WorldWideScience

Sample records for microarc oxidation coating

  1. The Otto Aufranc Award: Enhanced Biocompatibility of Stainless Steel Implants by Titanium Coating and Microarc Oxidation

    Science.gov (United States)

    Lim, Young Wook; Kwon, Soon Yong; Sun, Doo Hoon

    2010-01-01

    Background Stainless steel is one of the most widely used biomaterials for internal fixation devices, but is not used in cementless arthroplasty implants because a stable oxide layer essential for biocompatibility cannot be formed on the surface. We applied a Ti electron beam coating, to form oxide layer on the stainless steel surface. To form a thicker oxide layer, we used a microarc oxidation process on the surface of Ti coated stainless steel. Modification of the surface using Ti electron beam coating and microarc oxidation could improve the ability of stainless steel implants to osseointegrate. Questions/purposes The ability of cells to adhere to grit-blasted, titanium-coated, microarc-oxidated stainless steel in vitro was compared with that of two different types of surface modifications, machined and titanium-coated, and microarc-oxidated. Methods We performed energy-dispersive x-ray spectroscopy and scanning electron microscopy investigations to assess the chemical composition and structure of the stainless steel surfaces and cell morphology. The biologic responses of an osteoblastlike cell line (SaOS-2) were examined by measuring proliferation (cell proliferation assay), differentiation (alkaline phosphatase activity), and attraction ability (cell migration assay). Results Cell proliferation, alkaline phosphatase activity, migration, and adhesion were increased in the grit-blasted, titanium-coated, microarc-oxidated group compared to the two other groups. Osteoblastlike cells on the grit-blasted, titanium-coated, microarc-oxidated surface were strongly adhered, and proliferated well compared to those on the other surfaces. Conclusions The surface modifications we used (grit blasting, titanium coating, microarc oxidation) enhanced the biocompatibility (proliferation and migration of osteoblastlike cells) of stainless steel. Clinical Relevance This process is not unique to stainless steel; it can be applied to many metals to improve their biocompatibility

  2. Preparation and characterization of the micro-arc oxidation composite coatings on magnesium alloys

    OpenAIRE

    Yanfeng Ge; Bailing Jiang; Ming Liu; Congjie Wang; Wenning Shen

    2014-01-01

    The magnesium alloys attract the light-weight manufacture due to its high strength to weight ratio, however the poor corrosion resistance limits the application in automobile industry. The Micro-arc Composite Ceramic (MCC) coatings on AZ91D magnesium alloys were prepared by Micro-arc Oxidation (MAO) and electrophoresis technologies. The microstructure, corrosion resistance, abrasion resistance, stone impact resistance and adhesion of MCC coatings were studied respectively. The cross section m...

  3. Ceramic coated Y1 magnesium alloy surfaces by microarc oxidation

    Indian Academy of Sciences (India)

    The magnesium alloys occupy an important place in marine applications, but their poor corrosion resistance, wear resistance, hardness and so on, have limited their application. To meet these defects, some techniques are developed. Microarc oxidation is a one such recently developed surface treatment technology under ...

  4. Evaluation of the mechanical properties of microarc oxidation coatings and 2024 aluminium alloy substrate

    CERN Document Server

    Xue Wen Bin; Deng Zhi Wei; Chen Ru Yi; Li Yong Liang; Zhang Ton Ghe

    2002-01-01

    A determination of the phase constituents of ceramic coatings produced on Al-Cu-Mg alloy by microarc discharge in alkaline solution was performed using x-ray diffraction. The profiles of the hardness, H, and elastic modulus, E, across the ceramic coating were determined by means of nanoindentation. In addition, a study of the influence of microarc oxidation coatings on the tensile properties of the aluminium alloy was also carried out. The results show that the H-and E-profiles are similar, and both of them exhibit a maximum value at the same depth of coating. The distribution of the alpha-Al sub 2 O sub 3 phase content determines the H- and E-profiles of the coatings. The tensile properties of 2024 aluminium alloy show less change after the alloy has undergone microarc discharge surface treatment.

  5. Preparation and Properties of Microarc Oxidation Self-Lubricating Composite Coatings on Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Zhenwei Li

    2017-04-01

    Full Text Available Microarc oxidation (MAO coatings were prepared on 2024-T4 aluminum alloy using pulsed bipolar power supply at different cathode current densities. The MAO ceramic coatings contained many crater-like micropores and a small number of microcracks. After the MAO coatings were formed, the coated samples were immersed into a water-based Polytetrafluoroethylene (PTFE dispersion. The micropores and microcracks on the surface of the MAO coatings were filled with PTFE dispersion for preparing MAO self-lubricating composite coatings. The microstructure and properties of MAO coatings and the wear resistance of microarc oxidation self-lubricating composite coatings were analyzed by SEM, laser confocal microscope, X-ray diffractometry (XRD, Vickers hardness test, scratch test and ball-on-disc abrasive tests, respectively. The results revealed that the wear rates of the MAO coatings decreased significantly with an increase in cathode current density. Compared to the MAO coatings, the microarc oxidation self-lubricating composite coatings exhibited a lower friction coefficient and lower wear rates.

  6. Characterization and corrosion behavior of ceramic coating on magnesium by micro-arc oxidation

    International Nuclear Information System (INIS)

    Durdu, Salih; Aytac, Aylin; Usta, Metin

    2011-01-01

    Highlights: · The commercial pure magnesium was coated by micro-arc oxidation method. · The coating is composed of two layers, a porous outer layer and a dense inner layer. · A super corrosion resistance was achieved with MAO coatings. · Coating with Mg 2 SiO 4 is more resistant to corrosion than that containing Mg 3 (PO 4 ) 2 . - Abstract: In this study, the commercial pure magnesium was coated in different aqueous solutions of Na 2 SiO 3 and Na 3 PO 4 by the micro-arc oxidation method (MAO). Coating thickness, phase composition, surface and cross sectional morphology and corrosion resistance of coatings were analyzed by eddy current method, X-ray diffraction (XRD), scanning electron microscope (SEM) and tafel extrapolation method, respectively. The average thickness of the coatings ranged from 52 to 74 μm for sodium silicate solution and from 64 to 88 μm for sodium phosphate solution. The dominant phases on the coatings were detected as spinal Mg 2 SiO 4 (Forsterite) and MgO (Periclase) for sodium silicate solution and Mg 3 (PO 4 ) 2 (Farringtonite) and MgO (Periclase) for sodium phosphate solution. SEM images reveal that the coating is composed of two layers as of a porous outer layer and a dense inner layer. The corrosion results show the coating consisting Mg 2 SiO 4 is more resistant to corrosion than that containing Mg 3 (PO 4 ) 2 .

  7. Effect of applied voltage on phase components of composite coatings prepared by micro-arc oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wenjun [Department of Prosthodontics, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055 (China); Fang, Yu-Jing [Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060 (China); Zheng, Huade [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Tan, Guoxin [Guangdong University of Technology, Guangdong Province 510006 (China); Cheng, Haimei [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Ning, Chengyun, E-mail: imcyning@scut.edu.cn [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China)

    2013-10-01

    In this report, we present results from our experiments on composite coatings formed on biomedical titanium substrates by micro-arc oxidation (MAO) in constant-voltage mode. The coatings were prepared on the substrates in an aqueous electrolyte containing calcium acetate and β-glycerol phosphate disodium salt pentahydrate (β-GP). We analyzed the element distribution and phase components of the coatings prepared at different voltages by X-ray diffraction, thin-coating X-ray diffraction, electron-probe microanalysis, and Fourier-transform infrared spectroscopy. The results show that the composite coatings formed at 500 V consist of titania (TiO{sub 2}), hydroxylapatite (HA), and calcium carbonate (CaCO{sub 3}). Furthermore, the concentration of Ca, P, and Ti gradually changes with increasing applied voltage, and the phase components of the composite coatings gradually change from the bottom of the coating to the top: the bottom layer consists of TiO{sub 2}, the middle layer consists of TiO{sub 2} and HA, and the top layer consists of HA and a small amount of CaCO{sub 3}. The formation of HA directly on the coating surface by MAO technique can greatly enhance the surface bioactivity. - Highlights: • Coatings prepared on biomedical titanium substrate by micro-arc oxidationCoatings composed of titania, hydroxyapatite and calcium carbonate • Hydroxyapatite on the coating surface can enhance the surface bioactivity.

  8. Microstructure and corrosion behavior of coated AZ91 alloy by microarc oxidation for biomedical application

    Science.gov (United States)

    Wang, Y. M.; Wang, F. H.; Xu, M. J.; Zhao, B.; Guo, L. X.; Ouyang, J. H.

    2009-08-01

    Magnesium and its alloy currently are considered as the potential biodegradable implant materials, while the accelerated corrosion rate in intro environment leads to implant failure by losing the mechanical integrity before complete restoration. Dense oxide coatings formed in alkaline silicate electrolyte with and without titania sol addition were fabricated on magnesium alloy using microarc oxidation process. The microstructure, composition and degradation behavior in simulated body fluid (SBF) of the coated specimens were evaluated. It reveals that a small amount of TiO 2 is introduced into the as-deposited coating mainly composed of MgO and Mg 2SiO 4 by the addition of titania sol into based alkaline silicate electrolytic bath. With increasing concentration of titania sol from 0 to 10 vol.%, the coating thickness decreases from 22 to 18 μm. Electrochemical tests show that the Ecorr of Mg substrate positively shifted about 300˜500 mV and icorr lowers more than 100 times after microarc oxidation. However, the TiO 2 modified coatings formed in electrolyte containing 5 and 10 vol.% titania sol indicate an increasing worse corrosion resistance compared with that of the unmodified coating, which is possibly attributed to the increasing amorphous components caused by TiO 2 involvement. The long term immersing test in SBF is consistent with the electrochemical test, with the coated Mg alloy obviously slowing down the biodegradation rate, meanwhile accompanied by the increasing damage trends in the coatings modified by 5 and 10 vol.% titania sol.

  9. Structure and in vitro bioactivity of ceramic coatings on magnesium alloys by microarc oxidation

    Science.gov (United States)

    Yu, Huijun; Dong, Qing; Dou, Jinhe; Pan, Yaokun; Chen, Chuanzhong

    2016-12-01

    Magnesium and its alloys have the potential to serve as lightweight, degradable, biocompatible and bioactive orthopedic implants for load-bearing applications. However, severe local corrosion attack and high corrosion rate have prevented their further clinical use. Micro-arc oxidation (MAO) is proved to be a simple, controllable and efficient electrochemistry technique that can prepare protective ceramic coatings on magnesium alloys. In this paper, electrolyte containing silicate salts was used for microarc oxidation to form ceramic bioactive coatings on the ZK61 alloy substrate. The structure characteristics and element distributions of the coating were investigated by XRD, TEM, SEM and EPMA. The MAO samples were immersed in simulated body fluid (SBF) for 7 and 14 days, respectively. The surface characteristic of the immersed coatings was investigated by Fourier-transform infrared (FTIR) spectroscopy. The results show that these MAO coatings have low crystallinity and are mainly composed of MgO, Mg2SiO4 and Mg2Si2O6. The coating surface is porous. During the SBF immersion period, the nucleation and precipitation of bone-like apatites occur on the MAO coating surface. The corrosion resistance of the substrate is improved by the MAO coatings.

  10. Investigating the Influence of Micro-Arc Oxide Coating on Rigidity and Strength of Long Force Elements of Spacecraft

    Directory of Open Access Journals (Sweden)

    V. K. Shatalov

    2014-01-01

    Full Text Available Outboard elements (arms, towers are widely used in spacecraft structure for setting-out of a payload; their high stiffness-weight ratio provides an opportunity to decrease the mass. The deployment unit is considered as an example of outboard structure. Its strength beams work under special conditions in operation. At the transportation stage beams are under considerable vibration loads. Therefore for increasing the natural resonance frequency it is rational to increase their rigidity. Using the micro-arc oxide coating suggests itself because the modulus of elasticity of the micro-arc oxide coating is more than that of the aluminium alloy. The beams suffer considerable bending load at the step of deploying; therefore the aluminium alloy with the micro-arc oxide coating must have suitable loading capacity, in addition to increased rigidity.Influence of micro-arc oxide coating on the rigidity and strength of tubes f rom aluminium alloy is investigated. It is determined that forming the micro-arc oxide coating on thin-walled tubes with a ratio of the coating area to the cross-section area of more than 25% is the most rational. In this case the rigidity of composite material considerably exceeds the rigidity of the aluminium alloy of the same cross-section while the redistribution of stresses in the surface coating of heterogeneous elasticity cross-section doesn’t cause the sudden increase of stresses. Also forming an attainable thickness of the micro-arc oxide coating on the surface of tube from aluminium alloy will be rational solution because the increase of attainable thickness of the microarc oxide coating provides an opportunity to form it on thick-walled tubes saving an acceptable, in the context of the strength, ratio of the coating area to the overall cross-section area.Micro-arc oxidation is an advanced method to form the wear resistant, resistant to corrosion, heat-shielding and electrically insulating coatings, but depending on the

  11. Hydroxyapatite coatings produced on commercially pure titanium by micro-arc oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Huang Yong [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Wang Yingjun [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Ning Chengyun [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Nan Kaihui [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Han Yong [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China)

    2007-09-15

    A porous hydroxyapatite (HA) coating on commercially pure titanium was prepared by micro-arc oxidation (MAO) in electrolytic solution containing calcium acetate and {beta}-glycerol phosphate disodium salt pentahydrate ({beta}-GP). The thickness, phase, composition morphology and biocompatibility of the oxide coating were characterized by x-ray diffraction (XRD), electron probe microanalysis (EPMA), scanning electron microscopy (SEM) with an energy dispersive x-ray spectrometer (EDS) and cell culture. The thickness of the MAO film was about 20 {mu}m, and the coating was porous and uneven without any apparent interface to the titanium substrates. The result of XRD showed that the porous coating was made up of HA film. The favorable osteoblast cell affinity gives HA film good biocompatibility. HA coatings are expected to have significant uses for medical applications such as dental implants and artificial bone joints.

  12. Hydroxyapatite coatings produced on commercially pure titanium by micro-arc oxidation.

    Science.gov (United States)

    Huang, Yong; Wang, Yingjun; Ning, Chengyun; Nan, Kaihui; Han, Yong

    2007-09-01

    A porous hydroxyapatite (HA) coating on commercially pure titanium was prepared by micro-arc oxidation (MAO) in electrolytic solution containing calcium acetate and beta-glycerol phosphate disodium salt pentahydrate (beta-GP). The thickness, phase, composition morphology and biocompatibility of the oxide coating were characterized by x-ray diffraction (XRD), electron probe microanalysis (EPMA), scanning electron microscopy (SEM) with an energy dispersive x-ray spectrometer (EDS) and cell culture. The thickness of the MAO film was about 20 microm, and the coating was porous and uneven without any apparent interface to the titanium substrates. The result of XRD showed that the porous coating was made up of HA film. The favorable osteoblast cell affinity gives HA film good biocompatibility. HA coatings are expected to have significant uses for medical applications such as dental implants and artificial bone joints.

  13. Hydroxyapatite coatings produced on commercially pure titanium by micro-arc oxidation

    International Nuclear Information System (INIS)

    Huang Yong; Wang Yingjun; Ning Chengyun; Nan Kaihui; Han Yong

    2007-01-01

    A porous hydroxyapatite (HA) coating on commercially pure titanium was prepared by micro-arc oxidation (MAO) in electrolytic solution containing calcium acetate and β-glycerol phosphate disodium salt pentahydrate (β-GP). The thickness, phase, composition morphology and biocompatibility of the oxide coating were characterized by x-ray diffraction (XRD), electron probe microanalysis (EPMA), scanning electron microscopy (SEM) with an energy dispersive x-ray spectrometer (EDS) and cell culture. The thickness of the MAO film was about 20 μm, and the coating was porous and uneven without any apparent interface to the titanium substrates. The result of XRD showed that the porous coating was made up of HA film. The favorable osteoblast cell affinity gives HA film good biocompatibility. HA coatings are expected to have significant uses for medical applications such as dental implants and artificial bone joints

  14. Preparation and characterization of the micro-arc oxidation composite coatings on magnesium alloys

    Directory of Open Access Journals (Sweden)

    Yanfeng Ge

    2014-12-01

    Full Text Available The magnesium alloys attract the light-weight manufacture due to its high strength to weight ratio, however the poor corrosion resistance limits the application in automobile industry. The Micro-arc Composite Ceramic (MCC coatings on AZ91D magnesium alloys were prepared by Micro-arc Oxidation (MAO and electrophoresis technologies. The microstructure, corrosion resistance, abrasion resistance, stone impact resistance and adhesion of MCC coatings were studied respectively. The cross section morphologies showed that the outer organic coating was filled into the hole on surface of MAO coating, and it acted as a shelter against corrosive products. The copper-accelerated acetic acid salt spray Test, abrasion resistance test, stone impact resistance test, thermal shock resistance test and adhesion test were used to evaluate the protective characterization by the third testing organization which approved by GM. The test results showed the composite coatings meet all the requirements. The MCC coating on Mg presents excellent properties, and it is a promising surface treatment technology on magnesium alloys for production vehicles.

  15. Corrosion characterization of micro-arc oxidization composite electrophoretic coating on AZ31B magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Congjie [School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048 (China); Jiang, Bailing [School of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816 (China); Liu, Ming [General Motors China Science Lab, Shanghai 201206 (China); Ge, Yanfeng [School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048 (China)

    2015-02-05

    Highlights: • A new protective composite coatings were prepared on AZ31B Mg alloy. • The E-coat locked into MAO coat by discharge channels forming a smoother and compact surface without defects. • Comparing with MAO coat, the MAOE composite coat could provide an excellent barrier for bare Mg against corrosion attack. - Abstract: A two layer composite coating system was applied on the surface of AZ31B magnesium alloy by Micro-arc Oxidation (MAO) plus electrophoretic coat (E-coat) technique. The Mg sample coated with MAO plus E-coat (MAOE) was compared with bare Mg and Mg sample coated by MAO only. The surface microstructure and cross section of bare and coated Mg before and after corrosion were examined by Scanning Electron Microscopy (SEM). The corrosion performance of bare and coated Mg was evaluated using electrochemical measurement and hydrogen evolution test. The results indicated that the corrosion resistance of AZ31B Mg alloy was significantly improved by MAOE composite coating. The corrosion mechanism of bare and coated Mg is discussed.

  16. The Infulence of Microarc Oxidation Method Modes on the Properties of Coatings

    Directory of Open Access Journals (Sweden)

    N.Y. Dudareva

    2014-07-01

    Full Text Available The experimental studies of the properties of the hardened surface layer, developed by the microarc oxidation method (MAO on the surface of Al-Si ingots from AK12D alloy have been presented here. The effect of concentration of the electrolyte components on the properties of the MAO coating, such as microhardness, thickness, porosity have been studied. The corresponding regression equations to estimate the influence of the process parameters on the quality of the developed MAO-layer, have been set up.

  17. Preparation and bioactivity of micro-arc oxidized calcium phosphate coatings

    International Nuclear Information System (INIS)

    Pan, Y.K.; Chen, C.Z.; Wang, D.G.; Lin, Z.Q.

    2013-01-01

    Calcium phosphate (CaP) coatings were prepared on ZK60 magnesium alloy by micro-arc oxidation (MAO) in electrolyte containing calcium acetate monohydrate (CH 3 COO) 2 Ca·H 2 O) and disodium hydrogen phosphate dodecahydrate (Na 2 HPO 4 ·12H 2 O). Scanning electron microscope (SEM), energy-dispersive X-ray spectrometry (EDX) and X-ray diffractometer (XRD) were employed to characterize the microstructure, elemental distribution and phase composition of the CaP coatings respectively. Simulated body fluid (SBF) immersion test was used to evaluate the coating degradability and bioactivity. After 30 days of SBF immersion, the CaP coatings effectively reduce the degradation rate. The surfaces of CaP coatings are covered by a new layer formed of numerous needle-like, spherical and columned calcium phosphates. SEM, EDX and XRD results suggest that these calcium phosphates are bioactive calcium phosphate phases such as hydroxyapatite (Ca 10 (PO 4 ) 6 (OH) 2 , HA) and calcium pyrophosphates (Ca 2 P 2 O 7 , CPP). The formation of these calcium phosphates indicates that the CaP coatings have bioactivity. - Highlights: • Bioactive CaP coatings are successfully formed on ZK60 magnesium alloy. • CaP coatings consist of MgO, MgF 2 , CaO, CaF 2 and Ca 3 (PO 4 ) 2 . • Needle-like, spherical and columned calcium phosphates formed in SBF. • CaP coatings exhibit bioactivity and low corrosion rate

  18. Research of growth mechanism of ceramic coatings fabricated by micro-arc oxidation on magnesium alloys at high current mode

    Directory of Open Access Journals (Sweden)

    Wei-wei Chen

    2015-09-01

    Full Text Available Micro-arc oxidation (MAO coatings of ZK60 magnesium alloys were formed in a self-developed dual electrolyte composed of sodium silicate and phosphate at the high constant current of 1.8 A (15 A/dm2. The MAO process and growth mechanism were investigated by scanning electron microscopy (SEM coupled with an energy dispersive spectrometer (EDS, confocal laser scanning microscopy and X-ray diffraction (XRD. The results indicate that the growth process of MAO coating mainly goes through “forming → puncturing → rapid growth of micro-arc oxidation →large arc discharge → self-repairing”. The coating grows inward and outward at the same time in the initial stage, but outward growth of the coating is dominant later. Mg, Mg2SiO4 and MgO are the main phases of ceramic coating.

  19. Polyethylenimine/kappa carrageenan: Micro-arc oxidation coating for passivation of magnesium alloy.

    Science.gov (United States)

    Golshirazi, A; Kharaziha, M; Golozar, M A

    2017-07-01

    The aim of this study was to combine micro-arc oxidation (MAO) and self-assembly technique to improve corrosion resistivity of AZ91 alloy. While a silicate-fluoride electrolyte was adopted for MAO treatment, polyethylenimine (PEI)/kappa carrageenan (KC) self-assembly coating was applied as the second coating layer. Resulted demonstrated the formation of forsterite-fluoride containing MAO coating on AZ91 alloy depending on the voltage and time of anodizing process. Addition of the second PEI/KC coating layer on MAO treated sample effectively enhanced the adhesive strength of MAO coated sample due to filling the pores with polymers and increase in the mechanical interlocking of coating to the substrate. Moreover, the corrosion evaluation considered by potentiodynamic polarization and electrochemical impedance spectroscopy confirmed that double layered PEI/KC:MAO coating presented superior resistance to corrosion attack. It is envisioned that the proposed double layered PEI/KC:MAO coating could be useful for biomedical applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Ultra-hard ceramic coatings fabricated through microarc oxidation on aluminium alloy

    International Nuclear Information System (INIS)

    Wu Hanhua; Wang Jianbo; Long Beiyu; Long Beihong; Jin Zengsun; Naidan Wang; Yu Fengrong; Bi Dongmei

    2005-01-01

    Ultra-hard ceramic coatings with microhardness of 2535 Hv have been synthesized on the Al alloy substrate by microarc oxidation (MAO) technique. The effects of anodic current density (j a ) and the ratio of cathodic to anodic current density (j c /j a ) on the mechanical and corrosion resistance properties of MAO coatings have been studied by microhardness and pitting corrosion tests, respectively. In addition, the phase composition and microstructure of the coatings were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The results show that the coatings prepared at high anodic current density consist mainly of α-Al 2 O 3 , while those fabricated at low anodic current density are almost composed of γ-Al 2 O 3 . Microhardness test shows that the coatings have high microhardness, and the highest one is found in the coating formed at j a = 15 A/dm 2 and j c /j a = 0.7. Pitting corrosion test shows that the structure of coatings is strongly influenced by the varying j c /j a

  1. Bioactivity and corrosion properties of novel coatings containing strontium by micro-arc oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Kung, Kuan-Chen [Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan (China); Lee, Tzer-Min, E-mail: tmlee@mail.ncku.edu.t [Institute of Oral Medicine, National Cheng Kung University, Tainan, Taiwan (China); Lui, Truan-Sheng [Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan (China)

    2010-10-22

    Research highlights: The dental implant of titanium could be modified by anodic oxidation. It was found that incorporation of strontium ions into the matrix increase the bone formation. In this study, we try to investigate the effect of corrosion property and bioactivity on coatings containing strontium by anodic oxidation. The results suggest that coatings containing strontium on titanium by anodic oxidation has the potential to show the stability and bioactivity in the clinical use. - Abstract: Pure titanium (Ti) and titanium alloys are considered as bio-inert materials in clinical use. Bioactivity is the ability to induce bone-like apatite on the material surface. The micro-arc oxidation (MAO) technique is an effective method for improving the surface properties of titanium. The aim of this study was to investigate the bioactivity and corrosion behavior of MAO coatings containing strontium, which is beneficial for biological performance. The bioactivity of materials was evaluated based on the ability to induce a bond-like apatite layer on the surface in simulated body fluid (SBF), as proposed by Kokubo et al. After the materials were soaked in SBF for 1 day, precipitates formed on the surface of MAO coating. The surface of MAO coatings was completely covered with precipitates after 7 days. The precipitates, which were found to be composed of fiber structures, were identified as the apatite phase using thin film X-ray diffraction (TF-XRD). The results show that MAO coatings containing strontium can induce the formation of an apatite layer on their surface. In the potentiodynamic test, MAO coatings exhibited a more noble corrosion potential (E{sub corr}) than that of titanium in SBF. In the passive region, the current density of MAO coatings was lower than that of titanium. All findings in this study indicated that MAO coatings containing strontium have good bioactivity and corrosion resistance for clinical applications.

  2. Bioactivity and corrosion properties of novel coatings containing strontium by micro-arc oxidation

    International Nuclear Information System (INIS)

    Kung, Kuan-Chen; Lee, Tzer-Min; Lui, Truan-Sheng

    2010-01-01

    Research highlights: The dental implant of titanium could be modified by anodic oxidation. It was found that incorporation of strontium ions into the matrix increase the bone formation. In this study, we try to investigate the effect of corrosion property and bioactivity on coatings containing strontium by anodic oxidation. The results suggest that coatings containing strontium on titanium by anodic oxidation has the potential to show the stability and bioactivity in the clinical use. - Abstract: Pure titanium (Ti) and titanium alloys are considered as bio-inert materials in clinical use. Bioactivity is the ability to induce bone-like apatite on the material surface. The micro-arc oxidation (MAO) technique is an effective method for improving the surface properties of titanium. The aim of this study was to investigate the bioactivity and corrosion behavior of MAO coatings containing strontium, which is beneficial for biological performance. The bioactivity of materials was evaluated based on the ability to induce a bond-like apatite layer on the surface in simulated body fluid (SBF), as proposed by Kokubo et al. After the materials were soaked in SBF for 1 day, precipitates formed on the surface of MAO coating. The surface of MAO coatings was completely covered with precipitates after 7 days. The precipitates, which were found to be composed of fiber structures, were identified as the apatite phase using thin film X-ray diffraction (TF-XRD). The results show that MAO coatings containing strontium can induce the formation of an apatite layer on their surface. In the potentiodynamic test, MAO coatings exhibited a more noble corrosion potential (E corr ) than that of titanium in SBF. In the passive region, the current density of MAO coatings was lower than that of titanium. All findings in this study indicated that MAO coatings containing strontium have good bioactivity and corrosion resistance for clinical applications.

  3. Biocorrosion resistance of coated magnesium alloy by microarc oxidation in electrolyte containing zirconium and calcium salts

    Science.gov (United States)

    Wang, Ya-Ming; Guo, Jun-Wei; Wu, Yun-Feng; Liu, Yan; Cao, Jian-Yun; Zhou, Yu; Jia, De-Chang

    2014-09-01

    The key to use magnesium alloys as suitable biodegradable implants is how to adjust their degradation rates. We report a strategy to prepare biocompatible ceramic coating with improved biocorrosion resistance property on AZ91D alloy by microarc oxidation (MAO) in a silicate-K2ZrF6 solution with and without Ca(H2PO4)2 additives. The microstructure and biocorrosion of coatings were characterized by XRD and SEM, as well as electrochemical and immersion tests in simulated body fluid (SBF). The results show that the coatings are mainly composed of MgO, Mg2SiO4, m-ZrO2 phases, further Ca containing compounds involve the coating by Ca(H2PO4)2 addition in the silicate-K2ZrF6 solution. The corrosion resistance of coated AZ91D alloy is significantly improved compared with the bare one. After immersing in SBF for 28 d, the Si-Zr5-Ca0 coating indicates a best corrosion resistance performance.

  4. Microarc oxidation discharge types and bio properties of the coating synthesized on zirconium.

    Science.gov (United States)

    Cengiz, Sezgin; Azakli, Yunus; Tarakci, Mehmet; Stanciu, Lia; Gencer, Yucel

    2017-08-01

    This study is an attempt for gaining a better understanding on relationship between microarc oxidation (MAO) coating discharge types and bioactivity of an oxide-based coating synthesized on a Zr substrate. The discharge types and the coating growth mechanism were identified by the examination of the real cross-section image of the coating microstructure. The coating was conducted by using MAO in an electrolyte containing Na 2 SiO 3 , Ca(CH 3 COO) 2 and C 3 H 7 Na 2 O 6 P, for different durations of 2.5, 5, 15, and 30mins. The effect of the process duration on the different discharge model types (Type-A, B, and C) and bioactivity of the coatings were investigated by using X-ray Diffractometry (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy-Energy-Dispersive X-ray spectroscopy measurements (SEM-EDS) and Optical Surface Profilometry (OSP). It was found that the increasing MAO duration resulted in thicker and rougher coatings. The XRD data revealed that all the samples prepared at different process durations contained the t-ZrO 2 (tetragonal zirconia) phase. During the MAO process, non-crystalline hydroxyapatite (HA) formed, which was confirmed from the FTIR data. The surface morphology, the amount and distribution of the features of the coating surface were modified by increasing voltage. The simulated body fluid (SBF) tests showed that the more bioactive surface with more HA crystals formed owing to chemical composition and high surface roughness of the coating. The pore, crack and discharge structures played a key role in apatite nucleation and growth, and provided ingrowth of apatite into discharge channels on the coating surface. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Preparation and bioactivity of micro-arc oxidized calcium phosphate coatings

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Y.K. [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Ji' nan, Shandong 250061 (China); School of Materials Science and Engineering, Shandong University, Ji' nan, Shandong 250061 (China); Chen, C.Z., E-mail: czchen@sdu.edu.cn [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Ji' nan, Shandong 250061 (China); School of Materials Science and Engineering, Shandong University, Ji' nan, Shandong 250061 (China); Wang, D.G.; Lin, Z.Q. [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Ji' nan, Shandong 250061 (China); School of Materials Science and Engineering, Shandong University, Ji' nan, Shandong 250061 (China)

    2013-09-16

    Calcium phosphate (CaP) coatings were prepared on ZK60 magnesium alloy by micro-arc oxidation (MAO) in electrolyte containing calcium acetate monohydrate (CH{sub 3}COO){sub 2}Ca·H{sub 2}O) and disodium hydrogen phosphate dodecahydrate (Na{sub 2}HPO{sub 4}·12H{sub 2}O). Scanning electron microscope (SEM), energy-dispersive X-ray spectrometry (EDX) and X-ray diffractometer (XRD) were employed to characterize the microstructure, elemental distribution and phase composition of the CaP coatings respectively. Simulated body fluid (SBF) immersion test was used to evaluate the coating degradability and bioactivity. After 30 days of SBF immersion, the CaP coatings effectively reduce the degradation rate. The surfaces of CaP coatings are covered by a new layer formed of numerous needle-like, spherical and columned calcium phosphates. SEM, EDX and XRD results suggest that these calcium phosphates are bioactive calcium phosphate phases such as hydroxyapatite (Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}, HA) and calcium pyrophosphates (Ca{sub 2}P{sub 2}O{sub 7}, CPP). The formation of these calcium phosphates indicates that the CaP coatings have bioactivity. - Highlights: • Bioactive CaP coatings are successfully formed on ZK60 magnesium alloy. • CaP coatings consist of MgO, MgF{sub 2}, CaO, CaF{sub 2} and Ca{sub 3}(PO{sub 4}){sub 2}. • Needle-like, spherical and columned calcium phosphates formed in SBF. • CaP coatings exhibit bioactivity and low corrosion rate.

  6. Influence of Al-Si alloy microstructure on the corrosion resistance of coatings formed by the microarc oxidation method

    Directory of Open Access Journals (Sweden)

    Dudareva Natalia.Y.

    2017-01-01

    Full Text Available The impact of the high-silicon aluminum alloy initial microstructure on the quality of the coating formed by microarc oxidation (MAO has been studied. The MAO treatment is applied to AK12D samples in the initial coarse-grained state and after high pressure torsion. The following coating properties are studied: thickness, microhardness, porosity and corrosion resistance. It is established that the MAO layers properties depend on the base microstructure much. High pressure torsion applied to AK12D samples before MAO results in increase of the coating thickness by ∼ 2 times. The microhardness of coatings reduces and their corrosion resistance degrades by ∼ 10 times.

  7. Influence of Electrolyte Composition on the Calcium-Phosphorus compound Coating on Titanium Substrate by Micro-arc Oxidation

    Institute of Scientific and Technical Information of China (English)

    ZHU Xiu-hong; WANG Cong-zeng; KOU Bin-da; SU Xue-kuan; ZHANG Wen-quan

    2004-01-01

    The compound bioceramic coating containing calcium (Ca) and phosphorus (P) on titanium alloy substrate was prepared by means of micro-arc oxidation (MAO) treatment. The results show that under the different electrolyte the coating with the color of gray or black and surface morphology of cauliflower or honeycomb, where Ca content and P contain can attain 30% and 20% respectively, can be obtained. Meanwhile, the influences of electrolyte temperature, current density and discharge time on morphology and thickness of coating are also discussed here.

  8. Tribological properties of duplex MAO/DLC coatings on magnesium alloy using combined microarc oxidation and filtered cathodic arc deposition

    International Nuclear Information System (INIS)

    Liang Jun; Wang Peng; Hu Litian; Hao Jingcheng

    2007-01-01

    The combined microarc oxidation (MAO) and filtered cathode arc deposition process was used to deposit duplex MAO/DLC coating on AM60B magnesium alloy. The microstructure and composition of the resulting duplex coating were analyzed by Raman spectroscopy, X-ray photoelectron spectroscope (XPS) and scanning electron microscope (SEM). The tribological behaviors of the duplex coating were studied by ball-on-disk friction testing. It is found that the Ti-doped DLC thin film could be successfully deposited onto the polished MAO coating. The duplex MAO/DLC coating exhibits a better tribological property than the DLC or MAO monolayer on Mg alloy substrate, owing to the MAO coating served as an intermediate layer provides improved load support for the soft Mg alloy substrate and the DLC top coating exhibits low friction coefficient

  9. Research of growth mechanism of ceramic coatings fabricated by micro-arc oxidation on magnesium alloys at high current mode

    OpenAIRE

    Wei-wei Chen; Ze-xin Wang; Lei Sun; Sheng Lu

    2015-01-01

    Micro-arc oxidation (MAO) coatings of ZK60 magnesium alloys were formed in a self-developed dual electrolyte composed of sodium silicate and phosphate at the high constant current of 1.8 A (15 A/dm2). The MAO process and growth mechanism were investigated by scanning electron microscopy (SEM) coupled with an energy dispersive spectrometer (EDS), confocal laser scanning microscopy and X-ray diffraction (XRD). The results indicate that the growth process of MAO coating mainly goes through “form...

  10. Surface characterization and corrosion behavior of micro-arc oxidized Ti surface modified with hydrothermal treatment and chitosan coating

    International Nuclear Information System (INIS)

    Neupane, Madhav Prasad; Park, Il Song; Lee, Min Ho

    2014-01-01

    In the present work, we describe the surface modification of commercially pure titanium (CP-Ti) by a composite/multilayer coating approach for biomedical applications. CP-Ti samples were treated by micro-arc oxidation (MAO) and subsequently some of the samples were coated with chitosan (Chi) by dip coating method, while others were subjected to hydrothermal treatment (HT) followed by chitosan coating. The MAO, MAO/Chi, and MAO/HT/Chi coated Ti were characterized and their characteristics were compared with CP-Ti. X-ray diffraction and scanning electron microscopy were used to assess the structural and morphological characteristics. The average surface roughness was determined using a surface profilometer. The corrosion resistance of untreated and surface modified Ti in commercial saline at 298 K was evaluated by potentiodynamic polarization test. The results indicated that the chitosan coating is very well integrated with the MAO and MAO/HT coating by physically interlocking itself with the coated layer and almost sealed all the pores. The surface roughness of hydrothermally treated and chitosan coated MAO film was superior evidently to that with other sample groups. The corrosion studies demonstrated that the MAO, hydrothermally treated and chitosan coated sample enhanced the corrosion resistance of titanium. The result indicates that fabrication of hydrothermally treated MAO surface coatings with chitosan is a significant approach to protect the titanium from corrosion, hence enhancing the potential use of titanium as bio-implants. - Highlights: • Micro-arc oxidized (MAO) and hydrothermally treated (HT) Ti surfaces are coated with chitosan (Chi). • The MAO/HT/Chi surface exhibits pores sealing and enhanced the surface roughness. • The MAO/HT/Chi surface significantly increase the corrosion resistance. • The MAO/HT/Chi can be a potential surface of titanium for bio-implants

  11. Preparation and characterization of HA microflowers coating on AZ31 magnesium alloy by micro-arc oxidation and a solution treatment

    Energy Technology Data Exchange (ETDEWEB)

    Tang Hui [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Yu Dezhen [School of Material Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Luo Yan [Department of Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Wang Fuping, E-mail: hitth001@yahoo.cn [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer Hydroxyapatite microflowers coating is fabricated by micro-arc oxidation and a solution treatment on AZ31 magnesium alloy. Black-Right-Pointing-Pointer The corrosion resistance of the magnesium alloy has been enhanced by micro-arc oxidation and solution treatment. Black-Right-Pointing-Pointer The coating fabricated by micro-arc oxidation and solution treatment exhibits a high ability to form apatite. - Abstract: Magnesium and its alloys are potential biodegradable implant materials due to their attractive biological properties. But the use of magnesium is still hampered by its poor corrosion resistance in physiological fluids. In this work, hydroxyapatite microflowers coating is fabricated by micro-arc oxidation and a solution treatment on AZ31 magnesium alloy. The microstructure and composition are analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). The potentiodynamic polarization and electrochemical impedance spectroscopy are studied in simulated body fluid (SBF) solution, and the apatite-forming ability is studied also. The results show that the corrosion resistance of the magnesium alloy has been enhanced by MAO coating. And the solution treatment can improve the corrosion resistance of the MAO sample, by forming a barrier layer on the surface of the MAO coating, and by penetrating into the outer layer of the MAO film, sealing the micropores and micro-cracks existed in the MAO coating. In addition, the MAO-ST coating also exhibits a high ability to form apatite.

  12. Corrosion resistance of micro-arc oxidation coatings formed on aluminum alloy with addition of Al2O3

    Science.gov (United States)

    Zhang, Y.; Chen, Y.; Du, H. Q.; Zhao, YW

    2018-03-01

    Micro-arc oxidation (MAO) coatings were formed on the aluminum alloy in silicate-based electrolyte without and with the addition of Al2O3. It is showed that the coating produced in 7 g l‑1 Al2O3-containing electrolyte was of the most superior corrosion resistance. Besides, the corrosion properties of the coatings were studied by means of potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) test in both 0.5 M and 1 M NaCl solution. The results proved that the coating is capable to protect the substrate from the corrosion of aggressive Cl‑ in 0.5 M NaCl after 384 h immersion. However, it can not offer protection to the aluminum alloy substrate after 384 h immersion in 1 M NaCl solution. The schematic diagrams illustrate the corrosion process and matched well with the corrosion test results.

  13. Investigation of the Scanning Microarc Oxidation Process

    Directory of Open Access Journals (Sweden)

    Lingqin Xia

    2017-01-01

    Full Text Available Scanning microarc oxidation (SMAO is a coating process which is based on conventional microarc oxidation (MAO. The key difference is that deposition in SMAO is achieved by using a stainless steel nozzle to spray an electrolyte stream on the substrate surface as opposed to immersing the workpiece in an electrolyzer. In the present study, SMAO discharge characteristics, coating morphology, and properties are analyzed and compared to results obtained from MAO under similar conditions. Results show that MAO and SMAO have comparable spark and microarc lifetimes and sizes, though significant differences in incubation time and discharge distribution were evident. Results also showed that the voltage and current density for MAO and SMAO demonstrate similar behavior but have markedly different transient and steady-state values. Results obtained from coating A356 aluminum sheet show that oxide thickness and growth rate in SMAO are strongly dependent on interelectrode spacing and travel speed. Analysis of the SMAO coating morphology and structure showed that a denser and slightly harder layer was deposited in comparison to MAO and is attributed to reduced porosity and increased formation of α-Al2O3. Preliminary results indicate that SMAO represents a viable process for coating of aluminum surfaces.

  14. Composite coating prepared by micro-arc oxidation followed by sol-gel process and in vitro degradation properties

    International Nuclear Information System (INIS)

    Zhang Yi; Bai Kuifeng; Fu Zhenya; Zhang Caili; Zhou Huan; Wang Liguo; Zhu Shijie; Guan Shaokang; Li Dongsheng; Hu Junhua

    2012-01-01

    A Mg phosphate coating was prepared on home-developed Mg-Zn-Ca alloy to improve its anticorrosion performance in simulated body fluid (SBF, Kokubo solution). The coating was prepared by micro-arc oxidation (MAO) method at the working voltage of 120-140 V. Evident improvement of anticorrosion was obtained even through the surface was porous. To further diminish the contact with SBF, a TiO 2 layer was coated on the porous MAO layer by sol-gel dip coating followed by an annealing treatment. The coatings were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and energy dispersion spectroscopy (EDS). The electrochemical performance of the MAO and TiO 2 /MAO coated alloys was evaluated by anodic polarization measurements. The pores on Mg phosphate layer provided accommodation sites for the subsequent TiO 2 sol-gel coating which sealed the pores and hence significantly enhanced the anticorrosion while single MAO coating only improve anticorrosion within a limited range. The present result indicates that fabrication of composite coatings is a significant strategy to improve the corrosion resistance of Mg-Zn-Ca alloy and other alloys, thus enhancing the potential of using Mg alloys as bio-implants.

  15. Microstructure characteristic of ceramic coatings fabricated on magnesium alloys by micro-arc oxidation in alkaline silicate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Guo, H.F. [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China)]. E-mail: Guohf@hit.edu.cn; An, M.Z. [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China)]. E-mail: mzan@hit.edu.cn; Huo, H.B. [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Xu, S. [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Wu, L.J. [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China)

    2006-09-15

    Micro-arc oxidation (MAO) of AZ31B magnesium alloys was studied in alkaline silicate solutions at constant applied current densities. The microstructure, phase composition and elemental distribution of ceramic coatings were investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy-dispersive spectroscopy (EDX). There are two inflections in the voltage-time response, three regions were identifiable and each of the regions was almost linear. The pores with different shapes distributed all over the coating surface, the number of the pores was decreasing, while the diameter was apparently increasing with prolonged MAO treatment time. There were also cracks on the coating surface, resulting from the rapid solidification of the molten oxide. The ceramic coating was comprised of two layers, an outer loose layer and an inner dense layer. The ceramic coating was mainly composed of forsterite phase Mg{sub 2}SiO{sub 4} and MgO; the formation of MgO was similar to conversional anodizing technology, while formation of Mg{sub 2}SiO{sub 4} was attributed to a high temperature phase transformation reaction. Presence of Si and O indicated that the electrolyte components had intensively incorporated into coatings.

  16. Influence of sodium silicate concentration on structural and tribological properties of microarc oxidation coatings on 2017A aluminum alloy substrate

    International Nuclear Information System (INIS)

    Polat, Aytekin; Makaraci, Murat; Usta, Metin

    2010-01-01

    In this paper, thick and hard oxide coatings resistant to wear were produced on 2017A-T6 Al alloy by the microarc oxidation (MAO) technique in an alkali electrolyte consisting of different sodium silicate concentrations (0-8 g/l). The coatings were characterized by means of optical microscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD) and surface profilometry. Microhardness, scratch adhesion and pin-on-disk sliding wear tests were also performed to evaluate the tribological properties of the coatings. The influence of sodium silicate concentration on the structural and tribological properties of the MAO coatings was discussed. Results reveal that increasing sodium silicate concentration from 0 to 8 g/l in the electrolyte caused an increase in the electrolyte conductivity (from 7.71 to 18.1 mS/cm) and a decrease in positive final voltage (from 627 to 590 V) in the MAO process. In response to the increase in sodium silicate concentration, the thickness, surface roughness (R a ) and critical load (L c ) corresponding to adhesive failure of the coatings were increased simultaneously from 74 to 144 μm, and 4.4 to 6.58 μm, and 127.76 to 198.54 N, respectively. At the same time, the phase structure and composition of the coatings also varied by the participation of silicate ions in the reactions and their incorporation into the coating structure. Moreover, it was observed that the coating formed in the low sodium silicate concentration (4 g/l) had higher surface hardness (2020 HV) and improved wear resistance than the one (1800 HV) formed in the high sodium silicate concentration (8 g/l). The coatings produced in three different electrolytic solutions provided an excellent wear resistance and a load carrying capacity compared to the uncoated aluminum alloy.

  17. Cross-linked gelatin/nanoparticles composite coating on micro-arc oxidation film for corrosion and drug release

    International Nuclear Information System (INIS)

    Xu Xinhua; Lu Ping; Guo Meiqing; Fang Mingzhong

    2010-01-01

    A composite coating which could control drug release and biocorrosion of magnesium alloy stent materials WE42 was prepared. This composite coating was fabricated on the surface of the micro-arc oxidation (MAO) film of the magnesium alloy, WE42, by mixing different degrees of cross-linked gelatin with well-dispersed poly(DL-lactide-co-glycolide) (PLGA) nanoparticles. The PLGA nanoparticles were prepared by emulsion solvent evaporation/extraction technique. Nano ZS laser diffraction particle size analyzer detected that the size of the nanoparticles to be 150-300 nm. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) was used to analyze the morphology of the nanoparticles and the composite coating. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) were used to evaluate the corrosion behavior of the composite coating. Drug release was determined by ultraviolet-visible (UV-vis) spectrophotometer. The corrosion resistance of the composite coating was improved by preventing the corrosive ions from diffusing to the MAO films. The drug release rate of paclitaxel (PTX) exhibited a nearly linear sustained-release profile with no significant burst releases.

  18. Cross-linked gelatin/nanoparticles composite coating on micro-arc oxidation film for corrosion and drug release

    Energy Technology Data Exchange (ETDEWEB)

    Xu Xinhua, E-mail: xhxu_tju@eyou.com [Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Lu Ping; Guo Meiqing; Fang Mingzhong [Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China)

    2010-02-01

    A composite coating which could control drug release and biocorrosion of magnesium alloy stent materials WE42 was prepared. This composite coating was fabricated on the surface of the micro-arc oxidation (MAO) film of the magnesium alloy, WE42, by mixing different degrees of cross-linked gelatin with well-dispersed poly(DL-lactide-co-glycolide) (PLGA) nanoparticles. The PLGA nanoparticles were prepared by emulsion solvent evaporation/extraction technique. Nano ZS laser diffraction particle size analyzer detected that the size of the nanoparticles to be 150-300 nm. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) was used to analyze the morphology of the nanoparticles and the composite coating. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) were used to evaluate the corrosion behavior of the composite coating. Drug release was determined by ultraviolet-visible (UV-vis) spectrophotometer. The corrosion resistance of the composite coating was improved by preventing the corrosive ions from diffusing to the MAO films. The drug release rate of paclitaxel (PTX) exhibited a nearly linear sustained-release profile with no significant burst releases.

  19. Cross-linked gelatin/nanoparticles composite coating on micro-arc oxidation film for corrosion and drug release

    Science.gov (United States)

    Xu, Xinhua; Lu, Ping; Guo, Meiqing; Fang, Mingzhong

    2010-02-01

    A composite coating which could control drug release and biocorrosion of magnesium alloy stent materials WE42 was prepared. This composite coating was fabricated on the surface of the micro-arc oxidation (MAO) film of the magnesium alloy, WE42, by mixing different degrees of cross-linked gelatin with well-dispersed poly( DL-lactide-co-glycolide) (PLGA) nanoparticles. The PLGA nanoparticles were prepared by emulsion solvent evaporation/extraction technique. Nano ZS laser diffraction particle size analyzer detected that the size of the nanoparticles to be 150-300 nm. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) was used to analyze the morphology of the nanoparticles and the composite coating. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) were used to evaluate the corrosion behavior of the composite coating. Drug release was determined by ultraviolet-visible (UV-vis) spectrophotometer. The corrosion resistance of the composite coating was improved by preventing the corrosive ions from diffusing to the MAO films. The drug release rate of paclitaxel (PTX) exhibited a nearly linear sustained-release profile with no significant burst releases.

  20. Growth of ceramic coatings on AZ91D magnesium alloys by micro-arc oxidation in aluminate-fluoride solutions and evaluation of corrosion resistance

    International Nuclear Information System (INIS)

    Guo, H.F.; An, M.Z.

    2005-01-01

    Micro-arc oxidization of AZ91D magnesium alloys was studied in solutions containing sodium aluminate and potassium fluoride at constant applied current densities. The influence of applied current densities, concentration and constituents of the electrolyte as well as treatment time on micro-arc oxidization process was investigated, respectively; surface morphology and phase structure were analyzed using scanning electron microscope (SEM) and X-ray powder diffraction (XRD). Potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS) were used to evaluate the corrosion resistance of ceramic coatings formed on magnesium alloys. XRD analyses indicate that the ceramic coatings fabricated on the surface of magnesium alloys by micro-arc oxidization are composed of spinel phase MgAl 2 O 4 and intermetallic phase Al 2 Mg; variation of treatment time arises no obvious difference to phase structure of the ceramic coatings. A few circular pores and micro-cracks are also observed to remain on the ceramic coating surface; the number of the pores is decreasing, while the diameter of the pores is apparently increasing with prolonging of treatment time. The corrosion resistance of ceramic coatings is improved more than 100 times compared with magnesium alloy substrate

  1. Evolution of micro-arc oxidation behaviors of the hot-dipping aluminum coatings on Q235 steel substrate

    International Nuclear Information System (INIS)

    Lu Lihong; Shen Dejiu; Zhang Jingwu; Song Jian; Li Liang

    2011-01-01

    Micro-arc oxidation (MAO) is not applicable to prepare ceramic coatings on the surface of steel directly. In this work, hybrid method of MAO and hot-dipping aluminum (HDA) were employed to fabricate composite ceramic coatings on the surface of Q235 steel. The evolution of MAO coatings, such as growth rate, thickness of the total coatings, ingrown and outgrown coatings, cross section and surface morphologies and phase composition of the ceramic coatings were studied. The results indicate that both the current density and the processing time can affect the total thickness, the growth rate and the ratio of ingrown and outgrown thickness of the ceramic coatings. The total thickness, outgrown thickness and growth rate have maximum values with the processing time prolonged. The time when the maximum value appears decreases and the ingrown dominant turns to outgrown dominant little by little with the current density increasing. The composite coatings obtained by this hybrid method consists of three layers from inside to outside, i.e. Fe-Al alloy layer next to the substrate, aluminum layer between the Fe-Al layer and the ceramic coatings which is as the top exterior layer. Metallurgical bonding was observed between every of the two layers. There are many micro-pores and micro-cracks, which act as discharge channels and result of quick and non-uniform cooling of melted sections in the MAO coatings. The phase composition of the ceramic coatings is mainly composed of amorphous phase and crystal Al 2 O 3 oxides. The crystal Al 2 O 3 phase includes κ-Al 2 O 3 , θ-Al 2 O 3 and β-Al 2 O 3 . Compared with the others, the β-Al 2 O 3 content is the least. The MAO process can be divided into three periods, namely the common anodic oxidation stage, the stable MAO stage and the ceramic coatings destroyed stage. The exterior loose part of the ceramic coatings was destroyed badly in the last period which should be avoided during the MAO process.

  2. Evolution of micro-arc oxidation behaviors of the hot-dipping aluminum coatings on Q235 steel substrate

    Energy Technology Data Exchange (ETDEWEB)

    Lu Lihong, E-mail: llh_qc@163.com [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China) and Research Department, The Chinese People' s Armed Police Academy, Langfang 065000 (China); Shen Dejiu; Zhang Jingwu [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Song Jian; Li Liang [Tsinghua University, State Key Laboratory of Automotive Safety and Energy, Beijing 100084 (China)

    2011-02-15

    Micro-arc oxidation (MAO) is not applicable to prepare ceramic coatings on the surface of steel directly. In this work, hybrid method of MAO and hot-dipping aluminum (HDA) were employed to fabricate composite ceramic coatings on the surface of Q235 steel. The evolution of MAO coatings, such as growth rate, thickness of the total coatings, ingrown and outgrown coatings, cross section and surface morphologies and phase composition of the ceramic coatings were studied. The results indicate that both the current density and the processing time can affect the total thickness, the growth rate and the ratio of ingrown and outgrown thickness of the ceramic coatings. The total thickness, outgrown thickness and growth rate have maximum values with the processing time prolonged. The time when the maximum value appears decreases and the ingrown dominant turns to outgrown dominant little by little with the current density increasing. The composite coatings obtained by this hybrid method consists of three layers from inside to outside, i.e. Fe-Al alloy layer next to the substrate, aluminum layer between the Fe-Al layer and the ceramic coatings which is as the top exterior layer. Metallurgical bonding was observed between every of the two layers. There are many micro-pores and micro-cracks, which act as discharge channels and result of quick and non-uniform cooling of melted sections in the MAO coatings. The phase composition of the ceramic coatings is mainly composed of amorphous phase and crystal Al{sub 2}O{sub 3} oxides. The crystal Al{sub 2}O{sub 3} phase includes {kappa}-Al{sub 2}O{sub 3}, {theta}-Al{sub 2}O{sub 3} and {beta}-Al{sub 2}O{sub 3}. Compared with the others, the {beta}-Al{sub 2}O{sub 3} content is the least. The MAO process can be divided into three periods, namely the common anodic oxidation stage, the stable MAO stage and the ceramic coatings destroyed stage. The exterior loose part of the ceramic coatings was destroyed badly in the last period which should be

  3. Effects of single pulse energy on the properties of ceramic coating prepared by micro-arc oxidation on Ti alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jun-Hua [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023 (China); Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500 (China); Wang, Jin [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Beijing Key Lab of Precision/Ultra-precision Manufacturing Equipments and Control, Beijing 100084 (China); Lu, Yan [School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023 (China); Du, Mao-Hua [Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500 (China); Han, Fu-Zhu, E-mail: hanfuzhu@mail.tsinghua.edu.cn [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Beijing Key Lab of Precision/Ultra-precision Manufacturing Equipments and Control, Beijing 100084 (China)

    2015-01-01

    Highlights: • Single pulse energy remarkably influences the properties of ceramic coating prepared by MAO on Ti alloy. • The accumulative time of impulse width is an important parameter in the scientific and rational measurement of the film forming law of ceramic coating. • The ceramic coating thickness approximately linearly increases with the cumulative time of impulse width. • Larger impulse width resulted in higher single pulse energy, film forming rates and thicker ceramic coating thickness. • The effects of single pulse energy on the micro-hardness and phase composition of ceramic coating are not as evident as those of frequency and duty cycle. - Abstract: The effects of single pulse energy on the properties of ceramic coating fabricated on a Ti–6Al–4V alloy via micro-arc oxidation (MAO) in aqueous solutions containing aluminate, phosphate, and some additives are investigated. The thickness, micro-hardness, surface and cross-sectional morphology, surface roughness, and compositions of the ceramic coating are studied using eddy current thickness meter, micro-hardness tester, JB-4C Precision Surface roughness meter, scanning electron microscopy (SEM) and X-ray diffraction (XRD). Single pulse energy remarkably influences the ceramic coating properties. The accumulative time of impulse width is an important parameter in the scientific and rational measurement of the film forming law of ceramic coating. The ceramic coating thickness approximately linearly increases with the cumulative time of impulse width. Larger impulse width resulted in higher single pulse energy, film forming rates and thicker ceramic coating thickness. The sizes of oxide particles, micro-pores and micro-cracks slightly increase with impulse width and single pulse energy. The main surface conversion products generated during MAO process in aqueous solutions containing aluminate are rutile TiO{sub 2}, anatase TiO{sub 2}, and a large amount of Al{sub 2}TiO{sub 5}. The effects of

  4. Long-term corrosion inhibition mechanism of microarc oxidation coated AZ31 Mg alloys for biomedical applications

    International Nuclear Information System (INIS)

    Gu, Yanhong; Bandopadhyay, Sukumar; Chen, Cheng-fu; Ning, Chengyun; Guo, Yuanjun

    2013-01-01

    Highlights: ► The corrosion behavior is significantly affected by the long-term immersion. ► The degradation is inhibited due to the corrosion product layer. ► The corrosion resistance is enhanced by optimized MAO electrolyte concentrations. ► The corrosion inhibition mechanism is presented by a Flash animation. - Abstract: This paper addresses the long-term corrosion behavior of microarc oxidation coated Mg alloys immersed in simulated body fluid for 28 days. The coatings on AZ31 Mg alloys were produced in the electrolyte of sodium phosphate (Na 3 PO 4 ) at the concentration of 20 g/L, 30 g/L and 40 g/L, respectively. Scanning electron microscope (SEM) and optical micrograph were used to observe the microstructure of the samples before and after corrosion. The composition of the MAO coating and corrosion products were determined by X-Ray Diffraction (XRD). Corrosion product identification showed that hydroxyapatite (HA) was formed on the surface of the corroded samples. The ratio of Ca/P in HA determined by the X-ray Fluorescence (XRF) technique showed that HA is an acceptable biocompatible implant material. The potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) were employed to characterize the corrosion rate and the electrochemical impedance. The corrosion resistance of the coated Mg alloys can be enhanced by optimizing the electrolyte concentrations for fabricating samples, and is enhanced after immersing the coated samples in simulated body fluid for more than 14 days. The enhanced corrosion resistance after long-term immersion is attributed to a corrosion product layer formed on the sample surface. The inhibition mechanism of the corrosion process is discussed and presented with an animation

  5. Effect of alumina sol addition to micro-arc oxidation electrolyte on the properties of MAO coatings formed on magnesium alloy AZ91D

    International Nuclear Information System (INIS)

    Laleh, M.; Rouhaghdam, A. Sabour; Shahrabi, T.; Shanghi, A.

    2010-01-01

    Oxide coatings were formed on AZ91D magnesium alloy using micro-arc oxidation process in alkaline electrolyte without and with addition of alumina sol. The microstructures and compositions of the MAO coatings were analyzed by scanning electron microscope (SEM) and X-ray diffraction (XRD). Corrosion behaviors of the coatings were evaluated with electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests in 3.5%NaCl solution. Porosities of the coatings were measured by potentiodynamic polarization tests. It was found that the coating produced in the electrolyte with alumina sol has more compact and uniform morphology than that produced in the electrolyte without alumina sol. The results of corrosion tests showed that the coating formed in electrolyte with alumina sol enhances the corrosion resistance of the substrate significantly. XRD patterns showed that the coating produced in the electrolyte with alumina sol has more MgAl 2 O 4 phase than MgO.

  6. High-temperature Corrosion Resistance of Composite Coating Prepared by Micro-arc Oxidation Combined with Pack Cementation Aluminizing

    Directory of Open Access Journals (Sweden)

    HUANG Zu-jiang

    2018-01-01

    Full Text Available Al2O3 ceramic film was obtained by micro-arc oxidation (MAO process on Al/C103 specimen, which was prepared by pack cementation aluminizing technology on C103 niobium alloy. With the aid of XRD and SEM equipped with EDS, chemical compositions and microstructures of the composite coatings before and after high-temperature corrosion were analyzed. The behavior and mechanism of the composite coatings in high-temperature oxidation and hot corrosion were also investigated. The results indicate that oxidation mass gain at 1000℃ for 10h of the Al/C103 specimen is 6.98mg/cm2, and it is 2.89mg/cm2 of the MAO/Al/C103 specimen. However, the mass gain of MAO/Al/C103 specimen (57.52mg/cm2 is higher than that of Al/C103 specimen (28.08mg/cm2 after oxidation 20h. After hot corrosion in 75%Na2SO4 and 25%NaCl at 900℃ for 50h, the mass gain of Al/C103 and MAO/Al/C103 specimens are 70.54mg/cm2 and 55.71mg/cm2 respectively, Al2O3 and perovskite NaNbO3 phases are formed on the surface; the diffusion of molten salt is suppressed, due to part of NaNbO3 accumulated in the MAO micropores. Therefore, MAO/Al/C103 specimen exhibits better hot corrosion resistance.

  7. Electrochemical corrosion behavior of composite MAO/sol-gel coatings on magnesium alloy AZ91D using combined micro-arc oxidation and sol-gel technique

    International Nuclear Information System (INIS)

    Shang Wei; Chen Baizhen; Shi Xichang; Chen Ya; Xiao Xiang

    2009-01-01

    Protective composite coatings were obtained on a magnesium alloy by micro-arc oxidation (MAO) and sol-gel technique. The coatings consisted of a MAO layer and a sol-gel layer. The microstructure and composition of the MAO coating and the composite coatings were analyzed by scanning electron microscopy (SEM) and energy dispersive X-rays (EDX). Potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and total immersion tests were used to evaluate the corrosion behavior of these coatings in a 3.5 wt.% NaCl solution. The results show that the sol-gel layer provides corrosion protection by physically sealing the pores in the MAO coating and acting as a barrier. The composite coatings can suppress the corrosion process by preventing the corrosive ions from transferring or diffusing to the magnesium alloy substrate. This enhances the corrosion resistance of the magnesium alloy AZ91D significantly

  8. Effect of ZrO{sub 2} particle on the performance of micro-arc oxidation coatings on Ti6Al4V

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hong; Sun, Yezi; Zhang, Jin, E-mail: zhangjin@ustb.edu.cn

    2015-07-01

    Highlights: • An anti-oxidation TiO{sub 2}/ZrO{sub 2} composite coating on Ti6Al4V alloy was prepared using micro-arc oxidation technology by adding ZrO{sub 2} particles in single phosphoric acid solution. • The composite coating displays excellent anti-oxidation characteristic at 700 °C in the air. • The concentration of ZrO{sub 2} particles not only influences the roughness and thickness of the coating, but the morphologies, phase composition, oxidation resistance and wear resistance. - Abstract: This paper investigates the effect of ZrO{sub 2} particle on the oxidation resistance and wear properties of coatings on a Ti6Al4V alloy generated using the micro-arc oxidation (MAO) technique. Different concentrations micron ZrO{sub 2} particles were added in phosphate electrolyte and dispersed by magnetic stirring apparatus. The composition of coating was characterized using X-ray diffraction and energy dispersive spectrum, and the morphology was examined using SEM. The high temperature oxidation resistance of the coating sample at 700 °C was investigated. Sliding wear behaviour was tested by a wear tester. The results showed that the coating consisted of ZrTiO{sub 4}, ZrO{sub 2}, TiO{sub 2}. With ZrO{sub 2} particle addition, the ceramic coating's forming time reduced by the current dynamic curve. It was shown that the addition of ZrO{sub 2} particles (3 g/L, 6 g/L) expressed an excellent oxidation resistance at 700 °C and wear resistance.

  9. Effect of phosphate additives on the microstructure, bioactivity, and degradability of microarc oxidation coatings on Mg-Zn-Ca-Mn alloy.

    Science.gov (United States)

    Dou, Jinhe; You, Qiongya; Gu, Guochao; Chen, Chuanzhong; Zhang, Xihua

    2016-09-20

    Calcium phosphate coatings were prepared on the surface of self-designed Mg-Zn-Ca-Mn alloy using microarc oxidization technology. To characterize the microstructures, cross-section morphologies, and compositions of the coatings, the authors used scanning electron microscopy equipped with an energy-disperse spectrometer, x-ray diffraction, and Fourier transform infrared spectroscopy. Potentiodynamic polarization in the simulated body fluid (SBF) was used to evaluate the corrosion behaviors of the samples. An SBF immersion test was used to evaluate the coating bioactivity and degradability. After the immersion tests, some bonelike apatite formed on the coating surfaces indicate that bioactivity of the coatings is excellent. The coating prepared in electrolyte containing (NaPO3)6 had slower degradation rate after immersion test for 21 days.

  10. Structure and properties of a duplex coating combining micro-arc oxidation and baking layer on AZ91D Mg alloy

    Science.gov (United States)

    Cui, Xue-Jun; Li, Ming-Tian; Yang, Rui-Song; Yu, Zu-Xiao

    2016-02-01

    A duplex coating (called MAOB coating) was fabricated on AZ91D Mg alloy by combining the process of micro-arc oxidation (MAO) with baking coating (B-coating). The structure, composition, corrosion resistance, and tribological behaviour of the coatings were investigated using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), electrochemical and long-term immersion test, and ball-on-disc friction test. The results show that a dense 92 μm thick B-coating was tightly deposited onto the MAO-coated Mg alloy and exhibited a good mechanical interlock along the rough interface. Compared with the MAO-coated sample, the corrosion current density of the MAOB-coated Mg alloy decreased by two or three orders of magnitude and no corrosion phenomenon was observed during a long-term immersion test of about 500 h (severe corrosion pits were found for MAO-treated samples after about 168 h of immersion). The frictional coefficient values of the MAOB coating were similar to those of the MAO coating using dry sliding tests, while the B-coating on the MAO-coated surface significantly improved the wear resistance of the AZ91D Mg alloy. All of these results indicate that a B-coating can be used to further protect Mg alloys from corrosion and wear by providing a thick, dense barrier.

  11. The influence of the substrate on the adhesive strength of the micro-arc oxidation coating developed on TiNi shape memory alloy

    Science.gov (United States)

    Hsieh, Shy-Feng; Ou, Shih-Fu; Chou, Chia-Kai

    2017-01-01

    TiNi shape memory alloys (SMAs), used as long-term implant materials, have a disadvantage. Ni-ion release from the alloys may trigger allergies in the human body. Micro-arc oxidation has been utilized to modify the surface of the TiNi SMA for improving its corrosion resistance and biocompatibility. However, there are very few reports investigating the essential adhesive strength between the micro-arc oxidized film and TiNi SMA. Two primary goals were attained by this study. First, Ti50Ni48.5Mo1.5 SMA having a phase transformation temperature (Af) less than body temperature and good shape recovery were prepared. Next, the Ti50Ni50 and Ti50Ni48.5Mo1.5 SMA surfaces were modified by micro-arc oxidation in phosphoric acid by applying relatively low voltages to maintain the adhesive strength. The results indicated that the pore size, film thickness, and P content increased with applied voltage. The micro-arc oxidized film, comprising Ti oxides, Ni oxide, and phosphate compounds, exhibited a glassy amorphous structure. The outmost surface of the micro-arc oxidized film contained a large amount of P (>12 at%) but only a trace of Ni (micro-arc oxidized films exceeded the requirements of ISO 13779. Furthermore, Mo addition into TiNi SMAs was found to be favorable for improving the adhesive strength of the micro-arc oxidized film.

  12. In Vitro Analysis of Electrophoretic Deposited Fluoridated Hydroxyapatite Coating on Micro-arc Oxidized AZ91 Magnesium Alloy for Biomaterials Applications

    Science.gov (United States)

    Razavi, Mehdi; Fathi, Mohammadhossein; Savabi, Omid; Vashaee, Daryoosh; Tayebi, Lobat

    2015-03-01

    Magnesium (Mg) alloys have been recently introduced as a biodegradable implant for orthopedic applications. However, their fast corrosion, low bioactivity, and mechanical integrity have limited their clinical applications. The main aim of this research was to improve such properties of the AZ91 Mg alloy through surface modifications. For this purpose, nanostructured fluoridated hydroxyapatite (FHA) was coated on AZ91 Mg alloy by micro-arc oxidation and electrophoretic deposition method. The coated alloy was characterized through scanning electron microscopy, transmission electron microscopy, X-ray diffraction, in vitro corrosion tests, mechanical tests, and cytocompatibility evaluation. The results confirmed the improvement of the corrosion resistance, in vitro bioactivity, mechanical integrity, and the cytocompatibility of the coated Mg alloy. Therefore, the nanostructured FHA coating can offer a promising way to improve the properties of the Mg alloy for orthopedic applications.

  13. Osteogenic potential of a novel microarc oxidized coating formed on Ti6Al4V alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yaping [School of Materials and Electromechanics, Jiangxi Science and Technology Normal University, Nanchang 330038 (China); Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055 (China); Lou, Jin [School of Materials and Electromechanics, Jiangxi Science and Technology Normal University, Nanchang 330038 (China); Zeng, Lilan [Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055 (China); Xiang, Junhuai; Zhang, Shufang; Wang, Jun; Xiong, Fucheng; Li, Chenglin [School of Materials and Electromechanics, Jiangxi Science and Technology Normal University, Nanchang 330038 (China); Zhao, Ying, E-mail: ying.zhao@siat.ac.cn [Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055 (China); Zhang, Rongfa, E-mail: rfzhang-10@163.com [School of Materials and Electromechanics, Jiangxi Science and Technology Normal University, Nanchang 330038 (China)

    2017-08-01

    Highlights: • Phytic acid is used as the MAO electrolyte of titanium alloys. • MAO coatings are composed of rutile, anatase, TiP{sub 2}O{sub 7} and some OH{sup −} groups. • The MAO samples present excellent in vitro cytocompatibility. - Abstract: In order to improve the biocompatibility, Ti6Al4V alloys are processed by micro arc oxidation (MAO) in a novel electrolyte of phytic acid, a natural organic phosphorus-containing matter. The MAO coatings were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), Fourier Transform Infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS). The cytocompatibility of Ti6A14V alloys before and after MAO were comprehensively evaluated. The results showed that the fabricated MAO coatings were composed of rutile, anatase, TiP{sub 2}O{sub 7} as well as some OH{sup −} groups, exhibiting the excellent hydrophilicity and a porous structure with small micro pores. No cytotoxicity towards MC3T3-E1cells was observed in this study. In particular, MAO treated Ti6Al4V alloys presented comparable cell adhesion and proliferation as well as significantly enhanced alkaline phosphatase activity, extracellular matrix (ECM) mineralization and collagen secretion in comparison with the untreated control. The results suggest that the Ti6Al4V alloys treated by MAO in phytic acid can be used as implants for orthopaedic applications, providing a simple and practical method to widen clinical acceptance of titanium alloys.

  14. In vivo evaluation of an antibacterial coating containing halogenated furanone compound-loaded poly(l-lactic acid) nanoparticles on microarc-oxidized titanium implants.

    Science.gov (United States)

    Cheng, Yicheng; Gao, Bo; Liu, Xianghui; Zhao, Xianghui; Sun, Weige; Ren, Huifang; Wu, Jiang

    2016-01-01

    To prevent peri-implant infection, a new antibacterial coating containing a halogenated furanone compound, (Z-)-4-bromo-5-(bromomethylene)-2(5H)-furanone-loaded poly(l-lactic acid) nanoparticles, has been fabricated. The current study was designed to evaluate the preventive effect of the antibacterial coating under a simulated environment of peri-implant infection in vivo. Microarc-oxidized titanium implants treated with minocycline hydrochloride ointment were used as positive control group, and microarc-oxidized titanium implants without any treatment were used as blank control group. Three kinds of implants were implanted in dogs' mandibles, and the peri-implant infection was simulated by silk ligation and feeding high sugar diet. After 2-month implantation, the results showed that no significant differences were detected between the experimental and positive control groups (P>0.05), but the data of clinical measurements of the blank control group were significantly higher than those of the other two groups (Pmicroscope observation and histological examination showed that more new bone was formed on the surface of the experimental and positive control groups. It can be concluded that the antibacterial coating fabricated on implants has remarkable preventive effect on peri-implant infection at the early stage.

  15. Osteogenic potential of a novel microarc oxidized coating formed on Ti6Al4V alloys

    Science.gov (United States)

    Wang, Yaping; Lou, Jin; Zeng, Lilan; Xiang, Junhuai; Zhang, Shufang; Wang, Jun; Xiong, Fucheng; Li, Chenglin; Zhao, Ying; Zhang, Rongfa

    2017-08-01

    In order to improve the biocompatibility, Ti6Al4V alloys are processed by micro arc oxidation (MAO) in a novel electrolyte of phytic acid, a natural organic phosphorus-containing matter. The MAO coatings were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), Fourier Transform Infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS). The cytocompatibility of Ti6A14V alloys before and after MAO were comprehensively evaluated. The results showed that the fabricated MAO coatings were composed of rutile, anatase, TiP2O7 as well as some OH- groups, exhibiting the excellent hydrophilicity and a porous structure with small micro pores. No cytotoxicity towards MC3T3-E1cells was observed in this study. In particular, MAO treated Ti6Al4V alloys presented comparable cell adhesion and proliferation as well as significantly enhanced alkaline phosphatase activity, extracellular matrix (ECM) mineralization and collagen secretion in comparison with the untreated control. The results suggest that the Ti6Al4V alloys treated by MAO in phytic acid can be used as implants for orthopaedic applications, providing a simple and practical method to widen clinical acceptance of titanium alloys.

  16. Formation mechanism and adhesive strength of a hydroxyapatite/TiO{sub 2} composite coating on a titanium surface prepared by micro-arc oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shimin, E-mail: lshm1216@163.com [Department of Gem and Material Technique, Tianjin University of Commerce, Tianjin 300134 (China); Li, Baoe; Liang, Chunyong; Wang, Hongshui [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Qiao, Zhixia [School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134 (China)

    2016-01-30

    Graphical abstract: - Highlights: • Hydroxyapatite/TiO{sub 2} composite coating was prepared by one-step micro-arc oxidation. • The formation mechanism of composite coating was investigated. • Higher bonding strength between hydroxyapatite and TiO{sub 2} layer was obtained. - Abstract: A hydroxyapatite (HA)/TiO{sub 2} composite coating was prepared on a titanium surface by one-step micro-arc oxidation (MAO). The formation mechanism of the composite coating was investigated and the adhesion of the coating to the substrate was also measured. The results showed that flocculent structures could be obtained during the early stages of treatment. As the treatment period extended, increasing amounts of Ca–P precipitate appeared on the surface, and the flocculent morphology transformed into a plate-like morphology. Then the plate-like calcium and phosphate salt self-assembled to form flower-like apatite. The Ca/P atomic ratio gradually decreased, indicating that the amounts of Ca{sup 2+} ions which diffused into the coating decreased more rapidly than that of PO{sub 4}{sup 3−} or HPO{sub 4}{sup 2−}. The adhesive strength between the apatite and TiO{sub 2} coating was improved. This improvement is attributed to the interlocking effect between the apatite and TiO{sub 2} layer which formed simultaneously during the early stages of the one-step MAO. This study shows that it is a promising method to prepare bioactive coating on a titanium surface.

  17. The n-MAO/EPD bio-ceramic composite coating fabricated on ZK60 magnesium alloy using combined micro-arc oxidation with electrophoretic deposition

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Ying, E-mail: yxiong@zjut.edu.cn [College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Lu, Chao [College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Wang, Chao; Song, Renguo [School of Materials Science and Engineering, Changzhou University, Changzhou 213164 (China); Jiangsu Key Laboratory of Materials Surface Science and Technology, Changzhou University, Changzhou 213164 (China)

    2014-12-15

    Highlights: • Adding CeO{sub 2}/ZrO{sub 2} nano-particles to modify the properties of n-MAO coating. • A bio-ceramic n-MAO/EPD composite coating was prepared by two-step methods. • The n-MAO/EPD composite coating with HA has a favorable anti-corrosion effect. - Abstract: A bio-ceramic composite coating was fabricated on ZK60 magnesium (Mg) alloy using combined micro-arc oxidation (MAO) with electrophoretic deposition (EPD) technique. The MAO coating as the basal layer was produced in alkaline electrolyte with (n-MAO coating) and without (MAO coating) the addition of CeO{sub 2} and ZrO{sub 2} nano-particles, respectively. A hydroxyapatite (HA) coating as the covering layer was deposited on the n-MAO coating to improve the biological properties of the coating (n-MAO/EPD composite coating). The morphology and phase composition of three treated coatings were investigated by scanning electron microscope (SEM) and X-ray diffraction (XRD). The corrosion resistance of these coatings was evaluated with potentiodynamic polarization tests and immersion tests in simulated body fluid (SBF) at 36.5 ± 0.5 °C. The XRD spectra showed that the CeO{sub 2} and ZrO{sub 2} peaks can be collected in the n-MAO coating, and HA particles exists in the n-MAO/EPD composite coating. The results of corrosion tests indicated that the n-MAO/EPD composite coating owned increased bioactivity and long-term protective ability compared with the MAO coating and the n-MAO coating. Thus Mg alloy coated with the n-MAO/EPD composite coating should be more suited as biodegradable bone implants.

  18. Microarc oxidized TiO2 based ceramic coatings combined with cefazolin sodium/chitosan composited drug film on porous titanium for biomedical applications.

    Science.gov (United States)

    Wei, Daqing; Zhou, Rui; cheng, Su; Feng, Wei; Li, Baoqiang; Wang, Yaming; Jia, Dechang; Zhou, Yu; Guo, Haifeng

    2013-10-01

    Porous titanium was prepared by pressureless sintering of titanium beads with diameters of 100, 200, 400 and 600 μm. The results indicated that the mechanical properties of porous titanium changed significantly with different bead diameters. Plastic deformations such as necking phenomenon and dimple structure were observed on the fracture surface of porous titanium sintered by beads with diameter of 100 μm. However, it was difficult to find this phenomenon on the porous titanium with a titanium bead diameter of 600 μm. The microarc oxidized coatings were deposited on its surface to improve the bioactivity of porous titanium. Furthermore, the cefazolin sodium/chitosan composited films were fabricated on the microarc oxidized coatings for overcoming the inflammation due to implantation, showing good slow-release ability by addition of chitosan. And the release kinetic process of cefazolin sodium in composited films could be possibly fitted by a polynomial model. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Preparation and characterization of a calcium-phosphate-silicon coating on a Mg-Zn-Ca alloy via two-step micro-arc oxidation.

    Science.gov (United States)

    Dou, Jinhe; Chen, Yang; Chi, Yiming; Li, Huancai; Gu, Guochao; Chen, Chuanzhong

    2017-06-14

    Magnesium alloys are the most promising implant materials due to their excellent biodegradability. However, their high degradation rate limits their practical application. In this study, we produced a calcium-phosphate (Ca-P) coating and a calcium-phosphate-silicon (Ca-P-Si) coating via one-step and two-step micro-arc oxidation processes, respectively. The microstructure and chemical composition of the MAO coatings were characterized using SEM, XRD and EDS. The degradation behaviors of the MAO coatings and the substrate were investigated using electrochemical techniques and immersion tests in simulated body fluid (SBF). The results show that the silicate was successfully incorporated into the Ca-P coating in the second MAO step, and this also increased the thickness of the coating. The Ca-P-Si coatings remarkably reduced the corrosion rate of the Mg alloy and Ca-P coating during 18 days of immersion in SBF. In addition, the bone-like apatite layer on the sample surface demonstrated the good biomineralization ability of the Ca-P-Si coating. Potentiodynamic polarization results showed that the MAO coating could clearly enhance the corrosion resistance of the Mg alloy. Moreover, we propose the growth mechanism of the MAO coating in the second step.

  20. The effect of TiO2 coating on biological NiTi alloys after micro-arc oxidation treatment for corrosion resistance.

    Science.gov (United States)

    Sukuroglu, Ebru Emine; Sukuroglu, Suleyman; Akar, Kubra; Totik, Yasar; Efeoglu, Ihsan; Arslan, Ersin

    2017-08-01

    NiTi alloys exhibit good properties, such as shape memory behavior, high corrosion resistant, having the closest elasticity modulus of a human bone and superior biocompatibility properties. However, the surface problems that arise during the use of this alloy limit the usage in the industry and health sector. In recent years, micro-arc oxidation method is used to improve the surface properties and increase the usage of these alloys. In this study, the TiO 2 coatings were deposited on the NiTi substrates. The surface topography, morphology, crystallographic structure, and thickness of the coatings were determined using scanning electron microscopy and X-ray diffraction. The corrosion properties were investigated using potentiostat test unit in two different media such as NaCl solution and simulated body fluid. The results show that the coated samples have higher corrosion resistance than uncoated samples in the two different media.

  1. MC3T3-E1 cell response of amorphous phase/TiO{sub 2} nanocrystal composite coating prepared by microarc oxidation on titanium

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Rui [Department of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wei, Daqing, E-mail: daqingwei@hit.edu.cn [Department of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Yang, Haoyue; Feng, Wei [Department of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Cheng, Su [Department of Mechanical Engineering, School of Architecture and Civil Engineering, Harbin University of Science and Technology, Harbin 150001 (China); Li, Baoqiang; Wang, Yaming; Jia, Dechang; Zhou, Yu [Department of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2014-06-01

    Bioactive amorphous phase/TiO{sub 2} nanocrystal (APTN) composite coatings were fabricated by microarc oxidation (MAO) on Ti. The APTN coatings are composed of much amorphous phase with Si, Na, Ca, Ti and O elements and a few TiO{sub 2} nanocrystals. With increasing applied voltage, the micropore density of the APTN coating decreases and the micropore size of the APTN coating increases. The results indicate that less MC3T3-E1 cells attach on the APTN coatings as compared to Ti. However, the APTN coatings greatly enhance the cell proliferation ability and the activity of alkaline phosphatase. The amorphous phase and the concentrations of the released Ca and Si from the APTN coatings during cell culture have significant effects on the cell response. - Highlights: • Amorphous phase/TiO2 nanocrystal (APTN) composite coatings were fabricated. • The MC3T3-E1 cell response of the APTN coatings was evaluated. • The APTN coatings greatly enhanced the cell proliferation ability.

  2. Structure and properties of a duplex coating combining micro-arc oxidation and baking layer on AZ91D Mg alloy

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Xue-Jun; Li, Ming-Tian; Yang, Rui-Song; Yu, Zu-Xiao [Material Corrosion and Protection Key Laboratory of Sichuan province, Sichuan University of Science and Engineering, Zigong 643000 (China); College of Materials and Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000 (China)

    2016-02-15

    Graphical abstract: - Highlights: • A duplex coating was fabricated through combining MAO and baking layer. • A baking coating with a thickness of 92 μm was created on MAO-coated Mg alloy. • The duplex coating noticeably improved the corrosion resistance of Mg alloy. • The related corrosion and wear mechanisms were investigated. - Abstract: A duplex coating (called MAOB coating) was fabricated on AZ91D Mg alloy by combining the process of micro-arc oxidation (MAO) with baking coating (B-coating). The structure, composition, corrosion resistance, and tribological behaviour of the coatings were investigated using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), electrochemical and long-term immersion test, and ball-on-disc friction test. The results show that a dense 92 μm thick B-coating was tightly deposited onto the MAO-coated Mg alloy and exhibited a good mechanical interlock along the rough interface. Compared with the MAO-coated sample, the corrosion current density of the MAOB-coated Mg alloy decreased by two or three orders of magnitude and no corrosion phenomenon was observed during a long-term immersion test of about 500 h (severe corrosion pits were found for MAO-treated samples after about 168 h of immersion). The frictional coefficient values of the MAOB coating were similar to those of the MAO coating using dry sliding tests, while the B-coating on the MAO-coated surface significantly improved the wear resistance of the AZ91D Mg alloy. All of these results indicate that a B-coating can be used to further protect Mg alloys from corrosion and wear by providing a thick, dense barrier.

  3. Structure, MC3T3-E1 cell response, and osseointegration of macroporous titanium implants covered by a bioactive microarc oxidation coating with microporous structure.

    Science.gov (United States)

    Zhou, Rui; Wei, Daqing; Cheng, Su; Feng, Wei; Du, Qing; Yang, Haoyue; Li, Baoqiang; Wang, Yaming; Jia, Dechang; Zhou, Yu

    2014-04-09

    Macroporous Ti with macropores of 50-400 μm size is prepared by sintering Ti microbeads with different diameters of 100, 200, 400, and 600 μm. Bioactive microarc oxidation (MAO) coatings with micropores of 2-5 μm size are prepared on the macroporous Ti. The MAO coatings are composed of a few TiO2 nanocrystals and lots of amorphous phases with Si, Ca, Ti, Na, and O elements. Compared to compact Ti, the MC3T3-E1 cell attachment is prolonged on macroporous Ti without and with MAO coatings; however, the cell proliferation number increases. These results are contributed to the effects of the space structure of macroporous Ti and the surface chemical feature and element dissolution of the MAO coatings during the cell culture. Macroporous Ti both without and with MAO coatings does not cause any adverse effects in vivo. The new bone grows well into the macropores and micropores of macroporous Ti with MAO coatings, showing good mechanical properties in vivo compared to Ti, MAO-treated Ti, and macroporous Ti because of its excellent osseointegration. Moreover, the MAO coatings not only show a high interface bonding strength with new bones but also connect well with macroporous Ti. Furthermore, the pushing out force for macroporous Ti with MAO coatings increases significantly with increasing microbead diameter.

  4. Effect of Na2WO4 in Electrolyte on Microstructure and Tribological Behavior of Micro-arc Oxidation Coatings on Ti2AlNb Alloy

    Directory of Open Access Journals (Sweden)

    LIU Xiao-hui

    2018-02-01

    Full Text Available Micro-arc oxidation (MAO ceramic coatings were prepared on Ti2AlNb alloy in silicate/phosphate electrolytes with different concentrations of Na2WO4. The influence of Na2WO4 on the coating growth process, coating structure and composition was analyzed by SEM, XRD and XPS. The tribological behavior of MAO coatings was evaluated by the ball-disc wear test. The results show that the growth rate of MAO coating in electrolyte without Na2WO4 is only 0.08μm/min, meanwhile, the coating is loose and rough, and "networks" connecting with big pores exist on the coating surface.The main phase compositions of this coating are rutile TiO2, anatase TiO2, Al2O3, and Nb2O5. The addition of Na2WO4 in the electrolyte shortens the time before sparking of Ti2AlNb alloy, increases the growth rate of the coating, improves the uniformity of coating and meanwhile, a small amount of WO3 is introduced in the coating. Besides, MAO coatings formed in the participation of Na2WO4 have better wear resistance. Severe abrasive wear occurs when the test is made on Ti2AlNb alloy with Si3N4, the friction coefficient reaches 0.5-0.7. Both the friction coefficient and wear rate decrease obviously when Ti2AlNb is treated by MAO. The friction coefficient and wear rate of MAO coating prepared in the electrolyte with 4g/L Na2WO4 are 0.24 and 6.2×10-4mm3/(N·m, respectively. Only "fish scales" caused by fatigue wear appears on the coating surface.

  5. Influence of KMnO4 Concentrationon Infrared Emissivity of Coatings Formed on TC4 Alloys by Micro-Arc Oxidation

    Science.gov (United States)

    Li, Ying; Li, Chaozhong; Hu, Dan; Li, Zhengxian; Xi, Zhengping

    2017-01-01

    Ceramic coatings with high emissivity were fabricated on TC4 alloys by micro-arc oxidation technique (MAO) in mixed silicate and phosphate electrolytes with varying KMnO4 addition. The microstructure, phase and chemical composition were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS), and the infrared emissivity of the MAO coatings was measured in a waveband of 5–20 μm. The results show that the thickness of the coatings increased with the addition of KMnO4, but the roughness of the coatings first decreased and then increased slightly due to the inhibitory effect of KMnO4 on Na2SiO3 deposition. The main phase composition of the coatings was anatase and rutile TiO2, amorphous form of SiO2 and MnO2. The infrared emissivity value of the coatings strongly depended on KMnO4 concentration, the coating formed at the concentration of 0.8 g/L KMnO4 reached the highest and an average of up to 0.87 was observed. PMID:29137192

  6. Effects of Voltage on Microstructure and Corrosion Resistance of Micro-arc Oxidation Ceramic Coatings Formed on KBM10 Magnesium Alloy

    Science.gov (United States)

    Lu, J. P.; Cao, G. P.; Quan, G. F.; Wang, C.; Zhuang, J. J.; Song, R. G.

    2018-01-01

    Micro-arc oxidation (MAO) coatings on KBM10 magnesium alloy were prepared in an electrolyte system with sodium silicate, potassium hydroxide, sodium tungstate, and citric acid. The effects of voltage on the microstructure and corrosion resistance of MAO coatings were studied using stereoscopic microscopy, scanning electron microscopy, x-ray diffraction, scratch tests, potentiodynamic polarization, and electrochemical impedance spectroscopy. The results showed that the roughness of the MAO coatings, diameter, and number of pores increase with the increase in voltage. The coating formed at the voltage of 350 V exhibited the best adhesive strength when evaluated by the automatic scratch tester. The coatings were mainly composed of MgO, MgWO4, and Mg2SiO4, and the content of Mg2SiO4 increased with the increase in voltage. The corrosion resistance of MAO coatings could be improved by changing the applied voltage, and the best corrosion resistance of MAO coating was observed at the voltage of 350 V.

  7. In situ composite coating of titania-hydroxyapatite on titanium substrate by micro-arc oxidation coupled with electrophoretic deposition processing

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Yu [Department of Dental Biomaterials, School of Dentistry and Institute of Oral Bioscience, Brain Korea 21 Project, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Kim, Kyoung-A. [Department of Oral and Maxillofacial Radiology, School of Dentistry and Institute of Oral Bio Science, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Park, Il Song, E-mail: ilsong@chonbuk.ac.kr [Department of Dental Biomaterials, School of Dentistry and Institute of Oral Bioscience, Brain Korea 21 Project, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Lee, Sook Jeong [Neural Injury Research Lab, Department of Neurology, Asan life Science Institute, University, of Ulsan, College of Medicine, Seoul 138-736 (Korea, Republic of); Bae, Tae Sung [Department of Dental Biomaterials, School of Dentistry and Institute of Oral Bioscience, Brain Korea 21 Project, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Lee, Min Ho, E-mail: mh@jbnu.ac.kr [Department of Dental Biomaterials, School of Dentistry and Institute of Oral Bioscience, Brain Korea 21 Project, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2011-09-15

    Highlights: {center_dot} HA/TiO{sub 2} coating were prepared by a MAO and EPD technique. {center_dot} The NaOH electrolyte solution containing HA particles is employed. {center_dot} MAO and EPD treatment enhances the corrosion resistance and bioactivity of titanium. - Abstract: In situ composite coating of hydroxyapatite (HA)/TiO{sub 2} were produced on titanium (Ti) substrate by micro-arc oxidation coupled with electrophoretic deposition (MAO and EPD) technique with different concentrations of HA particles in the 0.2 M NaOH electrolyte solution. The surface morphology and chemical composition of the hybrid coating were effected by HA concentration. The amount of HA particles incorporated into coating layer increased with increasing HA concentration used in the electrolyte solution. The corrosion behavior of the coating layer in simulated body fluids (SBF) was evaluated using a potentiodynamic polarization test. The corrosion resistance of the coated sample was increased compared to the untreated Ti sample. The in vitro bioactivity assessment showed that the MAO and EPD treated Ti substrate possessed higher apatite-forming ability than the untreated Ti. Moreover, the apatite-forming ability had a positive correlation with HA concentration. In addition, the cell behavior was also examined using cell proliferation assay and alkaline phosphatase ability. The coating formed at HA concentration of 5 g/L exhibited the highest cell ability.

  8. In vitro degradation and biocompatibility of a strontium-containing micro-arc oxidation coating on the biodegradable ZK60 magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Xiao [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Yang, Xiaoming [Panyu Hospital of Chinese Medicine, 65 Qiaodong Road, Guangzhou 511400 (China); Tan, Lili, E-mail: lltan@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Li, Mei [Hospital of Orthopedics, Guangzhou General Hospital of Guangzhou Military Command, 111 Liuhua Road, Guangzhou 510010 (China); Wang, Xin [College of Chemistry, Liaoning University, 66 Chongshanzhong Road, Shenyang 110036 (China); Zhang, Yu, E-mail: luck_2001@126.com [Hospital of Orthopedics, Guangzhou General Hospital of Guangzhou Military Command, 111 Liuhua Road, Guangzhou 510010 (China); Yang, Ke, E-mail: kyang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Hu, Zhuangqi [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Qiu, Jianhong [Trauson Medical Instrument Co., Ltd., Changzhou 213163 (China)

    2014-01-01

    Magnesium alloys are promising biodegradable implant candidates for orthopedic application. In the present study, a phosphate-based micro-arc oxidation (MAO) coating was applied on the ZK60 alloy to decrease its initial degradation rate. Strontium (Sr) was incorporated into the coating in order to improve the bioactivity of the coating. The in vitro degradation studies showed that the MAO coating containing Sr owned a better initial corrosion resistance, which was mainly attributed to the superior inner barrier layer, and a better long-term protective ability, probably owning to its larger thickness, superior inner barrier layer and the superior apatite formation ability. The degradation of MAO coating was accompanied by the formation of degradation layer and Ca-P deposition layer. The in vitro cell tests demonstrated that the incorporation of Sr into the MAO coating enhanced both the proliferation of preosteoblast cells and the alkaline phosphatase activity of the murine bone marrow stromal cells. In conclusion, the MAO coating with Sr is a promising surface treatment for the biodegradable magnesium alloys.

  9. Automation of the micro-arc oxidation process

    Science.gov (United States)

    Golubkov, P. E.; Pecherskaya, E. A.; Karpanin, O. V.; Shepeleva, Y. V.; Zinchenko, T. O.; Artamonov, D. V.

    2017-11-01

    At present the significantly increased interest in micro-arc oxidation (MAO) encourages scientists to look for the solution of the problem of this technological process controllability. To solve this problem an automated technological installation MAO was developed, its structure and control principles are presented in this article. This device will allow to provide the controlled synthesis of MAO coatings and to identify MAO process patterns which contributes to commercialization of this technology.

  10. Preparation and characterization of HA microflowers coating on AZ31 magnesium alloy by micro-arc oxidation and a solution treatment

    Science.gov (United States)

    Tang, Hui; Yu, Dezhen; Luo, Yan; Wang, Fuping

    2013-01-01

    Magnesium and its alloys are potential biodegradable implant materials due to their attractive biological properties. But the use of magnesium is still hampered by its poor corrosion resistance in physiological fluids. In this work, hydroxyapatite microflowers coating is fabricated by micro-arc oxidation and a solution treatment on AZ31 magnesium alloy. The microstructure and composition are analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). The potentiodynamic polarization and electrochemical impedance spectroscopy are studied in simulated body fluid (SBF) solution, and the apatite-forming ability is studied also. The results show that the corrosion resistance of the magnesium alloy has been enhanced by MAO coating. And the solution treatment can improve the corrosion resistance of the MAO sample, by forming a barrier layer on the surface of the MAO coating, and by penetrating into the outer layer of the MAO film, sealing the micropores and micro-cracks existed in the MAO coating. In addition, the MAO-ST coating also exhibits a high ability to form apatite.

  11. SaOS-2 cell response to macro-porous boron-incorporated TiO{sub 2} coating prepared by micro-arc oxidation on titanium

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qianli [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Elkhooly, Tarek A. [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Department of Ceramics, Inorganic Chemical Industries Division, National Research Centre, Dokki, 12622 Cairo (Egypt); Liu, Xujie [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Zhang, Ranran; Yang, Xing; Shen, Zhijian [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Feng, Qingling, E-mail: biomater@mail.tsinghua.edu.cn [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2016-10-01

    The aims of the present study were to develop boron-incorporated TiO{sub 2} coating (B-TiO{sub 2} coating) through micro-arc oxidation (MAO) and subsequently evaluate the effect of boron incorporation on the in vitro biological performance of the coatings. The physicochemical properties of B-TiO{sub 2} coating and its response to osteoblast like cells (SaOS-2) were investigated compared to the control group without boron (TiO{sub 2} coating). The morphological and X-ray diffraction results showed that both coatings exhibited similar surface topography and phase composition, respectively. However, the incorporation of B led to an enhancement in the surface hydrophilicity of B-TiO{sub 2} coating. The spreading of SaOS-2 cells on B-TiO{sub 2} coating was faster than that on TiO{sub 2} coating. The proliferation rate of SaOS-2 cells cultured on B-TiO{sub 2} decreased after 5 days of culture compared to that on TiO{sub 2} coating. SaOS-2 cells cultured on B-TiO{sub 2} coating exhibited an enhanced alkaline phosphatase (ALP) activity, Collagen I synthesis and in vitro mineralization compared to those on TiO{sub 2} coating. The present findings suggest that B-TiO{sub 2} coating is a promising candidate surface for orthopedic implants. - Highlights: • SaOS-2 cell response to pure TiO{sub 2} and B-TiO{sub 2} coatings was investigated. • Initial cell spreading on B-TiO{sub 2} coating was accelerated compared to that on TiO{sub 2} coating. • Cell proliferation on B-TiO{sub 2} coating was inhibited compared to that on TiO{sub 2} coating. • Cell differentiation on B-TiO{sub 2} coating was enhanced compared to that on TiO{sub 2} coating.

  12. Al2O3 coating fabricated on titanium by cathodic microarc electrodeposition

    International Nuclear Information System (INIS)

    Jin Qian; Xue Wenbin; Li Xijin; Zhu Qingzhen; Wu Xiaoling

    2009-01-01

    A Al 2 O 3 coating was prepared on titanium substrate by cathodic microarc electrodeposition method in Al(NO 3 ) 3 ethanol solution. The coating thickness was about 80 μm when a 400 V cathodic potential was applied. The morphology and phase constituent of the Al 2 O 3 coating were investigated by scanning electron microscope (SEM) and X-ray diffraction (XRD). The isothermal oxidation at 700 deg. C and electrochemical corrosion behavior of the coated titanium were analyzed. The coating was composed of γ-Al 2 O 3 and little α-Al 2 O 3 phases. The oxidation resistance of the titanium subjected to cathodic microarc treatment was obviously improved. The polarization test indicated that the coated titanium has better corrosion resistance.

  13. Microarc oxidation coating covered Ti implants with micro-scale gouges formed by a multi-step treatment for improving osseointegration.

    Science.gov (United States)

    Bai, Yixin; Zhou, Rui; Cao, Jianyun; Wei, Daqing; Du, Qing; Li, Baoqiang; Wang, Yaming; Jia, Dechang; Zhou, Yu

    2017-07-01

    The sub-microporous microarc oxidation (MAO) coating covered Ti implant with micro-scale gouges has been fabricated via a multi-step MAO process to overcome the compromised bone-implant integration. The as-prepared implant has been further mediated by post-heat treatment to compare the effects of -OH functional group and the nano-scale orange peel-like morphology on osseointegration. The bone regeneration, bone-implant contact interface, and biomechanical push-out force of the modified Ti implant have been discussed thoroughly in this work. The greatly improved push-out force for the MAO coated Ti implants with micro-scale gouges could be attributed to the excellent mechanical interlocking effect between implants and biologically meshed bone tissues. Attributed to the -OH functional group which promotes synostosis between the biologically meshed bone and the gouge surface of implant, the multi-step MAO process could be an effective strategy to improve the osseointegration of Ti implant. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Influence of C3H8O3 in the electrolyte on characteristics and corrosion resistance of the microarc oxidation coatings formed on AZ91D magnesium alloy surface

    International Nuclear Information System (INIS)

    Wu Di; Liu Xiangdong; Lu Kai; Zhang Yaping; Wang Huan

    2009-01-01

    Ceramic coatings were fabricated on AZ91D Mg-alloy substrate by microarc oxidation in Na 2 SiO 3 -NaOH-Na 2 EDTA electrolytes with and without C 3 H 8 O 3 addition. The effects of different concentrations of C 3 H 8 O 3 contained in the electrolyte on coatings thickness were investigated. The surface morphologies, RMS roughness, phase compositions and corrosion resistance property of the ceramic coatings were analyzed by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), and electrochemical corrosion test respectively. It is found that the addition of C 3 H 8 O 3 into silicate electrolyte leads to increase of the unit-area adsorptive capacity of the negative ions at anode-electrolyte interface and thus improves the compactness and corrosion resistance of the MAO coating. The coating thickness decreases gradually with the increase of concentrations of C 3 H 8 O 3 in the electrolyte. The oxide coating formed in base electrolyte containing 4 mL/L C 3 H 8 O 3 exhibits the best surface appearance, the lowest surface RMS roughness (174 nm) and highest corrosion resistance. In addition, both ceramic coatings treated in base electrolyte with and without C 3 H 8 O 3 are mainly composed of periclase MgO and forsterite Mg 2 SiO 4 phase, but no diffraction peak of Mg phase is found in the patterns.

  15. Improved biological performance of magnesium by micro-arc oxidation

    Directory of Open Access Journals (Sweden)

    W.H. Ma

    2015-03-01

    Full Text Available Magnesium and its alloys have recently been used in the development of lightweight, biodegradable implant materials. However, the corrosion properties of magnesium limit its clinical application. The purpose of this study was to comprehensively evaluate the degradation behavior and biomechanical properties of magnesium materials treated with micro-arc oxidation (MAO, which is a new promising surface treatment for developing corrosion resistance in magnesium, and to provide a theoretical basis for its further optimization and clinical application. The degradation behavior of MAO-treated magnesium was studied systematically by immersion and electrochemical tests, and its biomechanical performance when exposed to simulated body fluids was evaluated by tensile tests. In addition, the cell toxicity of MAO-treated magnesium samples during the corrosion process was evaluated, and its biocompatibility was investigated under in vivo conditions. The results of this study showed that the oxide coating layers could elevate the corrosion potential of magnesium and reduce its degradation rate. In addition, the MAO-coated sample showed no cytotoxicity and more new bone was formed around it during in vivo degradation. MAO treatment could effectively enhance the corrosion resistance of the magnesium specimen and help to keep its original mechanical properties. The MAO-coated magnesium material had good cytocompatibility and biocompatibility. This technique has an advantage for developing novel implant materials and may potentially be used for future clinical applications.

  16. MICRO-ARC DIELECTRIC COATINGS ON ALUMINUM ALLOYS OF GRINDING WHEEL FRAMEWORKS

    Directory of Open Access Journals (Sweden)

    Yury GUTSALENKO

    2018-05-01

    Full Text Available It is presented the development of local electrically insulating coatings for tool of the technologies of high-efficient processing with the introduction the energy of electrical discharges into the cutting zone to maintain a working capacity of grinding wheels with diamond-metal composition of the working part. Development is an alternative to the electrical insulation upgrade of spindle units of universal grinding machines. The dielectric properties of micro-arc oxide coatings on deformable aluminum alloys formed on an alternating current in the regime of an arbitrarily falling power in alkali-silicate solutions have been studied. Information about the features of practical implementation of development is given.

  17. Microarc Oxidation of Product Surfaces without Using a Bath

    Directory of Open Access Journals (Sweden)

    V. K. Shatalov

    2015-01-01

    Full Text Available While using an electrochemical method to cover the large-sized work-pieces, units, and products up to 6 м3 by protective coating, there is a certain difficulty to apply traditional anodizing techniques in a plating vat, and it is necessary to find various processing techniques.To use the existing micro-arc oxide coating (MOC methods for work-pieces of various forms and sizes in a plating vat is complicated in case it is required to provide oxide layers in separate places rather than over entire surface of a work-piece. The challenge is to treat flat surfaces in various directions, external and internal surfaces of rotation bodies, profiled surfaces, intersections, closed and through holes, pipes, as well as spline and thread openings for ensuring anti-seize properties in individual or small-scale production to meet technical requirements and operational properties of products.A design of tools to provide MOC-process of all possible surfaces of various engineering box-type products depends on many factors and can be considerably different even when processing the surfaces of the same forms. An attachment to be used is fixed directly on a large-sized design (a work-piece, a product or fastened in the special tool. The features of technological process, design shape, and arrangement of the processed surfaces define a fastening method of the attachment. Therefore it is necessary to pay much attention to a choice of the processing pattern and a design of tools.The Kaluga-branch of Bauman Moscow State Technical University is an original proposer of methods to form MOC-coatings on the separate surfaces of large-sized work-pieces using the moved and stationary electrodes to solve the above listed tasks.The following results of work will have an impact on development of the offered processing methods and their early implementation in real production:1. To provide oxide coatings on the surfaces of large-sized products or assemblies in a single or small

  18. Effect of calcium on the microstructure and corrosion behavior of microarc oxidized Mg-xCa alloys.

    Science.gov (United States)

    Pan, Yaokun; Chen, Chuanzhong; Feng, Rui; Cui, Hongwei; Gong, Benkui; Zheng, Tingting; Ji, Yarou

    2018-01-16

    Magnesium alloys are potential biodegradable implants for biomedical applications, and calcium (Ca) is one kind of ideal element being examined for magnesium alloys and biodegradable ceramic coatings owing to its biocompatibility and mechanical suitability. In this study, microarc oxidation (MAO) coatings were prepared on Mg-xCa alloys to study the effect of Ca on the microstructure and corrosion resistance of Mg-xCa alloys and their surface MAO coatings. The electrochemical corrosion behavior was investigated using an electrochemical workstation, and the degradability and bioactivity were evaluated by soaking tests in simulated body fluid (SBF) solutions. The corrosion products were characterized by scanning electron microscopy, x-ray diffractometry, and Fourier transform infrared spectrometry. The effects of Ca on the alloy phase composition, microstructure, MAO coating formation mechanism, and corrosion behavior were investigated. Results showed that the Mg-0.82Ca alloy and MAO-coated Mg-0.82Ca exhibited the highest corrosion resistance. The number and distribution of Mg 2 Ca phases can be controlled by adjusting the Ca content in the Mg-xCa alloys. The proper amount of Ca in magnesium alloy was about 0.5-0.8 wt. %. The pore size, surface roughness, and corrosion behavior of microarc oxidized Mg-xCa samples can be controlled by the number and distribution of the Mg 2 Ca phase. The corrosion behaviors of microarc oxidized Mg-Ca in SBF solutions were discussed.

  19. Improving the corrosion properties of magnesium AZ31 alloy GTA weld metal using microarc oxidation process

    Institute of Scientific and Technical Information of China (English)

    M.Siva Prasad; M.Ashfaq; N.Kishore Babu; A.Sreekanth; K.Sivaprasad; V.Muthupandi

    2017-01-01

    In this work,the morphology,phase composition,and corrosion properties of microarc oxidized (MAO) gas tungsten arc (GTA) weldments of AZ31 alloy were investigated.Autogenous gas tungsten arc welds were made as full penetration bead-on-plate welding under the alternating-current mode.A uniform oxide layer was developed on the surface of the specimens with MAO treatment in silicate-based alkaline electrolytes for different oxidation times.The corrosion behavior of the samples was evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy.The oxide film improved the corrosion resistance substantially compared to the uncoated specimens.The sample coated for 10 min exhibited better corrosion properties.The corrosion resistance of the coatings was concluded to strongly depend on the morphology,whereas the phase composition and thickness were concluded to only slightly affect the corrosion resistance.

  20. Application of the particle backscattering methods for the study of new oxide protective coatings at the surface of Al and Mg alloys

    International Nuclear Information System (INIS)

    Apelfeld, A.V.; Bespalova, O.V.; Borisov, A.M.; Dunkin, O.N.; Goryaga, N.G.; Kulikauskas, V.S.; Romanovsky, E.A.; Semenov, S.V.; Souminov, I.V.

    2000-01-01

    Rutherford (1.5 MeV 4 He + ) and Nuclear (7.7 MeV H + ) Backscattering Spectrometry were used for investigation of oxide protective coatings on the surface of Al and Mg alloys obtained by microarc oxidation (MAO). A model of microarc coating formation is proposed. For Mg alloy, the structure of MAO coating with very high corrosion resistance was determined

  1. Effect of SiC particles on microarc oxidation process of magnesium matrix composites

    International Nuclear Information System (INIS)

    Wang, Y.Q.; Wang, X.J.; Gong, W.X.; Wu, K.; Wang, F.H.

    2013-01-01

    SiC particles are an important reinforced phase in metal matrix composites. Their effect on the microarc oxidation (MAO, also named plasma electrolytic oxidation-PEO) process of SiC p /AZ91 Mg matrix composites (MMCs) was studied and the mechanism was revealed. The corrosion resistance of MAO coating was also investigated. Voltage–time curves during MAO were recorded to study the barrier film status on the composites. Scanning electron microscopy was used to characterize the existing state of SiC particles in MAO. Energy dispersive X-ray spectrometry and X-ray photoelectron spectroscopy were used to analyze the chemical composition of the coating. Corrosion resistance of the bare and coated composites was evaluated by potentiodynamic polarization curves in 3.5% NaCl solution. Results showed that the integrality and electrical insulation properties of the barrier film on the composites were destroyed by the SiC particles. Consequently, the sparking discharge at the early stage of MAO was inhibited, and the growth efficiency of the MAO coating decreased with the increase in the volume fraction of SiC particles. SiC particles did not exist stably during MAO; they were oxidized or partially oxidized into SiO 2 before the overall sparking discharge. The transformation from semi-conductive SiC to insulating SiO 2 by oxidation restrained the current leakage at the original SiC positions and then promoted sparking discharge and coating growth. The corrosion current density of SiC p /AZ91 MMCs was reduced by two orders of magnitude after MAO treatment. However, the corrosion resistances of the coated composites were lower than that of the coated alloy.

  2. Corrosion resistance and calcium–phosphorus precipitation of micro-arc oxidized magnesium for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Lichen; Cui, Chunxiang, E-mail: hutcui@hebut.edu.cn; Wang, Xin; Liu, Shuangjin; Bu, Shaojing; Wang, Qingzhou; Qi, Yumin

    2015-03-01

    Highlights: • Hydroxyapatite (HA) powders were added to the electrolyte. • The HA powders have participated in the formation reactions of MAO coating. • The growth efficiency of MAO coating was greatly enhanced owing to the HA addition. • The specimen anodized in the HA-containing electrolyte has a better corrosion resistance. • The specimen anodized in the HA-containing electrolyte can more efficiently induce Ca–P precipitation. - Abstract: To improve the corrosion resistance of magnesium, micro-arc oxidation (MAO) coatings were prepared on magnesium substrates in an aqueous solution with and without hydroxyapatite (HA) powders addition. The micrographs of scanning electron microscopy (SEM), the energy dispersive spectrometer (EDS) spectra, and X-ray diffraction (XRD) analysis show that the HA powders added into the electrolyte have participated in the formation reactions of MAO coating and the growth efficiency of MAO coating is greatly enhanced. Potentiodynamic polarization tests and immersion tests in simulated body fluid (SBF) confirm that the specimen anodized in the HA-containing electrolyte has a better corrosion resistance than the specimen anodized in the HA-free electrolyte. Immersion tests also indicate that the specimen anodized in the HA-containing electrolyte can more efficiently induce Ca–P precipitation compared with the specimen anodized in the HA-free electrolyte.

  3. Micro-Arc Oxidation Enhances the Blood Compatibility of Ultrafine-Grained Pure Titanium

    Directory of Open Access Journals (Sweden)

    Lin Xu

    2017-12-01

    Full Text Available Ultrafine-grained pure titanium prepared by equal-channel angular pressing has favorable mechanical performance and does not contain alloy elements that are toxic to the human body. It has potential clinical value in applications such as cardiac valve prostheses, vascular stents, and hip prostheses. To overcome the material’s inherent thrombogenicity, surface-coating modification is a crucial pathway to enhancing blood compatibility. An electrolyte solution of sodium silicate + sodium polyphosphate + calcium acetate and the micro-arc oxidation (MAO technique were employed for in situ oxidation of an ultrafine-grained pure titanium surface. A porous coating with anatase- and rutile-phase TiO2 was generated and wettability and blood compatibility were examined. The results showed that, in comparison with ultrafine-grained pure titanium substrate, the MAO coating had a rougher surface, smaller contact angles for distilled water and higher surface energy. MAO modification effectively reduced the hemolysis rate; extended the dynamic coagulation time, prothrombin time (PT, and activated partial thromboplastin time (APTT; reduced the amount of platelet adhesion and the degree of deformation; and enhanced blood compatibility. In particular, the sample with an oxidation time of 9 min possessed the highest surface energy, largest PT and APTT values, smallest hemolysis rate, less platelet adhesion, a lesser degree of deformation, and more favorable blood compatibility. The MAO method can significantly enhance the blood compatibility of ultrafine-grained pure titanium, increasing its potential for practical applications.

  4. Characterization of the Micro-Arc Coatings Containing β-Tricalcium Phosphate Particles on Mg-0.8Ca Alloy

    Directory of Open Access Journals (Sweden)

    Mariya B. Sedelnikova

    2018-04-01

    Full Text Available The characterization of the microstructure, morphology, topography, composition, and physical and chemical properties of the coatings containing β-tricalcium phosphate (β-TCP particles deposited by the micro-arc oxidation (MAO method on biodegradable Mg-0.8Ca alloy has been performed. The electrolyte for the MAO process included the following components: Na2HPO4·12H2O, NaOH, NaF, and β-Ca3(PO42 (β-TCP. The coating morphology, microstructure, and compositions have been studied using scanning electron microscopy (SEM, transmission electron microscopy (TEM, energy-dispersive X-ray spectroscopy (EDX, and X-ray diffraction (XRD. With increasing of the MAO voltage from 350 to 500 V, the coating thickness and surface average roughness of the coatings increased linearly from 6 to 150 µm and from 2 to 8 µm, respectively. The coating deposited at 350 V had more homogeneous porous morphology with numerous pores similar by sizes (2–3 µm than the coatings formed at 450–500 V. The β-TCP isometric particles were included in the coating surface. The XRD recognized the amorphous-crystalline structure in the coatings with incorporation of the following phases: β-TCP, α-TCP, MgO (periclase and hydroxyapatite (HA. The corrosion experiments showed that the biodegradation rate of the Mg-0.8Ca alloy coated by calcium phosphates is almost 10 times less than that of uncoated alloy.

  5. Corrosion mechanism and model of pulsed DC microarc oxidation treated AZ31 alloy in simulated body fluid

    Energy Technology Data Exchange (ETDEWEB)

    Gu Yanhong, E-mail: ygu2@alaska.edu [Department of Mechanical Engineering, University of Alaska Fairbanks, Fairbanks, AK 99775 (United States); Chen Chengfu [Department of Mechanical Engineering, University of Alaska Fairbanks, Fairbanks, AK 99775 (United States); Bandopadhyay, Sukumar [Department of Mining Engineering, University of Alaska Fairbanks, Fairbanks, AK 99775 (United States); Ning Chengyun [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Zhang Yongjun [Department of Mining Engineering, University of Alaska Fairbanks, Fairbanks, AK 99775 (United States); Guo Yuanjun [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China)

    2012-06-01

    This paper addresses the effect of pulse frequency on the corrosion behavior of microarc oxidation (MAO) coatings on AZ31 Mg alloys in simulated body fluid (SBF). The MAO coatings were deposited by a pulsed DC mode at four different pulse frequencies of 300 Hz, 500 Hz, 1000 Hz and 3000 Hz with a constant pulse ratio. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) tests were used for corrosion rate and electrochemical impedance evaluation. The corroded surfaces were examined by X-ray diffraction (XRD), X-ray fluorescence (XRF) and optical microscopy. All the results exhibited that the corrosion resistance of MAO coating produced at 3000 Hz is superior among the four frequencies used. The XRD spectra showed that the corrosion products contain hydroxyapatite, brucite and quintinite. A model for corrosion mechanism and corrosion process of the MAO coating on AZ31 Mg alloy in the SBF is proposed.

  6. Corrosion mechanism and model of pulsed DC microarc oxidation treated AZ31 alloy in simulated body fluid

    International Nuclear Information System (INIS)

    Gu Yanhong; Chen Chengfu; Bandopadhyay, Sukumar; Ning Chengyun; Zhang Yongjun; Guo Yuanjun

    2012-01-01

    This paper addresses the effect of pulse frequency on the corrosion behavior of microarc oxidation (MAO) coatings on AZ31 Mg alloys in simulated body fluid (SBF). The MAO coatings were deposited by a pulsed DC mode at four different pulse frequencies of 300 Hz, 500 Hz, 1000 Hz and 3000 Hz with a constant pulse ratio. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) tests were used for corrosion rate and electrochemical impedance evaluation. The corroded surfaces were examined by X-ray diffraction (XRD), X-ray fluorescence (XRF) and optical microscopy. All the results exhibited that the corrosion resistance of MAO coating produced at 3000 Hz is superior among the four frequencies used. The XRD spectra showed that the corrosion products contain hydroxyapatite, brucite and quintinite. A model for corrosion mechanism and corrosion process of the MAO coating on AZ31 Mg alloy in the SBF is proposed.

  7. Microscopic observations of osteoblast growth on micro-arc oxidized β titanium

    Science.gov (United States)

    Chen, Hsien-Te; Chung, Chi-Jen; Yang, Tsai-Ching; Tang, Chin-Hsin; He, Ju-Liang

    2013-02-01

    Titanium alloys are widely used in orthopedic and dental implants, owing to their excellent physical properties and biocompatibility. By using the micro-arc oxidation (MAO), we generated anatase-rich (A-TiO2) and rutile-rich (R-TiO2) titanium dioxide coatings, individually on β-Ti alloy, in which the latter achieved an enhanced in vitro and in vivo performance. Thoroughly elucidating how the osteoblasts interact with TiO2 coatings is of worthwhile interest. This study adopts the focused ion beam (FIB) to section off the TiO2 coated samples for further scanning electron microscope (SEM) and transmission electron microscope (TEM) observation. The detailed crystal structures of the TiO2 coated specimens are also characterized. Experimental results indicate osteoblasts adhered more tenaciously and grew conformably with more lamellipodia extent on the R-TiO2 specimen than on the A-TiO2 and raw β-Ti specimens. FIB/SEM cross-sectional images of the cell/TiO2 interface revealed micro gaps between the cell membrane and contact surface of A-TiO2 specimen, while it was not found on the R-TiO2 specimen. Additionally, the number of adhered and proliferated cells on the R-TiO2 specimen was visually greater than the others. Closely examining EDS line scans and elemental mappings of the FIB/TEM cross-sectional images of the cell/TiO2 interface reveals both the cell body and interior space of the TiO2 coating contain nitrogen and sulfur (the biological elements in cell). This finding supports the assumption that osteoblast can grow into the porous structure of TiO2 coatings and demonstrating that the R-TiO2 coating formed by MAO serves the best for β-Ti alloys as orthopedic and dental implants.

  8. Micro-arc oxidation of Ti-15Zr-based alloys for osseointegrative implants

    International Nuclear Information System (INIS)

    Correa, Diego Rafael Nespeque; Rocha, Luis Augusto; Doi, Hisashi; Tsutsumi, Yusuke; Hanawa, Takao

    2016-01-01

    Full text: Micro-arc oxidation (MAO) is well-known as low-cost coating technique which can produce porous structure in valve metals [1]. Studies have indicated that MAOcoatings are suitable for improve biofunctionalization of Ti-based implants by bioactive ions incorporation in the oxide layer [2]. This work aims to evaluate the characteristics of the MAO-coating in recent developed biomedical Ti-15Zr-based alloys in order to use as osseointegrative implants. Ti-15Zr-xMo (x = 0, 5, 10 and 15 % wt.) alloys were produced by argon arc-melting and molded in a centrifugal casting machine. MAO treatment were performed in disks (ϕ 8 mm x 1.5 mm), at room temperature, with a 304 stainless steel plate as counter electrode. Electrolyte was composed by 0.15 M calcium acetate and 0.10 M calcium glycerophosphate. The electrodes were connected to a DC power supply, and applied a density current of 311 A/m 2 , for 10 min, with voltages of 300, 350 and 400 V. Morphology, thickness, composition and crystal structure of the oxide layer were evaluated by SEM, XRF and XRD techniques. A typical porous layer was produced in all surfaces, being the porosity, porous size and thickness increased with the voltage. The composition of the oxide layer indicated Ca and P incorporation, being the concentration increased with the voltage applied. The XRD patterns do not exhibited peaks from oxides compounds, but only peaks from bulk-Ti phases. The results showed that the bioactive coatings were successfully growth in the Ti-15Zr-based alloys, being suitable for osseointegrative implants. References: [1] Hanawa, T. Japanese dental Science Review 46, 93-101, 2010; [2] Tsutsumi, Y. et al. Metals 6, 76-85, 2016. (author)

  9. Micro-arc oxidation of Ti-15Zr-based alloys for osseointegrative implants

    Energy Technology Data Exchange (ETDEWEB)

    Correa, Diego Rafael Nespeque; Rocha, Luis Augusto [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Bauru, SP (Brazil); Doi, Hisashi; Tsutsumi, Yusuke; Hanawa, Takao [Tokyo Medical and Dental University (Japan)

    2016-07-01

    Full text: Micro-arc oxidation (MAO) is well-known as low-cost coating technique which can produce porous structure in valve metals [1]. Studies have indicated that MAOcoatings are suitable for improve biofunctionalization of Ti-based implants by bioactive ions incorporation in the oxide layer [2]. This work aims to evaluate the characteristics of the MAO-coating in recent developed biomedical Ti-15Zr-based alloys in order to use as osseointegrative implants. Ti-15Zr-xMo (x = 0, 5, 10 and 15 % wt.) alloys were produced by argon arc-melting and molded in a centrifugal casting machine. MAO treatment were performed in disks (ϕ 8 mm x 1.5 mm), at room temperature, with a 304 stainless steel plate as counter electrode. Electrolyte was composed by 0.15 M calcium acetate and 0.10 M calcium glycerophosphate. The electrodes were connected to a DC power supply, and applied a density current of 311 A/m{sup 2}, for 10 min, with voltages of 300, 350 and 400 V. Morphology, thickness, composition and crystal structure of the oxide layer were evaluated by SEM, XRF and XRD techniques. A typical porous layer was produced in all surfaces, being the porosity, porous size and thickness increased with the voltage. The composition of the oxide layer indicated Ca and P incorporation, being the concentration increased with the voltage applied. The XRD patterns do not exhibited peaks from oxides compounds, but only peaks from bulk-Ti phases. The results showed that the bioactive coatings were successfully growth in the Ti-15Zr-based alloys, being suitable for osseointegrative implants. References: [1] Hanawa, T. Japanese dental Science Review 46, 93-101, 2010; [2] Tsutsumi, Y. et al. Metals 6, 76-85, 2016. (author)

  10. The influence of Ac parameters in the process of micro-arc oxidation film electric breakdown

    Directory of Open Access Journals (Sweden)

    Ma Jin

    2016-01-01

    Full Text Available This paper studies the electric breakdown discharge process of micro-arc oxidation film on the surface of aluminum alloy. Based on the analysis of the AC parameters variation in the micro-arc oxidation process, the following conclusions can be drawn: The growth of oxide film can be divided into three stages, and Oxide film breakdown discharge occurs twice in the micro-arc oxidation process. The first stage is the formation and disruptive discharge of amorphous oxide film, producing the ceramic oxide granules, which belong to solid dielectric breakdown. In this stage the membrane voltage of the oxide film plays a key role; the second stage is the formation of ceramic oxide film, the ceramic oxide granules turns into porous structure oxide film in this stage; the third stage is the growth of ceramic oxide film, the gas film that forms in the oxide film’s porous structure is electric broken-down, which is the second breakdown discharge process, the current density on the oxide film surface could affect the breakdown process significantly.

  11. Influence of nanosized carbon particles on the formation of the structure and properties of microarc ceramic coatings based on aluminum alloys

    International Nuclear Information System (INIS)

    Vityaz', P.A.; Komarov, A.I.; Komarova, V.I.

    2013-01-01

    A carbon-composite material based on a ceramic coating formed on aluminum alloys due to microarc oxidation and nanostructured carbon synthesized by the electric breakdown of liquid hydrocarbon (cyclohexane) is developed. The highest concentration of carbon nanoparticles is recorded in the coating surface coating 30-50 (μm in depth and also near the interface coating - base. It is shown that the nanocarbon introduced in electrolytes enhances the content of high-temperature modifications of aluminum oxide α-Al 2 O 3 by a factor of 3, as compared to the coating resulting in a solution without additives. The latter achieves higher tribomechanical properties - the 1.6-fold increase of microhardness, the multiple growth of wear resistance in the high pressure range (45,60 MPa) with a simultaneous reduction of the coefficient 2-9 times. (authors)

  12. Fabrication of oxide layer on zirconium by micro-arc oxidation: Structural and antimicrobial characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Fidan, S.; Muhaffel, F. [Department of Metallurgical and Materials Engineering, Istanbul Technical University, Sariyer, 34469 Istanbul (Turkey); Riool, M. [Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105, AZ, Amsterdam (Netherlands); Cempura, G. [International Centre of Electron Microscopy for Materials Science, AGH University of Science and Technology, PL, 30-059 Kraków (Poland); Boer, L. de; Zaat, S.A.J. [Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105, AZ, Amsterdam (Netherlands); Filemonowicz, A. Czyrska - [International Centre of Electron Microscopy for Materials Science, AGH University of Science and Technology, PL, 30-059 Kraków (Poland); Cimenoglu, H., E-mail: cimenogluh@itu.edu.tr [Department of Metallurgical and Materials Engineering, Istanbul Technical University, Sariyer, 34469 Istanbul (Turkey)

    2017-02-01

    The aim of this study was to cover the surfaces of zirconium (Zr) with an antimicrobial layer for biomedical applications. For this purpose, the micro-arc oxidation (MAO) process was employed in a sodium silicate and sodium hydroxide containing base electrolyte with and without addition of silver acetate (AgC{sub 2}H{sub 3}O{sub 2}). In general, synthesized MAO layers were composed of zirconium oxide (ZrO{sub 2}) and zircon (ZrSiO{sub 4}). Addition of AgC{sub 2}H{sub 3}O{sub 2} into the base electrolyte caused homogenous precipitation of silver-containing particles in the MAO layer, which exhibited excellent antibacterial efficiency against methicillin-resistant Staphylococcus aureus (MRSA) as compared to the untreated and MAO-treated Zr. - Highlights: • Micro-arc oxidation process was applied on zirconium in an electrolyte containing silver acetate. • Silver incorporated in the oxide layer in the form of nanoparticles. • 0.45 wt.% silver incorporation provided excellent antibacterial activity.

  13. Fabrication of oxide layer on zirconium by micro-arc oxidation: Structural and antimicrobial characteristics

    International Nuclear Information System (INIS)

    Fidan, S.; Muhaffel, F.; Riool, M.; Cempura, G.; Boer, L. de; Zaat, S.A.J.; Filemonowicz, A. Czyrska -; Cimenoglu, H.

    2017-01-01

    The aim of this study was to cover the surfaces of zirconium (Zr) with an antimicrobial layer for biomedical applications. For this purpose, the micro-arc oxidation (MAO) process was employed in a sodium silicate and sodium hydroxide containing base electrolyte with and without addition of silver acetate (AgC 2 H 3 O 2 ). In general, synthesized MAO layers were composed of zirconium oxide (ZrO 2 ) and zircon (ZrSiO 4 ). Addition of AgC 2 H 3 O 2 into the base electrolyte caused homogenous precipitation of silver-containing particles in the MAO layer, which exhibited excellent antibacterial efficiency against methicillin-resistant Staphylococcus aureus (MRSA) as compared to the untreated and MAO-treated Zr. - Highlights: • Micro-arc oxidation process was applied on zirconium in an electrolyte containing silver acetate. • Silver incorporated in the oxide layer in the form of nanoparticles. • 0.45 wt.% silver incorporation provided excellent antibacterial activity.

  14. 钛合金微弧氧化羟基磷灰石生物活性涂层的摩擦磨损性能研究%Research on Friction and Wear Properties of Micro-arc Oxidation Bioceramic Coating Containing Hydroxyapatite on Ti Alloy

    Institute of Scientific and Technical Information of China (English)

    杨喜臻

    2013-01-01

    Took micro-arc oxidation welding technology, bioceramic coating containing hydroxyapatite (HA) was in-situ synthesized on Ti alloy, the friction and wear properties of the bioceramic coating were studied. The affecting discipline such as wearing time and electric current density and their laws were obtained in the experiment. The results showed that the friction coefficient of bioceramic coating containing hydroxyapatite was first increased and then decreased with the friction time, while the friction coefficient was first decreased and then increased when electricity density increased.%采用微弧氧化技术,在钛合金表面原位合成含有羟基磷灰石的生物活性陶瓷涂层,研究了陶瓷涂层的摩擦磨损性能,得出了不同磨损时间和不同微弧氧化电流密度对陶瓷涂层耐磨性的影响规律.结果表明,含有羟基磷灰石的陶瓷涂层,其摩擦因数随摩擦磨损时间的增加而先增大后减小,其耐磨性随微弧氧化电流密度的增加而先减小后增大.

  15. [Apatite-forming ability of pure titanium implant after micro-arc oxidation treatment].

    Science.gov (United States)

    Tian, Zhihui; Zhang, Yu; Wang, Lichao; Nan, Kaihui

    2013-10-01

    To investigate the apatite forming ability of pure titanium implant after micro-arc oxidation treatment in simulated body fluid (SBF) and obtain implants with calcium phosphate (Ca-P) layers. The implants were immersed in (SBF) after micro-arc oxidation treatment for different time lengths, and their apatite forming ability and the morphology and constituents of the Ca-P layers formed on the sample surface were analyzed using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and energy dispersive electron probe. After immersion in SBF, large quantities of Ca-P layers were induced on the surface of the samples. The Ca-P layers were composed of octacalcium phosphate and carbonated hydroxyapatite, and the crystals showed a plate-like morphology with an oriented growth. The implants with micro-arc oxidation treatment show good apatite forming ability on the surface with rich calcium and phosphorus elements. The formed layers are composed of bone-like apatite including octacalcium phosphate and carbonated hydroxyapatite.

  16. Fabrication of oxide layer on zirconium by micro-arc oxidation: Structural and antimicrobial characteristics.

    Science.gov (United States)

    Fidan, S; Muhaffel, F; Riool, M; Cempura, G; de Boer, L; Zaat, S A J; Filemonowicz, A Czyrska-; Cimenoglu, H

    2017-02-01

    The aim of this study was to cover the surfaces of zirconium (Zr) with an antimicrobial layer for biomedical applications. For this purpose, the micro-arc oxidation (MAO) process was employed in a sodium silicate and sodium hydroxide containing base electrolyte with and without addition of silver acetate (AgC 2 H 3 O 2 ). In general, synthesized MAO layers were composed of zirconium oxide (ZrO 2 ) and zircon (ZrSiO 4 ). Addition of AgC 2 H 3 O 2 into the base electrolyte caused homogenous precipitation of silver-containing particles in the MAO layer, which exhibited excellent antibacterial efficiency against methicillin-resistant Staphylococcus aureus (MRSA) as compared to the untreated and MAO-treated Zr. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Micro-Arc oxidation of Ti in a solution of sulfuric acid and Ti+3 salt

    International Nuclear Information System (INIS)

    Ragalevicius, Rimas; Stalnionis, Giedrius; Niaura, Gediminas; Jagminas, Arunas

    2008-01-01

    A comparative study was performed on the behavior of titanium electrode in a sulfuric acid solution with and without Ti +3 during micro-arc oxidation under the constant current density control regime. The composition and microstructure of the obtained micro-arc films were analyzed using scanning electron microscopy, glancing-angle X-ray diffractometry, Raman and energy-dispersive X-ray spectroscopies. We have shown that addition of a Ti +3 salt extends the region of current densities (j a ) can be used for micro-arc oxidation of Ti and results in an obvious change of sparking behavior from extensive, large and long-played sparks to numerous, small and short sparks. As a consequence, the titania films formed in the Ti +3 -containing solutions are relatively thick, more uniform, composed of almost pure crystalline anatase and rutile phases of TiO 2 , and contain a network of evenly distributed small pores. It has also been shown that these films are promising for applications in catalysis, sensors and optoelectronics. The Raman spectra indicate that an increase in the electrolysis time of titanium in the Ti +3 -containing solution leads to the increase in rutile content, as expected

  18. Effect of current density on the microstructure and corrosion resistance of microarc oxidized ZK60 magnesium alloy.

    Science.gov (United States)

    You, Qiongya; Yu, Huijun; Wang, Hui; Pan, Yaokun; Chen, Chuanzhong

    2014-09-01

    The application of magnesium alloys as biomaterials is limited by their poor corrosion behavior. Microarc oxidation (MAO) treatment was used to prepare ceramic coatings on ZK60 magnesium alloys in order to overcome the poor corrosion resistance. The process was conducted at different current densities (3.5 and 9.0 A/dm(2)), and the effect of current density on the process was studied. The microstructure, elemental distribution, and phase composition of the MAO coatings were characterized by scanning electron microscopy, energy-dispersive x-ray spectrometry, and x-ray diffraction, respectively. The increment of current density contributes to the increase of thickness. A new phase Mg2SiO4 was detected as the current density increased to 9.0 A/dm(2). A homogeneous distribution of micropores could be observed in the coating produced at 3.5 A/dm(2), while the surface morphology of the coating formed at 9.0 A/dm(2) was more rough and apparent microcracks could be observed. The coating obtained at 3.5 A/dm(2) possessed a better anticorrosion behavior.

  19. Features of the theories of the formation of oxide films on aluminum alloys piston diesel engines with micro-arc oxidation

    OpenAIRE

    Skryabin M.L.; Smekhova I. N.

    2017-01-01

    The article considers one of the promising methods of surface hardening of piston aluminum alloy – microarc oxidation. Described fundamental differences from the micro-arc oxidation anodizing and similar electrochemical processes. The schemes of formation of the barrier and outer layers surface treatment in aqueous electrolytes. Shows the mechanism of formation of the interface. Considers the formation of layers with high porosity and method of exposure. Also describes the exponential depende...

  20. Zirconium Micro-Arc Oxidation as a Method for Producing Heat Insulation Elements in Spacecraft

    Directory of Open Access Journals (Sweden)

    V. K. Shatalov

    2014-01-01

    Full Text Available Application of coatings on the surface of materials as well as their composition and structure control in the near-surface layer enables us to use properties of base material and modified layers in the most rational and profitable way and save expensive and rare metals and alloys.The space telescope of T-170M will be the main tool of the international space observatory "Spektr-UF".It is being understood that the main mirror shade, which is in the outer space and has a considerable height will act as a radiator cooling a unit (cage of the main mirror. Therefore it is necessary to create heat insulation between the shade of the main mirror and the frame of the main mirror unit. From the thermal calculations a detail to provide heat insulation must possess thermal conductivity, at most, 2,5 and a conditional limit of fluidity for compression, at least, 125 MPas to ensure that the shade diaphragms position of the main mirror is stable with respect to the optical system of telescope.Considering that oxide of zirconium possesses one of the lowest thermal conductivities among oxides of metals, it is offered to use zirconium, as a material of base, and to put the MAO-covering (micro-arc oxide on its surface.As a result of studying the features of MAO-coverings on zirconium it is:1 found that the composite material consisting of zirconium and MAO-covering on it, has low thermal conductivity (less than 2 , and thus, because of small oxide layer thickness against the thickness of base material, possesses the mechanical properties which are slightly different from the pure zirconium ones;2 found that the composite material possesses the low gas release, allowing its use in the outer space conditions; the material processed in two electrolytes i.e. phosphate and acid ones has the lowest gas release;3 found that with growing thickness of MAO-covering its porosity decreases, thus the average pore diameter grows thereby leading to increasing thermal

  1. Formation of Microcracks During Micro-Arc Oxidation in a Phytic Acid-Containing Solution on Two-Phase AZ91HP

    Science.gov (United States)

    Zhang, R. F.; Chang, W. H.; Jiang, L. F.; Qu, B.; Zhang, S. F.; Qiao, L. P.; Xiang, J. H.

    2016-04-01

    Micro-arc oxidation (MAO) is an effective method to produce ceramic coatings on magnesium alloys and can considerably improve their corrosion resistance. The coating properties are closely related with microcracks, which are always inevitably developed on the coating surface. In order to find out the formation and development regularity of microcracks, anodic coatings developed on two-phase AZ91HP after different anodizing times were fabricated in a solution containing environmentally friendly organic electrolyte phytic acid. The results show that anodic film is initially developed on the α phase. At 50 s, anodic coatings begin to develop on the β phase, evidencing the formation of a rough area. Due to the coating successive development, the microcracks initially appear at the boundary between the initially formed coating on the α phase and the subsequently developed coating on the β phase. With the prolonging treatment time, the microcracks near the β phase become evident. After treating for 3 min, the originally rough area on the β phase disappears and the coatings become almost uniform with microcracks randomly distributed on the sample surface. Inorganic phosphates are found in MAO coatings, suggesting that phytate salts are decomposed due to the high instantaneous temperature on the sample surface resulted from spark discharge.

  2. In vitro degradation and electrochemical corrosion evaluations of microarc oxidized pure Mg, Mg–Ca and Mg–Ca–Zn alloys for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Yaokun; He, Siyu; Wang, Diangang, E-mail: wangdg@sdu.edu.cn; Huang, Danlan; Zheng, Tingting; Wang, Siqi; Dong, Pan; Chen, Chuanzhong, E-mail: czchen@sdu.edu.cn

    2015-02-01

    Calcium phosphate (CaP) ceramic coatings were fabricated on pure magnesium (Mg) and self-designed Mg–0.6Ca, Mg–0.55Ca–1.74Zn alloys by microarc oxidation (MAO). The coating formation, growth and biomineralization mechanisms were discussed. The coating degradability and bioactivity were evaluated by immersion tests in trishydroxymethyl–aminomethane hydrochloric acid (Tris–HCl) buffer and simulated body fluid (SBF) solutions, respectively. The coatings and corrosion products were characterized by scanning electron microscope (SEM), X-ray diffractometer (XRD), X-ray photoelectron spectrometer (XPS) and fourier transform infrared spectrometer (FT-IR). The electrochemical workstation was used to investigate the electrochemical corrosion behaviors of substrates and coatings. Results showed that Mg–0.55Ca–1.74Zn alloy exhibits the highest mechanical strength and electrochemical corrosion resistance among the three alloys. The MAO-coated Mg–0.55Ca–1.74Zn alloy has the potential to be served as a biodegradable implant. - Highlights: • Ca and Zn are suitable alloying elements in the development of novel Mg implants. • Micropore and crack are two factors affecting the MAO coating corrosion behavior. • Dissolution and precipitation of apatites on MAO coating are reversible reactions.

  3. In vitro degradation and electrochemical corrosion evaluations of microarc oxidized pure Mg, Mg–Ca and Mg–Ca–Zn alloys for biomedical applications

    International Nuclear Information System (INIS)

    Pan, Yaokun; He, Siyu; Wang, Diangang; Huang, Danlan; Zheng, Tingting; Wang, Siqi; Dong, Pan; Chen, Chuanzhong

    2015-01-01

    Calcium phosphate (CaP) ceramic coatings were fabricated on pure magnesium (Mg) and self-designed Mg–0.6Ca, Mg–0.55Ca–1.74Zn alloys by microarc oxidation (MAO). The coating formation, growth and biomineralization mechanisms were discussed. The coating degradability and bioactivity were evaluated by immersion tests in trishydroxymethyl–aminomethane hydrochloric acid (Tris–HCl) buffer and simulated body fluid (SBF) solutions, respectively. The coatings and corrosion products were characterized by scanning electron microscope (SEM), X-ray diffractometer (XRD), X-ray photoelectron spectrometer (XPS) and fourier transform infrared spectrometer (FT-IR). The electrochemical workstation was used to investigate the electrochemical corrosion behaviors of substrates and coatings. Results showed that Mg–0.55Ca–1.74Zn alloy exhibits the highest mechanical strength and electrochemical corrosion resistance among the three alloys. The MAO-coated Mg–0.55Ca–1.74Zn alloy has the potential to be served as a biodegradable implant. - Highlights: • Ca and Zn are suitable alloying elements in the development of novel Mg implants. • Micropore and crack are two factors affecting the MAO coating corrosion behavior. • Dissolution and precipitation of apatites on MAO coating are reversible reactions

  4. Improving the corrosion resistance of Mg–4.0Zn–0.2Ca alloy by micro-arc oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Y.H. [The First Affiliated Hospital of Harbin Medical University, Harbin 150001 (China); Zhang, B.P., E-mail: zhangbp@sxicc.ac.cn [National Engineering Laboratory for Carbon Fiber Technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); Lu, C.X. [National Engineering Laboratory for Carbon Fiber Technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); Geng, L. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2013-12-01

    In this paper, corrosion resistance of the Mg–4.0Zn–0.2Ca alloy was modified by micro-arc oxidation (MAO) process. The microstructure and phase constituents of MAO layer were characterized by SEM, XRD and X-ray photoelectron spectroscopy (XPS). The corrosion resistance of MAO treated Mg–4.0Zn–0.2Ca alloy in the simulated body fluid were characterized by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The microstructure results indicated that a kind of ceramic film was composed by MgO and MgF{sub 2} was formed on the surface of Mg–4.0Zn–0.2Ca alloy after MAO treatment. The electrochemical test reveals that the corrosion resistance of MAO treated samples increase 1 order of magnitude. The mechanical intensity test showed that the MAO treated samples has suitable mechanical properties. - Highlights: • Ceramic layer which is composited by MgO and MgF{sub 2} is prepared to improve the corrosion resistance of Mg–4.0Zn–0.2Ca alloy. • MAO treatment does not affect the mechanical properties of the Mg–4.0Zn–0.2Ca alloy. • After 30-day immersion in SBF, the mechanical properties of MAO coated samples are still enough for bone fixed.

  5. Improving the corrosion resistance of Mg–4.0Zn–0.2Ca alloy by micro-arc oxidation

    International Nuclear Information System (INIS)

    Xia, Y.H.; Zhang, B.P.; Lu, C.X.; Geng, L.

    2013-01-01

    In this paper, corrosion resistance of the Mg–4.0Zn–0.2Ca alloy was modified by micro-arc oxidation (MAO) process. The microstructure and phase constituents of MAO layer were characterized by SEM, XRD and X-ray photoelectron spectroscopy (XPS). The corrosion resistance of MAO treated Mg–4.0Zn–0.2Ca alloy in the simulated body fluid were characterized by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The microstructure results indicated that a kind of ceramic film was composed by MgO and MgF 2 was formed on the surface of Mg–4.0Zn–0.2Ca alloy after MAO treatment. The electrochemical test reveals that the corrosion resistance of MAO treated samples increase 1 order of magnitude. The mechanical intensity test showed that the MAO treated samples has suitable mechanical properties. - Highlights: • Ceramic layer which is composited by MgO and MgF 2 is prepared to improve the corrosion resistance of Mg–4.0Zn–0.2Ca alloy. • MAO treatment does not affect the mechanical properties of the Mg–4.0Zn–0.2Ca alloy. • After 30-day immersion in SBF, the mechanical properties of MAO coated samples are still enough for bone fixed

  6. Physicochemical properties and in vitro cytocompatibility of modified titanium surfaces prepared via micro-arc oxidation with different calcium concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Sui-Dan; Zhang, Hui [Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055 (China); Dong, Xu-Dong [Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3 (Canada); Ning, Cheng-Yun [College of Material Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Fok, Alex S.L. [Minnesota Dental Research Center of Biomaterials and Biomechanics, School of Dentistry, University of Minnesota, Minneapolis, MN 55414 (United States); Wang, Yan, E-mail: wyan65@163.com [Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055 (China)

    2015-02-28

    Highlights: • MAO coating improves the surface characteristics and cytocompatibility of titanium. • Composition of MAO coating varies with the electrolyte concentration. • MAO coating properties can be optimized by adjusting the electrolyte concentration. • Higher CA concentration contributes to more favorable MAO coating cytocompatibility. - Abstract: Objective: To explore the effect of calcium concentration in the electrolyte solution on the physicochemical properties and biocompatibility of coatings formed by micro-arc oxidation (MAO) on titanium surfaces. Methods: The surfaces of pure titanium plates were modified by MAO in an electrolytic solution containing calcium acetate (CA; C{sub 4}H{sub 6}CaO{sub 4}) at concentrations of 0.05, 0.1, 0.2, or 0.3 M and β-glycerophosphate disodium salt pentahydrate (β-GP; C{sub 3}H{sub 7}Na{sub 2}O{sub 6}P·5H{sub 2}O) at a fixed concentration of 0.02 M. Surface topography, elemental characteristics, phase composition, and roughness were investigated by scanning electron microscopy, energy-dispersive X-ray analysis, X-ray diffraction, and a surface roughness tester, respectively. To assess the cytocompatibility and osteoinductivity of the surfaces, MC3T3-E1 preosteoblasts were cultured on the surfaces in vitro, and cell morphology, adhesion, proliferation, and differentiation were observed. Results: The porous MAO coating was composed primarily of TiO{sub 2} rutile and anatase. The amount of TiO{sub 2} rutile, the Ca/P ratio, and the surface roughness of the MAO coating increased with increasing CA concentration in the electrolyte solution. Ca{sub 3}(PO{sub 4}){sub 2}, CaCO{sub 3}, and CaTiO{sub 3} were formed on MAO-treated surfaces prepared with CA concentrations of 0.2 and 0.3 M. Cell proliferation and differentiation increased with increasing CA concentration, with MC3T3-E1 cells exhibiting favorable morphologies for bone–implant integration. Conclusions: MAO coating improves the surface characteristics and

  7. Physicochemical properties and in vitro cytocompatibility of modified titanium surfaces prepared via micro-arc oxidation with different calcium concentrations

    International Nuclear Information System (INIS)

    Wu, Sui-Dan; Zhang, Hui; Dong, Xu-Dong; Ning, Cheng-Yun; Fok, Alex S.L.; Wang, Yan

    2015-01-01

    Highlights: • MAO coating improves the surface characteristics and cytocompatibility of titanium. • Composition of MAO coating varies with the electrolyte concentration. • MAO coating properties can be optimized by adjusting the electrolyte concentration. • Higher CA concentration contributes to more favorable MAO coating cytocompatibility. - Abstract: Objective: To explore the effect of calcium concentration in the electrolyte solution on the physicochemical properties and biocompatibility of coatings formed by micro-arc oxidation (MAO) on titanium surfaces. Methods: The surfaces of pure titanium plates were modified by MAO in an electrolytic solution containing calcium acetate (CA; C 4 H 6 CaO 4 ) at concentrations of 0.05, 0.1, 0.2, or 0.3 M and β-glycerophosphate disodium salt pentahydrate (β-GP; C 3 H 7 Na 2 O 6 P·5H 2 O) at a fixed concentration of 0.02 M. Surface topography, elemental characteristics, phase composition, and roughness were investigated by scanning electron microscopy, energy-dispersive X-ray analysis, X-ray diffraction, and a surface roughness tester, respectively. To assess the cytocompatibility and osteoinductivity of the surfaces, MC3T3-E1 preosteoblasts were cultured on the surfaces in vitro, and cell morphology, adhesion, proliferation, and differentiation were observed. Results: The porous MAO coating was composed primarily of TiO 2 rutile and anatase. The amount of TiO 2 rutile, the Ca/P ratio, and the surface roughness of the MAO coating increased with increasing CA concentration in the electrolyte solution. Ca 3 (PO 4 ) 2 , CaCO 3 , and CaTiO 3 were formed on MAO-treated surfaces prepared with CA concentrations of 0.2 and 0.3 M. Cell proliferation and differentiation increased with increasing CA concentration, with MC3T3-E1 cells exhibiting favorable morphologies for bone–implant integration. Conclusions: MAO coating improves the surface characteristics and cytocompatibility of titanium for osseointegration. Higher CA

  8. Immobilization of chitosan film containing semaphorin 3A onto a microarc oxidized titanium implant surface via silane reaction to improve MG63 osteogenic differentiation

    Directory of Open Access Journals (Sweden)

    Fang K

    2014-10-01

    Full Text Available Kaixiu Fang,1,* Wen Song,2,* Lifeng Wang,1 Sen Jia,3 Hongbo Wei,1 Shuai Ren,1 Xiaoru Xu,1 Yingliang Song1 1State Key Laboratory of Military Stomatology, Department of Implant Dentistry, School of Stomatology, Fourth Military Medical University, Xi’an, People’s Republic of China; 2State Key Laboratory of Military Stomatology, Department of Prosthetic Dentistry, School of Stomatology, Fourth Military Medical University, Xi’an, People’s Republic of China; 3State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi’an, People’s Republic of China *These authors contributed equally to this work Abstract: Improving osseointegration of extensively used titanium (Ti implants still remains a main theme in implantology. Recently, grafting biomolecules onto a Ti surface has attracted more attention due to their direct participation in the osseointegration process around the implant. Semaphorin 3A (Sema3A is a new proven osteoprotection molecule and is considered to be a promising therapeutic agent in bone diseases, but how to immobilize the protein onto a Ti surface to acquire a long-term effect is poorly defined. In our study, we tried to use chitosan to wrap Sema3A (CS/Sema and connect to the microarc oxidized Ti surface via silane glutaraldehyde coupling. The microarc oxidization could formulate porous topography on a Ti surface, and the covalently bonded coating was homogeneously covered on the ridges between the pores without significant influence on the original topography. A burst release of Sema3A was observed in the first few days in phosphate-buffered saline and could be maintained for >2 weeks. Coating in phosphate-buffered saline containing lysozyme was similar, but the release rate was much more rapid. The coating did not significantly affect cellular adhesion, viability, or cytoskeleton arrangement, but the osteogenic-related gene

  9. In vitro degradation and electrochemical corrosion evaluations of microarc oxidized pure Mg, Mg-Ca and Mg-Ca-Zn alloys for biomedical applications.

    Science.gov (United States)

    Pan, Yaokun; He, Siyu; Wang, Diangang; Huang, Danlan; Zheng, Tingting; Wang, Siqi; Dong, Pan; Chen, Chuanzhong

    2015-02-01

    Calcium phosphate (CaP) ceramic coatings were fabricated on pure magnesium (Mg) and self-designed Mg-0.6Ca, Mg-0.55Ca-1.74Zn alloys by microarc oxidation (MAO). The coating formation, growth and biomineralization mechanisms were discussed. The coating degradability and bioactivity were evaluated by immersion tests in trishydroxymethyl-aminomethane hydrochloric acid (Tris-HCl) buffer and simulated body fluid (SBF) solutions, respectively. The coatings and corrosion products were characterized by scanning electron microscope (SEM), X-ray diffractometer (XRD), X-ray photoelectron spectrometer (XPS) and fourier transform infrared spectrometer (FT-IR). The electrochemical workstation was used to investigate the electrochemical corrosion behaviors of substrates and coatings. Results showed that Mg-0.55Ca-1.74Zn alloy exhibits the highest mechanical strength and electrochemical corrosion resistance among the three alloys. The MAO-coated Mg-0.55Ca-1.74Zn alloy has the potential to be served as a biodegradable implant. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. A comparison of corrosion, tribocorrosion and electrochemical impedance properties of pure Ti and Ti6Al4V alloy treated by micro-arc oxidation process

    Science.gov (United States)

    Fazel, M.; Salimijazi, H. R.; Golozar, M. A.; Garsivaz jazi, M. R.

    2015-01-01

    In this paper, the micro-arc oxidation (MAO) coatings were performed on pure Ti and Ti6Al4V samples at 180 V. The results indicated that unlike the volcanic morphology of oxide layer on pure Ti, a cortex-like morphology with irregular vermiform slots was seen on MAO/Ti6Al4V sample. According to polarization curves, the corrosion resistance of untreated samples was significantly increased by MAO process. The electrochemical impedance spectroscopy analysis showed a lower capacitance of barrier layer (led to higher resistance) for MAO/Ti specimens. This indicates that corrosive ions diffusion throughout the oxide film would be more difficult resulted in a higher corrosion resistance. Tribocorrosion results illustrated that the potential of untreated samples was dropped sharply to very low negative values. However, the lower wear volume loss was achieved for Ti6Al4V alloy. SEM images of worn surfaces demonstrated the local detachment of oxide layer within the wear track of MAO/Ti sample. Conversely, no delamination was detected in MAO/Ti6Al4V and a mild abrasive wear was the dominant mechanism.

  11. Features of the theories of the formation of oxide films on aluminum alloys piston diesel engines with micro-arc oxidation

    Directory of Open Access Journals (Sweden)

    Skryabin M.L.

    2017-12-01

    Full Text Available The article considers one of the promising methods of surface hardening of piston aluminum alloy – microarc oxidation. Described fundamental differences from the micro-arc oxidation anodizing and similar electrochemical processes. The schemes of formation of the barrier and outer layers surface treatment in aqueous electrolytes. Shows the mechanism of formation of the interface. Considers the formation of layers with high porosity and method of exposure. Also describes the exponential dependence of the current density from the electric field in the surface film of the base metal. The role of discharges in the formation of oxide layers on the treated surface. Proposed and described features of the three main theories of formation of oxide films on the surface of the piston: physical and geometrical model of Keller; models of formation of oxide films as a colloid formations and plasma theory (theory of oxidation with the formation of plasma in the zone of oxidation. The features of formation of films in each of the models. For the model of Keller porous oxide film is a close-Packed oxide cell, having the shape of a prism. They are based on a hexagonal prism. These cells have normal orientation to the surface of the metal. In the center of the unit cell there is one season that is a channel, whose size is determined by the composition of the electrolyte, the chemical composition of the base metal and the electrical parameters of the process of oxidation. In the micro-arc oxidation process according to this model, the beginning of the formation of cells occurs with the formation of the barrier layer, passing in the porous layer and, over time, the elonga-tion of the pores, due to the constant etching electrolyte. In the theory of formation of the oxide films as kolloidnyh formations revealed that formation of pores in the film is a result of their growth. The anodic oxide is represented by a directed electric field, the alumina gel colloidal and

  12. Corrosion behavior of a self-sealing pore micro-arc oxidation film on AM60 magnesium alloy

    International Nuclear Information System (INIS)

    Dong, Kaihui; Song, Yingwei; Shan, Dayong; Han, En-Hou

    2015-01-01

    Highlights: • Pore sealing constituents fall off and titanium oxides remain during corrosion. • Dark regions of film are corroded by migration of corrosion media through pores. • Light regions of film are corroded by transverse expansion of cracks. • Both outer and inner layers of the film provide effective protection to substrate. - Abstract: The deterioration process of a self-sealing pore micro-arc oxidation (MAO) film was investigated. The surface and cross-section corrosion morphologies were observed by scanning electron microscopy (SEM). Chemical composition was detected by EDS elemental mapping and XRD. The corrosion process was analyzed by electrochemical impedance spectroscopy (EIS). The surface of the film in dark and light regions exhibits different corrosion behavior. In the dark regions, the corrosion process mainly concentrates on the migration of corrosion media through the pores inward. In the light regions, the transverse expansion of cracks plays a key role, accompanying the exfoliation of film constituents.

  13. Microarc-oxidized titanium surfaces functionalized with microRNA-21-loaded chitosan/hyaluronic acid nanoparticles promote the osteogenic differentiation of human bone marrow mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Wang Z

    2015-10-01

    Full Text Available Zhongshan Wang,1,* Guangsheng Wu,2,3,* Zhihong Feng,1 Shizhu Bai,1 Yan Dong,1 Guofeng Wu,1 Yimin Zhao1 1State Key Laboratory of Military Stomatology, Department of Prosthetic Dentistry, 2State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi’an, People’s Republic of China; 3Qingdao First Sanatorium, Jinan Military Region, Qingdao, Shandong Province, People’s Republic of China *These authors contributed equally to this work Abstract: Dental implants have been widely used for the replacement of missing teeth in the clinic, but further improvements are needed to meet the clinical demands for faster and tighter osseointegration. In this study, we fabricated safe and biocompatible chitosan (CS/hyaluronic acid (HA nanoparticles to deliver microRNA-21 (miR-21 and thereby accelerate osteogenesis in human bone marrow mesenchymal stem cells (hBMMSCs. The CS/HA/miR-21 nanoparticles were cross-linked with 0.2% gel solution onto microarc oxidation (MAO-treated titanium (Ti surfaces to fabricate the miR-21-functionalized MAO Ti surface, resulting in the development of a novel coating for reverse transfection. To characterize the CS/HA/miR-21 nanoparticles, their particle size, zeta potential, surface morphology, and gel retardation ability were sequentially investigated. Their biological effects, such as cell viability, cytotoxicity, and expression of osteogenic genes by hBMMSCs on the miR-21-functionalized MAO Ti surfaces, were evaluated. Finally, we explored appropriate CS/HA/miR-21 nanoparticles with a CS/HA ratio of 4:1 and N/P ratio 20:1 for transfection, which presented good spherical morphology, an average diameter of 160.4±10.75 nm, and a positive zeta potential. The miR-21-functionalized MAO Ti surfaces demonstrated cell viability, cytotoxicity, and cell spreading comparable to those exhibited by naked MAO Ti surfaces and led to significantly higher

  14. Tribological Behaviour of the Ceramic Coating Formed on Magnesium Alloy

    International Nuclear Information System (INIS)

    Chen Fei; Zhou Hai; Chen Qiang; Ge Yuanjing; Lv Fanxiu

    2007-01-01

    Micro-arc oxidation is a recently developed surface treatment technology under anodic oxidation. Through micro-arc oxidation, a ceramic coating is directly formed on the surface of magnesium alloy, by which its surface property is significantly improved. In this paper, a dense ceramic oxide coating was prepared on an AZ31 magnesium alloy by micro-arc oxidation in a NaOH-Na 2 SiO 3 -NaB 4 O 7 -(NaPO 3 ) 6 electrolytic solution. Micro-structure, surface morphology and phase composition were analysed using scanning electron microscopy (SEM) and X-ray diffraction (XRD). The tribological behavior of the micro-arc oxidation ceramic coating under dry sliding against GCr15 steel was evaluated on a ball-on-disc test rig. The results showed that the AZ31 alloy was characterized by adhesion wear and scuffing under dry sliding against the steel, while the surface micro-arc oxidation ceramic coating experienced much abated adhesion wear and scuffing under the same testing conditions. The micro-arc oxidation ceramic coating showed good friction-reducing and fair antiwear ability in dry sliding against the steel

  15. The effect of microarc oxidation and excimer laser processing on the microstructure and corrosion resistance of Zr–1Nb alloy

    International Nuclear Information System (INIS)

    Yang, Jiaoxi; Wang, Xin; Wen, Qiang; Wang, Xibing; Wang, Rongshan; Zhang, Yanwei; Xue, Wenbin

    2015-01-01

    The main purpose of this research was to investigate the effect of microarc oxidation (MAO) and excimer laser processing on the corrosion resistance of Zr–1Nb alloy in service environment. The pre-oxide film was fabricated on the surface of Zr–1Nb cladding tubes by MAO processing, and then subjected to KrF excimer laser irradiation. The surface morphology of the pre-oxide film was observed using a scanning electron microscope; phase compositions and quantities were determined using an X-ray diffraction; surface roughness was determined using a profilometer; and thermal expansion coefficient was measured using a dilatometer. Autoclave experiments were conducted for 94 days in an aqueous condition of 360 °C under 18.6 MPa in 0.01 mol/L LiOH solutions. The results showed that MAO + laser treatment resulted in a significant increase in the corrosion resistance of Zr–1Nb cladding tubes at high temperatures, because laser melting and etching could lead to a reduction in surface roughness and an increase in compactness of the pre-oxide film, and laser processing could promote the transformation of m-ZrO 2 phase to t-ZrO 2 phase. The best corrosion resistance was obtained when the pulse energy was 500 mJ, scanning speed was 0.13 mm/s, and pulse number was 2400. - Highlights: • Pre-oxide film was fabricated on Zr–1Nb cladding tube by MAO+ excimer laser processing. • Excimer laser processing induced the transformation of m-ZrO 2 to t-ZrO 2 . • The Rietveld quantitative analysis of the pre-oxide film was made. • We investigated the high temperature corrosion and corrosion mechanism of the oxide film. • The parameters of MAO+ excimer laser processing were optimized.

  16. The effect of microarc oxidation and excimer laser processing on the microstructure and corrosion resistance of Zr–1Nb alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jiaoxi, E-mail: yangjiaoxi@bjut.edu.cn [Institute of Laser Engineering, Beijing University of Technology, Beijing 100124 (China); Wang, Xin; Wen, Qiang; Wang, Xibing [Institute of Laser Engineering, Beijing University of Technology, Beijing 100124 (China); Wang, Rongshan; Zhang, Yanwei [Suzhou Nuclear Power Research Institute, Suzhou 215004 (China); Xue, Wenbin [College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China)

    2015-12-15

    The main purpose of this research was to investigate the effect of microarc oxidation (MAO) and excimer laser processing on the corrosion resistance of Zr–1Nb alloy in service environment. The pre-oxide film was fabricated on the surface of Zr–1Nb cladding tubes by MAO processing, and then subjected to KrF excimer laser irradiation. The surface morphology of the pre-oxide film was observed using a scanning electron microscope; phase compositions and quantities were determined using an X-ray diffraction; surface roughness was determined using a profilometer; and thermal expansion coefficient was measured using a dilatometer. Autoclave experiments were conducted for 94 days in an aqueous condition of 360 °C under 18.6 MPa in 0.01 mol/L LiOH solutions. The results showed that MAO + laser treatment resulted in a significant increase in the corrosion resistance of Zr–1Nb cladding tubes at high temperatures, because laser melting and etching could lead to a reduction in surface roughness and an increase in compactness of the pre-oxide film, and laser processing could promote the transformation of m-ZrO{sub 2} phase to t-ZrO{sub 2} phase. The best corrosion resistance was obtained when the pulse energy was 500 mJ, scanning speed was 0.13 mm/s, and pulse number was 2400. - Highlights: • Pre-oxide film was fabricated on Zr–1Nb cladding tube by MAO+ excimer laser processing. • Excimer laser processing induced the transformation of m-ZrO{sub 2} to t-ZrO{sub 2}. • The Rietveld quantitative analysis of the pre-oxide film was made. • We investigated the high temperature corrosion and corrosion mechanism of the oxide film. • The parameters of MAO+ excimer laser processing were optimized.

  17. Micro-arc oxidation as a tool to develop multifunctional calcium-rich surfaces for dental implant applications.

    Science.gov (United States)

    Ribeiro, A R; Oliveira, F; Boldrini, L C; Leite, P E; Falagan-Lotsch, P; Linhares, A B R; Zambuzzi, W F; Fragneaud, B; Campos, A P C; Gouvêa, C P; Archanjo, B S; Achete, C A; Marcantonio, E; Rocha, L A; Granjeiro, J M

    2015-09-01

    Titanium (Ti) is commonly used in dental implant applications. Surface modification strategies are being followed in last years in order to build Ti oxide-based surfaces that can fulfill, simultaneously, the following requirements: induced cell attachment and adhesion, while providing a superior corrosion and tribocorrosion performance. In this work micro-arc oxidation (MAO) was used as a tool for the growth of a nanostructured bioactive titanium oxide layer aimed to enhance cell attachment and adhesion for dental implant applications. Characterization of the surfaces was performed, in terms of morphology, topography, chemical composition and crystalline structure. Primary human osteoblast adhesion on the developed surfaces was investigated in detail by electronic and atomic force microscopy as well as immunocytochemistry. Also an investigation on the early cytokine production was performed. Results show that a relatively thick hybrid and graded oxide layer was produced on the Ti surface, being constituted by a mixture of anatase, rutile and amorphous phases where calcium (Ca) and phosphorous (P) were incorporated. An outermost nanometric-thick amorphous oxide layer rich in Ca was present in the film. This amorphous layer, rich in Ca, improved fibroblast viability and metabolic activity as well as osteoblast adhesion. High-resolution techniques allowed to understand that osteoblasts adhered less in the crystalline-rich regions while they preferentially adhere and spread over in the Ca-rich amorphous oxide layer. Also, these surfaces induce higher amounts of IFN-γ cytokine secretion, which is known to regulate inflammatory responses, bone microarchitecture as well as cytoskeleton reorganization and cellular spreading. These surfaces are promising in the context of dental implants, since they might lead to faster osseointegration. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Microarc-oxidized titanium surfaces functionalized with microRNA-21-loaded chitosan/hyaluronic acid nanoparticles promote the osteogenic differentiation of human bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Wang, Zhongshan; Wu, Guangsheng; Feng, Zhihong; Bai, Shizhu; Dong, Yan; Wu, Guofeng; Zhao, Yimin

    2015-01-01

    Dental implants have been widely used for the replacement of missing teeth in the clinic, but further improvements are needed to meet the clinical demands for faster and tighter osseointegration. In this study, we fabricated safe and biocompatible chitosan (CS)/hyaluronic acid (HA) nanoparticles to deliver microRNA-21 (miR-21) and thereby accelerate osteogenesis in human bone marrow mesenchymal stem cells (hBMMSCs). The CS/HA/miR-21 nanoparticles were cross-linked with 0.2% gel solution onto microarc oxidation (MAO)-treated titanium (Ti) surfaces to fabricate the miR-21-functionalized MAO Ti surface, resulting in the development of a novel coating for reverse transfection. To characterize the CS/HA/miR-21 nanoparticles, their particle size, zeta potential, surface morphology, and gel retardation ability were sequentially investigated. Their biological effects, such as cell viability, cytotoxicity, and expression of osteogenic genes by hBMMSCs on the miR-21-functionalized MAO Ti surfaces, were evaluated. Finally, we explored appropriate CS/HA/miR-21 nanoparticles with a CS/HA ratio of 4:1 and N/P ratio 20:1 for transfection, which presented good spherical morphology, an average diameter of 160.4±10.75 nm, and a positive zeta potential. The miR-21-functionalized MAO Ti surfaces demonstrated cell viability, cytotoxicity, and cell spreading comparable to those exhibited by naked MAO Ti surfaces and led to significantly higher expression of osteogenic genes. This novel miR-21-functionalized Ti implant may be used in the clinic to allow more effective and robust osseointegration.

  19. A preliminary study on investigating the attachment of soft tissue onto micro-arc oxidized titanium alloy implants

    International Nuclear Information System (INIS)

    Chen, G J; Wang, Z; Bai, H; Li, J M; Cai, H

    2009-01-01

    Intraosseous transcutaneous amputation prostheses (ITAP) rely on the integrity of the soft tissue-implant interface as a barrier to exogenous agents, and in the prevention of avulsion and marsupilization. This experimental work aimed at the in vivo evaluation of soft tissue attachment to Ti alloy (Ti 6 Al 4 V) transcutaneous custom-made screws treated by a micro-arc oxidation (MAO) method. Prior to implantation, the surface of the MAO treated implants was analyzed by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and x-ray diffraction (XRD). The experimental model comprised implantation of 16 transcutaneous screws (two groups: MAO and machined (control); total eight implants/group) in the medial aspect of the left tibia of eight female goats. The animals were euthanized at eight weeks and the samples harvested and processed for histological and histomorphometrical analysis of soft tissue attachment to the implant surface. Significant higher soft tissue attachment was observed in the MAO-modified group compared to the control. The in vivo data indicated that MAO-modified Ti alloy could be a useful biomaterial for tissue engineering and benefit applications where bone-anchored transcutaneous implants are used.

  20. Superior biocompatibility and osteogenic efficacy of micro-arc oxidation-treated titanium implants in the canine mandible

    International Nuclear Information System (INIS)

    Ran Wei; Guo Bing; Shu Dalong; Tian Zhihui; Nan Kaihui; Wang Yingjun

    2009-01-01

    The aim of this paper is to test implantation outcomes and osteogenic efficacy of plasma micro-arc oxidation (MAO)-treated titanium implants in dogs. Thirty-six pure titanium implants (18 MAO-treated, 18 untreated) were inserted into the mandibles of nine adult beagles and allowed to heal under non-weight-bearing conditions. Implant stability and interface characteristics were evaluated at 4, 8 and 12 weeks post-implantation. Methods included scanning electron microscopy, mechanical testing, histological analysis and computer-quantified tissue morphology. Osseointegration was achieved in both groups, but occurred earlier and more extensively in the MAO group. Areas of direct bone/implant contact were approximately nine times higher in the MAO group than in the control group at 12 weeks (65.85% versus 7.37%, respectively; p < 0.01). Bone-implant shear strength in the MAO group (71.4, 147.2 and 266.3 MPa at weeks 4, 8 and 12, respectively) was higher than in the control group (4.3, 7.1, and 11.8 MPa at weeks 4, 8 and 12, respectively), at all assessments (all, p < 0.01). MAO treatment of titanium implants promotes more rapid formation of new bone, and increases bone-implant shear strength compared to untreated titanium implants.

  1. Microarc Oxidation of the High-Silicon Aluminum AK12D Alloy

    Directory of Open Access Journals (Sweden)

    S. K. Kiseleva

    2015-01-01

    Full Text Available The aim of work is to study how the high-silicon aluminum AK12D alloy microstructure and MAO-process modes influence on characteristics (microhardness, porosity and thickness of the oxide layer of formed surface layer.Experimental methods of study:1 MAO processing of AK12D alloy disc-shaped samples. MAO modes features are concentration of electrolyte components – soluble water glass Na2SiO3 and potassium hydroxide (KOH. The content of two components both the soluble water glass and the potassium hydroxide was changed at once, with their concentration ratio remaining constant;2 metallographic analysis of AK12D alloy structure using an optical microscope «Olympus GX51»;3 image analysis of the system "alloy AK12D - MAO - layer" using a scanning electron microscope «JEOL JSM 6490LV»;4 hardness evaluation of the MAO-layers using a micro-hardness tester «Struers Duramin».The porosity, microhardness and thickness of MAO-layer formed on samples with different initial structures are analyzed in detail. Attention is paid to the influence of MAO process modes on the quality layer.It has been proved that the MAO processing allows reaching quality coverage with high microhardness values of 1200-1300HV and thickness up to 114 μm on high-silicon aluminum alloy. It has been found that the initial microstructure of alloy greatly affects the thickness of the MAO - layer. The paper explains the observed effect using the physical principles of MAO process and the nature of silicon particles distribution in the billet volume.It has been shown that increasing concentration of sodium silicate and potassium hydroxide in the electrolyte results in thicker coating and high microhardness.It has been revealed that high microhardness is observed in the thicker MAO-layers.Conclusions:1 The microstructure of aluminum AK12D alloy and concentration of electrolyte components - liquid glass Na2SiO3 and potassium hydroxide affect the quality of coating resulted from MAO

  2. Preparation of Porous F-WO3/TiO2 Films with Visible-Light Photocatalytic Activity by Microarc Oxidation

    OpenAIRE

    Yeh, Chung-Wei; Wu, Kee-Rong; Hung, Chung-Hsuang; Chang, Hao-Cheng; Hsu, Chuan-Jen

    2012-01-01

    Porous F-WO3/TiO2 (mTiO2) films are prepared on titanium sheet substrates using microarc oxidation (MAO) technique. The X-ray diffraction patterns show that visible-light (Vis) enabling mTiO2 films with a very high content of anatase TiO2 and high loading of WO3 are successfully synthesized at a low applied voltage of 300 V using electrolyte contenting NaF and Na2WO4 without subsequent heat treatment. The cross-sectional transmission electron microscopy micrograph reveals that the mTiO2 films...

  3. Micro-arc oxidation as a tool to develop multifunctional calcium-rich surfaces for dental implant applications

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, A.R., E-mail: arribeiro@inmetro.gov.br [Department of Periodontology, Araraquara Dental School, University Estadual Paulista, Rua Humaitá 1680, 14801-903 Araraquara, São Paulo (Brazil); Directory of Metrology Applied to Life Science, National Institute of Metrology Quality and Technology, Av. N. S. das Graças 50, Xerém, Duque de Caxias, Rio de Janeiro (Brazil); Brazilian Branch of Institute of Biomaterials, Tribocorrosion and Nanomedicine (IBTN/Br) (Brazil); Oliveira, F., E-mail: fernando@dem.uminho.pt [Brazilian Branch of Institute of Biomaterials, Tribocorrosion and Nanomedicine (IBTN/Br) (Brazil); Centre for Mechanical and Materials Technologies, University of Minho, Campus de Azurém, 4800-058 Guimarães (Portugal); Boldrini, L.C., E-mail: lcboldrini@inmetro.gov.br [Directory of Metrology Applied to Life Science, National Institute of Metrology Quality and Technology, Av. N. S. das Graças 50, Xerém, Duque de Caxias, Rio de Janeiro (Brazil); Leite, P.E., E-mail: leitepec@gmail.com [Directory of Metrology Applied to Life Science, National Institute of Metrology Quality and Technology, Av. N. S. das Graças 50, Xerém, Duque de Caxias, Rio de Janeiro (Brazil); Falagan-Lotsch, P., E-mail: prifalagan@gmail.com [Directory of Metrology Applied to Life Science, National Institute of Metrology Quality and Technology, Av. N. S. das Graças 50, Xerém, Duque de Caxias, Rio de Janeiro (Brazil); Linhares, A.B.R., E-mail: adrianalinhares@hotmail.com [Clinical Research Unit, Antonio Pedro Hospital, Fluminense Federal University, Niterói (Brazil); and others

    2015-09-01

    Titanium (Ti) is commonly used in dental implant applications. Surface modification strategies are being followed in last years in order to build Ti oxide-based surfaces that can fulfill, simultaneously, the following requirements: induced cell attachment and adhesion, while providing a superior corrosion and tribocorrosion performance. In this work micro-arc oxidation (MAO) was used as a tool for the growth of a nanostructured bioactive titanium oxide layer aimed to enhance cell attachment and adhesion for dental implant applications. Characterization of the surfaces was performed, in terms of morphology, topography, chemical composition and crystalline structure. Primary human osteoblast adhesion on the developed surfaces was investigated in detail by electronic and atomic force microscopy as well as immunocytochemistry. Also an investigation on the early cytokine production was performed. Results show that a relatively thick hybrid and graded oxide layer was produced on the Ti surface, being constituted by a mixture of anatase, rutile and amorphous phases where calcium (Ca) and phosphorous (P) were incorporated. An outermost nanometric-thick amorphous oxide layer rich in Ca was present in the film. This amorphous layer, rich in Ca, improved fibroblast viability and metabolic activity as well as osteoblast adhesion. High-resolution techniques allowed to understand that osteoblasts adhered less in the crystalline-rich regions while they preferentially adhere and spread over in the Ca-rich amorphous oxide layer. Also, these surfaces induce higher amounts of IFN-γ cytokine secretion, which is known to regulate inflammatory responses, bone microarchitecture as well as cytoskeleton reorganization and cellular spreading. These surfaces are promising in the context of dental implants, since they might lead to faster osseointegration. - Highlights: • A nanometric-structured calcium-rich amorphous layer with improved bioactivity was produced on titanium surfaces.

  4. Micro-arc oxidation as a tool to develop multifunctional calcium-rich surfaces for dental implant applications

    International Nuclear Information System (INIS)

    Ribeiro, A.R.; Oliveira, F.; Boldrini, L.C.; Leite, P.E.; Falagan-Lotsch, P.; Linhares, A.B.R.

    2015-01-01

    Titanium (Ti) is commonly used in dental implant applications. Surface modification strategies are being followed in last years in order to build Ti oxide-based surfaces that can fulfill, simultaneously, the following requirements: induced cell attachment and adhesion, while providing a superior corrosion and tribocorrosion performance. In this work micro-arc oxidation (MAO) was used as a tool for the growth of a nanostructured bioactive titanium oxide layer aimed to enhance cell attachment and adhesion for dental implant applications. Characterization of the surfaces was performed, in terms of morphology, topography, chemical composition and crystalline structure. Primary human osteoblast adhesion on the developed surfaces was investigated in detail by electronic and atomic force microscopy as well as immunocytochemistry. Also an investigation on the early cytokine production was performed. Results show that a relatively thick hybrid and graded oxide layer was produced on the Ti surface, being constituted by a mixture of anatase, rutile and amorphous phases where calcium (Ca) and phosphorous (P) were incorporated. An outermost nanometric-thick amorphous oxide layer rich in Ca was present in the film. This amorphous layer, rich in Ca, improved fibroblast viability and metabolic activity as well as osteoblast adhesion. High-resolution techniques allowed to understand that osteoblasts adhered less in the crystalline-rich regions while they preferentially adhere and spread over in the Ca-rich amorphous oxide layer. Also, these surfaces induce higher amounts of IFN-γ cytokine secretion, which is known to regulate inflammatory responses, bone microarchitecture as well as cytoskeleton reorganization and cellular spreading. These surfaces are promising in the context of dental implants, since they might lead to faster osseointegration. - Highlights: • A nanometric-structured calcium-rich amorphous layer with improved bioactivity was produced on titanium surfaces.

  5. [Effects of different concentrations of MgSiF(6) as electrolyte for micro-arc oxidation on the bond strength between titanium and porcelain].

    Science.gov (United States)

    Yuan, M J; Zhang, S J; Liu, J; Tan, F

    2018-02-09

    Objective: To investigate the effects of different concentrations of MgSiF(6) as electrolyte on the bond strength between titanium and porcelain after micro-arc oxidation (MAO) treatment and screen the suitable concentration of MgSiF(6) that can improve the bond strength between titanium and porcelain. Methods: Four different concentrations of MgSiF(6) (10, 20, 30, 40 g/L) were chosen as MAO reaction solutions. Sandblasting treatment was selected as a control group. After porcelain was fused to each specimen, titanium-porcelain bond strengths were evaluated by the three-point bending test according to ISO 9693. Scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS) were adopted to evaluate the morphologies and elemental compositions of both the MAO coatings and the interfaces of the titanium-porcelain restoration. Results: The surface of titanium specimen in the control group was sharp and rough, while specimens in both 10 g/L group and 20 g/L group were porous and homogeneous. However, the pores found on the specimens in the latter group were larger in diameter (approximately 1.0-2.0 μm) than those on the former one (0.2-0.5 μm). The bond strengths of the control group and the experimental groups (10, 20, 30, 40 g/L MgSiF(6)) were (27.08±3.16), (38.18±2.65), (44.75±2.21), (36.44±2.04), (31.04±2.59) MPa, respectively. All the experimental groups showed higher bond strengths than the control group did ( Pporcelain were tight and compact in the 20 g/L group, while different amounts of pores and cracks were visible in the other groups. Additionally, after the three-point bending test, few residual porcelains could be observed on the surfaces of specimens in the control group. Conclusions: MAO treatment with 20 g/L MgSiF(6) on titanium can improve bonding strength between titanium and porcelain.

  6. Morphological changes in bone tissue around titanium implants subjected to micro-arc oxidation in alkaline electrolytes with and without the use of «CollapAn-gel»

    Directory of Open Access Journals (Sweden)

    Kalmin O.V.

    2013-12-01

    Full Text Available The purpose of the article is to conduct comparative study of the features of reparative processes in the bone during installation of titanium implants with sandblasted exposed microarc subsequent oxidation in alkaline electrolyte using osteoinductive formulation without the use of this preparation. Material and Methods. Histologically examined tissue samples from 24 adult rabbits in the region of titanium implant with osteoinductive formulation and without after 7, 14, 28, 56 and 112 days postoperatively. Results. It has been revealed that the installation of titanium implants subjected to micro-arc oxidation in alkaline electrolytes without the use of osteoinductive preparation leads to a moderate inflammatory response and the processes of bone formation take more time. When using identical implants with osteoinductive preparation «CollapAn-gel» led to a less expressed inflammatory response and a more active process of bone formation. Conclusion. The use of titanium implants subjected to sandblasting followed microarc oxidation in alkaline electrolytes is optimally combined with osteoinductive agents as it provides the best clinical results and highlights shorter time of bone regeneration.

  7. [Scanning electron microscopy observation of the growth of osteoblasts on Ti-24Nb-4Zr-8Sn modified by micro-arc oxidation and alkali-heat treatment and implant-bone interface].

    Science.gov (United States)

    Han, Xue; Liu, Hong-Chen; Wang, Dong-Sheng; Li, Shu-Jun; Yang, Rui

    2011-01-01

    To observe the efficacy of micro-arc oxidation and alkali-heat treatment (MAH) on Ti-24Nb-4Zr-8Sn (Ti2448). Disks (diameter of 14.5 mm, thickness of 1 mm) and cylinders (diameter of 3 mm, height of 10 mm) were fabricated from Ti2448 alloy. Samples were divided into three groups: polished (Ti2448), micro-arc oxidation(MAO-Ti2448), micro-arc oxidation and alkali-heat treatment (MAH-Ti2448). MC3T3-E1 osteoblastic cells were cultured on the disks and cell morphology was observed with scanning electron microscopy (SEM) aftre 3 days. The cylinder samples were implanted in the tibia of dogs and implant-bone interface was observed with SEM after 3 months. A rough and porous structure was shown in both MAO and MAH group. The MC3T3-E1 cells on the MAH-Ti2448 discs spread fully in intimate contact with the underlying coarse surface through active cytoskeletal extentions. Osseointegration was formed in the implant-bone interface in MAH samples. MAH treatment can provide a more advantageous Ti2448 surface to osteoblastic cells than MAO treatment does, and the former can improve the implant-bone integration.

  8. Preparation of Porous F-WO3/TiO2 Films with Visible-Light Photocatalytic Activity by Microarc Oxidation

    Directory of Open Access Journals (Sweden)

    Chung-Wei Yeh

    2012-01-01

    Full Text Available Porous F-WO3/TiO2 (mTiO2 films are prepared on titanium sheet substrates using microarc oxidation (MAO technique. The X-ray diffraction patterns show that visible-light (Vis enabling mTiO2 films with a very high content of anatase TiO2 and high loading of WO3 are successfully synthesized at a low applied voltage of 300 V using electrolyte contenting NaF and Na2WO4 without subsequent heat treatment. The cross-sectional transmission electron microscopy micrograph reveals that the mTiO2 films feature porous networks connected by many micron pores. The diffused reflection spectrum displays broad absorbance across the UV-Vis regions and a significant red shift in the band gap energy (∼2.23 eV for the mTiO2 film. Owing to the high specific surface area from the porous microstructure, the mTiO2 film shows a 61% and 50% rate increase in the photocatalytic dye degradation, as compared with the N,C-codoped TiO2 films under UV and Vis irradiation, respectively.

  9. Preparation and characterization of amorphous SiO2 coatings deposited by mirco-arc oxidation on sintered NdFeB permanent magnets

    International Nuclear Information System (INIS)

    Xu, J.L.; Xiao, Q.F.; Mei, D.D.; Zhong, Z.C.; Tong, Y.X.; Zheng, Y.F.; Li, L.

    2017-01-01

    Amorphous SiO 2 coatings were prepared on sintered NdFeB magnets by micro-arc oxidation (MAO) in silicate solution. The surface and cross-sectional morphologies, element and phase composition, corrosion resistance and magnetic properties of the coatings were investigated by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), X-ray photoelectron spectroscopy (XPS), potentiodynamic polarization test and physical properties measurements system (PPMS). The results showed that the surface morphologies of the coatings exhibited the “coral reef” like structure, different from the typical MAO porous structure. With increasing the voltages, the thickness of the coatings increased from 12.72 to 19.90 µm, the content of Si element increased, while the contents of Fe, Nd and P elements decreased. The coatings were mainly composed of amorphous SiO 2 and a few amorphous Fe 2 O 3 and Nd 2 O 3 . The amorphous SiO 2 coatings presented excellent thermal shock resistance, while the thermal shock resistance decreased with increasing the voltages. The corrosion resistance of the coatings increased with increasing the voltages, and it could be enhanced by one order of magnitude compared to the uncoated NdFeB magnets. The MAO coatings slightly decreased the magnetic properties of the NdFeB samples in different degrees. - Highlights: • Amorphous SiO 2 coatings were prepared on sintered NdFeB magnets by micro-arc oxidation. • The coatings presented excellent thermal shock resistance. • The corrosion resistance could be enhanced by one order of magnitude. • The MAO coatings slightly decreased the magnetic properties of the NdFeB samples.

  10. Preparation and characterization of amorphous SiO{sub 2} coatings deposited by mirco-arc oxidation on sintered NdFeB permanent magnets

    Energy Technology Data Exchange (ETDEWEB)

    Xu, J.L., E-mail: jlxu@nchu.edu.cn [Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001 (China); School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Xiao, Q.F.; Mei, D.D. [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Zhong, Z.C., E-mail: zzhong2014@sina.com [The Institute for Rare Earth Magnetic Materials and Devices, Jiangxi University of Science and Technology, Ganzhou 341000 (China); Tong, Y.X. [Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001 (China); Zheng, Y.F., E-mail: yfzheng@pku.edu.cn [Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001 (China); Li, L. [Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001 (China)

    2017-03-15

    Amorphous SiO{sub 2} coatings were prepared on sintered NdFeB magnets by micro-arc oxidation (MAO) in silicate solution. The surface and cross-sectional morphologies, element and phase composition, corrosion resistance and magnetic properties of the coatings were investigated by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), X-ray photoelectron spectroscopy (XPS), potentiodynamic polarization test and physical properties measurements system (PPMS). The results showed that the surface morphologies of the coatings exhibited the “coral reef” like structure, different from the typical MAO porous structure. With increasing the voltages, the thickness of the coatings increased from 12.72 to 19.90 µm, the content of Si element increased, while the contents of Fe, Nd and P elements decreased. The coatings were mainly composed of amorphous SiO{sub 2} and a few amorphous Fe{sub 2}O{sub 3} and Nd{sub 2}O{sub 3}. The amorphous SiO{sub 2} coatings presented excellent thermal shock resistance, while the thermal shock resistance decreased with increasing the voltages. The corrosion resistance of the coatings increased with increasing the voltages, and it could be enhanced by one order of magnitude compared to the uncoated NdFeB magnets. The MAO coatings slightly decreased the magnetic properties of the NdFeB samples in different degrees. - Highlights: • Amorphous SiO{sub 2} coatings were prepared on sintered NdFeB magnets by micro-arc oxidation. • The coatings presented excellent thermal shock resistance. • The corrosion resistance could be enhanced by one order of magnitude. • The MAO coatings slightly decreased the magnetic properties of the NdFeB samples.

  11. Preparation of ceramic coating on Ti substrate by Plasma electrolytic oxidation in different electrolytes and evaluation of its corrosion resistance

    Science.gov (United States)

    Shokouhfar, M.; Dehghanian, C.; Baradaran, A.

    2011-01-01

    Ceramic oxide coatings (titania) were produced on Ti by micro-arc oxidation in different aluminate and carbonate based electrolytes. This process was conducted under constant pulsed DC voltage condition. The effect of KOH and NaF in aluminate based solution was also studied. The surface morphology, growth and phase composition of coatings were investigated using scanning electron microscope and X-ray diffraction. Corrosion behavior of the coatings was also examined by potentiodynamic polarization and electrochemical impedance spectroscopy. It was found that the sparking initiation voltage (spark voltage) had a significant effect on the form and properties of coatings. Coatings obtained from potassium aluminate based solution had a lower spark voltage, higher surface homogeneity and a better corrosion resistance than the carbonate based solution. Addition of NaF instead of KOH had improper effects on the homogeneity and adhesion of coatings which in turn caused a poor corrosion protection behavior of the oxide layer. AC impedance curves showed two time constants which is an indication of the coatings with an outer porous layer and an inner compact layer.

  12. Growth of aluminum-free porous oxide layers on titanium and its alloys Ti-6Al-4V and Ti-6Al-7Nb by micro-arc oxidation.

    Science.gov (United States)

    Duarte, Laís T; Bolfarini, Claudemiro; Biaggio, Sonia R; Rocha-Filho, Romeu C; Nascente, Pedro A P

    2014-08-01

    The growth of oxides on the surfaces of pure Ti and two of its ternary alloys, Ti-6Al-4V and Ti-6Al-7Nb, by micro-arc oxidation (MAO) in a pH 5 phosphate buffer was investigated. The primary aim was to form thick, porous, and aluminum-free oxide layers, because these characteristics favor bonding between bone and metal when the latter is implanted in the human body. On Ti, Ti-6Al-4 V, and Ti-6Al-7Nb, the oxides exhibited breakdown potentials of about 200 V, 130 V, and 140 V, respectively, indicating that the oxide formed on the pure metal is the most stable. The use of the MAO procedure led to the formation of highly porous oxides, with a uniform distribution of pores; the pores varied in size, depending on the anodizing applied voltage and time. Irrespective of the material being anodized, Raman analyses allowed us to determine that the oxide films consisted mainly of the anatase phase of TiO2, and XPS results indicated that this oxide is free of Al and any other alloying element. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Initial stages of AZ91 Mg alloy micro-arc anodizing: Growth mechanisms and effect on the corrosion resistance

    International Nuclear Information System (INIS)

    Veys-Renaux, Delphine; Rocca, Emmanuel; Martin, Julien; Henrion, Gérard

    2014-01-01

    Graphical abstract: - Highlights: • The dielectric breakdown occurs for a specific value of capacitance. • Before breakdown, Si is incorporated to the anodic film under MgSiO 3 form. • After breakdown, Si is incorporated to the anodic film also under Mg 2 SiO 4 form. • The presence of Mg 2 SiO 4 in the anodic film provides good corrosion resistance due to sealing of the porosities. - Abstract: In the framework of the new ecological regulations, micro-arc oxidation (MAO) appears as an alternative to usual processes in the field of corrosion protection of Mg alloys. In this work, the initial stages of anodic layer growth in KOH-based electrolytes are studied up to and beyond the initiation of the micro-arc regime. The properties of the first anodized film preceding the occurrence of the dielectric breakdown (corresponding to the start of the micro-arc regime) are mainly determined by the incorporation of additives (fluorides or silicates) in the film, as shown by in situ electrochemical measurements. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and micro-Raman spectroscopy reveal both the change of morphology and chemical state of silicate and fluoride in the anodized layer before and after the micro-arc regime. In terms of electrochemical behaviour, investigated by stationary methods and electrochemical impedance spectroscopy (EIS) in reference corrosive water, the anodic film grown in the silicate medium provides the best corrosion resistance thanks to a thick layer containing Mg 2 SiO 4 , whose degradation products seal the porosities of the coating

  14. Oxidation study of Ta–Zr coatings

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yung-I, E-mail: yichen@mail.ntou.edu.tw; Chen, Sin-Min

    2013-02-01

    Refractory metal alloy coatings, such as Mo–Ru and Ta–Ru coatings, have been developed to protect glass molding dies. Forming intermetallic compounds in the coatings inhibits grain growth in high temperature environments when mass producing optical components. After annealing in oxygen containing atmospheres, a surface roughening of the Mo–Ru coatings and a soft oxide layer on the Ta–Ru coatings have been observed in our previous works. Oxidation resistance becomes critical in high-temperature applications. In this study, Ta–Zr coatings were deposited with a Ti interlayer on silicon wafers using direct current magnetron sputtering at 400 °C. The as-deposited Ta–Zr coatings possessed nanocrystallite or amorphous states, depending on the chemical compositions. The annealing treatments were conducted at 600 °C under atmospheres of 50 ppm O{sub 2}–N{sub 2} or 1% O{sub 2}–Ar, respectively. After the annealing treatment, this study investigated variations in crystalline structure, hardness, surface roughness, and chemical composition profiles. Preferential oxidation of Zr in the Ta–Zr coatings was verified using X-ray photoelectron spectroscopy, and the microstructure was observed using transmission electron microscopy. - Highlights: ►The as-deposited Ta-rich Ta–Zr coatings revealed an amorphous structure. ►The Zr-rich coatings presented a crystalline β-Zr phase and an amorphous matrix. ►Zr oxidized preferentially as Ta–Zr coatings annealed at 600 °C. ►The hardness of coatings revealed a parabolic relationship with the oxygen content. ►A protective oxide scale formed on the surface of the crystallized Zr-rich coatings.

  15. Preparation and characterization of amorphous SiO2 coatings deposited by mirco-arc oxidation on sintered NdFeB permanent magnets

    Science.gov (United States)

    Xu, J. L.; Xiao, Q. F.; Mei, D. D.; Zhong, Z. C.; Tong, Y. X.; Zheng, Y. F.; Li, L.

    2017-03-01

    Amorphous SiO2 coatings were prepared on sintered NdFeB magnets by micro-arc oxidation (MAO) in silicate solution. The surface and cross-sectional morphologies, element and phase composition, corrosion resistance and magnetic properties of the coatings were investigated by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), X-ray photoelectron spectroscopy (XPS), potentiodynamic polarization test and physical properties measurements system (PPMS). The results showed that the surface morphologies of the coatings exhibited the "coral reef" like structure, different from the typical MAO porous structure. With increasing the voltages, the thickness of the coatings increased from 12.72 to 19.90 μm, the content of Si element increased, while the contents of Fe, Nd and P elements decreased. The coatings were mainly composed of amorphous SiO2 and a few amorphous Fe2O3 and Nd2O3. The amorphous SiO2 coatings presented excellent thermal shock resistance, while the thermal shock resistance decreased with increasing the voltages. The corrosion resistance of the coatings increased with increasing the voltages, and it could be enhanced by one order of magnitude compared to the uncoated NdFeB magnets. The MAO coatings slightly decreased the magnetic properties of the NdFeB samples in different degrees.

  16. Comparison study of different coatings on degradation performance and cell response of Mg-Sr alloy

    Energy Technology Data Exchange (ETDEWEB)

    Shangguan, Yongming [Department of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Sun, Lina [Jinzhou Medical University, Jinzhou 121000 (China); Wan, Peng, E-mail: pwan@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR (China); Tan, Lili [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Wang, Chengyue [Jinzhou Medical University, Jinzhou 121000 (China); Fan, Xinmin [Department of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Qin, Ling [Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR (China); Yang, Ke, E-mail: kyang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)

    2016-12-01

    To solve the problem of rapid degradation for magnesium-based implants, surface modification especially coating method is widely studied and showed the great potential for clinical application. However, as concerned to the further application and medical translation for biodegradable magnesium alloys, there are still lack of data and comparisons among different coatings on their degradation and biological properties. This work studied three commonly used coatings on Mg-Sr alloy, including micro-arc oxidation coating, electrodeposition coating and chemical conversion coating, and compared these coatings for requirements of favorable degradation and biological performances, how each of these coating systems has performed. Finally the mechanism for the discrepancy between these coatings is proposed. The results indicate that the micro-arc oxidation coating on Mg-Sr alloy exhibited the best corrosion resistance and cell response among these coatings, and is proved to be more suitable for the orthopedic application. - Highlights: • The MAO, PED and Sr-P coating were fabricated on Mg-Sr alloy to evaluate the degradation. • The MAO coating showed the greatest degradation performance among these three coatings. • The PED coating exhibited worse corrosion resistance even than Mg-Sr substrate. • The value of cell proliferation and ALP activity were ranked in the following order: MAO > Sr-P > PED.

  17. Comparison study of different coatings on degradation performance and cell response of Mg-Sr alloy

    International Nuclear Information System (INIS)

    Shangguan, Yongming; Sun, Lina; Wan, Peng; Tan, Lili; Wang, Chengyue; Fan, Xinmin; Qin, Ling; Yang, Ke

    2016-01-01

    To solve the problem of rapid degradation for magnesium-based implants, surface modification especially coating method is widely studied and showed the great potential for clinical application. However, as concerned to the further application and medical translation for biodegradable magnesium alloys, there are still lack of data and comparisons among different coatings on their degradation and biological properties. This work studied three commonly used coatings on Mg-Sr alloy, including micro-arc oxidation coating, electrodeposition coating and chemical conversion coating, and compared these coatings for requirements of favorable degradation and biological performances, how each of these coating systems has performed. Finally the mechanism for the discrepancy between these coatings is proposed. The results indicate that the micro-arc oxidation coating on Mg-Sr alloy exhibited the best corrosion resistance and cell response among these coatings, and is proved to be more suitable for the orthopedic application. - Highlights: • The MAO, PED and Sr-P coating were fabricated on Mg-Sr alloy to evaluate the degradation. • The MAO coating showed the greatest degradation performance among these three coatings. • The PED coating exhibited worse corrosion resistance even than Mg-Sr substrate. • The value of cell proliferation and ALP activity were ranked in the following order: MAO > Sr-P > PED.

  18. Pilot demonstration of cerium oxide coated anodes

    Energy Technology Data Exchange (ETDEWEB)

    Gregg, J.S.; Frederick, M.S.; Shingler, M.J.; Alcorn, T.R.

    1992-10-01

    Cu cermet anodes were tested for 213 to 614 hours with an in-situ deposited CEROX coating in a pilot cell operated by Reynolds Manufacturing Technology Laboratory. At high bath ratio ([approximately]1.5) and low current density (0.5 A/cm[sup 2]), a [ge]1 mm thick dense CEROX coating was deposited on the anodes. At lower bath ratios and higher current density, the CEROX coating was thinner and less dense, but no change in corrosion rate was noted. Regions of low current density on the anodes and sides adjacent to the carbon anode sometimes had thin or absent CEROX coatings. Problems with cracking and oxidation of the cermet substrates led to higher corrosion rates in a pilot cell than would be anticipated from lab scale results.

  19. Experimentally Studied Thermal Piston-head State of the Internal-Combustion Engine with a Thermal Layer Formed by Micro-Arc Oxidation Method

    Directory of Open Access Journals (Sweden)

    N. Yu. Dudareva

    2015-01-01

    Full Text Available The paper presents results of experimental study to show the efficiency of reducing thermal tension of internal combustion engine (ICE pistons through forming a thermal barrier coating on the piston-head. During the engine operation the piston is under the most thermal stress. High temperatures in the combustion chamber may lead to the piston-head burnout and destruction and engine failure.Micro-arc oxidation (MAO method was selected as the technology to create a thermal barrier coating. MAO technology allows us to form the ceramic coating with a thickness of 400μm on the surface of aluminum alloy, which have high heat resistance, and have good adhesion to the substrate even under thermal cycling stresses.Deliverables of MAO method used to protect pistons described in the scientific literature are insufficient, as they are either calculated or experimentally obtained at the special plants (units, which do not reproduce piston operation in a real engine. This work aims to fill this gap. The aim of the work is an experimental study of the thermal protective ability of MAO-layer formed on the piston-head with simulation of thermal processes of the real engine.The tests were performed on a specially designed and manufactured stand free of motor, which reproduces operation conditions maximum close to those of the real engine. The piston is heated by a fire source - gas burner with isobutene balloon, cooling is carried out by the water circulation system through the water-cooling jacket.Tests have been conducted to compare the thermal state of the regular engine piston without thermal protection and the piston with a heat layer formed on the piston-head by MAO method. The study findings show that the thermal protective MAO-layer with thickness of 100μm allows us to reduce thermal tension of piston on average by 8,5 %. Thus at high temperatures there is the most pronounced effect that is important for the uprated engines.The obtained findings can

  20. The oxidation behaviour of sprayed MCrAlY coatings

    International Nuclear Information System (INIS)

    Brandl, W.; Toma, D.; Krueger, J.

    1996-01-01

    Turbine blades are protected against high temperature oxidation by thermal barrier coating (TBC) systems, which consist of a ceramic top coating (ZrO 2 /Y 2 O 3 ) and a metal bond coating (MCrAlY, M = Ni, Co). At high temperatures and under oxidative conditions, between the MCrAlY and the ceramic top coating an oxide scale is formed, which protects the metal against further oxidation. The oxidation behaviour of the thermally sprayed MCrAlY is influenced by the coating process and the composition of the metal alloys. This work is concerned with the isothermal oxidation behaviour of vacuum plasma sprayed (VPS) MCrAlY coatings. The MCrAlY powders used have different aluminium contents: 8 and 12 wt.%. The MCrAlY specimens are oxidized at 1050 C in air as well as in helium with 1% O 2 and the oxidation kinetics are determined thermogravimetrically. The microstructure, morphology and thickness of the oxide scales formed are characterized by metallography, SEM, TEM and XRD. After short time oxidation (6 h) θ-Al 2 O 3 is the main constituent of the oxide scale. Exposure times of 500 h and more lead to oxide scales consisting of α-Al 2 O 3 . Moreover, after a long time oxidation, Cr 2 O 3 and CoO (CoO on the coatings with 8 wt.% Al) are formed. The oxidation rates of both MCrAlY coatings are the same. Beneath the oxide scale an Al-depleted zone is formed and this zone is considerably thicker within the coating with 8 wt.% Al, because the amount of β-NiAl phase in this coating is lower than that in the coating with 12 wt.% Al. The oxide scale formed in He-1% O 2 consists of α-Al 2 O 3 and Cr 2 O 3 on both MCrAlY coatings. (orig.)

  1. High temperature oxidation of slurry coated interconnect alloys

    DEFF Research Database (Denmark)

    Persson, Åsa Helen

    with this interaction mechanism mainly give a geometrical protection against oxidation by blocking oxygen access at the surface of the oxide scale. The protecting effect is gradually reduced as the oxide scale grows thicker than the diameter of the coating particles. Interaction mechanism B entails a chemical reaction...... scale. The incorporated coating particles create a geometrical protection against oxidation that should not loose their effect after the oxide scale has grown thicker than the diameter of the coating particles. The two single layer coatings consisting of (La0.85Sr0.15)MnO3 + 10% excess Mn, LSM, and (La0......In this project, high temperature oxidation experiments of slurry coated ferritic alloys in atmospheres similar to the atmosphere found at the cathode in an SOFC were conducted. From the observations possible interaction mechanisms between the slurry coatings and the growing oxide scale...

  2. The interfacial chemistry of metallized, oxide coated, and nanocomposite coated polymer films

    Energy Technology Data Exchange (ETDEWEB)

    Barker, C.P. [Durham Univ. (United Kingdom). Dept. of Chemistry; Kochem, K.H. [HOECHST Aktiengesellschaft, Werk Kalle/Albert, Geschaftsbereich H, Rheingaustrasse 190-196, D-65174 Wiesbaden (Germany); Revell, K.M. [CAMVAC (Europe) Ltd., Burrell Way, Thetford, Norfolk IP24 3QY (United Kingdom); Kelly, R.S.A. [CAMVAC (Europe) Ltd., Burrell Way, Thetford, Norfolk IP24 3QY (United Kingdom); Badyal, J.P.S. [Durham Univ. (United Kingdom). Dept. of Chemistry

    1995-02-15

    Aluminium, aluminium oxide, and aluminium/aluminium oxide nanocomposite coated polymer substrates have been characterized by X-ray photoelectron spectroscopy, transmission electron microscopy, argon ion sputter depth profiling, and gas permeation measurements. A comparison of the similarities and differences between these coatings has provided a detailed insight into the physicochemical origins of gas barrier associated with metallized plastics. Keywords: Aluminium; Aluminium oxide; Coatings; X-ray photoelectron spectroscopy ((orig.))

  3. Influence of creep and cyclic oxidation in thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Seiler, Philipp; Baeker, Martin; Roesler, Joachim [Technische Univ. Braunschweig (Germany). Inst. fuer Werkstoffe

    2012-01-15

    The lifetime of thermal barrier coating systems is limited by cracks close to the interfaces, causing delamination. To study the failure mechanisms, a simplified model system is analysed which consists of a bond-coat bulk material, a thermally grown oxide, and an yttria-stabilised zirconia topcoat. The stresses in the model system are calculated using a finite element model which covers the simulation of full thermal cycles, creep in all layers, and the anisotropic oxidation during dwelling. Creep in the oxide and the thermal barrier coating is varied with the use of different creep parameter sets. The influence of creep in the bondcoat is analysed by using two different bond-coat materials: fast creeping Fecralloy and slow creeping oxide dispersion strengthened MA956. It is shown that creep in the bondcoat influences the lifetime of the coatings. Furthermore, a fast creeping thermally grown oxide benefits the lifetime of the coating system. (orig.)

  4. Influence of the reuse of the electrolytic solution on the properties of hydroxyapatite coatings produced by plasma electrolytic oxidation of grade 4 titanium

    Energy Technology Data Exchange (ETDEWEB)

    Antonio, Cesar A.; Rangel, Elidiane Cipriano; Cruz, Nilson Cristino, E-mail: cesar.augustoa@hotmail.com [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Sorocaba, SP (Brazil)

    2016-07-01

    Full text: Plasma electrolytic oxidation (PEO) is a process able to produce oxide coatings on light metals, such as Al, Ti, V, Mg, Ta and Nb. In this technique, the application of a voltage, in the range of hundreds of volts, between the sample and a cathode immersed in an electrolyte solution produces electrical fields intense enough to breakdown the insulating oxide layer on the sample surface giving rise to micro electric sparks[1]. These micro-arcs can locally melt the substrate alloying it with elements in the electrolyte solution [2]. In this work PEO has been used to produce coatings with high concentration of hydroxyapatite on Grade 4 titanium disks. The treatments were performed in a 1 liter stainless steel tank. The tank wall was used as the cathode and the coatings were produced during 120 s using calcium acetate and sodium glycerophosphate water solutions as electrolyte. The samples were biased with 480 V pulses with frequency and duty cycle of 100 Hz and 60%, respectively. Using profilometry, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction it has been evaluated the influence of the number of reuses of the solution on the coating properties. The coating produced contains around 85% of HA and it has not been observed any significant changes in their properties when the same solution was reused up to 5 times. [1] A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews, Surf. Coat. Technol. 130 (2000) 195 206. [2] C. A. Antonio, N. C. Cruz, et al. Materials Research. 17(6) 2014; 1427-1433. (author)

  5. Oxidation behaviour and electrical properties of cobalt/cerium oxide composite coatings for solid oxide fuel cell interconnects

    DEFF Research Database (Denmark)

    Harthøj, Anders; Holt, Tobias; Møller, Per

    2015-01-01

    This work evaluates the performance of cobalt/cerium oxide (Co/CeO2) composite coatings and pure Co coatings to be used for solid oxide fuel cell (SOFC) interconnects. The coatings are electroplated on the ferritic stainless steels Crofer 22 APU and Crofer 22H. Coated and uncoated samples...

  6. Effect of coating density on oxidation resistance and Cr vaporization from solid oxide fuel cell interconnects

    DEFF Research Database (Denmark)

    Talic, Belma; Falk-Windisch, Hannes; Venkatachalam, Vinothini

    2017-01-01

    •Protective action of dense and porous spinel coatings on Crofer 22 APU was compared. •Reduction and re-oxidation produces denser coatings than heat treating in air only. •Coating density has minor influence on oxidation resistance at 800 °C in air. •Dense coating resulted in three times lower Cr...... evaporation rate than porous coating....

  7. Oxide growth and damage evolution in thermal barrier coatings

    NARCIS (Netherlands)

    Hille, T.S.; Turteltaub, S.R.; Suiker, A.S.J.

    2011-01-01

    Cracking in thermal barrier coatings (TBC) is triggered by the development of a thermally-grown oxide (TGO) layer that develops during thermal cycling from the oxidation of aluminum present in the bond coat (BC). In the present communication a numerical model is presented that describes the

  8. Wettability and corrosion of alumina embedded nanocomposite MAO coating on nanocrystalline AZ31B magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Gheytani, M.; Aliofkhazraei, M., E-mail: maliofkh@gmail.com; Bagheri, H.R.; Masiha, H.R.; Rouhaghdam, A. Sabour

    2015-11-15

    In this paper, micro- and nanocrystalline AZ31B magnesium alloy were coated by micro-arc oxidation method. In order to fabricate nanocrystalline surface layer, surface mechanical attrition treatment was performed and nano-grains with average size of 5–10 nm were formed on the surface of the samples. Coating process was carried out at different conditions including two coating times and two types of electrolyte. Alumina nanoparticles were utilized as suspension in electrolyte to form nanocomposite coatings by micro-arc oxidation method. Potentiodynamic polarization, percentage of porosity, and wettability tests were performed to study various characteristics of the coated samples. The results of scanning electron microscope imply that samples coated in silicate-based electrolyte involve much lower surface porosity (∼25%). Besides, the results of wettability test indicated that the maximum surface tension with deionized water is for nanocrystalline sample. In this regard, the sample coated in silicate-based suspension was 4 times more hydrophilic than the microcrystalline sample. - Highlights: • MAO in phosphate electrolyte needs higher energy as compared to silicate electrolyte. • Less porosity and finer grain size on free surface of the silicate-based coatings. • Observed porosity from top surface of coating shows the effect of the final MAO sparks. • SMAT affects surface roughness and accelerates growth kinetics.

  9. Synthesis and characterization of dextran-coated iron oxide nanoparticles

    Science.gov (United States)

    Predescu, Andra Mihaela; Matei, Ecaterina; Berbecaru, Andrei Constantin; Pantilimon, Cristian; Drăgan, Claudia; Vidu, Ruxandra; Predescu, Cristian; Kuncser, Victor

    2018-03-01

    Synthesis and characterization of iron oxide nanoparticles coated with a large molar weight dextran for environmental applications are reported. The first experiments involved the synthesis of iron oxide nanoparticles which were coated with dextran at different concentrations. The synthesis was performed by a co-precipitation technique, while the coating of iron oxide nanoparticles was carried out in solution. The obtained nanoparticles were characterized by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction spectrometry, Fourier transform infrared spectroscopy and superconducting quantum interference device magnetometry. The results demonstrated a successful coating of iron oxide nanoparticles with large molar weight dextran, of which agglomeration tendency depended on the amount of dextran in the coating solution. SEM and TEM observations have shown that the iron oxide nanoparticles are of about 7 nm in size.

  10. Internal oxidation of laminated ternary Ru–Ta–Zr coatings

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yung-I, E-mail: yichen@mail.ntou.edu.tw; Lu, Tso-Shen

    2015-10-30

    Highlights: • Internal oxidation was observed in annealed and laminated Ru–Ta–Zr coatings. • The oxidized Ru–Ta–Zr coatings comprised three alternately stacked sublayers. • Correlated variations of O{sup 2-} and Zr{sup 4+} binding energies were verified in XPS spectra. - Abstract: Researchers have observed the internal oxidation phenomenon in binary alloy coatings when developing refractory alloy coatings for protective purposes by conducting annealing at high temperatures and in oxygen-containing atmospheres. The coatings were assembled using cyclical gradient concentration deposition during cosputtering by employing a substrate holder rotating at a slow speed. The internally oxidized zone demonstrated a laminated structure, comprising alternating oxygen-rich and oxygen-deficient layers stacked in a general orientation. In the current study, Ru–Ta–Zr coatings were prepared with various stacking sequences during cosputtering. The Ru–Ta–Zr coatings were annealed at 600 °C in an atmosphere continuously purged with 1% O{sub 2}–99% Ar mixed gas for 30 min. A transmission electron microscope was used to examine the periods of the laminated layers and crystallinity of the annealed coatings. Depth profiles produced using an Auger electron spectroscope and X-ray photoelectron spectroscope were used to certify the periodic variation of the related constituents and chemical states of the elements, respectively. The results indicate that the internally oxidized ternary coatings are stacked of Ru-, Ta{sub 2}O{sub 5}-, and ZrO{sub 2}-dominant sublayers and that the stacking sequences of the sublayers affect the crystalline structure of the coatings. Zr is oxidized preferentially in the Ru–Ta–Zr coatings, increasing the surface hardness of the oxidized coatings.

  11. Method of producing oxidation resistant coatings for molybdenum

    International Nuclear Information System (INIS)

    Timmons, G.A.

    1989-01-01

    A method is described for producing a molybdenum element having adherently bonded thereto a thermally self-healing plasma-sprayed coating consisting essentially of a composite of molybdenum and a refactory oxide material capable of reacting with molybdenum oxide under oxidizing conditions to form a substantially thermally stable refractory compound of molybdenum, the method comprising plasma-spraying a coating formed by the step-wise application of a plurality of interbonded plasma-sprayed layers of a composite of molybdenum/refractory oxide material produced from a particulate mixture thereof. The coating comprises a first layer of molybdenum plasma-sprayed bonded to the substrate of the molybdenum element, a second layer of plasma-sprayed mixture of particulate molybdenum/refactory oxide consisting essentially of predominantly molybdenum bonded to the first layer, and succeeding layers of this mixture. The next step is heating the coated molybdenum element under oxidizing conditions to an elevated temperature sufficient to cause oxygen to diffuse into the surface of the multi-layered coating to react with dispersed molybdenum therein to form molybdenum oxide and effect healing of the coating by reaction of the molybdenum oxide with the contained refractory oxide and thereby protect the substrate of the molybdenum element against oxidation

  12. Multilayer oxidation resistant coating for SiC coated carbon/carbon composites at high temperature

    International Nuclear Information System (INIS)

    Li Hejun; Jiao Gengsheng; Li Kezhi; Wang Chuang

    2008-01-01

    To prevent carbon/carbon (C/C) composites from oxidation, a multilayer coating based on molybdenum disilicide and titanium disilicide was formed using a two-step pack cementation technique in argon atmosphere. XRD and SEM analysis showed that the internal coating was a bond SiC layer that acts as a buffer layer, and that the external multilayer coating formed in the two-step pack cementation was composed of two MoSi 2 -TiSi 2 -SiC layers. This coating, which is characterized by excellent thermal shock resistance, could effectively protect the composites from exposure to an oxidizing atmosphere at 1773 K for 79 h. The oxidation of the coated C/C composites was primarily due to the reaction of C/C matrix and oxygen diffusing through the penetrable cracks in the coating

  13. Thermal oxidation of tungsten-based sputtered coatings

    International Nuclear Information System (INIS)

    Louro, C.; Cavaleiro, A.

    1997-01-01

    The effect of the addition of nickel, titanium, and nitrogen on the air oxidation behavior of W-based sputtered coatings in the temperature range 600 to 800 C was studied. In some cases these additions significantly improved the oxidation resistance of the tungsten coatings. As reported for bulk tungsten, all the coatings studied were oxidized by layers following a parabolic law. Besides WO 3 and WO x phases detected in all the oxidized coatings, TiO 2 and NiWO 4 were also detected for W-Ti and W-Ni films, respectively. WO x was present as an inner protective compact layer covered by the porous WO 3 oxide. The best oxidation resistance was found for W-Ti and W-N-Ni coatings which also presented the highest activation energies (E a = 234 and 218 kJ/mol, respectively, as opposed to E a ∼ 188 kJ/mol for the other coatings). These lower oxidation weight gains were attributed to the greater difficulty of the inward diffusion of oxygen ions for W-Ti films, owing to the formation of fine particles of TiO 2 , and the formation of the external, more protective layer of NiWO 4 for W-N-Ni coatings

  14. Oxidation of iridium coating on rhenium coated graphite at elevated temperature in stagnated air

    International Nuclear Information System (INIS)

    Huang, Yongle; Bai, Shuxin; Zhang, Hong; Ye, Yicong

    2015-01-01

    Highlights: • Continuous and dense Ir coatings were prepared on graphite by electrodepostion. • The purification of the as-prepared Ir coating was higher than about 99.98%. • The Ir/Re/C specimen kept integrity without significant failures after oxidation. • The average oxidation rate of the Ir coating was about 0.219 mg/(cm 2 min). • Penetrating holes at gains boundaries resulted in the failure of the Ir coating. - Abstract: Continuous and dense iridium coatings were prepared on the rhenium coated graphite specimens by electrodeposition. The iridium/rhenium coated graphite (Ir/Re/C) specimens were oxidized at elevated temperatures in stagnated air for 3600 s. The purification of the as-prepared Ir coating was higher than about 99.98% with the main impurity elements Si, Al, Fe and Ru. After oxidation, the Ir/Re/C specimens kept integrity without significant failures and the average oxidation rate was about 0.219 mg/(cm 2 min). Pores were found at the grain boundaries and concentrated to penetrating holes with the growth of Ir grains, which resulted in disastrous failures of the Ir coating

  15. Oxidation of iridium coating on rhenium coated graphite at elevated temperature in stagnated air

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yongle; Bai, Shuxin, E-mail: NUDT_MSE_501@163.com; Zhang, Hong; Ye, Yicong

    2015-02-15

    Highlights: • Continuous and dense Ir coatings were prepared on graphite by electrodepostion. • The purification of the as-prepared Ir coating was higher than about 99.98%. • The Ir/Re/C specimen kept integrity without significant failures after oxidation. • The average oxidation rate of the Ir coating was about 0.219 mg/(cm{sup 2} min). • Penetrating holes at gains boundaries resulted in the failure of the Ir coating. - Abstract: Continuous and dense iridium coatings were prepared on the rhenium coated graphite specimens by electrodeposition. The iridium/rhenium coated graphite (Ir/Re/C) specimens were oxidized at elevated temperatures in stagnated air for 3600 s. The purification of the as-prepared Ir coating was higher than about 99.98% with the main impurity elements Si, Al, Fe and Ru. After oxidation, the Ir/Re/C specimens kept integrity without significant failures and the average oxidation rate was about 0.219 mg/(cm{sup 2} min). Pores were found at the grain boundaries and concentrated to penetrating holes with the growth of Ir grains, which resulted in disastrous failures of the Ir coating.

  16. Coatings for Oxidation and Hot Corrosion Protection of Disk Alloys

    Science.gov (United States)

    Nesbitt, Jim; Gabb, Tim; Draper, Sue; Miller, Bob; Locci, Ivan; Sudbrack, Chantal

    2017-01-01

    Increasing temperatures in aero gas turbines is resulting in oxidation and hot corrosion attack of turbine disks. Since disks are sensitive to low cycle fatigue (LCF), any environmental attack, and especially hot corrosion pitting, can potentially seriously degrade the life of the disk. Application of metallic coatings are one means of protecting disk alloys from this environmental attack. However, simply the presence of a metallic coating, even without environmental exposure, can degrade the LCF life of a disk alloy. Therefore, coatings must be designed which are not only resistant to oxidation and corrosion attack, but must not significantly degrade the LCF life of the alloy. Three different Ni-Cr coating compositions (29, 35.5, 45wt. Cr) were applied at two thicknesses by Plasma Enhanced Magnetron Sputtering (PEMS) to two similar Ni-based disk alloys. One coating also received a thin ZrO2 overcoat. The coated samples were also given a short oxidation exposure in a low PO2 environment to encourage chromia scale formation. Without further environmental exposure, the LCF life of the coated samples, evaluated at 760C, was less than that of uncoated samples. Hence, application of the coating alone degraded the LCF life of the disk alloy. Since shot peening is commonly employed to improve LCF life, the effect of shot peening the coated and uncoated surface was also evaluated. For all cases, shot peening improved the LCF life of the coated samples. Coated and uncoated samples were shot peened and given environmental exposures consisting of 500 hrs of oxidation followed by 50 hrs of hot corrosion, both at 760C). The high-Cr coating showed the best LCF life after the environmental exposures. Results of the LCF testing and post-test characterization of the various coatings will be presented and future research directions discussed.

  17. Investigation of anodic oxide coatings on zirconium after heat treatment

    International Nuclear Information System (INIS)

    Sowa, Maciej; Dercz, Grzegorz; Suchanek, Katarzyna; Simka, Wojciech

    2015-01-01

    Highlights: • Oxide layers prepared via PEO of zirconium were subjected to heat treatment. • Surface characteristics were determined for the obtained oxide coatings. • Heat treatment led to the partial destruction of the anodic oxide layer. • Pitting corrosion resistance of zirconium was improved after the modification. - Abstract: Herein, results of heat treatment of zirconium anodised under plasma electrolytic oxidation (PEO) conditions at 500–800 °C are presented. The obtained oxide films were investigated by means of SEM, XRD and Raman spectroscopy. The corrosion resistance of the zirconium specimens was evaluated in Ringer's solution. A bilayer oxide coatings generated in the course of PEO of zirconium were not observed after the heat treatment. The resulting oxide layers contained a new sublayer located at the metal/oxide interface is suggested to originate from the thermal oxidation of zirconium. The corrosion resistance of the anodised metal was improved after the heat treatment

  18. Surface oxidation phenomena of boride coatings grown on iron

    International Nuclear Information System (INIS)

    Carbucicchio, M.; Palombarini, G.; Sambogna, G.

    1992-01-01

    Very hard boride coatings are grown on various metals using thermochemical as well as chemical vapour deposition techniques. In this way many surface properties, and in particular the wear resistance, can be considerably improved. Usually, also the corrosion behaviour of the treated components is important. In particular, oxidizing atmospheres are involved in many applications where, therefore, coating-environment interactions can play a relevant role. In a previous work, the early stages of the oxidation of iron borides were studied by treating single phase compacted powders in flowing oxygen at low temperatures (300-450deg C). In the present paper, the attention is addressed to the oxidation of both single phase and polyphase boride coatings thermochemically grown on iron. The single phase boride coatings were constituted by Fe 2 B, while the polyphase coatings were constituted by an inner Fe 2 B layer and an outer FeB-base layer. All the boride layers displayed strong (002) preferred crystallographic orientations. (orig.)

  19. Interactions between the glass fiber coating and oxidized carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Ku-Herrera, J.J., E-mail: jesuskuh@live.com.mx [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburná de Hidalgo. C.P., 97200 Mérida, Yucatán (Mexico); Avilés, F., E-mail: faviles@cicy.mx [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburná de Hidalgo. C.P., 97200 Mérida, Yucatán (Mexico); Nistal, A. [Instituto de Cerámica y Vidrio (ICV-CSIC), Kelsen 5, 28049 Madrid (Spain); Cauich-Rodríguez, J.V. [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburná de Hidalgo. C.P., 97200 Mérida, Yucatán (Mexico); Rubio, F.; Rubio, J. [Instituto de Cerámica y Vidrio (ICV-CSIC), Kelsen 5, 28049 Madrid (Spain); Bartolo-Pérez, P. [Departamento de Física Aplicada, Cinvestav, Unidad Mérida, C.P., 97310 Mérida, Yucatán (Mexico)

    2015-03-01

    Graphical abstract: - Highlights: • Oxidized multiwall carbon nanotubes (MWCNTs) were deposited onto E-glass fibers. • The role of the fiber coating on the deposition of MWCNTs on the fibers is studied. • A rather homogeneous deposition of MWCNTs is achieved if the coating is maintained. • Multiple oxygen-containing groups were found in the analysis of the fiber coating. • Evidence of chemical interaction between MWCNTs and the fiber coating was found. - Abstract: Chemically oxidized multiwall carbon nanotubes (MWCNTs) were deposited onto commercial E-glass fibers using a dipping procedure assisted by ultrasonic dispersion. In order to investigate the role of the fiber coating (known as “sizing”), MWCNTs were deposited on the surface of as-received E-glass fibers preserving the proprietary coating as well as onto glass fibers which had the coating deliberately removed. Scanning electron microscopy and Raman spectroscopy were used to assess the distribution of MWCNTs onto the fibers. A rather homogeneous coverage with high density of MWCNTs onto the glass fibers is achieved when the fiber coating is maintained. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and nuclear magnetic resonance (NMR) analyses of the chemical composition of the glass fiber coating suggest that such coating is a complex mixture with multiple oxygen-containing functional groups such as hydroxyl, carbonyl and epoxy. FTIR and XPS of MWCNTs over the glass fibers and of a mixture of MWCNTs and fiber coating provided evidence that the hydroxyl and carboxyl groups of the oxidized MWCNTs react with the oxygen-containing functional groups of the glass fiber coating, forming hydrogen bonding and through epoxy ring opening. Hydrogen bonding and ester formation between the functional groups of the MWCNTs and the silane contained in the coating are also possible.

  20. Interactions between the glass fiber coating and oxidized carbon nanotubes

    International Nuclear Information System (INIS)

    Ku-Herrera, J.J.; Avilés, F.; Nistal, A.; Cauich-Rodríguez, J.V.; Rubio, F.; Rubio, J.; Bartolo-Pérez, P.

    2015-01-01

    Graphical abstract: - Highlights: • Oxidized multiwall carbon nanotubes (MWCNTs) were deposited onto E-glass fibers. • The role of the fiber coating on the deposition of MWCNTs on the fibers is studied. • A rather homogeneous deposition of MWCNTs is achieved if the coating is maintained. • Multiple oxygen-containing groups were found in the analysis of the fiber coating. • Evidence of chemical interaction between MWCNTs and the fiber coating was found. - Abstract: Chemically oxidized multiwall carbon nanotubes (MWCNTs) were deposited onto commercial E-glass fibers using a dipping procedure assisted by ultrasonic dispersion. In order to investigate the role of the fiber coating (known as “sizing”), MWCNTs were deposited on the surface of as-received E-glass fibers preserving the proprietary coating as well as onto glass fibers which had the coating deliberately removed. Scanning electron microscopy and Raman spectroscopy were used to assess the distribution of MWCNTs onto the fibers. A rather homogeneous coverage with high density of MWCNTs onto the glass fibers is achieved when the fiber coating is maintained. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and nuclear magnetic resonance (NMR) analyses of the chemical composition of the glass fiber coating suggest that such coating is a complex mixture with multiple oxygen-containing functional groups such as hydroxyl, carbonyl and epoxy. FTIR and XPS of MWCNTs over the glass fibers and of a mixture of MWCNTs and fiber coating provided evidence that the hydroxyl and carboxyl groups of the oxidized MWCNTs react with the oxygen-containing functional groups of the glass fiber coating, forming hydrogen bonding and through epoxy ring opening. Hydrogen bonding and ester formation between the functional groups of the MWCNTs and the silane contained in the coating are also possible

  1. Mechanical Properties of Glass Surfaces Coated with Tin Oxide

    DEFF Research Database (Denmark)

    Swindlehurst, W. E.; Cantor, B.

    1978-01-01

    The effect of tin oxide coatings on the coefficient of friction and fracture strength of glass surfaces is studied. Experiments were performed partly on commercially treated glass bottles and partly on laboratory prepared microscope slides. Coatings were applied in the laboratory by decomposition...

  2. Sol-Gel Derived, Nanostructured Oxide Lubricant Coatings

    National Research Council Canada - National Science Library

    Taylor, Douglas

    2000-01-01

    In this program, we deposited oxide coatings of titanium and nickel by wet-chemical deposition methods, also referred to as sol-gel, which showed excellent tribological properties in previous investigations...

  3. Kinetics and mechanism of oxidation of carbidized electrolytic chromium coatings

    International Nuclear Information System (INIS)

    Arkharov, V.I.; Yar-Mukhamedov, Sh.Kh.

    1978-01-01

    Thermal stability carbidized electrolytic chromium coatings has been studied depending on the conditions of their formation; the specific features of the mechanism of oxidation at 1200 deg in an air atmosphere have been elucidated. It has been established that kinetics of high temperature oxidation of the coatings depends essentially on the conditions of their formation and on the composition of steel to which the coating is applied. It has been shown that two oxidation mechanisms are possible: by diffusion of the residual chromium through a carbide layer along the carbide grain boundaries outwards or, when there is no residual chromium, by chemical reaction of carbon combustion and oxidation of the liberated chromium. The comparison of oxidation kinetic curves of the samples of 38KhMYuA, 35KhGSA, and DI-22 steels with and without coating has shown that the coatings under study have a better protective effect on 38KhMYuA steel than on 35KhGSA, although without coating oxidability of the first steel is higher than that of the second

  4. Effect of coating parameters on the microstructure of cerium oxide conversion coatings

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Benedict Y.; Edington, Joe; O' Keefe, Matthew J

    2003-11-25

    The microstructure and morphology of cerium oxide conversion coatings prepared under different deposition conditions were characterized by transmission electron microscopy (TEM). The coatings were formed by a spontaneous reaction between a water-based solution containing CeCl{sub 3} and aluminum alloy 7075-T6 substrates. Microstructural characterization was performed to determine the crystallinity of the coatings and to obtain a better understanding of the deposition parameters on coating microstructure. The results of TEM imaging and electron diffraction analysis indicated that the as-deposited coating was composed of nanocrystalline particles of a previously unreported cerium compound. The particles of the coatings produced using glycerol as an additive were found to be much finer than those of the coatings prepared in the absence of glycerol. This indicates that glycerol may act as a grain refiner and/or growth inhibitor during coating deposition. After deposition, the coated panels were treated for 5 min in a phosphate sealing solution. The sealing treatment converted the as-deposited coating into hydrated cerium phosphate. Panels coated from solutions containing no glycerol followed by phosphate sealing performed poorly in salt fog tests. With glycerol addition, the corrosion resistance of the coatings that were phosphate sealed improved considerably, achieving an average passing rate of 85%.

  5. Effect of coating density on oxidation resistance and Cr vaporization from solid oxide fuel cell interconnects

    Science.gov (United States)

    Talic, Belma; Falk-Windisch, Hannes; Venkatachalam, Vinothini; Hendriksen, Peter Vang; Wiik, Kjell; Lein, Hilde Lea

    2017-06-01

    Manganese cobalt spinel oxides are promising materials for protective coatings for solid oxide fuel cell (SOFC) interconnects. To achieve high density such coatings are often sintered in a two-step procedure, involving heat treatment first in reducing and then in oxidizing atmospheres. Sintering the coating inside the SOFC stack during heating would reduce production costs, but may result in a lower coating density. The importance of coating density is here assessed by characterization of the oxidation kinetics and Cr evaporation of Crofer 22 APU with MnCo1.7Fe0.3O4 spinel coatings of different density. The coating density is shown to have minor influence on the long-term oxidation behavior in air at 800 °C, evaluated over 5000 h. Sintering the spinel coating in air at 900 °C, equivalent to an in-situ heat treatment, leads to an 88% reduction of the Cr evaporation rate of Crofer 22 APU in air-3% H2O at 800 °C. The air sintered spinel coating is initially highly porous, however, densifies with time in interaction with the alloy. A two-step reduction and re-oxidation heat treatment results in a denser coating, which reduces Cr evaporation by 97%.

  6. Biomimetic novel nanoporous niobium oxide coating for orthopaedic applications

    Science.gov (United States)

    Pauline, S. Anne; Rajendran, N.

    2014-01-01

    Niobium oxide was synthesized by sol-gel methodology and a crystalline, nanoporous and adherent coating of Nb2O5 was deposited on 316L SS using the spin coating technique and heat treatment. The synthesis conditions were optimized to obtain a nanoporous morphology. The coating was characterized using attenuated total reflectance-Infrared spectroscopy (ATR-IR), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX), atomic force microscopy (AFM) and transmission electron microscopy (TEM) and the formation of crystalline Nb2O5 coating with nanoporous morphology was confirmed. Mechanical studies confirmed that the coating has excellent adherence to the substrate and the hardness value of the coating was excellent. Contact angle analysis showed increased hydrophilicity for the coated substrate. In vitro bioactivity test confirmed that the Nb2O5 coating with nanoporous morphology facilitated the growth of hydroxyapatite (HAp). This was further confirmed by the solution analysis test where increased uptake of calcium and phosphorous ions from simulated body fluid (SBF) was observed. Electrochemical evaluation of the coating confirmed that the crystalline coating is insulative and protective in nature and offered excellent corrosion protection to 316L SS. Thus, this study confirmed that the nanoporous crystalline Nb2O5 coating conferred bioactivity and enhanced corrosion resistance on 316L SS.

  7. Biomimetic novel nanoporous niobium oxide coating for orthopaedic applications

    Energy Technology Data Exchange (ETDEWEB)

    Pauline, S. Anne; Rajendran, N., E-mail: nrajendran@annauniv.edu

    2014-01-30

    Niobium oxide was synthesized by sol–gel methodology and a crystalline, nanoporous and adherent coating of Nb{sub 2}O{sub 5} was deposited on 316L SS using the spin coating technique and heat treatment. The synthesis conditions were optimized to obtain a nanoporous morphology. The coating was characterized using attenuated total reflectance-Infrared spectroscopy (ATR-IR), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX), atomic force microscopy (AFM) and transmission electron microscopy (TEM) and the formation of crystalline Nb{sub 2}O{sub 5} coating with nanoporous morphology was confirmed. Mechanical studies confirmed that the coating has excellent adherence to the substrate and the hardness value of the coating was excellent. Contact angle analysis showed increased hydrophilicity for the coated substrate. In vitro bioactivity test confirmed that the Nb{sub 2}O{sub 5} coating with nanoporous morphology facilitated the growth of hydroxyapatite (HAp). This was further confirmed by the solution analysis test where increased uptake of calcium and phosphorous ions from simulated body fluid (SBF) was observed. Electrochemical evaluation of the coating confirmed that the crystalline coating is insulative and protective in nature and offered excellent corrosion protection to 316L SS. Thus, this study confirmed that the nanoporous crystalline Nb{sub 2}O{sub 5} coating conferred bioactivity and enhanced corrosion resistance on 316L SS.

  8. High temperature oxidation behavior of SiC coating in TRISO coated particles

    International Nuclear Information System (INIS)

    Liu, Rongzheng; Liu, Bing; Zhang, Kaihong; Liu, Malin; Shao, Youlin; Tang, Chunhe

    2014-01-01

    Highlights: • High temperature oxidation tests of SiC coating in TRISO particles were carried out. • The dynamic oxidation process was established. • Oxidation mechanisms were proposed. • The existence of silicon oxycarbides at the SiO 2 /SiC interface was demonstrated. • Carbon was detected at the interface at high temperatures and long oxidation time. - Abstract: High temperature oxidation behavior of SiC coatings in tristructural-isotropic (TRISO) coated particles is crucial to the in-pile safety of fuel particles for a high temperature gas cooled reactor (HTGR). The postulated accident condition of air ingress was taken into account in evaluating the reliability of the SiC layer. Oxidation tests of SiC coatings were carried out in the ranges of temperature between 800 and 1600 °C and time between 1 and 48 h in air atmosphere. Based on the microstructure evolution of the oxide layer, the mechanisms and kinetics of the oxidation process were proposed. The existence of silicon oxycarbides (SiO x C y ) at the SiO 2 /SiC interface was demonstrated by X-ray photospectroscopy (XPS) analysis. Carbon was detected by Raman spectroscopy at the interface under conditions of very high temperatures and long oxidation time. From oxidation kinetics calculation, activation energies were 145 kJ/mol and 352 kJ/mol for the temperature ranges of 1200–1500 °C and 1550–1600 °C, respectively

  9. Biological response of Sr-containing coating with various surface treatments on titanium substrate for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shih-Ping [Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan (China); Lee, Tzer-Min, E-mail: tmlee@mail.ncku.edu.tw [Institute of Oral Medicine, National Cheng Kung University, Tainan, Taiwan (China); School of Dentistry, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Lui, Truan-Sheng [Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan (China)

    2015-08-15

    Graphical abstract: - Highlights: • Sr-containing coating prepared by plasma spraying and micro-arc oxidation process, respectively. • MAO coating stimulated high ECM-like structures of cells on early stage. • Sr-containing specimens had high cell responses on late stage. • Sr-MAO coating is a desirable implant surface treatment for clinical applications. - Abstract: An implant requires a suitable surface to trigger osteointegration. The surface characteristics and chemical composition are important factors in this process. Plasma spraying and micro-arc oxidation can be used to fabricate rough and porous structures for medical applications. Strontium (Sr) has been shown to prevent osteoporosis in vitro and in vivo. However, few scientists have evaluated the biological response of Sr-containing coatings on different surface treatments. In this study, a sand-blasted (SB) surface (as the control), plasma-sprayed hydroxyapatite (HA) and Sr-substituted HA coatings (HAPS and SrHAPS, respectively), calcium phosphate and Sr-containing calcium phosphate micro-arc oxidation surface (CPM and SrCPM, respectively) were analyzed in terms of human osteoblastic cell (MG63) response. Sr was confirmed to be incorporated into the surface. SrHAPS and SrCPM specimens had higher cell responses than those of the HAPS and CPM groups, respectively. The cells cultured on SrCPM and SrHAPS specimens exhibited high proliferation and differentiation. However, CPM and SrCPM specimens stimulated more ECM-like structures than other specimens. The results show that Sr-containing coatings have good characteristics that enhance cell response. The SrCPM coating is a suitable implant surface treatment for clinical applications.

  10. Biological response of Sr-containing coating with various surface treatments on titanium substrate for medical applications

    International Nuclear Information System (INIS)

    Yang, Shih-Ping; Lee, Tzer-Min; Lui, Truan-Sheng

    2015-01-01

    Graphical abstract: - Highlights: • Sr-containing coating prepared by plasma spraying and micro-arc oxidation process, respectively. • MAO coating stimulated high ECM-like structures of cells on early stage. • Sr-containing specimens had high cell responses on late stage. • Sr-MAO coating is a desirable implant surface treatment for clinical applications. - Abstract: An implant requires a suitable surface to trigger osteointegration. The surface characteristics and chemical composition are important factors in this process. Plasma spraying and micro-arc oxidation can be used to fabricate rough and porous structures for medical applications. Strontium (Sr) has been shown to prevent osteoporosis in vitro and in vivo. However, few scientists have evaluated the biological response of Sr-containing coatings on different surface treatments. In this study, a sand-blasted (SB) surface (as the control), plasma-sprayed hydroxyapatite (HA) and Sr-substituted HA coatings (HAPS and SrHAPS, respectively), calcium phosphate and Sr-containing calcium phosphate micro-arc oxidation surface (CPM and SrCPM, respectively) were analyzed in terms of human osteoblastic cell (MG63) response. Sr was confirmed to be incorporated into the surface. SrHAPS and SrCPM specimens had higher cell responses than those of the HAPS and CPM groups, respectively. The cells cultured on SrCPM and SrHAPS specimens exhibited high proliferation and differentiation. However, CPM and SrCPM specimens stimulated more ECM-like structures than other specimens. The results show that Sr-containing coatings have good characteristics that enhance cell response. The SrCPM coating is a suitable implant surface treatment for clinical applications

  11. Microstructure and oxidation behaviour of aluminized coating of inconel 625

    International Nuclear Information System (INIS)

    Khalid, F.A.; Hussain, N.; Shahid, K.A.; Rehman, S.; Qureshi, A.H.; Khan, I.H.

    1999-01-01

    Microstructural and oxidation characteristics of aluminized coated Inconel 625 have been examined using scanning electron microscopy (SEM) and fine-probe spot and linescan EDS microanalysis techniques. The formation of slowly growing adherent metallic coatings is essential for protection against the severe environments. Aluminising of the superalloy samples was carried out by pack cementation process at 900 deg. C. in an argon atmosphere. The samples were subsequently oxidized in air at various temperatures to examine performance of the pack aluminized coated alloy. The microstructural changes that occurred in the aluminized layer at various exposure temperature and time were examined to study the oxidation behavior and formation of different phases in the aluminized coating deposited on Inconel 625. (author)

  12. Wire winding increases lifetime of oxide coated cathodes

    Science.gov (United States)

    Kerslake, W.; Vargo, D.

    1965-01-01

    Refractory-metal heater base wound with a thin refractory metal wire increases the longevity of oxide-coated cathodes. The wire-wound unit is impregnated with the required thickness of metal oxide. This cathode is useful in magnetohydrodynamic systems and in electron tubes.

  13. Antibacterial activity of zinc oxide-coated nanoporous alumina

    Energy Technology Data Exchange (ETDEWEB)

    Skoog, S.A. [Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Box 7115, Raleigh, NC 27695-7115 (United States); Bayati, M.R. [Department of Materials Science and Engineering, North Carolina State University, Box 7907, Raleigh, NC 27695-7907 (United States); Petrochenko, P.E. [Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Box 7115, Raleigh, NC 27695-7115 (United States); Division of Biology, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993 (United States); Stafslien, S.; Daniels, J.; Cilz, N. [Center for Nanoscale Science and Engineering, North Dakota State University, 1805 Research Park Drive, Fargo, ND 58102 (United States); Comstock, D.J.; Elam, J.W. [Energy Systems Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Narayan, R.J., E-mail: roger_narayan@msn.com [Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Box 7115, Raleigh, NC 27695-7115 (United States); Department of Materials Science and Engineering, North Carolina State University, Box 7907, Raleigh, NC 27695-7907 (United States)

    2012-07-25

    Highlights: Black-Right-Pointing-Pointer Atomic layer deposition was used to deposit ZnO on nanoporous alumina membranes. Black-Right-Pointing-Pointer Scanning electron microscopy showed continuous coatings of zinc oxide nanocrystals. Black-Right-Pointing-Pointer Activity against B. subtilis, E. coli, S. aureus, and S. epidermidis was shown. - Abstract: Nanoporous alumina membranes, also known as anodized aluminum oxide membranes, are being investigated for use in treatment of burn injuries and other skin wounds. In this study, atomic layer deposition was used for coating the surfaces of nanoporous alumina membranes with zinc oxide. Agar diffusion assays were used to show activity of zinc oxide-coated nanoporous alumina membranes against several bacteria found on the skin surface, including Bacillus subtilis, Escherichia coli, Staphylococcus aureus, and Staphylococcus epidermidis. On the other hand, zinc oxide-coated nanoporous alumina membranes did not show activity against Pseudomonas aeruginosa, Enterococcus faecalis, and Candida albicans. These results suggest that zinc oxide-coated nanoporous alumina membranes have activity against some Gram-positive and Gram-negative bacteria that are associated with skin colonization and skin infection.

  14. Oxidation behavior of Ru–Al multilayer coatings

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yung-I, E-mail: yichen@mail.ntou.edu.tw; Zheng, Zhi-Ting; Kai, Wu; Huang, Yu-Ren

    2017-06-01

    Highlights: • Ru{sub 0.63}Al{sub 0.37} multilayer coatings were fabricated using cosputtering. • Oxidation behavior of Ru{sub 0.63}Al{sub 0.37} coatings in 1% O{sub 2}–99% Ar was studied. • Internal oxidation of Ru{sub 0.63}Al{sub 0.37} coatings at 400–600 °C was multi stage parabolic. • External oxidation of Ru{sub 0.63}Al{sub 0.37} was conducted after annealing at 700–800 °C. - Abstract: Ru{sub 0.63}Al{sub 0.37} coatings were deposited through a cyclical gradient concentration deposition at 400 °C with a substrate-holder rotation speed of 1 rpm by direct current magnetron cosputtering. Scanning electron microscopy revealed that the as-deposited coatings exhibited a multilayer structure along with the columnar structure. The oxidation behavior of the Ru{sub 0.63}Al{sub 0.37} coatings was examined through X-ray diffraction, Auger electron spectroscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. Oxidation kinetics was measured using a thermogravimetric analyzer. Internal oxidation was observed for Ru{sub 0.63}Al{sub 0.37} coatings annealed in a 1% O{sub 2}–99% Ar atmosphere at 400–600 °C accompanied with activation energies of 72–84 kJ/mol. By contrast, external oxidation was observed after annealing at 700–800 °C, resulting in the formation of a continuous alumina scale consisting of crystalline δ-Al{sub 2}O{sub 3} domains, which can be attributable to the outward diffusion of Al.

  15. Laminated structure in internally oxidized Ru-Ta coatings

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yung-I, E-mail: yichen@mail.ntou.edu.tw

    2012-12-01

    During the development of refractory alloy coatings for protective purposes at high temperature under oxygen-containing atmospheres, previous studies noted and examined the internal oxidation phenomenon for Mo-Ru and Ru-Ta coatings. The internally oxidized zone shows a laminated structure, consisting of alternating oxygen-rich and deficient layers stacked with a general orientation. Previous studies proposed a forming mechanism. To investigate in detail, Ru-Ta coatings were prepared with various rotating speeds of a substrate-holder. The coatings were annealed at 600 Degree-Sign C in an atmosphere continuously purged with 1% O{sub 2}-99% Ar mixed gas for 30 min. Transmission electron microscopy was used to examine the laminated-layer periods. Auger electron spectroscopy depth profiles certified the periodical variation of the related constituents. X-ray photoelectron spectroscopy proved the valence variation of Ta in the near surface, accompanied by the introduction of oxygen ions. The inward diffusion of oxygen was dominated by lattice diffusion. - Highlights: Black-Right-Pointing-Pointer Laminated Ru-Ta coatings consisted of a cyclical gradient concentration. Black-Right-Pointing-Pointer The as-deposited coatings showed a laminated structure with a period of 4-34 nm. Black-Right-Pointing-Pointer Internal oxidation of Ru-Ta coatings executed after annealing in 1% O{sub 2}-Ar atmosphere. Black-Right-Pointing-Pointer Oxygen inward diffusion was dominated by lattice diffusion.

  16. Oxide Dispersion Strengthened Iron Aluminide by CVD Coated Powders

    Energy Technology Data Exchange (ETDEWEB)

    Asit Biswas Andrew J. Sherman

    2006-09-25

    This I &I Category2 program developed chemical vapor deposition (CVD) of iron, aluminum and aluminum oxide coated iron powders and the availability of high temperature oxidation, corrosion and erosion resistant coating for future power generation equipment and can be used for retrofitting existing fossil-fired power plant equipment. This coating will provide enhanced life and performance of Coal-Fired Boilers components such as fire side corrosion on the outer diameter (OD) of the water wall and superheater tubing as well as on the inner diameter (ID) and OD of larger diameter headers. The program also developed a manufacturing route for readily available thermal spray powders for iron aluminide coating and fabrication of net shape component by powder metallurgy route using this CVD coated powders. This coating can also be applid on jet engine compressor blade and housing, industrial heat treating furnace fixtures, magnetic electronic parts, heating element, piping and tubing for fossil energy application and automotive application, chemical processing equipment , heat exchanger, and structural member of aircraft. The program also resulted in developing a new fabrication route of thermal spray coating and oxide dispersion strengthened (ODS) iron aluminide composites enabling more precise control over material microstructures.

  17. Spin coated versus dip coated electrochromic tungsten oxide films: Structure, morphology, optical and electrochemical properties

    International Nuclear Information System (INIS)

    Deepa, M.; Saxena, T.K.; Singh, D.P.; Sood, K.N.; Agnihotry, S.A.

    2006-01-01

    A sol-gel derived acetylated peroxotungstic acid sol encompassing 4 wt.% of oxalic acid dihydrate (OAD) has been employed for the deposition of tungsten oxide (WO 3 ) films by spin coating and dip coating techniques, in view of smart window applications. The morphological and structural evolution of the as-deposited spin and dip coated films as a function of annealing temperature (250 and 500 o C) has been examined and compared by Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and X-ray diffraction (XRD). A conspicuous feature of the dip coated film (annealed at 250 o C) is that its electrochromic and electrochemical properties ameliorate with cycling without degradation in contrast to the spin coated film for which these properties deteriorate under repetitive cycling. A comparative study of spin and dip coated nanostructured thin films (annealed at 250 o C) revealed a superior performance for the cycled dip coated film in terms of higher transmission modulation and coloration efficiency in solar and photopic regions, faster switching speed, higher electrochemical activity as well as charge storage capacity. While the dip coated film could endure 2500 color-bleach cycles, the spin coated film could sustain only a 1000 cycles. The better cycling stability of the dip coated film which is a repercussion of a balance between optimal water content, porosity and grain size hints at its potential for electrochromic window applications

  18. Study of Plasma Electrolytic Oxidation Coatings on Aluminum Composites

    Directory of Open Access Journals (Sweden)

    Leonid Agureev

    2018-06-01

    Full Text Available Coatings, with a thickness of up to 75 µm, were formed by plasma electrolytic oxidation (PEO under the alternating current electrical mode in a silicate-alkaline electrolyte on aluminum composites without additives and alloyed with copper (1–4.5%. The coatings’ structure was analyzed by scanning electron microscopy, X-ray microanalysis, X-ray photoelectron spectroscopy, nuclear backscattering spectrometry, and XRD analysis. The coatings formed for 60 min were characterized by excessive aluminum content and the presence of low-temperature modifications of alumina γ-Al2O3 and η-Al2O3. The coatings formed for 180 min additionally contained high-temperature corundum α-Al2O3, and aluminum inclusions were absent. The electrochemical behavior of coated composites and uncoated ones in 3% NaCl was studied. Alloyage of aluminum composites with copper increased the corrosion current density. Plasma electrolytic oxidation reduced it several times.

  19. Study of comportment of trioctylphosphine oxide by coat slight chromatography

    International Nuclear Information System (INIS)

    Meddour, Laaldja; Azzouz Abdelkrim

    1996-04-01

    The synthesis and characterisation process of the extractant agent 'Trioctylphosphine oxide' (TOPO) are not very developped in the literature. However, in order to identify this agent (TOPO) in its synthesis process, we attempt several analysis methods. The coat slight chromatography proves the simple and accessible method, that explains the choice of this study. In the present work, we have analysed the TOPO by coat slight chromatography with the intention of finding a better solvent

  20. Oxidation resistance coating for niobium base structural composites

    International Nuclear Information System (INIS)

    Tabaru, T.; Shobu, K.; Kim, J.H.; Hirai, H.; Hanada, S.

    2003-01-01

    Oxidation behavior of Al-rich Mo(Si,Al) 2 base alloys, which is a candidate material for the oxidation resistance coating on Nb base structural composites, were investigated by thermogravimetry. The Mo(Si,Al) 2 base alloys containing Mo 5 (Si,Al) 3 up to about 10 vol% exhibits excellent oxidation resistance at temperatures ranging from 780 to 1580 K, particularly at 1580 K due to continuous Al 2 O 3 layer development. To evaluate the applicability of the Mo(Si,Al) 2 base coating, plasma spraying on Nb base composites were undertaken. However, interface reaction layer was found to form during the following heat treatment. Preparation of Mo(Si,Al) 2 /Al 2 O 3 /Nb layered structures via powder metallurgical process was attempted to preclude diffusion reaction between coating and substrate. (orig.)

  1. performance calculations of gadolinium oxide and boron nitride coated fuel

    International Nuclear Information System (INIS)

    Tanker, E.; Uslu, I.; Disbudak, H.; Guenduez, G.

    1997-01-01

    A comparative study was performed on the behaviour of natural uranium dioxide-gadolinium oxide mixture fuel and boron nitride coated low enriched fuel in a pressurized water reactor. A fuel element containing one burnable poison fuel pins was modeled with the computer code WIMS, and burn-up dependent critically, fissile isotope inventory and two dimensional power distribution were obtained. Calculations were performed for burnable poison fuels containing 5% and 10% gadolinium oxide and for those coated with 1μ,5μ and 10μ of boron nitride. Boron nitride coating was found superior to gadolinium oxide on account of its smoother criticality curve, lower power peaks and insignificant change in fissile isotope content

  2. Method of forming oxide coatings. [for solar collector heating panels

    Science.gov (United States)

    Mcdonald, G. E. (Inventor)

    1983-01-01

    This invention is concerned with an improved plating process for covering a substrate with a black metal oxide film. The invention is particularly directed to making a heating panel for a solar collector. A compound is electrodeposited from an aqueous solution containing cobalt metal salts onto a metal substrate. This compound is converted during plating into a black, highly absorbing oxide coating which contains hydrated oxides. This is achieved by the inclusion of an oxidizing agent in the plating bath. The inclusion of an oxidizing agent in the plating bath is contrary to standard electroplating practice. The hydrated oxides are converted to oxides by treatment in a hot bath, such as boiling water. An oxidizing agent may be added to the hot liquid treating bath.

  3. Oxidation Behavior of FeCrAl -coated Zirconium Cladding prepared by Laser Coating

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Il-Hyun; Kim, Hyun-Gil; Choi, Byung-Kwan; Park, Jeong-Yong; Koo, Yang-Hyun; Kim, Jin-Seon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    From the recent research trends, the ATF cladding concepts for enhanced accident tolerance are divided as follows: Mo-Zr cladding to increase the high temperature strength, cladding coating to increase the high temperature oxidation resistance, FeCrAl alloy and SiC/SiCf material to increase the oxidation resistance and strength at high temperature. To commercialize the ATF cladding concepts, various factors are considered, such as safety under normal and accident conditions, economy for the fuel cycle, and developing development challenges, and schedule. From the proposed concepts, it is known that the cladding coating, FeCrAl alloy, and Zr-Mo claddings are considered as a near/mid-term application, whereas the SiC material is considered as a long-term application. Among them, the benefit of cladding coating on Zr-based alloys is the fuel cycle economy regarding the manufacturing, neutron cross section, and high tritium permeation characteristics. However, the challenge of cladding coating on Zr-based alloys is the lower oxidation resistance and mechanical strength at high-temperature than other concepts. Another important point is the adhesion property between the Zr-based alloy and coating materials. A laser coating method supplied with FeCrAl powders was developed to decrease the high-temperature oxidation rate in a steam environment through a systematic study for various coating parameters, and a FeCrAl-coated Zircaloy-4 cladding tube of 100 mm in length to the axial direction can be successfully manufactured.

  4. Gas phase deposition of oxide and metal-oxide coatings on fuel particles

    International Nuclear Information System (INIS)

    Patokin, A.P.; Khrebtov, V.L.; Shirokov, B.M.

    2008-01-01

    Production processes and properties of oxide (Al 2 O 3 , ZrO 2 ) and metal-oxide (Mo-Al 2 O 3 , Mo-ZrO 2 , W-Al 2 O 3 , W-ZrO 2 ) coatings on molybdenum substrates and uranium dioxide fuel particles were investigated. It is shown that the main factors that have an effect on the deposition rate, density, microstructure and other properties of coatings are the deposition temperature, the ratio of H 2 and CO 2 flow rates, the total reactor pressure and the ratio of partial pressures of corresponding metal chlorides during formation of metal-oxide coatings

  5. Applications of Oxide Coatings in Photovoltaic Devices

    Directory of Open Access Journals (Sweden)

    Sonya Calnan

    2014-03-01

    Full Text Available Metalloid and metal based oxides are an almost unavoidable component in the majority of solar cell technologies used at the time of writing this review. Numerous studies have shown increases of ≥1% absolute in solar cell efficiency by simply substituting a given layer in the material stack with an oxide. Depending on the stoichiometry and whether other elements are present, oxides can be used for the purpose of light management, passivation of electrical defects, photo-carrier generation, charge separation, and charge transport in a solar cell. In this review, the most commonly used oxides whose benefits for solar cells have been proven both in a laboratory and industrial environment are discussed. Additionally, developing trends in the use of oxides, as well as newer oxide materials, and deposition technologies for solar cells are reported.

  6. Structure and properties of combined coatings on C (graphite)/Al/Al2O3 base after Ti ion implantation with subsequent electron beam irradiation

    International Nuclear Information System (INIS)

    Pogrebnjak, A.D.; Pogrebnjak, N.A.; Gritsenko, B.P.; Kylyshkanov, M.K.; Ruzimov, Sh.M.

    2004-01-01

    Full text: The presented report deals with new results on deposition of combined coatings using Al metallization (by a plasma jet) and micro-arc (discharge) Al oxidation. After this, the coating was implanted by Ti ions with 5·10 I7 cm -2 dose (60 and 90 kV and about 200 μs duration). One series of samples with such coatings was irradiated using the accelerator Y-112 by an electron beam in melting regime (two regimes). Analysis of the structure and element composition was performed using SIMS, RBS, SEM with micro-analysis (WDS), XRD as well as measurements of microhardness, wear and adhesion. It had been demonstrated that the coating was able to sustain very high temperatures and oxidation medium. However, after electron beam irradiation temperature resistance decreased because the oxide coating was melted almost to the graphite surface. The work was funded by the Project of NANU 'Nanosystems, nanomaterials and nanotechnology'

  7. Corrosion evaluation of zirconium doped oxide coatings on aluminum formed by plasma electrolytic oxidation.

    Science.gov (United States)

    Bajat, Jelena; Mišković-Stanković, Vesna; Vasilić, Rastko; Stojadinović, Stevan

    2014-01-01

    The plasma electrolytic oxidation (PEO) of aluminum in sodium tungstate (Na(2)WO(4) · (2)H(2)O) and Na(2)WO(4) · (2)H(2)O doped with Zr was analyzed in order to obtain oxide coatings with improved corrosion resistance. The influence of current density in PEO process and anodization time was investigated, as well as the influence of Zr, with the aim to find out how they affect the chemical content, morphology, surface roughness, and corrosion stability of oxide coatings. It was shown that the presence of Zr increases the corrosion stability of oxide coatings for all investigated PEO times. Evolution of EIS spectra during the exposure to 3% NaCl, as a strong corrosive agent, indicated the highest corrosion stability for PEO coating formed on aluminum at 70 mA/cm(2) for 2 min in a zirconium containing electrolyte.

  8. Oxidation study of Cr-Ru hard coatings

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yung-I, E-mail: yichen@mail.ntou.edu.tw; Kuo, Yu-Chu; Chen, Sin-Min

    2012-01-01

    Cr-Ru alloy coatings with Cr content ranging from 47 to 83 at.% were deposited at 400 Degree-Sign C by direct current magnetron co-sputtering with a Ti interlayer on silicon substrates. With a total input power of 300 W, the Cr content in the Cr-Ru coatings increased linearly with the increasing input power of Cr. The intermetallic compound phase Cr{sub 2}Ru with columnar structure was identified for the as-deposited Cr{sub 56}Ru{sub 44} and Cr{sub 65}Ru{sub 35} coatings, resulting in an increase of hardness up to 15-16 GPa. To evaluate the performance of Cr-Ru coatings as a protective coating on glass molding dies, the annealing treatment was conducted at 600 Degree-Sign C in a 50 ppm O{sub 2}-N{sub 2} atmosphere. The outward diffusion and preferential oxidization of Cr in the Cr-Ru coatings resulted in the variations of the crystalline structure, chemical composition distribution, and surface hardness after annealing. X-ray diffraction and transmission electron microscopy (TEM) proved that an oxide scale consisting of Cr{sub 2}O{sub 3} formed on the free surface. Scanning electron microscopy and TEM observed the surface morphology and structural variation. The chemical composition depth profiles were analyzed by Auger electron microscopy, verifying the presence of a Cr-depleted zone beneath the oxide scale. The hardness of Cr{sub 56}Ru{sub 44} and Cr{sub 65}Ru{sub 35} coatings decreased to 11-12 GPa after annealing, accompanied by the replacement of the Cr{sub 2}Ru phase by the Ru phase. - Highlights: Black-Right-Pointing-Pointer We prepared crystalline Cr-Ru alloy coatings by direct current magnetron sputtering. Black-Right-Pointing-Pointer Cr-Ru coatings were annealed at 600 Degree-Sign C for 2 h in a 50 ppm O{sub 2}-N{sub 2} atmosphere. Black-Right-Pointing-Pointer Cr diffused outwardly and oxidized to form a stable and protective oxide scale. Black-Right-Pointing-Pointer The original columnar grains recrystallized to polycrystalline grains.

  9. Low-Cost Repairable Oxidation Resistant Coatings for Carbon-Carbon Composites via CCVD

    National Research Council Canada - National Science Library

    Hendrick, Michelle

    2000-01-01

    ...) thin film process to yield oxidation resistant coatings on carbon-carbon (C-C) composites. Work was on simple coatings at this preliminary stage of investigation, including silicon dioxide, platinum and aluminum oxide...

  10. Plasma Deposition of Oxide-Coated Cathodes

    National Research Council Canada - National Science Library

    Umstattd, Ryan

    1998-01-01

    ...; such cathodes may also have applicability for lower current density continuous wave devices. This novel approach to manufacturing an oxide cathode eliminates the binders that may subsequently (and unpredictably...

  11. Antimicrobial activity of tantalum oxide coatings decorated with Ag nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Huiliang, E-mail: hlc@mail.sic.ac.cn; Meng, Fanhao; Liu, Xuanyong, E-mail: xyliu@mail.sic.ac.cn [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China)

    2016-07-15

    Silver plasma immersion ion implantation was used to decorate silver nanoparticles (Ag NPs) on tantalum oxide (TO) coatings. The coatings acted against bacterial cells (Staphylococcus epidermidis) in the dark by disrupting their integrity. The action was independent of silver release and likely driven by the electron storage capability of the Schottky barriers established at the interfaces between Ag NPs and the TO support. Moreover, no apparent side effect on the adhesion and differentiation of rat bone mesenchymal stem cells was detected when using Ag NPs-modified TO coatings. These results demonstrate that decoration of tantalum oxide using Ag NPs could be a promising procedure for improving the antibacterial properties for orthopedic and dental implants.

  12. Oxidation resistant coatings for ceramic matrix composite components

    Energy Technology Data Exchange (ETDEWEB)

    Vaubert, V.M.; Stinton, D.P. [Oak Ridge National Lab., TN (United States); Hirschfeld, D.A. [New Mexico Inst. of Mining and Technology, Socorro, NM (United States). Dept. of Materials and Metallurgical Engineering

    1998-11-01

    Corrosion resistant Ca{sub 0.6}Mg{sub 0.4}Zr{sub 4}(PO{sub 4}){sub 6} (CMZP) and Ca{sub 0.5}Sr{sub 0.5}Zr{sub 4}(PO{sub 4}){sub 6} (CS-50) coatings for fiber-reinforced SiC-matrix composite heat exchanger tubes have been developed. Aqueous slurries of both oxides were prepared with high solids loading. One coating process consisted of dipping the samples in a slip. A tape casting process has also been created that produced relatively thin and dense coatings covering a large area. A processing technique was developed, utilizing a pre-sintering step, which produced coatings with minimal cracking.

  13. Selection of a Commercial Anode Oxide Coating for Electro-oxidation of Cyanide

    Directory of Open Access Journals (Sweden)

    Lanza Marcos Roberto V.

    2002-01-01

    Full Text Available This paper presents a study of the performance of two commercial dimensionally stable anode (DSA® oxide coatings in the electrochemical process for cyanide oxidation. The coatings studied were 70TiO2/30RuO2 and 55Ta2O5/45IrO2, on Ti substrate. The efficiency of both materials in the electro-oxidation of free cyanide was compared using linear voltammetry and electrolysis at constant potential. The 70TiO2/30RuO2 electrode shows a better performance in the electro-oxidation of free cyanide.

  14. Materials and coatings to resist high temperature oxidation and corrosion

    International Nuclear Information System (INIS)

    1977-01-01

    Object of the given papers are the oxidation and corrosion behaviour of several materials (such as stainless steels, iron-, or nickel-, or cobalt-base alloys, Si-based ceramics) used at high temperatures and various investigations on high-temperature protective coatings. (IHoe) [de

  15. Effect of Perovskite coating on oxide scale growth on Fe-22Cr

    DEFF Research Database (Denmark)

    Persson, Åsa; Mikkelsen, Lars; Hendriksen, Peter Vang

    2006-01-01

    A coating consisting of La0.85Sr0.15MnO3 (LSM) was deposited onto two Fe 22 wt % Cr alloys Crofer 22APU and Sandvik lC44Mo20. The evolution of the oxide layers developing underneath the coatings during oxidation was investigated. The effect of the LSM coating on oxidation rate and microstructure ...

  16. Corrosion study of the graphene oxide and reduced graphene oxide-based epoxy coatings

    Science.gov (United States)

    Ghauri, Faizan Ali; Raza, Mohsin Ali; Saad Baig, Muhammad; Ibrahim, Shoaib

    2017-12-01

    This work aims to determine the effect of graphene oxide (GO) and reduced graphene oxide (rGO) incorporation as filler on the corrosion protection ability of epoxy coatings in saline media. GO was derived from graphite powder following modified Hummers’ method, whereas rGO was obtained after reduction of GO with hydrazine solution. About 1 wt.% of GO or rGO were incorporated in epoxy resin by solution mixing process followed by ball milling. GO and rGO-based epoxy composite coatings were coated on mild steel substrates using film coater. The coated samples were characterized by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests after 1 and 24 h immersion in 3.5% NaCl. The results suggested that GO-based epoxy composite coatings showed high impedance and low corrosion rate.

  17. Improving the oxidation resistance and stability of Ag nanoparticles by coating with multilayered reduced graphene oxide

    Science.gov (United States)

    Li, Yahui; Zhang, Huayu; Wu, Bowen; Guo, Zhuo

    2017-12-01

    A kind of coating nanostructure, Ag nanoparticles coated with multilayered reduced graphene oxide (RGO), is fabricated by employing a three-step reduction method in an orderly manner, which is significantly different from the conventional structures that are simply depositing or doping with Ag nanoparticles on RGO via chemical reduction. The as-prepared nanostructure is investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected-area electronic diffraction (SEAD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). The results show that the obtained Ag/RGO nanostructure is observed to be a perfect coating structure with well dispersed Ag particles, which is responsible for the remarkable oxidation resistance. The results of XPS spectra indicate the content of metallic Ag is far greater than that of Ag oxides despite of prolonged exposure to the air, which fully demonstrate the excellent stability of thus coating nanostructure.

  18. In vivo study of nanostructured diopside (CaMgSi{sub 2}O{sub 6}) coating on magnesium alloy as biodegradable orthopedic implants

    Energy Technology Data Exchange (ETDEWEB)

    Razavi, Mehdi, E-mail: mrzavi2659@gmail.com [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Torabinejad Dental Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461 (Iran, Islamic Republic of); School of Materials Science and Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); School of Electrical and Computer Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); Fathi, Mohammadhossein [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Dental Materials Research Center, Isfahan University of Medical Sciences, Isfahan (Iran, Islamic Republic of); Savabi, Omid [Torabinejad Dental Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461 (Iran, Islamic Republic of); Razavi, Seyed Mohammad [School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461 (Iran, Islamic Republic of); Heidari, Fariba; Manshaei, Maziar [Torabinejad Dental Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461 (Iran, Islamic Republic of); Vashaee, Daryoosh [School of Electrical and Computer Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); Tayebi, Lobat, E-mail: lobat.tayebi@okstate.edu [School of Materials Science and Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078 (United States)

    2014-09-15

    Highlights: • In vitro biocompatibility of biodegradable Mg alloy was improved by diopside coating. • In vivo biocompatibility of biodegradable Mg alloy was improved by diopside coating. • Degradation behavior of biodegradable Mg alloy was improved by diopside coating. - Abstract: In order to improve the corrosion resistance and bioactivity of a biodegradable magnesium alloy, we have recently prepared a nanostructured diopside (CaMgSi{sub 2}O{sub 6}) coating on AZ91 magnesium alloy through a combined micro-arc oxidation (MAO) and electrophoretic deposition (EPD) method (reported elsewhere). In this work, we performed a detailed biocompatibility analysis of the implants made by this material and compared their performance with those of the uncoated and micro arc oxidized magnesium implants. The biocompatibility evaluation of samples was performed by culturing L-929 cells and in vivo animal study, including implantation of samples in greater trochanter of rabbits, radiography and histological examinations. The results from both the in vitro and in vivo studies indicated that the diopside/MAO coated magnesium implant significantly enhanced cell viability, biodegradation resistance and new bone formation compared with both the uncoated and the micro-arc oxidized magnesium implants. Our data provides an example of how the proper surface treatment of magnesium implants can overcome their drawbacks in terms of high degradation rate and gas bubble formation under physiological conditions.

  19. In vivo study of nanostructured diopside (CaMgSi2O6) coating on magnesium alloy as biodegradable orthopedic implants

    International Nuclear Information System (INIS)

    Razavi, Mehdi; Fathi, Mohammadhossein; Savabi, Omid; Razavi, Seyed Mohammad; Heidari, Fariba; Manshaei, Maziar; Vashaee, Daryoosh; Tayebi, Lobat

    2014-01-01

    Highlights: • In vitro biocompatibility of biodegradable Mg alloy was improved by diopside coating. • In vivo biocompatibility of biodegradable Mg alloy was improved by diopside coating. • Degradation behavior of biodegradable Mg alloy was improved by diopside coating. - Abstract: In order to improve the corrosion resistance and bioactivity of a biodegradable magnesium alloy, we have recently prepared a nanostructured diopside (CaMgSi 2 O 6 ) coating on AZ91 magnesium alloy through a combined micro-arc oxidation (MAO) and electrophoretic deposition (EPD) method (reported elsewhere). In this work, we performed a detailed biocompatibility analysis of the implants made by this material and compared their performance with those of the uncoated and micro arc oxidized magnesium implants. The biocompatibility evaluation of samples was performed by culturing L-929 cells and in vivo animal study, including implantation of samples in greater trochanter of rabbits, radiography and histological examinations. The results from both the in vitro and in vivo studies indicated that the diopside/MAO coated magnesium implant significantly enhanced cell viability, biodegradation resistance and new bone formation compared with both the uncoated and the micro-arc oxidized magnesium implants. Our data provides an example of how the proper surface treatment of magnesium implants can overcome their drawbacks in terms of high degradation rate and gas bubble formation under physiological conditions

  20. Oxidation and thermal shock behavior of thermal barrier coated 18/10CrNi alloy with coating modifications

    Energy Technology Data Exchange (ETDEWEB)

    Guergen, Selim [Vocational School of Transportation, Anadolu University, Eskisehir (Turkmenistan); Diltemiz, Seyid Fehmi [Turkish Air Force1st Air Supply and Maintenance Center Command, Eskisehir (Turkmenistan); Kushan, Melih Cemal [Dept. of Mechanical Engineering, Eskisehir Osmangazi University, Eskisehir (Turkmenistan)

    2017-01-15

    In this study, substrates of 18/10CrNi alloy plates were initially sprayed with a Ni-21Cr-10Al-1Y bond coat and then with an yttria stabilized zirconia top coat by plasma spraying. Subsequently, plasma-sprayed Thermal barrier coatings (TBCs) were treated with two different modification methods, namely, vacuum heat treatment and laser glazing. The effects of modifications on the oxidation and thermal shock behavior of the coatings were evaluated. The effect of coat thickness on the bond strength of the coats was also investigated. Results showed enhancement of the oxidation resistance and thermal shock resistance of TBCs following modifications. Although vacuum heat treatment and laser glazing exhibited comparable results as per oxidation resistance, the former generated the best improvement in the thermal shock resistance of the TBCs. Bond strength also decreased as coat thickness increased.

  1. Physical and chemical analysis of interaction between oxide fuel and pyrocarbon coating of coated particles

    International Nuclear Information System (INIS)

    Lyutikov, R.A.; Kromov, Yu.F.; Chernikov, A.S.

    1991-01-01

    In terms of the model proposed the equilibrium pressure of gases (CO, Kr, Xe) in pyrocarbon-coated uranium dioxide fuel particles has been calculated, as function of the initial composition of the fuel (O/U), the design features of the coated particles, the fuel temperature, and the burnup. The possibility of reducing gas pressure in the particles by alloying the kernels with uranium carbide, and increasing the kernel capacity for retention of solid fission products by alloying the uranium oxide with aluminum-silicates, has been investigated. (author)

  2. Effect of Layer-Graded Bond Coats on Edge Stress Concentration and Oxidation Behavior of Thermal Barrier Coatings

    Science.gov (United States)

    Zhu, Dongming; Ghosn, Louis J.; Miller, Robert A.

    1998-01-01

    Thermal barrier coating (TBC) durability is closely related to design, processing and microstructure of the coating Z, tn systems. Two important issues that must be considered during the design of a thermal barrier coating are thermal expansion and modulus mismatch between the substrate and the ceramic layer, and substrate oxidation. In many cases, both of these issues may be best addressed through the selection of an appropriate bond coat system. In this study, a low thermal expansion and layer-graded bond coat system, that consists of plasma-sprayed FeCoNiCrAl and FeCrAlY coatings, and a high velocity oxyfuel (HVOF) sprayed FeCrAlY coating, is developed to minimize the thermal stresses and provide oxidation resistance. The thermal expansion and oxidation behavior of the coating system are also characterized, and the strain isolation effect of the bond coat system is analyzed using the finite element method (FEM). Experiments and finite element results show that the layer-graded bond coat system possesses lower interfacial stresses. better strain isolation and excellent oxidation resistance. thus significantly improving the coating performance and durability.

  3. Preparation and Characterization of Plasma-Sprayed Ultrafine Chromium Oxide Coatings

    International Nuclear Information System (INIS)

    Lin Feng; Jiang Xianliang; Yu Yueguang; Zeng Keli; Ren Xianjing; Li Zhenduo

    2007-01-01

    Ultrafine chromium oxide coatings were prepared by plasma spraying with ultrafine feedstock. Processing parameters of plasma spraying were optimized. Optical microscope (OM) was used to observe the microstructure of the ultrafine chromium oxide coatings. Scanning electron microscopy (SEM) was used to observe the morphology and particle size of ultrafine powder feedstock as well as to examine the microstructure of the chromium oxide coating. In addition, hardness and bonding strength of the ultrafine chromium oxide coatings were measured. The results showed that the optimized plasma spraying parameters were suitable for ultrafine chromium oxide coating and the properties and microstructure of the optimized ultrafine chromium oxide coating were superior compared to conventional chromium oxide wear resistant coatings

  4. Bacterial adhesion on amorphous and crystalline metal oxide coatings

    International Nuclear Information System (INIS)

    Almaguer-Flores, Argelia; Silva-Bermudez, Phaedra; Galicia, Rey; Rodil, Sandra E.

    2015-01-01

    Several studies have demonstrated the influence of surface properties (surface energy, composition and topography) of biocompatible materials on the adhesion of cells/bacteria on solid substrates; however, few have provided information about the effect of the atomic arrangement or crystallinity. Using magnetron sputtering deposition, we produced amorphous and crystalline TiO 2 and ZrO 2 coatings with controlled micro and nanoscale morphology. The effect of the structure on the physical–chemical surface properties was carefully analyzed. Then, we studied how these parameters affect the adhesion of Escherichia coli and Staphylococcus aureus. Our findings demonstrated that the nano-topography and the surface energy were significantly influenced by the coating structure. Bacterial adhesion at micro-rough (2.6 μm) surfaces was independent of the surface composition and structure, contrary to the observation in sub-micron (0.5 μm) rough surfaces, where the crystalline oxides (TiO 2 > ZrO 2 ) surfaces exhibited higher numbers of attached bacteria. Particularly, crystalline TiO 2 , which presented a predominant acidic nature, was more attractive for the adhesion of the negatively charged bacteria. The information provided by this study, where surface modifications are introduced by means of the deposition of amorphous or crystalline oxide coatings, offers a route for the rational design of implant surfaces to control or inhibit bacterial adhesion. - Highlights: • Amorphous (a) and crystalline (c) TiO 2 and ZrO 2 coatings were deposited. • The atomic ordering influences the coatings surface charge and nano-topography. • The atomic ordering modifies the bacterial adhesion for the same surface chemistry. • S. aureus adhesion was lower on a-TiO 2 and a-ZrO 2 than on their c-oxide counterpart. • E. coli adhesion on a-TiO 2 was lower than on the c-TiO 2

  5. Bacterial adhesion on amorphous and crystalline metal oxide coatings

    Energy Technology Data Exchange (ETDEWEB)

    Almaguer-Flores, Argelia [Facultad de Odontología, División de Estudios de Posgrado e Investigación, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, 04510 México D.F. (Mexico); Silva-Bermudez, Phaedra, E-mail: suriel21@yahoo.com [Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación, Calzada México-Xochimilco No. 289, Col. Arenal de Guadalupe, 14389 México D.F. (Mexico); Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, 04510 México D.F. (Mexico); Galicia, Rey; Rodil, Sandra E. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, 04510 México D.F. (Mexico)

    2015-12-01

    Several studies have demonstrated the influence of surface properties (surface energy, composition and topography) of biocompatible materials on the adhesion of cells/bacteria on solid substrates; however, few have provided information about the effect of the atomic arrangement or crystallinity. Using magnetron sputtering deposition, we produced amorphous and crystalline TiO{sub 2} and ZrO{sub 2} coatings with controlled micro and nanoscale morphology. The effect of the structure on the physical–chemical surface properties was carefully analyzed. Then, we studied how these parameters affect the adhesion of Escherichia coli and Staphylococcus aureus. Our findings demonstrated that the nano-topography and the surface energy were significantly influenced by the coating structure. Bacterial adhesion at micro-rough (2.6 μm) surfaces was independent of the surface composition and structure, contrary to the observation in sub-micron (0.5 μm) rough surfaces, where the crystalline oxides (TiO{sub 2} > ZrO{sub 2}) surfaces exhibited higher numbers of attached bacteria. Particularly, crystalline TiO{sub 2}, which presented a predominant acidic nature, was more attractive for the adhesion of the negatively charged bacteria. The information provided by this study, where surface modifications are introduced by means of the deposition of amorphous or crystalline oxide coatings, offers a route for the rational design of implant surfaces to control or inhibit bacterial adhesion. - Highlights: • Amorphous (a) and crystalline (c) TiO{sub 2} and ZrO{sub 2} coatings were deposited. • The atomic ordering influences the coatings surface charge and nano-topography. • The atomic ordering modifies the bacterial adhesion for the same surface chemistry. • S. aureus adhesion was lower on a-TiO{sub 2} and a-ZrO{sub 2} than on their c-oxide counterpart. • E. coli adhesion on a-TiO{sub 2} was lower than on the c-TiO{sub 2}.

  6. Detection of thermally grown oxides in thermal barrier coatings by nondestructive evaluation

    Science.gov (United States)

    Fahr, A.; Rogé, B.; Thornton, J.

    2006-03-01

    The thermal-barrier coatings (TBC) sprayed on hot-section components of aircraft turbine engines commonly consist of a partially stabilized zirconia top-coat and an intermediate bond-coat applied on the metallic substrate. The bond-coat is made of an aluminide alloy that at high engine temperatures forms thermally grown oxides (TGO). Although formation of a thin layer of aluminum oxide at the interface between the ceramic top-coat and the bond-coat has the beneficial effect of protecting the metallic substrate from hot gases, oxide formation at splat boundaries or pores within the bond-coat is a source of weakness. In this study, plasma-sprayed TBC specimens are manufactured from two types of bond-coat powders and exposed to elevated temperatures to form oxides at the ceramic-bond-coat boundary and within the bond-coat. The specimens are then tested using nondestructive evaluation (NDE) and destructive metallography and compared with the as-manufactured samples. The objective is to determine if NDE can identify the oxidation within the bond-coat and give indication of its severity. While ultrasonic testing can provide some indication of the degree of bond-coat oxidation, the eddy current (EC) technique clearly identifies severe oxide formation within the bond-coat. Imaging of the EC signals as the function of probe location provides information on the spatial variations in the degree of oxidation, and thereby identifies which components or areas are prone to premature damage.

  7. Oxidative Attack of Carbon/Carbon Substrates through Coating Pinholes

    Science.gov (United States)

    Jacobson, Nathan S.; Leonhardt, Todd; Curry, Donald; Rapp, Robert A.

    1998-01-01

    A critical issue with oxidation protected carbon/carbon composites used for spacecraft thermal protection is the formation of coating pinholes. In laboratory experiments, artificial pinholes were drilled through SiC-coatings on a carbon/carbon material and the material was oxidized at 600, 1000, and 1400 C at reduced pressures of air. The attack of the carbon/carbon was quantified by both weight loss and a novel cross-sectioning technique. A two-zone, one dimensional diffusion control model was adapted to analyze this problem. Agreement of the model with experiment was reasonable at 1000 and 1400 C; however results at lower temperatures show clear deviations from the theory suggesting that surface reaction control plays a role.

  8. Photoluminescent polysaccharide-coated germanium(IV) oxide nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Lobaz, Volodymyr; Rabyk, Mariia; Pánek, Jiří; Doris, E.; Nallet, F.; Štěpánek, Petr; Hrubý, Martin

    2016-01-01

    Roč. 294, č. 7 (2016), s. 1225-1235 ISSN 0303-402X R&D Projects: GA MŠk(CZ) 7AMB14FR027; GA ČR(CZ) GA13-08336S; GA MZd(CZ) NV15-25781A Institutional support: RVO:61389013 Keywords : germanium oxide nanoparticles * polysaccharide coating * photoluminescent label Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.723, year: 2016

  9. The preparation and corrosion behaviors of MAO coating on AZ91D with rare earth conversion precursor film

    International Nuclear Information System (INIS)

    Cai Jingshun; Cao Fahe; Chang Linrong; Zheng Junjun; Zhang Jianqing; Cao Chunan

    2011-01-01

    A novel kind of micro-arc oxidation (MAO) coating was prepared on magnesium alloy surface coated with rare earth conversion film (RE-film) in an alkaline aluminum oxidation electrolyte by AC power source. Inspection of scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) microspectroscopy, the structure and composition of MAO coating formed on AZ91D with RE-film under different applied voltages were investigated and the performance of the optimized MAO coating compared with the MAO coating directly formed on magnesium alloy. As the pretreatment of magnesium alloy with RE-film, the cerium oxides can be incorporated into the MAO coatings, reduce porosity of the MAO coating surface and enhance the thickness of MAO coating. These structure features and the cerium oxides incorporated into the MAO coating result in greatly improved corrosion resistance. Base on electrochemistry impedance spectroscopy (EIS) measurement, the electronic structure and composition analysis of the MAO coating, a double-layer structure, with a compact inner layer and a porous outer layer, of the coating was proposed for understanding its corrosion process.

  10. The preparation and corrosion behaviors of MAO coating on AZ91D with rare earth conversion precursor film

    Energy Technology Data Exchange (ETDEWEB)

    Cai Jingshun [Department of Chemistry, Zhejiang University, Zheda Road 38, Hangzhou, Zhejiang 310027 (China); Cao Fahe, E-mail: nelson_cao@zju.edu.cn [Department of Chemistry, Zhejiang University, Zheda Road 38, Hangzhou, Zhejiang 310027 (China); Chang Linrong; Zheng Junjun [Department of Chemistry, Zhejiang University, Zheda Road 38, Hangzhou, Zhejiang 310027 (China); Zhang Jianqing; Cao Chunan [Department of Chemistry, Zhejiang University, Zheda Road 38, Hangzhou, Zhejiang 310027 (China); State Key Laboratory for Corrosion and Protection, Institute of Metal Research, The Chinese Academy of Sciences, Shenyang 110016 (China)

    2011-02-01

    A novel kind of micro-arc oxidation (MAO) coating was prepared on magnesium alloy surface coated with rare earth conversion film (RE-film) in an alkaline aluminum oxidation electrolyte by AC power source. Inspection of scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) microspectroscopy, the structure and composition of MAO coating formed on AZ91D with RE-film under different applied voltages were investigated and the performance of the optimized MAO coating compared with the MAO coating directly formed on magnesium alloy. As the pretreatment of magnesium alloy with RE-film, the cerium oxides can be incorporated into the MAO coatings, reduce porosity of the MAO coating surface and enhance the thickness of MAO coating. These structure features and the cerium oxides incorporated into the MAO coating result in greatly improved corrosion resistance. Base on electrochemistry impedance spectroscopy (EIS) measurement, the electronic structure and composition analysis of the MAO coating, a double-layer structure, with a compact inner layer and a porous outer layer, of the coating was proposed for understanding its corrosion process.

  11. Diffusional aspects of the high-temperature oxidation of protective coatings

    Science.gov (United States)

    Nesbitt, J. A.

    1989-01-01

    The role of diffusional transport associated with the high-temperature oxidation of coatings is examined, with special attention given to the low-pressure plasma spraying MCrAl-type overlay coatings and similar Ni-base alloys which form protective AlO3 scales. The use of diffusional analysis to predict the minimum solute concentration necessary to form and grow a solute oxide scale is illustrated. Modeling procedures designed to simulate the diffusional transport in coatings and substrates are presented to show their use in understanding coating degradation, predicting the protective life of a coating, and evaluating various coating parameters to guide coating development.

  12. Highly Conductive One-Dimensional Manganese Oxide Wires by Coating with Graphene Oxides

    Science.gov (United States)

    Tojo, Tomohiro; Shinohara, Masaki; Fujisawa, Kazunori; Muramatsu, Hiroyuki; Hayashi, Takuya; Ahm Kim, Yoong; Endo, Morinobu

    2012-10-01

    Through coating with graphene oxides, we have developed a chemical route to the bulk production of long, thin manganese oxide (MnO2) nanowires that have high electrical conductivity. The average diameter of these hybrid nanowires is about 25 nm, and their average length is about 800 nm. The high electrical conductivity of these nanowires (ca. 189.51+/-4.51 µS) is ascribed to the homogeneous coating with conductive graphene oxides as well as the presence of non-bonding manganese atoms. The growth mechanism of the nanowires is theoretically supported by the initiation of morphological conversion from graphene oxide to wrapped structures through the formation of covalent bonds between manganese and oxygen atoms at the graphene oxide edge.

  13. Mechanical degradation of coating systems in high-temperature cyclic oxidation

    CSIR Research Space (South Africa)

    Pennefather, RC

    1996-01-01

    Full Text Available Cyclic oxidation tests were performed on a large variety of commercially available overlay coatings. The results confirmed that the composition of the coating as well as the processing method of the coating can affect the life of the system. Coating...

  14. Mechanical degradation of coating systems in high-temperature cyclic oxidation

    CSIR Research Space (South Africa)

    Pennefather, RC

    1995-01-01

    Full Text Available Cyclic oxidation tests were performed on a large variety of commercially available overlay coatings. The results confirmed that the composition of the coating as well as the processing method of the coating can affect the life of the system. Coating...

  15. Plasma electrolytic oxide coatings on silumin for oxidation CO

    Science.gov (United States)

    Borisov, V. A.; Sigaeva, S. S.; Anoshkina, E. A.; Ivanov, A. L.; Litvinov, P. V.; Vedruchenko, V. R.; Temerev, V. L.; Arbuzov, A. B.; Kuznetsov, A. A.; Mukhin, V. A.; Suprunov, G. I.; Chumychko, I. A.; Shlyapin, D. A.; Tsyrul'nikov, P. G.

    2017-08-01

    Some catalysts of CO oxidation on silumin alloy AK12M2, used for the manufacture of pistons for Russian cars were investigated. The catalysts were prepared by the method of plasma electrolytic oxidation of silumin in electrolytes of various compositions with further activation by the salts Ce, Cu, Co, Ni, Mn and Al. The catalytic tests were carried out in a flow reactor in a mixture of 1% CO and 99% air, with the temperature range of 25-500 °C. The most active catalysts in CO oxidation are those activated with Ce and Cu salts on silumin, treated for 3 hours in an electrolyte containing 4 g/l KOH, 40 g/l Na2B4O7 (conversion of CO is 93.7% at a contact time of 0.25 s). However, the catalysts obtained from silumin treated in the electrolyte containing 3 g/l KOH, 30 g/l Na2SiO3 are more suitable for practical usage. Because when the treatment time of those catalysts is 10 - 20 minutes it is possible to achieve comparable CO conversion. The morphology and composition of the catalysts were studied by the methods of a scanning electron microscope with energy-dispersive surface analysis and X-ray phase analysis. The surface of the non-activated sample consists of γ-Al2O3 and SiO2 particles, due to which the active components get attached to the support. CeO2 and CuO are present on the surface of the sample with the active component.

  16. The base metal of the oxide-coated cathode

    International Nuclear Information System (INIS)

    Poret, F.; Roquais, J.M.

    2005-01-01

    The oxide-coated cathode has been the most widely used electron emitter in vacuum electronic devices. From one manufacturing company to another the emissive oxide is either a double-Ba, Sr-or a triple-Ba, Sr, Ca-oxide, having always the same respective compositions. Conversely, the base metal composition is very often proprietary because of its importance in the cathode emission performances. The present paper aims at explaining the operation of the base metal through a review. After a brief introduction, the notion of activator is detailed along with their diffusivities and their associated interfacial compounds. Then, the different cathode life models are described prior to few comments on the composition choice of a base metal. Finally, the specificities of the RCA/Thomson 'bimetal' base metal are presented with a discussion on the optimized composition choice illustrated by a long-term life-test of five different melts

  17. Self-cleaning glass coating containing titanium oxide and silicon

    International Nuclear Information System (INIS)

    Araujo, A.O. de; Alves, A.K.; Berutti, F.A.; Bergmann, C.P.

    2009-01-01

    Using the electro spinning technique nano fibers of titanium oxide doped with silicon were synthesized. As precursor materials, titanium propoxide, silicon tetra propoxide and a solution of polyvinylpyrrolidone were used. The non-tissue material obtained was characterized by X-ray diffraction to determine the phase and crystallite size, BET method to determine the surface and SEM to analyze the microstructure of the fibers. After ultrasound dispersion of this material in ethanol, the glass coatings were made by dip-coating methodology. The influence of the removal velocity, the solution composition and the glass surface preparation were evaluated. The film was characterized by the contact angle of a water droplet in its surface. (author)

  18. Influence of thickness and coatings morphology in the antimicrobial performance of zinc oxide coatings

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, P. [Department of Physics, University of Minho, Campus de Azurém, 4800-058 Guimaraes (Portugal); Sampaio, P. [CBMA, University of Minho, Campus de Gualtar, 4700 Braga (Portugal); Azevedo, S. [Department of Physics, University of Minho, Campus de Azurém, 4800-058 Guimaraes (Portugal); Vaz, C. [CBMA, University of Minho, Campus de Gualtar, 4700 Braga (Portugal); Espinós, J.P. [Instituto de Ciencia de Materiales de Sevilla, CSIC-University of Sevilla, Avda. Américo Vespucio 49, 41092 Sevilla (Spain); Teixeira, V., E-mail: vasco@fisica.uminho.pt [Department of Physics, University of Minho, Campus de Azurém, 4800-058 Guimaraes (Portugal); Carneiro, J.O., E-mail: carneiro@fisica.uminho.pt [Department of Physics, University of Minho, Campus de Azurém, 4800-058 Guimaraes (Portugal)

    2014-07-01

    In this research work, the production of undoped and silver (Ag) doped zinc oxide (ZnO) thin films for food-packaging applications were developed. The main goal was to determine the influence of coatings morphology and thickness on the antimicrobial performance of the produced samples. The ZnO based thin films were deposited on PET (Polyethylene terephthalate) substrates by means of DC reactive magnetron sputtering. The thin films were characterized by optical spectroscopy, X-Ray Diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Scanning Electron Microscopy (SEM). The antimicrobial performance of the undoped and Ag-doped ZnO thin films was also evaluated. The results attained have shown that all the deposited zinc oxide and Ag-doped ZnO coatings present columnar morphology with V-shaped columns. The increase of ZnO coatings thickness until 200 nm increases the active surface area of the columns. The thinner samples (50 and 100 nm) present a less pronounced antibacterial activity than the thickest ones (200–600 nm). Regarding Ag-doped ZnO thin films, it was verified that increasing the silver content decreases the growth rate of Escherichia coli and decreases the amount of bacteria cells present at the end of the experiment.

  19. Adsorption of Radioactive Chromium onto Iron Oxide Coated Sand

    International Nuclear Information System (INIS)

    Tadros, N.

    2008-01-01

    Iron oxide coated sand (IOCS) has been prepared and used as granular sorbent for 51 Cr radionuclide at different and specified concentration Ievels in aqueous solutions of constant ph value. Effect of different parameters such as: ph variation, contact time, 51 Cr ion concentration and variation of temperature on the adsorption of the radionuclide onto IOCS material have been discussed. At high ph value about 9()% of 51 Cr is adsorbed onto IOCS from the aqueous solution, The sorption capability of 51 Cr and the effect of ion concentration on the adsorbitivity have been discussed. Adsorption isotherms of Langmuir and Freundlich were expressed and their adsorption isotherm parameters are tabulated

  20. High temperature oxidation behavior of hafnium modified NiAl bond coat in EB-PVD thermal barrier coating system

    Energy Technology Data Exchange (ETDEWEB)

    Guo Hongbo; Sun Lidong; Li Hefei [Department of Material Science and Engineering, Beijing University of Aeronautics and Astronautics, No.37 Xueyuan Road, Beijing 100083 (China); Gong Shengkai [Department of Material Science and Engineering, Beijing University of Aeronautics and Astronautics, No.37 Xueyuan Road, Beijing 100083 (China)], E-mail: gongsk@buaa.edu.cn

    2008-06-30

    NiAl coatings doped with 0.5 at.% and 1.5 at.% Hf were produced by co-evaporation of NiAl and Hf ingots by electron beam physical vapor deposition (EB-PVD), respectively. The addition of 0.5 at.% Hf significantly improved the cyclic oxidation resistance of the NiAl coating. The TGO layer in the 1.5 at.% Hf doped NiAl coating is straight; while that in the 0.5 at.% Hf doped coating became undulated after thermal cycling. The doped NiAl thermal barrier coatings (TBCs) revealed improved thermal cycling lifetimes at 1423 K, compared to the undoped TBC. Failure of the 0.5 at.% Hf doped TBC occurred by cracking at the interface between YSZ topcoat and bond coat, while the 1.5 at.% Hf doped TBC cracked at the interface between bond coat and substrate.

  1. SELF-ASSEMBLY CE OXIDE/ORGANOPOLYSILOXANE COMPOSITE COATINGS.

    Energy Technology Data Exchange (ETDEWEB)

    SUGAMA,T.; SABATINI,R.; GAWLIK,K.

    2005-01-01

    A self-assembly composite synthesis technology was used to put together a Ce(OH){sub 3}-dispersed poly-acetamide-acetoxyl methyl-propylsiloxane (PAAMPA) organometallic polymer. Three spontaneous reactions were involved; condensation, amidation, and acetoxylation, between the Ce acetate and aminopropylsilane triol (APST) at 150 C. An increase in temperature to 200 C led to the in-situ phase transformation of Ce(OH){sub 3} into Ce{sub 2}O{sub 3} in the PAAMPA matrix. A further increase to 250 C caused oxidative degradation of the PAAMPA, thereby generating copious fissures in the composite. We assessed the potential of Ce(OH){sub 3}/ and Ce{sub 2}O{sub 3}/ PAAMPA composite materials as corrosion-preventing coatings for carbon steel and aluminum. The Ce{sub 2}O{sub 3} composite coating displayed better performance in protecting both metals against NaCl-caused corrosion than did the Ce(OH){sub 3} composite. Using this coating formed at 200 C, we demonstrated that the following four factors played an essential role in further mitigating the corrosion of the metals: First was a minimum susceptibility of coating's surface to moisture; second was an enhanced densification of the coating layer; third was the retardation of the cathodic oxygen reduction reaction at the metal's corrosion sites due to the deposition of Ce{sub 2}O{sub 3} as a passive film over the metal's surface; and, fourth was its good adherence to metals. The last two factors contributed to minimizing the cathodic delamination of coating film from the metal's surface. We also noted that the affinity of the composite with the surface of aluminum was much stronger than that with steel. Correspondingly, the rate of corrosion of aluminum was reduced as much as two orders of magnitude by a nanoscale thick coating. In contrast, its ability to reduce the corrosion rate of steel was lower than one order of magnitude.

  2. Tantalum oxide thin films as protective coatings for sensors

    DEFF Research Database (Denmark)

    Christensen, Carsten; Reus, Roger De; Bouwstra, Siebe

    1999-01-01

    Reactively sputtered tantalum oxide thin films have been investigated as protective coatings for aggressive media exposed sensors. Tantalum oxide is shown to be chemically very robust. The etch rate in aqueous potassium hydroxide with pH 11 at 140°C is lower than 0.008 Å h-l. Etching in liquids...... with pH values in the range from pH 2 to 11 have generally given etch rates below 0.04 Å h-l. On the other hand patterning is possible in hydrofluoric acid. Further, the passivation behaviour of amorphous tantalum oxide and polycrystalline Ta2O5 is different in buffered hydrofluoric acid. By ex situ...... annealing O2 in the residual thin-film stress can be altered from compressive to tensile and annealing at 450°C for 30 minutes gives a stress-free film. The step coverage of the sputter deposited amorphous tantalum oxide is reasonable, but metallization lines are hard to cover. Sputtered tantalum oxide...

  3. Tantalum oxide thin films as protective coatings for sensors

    DEFF Research Database (Denmark)

    Christensen, Carsten; Reus, Roger De; Bouwstra, Siebe

    1999-01-01

    Reactively sputtered tantalum oxide thin-films have been investigated as protective coating for aggressive media exposed sensors. Tantalum oxide is shown to be chemically very robust. The etch rate in aqueous potassium hydroxide with pH 11 at 140°C is lower than 0.008 Å/h. Etching in liquids with p......H values in the range from pH 2-11 have generally given etch rates below 0.04 Å/h. On the other hand patterning is possible in hydrofluoric acid. Further, the passivation behaviour of amorphous tantalum oxide and polycrystalline Ta2O5 is different in buffered hydrofluoric acid. By ex-situ annealing in O2...... the residual thin-film stress can be altered from compressive to tensile and annealing at 450°C for 30 minutes gives a stress-free film. The step coverage of the sputter deposited amorphous tantalum oxide is reasonable, but metallisation lines are hard to cover. Sputtered tantalum oxide exhibits high...

  4. Effect of the top coat on the phase transformation of thermally grown oxide in thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, X. [Materials Science Centre, School of Materials, University of Manchester, Manchester M1 7HS (United Kingdom); Hashimoto, T. [Materials Science Centre, School of Materials, University of Manchester, Manchester M1 7HS (United Kingdom); Xiao, P. [Materials Science Centre, School of Materials, University of Manchester, Manchester M1 7HS (United Kingdom)]. E-mail: ping.xiao@manchester.ac.uk

    2006-12-15

    The phase transformation of the thermally grown oxide (TGO) formed on a Pt enriched {gamma} + {gamma}' bond coat in electron beam physical vapour deposited thermal barrier coatings (TBCs) was studied by photo-stimulaluminescence spectroscopy. The presence of the TBC retards the {theta} to {alpha} transformation of the TGO and leads to a higher oxidation rate. The reasons for these phenomena are discussed.

  5. Mechanical and tribological property of single layer graphene oxide reinforced titanium matrix composite coating

    Science.gov (United States)

    Hu, Zengrong; Li, Yue; Fan, Xueliang; Chen, Feng; Xu, Jiale

    2018-04-01

    Single layer grapheme oxide Nano sheets and Nano titanium powder were dispersed in deionized water by ultrasonic dispersion. Then the mixed solution was pre-coating on AISI4140 substrate. Using laser sintering process to fabricated grapheme oxide and Ti composite coating. Microstructures and composition of the composite coating was studied by Scanning Electron Microscopy (SEM), x-ray diffract meter (XRD) and Raman spectroscopy. Raman spectrum, XRD pattern and SEM results proved that grapheme oxide sheets were dispersed in the composite coating. The composite coating had much higher average Vickers hardness values than that of pure Ti coating. The tribological performance of the composite coatings became better while the suitable GO content was selected. For the 2.5wt. % GO content coating, the friction coefficient was reduced to near 0.1.

  6. Phase and structural transformations in annealed copper coatings in relation to oxide whisker growth

    Energy Technology Data Exchange (ETDEWEB)

    Dorogov, M.V.; Priezzheva, A.N. [Togliatti State University, Belorusskaya 14, 445667 Togliatti (Russian Federation); Vlassov, S., E-mail: vlassovs@ut.ee [Institute of Solid State Physics, University of Latvia, Kengaraga 8, LV-1063 Riga (Latvia); Kink, I.; Shulga, E. [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); Dorogin, L.M. [Togliatti State University, Belorusskaya 14, 445667 Togliatti (Russian Federation); Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); ITMO University, Kronverkskiy 49, 197101 Saint Petersburg (Russian Federation); Lõhmus, R. [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); Tyurkov, M.N.; Vikarchuk, A.A. [Togliatti State University, Belorusskaya 14, 445667 Togliatti (Russian Federation); Romanov, A.E. [Togliatti State University, Belorusskaya 14, 445667 Togliatti (Russian Federation); Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); ITMO University, Kronverkskiy 49, 197101 Saint Petersburg (Russian Federation); Ioffe Physical Technical Institute, RAS, Polytechnicheskaya 26, 194021 Saint Petersburg (Russian Federation)

    2015-08-15

    Highlights: • Coatings prepared by Cu microparticle electrodeposition. • Structural and phase transformation in Cu coatings annealed at 400 °C. • Annealing is accompanied by intensive growth of CuO whiskers. • Layered oxide phases (Cu{sub 2}O and CuO) in the coating are characterized. • Formation of volumetric defects in the coating is demonstrated. - Abstract: We describe structural and phase transformation in copper coatings made of microparticles during heating and annealing in air in the temperature range up to 400 °C. Such thermal treatment is accompanied by intensive CuO nanowhisker growth on the coating surface and the formation of the layered oxide phases (Cu{sub 2}O and CuO) in the coating interior. X-ray diffraction and focused ion beam (FIB) are employed to characterize the multilayer structure of annealed copper coatings. Formation of volumetric defects such as voids and cracks in the coating is demonstrated.

  7. The oxidation of titanium nitride- and silicon nitride-coated stainless steel in carbon dioxide environments

    International Nuclear Information System (INIS)

    Mitchell, D.R.G.; Stott, F.H.

    1992-01-01

    A study has been undertaken into the effects of thin titanium nitride and silicon nitride coatings, deposited by physical vapour deposition and chemical vapour deposition processes, on the oxidation resistance of 321 stainless steel in a simulated advanced gas-cooled reactor carbon dioxide environment for long periods at 550 o C and 700 o C under thermal-cycling conditions. The uncoated steel contains sufficient chromium to develop a slow-growing chromium-rich oxide layer at these temperatures, particularly if the surfaces have been machine-abraded. Failure of this layer in service allows formation of less protective iron oxide-rich scales. The presence of a thin (3-4 μm) titanium nitride coating is not very effective in increasing the oxidation resistance since the ensuing titanium oxide scale is not a good barrier to diffusion. Even at 550 o C, iron oxide-rich nodules are able to develop following relatively rapid oxidation and breakdown of the coating. At 700 o C, the coated specimens oxidize at relatively similar rates to the uncoated steel. A thin silicon nitride coating gives improved oxidation resistance, with both the coating and its slow-growing oxide being relatively electrically insulating. The particular silicon nitride coating studied here was susceptible to spallation on thermal cycling, due to an inherently weak coating/substrate interface. (Author)

  8. Cyclic Oxidation and Hot Corrosion of NiCrY-Coated Disk Superalloys

    Science.gov (United States)

    Gabb, Timothy P.; Miller, Robert A.; Sudbrack, Chantal K.; Draper, Susan L.; Nesbitt, James A.; Rogers, Richard B.; Telesman, Ignacy; Ngo, Vanda; Healy, Jonathan

    2016-01-01

    Powder metallurgy disk superalloys have been designed for higher engine operating temperatures through improvement of their strength and creep resistance. Yet, increasing disk application temperatures to 704 degrees Centigrade and higher could enhance oxidation and activate hot corrosion in harmful environments. Protective coatings could be necessary to mitigate such attack. Cylindrical coated specimens of disk superalloys LSHR and ME3 were subjected to thermal cycling to produce cyclic oxidation in air at a maximum temperature of 760 degrees Centigrade. The effects of substrate roughness and coating thickness on coating integrity after cyclic oxidation were considered. Selected coated samples that had cyclic oxidation were then subjected to accelerated hot corrosion tests. This cyclic oxidation did not impair the coating's resistance to subsequent hot corrosion pitting attack.

  9. A comparison study between ZnO nanorods coated with graphene oxide and reduced graphene oxide

    International Nuclear Information System (INIS)

    Ding, Jijun; Wang, Minqiang; Deng, Jianping; Gao, Weiyin; Yang, Zhi; Ran, Chenxin; Zhang, Xiangyu

    2014-01-01

    Highlights: • Optical properties between ZnO-GO and ZnO-RGO composites were compared. • Photoluminescence quenching was observed in ZnO-GO composites. • We obtained enhanced photoluminescence in ZnO-RGO composites. -- Abstract: ZnO nanorods (ZnO NRs) coated with graphene oxide (ZnO-GO) and reduced graphene oxide sheets (ZnO-RGO) were prepared on indium tin oxide (ITO) substrates. The crystal structures, morphology and optical properties were analyzed by using X-ray diffraction (XRD) pattern, scanning electron microscopy (SEM) images, absorption spectra and photoluminescence (PL) spectra, respectively. A comparison between PL properties from ZnO-GO and ZnO-RGO were studied. Results indicated that the peak at 442 nm and a broad band at 450–600 nm of ZnO NRs show PL quenching after coating with GO sheets. As coating with RGO sheets, the extent of PL quenching increases. It is interesting to note that as ZnO NRs coated with RGO sheets, the intensity of PL peak at 390 nm significantly increased. The enhanced PL emission research in ZnO-RGO is directed toward development of the “nextgeneration” optoelectronics devices related with graphene materials

  10. Corrosion-electrochemical characteristics of oxide-carbide and oxide-nitride coatings formed by electrolytic plasma

    International Nuclear Information System (INIS)

    Tomashov, N.D.; Chukalovskaya, T.V.; Medova, I.L.; Duradzhi, V.N.; Plavnik, G.M.

    1990-01-01

    The composition, structure, microhardness and corrosion-electrochemical properties of oxide-carbide and oxide-nitride coatings on titanium in 5n H 2 SO 4 , 50 deg, produced by the method of chemical-heat treatment in electrolytic plasma, containing saturation components of nitrogen and carbon, were investigated. It is shown that the coatings produced have increased hardness, possess high corrosion resistance in sulfuric acid solution at increased temperature, as to their electrochemcial behaviour they are similar to titanium carbide and nitride respectively. It is shown that high corrosion resistance is ensured by electrochemical mechanism of the oxide-carbide and oxide-nitride coating protection

  11. Physical properties of pyrolytically sprayed tin-doped indium oxide coatings

    NARCIS (Netherlands)

    Haitjema, H.; Elich, J.J.P.

    1991-01-01

    The optical and electrical properties of tin-doped indium oxide coatings obviously depend on a number of production parameters. This dependence has been studied to obtain a more general insight into the relationships between the various coating properties. The coatings have been produced by spray

  12. Stability and effectiveness against bacterial adhesion of poly(ethylene oxide) coatings in biological fluids

    NARCIS (Netherlands)

    Roosjen, Astrid; de Vries, Jacob; van der Mei, HC; Norde, W; Busscher, HJ

    Poly(ethylene oxide) (PEO) coatings have been shown to reduce the adhesion of different microbial strains and species and thus are promising as coatings to prevent biomaterial-centered infection of medical implants. Clinically, however, PEO coatings are not yet applied, as little is known about

  13. Stability and effectiveness against bacterial adhesion of poly(ethylene oxide) coatings in biological fluids

    NARCIS (Netherlands)

    Roosjen, A.; Vries, de J.; Mei, van der H.C.; Norde, W.; Busscher, H.J.

    2005-01-01

    Poly(ethylene oxide) (PEO) coatings have been shown to reduce the adhesion of different microbial strains and species and thus are promising as coatings to prevent biomaterial-centered infection of medical implants. Clinically, however, PEO coatings are not yet applied, as little is known about

  14. Biocompatibility of Ir/Ti-oxide coatings: Interaction with platelets, endothelial and smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Habibzadeh, Sajjad [Department of Chemical Engineering, McGill University, Montreal, QC (Canada); Li, Ling [Department of Anatomy and Cell Biology, McGill University, Montreal, QC (Canada); Omanovic, Sasha [Department of Chemical Engineering, McGill University, Montreal, QC (Canada); Shum-Tim, Dominique [Divisions of Cardiac Surgery and Surgical Research, Department of Surgery, McGill University, Montreal, QC (Canada); Davis, Elaine C., E-mail: elaine.davis@mcgill.ca [Department of Anatomy and Cell Biology, McGill University, Montreal, QC (Canada)

    2014-05-01

    Graphical abstract: - Highlights: • Ir/Ti-oxide coated surfaces are characterized by the so-called “cracked-mud” morphology. • 40% Ir in the coating material results in a morphologically uniform coating. • ECs and SMCs showed a desirable response to the Ir/Ti-oxide coated surfaces. • Ir/Ti-oxide coated surfaces are more bio/hemocompatible than the untreated 316L stainless steel. - Abstract: Applying surface coatings on a biomedical implant is a promising modification technique which can enhance the implant's biocompatibility via controlling blood constituents- or/and cell-surface interaction. In this study, the influence of composition of Ir{sub x}Ti{sub 1−x}-oxide coatings (x = 0, 0.2, 0.4, 0.6, 0.8, 1) formed on a titanium (Ti) substrate on the responses of platelets, endothelial cells (ECs) and smooth muscle cells (SMCs) was investigated. The results showed that a significant decrease in platelet adhesion and activation was obtained on Ir{sub 0.2}Ti{sub 0.8}-oxide and Ir{sub 0.4}Ti{sub 0.6}-oxide coatings, rendering the surfaces more blood compatible, in comparison to the control (316L stainless steel, 316L-SS) and other coating compositions. Further, a substantial increase in the EC/SMC surface count ratio after 4 h of cell attachment to the Ir{sub 0.2}Ti{sub 0.8}-oxide and Ir{sub 0.4}Ti{sub 0.6}-oxide coatings, relative to the 316L-SS control and the other coating compositions, indicated high potential of these coatings for the enhancement of surface endothelialization. This indicates the capability of the corresponding coating compositions to promote EC proliferation on the surface, while inhibiting that of SMCs, which is important in cardiovascular stents applications.

  15. Yellowing of coated papers under the action of heat, daylight radiation, and nitrogen oxide gas

    International Nuclear Information System (INIS)

    Mailly, V.; Le Nest, J.F.; Tosio, J.M.S.; Silvy, J.

    1997-01-01

    In the area of coated papers, a high degree of whiteness is often required to carry a quality image. Coated papers however are sensitive to the environment where they are stored and have tendency to yellow. The aim of this work was to study the influence of(i) daylight radiation and (ii) nitrogen oxide gas (NO2 ) on the yellowing of coated papers. In a previous study (l), we had established the presence of NO2 in the environment of some coating machines because of the transformation of ammonium hydroxide (NH4 OH, a component of some coating colors) into nitrogen oxide through the burners of hot air supplier-systems

  16. Composition Effects on Aluminide Oxidation Performance: Objectives for Improved Bond Coats

    International Nuclear Information System (INIS)

    Pint, BA

    2001-01-01

    Formerly, the role of metallic coatings on Ni-base superalloys was simply to limit environmental attack of the underlying substrate. However, a new paradigm has been established for metallic coatings adapted as bond coats for thermal barrier coatings. It is no longer sufficient for the coating to just minimize the corrosion rate. The metallic coating must also form a slow-growing external Al(sub 2)O(sub 3) layer beneath the overlying low thermal conductivity ceramic top coat. This thermally grown oxide or scale must have near-perfect adhesion in order to limit spallation of the top coat, thereby achieving a long coating lifetime. While oxidation is not the only concern in complex thermal barrier coating systems, it is, however, a primary factor in developing the next generation of bond coats. Therefore, a set of compositional guidelines for coatings is proposed in order to maximize oxidation performance. These criteria are based on test results of cast alloy compositions to quantify an d understand possible improvements as a basis for further investigations using coatings made by chemical vapor deposited (CVD). Experimental work includes furnace cycle testing and in-depth characterization of the alumina scale, including transmission electron microscopy (TEM)

  17. Formation and oxidation resistance of NbSi2 coatings on niobium by pack cementation

    International Nuclear Information System (INIS)

    Li Ming; Song Lixin; Le Jun; Zhang Xiaowei; Pei Baogen; Hu Xingfang

    2005-01-01

    NbSi 2 coatings were formed on niobium by halide-activated pack cementation process. The as-coated niobium samples were oxidized in air up to 1723 K by thermogravimetry method. The surface and cross-sectional morphology, phase composition and element distribution of the NbSi 2 coatings before and after oxidation were characterized by SEM, XRD and EPMA. The results show that the as-formed coatings consist of single phase of hexagonal NbSi 2 and the oxidation resistance of pure niobium can be greatly improved by pack siliconizing. (orig.)

  18. Polymer-Derived Ceramics as Innovative Oxidation Barrier Coatings for Mo-Si-B Alloys

    Science.gov (United States)

    Hasemann, Georg; Baumann, Torben; Dieck, Sebastian; Rannabauer, Stefan; Krüger, Manja

    2015-04-01

    A preceramic polymer precursor, perhydropolysilazane, is used to investigate its function as a new type of oxidation barrier coating on Mo-Si-B alloys. After dip-coating and pyrolysis at 1073 K (800 °C), dense and well-adhering SiON ceramic coatings could be achieved, which were investigated by SEM and cyclic oxidation tests at 1073 K and 1373 K (800 °C and 1100 °C). The coating is promising in reducing the mass loss during the initial stage of oxidation exposure at 1373 K (1100 °C) significantly.

  19. Modification of implant material surface properties by means of oxide nano-structured coatings deposition

    Science.gov (United States)

    Safonov, Vladimir; Zykova, Anna; Smolik, Jerzy; Rogowska, Renata; Lukyanchenko, Vladimir; Kolesnikov, Dmitrii

    2014-08-01

    The deposition of functional coatings on the metal surface of artificial joints is an effective way of enhancing joint tribological characteristics. It is well-known that nanostructured oxide coatings have specific properties advantageous for future implant applications. In the present study, we measured the high hardness parameters, the adhesion strength and the low friction coefficient of the oxide magnetron sputtered coatings. The corrosion test results show that the oxide coating deposition had improved the corrosion resistance by a factor of ten for both stainless steel and titanium alloy substrates. Moreover, the hydrophilic nature of coated surfaces in comparison with the metal ones was investigated in the tensiometric tests. The surfaces with nanostructured oxide coatings demonstrated improved biocompatibility for in vitro and in vivo tests, attributed to the high dielectric constants and the high values of the surface free energy parameters.

  20. High temperature oxidation behaviour of mullite coated C/C composites in air

    International Nuclear Information System (INIS)

    Fritze, H.; Borchardt, G.; Weber, S.; Scherrer, S.; Weiss, R.

    1997-01-01

    Based on thermogravimetric measurements on Si-SiC-mullite coated C/C material the temperature dependence of the overall rate constant is interpreted in the temperature range 400 C 1400 C), however, the oxidation behaviour of SiC limits long term application. In this temperature range, additional outer mullite coatings produced by pulsed laser deposition improve the oxidation behaviour. (orig.)

  1. Oxidation behaviour of a Ti2AlN MAX-phase coating

    International Nuclear Information System (INIS)

    Wang Qimin; Kim, Kwangho; Garkas, W; Renteria, A Flores; Leyens, C; Sun Chao

    2011-01-01

    In this paper, we reported the oxidation behaviour of Ti 2 AlN coatings on a -TiAl substrate. The coatings composed mainly of Ti 2 AlN MAX phase were obtained by magnetron sputtering and subsequent vacuum annealing. Isothermal oxidation tests at 700-900 deg. C were performed in air. The results indicated that the oxidation resistance of the -TiAl alloy can be improved by depositing a Ti 2 AlN layer on the alloy surface, especially at high temperatures. An Al-rich oxide scale formed on the coating surfaces during oxidation. This scale acts as diffusion barrier blocking the ingress of oxidation, and effectively protects the coated alloys from further oxidation attack.

  2. Oxidation behaviour of a Ti{sub 2}AlN MAX-phase coating

    Energy Technology Data Exchange (ETDEWEB)

    Wang Qimin; Kim, Kwangho [National Core Research Center for Hybrid Materials Solution, Pusan National University, Busan 609-735 (Korea, Republic of); Garkas, W; Renteria, A Flores [Chair of Physical Metallurgy and Materials Technology, Technical University of Brandenburg at Cottbus, 03046 Cottbus (Germany); Leyens, C [Institute of Materials Science, Technical University of Dresden, Helmholtzstrasse 7, 01069 Dresden (Germany); Sun Chao, E-mail: qmwang@pusan.ac.kr, E-mail: kwhokim@pusan.ac.kr [Division of Surface Engineering of Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2011-10-29

    In this paper, we reported the oxidation behaviour of Ti{sub 2}AlN coatings on a -TiAl substrate. The coatings composed mainly of Ti{sub 2}AlN MAX phase were obtained by magnetron sputtering and subsequent vacuum annealing. Isothermal oxidation tests at 700-900 deg. C were performed in air. The results indicated that the oxidation resistance of the -TiAl alloy can be improved by depositing a Ti{sub 2}AlN layer on the alloy surface, especially at high temperatures. An Al-rich oxide scale formed on the coating surfaces during oxidation. This scale acts as diffusion barrier blocking the ingress of oxidation, and effectively protects the coated alloys from further oxidation attack.

  3. Gentamicin coated iron oxide nanoparticles as novel antibacterial agents

    Science.gov (United States)

    Bhattacharya, Proma; Neogi, Sudarsan

    2017-09-01

    Applications of different types of magnetic nanoparticles for biomedical purposes started a long time back. The concept of surface functionalization of the iron oxide nanoparticles with antibiotics is a novel technique which paves the path for further application of these nanoparticles by virtue of their property of superparamagnetism. In this paper, we have synthesized novel iron oxide nanoparticles surface functionalized with Gentamicin. The average size of the particles, concluded from the HR-TEM images, came to be around 14 nm and 10 nm for unmodified and modified nanoparticles, respectively. The magnetization curve M(H) obtained for these nanoparticles are typical of superparamagnetic nature and having almost zero values of coercivity and remanance. The release properties of the drug coated nanoparticles were studied; obtaining an S shaped profile, indicating the initial burst effect followed by gradual sustained release. In vitro investigations against various gram positive and gram negative strains viz Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Bacillus subtilis indicated significant antibacterial efficiency of the drug-nanoparticle conjugate. The MIC values indicated that a small amount like 0.2 mg ml-1 of drug capped particles induce about 98% bacterial death. The novelty of the work lies in the drug capping of the nanoparticles, which retains the superparamagnetic nature of the iron oxide nanoparticles and the medical properties of the drug simultaneously, which is found to extremely blood compatible.

  4. Cyclic Oxidation and Hot Corrosion of NiCrY-Coated Disk Superalloy

    Science.gov (United States)

    Gabb, Tim; Miller, R. A.; Sudbrack, C. K.; Draper, S. L.; Nesbitt, J.; Telesman, J.; Ngo, V.; Healy, J.

    2015-01-01

    Powder metallurgy disk superalloys have been designed for higher engine operating temperatures through improvement of their strength and creep resistance. Yet, increasing disk application temperatures to 704 C and higher could enhance oxidation and activate hot corrosion in harmful environments. Protective coatings could be necessary to mitigate such attack. Cylindrical coated specimens of disk superalloys LSHR and ME3 were subjected to thermal cycling to produce cyclic oxidation in air at a maximum temperature of 760 C. The effects of substrate roughness and coating thickness on coating integrity after cyclic oxidation were considered. Selected coated samples that had cyclic oxidation were then subjected to accelerated hot corrosion tests. The effects of this cyclic oxidation on resistance to subsequent hot corrosion attack were examined.

  5. Studies on yttrium oxide coatings for corrosion protection against molten uranium

    International Nuclear Information System (INIS)

    Chakravarthy, Y.; Bhandari, Subhankar; Pragatheeswaran; Thiyagarajan, T.K.; Ananthapadmanabhan, P.V.; Das, A.K.; Kumar, Jay; Kutty, T.R.G.

    2012-01-01

    Yttrium oxide is resistant to corrosion by molten uranium and its alloys. Yttrium oxide is recommended as a protective oxide layer on graphite and metal components used for melting and processing uranium and its alloys. This paper presents studies on the efficacy of plasma sprayed yttrium oxide coatings for barrier applications against molten uranium

  6. Graphene Oxide Bionanocomposite Coatings with High Oxygen Barrier Properties

    Directory of Open Access Journals (Sweden)

    Ilke Uysal Unalan

    2016-12-01

    Full Text Available In this work, we present the development of bionanocomposite coatings on poly(ethylene terephthalate (PET with outstanding oxygen barrier properties. Pullulan and graphene oxide (GO were used as main polymer phase and nanobuilding block (NBB, respectively. The oxygen barrier performance was investigated at different filler volume fractions (ϕ and as a function of different relative humidity (RH values. Noticeably, the impermeable nature of GO was reflected under dry conditions, in which an oxygen transmission rate (OTR, mL·m−2·24 h−1 value below the detection limit of the instrument (0.01 mL·m−2·24 h−1 was recorded, even for ϕ as low as 0.0004. A dramatic increase of the OTR values occurred in humid conditions, such that the barrier performance was totally lost at 90% RH (the OTR of coated PET films was equal to the OTR of bare PET films. Modelling of the experimental OTR data by Cussler’s model suggested that the spatial ordering of GO sheets within the main pullulan phase was perturbed because of RH fluctuations. In spite of the presence of the filler, all the formulations allowed the obtainment of final materials with haze values below 3%, the only exception being the formulation with the highest loading of GO (ϕ ≈ 0.03. The mechanisms underlying the experimental observations are discussed.

  7. Microstructural characterization of thermal barrier coating on Inconel 617 after high temperature oxidation

    Directory of Open Access Journals (Sweden)

    Mohammadreza Daroonparvar

    2013-06-01

    Full Text Available A turbine blade was protected against high temperature corrosion and oxidation by thermal barrier coatings (TBCsusing atmospheric plasma spraying technique (APS on a Ni-based superalloy (Inconel 617. The coatings (NiCr6AlY/ YSZ and NiCr10AlY/YSZ consist of laminar structure with substantial interconnected porosity transferred oxygen from Yittria stabilized Zirconia (YSZ layer toward the bond coat (NiCrAlY. Hence, a thermally grown oxide layer (TGO was formed on the metallic bond coat and internal oxidation of the bond coat occurred during oxidation. The TBC systems were oxidized in a normal electrically heated furnace at 1150 °C for 18, 22, 26, 32 and 40h.Microstructural characterization of coatings demonstrated that the growth of the TGO layer on the nickel alloy with 6wt. % Al is more rapid than TGO with 10wt. % Al. In addition, many micro-cracks were observed at the interface of NiCr6AlY/YSZ. X-ray diffraction analysis (XRD showed the existence of detrimental oxides such as NiCr2O4, NiCrO3 and NiCrO4 in the bond coat containing 6wt. % Al, accompanied by rapid volume expansion causing the destruction of TBC. In contrast, in the bond coat with 10wt. % Al, NiO, Al2O3and Cr2O3 oxides were formed while very low volume expansion occurred. The oxygen could not penetrate into the TGO layer of bond coat with 10 wt. % Al during high temperature oxidation and the detrimental oxides were not extensively formed within the bond coat as more oxygen was needed. The YSZ with higher Al content showed higher oxidation resistance.

  8. Isothermal and dynamic oxidation behaviour of Mo-W doped carbon-based coating

    Science.gov (United States)

    Mandal, Paranjayee; Ehiasarian, Arutiun P.; Hovsepian, Papken Eh.

    2015-10-01

    The oxidation behaviour of Mo-W doped carbon-based coating (Mo-W-C) is investigated in elevated temperature (400-1000 °C). Strong metallurgical bond between Mo-W-C coating and substrate prevents any sort of delamination during heat-treatment. Isothermal oxidation tests show initial growth of metal oxides at 500 °C, however graphitic nature of the as-deposited coating is preserved. The oxidation progresses with further rise in temperature and the substrate is eventually exposed at 700 °C. The performance of Mo-W-C coating is compared with a state-of-the-art DLC(Cr/Cr-WC/W:C-H/a:C-H) coating, which shows preliminary oxidation at 400 °C and local delamination of the coating at 500 °C leading to substrate exposure. The graphitisation starts at 400 °C and the diamond-like structure is completely converted into the graphite-like structure at 500 °C. Dynamic oxidation behaviour of both the coatings is investigated using Thermo-gravimetric analysis carried out with a slow heating rate of 1 °C/min from ambient temperature to 1000 °C. Mo-W-C coating resists oxidation up to ˜800 °C whereas delamination of DLC(Cr/Cr-WC/W:C-H/a:C-H) coating is observed beyond ˜380 °C. In summary, Mo-W-C coating provides improved oxidation resistance at elevated temperature compared to DLC(Cr/Cr-WC/W:C-H/a:C-H) coating.

  9. Plasma Spray and Pack Cementation Process Optimization and Oxidation Behaviour of Novel Multilayered Coatings

    Science.gov (United States)

    Gao, Feng

    The hot section components in gas turbines are subjected to a harsh environment with the temperature being increased continuously. The higher temperature has directly resulted in severe oxidation of these components. Monolithic coatings such as MCrAIY and aluminide have been traditionally used to protect the components from oxidation; however, increased operating temperature quickly deteriorates the coatings due to accelerated diffusion of aluminum in the coatings. To improve the oxidation resistance a group of multilayered coatings are developed in this study. The multilayered coatings consist of a Cr-Si co-deposited layer as the diffusion barrier, a plasma sprayed NiCrA1Y coating as the middle layer and an aluminized top layer. The Cr-Si and aluminized layers are fabricated using pack cementation processes and the NiCrA1Y coatings are produced using the Mettech Axial III(TM) System. All of the coating processes are optimized using the methodology of Design of Experiments (DOE) and the results are analyzed using statistical method. The optimal processes are adopted to fabricate the multilayered coatings for oxidation tests. The coatings are exposed in air at 1050°C and 1150°C for 1000 hr. The results indicate that a Cr layer and a silicon-rich barrier layer have formed on the interface between the Cr-Si coating and the NiCrA1Y coating. This barrier layer not only prevents aluminum and chromium from diffusing into the substrate, but also impedes the diffusion of other elements from the substrate into the coating. The results also reveal that, for optimal oxidation resistance at 1050°C, the top layer in a multilayered coating should have at least Al/Ni ratio of one; whereas the multilayered coating with the All Ni ratio of two in the top layer exhibits the best oxidation resistance at 1150°C. The DOE methodology provides an excellent means for process optimization and the selection of oxidation test matrix, and also offers a more thorough understanding of the

  10. Preferred hydride growth orientations on oxide-coated gadolinium surfaces

    International Nuclear Information System (INIS)

    Benamar, G.M.; Schweke, D.; Kimmel, G.; Mintz, M.H.

    2012-01-01

    Highlights: ► The preferred hydride growth orientations on gadolinium metal coated by a thin oxide layer are presented. ► A preferred growth of the (1 0 0) h plane of the face centered cubic (FCC) GdH 2 is observed for the hydride spots forming below the oxidation layer. ► A change to the (1 1 1) h plane of the cubic hydride dominates for the hydride's Growth Centers. ► The texture change is attributed to the surface normal compressive stress component exerted by the oxidation layer on the developing hydride. - Abstract: The initial development of hydrides on polycrystalline gadolinium (Gd), as on some other hydride forming metals, is characterized by two sequential steps. The first step involves the rapid formation of a dense pattern of small hydride spots (referred to as the “small family” of hydrides) below the native oxidation layer. The second stage takes place when some of the “small family” nucleants (referred to as “growth centers”, GCs) break the oxide layer, leading to their rapid growth and finally to the massive hydriding of the sample. In the present study, the texture of the two hydride families was studied, by combining X-ray diffraction (XRD) analysis with a microscopic analysis of the hydride, using scanning electron microscopy (SEM) and atomic force microscopy (AFM). It has been observed that for the “small family”, a preferred growth of the (1 0 0) h plane of the cubic GdH 2 takes place, whereas for the GCs, a change to the (1 1 1) h plane of the cubic hydride dominates. These preferred growth orientations were analyzed by their structure relation with the (0 0 .1) m basal plane of the Gd metal. It has been concluded that the above texture change is due to the surface normal compressive stress component exerted by the oxidation overlayer on the developing hydride, preventing the (0 0 .1) m ||(1 1 1) h growth orientation. This stress is relieved upon the rupture of that overlayer and the development of the GCs, leading to

  11. The oxidation behavior of classical thermal barrier coatings exposed to extreme temperature

    Directory of Open Access Journals (Sweden)

    Alina DRAGOMIRESCU

    2017-03-01

    Full Text Available Thermal barrier coatings (TBC are designed to protect metal surfaces from extreme temperatures and improve their resistance to oxidation during service. Currently, the most commonly used systems are those that have the TBC structure bond coat (BC / top coat (TC layers. The top coat layer is a ceramic layer. Oxidation tests are designed to identify the dynamics of the thermally oxide layer (TGO growth at the interface of bond coat / top coat layers, delamination mechanism and the TBC structural changes induced by thermal conditions. This paper is a short study on the evolution of aluminum oxide protective layer along with prolonged exposure to the testing temperature. There have been tested rectangular specimens of metal super alloy with four surfaces coated with a duplex thermal barrier coating system. The specimens were microscopically and EDAX analyzed before and after the tests. In order to determine the oxide type, the samples were analyzed using X-ray diffraction. The results of the investigation are encouraging for future studies. The results show a direct relationship between the development of the oxide layer and long exposure to the test temperature. Future research will focus on changing the testing temperature to compare the results.

  12. Viability of oxide fiber coatings in ceramic composites for accommodation of misfit stresses

    International Nuclear Information System (INIS)

    Kerans, R.J.

    1996-01-01

    The C and BN fiber coatings used in most ceramic composites perform a less obvious but equally essential function, in addition to crack deflection; they accommodate misfit stresses due to interfacial fracture surface roughness. Coatings substituted for them must also perform that function to be effective. However, in general, oxides are much less compliant materials than C and BN, which raises the question of the feasibility of oxide substitutes. The viability of oxide coatings for accommodating misfit stresses in Nicalon fiber/SiC composites was investigated by calculating the maximum misfit stresses as functions of coating properties and geometries. Control of interfacial fracture path was also briefly considered. The implications regarding composite properties were examined by calculating properties for composites with mechanically viable oxide coatings

  13. Effect of oxidation on the wear behavior of a ZrN coating

    Energy Technology Data Exchange (ETDEWEB)

    Atar, E. [Gebze Inst. of Tech., Material Science and Engineering Dept., Kocaeli (Turkey); Cimenoglu, H.; Kayali, E.S. [Istanbul Technical Univ., Dept. of Metallurgy and Materials Engineering, Azazaga, Istanbul (Turkey)

    2005-07-01

    In the present study tribological performance of ZrN coatings deposited on hardened AISI D2 quality cold work tool steel by arc-physical vapor deposition technique has been examined in as-deposited and oxidized conditions. ZrN coatings were oxidized at 400 C for various times up to 12 h. Reciprocating wear tests carried out by rubbing Al{sub 2}O{sub 3} balls on the coatings, revealed significant improvement in wear resistance of ZrN coating upon oxidation. Oxidation treatment at 400 C for 12 h yielded seven times higher wear resistance than as-deposited ZrN coating, beside significant reduction in the wear of counterface (Al{sub 2}O{sub 3} ball). (orig.)

  14. Effect of oxidation on the wear behavior of a ZrN coating

    International Nuclear Information System (INIS)

    Atar, E.; Cimenoglu, H.; Kayali, E.S.

    2005-01-01

    In the present study tribological performance of ZrN coatings deposited on hardened AISI D2 quality cold work tool steel by arc-physical vapor deposition technique has been examined in as-deposited and oxidized conditions. ZrN coatings were oxidized at 400 C for various times up to 12 h. Reciprocating wear tests carried out by rubbing Al 2 O 3 balls on the coatings, revealed significant improvement in wear resistance of ZrN coating upon oxidation. Oxidation treatment at 400 C for 12 h yielded seven times higher wear resistance than as-deposited ZrN coating, beside significant reduction in the wear of counterface (Al 2 O 3 ball). (orig.)

  15. Influence of boron oxide on protective properties of zinc coating on steel

    International Nuclear Information System (INIS)

    Alimov, V.I.; Berezin, A.V.

    1986-01-01

    The authors study the properties of zinc coating when boron oxide is added to the melt for galvanization. The authors found that a rise in the degree of initial deformation of the steel leads to the production of varying thickness of the zinc coating. The results show the favorable influence of small amounts of added boron oxide on the corrosion resistance of a zinc coating on cold-deformed high-carbon steel; this influence is also manifested in the case of deformation of the zinc coating itself

  16. Study on the efficiency of ceramic coating for avoiding oxidation in carbon refractories

    International Nuclear Information System (INIS)

    Santos, I.M.G.; Cruz Junior, F.; Paskocimas, C.A.; Leite, E.R.; Longo, Elson; Varela, J.A.

    1997-01-01

    A ceramic coating made of sodium phosphossilicate and clay was developed to the protection of refractories against carbon oxidation during the pre-heating of siderurgical equipment. This search has the objective of comparing the refractory behaviour with and without coating, according to temperature, time and atmosphere. The results show that the coating is more efficient at higher temperatures. An important point is that the efficiency is smaller after long thermal is that the efficiency is smaller after long thermal treatments and at very aggressive conditions. In spite of this the oxidation is still smaller than in refractory without coating. (author)

  17. High temperature oxidation behaviour of nanostructured cermet coatings in a mixed CO2 - O2 environment

    Science.gov (United States)

    Farrokhzad, M. A.; Khan, T. I.

    2014-06-01

    Nanostructured ceramic-metallic (cermet) coatings composed of nanosized ceramic particles (α-Al2O3 and TiO2) dispersed in a nickel matrix were co-electrodeposited and then oxidized at 500°C, 600°C and 700°C in a mixed gas using a Thermo-gravimetric Analysis (TGA) apparatus. The mixed gas was composed of 15% CO2, 10% O2 and 75% N2. This research investigates the effects of CO2 and O2 partial pressures on time-depended oxidation rates for coatings and compared them to the results from atmospheric oxidation under similar temperatures. The increase in partial pressure of oxygen due to the presence of CO2 at each tested temperature was calculated and correlated to the oxidation rate of the coatings. The results showed that the presence of CO2 in the system increased the oxidation rate of cermet coatings when compared to atmospheric oxidation at the same temperature. It was also shown that the increase in the oxidation rate is not the result of CO2 acting as the primary oxidant but as a secondary oxidant which results in an increase of the total partial pressure of oxygen and consequently higher oxidation rates. The WDS and XRD analyses results showed that the presence of nanosized TiO2 particles in a nickel matrix can improve oxidation behaviour of the coatings by formation of Ni-Ti compounds on oxidizing surface of the coating which was found beneficiary in reducing the oxidation rates for cermet coatings.

  18. New oxide-composite coatings for difficult metal-cutting tasks

    International Nuclear Information System (INIS)

    Westphal, H.; Berg, H. van den; Sottke, V.; Tabersky, R.

    2001-01-01

    The changes in today's metal working technology are driven by increasing cutting speeds, heavy/hard machining and an enormous amount by changes in work piece materials. These applications are asking for more tailor made cutting tool solutions. Together with the well established multi component coating technology a new approach of composite coatings is giving solutions for the tough demands of the cutting tool market. In this paper is presented composite coatings of AI 2 O 3 /ZrO-2/TiO x made by CVD. The coating is like high performance oxide ceramics for cutting applications. The coating is used in combination with MT CVD coatings and different carbide substrates. The CVD coating has optimum stress for cutting applications, low friction and very high thermal isolation. The outstanding performance of this coating is demonstrated in different applications. (author)

  19. Microstructural, mechanical and oxidation features of NiCoCrAlY coating produced by plasma activated EB-PVD

    International Nuclear Information System (INIS)

    He, Jian; Guo, Hongbo; Peng, Hui; Gong, Shengkai

    2013-01-01

    NiCoCrAlY coatings produced by electron beam-physical vapor deposition (EB-PVD) have been extensively used as the oxidation resistance coatings or suitable bond coats in thermal barrier coating (TBC) system. However, the inherent imperfections caused by EB-PVD process degrade the oxidation resistance of the coatings. In the present work, NiCoCrAlY coatings were creatively produced by plasma activated electron beam-physical vapor deposition (PA EB-PVD). The novel coatings showed a terraced substructure on the surface of each grain due to the increased energy of metal ions and enhanced mobility of adatoms. Also a strong (1 1 1) crystallographic texture of γ/γ′ grains was observed. The toughness of the coatings got remarkably improved compared with the coatings deposited by conventional EB-PVD and the oxidation behavior at 1373 K showed that the novel coatings had excellent oxidation resistance. The possible mechanism was finally discussed.

  20. Cyclic oxidation behavior of plasma sprayed NiCrAlY/WC-Co/cenosphere coating

    Science.gov (United States)

    Mathapati, Mahantayya; Ramesh M., R.; Doddamani, Mrityunjay

    2018-04-01

    Components working at elevated temperature like boiler tubes of coal and gas fired power generation plants, blades of gas and steam turbines etc. experience degradation owing to oxidation. Oxidation resistance of such components can be increased by developing protective coatings. In the present investigation NiCrAlY-WC-Co/Cenosphere coating is deposited on MDN 321 steel substrate using plasma spray coating. Thermo cyclic oxidation behavior of coating and substrate is studied in static air at 600 °C for 20 cycles. The thermo gravimetric technique is used to approximate the kinetics of oxidation. X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), Energy Dispersive Spectroscopy (EDS) and X-ray mapping techniques are used to characterize the oxidized samples. NiCrAlY-WC-Co/Cenosphere coating exhibited lower oxidation rate in comparison to MDN 321 steel substrate. The lower oxidation rate of coating is attributed to formation of Al2O3, Cr2O3, NiO and CoWO4 oxides on the outermost surface.

  1. Coating of tips for electrochemical scanning tunneling microscopy by means of silicon, magnesium, and tungsten oxides

    Science.gov (United States)

    Salerno, Marco

    2010-09-01

    Different combinations of metal tips and oxide coatings have been tested for possible operation in electrochemical scanning tunneling microscopy. Silicon and magnesium oxides have been thermally evaporated onto gold and platinum-iridium tips, respectively. Two different thickness values have been explored for both materials, namely, 40 and 120 nm for silicon oxide and 20 and 60 nm for magnesium oxide. Alternatively, tungsten oxide has been grown on tungsten tips via electrochemical anodization. In the latter case, to seek optimal results we have varied the pH of the anodizing electrolyte between one and four. The oxide coated tips have been first inspected by means of scanning electron microscopy equipped with microanalysis to determine the morphological results of the coating. Second, the coated tips have been electrically characterized ex situ for stability in time by means of cyclic voltammetry in 1 M aqueous KCl supporting electrolyte, both bare and supplemented with K3[Fe(CN)6] complex at 10 mM concentration in milliQ water as an analyte. Only the tungsten oxide coated tungsten tips have shown stable electrical behavior in the electrolyte. For these tips, the uncoated metal area has been estimated from the electrical current levels, and they have been successfully tested by imaging a gold grating in situ, which provided stable results for several hours. The successful tungsten oxide coating obtained at pH=4 has been assigned to the WO3 form.

  2. Biocompatibility of Ir/Ti-oxide coatings: Interaction with platelets, endothelial and smooth muscle cells

    Science.gov (United States)

    Habibzadeh, Sajjad; Li, Ling; Omanovic, Sasha; Shum-Tim, Dominique; Davis, Elaine C.

    2014-05-01

    Applying surface coatings on a biomedical implant is a promising modification technique which can enhance the implant's biocompatibility via controlling blood constituents- or/and cell-surface interaction. In this study, the influence of composition of IrxTi1-x-oxide coatings (x = 0, 0.2, 0.4, 0.6, 0.8, 1) formed on a titanium (Ti) substrate on the responses of platelets, endothelial cells (ECs) and smooth muscle cells (SMCs) was investigated. The results showed that a significant decrease in platelet adhesion and activation was obtained on Ir0.2Ti0.8-oxide and Ir0.4Ti0.6-oxide coatings, rendering the surfaces more blood compatible, in comparison to the control (316L stainless steel, 316L-SS) and other coating compositions. Further, a substantial increase in the EC/SMC surface count ratio after 4 h of cell attachment to the Ir0.2Ti0.8-oxide and Ir0.4Ti0.6-oxide coatings, relative to the 316L-SS control and the other coating compositions, indicated high potential of these coatings for the enhancement of surface endothelialization. This indicates the capability of the corresponding coating compositions to promote EC proliferation on the surface, while inhibiting that of SMCs, which is important in cardiovascular stents applications.

  3. Studies on broad spectrum corrosion resistant oxide coatings

    Indian Academy of Sciences (India)

    Unknown

    Corrosion resistant coating materials and their application ... technology demand such corrosion resistant coatings having a ... mill additives used are as follows: China clay, 3⋅0–10⋅0; .... stage involves modification in processing of the deve-.

  4. High Transparent Metal Oxide / Polyimide Antistatic Coatings, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA requires clear antistatic coatings that can withstand exposure to the rigors of the space environment. Agiltron proposes a coating consisting of inorganic...

  5. Cyclic oxidation of coated Oxide Dispersion Strengthened (ODS) alloys in high velocity gas streams at 1100 deg C

    Science.gov (United States)

    Gedwill, M. A.

    1978-01-01

    Several overlay coatings on ODS NiCrAl's were tested in Mach 1 and Mach 0.3 burner rigs to examine oxidation and thermal fatigue performance. The coatings were applied by various methods. Based on weight change, macroscopic, and metallographic observations in Mach 1 tests Nascoat 70 on TD-NiCrAl exhibited the best oxidation resistance. In Mach 0.3 tests PWA 267 and ATD-1, about equally, were the best coatings on YD-NiCrAl (Nascoat 70 was not tested in Mach 0.3 rigs).

  6. Role of oxides and porosity on high temperature oxidation of liquid fuelled HVOF thermal sprayed Ni50Cr coatings

    OpenAIRE

    Song, B.; Bai, M.; Voisey, K.T.; Hussain, Tanvir

    2017-01-01

    High chromium content in Ni50Cr thermally sprayed coatings can generate a dense and protective scale at the surface of coating. Thus, the Ni50Cr coating is widely used in high temperature oxidation and corrosion applications. A commercially available gas atomized Ni50Cr powder was sprayed onto a power plant steel (ASME P92) using a liquid fuelled high velocity oxy-fuel (HVOF) thermal spray with three processing parameters in this study. Microstructure of as-sprayed coatings was examined using...

  7. Crystallization and deuterium permeation behaviors of yttrium oxide coating prepared by metal organic decomposition

    Directory of Open Access Journals (Sweden)

    Takumi Chikada

    2016-12-01

    Full Text Available Yttrium oxide coatings were fabricated on reduced activation ferritic/martensitic steels by metal organic decomposition with a dip-coating technique, and their deuterium permeation behaviors were investigated. The microstructure of the coatings varied with heat-treatment temperature: amorphous at 670ºC (amorphous coating and crystallized at 700ºC (crystallized coating. Deuterium permeation flux of the amorphous coating was lower than the uncoated steel by a factor of 5 at 500ºC, while that of the crystallized coating was lower by a factor of around 100 at 400‒550ºC. The permeation fluxes of both coatings were drastically decreased during the measurements at higher temperatures by a factor of up to 790 for the amorphous coating and 1000 for the crystallized one, indicating a microstructure modification occurred by an effect of test temperature with hydrogen flux. Temperature dependence of deuterium diffusivity in the coatings suggests that the decrease of the permeation flux has been derived from a decrease of the diffusivity. Characteristic permeation behaviors were observed with different annealing conditions; however, they can be interpreted using the permeation mechanism clarified in the previous erbium oxide coating studies.

  8. Robust superhydrophobic tungsten oxide coatings with photochromism and UV durability properties

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Ting [Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, 430062 (China); State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000 (China); Guo, Zhiguang, E-mail: zguo@licp.cas.cn [Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, 430062 (China); State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000 (China)

    2016-11-30

    Highlights: • Superhydrophobic tungsten oxide (TO) coatings with a water contact angle (WCA) of 155° and rolling angle of 3.5° were developed. • The superhydrophobic coatings have excellent mechanical robustness and UV durability. • The superhydrophobic TO coatings show the reversible convert of photochromism. • The coating exhibited excellent self-cleaning behavior due to its high WCA and low rolling angle. - Abstract: Robust superhydrophobic tungsten oxide (TO) coatings with a water contact angle (WCA) of 155° were developed for photochromism via a facile and substrate-independent route. Importantly, after scatch test on both a single and two orthogonal direction, the TO coating still exhibited superhydrophobic behavior, indicating excellent mechanical robustness. It is worth mentioning that the superhydrophobic TO coatings showed the reversible convert of photochromism of WO{sub 3} induced by alternating UV and visible light irradiation. Besides that, the TO coating remained superhydrophobicity after UV irradiation for 36 h, showing excellent UV durability. In addition, the coating showed good resistance to acidic droplets. Moreover, it can also be applied on other substrates, such as copper mesh, steel, paper and fiber. The coating exhibited excellent self-cleaning behavior due to its high WCA and low rolling angle. Overall, this work is a promising approach to design and produce functional superhydrophobic coatings for various substrates.

  9. Microstructural and electrical characterization of Mn-Co spinel protective coatings for solid oxide cell interconnects

    DEFF Research Database (Denmark)

    Molin, S.; Sabato, A. G.; Bindi, M.

    2017-01-01

    Electrophoretic deposition, thermal co-evaporation and RF magnetron sputtering methods are used for the preparation of Mn-Co based ceramic coatings for solid oxide fuel cell steel interconnects. Both thin and relatively thick coatings (1–15 μm) are prepared and characterised for their potential...... protective behaviour. Mn-Co coated Crofer22APU samples are electrically tested for 5000 h at 800 °C under a 500 mA cm−2 current load to determine their Area Specific Resistance increase due to a growing chromia scale. After tests, samples are analysed by scanning and transmission electron microscopy....... Analysis is focused on the potential chromium diffusion to or through the coating, the oxide scale thickness and possible reactions at the interfaces. The relationships between the coating type, thickness and effectiveness are reviewed and discussed. Out of the three Mn-Co coatings compared in this study...

  10. Rapid thermal processing of nano-crystalline indium tin oxide transparent conductive oxide coatings on glass by flame impingement technology

    International Nuclear Information System (INIS)

    Schoemaker, S.; Willert-Porada, M.

    2009-01-01

    Indium tin oxide (ITO) is still the best suited material for transparent conductive oxides, when high transmission in the visible range, high infrared reflection or high electrical conductivity is needed. Current approaches on powder-based printable ITO coatings aim at minimum consumption of active coating and low processing costs. The paper describes how fast firing by flame impingement is used for effective sintering of ITO-coatings applied on glass. The present study correlates process parameters of fast firing by flame impingement with optoelectronic properties and changes in the microstructure of suspension derived nano-particulate films. With optimum process parameters the heat treated coatings had a sheet resistance below 0.5 kΩ/ □ combined with a transparency higher than 80%. To characterize the influence of the burner type on the process parameters and the coating functionality, two types of methane/oxygen burner were compared: a diffusion burner and a premixed burner

  11. Antibacterial properties and cytocompatibility of tantalum oxide coatings with different silver content

    International Nuclear Information System (INIS)

    Huang, Heng-Li; Chang, Yin-Yu; Chen, Hung-Jui; Chou, Yu-Kai; Lai, Chih-Ho; Chen, Michael Y. C.

    2014-01-01

    Tantalum (Ta) oxides and their coatings have been proved to increase their applications in the biomedical fields by improving osseointegration and wear resistance. In this study, Ta oxide coatings containing different proportions of Ag are deposited on SS304 materials. A twin-gun magnetron sputtering system is used to deposit the tantalum oxide-Ag coating. In this study, Staphylococcus aureus, which exhibits physiological commensalism on the human skin, nares, and mucosal and oral areas, is chosen as the model for in vitro antibacterial analyses via a fluorescence staining method using Syto9. The cytocompatibility and adhesive morphology of human skin fibroblast cells (CCD-966SK) on the coatings are also determined by using the microculture tetrazolium assay. This study shows that Ta 2 O 5 and Ta 2 O 5 -Ag coatings with 12.5 at. % of Ag exhibit improved antibacterial effects against S. aureus and have good skin fibroblast cell cellular biocompatibility

  12. Formation of a Spinel Coating on AZ31 Magnesium Alloy by Plasma Electrolytic Oxidation

    Science.gov (United States)

    Sieber, Maximilian; Simchen, Frank; Scharf, Ingolf; Lampke, Thomas

    2016-03-01

    Plasma electrolytic oxidation (PEO) is a common means for the surface modification of light metals. However, PEO of magnesium substrates in dilute electrolytes generally leads to the formation of coatings consisting of unfavorable MgO magnesium oxide. By incorporation of electrolyte components, the phase constitution of the oxide coatings can be modified. Coatings consisting exclusively of MgAl2O4 magnesium-aluminum spinel are produced by PEO in an electrolyte containing hydroxide, aluminate, and phosphate anions. The hardness of the coatings is 3.5 GPa on Martens scale on average. Compared to the bare substrate, the coatings reduce the corrosion current density in dilute sodium chloride solution by approx. one order of magnitude and slightly shift the corrosion potential toward more noble values.

  13. Microstructure, mechanical properties and oxidation behaviors of magnetron sputtered NbN{sub x} coatings

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Zhengbing, E-mail: zbqi@xmut.edu.cn [College of Materials Science and Engineering, Xiamen University of Technology, Xiamen (China); Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen (China); Wu, Zhengtao; Zhang, Dongfang [Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen (China); Zuo, Juan [College of Materials Science and Engineering, Xiamen University of Technology, Xiamen (China); Wang, Zhoucheng, E-mail: zcwang@xmu.edu.cn [Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen (China)

    2016-08-05

    Mechanical properties and oxidation resistance are of importance for the NbN{sub x} coatings as used in cutting and forming tools. In this study, the NbN{sub x} coatings were deposited by magnetron sputtering at nitrogen partial pressure ranging from 0 to 40%. The chemical and phase compositions, morphologies, mechanical properties and oxidation behaviors of the NbN{sub x} coatings were investigated by electron probe microanalysis, X-ray photoelectron spectroscopy, grazing incidence X-ray diffraction, scanning and transmission electron microscopy, and nanoindentation measurements. The results reveal the composition evolution of the NbN{sub x} coatings as α-Nb (0%), β-Nb{sub 2}N (5%), a mixture of β-Nb{sub 2}N and δ-NbN (10%), and δ-NbN (20–40%). The single phase coatings exhibit columnar structure while the mixed phases coating shows nano-composite structure. Compared with the single phase δ-NbN coatings (21.6 ± 0.8–28.0 ± 1.2 GPa), higher hardness of the single phase β-Nb{sub 2}N coating (30.9 ± 1.0 GPa) is due to the higher covalent character and much finer grains. The maximum hardness reaches 33.3 ± 1.5 GPa for the nano-composite coating with mixed phases of β-Nb{sub 2}N and δ-NbN. The oxidation results demonstrate that the activation energies are 219.3 and 192.3 kJ/mol for the Nb{sub 2}N and NbN coatings respectively. Non-protective Nb{sub 2}O{sub 5} scales with cracks and pores result in poorer oxidation resistance of the NbN coating in comparison to the Nb{sub 2}N coating. - Highlights: • Chemical and phase compositions and microstructure of NbN{sub x} coatings were investigated. • Maximum hardness is obtained for nano-composite coating with mixed Nb{sub 2}N and NbN phases. • Activation energies are 219.3 and 192.3 kJ/mol for oxidation of Nb{sub 2}N and NbN coatings. • Non-protective Nb{sub 2}O{sub 5} scales with cracks and pores lower oxidation resistance of NbN coating.

  14. Microstructure, mechanical properties and oxidation behaviors of magnetron sputtered NbN_x coatings

    International Nuclear Information System (INIS)

    Qi, Zhengbing; Wu, Zhengtao; Zhang, Dongfang; Zuo, Juan; Wang, Zhoucheng

    2016-01-01

    Mechanical properties and oxidation resistance are of importance for the NbN_x coatings as used in cutting and forming tools. In this study, the NbN_x coatings were deposited by magnetron sputtering at nitrogen partial pressure ranging from 0 to 40%. The chemical and phase compositions, morphologies, mechanical properties and oxidation behaviors of the NbN_x coatings were investigated by electron probe microanalysis, X-ray photoelectron spectroscopy, grazing incidence X-ray diffraction, scanning and transmission electron microscopy, and nanoindentation measurements. The results reveal the composition evolution of the NbN_x coatings as α-Nb (0%), β-Nb_2N (5%), a mixture of β-Nb_2N and δ-NbN (10%), and δ-NbN (20–40%). The single phase coatings exhibit columnar structure while the mixed phases coating shows nano-composite structure. Compared with the single phase δ-NbN coatings (21.6 ± 0.8–28.0 ± 1.2 GPa), higher hardness of the single phase β-Nb_2N coating (30.9 ± 1.0 GPa) is due to the higher covalent character and much finer grains. The maximum hardness reaches 33.3 ± 1.5 GPa for the nano-composite coating with mixed phases of β-Nb_2N and δ-NbN. The oxidation results demonstrate that the activation energies are 219.3 and 192.3 kJ/mol for the Nb_2N and NbN coatings respectively. Non-protective Nb_2O_5 scales with cracks and pores result in poorer oxidation resistance of the NbN coating in comparison to the Nb_2N coating. - Highlights: • Chemical and phase compositions and microstructure of NbN_x coatings were investigated. • Maximum hardness is obtained for nano-composite coating with mixed Nb_2N and NbN phases. • Activation energies are 219.3 and 192.3 kJ/mol for oxidation of Nb_2N and NbN coatings. • Non-protective Nb_2O_5 scales with cracks and pores lower oxidation resistance of NbN coating.

  15. Comparison of iron and copper doped manganese cobalt spinel oxides as protective coatings for solid oxide fuel cell interconnects

    DEFF Research Database (Denmark)

    Talic, Belma; Molin, Sebastian; Wiik, Kjell

    2017-01-01

    MnCo2O4, MnCo1.7Cu0.3O4 and MnCo1.7Fe0.3O4 are investigated as coatings for corrosion protection of metallic interconnects in solid oxide fuel cell stacks. Electrophoretic deposition is used to deposit the coatings on Crofer 22 APU alloy. All three coating materials reduce the parabolic oxidation...... rate in air at 900 °C and 800 °C. At 700 °C there is no significant difference in oxidation rate between coated samples and uncoated pre-oxidized Crofer 22 APU. The cross-scale area specific resistance (ASR) is measured in air at 800 °C using La0.85Sr0.1Mn1.1O3 (LSM) contact plates to simulate...... contain significant amounts of Cr after aging, while all three coatings effectively prevent Cr diffusion into the LSM. A complex Cr-rich reaction layer develops at the coating-alloy interface during oxidation. Cu and Fe doping reduce the extent of this reaction layer at 900 °C, while at 800 °C the effect...

  16. Static and dynamic oxidation of Ti-14Al-21Nb and coatings

    International Nuclear Information System (INIS)

    Wiedemann, K.E.; Sankaran, S.N.; Clark, R.K.; Wallace, T.A.

    1988-01-01

    This paper reports the oxidation of Ti-14Al-21Nb (wt.%) studied under static conditions at 649 to 1093 degrees C for as long as 120 hr. and under simulated hypersonic flight (dynamic oxidation) conditions at 982 degrees C for as many as 16 half-hour cycles. Under simulated hypersonic flight conditions heavy oxidation and spalling of the oxide was observed. It was concluded that titanium aluminides used in hypersonic applications must have oxidation protective coatings. In this preliminary study coatings about one micrometer thick were applied by sputter deposition, form solutions, and from sol-gels. The materials applied by sputter deposition were oxides or fluorides thought to be stable against the metal and the materials applied from solutions and sol-gels were generally glass-formers and were intended for use in the final coating formulation as topcoats to the sputter-deposited coatings. Form weight gain and cross-sectional microscopy of the coated materials after oxidation exposure for 1 hr at 982 degrees C, it was found that because of cracks and porosity the sputter-deposited coatings did not have sufficient film integrity to shield the alloy

  17. Characterization and mechanical properties of coatings on magnesium by micro arc oxidation

    International Nuclear Information System (INIS)

    Durdu, Salih; Usta, Metin

    2012-01-01

    Highlights: ► The commercial pure magnesium was coated by MAO in sodium silicate and sodium phosphate. ► Coatings produced in the phosphate electrolyte are thicker than ones in the silicate electrolyte. ► Coatings in the silicate electrolyte are harder than ones in the phosphate electrolyte. ► Adhesion strength of coatings increases with increasing coating thickness. ► The wear resistance of the coated commercial pure magnesium is improved. - Abstracts: The commercial pure magnesium was coated by micro arc oxidation method in different aqueous solution, containing sodium silicate and sodium phosphate. Micro arc oxidation process was carried out at 0.060 A/cm 2 , 0.085 A/cm 2 and 0.140 A/cm 2 current densities for 30 min. The thickness, phase composition, morphology, hardness, adhesion strength and wear resistance of coatings were analyzed by eddy current, X-ray diffraction (XRD), scanning electron microscope (SEM), micro hardness tester, scratch tester and ball-on disk tribometer, respectively. The average thicknesses of the micro arc oxidized coatings ranged from 27 to 48 μm for sodium silicate solution and from 45 to 75 μm for sodium phosphate solution. The dominant phases formed on the pure magnesium were found to be a mixture of spinel Mg 2 SiO 4 (Forsterite) and MgO (Periclase) for sodium silicate solution and Mg 3 (PO 4 ) 2 (Farringtonite) and MgO (Periclase) for sodium phosphate solution. The average hardnesses of the micro arc oxidized coatings were between 260 HV and 470 HV for sodium silicate solution and between 175 HV and 260 HV for sodium phosphate solution. Adhesion strengths and wear resistances of coatings produced in sodium silicate solution were higher than those of the ones in sodium phosphate solution due to high hardness of coatings produced in sodium silicate solution.

  18. Rhodium and Hafnium Influence on the Microstructure, Phase Composition, and Oxidation Resistance of Aluminide Coatings

    OpenAIRE

    Maryana Zagula-Yavorska; Małgorzata Wierzbińska; Jan Sieniawski

    2017-01-01

    A 0.5 μm thick layer of rhodium was deposited on the CMSX 4 superalloy by the electroplating method. The rhodium-coated superalloy was hafnized and aluminized or only aluminized using the Chemical vapour deposition method. A comparison was made of the microstructure, phase composition, and oxidation resistance of three aluminide coatings: nonmodified (a), rhodium-modified (b), and rhodium- and hafnium-modified (c). All three coatings consisted of two layers: the additive layer and the interdi...

  19. Comparison of iron and copper doped manganese cobalt spinel oxides as protective coatings for solid oxide fuel cell interconnects

    Science.gov (United States)

    Talic, Belma; Molin, Sebastian; Wiik, Kjell; Hendriksen, Peter Vang; Lein, Hilde Lea

    2017-12-01

    MnCo2O4, MnCo1.7Cu0.3O4 and MnCo1.7Fe0.3O4 are investigated as coatings for corrosion protection of metallic interconnects in solid oxide fuel cell stacks. Electrophoretic deposition is used to deposit the coatings on Crofer 22 APU alloy. All three coating materials reduce the parabolic oxidation rate in air at 900 °C and 800 °C. At 700 °C there is no significant difference in oxidation rate between coated samples and uncoated pre-oxidized Crofer 22 APU. The cross-scale area specific resistance (ASR) is measured in air at 800 °C using La0.85Sr0.1Mn1.1O3 (LSM) contact plates to simulate the interaction with the cathode in a SOFC stack. All coated samples have three times lower ASR than uncoated Crofer 22 APU after 4370 h aging. The ASR increase with time is lowest with the MnCo2O4 coating, followed by the MnCo1.7Fe0.3O4 and MnCo1.7Cu0.3O4 coatings. LSM plates contacted to uncoated Crofer 22 APU contain significant amounts of Cr after aging, while all three coatings effectively prevent Cr diffusion into the LSM. A complex Cr-rich reaction layer develops at the coating-alloy interface during oxidation. Cu and Fe doping reduce the extent of this reaction layer at 900 °C, while at 800 °C the effect of doping is insignificant.

  20. Steam oxidation and the evaluation of coatings and material performance through collaborative research

    Energy Technology Data Exchange (ETDEWEB)

    Fry, A.T. [National Physical Lab., Teddington (United Kingdom); Aguero, A. [INTA, Madrid (Spain)

    2010-07-01

    Over the last five years through the COST 536 Programme researchers across Europe have been collaborating to better understand the phenomena of steam oxidation and to characterise coated and uncoated materials for use in power plants. During this period fundamental study of the oxidation mechanisms and changes in the oxidation kinetics caused by the presence of steam have been undertaken. Materials covering a range of high temperature plant applications have been studied, from low alloy martensitic alloys through to Ni-based superalloy materials, with investigations into the effect of increasing temperatures and pressures on the oxidation kinetics, oxide morphology and spallation characteristics. In addition conventional and novel coatings have been evaluated to assess their potential use in new USC plant. This paper will present an overview of these activities demonstrating the effect that steam has on the oxidation of alloys and coatings. (orig.)

  1. Hydrogen diffusion along grain boundaries in erbium oxide coatings

    International Nuclear Information System (INIS)

    Mao, Wei; Chikada, Takumi; Suzuki, Akihiro; Terai, Takayuki

    2014-01-01

    Diffusion of interstitial atomic hydrogen in erbium oxide (Er 2 O 3 ) was investigated using density functional theory (DFT) and molecular dynamics (MD) methods. Hydrogen diffusivity in bulk, on (0 0 1) surface, and along Σ13 (4–3–1)/[1 1 1] symmetric tilt grain boundaries (GBs) were evaluated in a temperature range of 673–1073 K, as well as hydrogen diffusion barriers. It was found that H diffusion shows the faster on (0 0 1) surface than along GBs and in bulk. Also, energy barrier of H diffusion in bulk estimated by DFT and MD methods is somewhat higher than that along GBs evaluated in the experiments. This suggests that H diffusion in Er 2 O 3 coatings depends on GBs rather than bulk. In addition, with a correction of GB density, the simulated diffusivity along GBs in MD simulations is in good agreement with the experimental data within one order of magnitude. The discrepancy of H diffusivity between the experiments and the simulations should be reduced by considering H concentration, H diffusion direction, deviations of the initial configuration, vacancy defects, etc

  2. Anticoagulation and endothelial cell behaviors of heparin-loaded graphene oxide coating on titanium surface

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Chang-Jiang, E-mail: panchangjiang@hyit.edu.cn [Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai' an 223003 (China); Pang, Li-Qun [Department of General Surgery, Huai' an First People' s Hospital, Nanjing Medical University, Huai' an 223300 (China); Gao, Fei [Zhejiang Zylox Medical Devices Co., Ltd., Hangzhou 310000 (China); Wang, Ya-Nan; Liu, Tao; Ye, Wei; Hou, Yan-Hua [Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai' an 223003 (China)

    2016-06-01

    Owing to its unique physical and chemical properties, graphene oxide (GO) has attracted tremendous interest in many fields including biomaterials and biomedicine. The purpose of the present study is to investigate the endothelial cell behaviors and anticoagulation of heparin-loaded GO coating on the titanium surface. To this end, the titanium surface was firstly covered by the polydopamine coating followed by the deposition of the GO coating. Heparin was finally loaded on the GO coating to improve the blood compatibility. The results of attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) indicated that the heparin-loaded GO coating was successfully created on the titanium surface. The scanning electron microscopy (SEM) images indicated that a relative uniform GO coating consisting of multilayer GO sheets was formed on the substrate. The hydrophilicity of the titanium surface was enhanced after the deposition of GO and further improved significantly by the loading heparin. The GO coating can enhance the endothelial cell adhesion and proliferation as compared with polydopamine coating and the blank titanium. Loading heparin on the GO coating can significantly reduce the platelet adhesion and prolong the activated partial thromboplastin time (APTT) while not influence the endothelial cell adhesion and proliferation. Therefore, the heparin-loaded GO coating can simultaneously enhance the cytocompatibility to endothelial cells and blood compatibility of biomaterials. Because the polydopamine coating can be easily prepared on most of biomaterials including polymer, ceramics and metal, thus the approach of the present study may open up a new window of promising an effective and efficient way to promote endothelialization and improve the blood compatibility of blood-contact biomedical devices such as intravascular stents. - Highlights: • Heparin-loaded graphene oxide coating was

  3. Impact of structure and morphology of nanostructured ceria coating on AISI 304 oxidation kinetics

    International Nuclear Information System (INIS)

    Aadhavan, R.; Suresh Babu, K.

    2017-01-01

    Highlights: • Ceria coating reduced the oxidation kinetics of AISI304 by 3–4 orders. • Lower deposition rate (0.1 Å/s) resulted in dense and uniform coating. • Substrate temperature of 100 °C provided coating with smaller crystallite size. • Surface morphology of the coating has strong influence in oxidation protection. - Abstract: Nanostructured ceria-based coatings are shown to be protective against high-temperature oxidation of AISI 304 due to the dynamics of oxidation state and associated defects. However, the processing parameters of deposition have a strong influence in determining the structural and morphological aspects of ceria. The present work focuses on the effect of variation in substrate temperature (50–300 °C) and deposition rate (0.1–50 Å/s) of ceria in electron beam physical vapour evaporation method and correlates the changes in structure and morphology to high-temperature oxidation protection. Unlike deposition rate, substrate temperature exhibited a profound influence on crystallite size (7–18 nm) and oxygen vacancy concentration. Upon isothermal oxidation at 1243 K for 24 h, bare AISI 304 exhibited a linear mass gain with a rate constant of 3.0 ± 0.03 × 10"−"3 kg"2 m"−"4 s"−"1 while ceria coating lowered the kinetics by 3–4 orders. Though the thickness of the coating was kept constant at 2 μm, higher deposition rate offered one order lower protection due to the porous nature of the coating. Variation in the substrate temperature modulated the porosity as well as oxygen vacancy concentration and displayed the best protection for coatings deposited at moderate substrate temperature. The present work demonstrates the significance of selecting appropriate processing parameters to obtain the required morphology for efficient high-temperature oxidation protection.

  4. Impact of structure and morphology of nanostructured ceria coating on AISI 304 oxidation kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Aadhavan, R.; Suresh Babu, K., E-mail: sureshbabu.nst@pondiuni.edu.in

    2017-07-31

    Highlights: • Ceria coating reduced the oxidation kinetics of AISI304 by 3–4 orders. • Lower deposition rate (0.1 Å/s) resulted in dense and uniform coating. • Substrate temperature of 100 °C provided coating with smaller crystallite size. • Surface morphology of the coating has strong influence in oxidation protection. - Abstract: Nanostructured ceria-based coatings are shown to be protective against high-temperature oxidation of AISI 304 due to the dynamics of oxidation state and associated defects. However, the processing parameters of deposition have a strong influence in determining the structural and morphological aspects of ceria. The present work focuses on the effect of variation in substrate temperature (50–300 °C) and deposition rate (0.1–50 Å/s) of ceria in electron beam physical vapour evaporation method and correlates the changes in structure and morphology to high-temperature oxidation protection. Unlike deposition rate, substrate temperature exhibited a profound influence on crystallite size (7–18 nm) and oxygen vacancy concentration. Upon isothermal oxidation at 1243 K for 24 h, bare AISI 304 exhibited a linear mass gain with a rate constant of 3.0 ± 0.03 × 10{sup −3} kg{sup 2} m{sup −4} s{sup −1} while ceria coating lowered the kinetics by 3–4 orders. Though the thickness of the coating was kept constant at 2 μm, higher deposition rate offered one order lower protection due to the porous nature of the coating. Variation in the substrate temperature modulated the porosity as well as oxygen vacancy concentration and displayed the best protection for coatings deposited at moderate substrate temperature. The present work demonstrates the significance of selecting appropriate processing parameters to obtain the required morphology for efficient high-temperature oxidation protection.

  5. Improvements in or relating to refractory oxide protective coatings for fuel can

    International Nuclear Information System (INIS)

    Cairns, J.A.; Bennett, M.J.; Linacre, J.K.

    1981-01-01

    An improved coating for Advanced Gas Cooled Nuclear Reactor austenitic stainless steel fuel cans is described which, tests have shown, inhibits the deposition of carbon on the cans in carbon-containing ionising radiation environments. The coating comprises a refractory oxide which has been prepared by a vapour phase condensation method, in combination with a noble metal. (U.K.)

  6. Interdiffusion between Co3O4 coating and the oxide scale of Fe-22Cr alloy

    DEFF Research Database (Denmark)

    Hansson, Anette Nørgaard; Friehling, Peter B.; Linderoth, Søren

    2002-01-01

    on Fe-Cr alloys. Coatings of Co3O4 were deposited on a Fe-22Cr alloy by plasma spraying and spray-painting. As-deposited samples were oxidised in air containing 1% H2O at 900C for various exposure time. During exposure the Fe-22Cr alloy forms an oxide scale, which reacts with the coating. The effects...

  7. Turbostratic boron nitride coated on high-surface area metal oxide templates

    DEFF Research Database (Denmark)

    Klitgaard, Søren Kegnæs; Egeblad, Kresten; Brorson, M.

    2007-01-01

    Boron nitride coatings on high-surface area MgAl2O4 and Al2O3 have been synthesized and characterized by transmission electron microscopy and by X-ray powder diffraction. The metal oxide templates were coated with boron nitride using a simple nitridation in a flow of ammonia starting from ammonium...

  8. Spinel-based coatings for metal supported solid oxide fuel cells

    DEFF Research Database (Denmark)

    Stefan, Elena; Neagu, Dragos; Blennow Tullmar, Peter

    2017-01-01

    Metal supports and metal supported half cells developed at DTU are used for the study of a solution infiltration approach to form protective coatings on porous metal scaffolds. The metal particles in the anode layer, and sometimes even in the support may undergo oxidation in realistic operating...... conditions leading to severe cell degradation. Here, a controlled oxidation of the porous metal substrate and infiltration of Mn and/or Ce nitrate solutions are applied for in situ formation of protective coatings. Our approach consists of scavenging the FeCr oxides formed during the controlled oxidation...... into a continuous and well adhered coating. The effectiveness of coatings is the result of composition and structure, but also of the microstructure and surface characteristics of the metal scaffolds....

  9. The origin of ferro-manganese oxide coated pumice from the Central Indian Ocean Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Pattan, J.N.; Pearce, N.J.G.; Parthiban, G.; Smith, V.C.; Mudholkar, A.V.; Rao, N.R

    Pumice clasts, partially and fully coated with ferro-manganese oxide from the Central Indian Ocean Basin (CIOB) were analysed for major, trace and rare earth elements; and glass and mineral grain chemistry to assess their possible source...

  10. Hydrogen permeation through steel coated with erbium oxide by sol-gel method

    International Nuclear Information System (INIS)

    Yao Zhenyu; Suzuki, Akihiro; Levchuk, Denis; Chikada, Takumi; Tanaka, Teruya; Muroga, Takeo; Terai, Takayuki

    2009-01-01

    Er 2 O 3 coating is formed on austenitic stainless steel 316ss by sol-gel method. The results showed good crystallization of coating by baking in high purity flowing-argon at 973 K, and indicated that a little oxygen in baking atmosphere is necessary to crystallization of coating. The best baking temperature could be thought as 973 K, to get good crystallization of coating and avoid strong oxidation of steel substrate. The deuterium permeation test was performed for coated and bare 316ss, to evaluate the property of Er 2 O 3 sol-gel coating as a potential tritium permeation barrier. In this study, the deuterium permeability of coated 316ss is about 1-2 orders of magnitude lower than that of bare 316ss, and is about 2-3 orders of magnitude than the referred data of bare Eurofer97 and F82H martensitic steel.

  11. Cerium oxide as conversion coating for the corrosion protection of aluminum

    Directory of Open Access Journals (Sweden)

    JELENA GULICOVSKI

    2013-11-01

    Full Text Available CeO2 coatings were formed on the aluminum after Al surface preparation, by dripping the ceria sol, previously prepared by forced hydrolysis of Ce(NO34. The anticorrosive properties of ceria coatings were investigated by the electrochemical impedance spectroscopy (EIS during the exposure to 0.03 % NaCl. The morphology of the coatings was examined by the scanning electron microscopy (SEM. EIS data indicated considerably larger corrosion resistance of CeO2-coated aluminum than for bare Al. The corrosion processes on Al below CeO2 coating are subjected to more pronounced diffusion limitations in comparison to the processes below passive aluminum oxide film, as the consequence of the formation of highly compact protective coating. The results show that the deposition of ceria coatings is an effective way to improve corrosion resistance for aluminum.

  12. Degradation behavior of n-MAO/EPD bio-ceramic composite coatings on magnesium alloy in simulated body fluid

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Ying, E-mail: yxiong@zjut.edu.cn [College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Lu, Chao [College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Wang, Chao; Song, Renguo [School of Materials Science and Engineering, Changzhou University, Changzhou 213164 (China); Jiangsu Key Laboratory of Materials Surface Science and Technology, Changzhou University, Changzhou 213164 (China)

    2015-03-15

    Highlights: • A bio-ceramic n-MAO/EPD coating was prepared by combined MAO and EPD technique. • The precipitates of Ca/P compound are formed on the surface samples during immersion. • The n-MAO/EPD coating with HA dense structure has a favorable anti-corrosion effect. • Two degradation mechanism models for the n-MAO and n-MAO/EPD coating were proposed. - Abstract: The bio-ceramic composite coatings have been fabricated on ZK60 magnesium (Mg) alloy to improve its bio-corrosion resistance in a simulated body fluid (SBF). Firstly, micro-arc oxidation coatings (n-MAO coating) with the addition of zirconium oxide (ZrO{sub 2}) and cerium oxide (CeO{sub 2}) nano-particles were prepared by MAO technique on ZK60Mg alloy in alkaline electrolyte. Secondly, nano-hydroxyapatite (HA) was deposited on the surface of n-MAO coatings by using electrophoretic deposition (EPD) technique. The degradation behavior of the coated samples was investigated by means of immersion tests and electrochemical impedance spectroscopy (EIS) in the SBF at 36.5 ± 0.5 °C. The variation of phase composition, surface and cross-section morphology of coatings at different immersion stages were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The results showed that the precipitation layer with biological activity formed on the surface of coated samples during the SBF immersion, which can inhibit Mg alloys from degrading effectively. The n-MAO/EPD composite coating with HA dense structure has a favorable anti-corrosion effect compared to the n-MAO coating. Degradation mechanism model of the corrosion process at different corrosion stages for two kinds of coatings were proposed. The long-term corrosion protection of the n-MAO/EPD composite coating was governed significantly by the synergistic effect of phase composition stability and micro structural integrity.

  13. Degradation behavior of n-MAO/EPD bio-ceramic composite coatings on magnesium alloy in simulated body fluid

    International Nuclear Information System (INIS)

    Xiong, Ying; Lu, Chao; Wang, Chao; Song, Renguo

    2015-01-01

    Highlights: • A bio-ceramic n-MAO/EPD coating was prepared by combined MAO and EPD technique. • The precipitates of Ca/P compound are formed on the surface samples during immersion. • The n-MAO/EPD coating with HA dense structure has a favorable anti-corrosion effect. • Two degradation mechanism models for the n-MAO and n-MAO/EPD coating were proposed. - Abstract: The bio-ceramic composite coatings have been fabricated on ZK60 magnesium (Mg) alloy to improve its bio-corrosion resistance in a simulated body fluid (SBF). Firstly, micro-arc oxidation coatings (n-MAO coating) with the addition of zirconium oxide (ZrO 2 ) and cerium oxide (CeO 2 ) nano-particles were prepared by MAO technique on ZK60Mg alloy in alkaline electrolyte. Secondly, nano-hydroxyapatite (HA) was deposited on the surface of n-MAO coatings by using electrophoretic deposition (EPD) technique. The degradation behavior of the coated samples was investigated by means of immersion tests and electrochemical impedance spectroscopy (EIS) in the SBF at 36.5 ± 0.5 °C. The variation of phase composition, surface and cross-section morphology of coatings at different immersion stages were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The results showed that the precipitation layer with biological activity formed on the surface of coated samples during the SBF immersion, which can inhibit Mg alloys from degrading effectively. The n-MAO/EPD composite coating with HA dense structure has a favorable anti-corrosion effect compared to the n-MAO coating. Degradation mechanism model of the corrosion process at different corrosion stages for two kinds of coatings were proposed. The long-term corrosion protection of the n-MAO/EPD composite coating was governed significantly by the synergistic effect of phase composition stability and micro structural integrity

  14. Influence of temperature on oxidation mechanisms of fiber-textured AlTiTaN coatings.

    Science.gov (United States)

    Khetan, Vishal; Valle, Nathalie; Duday, David; Michotte, Claude; Delplancke-Ogletree, Marie-Paule; Choquet, Patrick

    2014-03-26

    The oxidation kinetics of AlTiTaN hard coatings deposited at 265 °C by DC magnetron sputtering were investigated between 700 and 950 °C for various durations. By combining dynamic secondary ion mass spectrometry (D-SIMS), X-ray diffraction (XRD), and transmission electron microscopy (TEM) investigations of the different oxidized coatings, we were able to highlight the oxidation mechanisms involved. The TEM cross-section observations combined with XRD analysis show that a single amorphous oxide layer comprising Ti, Al, and Ta formed at 700 °C. Above 750 °C, the oxide scale transforms into a bilayer oxide comprising an Al-rich upper oxide layer and a Ti/Ta-rich oxide layer at the interface with the coated nitride layer. From the D-SIMS analysis, it could be proposed that the oxidation mechanism was governed primarily by inward diffusion of O for temperatures of ≤700 °C, while at ≥750 °C, it is controlled by outward diffusion of Al and inward diffusion of O. Via a combination of structural and chemical analysis, it is possible to propose that crystallization of rutile lattice favors the outward diffusion of Al within the AlTiTa mixed oxide layer with an increase in the temperature of oxidation. The difference in the mechanisms of oxidation at 700 and 900 °C also influences the oxidation kinetics with respect to oxidation time. Formation of a protective alumina layer decreases the rate of oxidation at 900 °C for long durations of oxidation compared to 700 °C. Along with the oxidation behavior, the enhanced thermal stability of AlTiTaN compared to that of the TiAlN coating is illustrated.

  15. Effect of H2O and Y(O on Oxidation Behavior of NiCoCrAl Coating Within Thermal Barrier Coating

    Directory of Open Access Journals (Sweden)

    WANG Yi-qun

    2017-04-01

    Full Text Available NiCoCrAl coatings containing Y and Y oxide were made using vacuum plasma deposition and high-velocity oxygen fuel respectively, high temperature oxidation dynamics and cross-section microstructures of NiCoCrAl+Y and NiCoCrAl+Y(O coatings in Ar-16.7%O2, Ar-3.3%H2O and Ar-0.2%H2-0.9%H2O at 1100℃ were investigated by differential thermal analysis (DTA and optical and electron microscope. The influencing mechanism of Y oxide on the oxidation of coatings at different atmosphere was compared by computation using First-Principles. The results show that Al2O3 layer on NiCoCrAl+Y coatings has more holes for internal oxidation on account of the element Y diffusion and enrichment on the interface. In addition, steam can promote the internal oxidation. While a thinner and uniform alumina form on NiCoCrAl+Y(O coatings because element Y is pinned by oxygen atoms during the preparation of coatings. Water vapor has less influence on protective alumina formation on the NiCoCrAl+Y(O coating. Therefore, oxidation behavior of NiCoCrAl coatings vary in composition and structure in different oxidizing atmosphere. Besides, Y and Y-enrichment oxides have key influences on the microstructure and the growth rate.

  16. The oxidation of aluminide diffusion coatings containing platinum used for the protection of IN738 superalloy

    International Nuclear Information System (INIS)

    Hanna, M.D.; Haworth, C.W.

    1993-01-01

    Aluminide coatings, as used for the protection against oxidation of most nickel-base superalloy components in modern jet engines, have been formed by a diffusion process on IN738 to give a coating that is essentially NiAl containing Al-rich precipitates. Aluminide coatings containing platinum have also been produced by initially depositing a thin layer (several microns thick) of Pt on the superalloy prior to the aluminisation process. Depending upon the details of the processing (such as the thickness of the Pt or the Al flux during the diffusion process) the structure of the coating on being formed was essentially either PtAl/sub 2/, PtAl or NiAl, or a mixture of these phases, but after some hours heat treatment at a high temperature (equivalent to service) was converted to either NiAl (containing Pt), or PtAl (containing Ni) or a mixture of PtAl and NiAl. The oxidation rate of these coatings at different temperatures between 800 and 1000 deg. C was studied using an automatic recording micro-balance and compared with the oxidation rate of a simple aluminide coating and of uncoated IN738. Further longer-term oxidation tests, including cyclic tests, were also undertaken. The Pt containing coatings gave approximately the same performance, and some were slightly better than the simple aluminide coatings, (and much better than the uncoated IN738). Both sections through the oxidised surface of the Al/sub 2/O/sub 3/ scale formed on the coatings were examined using optical microscopy and the SEM. The coating/scale interface on the platinum aluminide was seen to be slightly convoluted. It was more adherent and showed less tendency to spall than that formed on the simple aluminide coating. (author)

  17. Improvement in energy release properties of boron-based propellant by oxidant coating

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Daolun; Liu, Jianzhong, E-mail: jzliu@zju.edu.cn; Chen, Binghong; Zhou, Junhu; Cen, Kefa

    2016-08-20

    Highlights: • NH{sub 4}ClO{sub 4}, KNO{sub 3}, KClO{sub 4} and HMX coated B were used to prepare propellant samples. • FTIR, XRD and SEM were used for the microstructure analysis of the prepared B. • Thermal oxidation and combustion characteristics of the propellants were studied. • HMX coating was the most beneficial to the energy release of the samples. - Abstract: The energy release properties of a propellant can be improved by coating boron (B) particles with oxidants. In the study, B was coated with four different oxidants, namely, NH{sub 4}ClO{sub 4}, KNO{sub 3}, LiClO{sub 4}, and cyclotetramethylenetetranitramine (HMX), and the corresponding propellant samples were prepared. First, the structural and morphological analyses of the pretreated B were carried out. Then, the thermal analysis and laser ignition experiments of the propellant samples were carried out. Coating with NH{sub 4}ClO{sub 4} showed a better performance than mechanical mixing with the same component. Coating with KNO{sub 3} efficiently improved the ignition characteristics of the samples. Coating with LiClO{sub 4} was the most beneficial in reducing the degree of difficulty of B oxidation. Coating with HMX was the most beneficial in the heat release of the samples. The KNO{sub 3}-coated sample had a very high combustion intensity in the beginning, but then it rapidly became weak. Large amounts of sparks were ejected during the combustion of the LiClO{sub 4}-coated sample. The HMX-coated sample had the longest self-sustaining combustion time (4332 ms) and the highest average combustion temperature (1163.92 °C).

  18. Oxidation behavior of Hf-modified platinum aluminide coatings during thermal cycling

    Directory of Open Access Journals (Sweden)

    Liya Ye

    2018-02-01

    Full Text Available Platinum aluminide coatings with different Hf contents were fabricated by using HfCl4. The oxidation kinetics and the rumpling behavior of oxide scale were investigated. After thermal cycling, the coating with 0.46 wt% Hf showed least weight gain. With the increase of Hf content, rumpling extent of the scale decreased. Meanwhile, HfO2 preferentially formed in the scale resulting in the increase of scale thickness. The oxidation of excessive Hf even caused the spallation of the scale. The results in the present study indicate that although Hf plays an important role in decreasing rumpling extent of TGO, the oxidation of Hf decreases the adhesion of the scale. Keywords: Pt-Al coating, Hf, Oxidation, Rumpling

  19. Pyrolytic carbon coating for cytocompatibility of titanium oxide nanoparticles: a promising candidate for medical applications

    International Nuclear Information System (INIS)

    Behzadi, Shahed; Simchi, Abdolreza; Imani, Mohammad; Yousefi, Mohammad; Galinetto, Pietro; Amiri, Houshang; Stroeve, Pieter; Mahmoudi, Morteza

    2012-01-01

    Nanoparticles for biomedical use must be cytocompatible with the biological environment that they are exposed to. Current research has focused on the surface functionalization of nanoparticles by using proteins, polymers, thiols and other organic compounds. Here we show that inorganic nanoparticles such as titanium oxide can be coated by pyrolytic carbon (PyC) and that the coating has cytocompatible properties. Pyrolization and condensation of methane formed a thin layer of pyrolytic carbon on the titanium oxide core. The formation of the PyC shell retards coalescence and sintering of the ceramic phase. Our MTT assay shows that the PyC-coated particles are cytocompatible at employed doses. (paper)

  20. Low temperature oxidation of niobium alloy with silicon-aluminium coating

    International Nuclear Information System (INIS)

    Lazarev, Eh.M.; Sapozhnikova, L.V.; Shabanova, M.E.; Pod'yachev, V.N.; Kornilova, Z.I.

    1987-01-01

    Using the gravimetry methods heat resistance of niobium-titanium-aluminium alloy in the air and at 700 deg C in the initial state and when it is protected by silicide-aluminium coatings (with variable content of aluminium) is investigated. Using X-ray diffraction and micro X-ray diffraction analyses, mechanisms of the alloy oxidation and the coating protective effect are studied. The role of aluminium in the formation of coatings is analyzed and according to bend tests the plasticity of the coatings is evaluated

  1. Sol-gel prepared active ternary oxide coating on titanium in cathodic protection

    Directory of Open Access Journals (Sweden)

    VLADIMIR V. PANIC

    2007-12-01

    Full Text Available The characteristics of a ternary oxide coating, on titanium, which consisted of TiO2, RuO2 and IrO2 in the molar ratio 0.6:0.3:0.1, calculated on the metal atom, were investigated for potential application for cathodic protection in a seawater environment. The oxide coatings on titanium were prepared by the sol gel procedure from a mixture of inorganic oxide sols, which were obtained by forced hydrolysis of metal chlorides. The morphology of the coating was examined by scanning electron microscopy. The electrochemical properties of activated titanium anodes were investigated by cyclic voltammetry and polarization measurements in a H2SO4- and NaCl-containing electrolyte, as well as in seawater sampled on the Adriatic coast in Tivat, Montenegro. The anode stability during operation in seawater was investigated by the galvanostatic accelerated corrosion stability test. The morphology and electrochemical characteristics of the ternary coating are compared to that of a sol-gel-prepared binary Ti0.6Ru0.4O2 coating. The activity of the ternary coating was similar to that of the binary Ti0.6Ru0.4O2 coating in the investigated solutions. However, the corrosion stability in seawater is found to be considerably greater for the ternary coating.

  2. Electrochemical combustion of indigo at ternary oxide coated titanium anodes

    Directory of Open Access Journals (Sweden)

    María I. León

    2014-12-01

    Full Text Available The film of iridium and tin dioxides doped with antimony (IrO2-SnO2–Sb2O5 deposited on a Ti substrate (mesh obtained by Pechini method was used for the formation of ·OH radicals by water discharge. Detection of ·OH radicals was followed by the use of the N,N-dimethyl-p-nitrosoaniline (RNO as a spin trap. The electrode surface morphology and composition was characterized by SEM-EDS. The ternary oxide coating was used for the electrochemical combustion of indigo textile dye as a model organic compound in chloride medium. Bulk electrolyses were then carried out at different volumetric flow rates under galvanostatic conditions using a filter-press flow cell. The galvanostatic tests using RNO confirmed that Ti/IrO2-SnO2-Sb2O5 favor the hydroxyl radical formation at current densities between 5 and 7 mA cm-2, while at current density of 10 mA cm-2 the oxygen evolution reaction occurs. The indigo was totally decolorized and mineralized via reactive oxygen species, such as (·OH, H2O2, O3 and active chlorine formed in-situ at the Ti/IrO2-SnO2-Sb2O5 surface at volumetric flow rates between 0.1-0.4 L min-1 and at fixed current density of 7 mA cm-2. The mineralization of indigo carried out at 0.2 L min-1 achieved values of 100 %, with current efficiencies of 80 % and energy consumption of 1.78 KWh m-3.

  3. Cyclic Oxidation Behavior of CuCrAl Cold-Sprayed Coatings for Reusable Launch Vehicles

    Science.gov (United States)

    Raj, Sai; Karthikeyan, J.

    2009-01-01

    The next generation of reusable launch vehicles is likely to use GRCop-84 [Cu-8(at.%)Cr-4%Nb] copper alloy combustion liners. The application of protective coatings on GRCop-84 liners can minimize or eliminate many of the environmental problems experienced by uncoated liners and significantly extend their operational lives and lower operational cost. A newly developed Cu- 23 (wt.%) Cr-5% Al (CuCrAl) coating, shown to resist hydrogen attack and oxidation in an as-cast form, is currently being considered as a protective coating for GRCop-84. The coating was deposited on GRCop-84 substrates by the cold spray deposition technique, where the CuCrAl was procured as gas-atomized powders. Cyclic oxidation tests were conducted between 773 and 1,073 K to characterize the coated substrates.

  4. A preliminary study of oxidation-resistant coatings on refractory-metal thermocouple sheaths

    International Nuclear Information System (INIS)

    Wilkins, S.C.

    1985-01-01

    The need to make reliable temperature measurements up to 2200 0 C or higher in steam environments during in-pile nuclear fuel damage tests led to a search for oxidation-resistant coatings for the refractory-metal sheaths used to enclose and protect thermocouples used for such measurements. Iridium, thoria, and thoria-over-iridium coatings were separately sputter-deposited on molybdenum-rhenium alloy protection tubes for evaluation. The coated samples were individually heated in flowing steam in an induction furnace. An extension tube welded to each sample was connected to a vacuum pump and gauge; failure of the sample was detected by noting the degradation of the vacuum maintained in the sample. Relatively heavy coatings of iridium provided a modest degree of oxidation protection at the temperatures of interest. Thoria coatings provided no significant protection at those temperatures, compared to uncoated control samples

  5. Oxidation-resistant interface coatings for SiC/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Stinton, D.P.; Kupp, E.R.; Hurley, J.W.; Lowden, R.A. [Oak Ridge National Lab., TN (United States)] [and others

    1996-08-01

    The characteristics of the fiber-matrix interfaces in ceramic matrix composites control the mechanical behavior of these composites. Finite element modeling (FEM) was performed to examine the effect of interface coating modulus and coefficient of thermal expansion on composite behavior. Oxide interface coatings (mullite and alumina-titania) produced by a sol-gel method were chosen for study as a result of the FEM results. Amorphous silicon carbide deposited by chemical vapor deposition (CVD) is also being investigated for interface coatings in SiC-matrix composites. Processing routes for depositing coatings of these materials were developed. Composites with these interfaces were produced and tested in flexure both as-processed and after oxidation to examine the suitability of these materials as interface coatings for SiC/SiC composites in fossil energy applications.

  6. Surfactant-free electrodeposition of reduced graphene oxide/copper composite coatings with enhanced wear resistance

    Science.gov (United States)

    Mai, Y. J.; Zhou, M. P.; Ling, H. J.; Chen, F. X.; Lian, W. Q.; Jie, X. H.

    2018-03-01

    How to uniformly disperse graphene sheets into the electrolyte is one of the main challenges to synthesize graphene enhanced nanocomposites by electrodeposition. A surfactant-free colloidal solution comprised of copper (II)-ethylene diamine tetra acetic acid ([CuIIEDTA]2-) complexes and graphene oxide (GO) sheets is proposed to electrodeposit reduced graphene oxide/copper (RGO/Cu) composite coatings. Anionic [CuIIEDTA]2- complexes stably coexist with negatively charged GO sheets due to the electrostatic repulsion between them, facilitating the electrochemical reduction and uniform dispersion of GO sheets into the copper matrix. The RGO/Cu composite coatings are well characterized by XRD, Raman, SEM and XPS. Their tribological behavior as a function of RGO content in composite coatings and normal loads are investigated. Also the chemical composition and topography of the wear tracks for the composite coatings are analyzed to deduce the lubricating and anti-wear mechanism of RGO/Cu composite coatings.

  7. Some observations on the high temperature oxidation behaviour of plasma sprayed Ni3Al coatings

    International Nuclear Information System (INIS)

    Singh, H.; Prakash, S.; Puri, D.

    2007-01-01

    High temperature oxidation resistance of the superalloys can be greatly enhanced by plasma sprayed coatings and this is a growing industry of considerable economic importance. The purpose of these coatings is to form long-lasting oxidation protective scales. In the current investigation, Ni 3 Al powder was prepared by mechanical mixing of pure nickel and aluminium powders in a ball mill. Subsequently Ni 3 Al powder was deposited on three Ni-base superalloys: Superni 600, Superni 601 and Superni 718 and, one Fe-base superalloy, Superfer 800H by shrouded plasma spray process. Oxidation studies were conducted on the coated superalloys in air at 900 deg. C under cyclic conditions for 50 cycles. Each cycle consisted of 1 h heating followed by 20 min of cooling in air. The thermogravimetric technique was used to approximate the kinetics of oxidation. All the coated superalloys nearly followed parabolic rate law of oxidation. X-ray diffraction, SEM/EDAX and EPMA techniques were used to analyse the oxidation products. The Ni 3 Al coating was found to be successful in maintaining its adherence to the superalloy substrates in all the cases. The oxide scales formed on the oxidised coated superalloys were found to be intact and spallation-free. XRD analysis revealed the presence of phases like NiO, Al 2 O 3 and NiAl 2 O 4 in the oxide scales, which are reported as protective oxides against high temperature oxidation. The XRD results were further supported by SEM/EDAX and EPMA

  8. EFFECT OF La2O3 ON HIGH-TEMPERATURE OXIDATION RESISTANCE OF ELECTROSPARK DEPOSITED Ni-BASED COATINGS

    OpenAIRE

    YUXIN GAO; JIAN YI; ZHIGANG FANG; HU CHENG

    2014-01-01

    The oxidation tests of electrospark deposited Ni-based coatings without and with 2.5 wt.% La2O3 were conducted at 960°C in air for 100 h. The oxidation kinetic of the coatings was studied by testing the weight gain. The phase structures and morphologies of the oxidized coatings were investigated by XRD and SEM. The experimental results show that the coatings with 2.5 wt.% La2O3 exhibits excellent high-temperature oxidation resistance including low oxidation rate and improved spallation resist...

  9. Microstructure and Oxidation Behavior of CrAl Laser-Coated Zircaloy-4 Alloy

    Directory of Open Access Journals (Sweden)

    Jeong-Min Kim

    2017-02-01

    Full Text Available Laser coating of a CrAl layer on Zircaloy-4 alloy was carried out for the surface protection of the Zr substrate at high temperatures, and its microstructural and thermal stability were investigated. Significant mixing of CrAl coating metal with the Zr substrate occurred during the laser surface treatment, and a rapidly solidified microstructure was obtained. A considerable degree of diffusion of solute atoms and some intermetallic compounds were observed to occur when the coated specimen was heated at a high temperature. Oxidation appears to proceed more preferentially at Zr-rich region than Cr-rich region, and the incorporation of Zr into the CrAl coating layer deteriorates the oxidation resistance because of the formation of thermally unstable Zr oxides.

  10. Surface coating of ceria nanostructures for high-temperature oxidation protection

    Science.gov (United States)

    Aadhavan, R.; Bhanuchandar, S.; Babu, K. Suresh

    2018-04-01

    Stainless steels are used in high-temperature structural applications but suffer from degradation at an elevated temperature of operation due to thermal stress which leads to spallation. Ceria coating over chromium containing alloys induces protective chromia layer formation at alloy/ceria interface thereby preventing oxidative degradation. In the present work, three metals of differing elemental composition, namely, AISI 304, AISI 410, and Inconel 600 were tested for high-temperature stability in the presence and absence of ceria coating. Nanoceria was used as the target to deposit the coating through electron beam physical vapor deposition method. After isothermal oxidation at 1243 K for 24 h, Ceria coated AISI 304 and Inconel 600 exhibited a reduced rate of oxidation by 4 and 1 orders, respectively, in comparison with the base alloy. The formation of spinel structure was found to be lowered in the presence of ceria due to the reduced migration of cations from the alloy.

  11. Oxidation Behavior of Titanium Carbonitride Coating Deposited by Atmospheric Plasma Spray Synthesis

    Science.gov (United States)

    Zhu, Lin; He, Jining; Yan, Dianran; Liao, Hanlin; Zhang, Nannan

    2017-10-01

    As a high-hardness and anti-frictional material, titanium carbonitride (TiCN) thick coatings or thin films are increasingly being used in many industrial fields. In the present study, TiCN coatings were obtained by atmospheric plasma spray synthesis or reactive plasma spray. In order to promote the reaction between the Ti particles and reactive gases, a home-made gas tunnel was mounted on a conventional plasma gun to perform the spray process. The oxidation behavior of the TiCN coatings under different temperatures in static air was carefully investigated. As a result, when the temperature was over 700 °C, the coatings suffered from serious oxidation, and finally they were entirely oxidized to the TiO2 phase at 1100 °C. The principal oxidation mechanism was clarified, indicating that the oxygen can permeate into the defects and react with TiCN at high temperatures. In addition, concerning the use of a TiCN coating in high-temperature conditions, the microhardness of the oxidized coatings at different treatment temperatures was also evaluated.

  12. Electrophoretic deposition of graphene oxide reinforced chitosan-hydroxyapatite nanocomposite coatings on Ti substrate.

    Science.gov (United States)

    Shi, Y Y; Li, M; Liu, Q; Jia, Z J; Xu, X C; Cheng, Y; Zheng, Y F

    2016-03-01

    Electrophoretic deposition (EPD) is a facile and feasible technique to prepare functional nanocomposite coatings for application in orthopedic-related implants. In this work, a ternary graphene oxide-chitosan-hydroxyapatite (GO-CS-HA) composite coating on Ti substrate was successfully fabricated by EPD. Coating microstructure and morphologies were investigated by scanning electron microscopy, contact angle test, Raman spectroscopy, Fourier transform infrared spectroscopy and thermogravimetric analysis. It was found GO-CS surface were uniformly decorated by HA nanoparticles. The potentiodynamic polarization test in simulated body fluid indicated that the GO-CS-HA coatings could provide effective protection of Ti substrate from corrosion. This ternary composite coating also exhibited good biocompatibility during incubation with MG63 cells. In addition, the nanocomposite coatings could decrease the attachment of Staphylococcus aureus.

  13. Improved thermal stability and oxidation resistance of Al–Ti–N coating by Si addition

    International Nuclear Information System (INIS)

    Chen, Li; Yang, Bing; Xu, Yuxiang; Pei, Fei; Zhou, Liangcai; Du, Yong

    2014-01-01

    Addition of Si is very effective in upgrading the machining performance and thermal properties of Al–Ti–N coating. Here, we concentrate on the thermal stability and oxidation resistance of Al–Ti–Si–N coating. Alloying with Si favors the growth of wurtzite phase, and thereby causes a drop in hardness from ∼ 34.5 to 28.7 GPa. However, Si-containing coating retards the formation of w-AlN during thermal annealing, and thereby behaves a high hardness value of ∼ 31.3 GPa after annealing at T a = 1100 °C. After 10 h exposure in air at 850 °C, Al–Ti–N coating is fully oxidized. Incorporation of Si significantly improves the oxidation resistance of Al–Ti–N due to the combined effects with the promoted formation of Al-oxide rich top-scale and retarded transformation of anatase (a-) TiO 2 into rutile (r-) TiO 2 , where only ∼ 1.43 μm oxide scale is shown after oxidation at 1100 °C for 15 h. Noticeable is that the worst oxidation resistance of Al–Ti–Si–N coating in the temperature range from 800 to 1100 °C is obtained at 950 °C with oxide scale of ∼ 1.76 μm due to the fast formation of r-TiO 2 . Additionally, a pre-oxidation at 1000 °C has a positive effect on the oxidation resistance of Al–Ti–Si–N coating, which is attributed to the formation of Al-oxide rich top-scale, and thus inhibits the outward diffusion of metal atoms and inward diffusion of O. - Highlights: • Si as a substitutional solid solution and via the formation of a-Si 3 N 4 coexists. • Si addition favors the growth of wurtzite phase and causes a decreased hardness. • Alloying with Si improves the oxidation resistance of AlTiN. • AlTiSiN behaves the worst oxidation resistance at 950 °C from 800 to 1100 °C. • A pre-oxidation at 1000 °C improves the oxidation resistance of AlTiSiN coating

  14. Cycle oxidation behavior and anti-oxidation mechanism of hot-dipped aluminum coating on TiBw/Ti6Al4V composites with network microstructure.

    Science.gov (United States)

    Li, X T; Huang, L J; Wei, S L; An, Q; Cui, X P; Geng, L

    2018-04-10

    Controlled and compacted TiAl 3 coating was successfully fabricated on the network structured TiBw/Ti6Al4V composites by hot-dipping aluminum and subsequent interdiffusion treatment. The network structure of the composites was inherited to the TiAl 3 coating, which effectively reduces the thermal stress and avoids the cracks appeared in the coating. Moreover, TiB reinforcements could pin the TiAl 3 coating which can effectively improve the bonding strength between the coating and composite substrate. The cycle oxidation behavior of the network structured coating on 873 K, 973 K and 1073 K for 100 h were investigated. The results showed the coating can remarkably improve the high temperature oxidation resistance of the TiBw/Ti6Al4V composites. The network structure was also inherited to the Al 2 O 3 oxide scale, which effectively decreases the tendency of cracking even spalling about the oxide scale. Certainly, no crack was observed in the coating after long-term oxidation due to the division effect of network structured coating and pinning effect of TiB reinforcements. Interfacial reaction between the coating and the composite substrate occurred and a bilayer structure of TiAl/TiAl 2 formed next to the substrate after oxidation at 973 K and 1073 K. The anti-oxidation mechanism of the network structured coating was also discussed.

  15. Role of Oxides and Porosity on High-Temperature Oxidation of Liquid-Fueled HVOF Thermal-Sprayed Ni50Cr Coatings

    Science.gov (United States)

    Song, B.; Bai, M.; Voisey, K. T.; Hussain, T.

    2017-02-01

    High chromium content in Ni50Cr thermally sprayed coatings can generate a dense and protective scale at the surface of coating. Thus, the Ni50Cr coating is widely used in high-temperature oxidation and corrosion applications. A commercially available gas atomized Ni50Cr powder was sprayed onto a power plant steel (ASME P92) using a liquid-fueled high velocity oxy-fuel thermal spray with three processing parameters in this study. Microstructure of as-sprayed coatings was examined using oxygen content analysis, mercury intrusion porosimetry, scanning electron microscope (SEM), energy-dispersive x-ray spectroscopy (EDX) and x-ray diffraction (XRD). Short-term air oxidation tests (4 h) of freestanding coatings (without boiler steel substrate) in a thermogravimetric analyzer at 700 °C were performed to obtain the kinetics of oxidation of the as-sprayed coating. Long-term air oxidation tests (100 h) of the coated substrates were performed at same temperature to obtain the oxidation products for further characterization in detail using SEM/EDX and XRD. In all samples, oxides of various morphologies developed on top of the Ni50Cr coatings. Cr2O3 was the main oxidation product on the surface of all three coatings. The coating with medium porosity and medium oxygen content has the best high-temperature oxidation performance in this study.

  16. Cyclic oxidation behaviour of different treated CoNiCrAlY coatings

    Energy Technology Data Exchange (ETDEWEB)

    Marginean, G. [University of Applied Sciences Gelsenkirchen, Neidenburger Str. 43, 45877 Gelsenkirchen (Germany); Utu, D., E-mail: dutu@eng.upt.ro [University ' Politehnica' Timisoara, Faculty of Mechanical Engineering, Blv. Mihai Viteazu 1, 300222 Timisoara (Romania)

    2012-08-01

    High velocity oxygen fuel (HVOF) spraying method was used in order to obtain very dense and good adhesive CoNiCrAlY-coatings deposited onto nickel-based alloy. The coatings were differently treated (preoxidized, vacuum treated or electron beam irradiated) before their exposure to cyclic oxidation tests in air at 1000 Degree-Sign C for periods up to 5 h. Changes of the coatings morphology and structure were analysed by scanning electron microscopy (SEM) and X-ray diffraction technique (XRD). The surface temperature of the samples was measured during cooling, between the oxidation cycles, and finally was associated with the thickness of the grown protective oxide scale on the CoNiCrAlY-surface. The experimental results demonstrated that depending on the thickness respectively on the different structures of the grown oxide scale, the cooling rate of the sample surface will be different as well.

  17. C/SiC/MoSi2-Si multilayer coatings for carbon/carbon composites for protection against oxidation

    International Nuclear Information System (INIS)

    Zhang Yulei; Li Hejun; Qiang Xinfa; Li Kezhi; Zhang Shouyang

    2011-01-01

    Highlights: → A C/SiC/MoSi 2 -Si multilayer coating was prepared on C/C by slurry and pack cementation. → Multilayer coating can protect C/C for 300 h at 1873 K or 103 h at 1873 K in air. → The penetration cracks in the coating result in the weight loss of the coated C/C. → The fracture of the coated C/C in wind tunnel result from the excessive local stress. - Abstract: To improve the oxidation resistance of carbon/carbon (C/C) composites, a C/SiC/MoSi 2 -Si multilayer oxidation protective coating was prepared by slurry and pack cementation. The microstructure of the as-prepared coating was characterized by scanning electron microscopy, X-ray diffraction and energy dispersive spectroscopy. The isothermal oxidation and erosion resistance of the coating was investigated in electrical furnace and high temperature wind tunnel. The results showed that the multilayer coating could effectively protect C/C composites from oxidation in air for 300 h at 1773 K and 103 h at 1873 K, and the coated samples was fractured after erosion for 27 h at 1873 K h in wind tunnel. The weight loss of the coated specimens was considered to be caused by the formation of penetration cracks in the coating. The fracture of the coated C/C composites might result from the excessive local stress in the coating.

  18. Stress controlled gas-barrier oxide coatings on semi-crystalline polymers

    International Nuclear Information System (INIS)

    Rochat, G.; Leterrier, Y.; Fayet, P.; Manson, J.-A.E.

    2005-01-01

    Thin silicon oxide (SiO x ) barrier coatings formed by plasma enhanced chemical vapor deposition on poly(ethylene terephthalate) (PET) substrates were subjected to post-deposition annealing treatments in the temperature range for orientation relaxation of the polymer. The resulting change in coating internal stress state was measured by means of thermo-mechanical analyses, and its effect on the coating cohesive properties and coating/polymer adhesion was determined from the analysis of uniaxial fragmentation tests in situ in a scanning electron microscope, assuming a Weibull-type probability of failure and a perfectly plastic stress transfer at the SiO x /PET interface. The strain to failure and intrinsic fracture toughness of the ultrathin oxide coating were found to be as high as 5.7% and 10 J/m 2 , respectively, and its interfacial shear strength with PET was found to be close to 100 MPa. Annealing for 10 min at 150 deg. C did not modify the oxygen permeation properties of the SiO x /PET film, which suggests that the defect population of the oxide was not affected by the thermal treatment. In contrast, the coating internal compressive stress resulting from annealing was shown to increase by 40% the apparent coating cohesive properties and adhesion to the polymer

  19. Synthesis of cuprous oxide epoxy nanocomposite as an environmentally antimicrobial coating.

    Science.gov (United States)

    M El Saeed, Ashraf; Abd El-Fattah, M; Azzam, Ahmed M; Dardir, M M; Bader, Magd M

    2016-08-01

    Cuprous oxide is commonly used as a pigment; paint manufacturers begin to employ cuprous oxide as booster biocides in their formulations, to replace the banned organotins as the principal antifouling compounds. Epoxy coating was reinforced with cuprous oxide nanoparticles (Cu2O NPs). The antibacterial as well as antifungal activity of Cu2O epoxy nanocomposite (Cu2O EN) coating films was investigated. Cu2O NPs were also experimented for antibiofilm and time-kill assay. The thermal stability and the mechanical properties of Cu2O EN coating films were also investigated. The antimicrobial activity results showed slowdown, the growth of organisms on the Cu2O EN coating surface. TGA results showed that incorporating Cu2O NPs into epoxy coating considerably enhanced the thermal stability and increased the char residue. The addition of Cu2O NPs at lower concentration into epoxy coating also led to an improvement in the mechanical resistance such as scratch and abrasion. Cu2O NPs purity was confirmed by XRD. The TEM photograph demonstrated that the synthesized Cu2O NPs were of cubic shape and the average diameter of the crystals was around 25nm. The resulting perfect dispersion of Cu2O NPs in epoxy coating revealed by SEM ensured white particles embedded in the epoxy matrix. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Growth kinetics and morphology of plasma electrolytic oxidation coating on aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Erfanifar, Eliyas; Aliofkhazraei, Mahmood, E-mail: maliofkh@gmail.com; Fakhr Nabavi, Houman; Sharifi, Hossein; Rouhaghdam, Alireza Sabour

    2017-01-01

    Plasma electrolytic oxidation (PEO) was carried out on AA1190 aluminum alloy in mixed silicate-phosphate-based electrolyte in order to fabricate ceramic coating under constant current density. The variations of PEO coating duration with kinetics, surface roughness, amount and size of discharge channels were studied with respect to PEO processing time. The growth mechanism of the ceramic coating was described considering a variation of volume and diameters of discharge channels and pancakes during the PEO. Scanning electron microscope (SEM), atomic force microscope (AFM), and roughness tester were used to study the plasma discharge channels of the PEO coatings. In addition, the effect of alumina nanoparticles in the electrolyte as the suspension was studied on the geometric parameters of discharge channels. It seems that the nanoparticles are adsorbed to the locations of erupted molten oxide, where the dielectric breakdown occurs. Nanoparticles were embedded in the dense oxide layer and were adsorbed at the walls of voids and coatings surface. As a result, they caused significant changes in roughness parameters of the samples containing nanoparticles compared to those without nanoparticles. The obtained results showed that growth kinetics followed a linear trend with respect to PEO coating duration. It was also observed that in the absence of alumina nanoparticles, the average volume of the pancakes is 150% greater than the ones fabricated in the suspension of nanoparticles. Besides, increasing the PEO coating duration leads to adsorbing more nanoparticles on the coating surface, filling the voids, and flattening the surface, and alterations in R{sub v}, R{sub sk}, and R{sub lo} parameters. Correlation between the diameter of discharge channel (d{sub c}) and thickness of the pancake (h) also showed a linear relation. - Highlights: • Precise calculation of thickness of pancake with AFM. • Study of different roughness parameters for PEO coating. • Calculation

  1. Growth kinetics and morphology of plasma electrolytic oxidation coating on aluminum

    International Nuclear Information System (INIS)

    Erfanifar, Eliyas; Aliofkhazraei, Mahmood; Fakhr Nabavi, Houman; Sharifi, Hossein; Rouhaghdam, Alireza Sabour

    2017-01-01

    Plasma electrolytic oxidation (PEO) was carried out on AA1190 aluminum alloy in mixed silicate-phosphate-based electrolyte in order to fabricate ceramic coating under constant current density. The variations of PEO coating duration with kinetics, surface roughness, amount and size of discharge channels were studied with respect to PEO processing time. The growth mechanism of the ceramic coating was described considering a variation of volume and diameters of discharge channels and pancakes during the PEO. Scanning electron microscope (SEM), atomic force microscope (AFM), and roughness tester were used to study the plasma discharge channels of the PEO coatings. In addition, the effect of alumina nanoparticles in the electrolyte as the suspension was studied on the geometric parameters of discharge channels. It seems that the nanoparticles are adsorbed to the locations of erupted molten oxide, where the dielectric breakdown occurs. Nanoparticles were embedded in the dense oxide layer and were adsorbed at the walls of voids and coatings surface. As a result, they caused significant changes in roughness parameters of the samples containing nanoparticles compared to those without nanoparticles. The obtained results showed that growth kinetics followed a linear trend with respect to PEO coating duration. It was also observed that in the absence of alumina nanoparticles, the average volume of the pancakes is 150% greater than the ones fabricated in the suspension of nanoparticles. Besides, increasing the PEO coating duration leads to adsorbing more nanoparticles on the coating surface, filling the voids, and flattening the surface, and alterations in R v , R sk , and R lo parameters. Correlation between the diameter of discharge channel (d c ) and thickness of the pancake (h) also showed a linear relation. - Highlights: • Precise calculation of thickness of pancake with AFM. • Study of different roughness parameters for PEO coating. • Calculation the amount of

  2. Does the conductivity of interconnect coatings matter for solid oxide fuel cell applications?

    Science.gov (United States)

    Goebel, Claudia; Fefekos, Alexander G.; Svensson, Jan-Erik; Froitzheim, Jan

    2018-04-01

    The present work aims to quantify the influence of typical interconnect coatings used for solid oxide fuel cells (SOFC) on area specific resistance (ASR). To quantify the effect of the coating, the dependency of coating thickness on the ASR is examined on Crofer 22 APU at 600 °C. Three different Co coating thicknesses are investigated, 600 nm, 1500 nm, and 3000 nm. Except for the reference samples, the material is pre-oxidized prior to coating to mitigate the outward diffusion of iron and consequent formation of poorly conducting (Co,Fe)3O4 spinel. Exposures are carried out at 600 °C in stagnant laboratory air for 500 h and subsequent ASR measurements are performed. Additionally the microstructure is investigated with scanning electron microscopy (SEM). On all pre-oxidized samples, a homogenous dense Co3O4 top layer is observed beneath which a thin layer of Cr2O3 is present. As the ASR values range between 7 and 12 mΩcm2 for all pre-oxidized samples, even though different Co3O4 thicknesses are observed, the results strongly suggest that for most applicable cases the impact of the coating on ASR is negligible and the main contributor is Cr2O3.

  3. EXAMINATION OF THE OXIDATION PROTECTION OF ZINC COATINGS FORMED ON COPPER ALLOYS AND STEEL SUBSTRATES

    International Nuclear Information System (INIS)

    Papazoglou, M.; Chaliampalias, D.; Vourlias, G.; Pavlidou, E.; Stergioudis, G.; Skolianos, S.

    2010-01-01

    The exposure of metallic components at aggressive high temperature environments, usually limit their usage at similar application because they suffer from severe oxidation attack. Copper alloys are used in a wide range of high-quality indoor and outdoor applications, statue parts, art hardware, high strength and high thermal conductivity applications. On the other hand, steel is commonly used as mechanical part of industrial set outs or in the construction sector due to its high mechanical properties. The aim of the present work is the examination of the oxidation resistance of pack cementation zinc coatings deposited on copper, leaded brass and steel substrates at elevated temperature conditions. Furthermore, an effort made to make a long-term evaluation of the coated samples durability. The oxidation results showed that bare substrates appear to have undergone severe damage comparing with the coated ones. Furthermore, the mass gain of the uncoated samples was higher than this of the zinc covered ones. Particularly zinc coated brass was found to be more resistant to oxidation conditions in which it was exposed as it has the lower mass gain as compared to the bare substrates and zinc coated copper. Zinc coated steel was also proved to be more resistive than the uncoated steel.

  4. Transmission electron microscopy of coatings formed by plasma electrolytic oxidation of titanium.

    Science.gov (United States)

    Matykina, E; Arrabal, R; Skeldon, P; Thompson, G E

    2009-05-01

    Transmission electron microscopy and supporting film analyses are used to investigate the changes in composition, morphology and structure of coatings formed on titanium during DC plasma electrolytic oxidation in a calcium- and phosphorus-containing electrolyte. The coatings are of potential interest as bioactive surfaces. The initial barrier film, of mixed amorphous and nanocrystalline structure, formed below the sparking voltage of 180 V, incorporates small amounts of phosphorus and calcium species, with phosphorus confined to the outer approximately 63% of the coating thickness. On commencement of sparking, calcium- and phosphorus-rich amorphous material forms at the coating surface, with local heating promoting crystallization in underlying and adjacent anodic titania. The amorphous material thickens with increased treatment time, comprising almost the whole of the approximately 5.7-microm-thick coating formed at 340 V. At this stage, the coating is approximately 4.4 times thicker than the oxidized titanium, with a near-surface composition of about 12 at.% Ti, 58 at.% O, 19 at.% P and 11 at.% Ca. Further, the amount of titanium consumed in forming the coating is similar to that calculated from the anodizing charge, although there may be non-Faradaic contributions to the coating growth.

  5. Molten carbonate fuel cell cathode with mixed oxide coating

    Science.gov (United States)

    Hilmi, Abdelkader; Yuh, Chao-Yi

    2013-05-07

    A molten carbonate fuel cell cathode having a cathode body and a coating of a mixed oxygen ion conductor materials. The mixed oxygen ion conductor materials are formed from ceria or doped ceria, such as gadolinium doped ceria or yttrium doped ceria. The coating is deposited on the cathode body using a sol-gel process, which utilizes as precursors organometallic compounds, organic and inorganic salts, hydroxides or alkoxides and which uses as the solvent water, organic solvent or a mixture of same.

  6. Structure and friction properties of cermet and oxide explosion coatings

    International Nuclear Information System (INIS)

    RGrigorov, A.I.; Semenov, A.P.; Fed'ko, Yu.P.; Shtejn, L.M.

    1977-01-01

    Conditions have been specified for spraying explosion coatings of cermets over Kh18N10T stainless steel and an aluminum alloy. A mixture of WC and CO powders served as a material for spraying. The method of micro-X-ray spectrum analysis has been used to study the structure of the transition zone between the coating and the substrate and to establish the mechanism responsible for the formation of a cermet layer

  7. Corrosion protection performance of single and dual Plasma Electrolytic Oxidation (PEO) coating for aerospace applications

    International Nuclear Information System (INIS)

    Madhan Kumar, A.; Kwon, Sun Hwan; Jung, Hwa Chul; Shin, Kwang Seon

    2015-01-01

    Plasma Electrolytic Oxidation (PEO) coatings are known to be one of the most appropriate method for corrosion protection of magnesium (Mg) alloy. The improvement of PEO coatings and the optimization of their surface aspects are of major importance. In this current work, the influence of dual PEO coating on strip-cast AZ31 Mg alloy substrate has been evaluated with the aim of improving the surface and corrosion protection aspects. For this purpose, AZ31 Mg substrates are subjected to single and dual PEO processing in silicate and phosphate electrolyte under similar condition. Scanning electron microscopy (SEM) analysis confirmed that the number of pores in PEO coating processed in silicate electrolyte is higher than others. X-ray diffraction analysis of PEO coatings showed that the surface coating is mainly comprised of Mg 2 SiO 4 , Mg 3 (PO 4 ) 2 and MgO with different quantity based on PEO processing. Compared with the AZ31 Mg, the corrosion potential (E corr ) of both type PEO coatings was positively shifted about 250–400 mV and the corrosion current density (i corr ) was lowered by 3-4 orders of magnitude as result of adequate corrosion protection to the Mg alloy in 3.5% NaCl solution. All of the observation obviously showed that the dual PEO coating provides better corrosion protection performance than their respective single due to its synergistic beneficial effect. - Highlights: • Influence of dual PEO coating on AZ31 Mg alloy substrate was evaluated. • XRD confirmed formation of thin MgO inner, Mg 3 (PO 4 ) 2 and Mg 2 SiO 4 outer layer. • SEM results showed uniform coating with no cracks and relatively less micro pores. • Micro hardness of dual PEO coatings is higher than single PEO coatings. • Dual coating provides superior corrosion performance due to its synergistic effect

  8. Flame retardancy and ultraviolet resistance of silk fabric coated by graphene oxide

    OpenAIRE

    Ji Yi-Min; Cao Ying-Ying; Chen Guo-Qiang; Xing Tie-Ling

    2017-01-01

    Silk fabrics were coated by graphene oxide hydrosol in order to improve its flame retardancy and ultraviolet resistance. In addition, montmorillonoid was doped into the graphene oxide hydrosol to further improve the flame retardancy of silk fabrics. The flame retardancy and ultraviolet resistance were mainly characterized by limiting oxygen index, vertical flame test, smoke density test, and ultraviolet protection factor. The synergistic effect of graphene oxide and montmorillonoid on the the...

  9. Isothermal oxidation of metallic coatings deposited by a water-stabilized plasma gun

    Czech Academy of Sciences Publication Activity Database

    Voleník, Karel; Nop, P.; Kopřiva, P.; Kolman, Blahoslav Jan; Dubský, Jiří

    2006-01-01

    Roč. 44, č. 1 (2006), s. 41-48 ISSN 0023-432X R&D Projects: GA ČR(CZ) GA106/03/0710 Institutional research plan: CEZ:AV0Z20430508 Keywords : plasma spraying * metallic coatings * oxidation tests * oxidation kinetics * oxide structure * element distribution Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.138, year: 2006

  10. Impact of structure and morphology of nanostructured ceria coating on AISI 304 oxidation kinetics

    Science.gov (United States)

    Aadhavan, R.; Suresh Babu, K.

    2017-07-01

    Nanostructured ceria-based coatings are shown to be protective against high-temperature oxidation of AISI 304 due to the dynamics of oxidation state and associated defects. However, the processing parameters of deposition have a strong influence in determining the structural and morphological aspects of ceria. The present work focuses on the effect of variation in substrate temperature (50-300 °C) and deposition rate (0.1-50 Å/s) of ceria in electron beam physical vapour evaporation method and correlates the changes in structure and morphology to high-temperature oxidation protection. Unlike deposition rate, substrate temperature exhibited a profound influence on crystallite size (7-18 nm) and oxygen vacancy concentration. Upon isothermal oxidation at 1243 K for 24 h, bare AISI 304 exhibited a linear mass gain with a rate constant of 3.0 ± 0.03 × 10-3 kg2 m-4 s-1 while ceria coating lowered the kinetics by 3-4 orders. Though the thickness of the coating was kept constant at 2 μm, higher deposition rate offered one order lower protection due to the porous nature of the coating. Variation in the substrate temperature modulated the porosity as well as oxygen vacancy concentration and displayed the best protection for coatings deposited at moderate substrate temperature. The present work demonstrates the significance of selecting appropriate processing parameters to obtain the required morphology for efficient high-temperature oxidation protection.

  11. Oxidation Study of an Ultra High Temperature Ceramic Coatings Based on HfSiCN

    Science.gov (United States)

    Sacksteder, Dagny; Waters, Deborah L.; Zhu, Dongming

    2018-01-01

    High temperature fiber-reinforced ceramic matrix composites (CMCs) are important for aerospace applications because of their low density, high strength, and significantly higher-temperature capabilities compared to conventional metallic systems. The use of the SiCf/SiC and Cf/SiC CMCs allows the design of lighter-weight, more fuel efficient aircraft engines and also more advanced spacecraft airframe thermal protection systems. However, CMCs have to be protected with advanced environmental barrier coatings when they are incorporated into components for the harsh environments such as in aircraft engine or spacecraft applications. In this study, high temperature oxidation kinetics of an advanced HfSiCN coating on Cf/SiC CMC substrates were investigated at 1300 C, 1400 C, and 1500 C by using thermogravimetric analysis (TGA). The coating oxidation reaction parabolic rate constant and activation energy were estimated from the experimental results. The oxidation reaction studies showed that the coatings formed the most stable, predominant HfSiO4-HfO2 scales at 1400 C. A peroxidation test at 1400 C then followed by subsequent oxidation tests at various temperatures also showed more adherent scales and slower scale growth because of reduced the initial transient oxidation stage and increased HfSiO4-HfO2 content in the scales formed on the HfSiCN coatings.

  12. Measurement of thermal conductivity of the oxide coating on autoclaved monel-400

    International Nuclear Information System (INIS)

    Dua, A.K.; George, V.C.; Agarwala, R.P.

    1982-01-01

    Thermal conductivity of the oxide coating on monel-400 has been measured by a direct method. The oxide coating is applied on an electrically conducting wire having stable characteristics. The wire is placed in a constant temperature bath and a constant direct current is passed through it. The wire gets heated and loses heat to the surrounding. Temperature is measured by considering it as a resistance thermometer. A convection heat transfer coefficient, which is difficult to measure experimentally but is involved in the analytical expression for thermal conductivity, is eliminated by connecting a second uncoated wire of a noble metal having similar surface finish as that of the coated wire in series with it. The accuracy of the method is nearly six percent. However, the method is not easily applicable for very thin (thickness <= 1μ), highly porous coatings and materials having relatively large thermal conductivity. (M.G.B.)

  13. Hybrid calcium phosphate coatings for implants

    Science.gov (United States)

    Malchikhina, Alena I.; Shesterikov, Evgeny V.; Bolbasov, Evgeny N.; Ignatov, Viktor P.; Tverdokhlebov, Sergei I.

    2016-08-01

    Monophasic biomaterials cannot provide all the necessary functions of bones or other calcined tissues. It is necessary to create for cancer patients the multiphase materials with the structure and composition simulating the natural bone. Such materials are classified as hybrid, obtained by a combination of chemically different components. The paper presents the physical, chemical and biological studies of coatings produced by hybrid technologies (HT), which combine primer layer and calcium phosphate (CaP) coating. The first HT type combines the method of vacuum arc titanium primer layer deposition on a stainless steel substrate with the following micro-arc oxidation (MAO) in phosphoric acid solution with addition of calcium compounds to achieve high supersaturated state. MAO CaP coatings feature high porosity (2-8%, pore size 5-7 µm) and surface morphology with the thickness greater than 5 µm. The thickness of Ti primer layer is 5-40 µm. Amorphous MAO CaP coating micro-hardness was measured at maximum normal load Fmax = 300 mN. It was 3.1 ± 0.8 GPa, surface layer elasticity modulus E = 110 ± 20 GPa, roughness Ra = 0.9 ± 0.1 µm, Rz = 7.5 ± 0.2 µm, which is less than the titanium primer layer roughness. Hybrid MAO CaP coating is biocompatible, able to form calcium phosphates from supersaturated body fluid (SBF) solution and also stimulates osteoinduction processes. The second HT type includes the oxide layer formation by thermal oxidation and then CaP target radio frequency magnetron sputtering (RFMS). Oxide-RFMS CaP coating is a thin dense coating with good adhesion to the substrate material, which can be used for metal implants. The RFMS CaP coating has thickness 1.6 ± 0.1 µm and consists of main target elements calcium and phosphorus and Ca/P ratio 2.4. The second HT type can form calcium phosphates from SBF solution. In vivo study shows that hybrid RFMS CaP coating is biocompatible and produces fibrointegration processes.

  14. Characterization of coatings formed on AZX magnesium alloys by plasma electrolytic oxidation

    Science.gov (United States)

    Anawati, Anawati; Gumelar, Muhammad Dikdik

    2018-05-01

    Plasma Electrolytic Oxidation (PEO) is an electrochemical anodization process which involves the application of a high voltage to create intense plasma on a metal surface to form a ceramic type of oxide. The resulted coating exhibits high wear resistance and good corrosion barrier which are suitable to enhance the performance of biodegradable Mg alloys. In this work, the role of alloying element Ca in modifying the characteristics of PEO layer formed on AZ61 series magnesium alloys was investigated. PEO treatment was conducted on AZ61, AZX611, and AZX612 alloys in 0.5 M Na3PO4 solution at a constant current of 200 A/m2 at 25°C for 8 min. The resulted coatings were characterized by field emission-scanning electron microscope (FESEM), X-ray diffraction spectroscopy (XRD), and X-ray fluorescence spectroscopy (XRF), as well as hardness test. The presence of alloying element Ca in the AZ61 alloys accelerated the PEO coatings formation without altering the coating properties significantly. The coating formed on AZX specimen was slightly thicker ( 14-17 µm) than that of formed onthe AZ specimens ( 13 µm). Longer exposure time to plasma discharge was the reason for faster thickening of the coating layer on AZX specimen. XRD detected a similar crystalline oxide phase of Mg3(PO4)2 in the oxide formed on all of the specimens. Zn was highly incorporated in the coatings with a concentration in the range 24-30 wt%, as analyzed by XRF. Zn compound might exist in amorphous phases. The microhardness test on the coatings revealed similar average hardness 124 HVon all of the specimens.

  15. Characterization for rbs of Titanium Oxide thin films grown by Dip Coating in a coloidal suspension of nano structured Titanium Oxide

    International Nuclear Information System (INIS)

    Pedrero, E.; Vigil, E.; Zumeta, I.

    1999-01-01

    The depth of Titanium Oxide thin films grown by Dip Coating in a coloidal suspension of nano structured Titanium Oxide was characterized using Rutherford Backscattering Spectrometry. Film depths are compared in function of bath and suspension parameters

  16. Spallation of oxide scales from NiCrAlY overlay coatings

    International Nuclear Information System (INIS)

    Strawbridge, A.; Evans, H.E.; Ponton, C.B.

    1997-01-01

    A common method of protecting superalloys from aggressive environments at high temperatures is by plasma spraying MCrAlY (M = Fe, Ni and/or Co) to form an overlay coating. Oxidation resistance is then conferred through the development of an alumina layer. However, the use of such coatings is limited at temperatures above about 1100 C due to rapid failure of the protective oxide scales. In this study, the oxidation behaviour of air-plasma-sprayed NiCrAlY coatings has been investigated at 1200 C in 1 atm air. A protective alumina layer develops during the early stages, but breakaway oxidation occurs after prolonged exposure. The results suggest that the critical temperature drop to initiate failure is inversely proportional to the scale thickness, and an analytical model is put forward to explain this behaviour. Local surface curvature of the coating can lead to delamination within the oxide during cooling and it is shown that the largest individual pore in a spall region is the critical flaw for oxide fracture. (orig.)

  17. Microstructural Study on Oxidation Resistance of Nonmodified and Platinum Modified Aluminide Coating

    Science.gov (United States)

    Zagula-Yavorska, Maryana; Sieniawski, Jan

    2014-03-01

    Platinum electroplating layers (3 and 7 μm thick) were deposited on the surface of the Inconel 713 LC, CMSX 4, and Inconel 625 Ni-base superalloys. Diffusion treatment at 1050°C for 2 h under argon atmosphere was performed after electroplating. Diffusion treated samples were aluminized according to the low activity CVD process at 1050°C for 8 h. The nonmodified aluminide coatings consist of NiAl phase. Platinum modification let to obtain the (Ni,Pt)Al phase in coatings. The coated samples were subjected to cyclic oxidation testing at 1100°C. It was discovered that increase of the platinum electroplating thickness from 3 to 7 μm provides the improvement of oxidation resistance of aluminide coatings. Increase of the platinum thickness causes decreases in weight change and decreases in parabolic constant during oxidation. The platinum provides the pure Al2O3 oxide formation, slow growth oxide layer, and delay the oxide spalling during heating-cooling thermal cycles.

  18. The detection of HBV DNA with gold-coated iron oxide nanoparticle gene probes

    International Nuclear Information System (INIS)

    Xi Dong; Luo Xiaoping; Lu Qianghua; Yao Kailun; Liu Zuli; Ning Qin

    2008-01-01

    Gold-coated iron oxide nanoparticle Hepatitis B virus (HBV) DNA probes were prepared, and their application for HBV DNA measurement was studied. Gold-coated iron oxide nanoparticles were prepared by the citrate reduction of tetra-chloroauric acid in the presence of iron oxide nanoparticles which were added as seeds. With a fluorescence-based method, the maximal surface coverage of hexaethiol 30-mer oligonucleotides and the maximal percentage of hybridization strands on gold-coated iron oxide nanoparticles were (120 ± 8) oligonucleotides per nanoparticle, and (14 ± 2%), respectively, which were comparable with those of (132 ± 10) and (22 ± 3%) in Au nanoparticle groups. Large network aggregates were formed when gold-coated iron oxide nanoparticle HBV DNA gene probe was applied to detect HBV DNA molecules as evidenced by transmission electron microscopy and the high specificity was verified by blot hybridization. Our results further suggested that detecting DNA with iron oxide nanoparticles and magnetic separator was feasible and might be an alternative effective method

  19. Development of multi-pixel x-ray source using oxide-coated cathodes.

    Science.gov (United States)

    Kandlakunta, Praneeth; Pham, Richard; Khan, Rao; Zhang, Tiezhi

    2017-07-07

    Multiple pixel x-ray sources facilitate new designs of imaging modalities that may result in faster imaging speed, improved image quality, and more compact geometry. We are developing a high-brightness multiple-pixel thermionic emission x-ray (MPTEX) source based on oxide-coated cathodes. Oxide cathodes have high emission efficiency and, thereby, produce high emission current density at low temperature when compared to traditional tungsten filaments. Indirectly heated micro-rectangular oxide cathodes were developed using carbonates, which were converted to semiconductor oxides of barium, strontium, and calcium after activation. Each cathode produces a focal spot on an elongated fixed anode. The x-ray beam ON and OFF control is performed by source-switching electronics, which supplies bias voltage to the cathode emitters. In this paper, we report the initial performance of the oxide-coated cathodes and the MPTEX source.

  20. Isothermal oxidation behaviour of thermal barrier coatings with CoCrAlY bond coat irradiated by high-current pulsed electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Jie [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Guan, Qingfeng, E-mail: guanqf@mail.ujs.edu.cn [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Hou, Xiuli [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Wang, Zhiping; Su, Jingxin; Han, Zhiyong [College of Science, Civil Aviation University of China, Tianjin 300300 (China)

    2014-10-30

    Highlights: • The original coarse surface was re-melted by pulsed electron beam irradiation. • Very fine grains were homogeneously dispersed on the irradiated coat surface. • A compact Al{sub 2}O{sub 3} scale was formed in irradiated TBCs at the onset of oxidation. • The selective oxidation of Al element avoided the formation of other oxides. • The irradiated coating has a much higher oxidation resistance. - Abstract: Thermal sprayed CoCrAlY bond coat irradiated by high-current pulsed electron beam (HCPEB) and thermal barrier coatings (TBCs) prepared with the irradiated bond coat and the ceramic top coat were investigated. The high temperature oxidation resistance of these specimens was tested at 1050 °C in air. Microstructure observations revealed that the original coarse surface of the as-sprayed bond coat was significantly changed as the interconnected bulged nodules with a compact appearance after HCPEB irradiation. Abundant Y-rich alumina particulates and very fine grains were dispersed on the irradiated surface. After high temperature oxidation test, the thermally grown oxide (TGO) in the initial TBCs grew rapidly and was comprised of two distinct layers: a large percentage of mixed oxides in the outer layer and a relatively small portion of Al{sub 2}O{sub 3} in the inner layer. Severe local internal oxidation and extensive cracks in the TGO layer were discovered as well. Comparatively, the irradiated TBCs exhibited thinner TGO layer, slower TGO growth rate, and homogeneous TGO composition (primarily consisting of Al{sub 2}O{sub 3}). The results indicate that TBCs with the irradiated bond coat have a much higher oxidation resistance.

  1. Oxidation resistant chromium coating on Zircaloy-4 for accident tolerant fuel cladding

    International Nuclear Information System (INIS)

    Park, Jung-Hwan; Kim, Eui-Jung; Jung, Yang-Il; Park, Dong-Jun; Kim, Hyun-Gil; Park, Jeong-Yong; Koo, Yang-Hyun

    2015-01-01

    The attributes of such a fuel are approved reaction kinetics with steam, a slower hydrogen generation rate, and good cladding thermo-mechanical properties. Many researchers have tried to modify zirconium alloys to improve their oxidation resistance in the early stages of the ATF development. Corrosion resistant coating on cladding is one of the candidate technologies to improve the oxidation resistance of zirconium cladding. By applying coating technology to zirconium cladding, it is easy to obtain corrosion resistance without a change in the base materials. Among the surface coating methods, arc ion plating (AIP) is a coating technology to improve the adhesion owing to good throwing power, and a dense deposit (Fig. 1). Owing to these advantages, AIP has been widely used to efficiently form protective coatings on cutting tools, dies, bearings, etc. In this study, The AIP technique for the protection of zirconium claddings from the oxidation in a high-temperature steam environment was studied. The homogeneous Cr film with a high adhesive ability to the cladding was deposited by AIP and acted as a protection layer to enhance the corrosion resistance of the zirconium cladding. It was concluded that the AIP technology is effective for coating a protective layer on claddings

  2. Oxidation resistant chromium coating on Zircaloy-4 for accident tolerant fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jung-Hwan; Kim, Eui-Jung; Jung, Yang-Il; Park, Dong-Jun; Kim, Hyun-Gil; Park, Jeong-Yong; Koo, Yang-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The attributes of such a fuel are approved reaction kinetics with steam, a slower hydrogen generation rate, and good cladding thermo-mechanical properties. Many researchers have tried to modify zirconium alloys to improve their oxidation resistance in the early stages of the ATF development. Corrosion resistant coating on cladding is one of the candidate technologies to improve the oxidation resistance of zirconium cladding. By applying coating technology to zirconium cladding, it is easy to obtain corrosion resistance without a change in the base materials. Among the surface coating methods, arc ion plating (AIP) is a coating technology to improve the adhesion owing to good throwing power, and a dense deposit (Fig. 1). Owing to these advantages, AIP has been widely used to efficiently form protective coatings on cutting tools, dies, bearings, etc. In this study, The AIP technique for the protection of zirconium claddings from the oxidation in a high-temperature steam environment was studied. The homogeneous Cr film with a high adhesive ability to the cladding was deposited by AIP and acted as a protection layer to enhance the corrosion resistance of the zirconium cladding. It was concluded that the AIP technology is effective for coating a protective layer on claddings.

  3. Electrical Properties of Conductive Cotton Yarn Coated with Eosin Y Functionalized Reduced Graphene Oxide.

    Science.gov (United States)

    Kim, Eunju; Arul, Narayanasamy Sabari; Han, Jeong In

    2016-06-01

    This study reports the fabrication and investigation of the electrical properties of two types of conductive cotton yarns coated with eosin Y or eosin B functionalized reduced graphene (RGO) and bare graphene oxide (GO) using dip-coating method. The surface morphology of the conductive cotton yarn coated with reduced graphene oxide was observed by Scanning Electron Microscope (SEM). Due to the strong electrostatic attractive forces, the negatively charged surface such as the eosin Y functionalized reduced graphene oxide or bare GO can be easily coated to the positively charged polyethyleneimine (PEI) treated cotton yarn. The maximum current for the conductive cotton yarn coated with eosin Y functionalized RGO and bare GO with 20 cycles repetition of (5D + R) process was found to be 793.8 μA and 3482.8 μA. Our results showed that the electrical conductivity of bare GO coated conductive cotton yarn increased by approximately four orders of magnitude with the increase in the dipping cycle of (5D+R) process.

  4. Bioactivity and biocompatibility of hydroxyapatite-based bioceramic coatings on zirconium by plasma electrolytic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Aktuğ, Salim Levent, E-mail: saktug@gtu.edu.tr [The Department of Materials Science and Engineering, Gebze Technical University, Gebze, Kocaeli 41400 (Turkey); Durdu, Salih, E-mail: durdusalih@gmail.com [The Department of Industrial Engineering, Giresun University, Merkez, Giresun 28200 (Turkey); Yalçın, Emine, E-mail: emine.yalcin@giresun.edu.tr [The Department of Biology, Giresun University, Merkez, Giresun 28200 (Turkey); Çavuşoğlu, Kültigin, E-mail: kultigin.cavusoglu@giresun.edu.tr [The Department of Biology, Giresun University, Merkez, Giresun 28200 (Turkey); Usta, Metin, E-mail: ustam@gtu.edu.tr [The Department of Materials Science and Engineering, Gebze Technical University, Gebze, Kocaeli 41400 (Turkey); Materials Institute, Marmara Research Center, TUBITAK, Gebze, Kocaeli 41470 (Turkey)

    2017-02-01

    In the present work, hydroxyapatite (HAP)-based plasma electrolytic oxide (PEO) coatings were produced on zirconium at different current densities in a solution containing calcium acetate and β-calcium glycerophosphate by a single step. The phase structure, surface morphology, functional groups, thickness and roughness of the coatings were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), eddy current method and surface profilometer, respectively. The phases of cubic-zirconia, calcium zirconate and HAP were detected by XRD. The amount of HAP and calcium zirconate increased with increasing current density. The surface of the coatings was very porous and rough. Moreover, bioactivity and biocompatibility of the coatings were analyzed in vitro immersion simulated body fluid (SBF) and MTT (3-(4,5-dimethyl thiazol-2yl)-2,5-diphenyl tetrazolium bromide) assay, hemolysis assay and bacterial formation. The apatite-forming ability of the coatings was evaluated after immersion in SBF up to 28 days. After immersion, the bioactivity of HAP-based coatings on zirconium was greater than the ones of uncoated zirconium and zirconium oxide-based surface. The bioactivity of PEO surface on zirconium was significantly improved under SBF conditions. The bacterial adhesion of the coatings decreased with increasing current density. The bacterial adhesion of the coating produced at 0.370 A/cm{sup 2} was minimum compared to uncoated zirconium coated at 0.260 and 0.292 A/cm{sup 2}. The hemocompatibility of HAP-based surfaces was improved by PEO. The cell attachment and proliferation of the PEO coatings were better than the one of uncoated zirconium according to MTT assay results. - Highlights: • Hydroxyapatite was formed on zirconium at different current densities by single-step plasma electrolytic oxidation. • The amount of hydroxyapatite and calcium-based phases increased with

  5. Accumulation of magnetic iron oxide nanoparticles coated with variably sized polyethylene glycol in murine tumors

    DEFF Research Database (Denmark)

    Larsen, Esben Kjær Unmack; Nielsen, Thomas; Wittenborn, Thomas

    2012-01-01

    Iron oxide nanoparticles have found widespread applications in different areas including cell separation, drug delivery and as contrast agents. Due to water insolubility and stability issues, nanoparticles utilized for biological applications require coatings such as the commonly employed...... polyethylene glycol (PEG). Despite its frequent use, the influence of PEG coatings on the physicochemical and biological properties of iron nanoparticles has hitherto not been studied in detail. To address this, we studied the effect of 333–20 000 Da PEG coatings that resulted in larger hydrodynamic size...

  6. Thermal reduction of graphene-oxide-coated cotton for oil and organic solvent removal

    International Nuclear Information System (INIS)

    Hoai, Nguyen To; Sang, Nguyen Nhat; Hoang, Tran Dinh

    2017-01-01

    Highlights: • A new method for preparation of reduced-graphene-oxide (RGO) coated cotton is proposed. • The RGO-Cotton composites were carefully characterized using many modern techniques. • RGO-Cotton exhibited superhydrophobicity and superolephilicity. • RGO-Cotton sponges can absorb many types of oils and organic solvents and can be recycled. - Abstract: The reduced-graphene-oxide (RGO)-coated cotton sponge (RGO-Cot) was prepared by simply heating a graphene-oxide (GO)-coated cotton sponge, which was fabricated by dipping a commercial cotton sponge into a GO dispersion, under vacuum at 200 °C for 2 h. The thus prepared RGO-Cot sponges exhibited superhydrophobicity and superoleophilicity, with a water contact angle of 151°. These RGO-Cot sponges could be used for removal of many types of oils and organic solvents as they exhibit absorption capacities in the range of 22–45 times their weight and good absorption recyclability.

  7. Thermal reduction of graphene-oxide-coated cotton for oil and organic solvent removal

    Energy Technology Data Exchange (ETDEWEB)

    Hoai, Nguyen To, E-mail: hoaito@pvu.edu.vn; Sang, Nguyen Nhat; Hoang, Tran Dinh

    2017-02-15

    Highlights: • A new method for preparation of reduced-graphene-oxide (RGO) coated cotton is proposed. • The RGO-Cotton composites were carefully characterized using many modern techniques. • RGO-Cotton exhibited superhydrophobicity and superolephilicity. • RGO-Cotton sponges can absorb many types of oils and organic solvents and can be recycled. - Abstract: The reduced-graphene-oxide (RGO)-coated cotton sponge (RGO-Cot) was prepared by simply heating a graphene-oxide (GO)-coated cotton sponge, which was fabricated by dipping a commercial cotton sponge into a GO dispersion, under vacuum at 200 °C for 2 h. The thus prepared RGO-Cot sponges exhibited superhydrophobicity and superoleophilicity, with a water contact angle of 151°. These RGO-Cot sponges could be used for removal of many types of oils and organic solvents as they exhibit absorption capacities in the range of 22–45 times their weight and good absorption recyclability.

  8. Crack behavior of oxidation resistant coating layer on Zircaloy-4 for accident tolerant fuel claddings

    International Nuclear Information System (INIS)

    Park, Jung Hwan; Kim, Eui Jung; Jung, Yang Il; Park, Dong Jun; Kim, Hyun Gil; Park, Jeong Yong; Yang, Jae Ho

    2016-01-01

    Terrani et al. reported the oxidation resistance of Fe-based alloys for protecting zirconium alloys from the rapid oxidation in a high-temperature steam environment. Kim and co-workers also reported the corrosion behavior of Cr coated zirconium alloy using a plasma spray and laser beam scanning. Cracks are developed by tensile stress, and this significantly deteriorates the oxidation resistance. This tensile stress is possibly generated by the thermal cycle or bending or the irradiation growth of zirconium. In this study, Cr was deposited by AIP on to Zircaloy-4 plate, and the crack behavior of Cr coated Zircaloy-4 under uni-axial tensile strain was observed. In addition, the strain of the as-deposited state was calculated by iso-inclination method. Coating began to crack at 8% of applied strain. It is assumed that a well-densified structure by AIP tends to be resistant to cracking under tensile strain.

  9. Crack behavior of oxidation resistant coating layer on Zircaloy-4 for accident tolerant fuel claddings

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jung Hwan; Kim, Eui Jung; Jung, Yang Il; Park, Dong Jun; Kim, Hyun Gil; Park, Jeong Yong; Yang, Jae Ho [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Terrani et al. reported the oxidation resistance of Fe-based alloys for protecting zirconium alloys from the rapid oxidation in a high-temperature steam environment. Kim and co-workers also reported the corrosion behavior of Cr coated zirconium alloy using a plasma spray and laser beam scanning. Cracks are developed by tensile stress, and this significantly deteriorates the oxidation resistance. This tensile stress is possibly generated by the thermal cycle or bending or the irradiation growth of zirconium. In this study, Cr was deposited by AIP on to Zircaloy-4 plate, and the crack behavior of Cr coated Zircaloy-4 under uni-axial tensile strain was observed. In addition, the strain of the as-deposited state was calculated by iso-inclination method. Coating began to crack at 8% of applied strain. It is assumed that a well-densified structure by AIP tends to be resistant to cracking under tensile strain.

  10. Characterization and formation of hydroxyapatite on Ti6Al4V coated by plasma electrolytic oxidation

    International Nuclear Information System (INIS)

    Durdu, Salih; Deniz, Ömer Faruk; Kutbay, Işıl; Usta, Metin

    2013-01-01

    Highlights: ► Ti6Al4V alloys were coated by PEO in calcium acetate and β-calcium glycerophosphate. ► Hydroxyapatite and calcium apatite based phases were directly formed on Ti6Al4V. ► Hydroxyapatite coatings were characterized systematically for different times. ► After 5 min, hydroxyapatite and calcium based phases begin to form on the coating. ► HAp on the coating is amorphous due to the rapid solidification during PEO. - Abstract: In this study, Ti6Al4V alloy was coated in the solution consisting of calcium acetate (CA) and β-calcium glycerophosphate (β-Ca-GP) by plasma electrolytic oxidation (PEO) to produce hydroxyapatite and calcium apatite-based composite used as of bioactive and biocompatible materials in biomedical applications. The phase structures, surface morphologies, functional groups of molecules, chemical compositions of the surfaces and the binding energies of atoms in the coating were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS), respectively. Anatase, rutile, calcium oxide, titanium phosphide, whitlockite, tri-calcium phosphate (TCP), perovskite calcium titanate and hydroxyapatite phases on the coating were detected by XRD analysis. The surface of coatings produced by PEO method has a porous structure. The amount of amorphous hydroxyapatite is the highest value for the coating produced at 5 min in XPS and ATR-FTIR results, whereas the amount of crystalline hydroxyapatite has the highest value for coating produced at 120 min in XRD results.

  11. Bioactivity and biocompatibility of hydroxyapatite-based bioceramic coatings on zirconium by plasma electrolytic oxidation.

    Science.gov (United States)

    Aktuğ, Salim Levent; Durdu, Salih; Yalçın, Emine; Çavuşoğlu, Kültigin; Usta, Metin

    2017-02-01

    In the present work, hydroxyapatite (HAP)-based plasma electrolytic oxide (PEO) coatings were produced on zirconium at different current densities in a solution containing calcium acetate and β-calcium glycerophosphate by a single step. The phase structure, surface morphology, functional groups, thickness and roughness of the coatings were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), eddy current method and surface profilometer, respectively. The phases of cubic-zirconia, calcium zirconate and HAP were detected by XRD. The amount of HAP and calcium zirconate increased with increasing current density. The surface of the coatings was very porous and rough. Moreover, bioactivity and biocompatibility of the coatings were analyzed in vitro immersion simulated body fluid (SBF) and MTT (3-(4,5-dimethyl thiazol-2yl)-2,5-diphenyl tetrazolium bromide) assay, hemolysis assay and bacterial formation. The apatite-forming ability of the coatings was evaluated after immersion in SBF up to 28days. After immersion, the bioactivity of HAP-based coatings on zirconium was greater than the ones of uncoated zirconium and zirconium oxide-based surface. The bioactivity of PEO surface on zirconium was significantly improved under SBF conditions. The bacterial adhesion of the coatings decreased with increasing current density. The bacterial adhesion of the coating produced at 0.370A/cm 2 was minimum compared to uncoated zirconium coated at 0.260 and 0.292A/cm 2 . The hemocompatibility of HAP-based surfaces was improved by PEO. The cell attachment and proliferation of the PEO coatings were better than the one of uncoated zirconium according to MTT assay results. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Interdiffusion behavior of Al-rich oxidation resistant coatings on ferritic-martensitic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Velraj, S.; Zhang, Y.; Hawkins, E.W. [Department of Mechanical Engineering, Tennessee Technological University, Cookeville, TN 38505-0001 (United States); Pint, B.A. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6156 (United States)

    2012-10-15

    Interdiffusion of thin Al-rich coatings synthesized by chemical vapor deposition (CVD) and pack cementation on 9Cr ferritic-martensitic alloys was investigated in the temperature range of 650-700 C. The compositional changes after long-term exposures in laboratory air and air + 10 vol% H{sub 2}O were examined experimentally. Interdiffusion was modeled by a modified coating oxidation and substrate interdiffusion model (COSIM) program. The modification enabled the program to directly input the concentration profiles of the as-deposited coating determined by electron probe microanalysis (EPMA). Reasonable agreement was achieved between the simulated and experimental Al profiles after exposures. The model was also applied to predict coating lifetime at 650-700 C based on a minimum Al content (C{sub b}) required at the coating surface to re-form protective oxide scale. In addition to a C{sub b} value established from the failure of a thin CVD coating at 700 C, values reported for slurry aluminide coatings were also included in lifetime predictions. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. High temperature oxidation and corrosion in marine environments of thermal spray deposited coatings

    International Nuclear Information System (INIS)

    Chaliampalias, D.; Vourlias, G.; Pavlidou, E.; Stergioudis, G.; Skolianos, S.; Chrissafis, K.

    2008-01-01

    Flame spraying is a widely used technique for depositing a great variety of materials in order to enforce the mechanical or the anticorrosion characteristics of the substrate. Its high rate application is due to the rapidity of the process, its effectiveness and its low cost. In this work, flame-sprayed Al coatings are deposited on low carbon steels in order to enhance their anticorrosion performance. The main adhesion mechanism of the coating is mechanical anchorage, which can provide the necessary protection to steel used in several industrial and constructive applications. To evaluate the corrosion resistance of the coating, the as-coated samples are subjected in a salt spray chamber and in elevated temperature environments. The examination and characterization of the corroded samples is done by scanning electron microscopy and X-ray diffraction analysis. The as-formed coatings are extremely rough and have a lamellic homogeneous morphology. It is also found that Al coatings provide better protection in marine atmospheres, while at elevated temperatures a thick oxide layer is formed, which can delaminate after long oxidation periods due to its low adherence to the underlying coating, thus eliminating the substrate protection

  14. Silicon effects on formation of EPO oxide coatings on aluminum alloys

    International Nuclear Information System (INIS)

    Wang, L.; Nie, X.

    2006-01-01

    Electrolytic plasma processes (EPP) can be used for cleaning, metal-coating, carburizing, nitriding, and oxidizing. Electrolytic plasma oxidizing (EPO) is an advanced technique to deposit thick and hard ceramic coatings on a number of aluminum alloys. However, the EPO treatment on Al-Si alloys with a high Si content has rarely been reported. In this research, an investigation was conducted to clarify the effects of silicon contents on the EPO coating formation, morphology, and composition. Cast hypereutectic 390 alloys (∼ 17% Si) and hypoeutectic 319 alloys (∼ 7% Si) were chosen as substrates. The coating morphology, composition, and microstructure of the EPO coatings on those substrates were investigated using scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis and X-ray diffraction (XRD). A stylus roughness tester was used for surface roughness measurement. It was found that the EPO process had four stages where each stage was corresponding to various coating surface morphology, composition, and phase structures, characterised by different coating growth mechanisms

  15. Aluminum Oxide Formation On Fecral Catalyst Support By Electro-Chemical Coating

    Directory of Open Access Journals (Sweden)

    Yang H.S.

    2015-06-01

    Full Text Available FeCrAl is comprised essentially of Fe, Cr, Al and generally considered as metallic substrates for catalyst support because of its advantage in the high-temperature corrosion resistance, high mechanical strength, and ductility. Oxidation film and its adhesion on FeCrAl surface with aluminum are important for catalyst life. Therefore various appropriate surface treatments such as thermal oxidation, Sol, PVD, CVD has studied. In this research, PEO (plasma electrolytic oxidation process was applied to form the aluminum oxide on FeCrAl surface, and the formed oxide particle according to process conditions such as electric energy and oxidation time were investigated. Microstructure and aluminum oxide particle on FeCrAl surface after PEO process was observed by FE-SEM and EDS with element mapping analysis. The study presents possibility of aluminum oxide formation by electro-chemical coating process without any pretreatment of FeCrAl.

  16. Retaining Oxidative Stability of Emulsified Foods by Novel Nonmigratory Polyphenol Coated Active Packaging.

    Science.gov (United States)

    Roman, Maxine J; Decker, Eric A; Goddard, Julie M

    2016-07-13

    Oxidation causes lipid rancidity, discoloration, and nutrient degradation that decrease shelf life of packaged foods. Synthetic additives are effective oxidation inhibitors, but are undesirable to consumers who prefer "clean" label products. The aim of this study was to improve oxidative stability of emulsified foods by a novel nonmigratory polyphenol coated active packaging. Polyphenol coatings were applied to chitosan functionalized polypropylene (PP) by laccase assisted polymerization of catechol and catechin. Polyphenol coated PP exhibited both metal chelating (39.3 ± 2.5 nmol Fe(3+) cm(-2), pH 4.0) and radical scavenging (up to 52.9 ± 1.8 nmol Trolox eq cm(-2)) capacity, resulting in dual antioxidant functionality to inhibit lipid oxidation and lycopene degradation in emulsions. Nonmigratory polyphenol coated PP inhibited ferric iron promoted degradation better than soluble chelators, potentially by partitioning iron from the emulsion droplet interface. This work demonstrates that polyphenol coatings can be designed for advanced material chemistry solutions in active food packaging.

  17. Oxidation protection and behavior of in-situ zirconium diboride–silicon carbide coating for carbon/carbon composites

    International Nuclear Information System (INIS)

    Li, Lu; Li, Hejun; Yin, Xuemin; Chu, Yanhui; Chen, Xi; Fu, Qiangang

    2015-01-01

    Highlights: • ZrB 2 –SiC coating was prepared on C/C composite by in-situ reaction. • A two-layered structure was obtained when the coating was oxidized at 1500 °C. • The formation and collapse of bubbles influenced the coating oxidation greatly. • The morphology evolution of oxide scale during oxidation was illuminated. - Abstract: To protect carbon/carbon (C/C) composites against oxidation, zirconium diboride–silicon carbide (ZrB 2 –SiC) coating was prepared by in-situ reaction using ZrC, B 4 C and Si as raw materials. The in-situ ZrB 2 –SiC coated C/C presented good oxidation resistance, whose weight loss was only 0.15% after isothermal oxidation at 1500 °C for 216 h. Microstructure evolution of coating at 1500 °C was studied, revealing a two-layered structure: (1) ZrO 2 (ZrSiO 4 ) embedded in SiO 2 -rich glass, and (2) unaffected ZrB 2 –SiC. The formation and collapse of bubbles influenced the coating oxidation greatly. A model based on the evolution of oxide scale was proposed to explain the failure mechanism of coating

  18. Oxidation protection of multilayer CVD SiC/B/SiC coatings for 3D C/SiC composite

    International Nuclear Information System (INIS)

    Liu Yongsheng; Cheng Laifei; Zhang Litong; Wu Shoujun; Li Duo; Xu Yongdong

    2007-01-01

    A CVD boron coating was introduced between two CVD SiC coating layers. EDS and XRD results showed that the CVD B coating was a boron crystal without other impurity elements. SEM results indicated that the CVD B coating was a flake-like or column-like crystal with a compact cross-section. The crack width in the CVD SiC coating deposited on CVD B is smaller than that in a CVD SiC coating deposited on CVD SiC coating. After oxidation at 700 deg. C and 1000 deg. C, XRD results indicated that the coating was covered by product B 2 O 3 or B 2 O 3 .xSiO 2 film. The cracks were sealed as observed by SEM. There was a large amount of flake-like material on hybrid coating surface after oxidation at 1300 deg. C. Oxidation weight loss and residual flexural strength results showed that hybrid SiC/B/SiC multilayer coating provided better oxidation protection for C/SiC composite than a three layer CVD SiC coating at temperatures from 700 deg. C to 1000 deg. C for 600 min, but worse oxidation protection above 1000 deg. C due to the large amount of volatilization of B 2 O 3 or B 2 O 3 .xSiO 2

  19. Adhesion property and high-temperature oxidation behavior of Cr-coated Zircaloy-4 cladding tube prepared by 3D laser coating

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun-Gil, E-mail: hgkim@kaeri.re.kr; Kim, Il-Hyun; Jung, Yang-Il; Park, Dong-Jun; Park, Jeong-Yong; Koo, Yang-Hyun

    2015-10-15

    A 3D laser coating technology using Cr powder was developed for Zr-based alloys considering parameters such as: the laser beam power, inert gas flow, cooling of Zr-based alloys, and Cr powder control. This technology was then applied to Zr cladding tube samples to study the effect of Cr coating on the high-temperature oxidation of Zr-based alloys in a steam environment of 1200 °C for 2000s. It was revealed that the oxide layer thickness formed on the Cr-coated tube surface was about 25-times lower than that formed on a Zircaloy-4 tube surface. In addition, both the ring compression and the tensile tests were performed to evaluate the adhesion properties of the Cr-coated sample. Although some cracks were formed on the Cr-coated layer, the Cr-coated layer had not peeled off after the two tests.

  20. High-Temperature Oxidation and Smelt Deposit Corrosion of Ni-Cr-Ti Arc-Sprayed Coatings

    Science.gov (United States)

    Matthews, S.; Schweizer, M.

    2013-08-01

    High Cr content Ni-Cr-Ti arc-sprayed coatings have been extensively applied to mitigate corrosion in black liquor recovery boilers in the pulp and paper industry. In a previous article, the effects of key spray parameters on the coating's microstructure and its composition were investigated. Three coating microstructures were selected from that previous study to produce a dense, oxidized coating (coating A), a porous, low oxide content coating (coating B), and an optimized coating (coating C) for corrosion testing. Isothermal oxidation trials were performed in air at 550 and 900 °C for 30 days. Additional trials were performed under industrial smelt deposits at 400 and 800 °C for 30 days. The effect of the variation in coating microstructure on the oxidation and smelt's corrosion response was investigated through the characterization of the surface corrosion products, and the internal coating microstructural developments with time at high temperature. The effect of long-term, high-temperature exposure on the interaction between the coating and substrate was characterized, and the mechanism of interdiffusion was discussed.

  1. Phenolic Modified Ceramic Coating on Biodegradable Mg Alloy: The Improved Corrosion Resistance and Osteoblast-Like Cell Activity

    Directory of Open Access Journals (Sweden)

    Hung-Pang Lee

    2017-06-01

    Full Text Available Magnesium alloys have great potential for developing orthopedic implants due to their biodegradability and mechanical properties, but the rapid corrosion rate of the currently-available alloys limits their clinical applications. To increase the corrosion resistance of the substrate, a protective ceramic coating is constructed by a micro-arc oxidation (MAO process on ZK60 magnesium alloy. The porous ceramic coating is mainly composed of magnesium oxide and magnesium silicate, and the results from cell cultures show it can stimulate osteoblastic cell growth and proliferation. Moreover, gallic acid, a phenolic compound, was successfully introduced onto the MAO coating by grafting on hydrated oxide and chelating with magnesium ions. The gallic acid and rough surface of MAO altered the cell attachment behavior, making it difficult for fibroblasts to adhere to the MAO coating. The viability tests showed that gallic acid could suppress fibroblast growth and stimulate osteoblastic cell proliferation. Overall, the porous MAO coating combined with gallic acid offered a novel strategy for increasing osteocompatibility.

  2. Tribological and Corrosion Properties of Coatings Produced by Plasma Electrolytic Oxidation on the ZA27 Alloy

    Science.gov (United States)

    Li, Guangyin; Mao, Yifan; Li, Zhijian; Wang, Linlin; DaCosta, Herbert

    2018-05-01

    In this paper, a continuous and dense coating was deposited on samples of the ZA27 alloy through the plasma electrolytic oxidation (PEO) process to improve its wear and corrosion performance. A nontoxic and environmentally friendly inorganic salt, Na2SiO3, is chosen as electrolytes with different concentrations. The effect of the concentration of Na2SiO3 aqueous solutions on the coating performances was investigated. The coatings with 3Al2O3·2SiO2 (mullite), Zn2SiO4 and Al2O3 (either crystal phase or with some amorphous SiO2 phases) were formed by the PEO processes. It was found that the coating thickness increased with the increase in electrolyte concentration. However, the wear and corrosion resistance performance of the coatings did not improve as the coating's thickness increased. This was due to the fact that the coating produced with electrolytes of 10 g/L has a porous structure with large pore size. Among all the samples, coating produced by 15 g/L Na2SiO3 has the best wear and corrosion resistance, which is attributed to its continuous and dense structure with thickness of about 47 μm.

  3. Tribological and Corrosion Properties of Coatings Produced by Plasma Electrolytic Oxidation on the ZA27 Alloy

    Science.gov (United States)

    Li, Guangyin; Mao, Yifan; Li, Zhijian; Wang, Linlin; DaCosta, Herbert

    2018-04-01

    In this paper, a continuous and dense coating was deposited on samples of the ZA27 alloy through the plasma electrolytic oxidation (PEO) process to improve its wear and corrosion performance. A nontoxic and environmentally friendly inorganic salt, Na2SiO3, is chosen as electrolytes with different concentrations. The effect of the concentration of Na2SiO3 aqueous solutions on the coating performances was investigated. The coatings with 3Al2O3·2SiO2 (mullite), Zn2SiO4 and Al2O3 (either crystal phase or with some amorphous SiO2 phases) were formed by the PEO processes. It was found that the coating thickness increased with the increase in electrolyte concentration. However, the wear and corrosion resistance performance of the coatings did not improve as the coating's thickness increased. This was due to the fact that the coating produced with electrolytes of 10 g/L has a porous structure with large pore size. Among all the samples, coating produced by 15 g/L Na2SiO3 has the best wear and corrosion resistance, which is attributed to its continuous and dense structure with thickness of about 47 μm.

  4. Ion Diffusion-Directed Assembly Approach to Ultrafast Coating of Graphene Oxide Thick Multilayers.

    Science.gov (United States)

    Zhao, Xiaoli; Gao, Weiwei; Yao, Weiquan; Jiang, Yanqiu; Xu, Zhen; Gao, Chao

    2017-10-24

    The layer-by-layer (LbL) assembly approach has been widely used to fabricate multilayer coatings on substrates with multiple cycles, whereas it is hard to access thick films efficiently. Here, we developed an ion diffusion-directed assembly (IDDA) strategy to rapidly make multilayer thick coatings in one step on arbitrary substrates. To achieve multifunctional coatings, graphene oxide (GO) and metallic ions were selected as the typical building blocks and diffusion director in IDDA, respectively. With diffusion of metallic ions from substrate to negatively charged GO dispersion spontaneously (i.e., from high-concentration region to low-concentration region), GO was assembled onto the substrate sheet-by-sheet via sol-gel transformation. Because metallic ions with size of subnanometers can diffuse directionally and freely in the aqueous dispersion, GO was coated on the substrate efficiently, giving rise to films with desired thickness up to 10 μm per cycle. The IDDA approach shows three main merits: (1) high efficiency with a μm-scale coating rate; (2) controllability over thickness and evenness; and (3) generality for substrates of plastics, metals and ceramics with any shapes and morphologies. With these merits, IDDA strategy was utilized in the efficient fabrication of functional graphene coatings that exhibit outstanding performance as supercapacitors, electromagnetic interference shielding textiles, and anticorrosion coatings. This IDDA approach can be extended to other building blocks including polymers and colloidal nanoparticles, promising for the scalable production and application of multifunctional coatings.

  5. Corrosion and nanomechanical behaviors of plasma electrolytic oxidation coated AA7020-T6 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Venugopal, A., E-mail: arjun_venu@hotmail.com [Materials and Metallurgy Group, Materials and Mechanical Entity, Vikram Sarabhai Space Centre, Thiruvananthapuram (India); Srinath, J. [Materials and Metallurgy Group, Materials and Mechanical Entity, Vikram Sarabhai Space Centre, Thiruvananthapuram (India); Rama Krishna, L. [International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Balapur P.O., Hyderabad 500005 (India); Ramesh Narayanan, P.; Sharma, S.C.; Venkitakrishnan, P.V. [Materials and Metallurgy Group, Materials and Mechanical Entity, Vikram Sarabhai Space Centre, Thiruvananthapuram (India)

    2016-04-13

    Alumina coating was deposited on AA7020 aluminum alloy by plasma electrolytic oxidation (PEO) method. The corrosion, stress corrosion cracking (SCC) and nano-mechanical behaviors were examined by means of potentiodynamic polarization, slow strain rate test (SSRT) and nano-indentation tests. Potentiodynamic polarization (PP) was used to evaluate the corrosion resistance of the coating and slow strain rate test (SSRT) was used for evaluating the environmental cracking resistance in 3.5% NaCl solution. The mechanical properties (hardness and elastic modulus) were obtained from each indentation as a function of the penetration depth across the coating cross section. The above results were compared with similar PEO coated aluminum and magnesium alloys. Results indicated that PEO coating on AA7020 alloy significantly improved the corrosion resistance. However the environmental cracking resistance was found to be only marginal. The hardness and elastic modulus values were found to be much higher when compared to the base metal and similar PEO coated 7075 aluminum alloys. The fabricated coating also exhibited good adhesive strength with the substrate similar to other PEO coated aluminum alloys reported in the literature.

  6. In situ fabrication of blue ceramic coatings on wrought Al Alloy 2024 by plasma electrolytic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zhijiang; Nie Xueyuan; Hu, Henry; Hussein, Riyad O. [Department of Mechanical, Automotive and Materials Engineering, University of Windsor, Windsor, Ontario N9B 3P4 (Canada)

    2012-03-15

    In situ formation of ceramic coatings on 2024 Al alloy with a blue color was successfully achieved using a plasma electrolytic oxidation process working at atmospheric pressure. This novel blue ceramic coating overcomes the shortcomings of surface treatments resulting from conventional dyeing processes by depositing organic dyes into the porous structure of anodic film, which has poor resistance to abrasion and rapid fading when exposed to sunlight. X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy were employed to characterize the microstructure of the blue ceramic coating. The fabricated ceramic coating was composed of CoAl{sub 2}O{sub 4}, {alpha}-Al{sub 2}O{sub 3}, and {gamma}-Al{sub 2}O{sub 3.} By controlling the working parameters, the distribution of the CoAl{sub 2}O{sub 4} phase on the surface can be adjusted, and plays a key role in the appearance of the coating. Electrochemical testing, thermal cycling method, and pin-on-disk sliding wear testing were employed to evaluate corrosion, thermal cycling, and wear resistance of the ceramic coatings. The results indicate that the blue ceramic coating has a similar polarization resistance to that of conventional anodic film and can significantly enhance the corrosion resistance of aluminum alloy. There are no destructive horizontal cracks observed within the blue ceramic coating when subjected to 120 times of thermal cycling, which heats the samples up to 573 K and followed by submersion in water at room temperature for 10 min. Compared with the aluminum substrate as well as a conventional anodic film coated aluminum sample, the wear resistance of the blue ceramic coating coated sample was significantly increased while the coefficient of friction was decreased from 0.34 to 0.14.

  7. In situ fabrication of blue ceramic coatings on wrought Al Alloy 2024 by plasma electrolytic oxidation

    International Nuclear Information System (INIS)

    Wang Zhijiang; Nie Xueyuan; Hu, Henry; Hussein, Riyad O.

    2012-01-01

    In situ formation of ceramic coatings on 2024 Al alloy with a blue color was successfully achieved using a plasma electrolytic oxidation process working at atmospheric pressure. This novel blue ceramic coating overcomes the shortcomings of surface treatments resulting from conventional dyeing processes by depositing organic dyes into the porous structure of anodic film, which has poor resistance to abrasion and rapid fading when exposed to sunlight. X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy were employed to characterize the microstructure of the blue ceramic coating. The fabricated ceramic coating was composed of CoAl 2 O 4 , α-Al 2 O 3 , and γ-Al 2 O 3. By controlling the working parameters, the distribution of the CoAl 2 O 4 phase on the surface can be adjusted, and plays a key role in the appearance of the coating. Electrochemical testing, thermal cycling method, and pin-on-disk sliding wear testing were employed to evaluate corrosion, thermal cycling, and wear resistance of the ceramic coatings. The results indicate that the blue ceramic coating has a similar polarization resistance to that of conventional anodic film and can significantly enhance the corrosion resistance of aluminum alloy. There are no destructive horizontal cracks observed within the blue ceramic coating when subjected to 120 times of thermal cycling, which heats the samples up to 573 K and followed by submersion in water at room temperature for 10 min. Compared with the aluminum substrate as well as a conventional anodic film coated aluminum sample, the wear resistance of the blue ceramic coating coated sample was significantly increased while the coefficient of friction was decreased from 0.34 to 0.14.

  8. Oxidation of Fe–22Cr Coated with Co3O4: Microstructure Evolution and the Effect of Growth Stresses

    DEFF Research Database (Denmark)

    Hansson, Anette Nørgaard; Burriel, Monica; Garcia, Gemma

    2007-01-01

    The oxidation behavior of a commercially available Fe–22Cr alloy coated with a Co3O4 layer by metal organic—chemical vapor deposition was investigated in air with 1% H2O at 1,173 K and compared to the oxidation behavior of the non-coated alloy. The oxide morphology was examined with X......-ray diffraction, electron microscopy, and energy dispersive X-ray spectroscopy. Cr2O3 developed in between the Co3O4 coating and the alloy, while alloying elements of the substrate were incorporated into the coating. Particular attention was devoted to possible sources of growth stresses and the effect...... of the growth stresses on microstructure evolution in the scales that developed on the non-coated and the coated Fe–22Cr alloy. Microstructural features suggested that scale spallation on coated Fe–22Cr occurred as a result of superimposing thermal stresses during cooling onto the growth stresses, that had...

  9. The ability of silicide coating to delay the catastrophic oxidation of vanadium under severe conditions

    Energy Technology Data Exchange (ETDEWEB)

    Chaia, N., E-mail: nabil.chaia@univ-lorraine.fr [Université de Lorraine, Institut Jean Lamour – UMR7198, Boulevard des Aiguillettes, BP70239, 54506 Vandoeuvre-lès-Nancy Cedex (France); Mathieu, S., E-mail: stephane.mathieu@univ-lorraine.fr [Université de Lorraine, Institut Jean Lamour – UMR7198, Boulevard des Aiguillettes, BP70239, 54506 Vandoeuvre-lès-Nancy Cedex (France); Rouillard, F., E-mail: fabien.rouillard@cea.fr [CEA, DEN, DPC, SCCME, Laboratoire d’Etude de la Corrosion Non Aqueuse, F-91191 Gif-sur-Yvette (France); Vilasi, M., E-mail: michel.vilasi@univ-lorraine.fr [Université de Lorraine, Institut Jean Lamour – UMR7198, Boulevard des Aiguillettes, BP70239, 54506 Vandoeuvre-lès-Nancy Cedex (France)

    2015-02-15

    Highlights: • Oxidation protection is due to the formation of a pure silica layer. • V–4Cr–4Ti with V{sub x}Si{sub y} silicide coating withstands 400 1-h cycles (1100 °C-T{sub amb}) in air. • Three-point flexure testing at 950 °C and 75 MPa does not induce coating breakdown. • No delamination between coating and substrate is observed in any test. - Abstract: V–4Cr–4Ti vanadium alloy is a potential cladding material for sodium-cooled fast-neutron reactors (SFRs). However, its affinity for oxygen and the subsequent embrittlement that oxygen induces causes a need for an oxygen diffusion barrier, which can be obtained by manufacturing a multi-layered silicide coating. The present work aims to evaluate the effects of thermal cycling (using a cyclic oxidation device) and tensile and compressive stresses (using the three-point flexure test) on the coated alloy system. Tests were performed in air up to 1100 °C, which is 200 °C higher than the accidental temperature for SFR applications. The results showed that the VSi{sub 2} coating was able to protect the vanadium substrate from oxidation for more than 400 1-h cycles between 1100 °C and room temperature. The severe bending applied to the coated alloy at 950 °C using a load of 75 MPa did not lead to specimen breakage. It can be suggested that the VSi{sub 2} coating has mechanical properties compatible with the V–4Cr–4Ti alloy for SFR applications.

  10. Oxidation resistance of CrN/(Cr,V)N hard coatings deposited by DC magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Panjan, P., E-mail: peter.panjan@ijs.si [Jožef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Drnovšek, A.; Kovač, J.; Gselman, P. [Jožef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Bončina, T. [University of Maribor, Faculty of Mechanical Engineering, Smetanova 17, 2000 Maribor (Slovenia); Paskvale, S.; Čekada, M.; Kek Merl, D.; Panjan, M. [Jožef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia)

    2015-09-30

    In recent years vanadium-doped hard coatings have become available as possible candidates for self-lubrication at high temperatures. Their low coefficient of friction has mainly been attributed to the formation of the V{sub 2}O{sub 5} phase. However, the formation of vanadium oxides must be controlled by the out-diffusion of vanadium in order to achieve the combination of a low coefficient of friction and good mechanical properties for the protective coatings. In this work the application of a nanolayer of CrN/(Cr,V)N hard coating was proposed as a way to better control the out-diffusion of vanadium, while the topmost chromium oxide layer acts as barrier for the vanadium diffusion. However, the aim of this investigation was not only to focus on the formation of the oxide layer. Special attention was given to the oxidation process that takes place at the growth defects, where we observed a strong diffusion of vanadium taking place. The CrN/(Cr,V)N nanolayer coatings were deposited by DC unbalanced magnetron sputtering in an CC800/9 (CemeCon) industrial unit. The vanadium concentration in the (Cr,V)N layers was varied in the range 1.0–11.5 at.%. - Highlights: • Oxidation processes of CrN/(Cr,V)N nanolayers with vanadium content were investigated. • The CrN/(Cr,V)N hard layers were oxidized at high temperature in O2 atm. • The top chromium oxide layer acts as a diffusion barrier for vanadium ions during oxidation. • Important role of growth defects during the oxidation process is demonstrated.

  11. Oxidation resistance of CrN/(Cr,V)N hard coatings deposited by DC magnetron sputtering

    International Nuclear Information System (INIS)

    Panjan, P.; Drnovšek, A.; Kovač, J.; Gselman, P.; Bončina, T.; Paskvale, S.; Čekada, M.; Kek Merl, D.; Panjan, M.

    2015-01-01

    In recent years vanadium-doped hard coatings have become available as possible candidates for self-lubrication at high temperatures. Their low coefficient of friction has mainly been attributed to the formation of the V_2O_5 phase. However, the formation of vanadium oxides must be controlled by the out-diffusion of vanadium in order to achieve the combination of a low coefficient of friction and good mechanical properties for the protective coatings. In this work the application of a nanolayer of CrN/(Cr,V)N hard coating was proposed as a way to better control the out-diffusion of vanadium, while the topmost chromium oxide layer acts as barrier for the vanadium diffusion. However, the aim of this investigation was not only to focus on the formation of the oxide layer. Special attention was given to the oxidation process that takes place at the growth defects, where we observed a strong diffusion of vanadium taking place. The CrN/(Cr,V)N nanolayer coatings were deposited by DC unbalanced magnetron sputtering in an CC800/9 (CemeCon) industrial unit. The vanadium concentration in the (Cr,V)N layers was varied in the range 1.0–11.5 at.%. - Highlights: • Oxidation processes of CrN/(Cr,V)N nanolayers with vanadium content were investigated. • The CrN/(Cr,V)N hard layers were oxidized at high temperature in O2 atm. • The top chromium oxide layer acts as a diffusion barrier for vanadium ions during oxidation. • Important role of growth defects during the oxidation process is demonstrated.

  12. Oxidation resistance of quintuple Ti-Al-Si-C-N coatings and associated mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Wu Guizhi; Ma Shengli; Xu Kewei; Ji, Vincent; Chu, Paul K. [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); ICMMO/LEMHE, Universite Paris-Sud 11, 91405 Orsay Cedex (France); Department of Physics and Materials Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon (Hong Kong)

    2012-07-15

    The oxidation behavior of Ti-Al-Si-C-N hard coatings with different Al contents deposited on high-speed steel and Si substrates by hybrid arc-enhanced magnetron sputtering is investigated in the temperature range of 500 Degree-Sign C-1000 Degree-Sign C. The coating hardness is maintained at around 35 GPa, and the parabolic oxidation rate constant K{sub p} at 1000 Degree-Sign C decreases to 3.36 Multiplication-Sign 10{sup -10} kg{sup 2} m{sup -4} s{sup -1} when the Al concentration is increased to 30 at. %, indicating that Ti-Al-Si-C-N coatings with larger Al concentrations have better oxidation resistance. X-ray diffraction, cross-sectional scanning electron microscopy, and x-ray photoelectron spectroscopy reveal a protective surface layer consisting of Al{sub 2}O{sub 3}, TiO{sub 2}, and SiO{sub 2} that retards inward oxygen diffusion. A mechanism is proposed to elucidate the oxide formation. As a consequence of the good oxidation resistance, the Ti-Al-Si-C-N coatings have a large potential in high-speed dry cutting as well as other high temperature applications.

  13. Increasing the solar cell power output by coating with transition metal-oxide nanorods

    International Nuclear Information System (INIS)

    Kuznetsov, I.A.; Greenfield, M.J.; Mehta, Y.U.; Merchan-Merchan, W.; Salkar, G.; Saveliev, A.V.

    2011-01-01

    Highlights: → Nanoparticles enhance solar cell efficiency. → Solar cell power increase by nanorod coating. → Metal-oxide nanorods are prepared in flames. → Molybdenum oxide nanorods effectively scatter light on solar cell surface. → Scattering efficiency depends on coating density. -- Abstract: Photovoltaic cells produce electric current through interactions among photons from an ambient light source and electrons in the semiconductor layer of the cell. However, much of the light incident on the panel is reflected or absorbed without inducing the photovoltaic effect. Transition metal-oxide nanoparticles, an inexpensive product of a process called flame synthesis, can cause scattering of light. Scattering can redirect photon flux, increasing the fraction of light absorbed in the thin active layer of silicon solar cells. This research aims to demonstrate that the application of transition metal-oxide nanorods to the surface of silicon solar panels can enhance the power output of the panels. Several solar panels were coated with a nanoparticle-methanol suspension, and the power outputs of the panels before and after the treatment were compared. The results demonstrate an increase in power output of up to 5% after the treatment. The presence of metal-oxide nanorods on the surface of the coated solar cells is confirmed by electron microscopy.

  14. Oxidation behavior of niobium aluminide intermetallics protected by aluminide and silicide diffusion coatings

    International Nuclear Information System (INIS)

    Li, Y.; Soboyejo, W.; Rapp, R.A.

    1999-01-01

    The isothermal and cyclic oxidation behavior of a new class of damage-tolerant niobium aluminide (Nb 3 Al-xTi-yCr) intermetallics is studied between 650 C and 850 C. Protective diffusion coatings were deposited by pack cementation to achieve the siliciding or aluminizing of substrates with or without intervening Mo or Ni layers, respectively. The compositions and microstructures of the resulting coatings and oxidized surfaces were characterized. The isothermal and cyclic oxidation kinetics indicate that uncoated Nb-40Ti-15Al-based intermetallics may be used up to ∼750 C. Alloying with Cr improves the isothermal oxidation resistance between 650 C and 850 C. The most significant improvement in oxidation resistance is achieved by the aluminization of electroplated Ni interlayers. The results suggest that the high-temperature limit of niobium aluminide-based alloys may be increased to 800 C to 850 C by aluminide-based diffusion coatings on ductile Ni interlayers. Indentation fracture experiments also indicate that the ductile nickel interlayers are resistant to crack propagation in multilayered aluminide-based coatings

  15. Doxorubicin loaded PVA coated iron oxide nanoparticles for targeted drug delivery

    International Nuclear Information System (INIS)

    Kayal, S.; Ramanujan, R.V.

    2010-01-01

    Magnetic drug targeting is a drug delivery system that can be used in locoregional cancer treatment. Coated magnetic particles, called carriers, are very useful for delivering chemotherapeutic drugs. Magnetic carriers were synthesized by coprecipitation of iron oxide followed by coating with polyvinyl alcohol (PVA). Characterization was carried out using X-ray diffraction, TEM, TGA, FTIR and VSM techniques. The magnetic core of the carriers was magnetite (Fe 3 O 4 ), with average size of 10 nm. The room temperature VSM measurements showed that magnetic particles were superparamagnetic. The amount of PVA bound to the iron oxide nanoparticles were estimated by thermogravimetric analysis (TGA) and the attachment of PVA to the iron oxide nanoparticles was confirmed by FTIR analysis. Doxorubicin (DOX) drug loading and release profiles of PVA coated iron oxide nanoparticles showed that up to 45% of adsorbed drug was released in 80 h, the drug release followed the Fickian diffusion-controlled process. The binding of DOX to the PVA was confirmed by FTIR analysis. The present findings show that DOX loaded PVA coated iron oxide nanoparticles are promising for magnetically targeted drug delivery.

  16. Microstructure of oxides in thermal barrier coatings grown under dry/humid atmosphere

    International Nuclear Information System (INIS)

    Zhou Zhaohui; Guo Hongbo; Wang Juan; Abbas, Musharaf; Gong Shengkai

    2011-01-01

    Graphical abstract: The presence of water vapor promoted the formation of spinels in the TBC. Highlights: → Thermal barrier coatings are produced by electron beam physical vapour deposition. → Oxidation behaviour of the coatings at 1100 deg. C has been investigated in dry/humid O 2 . → Thermally grown oxides formed in the coatings are characterized. → The presence of water vapour promotes the formation of spinel in the TBCs. - Abstract: The microstructure of thermally grown oxide (TGO) in thermal barrier coatings (TBCs) oxidized under dry/humid atmosphere at 1100 deg. C has been characterized by transmission electron microscopy. A thin and continuous oxide layer is formed in the as-deposited TBCs produced by electron beam physical vapor deposition. The TGO formed in dry atmosphere consists of an outer layer of fine α-alumina, zirconia grains and an inner layer of columnar α-alumina grains. However, a small amount of spinel is observed in the TGO under humid atmosphere. The presence of water vapour promotes the formation of spinel.

  17. UV protective zinc oxide coating for biaxially oriented polypropylene packaging film by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lahtinen, Kimmo, E-mail: kimmo.lahtinen@lut.fi [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland); Kääriäinen, Tommi, E-mail: tommi.kaariainen@colorado.edu [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland); Johansson, Petri, E-mail: petri.johansson@tut.fi [Paper Converting and Packaging Technology, Tampere University of Technology, P.O.Box 589, FI-33101 Tampere (Finland); Kotkamo, Sami, E-mail: sami.kotkamo@tut.fi [Paper Converting and Packaging Technology, Tampere University of Technology, P.O.Box 589, FI-33101 Tampere (Finland); Maydannik, Philipp, E-mail: philipp.maydannik@lut.fi [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland); Seppänen, Tarja, E-mail: tarja.seppanen@lut.fi [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland); Kuusipalo, Jurkka, E-mail: jurkka.kuusipalo@tut.fi [Paper Converting and Packaging Technology, Tampere University of Technology, P.O.Box 589, FI-33101 Tampere (Finland); Cameron, David C., E-mail: david.cameron@miktech.fi [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland)

    2014-11-03

    Biaxially oriented polypropylene (BOPP) packaging film was coated with zinc oxide (ZnO) coatings by atomic layer deposition (ALD) in order to protect the film from UV degradation. The coatings were made at a process temperature of 100 °C using diethylzinc and water as zinc and oxygen precursors, respectively. The UV protective properties of the coatings were tested by using UV–VIS and infrared spectrometry, differential scanning calorimetry (DSC) and a mechanical strength tester, which characterised the tensile and elastic properties of the film. The results obtained with 36 and 67 nm ZnO coatings showed that the ZnO UV protective layer is able to provide a significant decrease in photodegradation of the BOPP film under UV exposure. While the uncoated BOPP film suffered a complete degradation after a 4-week UV exposure, the 67 nm ZnO coated BOPP film was able to preserve half of its original tensile strength and 1/3 of its elongation at break after a 6-week exposure period. The infrared analysis and DSC measurements further proved the UV protection of the ZnO coatings. The results show that a nanometre scale ZnO coating deposited by ALD is a promising option when a transparent UV protection layer is sought for polymer substrates. - Highlights: • Atomic layer deposited zinc oxide coatings were used as UV protection layers. • Biaxially oriented polypropylene (BOPP) film was well protected against UV light. • Formation of UV degradation products in BOPP was significantly reduced. • Mechanical properties of the UV exposed BOPP film were significantly improved.

  18. Electrochemical oxidation of 2,4,5-trichlorophenoxyacetic acid by metal-oxide-coated Ti electrodes.

    Science.gov (United States)

    Maharana, Dusmant; Xu, Zesheng; Niu, Junfeng; Rao, Neti Nageswara

    2015-10-01

    Electrochemical oxidation of 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) over metal-oxide-coated Ti anodes, i.e., Ti/SnO2-Sb/Ce-PbO2, Ti/SnO2-Sb and Ti/RuO2, was examined. The degradation efficiency of over 90% was attained at 20 min at different initial concentrations (0.5-20 mg L(-1)) and initial pH values (3.1-11.2). The degradation efficiencies of 2,4,5-T on Ti/SnO2-Sb/Ce-PbO2, Ti/SnO2-Sb and Ti/RuO2 anodes were higher than 99.9%, 97.2% and 91.5% at 30 min, respectively, and the respective total organic carbon removal ratios were 65.7%, 54.6% and 37.2%. The electrochemical degradation of 2,4,5-T in aqueous solution followed pseudo-first-order kinetics. The compounds, i.e., 2,5-dichlorohydroquinone and 2,5-dihydroxy-p-benzoquinone, have been identified as the main aromatic intermediates by liquid chromatography-mass spectrometry. The results showed that the energy efficiencies of 2,4,5-T (20 mg L(-1)) degradation with Ti/SnO2-Sb/Ce-PbO2 anode at the optimal current densities from 2 to 16 mA cm(-2) ranged from 8.21 to 18.73 kWh m(-3). Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. The promising application of graphene oxide as coating materials in orthopedic implants: preparation, characterization and cell behavior

    International Nuclear Information System (INIS)

    Zhao, Changhong; Lu, Xiuzhen; Liu, Johan; Zanden, Carl

    2015-01-01

    To investigate the potential application of graphene oxide (GO) in bone repair, this study is focused on the preparation, characterization and cell behavior of graphene oxide coatings on quartz substrata. GO coatings were prepared on the substrata using a modified dip-coating procedure. Atomic force microscopy (AFM), scanning electron microscopy (SEM) and Raman spectroscopy results demonstrated that the as-prepared coatings in this study were homogeneous and had an average thickness of ∼67 nm. The rapid formation of a hydroxyapatite (HA) layer in the simulated body fluid (SBF) on GO coated substrata at day 14, as proved by SEM and x-ray diffraction (XRD), strongly indicated the bioactivity of coated substrata. In addition, MC3T3-E1 cells were cultured on the coated substrata to evaluate cellular activities. Compared with the non-coated substrata and tissue culture plates, no significant difference was observed on the coated substrata in terms of cytotoxicity, viability, proliferation and apoptosis. However, interestingly, higher levels of alkaline phosphatase (ALP) activity and osteocalcin (OC) secretion were observed on the coated substrata, indicating that GO coatings enhanced cell differentiation compared with non-coated substrata and tissue culture plates. This study suggests that GO coatings had excellent biocompatibility and more importantly promoted MC3T3-E1 cell differentiation and might be a good candidate as a coating material for orthopedic implants. (paper)

  20. Simulation and experimental approach to CVD-FBR aluminide coatings on ferritic steels under steam oxidation

    International Nuclear Information System (INIS)

    Leal, J.; Alcala, G.; Bolivar, F.J.; Sanchez, L.; Hierro, M.P.; Perez, F.J.

    2008-01-01

    The ferritic steels used to produce structural components for steam turbines are susceptible to strong corrosion and creep damage due to the extreme working conditions pushed to increase the process efficiency and to reduce pollutants release. The response of aluminide coatings on the P-92 ferritic steel, deposited by CVD-FBR, during oxidation in a simulated steam environment was studied. The analyses were performed at 650 deg. C in order to simulate the working conditions of a steam turbine, and 800 deg. C in order to produce a critical accelerated oxidation test. The Thermo-Calc software was used to predict the different solid phases that could be generated during the oxidation process, in both, coated and uncoated samples. In order to validate the thermodynamic results, the oxides scales produced during steam tests were characterized by different techniques such as XRD, SEM and EDS. The preliminary results obtained are discussed in the present work

  1. Comparative Study of Micro- and Nano-structured Coatings for High-Temperature Oxidation in Steam Atmospheres

    OpenAIRE

    Pérez, F.J.; Castañeda, I.; Hierro, M.P.; Escobar Galindo, R.; Sánchez-López, J.C.; Mato, S.

    2014-01-01

    For many high-temperature applications, coatings are applied in order to protect structural materials against a wide range of different environments: oxidation, metal dusting, sulphidation, molten salts, steam, etc. The resistance achieved by the use of different kind of coatings, such as functionally graded material coatings, has been optimized with the latest designs. In the case of supercritical steam turbines, many attempts have been made in terms of micro-structural coatings design, main...

  2. Polymer thin film as coating layer to prevent corrosion of metal/metal oxide film

    Science.gov (United States)

    Sarkar, Suman; Kundu, Sarathi

    2018-04-01

    Thin film of polymer is used as coating layer and the corrosion of metal/metal oxide layer is studied with the variation of the thickness of the coating layer. The thin layer of polystyrene is fabricated using spin coating method on copper oxide (CuO) film which is deposited on glass substrate using DC magnetron sputtering technique. Thickness of the polystyrene and the CuO layers are determined using X-ray reflectivity (XRR) technique. CuO thin films coated with the polystyrene layer are exposed to acetic acid (2.5 v/v% aqueous CH3COOH solution) environments and are subsequently analyzed using UV-Vis spectroscopy and atomic force microscopy (AFM). Surface morphology of the film before and after interaction with the acidic environment is determined using AFM. Results obtained from the XRR and UV-Vis spectroscopy confirm that the thin film of polystyrene acts as an anticorrosion coating layer and the strength of the coating depends upon the polymer layer thickness at a constant acid concentration.

  3. High Current Plasma Electrolytic Oxidation Coating Processes for Wear and Corrosion Prevention of Al 2024

    Science.gov (United States)

    Wang, Rui

    Plasma electrolytic oxidation (PEO) treatments have been used in the aerospace and automotive industries because the coating formed on light metals or alloys has great hardness, high wear, corrosion, and oxidation resistance, and a low friction coefficient that improves lifetime length and provide a higher surface quality. However, the PEO treatments that are presently used for industrial applications require a long period of time to confirm the quality of the coating. For this reason, the present study seeks to increase the current density of PEO treatments to improve their efficiency and explore the performance of the obtained coatings. It was found that for high current density (0.18A/cm2) PEO treatments, smaller ratio, such as 50% and 70%, is beneficial to obtaining a better performance coating. When compared with the coating of a "normal" (current density: 0.09A/cm2) PEO treatment, it had better wear resistance; however, for corrosion resistance, it had a lower performance than the coatings obtained by the "normal" current density PEO treatment which was attributed to the negative influence of porosity increase.

  4. High temperature oxidation resistance of magnetron-sputtered homogeneous CrAlON coatings on 430 steel

    Energy Technology Data Exchange (ETDEWEB)

    Garratt, E; Wickey, K J; Nandasiri, M I; Moore, A; AlFaify, S; Gao, X [Department of Physics, Western Michigan University, Kalamazoo, MI 49008 (United States); Smith, R J; Buchanan, T L; Priyantha, W; Kopczyk, M; Gannon, P E [Montana State University, Bozeman, MT, 59717 (United States); Kayani, A, E-mail: asghar.kayani@wmich.ed

    2009-11-01

    The requirements of low cost and high-temperature corrosion resistance for bipolar interconnect plates in solid oxide fuel cell stacks has directed attention to the use of metal plates with oxidation resistant coatings. We have investigated the performance of steel plates with homogenous coatings of CrAlON (oxynitrides). The coatings were deposited using RF magnetron sputtering, with Ar as a sputtering gas. Oxygen in these coatings was not intentionally added. Oxygen might have come through contaminated nitrogen gas bottle, leak in the chamber or from the partial pressure of water vapors. Nitrogen was added during the growth process to get oxynitride coating. The Cr/Al composition ratio in the coatings was varied in a combinatorial approach. The coatings were subsequently annealed in air for up to 25 hours at 800 {sup o}C. The composition of the coated plates and the rate of oxidation were characterized using Rutherford backscattering (RBS) and nuclear reaction analysis (NRA). Surface characterization was carried out using Atomic Force Microscopy (AFM) and surfaces of the coatings were found smooth on submicron scale. From our results, we conclude that Al rich coatings are more susceptible to oxidation than Cr rich coatings.

  5. High-temperature air oxidation of E110 and Zr-1%Nb alloys claddings with coatings

    International Nuclear Information System (INIS)

    Kuprin, A.S.; Belous, V.A.; Voyevodin, V.N.; Bryk, V.V.; Vasilenko, R.L.; Ovcharenko, V.D.; Tolmachova, G.N.; V'yugov, P.N.

    2014-01-01

    Results of experimental study of the influence of protective vacuum-arc claddings on the base of compounds zirconium-chromium and of its nitrides on air oxidation resistance at temperatures 660, 770, 900, 1020, 1100 deg C during 3600 s. of tubes produced of zirconium alloys E110 and Zr-1%Nb (calcium-thermal alloy of Ukrainian production) are presented. Change of hardness, the width of oxide layer and depth of oxygen penetration into alloys from the side of coating and without coating are investigated by the methods of nanoindentation and by scanning electron microscopy. It is shown that the thickness of oxide layer in zirconium alloys at temperatures 1020 and 1100 deg C from the side of the coating doesn't exceed 5 μm, and from the unprotected side reaches the value of ≥ 120 μm with porous and rough structure. Tubes with coatings save their shape completely independently of the type of alloy; tubes without coatings deform with the production of through cracks

  6. Oxidation study of coated Crofer 22 APU steel in dry oxygen

    DEFF Research Database (Denmark)

    Molin, Sebastian; Chen, Ming; Hendriksen, Peter Vang

    2014-01-01

    The effect of a dual layer coating composed of a layer of a Co3O4 and a layer of a La0.85Sr0.15MnO3/Co3O4 mixture on the high temperature corrosion of the Crofer 22 APU alloy is reported. Oxidation experiments were performed in dry oxygen at three temperatures: 800 °C, 850 °C and 900 °C for periods...... up to 1000 h. Additionally at 850 °C a 5000 h long oxidation test was performed to evaluate longer term suitability of the proposed coating. Corrosion kinetics were evaluated by measuring mass gain during oxidation. The corrosion kinetics for the coated samples are analyzed in terms of a parabolic...... rate law. Microstructural features were investigated by scanning electron microscopy, energy dispersive X-ray analysis and X-ray diffractometry. The coating is effective in reducing the corrosion rate and in ensuring long lifetime of coated alloys. The calculated activation energy for the corrosion...

  7. Antibacterial properties and cytocompatibility of tantalum oxide coatings with different silver content

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Heng-Li [School of Dentistry, China Medical University, Taichung 404, Taiwan (China); Chang, Yin-Yu, E-mail: yinyu@mail2000.com.tw; Chen, Hung-Jui; Chou, Yu-Kai [Department of Mechanical and Computer-Aided Engineering, National Formosa University, Yunlin 632, Taiwan (China); Lai, Chih-Ho [School of Medicine, China Medical University, Taichung 404, Taiwan (China); Chen, Michael Y. C. [Division of Oral and Maxillofacial Surgery, China Medical University Hospital, Taichung 404, Taiwan (China)

    2014-03-15

    Tantalum (Ta) oxides and their coatings have been proved to increase their applications in the biomedical fields by improving osseointegration and wear resistance. In this study, Ta oxide coatings containing different proportions of Ag are deposited on SS304 materials. A twin-gun magnetron sputtering system is used to deposit the tantalum oxide-Ag coating. In this study, Staphylococcus aureus, which exhibits physiological commensalism on the human skin, nares, and mucosal and oral areas, is chosen as the model for in vitro antibacterial analyses via a fluorescence staining method using Syto9. The cytocompatibility and adhesive morphology of human skin fibroblast cells (CCD-966SK) on the coatings are also determined by using the microculture tetrazolium assay. This study shows that Ta{sub 2}O{sub 5} and Ta{sub 2}O{sub 5}-Ag coatings with 12.5 at. % of Ag exhibit improved antibacterial effects against S. aureus and have good skin fibroblast cell cellular biocompatibility.

  8. In vitro antiplasmodial activity of PDDS-coated metal oxide nanoparticles against Plasmodium falciparum

    Science.gov (United States)

    Jacob Inbaneson, Samuel; Ravikumar, Sundaram

    2013-06-01

    Malaria is the most important parasitic disease, leading to annual death of about one million people and the Plasmodium falciparum develops resistant to well-established antimalarial drugs. The newest antiplasmodial drug from metal oxide nanoparticles helps in addressing this problem. Commercial nanoparticles such as Fe3O4, MgO, ZrO2, Al2O3 and CeO2 coated with PDDS and all the coated and non-coated nanoparticles were screened for antiplasmodial activity against P. falciparum. The Al2O3 nanoparticles (71.42 ± 0.49 μg ml-1) showed minimum level of IC50 value and followed by MgO (72.33 ± 0.37 μg ml-1) and Fe3O4 nanoparticles (77.23 ± 0.42 μg ml-1). The PDDS-Fe3O4 showed minimum level of IC50 value (48.66 ± 0.45 μg ml-1), followed by PDDS-MgO (60.28 ± 0.42 μg ml-1) and PDDS-CeO2 (67.06 ± 0.61 μg ml-1). The PDDS-coated metal oxide nanoparticles showed superior antiplasmodial activity than the non-PDDS-coated metal oxide nanoparticles. Statistical analysis reveals that, significant in vitro antiplasmodial activity ( P activity and it might be used for the development of antiplasmodial drugs.

  9. Microstructural evolution and growth kinetics of thermally grown oxides in plasma sprayed thermal barrier coatings

    Directory of Open Access Journals (Sweden)

    Xiaoju Liu

    2016-02-01

    Full Text Available The formation of thermally grown oxide (TGO during high temperature is a key factor to the degradation of thermal barrier coatings (TBCs applied on hot section components. In the present study both the CoNiCrAlY bond coat and ZrO2-8 wt.% Y2O3 (8YSZ ceramic coat of TBCs were prepared by air plasma spraying (APS. The composition and microstructure of TGO in TBCs were investigated using scanning electron microscopy (SEM, energy dispersive spectroscopy (EDS and X-ray diffraction (XRD analysis. The growth rate of TGO for TBC and pure BC were gained after isothermal oxidation at 1100 °C for various times. The results showed that as-sprayed bond coat consisted of β and γ/γ′phases, β phase reducesd as the oxidation time increased. The TGO comprised α-Al2O3 formed in the first 2 h. CoO, NiO, Cr2O3 and spinel oxides appeared after 20 h of oxidation. Contents of CoO and NiO reduced while that of Cr2O3 and spinel oxides increased in the later oxidation stage. The TGO eventually consisted of a sub-Al2O3 layer with columnar microstructure and the upper porous CS clusters. The TGO growth kinetics for two kinds of samples followed parabolic laws, with oxidation rate constant of 0.344 μm/h0.5 for TBCs and 0.354 μm/h0.5 for pure BCs.

  10. The reactive element effect of yttrium and yttrium silicon on high temperature oxidation of NiCrAl coating

    Science.gov (United States)

    Ramandhany, S.; Sugiarti, E.; Desiati, R. D.; Martides, E.; Junianto, E.; Prawara, B.; Sukarto, A.; Tjahjono, A.

    2018-03-01

    The microstructure formed on the bond coat affects the oxidation resistance, particularly the formation of a protective oxide layer. The adhesion of bond coat and TGO increased significantly by addition of reactive element. In the present work, the effect of yttrium and yttrium silicon as reactive element (RE) on NiCrAl coating was investigated. The NiCrAl (without RE) and NiCrAlX (X:Y or YSi) bond coating were deposited on Hastelloy C-276 substrate by High Velocity Oxygen Fuel (HVOF) method. Isothermal oxidation was carried out at 1000 °C for 100 hours. The results showed that the addition of RE could prevent the breakaway oxidation. Therefore, the coating with reactive element were more protective against high temperature oxidation. Furthermore, the oxidation rate of NiCrAlY coating was lower than NiCrAlYSi coating with the total mass change was ±2.394 mg/cm2 after 100 hours of oxidation. The thickness of oxide scale was approximately 1.18 μm consisting of duplex oxide scale of spinel NiCr2O4 in outer scale and protective α-Al2O3 in inner scale.

  11. Clearance of iron oxide particles in rat liver: effect of hydrated particle size and coating material on liver metabolism.

    Science.gov (United States)

    Briley-Saebo, Karen C; Johansson, Lars O; Hustvedt, Svein Olaf; Haldorsen, Anita G; Bjørnerud, Atle; Fayad, Zahi A; Ahlstrom, Haakan K

    2006-07-01

    We sought to evaluate the effect of the particle size and coating material of various iron oxide preparations on the rate of rat liver clearance. The following iron oxide formulations were used in this study: dextran-coated ferumoxide (size = 97 nm) and ferumoxtran-10 (size = 21 nm), carboxydextran-coated SHU555A (size = 69 nm) and fractionated SHU555A (size = 12 nm), and oxidized-starch coated materials either unformulated NC100150 (size = 15 nm) or formulated NC100150 injection (size = 12 nm). All formulations were administered to 165 rats at 2 dose levels. Quantitative liver R2* values were obtained during a 63-day time period. The concentration of iron oxide particles in the liver was determined by relaxometry, and these values were used to calculate the particle half-lives in the liver. After the administration of a high dose of iron oxide, the half-life of iron oxide particles in rat liver was 8 days for dextran-coated materials, 10 days for carboxydextran materials, 14 days for unformulated oxidized-starch, and 29 days for formulated oxidized-starch. The results of the study indicate that materials with similar coating but different sizes exhibited similar rates of liver clearance. It was, therefore, concluded that the coating material significantly influences the rate of iron oxide clearance in rat liver.

  12. Oxide scale formation of modified FeCrAl coatings exposed to liquid lead

    Energy Technology Data Exchange (ETDEWEB)

    Fetzer, Renate, E-mail: renate.fetzer@kit.edu [Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe (Germany); Weisenburger, Alfons; Jianu, Adrian; Mueller, Georg [Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe (Germany)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Modified FeCrAl coatings show oxide scale formation when exposed to liquid lead. Black-Right-Pointing-Pointer Formation of thin Al-rich oxide scales is promoted by the presence of Y. Black-Right-Pointing-Pointer FeCrAlY with at least 8 wt.% Al forms thin Al-rich oxide scales. Black-Right-Pointing-Pointer For low Al content, thick multilayer Fe-based oxide scales are found. - Abstract: Modified FeCrAl coatings were studied with respect to their capability to form a thin protective oxide scale in liquid lead environment. They were manufactured by low pressure plasma spraying and GESA surface melting, thereby tuning the Al content. The specimens were exposed for 900 h to liquid lead containing 10{sup -6} and 10{sup -8} wt.% oxygen, respectively, at various temperatures from 400 to 550 Degree-Sign C. Threshold values for an Al content that guarantees the formation of thin protective Al-rich oxide scales are determined, dependent on the respective chromium content, on the presence of yttrium in the modified coating, and on the exposure conditions.

  13. A Comparative Study of Natural Fiber and Glass Fiber Fabrics Properties with Metal or Oxide Coatings

    International Nuclear Information System (INIS)

    Lusis, Andrej; Pentjuss, Evalds; Bajars, Gunars; Sidorovicha, Uljana; Strazds, Guntis

    2015-01-01

    Rapidly growing global demand for technical textiles industries is stimulated to develop new materials based on hybrid materials (yarns, fabrics) made from natural and glass fibres. The influence of moisture on the electrical properties of metal and metal oxide coated bast (flax, hemp) fibre and glass fibre fabrics are studied by electrical impedance spectroscopy and thermogravimetry. The bast fibre and glass fiber fabrics are characterized with electrical sheet resistance. The method for description of electrical sheet resistance of the metal and metal oxide coated technical textile is discussed. The method can be used by designers to estimate the influence of moisture on technical data of new metal coated hybrid technical textile materials and products

  14. Respiration sensor made from indium tin oxide-coated conductive fabrics

    Science.gov (United States)

    Kim, Sun Hee; Lee, Joo Hyeon; Jee, Seung Hyun

    2015-02-01

    Conductive fabrics with new properties and applications have been the subject of extensive research over the last few years, with wearable respiration sensors attracting much attention. Different methods can be used to obtain fabrics that are electrically conducting, an essential property for various applications. For instance, fabrics can be coated with conductive polymers. Here, indium tin oxide (ITO)-coated conductive fabrics with cross-linked polyvinyl alcohol (C-PVA) were prepared using a doctor-blade. The C-PVA was employed in the synthesis to bind ITO on the fabrics with the highest possible mechanical strength. The feasibility of a respiration sensor prepared using the ITO-coated conductive fabric was investigated. The ITO-coated conductive fabric with the C-PVA was demonstrated to have a high potential for use in respiration sensors.

  15. Factors Influencing Plasma Electrolytic Oxidation(PEO) Coatings on Magnesium Alloys: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Gunchoo [KISTI ReSEAT Program, Daejon (Korea, Republic of)

    2017-05-15

    Magnesium alloys, which possess excellent specific strength and castability, are highly susceptible to corrosion. Although anodizing is widely used to resolve this problem, it requires toxic electrolytes and produces relatively thin and weak surface coatings. Recently, plasma electrolytic oxidation (PEO) has emerged as an alternative to anodizing. Although it is derived from conventional anodizing, it uses eco-friendly electrolytes and forms thicker, denser, and harder coatings on the surface of magnesium alloys. However, PEO is a complex process involving physical, chemical, and electrochemical reactions, and it is influenced by various factors such as the alloy substrate composition, electrolyte/additive composition, and the electrical variables including the mode of power supply, applied voltage/current density, frequency, and duty cycle. In this article, the detailed effects of these parameters on the microstructure and properties of the PEO coatings are reviewed, and methods of improving the coatings are proposed.

  16. Mg-containing hydroxyapatite coatings produced by plasma electrolytic oxidation of titanium

    Energy Technology Data Exchange (ETDEWEB)

    Antonio, Cesar Augusto; Rangel, Elidiane Cipriano; Durrant, Steven Frederick; Cruz, Nilson Cristino da, E-mail: cesar.augustoa@hotmail.com [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Sorocaba, SP (Brazil). Lab. de Plasmas Tecnologicos; Delgado-Silva, Adriana de Oliveira [Universidade Federal de Sao Carlos (UFSCar), Sorocaba, SP (Brazil); Tabacniks, Manfredo H. [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Fisica

    2017-07-15

    Plasma Electrolytic Oxidation (PEO) is promising for the processing of biomaterials because it enables the production of surfaces with adjustable composition and structure. In this work, aimed at the improvement of the bioactivity of titanium, PEO has been used to grow calcium phosphide coatings on titanium substrates. The effects of the addition of magnesium acetate to the electrolytes on the composition of the coatings produced during 120 s on Ti disks using bipolar voltage pulses and solutions of calcium and magnesium acetates and sodium glycerophosphate as electrolytes have been studied. Scanning electron microscopy, X-ray energy dispersive spectroscopy, Rutherford backscattering spectroscopy, X-ray diffractometry with Rietveld refinement and profilometry were used to characterize the modified samples. Coatings composed of nearly 50 % of Mg-doped hydroxyapatite have been produced. In certain conditions up to 4% Mg can be incorporated into the coating without any observable significant structural modifications of the hydroxyapatite. (author)

  17. Electrophoretic deposition and electrochemical behavior of novel graphene oxide-hyaluronic acid-hydroxyapatite nanocomposite coatings

    International Nuclear Information System (INIS)

    Li, Ming; Liu, Qian; Jia, Zhaojun; Xu, Xuchen; Shi, Yuying; Cheng, Yan; Zheng, Yufeng; Xi, Tingfei; Wei, Shicheng

    2013-01-01

    Novel ternary graphene oxide-hyaluronic acid-hydroxyapatite (GO-HY-HA) nanocomposite coatings were prepared on Ti substrate using anodic electrophoretic deposition (EPD). Hyaluronic acid was employed as charging additive and dispersion agent during EPD. The kinetics and mechanism of the deposition, and the microstructure of the coated samples were investigated using scanning electron microscopy, X-ray diffraction, Raman spectrum, thermo-gravimetric analysis, and microscopic Fourier transform infrared analysis. The results showed that the addition of GO sheets into the HY-HA suspensions could increase the deposition rate and inhibit cracks creation and propagation in the coatings. The corrosion resistant of the resulting samples were evaluated using potentiodynamic polarization method in simulated body fluid, and the GO-HY-HA coatings could effectively improve the anti-corrosion property of the Ti substrate

  18. Electrophoretic deposition and electrochemical behavior of novel graphene oxide-hyaluronic acid-hydroxyapatite nanocomposite coatings

    Science.gov (United States)

    Li, Ming; Liu, Qian; Jia, Zhaojun; Xu, Xuchen; Shi, Yuying; Cheng, Yan; Zheng, Yufeng; Xi, Tingfei; Wei, Shicheng

    2013-11-01

    Novel ternary graphene oxide-hyaluronic acid-hydroxyapatite (GO-HY-HA) nanocomposite coatings were prepared on Ti substrate using anodic electrophoretic deposition (EPD). Hyaluronic acid was employed as charging additive and dispersion agent during EPD. The kinetics and mechanism of the deposition, and the microstructure of the coated samples were investigated using scanning electron microscopy, X-ray diffraction, Raman spectrum, thermo-gravimetric analysis, and microscopic Fourier transform infrared analysis. The results showed that the addition of GO sheets into the HY-HA suspensions could increase the deposition rate and inhibit cracks creation and propagation in the coatings. The corrosion resistant of the resulting samples were evaluated using potentiodynamic polarization method in simulated body fluid, and the GO-HY-HA coatings could effectively improve the anti-corrosion property of the Ti substrate.

  19. Pilot demonstration of cerium oxide coated anodes. Final report, April 1990--October 1992

    Energy Technology Data Exchange (ETDEWEB)

    Gregg, J.S.; Frederick, M.S.; Shingler, M.J.; Alcorn, T.R.

    1992-10-01

    Cu cermet anodes were tested for 213 to 614 hours with an in-situ deposited CEROX coating in a pilot cell operated by Reynolds Manufacturing Technology Laboratory. At high bath ratio ({approximately}1.5) and low current density (0.5 A/cm{sup 2}), a {ge}1 mm thick dense CEROX coating was deposited on the anodes. At lower bath ratios and higher current density, the CEROX coating was thinner and less dense, but no change in corrosion rate was noted. Regions of low current density on the anodes and sides adjacent to the carbon anode sometimes had thin or absent CEROX coatings. Problems with cracking and oxidation of the cermet substrates led to higher corrosion rates in a pilot cell than would be anticipated from lab scale results.

  20. Corrosion protection by organic coatings containing polyaniline salts prepared by oxidative polymerization

    Czech Academy of Sciences Publication Activity Database

    Kohl, M.; Kalendová, A.; Černošková, E.; Bláha, Michal; Stejskal, Jaroslav; Erben, M.

    2017-01-01

    Roč. 14, č. 6 (2017), s. 1397-1410 ISSN 1945-9645 R&D Projects: GA ČR(CZ) GA16-02787S Institutional support: RVO:61389013 Keywords : polyaniline * oxidative polymerization * organic coatings Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 1.557, year: 2016

  1. An innovative zinc oxide-coated zeolite adsorbent for removal of humic acid

    Science.gov (United States)

    Zinc oxide (ZnO)-coated zeolite adsorbents were developed by both nitric acid modification and Zn(NO3)2•6H2O functionalization of zeolite. The developed adsorbents were used for the removal of humic acid (HA) from aqueous solutions. The adsorption capacity of the adsorbents at 21...

  2. Protection of yttria-stabilized zirconia for dental applications by oxidic PVD coating.

    Science.gov (United States)

    Hübsch, C; Dellinger, P; Maier, H J; Stemme, F; Bruns, M; Stiesch, M; Borchers, L

    2015-01-01

    In this study, the application of transparent physical vapor deposition (PVD) coatings on zirconia ceramics was examined as an approach to retard the low-temperature degradation of zirconia for dental applications. Transparent monolayers of titanium oxide (TixOy) and multilayers consisting of titanium oxide-alumina-titanium oxide (TixOy-AlxOy-TixOy) were deposited onto standardized discs of 3Y-TZP using magnetron sputtering. Using X-ray photospectroscopy and time-of-flight secondary-ion mass spectrometry, the compositions of the coatings were verified, and an approximate thickness of 50 nm for each type of coating was ascertained. After aging the coated and uncoated samples in water vapor at 134°C and 3 bar for 4, 8, 16, 32, 64 and 128 h, the monoclinic phase content was determined using X-ray diffraction, and its impact on mechanical properties was assessed in biaxial flexural strength tests. In addition, the depth of the transformation zone was measured from scanning electron microscopy images of the fracture surfaces of hydrothermally aged samples. The results revealed that the tetragonal-to-monoclinic phase transformation of the zirconia ceramic was retarded by the application of PVD coatings. During the first stages of aging, the coated samples exhibited a significantly lower monoclinic phase content than the uncoated samples and, after 128 h of aging, showed a transformation zone which was only ∼12-15 μm thick compared to ∼30 μm in the control group. Biaxial flexural strength decreased by ∼10% during aging and was not influenced by the application of a PVD coating. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Oxidation behavior of NiCoCrAlY coatings deposited by double-Glow plasma alloying

    Science.gov (United States)

    Cui, Shiyu; Miao, Qiang; Liang, Wenping; Li, Baiqiang

    2018-01-01

    The NiCoCrAlY coatings were deposited on the Inconel 718 alloy substrates by a novel method called double-glow plasma alloying (DG). The phases and microstructure of the coatings were investigated by X-ray diffraction analysis while their chemical composition was analyzed using scanning electron microscopy. The morphology of the NiCoCrAlY coatings was typical of coatings formed by DG, with their structure consisting of uniform submicron-sized grains. Further, the coatings showed high adhesion strength (critical load >46 N). In addition, the oxidation characteristics of the coatings and the substrate were examined at three different temperatures (850, 950, and 1050 °C) using a muffle furnace. The coatings showed a lower oxidation rate, which was approximately one-tenth of that of the substrate. Even after oxidation for 100 h, the Al2O3 phase was the primary phase in the surface coating (850 °C), with the thickness of the oxide film increasing to 0.65 μm at 950 °C. When the temperature was increased beyond 1050 °C, the elemental Al and Ni were consumed in the formation of the oxide scale, which underwent spallation at several locations. The oxidation products of Cr, which were produced in large amounts and had a prism-like structure, controlled the subsequent oxidation behavior at the surface.

  4. Iron oxide coating films in soda-lime glass by triboadhesion

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, J. O.; Arjona, M. J. [Boulevard Bahia s/n esq. Ignacio Comonfort, Chetumal (Mexico); Rodriguez-Lelis, J. M. [Interior Internado Palmira s/n, Cuernavaca, Morelos (Mexico)

    2009-04-15

    In the triboadhesion process the coating material is passed through a rotating cotton mop and the substrate to be coated. The cotton mop rotates at high velocity and exerts pressure on the surface of the substrate. The combined effect of pressure and velocity of the coating mop on the substrate increases its temperature close to the melting point, allowing deposition and diffusion of the coating material within the substrate. After it is deposited, its particles are embedded within the base material forming a thin film composite. The amount of the coating material deposited on the substrate has its maximum at the surface and then decreases as a function of the local temperature within the base material. Bearing this in mind, in the present work, triboadhesion is employed to deposit iron oxide in a substrate of soda-lime glass, with the purpose of determining the feasibility of using this technique for solar control coatings. It was found, through electronic scan microscopy, that a composite material film is formed following the coating direction. Reflectance and transmittance tests were carried out on the glass samples. A 20% difference was found in the visible spectral region (VIS), and a reduction between 10 and 20% in the Near Infrared Region (NIR). These results showed that the triboadhesion is a promising technique for the application of thin films for solar control or solar cells

  5. Electrodeposition of metallic tungsten coating from binary oxide molten salt on low activation steel substrate

    International Nuclear Information System (INIS)

    Liu, Y.H.; Zhang, Y.C.; Jiang, F.; Fu, B.J.; Sun, N.B.

    2013-01-01

    Tungsten is considered a promising plasma facing armor material for future fusion devices. An electrodeposited metallic tungsten coating from Na 2 WO 4 –WO 3 binary oxide molten salt on low activation steel (LAS) substrate was investigated in this paper. Tungsten coatings were deposited under various pulsed currents conditions at 1173 K in atmosphere. Cathodic current density and pulsed duty cycle were investigated for pulsed current electrolysis. The crystal structure and microstructure of tungsten coatings were characterized by X-ray diffractometry, scanning electron microscopy, and energy X-ray dispersive analysis techniques. The results indicated that pulsed current density and duty cycle significantly influence tungsten nucleation and electro-crystallization phenomena. The average grain size of the coating becomes much larger with increasing cathodic current density, which demonstrates that appropriate high cathodic current density can accelerate the growth of grains on the surface of the substrate. The micro-hardness of tungsten coatings increases with the increasing thickness of coatings; the maximum micro-hardness is 482 HV. The prepared tungsten coatings have a smooth surface, a porosity of less than 1%, and an oxygen content of 0.024 wt%

  6. Iron oxide coating films in soda-lime glass by triboadhesion

    International Nuclear Information System (INIS)

    Aguilar, J. O.; Arjona, M. J.; Rodriguez-Lelis, J. M.

    2009-01-01

    In the triboadhesion process the coating material is passed through a rotating cotton mop and the substrate to be coated. The cotton mop rotates at high velocity and exerts pressure on the surface of the substrate. The combined effect of pressure and velocity of the coating mop on the substrate increases its temperature close to the melting point, allowing deposition and diffusion of the coating material within the substrate. After it is deposited, its particles are embedded within the base material forming a thin film composite. The amount of the coating material deposited on the substrate has its maximum at the surface and then decreases as a function of the local temperature within the base material. Bearing this in mind, in the present work, triboadhesion is employed to deposit iron oxide in a substrate of soda-lime glass, with the purpose of determining the feasibility of using this technique for solar control coatings. It was found, through electronic scan microscopy, that a composite material film is formed following the coating direction. Reflectance and transmittance tests were carried out on the glass samples. A 20% difference was found in the visible spectral region (VIS), and a reduction between 10 and 20% in the Near Infrared Region (NIR). These results showed that the triboadhesion is a promising technique for the application of thin films for solar control or solar cells

  7. The characterization of an oxide interfacial coating for ceramic matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Coons, Timothy P., E-mail: tpcoons@gmail.com [Department of Chemistry, Unit 3060, University of Connecticut, 55 North Eagleville Road, Storrs, CT 06269-3060 (United States); Reutenauer, Justin W.; Mercado, Andrew [Department of Chemistry, Unit 3060, University of Connecticut, 55 North Eagleville Road, Storrs, CT 06269-3060 (United States); Kmetz, Michael A. [Pratt and Whitney, 400 Main Street M/S 114-43, East Hartford, CT 06108 (United States); Suib, Steven L. [Department of Chemistry, Unit 3060, University of Connecticut, 55 North Eagleville Road, Storrs, CT 06269-3060 (United States)

    2013-06-20

    This work focused on the use of metal organic chemical vapor deposition (MOCVD) to deposit a zinc oxide (ZnO) coating on ceramic fibers as an interfacial system for continuous fiber reinforced ceramic matrix composites (CFR-CMCs). ZnO coatings were deposited on ceramic grade (CG) Nicalon{sup ™}, Hi-Nicalon{sup ™}, and Hi-Nicalon{sup ™} Type S fabric by the thermal decomposition of zinc acetate dihydrate in a low pressure hot wall CVD reactor. A duplex SiO{sub 2} coating was also deposited in order to protect the ZnO layer from the reducing conditions during composite fabrication. Tow testing was used to evaluate the effect of the ZnO coating on the strength retention of the ceramic fabrics. Single strand unidirectional mini composites were fabricated by infiltrating SiC into the ZnO/SiO{sub 2} duplex coated tows in order to understand the interfacial properties of the ZnO coating. The mini composite utilizing Hi-Nicalon{sup ™} Type S produced the highest ultimate tensile strength (UTS) of 330 MPa. The coated fabrics and the mini composites were characterized using field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) and scanning Auger microscopy (SAM)

  8. The characterization of an oxide interfacial coating for ceramic matrix composites

    International Nuclear Information System (INIS)

    Coons, Timothy P.; Reutenauer, Justin W.; Mercado, Andrew; Kmetz, Michael A.; Suib, Steven L.

    2013-01-01

    This work focused on the use of metal organic chemical vapor deposition (MOCVD) to deposit a zinc oxide (ZnO) coating on ceramic fibers as an interfacial system for continuous fiber reinforced ceramic matrix composites (CFR-CMCs). ZnO coatings were deposited on ceramic grade (CG) Nicalon ™ , Hi-Nicalon ™ , and Hi-Nicalon ™ Type S fabric by the thermal decomposition of zinc acetate dihydrate in a low pressure hot wall CVD reactor. A duplex SiO 2 coating was also deposited in order to protect the ZnO layer from the reducing conditions during composite fabrication. Tow testing was used to evaluate the effect of the ZnO coating on the strength retention of the ceramic fabrics. Single strand unidirectional mini composites were fabricated by infiltrating SiC into the ZnO/SiO 2 duplex coated tows in order to understand the interfacial properties of the ZnO coating. The mini composite utilizing Hi-Nicalon ™ Type S produced the highest ultimate tensile strength (UTS) of 330 MPa. The coated fabrics and the mini composites were characterized using field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) and scanning Auger microscopy (SAM)

  9. Electrodeposition of metallic tungsten coating from binary oxide molten salt on low activation steel substrate

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y. H. [School of Materials Science and Engineering, University of Science and Technology BeiJing, Beijing (China); State Nuclear Power Research Institute, Xicheng District, Beijing (China); Zhang, Y.C., E-mail: zycustb@163.com [School of Materials Science and Engineering, University of Science and Technology BeiJing, Beijing (China); Jiang, F.; Fu, B. J.; Sun, N. B. [School of Materials Science and Engineering, University of Science and Technology BeiJing, Beijing (China)

    2013-11-15

    Tungsten is considered a promising plasma facing armor material for future fusion devices. An electrodeposited metallic tungsten coating from Na{sub 2}WO{sub 4}–WO{sub 3} binary oxide molten salt on low activation steel (LAS) substrate was investigated in this paper. Tungsten coatings were deposited under various pulsed currents conditions at 1173 K in atmosphere. Cathodic current density and pulsed duty cycle were investigated for pulsed current electrolysis. The crystal structure and microstructure of tungsten coatings were characterized by X-ray diffractometry, scanning electron microscopy, and energy X-ray dispersive analysis techniques. The results indicated that pulsed current density and duty cycle significantly influence tungsten nucleation and electro-crystallization phenomena. The average grain size of the coating becomes much larger with increasing cathodic current density, which demonstrates that appropriate high cathodic current density can accelerate the growth of grains on the surface of the substrate. The micro-hardness of tungsten coatings increases with the increasing thickness of coatings; the maximum micro-hardness is 482 HV. The prepared tungsten coatings have a smooth surface, a porosity of less than 1%, and an oxygen content of 0.024 wt%.

  10. Bio-Corrosion Behavior of Ceramic Coatings Containing Hydroxyapatite on Mg-Zn-Ca Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    Hong-Yan Ding

    2018-04-01

    Full Text Available Ceramic coatings containing hydroxyapatite (HA were fabricated on a biodegradable Mg66Zn29Ca5 magnesium alloy through micro-arc oxidation by adding HA particles into the electrolytes. The phase composition and surface morphology of the coatings were characterized by X-ray diffraction and scanning electron microscopy analyses, respectively. Electrochemical experiments and immersion tests were performed in Hank’s solution at 37 °C to measure the corrosion resistance of the coatings. Blood compatibility was evaluated by in vitro blood platelet adhesion tests and static water contact angle measurement. The results show that the typical ceramic coatings with a porous structure were prepared on the magnesium alloy surface with the main phases of MgO and MgSiO3 and a small amount of Mg3(PO42 and HA. The optimal surface morphology appeared at HA concentration of 0.4 g/L. The electrochemical experiments and immersion tests reveal a significant improvement in the corrosion resistance of the ceramic coatings containing HA compared with the coatings without HA or bare Mg66Zn29Ca5 magnesium alloy. The static water contact angle of the HA-containing ceramic coatings is 18.7°, which is lower than that of the coatings without HA (40.1°. The in vitro blood platelet adhesion tests indicate that the HA-containing ceramic coatings possess improved blood compatibility compared with the coatings without HA. Utilizing HA-containing ceramic coatings may be an effective way to improve the surface biocompatibility and corrosion resistance of magnesium alloys.

  11. Effect of thermally grown oxide (TGO) microstructure on the durability of TBCs with PtNiAl diffusion bond coats

    Energy Technology Data Exchange (ETDEWEB)

    Spitsberg, Irene [Materials and Process Engineering Department, GE Aircraft Engines, Evendale, OH (United States)]. E-mail: irene.spitsberg@kennametal.com; More, Karren [Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2006-02-15

    The role of pre-oxidation surface treatments on the oxide microstructure and the failure mechanism of multi-layer thermal barrier systems based on Pt-modified NiAl bond coats and electron beam deposited thermal barrier coatings (TBCs) have been studied. The primary pre-oxidation experimental variable was the partial pressure of oxygen in the pre-oxidizing atmosphere at constant temperature and bond coat composition. The durability of TBCs deposited on surfaces following different pre-oxidation treatments were measured and compared using furnace cycling tests. The oxide layers corresponding to different levels of TBC performance were characterized microstructurally, chemically, and compositionally using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) techniques. TBC performance was enhanced by the formation of a surface oxide having a coarse-grained columnar structure during the pre-oxidation process. Increased TBC durability was consistent with a slower oxide growth rate during exposure of the TBC to high-temperature, cyclic conditions, as was observed for this particular pre-oxidation condition. An oxide microstructure having fewer through-thickness transport pathways (grain boundaries) should also result in slower lateral oxide growth rates, consistent with a slowed rate of ratcheting as was observed in the pre-oxidized samples that had the best TBC performance. The desired surface oxide grain structure was achieved by pre-oxidizing the bond coat prior to TBC deposition at an intermediate partial pressure of oxygen.

  12. Improved cyclic oxidation resistance of electron beam physical vapor deposited nano-oxide dispersed {beta}-NiAl coatings for Hf-containing superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Guo Hongbo [School of Materials Science and Engineering, Beihang University, No. 37, Xueyuan Road, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Materials and Thin Film Technology, Beihang University, No. 37, Xueyuan Road, Beijing 100191 (China)], E-mail: Guo.hongbo@buaa.edu.cn; Cui Yongjing; Peng Hui; Gong Shengkai [School of Materials Science and Engineering, Beihang University, No. 37, Xueyuan Road, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Materials and Thin Film Technology, Beihang University, No. 37, Xueyuan Road, Beijing 100191 (China)

    2010-04-15

    Oxide dispersed (OD) {beta}-NiAl coatings and OD-free {beta}-NiAl coatings were deposited onto a Hf-containing Ni-based superalloy by electron beam physical vapor deposition (EB-PVD). Excessive enrichment of Hf was found in the TGO on the OD-free coating due to outward diffusion of Hf from the superalloy, causing accelerated TGO thickening and spalling. The OD-coating effectively prevented Hf from outward diffusion. Only small amount of Hf diffused to the coating surface and improved the TGO adherence by virtue of the reactive element effect. The OD-coating exhibited an improved oxidation resistance as compared to the OD-free coating.

  13. Preparation of an antibacterial, hydrophilic and photocatalytically active polyacrylic coating using TiO2 nanoparticles sensitized by graphene oxide.

    Science.gov (United States)

    Nosrati, Rahimeh; Olad, Ali; Shakoori, Sahar

    2017-11-01

    In recent years more attentions have been paid for preparation of coatings with self-cleaning and antibacterial properties. These properties allow the surface to maintain clean and health over long times without any need to cleaning or disinfection. Acrylic coatings are widely used on various surfaces such as automotive, structural and furniture which their self-cleaning and antibacterial ability is very important. The aim of this work is the preparation of a polyacrylic based self-cleaning and antibacterial coating by the modification of TiO 2 as a coating additive. TiO 2 nanoparticles were sensitized to the visible light irradiation using graphene oxide through the preparation of TiO 2 /graphene oxide nanocomposite. Graphene oxide was prepared via a modified Hummers method. TiO 2 /graphene oxide nanocomposite was used as additive in a polyacrylic coating formulation. Hydrophilicity, photocatalytic and antibacterial activities as well as coating stability were evaluated for TiO 2 /graphene oxide modified polyacrylic coating and compared with that of pristine TiO 2 modified and unmodified polyacrylic coatings. TiO 2 /graphene oxide nanocomposite and polyacrylic coating modified by TiO 2 /graphene oxide additive were characterized using FT-IR, UV-Vis, XRD, and FESEM techniques. The effect of TiO 2 /graphene oxide composition and its percent in the coating formulation was evaluated on the polyacrylic coating properties. Results showed that polyacrylic coating having 3% W TiO 2 /graphene oxide nanocomposite additive with TiO 2 to graphene oxide ratio of 100:20 is the best coating considering most of beneficial features such as high photodecolorization efficiency of organic dye contaminants, high hydrophilicity, and stability in water. According to the results, TiO 2 is effectively sensitized by graphene oxide and the polyacrylic coating modified by TiO 2 /graphene oxide nanocomposite shows good photocatalytic activity under visible light irradiation. Copyright © 2017

  14. Oxidation behaviour of cast aluminium matrix composites with Ce surface coatings

    International Nuclear Information System (INIS)

    Pardo, A.; Merino, M.C.; Arrabal, R.; Feliu, S.; Viejo, F.

    2007-01-01

    The oxidation behaviour of SiC-reinforced aluminium matrix composites (A3xx.x/SiCp) has been studied after Ce-based treatments. Kinetics data of oxidation process were obtained from gravimetric tests performed at different temperatures (350, 425 and 500 o C). The nature of the oxidation layer was analyzed by scanning electron and atomic force microscopy, energy dispersive X-ray analysis, X-ray photoelectron spectroscopy and X-ray diffraction. The extent of oxidation degradation in untreated composites was preferentially localized in matrix/SiCp interfaces favouring the MgO formation. Ce coatings favoured a uniform oxidation of the composite surface with MgAl 2 O 4 spinel formation. This oxide increased the surface hardness of the materials

  15. The effect of yttrium addition on oxidation of a sputtered nanocrystalline coating with moderate amount of tantalum in composition

    International Nuclear Information System (INIS)

    Wang, Jinlong; Chen, Minghui; Yang, Lanlan; Liu, Li; Zhu, Shenglong; Wang, Fuhui; Meng, Guozhe

    2016-01-01

    Graphical abstract: - Highlights: • Effect of Y addition on oxidation of nanocrystalline coating is studied. • Y addition delays transformation of q-Al_2O_3 to a-Al_2O_3 during oxidation. • Y addition prevents scale rumpling. • Y segregates at grain boundaries of the nanocrystalline coating. • Y retards the transportation of Ta thus reduces its oxidation. - Abstract: The effect of yttrium addition on isothermal oxidation at 1050 °C of a sputtered nanocrystalline coating with moderate amount of tantalum in composition was investigated. Results indicate that yttrium addition delays transformation of metastable θ-Al_2O_3 to equilibrium α-Al_2O_3 grown on the nanocrystalline coatings. It prevents scale rumpling and promotes the formation of oxide pegs at interface between the oxide scale and the underlying coating. Besides, yttrium prefers to segregate at grain boundaries of the nanocrystalline coating and retards the outward transportation of tantalum from coating to oxide scale, thus reducing the excessive oxidation of tantalum.

  16. Biocompatibility of chitosan-coated iron oxide nanoparticles with osteoblast cells

    Directory of Open Access Journals (Sweden)

    Shi S

    2012-10-01

    Full Text Available Si-Feng Shi,1 Jing-Fu Jia,2 Xiao-Kui Guo,3 Ya-Ping Zhao,2 De-Sheng Chen,1 Yong-Yuan Guo,1 Tao Cheng,1 Xian-Long Zhang11Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital, School of Medicine, 2School of Chemistry and Chemical Technology, 3Department of Medical Microbiology and Parasitology, School of Medicine, Shanghai Jiao Tong University Shanghai, ChinaBackground: Bone disorders (including osteoporosis, loosening of a prosthesis, and bone infections are of great concern to the medical community and are difficult to cure. Therapies are available to treat such diseases, but all have drawbacks and are not specifically targeted to the site of disease. Chitosan is widely used in the biomedical community, including for orthopedic applications. The aim of the present study was to coat chitosan onto iron oxide nanoparticles and to determine its effect on the proliferation and differentiation of osteoblasts.Methods: Nanoparticles were characterized using transmission electron microscopy, dynamic light scattering, x-ray diffraction, zeta potential, and vibrating sample magnetometry. Uptake of nanoparticles by osteoblasts was studied by transmission electron microscopy and Prussian blue staining. Viability and proliferation of osteoblasts were measured in the presence of uncoated iron oxide magnetic nanoparticles or those coated with chitosan. Lactate dehydrogenase, alkaline phosphatase, total protein synthesis, and extracellular calcium deposition was studied in the presence of the nanoparticles.Results: Chitosan-coated iron oxide nanoparticles enhanced osteoblast proliferation, decreased cell membrane damage, and promoted cell differentiation, as indicated by an increase in alkaline phosphatase and extracellular calcium deposition. Chitosan-coated iron oxide nanoparticles showed good compatibility with osteoblasts.Conclusion: Further research is necessary to optimize magnetic nanoparticles for the treatment of bone disease

  17. Investigation of Element Effect on High-Temperature Oxidation of HVOF NiCoCrAlX Coatings

    Directory of Open Access Journals (Sweden)

    Pimin Zhang

    2018-04-01

    Full Text Available MCrAlX (M: Ni or Co or both, X: minor elements coatings have been used widely to protect hot components in gas turbines against oxidation and heat corrosion at high temperatures. Understanding the influence of the X-elements on oxidation behavior is important in the design of durable MCrAlX coatings. In this study, NiCoCrAlX coatings doped with Y + Ru and Ce, respectively, were deposited on an Inconel-792 substrate using high velocity oxygen fuel (HVOF. The samples were subjected to isothermal oxidation tests in laboratory air at 900, 1000, and 1100 °C and a cyclic oxidation test between 100 and 1100 °C with a 1-h dwell time at 1100 °C. It was observed that the coating with Ce showed a much higher oxidation rate than the coating with Y + Ru under both isothermal and cyclic oxidation tests. In addition, the Y + Ru-doped coating showed significantly lower β phase depletion due to interdiffusion between the coating and the substrate, resulting from the addition of Ru. Simulation results using a moving phase boundary model and an established oxidation-diffusion model showed that Ru stabilized β grains, which reduced β-depletion of the coating due to substrate interdiffusion. This paper, combining experiment and simulation results, presents a comprehensive study of the influence of Ce and Ru on oxidation behavior, including an investigation of the microstructure evolution in the coating surface and the coating-substrate interface influenced by oxidation time.

  18. A study of oxidation resistant coating on TiAl alloys by Cr evaporation and pack cementation

    International Nuclear Information System (INIS)

    Jung, Dong Ju; Jung, Hwan Gyo; Kim, Kyoo Young

    2002-01-01

    A Cr+Al-type composite coating is applied to improve the properties of aluminide coating layers, AiAl 3 , formed on TiAl alloys. This method is performed by Cr evaporation on the TiAl-XNb(X= 1,6at%) substrate followed by pack aluminizing. The coating layer formed by the composite coating process consists of the outer layer of Al 4 Cr and the inner layer of TiAl 3 regardless of the Nb content. however, these coating layers are transformed to Ti(Al,Cr) 3 layers with Ll 2 structures during oxidation. In particular, as Nb content increases, the grain size of the inner TiAl 3 layer becomes smaller and the diffusion rate of Cr increases after oxidation. Faster formation of a Ti(Al,Cr) 3 layer with an Ll 2 structure through Nb addition is more effective to improve cracking resistance at the beginning of oxidation of TiAl alloys. However, growth of Ti(Al,Cr) 3 formed on the coating layer becomes slower as the Nb content in the coating layer is increased. As a result, the addition of a large amount of Nb to composite coating layer is not desirable due to poor ductility of the coating layer. A Ti(Al,Cr) 3 layer with an Ll 2 structure developed during oxidation showed much better ductility compared with other coating layers

  19. Tungsten oxide coatings deposited by plasma spray using powder and solution precursor for detection of nitrogen dioxide gas

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chao, E-mail: zhangc@yzu.edu.cn [College of Mechanical Engineering, Yangzhou University, Yangzhou 225127 (China); Wang, Jie [College of Mechanical Engineering, Yangzhou University, Yangzhou 225127 (China); Geng, Xin [College of Mechanical Engineering, Yangzhou University, Yangzhou 225127 (China); College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 (China)

    2016-05-25

    Increasing attention has been paid on preparation methods for resistive-type gas sensors based on semiconductor metal oxides. In this work, tungsten oxide (WO{sub 3}) coatings were prepared on alumina substrates and used as gas sensitive layers. The coatings were deposited by atmospheric plasma spray using powder, solution precursor, or a combination of both. Tungsten oxide powder through a powder port and ammonium tungstate aqueous solution through a liquid port were injected into plasma stream respectively or together to deposit WO{sub 3} coatings. Phase structures in the coatings were characterized by X-ray diffraction analyzer. The field-emission scanning electron microscopy images confirmed that the coatings were in microstructure, nanostructure or micro-nanostructure. The sensing properties of the sensors based on the coatings exposed to 1 ppm nitrogen dioxide gas were characterized in a home-made instrument. Sensing properties of the coatings were compared and discussed. The influences of gas humidity and working temperature on the sensor responses were further studied. - Highlights: • Porous gas sensitive coatings were deposited by plasma spray using powder and solution precursor. • Crystallized WO{sub 3} were obtained through hybrid plasma spray plus a pre-conditioned step. • Plasma power had an important influence on coating microstructure. • The particle size of atmospheric plasma-sprayed microstructured coating was stable. • Solution precursor plasma-sprayed WO{sub 3} coatings had nanostructure and showed good responses to 1 ppm NO{sub 2}.

  20. Saturable Absorption and Modulation Characteristics of Laser with Graphene Oxide Spin Coated on ITO Substrate

    OpenAIRE

    Li, Xin; Zhang, Haikun; Wang, Peiji; Li, Guiqiu; Zhao, Shengzhi; Wang, Jing; Chen, Lijuan

    2014-01-01

    The graphene oxide (GO) thin film has been obtained by mixture of GO spin coated on substrate of indium tin oxide (ITO). The experiment has shown that continuous-wave laser is modulated when the graphene oxide saturable absorber (GO-SA) is employed in the 1064 nm laser cavity. The shortest pulse width is 108 ns at the pump power of 5.04 W. Other output laser characteristics, such as the threshold pump power, the repetition rate, and the peak power, have also been measured. The results have de...

  1. Flame retardancy and ultraviolet resistance of silk fabric coated by graphene oxide

    Directory of Open Access Journals (Sweden)

    Ji Yi-Min

    2017-01-01

    Full Text Available Silk fabrics were coated by graphene oxide hydrosol in order to improve its flame retardancy and ultraviolet resistance. In addition, montmorillonoid was doped into the graphene oxide hydrosol to further improve the flame retardancy of silk fabrics. The flame retardancy and ultraviolet resistance were mainly characterized by limiting oxygen index, vertical flame test, smoke density test, and ultraviolet protection factor. The synergistic effect of graphene oxide and montmorillonoid on the thermal stabilization property of the treated silk fabrics was also investigated. The results show that the treated silk fabrics have excellent flame retardancy, thermal stability, smoke suppression, and ultraviolet resistance simultaneously.

  2. Spalling stress in oxidized thermal barrier coatings evaluated by X-ray diffraction method

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, K. [Faculty of Education and Human Sciences, Niigata Univ., Niigata (Japan); Tanaka, K. [Dept. of Mechanical Engineering, Nagoya Univ., Furoh-cho, Chikusa-ku, Nagoya (Japan)

    2005-07-01

    The spallation of thermal barrier coatings (TBCs) is promoted by thermally grown oxide (TGO). To improve TBCs, it is very important to understand the influence of TGO on the spalling stress. In this study 'the TBCs were oxidized at 1373 K for four different periods: 0, 500,1000 and 2000 h. The distribution of the in-plane stress in oxidized TBCs, {sigma}{sub 1}, was obtained by repeating the X-ray stress measurement with low energy X-rays after successive removal of the surface layer. The distribution of the out-of-plane stress, {sigma}{sub 1} - {sigma}{sub 3}, was measured with hard synchrotron X-rays, because high energy X-rays have a large penetration depth. From the results by the low and high energy X-rays, the spalling stress in the oxidized TBCs, {sigma}{sub 3}, was evaluated. The evaluated value of the spalling stress for the oxidized TBC was a small tension beneath the surface, but steeply increased near the interface between the top and bond coating. This large tensile stress near the interface is responsible for the spalling of the top coating. (orig.)

  3. Photoluminescence blue shift of indium phosphide nanowire networks with aluminum oxide coating

    International Nuclear Information System (INIS)

    Fryauf, David M.; Zhang, Junce; Norris, Kate J.; Diaz Leon, Juan J.; Oye, Michael M.; Kobayashi, Nobuhiko P.; Wei, Min

    2014-01-01

    This paper describes our finding that optical properties of semiconductor nanowires were modified by depositing a thin layer of metal oxide. Indium phosphide nanowires were grown by metal organic chemical vapor deposition on silicon substrates with gold catalyst resulting in three-dimensional nanowire networks, and optical properties were obtained from the collective nanowire networks. The networks were coated with an aluminum oxide thin film deposited by plasma-enhanced atomic layer deposition. We studied the dependence of the peak wavelength of photoluminescence spectra on the thickness of the oxide coatings. A continuous blue shift in photoluminescence spectra was observed when the thickness of the oxide coating was increased. The observed blue shift is attributed to the Burstein-Moss effect due to increased carrier concentration in the nanowire cores caused by repulsion from intrinsic negative fixed charges located at the inner oxide surface. Samples were further characterized by scanning electron microscopy, Raman spectroscopy, transmission electron microscopy, and selective area diffractometry to better understand the physical mechanisms for the blue shift. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Photoluminescence blue shift of indium phosphide nanowire networks with aluminum oxide coating

    Energy Technology Data Exchange (ETDEWEB)

    Fryauf, David M.; Zhang, Junce; Norris, Kate J.; Diaz Leon, Juan J.; Oye, Michael M.; Kobayashi, Nobuhiko P. [Nanostructured Energy Conversion Technology and Research (NECTAR), Advanced Studies Laboratories, University of California, Santa Cruz, CA (United States); Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA (United States); NASA Ames Research Center, Moffett Field, CA (United States); Wei, Min [Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA (United States); School of Micro-Electronics and Solid-Electronics, University of Electronic Science and Technology of China, Chengdu (China)

    2014-07-15

    This paper describes our finding that optical properties of semiconductor nanowires were modified by depositing a thin layer of metal oxide. Indium phosphide nanowires were grown by metal organic chemical vapor deposition on silicon substrates with gold catalyst resulting in three-dimensional nanowire networks, and optical properties were obtained from the collective nanowire networks. The networks were coated with an aluminum oxide thin film deposited by plasma-enhanced atomic layer deposition. We studied the dependence of the peak wavelength of photoluminescence spectra on the thickness of the oxide coatings. A continuous blue shift in photoluminescence spectra was observed when the thickness of the oxide coating was increased. The observed blue shift is attributed to the Burstein-Moss effect due to increased carrier concentration in the nanowire cores caused by repulsion from intrinsic negative fixed charges located at the inner oxide surface. Samples were further characterized by scanning electron microscopy, Raman spectroscopy, transmission electron microscopy, and selective area diffractometry to better understand the physical mechanisms for the blue shift. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Oxidation of BN-coated SiC fibers in ceramic matrix composites

    International Nuclear Information System (INIS)

    Sheldon, B.W.; Sun, E.Y.

    1996-01-01

    Thermodynamic calculations were performed to analyze the simultaneous oxidation of BN and SiC. The results show that, with limited amounts of oxygen present, the formation of SiO 2 should occur prior to the formation of B 2 O 3 . This agrees with experimental observations of oxidation in glass-ceramic matrix composites with BN-coated SiC fibers, where a solid SiO 2 reaction product containing little or no boron has been observed. The thermodynamic calculations suggest that this will occur when the amount of oxygen available is restricted. One possible explanation for this behavior is that SiO 2 formation near the external surfaces of the composite closes off cracks or pores, such that vapor phase O 2 diffusion into the composite occurs only for a limited time. This indicates that BN-coated SiC fibers will not always oxidize to form significant amounts of a low-melting, borosilicate glass

  6. Structural features of anodic oxide films formed on aluminum substrate coated with self-assembled microspheres

    International Nuclear Information System (INIS)

    Asoh, Hidetaka; Uchibori, Kota; Ono, Sachiko

    2009-01-01

    The structural features of anodic oxide films formed on an aluminum substrate coated with self-assembled microspheres were investigated by scanning electron microscopy and atomic force microscopy. In the first anodization in neutral solution, the growth of a barrier-type film was partially suppressed in the contact area between the spheres and the underlying aluminum substrate, resulting in the formation of ordered dimple arrays in an anodic oxide film. After the subsequent second anodization in acid solution at a voltage lower than that of the first anodization, nanopores were generated only within each dimple. The nanoporous region could be removed selectively by post-chemical etching using the difference in structural dimensions between the porous region and the surrounding barrier region. The mechanism of anodic oxide growth on the aluminum substrate coated with microspheres through multistep anodization is discussed.

  7. Structural features of anodic oxide films formed on aluminum substrate coated with self-assembled microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Asoh, Hidetaka [Department of Applied Chemistry, Faculty of Engineering, Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo 192-0015 (Japan)], E-mail: asoh@cc.kogakuin.ac.jp; Uchibori, Kota; Ono, Sachiko [Department of Applied Chemistry, Faculty of Engineering, Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo 192-0015 (Japan)

    2009-07-15

    The structural features of anodic oxide films formed on an aluminum substrate coated with self-assembled microspheres were investigated by scanning electron microscopy and atomic force microscopy. In the first anodization in neutral solution, the growth of a barrier-type film was partially suppressed in the contact area between the spheres and the underlying aluminum substrate, resulting in the formation of ordered dimple arrays in an anodic oxide film. After the subsequent second anodization in acid solution at a voltage lower than that of the first anodization, nanopores were generated only within each dimple. The nanoporous region could be removed selectively by post-chemical etching using the difference in structural dimensions between the porous region and the surrounding barrier region. The mechanism of anodic oxide growth on the aluminum substrate coated with microspheres through multistep anodization is discussed.

  8. Oxidation behavior of graphene-coated copper at intrinsic graphene defects of different origins.

    Science.gov (United States)

    Kwak, Jinsung; Jo, Yongsu; Park, Soon-Dong; Kim, Na Yeon; Kim, Se-Yang; Shin, Hyung-Joon; Lee, Zonghoon; Kim, Sung Youb; Kwon, Soon-Yong

    2017-11-16

    The development of ultrathin barrier films is vital to the advanced semiconductor industry. Graphene appears to hold promise as a protective coating; however, the polycrystalline and defective nature of engineered graphene hinders its practical applications. Here, we investigate the oxidation behavior of graphene-coated Cu foils at intrinsic graphene defects of different origins. Macro-scale information regarding the spatial distribution and oxidation resistance of various graphene defects is readily obtained using optical and electron microscopies after the hot-plate annealing. The controlled oxidation experiments reveal that the degree of structural deficiency is strongly dependent on the origins of the structural defects, the crystallographic orientations of the underlying Cu grains, the growth conditions of graphene, and the kinetics of the graphene growth. The obtained experimental and theoretical results show that oxygen radicals, decomposed from water molecules in ambient air, are effectively inverted at Stone-Wales defects into the graphene/Cu interface with the assistance of facilitators.

  9. In situ functionalization and PEO coating of iron oxide nanocrystals using seeded emulsion polymerization.

    Science.gov (United States)

    Kloust, Hauke; Schmidtke, Christian; Feld, Artur; Schotten, Theo; Eggers, Robin; Fittschen, Ursula E A; Schulz, Florian; Pöselt, Elmar; Ostermann, Johannes; Bastús, Neus G; Weller, Horst

    2013-04-16

    Herein we demonstrate that seeded emulsion polymerization is a powerful tool to produce multiply functionalized PEO coated iron oxide nanocrystals. Advantageously, by simple addition of functional surfactants, functional monomers, or functional polymerizable linkers-solely or in combinations thereof-during the seeded emulsion polymerization process, a broad range of in situ functionalized polymer-coated iron oxide nanocrystals were obtained. This was demonstrated by purposeful modulation of the zeta potential of encapsulated iron oxide nanocrystals and conjugation of a dyestuff. Successful functionalization was unequivocally proven by TXRF. Furthermore, the spatial position of the functional groups can be controlled by choosing the appropriate spacers. In conclusion, this methodology is highly amenable for combinatorial strategies and will spur rapid expedited synthesis and purposeful optimization of a broad scope of nanocrystals.

  10. Improved oxidation resistance of ferritic steels with LSM coating for high temperature electrochemical applications

    DEFF Research Database (Denmark)

    Palcut, Marián; Mikkelsen, Lars; Neufeld, Kai

    2012-01-01

    The effect of single layer La0.85Sr0.15MnO3−δ (LSM) coatings on high temperature oxidation behaviour of four commercial chromia-forming steels, Crofer 22 APU, Crofer 22 H, E-Brite and AL 29-4C, is studied. The samples were oxidized for 140–1000 h at 1123 K in flowing simulated ambient air (air + 1......% H2O) and oxygen and corrosion kinetics monitored by mass increase of the materials over time. The oxide scale microstructure and chemical composition are investigated by scanning electron microscopy/energy-dispersive spectroscopy. The kinetic data obey a parabolic rate law. The results show...... that the LSM coating acts as an oxygen transport barrier that can significantly reduce the corrosion rate....

  11. Novel graphene-oxide-coated SPR interfaces for biosensing applications

    DEFF Research Database (Denmark)

    Volkov, V. S.; Stebunov, Yu V.; Yakubovsky, D. I.

    2017-01-01

    Carbon allotropes-based nanomaterials possess unique physical and chemical properties including high surface area, the possibility of pi-stacking interaction with a wide range of biological objects, rich availability of oxygen-containing functional groups in graphene-oxide (GO), and excellent...

  12. Stable Water Oxidation in Acid Using Manganese-Modified TiO2 Protective Coatings.

    Science.gov (United States)

    Siddiqi, Georges; Luo, Zhenya; Xie, Yujun; Pan, Zhenhua; Zhu, Qianhong; Röhr, Jason A; Cha, Judy J; Hu, Shu

    2018-06-06

    Accomplishing acid-stable water oxidation is a critical matter for achieving both long-lasting water-splitting devices and other fuel-forming electro- and photocatalytic processes. Because water oxidation releases protons into the local electrolytic environment, it becomes increasingly acidic during device operation, which leads to corrosion of the photoactive component and hence loss in device performance and lifetime. In this work, we show that thin films of manganese-modified titania, (Ti,Mn)O x , topped with an iridium catalyst, can be used in a coating stabilization scheme for acid-stable water oxidation. We achieved a device lifetime of more than 100 h in pH = 0 acid. We successfully grew (Ti,Mn)O x coatings with uniform elemental distributions over a wide range of manganese compositions using atomic layer deposition (ALD), and using X-ray photoelectron spectroscopy, we show that (Ti,Mn)O x films grown in this manner give rise to closer-to-valence-band Fermi levels, which can be further tuned with annealing. In contrast to the normally n-type or intrinsic TiO 2 coatings, annealed (Ti,Mn)O x films can make direct charge transfer to a Fe(CN) 6 3-/4- redox couple dissolved in aqueous electrolytes. Using the Fe(CN) 6 3-/4- redox, we further demonstrated anodic charge transfer through the (Ti,Mn)O x films to high work function metals, such as iridium and gold, which is not previously possible with ALD-grown TiO 2 . We correlated changes in the crystallinity (amorphous to rutile TiO 2 ) and oxidation state (2+ to 3+) of the annealed (Ti,Mn)O x films to their hole conductivity and electrochemical stability in acid. Finally, by combining (Ti,Mn)O x coatings with iridium, an acid-stable water-oxidation anode, using acid-sensitive conductive fluorine-doped tin oxides, was achieved.

  13. Calcium phosphate coatings modified with zinc- or copper- incorporation on Ti-40Nb alloy

    Science.gov (United States)

    Komarova, E. G.; Sedelnikova, M. B.; Sharkeev, Yu P.; Kazakbaeva, A. A.; Glukhov, I. A.; Khimich, M. A.

    2017-05-01

    The influence of the microarc oxidation parameters and electrolyte composition on the structure, properties and composition of CaP coatings modified with Zn- or Cu- incorporation on the Ti-40mas.%Nb (Ti-40Nb) alloy was investigated. The linear growth of thickness, roughness, and size of structural elements with process voltage increasing has been revealed. It was shown that the CaP coatings have the low contact angles with liquids and, consequently, high free surface energy. This indicates a high hydrophilicity of the coatings. X-ray diffraction analysis showed that the coatings have X-ray amorphous structure. The increase of the process voltage leads to the formation of such crystalline phases as CaHPO4 and β-Ca2P2O7 in the coatings. The maximum Ca/P atomic ratio was equal to 0.4, and Zn or Cu contents was equal to 0.3 or 0.2 at.%, respectively.

  14. Electrophoretic deposition of nanostructured hydroxyapatite coating on AZ91 magnesium alloy implants with different surface treatments

    Energy Technology Data Exchange (ETDEWEB)

    Rojaee, Ramin, E-mail: raminrojaee@aim.com [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111 (Iran, Islamic Republic of); Fathi, Mohammadhossein [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111 (Iran, Islamic Republic of); Dental Materials Research Center, Isfahan University of Medical Sciences, Isfahan (Iran, Islamic Republic of); Raeissi, Keyvan [Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111 (Iran, Islamic Republic of)

    2013-11-15

    Bio-absorbable magnesium (Mg) based alloys have been introduced as innovative orthopedic implants during recent years. It has been specified that rapid degradation of Mg based alloys in physiological environment should be restrained in order to be utilized in orthopedic trauma fixation and vascular intervention. In this developing field of healthcare materials, micro-arc oxidation (MAO), and MgF{sub 2} conversion coating were exploited as surface pre-treatment of AZ91 magnesium alloy to generate a nanostructured hydroxyapatite (n-HAp) coating via electrophoretic deposition (EPD) method. X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and transmission electron microscopy (TEM) techniques were used to characterize the obtained powder and coatings. The potentiodynamic polarization tests were carried out to evaluate the corrosion behavior of the coated and uncoated specimens, and in vitro bioactivity evaluation were performed in simulated body fluid. Results revealed that the MAO/n-HAp coated AZ91 Mg alloy samples with a rough topography and lower corrosion current density leads to a lower Mg degradation rate accompanied by high bioactivity.

  15. Electrophoretic deposition of nanostructured hydroxyapatite coating on AZ91 magnesium alloy implants with different surface treatments

    International Nuclear Information System (INIS)

    Rojaee, Ramin; Fathi, Mohammadhossein; Raeissi, Keyvan

    2013-01-01

    Bio-absorbable magnesium (Mg) based alloys have been introduced as innovative orthopedic implants during recent years. It has been specified that rapid degradation of Mg based alloys in physiological environment should be restrained in order to be utilized in orthopedic trauma fixation and vascular intervention. In this developing field of healthcare materials, micro-arc oxidation (MAO), and MgF 2 conversion coating were exploited as surface pre-treatment of AZ91 magnesium alloy to generate a nanostructured hydroxyapatite (n-HAp) coating via electrophoretic deposition (EPD) method. X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and transmission electron microscopy (TEM) techniques were used to characterize the obtained powder and coatings. The potentiodynamic polarization tests were carried out to evaluate the corrosion behavior of the coated and uncoated specimens, and in vitro bioactivity evaluation were performed in simulated body fluid. Results revealed that the MAO/n-HAp coated AZ91 Mg alloy samples with a rough topography and lower corrosion current density leads to a lower Mg degradation rate accompanied by high bioactivity.

  16. Electrophoretic deposition of nanostructured hydroxyapatite coating on AZ91 magnesium alloy implants with different surface treatments

    Science.gov (United States)

    Rojaee, Ramin; Fathi, Mohammadhossein; Raeissi, Keyvan

    2013-11-01

    Bio-absorbable magnesium (Mg) based alloys have been introduced as innovative orthopedic implants during recent years. It has been specified that rapid degradation of Mg based alloys in physiological environment should be restrained in order to be utilized in orthopedic trauma fixation and vascular intervention. In this developing field of healthcare materials, micro-arc oxidation (MAO), and MgF2 conversion coating were exploited as surface pre-treatment of AZ91 magnesium alloy to generate a nanostructured hydroxyapatite (n-HAp) coating via electrophoretic deposition (EPD) method. X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and transmission electron microscopy (TEM) techniques were used to characterize the obtained powder and coatings. The potentiodynamic polarization tests were carried out to evaluate the corrosion behavior of the coated and uncoated specimens, and in vitro bioactivity evaluation were performed in simulated body fluid. Results revealed that the MAO/n-HAp coated AZ91 Mg alloy samples with a rough topography and lower corrosion current density leads to a lower Mg degradation rate accompanied by high bioactivity.

  17. Structure and Infrared Emissivity Properties of the MAO Coatings Formed on TC4 Alloys in K2ZrF6-Based Solution

    Science.gov (United States)

    Li, Ying; Hu, Dan; Xi, Zhengping

    2018-01-01

    Micro-arc oxidation (MAO) ceramic coatings were formed on TC4 alloy surface in silicate and metaphosphate electrolytes based with K2ZrF6 for various concentrations. X-ray diffraction (XRD), Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) were used to characterize the phase composition, microstructure and chemical compositions of the coatings. The infrared emissivity of the coatings was measured at 50 °C in a wavelength range of 8–20 µm. The microstructural observations all revealed the typical porousstructures. Moreover, adecline in roughness and thickness of the prepared coatings can be observed when the concentration of K2ZrF6 increases. Combined with the results of XRD and XPS, it was found that all the oxides existed as the amorphous form in the coatings except the TiO2 phase. The coatings exhibited the highest infrared emissivity value (about 0.89) when the concentration of K2ZrF6 was 6 g/L, which was possibly attributed to the defect microstructure and the optimal role of ZrO2. PMID:29414841

  18. Ozone Oxidation of Self-Assembled Monolayers on SiOx-Coated Zinc Selenide Surfaces

    Science.gov (United States)

    McIntire, T. M.; Ryder, O. S.; Finlayson-Pitts, B. J.

    2008-12-01

    Airborne particles are important for visibility, human health, climate, and atmospheric reactions. Atmospheric particles contain a significant fraction of organics and such compounds present on airborne particles are susceptible to oxidation by atmospheric oxidants, such as OH, ozone, halogen atoms, and nitrogen trioxide. Oxidized organics associated with airborne particles are thought to be polar, hygroscopic species with enhanced cloud-nucleating properties. Oxide layers on silicon, or SiO2-coated substrates, act as models of environmentally relevant surfaces such as dust particles upon which organics adsorb. We have shown previously that ozone oxidation of unsaturated self-assembled monolayers (SAMs) on silicon attenuated total reflectance (ATR) crystals leads to the formation of carbonyl groups and micron-sized, hydrophobic organic aggregates surrounded by carbon depleted substrate that do not have increased water uptake as previously assumed. Reported here are further ATR-FTIR studies of the oxidation of alkene SAMs on ZnSe and SiO2-coated ZnSe. These substrates have the advantage that they transmit below 1500 cm-1, allowing detection of additional product species. These experiments show that the loss of C=C and formation of carbonyl groups is also accompanied by formation of a peak at 1110 cm-1, attributed to the secondary ozonide. Details concerning the products and mechanism of ozonolysis of alkene SAMs on surfaces based on these new data are presented and the implications for the oxidation of alkenes on airborne dust particles are discussed.

  19. Effect of coating thickness of iron oxide nanoparticles on their relaxivity in the MRI

    Directory of Open Access Journals (Sweden)

    Farzaneh Hajesmaeelzadeh

    2016-02-01

    Full Text Available Objective(s:Iron oxide nanoparticles have found prevalent applications in various fields including drug delivery, cell separation and as contrast agents. Super paramagnetic iron oxide (SPIO nanoparticles allow researchers and clinicians to enhance the tissue contrast of an area of interest by increasing the relaxation rate of water. In this study, we evaluate the dependency of hydrodynamic size of iron oxide nanoparticles coated with Polyethylene  glycol (PEG on their relativities with 3 Tesla clinical MRI. Materials and Methods: We used three groups of nanoparticles with nominal sizes 20, 50 and 100 nm with a core size of 8.86 nm, 8.69 nm and 10.4 nm that they were covered with PEG 300 and 600 Da. A clinical magnetic resonance scanner determines the T1 and T2 relaxation times for various concentrations of PEG-coated nanoparticles. Results: The size measurement by photon correlation spectroscopy showed the hydrodynamic sizes of MNPs with nominal 20, 50 and 100 nm with 70, 82 and 116 nm for particles with PEG 600 coating and 74, 93 and 100 nm for  particles with PEG 300 coating, respectively. We foud that the relaxivity decreased with increasing overall particle size (via coating thickness. Magnetic resonance imaging showed that by increasing the size of the nanoparticles, r2/r1 increases linearly. Conclusion: According to the data obtained from this study it can be concluded that increments in coating thickness have more influence on relaxivities compared to the changes in core size of magnetic nanoparticles.

  20. High-temperature oxidation of CrN/AlN multilayer coatings

    International Nuclear Information System (INIS)

    Bardi, U.; Chenakin, S.P.; Ghezzi, F.; Giolli, C.; Goruppa, A.; Lavacchi, A.; Miorin, E.; Pagura, C.; Tolstogouzov, A.

    2005-01-01

    Experiments are reported on sputter depth profiling of CrN/AlN multilayer abrasive coatings by secondary ion mass spectrometry (SIMS) coupled with sample current measurements (SCM). The coatings were deposited by a closed-field unbalanced magnetron sputtering. It is shown that after oxidation tests, performed in air at 900 deg. C for 2 h and at 1100 deg. C for 4 h, the layered structure begins to degrade but is not destroyed completely. Oxidation at 1100 deg. C for 20 h causes total destruction of the coatings that can be attributed to a fast diffusion of oxygen, nickel, manganese and other elements along defect paths (grain boundaries, dislocations, etc.) in the coating. There are practically no nitrides in the near-surface layer after such a treatment and all the metallic components are in the oxidized form as follows from the data obtained by X-ray photoelectron spectroscopy (XPS). According to XPS and mass-resolved ion scattering spectrometry (MARISS), the surface content of Al in the heat-treated coatings has decreased in comparison with the as-received sample and that of Cr increased. Both XPS and MARISS data exhibit real increase in superficial concentration of the substrate materials (Mn and Ni) that is controversial if using SIMS alone. SCM turned out to be an informative depth profiling method complementary to more expensive and complicated SIMS, being particularly useful for structures with different secondary electron emission properties of the layers. SCM with predetermined SIMS calibration allows a routine characterization of coatings and other multilayer structures, particularly, in situations where the expenses of analysis can be justified

  1. Physical and Oxidative Stability of Uncoated and Chitosan-Coated Liposomes Containing Grape Seed Extract

    Directory of Open Access Journals (Sweden)

    Jochen Weiss

    2013-08-01

    Full Text Available Polyphenol-rich grape seed extract (0.1 w/w% was incorporated in liposomes (1 w/w% soy lecithin by high pressure homogenization (22,500 psi and coated with chitosan (0.1 w/w%. Primary liposomes and chitosan-coated secondary liposomes containing grape seed extract showed good physical stability during 98 days of storage. Most of the polyphenols were incorporated in the shell of the liposomes (85.4%, whereas only 7.6% of the polyphenols of grape seed extract were located in the interior of the liposomes. Coating with chitosan did not change the polyphenol content in the liposomes (86.6%. The uncoated liposomes without grape seed extract were highly prone to lipid oxidation. The cationic chitosan coating, however, improved the oxidative stability to some extent, due to its ability to repel pro-oxidant metals. Encapsulated grape seed extract showed high antioxidant activity in both primary and secondary liposomes, which may be attributed to its polyphenol content. In conclusion, the best chemical stability of liposomes can be achieved using a combination of grape seed extract and chitosan.

  2. High temperature oxidation behaviour of nanostructured cermet coatings in a mixed CO2 – O2 environment

    International Nuclear Information System (INIS)

    Farrokhzad, M A; Khan, T I

    2014-01-01

    Nanostructured ceramic-metallic (cermet) coatings composed of nanosized ceramic particles (α-Al 2 O3 and TiO 2 ) dispersed in a nickel matrix were co-electrodeposited and then oxidized at 500°C, 600°C and 700°C in a mixed gas using a Thermo-gravimetric Analysis (TGA) apparatus. The mixed gas was composed of 15% CO 2 , 10% O 2 and 75% N 2 . This research investigates the effects of CO 2 and O 2 partial pressures on time-depended oxidation rates for coatings and compared them to the results from atmospheric oxidation under similar temperatures. The increase in partial pressure of oxygen due to the presence of CO 2 at each tested temperature was calculated and correlated to the oxidation rate of the coatings. The results showed that the presence of CO 2 in the system increased the oxidation rate of cermet coatings when compared to atmospheric oxidation at the same temperature. It was also shown that the increase in the oxidation rate is not the result of CO2 acting as the primary oxidant but as a secondary oxidant which results in an increase of the total partial pressure of oxygen and consequently higher oxidation rates. The WDS and XRD analyses results showed that the presence of nanosized TiO 2 particles in a nickel matrix can improve oxidation behaviour of the coatings by formation of Ni-Ti compounds on oxidizing surface of the coating which was found beneficiary in reducing the oxidation rates for cermet coatings

  3. High temperature oxidation behaviour of nanostructured cermet coatings in amixed CO/sub 2/ - O/sub 2/ environment

    International Nuclear Information System (INIS)

    Farrokhzad, M. A.; Khan, T. I.

    2013-01-01

    Nanostructured ceramic-metallic (cermet) coatings composed of nanosized ceramic particles (alpha-Al /sub 2/O/sub 3/ and TiO/sub 2/) dispersed in a nickel matrix were co-electrodeposited and then oxidized at 500 degree C, 600 degree C and 700 degree C in a mixed gas using a Thermo-gravimetric Analysis (TGA) apparatus. The mixed gas was composed of 15 percentage CO/sub 2/, 10 percentage O/sub 2/ and 75 percentage N/sub 2/. This research investigates the effects of CO/sub 2/ and O/sub 2/ partial pressures on time-depended oxidation rates for coatings and compared them to the results from atmospheric oxidation under similar temperatures. The increase in partial pressure of oxygen due to the presence of CO/sub 2/ at each tested temperature was calculated and correlated to the oxidation rate of the coatings. The results showed that the presence of CO/sub 2/ in the system increased the oxidation rate of cermet coatings when compared to atmospheric oxidation at the same temperature. It was also shown that the increase in the oxidation rate is not the result of CO/sub 2/ acting as the primary oxidant but as a secondary oxidant which results in an increase of the total partial pressure of oxygen and consequently higher oxidation rates. The WDS and XRD analyses results showed that the presence of nanosized TiO/sub 2/ particles in a nickel matrix can improve oxidation behaviour of the coatings by formation of Nu i-Tau i compounds on oxidizing surface of the coating which was found beneficiary in reducing the oxidation rates for cermet coatings. (author)

  4. Fabrication and characterization of rod-like nano-hydroxyapatite on MAO coating supported on Mg-Zn-Ca alloy

    Science.gov (United States)

    Gao, J. H.; Guan, S. K.; Chen, J.; Wang, L. G.; Zhu, S. J.; Hu, J. H.; Ren, Z. W.

    2011-01-01

    The poor corrosion resistance of magnesium alloys is a dominant problem that limits their clinical application. In order to solve this challenge, micro-arc oxidation (MAO) was used to fabricate a porous coating on magnesium alloys and then electrochemical deposition (ED) was done to fabricate rod-like nano-hydroxyapatite (RNHA) on MAO coating. The cross-section morphology of the composite coatings and its corresponding energy dispersion spectroscopy (EDS) surficial scanning map of calcium revealed that HA rods were successfully deposited into the pores. The three dimensional morphology and scanning electron microscopy (SEM) image of the composite coatings showed that the distribution of the HA rods was dense and uniform. Atomic force microscope (AFM) observation of the composite coatings showed that the diameters of HA rods varied from 95 nm to 116 nm and the root mean square roughness (RMS) of the composite coatings was about 42 nm, which were favorable for cellular survival. The bonding strength between the HA film and MAO coating increased to 12.3 MPa, almost two times higher than that of the direct electrochemical deposition coating (6.3 MPa). Compared with that of the substrate, the corrosion potential of Mg-Zn-Ca alloy with composite coatings increased by 161 mV and its corrosion current density decreased from 3.36 × 10 -4 A/cm 2 to 2.40 × 10 -7 A/cm 2 which was due to the enhancement of bonding strength and the deposition of RNHA in the MAO pores. Immersion tests were carried out at 36.5 ± 0.5 °C in simulated body fluid (SBF). It was found that RNHA can induce the rapid precipitation of calcium orthophosphates in comparison with conventional HA coatings. Thus magnesium alloy coated with the composite coatings is a promising candidate as biodegradable bone implants.

  5. Fabrication and characterization of rod-like nano-hydroxyapatite on MAO coating supported on Mg-Zn-Ca alloy

    International Nuclear Information System (INIS)

    Gao, J.H.; Guan, S.K.; Chen, J.; Wang, L.G.; Zhu, S.J.; Hu, J.H.; Ren, Z.W.

    2011-01-01

    The poor corrosion resistance of magnesium alloys is a dominant problem that limits their clinical application. In order to solve this challenge, micro-arc oxidation (MAO) was used to fabricate a porous coating on magnesium alloys and then electrochemical deposition (ED) was done to fabricate rod-like nano-hydroxyapatite (RNHA) on MAO coating. The cross-section morphology of the composite coatings and its corresponding energy dispersion spectroscopy (EDS) surficial scanning map of calcium revealed that HA rods were successfully deposited into the pores. The three dimensional morphology and scanning electron microscopy (SEM) image of the composite coatings showed that the distribution of the HA rods was dense and uniform. Atomic force microscope (AFM) observation of the composite coatings showed that the diameters of HA rods varied from 95 nm to 116 nm and the root mean square roughness (RMS) of the composite coatings was about 42 nm, which were favorable for cellular survival. The bonding strength between the HA film and MAO coating increased to 12.3 MPa, almost two times higher than that of the direct electrochemical deposition coating (6.3 MPa). Compared with that of the substrate, the corrosion potential of Mg-Zn-Ca alloy with composite coatings increased by 161 mV and its corrosion current density decreased from 3.36 x 10 -4 A/cm 2 to 2.40 x 10 -7 A/cm 2 which was due to the enhancement of bonding strength and the deposition of RNHA in the MAO pores. Immersion tests were carried out at 36.5 ± 0.5 deg. C in simulated body fluid (SBF). It was found that RNHA can induce the rapid precipitation of calcium orthophosphates in comparison with conventional HA coatings. Thus magnesium alloy coated with the composite coatings is a promising candidate as biodegradable bone implants.

  6. Fabrication and characterization of rod-like nano-hydroxyapatite on MAO coating supported on Mg-Zn-Ca alloy

    Energy Technology Data Exchange (ETDEWEB)

    Gao, J.H. [Materials Research Center, School of Materials Science and Engineering, Zhengzhou University, Zhenzhou 450002 (China); Guan, S.K., E-mail: skguan@zzu.edu.cn [Materials Research Center, School of Materials Science and Engineering, Zhengzhou University, Zhenzhou 450002 (China); Chen, J. [Materials Research Center, School of Materials Science and Engineering, Zhengzhou University, Zhenzhou 450002 (China); Division of Materials and Manufacturing Science, Osaka University, Osaka 567-0047 (Japan); Wang, L.G.; Zhu, S.J.; Hu, J.H.; Ren, Z.W. [Materials Research Center, School of Materials Science and Engineering, Zhengzhou University, Zhenzhou 450002 (China)

    2011-01-01

    The poor corrosion resistance of magnesium alloys is a dominant problem that limits their clinical application. In order to solve this challenge, micro-arc oxidation (MAO) was used to fabricate a porous coating on magnesium alloys and then electrochemical deposition (ED) was done to fabricate rod-like nano-hydroxyapatite (RNHA) on MAO coating. The cross-section morphology of the composite coatings and its corresponding energy dispersion spectroscopy (EDS) surficial scanning map of calcium revealed that HA rods were successfully deposited into the pores. The three dimensional morphology and scanning electron microscopy (SEM) image of the composite coatings showed that the distribution of the HA rods was dense and uniform. Atomic force microscope (AFM) observation of the composite coatings showed that the diameters of HA rods varied from 95 nm to 116 nm and the root mean square roughness (RMS) of the composite coatings was about 42 nm, which were favorable for cellular survival. The bonding strength between the HA film and MAO coating increased to 12.3 MPa, almost two times higher than that of the direct electrochemical deposition coating (6.3 MPa). Compared with that of the substrate, the corrosion potential of Mg-Zn-Ca alloy with composite coatings increased by 161 mV and its corrosion current density decreased from 3.36 x 10{sup -4} A/cm{sup 2} to 2.40 x 10{sup -7} A/cm{sup 2} which was due to the enhancement of bonding strength and the deposition of RNHA in the MAO pores. Immersion tests were carried out at 36.5 {+-} 0.5 deg. C in simulated body fluid (SBF). It was found that RNHA can induce the rapid precipitation of calcium orthophosphates in comparison with conventional HA coatings. Thus magnesium alloy coated with the composite coatings is a promising candidate as biodegradable bone implants.

  7. Zirconia based ceramic coating on a metal with plasma electrolytic oxidation

    Science.gov (United States)

    Akatsu, T.; Kato, T.; Shinoda, Y.; Wakai, F.

    2011-10-01

    We challenge to fabricate a thermal barrier coating (TBC) made of ZrO2 based ceramics on a Ni based single crystal superalloy with plasma electrolytic oxidation (PEO) by incorporating metal species from electrolyte into the coating. The PEO process is carried out on the superalloy galvanized with aluminium for 15min in Na4O7P4 solution for an oxygen barrier coating (OBC) and is followed by PEO in K2[Zr(CO3)2(OH)2] solution for TBC. We obtained the following results; (1) Monoclinic-, tetragonal-, cubic-ZrO2 crystals were detected in TBC. (2) High porosity with large pores was observed near the interface between OBC and TBC. The fine grain structure with a grain size of about 300nm was typically observed. (3) The adhesion strength between PEO coatings and substrate was evaluated to be 26.8±6.6MPa. At the adhesion strength test, PEO coatings fractured around the interface between OBC and TBC. The effect of coating structure on adhesion strength is explained through the change in spark discharge during PEO process.

  8. Stability and effectiveness against bacterial adhesion of poly(ethylene oxide) coatings in biological fluids.

    Science.gov (United States)

    Roosjen, Astrid; de Vries, Joop; van der Mei, Henny C; Norde, Willem; Busscher, Henk J

    2005-05-01

    Poly(ethylene oxide) (PEO) coatings have been shown to reduce the adhesion of different microbial strains and species and thus are promising as coatings to prevent biomaterial-centered infection of medical implants. Clinically, however, PEO coatings are not yet applied, as little is known about their stability and effectiveness in biological fluids. In this study, PEO coatings coupled to a glass substratum through silyl ether bonds were exposed for different time intervals to saliva, urine, or phosphate-buffered saline (PBS) as a reference at 37 degrees C. After exposure, the effectiveness of the coatings against bacterial adhesion was assessed in a parallel plate flow chamber. The coatings appeared effective against Staphylococcus epidermidis adhesion for 24, 48, and 0.5 h in PBS, urine, and saliva, respectively. Using XPS and contact-angle measurements, the variations in effectiveness could be attributed to conditioning film formation. The overall short stability results from hydrolysis of the coupling of the PEO chains to the substratum. (c) 2005 Wiley Periodicals, Inc.

  9. Effect of atomic layer deposition coatings on the surface structure of anodic aluminum oxide membranes.

    Science.gov (United States)

    Xiong, Guang; Elam, Jeffrey W; Feng, Hao; Han, Catherine Y; Wang, Hsien-Hau; Iton, Lennox E; Curtiss, Larry A; Pellin, Michael J; Kung, Mayfair; Kung, Harold; Stair, Peter C

    2005-07-28

    Anodic aluminum oxide (AAO) membranes were characterized by UV Raman and FT-IR spectroscopies before and after coating the entire surface (including the interior pore walls) of the AAO membranes by atomic layer deposition (ALD). UV Raman reveals the presence of aluminum oxalate in bulk AAO, both before and after ALD coating with Al2O3, because of acid anion incorporation during the anodization process used to produce AAO membranes. The aluminum oxalate in AAO exhibits remarkable thermal stability, not totally decomposing in air until exposed to a temperature >900 degrees C. ALD was used to cover the surface of AAO with either Al2O3 or TiO2. Uncoated AAO have FT-IR spectra with two separate types of OH stretches that can be assigned to isolated OH groups and hydrogen-bonded surface OH groups, respectively. In contrast, AAO surfaces coated by ALD with Al2O3 display a single, broad band of hydrogen-bonded OH groups. AAO substrates coated with TiO2 show a more complicated behavior. UV Raman results show that very thin TiO2 coatings (1 nm) are not stable upon annealing to 500 degrees C. In contrast, thicker coatings can totally cover the contaminated alumina surface and are stable at temperatures in excess of 500 degrees C.

  10. Passivation of Titanium Oxide in Polyethylene Matrices using Polyelectrolytes as Titanium Dioxide Surface Coating

    Directory of Open Access Journals (Sweden)

    Javier Vallejo-Montesinos

    2017-05-01

    Full Text Available One of the major challenges of the polyolefins nowadays is the ability of those to resist weathering conditions, specially the photodegradation process that suffer any polyolefin. A common way to prevent this, is the use of hindered amine light stabilizers (HALS are employed. An alternative route to avoid photodegradation is using polyelectrolites as coating of fillers such as metal oxides. Composi