the diet of broilers influences the litter characteristics and, as a consequence, increases biogas production. The addition of DFM and DFM + E to

  3. Are variations in heterotrophic soil respiration related to changes in substrate availability and microbial biomass carbon in the subtropical forests?

    Science.gov (United States)

    Wei, Hui; Chen, Xiaomei; Xiao, Guoliang; Guenet, Bertrand; Vicca, Sara; Shen, Weijun

    2015-12-16

    Soil temperature and moisture are widely-recognized controlling factors on heterotrophic soil respiration (Rh), although they often explain only a portion of Rh variability. How other soil physicochemical and microbial properties may contribute to Rh variability has been less studied. We conducted field measurements on Rh half-monthly and associated soil properties monthly for two years in four subtropical forests of southern China to assess influences of carbon availability and microbial properties on Rh. Rh in coniferous forest was significantly lower than that in the other three broadleaf species-dominated forests and exhibited obvious seasonal variations in the four forests (P forests. The quantity and decomposability of dissolved organic carbon (DOC) were significantly important to Rh variations, but the effect of DOC content on Rh was confounded with temperature, as revealed by partial mantel test. Microbial biomass carbon (MBC) was significantly related to Rh variations across forests during the warm season (P = 0.043). Our results suggest that DOC and MBC may be important when predicting Rh under some conditions, and highlight the complexity by mutual effects of them with environmental factors on Rh variations.

  4. The Influence of Tallow on Rumen Metabolism, Microbial Biomass Synthesis and Fatty Acid Composition of Bacteria and Protozoa

    DEFF Research Database (Denmark)

    Weisbjerg, Martin Riis; Børsting, Christian Friis; Hvelplund, Torben

    1992-01-01

    Rumen metabolism, microbial biomass synthesis and microbial long chain fatty acid composition were studied in lactating cows fed at two levels of dry matter intake (L, 8.6 kg DM and H, 12.6 kg DM) with 0, 4 and 6% added tallow at the low feed level (L0, L4 and L6) and 0, 2, 4 and 6% at the high...... feed level (H0, H2, H4 and H6). Fibre digestibility was not significantly affected by tallow addition. Increasing tallow level in the diet decreased the total VFA concentration, the ratio of acetic acid to propionic acid and the ammonia concentration in the rumen. Crude fat and fatty acid content...... in bacterial and protozoal dry matter increased with increased tallow level, especially due to an increase in fatty acids originating from the feeds. Microbial synthesis in the rumen and flow of amino acids to the duodenum was highest for medium fat intake at the high feed level....

  5. Are variations in heterotrophic soil respiration related to changes in substrate availability and microbial biomass carbon in the subtropical forests?

    Science.gov (United States)

    Wei, Hui; Chen, Xiaomei; Xiao, Guoliang; Guenet, Bertrand; Vicca, Sara; Shen, Weijun

    2015-01-01

    Soil temperature and moisture are widely-recognized controlling factors on heterotrophic soil respiration (Rh), although they often explain only a portion of Rh variability. How other soil physicochemical and microbial properties may contribute to Rh variability has been less studied. We conducted field measurements on Rh half-monthly and associated soil properties monthly for two years in four subtropical forests of southern China to assess influences of carbon availability and microbial properties on Rh. Rh in coniferous forest was significantly lower than that in the other three broadleaf species-dominated forests and exhibited obvious seasonal variations in the four forests (P < 0.05). Temperature was the primary factor influencing the seasonal variability of Rh while moisture was not in these humid subtropical forests. The quantity and decomposability of dissolved organic carbon (DOC) were significantly important to Rh variations, but the effect of DOC content on Rh was confounded with temperature, as revealed by partial mantel test. Microbial biomass carbon (MBC) was significantly related to Rh variations across forests during the warm season (P = 0.043). Our results suggest that DOC and MBC may be important when predicting Rh under some conditions, and highlight the complexity by mutual effects of them with environmental factors on Rh variations. PMID:26670822

  6. On using rational enzyme redesign to improve enzyme-mediated microbial dehalogenation of recalcitrant substances in deep-subsurface environments

    International Nuclear Information System (INIS)

    Ornstein, R.L.

    1993-06-01

    Heavily halogenated hydrocarbons are one of the most prevalent classes of man-made recalcitrant environmental contaminants and often make their way into subsurface environments. Biodegradation of heavily chlorinated compounds in the deep subsurface often occurs at extremely slow rates because native enzymes of indigenous microbes are unable to efficiently metabolize such synthetic substances. Cost-effective engineering solutions do not exist for dealing with disperse and recalcitrant pollutants in the deep subsurface (i.e., ground water, soils, and sediments). Timely biodegradation of heavily chlorinated compounds in the deep subsurface may be best accomplished by rational redesign of appropriate enzymes that enhance the ability of indigenous microbes to metabolize these substances. The isozyme family cytochromes P450 are catalytically very robust and are found in all aerobic life forms and may be active in may anaerobes as well. The author is attempting to demonstrate proof-of-principle rational enzyme redesign of cytochromes P450 to enhance biodehalogenation

  7. The combined effect of decabromodiphenyl ether (BDE-209) and copper (Cu) on soil enzyme activities and microbial community structure.

    Science.gov (United States)

    Zhang, Wei; Zhang, Meng; An, Shuai; Lin, Kuangfei; Li, Hui; Cui, Changzheng; Fu, Rongbing; Zhu, Jiang

    2012-09-01

    Waste electrical and electronic equipment (e-waste) is now the fastest growing waste stream in the world. It is reported that polybrominated diphenyl ethers (PBDEs) and heavy metals were main contaminants in e-waste recycling site. Among these contaminants BDE-209 and Cu were widespread, yet their combined effect on soil enzyme activities and microbial community structure are not well understood. In this study, the ecotoxicological effects of both combined and single pollution of BDE-209 and Cu at different concentration levels were studied under laboratory conditions. The activities of soil catalase, urease and saccharase were sensitive to BDE-209 and Cu pollution. Although the enzyme activities varied over time, the concentration effects were obvious. Statistical analyses revealed that, at the same incubation time, as the concentration of BDE-209 or Cu increased, the enzyme activities were decreased. Combined effects of both BDE-209 and Cu were different from that of BDE-209 or Cu alone. Enzyme activities data were essentially based on the multiple regression technique. The results showed that the action and interaction between BDE-209 and Cu were strongly dependent on the exposure time, as the combined effects of BDE-209 and Cu were either synergistic or antagonistic at different incubation times. Soil catalase and saccharase were more comfortable used as indicators of BDE-209 and Cu combined pollution, as the variation trends were similar to the single contaminant treatments, and the responses were quick and significant. Denaturing Gradient Gel Electrophoresis (DGGE) analysis of bacterial 16S rDNA gene showed that BDE-209 and Cu pollution altered the bacterial community structure by promoting changes in species composition and species richness. The existence of BDE-209 and Cu in soils reduced the microbial diversity, and the concentration effects were obvious. Overall, microbial diversity in the combined treatments were lower than the single ones, and when the

  8. Co-solvent pretreatment reduces costly enzyme requirements for high sugar and ethanol yields from lignocellulosic biomass.

    Science.gov (United States)

    Nguyen, Thanh Yen; Cai, Charles M; Kumar, Rajeev; Wyman, Charles E

    2015-05-22

    We introduce a new pretreatment called co-solvent-enhanced lignocellulosic fractionation (CELF) to reduce enzyme costs dramatically for high sugar yields from hemicellulose and cellulose, which is essential for the low-cost conversion of biomass to fuels. CELF employs THF miscible with aqueous dilute acid to obtain up to 95 % theoretical yield of glucose, xylose, and arabinose from corn stover even if coupled with enzymatic hydrolysis at only 2 mgenzyme  gglucan (-1) . The unusually high saccharification with such low enzyme loadings can be attributed to a very high lignin removal, which is supported by compositional analysis, fractal kinetic modeling, and SEM imaging. Subsequently, nearly pure lignin product can be precipitated by the evaporation of volatile THF for recovery and recycling. Simultaneous saccharification and fermentation of CELF-pretreated solids with low enzyme loadings and Saccharomyces cerevisiae produced twice as much ethanol as that from dilute-acid-pretreated solids if both were optimized for corn stover. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A multi-substrate approach for functional metagenomics-based screening for (hemi)cellulases in two wheat straw-degrading microbial consortia unveils novel thermoalkaliphilic enzymes.

    Science.gov (United States)

    Maruthamuthu, Mukil; Jiménez, Diego Javier; Stevens, Patricia; van Elsas, Jan Dirk

    2016-01-28

    Functional metagenomics is a promising strategy for the exploration of the biocatalytic potential of microbiomes in order to uncover novel enzymes for industrial processes (e.g. biorefining or bleaching pulp). Most current methodologies used to screen for enzymes involved in plant biomass degradation are based on the use of single substrates. Moreover, highly diverse environments are used as metagenomic sources. However, such methods suffer from low hit rates of positive clones and hence the discovery of novel enzymatic activities from metagenomes has been hampered. Here, we constructed fosmid libraries from two wheat straw-degrading microbial consortia, denoted RWS (bred on untreated wheat straw) and TWS (bred on heat-treated wheat straw). Approximately 22,000 clones from each library were screened for (hemi)cellulose-degrading enzymes using a multi-chromogenic substrate approach. The screens yielded 71 positive clones for both libraries, giving hit rates of 1:440 and 1:1,047 for RWS and TWS, respectively. Seven clones (NT2-2, T5-5, NT18-17, T4-1, 10BT, NT18-21 and T17-2) were selected for sequence analyses. Their inserts revealed the presence of 18 genes encoding enzymes belonging to twelve different glycosyl hydrolase families (GH2, GH3, GH13, GH17, GH20, GH27, GH32, GH39, GH53, GH58, GH65 and GH109). These encompassed several carbohydrate-active gene clusters traceable mainly to Klebsiella related species. Detailed functional analyses showed that clone NT2-2 (containing a beta-galactosidase of ~116 kDa) had highest enzymatic activity at 55 °C and pH 9.0. Additionally, clone T5-5 (containing a beta-xylosidase of ~86 kDa) showed > 90% of enzymatic activity at 55 °C and pH 10.0. This study employed a high-throughput method for rapid screening of fosmid metagenomic libraries for (hemi)cellulose-degrading enzymes. The approach, consisting of screens on multi-substrates coupled to further analyses, revealed high hit rates, as compared with recent other studies. Two

  10. High activity and low temperature optima of extracellular enzymes in Arctic sediments: implications for carbon cycling by heterotrophic microbial communities

    DEFF Research Database (Denmark)

    Arnosti, C.; Jørgensen, BB

    2003-01-01

    (chondroitin sulfate, fucoidan, xylan and pullulan) to determine the temperature-activity responses of hydrolysis of a related class of compounds. All 4 enzyme activities showed similarly low temperature optima in the range of 15 to 18degreesC. These temperature optima are considerably lower than most previous......The rate of the initial step in microbial remineralization of organic carbon, extracellular enzymatic hydrolysis, was investigated as a function of temperature in permanently cold sediments from 2 fjords on the west coast of Svalbard (Arctic Ocean). We used 4 structurally distinct polysaccharides...... reports of temperature optima for enzyme activities in marine sediments. At 0degreesC, close to the in situ temperature, these enzyme activities achieved 13 to 38% of their rates at optimum temperatures. In one experiment, sulfate reduction rates were measured in parallel with extracellular enzymatic...

  11. Enzyme-Catalyzed Synthesis of Saccharide Acrylate Monomers from Nonedible Biomass

    NARCIS (Netherlands)

    Kloosterman, Wouter M. J.; Brouwer, Sander; Loos, Katja

    Various cellulase preparations were found to catalyze the transglycosidation between cotton linters and 2-hydroxyethyl acrylate. The conversion and enzyme activity were found to be optimal in reaction mixtures that contained 5 vol% of the acrylate. The structures of the products were revealed by

  12. Impact of phenazine-1-carboxylic acid upon iron speciation and microbial biomass in the rhizosphere of wheat

    Science.gov (United States)

    LeTourneau, M.; Marshall, M.; Grant, M.; Freeze, P.; Cliff, J. B.; Lai, B.; Strawn, D. G.; Thomashow, L. S.; Weller, D. M.; Harsh, J. B.

    2015-12-01

    Phenazine-1-carboxylic acid (PCA) is a redox-active antibiotic produced by diverse bacterial taxa, and has been shown to facilitate interactions between biofilms and iron (hydr)oxides in culture systems (Wang et al. 2011, J Bacteriol 192: 365). Because rhizobacterial biofilms are a major sink for plant-derived carbon and source for soil organic matter (SOM), and Fe (hydr)oxides have reactive surfaces that influence the stability of microbial biomass and SOM, PCA-producing rhizobacteria could influence soil carbon fluxes. Large populations of Pseudomonas fluorescens strains producing PCA in concentrations up to 1 μg/g root have been observed in the rhizosphere of non-irrigated wheat fields covering 1.56 million hectares of central Washington state. This is one of the highest concentrations ever reported for a natural antibiotic in a terrestrial ecosystem (Mavrodi et al. 2012, Appl Environ Microb 78: 804). Microscopic comparisons of PCA-producing (PCA+) and non-PCA-producing (PCA-) rhizobacterial colony morphologies, and comparisons of Fe extractions from rhizosphere soil inoculated with PCA+ and PCA- strains suggest that PCA promotes biofilm development as well as dramatic Fe transformations throughout the rhizosphere (unpublished data). In order to illustrate PCA-mediated interactions between biofilms and Fe (hydr)oxides in the rhizosphere, identify the specific Fe phases favored by PCA, and establish the ramifications for stability and distribution of microbial biomass and SOM, we have collected electron micrographs, X-ray fluorescence images, X-ray absorption near-edge spectra, and secondary-ion mass spectrometry images of wheat root sections inoculated with 15N-labelled PCA+ or PCA- rhizobacteria. These images and spectra allow us to assess the accumulation, turnover, and distribution of microbial biomass, the associations between Fe and other nutrients such as phosphorus, and the redox status and speciation of iron in the presence and absence of PCA. This

  13. Determination of saccharides and ethanol from biomass conversion using Raman spectroscopy: Effects of pretreatment and enzyme composition

    Energy Technology Data Exchange (ETDEWEB)

    Shih, Chien-Ju [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    This dissertation focuses on the development of facile and rapid quantitative Raman spectroscopy measurements for the determination of conversion products in producing bioethanol from corn stover. Raman spectroscopy was chosen to determine glucose, xylose and ethanol in complex hydrolysis and fermentation matrices. Chapter 1 describes the motives and main goals of this work, and includes an introduction to biomass, commonly used pretreatment methods, hydrolysis and fermentation reactions. The principles of Raman spectroscopy, its advantages and applications related to biomass analysis are also illustrated. Chapter 2 and 3 comprise two published or submitted manuscripts, and the thesis concludes with an appendix. In Chapter 2, a Raman spectroscopic protocol is described to study the efficiency of enzymatic hydrolysis of cellulose by measuring the main product in hydrolysate, glucose. Two commonly utilized pretreatment methods were investigated in order to understand their effect on glucose measurements by Raman spectroscopy. Second, a similar method was set up to determine the concentration of ethanol in fermentation broth. Both of these measurements are challenged by the presence of complex matrices. In Chapter 3, a quantitative comparison of pretreatment protocols and the effect of enzyme composition are studied using systematic methods. A multipeak fitting algorithm was developed to analyze spectra of hydrolysate containing two analytes: glucose and xylose. Chapter 4 concludes with a future perspective of this research area. An appendix describes a convenient, rapid spectrophotometric method developed to measure cadmium in water. This method requires relatively low cost instrumentation and can be used in microgravity, such as space shuttles or the International Space Station. This work was performed under the supervision of Professor Marc Porter while at Iowa State University. Research related to producing biofuel from bio-renewable resources, especially

  14. Fungal Enzymes for Bio-Products from Sustainable and Waste Biomass.

    Science.gov (United States)

    Gupta, Vijai K; Kubicek, Christian P; Berrin, Jean-Guy; Wilson, David W; Couturier, Marie; Berlin, Alex; Filho, Edivaldo X F; Ezeji, Thaddeus

    2016-07-01

    Lignocellulose, the most abundant renewable carbon source on earth, is the logical candidate to replace fossil carbon as the major biofuel raw material. Nevertheless, the technologies needed to convert lignocellulose into soluble products that can then be utilized by the chemical or fuel industries face several challenges. Enzymatic hydrolysis is of major importance, and we review the progress made in fungal enzyme technology over the past few years with major emphasis on (i) the enzymes needed for the conversion of polysaccharides (cellulose and hemicellulose) into soluble products, (ii) the potential uses of lignin degradation products, and (iii) current progress and bottlenecks for the use of the soluble lignocellulose derivatives in emerging biorefineries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Medium activity long-lived nuclear waste; microbial paradise or hadean environment - Evaluation of biomass and impact on redox conditions

    International Nuclear Information System (INIS)

    Albrecht, A.; Libert, M.

    2010-01-01

    near-field biogeochemistry without detailed knowledge of kinetic parameters: The first approach is a mass balance which considers the masses of both the oxidizing and the reducing agents in a single waste cell. In the simplest case only nitrates, sulphates and Fe(0) are considered; nitrates are reduced to N 2 , sulphates to S 2- , and all Fe is oxidised to Fe 3 O 4 , the latter generating hydrogen gas. Of the produced H 2 , 25% serves to reduce nitrates and 55% to reduce sulphates. Further mass balance calculations are underway that consider the direct reaction of nitrates with Fe(0), a reaction for which very little relevant information is available. It is know that nitrate solutions may inhibit corrosion, but they are also known to react with iron. Furthermore, Fe(III), initially present in the engineered barrier or in the host rock and produced as a consequence of Fe(II) oxidation by O 2 during waste cell opening, will also be considered. The second approach combines the previous one with a quantification of free energies, which in turn can be used to form microbial biomass according to the simple relationship 1 g per 64 kJ. With balanced stoichiometric reactions and thermodynamic data at pH 12 first estimates indicate a production of 0.7 kg of biomass per waste container. This is significantly higher than what has been estimated for high-level waste cells, where bacterial activity was modelled to be essentially limited to the first 100 years, when the system is partially characterised by the presence of O 2 . However, these preliminary calculations assume that all nutrients are simultaneously bioavailable and that the energy requirement for microbial biomass production at low pH can be used as a first estimate for higher pH setting. Ongoing work will be presented that considers parameter uncertainties using a Monte Carlo approach, results which allow assessing the upper and lower limits of bacterial production. These values can then be used to quantify the

  16. Microbial correlates of Fusarium biomass and deoxynivalenol content in individual wheat seeds

    Science.gov (United States)

    Manipulating the microbiome of wheat seeds and heads may contribute to control of Fusarium head blight and mycotoxin accumulation in grain, which creates a food safety hazard. With the aim of identifying novel management targets, we looked for correlations between Fusarium biomass or deoxynivalenol ...

  17. Microbial biodiesel production from oil palm biomass hydrolysate using marine Rhodococcus sp. YHY01.

    Science.gov (United States)

    Bhatia, Shashi Kant; Kim, Junyoung; Song, Hun-Seok; Kim, Hyun Joong; Jeon, Jong-Min; Sathiyanarayanan, Ganesan; Yoon, Jeong-Jun; Park, Kyungmoon; Kim, Yun-Gon; Yang, Yung-Hun

    2017-06-01

    The effect of various biomass derived inhibitors (i.e. furfural, hydroxymethylfurfural (HMF), vanillin, 4-hydroxy benzaldehyde (4-HB) and acetate) was investigated for fatty acid accumulation in Rhodococcus sp. YHY 01. Rhodococcus sp. YHY01 was able to utilize acetate, vanillin, and 4-HB for biomass production and fatty acid accumulation. The IC 50 value for furfural (3.1mM), HMF (3.2mM), vanillin (2.0mM), 4-HB (2.7mM) and acetate (3.7mM) was calculated. HMF and vanillin affect fatty acid composition and increase saturated fatty acid content. Rhodococcus sp. YHY 01 cultured with empty fruit bunch hydrolysate (EFBH) as the main carbon source resulted in enhanced biomass (20%) and fatty acid productivity (37%), in compression to glucose as a carbon source. Overall, this study showed the beneficial effects of inhibitory molecules on growth and fatty acid production, and support the idea of biomass hydrolysate utilization for biodiesel production by avoiding complex efforts to remove inhibitory compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Influence of mechanical disintegration on the microbial growth of aerobic sludge biomass: A comparative study of ultrasonic and shear gap homogenizers by oxygen uptake measurements.

    Science.gov (United States)

    Divyalakshmi, P; Murugan, D; Sivarajan, M; Saravanan, P; Lajapathi Rai, C

    2015-11-01

    Wastewater treatment plant incorporates physical, chemical and biological processes to treat and remove the contaminants. The main drawback of conventional activated sludge process is the huge production of excess sludge, which is an unavoidable byproduct. The treatment and disposal of excess sludge costs about 60% of the total operating cost. The ideal way to reduce excess sludge production during wastewater treatment is by preventing biomass formation within the aerobic treatment train rather than post treatment of the generated sludge. In the present investigation two different mechanical devices namely, Ultrasonic and Shear Gap homogenizers have been employed to disintegrate the aerobic biomass. This study is intended to restrict the multiplication of microbial biomass and at the same time degrade the organics present in wastewater by increasing the oxidative capacity of microorganisms. The disintegrability on biomass was determined by biochemical methods. Degree of inactivation provides the information on inability of microorganisms to consume oxygen upon disruption. The soluble COD quantifies the extent of release of intra cellular compounds. The participation of disintegrated microorganism in wastewater treatment process was carried out in two identical respirometeric reactors. The results show that Ultrasonic homogenizer is very effective in the disruption of microorganisms leading to a maximum microbial growth reduction of 27%. On the other hand, Shear gap homogenizer does not favor the sludge growth reduction rather it facilitates the growth. This study also shows that for better microbial growth reduction, floc size reduction alone is not sufficient but also microbial disruption is essential. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Response of the soil microbial community and soil nutrient bioavailability to biomass harvesting and reserve tree retention in northern Minnesota aspen-dominated forests

    Science.gov (United States)

    Tera E. Lewandowski; Jodi A. Forrester; David J. Mladenoff; Anthony W. D' Amato; Brian J. Palik

    2016-01-01

    Intensive forest biomass harvesting, or the removal of harvesting slash (woody debris from tree branches and tops) for use as biofuel, has the potential to negatively affect the soil microbial community (SMC) due to loss of carbon and nutrient inputs from the slash, alteration of the soil microclimate, and increased nutrient leaching. These effects could result in...

  20. Microbial biomass and necromass turnover times in the contrasting seafloor settings

    DEFF Research Database (Denmark)

    Mhatre, Snehit

    2017-01-01

    in the deep biosphere microbial community. His work therefore opens a new avenue in exploring the possible mechanisms involved in facilitating the long-term survival of microorganisms under energy-deprived conditions. The PhD degree was completed at the Center for Geomicrobiology, department of Bioscience...

  1. RESPONSE OF SOIL MICROBIAL BIOMASS AND COMMUNITY COMPOSITION TO CHRONIC NITROGEN ADDITIONS AT HARVARD FOREST

    Science.gov (United States)

    Soil microbial communities may respond to anthropogenic increases in ecosystem nitrogen (N) availability, and their response may ultimately feedback on ecosystem carbon and N dynamics. We examined the long-term effects of chronic N additions on soil microbes by measuring soil mi...

  2. Effects of titanium dioxide nanoparticles on soil microbial communities and wheat biomass

    NARCIS (Netherlands)

    Moll, Janine; Klingenfuss, Florian; Widmer, Franco; Gogos, Alexander; Bucheli, Thomas D.; Hartmann, Martin; van der Heijden, Marcel G.A.

    2017-01-01

    Titanium dioxide nanoparticles (TiO2 NPs) are the most produced NPs worldwide and have great potential to be utilized in agriculture as additives for plant protection products. However, concerns have been raised that some NPs may negatively affect crops and soil microbial communities, including

  3. Abundance, production and stabilization of microbial biomass under conventional and reduced tillage

    NARCIS (Netherlands)

    Groenigen, van K.J.; Bloem, J.; Baath, E.; Boeckx, P.; Rousk, J.; Bodé, S.; Forristal, P.D.; Jones, M.B.

    2010-01-01

    Soil tillage practices affect the soil microbial community in various ways, with possible consequences for nitrogen (N) losses, plant growth and soil organic carbon (C) sequestration. As microbes affect soil organic matter (SOM) dynamics largely through their activity, their impact may not be

  4. Seasonal and interannual dynamics of soil microbial biomass and available nitrogen in an alpine meadow in the eastern part of Qinghai-Tibet Plateau, China

    Science.gov (United States)

    Xu, Bo; Wang, Jinniu; Wu, Ning; Wu, Yan; Shi, Fusun

    2018-01-01

    Soil microbial activity varies seasonally in frozen alpine soils during cold seasons and plays a crucial role in available N pool accumulation in soil. The intra- and interannual patterns of microbial and nutrient dynamics reflect the influences of changing weather factors, and thus provide important insights into the biogeochemical cycles and ecological functions of ecosystems. We documented the seasonal and interannual dynamics of soil microbial and available N in an alpine meadow in the eastern part of Qinghai-Tibet Plateau, China, between April 2011 and October 2013. Soil was collected in the middle of each month and analyzed for water content, microbial biomass C (MBC) and N (MBN), dissolved organic C and N, and inorganic N. Soil microbial community composition was measured by the dilution-plate method. Fungi and actinomycetes dominated the microbial community during the nongrowing seasons, and the proportion of bacteria increased considerably during the early growing seasons. Trends of consistently increasing MBC and available N pools were observed during the nongrowing seasons. MBC sharply declined during soil thaw and was accompanied by a peak in available N pool. Induced by changes in soil temperatures, significant shifts in the structures and functions of microbial communities were observed during the winter-spring transition and largely contributed to microbial reduction. The divergent seasonal dynamics of different N forms showed a complementary nutrient supply pattern during the growing season. Similarities between the interannual dynamics of microbial biomass and available N pools were observed, and soil temperature and water conditions were the primary environmental factors driving interannual fluctuations. Owing to the changes in climate, seasonal soil microbial activities and nutrient supply patterns are expected to change further, and these changes may have crucial implications for the productivity and biodiversity of alpine ecosystems.

  5. Breaking continuous potato cropping with legumes improves soil microbial communities, enzyme activities and tuber yield

    Science.gov (United States)

    Qin, Shuhao; Yeboah, Stephen; Cao, Li; Zhang, Junlian; Shi, Shangli; Liu, Yuhui

    2017-01-01

    This study was conducted to explore the changes in soil microbial populations, enzyme activity, and tuber yield under the rotation sequences of Potato–Common vetch (P–C), Potato–Black medic (P–B) and Potato–Longdong alfalfa (P–L) in a semi–arid area of China. The study also determined the effects of continuous potato cropping (without legumes) on the above mentioned soil properties and yield. The number of bacteria increased significantly (p continuous cropping soils, respectively compared to P–C rotation. The highest fungi/bacteria ratio was found in P–C (0.218), followed by P–L (0.184) and then P–B (0.137) rotation over the different cropping years. In the continuous potato cropping soils, the greatest fungi/bacteria ratio was recorded in the 4–year (0.4067) and 7–year (0.4238) cropping soils and these were significantly higher than 1–year (0.3041), 2–year (0.2545) and 3–year (0.3030) cropping soils. Generally, actinomycetes numbers followed the trend P–L>P–C>P–B. The P–L rotation increased aerobic azotobacters in 2–year (by 26% and 18%) and 4–year (40% and 21%) continuous cropping soils compared to P–C and P–B rotation, respectively. Generally, the highest urease and alkaline phosphate activity, respectively, were observed in P–C (55.77 mg g–1) and (27.71 mg g–1), followed by P–B (50.72 mg mg–1) and (25.64 mg g–1) and then P–L (41.61 mg g–1) and (23.26 mg g–1) rotation. Soil urease, alkaline phosphatase and hydrogen peroxidase activities decreased with increasing years of continuous potato cropping. On average, the P–B rotation significantly increased (p improve soil biology environment, alleviate continuous cropping obstacle and increase potato tuber yield in semi–arid region. PMID:28463981

  6. Dynamics of soil organic carbon and microbial biomass carbon in relation to water erosion and tillage erosion.

    Science.gov (United States)

    Xiaojun, Nie; Jianhui, Zhang; Zhengan, Su

    2013-01-01

    Dynamics of soil organic carbon (SOC) are associated with soil erosion, yet there is a shortage of research concerning the relationship between soil erosion, SOC, and especially microbial biomass carbon (MBC). In this paper, we selected two typical slope landscapes including gentle and steep slopes from the Sichuan Basin, China, and used the (137)Cs technique to determine the effects of water erosion and tillage erosion on the dynamics of SOC and MBC. Soil samples for the determination of (137)Cs, SOC, MBC and soil particle-size fractions were collected on two types of contrasting hillslopes. (137)Cs data revealed that soil loss occurred at upper slope positions of the two landscapes and soil accumulation at the lower slope positions. Soil erosion rates as well as distribution patterns of the erosion is the major process of soil redistribution in the gentle slope landscape, while tillage erosion acts as the dominant process of soil redistribution in the steep slope landscape. In gentle slope landscapes, both SOC and MBC contents increased downslope and these distribution patterns were closely linked to soil redistribution rates. In steep slope landscapes, only SOC contents increased downslope, dependent on soil redistribution. It is noticeable that MBC/SOC ratios were significantly lower in gentle slope landscapes than in steep slope landscapes, implying that water erosion has a negative effect on the microbial biomass compared with tillage erosion. It is suggested that MBC dynamics are closely associated with soil redistribution by water erosion but independent of that by tillage erosion, while SOC dynamics are influenced by soil redistribution by both water erosion and tillage erosion.

  7. Microbial biomass and activity in litter during the initial development of pure and mixed plantations of Eucalyptus grandis and Acacia mangium

    Directory of Open Access Journals (Sweden)

    Daniel Bini

    2013-02-01

    Full Text Available Studies on microbial activity and biomass in forestry plantations often overlook the role of litter, typically focusing instead on soil nutrient contents to explain plant and microorganism development. However, since the litter is a significant source of recycled nutrients that affect nutrient dynamics in the soil, litter composition may be more strongly correlated with forest growth and development than soil nutrient contents. This study aimed to test this hypothesis by examining correlations between soil C, N, and P; litter C, N, P, lignin content, and polyphenol content; and microbial biomass and activity in pure and mixed second-rotation plantations of Eucalyptus grandis and Acacia mangium before and after senescent leaf drop. The numbers of cultivable fungi and bacteria were also estimated. All properties were correlated with litter C, N, P, lignin and polyphenols, and with soil C and N. We found higher microbial activity (CO2 evolution in litter than in soil. In the E. grandis monoculture before senescent leaf drop, microbial biomass C was 46 % higher in litter than in soil. After leaf drop, this difference decreased to 16 %. In A. mangium plantations, however, microbial biomass C was lower in litter than in soil both before and after leaf drop. Microbial biomass N of litter was approximately 94 % greater than that of the soil in summer and winter in all plantations. The number of cultivable fungi and bacteria increased after leaf drop, especially so in the litter. Fungi were also more abundant in the E. grandis litter. In general, the A. mangium monoculture was associated with higher levels of litter lignin and N, especially after leaf drop. In contrast, the polyphenol and C levels in E. grandis monoculture litter were higher after leaf drop. These properties were negatively correlated with total soil C and N. Litter in the mixed stands had lower C:N and C:P ratios and higher N, P, and C levels in the microbial biomass. This suggests more

  8. Analysis of soil microbial community structure and enzyme activities associated with negative effects of pseudostellaria heterophylla consecutive monoculture on yield

    International Nuclear Information System (INIS)

    Lin, S.; Lin, W.X.

    2015-01-01

    Pseudostellaria heterophylla is an important medicinal plant in China. However, cultivation of P. heterophylla using consecutive monoculture results in significant reductions in yield and quality. In this study, terminal-restriction fragment length polymorphism (T-RFLP) analysis and measurement of soil enzyme activities were used to investigate the regulation of soil micro-ecology to identify ways to overcome the negative effects of P. heterophylla consecutive monoculture. T-RFLP analysis showed that rice/P. heterophylla (RP) and bean/P. heterophylla (BP) crop rotation systems increased the number and diversity of microbial groups in P. heterophylla rhizosphere soil. In particular, the RP and BP crop rotations increased the number and abundance of beneficial bacterial species compared with two-year consecutive monoculture of P. heterophylla. The presence of these beneficial bacteria was positively correlated with soil enzyme activities which increased in rhizosphere soils of the RP and BP crop rotation systems. The results indicated that crop rotation systems could increase activities of key soil enzymes and beneficial microbial groups and improve soil health. This study could provide a theoretical basis to resolve the problems associated with P. heterophylla consecutive monoculture. (author)

  9. The use of N 15 for studying the relation between the development of the microbial biomass and the remineralization of nitrogen fertilizer by rice

    Energy Technology Data Exchange (ETDEWEB)

    Al-Chater, M S [King Faisal University - Faculty of Agriculture and Food Science Department of Soil and Water Al-Hassa, (Saudi Arabia)

    1995-10-01

    The study aims at determining the mechanism of secondary mineralization of fertilizer N in the form of (N{sup 15} H{sub 14})2 SO{sub 4} which was transformed to the organic N using soil samples taken after a period of 16 weeks from the series of pot experiments. The development of the microbial biomass was studied using the method of Jenkinson and Powlson(1976) which was modified by Bottner et al (1984). Nitrogen mineralization was determined using the Stanford and Smith (1972) method. The study indicated that the values of mineralization constant varied from 0.0012 to 0.027 in different treatments. Accordingly, the half-life of microbial biomass ranged from 6 to 7 months, indicating fast transformation of microbial N as compared with total organic N in the soil which ranged between 7 to 12 years.1 fig., 3 tabs.

  10. To prevent the occurrence of black water agglomerate through delaying decomposition of cyanobacterial bloom biomass by sediment microbial fuel cell.

    Science.gov (United States)

    Zhou, Yan-Li; Jiang, He-Long; Cai, Hai-Yuan

    2015-04-28

    Settlement of cyanobacterial bloom biomass (CBB) into sediments in eutrophic lakes often induced the occurrence of black water agglomerate and then water quality deterioration. This study investigated the effect of sediment microbial fuel cell (SMFC) on CBB removal in sediments and related water pollution. Sediment bulking and subsequent black water from decomposition of settled CBB happened without SMFC, but were not observed over 100-day experiments with SMFC employment. While CBB in sediments improved power production from SMFC, the removal efficiency of organic matters in CBB-amended sediments with SMFC was significantly lower than that without SMFC. Pyrosequencing analysis showed higher abundances of the fermentative Clostridium and acetoclastic methanogen in CBB-amended bulk sediments without SMFC than with SMFC at the end of experiments. Obviously, SMFC operation changed the microbial community in CBB-amended sediments, and delayed the CBB degradation against sediment bulking. Thus, SMFC could be potentially applied as pollution prevention in CBB-settled and sensitive zones in shallow lakes. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Flixweed is more competitive than winter wheat under ozone pollution: evidences from membrane lipid peroxidation, antioxidant enzymes and biomass.

    Directory of Open Access Journals (Sweden)

    Cai-Hong Li

    Full Text Available To investigate the effects of ozone on winter wheat and flixweed under competition, two species were exposed to ambient, elevated and high [O3] for 30 days, planted singly or in mixculture. Eco-physiological responses were examined at different [O3] and fumigating time. Ozone reduced the contents of chlorophyll, increased the accumulation of H2O2 and malondialdehyde in both wheat and flixweed. The effects of competition on chlorophyll content of wheat emerged at elevated and high [O3], while that of flixweed emerged only at high [O3]. The increase of H2O2 and malondialdehyde of flixweed was less than that of wheat under the same condition. Antioxidant enzyme activities of wheat and flixweed were seriously depressed by perennial and serious treatment using O3. However, short-term and moderate fumigation increased the activities of SOD and POD of wheat, and CAT of flixweed. The expression levels of antioxidant enzymes related genes provided explanation for these results. Furthermore, the increase of CAT expression of flixweed was much higher than that of SOD and POD expression of wheat. Ozone and competition resulted in significant reductions in biomass and grain yield in both winter wheat and flixweed. However, the negative effects on flixweed were less than wheat. Our results demonstrated that winter wheat is more sensitive to O3 and competition than flixweed, providing valuable data for further investigation on responses of winter wheat to ozone pollution, in particular combined with species competition.

  12. Bilirubin oxidase-like proteins from Podospora anserina: promising thermostable enzymes for application in transformation of plant biomass.

    Science.gov (United States)

    Xie, Ning; Ruprich-Robert, Gwenaël; Silar, Philippe; Chapeland-Leclerc, Florence

    2015-03-01

    Plant biomass degradation by fungi is a critical step for production of biofuels, and laccases are common ligninolytic enzymes envisioned for ligninolysis. Bilirubin oxidases (BODs)-like are related to laccases, but their roles during lignocellulose degradation have not yet been fully investigated. The two BODs of the ascomycete fungus Podospora anserina were characterized by targeted gene deletions. Enzymatic assay revealed that the bod1(Δ) and bod2(Δ) mutants lost partly a thermostable laccase activity. A triple mutant inactivated for bod1, bod2 and mco, a previously investigated multicopper oxidase gene distantly related to laccases, had no thermostable laccase activity. The pattern of fruiting body production in the bod1(Δ) bod2(Δ) double mutant was changed. The bod1(Δ) and bod2(Δ) mutants were reduced in their ability to grow on ligneous and cellulosic materials. Furthermore, bod1(Δ) and bod2(Δ) mutants were defective towards resistance to phenolic substrates and H2 O2 , which may also impact lignocellulose breakdown. Double and triple mutants were more affected than single mutants, evidencing redundancy of function among BODs and mco. Overall, the data show that bod1, bod2 and mco code for non-canonical thermostable laccases that participate in the degradation of lignocellulose. Thanks to their thermal stability, these enzymes may be more promising candidate for biotechnological application than canonical laccases. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. Application of a novel enzymatic pretreatment using crude hydrolytic extracellular enzyme solution to microalgal biomass for dark fermentative hydrogen production.

    Science.gov (United States)

    Yun, Yeo-Myeong; Kim, Dong-Hoon; Oh, You-Kwan; Shin, Hang-Sik; Jung, Kyung-Won

    2014-05-01

    In this study, a novel enzymatic pretreatment of Chlorella vulgaris for dark fermentative hydrogen production (DFHP) was performed using crude hydrolytic extracellular enzyme solution (CHEES) extracted from the H2 fermented effluent of food waste. It was found that the enzyme extracted at 52 h had the highest hydrolysis efficiency of microalgal biomass, resulting in the highest H2 yield of 43.1 mL H2/g dry cell weight along with shorter lag periods. Even though a high amount of VFAs was accumulated in CHEES, especially butyrate, the fermentative bacteria on the DFHP was not affected from product inhibition. It also appears that the presence of organic acids, especially lactate and acetate, contained in the CHEES facilitated enhancement of H2 production acted as a co-substrate. Therefore, all of the experimental results suggest that the enhancement of DFHP performance caused by CHEES has a dual role as the hydrolysis enhancer and the co-substrate supplier. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. BioDry: An Inexpensive, Low-Power Method to Preserve Aquatic Microbial Biomass at Room Temperature.

    Science.gov (United States)

    Tuorto, Steven J; Brown, Chris M; Bidle, Kay D; McGuinness, Lora R; Kerkhof, Lee J

    2015-01-01

    This report describes BioDry (patent pending), a method for reliably preserving the biomolecules associated with aquatic microbial biomass samples, without the need of hazardous materials (e.g. liquid nitrogen, preservatives, etc.), freezing, or bulky storage/sampling equipment. Gel electrophoresis analysis of nucleic acid extracts from samples treated in the lab with the BioDry method indicated that molecular integrity was protected in samples stored at room temperature for up to 30 days. Analysis of 16S/18S rRNA genes for presence/absence and relative abundance of microorganisms using both 454-pyrosequencing and TRFLP profiling revealed statistically indistinguishable communities from control samples that were frozen in liquid nitrogen immediately after collection. Seawater and river water biomass samples collected with a portable BioDry "field unit", constructed from off-the-shelf materials and a battery-operated pumping system, also displayed high levels of community rRNA preservation, despite a slight decrease in nucleic acid recovery over the course of storage for 30 days. Functional mRNA and protein pools from the field samples were also effectively conserved with BioDry, as assessed by respective RT-PCR amplification and western blot of ribulose-1-5-bisphosphate carboxylase/oxygenase. Collectively, these results demonstrate that BioDry can adequately preserve a suite of biomolecules from aquatic biomass at ambient temperatures for up to a month, giving it great potential for high resolution sampling in remote locations or on autonomous platforms where space and power are limited.

  15. Microbial biomass and viral infections of heterotrophic prokaryotes in the sub-surface layer of the central Arctic Ocean

    Science.gov (United States)

    Steward, Grieg F.; Fandino, Laura B.; Hollibaugh, James T.; Whitledge, Terry E.; Azam, Farooq

    2007-10-01

    Seawater samples were collected for microbial analyses between 55 and 235 m depth across the Arctic Ocean during the SCICEX 97 expedition (03 September-02 October 1997) using a nuclear submarine as a research platform. Abundances of prokaryotes (range 0.043-0.47×10 9 dm -3) and viruses (range 0.68-11×10 9 dm -3) were correlated ( r=0.66, n=150) with an average virus:prokaryote ratio of 26 (range 5-70). Biomass of prokaryotes integrated from 55 to 235 m ranged from 0.27 to 0.85 g C m -2 exceeding that of phytoplankton (0.005-0.2 g C m -2) or viruses (0.02-0.05 g C m -2) over the same depth range by an order of magnitude on average. Using transmission electron microscopy (TEM), we estimated that 0.5% of the prokaryote community on average (range 0-1.4%) was visibly infected with viruses, which suggests that very little of prokaryotic secondary production was lost due to viral lysis. Intracellular viruses ranged from 5 to >200/cell, with an average apparent burst size of 45±38 (mean±s.d.; n=45). TEM also revealed the presence of putative metal-precipitating bacteria in 8 of 13 samples, which averaged 0.3% of the total prokaryote community (range 0-1%). If these prokaryotes are accessible to protistan grazers, the Fe and Mn associated with their capsules might be an important source of trace metals to the planktonic food web. After combining our abundance and mortality data with data from the literature, we conclude that the biomass of prokaryoplankton exceeds that of phytoplankton when averaged over the upper 250 m of the central Arctic Ocean and that the fate of this biomass is poorly understood.

  16. BioDry: An Inexpensive, Low-Power Method to Preserve Aquatic Microbial Biomass at Room Temperature.

    Directory of Open Access Journals (Sweden)

    Steven J Tuorto

    Full Text Available This report describes BioDry (patent pending, a method for reliably preserving the biomolecules associated with aquatic microbial biomass samples, without the need of hazardous materials (e.g. liquid nitrogen, preservatives, etc., freezing, or bulky storage/sampling equipment. Gel electrophoresis analysis of nucleic acid extracts from samples treated in the lab with the BioDry method indicated that molecular integrity was protected in samples stored at room temperature for up to 30 days. Analysis of 16S/18S rRNA genes for presence/absence and relative abundance of microorganisms using both 454-pyrosequencing and TRFLP profiling revealed statistically indistinguishable communities from control samples that were frozen in liquid nitrogen immediately after collection. Seawater and river water biomass samples collected with a portable BioDry "field unit", constructed from off-the-shelf materials and a battery-operated pumping system, also displayed high levels of community rRNA preservation, despite a slight decrease in nucleic acid recovery over the course of storage for 30 days. Functional mRNA and protein pools from the field samples were also effectively conserved with BioDry, as assessed by respective RT-PCR amplification and western blot of ribulose-1-5-bisphosphate carboxylase/oxygenase. Collectively, these results demonstrate that BioDry can adequately preserve a suite of biomolecules from aquatic biomass at ambient temperatures for up to a month, giving it great potential for high resolution sampling in remote locations or on autonomous platforms where space and power are limited.

  17. Assimilable organic carbon (AOC) in soil water extracts using Vibrio harveyi BB721 and its implication for microbial biomass.

    Science.gov (United States)

    Ma, Jincai; Ibekwe, A Mark; Wang, Haizhen; Xu, Jianming; Leddy, Menu; Yang, Ching-Hong; Crowley, David E

    2012-01-01

    Assimilable organic carbon (AOC) is commonly used to measure the growth potential of microorganisms in water, but has not yet been investigated for measuring microbial growth potential in soils. In this study, a simple, rapid, and non-growth based assay to determine AOC in soil was developed using a naturally occurring luminous strain Vibrio harveyi BB721 to determine the fraction of low molecular weight organic carbon in soil water extract. Calibration of the assay was achieved by measuring the luminescence intensity of starved V. harveyi BB721 cells in the late exponential phase with a concentration range from 0 to 800 µg l(-1) glucose (equivalent to 0-16.0 mg glucose C kg(-1) soil) with the detection limit of 10 µg l(-1) equivalent to 0.20 mg glucose C kg(-1) soil. Results showed that bioluminescence was proportional to the concentration of glucose added to soil. The luminescence intensity of the cells was highly pH dependent and the optimal pH was about 7.0. The average AOC concentration in 32 soils tested was 2.9±2.2 mg glucose C kg(-1). Our data showed that AOC levels in soil water extracts were significantly correlated (Pgrowth bioluminescence based assay. Understanding the levels of AOC in soil water extract provides new insights into our ability to estimate the most available carbon pool to bacteria in soil that may be easily assimilated into cells for many metabolic processes and suggest possible the links between AOC, microbial regrowth potential, and microbial biomass in soils.

  18. Empirical evaluation of inhibitory product, substrate, and enzyme effects during the enzymatic saccharification of lignocellulosic biomass.

    Science.gov (United States)

    Smith, Benjamin T; Knutsen, Jeffrey S; Davis, Robert H

    2010-05-01

    The cellulose hydrolysis kinetics during batch enzymatic saccharification are typified by a rapid initial rate that subsequently decays, resulting in incomplete conversion. Previous studies suggest that changes associated with the solution, substrate, or enzymes may be responsible. In this work, kinetic experiments were conducted to determine the relative magnitude of these effects. Pretreated corn stover (PCS) was used as a lignocellulosic substrate likely to be found in a commercial saccharification process, while Avicel and Kraft lignin were used to create model substrates. Glucose inhibition was observed by spiking the reaction slurry with glucose during initial-rate experiments. Increasing the glucose concentration from 7 to 48 g/L reduced the cellulose conversion rate by 94%. When product sugars were removed using ultrafiltration with a 10 kDa membrane, the glucose-based conversion increased by 9.5%. Reductions in substrate reactivity with conversion were compared directly by saccharifying PCS and Avicel substrates that had been pre-reacted to different conversions. Reaction of substrate with a pre-conversion of 40% resulted in about 40% reduction in the initial rate of saccharification, relative to fresh substrate with identical cellulose concentration. Overall, glucose inhibition and reduced substrate reactivity appear to be dominant factors, whereas minimal reductions of enzyme activity were observed.

  19. Microbial Production of Short Chain Fatty Acids from Lignocellulosic Biomass: Current Processes and Market

    Directory of Open Access Journals (Sweden)

    Ivan Baumann

    2016-01-01

    Full Text Available Biological production of organic acids from conversion of biomass derivatives has received increased attention among scientists and engineers and in business because of the attractive properties such as renewability, sustainability, degradability, and versatility. The aim of the present review is to summarize recent research and development of short chain fatty acids production by anaerobic fermentation of nonfood biomass and to evaluate the status and outlook for a sustainable industrial production of such biochemicals. Volatile fatty acids (VFAs such as acetic acid, propionic acid, and butyric acid have many industrial applications and are currently of global economic interest. The focus is mainly on the utilization of pretreated lignocellulosic plant biomass as substrate (the carbohydrate route and development of the bacteria and processes that lead to a high and economically feasible production of VFA. The current and developing market for VFA is analyzed focusing on production, prices, and forecasts along with a presentation of the biotechnology companies operating in the market for sustainable biochemicals. Finally, perspectives on taking sustainable product of biochemicals from promise to market introduction are reviewed.

  20. Microbial diversity and digestive enzyme activities in the gut of earthworms found in sawmill industries in Abeokuta, Nigeria

    Directory of Open Access Journals (Sweden)

    Bamidele Julius A.

    2014-09-01

    Full Text Available The growing demand for wood has resulted in large volumes of wood wastes that are daily released to the soil from the activities of sawmills in South-Western Nigeria. In an attempt to setup a bioremediation model for sawdust, this study therefore aimed at evaluating microbial diversity, and the level of digestive enzymes in the gut of earthworms (Eudrilus eugeniae, Libyodrilus violaceous and Hyperiodrilus africanus of sawmill origin. Four major sawmills located in Abeokuta (7o9’12” N - 3o19’35” E, namely Lafenwa, Sapon, Isale-Ake and Kotopo sawmills were used for this study. The arboretum of the Federal University of Agriculture, Abeokuta was used as control. Gut microbial analysis was carried out using the pour-plate method while digestive enzyme activities in the earthworm guts were done by the spectrophotometric method. Higher microbial counts (28.5±0.1x10³-97.0±0.1x10³cfu for bacteria and 7.0±0.1x10³-96.0±0.1x10³cfu for fungi and microbial diversity were recorded in the gut of earthworms of the sawmill locations than those of the control site (17.5±0.1x10³cfu for bacteria and 4.5±0.1x10³cfu for fungi. Streptococcus mutans and Proteus spp.were common in the gut of E. eugeniae, and L. violaceous from the study sawmills, while Streptococcus mutans were also identified in H. africanus, but absent in the gut of E. eugeniae from the control site. Cellulase (48.67±0.02mg/g and lipase (1.81±0.01mg/g activities were significantly higher (p<0.05 in the gut of earthworms from the control site than those of the study sawmills. Furthermore, amylase (α and β activity was highest in the gut of earthworms from the sawmills. Variations observed in the gut microbial and digestive enzyme activities of earthworms from the study sawmills as compared to the control site suggests that earthworms, especially E. eugeniae, could be a better organism for use as bioremediator of wood wastes. Rev. Biol. Trop. 62 (3: 1241-1249. Epub 2014 September

  1. Microbial diversity and digestive enzyme activities in the gut of earthworms found in sawmill industries in Abeokuta, Nigeria.

    Science.gov (United States)

    Bamidele, Julius A; Idowu, Adewunmi B; Ademolu, Kehinde O; Atayese, Adijat O

    2014-09-01

    The growing demand for wood has resulted in large volumes of wood wastes that are daily released to the soil from the activities of sawmills in South-Western Nigeria. In an attempt to setup a bioremediation model for sawdust, this study therefore aimed at evaluating microbial diversity, and the level of digestive enzymes in the gut of earthworms (Eudrilus eugeniae, Libyodrilus violaceous and Hyperiodrilus africanus) of sawmill origin. Four major sawmills located in Abeokuta (7°9'12" N- 3°19'35" E), namely Lafenwa, Sapon, Isale-Ake and Kotopo sawmills were used for this study. The arboretum of the Federal University of Agriculture, Abeokuta was used as control. Gut microbial analysis was carried out using the pour-plate method while digestive enzyme activities in the earthworm guts were done by the spectrophotometric method. Higher microbial counts (28.5 ± 0.1 x 10(3)-97.0 ± 0.1 x 10(3) cfu for bacteria and 7.0 ± 0.1x 10(3)-96.0 ± 0.1 x 10(3) cfu for fungi) and microbial diversity were recorded in the gut of earthworms of the sawmill locations than those of the control site (17.5 ± 0.1 x10(3) cfu for bacteria and 4.5 ± 0.1 x 10(3) cfu for fungi). Streptococcus mutans and Proteus spp. were common in the gut of E. eugeniae, and L. violaceous from the study sawmills, while Streptococcus mutans were also identified in H. africanus, but absent in the gut of E. eugeniae from the control site. Cellulase (48.67 ± 0.02 mg/g) and lipase (1.81 ± 0.01 mg/g) activities were significantly higher (p earthworms from the control site than those of the study sawmills. Furthermore, amylase (α and β) activity was highest in the gut of earthworms from the sawmills. Variations observed in the gut microbial and digestive enzyme activities of earthworms from the study sawmills as compared to the control site suggests that earthworms, especially E. eugeniae, could be a better organism for use as bioremediator of wood wastes.

  2. Phosphorus uptake by decomposing leaf detritus: effect of microbial biomass and activity

    Energy Technology Data Exchange (ETDEWEB)

    Mulholland, P J; Elwood, J W; Newbold, J D; Webster, J R; Ferren, L A; Perkins, R E

    1984-12-01

    The dominant energy source in small woodland streams is the allochthonous input of leaves. Utilization of this energy source by stream biota establishes the patterns of secondary productivity and nutrient uptake in these ecosystems. Although leaf inputs support much of the production of macroinvertebrates and higher consumers in streams, microbes are the critical link between these organisms and the leaf resource, much of which is undigestible by higher organisms. A number of studies have indicated that stream macroinvertebrates preferentially select leaves with greater levels of microbial activity. Rates of microbial activity associated with decomposing leaves were shown to be dependent on the supply of P in one woodland stream. In other streams, leaf decomposition has been shown to be nutrient limited as well. Thus, as in many other ecosystems, maintenance of high levels of production in streams is dependent on retention and efficient recycling of nutrients. Uptake of P by microbes colonizing leaves is an important mechanism for nutrient retention in small woodland streams. In these systems, numerous debris collections efficiently retard downstream movement of particulate materials, especially decomposing leaves. Uptake of dissolved, easily transportable forms of P by microbes attached to decomposing leaves increases P retention in streams. The more rapid the rate of P uptake onto decomposing leaves for a given P supply, the shorter the P uptake length and the more times an atom of P is utilized within a given stream reach. In this study the authors examined the temporal patterns of P uptake during the early stages of leaf decomposition in streams. Patterns of P uptake were compared to patterns of other measurements of microbial activity to identify the effect of microbial succession or conditioning of leaves on P uptake. 22 references, 1 figure, 2 tables.

  3. Root systems and soil microbial biomass under no-tillage system

    Directory of Open Access Journals (Sweden)

    Venzke Filho Solismar de Paiva

    2004-01-01

    Full Text Available Some root parameters such as distribution, length, diameter and dry matter are inherent to plant species. Roots can influence microbial population during vegetative cycle through the rhizodeposits and, after senescence, integrating the soil organic matter pool. Since they represent labile substrates, especially regarding nitrogen, they can determine the rate of nutrient availability to the next crop cultivated under no-tillage (NT. The root systems of two crop species: maize (Zea mays L. cultivar Cargill 909 and soybean [Glycine max (L. Merr.] cultivar Embrapa 59, were compared in the field, and their influence on spatial distribution of the microbial C and N in a clayey-textured Typic Hapludox cultivated for 22 years under NT, at Tibagi, State of Paraná (PR, Brazil, was determined. Digital image processing and nail-plate techniques were used to evaluate 40 plots of a 80 ´ 50 ´ 3 cm soil profile. It was observed that 36% and 30% of the maize and soybeans roots, respectively, are concentrated in the 0 to 10 cm soil layer. The percent distribution of root dry matter was similar for both crops. The maize roots presented a total of 1,324 kg C ha-1 and 58 kg N ha-1, with higher root dry matter density and more roots in decomposition in the upper soil layer, decreasing with depth. The soybean roots (392 kg C ha-1 and 21 kg N ha-1 showed higher number of thinner roots and higher density per length unity compared to the maize. The maize roots enhanced microbial-C down to deeper soil layers than did the soybean roots. The microbial N presented a better correlation with the concentration of thin active roots and with roots in decomposition or in indefinite shape, possibly because of higher concentration of C and N easily assimilated by soil microorganisms.

  4. Application of microbial biomass and activity measures to assess in situ bioremediation of chlorinated solvents

    International Nuclear Information System (INIS)

    Phelps, T.J.; Herbes, S.E.; Palumbo, A.V.; Pfiffner, S.M.; Mackowski, R.; Ringelberg, D.; White, D.C.; Tennessee Univ., Knoxville, TN

    1993-01-01

    Evaluating the effectiveness of chlorinated solvent remediation in the subsurface can be a significant problem given uncertainties in estimating the total mass of contaminants present. If the remediation technique is a biological activity, information on the progress and success of the remediation may be gained by monitoring changes in the mass and activities of microbial populations. The in situ bioremediation demonstration at the US Department of Energy (DOE) Savannah River Site (SRS) is designed to test the effectiveness of methane injection for the stimulation of in sediments. Past studies have shown the potential for degradation by native microbial populations. The design and implementation of the SRS Integrated Demonstration is described in this volume. A control phase without treatment was followed by a phase withdrawing air. The next phase included vacuum extraction plus air injection into the lower horizontal well located below the water table. The next period included the injection of 1% methane in air followed by injection of 4% methane in air. Based on the literature, it was hypothesized that the injection of methane would stimulate methanotrophic populations and thus accelerate biological degradation of TCE. Measuring the success of bioremediation is a complex effort that includes monitoring of changes in microbial populations associated with TCE degradation. These monitoring efforts are described in this paper and in related papers in this volume

  5. Site- and horizon-specific patterns of microbial community structure and enzyme activities in permafrost-affected soils of Greenland

    DEFF Research Database (Denmark)

    Gittel, Antje; Barta, Jiri; Kohoutova, Iva

    2014-01-01

    topsoils”), resulting from a decrease in fungal abundance compared to recent (“unburied”) topsoils. Actinobacteria (in particular Intrasporangiaceae) accounted for a major fraction of the microbial community in buried topsoils, but were only of minor abundance in all other soil horizons. It was indicated...... that the distribution pattern of Actinobacteria and a variety of other bacterial classes was related to the activity of phenol oxidases and peroxidases supporting the hypothesis that bacteria might resume the role of fungi in oxidative enzyme production and degradation of phenolic and other complex substrates...

  6. Soil microbial activities and its relationship with soil chemical ...

    African Journals Online (AJOL)

    The fields assessed are organically managed Soils (OMS), Inorganically Managed Soils (IMS) and an Uncultivated Land having grass coverage (ULS). Soil Microbial Respiration (SMR), Microbial Biomass Carbon (MBC), Microbial Biomass Nitrogen (MBN) and Microbial Biomass Phosphorus (MBP) were analyzed.

  7. Bioethanol production from leafy biomass of mango (Mangifera indica) involving naturally isolated and recombinant enzymes.

    Science.gov (United States)

    Das, Saprativ P; Ravindran, Rajeev; Deka, Deepmoni; Jawed, Mohammad; Das, Debasish; Goyal, Arun

    2013-01-01

    The present study describes the usage of dried leafy biomass of mango (Mangifera indica) containing 26.3% (w/w) cellulose, 54.4% (w/w) hemicellulose, and 16.9% (w/w) lignin, as a substrate for bioethanol production from Zymomonas mobilis and Candida shehatae. The substrate was subjected to two different pretreatment strategies, namely, wet oxidation and an organosolv process. An ethanol concentration (1.21 g/L) was obtained with Z. mobilis in a shake-flask simultaneous saccharification and fermentation (SSF) trial using 1% (w/v) wet oxidation pretreated mango leaves along with mixed enzymatic consortium of Bacillus subtilis cellulase and recombinant hemicellulase (GH43), whereas C. shehatae gave a slightly higher (8%) ethanol titer of 1.31 g/L. Employing 1% (w/v) organosolv pretreated mango leaves and using Z. mobilis and C. shehatae separately in the SSF, the ethanol titers of 1.33 g/L and 1.52 g/L, respectively, were obtained. The SSF experiments performed with 5% (w/v) organosolv-pretreated substrate along with C. shehatae as fermentative organism gave a significantly enhanced ethanol titer value of 8.11 g/L using the shake flask and 12.33 g/L at the bioreactor level. From the bioreactor, 94.4% (v/v) ethanol was recovered by rotary evaporator with 21% purification efficiency.

  8. Influence of Heavy Metals and PCBs Pollution on the Enzyme Activity and Microbial Community of Paddy Soils around an E-Waste Recycling Workshop

    Directory of Open Access Journals (Sweden)

    Xianjin Tang

    2014-03-01

    Full Text Available Due to the emerging environmental issues related to e-waste there is concern about the quality of paddy soils near e-waste workshops. The levels of heavy metals and PCBs and their influence on the enzyme activity and microbial community of paddy soils obtained from the immediate vicinity of an e-waste workshop were investigated in the present study. The results indicated that the heavy metal and PCB pollution did not differ significantly with an increase of the sampling point distances (5 to 30 m. The concentration of Cd (2.16 mg·kg−1 and Cu (69.2 mg·kg−1 were higher, and the PCB pollution was also serious, ranging from 4.9 to 21.6 μg·kg−1. The highest enzyme activity was found for urease compared to phosphatase and catalase, and a fluctuating trend in soil enzyme activity was observed in soils from different sampling sites. The microbial analysis revealed that there was no apparent correlation between the microbial community and the pollutants. However, a slight influence for soil microbial communities could be found based on DGGE, the Shannon index and PCA analysis. The present study suggests that the contamination stress of heavy metals and PCBs might have a slight influence on microbial activity in paddy soils. This study provides the baseline data for enzyme activities and microbial communities in paddy soil under the influence of mixed contamination.

  9. Influence of heavy metals and PCBs pollution on the enzyme activity and microbial community of paddy soils around an e-waste recycling workshop.

    Science.gov (United States)

    Tang, Xianjin; Hashmi, Muhammad Z; Long, Dongyan; Chen, Litao; Khan, Muhammad I; Shen, Chaofeng

    2014-03-14

    Due to the emerging environmental issues related to e-waste there is concern about the quality of paddy soils near e-waste workshops. The levels of heavy metals and PCBs and their influence on the enzyme activity and microbial community of paddy soils obtained from the immediate vicinity of an e-waste workshop were investigated in the present study. The results indicated that the heavy metal and PCB pollution did not differ significantly with an increase of the sampling point distances (5 to 30 m). The concentration of Cd (2.16 mg·kg-1) and Cu (69.2 mg·kg-1) were higher, and the PCB pollution was also serious, ranging from 4.9 to 21.6 μg·kg-1. The highest enzyme activity was found for urease compared to phosphatase and catalase, and a fluctuating trend in soil enzyme activity was observed in soils from different sampling sites. The microbial analysis revealed that there was no apparent correlation between the microbial community and the pollutants. However, a slight influence for soil microbial communities could be found based on DGGE, the Shannon index and PCA analysis. The present study suggests that the contamination stress of heavy metals and PCBs might have a slight influence on microbial activity in paddy soils. This study provides the baseline data for enzyme activities and microbial communities in paddy soil under the influence of mixed contamination.

  10. Influence of Heavy Metals and PCBs Pollution on the Enzyme Activity and Microbial Community of Paddy Soils around an E-Waste Recycling Workshop

    Science.gov (United States)

    Tang, Xianjin; Hashmi, Muhammad Z.; Long, Dongyan; Chen, Litao; Khan, Muhammad I.; Shen, Chaofeng

    2014-01-01

    Due to the emerging environmental issues related to e-waste there is concern about the quality of paddy soils near e-waste workshops. The levels of heavy metals and PCBs and their influence on the enzyme activity and microbial community of paddy soils obtained from the immediate vicinity of an e-waste workshop were investigated in the present study. The results indicated that the heavy metal and PCB pollution did not differ significantly with an increase of the sampling point distances (5 to 30 m). The concentration of Cd (2.16 mg·kg−1) and Cu (69.2 mg·kg−1) were higher, and the PCB pollution was also serious, ranging from 4.9 to 21.6 μg·kg−1. The highest enzyme activity was found for urease compared to phosphatase and catalase, and a fluctuating trend in soil enzyme activity was observed in soils from different sampling sites. The microbial analysis revealed that there was no apparent correlation between the microbial community and the pollutants. However, a slight influence for soil microbial communities could be found based on DGGE, the Shannon index and PCA analysis. The present study suggests that the contamination stress of heavy metals and PCBs might have a slight influence on microbial activity in paddy soils. This study provides the baseline data for enzyme activities and microbial communities in paddy soil under the influence of mixed contamination. PMID:24637907

  11. Effects of Pulp and Na-Bentonite Amendments on the Mobility of Trace Elements, Soil Enzymes Activity and Microbial Parameters under Ex Situ Aided Phytostabilization

    Science.gov (United States)

    Wasilkowski, Daniel; Mrozik, Agnieszka

    2017-01-01

    The objective of this study was to explore the potential use of pulp (by-product) from coffee processing and Na-bentonite (commercial product) for minimizing the environmental risk of Zn, Pb and Cd in soil collected from a former mine and zinc-lead smelter. The effects of soil amendments on the physicochemical properties of soil, the structural and functional diversity of the soil microbiome as well as soil enzymes were investigated. Moreover, biomass of Festuca arundinacea Schreb. (cultivar Asterix) and the uptake of trace elements in plant tissues were studied. The outdoor pot set contained the following soils: control soil (initial), untreated soil (without additives) with grass cultivation and soils treated (with additives) with and without plant development. All of the selected parameters were measured at the beginning of the experiment (t0), after 2 months of chemical stabilization (t2) and at the end of the aided phytostabilization process (t14). The obtained results indicated that both amendments efficiently immobilized the bioavailable fractions of Zn (87–91%) and Cd (70–83%) at t14; however, they were characterized by a lower ability to bind Pb (33–50%). Pulp and Na-bentonite drastically increased the activity of dehydrogenase (70- and 12-fold, respectively) at t14, while the activities of urease, acid and alkaline phosphatases differed significantly depending on the type of material that was added into the soil. Generally, the activities of these enzymes increased; however, the increase was greater for pulp (3.5-6-fold) than for the Na-bentonite treatment (1.3–2.2-fold) as compared to the control. Soil additives significantly influenced the composition and dynamics of the soil microbial biomass over the experiment. At the end, the contribution of microbial groups could be ordered as follows: gram negative bacteria, fungi, gram positive bacteria, actinomycetes regardless of the type of soil enrichment. Conversely, the shift in the functional

  12. Effects of Pulp and Na-Bentonite Amendments on the Mobility of Trace Elements, Soil Enzymes Activity and Microbial Parameters under Ex Situ Aided Phytostabilization.

    Directory of Open Access Journals (Sweden)

    Daniel Wasilkowski

    Full Text Available The objective of this study was to explore the potential use of pulp (by-product from coffee processing and Na-bentonite (commercial product for minimizing the environmental risk of Zn, Pb and Cd in soil collected from a former mine and zinc-lead smelter. The effects of soil amendments on the physicochemical properties of soil, the structural and functional diversity of the soil microbiome as well as soil enzymes were investigated. Moreover, biomass of Festuca arundinacea Schreb. (cultivar Asterix and the uptake of trace elements in plant tissues were studied. The outdoor pot set contained the following soils: control soil (initial, untreated soil (without additives with grass cultivation and soils treated (with additives with and without plant development. All of the selected parameters were measured at the beginning of the experiment (t0, after 2 months of chemical stabilization (t2 and at the end of the aided phytostabilization process (t14. The obtained results indicated that both amendments efficiently immobilized the bioavailable fractions of Zn (87-91% and Cd (70-83% at t14; however, they were characterized by a lower ability to bind Pb (33-50%. Pulp and Na-bentonite drastically increased the activity of dehydrogenase (70- and 12-fold, respectively at t14, while the activities of urease, acid and alkaline phosphatases differed significantly depending on the type of material that was added into the soil. Generally, the activities of these enzymes increased; however, the increase was greater for pulp (3.5-6-fold than for the Na-bentonite treatment (1.3-2.2-fold as compared to the control. Soil additives significantly influenced the composition and dynamics of the soil microbial biomass over the experiment. At the end, the contribution of microbial groups could be ordered as follows: gram negative bacteria, fungi, gram positive bacteria, actinomycetes regardless of the type of soil enrichment. Conversely, the shift in the functional

  13. Sorption studies of radioiodine on soils with special references to soil microbial biomass

    Energy Technology Data Exchange (ETDEWEB)

    Bors, J. (Niedersaechsisches Inst. fuer Radiooekologie, Hannover (Germany, F.R.)); Erten, H. (Bilkent Univ., Ankara (Turkey). Dept. of Chemistry); Martens, R. (Bundesforschungsanstalt fuer Landwirtschaft, Braunschweig (Germany, F.R.). Inst. fuer Bodenbiologie)

    1991-01-01

    In batch experiments with two types of soils, chernozem and podzol, radioiodine ({sup 125}I) showed an initial rapid sorption, followed by a long and slow further increase. Very little sorption (R{sub d} < 1) was detected in clay minerals. Generally, higher R{sub d}-values were observed for the chernozem soil, characterized by a higher amount of organic substance and of soil biomass. The sorption process was predominantly irreversible, the isotherms were linear at low ion concentrations and deviated from linearity starting at 10{sup -5} mmol.ml{sup -1}. Sorption ratio was found to increase with increasing volume to mass ratio. The composition of liquid phases (bidistilled water, synthetic soil water, rain water) highly affected iodine sorption. In experiments with KBr solution, the sorption of I{sup -} was found to be strongly preferred to Br{sup -}. Incubation of soil samples under varied conditions (decreased or increased soil biomass, O{sub 2}-concentration, incubation temperature, soil water content and storage conditions) delivered indications for the participation of soil microflora in iodine immobilization. Test with isolated soil bacteria and fungi showed that radioiodine can be incorporated by soil microorganisms under certain conditions only: Considerable uptake of radioiodine was found in washed (NaCl, CaCl{sub 2}) cells with both bacteria and fungi, but no incorporation was detected into cells incubated with radioiodine in the culture medium. (orig.).

  14. Sorption studies of radioiodine on soils with special references to soil microbial biomass

    International Nuclear Information System (INIS)

    Bors, J.; Erten, H.; Martens, R.

    1991-01-01

    In batch experiments with two types of soils, chernozem and podzol, radioiodine ( 125 I) showed an initial rapid sorption, followed by a long and slow further increase. Very little sorption (R d d -values were observed for the chernozem soil, characterized by a higher amount of organic substance and of soil biomass. The sorption process was predominantly irreversible, the isotherms were linear at low ion concentrations and deviated from linearity starting at 10 -5 mmol.ml -1 . Sorption ratio was found to increase with increasing volume to mass ratio. The composition of liquid phases (bidistilled water, synthetic soil water, rain water) highly affected iodine sorption. In experiments with KBr solution, the sorption of I - was found to be strongly preferred to Br - . Incubation of soil samples under varied conditions (decreased or increased soil biomass, O 2 -concentration, incubation temperature, soil water content and storage conditions) delivered indications for the participation of soil microflora in iodine immobilization. Test with isolated soil bacteria and fungi showed that radioiodine can be incorporated by soil microorganisms under certain conditions only: Considerable uptake of radioiodine was found in washed (NaCl, CaCl 2 ) cells with both bacteria and fungi, but no incorporation was detected into cells incubated with radioiodine in the culture medium. (orig.)

  15. The removal of uranium from mining waste water using algal/microbial biomass

    International Nuclear Information System (INIS)

    Kalin, Margarete; Wheeler, W.N.; Meinrath, G.

    2004-01-01

    We describe a three step process for the removal of uranium (U) from dilute waste waters. Step one involves the sequestration of U on, in, and around aquatic plants such as algae. Cell wall ligands efficiently remove U(VI) from waste water. Growing algae continuously renew the cellular surface area. Step 2 is the removal of U-algal particulates from the water column to the sediments. Step 3 involves reducing U(VI) to U(IV) and transforming the ions into stable precipitates in the sediments. The algal cells provide organic carbon and other nutrients to heterotrophic microbial consortia to maintain the low E H , within which the U is transformed. Among the microorganisms, algae are of predominant interest for the ecological engineer because of their ability to sequester U and because some algae can live under many extreme environments, often in abundance. Algae grow in a wide spectrum of water qualities, from alkaline environments (Chara, Nitella) to acidic mine drainage waste waters (Mougeotia, Ulothrix). If they could be induced to grow in waste waters, they would provide a simple, long-term means to remove U and other radionuclides from U mining effluents. This paper reviews the literature on algal and microbial adsorption, reduction, and transformation of U in waste streams, wetlands, lakes and oceans

  16. Lignin from hydrothermally pretreated grass biomass retards enzymatic cellulose degradation by acting as a physical barrier rather than by inducing nonproductive adsorption of enzymes.

    Science.gov (United States)

    Djajadi, Demi T; Jensen, Mads M; Oliveira, Marlene; Jensen, Anders; Thygesen, Lisbeth G; Pinelo, Manuel; Glasius, Marianne; Jørgensen, Henning; Meyer, Anne S

    2018-01-01

    Lignin is known to hinder efficient enzymatic conversion of lignocellulose in biorefining processes. In particular, nonproductive adsorption of cellulases onto lignin is considered a key mechanism to explain how lignin retards enzymatic cellulose conversion in extended reactions. Lignin-rich residues (LRRs) were prepared via extensive enzymatic cellulose degradation of corn stover ( Zea mays subsp. mays L.), Miscanthus  ×  giganteus stalks (MS) and wheat straw ( Triticum aestivum L.) (WS) samples that each had been hydrothermally pretreated at three severity factors (log R 0 ) of 3.65, 3.83 and 3.97. The LRRs had different residual carbohydrate levels-the highest in MS; the lowest in WS. The residual carbohydrate was not traceable at the surface of the LRRs particles by ATR-FTIR analysis. The chemical properties of the lignin in the LRRs varied across the three types of biomass, but monolignols composition was not affected by the severity factor. When pure cellulose was added to a mixture of LRRs and a commercial cellulolytic enzyme preparation, the rate and extent of glucose release were unaffected by the presence of LRRs regardless of biomass type and severity factor, despite adsorption of the enzymes to the LRRs. Since the surface of the LRRs particles were covered by lignin, the data suggest that the retardation of enzymatic cellulose degradation during extended reaction on lignocellulosic substrates is due to physical blockage of the access of enzymes to the cellulose caused by the gradual accumulation of lignin at the surface of the biomass particles rather than by nonproductive enzyme adsorption. The study suggests that lignin from hydrothermally pretreated grass biomass retards enzymatic cellulose degradation by acting as a physical barrier blocking the access of enzymes to cellulose rather than by inducing retardation through nonproductive adsorption of enzymes.

  17. Toxic effect of two kinds of mineral collectors on soil microbial richness and activity: analysis by microcalorimetry, microbial count, and enzyme activity assay.

    Science.gov (United States)

    Bararunyeretse, Prudence; Yao, Jun; Dai, Yunrong; Bigawa, Samuel; Guo, Zunwei; Zhu, Mijia

    2017-01-01

    Flotation reagents are hugely and increasingly used in mining and other industrial and economic activities from which an important part is discharged into the environment. China could be the most affected country by the resulting pollution. However, their ecotoxicological dimension is still less addressed and understood. This study aimed to analyze the toxic effect of sodium isobutyl xanthate (SIBX) and sodium isopropyl xanthate (SIPX) to soil microbial richness and activity and to make a comparison between the two compounds in regard to their effects on soil microbial and enzymes activities. Different methods, including microcalorimetry, viable cell counts, cell density, and catalase and fluorescein diacetate (FDA) hydrololase activities measurement, were applied. The two chemicals exhibited a significant inhibitory effect (P < 0.05 or P < 0.01) to all parameters, SIPX being more adverse than SIBX. As the doses of SIBX and SIPX increased from 5 to 300 μg g -1 soil, their inhibitory ratio ranged from 4.84 to 45.16 % and from 16.13 to 69.68 %, respectively. All parameters fluctuated with the incubation time (10-day period). FDA hydrolysis was more directly affected but was relatively more resilient than catalase activity. Potential changes of those chemicals in the experimental media and complementarity between experimental techniques were justified.

  18. Biomassa e atividade microbianas do solo sob influência de chumbo e da rizosfera da soja micorrizada Soil microbial biomass and activity under the influence of lead addition and mycorrhizal soybean rhizosphere

    Directory of Open Access Journals (Sweden)

    Sara Adrián López de Andrade

    2004-12-01

    Full Text Available O objetivo deste trabalho foi avaliar o efeito da adição de chumbo (Pb ao solo na biomassa e atividade microbianas do solo sob influência da rizosfera de soja micorrizada. O trabalho foi realizado em casa de vegetação, com delineamento inteiramente casualizado num esquema fatorial 4x2x2 utilizando-se 0, 150, 300 e 600 mg dm-3 de Pb, inoculação ou não do fungo micorrízico arbuscular (FMA, Glomus macrocarpum, e duas épocas de amostragem - florescimento e maturação da soja. Avaliaram-se o C da biomassa microbiana, a liberação de CO2 do solo e a atividade de três enzimas, desidrogenase, fosfatase alcalina e arilssulfatase. O Pb afetou negativamente o C da biomassa e a atividade da microbiota rizosférica, ocorrendo interação entre a presença de propágulos de FMA e o estádio de desenvolvimento da planta. A atividade da fosfatase alcalina foi a mais afetada pelas altas concentrações de Pb adicionadas ao solo, com redução de 60% na sua atividade, mostrando-se um indicador sensível do estresse metabólico da comunidade microbiana do solo causado pelo excesso de chumbo. A micorrização da soja influenciou de forma direta a microbiota rizosférica, resultando em maior atividade e biomassa, principalmente no estádio de maturação da soja. A microbiota do solo apresentou sintomas de estresse decorrentes da adição de chumbo.The objective of this work was to evaluate the effects of lead addition on soil microbial biomass and activity under the influence of the rhizosphere of mycorrhizal soybean. The experimental design was completely randomized and arranged in a 4x2x2 factorial scheme, using 0, 150, 300 and 600 mg dm-3, inoculation or not of the arbuscular mycorrhizal fungus (AMF Glomus macrocarpum and two sampling periods: soybean flowering and maturity. Microbial biomass C, soil respiration and the activity of three soil enzymes (deshydrogenase, alkaline phosphatase and arilsulphatase were determined. The most affected enzyme

  19. Microbial enzyme activity, nutrient uptake and nutrient limitation in forested streams

    Science.gov (United States)

    Brian H. Hill; Frank H. McCormick; Bret C. Harvey; Sherri L. Johnson; Melvin L. Warren; Colleen M. Elonen

    2010-01-01

    The flow of organic matter and nutrients from catchments into the streams draining them and the biogeochemical transformations of organic matter and nutrients along flow paths are fundamental processes instreams (Hynes,1975; Fisher, Sponseller & Heffernan, 2004). Microbial biofilms are often the primary interface for organic matter and nutrient uptake and...

  20. Microbial community distribution and activity dynamics of granular biomass in a CANON reactor

    DEFF Research Database (Denmark)

    Vázquez-Padín, Jose; Mosquera-Corral, Anuska; Campos, Jose Luis

    2010-01-01

     (Lgranule)-1 d-1. Anammox activity was registered between 400 and 1000 μm depth inside the granules. The nitrogen removal capacity of the studied sequencing batch reactor containing the granular biomass was of 0.5 g N L-1 d-1. This value is similar to the mean nitrogen removal rate obtained from...... calculations based on in- and outflow concentrations. Information obtained in the present work allowed the establishment of a simple control strategy based on the measurements of NH4+ and NO2- in the bulk liquid and acting over the dissolved oxygen concentration in the bulk liquid and the hydraulic retention...

  1. Impact of transgenic wheat with wheat yellow mosaic virus resistance on microbial community diversity and enzyme activity in rhizosphere soil.

    Science.gov (United States)

    Wu, Jirong; Yu, Mingzheng; Xu, Jianhong; Du, Juan; Ji, Fang; Dong, Fei; Li, Xinhai; Shi, Jianrong

    2014-01-01

    The transgenic wheat line N12-1 containing the WYMV-Nib8 gene was obtained previously through particle bombardment, and it can effectively control the wheat yellow mosaic virus (WYMV) disease transmitted by Polymyxa graminis at turngreen stage. Due to insertion of an exogenous gene, the transcriptome of wheat may be altered and affect root exudates. Thus, it is important to investigate the potential environmental risk of transgenic wheat before commercial release because of potential undesirable ecological side effects. Our 2-year study at two different experimental locations was performed to analyze the impact of transgenic wheat N12-1 on bacterial and fungal community diversity in rhizosphere soil using polymerase chain reaction-denaturing gel gradient electrophoresis (PCR-DGGE) at four growth stages (seeding stage, turngreen stage, grain-filling stage, and maturing stage). We also explored the activities of urease, sucrase and dehydrogenase in rhizosphere soil. The results showed that there was little difference in bacterial and fungal community diversity in rhizosphere soil between N12-1 and its recipient Y158 by comparing Shannon's, Simpson's diversity index and evenness (except at one or two growth stages). Regarding enzyme activity, only one significant difference was found during the maturing stage at Xinxiang in 2011 for dehydrogenase. Significant growth stage variation was observed during 2 years at two experimental locations for both soil microbial community diversity and enzyme activity. Analysis of bands from the gel for fungal community diversity showed that the majority of fungi were uncultured. The results of this study suggested that virus-resistant transgenic wheat had no adverse impact on microbial community diversity and enzyme activity in rhizosphere soil during 2 continuous years at two different experimental locations. This study provides a theoretical basis for environmental impact monitoring of transgenic wheat when the introduced gene is

  2. Impact of transgenic wheat with wheat yellow mosaic virus resistance on microbial community diversity and enzyme activity in rhizosphere soil.

    Directory of Open Access Journals (Sweden)

    Jirong Wu

    Full Text Available The transgenic wheat line N12-1 containing the WYMV-Nib8 gene was obtained previously through particle bombardment, and it can effectively control the wheat yellow mosaic virus (WYMV disease transmitted by Polymyxa graminis at turngreen stage. Due to insertion of an exogenous gene, the transcriptome of wheat may be altered and affect root exudates. Thus, it is important to investigate the potential environmental risk of transgenic wheat before commercial release because of potential undesirable ecological side effects. Our 2-year study at two different experimental locations was performed to analyze the impact of transgenic wheat N12-1 on bacterial and fungal community diversity in rhizosphere soil using polymerase chain reaction-denaturing gel gradient electrophoresis (PCR-DGGE at four growth stages (seeding stage, turngreen stage, grain-filling stage, and maturing stage. We also explored the activities of urease, sucrase and dehydrogenase in rhizosphere soil. The results showed that there was little difference in bacterial and fungal community diversity in rhizosphere soil between N12-1 and its recipient Y158 by comparing Shannon's, Simpson's diversity index and evenness (except at one or two growth stages. Regarding enzyme activity, only one significant difference was found during the maturing stage at Xinxiang in 2011 for dehydrogenase. Significant growth stage variation was observed during 2 years at two experimental locations for both soil microbial community diversity and enzyme activity. Analysis of bands from the gel for fungal community diversity showed that the majority of fungi were uncultured. The results of this study suggested that virus-resistant transgenic wheat had no adverse impact on microbial community diversity and enzyme activity in rhizosphere soil during 2 continuous years at two different experimental locations. This study provides a theoretical basis for environmental impact monitoring of transgenic wheat when the

  3. Alkaline peroxide pretreatment of corn stover: effects of biomass, peroxide, and enzyme loading and composition on yields of glucose and xylose

    Science.gov (United States)

    2011-01-01

    Background Pretreatment is a critical step in the conversion of lignocellulose to fermentable sugars. Although many pretreatment processes are currently under investigation, none of them are entirely satisfactory in regard to effectiveness, cost, or environmental impact. The use of hydrogen peroxide at pH 11.5 (alkaline hydrogen peroxide (AHP)) was shown by Gould and coworkers to be an effective pretreatment of grass stovers and other plant materials in the context of animal nutrition and ethanol production. Our earlier experiments indicated that AHP performed well when compared against two other alkaline pretreatments. Here, we explored several key parameters to test the potential of AHP for further improvement relevant to lignocellulosic ethanol production. Results The effects of biomass loading, hydrogen peroxide loading, residence time, and pH control were tested in combination with subsequent digestion with a commercial enzyme preparation, optimized mixtures of four commercial enzymes, or optimized synthetic mixtures of pure enzymes. AHP pretreatment was performed at room temperature (23°C) and atmospheric pressure, and after AHP pretreatment the biomass was neutralized with HCl but not washed before enzyme digestion. Standard enzyme digestion conditions were 0.2% glucan loading, 15 mg protein/g glucan, and 48 h digestion at 50°C. Higher pretreatment biomass loadings (10% to 20%) gave higher monomeric glucose (Glc) and xylose (Xyl) yields than the 2% loading used in earlier studies. An H2O2 loading of 0.25 g/g biomass was almost as effective as 0.5 g/g, but 0.125 g/g was significantly less effective. Optimized mixtures of four commercial enzymes substantially increased post-AHP-pretreatment enzymatic hydrolysis yields at all H2O2 concentrations compared to any single commercial enzyme. At a pretreatment biomass loading of 10% and an H2O2 loading of 0.5 g/g biomass, an optimized commercial mixture at total protein loadings of 8 or 15 mg/g glucan gave

  4. Alkaline peroxide pretreatment of corn stover: effects of biomass, peroxide, and enzyme loading and composition on yields of glucose and xylose

    Directory of Open Access Journals (Sweden)

    Hodge David B

    2011-06-01

    Full Text Available Abstract Background Pretreatment is a critical step in the conversion of lignocellulose to fermentable sugars. Although many pretreatment processes are currently under investigation, none of them are entirely satisfactory in regard to effectiveness, cost, or environmental impact. The use of hydrogen peroxide at pH 11.5 (alkaline hydrogen peroxide (AHP was shown by Gould and coworkers to be an effective pretreatment of grass stovers and other plant materials in the context of animal nutrition and ethanol production. Our earlier experiments indicated that AHP performed well when compared against two other alkaline pretreatments. Here, we explored several key parameters to test the potential of AHP for further improvement relevant to lignocellulosic ethanol production. Results The effects of biomass loading, hydrogen peroxide loading, residence time, and pH control were tested in combination with subsequent digestion with a commercial enzyme preparation, optimized mixtures of four commercial enzymes, or optimized synthetic mixtures of pure enzymes. AHP pretreatment was performed at room temperature (23°C and atmospheric pressure, and after AHP pretreatment the biomass was neutralized with HCl but not washed before enzyme digestion. Standard enzyme digestion conditions were 0.2% glucan loading, 15 mg protein/g glucan, and 48 h digestion at 50°C. Higher pretreatment biomass loadings (10% to 20% gave higher monomeric glucose (Glc and xylose (Xyl yields than the 2% loading used in earlier studies. An H2O2 loading of 0.25 g/g biomass was almost as effective as 0.5 g/g, but 0.125 g/g was significantly less effective. Optimized mixtures of four commercial enzymes substantially increased post-AHP-pretreatment enzymatic hydrolysis yields at all H2O2 concentrations compared to any single commercial enzyme. At a pretreatment biomass loading of 10% and an H2O2 loading of 0.5 g/g biomass, an optimized commercial mixture at total protein loadings of 8 or 15 mg

  5. Biomass production and secretion of hydrolytic enzymes are influenced by the structural complexity of the nitrogen source in Fusarium oxysporum and Aspergillus nidulans.

    Science.gov (United States)

    da Silva, M C; Bertolini, M C; Ernandes, J R

    2001-01-01

    The structural complexity of the nitrogen sources strongly affects biomass production and secretion of hydrolytic enzymes in filamentous fungi. Fusarium oxysporum and Aspergillus nidulans were grown in media containing glucose or starch, and supplemented with a nitrogen source varying from a single ammonium salt (ammonium sulfate) to free amino acids (casamino acids), peptides (peptone) and protein (gelatin). In glucose, when the initial pH was adjusted to 5.0, for both microorganisms, higher biomass production occurred upon supplementation with a nitrogen source in the peptide form (peptone and gelatin). With a close to neutrality pH, biomass accumulation was lower only in the presence of the ammonium salt. When grown in starch, biomass accumulation and secretion of hydrolytic enzymes (amylolytic and proteolytic) by Fusarium also depended on the nature of the nitrogen supplement and the pH. When the initial pH was adjusted to 5.0, higher growth and higher amylolytic activities were detected in the media supplemented with peptone, gelatin and casamino acids. However, at pH 7.0, higher biomass accumulation and higher amylolytic activities were observed upon supplementation with peptone or gelatin. Ammonium sulfate and casamino acids induced a lower production of biomass, and a different level of amylolytic enzyme secretion: high in ammonium sulfate and low in casamino acids. Secretion of proteolytic activity was always higher in the media supplemented with peptone and gelatin. Aspergillus, when grown in starch, was not as dependent as Fusarium on the nature of nitrogen source or the pH. The results described in this work indicate that the metabolism of fungi is regulated not only by pH, but also by the level of structural complexity of the nitrogen source in correlation to the carbon source.

  6. Anaerobic 4-hydroxyproline utilization: Discovery of a new glycyl radical enzyme in the human gut microbiome uncovers a widespread microbial metabolic activity.

    Science.gov (United States)

    Huang, Yolanda Y; Martínez-Del Campo, Ana; Balskus, Emily P

    2018-02-06

    The discovery of enzymes responsible for previously unappreciated microbial metabolic pathways furthers our understanding of host-microbe and microbe-microbe interactions. We recently identified and characterized a new gut microbial glycyl radical enzyme (GRE) responsible for anaerobic metabolism of trans-4-hydroxy-l-proline (Hyp). Hyp dehydratase (HypD) catalyzes the removal of water from Hyp to generate Δ 1 -pyrroline-5-carboxylate (P5C). This enzyme is encoded in the genomes of a diverse set of gut anaerobes and is prevalent and abundant in healthy human stool metagenomes. Here, we discuss the roles HypD may play in different microbial metabolic pathways as well as the potential implications of this activity for colonization resistance and pathogenesis within the human gut. Finally, we present evidence of anaerobic Hyp metabolism in sediments through enrichment culturing of Hyp-degrading bacteria, highlighting the wide distribution of this pathway in anoxic environments beyond the human gut.

  7. Decomposition of organic matter labelled with 14C, and microbial biomass formation in an acid soil from Piracicaba, Sao Paulo State, Brazil

    International Nuclear Information System (INIS)

    Cerri, C.C.; Volkoff, B.

    1982-01-01

    An experiment was carried out under laboratory conditions (25 0 C, 50% field capacity), using 14 C labelled sugar cane leaves, which were incorporated to a medium texture Dark-Red Latosol. The equivalent of 1 mg C/g was added to soil containing 14 mg native soil carbon. CO 2 release and microbial biomass were periodically determined. After 67 days incubation it was noted that release of native carbon was greater from soil with plant material than the control (724 μg C/g vs 424 μg/g) and that 25% of the incorporated carbon had been mineralized. Addition of plant material doubled the soil microbial biomass, which was formed due to plant material addition rather than to native soil carbon. (Author) [pt

  8. Psychrophilic Biomass Producers in the Trophic Chain of the Microbial Community of Lake Untersee, Antarctica

    Science.gov (United States)

    Pikuta, Elena V.; Hoover, Richard B.

    2010-01-01

    The study of photosynthetic microorganisms from the Lake Untersee samples showed dispersed distribution of phototrophs within 80 m water column. Lake Untersee represents a unique ecosystem that experienced complete isolation: sealed by the Anuchin Glacier for many millennia. Consequently, its biocenosis has evolved over a significant period of time without exchange or external interaction with species from other environments. The major producers of organic matter in Lake Untersee are represented by phototrophic and chemolithotrophic microorganisms. This is the traditional trophic scheme for lacustrine ecosystems on Earth. Among the phototrophs, diatoms were not found, which differentiates this lake from other known ecosystems. The dominant species among phototrophs was Chlamydomonas sp. with typical morphostructure: green chloroplasts, bright red round spot, and two polar flagella near the opening. As expected, the physiology of studied phototrophs was limited by low temperature, which defined them as obligate psychrophilic microorganisms. By the quantity estimation of methanogenesis in this lake, the litho-autotrophic production of organic matter is competitive with phototrophic production. However, pure cultures of methanogens have not yet been obtained. We discuss the primary producers of organic matter and the participation of our novel psychrophilic homoacetogen into the litho-autotrophic link of biomass production in Lake Untersee.

  9. Effects of heavy metals and soil physicochemical properties on wetland soil microbial biomass and bacterial community structure.

    Science.gov (United States)

    Zhang, Chang; Nie, Shuang; Liang, Jie; Zeng, Guangming; Wu, Haipeng; Hua, Shanshan; Liu, Jiayu; Yuan, Yujie; Xiao, Haibing; Deng, Linjing; Xiang, Hongyu

    2016-07-01

    Heavy metals (HMs) contamination is a serious environmental issue in wetland soil. Understanding the micro ecological characteristic of HMs polluted wetland soil has become a public concern. The goal of this study was to identify the effects of HMs and soil physicochemical properties on soil microorganisms and prioritize some parameters that contributed significantly to soil microbial biomass (SMB) and bacterial community structure. Bacterial community structure was analyzed by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). Relationships between soil environment and microorganisms were analyzed by correlation analysis and redundancy analysis (RDA). The result indicated relationship between SMB and HMs was weaker than SMB and physicochemical properties. The RDA showed all eight parameters explained 74.9% of the variation in the bacterial DGGE profiles. 43.4% (contain the variation shared by Cr, Cd, Pb and Cu) of the variation for bacteria was explained by the four kinds of HMs, demonstrating HMs contamination had a significant influence on the changes of bacterial community structure. Cr solely explained 19.4% (pstructure, and Cd explained 17.5% (pstructure changes. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Fluctuation of microbial activities after influent load variations in a full-scale SBR. Recovery of the biomass after starvation

    Energy Technology Data Exchange (ETDEWEB)

    Cabezas, Angela; Draper, Patricia; Etchebehere, Claudia [Universidad de la Republica, Montevideo (Uruguay). Catedra de Microbiologia, Facultad de Quimica y Facultad de Ciencias

    2009-10-15

    Due to variations in the production levels, a full-scale sequencing batch reactor (SBR) for post-treatment of tannery wastewater was exposed to low and high ammonia load periods. In order to study how these changes affected the N-removal capacity, the microbiology of the reactor was studied by a diverse set of techniques including molecular tools, activity tests, and microbial counts in samples taken along 3 years. The recover capacity of the biomass was also studied in a lab-scale reactor operated with intermittent aeration without feeding for 36 days. The results showed that changes in the feeding negatively affected the nitrifying community, but the nitrogen removal efficiencies could be restored after the concentration stress. Species substitution was observed within the nitrifying bacteria, Nitrosomonas europaea and Nitrobacter predominated initially, and after an ammonia overload period, Nitrosomonas nitrosa and Nitrospira became dominant. Some denitrifiers, with nirS related to Alicycliphilus, Azospirillum, and Marinobacter nirS, persisted during long-term reactor operation, but the community fluctuated both in composition and in abundance. This fluctuating community may better resist the continuous changes in the feeding regime. Our results showed that a nitrifying-denitrifying SBR could be operated with low loads or even without feeding during production shut down periods. (orig.)

  11. RELATIONSHIPS BETWEEN SOIL MICROBIAL BIOMASS, AGGREGATE STABILITY AND AGGREGATE ASSOCIATED-C: A MECHANISTIC APPROACH

    Directory of Open Access Journals (Sweden)

    Patrizia Guidi

    2014-01-01

    Full Text Available For the identification of C pools involved in soil aggregation, a physically-based aggregate fractionation was proposed, and  additional pretreatments were used in the measurement of the 1-2 mm aggregate stability in order to elucidate the relevance of the role of soil microorganisms with respect to the different aggregate breakdown mechanisms. The study was carried out on three clay loam Regosols, developed on calcareous shales, known history of organic cultivation.Our results showed that the soil C pool controlling the process of stabilisation of aggregates was related to the microbial community. We identified the resistance to fast wetting as the major mechanism of aggregate stability driven by microorganims. The plausible hypothesis is that organic farming promotes fungi growth, improving water repellency of soil aggregates by fungal hydrophobic substances. By contrast, we failed in the identification of C pools controlling the formation of aggregates, probably because of the disturbance of mechanical tillage which contributes to the breakdown of soil aggregates.The physically-based aggregate fractionation proposed in this study resulted useful in the  mechanistically understanding of the role of microorganisms in soil aggregation and it might be suggested for studying the impact of management on C pools, aggregates properties and their relationships in agricultural soils.

  12. Spatial distribution of microbial biomass, activity, community structure, and the biodegradation of linear alkylbenzene sulfonate (LAS) and linear alcohol ethoxylate (LAE) in the subsurface.

    Science.gov (United States)

    Federle, T W; Ventullo, R M; White, D C

    1990-12-01

    The vertical distribution of microbial biomass, activity, community structure and the mineralization of xenobiotic chemicals was examined in two soil profiles in northern Wisconsin. One profile was impacted by infiltrating wastewater from a laundromat, while the other served as a control. An unconfined aquifer was present 14 meters below the surface at both sites. Biomass and community structure were determined by acridine orange direct counts and measuring concentrations of phospholipid-derived fatty acids (PLFA). Microbial activity was estimated by measuring fluorescein diacetate (FDA) hydrolysis, thymidine incorporation into DNA, and mixed amino acid (MAA) mineralization. Mineralization kinetics of linear alkylbenzene sulfonate (LAS) and linear alcohol ethoxylate (LAE) were determined at each depth. Except for MAA mineralization rates, measures of microbial biomass and activity exhibited similar patterns with depth. PLFA concentration and rates of FDA hydrolysis and thymidine incorporation decreased 10-100 fold below 3 m and then exhibited little variation with depth. Fungal fatty acid markers were found at all depths and represented from 1 to 15% of the total PLFAs. The relative proportion of tuberculostearic acid (TBS), an actinomycete marker, declined with depth and was not detected in the saturated zone. The profile impacted by wastewater exhibited higher levels of PLFA but a lower proportion of TBS than the control profile. This profile also exhibited faster rates of FDA hydrolysis and amino acid mineralization at most depths. LAS was mineralized in the upper 2 m of the vadose zone and in the saturated zone of both profiles. Little or no LAS biodegradation occurred at depths between 2 and 14 m. LAE was mineralized at all depths in both profiles, and the mineralization rate exhibited a similar pattern with depth as biomass and activity measurements. In general, biomass and biodegradative activities were much lower in groundwater than in soil samples obtained

  13. Combinatorial enzyme technology: Conversion of pectin to oligo species and its effect on microbial growth

    Science.gov (United States)

    Plant cell wall polysaccharides, which consist of polymeric backbones with various types of substitution, were studied using the concept of combinatorial enzyme technology for conversion of agricultural fibers to functional products. Using citrus pectin as the starting substrate, an active oligo spe...

  14. Microbial biomass, community structure and metal tolerance of a naturally Pb-enriched forest soil.

    Science.gov (United States)

    Bååth, E; Díaz-Raviña, M; Bakken, L R

    2005-11-01

    The effect of long-term elevated soil Pb levels on soil microbiota was studied at a forest site in Norway, where the soil has been severely contaminated with Pb since the last period of glaciation (several thousand years). Up to 10% Pb (total amount, w/w) has been found in the top layer. The microbial community was drastically affected, as judged from changes in the phospholipid fatty acid (PLFA) pattern. Specific PLFAs that were high in Pb-enriched soil were branched (especially br17:0 and br18:0), whereas PLFAs common in eukaryotic organisms such as fungi (18:2omega6,9 and 20:4) were low compared with levels at adjacent, uncontaminated sites. Congruent changes in the PLFA pattern were found upon analyzing the culturable part of the bacterial community. The high Pb concentrations in the soil resulted in increased tolerance to Pb of the bacterial community, measured using both thymidine incorporation and plate counts. Furthermore, changes in tolerance were correlated to changes in the community structure. The bacterial community of the most contaminated soils showed higher specific activity (thymidine and leucine incorporation rates) and higher culturability than that of control soils. Fungal colony forming units (CFUs) were 10 times lower in the most Pb-enriched soils, the species composition was widely different from that in control soils, and the isolated fungi had high Pb tolerance. The most commonly isolated fungus in Pb-enriched soils was Tolypocladium inflatum. Comparison of isolates from Pb-enriched soil and isolates from unpolluted soils showed that T. inflatum was intrinsically Pb-tolerant, and that the prolonged conditions with high Pb had not selected for any increased tolerance.

  15. Increased production of biomass-degrading enzymes by double deletion of creA and creB genes involved in carbon catabolite repression in Aspergillus oryzae.

    Science.gov (United States)

    Ichinose, Sakurako; Tanaka, Mizuki; Shintani, Takahiro; Gomi, Katsuya

    2018-02-01

    In a previous study, we reported that a double gene deletion mutant for CreA and CreB, which constitute the regulatory machinery involved in carbon catabolite repression, exhibited improved production of α-amylase compared with the wild-type strain and single creA or creB deletion mutants in Aspergillus oryzae. Because A. oryzae can also produce biomass-degrading enzymes, such as xylolytic and cellulolytic enzymes, we examined the production levels of those enzymes in deletion mutants in this study. Xylanase and β-glucosidase activities in the wild-type were hardly detected in submerged culture containing xylose as the carbon source, whereas those enzyme activities were significantly increased in the single creA deletion (ΔcreA) and double creA and creB deletion (ΔcreAΔcreB) mutants. In particular, the ΔcreAΔcreB mutant exhibited >100-fold higher xylanase and β-glucosidase activities than the wild-type. Moreover, in solid-state culture, the β-glucosidase activity of the double deletion mutant was >7-fold higher than in the wild-type. These results suggested that deletion of both creA and creB genes could also efficiently improve the production levels of biomass-degrading enzymes in A. oryzae. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  16. A Model of the Effect of the Microbial Biomass on the Isotherm of the Fermenting Solids in Solid-State Fermentation

    Directory of Open Access Journals (Sweden)

    Barbara Celuppi Marques

    2006-01-01

    Full Text Available We compare isotherms for soybeans and soybeans fermented with Rhizopus oryzae, showing that in solid-state fermentation the biomass affects the isotherm of the fermenting solids. Equations are developed to calculate, for a given overall water content of the fermenting solids, the water contents of the biomass and residual substrate, as well as the water activity. A case study, undertaken using a mathematical model of a well-mixed bioreactor, shows that if water additions are made on the basis of the assumption that fermenting solids have the same isotherm as the substrate itself, poor growth can result since the added water does not maintain the water activity at levels favorable for growth. We conclude that the effect of the microbial biomass on the isotherm of the fermenting solids must be taken into account in mathematical models of solid-state fermentation bioreactors.

  17. Effects of lead contamination on soil enzymatic activities, microbial biomass, and rice physiological indices in soil-lead-rice (Oryza sativa L.) system.

    Science.gov (United States)

    Zeng, Lu S; Liao, Min; Chen, Cheng L; Huang, Chang Y

    2007-05-01

    The effect of lead (Pb) treatment on the soil enzymatic activities, soil microbial biomass, rice physiological indices and rice biomass were studied in a greenhouse pot experiment. Six levels of Pb viz. 0(CK), 100, 300, 500, 700, 900 mg/kg soil were applied in two types of paddy soils. The results showed that Pb treatment had a stimulating effect on soil enzymatic activities and microbial biomass carbon (Cmic) at low concentration and an inhibitory influence at higher concentration. The degree of influence on enzymatic activities and Cmic by Pb was related to the clay and organic matter contents of the soils. When the Pb treatment was raised to the level of 500 mg/kg, ecological risk appeared both to soil microorganisms and plants. The results also revealed a consistent trend of increased chlorophyll contents and rice biomass initially, maximum at a certain Pb treatment, and then decreased gradually with the increase in Pb concentration. Pb was effective in inducing proline accumulation and its toxicity causes oxidative stress in rice plants. Therefore, it was concluded that soil enzymatic activities, Cmic and rice physiological indices, could be sensitive indicators to reflect environmental stress in soil-lead-rice system.

  18. Biomass recalcitrance

    DEFF Research Database (Denmark)

    Felby, Claus

    2009-01-01

    Alternative and renewable fuels derived from lignocellulosic biomass offer a promising alternative to conventional energy sources, and provide energy security, economic growth, and environmental benefits. However, plant cell walls naturally resist decomposition from microbes and enzymes - this co......Alternative and renewable fuels derived from lignocellulosic biomass offer a promising alternative to conventional energy sources, and provide energy security, economic growth, and environmental benefits. However, plant cell walls naturally resist decomposition from microbes and enzymes...... - this collective resistance is known as "biomass recalcitrance." Breakthrough technologies are needed to overcome barriers to developing cost-effective processes for converting biomass to fuels and chemicals. This book examines the connection between biomass structure, ultrastructure, and composition......, to resistance to enzymatic deconstruction, with the aim of discovering new cost-effective technologies for biorefineries. It contains chapters on topics extending from the highest levels of biorefinery design and biomass life-cycle analysis, to detailed aspects of plant cell wall structure, chemical treatments...

  19. Dynamics of microbial biomass and respiratory activity during late summer in a site of Arctic Kongsfjorden

    Directory of Open Access Journals (Sweden)

    Rosabruna La Ferla

    2014-06-01

    The Kongsfjorden was affected by inflow of Atlantic water as well as glacier melt water runoff (Cottier et al., 2005. The experiment comprised 5 samplings performed during a 7 day period in MDI station. For each sampling, photosynthetically active radiation (PAR, temperature and conductivity (salinity were recorded along the water column with a PNF-300 profiler and a SeaBird Electronics SBE-911 plus profiler, respectively . Water samples were taken at five different depths (surface, 5, 25, 50 and 100 m to determine nutrients, particulate organic carbon, prokaryotes and phytoplankton biomass, and community respiration. In addition, prokaryotes sunk with the particulate matter were studied into the sediment trap positioned in the MDI during the period between June and September 2013. The latter assessment allowed us to determine the flow of prokaryotes, conveyed from organic matter sinking, throughout the summer. Due to melting of the glaciers in the surface water of the study site, there were sediment loads which strongly limited light penetration and low irradiance (~0.7% E0+ at 5 meters below the surface. Along the water column the intrusion of the salty and warm Atlantic water was visible in the study site and the warm core was at about 25 m depth. PO4 concentrations ranged between 0.43 (surface and 1 µM (100 m and in general the values increased from surface to bottom. NH4, NO2 and NO3 significantly changed along the vertical and with time and varied between 0.39 and 5.05µM, 0.01 and 0.67µM, 0.001 and 4.18µM, respectively. Prokaryotic abundances and cell volumes ranged between 5.6 and 15.9 E+05 cells ml-1 and 0.033 and 0.093 µm3, respectively. These latter parameters showed a peak at 25 m depth in the core of incoming Atlantic water. This evidence was not determined in chlorophyll a (range 0.034-1.102 mg m-3, where the highest values were determined at the surface and 5 m depth. Speculations will be made on the variability of the fluxes of carbon

  20. Metagenomic discovery of novel enzymes and biosurfactants in a slaughterhouse biofilm microbial community

    Science.gov (United States)

    Thies, Stephan; Rausch, Sonja Christina; Kovacic, Filip; Schmidt-Thaler, Alexandra; Wilhelm, Susanne; Rosenau, Frank; Daniel, Rolf; Streit, Wolfgang; Pietruszka, Jörg; Jaeger, Karl-Erich

    2016-01-01

    DNA derived from environmental samples is a rich source of novel bioactive molecules. The choice of the habitat to be sampled predefines the properties of the biomolecules to be discovered due to the physiological adaptation of the microbial community to the prevailing environmental conditions. We have constructed a metagenomic library in Escherichia coli DH10b with environmental DNA (eDNA) isolated from the microbial community of a slaughterhouse drain biofilm consisting mainly of species from the family Flavobacteriaceae. By functional screening of this library we have identified several lipases, proteases and two clones (SA343 and SA354) with biosurfactant and hemolytic activities. Sequence analysis of the respective eDNA fragments and subsequent structure homology modelling identified genes encoding putative N-acyl amino acid synthases with a unique two-domain organisation. The produced biosurfactants were identified by NMR spectroscopy as N-acyltyrosines with N-myristoyltyrosine as the predominant species. Critical micelle concentration and reduction of surface tension were similar to those of chemically synthesised N-myristoyltyrosine. Furthermore, we showed that the newly isolated N-acyltyrosines exhibit antibiotic activity against various bacteria. This is the first report describing the successful application of functional high-throughput screening assays for the identification of biosurfactant producing clones within a metagenomic library. PMID:27271534

  1. Shotgun Approach to Increasing Enzymatic Saccharification Yields of Ammonia Fiber Expansion Pretreated Cellulosic Biomass

    International Nuclear Information System (INIS)

    Chundawat, Shishir P. S.; Uppugundla, Nirmal; Gao, Dahai; Curran, Paul G.; Balan, Venkatesh; Dale, Bruce E.

    2017-01-01

    Most cellulolytic enzyme blends, either procured from a commercial vendor or isolated from a single cellulolytic microbial secretome, do not efficiently hydrolyze ammonia-pretreated (e.g., ammonia fiber expansion, AFEX) lignocellulosic agricultural crop residues like corn stover to fermentable sugars. Typically reported commercial enzyme loading (30–100 mg protein/g glucan) necessary to achieve >90% total hydrolysis yield (to monosaccharides) for AFEX-treated biomass, within a short saccharification time frame (24–48 h), is economically unviable. Unlike acid-based pretreatments, AFEX retains most of the hemicelluloses in the biomass and therefore requires a more complex suite of enzymes for efficient hydrolysis of cellulose and hemicellulose at industrially relevant high solids loadings. One strategy to reduce enzyme dosage while improving cocktail effectiveness for AFEX-treated biomass has been to use individually purified enzymes to determine optimal enzyme combinations to maximize hydrolysis yields. However, this approach is limited by the selection of heterologous enzymes available or the labor required for isolating low-abundance enzymes directly from the microbial secretomes. Here, we show that directly blending crude cellulolytic and hemicellulolytic enzymes-rich microbial secretomes can maximize specific activity on AFEX-treated biomass without having to isolate individual enzymes. Fourteen commercially available cellulolytic and hemicellulolytic enzymes were procured from leading enzyme companies (Novozymes ® , Genencor ® , and Biocatalysts ® ) and were mixed together to generate several hundred unique cocktail combinations. The mixtures were assayed for activity on AFEX-treated corn stover (AFEX-CS) using a previously established high-throughput methodology. The optimal enzyme blend combinations identified from these screening assays were enriched in various low-abundance hemicellulases and accessory enzymes typically absent in most commercial

  2. Metaproteome analysis to determine the metabolically active part of a thermophilic microbial community producing biogas from agricultural biomass.

    Science.gov (United States)

    Hanreich, Angelika; Heyer, Robert; Benndorf, Dirk; Rapp, Erdmann; Pioch, Markus; Reichl, Udo; Klocke, Michael

    2012-07-01

    Complex consortia of microorganisms are responsible for biogas production. A lot of information about the taxonomic structure and enzymatic potential of such communities has been collected by a variety of gene-based approaches, yet little is known about which of all the assumable metabolic pathways are active throughout the process of biogas formation. To tackle this problem, we established a protocol for the metaproteomic analysis of samples taken from biogas reactors fed with agricultural biomass. In contrast to previous studies where an anaerobic digester was fed with synthetic wastewater, the complex matrix in this study required the extraction of proteins with liquid phenol and the application of paper bridge loading for 2-dimensional gel electrophoresis. Proteins were subjected to nanoHPLC (high-performance liquid chromatography) coupled to tandem mass spectrometry for characterization. Several housekeeping proteins as well as methanogenesis-related enzymes were identified by a MASCOT search and de novo sequencing, which proved the feasibility of our approach. The establishment of such an approach is the basis for further metaproteomic studies of biogas-producing communities. In particular, the apparent status of metabolic activities within the communities can be monitored. The knowledge collected from such experiments could lead to further improvements of biogas production.

  3. Activity modulation of microbial enzymes by llama (Lama glama) heavy-chain polyclonal antibodies during in vivo immune responses.

    Science.gov (United States)

    Ferrari, A; Weill, F S; Paz, M L; Cela, E M; González Maglio, D H; Leoni, J

    2012-03-01

    Since they were first described in 1993, it was found that recombinant variable fragments (rVHHs) of heavy-chain antibodies (HCAbs) from Camelidae have unusual biophysical properties, as well as a special ability to interact with epitopes that are cryptic for conventional Abs. It has been assumed that in vivo raised polyclonal HCAbs (pHCAbs) should behave in a similar manner than rVHHs; however, this assumption has not been tested sufficiently. Furthermore, our own preliminary work on a single serum sample from a llama immunized with a β-lactamase, has suggested that pHCAbs have no special ability to down-modulate catalytic activity. In this work, we further explored the interaction of pHCAbs from four llamas raised against two microbial enzymes and analyzed it within a short and a long immunization plan. The relative contribution of pHCAbs to serum titer was found to be low compared with that of the most abundant conventional subisotype (IgG(1)), during the whole immunization schedule. Furthermore, pHCAbs not only failed to inhibit the enzymes, but also activated one of them. Altogether, these results suggest that raising high titer inhibitory HCAbs is not a straightforward strategy - neither as a biotechnological strategy nor in the biological context of an immune response against infection - as raising inhibitory rVHHs.

  4. A novel feruloyl esterase from rumen microbial metagenome: Gene cloning and enzyme characterization in the release of mono- and diferulic acids

    Science.gov (United States)

    A feruloyl esterase (FAE) gene was isolated from a rumen microbial metagenome, cloned into E. coli, and expressed in active form. The enzyme (RuFae4) was classified as a Type D feruloyl esterase based on its action on synthetic substrates and ability to release diferulates. The RuFae4 alone releas...

  5. Impact of heavy metal on activity of some microbial enzymes in the riverbed sediments: Ecotoxicological implications in the Ganga River (India).

    Science.gov (United States)

    Jaiswal, Deepa; Pandey, Jitendra

    2018-04-15

    We studied the extracellular enzyme activity (EEA) in the riverbed sediment along a 518km gradient of the Ganga River receiving carbon and nutrient load from varied human sources. Also, we tested, together with substrate-driven stimulation, if the heavy metal accumulated in the sediment inhibits enzyme activities. Because pristine values are not available, we considered Dev Prayag, a least polluted site located 624km upstream to main study stretch, as a reference site. There were distinct increases in enzyme activities in the sediment along the study gradient from Dev Prayag, however, between-site differences were in concordance with sediment carbon(C), nitrogen (N) and phosphorus (P). Fluorescein diacetate hydrolysis (FDAase), β-glucosidase (Glu) and protease activities showed positive correlation with C, N and P while alkaline phosphatase was found negatively correlated with P. Enzyme activities were found negatively correlated with heavy metal, although ecological risk index (E R i ) varied with site and metal species. Dynamic fit curves showed significant positive correlation between heavy metal and microbial metabolic quotient (qCO 2 ) indicating a decrease in microbial activity in response to increasing heavy metal concentrations. This study forms the first report linking microbial enzyme activities to regional scale sediment heavy metal accumulation in the Ganga River, suggests that the microbial enzyme activities in the riverbed sediment were well associated with the proportion of C, N and P and appeared to be a sensitive indicator of C, N and P accumulation in the river. Heavy metal accumulated in the sediment inhibits enzyme activities, although C rich sediment showed relatively low toxicity due probably to reduced bioavailability of the metal. The study has relevance from ecotoxicological as well as from biomonitoring perspectives. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Soil microbial biomass in organic farming system Biomassa microbiana do solo em sistemas orgânicos

    Directory of Open Access Journals (Sweden)

    Ademir Sérgio Ferreira de Araújo

    2010-11-01

    Full Text Available Agricultural production systems have to combine management practices in order to sustain soil's profitability and quality. Organic farming is gaining worldwide acceptance and has been expanding at an annual rate of 20% in the last decade, accounting for over 24 million hectares worldwide. Organic practices avoid applications of synthetic fertilizers and pesticides, rely on organic inputs and recycling for nutrient supply, and emphasize cropping system design and biological processes for pest management, as defined by organic farming regulation in the world. In comparison with conventional farming, organic farming has potential benefits in improving food quality and safety. Plant production in organic farming mainly depends on nutrient release as a function of mineralization processes in soils. The build-up of a large and active soil microbial biomass is important pool of accessible nutrients, therefore, is an important priority in organic farming. In organic farming, there is positive effect of quantity and quality of inputs of organic residues on soil microbial biomass. In this way, the organic systems are extremely important for the increase of the soil fertility and the maintenance of the environmental sustainability.A produção agrícola tem de combinar práticas para prover a sustentabilidade do solo. A agricultura orgânica está ganhando aceitação mundial e cresce à taxa anual de 20% na última década, contabilizando mais de 24 milhões de hectares. As práticas orgânicas evitam o uso de fertilizantes sintéticos e pesticidas, enfatiza a aplicação de matéria orgânica, como também a reciclagem de nutrientes e de processos biológicos para manejo de pragas, através das regras dos sistemas orgânicos no mundo. Em comparação com a agricultura convencional, os sistemas orgânicos têm potencial de melhorar a qualidade e a segurança dos alimentos. A produção das plantas no sistema orgânico depende da liberação de nutrientes

  7. Biochar amendment decreases soil microbial biomass and increases bacterial diversity in Moso bamboo (Phyllostachys edulis) plantations under simulated nitrogen deposition

    Science.gov (United States)

    Li, Quan; Lei, Zhaofeng; Song, Xinzhang; Zhang, Zhiting; Ying, Yeqing; Peng, Changhui

    2018-04-01

    Biochar amendment has been proposed as a strategy to improve acidic soils after overuse of nitrogen fertilizers. However, little is known of the role of biochar in soil microbial biomass carbon (MBC) and bacterial community structure and diversity after soil acidification induced by nitrogen (N) deposition. Using high-throughput sequencing of the 16S rRNA gene, we determined the effects of biochar amendment (BC0, 0 t bamboo biochar ha‑1 BC20, 20 t bamboo biochar ha‑1 and BC40, 40 t bamboo biochar ha‑1) on the soil bacterial community structure and diversity in Moso bamboo plantations that had received simulated N deposition (N30, 30 kg N ha‑1 yr‑1 N60, 60 kg N ha‑1 yr‑1 N90, 90 kg N ha‑1 yr‑1 and N-free) for 21 months. After treatment of N-free plots, BC20 significantly increased soil MBC and bacterial diversity, while BC40 significantly decreased soil MBC but increased bacterial diversity. When used to amend N30 and N60 plots, biochar significantly decreased soil MBC and the reducing effect increased with biochar amendment amount. However, these significant effects were not observed in N90 plots. Under N deposition, biochar amendment largely increased soil bacterial diversity, and these effects depended on the rates of N deposition and biochar amendment. Soil bacterial diversity was significantly related to the soil C/N ratio, pH, and soil organic carbon content. These findings suggest an optimal approach for using biochar to offset the effects of N deposition in plantation soils and provide a new perspective for understanding the potential role of biochar amendments in plantation soil.

  8. Enzymes coimmobilized with microorganisms for the microbial conversion of nonmetabolizable substrates

    Energy Technology Data Exchange (ETDEWEB)

    Haegerdal, B

    1980-01-01

    EtOH is produced from cellobiose and from lactose by bakers' yeast coimmobilized on Ca alginate with Beta-glucosidase and lactase respectively. The maximum EtOH yield was 2.2%, or 80% of theoretical, when a 5% cellobiose solution was passed through a column containing 2-mm diameter beads with the immobilized enzyme and yeast cells. The EtOH yield was 66% of theoretical when acid whey permeate, containing 4.5% lactose, was passed over the column containing immobilized yeast cells and lactase.

  9. Sedimentary organic biomarkers suggest detrimental effects of PAHs on estuarine microbial biomass during the 20th century in San Francisco Bay, CA, USA

    Science.gov (United States)

    Nilsen, Elena B.; Rosenbauer, Robert J.; Fuller, Christopher C.; Jaffe, Bruce E.

    2014-01-01

    Hydrocarbon contaminants are ubiquitous in urban aquatic ecosystems, and the ability of some microbial strains to degrade certain polycyclic aromatic hydrocarbons (PAHs) is well established. However, detrimental effects of petroleum hydrocarbon contamination on nondegrader microbial populations and photosynthetic organisms have not often been considered. In the current study, fatty acid methyl ester (FAME) biomarkers in the sediment record were used to assess historical impacts of petroleum contamination on microbial and/or algal biomass in South San Francisco Bay, CA, USA. Profiles of saturated, branched, and monounsaturated fatty acids had similar concentrations and patterns downcore. Total PAHs in a sediment core were on average greater than 20× higher above ∼200 cm than below, which corresponds roughly to the year 1900. Isomer ratios were consistent with a predominant petroleum combustion source for PAHs. Several individual PAHs exceeded sediment quality screening values. Negative correlations between petroleum contaminants and microbial and algal biomarkers – along with high trans/cis ratios of unsaturated FA, and principle component analysis of the PAH and fatty acid records – suggest a negative impacts of petroleum contamination, appearing early in the 20th century, on microbial and/or algal ecology at the site.

  10. Assessing the Effect of Prometryn Soil Residue on Soil Microbial Biomass and Different Crops using Bioassay Test

    Directory of Open Access Journals (Sweden)

    mohamad taghi alebrahim

    2016-09-01

    after germination. The pots were kept for 30 days under controlled conditions. Shoot and root biomass production was measured 30 days after emergence. At harvest, growth parameters including the dry weight of shoots and roots were determined. The data were subjected to analysis of variance by computer facilities, using Mstatc software. Plant response to prometryn residues was fitted with sigmoidal 3 and 4 parametric equations to the shoot biomass data as a function of the herbicide residue concentrations and was used to calculate the doses for 50% inhibition of shoot growth (ED50. In another experiment the effect of prometryn concentrations (0, 0.0033, 0.0166, 0.033, 0.066, 0.1 and 0.166 mg. kg-1soil on soil microbial activity was determined using titration method in controlled conditions. Results and Discussion: Plant response to increasing concentration of prometryn, in general, followed a classical dose response relationship. The logistic model fitted well to the root and shoot plants response herbicide concentrations. Results showed that the shoot and root dry matter were significantly affected by increasing prometryn soil residue in all crops (plettuce>beet>barely. Based on the mechanism of action of prometryn and its best efficiency on board leaf plants control, the least biomass reduction obtained for barley is understandable. In general, this is safe to plant a susceptible species if the plant-available residue were less than the species ED10 value, and there would be a great risk for different levels of crop damage if the plant-available residue were higher than ED50 values of the species. Comparisons between species allow the safe selection of a crop that has a critical ED50 level lower than the residue level in the soil. Alternatively, planting a sensitive species could be delayed until the residue level in the soil is less than the critical level. In the Southwest areas of Iran, these crops are often sown few months after the application of a residual

  11. A new generation of versatile chromogenic substrates for high-throughput analysis of biomass-degrading enzymes

    DEFF Research Database (Denmark)

    Kracun, Stjepan Kresimir; Schückel, Julia; Westereng, Bjørge

    2015-01-01

    of carbohydrate-acting enzymes to be putatively identified. However, there is a paucity of methods for rapidly screening the biochemical activities of these enzymes, and this is a serious bottleneck in the development of enzyme-reliant bio-refining processes. Results: We have developed a new generation of multi...

  12. Structural stability, microbial biomass and community composition of sediments affected by the hydric dynamics of an urban stormwater infiltration basin. Dynamics of physical and microbial characteristics of stormwater sediment.

    Science.gov (United States)

    Badin, Anne Laure; Monier, Armelle; Volatier, Laurence; Geremia, Roberto A; Delolme, Cécile; Bedell, Jean-Philippe

    2011-05-01

    The sedimentary layer deposited at the surface of stormwater infiltration basins is highly organic and multicontaminated. It undergoes considerable moisture content fluctuations due to the drying and inundation cycles (called hydric dynamics) of these basins. Little is known about the microflora of the sediments and its dynamics; hence, the purpose of this study is to describe the physicochemical and biological characteristics of the sediments at different hydric statuses of the infiltration basin. Sediments were sampled at five time points following rain events and dry periods. They were characterized by physical (aggregation), chemical (nutrients and heavy metals), and biological (total, bacterial and fungal biomasses, and genotypic fingerprints of total bacterial and fungal communities) parameters. Data were processed using statistical analyses which indicated that heavy metal (1,841 μg/g dry weight (DW)) and organic matter (11%) remained stable through time. By contrast, aggregation, nutrient content (NH₄⁺, 53-717 μg/g DW), pH (6.9-7.4), and biological parameters were shown to vary with sediment water content and sediment biomass, and were higher consecutive to stormwater flows into the basin (up to 7 mg C/g DW) than during dry periods (0.6 mg C/g DW). Coinertia analysis revealed that the structure of the bacterial communities is driven by the hydric dynamics of the infiltration basin, although no such trend was found for fungal communities. Hydric dynamics more than rain events appear to be more relevant for explaining variations of aggregation, microbial biomass, and shift in the microbial community composition. We concluded that the hydric dynamics of stormwater infiltration basins greatly affects the structural stability of the sedimentary layer, the biomass of the microbial community living in it and its dynamics. The decrease in aggregation consecutive to rewetting probably enhances access to organic matter (OM), explaining the consecutive release

  13. Thalassic biogas production from sea wrack biomass using different microbial seeds: cow manure, marine sediment and sea wrack-associated microflora.

    Science.gov (United States)

    Marquez, Gian Powell B; Reichardt, Wolfgang T; Azanza, Rhodora V; Klocke, Michael; Montaño, Marco Nemesio E

    2013-04-01

    Sea wrack (dislodged sea grasses and seaweeds) was used in biogas production. Fresh water scarcity in island communities where sea wrack could accumulate led to seawater utilization as liquid substrate. Three microbial seeds cow manure (CM), marine sediment (MS), and sea wrack-associated microflora (SWA) were explored for biogas production. The average biogas produced were 2172±156 mL (MS), 1223±308 mL (SWA) and 551±126 mL (CM). Though methane potential (396.9 mL(CH4) g(-1) volatile solid) computed from sea wrack proximate values was comparable to other feedstocks, highest methane yield was low (MS=94.33 mL(CH4) g(-1) VS). Among the microbial seeds, MS proved the best microbial source in utilizing sea wrack biomass and seawater. However, salinity (MS=42‰) observed exceeded average seawater salinity (34‰). Hence, methanogenic activity could have been inhibited. This is the first report on sea wrack biomass utilization for thalassic biogas production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Enzyme and microbial technology for synthesis of bioactive oligosaccharides: an update.

    Science.gov (United States)

    Chen, Rachel

    2018-04-01

    Oligosaccharides, in either free or bound forms, play crucial roles in a wide range of biological processes. Increasing appreciation of their roles in cellular communication, interaction, pathogenesis, and prebiotic functions has stimulated tremendous interests in their synthesis. Pure and structurally defined oligosaccharides are essential for fundamental studies. On the other hand, for those with near term medical and nutraceutical applications, their large-scale synthesis is necessary. Unfortunately, oligosaccharides are notoriously difficult in their synthesis, and their enormous diverse structures leave a vast gap between what have been synthesized in laboratory and those present in various biological systems. While enzymes and microbes are nature's catalysts for oligosaccharides, their effective use is not without challenges. Using examples of galactose-containing oligosaccharides, this review analyzes the pros and cons of these two forms of biocatalysts and provides an updated view on the status of biocatalysis in this important field. Over the past few years, a large number of novel galactosidases were discovered and/or engineered for improved synthesis via transglycosylation. The use of salvage pathway for regeneration of uridine diphosphate (UDP)-galactose has made the use of Leloir glycosyltransferases simpler and more efficient. The recent success of large-scale synthesis of 2' fucosyllactose heralded the power of whole-cell biocatalysis as a scalable technology. While it still lags behind enzyme catalysis in terms of the number of oligosaccharides synthesized, an acceleration in the use of this form of biocatalyst is expected as rapid advances in synthetic biology have made the engineering of whole cell biocatalysts less arduous and less time consuming.

  15. Effects of dietary Greek oregano (Origanum vulgare ssp. hirtum) supplementation on rumen fermentation, enzyme profile and microbial communities in goats.

    Science.gov (United States)

    Paraskevakis, N

    2017-10-14

    This study was conducted to examine in vivo long-term effects of dietary dried oregano (Origanum vulgare ssp. hirtum) whole plant on rumen fermentation, enzyme profile and microbial communities. For this purpose, eight healthy, adult, non-lactating Alpine goats were kept in tie stalls equipped for individual feeding and randomly divided into two homogeneous groups: one fed 0.6 kg of a concentrate mixture and 0.6 kg of wheat straw without any supplementation and served as control group (CON) while the other group (OR) fed the same diet of CON but supplemented with 20 g of dried oregano plants (OPs) to provide daily dosage of 1 ml of essential oil (EO) per animal. The experimental period lasted 69 days and individual rumen fluid samples were obtained every 2 weeks at 0 and 4 hr after feeding. The results showed that dietary supplementation with OPs increased the protease activity (p < .001) and ammonia concentration (p < .05) in the rumen. Among the studied microbial populations, Peptostreptococcus anaerobius (p = .028) and Clostridium sticklandii (p < .001) were found to be the most sensitive to oregano at the current dosage. Furthermore, the total methanogen population significantly decreased (p < .05). It is concluded that a long-term dietary administration of OPs can suppress specific rumen micro-organisms and modify rumen fermentation favourably at least by means of suppressing methanogens. © 2017 Blackwell Verlag GmbH.

  16. Mesophilic and thermophilic conditions select for unique but highly parallel microbial communities to perform carboxylate platform biomass conversion.

    Directory of Open Access Journals (Sweden)

    Emily B Hollister

    Full Text Available The carboxylate platform is a flexible, cost-effective means of converting lignocellulosic materials into chemicals and liquid fuels. Although the platform's chemistry and engineering are well studied, relatively little is known about the mixed microbial communities underlying its conversion processes. In this study, we examined the metagenomes of two actively fermenting platform communities incubated under contrasting temperature conditions (mesophilic 40°C; thermophilic 55 °C, but utilizing the same inoculum and lignocellulosic feedstock. Community composition segregated by temperature. The thermophilic community harbored genes affiliated with Clostridia, Bacilli, and a Thermoanaerobacterium sp, whereas the mesophilic community metagenome was composed of genes affiliated with other Clostridia and Bacilli, Bacteriodia, γ-Proteobacteria, and Actinobacteria. Although both communities were able to metabolize cellulosic materials and shared many core functions, significant differences were detected with respect to the abundances of multiple Pfams, COGs, and enzyme families. The mesophilic metagenome was enriched in genes related to the degradation of arabinose and other hemicellulose-derived oligosaccharides, and the production of valerate and caproate. In contrast, the thermophilic community was enriched in genes related to the uptake of cellobiose and the transfer of genetic material. Functions assigned to taxonomic bins indicated that multiple community members at either temperature had the potential to degrade cellulose, cellobiose, or xylose and produce acetate, ethanol, and propionate. The results of this study suggest that both metabolic flexibility and functional redundancy contribute to the platform's ability to process lignocellulosic substrates and are likely to provide a degree of stability to the platform's fermentation processes.

  17. Numbers, biomass and cultivable diversity of microbial populations relate to depth and borehole-specific conditions in groundwater from depths of 4-450 m in Olkiluoto, Finland.

    Science.gov (United States)

    Pedersen, Karsten; Arlinger, Johanna; Eriksson, Sara; Hallbeck, Anna; Hallbeck, Lotta; Johansson, Jessica

    2008-07-01

    Microbiology, chemistry and dissolved gas in groundwater from Olkiluoto, Finland, were analysed over 3 years; samples came from 16 shallow observation tubes and boreholes from depths of 3.9-16.2 m and 14 deep boreholes from depths of 35-742 m. The average total number of cells (TNC) was 3.9 x 10(5) cells per ml in the shallow groundwater and 5.7 x 10(4) cells per ml in the deep groundwater. There was a significant correlation between the amount of biomass, analysed as ATP concentration, and TNC. ATP concentration also correlated with the stacked output of anaerobic most probable number cultivations of nitrate-, iron-, manganese- and sulphate-reducing bacteria, and acetogenic bacteria and methanogens. The numbers and biomass varied at most by approximately three orders of magnitude between boreholes, and TNC and ATP were positively related to the concentration of dissolved organic carbon. Two depth zones were found where the numbers, biomass and diversity of the microbial populations peaked. Shallow groundwater down to a depth of 16.2 m on average contained more biomass and cultivable microorganisms than did deep groundwater, except in a zone at a depth of approximately 300 m where the average biomass and number of cultivable microorganisms approached those of shallow groundwater. Starting at a depth of approximately 300 m, there were steep gradients of decreasing sulphate and increasing methane concentrations with depth; together with the peaks in biomass and sulphide concentration at this depth, these suggest that anaerobic methane oxidation may be a significant process at depth in Olkiluoto.

  18. Biomassa microbiana em amostras de solos secadas ao ar e reumedecidas Microbial biomass in air dried and rewetted soil samples

    Directory of Open Access Journals (Sweden)

    Antônio Samarão Gonçalves

    2002-05-01

    Full Text Available O objetivo do trabalho foi avaliar a viabilidade do condicionamento de amostras como terra fina secada ao ar (TFSA por curto período, para a determinação do carbono da biomassa microbiana (BMS-C, pelo método da fumigaçãoextração, e verificar a respiração microbiana basal (RB do solo. O condicionamento como TFSA, procedendo-se à fumigação para a análise da BMS-C imediatamente ou 24 horas após o reumedecimento, proporcionou valores de BMS-C para os solos Podzólicos, Latossolo Vermelho-Amarelo álico e Orgânico, semelhantes aos valores dos seus controles. Os solos Glei Pouco Húmico e Vertissolo apresentaram valores de BMS-C similares aos do controle a partir de 24 horas de incubação; o solo Planossolo arenoso apresentou valores similares aos do controle com 72 horas, e a Rendizina, com 168 horas de incubação. Na maioria dos solos, a RB determinada na TFSA apresentou valores maiores do que os do tratamento-controle, quando avaliada imediatamente ou 24 horas após o reumedecimento a 60% da capacidade máxima de retenção de água, seguida de queda e manutenção em níveis semelhantes ao do controle nos períodos subseqüentes. O précondicionamento, de curta duração, como TFSA, é promissor para a determinação da BMS-C, quando níveis e períodos adequados de reumedecimento são adotados.The objective of this work was to evaluate the utilization of short term air dried soil samples in a determination of soil microbial biomass (SMB-C, by a fumigationextraction method, and soil microbial basal respiration (BR. Zero time or 24 hours rewetting incubation period before fumigation procedure gave values of SMB-C similar to those of the control for the Podzolic soils, Allic RedYellow Latosol and Organic soil. Low Humic Gley and Vertisol soils gave values of SMB-C similar to those of the control for periods of incubation equal or higher than 24 hours. Planosol (sandy soil and Rendzina soils gave values of SMB-C similar to the

  19. Imminent angiotensin-converting enzyme inhibitor from microbial source for cancer therapy

    Directory of Open Access Journals (Sweden)

    Lida Ebrahimi

    2017-01-01

    Full Text Available Background: Drugs targeting Angiotensin I-converting enzyme (ACE have been used broadly in cancer chemotherapy. The recent past coupled with our results demonstrates the effective use of ACE inhibitors (ACEi as anticancer agents, and they are potentially relevant in deriving new inhibitors. Methods: Bacterial strains were isolated from cow milk collected in Coimbatore, Tamil Nadu, India and plated on nutrient agar medium. The identity of the strain was ascertained by 16s rRNA gene sequencing method and was submitted to the NCBI GenBank nucleotide database. Various substrates were screened for ACEi production by the fermentation with the isolated strain. ACEi was purified by sequential steps of ethanol precipitation, ion exchange column chromatography and gel filtration column chromatography. The apparent molecular mass was determined by SDS-PAGE. The anticancer property was analyzed by studying the cytotoxicity effects of ACEi using Breast cancer MCF-7 cell lines Results: The isolate coded as BUCTL09 was selected and identified as Micrococcus luteus. Among the seven substrates, only beef extract fermented broth showed an inhibition of 79% and was reported as the best substrate. The peptide was purified and molecular mass was determined. The IC50 value of peptide was found to be 59.5 μg/ ml. The purified peptide has demonstrated to induce apoptosis of cancer cell.Conclusions: The results of this study revealed that Peptide has been determined as an active compound that inhibited the activity of ACE. These properties indicate the possibilities of the use of purified protein as a potent anticancer agent.

  20. Contribution of the microbial and meat endogenous enzymes to the free amino acid and amine contents of dry fermented sausages.

    Science.gov (United States)

    Hierro, E; de La Hoz, L; Ordóñez, J A

    1999-03-01

    The role of the starter culture and meat endogenous enzymes on the free amino acid and amine contents of dry fermented sausages was studied. Five batches of sausages were prepared. The control batch was manufactured with aseptic ingredients without microbial inoculation. The other four experimental batches were manufactured with aseptic ingredients inoculated with Lactobacillus plantarum 4045 or Micrococcus-12 or L. plantarum 4045 and Micrococcus-12 or L. plantarum 4045 and Staphylococcus sp. Their effects on pH, a(w), myofibrillar proteins, and free amino acid and amine contents were studied. Sausages inoculated only with L. plantarum 4045 or with this starter combined with a Micrococcaceae had the lowest pH as a result of carbohydrate fermentation. In all batches similar patterns were observed for myofibrillar proteins and free amino acids which could indicate that meat endogenous proteases play an important role in proteolytic phenomena. No changes were observed in the amine fraction, indicating that the strains used as starter cultures did not show amino acid decarboxylase activity.

  1. Enzyme activities at different stages of plant biomass decomposition in three species of fungus-growing termites

    DEFF Research Database (Denmark)

    da Costa, Rafael R.; Hu, Haofu; Pilgaard, Bo

    2018-01-01

    contributing to the success of the termites as the main plant decomposers in the Old World. Here we evaluate which plant polymers are decomposed and which enzymes are active during the decomposition process in two major genera of fungus-growing termites. We find a diversity of active enzymes at different...... stages of decomposition and a consistent decrease in plant components during the decomposition process. Furthermore, our findings are consistent with the hypothesis that termites transport enzymes from the older mature parts of the fungus comb through young worker guts to freshly inoculated plant...... substrate. However, preliminary fungal RNAseq analyses suggest that this likely transport is supplemented with enzymes produced in situ Our findings support that the maintenance of an external fungus comb, inoculated with an optimal mix of plant material, fungal spores, and enzymes, is likely the key...

  2. One-pot strategy for on-site enzyme production, biomass hydrolysis, and ethanol production using the whole solid-state fermentation medium of mixed filamentous fungi.

    Science.gov (United States)

    Maehara, Larissa; Pereira, Sandra C; Silva, Adilson J; Farinas, Cristiane S

    2018-02-01

    The efficient use of renewable lignocellulosic feedstocks to obtain biofuels and other bioproducts is a key requirement for a sustainable biobased economy. This requires novel and effective strategies to reduce the cost contribution of the cellulolytic enzymatic cocktails needed to convert the carbohydrates into simple sugars, in order to make large-scale commercial processes economically competitive. Here, we propose the use of the whole solid-state fermentation (SSF) medium of mixed filamentous fungi as an integrated one-pot strategy for on-site enzyme production, biomass hydrolysis, and ethanol production. Ten different individual and mixed cultivations of commonly used industrial filamentous fungi (Aspergillus niger, Aspergillus oryzae, Trichoderma harzianum, and Trichoderma reesei) were performed under SSF and the whole media (without the extraction step) were used in the hydrolysis of pretreated sugarcane bagasse. The cocultivation of T. reesei with A. oryzae increased the amount of glucose released by around 50%, compared with individual cultivations. The release of glucose and reducing sugars achieved using the whole SSF medium was around 3-fold higher than obtained with the enzyme extract. The addition of soybean protein (0.5% w/w) during the hydrolysis reaction further significantly improved the saccharification performance by blocking the lignin and avoiding unproductive adsorption of enzymes. The results of the alcoholic fermentation validated the overall integrated process, with a volumetric ethanol productivity of 4.77 g/L.h, representing 83.5% of the theoretical yield. These findings demonstrate the feasibility of the proposed one-pot integrated strategy using the whole SSF medium of mixed filamentous fungi for on-site enzymes production, biomass hydrolysis, and ethanol production. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018. © 2018 American Institute of Chemical Engineers.

  3. Responses of soil microbial biomass and bacterial community structure to closed-off management (an ecological natural restoration measures): A case study of Dongting Lake wetland, middle China.

    Science.gov (United States)

    Dai, Juan; Wu, Haipeng; Zhang, Chang; Zeng, Guangming; Liang, Jie; Guo, Shenglian; Li, Xiaodong; Huang, Lu; Lu, Lunhui; Yuan, Yujie

    2016-09-01

    Soil microbial biomass (SMB) and bacterial community structure, which are critical to global ecosystem and fundamental ecological processes, are sensitive to anthropogenic activities and environmental conditions. In this study, we examined the possible effects of closed-off management (an ecological natural restoration measures, ban on anthropogenic activity, widely employed for many important wetlands) on SMB, soil bacterial community structure and functional marker genes of nitrogen cycling in Dongting Lake wetland. Soil samples were collected from management area (MA) and contrast area (CA: human activities, such as hunting, fishing and draining, are permitted) in November 2013 and April 2014. Soil properties, microbial biomass carbon (MBC), and bacterial community structure were investigated. Comparison of the values of MA and CA showed that SMB and bacterial community diversity of the MA had a significant increase after 7 years closed-off management. The mean value of Shannon-Weiner diversity index of MA and CA respectively were 2.85 and 2.07. The gene copy numbers of 16S rRNA and nosZ of MA were significant higher than those of CA. the gene copy numbers of ammonia-oxidizing archaea (AOA) and nirK of MA were significant lower than those of CA. However, there was no significant change in the gene copy numbers of ammonia-oxidizing bacteria (AOB) and nirS. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Cultivation of high-biomass crops on coal mine spoil banks: Can microbial inoculation compensate for high doses of organic matter?

    Energy Technology Data Exchange (ETDEWEB)

    Gryndler, M.; Sudova, R.; Puschel, D.; Rydlova, J.; Janouskova, M.; Vosatka, M. [Academy of Science Czech Republic, Pruhonice (Czech Republic)

    2008-09-15

    Two greenhouse experiments were focused on the application of arbuscular mycorrhizal fungi (AMF) and plant growth promoting rhizobacteria (PGPR) in planting of high-biomass crops on reclaimed spoil banks. In the first experiment, we tested the effects of different organic amendments on growth of alfalfa and on the introduced microorganisms. While growth of plants was supported in substrate with compost amendment, mycorrhizal colonization was suppressed. Lignocellulose papermill waste had no negative effects on AMF, but did not positively affect growth of plants. The mixture of these two amendments was found to be optimal in both respects, plant growth and mycorrhizal development. Decreasing doses of this mixture amendment were used in the second experiment, where the effects of microbial inoculation (assumed to compensate for reduced doses of organic matter) on growth of two high-biomass crops, hemp and reed canarygrass, were studied. Plant growth response to microbial inoculation was either positive or negative, depending on the dose of the applied amendment and plant species.

  5. An Integrated Metagenomics/Metaproteomics Investigation of the Microbial Communities and Enzymes in Solid-state Fermentation of Pu-erh tea

    Science.gov (United States)

    Zhao, Ming; Zhang, Dong-lian; Su, Xiao-qin; Duan, Shuang-mei; Wan, Jin-qiong; Yuan, Wen-xia; Liu, Ben-ying; Ma, Yan; Pan, Ying-hong

    2015-01-01

    Microbial enzymes during solid-state fermentation (SSF), which play important roles in the food, chemical, pharmaceutical and environmental fields, remain relatively unknown. In this work, the microbial communities and enzymes in SSF of Pu-erh tea, a well-known traditional Chinese tea, were investigated by integrated metagenomics/metaproteomics approach. The dominant bacteria and fungi were identified as Proteobacteria (48.42%) and Aspergillus (94.98%), through pyrosequencing-based analyses of the bacterial 16S and fungal 18S rRNA genes, respectively. In total, 335 proteins with at least two unique peptides were identified and classified into 28 Biological Processes and 35 Molecular Function categories using a metaproteomics analysis. The integration of metagenomics and metaproteomics data demonstrated that Aspergillus was dominant fungus and major host of identified proteins (50.45%). Enzymes involved in the degradation of the plant cell wall were identified and associated with the soft-rotting of tea leaves. Peroxiredoxins, catalase and peroxidases were associated with the oxidation of catechins. In conclusion, this work greatly advances our understanding of the SSF of Pu-erh tea and provides a powerful tool for studying SSF mechanisms, especially in relation to the microbial communities present. PMID:25974221

  6. Modeling adaptation of carbon use efficiency in microbial communities

    Directory of Open Access Journals (Sweden)

    Steven D Allison

    2014-10-01

    Full Text Available In new microbial-biogeochemical models, microbial carbon use efficiency (CUE is often assumed to decline with increasing temperature. Under this assumption, soil carbon losses under warming are small because microbial biomass declines. Yet there is also empirical evidence that CUE may adapt (i.e. become less sensitive to warming, thereby mitigating negative effects on microbial biomass. To analyze potential mechanisms of CUE adaptation, I used two theoretical models to implement a tradeoff between microbial uptake rate and CUE. This rate-yield tradeoff is based on thermodynamic principles and suggests that microbes with greater investment in resource acquisition should have lower CUE. Microbial communities or individuals could adapt to warming by reducing investment in enzymes and uptake machinery. Consistent with this idea, a simple analytical model predicted that adaptation can offset 50% of the warming-induced decline in CUE. To assess the ecosystem implications of the rate-yield tradeoff, I quantified CUE adaptation in a spatially-structured simulation model with 100 microbial taxa and 12 soil carbon substrates. This model predicted much lower CUE adaptation, likely due to additional physiological and ecological constraints on microbes. In particular, specific resource acquisition traits are needed to maintain stoichiometric balance, and taxa with high CUE and low enzyme investment rely on low-yield, high-enzyme neighbors to catalyze substrate degradation. In contrast to published microbial models, simulations with greater CUE adaptation also showed greater carbon storage under warming. This pattern occurred because microbial communities with stronger CUE adaptation produced fewer degradative enzymes, despite increases in biomass. Thus the rate-yield tradeoff prevents CUE adaptation from driving ecosystem carbon loss under climate warming.

  7. Impact of land-use and long-term (>150 years) charcoal accumulation on microbial activity, biomass and community structure in temperate soils (Belgium).

    Science.gov (United States)

    Hardy, Brieuc; Cornelis, Jean-Thomas; Dufey, Joseph E.

    2015-04-01

    In the last decade, biochar has been increasingly investigated as a soil amendment for long-term soil carbon sequestration while improving soil fertility. On the short term, biochar application to soil generally increases soil respiration as well as microbial biomass and activity and affects significantly the microbial community structure. However, such effects are relatively short-term and tend to vanish over time. In our study, we investigated the long-term impact of charcoal accumulation and land-use on soil biota in temperate haplic Luvisols developed in the loess belt of Wallonia (Belgium). Charcoal-enriched soils were collected in the topsoil of pre-industrial (>150 years old) charcoal kilns in forest (4 sites) and cropland (5 sites). The topsoil of the adjacent charcoal-unaffected soils was sampled in a comparable way. Soils were characterized (pH, total, organic and inorganic C, total N, exchangeable Ca, Mg, K, Na, cation exchange capacity and available P) and natural soil organic matter (SOM) and black carbon (BC) contents were determined by differential scanning calorimetry. After rewetting at pF 2.5, soils were incubated during 140 days at 20 °C. At 70 days of incubation, 10 g of each soil were freeze dried in order to measure total microbial biomass and community structure by PLFA analysis. The PLFA dataset was analyzed by principal component analysis (PCA) while soil parameters were used as supplementary variables. For both agricultural and forest soils, the respiration rate is highly related to the total microbial biomass (R²=0.90). Both soil respiration and microbial biomass greatly depend on the SOM content, which indicates that the BC pool is relatively inert microbiologically. Land-use explains most of the variance in the PLFA dataset, largely governing the first principal component of the ACP. In forest soils, we observe a larger proportion of gram + bacteria, actinomycetes and an increased bacteria:fungi ratio compared to cropland, where gram

  8. Effect of Arbuscular Mycorrhizal Fungi on Plant Biomass and the Rhizosphere Microbial Community Structure of Mesquite Grown in Acidic Lead/Zinc Mine Tailings

    Science.gov (United States)

    Solís-Domínguez, Fernando A.; Valentín-Vargas, Alexis; Chorover, Jon; Maier, Raina M.

    2011-01-01

    Mine tailings in arid and semi-arid environments are barren of vegetation and subject to eolian dispersion and water erosion. Revegetation is a cost-effective strategy to reduce erosion processes and has wide public acceptance. A major cost of revegetation is the addition of amendments, such as compost, to allow plant establishment. In this paper we explore whether arbuscular mycorrhizal fungi (AMF) can help support plant growth in tailings at a reduced compost concentration. A greenhouse experiment was performed to determine the effects of three AMF inocula on biomass, shoot accumulation of heavy metals, and changes in the rhizosphere microbial community structure of the native plant Prosopis juliflora (mesquite). Plants were grown in an acidic lead/zinc mine tailings amended with 10% (w/w) compost amendment, which is slightly sub-optimal for plant growth in these tailings. After two months, AMF-inoculated plants showed increased dry biomass and root length (p tailings. Mesquite shoot tissue lead and zinc concentrations did not exceed domestic animal toxicity limits regardless of whether AMF inoculation was used. The rhizosphere microbial community structure was assessed using denaturing gradient gel electrophoresis (DGGE) profiles of the small subunit RNA gene for bacteria and fungi. Canonical correspondence analysis (CCA) of DGGE profiles showed that the rhizosphere fungal community structure at the end of the experiment was significantly different from the community structure in the tailings, compost, and AMF inocula prior to planting. Further, CCA showed that AMF inoculation significantly influenced the development of both the fungal and bacterial rhizosphere community structures after two months. The changes observed in the rhizosphere microbial community structure may be either a direct effect of the AMF inocula, caused by changes in plant physiology induced by AMF, or a combination of both mechanisms. PMID:21211826

  9. [Effects of simulated nitrogen deposition on soil microbial biomass carbon and nitrogen in natural evergreen broad-leaved forest in the Rainy Area of West China].

    Science.gov (United States)

    Zhou, Shi Xing; Zou, Cheng; Xiao, Yong Xiang; Xiang, Yuan Bin; Han, Bo Han; Tang, Jian Dong; Luo, Chao; Huang, Cong de

    2017-01-01

    To understand the effects of increasing nitrogen deposition on soil microbial biomass carbon (MBC) and nitrogen(MBN), an in situ experiment was conducted in a natural evergreen broad-leaved forest in Ya'an City, Sichuan Province. Four levels of nitrogen deposition were set: i.e., control (CK, 0 g N·m -2 ·a -1 ), low nitrogen (L, 5 g N·m -2 ·a -1 ), medium nitrogen (M, 15 g N·m -2 ·a -1 ), and high nitrogen (H, 30 g N·m -2 ·a -1 ). The results indicated that nitrogen deposition significantly decreased MBC and MBN in the 0-10 cm soil layer, and as N de-position increased, the inhibition effect was enhanced. L and M treatments had no significant effect on MBC and MBN in the 10-20 cm soil layer, while H treatment significantly reduced. The influence of N deposition on MBC and MBN was weakened with the increase of soil depth. MBC and MBN had obvious seasonal dynamic, which were highest in autumn and lowest in summer both in the 0-10 and 10-20 cm soil layers. The fluctuation ranges of soil microbial biomass C/N were respectively 10.58-11.19 and 9.62-12.20 in the 0-10 cm and 10-20 cm soil layers, which indicated that the fungi hold advantage in the soil microbial community in this natural evergreen broad-leaved forest.

  10. Effect of arbuscular mycorrhizal fungi on plant biomass and the rhizosphere microbial community structure of mesquite grown in acidic lead/zinc mine tailings.

    Science.gov (United States)

    Solís-Domínguez, Fernando A; Valentín-Vargas, Alexis; Chorover, Jon; Maier, Raina M

    2011-02-15

    Mine tailings in arid and semi-arid environments are barren of vegetation and subject to eolian dispersion and water erosion. Revegetation is a cost-effective strategy to reduce erosion processes and has wide public acceptance. A major cost of revegetation is the addition of amendments, such as compost, to allow plant establishment. In this paper we explore whether arbuscular mycorrhizal fungi (AMF) can help support plant growth in tailings at a reduced compost concentration. A greenhouse experiment was performed to determine the effects of three AMF inocula on biomass, shoot accumulation of heavy metals, and changes in the rhizosphere microbial community structure of the native plant Prosopis juliflora (mesquite). Plants were grown in an acidic lead/zinc mine tailings amended with 10% (w/w) compost amendment, which is slightly sub-optimal for plant growth in these tailings. After two months, AMF-inoculated plants showed increased dry biomass and root length (p<0.05) and effective AMF colonization compared to controls grown in uninoculated compost-amended tailings. Mesquite shoot tissue lead and zinc concentrations did not exceed domestic animal toxicity limits regardless of whether AMF inoculation was used. The rhizosphere microbial community structure was assessed using denaturing gradient gel electrophoresis (DGGE) profiles of the small subunit RNA gene for bacteria and fungi. Canonical correspondence analysis (CCA) of DGGE profiles showed that the rhizosphere fungal community structure at the end of the experiment was significantly different from the community structure in the tailings, compost, and AMF inocula prior to planting. Further, CCA showed that AMF inoculation significantly influenced the development of both the fungal and bacterial rhizosphere community structures after two months. The changes observed in the rhizosphere microbial community structure may be either a direct effect of the AMF inocula, caused by changes in plant physiology induced by

  11. [Dynamic changes of soil microbial populations and enzyme activities in super-high yielding summer maize farmland soil].

    Science.gov (United States)

    Hou, Peng; Wang, Yong-jun; Wang, Kong-jun; Yang, Jin-sheng; Li, Deng-hai; Dong, Shu-ting; Liu, Jing-guo

    2008-08-01

    To reveal the characteristics of the dynamic changes of soil microbial populations and enzyme activities in super-high yielding ( > 15,000 kg x hm(-2)) summer maize farmland soil, a comparative study was conducted in the experimental fields in National Maize Engineering Research Center (Shandong). On the fields with an annual yield of >15,000 kg x hm(-2) in continuous three years, a plot with the yield of 20 322 kg x hm(-2) (HF) was chosen to make comparison with the conventional farmland (CF) whose maize yield was 8920. 1 kg x hm(-2). The numbers of bacteria, fungi, and actinomycetes as well as the activities of urease and invertase in 0-20 cm soil layer were determined. The results showed that in the growth period of maize, the numbers of bacteria, fungi, and actinomycetes in the two farmland soils increased first and declined then. At the later growth stages of maize, the numbers of soil microbes, especially those of bacteria and actinomycetes, were lower in HF than those in CF. At harvest stage, the ratio of the number of soil bacteria to fungi (B/ F) in HF was 2.03 times higher than that at sowing stage, and 3.02 times higher than that in CF. The B/F in CF had less difference at harvest and sowing stages. The soil urease activity in HF was significantly lower than that in CF at jointing stage, and the invertase activity in HF decreased rapidly after blooming stage, being significantly lower than that in CF.

  12. The effect of the Falcon 460 EC fungicide on soil microbial communities, enzyme activities and plant growth.

    Science.gov (United States)

    Baćmaga, Małgorzata; Wyszkowska, Jadwiga; Kucharski, Jan

    2016-10-01

    Fungicides are considered to be effective crop protection chemicals in modern agriculture. However, they can also exert toxic effects on non-target organisms, including soil-dwelling microbes. Therefore, the environmental fate of fungicides has to be closely monitored. The aim of this study was to evaluate the influence of the Falcon 460 EC fungicide on microbial diversity, enzyme activity and resistance, and plant growth. Samples of sandy loam with pH KCl 7.0 were collected for laboratory analyses on experimental days 30, 60 and 90. Falcon 460 EC was applied to soil in the following doses: control (soil without the fungicide), dose recommended by the manufacturer, 30-fold higher than the recommended dose, 150-fold higher than the recommended dose and 300-fold higher than the recommended dose. The observed differences in the values of the colony development index and the eco-physiological index indicate that the mixture of spiroxamine, tebuconazole and triadimenol modified the biological diversity of the analyzed groups of soil microorganisms. Bacteria of the genus Bacillus and fungi of the genera Penicillium and Rhizopus were isolated from fungicide-contaminated soil. The tested fungicide inhibited the activity of dehydrogenases, catalase, urease, acid phosphatase and alkaline phosphatase. The greatest changes were induced by the highest fungicide dose 300-fold higher than the recommended dose. Dehydrogenases were most resistant to soil contamination. The Phytotoxkit test revealed that the analyzed fungicide inhibits seed germination capacity and root elongation. The results of this study indicate that excessive doses of the Falcon 460 EC fungicide 30-fold higher than the recommended dose to 300-fold higher than the recommended dose) can induce changes in the biological activity of soil. The analyzed microbiological and biochemical parameters are reliable indicators of the fungicide's toxic effects on soil quality.

  13. Legacy effects overwhelm the short-term effects of exotic plant invasion and restoration on soil microbial community structure, enzyme activities, and nitrogen cycling.

    Science.gov (United States)

    Elgersma, Kenneth J; Ehrenfeld, Joan G; Yu, Shen; Vor, Torsten

    2011-11-01

    Plant invasions can have substantial consequences for the soil ecosystem, altering microbial community structure and nutrient cycling. However, relatively little is known about what drives these changes, making it difficult to predict the effects of future invasions. In addition, because most studies compare soils from uninvaded areas to long-established dense invasions, little is known about the temporal dependence of invasion impacts. We experimentally manipulated forest understory vegetation in replicated sites dominated either by exotic Japanese barberry (Berberis thunbergii), native Viburnums, or native Vacciniums, so that each vegetation type was present in each site-type. We compared the short-term effect of vegetation changes to the lingering legacy effects of the previous vegetation type by measuring soil microbial community structure (phospholipid fatty acids) and function (extracellular enzymes and nitrogen mineralization). We also replaced the aboveground litter in half of each plot with an inert substitute to determine if changes in the soil microbial community were driven by aboveground or belowground plant inputs. We found that after 2 years, the microbial community structure and function was largely determined by the legacy effect of the previous vegetation type, and was not affected by the current vegetation. Aboveground litter removal had only weak effects, suggesting that changes in the soil microbial community and nutrient cycling were driven largely by belowground processes. These results suggest that changes in the soil following either invasion or restoration do not occur quickly, but rather exhibit long-lasting legacy effects from previous belowground plant inputs.

  14. Enhanced conversion of newly-added maize straw to soil microbial biomass C under plastic film mulching and organic manure management

    Science.gov (United States)

    Jin, X.; Filley, T. R.

    2017-12-01

    Management of crop residues using plastic film mulching (PFM) has the potential to improve soil health by accelerating nutrient cycling and facilitating stable C pool production; however, a key aspect of this process—microbial immobilization of residue C—is poorly understood, especially under PFM when combined with different fertilization treatments. A 360-day in situ 13C-tracing technique was used to analyze the contribution and dynamics of microbial biomass C (MBC) to soil organic C (SOC) after 13C-labelled maize straw residue was applied to micro-plot topsoil in a cultivated maize (Zea mays L.) field under 27-year PFM and four fertilization treatments. Over the course of the experiment, MBC content was significantly (P<0.05) higher in treatments of manure (M) and manure plus nitrogen (MN) compared to the no-fertilization (CK) and nitrogen (N) treatments, regardless of PFM. Compared to no PFM controls, PFM enhanced the decomposition of maize straw during summer (Day 60) in the M and MN treatments, exhibiting increases of 93.0% and 28.6% in straw-derived 13C-MBC and 80.4% and 82.9% in 13C-MBC/13C-SOC, respectively. Overall, both PFM and organic manure treatments improved soil fertility through microbe-mediated incorporation of C derived from newly-added maize straw. Our results indicate that microbial growth and activity are affected by the utilization of different C sources and most dramatically during early seasonal transition.

  15. Soil microbial biomass under pine forests in the north-western Spain: influence of stand age, site index and parent material

    Energy Technology Data Exchange (ETDEWEB)

    Mahia, J.; Perez-Ventura, L.; Cabaneiro, A.; Diaz-Ravina, M.

    2006-07-01

    The effects of stand age, site index and parent material on soil biochemical properties related to biomass (extractable C, microbial C and metabolic quotient) were examined in the 0-15 cm mineral soil layers of Pinus pinaster and Pinus sylvestris stand from NW Spain. Two productivity levels (low and high site index), two ages (young and old) and two parent soil materials (granite and acid schists) were considered. The data indicated that there were differences in microbial parameters in soils under different species. In general in P. pinaster forest higher values of biochemical parameters expressed on organic C basis, were observed in the stands of high site index as compared with the low ones; in contrast, in P. sylvestris no differences among stand site index were detected. In both species different results were also observed depending on parent material and a significant effect of stand age was detected for extractable C and microbial C in P. pinaster forest developed over granite. The data seem to indicate that measured parameters may have the potential to be used as indicators of the effect of forest management on soil organic matter quality. (Author) 25 refs.

  16. Microbial conversion technologies

    Energy Technology Data Exchange (ETDEWEB)

    Lau, P. [National Research Council of Canada, Ottawa, ON (Canada). Bioconversion and Sustainable Development

    2006-07-01

    Microbes are a biomass and an valuable resource. This presentation discussed microbial conversion technologies along with background information on microbial cells, their characteristics and microbial diversity. Untapped opportunities for microbial conversion were identified. Metagenomic and genome mining approaches were also discussed, as they can provide access to uncultivated or unculturable microorganisms in communal populations and are an unlimited resource for biocatalysts, novel genes and metabolites. Genome mining was seen as an economical approach. The presentation also emphasized that the development of microbial biorefineries would require significant insights into the relevant microorganisms and that biocatalysts were the ultimate in sustainability. In addition, the presentation discussed the natural fibres initiative for biochemicals and biomaterials. Anticipated outputs were identified and work in progress of a new enzyme-retting cocktail to provide diversity and/or consistency in fibre characteristics for various applications were also presented. It was concluded that it is necessary to leverage understanding of biological processes to produce bioproducts in a clean and sustainable manner. tabs., figs.

  17. Microbial Activity and Silica Degradation in Rice Straw

    Science.gov (United States)

    Kim, Esther Jin-kyung

    Abundantly available agricultural residues like rice straw have the potential to be feedstocks for bioethanol production. Developing optimized conditions for rice straw deconstruction is a key step toward utilizing the biomass to its full potential. One challenge associated with conversion of rice straw to bioenergy is its high silica content as high silica erodes machinery. Another obstacle is the availability of enzymes that hydrolyze polymers in rice straw under industrially relevant conditions. Microbial communities that colonize compost may be a source of enzymes for bioconversion of lignocellulose to products because composting systems operate under thermophilic and high solids conditions that have been shown to be commercially relevant. Compost microbial communities enriched on rice straw could provide insight into a more targeted source of enzymes for the breakdown of rice straw polysaccharides and silica. Because rice straw is low in nitrogen it is important to understand the impact of nitrogen concentrations on the production of enzyme activity by the microbial community. This study aims to address this issue by developing a method to measure microbial silica-degrading activity and measure the effect of nitrogen amendment to rice straw on microbial activity and extracted enzyme activity during a high-solids, thermophilic incubation. An assay was developed to measure silica-degrading enzyme or silicase activity. This process included identifying methods of enzyme extraction from rice straw, identifying a model substrate for the assay, and optimizing measurement techniques. Rice straw incubations were conducted with five different levels of nitrogen added to the biomass. Microbial activity was measured by respiration and enzyme activity. A microbial community analysis was performed to understand the shift in community structure with different treatments. With increased levels of nitrogen, respiration and cellulose and hemicellulose degrading activity

  18. Promiscuous activities of heterologous enzymes lead to unintended metabolic rerouting in Saccharomyces cerevisiae engineered to assimilate various sugars from renewable biomass.

    Science.gov (United States)

    Yun, Eun Ju; Oh, Eun Joong; Liu, Jing-Jing; Yu, Sora; Kim, Dong Hyun; Kwak, Suryang; Kim, Kyoung Heon; Jin, Yong-Su

    2018-01-01

    Understanding the global metabolic network, significantly perturbed upon promiscuous activities of foreign enzymes and different carbon sources, is crucial for systematic optimization of metabolic engineering of yeast Saccharomyces cerevisiae . Here, we studied the effects of promiscuous activities of overexpressed enzymes encoded by foreign genes on rerouting of metabolic fluxes of an engineered yeast capable of assimilating sugars from renewable biomass by profiling intracellular and extracellular metabolites. Unbiased metabolite profiling of the engineered S. cerevisiae strain EJ4 revealed promiscuous enzymatic activities of xylose reductase and xylitol dehydrogenase on galactose and galactitol, respectively, resulting in accumulation of galactitol and tagatose during galactose fermentation. Moreover, during glucose fermentation, a trisaccharide consisting of glucose accumulated outside of the cells probably owing to the promiscuous and transglycosylation activity of β-glucosidase expressed for hydrolyzing cellobiose. Meanwhile, higher accumulation of fatty acids and secondary metabolites was observed during xylose and cellobiose fermentations, respectively. The heterologous enzymes functionally expressed in S. cerevisiae showed promiscuous activities that led to unintended metabolic rerouting in strain EJ4. Such metabolic rerouting could result in a low yield and productivity of a final product due to the formation of unexpected metabolites. Furthermore, the global metabolic network can be significantly regulated by carbon sources, thus yielding different patterns of metabolite production. This metabolomic study can provide useful information for yeast strain improvement and systematic optimization of yeast metabolism to manufacture bio-based products.

  19. On polydispersity of plant biomass recalcitrance and its effects on pretreatment optimization for sugar production

    Science.gov (United States)

    J.Y. Zhu; Steve P. Verrill; Hao Liu; Victoria L. Herian; Xuejun Pan; Donald L. Rockwood

    2011-01-01

    This paper discusses a property associated with plant biomass recalcitrance to enzyme and microbial deconstructions in sugar production from cellulose and hemicelluloses. The hemicelluloses are more readily hydrolyzed to sugars than is cellulose. As a result, optimization to maximize individual glucose and hemicellulose sugar recovery is not possible. This property is...

  20. NRSA enzyme decomposition model data

    Data.gov (United States)

    U.S. Environmental Protection Agency — Microbial enzyme activities measured at more than 2000 US streams and rivers. These enzyme data were then used to predict organic matter decomposition and microbial...

  1. Fractionation of phosphorus added as a vegetal residue (32 P) and a fertilizer (32 P) between soil, plant and microbial biomass

    International Nuclear Information System (INIS)

    Pereira, M.C.

    1988-04-01

    Sugar cane straw and/or P-fertilizer phosphorus-32 labelled were added to a Red Yellow podzolic soil from Goiana-PE. The treated samples were used in a pot experiment, growing sorghum plants for 4 and 6 weeks, and in an incubation experiment with incubation periods of 1, 2, 3, 4 and 6 weeks without plants in order to follow the dynamics of the P added. After each harvest and incubation period the soil were analysed for 31 P and 32 P in the microbial biomass and in sequential extracts with resin (Pi), 0.5 M Na H Co 3 (Pi, Po) and 0.1 N NaOH (Pi, Po). The 31 P and 32 P contents of the sorghum in the pot experiment were also determined. (author)

  2. Urease activity and its relation to soil organic matter, microbial biomass nitrogen and urea-nitrogen assimilation by maize in a Brazilian oxisol under no-tillage and tillage systems

    NARCIS (Netherlands)

    Roscoe, R.; Vasconcellos, C.A.; Furtini Neto, A.E.; Guedes, G.A.A.; Fernandes, L.A.

    2000-01-01

    We studied the relationship between urease activity (UA) and soil organic matter (SOM), microbial biomass N (Nbiom) content, and urea-N fertilizer assimilation by maize in a Dark Red Latosol (Typic Haplustox) cultivated for 9 years under no-tillage (NT), tillage with a disc plough (DP), and tillage

  3. Impact of Transgenic Brassica napus Harboring the Antifungal Synthetic Chitinase (NiC Gene on Rhizosphere Microbial Diversity and Enzyme Activities

    Directory of Open Access Journals (Sweden)

    Mohammad S. Khan

    2017-07-01

    Full Text Available Transgenic Brassica napus harboring the synthetic chitinase (NiC gene exhibits broad-spectrum antifungal resistance. As the rhizosphere microorganisms play an important role in element cycling and nutrient transformation, therefore, biosafety assessment of NiC containing transgenic plants on soil ecosystem is a regulatory requirement. The current study is designed to evaluate the impact of NiC gene on the rhizosphere enzyme activities and microbial community structure. The transgenic lines with the synthetic chitinase gene (NiC showed resistance to Alternaria brassicicola, a common disease causing fungal pathogen. The rhizosphere enzyme analysis showed no significant difference in the activities of fivesoil enzymes: alkalyine phosphomonoestarase, arylsulphatase, β-glucosidase, urease and sucrase between the transgenic and non-transgenic lines of B. napus varieties, Durr-e-NIFA (DN and Abasyne-95 (AB-95. However, varietal differences were observed based on the analysis of molecular variance. Some individual enzymes were significantly different in the transgenic lines from those of non-transgenic but the results were not reproducible in the second trail and thus were considered as environmental effect. Genotypic diversity of soil microbes through 16S–23S rRNA intergenic spacer region amplification was conducted to evaluate the potential impact of the transgene. No significant diversity (4% for bacteria and 12% for fungal between soil microbes of NiC B. napus and the non-transgenic lines was found. However, significant varietal differences were observed between DN and AB-95 with 79% for bacterial and 54% for fungal diversity. We conclude that the NiC B. napus lines may not affect the microbial enzyme activities and community structure of the rhizosphere soil. Varietal differences might be responsible for minor changes in the tested parameters.

  4. Effect of incorporation of walnut cake (Juglans regia in concentrate mixture on degradation of dry matter, organic matter and production of microbial biomass in vitro in goat

    Directory of Open Access Journals (Sweden)

    Mohsin Ahmad Mir

    2015-10-01

    Full Text Available Aim: This study was carried out to investigate the effect of incorporation of different level of walnut cake in concentrate mixture on in vitro dry matter degradation in order to determine its level of supplementation in ruminant ration. Materials and Methods: Walnut cake was used @ 0, 10, 15, 20, 25 and 30% level to formulate an iso-nitrogenous concentrate mixtures and designated as T1, T2, T3, T4, T5 and T6 respectively. The different formulae of concentrate mixtures were used for in vitro gas production studies using goat rumen liquor with wheat straw in 40:60 ratio. Proximate composition, fiber fractionation and calcium and phosphrous content of walnut cake were estimated. Result: The per cent IVDMD value of T1 and T2 diets was 68.42 ± 1.20 and 67.25 ± 1.37 respectively which was found highest (P<0.05 T3, T4, T5 and T6. Similar trend was also found for TDOM and MBP. Inclusion of walnut cake at 10% level in the concentrate mixture does not affect in vitro dry matter digestibility (IVDMD, truly degradable organic matter (TDOM, mg/200 mg DM, total gas production, microbial biomass production (MBP and efficiency of microbial biomass production (EMP. Conclusion: It is concluded that walnut cake incorporation up to 10% level in the iso -nitrogenous concentrate mixture has no any negative effect on in vitro digestibility of dry matter (DM, TDOM, MBP, EMP and total gas production in goat.

  5. Evaluation of optimum roughage to concentrate ratio in maize stover based complete rations for efficient microbial biomass production using in vitro gas production technique

    Directory of Open Access Journals (Sweden)

    Y. Ramana Reddy

    2016-06-01

    Full Text Available Aim: A study was undertaken to evaluate the optimum roughage to concentrate ratio in maize stover (MS based complete diets for efficient microbial biomass production (EMBP using in vitro gas production technique. Materials and Methods: MS based complete diets with roughage to concentrate ratio of 100:0, 90:10, 80:20, 70:30, 60:40, 50:50, 40:60, and 30:70 were formulated, and 200 mg of oven-dried sample was incubated in water bath at 39°C along with media (rumen liquor [RL] - buffer in in vitro gas syringes to evaluate the gas production. The gas produced was recorded at 8 and 24 h of inc ubation. In vitro organic matter digestibility (IVOMD, metabolizable energy (ME, truly digestible organic matter (TDOM, partitioning factor (PF, and EMBP were calculated using appropriate formulae. Ammonia nitrogen and total volatile fatty acids (TVFAs production were analyzed in RL fluid-media mixture after 24 h of incubation. Results: In vitro gas production (ml at 24 h incubation, IVOMD, ME, TDOM, TVFA concentration, and ammonia nitrogen production were increased (p<0.01 in proportion to the increase in the level of concentrate in the diet. Significantly (p<0.01 higher PF and EMBP was noticed in total mixed ration with roughage to concentrate ratio of 60:40 and 50:50 followed by 70:30 and 40:60. Conclusion: Based on the results, it was concluded that the MS can be included in complete rations for ruminants at the level of 50-60% for better microbial biomass synthesis which in turn influences the performance of growing sheep.

  6. Evaluation of optimum roughage to concentrate ratio in maize stover based complete rations for efficient microbial biomass production using in vitro gas production technique.

    Science.gov (United States)

    Reddy, Y Ramana; Kumari, N Nalini; Monika, T; Sridhar, K

    2016-06-01

    A study was undertaken to evaluate the optimum roughage to concentrate ratio in maize stover (MS) based complete diets for efficient microbial biomass production (EMBP) using in vitro gas production technique. MS based complete diets with roughage to concentrate ratio of 100:0, 90:10, 80:20, 70:30, 60:40, 50:50, 40:60, and 30:70 were formulated, and 200 mg of oven-dried sample was incubated in water bath at 39°C along with media (rumen liquor [RL] - buffer) in in vitro gas syringes to evaluate the gas production. The gas produced was recorded at 8 and 24 h of incubation. In vitro organic matter digestibility (IVOMD), metabolizable energy (ME), truly digestible organic matter (TDOM), partitioning factor (PF), and EMBP were calculated using appropriate formulae. Ammonia nitrogen and total volatile fatty acids (TVFAs) production were analyzed in RL fluid-media mixture after 24 h of incubation. In vitro gas production (ml) at 24 h incubation, IVOMD, ME, TDOM, TVFA concentration, and ammonia nitrogen production were increased (p<0.01) in proportion to the increase in the level of concentrate in the diet. Significantly (p<0.01) higher PF and EMBP was noticed in total mixed ration with roughage to concentrate ratio of 60:40 and 50:50 followed by 70:30 and 40:60. Based on the results, it was concluded that the MS can be included in complete rations for ruminants at the level of 50-60% for better microbial biomass synthesis which in turn influences the performance of growing sheep.

  7. Genome-scale biological models for industrial microbial systems.

    Science.gov (United States)

    Xu, Nan; Ye, Chao; Liu, Liming

    2018-04-01

    The primary aims and challenges associated with microbial fermentation include achieving faster cell growth, higher productivity, and more robust production processes. Genome-scale biological models, predicting the formation of an interaction among genetic materials, enzymes, and metabolites, constitute a systematic and comprehensive platform to analyze and optimize the microbial growth and production of biological products. Genome-scale biological models can help optimize microbial growth-associated traits by simulating biomass formation, predicting growth rates, and identifying the requirements for cell growth. With regard to microbial product biosynthesis, genome-scale biological models can be used to design product biosynthetic pathways, accelerate production efficiency, and reduce metabolic side effects, leading to improved production performance. The present review discusses the development of microbial genome-scale biological models since their emergence and emphasizes their pertinent application in improving industrial microbial fermentation of biological products.

  8. Comparison of multivariate microbial datasets with the Shannon index: An example using enzyme activity from diverse marine environments

    DEFF Research Database (Denmark)

    Steen, Andrew; Ziervogel, K.; Arnosti, C.

    2010-01-01

    Heterotrophic microbial communities contain substantial functional diversity, so studies of community function often generate multivariate data sets. Techniques for data reduction and analysis can help elucidate qualitative differences among sites from multivariate data sets that may be difficult...... of four cases, surface water communities accessed substrates at a more even rate than in deeper waters. The technique could usefully be applied to other types of data obtained in studies of microbial activity and the geochemical effects....

  9. Fiscal 2000 project of inviting proposals for international joint research - invitation for international proposal (Power generation No.18). Achievement report on development of device for monitoring biomass decomposing enzyme gene expression; 2000 nendo kokusai kyodo kenkyu teian kobo jigyo - kokusai teian kobo (hatsuden No.18). Biomass bunkai koso idenshi hatsugen monitoring device no kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    A fuel production system is under development to supply fuel for power generation, in which biomass is efficiently fermented. In this connection, based on biomass decomposing enzyme related gene information provided by Japan and the U.S., a DNA (deoxyribonucleic acid) chip is built, wherein biomass decomposing enzymes, control factors, and enzyme secretion enhancing genes are densely deposited. Efforts are made, using the chip for the monitoring of the enzyme production process during the culture of mold, to develop technologies for collecting information simultaneously and comprehensively concerning the expression of great numbers of biomass decomposing enzyme genes and concerning other genes that control the production or enhance the secretion of enzymes. In concrete terms, approximately 2000 types of genes are selected out of the Aspergillus EST database held by the Japanese and U.S. members, and cDNA from the original clones is amplified and purified for each DNA of the 2000 genes. The purified DNA is spotted and fixed on the glass plate for a DNA chip and applied to the mRNA pool whose gene expression profile is known, and the detection conditions are studied for the DNA chip and specifications are optimized. (NEDO)

  10. Biogas Production from Protein-Rich Biomass: Fed-Batch Anaerobic Fermentation of Casein and of Pig Blood and Associated Changes in Microbial Community Composition

    Science.gov (United States)

    Kovács, Etelka; Wirth, Roland; Maróti, Gergely; Bagi, Zoltán; Rákhely, Gábor; Kovács, Kornél L.

    2013-01-01

    It is generally accepted as a fact in the biogas technology that protein-rich biomass substrates should be avoided due to inevitable process inhibition. Substrate compositions with a low C/N ratio are considered difficult to handle and may lead to process failure, though protein-rich industrial waste products have outstanding biogas generation potential. This common belief has been challenged by using protein-rich substrates, i.e. casein and precipitated pig blood protein in laboratory scale continuously stirred mesophilic fed-batch biogas fermenters. Both substrates proved suitable for sustained biogas production (0.447 L CH4/g protein oDM, i.e. organic total solids) in high yield without any additives, following a period of adaptation of the microbial community. The apparent key limiting factors in the anaerobic degradation of these proteinaceous materials were the accumulation of ammonia and hydrogen sulfide. Changes in time in the composition of the microbiological community were determined by next-generation sequencing-based metagenomic analyses. Characteristic rearrangements of the biogas-producing community upon protein feeding and specific differences due to the individual protein substrates were recognized. The results clearly demonstrate that sustained biogas production is readily achievable, provided the system is well-characterized, understood and controlled. Biogas yields (0.45 L CH4/g oDM) significantly exceeding those of the commonly used agricultural substrates (0.25-0.28 L CH4/g oDM) were routinely obtained. The results amply reveal that these high-energy-content waste products can be converted to biogas, a renewable energy carrier with flexible uses that can replace fossil natural gas in its applications. Process control, with appropriate acclimation of the microbial community to the unusual substrate, is necessary. Metagenomic analysis of the microbial community by next-generation sequencing allows a precise determination of the alterations in

  11. Biogas production from protein-rich biomass: fed-batch anaerobic fermentation of casein and of pig blood and associated changes in microbial community composition.

    Directory of Open Access Journals (Sweden)

    Etelka Kovács

    Full Text Available It is generally accepted as a fact in the biogas technology that protein-rich biomass substrates should be avoided due to inevitable process inhibition. Substrate compositions with a low C/N ratio are considered difficult to handle and may lead to process failure, though protein-rich industrial waste products have outstanding biogas generation potential. This common belief has been challenged by using protein-rich substrates, i.e. casein and precipitated pig blood protein in laboratory scale continuously stirred mesophilic fed-batch biogas fermenters. Both substrates proved suitable for sustained biogas production (0.447 L CH4/g protein oDM, i.e. organic total solids in high yield without any additives, following a period of adaptation of the microbial community. The apparent key limiting factors in the anaerobic degradation of these proteinaceous materials were the accumulation of ammonia and hydrogen sulfide. Changes in time in the composition of the microbiological community were determined by next-generation sequencing-based metagenomic analyses. Characteristic rearrangements of the biogas-producing community upon protein feeding and specific differences due to the individual protein substrates were recognized. The results clearly demonstrate that sustained biogas production is readily achievable, provided the system is well-characterized, understood and controlled. Biogas yields (0.45 L CH4/g oDM significantly exceeding those of the commonly used agricultural substrates (0.25-0.28 L CH4/g oDM were routinely obtained. The results amply reveal that these high-energy-content waste products can be converted to biogas, a renewable energy carrier with flexible uses that can replace fossil natural gas in its applications. Process control, with appropriate acclimation of the microbial community to the unusual substrate, is necessary. Metagenomic analysis of the microbial community by next-generation sequencing allows a precise determination of the

  12. Microbial biomass, microbial diversity, soil carbon storage, and stability after incubation of soil from grass-clover pastures of different age

    DEFF Research Database (Denmark)

    Müller-Stöver, Dorette Sophie; Hauggaard-Nielsen, Henrik; Eriksen, Jørgen

    2012-01-01

    A laboratory incubation study with clover grass pasture soils of seven different ages (0, 1, 2, 3, 4, 5, and 16 production years) was carried out to determine initial soil carbon (C) and nitrogen (N) stocks and potentials for greenhouse gas emissions (N2O and CO2). Compared with the soil from...... the recently established pasture, an increase of total soil C and N was observed along with pasture age. Greenhouse gas emissions were low and not significantly different among the soils from younger pastures (0-5 years), but especially N2O emissions increased markedly in the soil from 16-year-old grass......-clover. Low emissions might mainly be due to an early C limitation occurring in the soils from younger pastures, which was also corroborated by decreasing levels of cold water-extractable C and early shifts within the microbial community. However, higher emissions from the old pasture soil were offset by its...

  13. Farm Deployable Microbial Bioreactor for Fuel Ethanol Production

    Energy Technology Data Exchange (ETDEWEB)

    Okeke, Benedict [Auburn Univ., Montgomery AL (United States)

    2016-03-30

    Research was conducted to develop a farm and field deployable microbial bioreactor for bioethanol production from biomass. Experiments were conducted to select the most efficient microorganisms for conversion of plant fiber to sugars for fermentation to ethanol. Mixtures of biomass and surface soil samples were collected from selected sites in Alabama black belt counties (Macon, Sumter, Choctaw, Dallas, Montgomery, Lowndes) and other areas within the state of Alabama. Experiments were conducted to determine the effects of culture parameters on key biomass saccharifying enzymes (cellulase, beta-glucosidase, xylanase and beta-xylosidase). A wide-scale sampling of locally-grown fruits in Central Alabama was embarked to isolate potential xylose fermenting microorganisms. Yeast isolates were evaluated for xylose fermentation. Selected microorganisms were characterized by DNA based methods. Factors affecting enzyme production and biomass saccharification were examined and optimized in the laboratory. Methods of biomass pretreatment were compared. Co-production of amylolytic enzymes with celluloytic-xylanolytic enzymes was evaluated; and co-saccharification of a combination of biomass, and starch-rich materials was examined. Simultaneous saccharification and fermentation with and without pre-saccharifcation was studied. Whole culture broth and filtered culture broth simultaneous saccahrifcation and fermentation were compared. A bioreactor system was designed and constructed to employ laboratory results for scale up of biomass saccharification.

  14. Quantification of methanogenic biomass by enzyme-linked immunosorbent assay and by analysis of specific methanogenic cofactors

    Energy Technology Data Exchange (ETDEWEB)

    Gorris, L G.M.; Kemp, H A; Archer, D B

    1987-01-01

    The reliability and accuracy with which enzyme-linked immunosorbent assay (ELISA) and an assay of methanogenic cofactors detect and quantify methanogenic species were investigated. Both assays required standardization with laboratory cultures of methanogenic bacteria and were applied to mixtures of pure cultures and samples from anaerobic digesters. ELISA was shown to be a simple method for detecting and quantifying individual methanogenic species. The range of species which can be assayed is limited by the range of antisera available but, potentially, ELISA can be applied to all methanogens. Although the cofactor assay is not species-specific it can distinguish hydrogenotrophic and acetotrophic methanogens and is quantitative.

  15. Microbial biomass and organic nutrients in the deep-sea sediments of the Central Indian Ocean Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.; Sheelu, G.; LokaBharathi, P.A.; Nair, S.; Mohandass, C.

    PMNprogramoftheDepartmentofOceanDevelopment,GovernmentofIndia.TheauthorsarethankfultothescientistsandcrewAASidorentzoforcooperationandassistanceduringthelongcruisesinthesamplingarea.The authorsalsowishtothankMs.GowriRivonkarfortechnicalassistanceinthelaboratory.NIOContributionNo.3509.ThispaperispartoftheseriespublishedinthespecialissueofMarineGeoresourcesandGeotechnology,Volume18,Number3,2000. AddresscorrespondencetoChandralataRaghukumar,NationalInstituteof...%)wastwotimesmorethanthatofthe MicrobialBiomassandOrganicNutrientsinCIOB 9 Figure4.(a)± (e)ConcentrationofLOM,TOC,andlivingbiomass-Cin® vecoresatdiŒerentdepths. bacterialisolates(34%).Ontheotherhand,numberofbacterialisolatesproducingproteasewere2.5timesmorethanthefungalisolates...

  16. Influence of a direct-fed microbial and xylanase enzyme on the dietary energy uptake efficiency and performance of broiler chickens.

    Science.gov (United States)

    Murugesan, Ganapathi Raj; Persia, Michael E

    2015-09-01

    Efficacy of a multi-strain direct-fed microbial product (PoultryStar(®) ME; PS) and a xylanase enzyme product on the dietary energy utilization efficiency and resulting performance in broiler chickens was evaluated. Apart from performance parameters, cecal and serum metabolites and activities of hepatic enzymes involved in energy metabolism were also determined. Ross 308 chicks were fed one of four experimental diets [control (CON), CON + PS, CON + xylanase and CON + PS + xylanase] using a 2 × 2 factorial arrangement from 1-21 days of age. Cecal proportions of propionate and butyrate, as well as total short-chain fatty acid concentration were increased (P energy uptake and hepatic energy retention. The combination additively increased the FCR, suggesting involvement of synergistic modes of actions. © 2014 Society of Chemical Industry.

  17. Digestive enzyme activities in the guts of bonnethead sharks (Sphyrna tiburo) provide insight into their digestive strategy and evidence for microbial digestion in their hindguts.

    Science.gov (United States)

    Jhaveri, Parth; Papastamatiou, Yannis P; German, Donovan P

    2015-11-01

    Few investigations have studied digestive enzyme activities in the alimentary tracts of sharks to gain insight into how these organisms digest their meals. In this study, we examined the activity levels of proteases, carbohydrases, and lipase in the pancreas, and along the anterior intestine, spiral intestine, and colon of the bonnethead shark, Sphyrna tiburo. We then interpreted our data in the context of a rate-yield continuum to discern this shark's digestive strategy. Our data show anticipated decreasing patterns in the activities of pancreatic enzymes moving posteriorly along the gut, but also show mid spiral intestine peaks in aminopeptidase and lipase activities, which support the spiral intestine as the main site of absorption in bonnetheads. Interestingly, we observed spikes in the activity levels of N-acetyl-β-D-glucosaminidase and β-glucosidase in the bonnethead colon, and these chitin- and cellulose-degrading enzymes, respectively, are likely of microbial origin in this distal gut region. Taken in the context of intake and relatively long transit times of food through the gut, the colonic spikes in N-acetyl-β-D-glucosaminidase and β-glucosidase activities suggest that bonnetheads take a yield-maximizing strategy to the digestive process, with some reliance on microbial digestion in their hindguts. This is one of the first studies to examine digestive enzyme activities along the gut of any shark, and importantly, the data match with previous observations that sharks take an extended time to digest their meals (consistent with a yield-maximizing digestive strategy) and that the spiral intestine is the primary site of absorption in sharks. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. [Characteristics of soil microbes and enzyme activities in different degraded alpine meadows].

    Science.gov (United States)

    Yin, Ya Li; Wang, Yu Qin; Bao, Gen Sheng; Wang, Hong Sheng; Li, Shi Xiong; Song, Mei Ling; Shao, Bao Lian; Wen, Yu Cun

    2017-12-01

    Soil microbial biomass C and N, microbial diversities and enzyme activity in 0-10 cm and 10-20 cm soil layers of different degraded grasslands (non-degradation, ND; light degradation, LD; moderate degradation, MD; sever degradation, SD; and black soil beach, ED) were measured by Biolog and other methods. The results showed that: 1) There were significant diffe-rences between 0-10 cm and 10-20 cm soil layers in soil microbial biomass, diversities and inver-tase activities in all grasslands. 2) The ratio of soil microbial biomass C to N decreased significantly with the grassland degradation. In the 0-10 cm soil layer, microbial biomass C and N in ND and LD were significantly higher than that in MD, SD and ED. Among the latter three kinds of grasslands, there was no difference for microbial biomass C, but microbial biomass N was lower in MD than in the other grasslands. The average color change rate (AWCD) and McIntosh Index (U) also decreased with grassland degradation, but only the reduction from ND to MD was significant. There were no differences among all grasslands for Shannon index (H) and Simpson Index (D). The urease activity was highest in MD and SD, and the activity of phosphatase and invertase was lowest in ED. In the 10-20 cm soil layer, microbial biomass C in ND and LD were significantly higher than that in the other grasslands. Microbial biomass N in LD and ED were significantly higher than that in the other grasslands. Carbon metabolism index in MD was significantly lower than that in LD and SD. AWCD and U index in ND and LD were significantly higher than that in ED. H index and D index showed no difference among different grasslands. The urease activity in ND and MD was significantly higher than that in the other grasslands. The phosphatase activity was highest in MD, and the invertase activity was lowest in MD. 3) The belowground biomass was significantly positively correlated with microbial biomass, carbon metabolic index and phosphatase activity

  19. Comparative effects of application of coated and non-coated urea in clayey and sandy paddy soil microcosms examined by the 15N tracer technique. 2. Effects on soil microbial biomass N and microbial 15N immobilization

    International Nuclear Information System (INIS)

    Acquaye, Solomon; Inubushi, Kazuyuki

    2004-01-01

    Nitrogen fertilizer and soil types exert an impact on plant and soil microbial biomass (SMB). A 15 N tracer experiment was conducted to compare the effects of the application of controlled-release coated urea (CRCU) and urea on SMB in gley (clayey) and sandy paddy soils. The fertilizers were applied at the rate of 8 g N m -2 for CRCU as deep-side placement and 10 g N m -2 for urea mixed into soil or applied into floodwater. The soil type and soil layer (surface: few millimeter depth of surface soil to include benthic algae; subsurface: 1 to 20 cm depth), but not the fertilizer type, affected the amount of microbial biomass N (B N ). On an area basis, subsurface soil layers contained about 2-3 times the amount of B N in the surface layers. The seasonal average B N amount i.e. at 1 to 20 cm depth, in the gley soil was 1.67 g N m -2 , compared to 1.20 g N m -2 for the sandy soil. The proportion of B N in total soil N was significantly influenced by the soil type and soil layer, and was higher for the surface layers of both soils and subsurface layer of the sandy soil than for the subsurface layer of gley soil. Soil type, soil layer, and fertilizer type significantly influenced the amount of microbial biomass 15 N (B 15N ). Unlike B N , the amount of B 15N was significantly higher in the surface (11.9-177.3 mg N m -2 ) than in the subsurface soil layers (4.8-83.6 mg N m -2 ), especially with urea application between 60 and 120 DAT (days after transplanting). At 30 DAT, the subsurface layer of the sandy soil showed a higher B 15N (218 mg N m -2 ) amount than the surface layer (133.4 mg N m -2 ). Sandy soil (4.8-218 mg N m -2 ) and urea (6.2-218 mg N m -2 ) induced a larger increase of the amount of B 15 N than the gley soil (6.2-83.6 mg N m -2 ) and CRCU (4.8-40 mg Nm -2 ). Again, the sandy soil, surface soil layers, and urea induced a higher proportion (%) of B 15N in B N than the gley soil, subsurface soil layers, and CRCU, respectively. The soil type affected B N

  20. Evaluation and selection of Bacillus species based on enzyme production, antimicrobial activity and biofilm synthesis as direct-fed microbials candidates for poultry

    Directory of Open Access Journals (Sweden)

    Juan D Latorre

    2016-10-01

    Full Text Available Social concern about misuse of antibiotics as growth promoters (AGP and generation of multidrug-resistant bacteria have restricted the dietary inclusion of antibiotics in livestock feed in several countries. Direct-fed microbials (DFM are one of the multiple alternatives commonly evaluated as substitutes of AGP. Sporeformer bacteria from the genus Bacillus have been extensively investigated because of their extraordinary properties to form highly-resistant endospores, production of antimicrobial compounds and synthesize different exogenous enzymes. The purpose of the present study was to evaluate and select Bacillus spp. from environmental and poultry sources as DFM candidates, considering their enzyme production profile, biofilm synthesis capacity and pathogen-inhibition activity. Thirty one Bacillus isolates were screened for in vitro relative enzyme activity of amylase, protease, lipase and phytase using a selective media for each enzyme, with 3/31 strains selected as superior enzyme producers. These three isolates were identified as B. subtilis (1/3, and B. amyloliquefaciens (2/3 based on biochemical tests and 16S rRNA sequence analysis. For evaluation of biofilm synthesis, the generation of an adherent crystal violet-stained ring was determined in polypropylene tubes, resulting in 11/31 strains showing a strong biofilm formation. Moreover, all Bacillus strains were evaluated for growth inhibition activity against Salmonella enterica serovar Enteritidis (26/31, Escherichia coli (28/31 and Clostridioides difficile (29/31. Additionally, in previous in vitro and in vivo studies, these selected Bacillus strains have shown to be resistant to different biochemical conditions of the gastrointestinal tract of poultry. Results of the present study suggest that the selection and consumption of Bacillus-DFM, producing a variable set of enzymes and antimicrobial compounds may contribute to enhanced performance through improving nutrient digestibility

  1. Engineering a Synthetic Microbial Consortium for Comprehensive Conversion of Algae Biomass into Terpenes for Advanced Biofuels and Bioproducts

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Weihua [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Wu, Benjamin Chiau-Pin [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Davis, Ryan Wesley [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2015-10-01

    Recent strategies for algae-based biofuels have primarily focused on biodiesel production by exploiting high algal lipid yields under nutrient stress conditions. However, under conditions supporting robust algal biomass accumulation, carbohydrate and proteins typically comprise up to ~80% of the ash-free dry weight of algae biomass. Therefore, comprehensive utilization of algal biomass for production of multipurpose intermediate- to high-value bio-based products will promote scale-up of algae production and processing to commodity volumes. Terpenes are hydrocarbon and hydrocarbon-like (C:O>10:1) compounds with high energy density, and are therefore potentially promising candidates for the next generation of value added bio-based chemicals and “drop-in” replacements for petroleum-based fuels. In this study, we demonstrated the feasibility of bioconversion of proteins into sesquiterpene compounds as well as comprehensive bioconversion of algal carbohydrates and proteins into biofuels. To achieve this, the mevalonate pathway was reconstructed into an E. coli chassis with six different terpene synthases (TSs). Strains containing the various TSs produced a spectrum of sesquiterpene compounds in minimal medium containing amino acids as the sole carbon source. The sesquiterpene production was optimized through three different regulation strategies using chamigrene synthase as an example. The highest total terpene titer reached 166 mg/L, and was achieved by applying a strategy to minimize mevalonate accumulation in vivo. The highest yields of total terpene were produced under reduced IPTG induction levels (0.25 mM), reduced induction temperature (25°C), and elevated substrate concentration (20 g/L amino acid mixture). A synthetic bioconversion consortium consisting of two engineering E. coli strains (DH1-TS and YH40-TS) with reconstructed terpene biosynthetic pathways was designed for comprehensive single-pot conversion of algal carbohydrates and proteins to

  2. Solid/solution Cu fractionations/speciation of a Cu contaminated soil after pilot-scale electrokinetic remediation and their relationships with soil microbial and enzyme activities

    International Nuclear Information System (INIS)

    Wang Quanying; Zhou Dongmei; Cang Long; Li Lianzhen; Wang Peng

    2009-01-01

    The aim of this study was to investigate the detailed metal speciation/fractionations of a Cu contaminated soil before and after electrokinetic remediation as well as their relationships with the soil microbial and enzyme activities. Significant changes in the exchangeable and adsorbed-Cu fractionations occurred after electrokinetic treatment, while labile soil Cu in the solution had a tendency to decrease from the anode to the cathode, and the soil free Cu 2+ ions were mainly accumulated in the sections close to the cathode. The results of regression analyses revealed that both the soil Cu speciation in solution phase and the Cu fractionations in solid phase could play important roles in the changes of the soil microbial and enzyme activities. Our findings suggest that the bioavailability of soil heavy metals and their ecotoxicological effects on the soil biota before and after electroremediation can be better understood in terms of their chemical speciation and fractionations. - The assessment of the roles of soil solution speciation and solid-phase fractionations in metal bioavailability after electrokinetic remediation deserves close attention.

  3. Stabilization of red fruit-based smoothies by high-pressure processing. Part A. Effects on microbial growth, enzyme activity, antioxidant capacity and physical stability.

    Science.gov (United States)

    Hurtado, Adriana; Guàrdia, Maria Dolors; Picouet, Pierre; Jofré, Anna; Ros, José María; Bañón, Sancho

    2017-02-01

    Non-thermal pasteurization by high-pressure processing (HPP) is increasingly replacing thermal processing (TP) to maintain the properties of fresh fruit products. However, most of the research on HPP-fruit products only partially addresses fruit-pressure interaction, which limits its practical interest. The objective of this study was to assess the use of a mild HPP treatment to stabilize red fruit-based smoothies (microbial, enzymatic, oxidative and physical stability). HPP (350 MPa/10 °C/5 min) was slightly less effective than TP (85 °C/7 min) in inactivating microbes (mesophilic and psychrophilic bacteria, coliforms, yeasts and moulds) in smoothies kept at 4 °C for up to 28 days. The main limitation of using HPP was its low efficacy in inactivating oxidative (polyphenol oxidase and peroxidase) and hydrolytic (pectin methyl esterase) enzymes. Data on antioxidant status, colour parameters, browning index, transmittance, turbidity and viscosity confirmed that the HPP-smoothies have a greater tendency towards oxidation and clarification, which might lead to undesirable sensory and nutritional changes (see Part B). The microbial quality of smoothies was adequately controlled by mild HPP treatment without affecting their physical-chemical characteristics; however, oxidative and hydrolytic enzymes are highly pressure-resistant, which suggests that additional strategies should be used to stabilize smoothies. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  4. Mineralogical impact on long-term patterns of soil nitrogen and phosphorus enzyme activities

    Science.gov (United States)

    Mikutta, Robert; Turner, Stephanie; Meyer-Stüve, Sandra; Guggenberger, Georg; Dohrmann, Reiner; Schippers, Axel

    2014-05-01

    Soil chronosequences provide a unique opportunity to study microbial activity over time in mineralogical diverse soils of different ages. The main objective of this study was to test the effect of mineralogical properties, nutrient and organic matter availability over whole soil pro-files on the abundance and activity of the microbial communities. We focused on microbio-logical processes involved in nitrogen and phosphorus cycling at the 120,000-year Franz Josef soil chronosequence. Microbial abundances (microbial biomass and total cell counts) and enzyme activities (protease, urease, aminopeptidase, and phosphatase) were determined and related to nutrient contents and mineralogical soil properties. Both, microbial abundances and enzyme activities decreased with soil depth at all sites. In the organic layers, microbial biomass and the activities of N-hydrolyzing enzymes showed their maximum at the intermediate-aged sites, corresponding to a high aboveground biomass. In contrast, the phosphatase activity increased with site age. The activities of N-hydrolyzing enzymes were positively correlated with total carbon and nitrogen contents, whereas the phosphatase activity was negatively correlated with the phosphorus content. In the mineral soil, the enzyme activities were generally low, thus reflecting the presence of strongly sorbing minerals. Sub-strate-normalized enzyme activities correlated negatively to clay content as well as poorly crystalline Al and Fe oxyhydroxides, supporting the view that the evolution of reactive sec-ondary mineral phases alters the activity of the microbial communities by constraining sub-strate availability. Our data suggest a strong mineralogical influence on nutrient cycling par-ticularly in subsoil environments.

  5. [Effects of heavy metals pollution on soil microbial communities metabolism and soil enzyme activities in coal mining area of Tongchuan, Shaanxi Province of Northwest China].

    Science.gov (United States)

    Guo, Xing-Liang; Gu, Jie; Chen, Zhi-Xue; Gao, Hua; Qin, Qing-Jun; Sun, Wei; Zhang, Wei-Juan

    2012-03-01

    This paper studied the metabolism of soil microbes, functions of soil microbial communities, and activities of soil enzymes in a coal mining area of Tongchuan. In the coal mining area, the concentrations of soil Cu, Zn, Cd, and Pb were significantly higher than those in the non-mining area, of which, Cd contributed most to the heavy metals pollution. By adopting Biolog method combining with principal component analysis (PCA) and cluster analysis, it was found that the metabolic characteristics of different soil microbial communities varied significantly with increasing soil heavy metals pollution, and the variation was mainly manifested in the metabolic patterns of carbon sources such as saccharides and amino acids. In slightly and moderately polluted soils, the utilization of carbon sources by soil microbial communities was activated; while in heavily polluted soils, the carbon sources utilization was inhibited. The activities of soil urease, protease, alkaline phosphatase, and catalase all tended to decline with intensifying soil heavy metals pollution. The soil urease, protease, alkaline phosphatase, and catalase activities in the coal mining area were 50.5%-65.1%, 19.1%-57.1%, 87.2%-97.5%, and 77.3%-86.0% higher than those in the non-mining area, respectively. The activities of soil sucrase and cellulase were activated in slightly and moderately polluted soils, but inhibited in heavily polluted soils.

  6. The impact on the soil microbial community and enzyme activity of two earthworm species during the bioremediation of pentachlorophenol-contaminated soils.

    Science.gov (United States)

    Lin, Zhong; Zhen, Zhen; Wu, Zhihao; Yang, Jiewen; Zhong, Laiyuan; Hu, Hanqiao; Luo, Chunling; Bai, Jing; Li, Yongtao; Zhang, Dayi

    2016-01-15

    The ecological effect of earthworms on the fate of soil pentachlorophenol (PCP) differs with species. This study addressed the roles and mechanisms by which two earthworm species (epigeic Eisenia fetida and endogeic Amynthas robustus E. Perrier) affect the soil microbial community and enzyme activity during the bioremediation of PCP-contaminated soils. A. robustus removed more soil PCP than did E. foetida. A. robustus improved nitrogen utilisation efficiency and soil oxidation more than did E. foetida, whereas the latter promoted the organic matter cycle in the soil. Both earthworm species significantly increased the amount of cultivable bacteria and actinomyces in soils, enhancing the utilisation rate of the carbon source (i.e. carbohydrates, carboxyl acids, and amino acids) and improving the richness and evenness of the soil microbial community. Additionally, earthworm treatment optimized the soil microbial community and increased the amount of the PCP-4-monooxygenase gene. Phylogenic classification revealed stimulation of indigenous PCP bacterial degraders, as assigned to the families Flavobacteriaceae, Pseudomonadaceae and Sphingobacteriacea, by both earthworms. A. robustus and E. foetida specifically promoted Comamonadaceae and Moraxellaceae PCP degraders, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. The Physiology of Microbial Symbionts in Fungus-Farming Termites

    DEFF Research Database (Denmark)

    Rodrigues da Costa, Rafael

    . The termites provide the fungus with optimal growth conditions (e.g., stable temperature and humidity), as well as with constant inoculation of growth substrate and protection against alien fungi. In reward, the fungus provides the termites with a protein-rich fungal biomass based diet. In addition...... with their symbionts are main decomposer of organic matter in Africa, and this is reflect of a metabolic complementarity to decompose plant biomass in the genome of the three organisms involved in this symbiosis. Many of the physiological aspects of this symbiosis remain obscure, and here I focus on physiology...... of microbial symbionts associated with fungus-growing termites. Firstly, by using a set of enzyme assays, plant biomass compositional analyses, and RNA sequencing we gained deeper understanding on what enzymes are produced and active at different times of the decomposition process. Our results show that enzyme...

  8. Comprehensive functional characterization of the glycoside hydrolase family 3 enzymes from Cellvibrio japonicus reveals unique metabolic roles in biomass saccharification.

    Science.gov (United States)

    Nelson, Cassandra E; Attia, Mohamed A; Rogowski, Artur; Morland, Carl; Brumer, Harry; Gardner, Jeffrey G

    2017-12-01

    Lignocellulose degradation is central to the carbon cycle and renewable biotechnologies. The xyloglucan (XyG), β(1→3)/β(1→4) mixed-linkage glucan (MLG) and β(1→3) glucan components of lignocellulose represent significant carbohydrate energy sources for saprophytic microorganisms. The bacterium Cellvibrio japonicus has a robust capacity for plant polysaccharide degradation, due to a genome encoding a large contingent of Carbohydrate-Active enZymes (CAZymes), many of whose specific functions remain unknown. Using a comprehensive genetic and biochemical approach, we have delineated the physiological roles of the four C. japonicus glycoside hydrolase family 3 (GH3) members on diverse β-glucans. Despite high protein sequence similarity and partially overlapping activity profiles on disaccharides, these β-glucosidases are not functionally equivalent. Bgl3A has a major role in MLG and sophorose utilization, and supports β(1→3) glucan utilization, while Bgl3B underpins cellulose utilization and supports MLG utilization. Bgl3C drives β(1→3) glucan utilization. Finally, Bgl3D is the crucial β-glucosidase for XyG utilization. This study not only sheds the light on the metabolic machinery of C. japonicus, but also expands the repertoire of characterized CAZymes for future deployment in biotechnological applications. In particular, the precise functional analysis provided here serves as a reference for informed bioinformatics on the genomes of other Cellvibrio and related species. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Comprehensive functional characterization of the Glycoside Hydrolase Family 3 enzymes from Cellvibrio japonicus reveals unique metabolic roles in biomass saccharification

    International Nuclear Information System (INIS)

    Nelson, Cassandra E.; Attia, Mohamed A.; Rogowski, Artur; Morland, Carl; Brumer, Harry; Gardner, Jeffrey G.

    2017-01-01

    Here, lignocellulose degradation is central to the carbon cycle and renewable biotechnologies. The xyloglucan (XyG), β(1!3)/β(1!4) mixed-linkage glucan (MLG), and β(1!3) glucan components of lignocellulose represent significant carbohydrate energy sources for saprophytic microorganisms. The bacterium Cellvibrio japonicus has a robust capacity for plant polysaccharide degradation, due to a genome encoding a large contingent of Carbohydrate-Active Enzymes (CAZymes), many of whose specific functions remain unknown. Using a comprehensive genetic and biochemical approach we have delineated the physiological roles of the four C. japonicus Glycoside Hydrolase Family 3 (GH3) members on diverse β-glucans. Despite high protein sequence similarity and partially overlapping activity profiles on disaccharides, these β-glucosidases are not functionally equivalent. Bgl3A has a major role in MLG and sophorose utilization, and supports β(1!3) glucan utilization, while Bgl3B underpins cellulose utilization and supports MLG utilization. Bgl3C drives β(1!3) glucan utilization. Finally, Bgl3D is the crucial β-glucosidase for XyG utilization. This study not only sheds the light on the metabolic machinery of C. japonicus, but also expands the repertoire of characterized CAZymes for future deployment in biotechnological applications. In particular, the precise functional analysis provided here serves as a reference for informed bioinformatics on the genomes of other Cellvibrio and related species.

  10. Short- and long-term effects of nutrient enrichment on microbial exoenzyme activity in mangrove peat

    KAUST Repository

    Keuskamp, Joost A.; Feller, Ilka C.; Laanbroek, Hendrikus J.; Verhoeven, Jos T.A.; Hefting, Mariet M.

    2015-01-01

    -limited mangroves. To examine this, we quantified the short- and long-term effects of N and P enrichment on microbial biomass and decomposition-related enzyme activities in a Rhizophora mangle-dominated mangrove, which had been subjected to fertilisation treatments

  11. Biomassa e atividades microbianas em solo sob pastagem com diferentes lotações de ovinos Biomass and microbial activity in pasture soil under different sheep grazing pressure

    Directory of Open Access Journals (Sweden)

    Martha Regina Lucizano Garcia

    2007-04-01

    Full Text Available Os efeitos da lotação de animais na produção de ovinos têm sido bastante estudados. No entanto, informações sobre seus efeitos na biomassa e nas atividades microbianas e, em conseqüência, na fertilidade do solo de pastagens são escassas. Neste trabalho, os efeitos da lotação de ovinos (LO na biomassa e nas atividades microbianas responsáveis pela transformação dos compostos do C e N em solo de clima subtropical foram avaliados. As amostras de solo foram coletadas nas camadas de 0-10 e 10-20 cm de pastos com baixa LO (5 animais ha-1, alta LO (40-50 animais ha-1 e com ausência de animais, em um delineamento inteiramente casualizado em parcelas subdivididas, com seis repetições. Os maiores valores de biomassa microbiana e das atividades respiratória, nitrificante e enzimática (urease e protease foram encontrados nos solos dos pastos com baixa LO. Estes pastos também acumularam as maiores quantidades de matéria orgânica e N total. Essas variáveis foram reduzidas nos pastos sem animais ou com alta LO. Vegetação descontínua e intensa mineralização podem ter acarretado a diminuição dessas variáveis nos pastos com alta LO. Alta correlação foi obtida entre matéria orgânica, C orgânico e N total com as quantidades de biomassa microbiana e a atividade enzimática. A camada de 0-10 cm apresentou valores maiores das variáveis estudadas do que os encontrados na camada de 10-20 cm.The effect of grazing pressure in sheep production has been studied, but not in relation to soil microbiological parameters or the consequences on soil fertility. The effect of grazing pressure (GP by sheep on biomass and microbial activity related to C and N compounds cycling in subtropical region soil was studied. Soil samples were collected from the 0-10 cm and 10-20 cm layers in pastures with low GP (5 animals ha-1, high GP (40-50 animals ha-1 and in absence of animals, in a completely randomized design with 6 replicates. The highest values

  12. Mineralisation of low concentrations of organic compounds and microbial biomass in surface and vadose zone soils from the Swan Coastal Plain, Western Australia

    International Nuclear Information System (INIS)

    Franzmann, P. D.; Zappia, L. R.; Patterson, B. M.; Rayner, J.L.; Davis, G. B.

    1998-01-01

    Mineralisation rates for ring-labelled 14 C-atrazine, benzene, and toluene were determined for a number of Swan Coastal Plain soils which had not been previously in contact with these contaminants. Microbial biomass was estimated by phospholipid techniques in soil samples from the same sites. Mineralisation rates for the volatile aromatic hydrocarbons in the thin (up to 30 cm) surface soils (23.4-42.6 μmol/kg . day when fitted to zeroth-order rate kinetics) were appreciably faster than the mineralisation rates measured in soils collected from a depth of 1 m (0.11-3.0 μmol/kg per day). The pesticide atrazine was degraded slowly, with degradation rates in surface soils ranging from 1.22x10 -3 to 2.78x10 -4 μmol/kg . day, and those in soils at 1 m ranging from 5. 13x10 -4 to 3.1610 -4 μmol/kg per day. When mineralisation data were fitted to first-order kinetics then half-lives for atrazine mineralisation ranged from about 1 year in surface soils to 3.1-5.1 years in soils at 1 m. These rates were comparable to atrazine mineralisation rates measured in soils that had not been previously in contact with atrazine, as reported by others. The extent of mineralisation of the organic compounds v. time generally fitted better to zeroth-order kinetics than to first-order kinetics. Confidence in the determination of the mineralisation rate at slow rates of mineralisation was low (r 2 as low as 0.2 in plots of the extent of mineralisation v. time in zeroth-order and first-order plots for samples that showed slow mineralisation). Biomass, expressed as stationary phase Escherichia coli equivalents (SPEE), ranged from 1.4 x10 7 to 1x2x10 8 SPEE/g dry weight for surface soils, and from 8.6x10 5 to 7.3x10 6 SPEE/g dry weight for soils at 1 m. The phospholipids extracted from surface soils tended to contain higher proportions of unsaturated and hydroxy fatty acids than soils at 1 m, which contained higher relative concentrations of branched fatty acids, which is consistent with the

  13. Bacterial synergism in lignocellulose biomass degradation : Complementary roles of degraders as influenced by complexity of the carbon source

    NARCIS (Netherlands)

    Cortes Tolalpa, Larisa; Falcao Salles, Joana; van Elsas, Jan

    2017-01-01

    Lignocellulosic biomass (LCB) is an attractive source of carbon for the production of sugars and other chemicals. Due to its inherent complexity and heterogeneity, efficient biodegradation requires the actions of different types of hydrolytic enzymes. In nature, complex microbial communities that

  14. Hydrolytic enzyme activity enhanced by Barium supplementation

    Directory of Open Access Journals (Sweden)

    Camilo Muñoz

    2016-10-01

    Full Text Available Hydrolysis of polymers is a first and often limiting step during the degradation of plant residues. Plant biomass is generally a major component of waste residues and a major renewable resource to obtain a variety of secondary products including biofuels. Improving the performance of enzymatic hydrolysis of plant material with minimum costs and limiting the use of additional microbial biomass or hydrolytic enzymes directly influences competitiveness of these green biotechnological processes. In this study, we cloned and expressed a cellulase and two esterases recovered from environmental thermophilic soil bacterial communities and characterize their optimum activity conditions including the effect of several metal ions. Results showed that supplementing these hydrolytic reactions with Barium increases the activity of these extracellular hydrolytic enzymes. This observation represents a simple but major improvement to enhance the efficiency and competitiveness of this process within an increasingly important biotechnological sector.

  15. Treatment of biomass to obtain fermentable sugars

    Science.gov (United States)

    Dunson, Jr., James B.; Tucker, Melvin [Lakewood, CO; Elander, Richard [Evergreen, CO; Hennessey, Susan M [Avondale, PA

    2011-04-26

    Biomass is pretreated using a low concentration of aqueous ammonia at high biomass concentration. Pretreated biomass is further hydrolyzed with a saccharification enzyme consortium. Fermentable sugars released by saccharification may be utilized for the production of target chemicals by fermentation.

  16. Characterization of a Cellulomonas fimi exoglucanase/xylanase-endoglucanase gene fusion which improves microbial degradation of cellulosic biomass.

    Science.gov (United States)

    Duedu, Kwabena O; French, Christopher E

    2016-11-01

    Effective degradation of cellulose requires multiple classes of enzyme working together. However, naturally occurring cellulases with multiple catalytic domains seem to be rather rare in known cellulose-degrading organisms. A fusion protein made from Cellulomonas fimi exo- and endo- glucanases, Cex and CenA which improves breakdown of cellulose is described. A homologous carbohydrate binding module (CBM-2) present in both glucanases was fused to give a fusion protein CxnA. CxnA or unfused constructs (Cex+CenA, Cex, or CenA) were expressed in Escherichia coli and Citrobacter freundii. The latter recombinant strains were cultured at the expense of cellulose filter paper. The expressed CxnA had both exo- and endo- glucanase activities. It was also exported to the supernatant as were the non-fused proteins. In addition, the hybrid CBM from the fusion could bind to microcrystalline cellulose. Growth of C. freundii expressing CxnA was superior to that of cells expressing the unfused proteins. Physical degradation of filter paper was also faster with the cells expressing fusion protein than the other constructs. Our results show that fusion proteins with multiple catalytic domains can improve the efficiency of cellulose degradation. Such fusion proteins could potentially substitute cloning of multiple enzymes as well as improving product yields. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Assessment of the microbial growth potential of slow sand filtrate with the biomass production potential test in comparison with the assimilable organic carbon method.

    Science.gov (United States)

    van der Kooij, Dick; Veenendaal, Harm R; van der Mark, Ed J; Dignum, Marco

    2017-11-15

    Slow sand filtration is the final treatment step at four surface-water supplies in the Netherlands. The microbial growth potential (MGP) of the finished water was measured with the assimilable organic carbon (AOC) method using pure cultures and the biomass production potential (BPP) test. In the BPP test, water samples were incubated untreated at 25 °C and the active-biomass concentration was measured by adenosine tri-phosphate (ATP) analysis. Addition of a river-water inoculum improved the test performance and characteristic growth and maintenance profiles of the water were obtained. The maximum ATP concentration attained within seven days and the cumulative biomass production after 14 days of incubation (BPC 14 , d ng ATP L -1 ) showed highly significant and strong linear relationships with the AOC in the slow sand filtrates. The lowest AOC and BPC 14 levels were observed in the supplies applying dune filtration without ozonation in post treatment, with AOC/TOC = 1.7 ± 0.3 μg acetate-C equivalents mg -1 C and BPC 14 /TOC = 16.3 ± 2.2 d ng ATP mg -1 C, corresponding with 1.2 ± 0.19 ng ATP mg -1 C. These characteristics may represent the lowest specific MGP of natural organic matter achievable by biofiltration at temperatures ≤20 °C. The AOC and BPC 14 concentrations in the slow sand filtrate of the supply treating lake water by ozonation with granular-activated-carbon filtration and slow sand filtration as post treatment increased with decreasing temperature. The BPP test revealed that this slow sand filtrate sampled at 2 °C contained growth-promoting compounds that were not detected with the AOC test. These observations demonstrate the utility of the BPP test for assessing the MGP of drinking water and show the performance limits of biofiltration for MGP reduction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Dipeptidyl peptidase IV is involved in the cellulose-responsive induction of cellulose biomass-degrading enzyme genes in Aspergillus aculeatus.

    Science.gov (United States)

    Tani, Shuji; Yuki, Shota; Kunitake, Emi; Sumitani, Jun-Ichi; Kawaguchi, Takashi

    2017-06-01

    We screened for factors involved in the cellulose-responsive induction of cellulose biomass-degrading enzyme genes from approximately 12,000 Aspergillus aculeatus T-DNA insertion mutants harboring a transcriptional fusion between the FIII-avicelase gene (cbhI) promoter and the orotidine 5'-monophosphate decarboxylase gene. Analysis of 5-fluoroorodic acid (5-FOA) sensitivity, cellulose utilization, and cbhI expression of the mutants revealed that a mutant harboring T-DNA at the dipeptidyl peptidase IV (dppIV) locus had acquired 5-FOA resistance and was deficient in cellulose utilization and cbhI expression. The deletion of dppIV resulted in a significant reduction in the cellulose-responsive expression of both cbhI as well as genes controlled by XlnR-independent and XlnR-dependent signaling pathways at an early phase in A. aculeatus. In contrast, the dppIV deletion did not affect the xylose-responsive expression of genes under the control of XlnR. These results demonstrate that DppIV participates in cellulose-responsive induction in A. aculeatus.

  19. Mild-temperature thermochemical pretreatment of green macroalgal biomass: Effects on solubilization, methanation, and microbial community structure.

    Science.gov (United States)

    Jung, Heejung; Baek, Gahyun; Kim, Jaai; Shin, Seung Gu; Lee, Changsoo

    2016-01-01

    The effects of mild-temperature thermochemical pretreatments with HCl or NaOH on the solubilization and biomethanation of Ulva biomass were assessed. Within the explored region (0-0.2M HCl/NaOH, 60-90°C), both methods were effective for solubilization (about 2-fold increase in the proportion of soluble organics), particularly under high-temperature and high-chemical-dose conditions. However, increased solubilization was not translated into enhanced biogas production for both methods. Response surface analysis statistically revealed that HCl or NaOH addition enhances the solubilization degree while adversely affects the methanation. The thermal-only treatment at the upper-limit temperature (90°C) was estimated to maximize the biogas production for both methods, suggesting limited potential of HCl/NaOH treatment for enhanced Ulva biomethanation. Compared to HCl, NaOH had much stronger positive and negative effects on the solubilization and methanation, respectively. Methanosaeta was likely the dominant methanogen group in all trials. Bacterial community structure varied among the trials according primarily to HCl/NaOH addition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Shotgun Approach to Increasing Enzymatic Saccharification Yields of Ammonia Fiber Expansion Pretreated Cellulosic Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Chundawat, Shishir P. S., E-mail: shishir.chundawat@rutgers.edu [Department of Chemical and Biochemical Engineering, Rutgers-State University of New Jersey, Piscataway, NJ (United States); Uppugundla, Nirmal; Gao, Dahai [Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI (United States); Curran, Paul G. [Center for Statistical Training and Consulting (CSTAT), Michigan State University, East Lansing, MI (United States); Balan, Venkatesh; Dale, Bruce E. [Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI (United States)

    2017-05-10

    Most cellulolytic enzyme blends, either procured from a commercial vendor or isolated from a single cellulolytic microbial secretome, do not efficiently hydrolyze ammonia-pretreated (e.g., ammonia fiber expansion, AFEX) lignocellulosic agricultural crop residues like corn stover to fermentable sugars. Typically reported commercial enzyme loading (30–100 mg protein/g glucan) necessary to achieve >90% total hydrolysis yield (to monosaccharides) for AFEX-treated biomass, within a short saccharification time frame (24–48 h), is economically unviable. Unlike acid-based pretreatments, AFEX retains most of the hemicelluloses in the biomass and therefore requires a more complex suite of enzymes for efficient hydrolysis of cellulose and hemicellulose at industrially relevant high solids loadings. One strategy to reduce enzyme dosage while improving cocktail effectiveness for AFEX-treated biomass has been to use individually purified enzymes to determine optimal enzyme combinations to maximize hydrolysis yields. However, this approach is limited by the selection of heterologous enzymes available or the labor required for isolating low-abundance enzymes directly from the microbial secretomes. Here, we show that directly blending crude cellulolytic and hemicellulolytic enzymes-rich microbial secretomes can maximize specific activity on AFEX-treated biomass without having to isolate individual enzymes. Fourteen commercially available cellulolytic and hemicellulolytic enzymes were procured from leading enzyme companies (Novozymes{sup ®}, Genencor{sup ®}, and Biocatalysts{sup ®}) and were mixed together to generate several hundred unique cocktail combinations. The mixtures were assayed for activity on AFEX-treated corn stover (AFEX-CS) using a previously established high-throughput methodology. The optimal enzyme blend combinations identified from these screening assays were enriched in various low-abundance hemicellulases and accessory enzymes typically absent in most

  1. Microbial activity and biomass of peats in relation to the intrinsic organic matter composition, pH, moisture, and C and N inputs

    Energy Technology Data Exchange (ETDEWEB)

    Amha Amde, Yosef

    2011-03-25

    Excessive decomposition of organic matter (OM) from the potting media (e.g. peat) is known to influence plant growth by decreasing the total porosity, altering the chemical properties (pH, electrical conductivity), and releasing organic compounds that might have phytotoxic or stimulating effects. When peats are used as constitutes of the potting media, they should, therefore, maintain stability during plant production. In this study, twenty peat samples from Estonia, Finland, Germany, Ireland, Latvia, Lithuania and Sweden were evaluated for their microbial activity (measured as CO{sub 2} and N{sub 2}O emissions) and biomass with a special emphasis to the intrinsic organic matter composition, pH, moisture, and C and N inputs as such information on a wide range of peat samples is largely missing from published literature. Overall, the whole peat samples were broadly classified into three distinct groups using the hierarchical cluster analysis: the Irish and two of German peats produced the lowest CO{sub 2} while most peats from Finland produced the highest CO{sub 2}. With few exceptions, peats from the Baltic States occupied the middle ranges. Excessive decomposition of organic matter in the Finish peats might have unintended consequences if these peats are used for long-term pot plant production. With regard to botanical composition, peats containing Sphagnum imbricatum produced the lowest CO{sub 2} and S. angustifolium dominated peats mostly produced the highest CO{sub 2}. (orig.)

  2. Impact of Trichloroethylene Exposure on the Microbial Diversity and Protein Expression in Anaerobic Granular Biomass at 37°C and 15°C

    Directory of Open Access Journals (Sweden)

    Alma Siggins

    2012-01-01

    Full Text Available Granular biomass from a laboratory-scale anaerobic bioreactor trial was analysed to identify changes in microbial community structure and function in response to temperature and trichloroethylene (TCE. Two bioreactors were operated at 37°C, while two were operated at 15°C. At the time of sampling, one of each temperature pair of bioreactors was exposed to process failure-inducing concentrations of TCE (60 mg L−1 while the other served as a TCE-free control. Bacterial community structure was investigated using denaturing gradient gel electrophoresis (DGGE and 16S rRNA gene clone library analysis. Temperature was identified as an important factor for bacterial community composition, while minor differences were associated with trichloroethylene supplementation. Proteobacteria was the dominant phylum in all bioreactors, while clone library analysis revealed a higher proportion of Bacteroidetes-, Chloroflexi-, and Firmicutes-like clones at 15°C than at 37°C. Comparative metaproteomics in the presence and absence of TCE was carried out by two-dimensional gel electrophoresis (2-DGE, and 28 protein spots were identified, with putative functions related to cellular processes, including methanogenesis, glycolysis, the glyoxylate cycle, and the methyl malonyl pathway. A good agreement between metaproteomic species assignment and phylogenetic information was observed, with 10 of the identified proteins associated with members of the phylum Proteobacteria.

  3. Microbiological studies on drugs and their raw materials, 4. Sterilization of microbial contaminants in enzyme powder by gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, T; Yoshida, Y; Demura, H; Yanagita, T [Toyama Univ. (Japan). Faculty of Pharmaceutical Sciences; Meiwa, M

    1978-04-01

    The decimal reduction dose of ..gamma..-ray on freeze-dried clean Escherichia coli (E. coli) cells and Bacillus subtilis spores was about 7 x 10/sup 4/ rad and it was about three times higher than that on E. coli cells suspended in saline. E. coli cells contained in Takadiastase or trypsin powder showed quite the same susceptibility of ..gamma..-irradiation as they were present cleanly. These enzyme activities were not impaired at all even at the dose of 2 x 10/sup 5/ rad. When these enzyme powders containing E. coli cells were stored under varied atmospheric relative humidity, the deleterious effect of ..gamma..-ray on bacterial cells was highly enhanced in those samples stored under more than 80.5% relative humidities. The additions of excipients, such as glucose and lactose, and of a protectant, L-cysteine, to the bacteria-containing dry enzyme powder did not show any sign of either enhancement or retardation of ..gamma..-ray action on enzyme and bacteria. Based on these observations, the utilizability of radiosterilization on biological medicaments is discussed.

  4. Bioethanol Production From Cellulose by Candida tropicalis, as An Alternative Microbial Agent to Produce Ethanol from Lignocellulosic Biomass

    Directory of Open Access Journals (Sweden)

    Hermansyah

    2016-04-01

    Full Text Available Abstract: Candida tropicalis isolated from Tuak is a potentially useful microorganism for the ethanol production from lignocellulosic biomass and it can be alterbative agent replacing Saccharomyces cerevisae for fermentation process. Although C.tropicalis could not convert all carbohydrates content of lignocellulosic into bioethanol, however it is able to grow on medium in the presence of either xylose or arabinose as carbon source. Our result showed that fermentation of 10 % (w/v cellulosic as sole carbon source produced 2.88% (v/v ethanol by C.tropicalis. This ethanol production was lower than usage of 10% (w/v dextrose as sole carbon source medium which producing 5.51% (v/v ethanol. Based upon our expreiment indicated that C.tropicalis is able to conduct two main process in converting of cellulosic material- to ethanol which is hydrolysis the degradation of cellulose into glucose, and fermentation the process the conversion glucose into bioethanol. Keywords : Candida tropicalis, bioethanol, fermentation, cellulosic Abstrak (Indonesian: Candida tropicalis yang diisiolasi dari Tuak adalah agen yang berpotensi dalam produksi etanol dari biomasa lignoselulosa dan dapat dijadikan agen alternatif menggantikan Saccharomyces cerevisiae pada proses fernentasi. Walaupun C.tropicalis tidak dapat mengkonversi semua kandungan karbohidrat lignoselulosamenjadi etanol, akan tetapi C.tropicalis mampu tumbuh pada media dengan xilosa atau arabinosa sebagaisumber karbon. Hasil kami menunjukkan bahwa dengan mengguankan C.tropicalis fermentasi 10% (w/v selulosa sebagai satu-satunya sumber karbon menghasilkan 2,88% (v/v etanol, Produksi etanol ini lebih rendah jika menggunakan 10% (w/v dekstrosa sebagai satu satunya sumber karbon yang menghasilkan 5,51% (v/v etanol. Berdasarkan percobaan menunjukkan bahwa C.tropicalis mampu melakukan dua proses utama dalam mengkonversi material selulosa menjadi etanol yaitu hidrolisis degradasi selulosa menjadi glukosa, dan

  5. The Effects of Fungicide, Soil Fumigant, Bio-Organic Fertilizer and Their Combined Application on Chrysanthemum Fusarium Wilt Controlling, Soil Enzyme Activities and Microbial Properties

    Directory of Open Access Journals (Sweden)

    Shuang Zhao

    2016-04-01

    Full Text Available Sustained monoculture often leads to a decline in soil quality, in particular to the build-up of pathogen populations, a problem that is conventionally addressed by the use of either fungicide and/or soil fumigation. This practice is no longer considered to be either environmentally sustainable or safe. While the application of organic fertilizer is seen as a means of combating declining soil fertility, it has also been suggested as providing some control over certain soil-borne plant pathogens. Here, a greenhouse comparison was made of the Fusarium wilt control efficacy of various treatments given to a soil in which chrysanthemum had been produced continuously for many years. The treatments comprised the fungicide carbendazim (MBC, the soil fumigant dazomet (DAZ, the incorporation of a Paenibacillus polymyxa SQR21 (P. polymyxa SQR21, fungal antagonist enhanced bio-organic fertilizer (BOF, and applications of BOF combined with either MBC or DAZ. Data suggest that all the treatments evaluated show good control over Fusarium wilt. The MBC and DAZ treatments were effective in suppressing the disease, but led to significant decrease in urease activity and no enhancement of catalase activity in the rhizosphere soils. BOF including treatments showed significant enhancement in soil enzyme activities and microbial communities compared to the MBC and DAZ, evidenced by differences in bacterial/fungi (B/F ratios, Shannon–Wiener indexes and urease, catalase and sucrase activities in the rhizosphere soil of chrysanthemum. Of all the treatments evaluated, DAZ/BOF application not only greatly suppressed Fusarium wilt and enhanced soil enzyme activities and microbial communities but also promoted the quality of chrysanthemum obviously. Our findings suggest that combined BOF with DAZ could more effectively control Fusarium wilt disease of chrysanthemum.

  6. Representing Microbial Dormancy in Soil Decomposition Models Improves Model Performance and Reveals Key Ecosystem Controls on Microbial Activity

    Science.gov (United States)

    He, Y.; Yang, J.; Zhuang, Q.; Wang, G.; Liu, Y.

    2014-12-01

    Climate feedbacks from soils can result from environmental change and subsequent responses of plant and microbial communities and nutrient cycling. Explicit consideration of microbial life history traits and strategy may be necessary to predict climate feedbacks due to microbial physiology and community changes and their associated effect on carbon cycling. In this study, we developed an explicit microbial-enzyme decomposition model and examined model performance with and without representation of dormancy at six temperate forest sites with observed soil efflux ranged from 4 to 10 years across different forest types. We then extrapolated the model to all temperate forests in the Northern Hemisphere (25-50°N) to investigate spatial controls on microbial and soil C dynamics. Both models captured the observed soil heterotrophic respiration (RH), yet no-dormancy model consistently exhibited large seasonal amplitude and overestimation in microbial biomass. Spatially, the total RH from temperate forests based on dormancy model amounts to 6.88PgC/yr, and 7.99PgC/yr based on no-dormancy model. However, no-dormancy model notably overestimated the ratio of microbial biomass to SOC. Spatial correlation analysis revealed key controls of soil C:N ratio on the active proportion of microbial biomass, whereas local dormancy is primarily controlled by soil moisture and temperature, indicating scale-dependent environmental and biotic controls on microbial and SOC dynamics. These developments should provide essential support to modeling future soil carbon dynamics and enhance the avenue for collaboration between empirical soil experiment and modeling in the sense that more microbial physiological measurements are needed to better constrain and evaluate the models.

  7. Evaluation of the potential allergenicity of the enzyme microbial transglutaminase using the 2001 FAO/WHO Decision Tree

    DEFF Research Database (Denmark)

    Pedersen, Mona H.; Hansen, Tine K.; Sten, Eva

    2004-01-01

    All novel proteins must be assessed for their potential allergenicity before they are introduced into the food market. One method to achieve this is the 2001 FAO/WHO Decision Tree recommended for evaluation of proteins from genetically modified organisms (GMOs). It was the aim of this study...... to investigate the allergenicity of microbial transglutaminase (m-TG) from Streptoverticillium mobaraense. Amino acid sequence similarity to known allergens, pepsin resistance, and detection of protein binding to specific serum immunoglobulin E (IgE) (RAST) have been evaluated as recommended by the decision tree...... meets the requirements of the decision tree. However, there is a match at the five contiguous amino acid level to the major codfish allergen Gad c1. The potential cross reactivity between m-TG and Gad c1 was investigated in RAST using sera from 25 documented cod-allergic patients and an extract of raw...

  8. Microbial Decomposers Not Constrained by Climate History Along a Mediterranean Climate Gradient

    Science.gov (United States)

    Baker, N. R.; Khalili, B.; Martiny, J. B. H.; Allison, S. D.

    2017-12-01

    The return of organic carbon to the atmosphere through terrestrial decomposition is mediated through the breakdown of complex organic polymers by extracellular enzymes produced by microbial decomposer communities. Determining if and how these decomposer communities are constrained in their ability to degrade plant litter is necessary for predicting how carbon cycling will be affected by future climate change. To address this question, we deployed fine-pore nylon mesh "microbial cage" litterbags containing grassland litter with and without local inoculum across five sites in southern California, spanning a gradient of 10.3-22.8° C in mean annual temperature and 100-400+ mm mean annual precipitation. Litterbags were deployed in October 2014 and collected four times over the course of 14 months. Recovered litter was assayed for mass loss, litter chemistry, microbial biomass, extracellular enzymes (Vmax and Km­), and enzyme temperature sensitivities. We hypothesized that grassland litter would decompose most rapidly in the grassland site, and that access to local microbial communities would enhance litter decomposition rates and microbial activity in the other sites along the gradient. We determined that temperature and precipitation likely interact to limit microbial decomposition in the extreme sites along our gradient. Despite their unique climate history, grassland microbes were not restricted in their ability to decompose litter under different climate conditions. Although we observed a strong correlation between bacterial biomass and mass loss across the gradient, litter that was inoculated with local microbial communities lost less mass despite having greater bacterial biomass and potentially accumulating more microbial residues. Our results suggest that microbial community composition may not constrain C-cycling rates under climate change in our system. However, there may be community constraints on decomposition if climate change alters litter chemistry, a

  9. Microbial chemical factories: recent advances in pathway engineering for synthesis of value added chemicals.

    Science.gov (United States)

    Dhamankar, Himanshu; Prather, Kristala L J

    2011-08-01

    The dwindling nature of petroleum and other fossil reserves has provided impetus towards microbial synthesis of fuels and value added chemicals from biomass-derived sugars as a renewable resource. Microbes have naturally evolved enzymes and pathways that can convert biomass into hundreds of unique chemical structures, a property that can be effectively exploited for their engineering into Microbial Chemical Factories (MCFs). De novo pathway engineering facilitates expansion of the repertoire of microbially synthesized compounds beyond natural products. In this review, we visit some recent successes in such novel pathway engineering and optimization, with particular emphasis on the selection and engineering of pathway enzymes and balancing of their accessory cofactors. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Evaluation of Organic Matter Removal Efficiency and Microbial Enzyme Activity in Vertical-Flow Constructed Wetland Systems

    Directory of Open Access Journals (Sweden)

    Qiaoling Xu

    2016-09-01

    Full Text Available In this study, enzyme activities and their relationships to organics purification were investigated in three different vertical flow constructed wetlands, namely system A (planting Pennisetum sinese Roxb, system B (planting Pennisetum purpureum Schum., and system C (no plant. These three wetland systems were fed with simulation domestic sewage at an influent flow rate of 20 cm/day. The results showed that the final removal efficiency of Chemical Oxygen Demand (COD in these three systems was 87%, 85% and 63%, respectively. Planting Pennisetum sinese Roxb and Pennisetum purpureum Schum. could improve the amount of adsorption and interception for organic matter in the substrate, and the amount of interception of organic matter in planting the Pennisetum sinese Roxb system was higher than that in planting the Pennisetum purpureum Schum. system. The activities of enzymes (urease, phosphatase and cellulase in systems A and B were higher than those in system C, and these enzyme activities in the top layer (0–30 cm were significantly higher than in the other layers. The correlations between the activities of urease, phosphatase, cellulase and the COD removal rates were R = 0.815, 0.961 and 0.973, respectively. It suggests that using Pennisetum sinese Roxb and Pennisetum purpureum Schum. as wetland plants could promote organics removal, and the activities of urease, phosphatase and cellulase in those three systems were important indicators for COD purification from wastewater. In addition, 0–30 cm was the main function layer. This study could provide a theoretical basis for COD removal in the wetland system and supply new plant materials for selection.

  11. Biomasa microbiana y actividad ureasa del suelo en una pradera permanente pastoreada de Chile Soil microbial biomass and urease activity in a grazed permanent pasture from Chile

    Directory of Open Access Journals (Sweden)

    Pedro Antonio Núñez Ramos

    2012-12-01

    Full Text Available En los sistemas de pasturas; la productividad de la pradera puede estar influenciada por el manejo; debido a su impacto sobre los microorganismos del suelo y el reciclaje de nutrientes. El objetivo de este trabajo fue evaluar la biomasa microbiana (BM del suelo asociada al nitrógeno (BMN; carbono (BMC y la actividad ureasa (AU en una pradera permanente del sur de Chile. Entre la primavera de 2005 y el invierno de 2006 fueron evaluados dos sistemas de pastoreo: pastoreo intenso (PI; pastoreo suave (PS y un tratamiento control (C. El diseño fue en bloques al azar con tres repeticiones. En relación a los valores promedios medidos de las variables en pre y post pastoreo; se produjo un incremento en los contenidos de CB en un 21,8 y 8,6% para PI y PS; mientras que en el control fue sólo de 1,9%. Los contenidos de NB también fueron incrementados en un 16 y 19% para PI y PS; respectivamente en comparación con el control (4%. La actividad ureasa aumentó en 13 y 27% para PI y PS; respectivamente en comparación con el control (5%. El pastoreo; produce un flujo más alto de residuos orgánicos en el suelo; lo que estimula la actividad de la biomasa microbiana y; por tanto; aumentó la AU y los contenidos de CB y NB. Esto sugiere que; en los sistemas de pastoreo; se mejora la fertilidad biológica de los suelos y la disponibilidad de nutrientes.In pasture systems, management practices can affect pasture productivity differently due to their impact on soil microorganisms and nutrient cycling. The objective of this study was to evaluate the relationship between soil microbial biomass (MB nitrogen (MBN, carbon (MBC and urease activity (UA in a permanent pasture in southern Chile. Two grazing systems were evaluated between spring 2005 and winter 2006 : heavy grazing (HG, light grazing (LG and a control treatment (C. Treatments were arranged in a randomized block design with three replications. Concerning the average values of the variables measured at

  12. Biomassa microbiana, em um Argissolo Vermelho, em diferentes coberturas vegetais, em área cultivada com mandioca = Microbial biomass on an Oxisol in cassava using different cover species

    Directory of Open Access Journals (Sweden)

    Fábio Martins Mercante

    2008-10-01

    Full Text Available Objetivou-se avaliar a influência de cultivos de mandioca, em diferentes sistemas de manejo sobre a biomassa microbiana de solo, sua atividade e índices derivados. O estudo foi conduzido no Município de Glória de Dourados, Estado do Mato Grosso doSul, em Argissolo Vermelho, de textura arenosa, em sistema de preparo convencional, plantio direto, sobre resíduos culturais de mucuna, sorgo e milheto, além de sistema com vegetação nativa, usado como referencial para comparação. As avaliações foram realizadasem seis épocas distintas: maio/2003, junho/2003, novembro/2003, abril/2004, agosto/2004 e novembro/2004. A presença ou ausência de resíduos vegetais influenciou diretamente a microbiota do solo, indicando que o uso de plantas de cobertura, no cultivo de mandioca,favorece a melhoria da qualidade do solo, representando alternativa promissora para melhor manejo desta cultura.The objective of this work w