WorldWideScience

Sample records for micro-encapsulated phase change

  1. Micro-Encapsulated Phase Change Materials: A Review of Encapsulation, Safety and Thermal Characteristics

    Directory of Open Access Journals (Sweden)

    Ahmed Hassan

    2016-10-01

    Full Text Available Phase change materials (PCMs have been identified as potential candidates for building energy optimization by increasing the thermal mass of buildings. The increased thermal mass results in a drop in the cooling/heating loads, thus decreasing the energy demand in buildings. However, direct incorporation of PCMs into building elements undermines their structural performance, thereby posing a challenge for building integrity. In order to retain/improve building structural performance, as well as improving energy performance, micro-encapsulated PCMs are integrated into building materials. The integration of microencapsulation PCMs into building materials solves the PCM leakage problem and assures a good bond with building materials to achieve better structural performance. The aim of this article is to identify the optimum micro-encapsulation methods and materials for improving the energy, structural and safety performance of buildings. The article reviews the characteristics of micro-encapsulated PCMs relevant to building integration, focusing on safety rating, structural implications, and energy performance. The article uncovers the optimum combinations of the shell (encapsulant and core (PCM materials along with encapsulation methods by evaluating their merits and demerits.

  2. Micro-channel heat sink with slurry of water with micro-encapsulated phase change material: 3D-numerical study

    International Nuclear Information System (INIS)

    Sabbah, Rami; Farid, Mohammad M.; Al-Hallaj, Said

    2009-01-01

    This study investigates the influence of using micro-encapsulated phase change material (MEPCM) on the thermal and hydraulic performance of micro-channel heat sinks used for heat dissipation of high power electronic devices. A three-dimensional, one-phase, laminar flow model of a rectangular channel using water slurry of MEPCM with temperature dependent physical properties was developed. The results showed a significant increase in the heat transfer coefficient under certain conditions for heat flux rates of 100 W/cm 2 and 500 W/cm 2 that is mainly dependant on the channel inlet and outlet temperatures and the selected MEPCM melting temperature. Lower and more uniform temperatures across the electronic device can be achieved at less pumping power compared to using water only as the cooling fluid

  3. Solvothermal method as a green chemistry solution for micro-encapsulation of phase change materials for high temperature thermal energy storage

    Directory of Open Access Journals (Sweden)

    Tudor Albert Ioan

    2018-01-01

    Full Text Available Thermal energy storage systems using phase change materials (PCMs as latent heat storage are one of the main challenges at European level in improving the performances and efficiency of concentrated solar power energy generation due to their high energy density. PCM with high working temperatures in the temperature range 300–500 °C are required for these purposes. However their use is still limited due to the problems raised by the corrosion of the majority of high temperature PCMs and lower thermal transfer properties. Micro-encapsulation was proposed as one method to overcome these problems. Different micro-encapsulation methods proposed in the literature are presented and discussed. An original process for the micro-encapsulation of potassium nitrate as PCM in inorganic zinc oxide shells based on a solvothermal method followed by spray drying to produce microcapsules with controlled phase composition and distribution is proposed and their transformation temperatures and enthalpies measured by differential scanning calorimetry are presented.

  4. Solvothermal method as a green chemistry solution for micro-encapsulation of phase change materials for high temperature thermal energy storage

    Science.gov (United States)

    Tudor, Albert Ioan; Motoc, Adrian Mihail; Ciobota, Cristina Florentina; Ciobota, Dan. Nastase; Piticescu, Radu Robert; Romero-Sanchez, Maria Dolores

    2018-05-01

    Thermal energy storage systems using phase change materials (PCMs) as latent heat storage are one of the main challenges at European level in improving the performances and efficiency of concentrated solar power energy generation due to their high energy density. PCM with high working temperatures in the temperature range 300-500 °C are required for these purposes. However their use is still limited due to the problems raised by the corrosion of the majority of high temperature PCMs and lower thermal transfer properties. Micro-encapsulation was proposed as one method to overcome these problems. Different micro-encapsulation methods proposed in the literature are presented and discussed. An original process for the micro-encapsulation of potassium nitrate as PCM in inorganic zinc oxide shells based on a solvothermal method followed by spray drying to produce microcapsules with controlled phase composition and distribution is proposed and their transformation temperatures and enthalpies measured by differential scanning calorimetry are presented.

  5. Thermal Response Of An Aerated Concrete Wall With Micro-Encapsulated Phase Change Material

    Science.gov (United States)

    Halúzová, Dušana

    2015-06-01

    For many years Phase Change Materials (PCM) have attracted attention due to their ability to store large amounts of thermal energy. This property makes them a candidate for the use of passive heat storage. In many applications, they are used to avoid the overheating of the temperature of an indoor environment. This paper describes the behavior of phase change materials that are inbuilt in aerated concrete blocks. Two building samples of an aerated concrete wall were measured in laboratory equipment called "twin-boxes". The first box consists of a traditional aerated concrete wall; the second one has additional PCM micro-encapsulated in the wall. The heat flux through the wall was measured and compared to simulation results modeled in the ESP-r program. This experimental measurement provides a foundation for a model that can be used to analyze further building constructions.

  6. An experimental study of the latent functionally thermal fluid with micro-encapsulated phase change material particles flowing in microchannels

    International Nuclear Information System (INIS)

    Wang, Yan; Chen, Zhenqian; Ling, Xiang

    2016-01-01

    Graphical abstract: Fig. 1. Relationship between Nu and Re for MEPCM slurry with various particle volume fractions. The interrupt of the well dispersed particles would destroy the thermal boundary layer and reduces its thickness, resulting in large Nusselt number for the suspension with 2% volume fraction of MEPCM. Large amount of heat could be absorbed and transferred rapidly during MEPCM melting process, which would result in remarkable increase of Nusselt number. The heat transfer performance of latent thermal fluid would be enhanced as 1.34 times of that of pure water. With smaller particle volume fraction (1% in this context), phase change occurs at lower temperature and more intensive heat flux is required for higher concentration suspension to induce the phase change occurrence, which is useful for application of the thermal management design. - Highlights: • The experiments of latent fluid flowing in parallel microchannels were conducted. • The performance of water with well dispersed micro-encapsulated phase change material particles was examined. • The Nusselt number of MEPCM slurry could achieve 1.36 times as that of pure water. - Abstract: Phase change material holds a good promise as a media of thermal energy storage and intensive heat flux removal. In this context, experiments were conducted to investigate the hydrodynamic and thermodynamic properties of a latent thermal fluid, which consisted of water and well dispersed micro-encapsulated phase change material (MEPCM) particles, flowing in parallel microchannels. It is suggested that MEPCM particles loading induces much higher pressure drop, which is very sensitive to temperature. Compared against water, the heat transfer performance of MEPCM slurry performs much better owing to particles aggregation, collision and micro-convective around the particles. Besides these, latent heat absorbed during phase change process makes the key contribution. It is found that with melting occurrence, Nusselt

  7. Electroporation of micro-droplet encapsulated HeLa cells in oil phase

    KAUST Repository

    Xiao, Kang; Zhang, Mengying; Chen, Shuyu; Wang, Limu; Chang, Donald Choy; Wen, Weijia

    2010-01-01

    Electroporation (EP) is a method widely used to introduce foreign genes, drugs or dyes into cells by permeabilizing the plasma membrane with an external electric field. A variety of microfluidic EP devices have been reported so far. However, further integration of prior and posterior EP processes turns out to be very complicated, mainly due to the difficulty of developing an efficient method for precise manipulation of cells in microfluidics. In this study, by means of a T-junction structure within a delicate microfluidic device, we encapsulated HeLa cells in micro-droplet of poration medium in oil phase before EP, which has two advantages: (i) precise control of cell-encapsulating droplets in oil phase is much easier than the control of cell populations or individuals in aqueous buffers; (ii) this can minimize the electrochemical reactions on the electrodes. Finally, we successfully introduced fluorescent dyes into the micro-droplet encapsulated HeLa cells in oil phase. Our results reflected a novel way to realize the integrated biomicrofluidic system for EP. © 2010 Wiley-VCH Verlag GmbH & Co. KGaA.

  8. Electroporation of micro-droplet encapsulated HeLa cells in oil phase

    KAUST Repository

    Xiao, Kang

    2010-08-27

    Electroporation (EP) is a method widely used to introduce foreign genes, drugs or dyes into cells by permeabilizing the plasma membrane with an external electric field. A variety of microfluidic EP devices have been reported so far. However, further integration of prior and posterior EP processes turns out to be very complicated, mainly due to the difficulty of developing an efficient method for precise manipulation of cells in microfluidics. In this study, by means of a T-junction structure within a delicate microfluidic device, we encapsulated HeLa cells in micro-droplet of poration medium in oil phase before EP, which has two advantages: (i) precise control of cell-encapsulating droplets in oil phase is much easier than the control of cell populations or individuals in aqueous buffers; (ii) this can minimize the electrochemical reactions on the electrodes. Finally, we successfully introduced fluorescent dyes into the micro-droplet encapsulated HeLa cells in oil phase. Our results reflected a novel way to realize the integrated biomicrofluidic system for EP. © 2010 Wiley-VCH Verlag GmbH & Co. KGaA.

  9. Micro-Encapsulation of non-aqueous solvents for energy-efficient carbon capture

    Energy Technology Data Exchange (ETDEWEB)

    Stolaroff, Joshua K; Ye, Congwang; Oakdale, James [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Baker, Sarah; Nugyen, Du; Smith, William; Aines, Roger

    2016-11-14

    Here, we demonstrate micro-encapsulation of several promising designer solvents: an IL, PCIL, and CO2BOL. We develop custom polymers that cure by UV light in the presence of each solvent while maintaining high CO2 permeability. We use several new process strategies to accommodate the viscosity and phase changes. We then measure and compare the CO2 absorption rate and capacity as well as the multi-cycle performance of the encapsulated solvents. These results are compared with previous work on encapsulated sodium carbonate solution. The prospects for designer solvents to reduce the cost of post-combustion capture and the implications for process design with encapsulated solvents are discussed.

  10. Micro/nano encapsulation of some paraffin eutectic mixtures with poly(methyl methacrylate) shell: Preparation, characterization and latent heat thermal energy storage properties

    International Nuclear Information System (INIS)

    Sarı, Ahmet; Alkan, Cemil; Bilgin, Cahit

    2014-01-01

    Graphical abstract: Four kinds of micro/nano capsules, PMMA/(C17-C24), PMMA/(C19-C18), PMMA/(C19-C24) and PMMA/(C20-C24), were synthesized successfully as novel encapsulated phase change materials (PCMs) for the different monomer/PEM ratios via emulsion polymerization. The FTIR spectroscopy analysis confirmed the polymerization reaction occurred around the PEMs to be used as core materials. The POM, SEM and PSD analysis results showed that the synthesized PMMA/PEM micro/nano capsules had spherical shape appearance and micro/nano sizes. DSC analysis measurements revealed that the prepared micro/nano capsules containing the highest PEM content had a melting temperature range of about 20–36 °C and latent heat capacities in the range of about 86–169 J/g. TGA findings demonstrated that the encapsulated PEMs had good thermal reliability and chemical stability even after subjecting them to 5000 melting/freezing cycles. Furthermore, the prepared micro/nano capsules had reasonable thermal conductivity values and fine melting–freezing reversibility. - Highlights: • PSD analysis results showed that the encapsulated PEMs had micro/nano sized-spheres. • The encapsulated PEMs melt in the temperature range of about 20–36 °C. • The encapsulated PEMs had latent heat capacities of in the range of about 86–169 J/g. • TGA results demonstrated that they had good thermal stability. • The encapsulated PEMs had good thermal conductivity and phase change reversibility. - Abstract: This work is aimed to prepare, characterize and determine the latent heat thermal energy storage properties of micro/nano encapsulated paraffin eutectic mixtures (PEMs) with polymethylmethacrylate (PMMA) shell. The eutectic combination ratios and optimum melting temperatures of C17-C24, C19-C18, C19-C24 and C20-C24 mixtures were find out prior to the encapsulation processes. Four kinds of micro/nano capsules, PMMA/(C17-C24), PMMA/(C19-C18), PMMA/(C19-C24) and PMMA/(C20-C24), were synthesized

  11. Encapsulation of phase change materials using rice-husk-char

    International Nuclear Information System (INIS)

    Gondora, Wayne; Doudin, Khalid; Nowakowski, Daniel J.; Xiao, Bo; Ding, Yulong; Bridgwater, Tony; Yuan, Qingchun

    2016-01-01

    Highlights: • Rice-husk-char particles are successfully used in the encapsulation of phase change materials. • Carbon-based phase change microcapsules aim at using the high thermal conductivity of carbon materials. • Carbon from biomass can be used in low and intermediate heat harvest and storage. • Carbon in biomass is captured and to be used in improving energy efficiency. - Abstract: This paper explored a new approach to prepare phase change microcapsules using carbon-based particles via Pickering emulsions for energy storage applications. Rice-husk-char, a by-product in biofuel production, containing 53.58 wt% of carbon was used as a model carbon-based material to encapsulate hexadecane. As a model phase change material, hexadecane was emulsified in aqueous suspensions of rice-husk-char nanoparticles. Water soluble polymers poly(diallyldimethyl-ammonium chloride) and poly(sodium styrene sulfonate) were used to fix the rice-husk-char nanoparticles on the emulsion droplets through layer-by-layer assembly to enhance the structural stability of the microcapsules. The microcapsules formed are composed of a thin shell encompassing a large core consisting of hexadecane. Thermal gravimetrical and differential scanning calorimeter analyses showed the phase change enthalpy of 80.9 kJ kg"−"1 or 120.0 MJ m"−"3. Design criteria of phase change microcapsules and preparation considerations were discussed in terms of desired applications. This work demonstrated possible utilisations of biomass-originated carbon-based material for thermal energy recovery and storage applications, which can be a new route of carbon capture and utilisation.

  12. Enhancing heat capacity of colloidal suspension using nanoscale encapsulated phase-change materials for heat transfer.

    Science.gov (United States)

    Hong, Yan; Ding, Shujiang; Wu, Wei; Hu, Jianjun; Voevodin, Andrey A; Gschwender, Lois; Snyder, Ed; Chow, Louis; Su, Ming

    2010-06-01

    This paper describes a new method to enhance the heat-transfer property of a single-phase liquid by adding encapsulated phase-change nanoparticles (nano-PCMs), which absorb thermal energy during solid-liquid phase changes. Silica-encapsulated indium nanoparticles and polymer-encapsulated paraffin (wax) nanoparticles have been made using colloid method, and suspended into poly-alpha-olefin (PAO) and water for potential high- and low-temperature applications, respectively. The shells prevent leakage and agglomeration of molten phase-change materials, and enhance the dielectric properties of indium nanoparticles. The heat-transfer coefficients of PAO containing indium nanoparticles (30% by mass) and water containing paraffin nanoparticles (10% by mass) are 1.6 and 1.75 times higher than those of corresponding single-phase fluids. The structural integrity of encapsulation allows repeated use of such nanoparticles for many cycles in high heat generating devices.

  13. Micro-Encapsulation of Probiotics

    Science.gov (United States)

    Meiners, Jean-Antoine

    Micro-encapsulation is defined as the technology for packaging with the help of protective membranes particles of finely ground solids, droplets of liquids or gaseous materials in small capsules that release their contents at controlled rates over prolonged periods of time under the influences of specific conditions (Boh, 2007). The material encapsulating the core is referred to as coating or shell.

  14. Process and Material Design for Micro-Encapsulated Ionic Liquids in Post-Combustion CO2 Capture

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Bo [Univ. of Notre Dame, IN (United States); Brennecke, Joan F [Univ. of Notre Dame, IN (United States); McCready, Mark [Univ. of Notre Dame, IN (United States); Stadtherr, Mark [Univ. of Notre Dame, IN (United States)

    2016-11-18

    Aprotic Heterocyclic Anion (AHA) Ionic Liquids (ILs) have been identified as promising new solvents for post-combustion carbon capture due to their high CO2 uptake and the high tenability 1,2 of their binding energy with CO2. Some of these compounds change phase (solid to liquid) on absorption of CO2; these Phase Change ILs (PCILs)3 offer the additional advantage that part of the heat needed to desorb the CO2 from the absorbent is provided by the heat of fusion as the PCIL solidifies upon release of CO2. However, the relatively high viscosity of AHA ILs and the occurrence of a phase change in PCILs present challenges for conventional absorption equipment. To overcome these challenges we are pursuing the use of new technology to micro-encapsulate the AHA ILs and PCILs. Our partners at Lawrence Livermore National Laboratory have successfully demonstrated this technology in the application of post-combustion carbon capture with sodium and potassium carbonate solutions,4 and have recently shown the feasibility of micro-encapsulation of an AHA IL for carbon capture.5 The large effective surface area and high CO2 permeability of the micro-capsules is expected to offset the drawback of the high IL viscosity and to provide for a more efficient and cost-effective mass transfer operation involving AHA ILs and PCILs. These opportunities, however, present us with both process and materials design questions. For example, what is the target CO2 absorption strength (enthalpy of chemical absorption) for the tunable AHA IL? What is the target for micro-capsule diameter in order to obtain a high mass transfer rate and good fluidization performance? What are the appropriate temperatures and pressures for the absorber and stripper? In order to address these and other questions, we have developed a rate-based model of a post-combustion CO2 capture process using micro-encapsulated ILs. As a performance baseline

  15. Encapsulation of Phase Change Materials Using Layer-by-Layer Assembled Polyelectrolytes

    Directory of Open Access Journals (Sweden)

    Qiangying Yi

    2015-01-01

    Full Text Available Phase change materials absorb the thermal energy when changing their phases (e.g., solid-to-liquid at constant temperatures to achieve the latent heat storage. The major drawbacks such as limited thermal conductivity and leakage prevent the PCMs from wide application in desired areas. In this work, an environmentally friendly and low cost approach, layer-by-layer (LbL assembly technique, was applied to build up ultrathin shells to encapsulate the PCMs and therefore to regulate their changes in volume when the phase change occurs. Generally, the oppositely charged strong polyelectrolytes Poly(diallyldimethylammonium chloride (PDADMAC and Poly(4-styrenesulfonic acid sodium salt (PSS were employed to fabricate multilayer shells on emulsified octadecane droplets using either bovine serum albumin (BSA or sodium dodecyl sulfate (SDS as surfactant. Specifically, using BSA as the surfactant, polyelectrolyte encapsulated octadecane spheres in size of ∼500 nm were obtained, with good shell integrity, high octadecane content (91.3% by mass, and good thermal stability after cycles of thermal treatments.

  16. Silica particles encapsulated poly(styrene-divinylbenzene) monolithic stationary phases for micro-high performance liquid chromatography.

    Science.gov (United States)

    Bakry, R; Stöggl, W M; Hochleitner, E O; Stecher, G; Huck, C W; Bonn, G K

    2006-11-03

    In the paper we demonstrate a new approach for the preparation and application of continuous silica bed columns that involve encapsulation (entrapment) of functionalized silica microparticles, which can be used as packing material in micro high performance liquid chromatography (micro-HPLC) and capillary electrochromatography (CEC). Like traditional packed columns, these capillaries possess characterized silica particles that offer high phase ratio and narrow pore size distribution leading to high retention and separation efficiency, respectively. More importantly, immobilization of the microparticles stabilizes the separation bed and eliminates the need for retaining frits. The developed capillary columns were fabricated in exactly the same way as a packed capillary column (slurry packing) but with an additional entrapment step. This immobilization of the packed bed was achieved by in situ polymerization of styrene and divinylbenzene in presence of decanol as a porogen and azobisisobutyronitrile as thermal initiator. Silica particles with different particle sizes and pore sizes ranging from 60 to 4000 A were studied. In addition different modified silica was used, including C-18 reversed phase, anion exchange and chiral stationary phases. Efficient separation of polyphenolic compounds, peptides, proteins and even DNA mutation were achieved using the developed technique depending on the properties of the silica particles used (particles pore size). For example, using 3 microm ProntoSIL C-18 particles with 300 A pore size, separation efficiencies in the range of 120,000-200,000 plates/m were obtained for protein separation, in a 6 cm x 200 microm i.d. capillary column. Using encapsulated silica C-18 with 1000 A pore size, separation of DNA homo and hetero duplexes were achieved under denaturing HPLC conditions for mutation detection. In addition, nucleotides were separated using anion exchange material encapsulated with poly(styrene-divinylbenzene) (PS/DVB), which

  17. Role of an encapsulating layer for reducing resistance drift in phase change random access memory

    Directory of Open Access Journals (Sweden)

    Bo Jin

    2014-12-01

    Full Text Available Phase change random access memory (PCRAM devices exhibit a steady increase in resistance in the amorphous phase upon aging and this resistance drift phenomenon directly affects the device reliability. A stress relaxation model is used here to study the effect of a device encapsulating layer material in addressing the resistance drift phenomenon in PCRAM. The resistance drift can be increased or decreased depending on the biaxial moduli of the phase change material (YPCM and the encapsulating layer material (YELM according to the stress relationship between them in the drift regime. The proposed model suggests that the resistance drift can be effectively reduced by selecting a proper material as an encapsulating layer. Moreover, our model explains that reducing the size of the phase change material (PCM while fully reset and reducing the amorphous/crystalline ratio in PCM help to improve the resistance drift, and thus opens an avenue for highly reliable multilevel PCRAM applications.

  18. Soluto-capillary convection in micro-encapsulation

    International Nuclear Information System (INIS)

    Subramanian, P.; Zebib, A.

    2005-01-01

    Spherical shells used as laser targets in inertial confinement fusion (ICF) experiments are made by micro-encapsulation. In one phase of manufacturing, the spherical shells contain a solvent (fluoro-benzene, FB) and a solute (polystyrene, PAMS) in a water-FB environment. Evaporation of the FB results in the desired hardened plastic hollow spherical shells, 1-2 mm in diameter. Perfect sphericity is demanded for efficient fusion ignition and the observed surface roughness maybe driven by Marangoni instabilities due to surface tension dependence on the FB concentration (buoyant forces are negligible in this micro-scale problem). Here we model this drying process and compute nonlinear, time-dependent, axisymmetric, variable viscosity, infinite Schmidt number soluto-capillary convection in the shells. Comparison with results from linear theory and available experiments are made. (authors)

  19. Composite of wood-plastic and micro-encapsulated phase change material (MEPCM) used for thermal energy storage

    International Nuclear Information System (INIS)

    Jamekhorshid, A.; Sadrameli, S.M.; Barzin, R.; Farid, M.M.

    2017-01-01

    Highlights: • A composite of wood–plastic-MEPCM has been produced. • Compression molding has been used for the composite preparation. • Thermal and properties were investigated using DSC analysis and cycling test. • Leakage test has been performed for the encapsulated PCM. • The composites can be used as a building material for thermal energy management. - Abstract: Application of phase change materials (PCMs) in lightweight building is growing due to the high latent heat of fusion of PCMs and their ability to control temperature by absorbing and releasing heat efficiently. Wood-plastic composites (WPC) are materials used in the interior parts of buildings that have improved properties compared to conventional materials. However, these materials have low energy storage capacity, which can be improved by incorporating PCM in them. Leakage of PCM is a major obstacle to the industrial applications, which can be solved through the use of microencapsulated PCM (MEPCM). This paper presents the performance tests conducted for a composite of wood-plastic-MEPCM for using in buildings for thermal storage. The wood-plastic-MEPCM composites were produced in this project using compression molding and their thermal and mechanical properties were investigated using DSC analysis, cycling test, leakage test, and three point bending analysis. The results showed that there is no leakage of PCM during phase change. The results also indicated that the composite has reasonable thermal properties, but its mechanical properties need to be improved by increasing the pressure during the molding process or by using extrusion method. The produced composites can be used as a building material for thermal energy management of building.

  20. Method of encapsulating a phase change material with a metal oxide

    Science.gov (United States)

    Ram, Manoj Kumar; Jotshi, Chand K.; Stefanakos, Elias K.; Goswami, Dharendra Yogi

    2016-11-15

    Storage systems based on latent heat storage have high-energy storage density, which reduces the footprint of the system and the cost. However, phase change materials (PCMs), such as NaNO.sub.3, NaCl, KNO.sub.3, have very low thermal conductivities. To enhave the storage of PCMs, macroencapsulation of PCMs was performed using a metal oxide, such as SiO.sub.2 or a graphene-SiO.sub.2, over polyimide-coated or nickel-embedded, polyimide-coated pellets The macro encapsulation provides a self-supporting structure, enhances the heat transfer rate, and provides a cost effective and reliable solution for thermal energy storage for use in solar thermal power plants. NaNO.sub.3 was selected for thermal storage in a temperature range of 300.degree. C. to 500.degree. C. The PCM was encapsulated in a metal oxide cell using self-assembly reactions, hydrolysis, and simultaneous chemical oxidation at various temperatures.

  1. Nutritional value of micro-encapsulated fish oils in rats

    DEFF Research Database (Denmark)

    Rosenquist, Annemette; Hølmer, Gunhild Kofoed

    1996-01-01

    The nutritional value of a micro-encapsulated fish oil product has been investigated. Three groups of 10 male Wistar rats each were fed dietscontaining 20% (w/w) of fat, and only the type and form of the fat added was different. In the test groups 5% (w/w) of fish oil either as such or in amicro......-encapsulated form was incorporated in the diets. The remaining fat was lard supplemented with corn oil to a dietary content of linoleic acid at10% (w/w). The control group received lard and corn oil only. A mixture similar to the dry matter in the micro-encapsulated product was alsoadded to the diets not containing...... this product. The uptake of marine (n-3) polyunsaturated fatty acids (PUFA) from both types of fish oil supplementwas reflected in the fatty acid profiles of liver phosphatidyl cholines (PC), phosphatidyl ethanolamines (PE), triglycerides (TG) and cardiolipin (CL).A suppression of the elongation of linoleic...

  2. Confined-Volume Effect on the Thermal Properties of Encapsulated Phase Change Materials for Thermal Energy Storage.

    Science.gov (United States)

    De Castro, Paula F; Ahmed, Adham; Shchukin, Dmitry G

    2016-03-18

    We have encapsulated the heat exchange material, n-docosane, into polyurethane capsules of different sizes. Decreasing the size of the capsules leads to changes of the crystallinity of phase-change material as well as melting/crystallization temperature. The novelty of the paper includes 1) protection of the nanostructured energy-enriched materials against environment during storage and controlled release of the encapsulated energy on demand and 2) study of the structure and surface-to-volume properties of the energy-enriched materials dispersed in capsules of different sizes. The stability of energy nanomaterials, influence of capsule diameter on their energy capacity, homogeneity and operation lifetime are investigated. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. [The cell micro-encapsulation techniques and its advancement in the field of gene therapy].

    Science.gov (United States)

    Li, Xiaoling; Cai, Shaohui

    2006-12-01

    It is no doubt that the gene therapy using recombinant engineering cells provides a novel approach to many refractory diseases. However, the transplant rejection from the host's immune system against heterogeneous cells has been the main handicap of its clinical application. The modern cell micro-encapsulation technique with good immune isolation makes it possible to overcome this problem and has shown potential application foreground in clinical therapies for a lot of diseases such as Parkinson's disease and Hemophiliac disease. This article reviews mainly the relative materials and techniques in processing micro-encapsulation, the host cells used to construct the recombinant genetic engineering cells and application of cell micro-encapsulation technique in the field of gene therapy.

  4. Encapsulation of carotenoids extracted from halophilic Archaea in oil-in-water (O/W) micro- and nano-emulsions.

    Science.gov (United States)

    Chaari, Marwa; Theochari, Ioanna; Papadimitriou, Vassiliki; Xenakis, Aristotelis; Ammar, Emna

    2018-01-01

    Carotenoids extracted from halophilc Archaea have potential health benefits. Their poor water-solubility and low bioavailability is a challenge to their incorporation into foods. The aim of this work was the carotenoids encapsulation into two oil-in-water (O/W) dispersions, to increase their use as functional food applications. A nanoemulsion produced by high pressure homogenization and a spontaneously formed microemulsion were conceived. The limonene was the dispersed oil phase, and mixtures of Triton X-100/Tween-80 (3:1) as emulsifiers and of water/glycerol (2:1) as the continuous aqueous phase. The microemulsion monophasic area was determined through the pseudo-ternary phase diagram. Dynamic Light Scattering was used for the structural characterization of the nano- and micro-emulsions in the presence of the carotenoids. Moreover, the radical scavenging activity of the encapsulated carotenoids was examined by Electron Paramagnetic Resonance spectroscopy. The results confirmed the delivery systems design effectiveness to encapsulate and stabilize the carotenoids for food applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. The behavior of self-compacting concrete containing micro-encapsulated phase change materials

    NARCIS (Netherlands)

    Hunger, Martin; Entrop, Alexis Gerardus; Mandilaras, I.; Brouwers, Jos; Founti, M.

    2009-01-01

    In order to come to a sustainable built environment the construction industry requires new energy saving concepts. One concept is to use Phase Change Materials (PCM), which have the ability to absorb and to release thermal energy at a specific temperature. This paper presents a set of experiments

  6. The behavior of self-compacting concrete containing micro-encapsulated Phase Change Materials

    NARCIS (Netherlands)

    Hunger, M.; Entrop, A.G.; Mandilaras, I.; Brouwers, H.J.H.; Founti, M.

    2009-01-01

    In order to come to a sustainable built environment the construction industry requires new energy saving concepts. One concept is to use Phase Change Materials (PCM), which have the ability to absorb and to release thermal energy at a specific temperature. This paper presents a set of experiments

  7. Polycaprolactone Thin-Film Micro- and Nanoporous Cell-Encapsulation Devices.

    Science.gov (United States)

    Nyitray, Crystal E; Chang, Ryan; Faleo, Gaetano; Lance, Kevin D; Bernards, Daniel A; Tang, Qizhi; Desai, Tejal A

    2015-06-23

    Cell-encapsulating devices can play an important role in advancing the types of tissue available for transplantation and further improving transplant success rates. To have an effective device, encapsulated cells must remain viable, respond to external stimulus, and be protected from immune responses, and the device itself must elicit a minimal foreign body response. To address these challenges, we developed a micro- and a nanoporous thin-film cell encapsulation device from polycaprolactone (PCL), a material previously used in FDA-approved biomedical devices. The thin-film device construct allows long-term bioluminescent transfer imaging, which can be used for monitoring cell viability and device tracking. The ability to tune the microporous and nanoporous membrane allows selective protection from immune cell invasion and cytokine-mediated cell death in vitro, all while maintaining typical cell function, as demonstrated by encapsulated cells' insulin production in response to glucose stimulation. To demonstrate the ability to track, visualize, and monitor the viability of cells encapsulated in implanted thin-film devices, we encapsulated and implanted luciferase-positive MIN6 cells in allogeneic mouse models for up to 90 days. Lack of foreign body response in combination with rapid neovascularization around the device shows promise in using this technology for cell encapsulation. These devices can help elucidate the metrics required for cell encapsulation success and direct future immune-isolation therapies.

  8. Poly(ester-anhydride):poly(beta-amino ester) micro- and nanospheres: DNA encapsulation and cellular transfection.

    Science.gov (United States)

    Pfeifer, Blaine A; Burdick, Jason A; Little, Steve R; Langer, Robert

    2005-11-04

    Poly(ester-anhydride) delivery devices allow flexibility regarding carrier dimensions (micro- versus nanospheres), degradation rate (anhydride versus ester hydrolysis), and surface labeling (through the anhydride functional unit), and were therefore tested for DNA encapsulation and transfection of a macrophage P388D1 cell line. Poly(l-lactic acid-co-sebacic anhydride) and poly(l-lactic acid-co-adipic anhydride) were synthesized through melt condensation, mixed with 25 wt.% poly(beta-amino ester), and formulated with plasmid DNA (encoding firefly luciferase) into micro- and nanospheres using a double emulsion/solvent evaporation technique. The micro- and nanospheres were then characterized (size, morphology, zeta potential, DNA release) and assayed for DNA encapsulation and cellular transfection over a range of poly(ester-anhydride) copolymer ratios. Poly(ester-anhydride):poly(beta-amino ester) composite microspheres (6-12 microm) and nanospheres (449-1031 nm), generated with copolymers containing between 0 and 25% total polyanhydride content, encapsulated plasmid DNA (>or=20% encapsulation efficiency). Within this polyanhydride range, poly(adipic anhydride) copolymers provided DNA encapsulation at an increased anhydride content (10%, microspheres; 10-25%, nanospheres) compared to poly(sebacic anhydride) copolymers (1%, microspheres and nanospheres) with cellular transfection correlating with the observed DNA encapsulation.

  9. Design of bioartificial pancreas with functional micro/nano-based encapsulation of islets.

    Science.gov (United States)

    Kepsutlu, Burcu; Nazli, Caner; Bal, Tugba; Kizilel, Seda

    2014-01-01

    Type I diabetes mellitus (TIDM), a devastating health issue in all over the world, has been treated by successful transplantation of insulin secreting pancreatic islets. However, serious limitations such as the requirement of immunosuppressive drugs for recipient patients, side effects as a result of long-term use of drugs, and reduced functionality of islets at the transplantation site remain. Bioartificial pancreas that includes islets encapsulated within semi-permeable membrane has been considered as a promising approach to address these requirements. Many studies have focused on micro or nanobased islet immunoisolation systems and tested the efficacy of encapsulated islets using in vitro and in vivo platforms. In this review, we address current progress and obstacles for the development of a bioartificial pancreas using micro/nanobased systems for encapsulation of islets.

  10. Preparation of micro-encapsulated strawberry fragrance and its application in the aromatic wallpaper

    Directory of Open Access Journals (Sweden)

    Xiao Zuobing

    2017-03-01

    Full Text Available Micro-encapsulated strawberry fragrance was successfully prepared with wall materials including maltodextrin, sodium octenylsuccinate and gum Arabic. The micro-capsule was added to wallpaper and aromatic wallpaper with strawberry characteristics was obtained. The particle distribution, surface morphology, chemical structure, thermal property and controlled release performance of micro-encapsulated fragrance and aromatic wallpaper were investigated using laser particle size analyzer, scanning electron microscopy (SEM, Fourier transform infrared spectroscopy (FT-TR, thermal gravity analysis (TGA and chromatography-mass spectrometer (GC-MS. The results showed that the average diameter of micro-capsule was 2 μm and the particles mainly distributed in the tissues of wallpaper. The result of TGA showed that the micro-capsule had a good stability. Meanwhile, the aromatic wallpaper had strawberry aroma more than 3 months and took on excellent controlled release performance.

  11. Nano- and micro-structured assemblies for encapsulation of food ingredients.

    Science.gov (United States)

    Augustin, Mary Ann; Hemar, Yacine

    2009-04-01

    This tutorial review provides an overview of the science of food materials and encapsulation techniques that underpin the development of delivery vehicles for functional food components, nutrients and bioactives. Examples of how the choice of materials, formulation and process affect the structure of micro- and nano-encapsulated ingredients and the release of the core are provided. The review is of relevance to chemists, material scientists, food scientists, engineers and nutritionists who are interested in addressing delivery challenges in the food and health industries.

  12. Composite phase change materials prepared by encapsuling paraffin in PVC macrocapsules

    International Nuclear Information System (INIS)

    Chen, Yingbo; Zhang, Shifeng; Zhang, Qi; Chen, Yusheng; Zhang, Yufeng

    2014-01-01

    Highlights: • PVC macrocapsules coated with SiO 2 were synthesized. • Paraffin was encapsuled in the capsules. • The composite PCM has high heat capacity. • The composite PCM has no surpercooling. - Abstract: A novel phase change material capsules with SiO 2 in their surface was prepared by absorbing paraffin into PVC hollow capsules and by the polycondensation reaction of TEOS in different conditions. X-ray photoelectron spectroscopy (XPS) analysis and scanning electronic microscope (SEM) were used to determine chemical composition and microstructure of the composite capsules, respectively. Enthalpy capacity and thermal stability of the composite capsules are systematically characterized by using differential scanning calorimeter (DSC), thermogravimetric analyzer (TGA) and thermocycling tests. The composite has high heat capacity with good stability and absence of supercooling phenomena

  13. Encapsulated Ball Bearings for Rotary Micro Machines

    Science.gov (United States)

    2007-01-01

    occurrence as well as the overall tribological properties of the bearing mechanism. Firstly, the number of stainless steel balls influences not only the load...stacks.iop.org/JMM/17/S224 Abstract We report on the first encapsulated rotary ball bearing mechanism using silicon microfabrication and stainless steel balls...The method of capturing stainless steel balls within a silicon race to support a silicon rotor both axially and radially is developed for rotary micro

  14. Complexation/encapsulation of green tea polyphenols in mixed calcium carbonate and phosphate micro-particles.

    Science.gov (United States)

    Elabbadi, Amal; Jeckelmann, Nicolas; Haefliger, Olivier P; Ouali, Lahoussine

    2011-01-01

    We used a double-jet mixer to encapsulate water-soluble polyphenols, green tea extract (GTE), with calcium-based inorganic materials. The device mixed calcium chloride solutions with a solution of carbonate and phosphate in the presence of a GTE solution, and formed micro-particles which capture the GTE molecules. The micro-particles were analysed by liquid chromatography coupled to tandem mass spectroscopy to determine the encapsulation yield and loading of the different GTE components. We established correlations between (1) the efficiency of the GTE encapsulation and the composition of the mixed anion solutions and (2) the protonation degree of the ions and the molar ratio of calcium cations and carbonate/phosphate anions. An optimal and reproducible GTE loading of about 40% with an encapsulation yield of 65% was observed for a carbonate/phosphate molar composition of 4 : 1. In addition, our experimental results showed that the process is selective and favours the encapsulation of gallated species which form stronger complexes with calcium cations.

  15. Green chemistry solutions for sol–gel micro-encapsulation of phase change materials for high-temperature thermal energy storage

    Directory of Open Access Journals (Sweden)

    Romero-Sanchez Maria Dolores

    2018-01-01

    Full Text Available NaNO3 has been selected as phase change material (PCM due to its convenient melting and crystallization temperatures for thermal energy storage (TES in solar plants or recovering of waste heat in industrial processes. However, incorporation of PCMs and NaNO3 in particular requires its protection (i.e. encapsulation into containers or support materials to avoid incompatibility or chemical reaction with the media where incorporated (i.e. corrosion in metal storage tanks. As a novelty, in this study, microencapsulation of an inorganic salt has been carried out also using an inorganic compound (SiO2 instead of the conventional polymeric shells used for organic microencapsulations and not suitable for high temperature applications (i.e. 300–500 °C. Thus, NaNO3 has been microencapsulated by sol–gel technology using SiO2 as shell material. Feasibility of the microparticles synthetized has been demonstrated by different experimental techniques in terms of TES capacity and thermal stability as well as durability through thermal cycles. The effectiveness of microencapsulated NaNO3 as TES material depends on the core:shell ratio used for the synthesis and on the maximum temperature supported by NaNO3 during use.

  16. Effects of micro-encapsulation on morphology and endocrine function of cryopreserved neonatal porcine islet-like cell clusters.

    Science.gov (United States)

    Murakami, M; Satou, H; Kimura, T; Kobayashi, T; Yamaguchi, A; Nakagawara, G; Iwata, H

    2000-10-27

    For the success of clinical islets transplantation, the development of a long-term storage method is necessary. However, the structure of digested islets is scanty for culture and cryopreservation. In this study, the effect of micro-encapsulation to cryopreserved porcine islet-like cell clusters (ICCs) was investigated. The ICCs prepared from neonatal pigs by collagenase digestion and culture technique were cryopreserved and micro-encapsulated in 5% agarose membranes. After cryopreservation, ICC cultured without encapsulation (group A) and cultured with encapsulation (group B) were assessed by comparison with no cryopreserved ICC (control) both in vitro by static incubation test and in vivo in a xenotransplantation study. Micro-encapsulation was able to maintain the fine morphology and the number of ICCs of group B after 7 days of culture. There were not significant differences in insulin secretion of group B and control on day 1 and 7 of culture (1 day:11+/-0.99, 7 days: 5.30+/-1.08 microU/ICC/hr NS versus control). On day 7 of culture, the retrieval rate of group B (105.2+/-9.8%) is obviously higher compared with group A (63.0+/-6.3%). In the xenotransplatation model, the ICCs of group B showed long survival time (7.9+/-0.4 weeks) and good transplantation effect. Our study suggests that micro-encapsulation is one of the useful method for cryopreserved ICC to maintain the fine morphology and effectively recover the endocrine function.

  17. Experimental investigation of the energy performance of a novel Micro-encapsulated Phase Change Material (MPCM) slurry based PV/T system

    International Nuclear Information System (INIS)

    Qiu, Zhongzhu; Ma, Xiaoli; Zhao, Xudong; Li, Peng; Ali, Samira

    2016-01-01

    Highlights: • An experimental investigation to a novel MPCM slurry based PV/T system was conducted. • The system had the reduced solar efficiency at a higher solar radiation. • The system had the increased solar efficiency at a higher slurry Reynolds number. • The most favourite MPCM concentration was around 10%. • The experimental results approved the accuracy of the established computer model. - Abstract: As a follow-on work of the authors’ theoretical study, the paper presented an experimental investigation into the energy performance of a novel PV/T thermal and power system employing the Micro-encapsulated Phase Change Material (MPCM) slurry as the working fluid. A prototype PV/T module of 800 mm × 1600 mm × 50 mm was designed and constructed based on the previous modelling recommendation. The performance of the PV/T module and associated thermal and power system were tested under various solar radiations, slurry Reynolds numbers and MPCM concentrations. It was found that (1) increasing solar radiation led to the increased PV/T module temperature, decreased solar thermal and electrical efficiencies and reduced slurry pressure drop; (2) increasing the slurry Reynolds number led to the increased solar thermal and electrical efficiencies, decreased module temperature, and increased pressure drop; and (3) increasing the MPCM concentration led to the reduced module temperature and increased pressure drop. The experimental results were used to examine the accuracy of the established computer model, giving a derivation scale ranging from 1.1% to 6.1% which is an acceptable error level for general engineering simulation. The recommended operational conditions of the PV/T system were (1) MPCM slurry weight concentration of 10%, (2) slurry Reynolds number of 3000, and (3) solar radiation of 500–700 W/m"2; at which the system could achieve the net overall solar efficiencies of 80.8–83.9%. To summarise, the MPCM slurry based PV/T thermal and power system

  18. Strain response of stretchable micro-electrodes: Controlling sensitivity with serpentine designs and encapsulation

    International Nuclear Information System (INIS)

    Gutruf, Philipp; Walia, Sumeet; Nur Ali, Md; Sriram, Sharath; Bhaskaran, Madhu

    2014-01-01

    The functionality of flexible electronics relies on stable performance of thin film micro-electrodes. This letter investigates the behavior of gold thin films on polyimide, a prevalent combination in flexible devices. The dynamic behavior of gold micro-electrodes has been studied by subjecting them to stress while monitoring their resistance in situ. The shape of the electrodes was systematically varied to examine resistive strain sensitivity, while an additional encapsulation was applied to characterize multilayer behavior. The realized designs show remarkable tolerance to repetitive strain, demonstrating that curvature and encapsulation are excellent approaches for minimizing resistive strain sensitivity to enable durable flexible electronics

  19. A novel approach to fabricate dye-encapsulated polymeric micro- and nanoparticles by thin film dewetting technique.

    Science.gov (United States)

    Chatterjee, Manosree; Hens, Abhiram; Mahato, Kuldeep; Jaiswal, Namita; Mahato, Nivedita; Nagahanumaiah; Chanda, Nripen

    2017-11-15

    A new method is reported for fabrication of polymeric micro- and nanoparticles from an intermediate patterned surface originated by dewetting of a polymeric thin film. Poly (d, l-lactide-co-glycolide) or PLGA, a biocompatible polymer is used to develop a thin film over a clean glass substrate which dewets spontaneously in the micro-/nano-patterned surface of size range 50nm to 3.5µm. Since another water-soluble polymer, poly vinyl alcohol (PVA) is coated on the same glass substrate before PLGA thin film formation, developed micro-/nano-patterns are easily extracted in water in the form of micro- and nanoparticle mixture of size range 50nm to 3.0µm. This simplified method is also used to effectively encapsulate a dye molecule, rhodamine B inside the PLGA micro-/nanoparticles. The developed dye-encapsulated nanoparticles, PLGA-rhodamine are separated from the mixture and tested for in-vitro delivery application of external molecules inside human lung cancer cells. For the first time, the use of thin film dewetting technique is reported as a potential route for the synthesis of polymeric micro-/nanoparticles and effective encapsulation of external species therein. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Fabrication and Properties of Micro-Nanoencapsulated Phase Change Materials for Internally-Cooled Liquid Desiccant Dehumidification

    Directory of Open Access Journals (Sweden)

    Xiaofeng Niu

    2017-04-01

    Full Text Available Micro-nanoencapsulated phase change materials (M-NEPCMs are proposed to be useful in liquid desiccant dehumidification by restraining the temperature rise in the moisture-removal process and improving the dehumidification efficiency. In this paper, the n-octadecane M-NEPCMs with desirable thermal properties for internally-cooled dehumidification were fabricated by using compound emulsifiers through the in-situ polymerization method. Melamine-formaldehyde resin was used as the shell material. The effects of the mixing ratio, emulsification methods and amount of the compound emulsifiers on the morphology, size and thermal properties of the M-NEPCMs were investigated experimentally. The optimum weight mixing ratio of the compound emulsifiers is SDS (sodium dodecyl sulfate:Tween80 (polyoxyethylene sorbitan monooleate:Span80 (sorbitan monooleate = 0.1:0.6:0.3, which achieves the best stability of the n-octadecane emulsion. When the compound emulsifiers are 10 wt. % of the core material, the melting enthalpy of M-NEPCMs reaches its maximum of 145.26 J/g of capsules, with an encapsulation efficiency of 62.88% and a mean diameter of 636 nm. The sub-cooling of the prepared M-NEPCMs is lower than 3 °C, with an acceptable thermal reliability after the thermal cycling test. A pre-emulsification prior to the addition of deionized water in the emulsification is beneficial to the morphology of the capsules, as the phase change enthalpy can be increased by 123.7%.

  1. Fabrication and Properties of Micro-Nanoencapsulated Phase Change Materials for Internally-Cooled Liquid Desiccant Dehumidification.

    Science.gov (United States)

    Niu, Xiaofeng; Xu, Qing; Zhang, Yi; Zhang, Yue; Yan, Yufeng; Liu, Tao

    2017-04-29

    Micro-nanoencapsulated phase change materials (M-NEPCMs) are proposed to be useful in liquid desiccant dehumidification by restraining the temperature rise in the moisture-removal process and improving the dehumidification efficiency. In this paper, the n -octadecane M-NEPCMs with desirable thermal properties for internally-cooled dehumidification were fabricated by using compound emulsifiers through the in-situ polymerization method. Melamine-formaldehyde resin was used as the shell material. The effects of the mixing ratio, emulsification methods and amount of the compound emulsifiers on the morphology, size and thermal properties of the M-NEPCMs were investigated experimentally. The optimum weight mixing ratio of the compound emulsifiers is SDS (sodium dodecyl sulfate):Tween80 (polyoxyethylene sorbitan monooleate):Span80 (sorbitan monooleate) = 0.1:0.6:0.3, which achieves the best stability of the n -octadecane emulsion. When the compound emulsifiers are 10 wt. % of the core material, the melting enthalpy of M-NEPCMs reaches its maximum of 145.26 J/g of capsules, with an encapsulation efficiency of 62.88% and a mean diameter of 636 nm. The sub-cooling of the prepared M-NEPCMs is lower than 3 °C, with an acceptable thermal reliability after the thermal cycling test. A pre-emulsification prior to the addition of deionized water in the emulsification is beneficial to the morphology of the capsules, as the phase change enthalpy can be increased by 123.7%.

  2. Utilization of macro encapsulated phase change materials for the development of thermal energy storage and structural lightweight aggregate concrete

    International Nuclear Information System (INIS)

    Memon, Shazim Ali; Cui, H.Z.; Zhang, Hang; Xing, Feng

    2015-01-01

    Highlights: • Compressive strength of LWAC with Paraffin–LWA was higher than 15 MPa. • Shrinkage strain with Paraffin–LWA reduced by 41.8%. • For outdoor testing, temperature at room center with Paraffin–LWA reduced by 2.9 °C. • Recovery period with Paraffin–LWA was less than average life span of building. • A reduction of 465 kg CO 2 -eq/year or 12.91 kg CO 2 -eq/year/m 2 was achieved. - Abstract: Structural–functional integrated materials are one of directions of rapid development for saving-energy materials. Phase Change Materials (PCMs) are latent thermal storage materials possessing a large amount of heat energy stored during its phase change stage. Porous lightweight aggregate (LWA) can serve as the carrier for PCM. In this research, a structural concrete with function of indoor temperature control were prepared by using macro encapsulated PCM–LWA. The indoor and outdoor tests were performed to determine the thermal performance of the lightweight aggregate concrete (LWAC) containing macro encapsulated Paraffin–LWA. The compressive strength and shrinkage strain of LWAC with macro encapsulated PCM–LWA were evaluated. Finally, the economic and environmental aspects of application of macro encapsulated Paraffin–LWA in a typical floor area of public housing rental flat in Hong Kong were assessed. From indoor thermal performance test, it was found that LWAC incorporated with macro encapsulated Paraffin–LWA has a function of reducing the energy consumption by decreasing the indoor temperature; flatten the fluctuation of indoor temperature and shifting the loads away from the peak periods. Moreover, from outdoor thermal performance test, it was found that the performance of macro encapsulated Paraffin–LWA in adjusting the room temperature was optimized when there was a remarkable temperature difference between the day and night. Test results showed that the compressive strengths of LWAC incorporating macro encapsulated Paraffin

  3. Dome shaped micro-laser encapsulated in a flexible film

    Science.gov (United States)

    Ioppolo, T.; Manzo, M.

    2014-11-01

    In this paper, we demonstrated multimode laser emission from a dome shaped micro-scale resonator encapsulated in a flexible polymer film. The resonator with a radius of ~60 microns was made of Norland Blocking Adhesive (NBA 107) doped with a solution of rhodamine 6G and ethanol. The dome was encapsulated in a flexible polymeric film made of polydymethylsiloxane (PDMS) with a thickness of 1 mm. The micro-scale laser was optically pumped using a frequency doubled Q-switch Nd:YAG laser with pulse repetition of 10 Hz and pulse duration of 9 ns. Experiments were carried out to investigate the lasing properties of this laser structure. The pumping threshold for multimode laser emission was below 100 µJ cm-2. The average optical quality factor for all observed laser modes was of the order of 104. Using a fluence of 315.8 µJ cm-2 it was observed that the intensity of the laser emission dropped by 62% after 5 min of operation. These results showed that these solid state flexible lasers are easy to fabricate and can be integrated into novel flexible photonic devices and novel photonic sensors.

  4. Preparation and thermal properties of form stable paraffin phase change material encapsulation

    International Nuclear Information System (INIS)

    Liu Xing; Liu Hongyan; Wang Shujun; Zhang Lu; Cheng Hua

    2006-01-01

    Paraffin waxes are cheap and have moderate thermal energy storage density but low thermal conductivity and, hence, require large surface area to be used in energy storage. Form stable paraffin phase change materials (PCM) in which paraffin serves as a latent heat storage material and polyolefins act as a supporting material, because of paraffin leakage, are required to be improved. The form stable paraffin PCM in the present paper was encapsulated in an inorganic silica gel polymer successfully by in situ polymerization. The differential scanning calorimeter (DSC) was used to measure its thermal properties. At the same time, the Washburn equation, which measures the wetting properties of powder materials, was used to test the hydrophilic-lipophilic properties of the PCMs. The result indicated that the enthalpy of the microencapsulated PCMs was reduced little, while their hydrophilic properties were enhanced largely

  5. Replacement of Ablators with Phase-Change Material for Thermal Protection of STS Elements

    Science.gov (United States)

    Kaul, Raj K.; Stuckey, Irvin; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    As part of the research and development program to develop new Thermal Protection System (TPS) materials for aerospace applications at NASA's Marshall Space Flight Center (MSFC), an experimental study was conducted on a new concept for a non-ablative TPS material. Potential loss of TPS material and ablation by-products from the External Tank (ET) or Solid Rocket Booster (SRB) during Shuttle flight with the related Orbiter tile damage necessitates development of a non-ablative thermal protection system. The new Thermal Management Coating (TMC) consists of phase-change material encapsulated in micro spheres and a two-part resin system to adhere the coating to the structure material. The TMC uses a phase-change material to dissipate the heat produced during supersonic flight rather than an ablative material. This new material absorbs energy as it goes through a phase change during the heating portion of the flight profile and then the energy is slowly released as the phase-change material cools and returns to its solid state inside the micro spheres. The coating was subjected to different test conditions simulating design flight environments at the NASA/MSFC Improved Hot Gas Facility (IHGF) to study its performance.

  6. The Influence of Phase Change Materials on the Properties of Self-Compacting Concrete

    OpenAIRE

    Miguel Ángel Álvarez; Jaime Lorenzo; Itziar Goicoechea; María Fenollera; José Luis Míguez

    2013-01-01

    The aim of this paper is to research new thermally-efficient concrete walls, analyzing the mechanical behavior of a self-compacting concrete to manufacture an uncoated solid structural panel, with the incorporation of a micro-encapsulated phase change material as additive. Different dosages are tested and mechanical properties of the product obtained from the molding of concrete specimens are evaluated, testing mechanical compressive strength, slump flow, and density. The results reveal the o...

  7. Dome shaped micro-laser encapsulated in a flexible film

    International Nuclear Information System (INIS)

    Ioppolo, T; Manzo, M

    2014-01-01

    In this paper, we demonstrated multimode laser emission from a dome shaped micro-scale resonator encapsulated in a flexible polymer film. The resonator with a radius of ∼60 microns was made of Norland Blocking Adhesive (NBA 107) doped with a solution of rhodamine 6G and ethanol. The dome was encapsulated in a flexible polymeric film made of polydymethylsiloxane (PDMS) with a thickness of 1 mm. The micro-scale laser was optically pumped using a frequency doubled Q-switch Nd:YAG laser with pulse repetition of 10 Hz and pulse duration of 9 ns. Experiments were carried out to investigate the lasing properties of this laser structure. The pumping threshold for multimode laser emission was below 100 µJ cm −2 . The average optical quality factor for all observed laser modes was of the order of 10 4 . Using a fluence of 315.8 µJ cm −2 it was observed that the intensity of the laser emission dropped by 62% after 5 min of operation. These results showed that these solid state flexible lasers are easy to fabricate and can be integrated into novel flexible photonic devices and novel photonic sensors. (paper)

  8. Integrating Micro- or Nanoscale Encapsulation Technology with Vitreous Cryopreservation: A New Strategy to Improve Biopreservation.

    Science.gov (United States)

    Zheng, Y Y; Zhao, G

      BACKGROUND: None-uniform distributions of temperatures, limited freezing and thawing rates, and thermal stresses are three main hindering factors for successful vitreous cryopreservation of mass volume of biosamples. Micro- and nanoscale encapsulation, owning the intrinsic features to avoid those limitations introduced by the traditional approaches, has been opened up a new way for effective and high-efficiency biopreservation. This short review article summarizes recent advances in cell encapsulation technology for biopreservation by manipulating cells and biological agents in micro- or nanoscale volume droplets and microgels, and discusses its promising applications for future vitreous cryopreservation.

  9. Supercooling suppression of microencapsulated phase change materials by optimizing shell composition and structure

    International Nuclear Information System (INIS)

    Cao, Fangyu; Yang, Bao

    2014-01-01

    Highlights: • A new method for supercooling suppression of microPCMs by optimizing the structure of the microcapsule shell. • Large effective latent heat (up to 213 J/g) of the microPCMs, much higher than those using additive as nucleating agents. • Change of shell composition and structure significantly affects the phase transition processes of the encapsulated PCMs. • The latent heat of the shell-induced phase transition is maximized, reaching 83.7% of the latent heat of bulk octadecane. • Hollow spheres with porous rather than solid resin shell are also formed when the SDS concentration is very high. - Abstract: A new method for supercooling suppression of microencapsulated phase change materials (PCMs) has been developed by optimizing the composition and structure of the microcapsule resin shell. The microcapsules comprising paraffin octadecane encapsulated in melamine–formaldehyde resin shell were synthesized with the use the oil-in-water emulsion technique. These PCM microcapsules are 5–15 μm in diameter. The supercooling of these octadecane microcapsules can be as large as 13.6 °C, when the homogeneous nucleation is dominant during the melt crystallization into the thermodynamically stable triclinic phase. It is discovered that the homogeneous nucleation can be mediated by shell-induced nucleation of the triclinic phase and the metastable rotator phase when the shell composition and structure are optimized, without need of any nucleating additives. The effects of synthesis parameters, such as ratio of melamine to formaldehyde, pH of pre-polymer, and pH of emulsion, on the phase transition properties of the octadecane microcapsules have been investigated systemically. The optimum synthesis conditions have been identified in terms of minimizing the supercooling while maintaining heat capacity. Potential applications of this type of phase changeable microcapsules include high heat capacity thermal fluids, thermal management in smart buildings

  10. Matrix-encapsulated waste forms: application to idealized systems, commercial and SRP/INEL wastes, hydrated radiophases and encapsulant phases

    International Nuclear Information System (INIS)

    Roy, R.; Vance, E.R.; McCarthy, G.J.; White, W.B.

    1981-01-01

    This paper describes the encapsulation strategy as applied to microscopic-scale encapsulation in ceramics composed of micron-sized grains of possibly more leachable radiophases intimately surrounded by micron-sized grains of more insoluble phases. The encapsulation approach should be valid, almost axiomatic, for defense waste. However, there are still problems to be investigated experimentally. These are (a) because of the dilution, it is difficult to confirm the geometry of the radionuclide-bearing phases relative to that of the matrix: one almost has to use the inverse approach by making leach measurements, (b) deciding between using the highly reactive oxyhydroxide sludges themselves or sintered calcine to be coated, (c) verification of the insolubility of the encapsulant phases in a variety of groundwaters, and (d) the production of ceramics of near-zero porosity, using hot-isostatic pressing, or incorporation in either silicate or phosphate cements

  11. High temperature thermal storage for solar gas turbines using encapsulated phase change materials

    CSIR Research Space (South Africa)

    Klein, P

    2014-01-01

    Full Text Available in the near term. Sensible heat storage in packed beds involves a random packing of ceramic pebbles/particles in an insulated container. The temperature change of the solid during charging/discharging is used to store/release thermal energy. The primary... the packed bed due to vaporization and condensation effects. 2.3. Macro-encapsulation of PCM In the macro-encapsulation approach the PCM is retained within a hollow shell material. The shell can be preformed, filled with a molten PCM and sealed; or it can...

  12. Experimental Investigation of Thermal Conductivity of Concrete Containing Micro-Encapsulated Phase Change Materials

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per; Jensen, Rasmus Lund

    2011-01-01

    in this article utilizes integration of the concrete and the microencapsulated Phase Change Material (PCM). PCM has the ability to absorb and release significant amounts of heat at a specific temperature range. As a consequence of admixing PCM to the concrete, new thermal properties like thermal conductivity...... and specific heat capacity have to be defined. This paper presents results from the measurements of the thermal conductivity of various microencapsulated PCM-concrete and PCM-cement-paste mixes. It was discovered that increase of the amount of PCM decreases the thermal conductivity of the concrete PCM mixture....... Finally, a theoretical calculation methodology of thermal conductivity for PCM-concrete mixes is developed....

  13. Tissue encapsulation of the proximal Essure micro-insert from the uterine cavity following hysteroscopic sterilization.

    Science.gov (United States)

    Kerin, John F; Munday, David; Ritossa, Martin; Rosen, David

    2007-01-01

    To assess the interaction between the trailing ends of a sterilization micro-insert extending into the uterine cavity and the surrounding uterine tissue environment over time. Multicenter, retrospective observational study (Canadian Task Force classification II-1). Hospital-based clinical research centers. A subset of a study population of 545 women who had undergone a hysteroscopic sterilization procedure. A second-look hysteroscopy was performed in 22 (20 with uterine bleeding, 2 pre IVF) of these 545 women between 4 and 43 months from the sterilization procedure. Over a mean time period of 19.73 months, the trailing coils of the micro-inserts into the uterine cavity shortened from a mean of 5.7 mm to 2.0 mm and from 5.4 mm to 1.8 mm on the right and left sides, respectively. In cases observed within 12 months or fewer post-procedure, the complete tissue encapsulation of both micro-inserts had already occurred in 17% of the observations. Among cases evaluated from 13 to 43 months post-procedure, 25% evidenced complete encapsulation. Two mechanisms appear to be responsible for this process. First, there is an initial mechanical "winding-in" of the micro-insert of approximately 1 rotation of its outer coil, accounting for 1 mm of its length, after release from its delivery system. Second, the tissue around the ostium appears to use the trailing coils of the micro-insert as a scaffolding structure, gradually encapsulating and excluding them from the uterine cavity. The gradual tissue exclusion of the micro-insert from the uterine cavity may make it pregnancy-compatible after in vitro fertilization and embryo transfer procedures.

  14. Drug- not carrier-dependent haematological and biochemical changes in a repeated dose study of cyclosporine encapsulated polyester nano- and micro-particles: Size does not matter

    International Nuclear Information System (INIS)

    Venkatpurwar, V.P.; Rhodes, S.; Oien, K.A.; Elliott, M.A.; Tekwe, C.D.; Jørgensen, H.G.; Kumar, M.N.V. Ravi

    2015-01-01

    Highlights: • The particulate delivery allows an increase in dose range without accrual of toxicities. • The altered haematological and biochemical changes are drug, but not particle dependent. • PLGA nano/microparticles are safe on subacute peroral dosing over 28 days. • Nano-toxicology, drug needs to be considered. - Abstract: Biodegradable nanoparticles are being considered more often as drug carriers to address pharmacokinetic/pharmacodynamic issues, yet nano-product safety has not been systematically proven. In this study, haematological, biochemical and histological parameters were examined on 28 day daily dosing of rats with nano- or micro-particle encapsulated cyclosporine (CsA) to confirm if any changes observed were drug or carrier dependent. CsA encapsulated poly(lactide-co-glycolide) [PLGA] nano- (nCsA) and micro-particles (mCsA) were prepared by emulsion techniques. CsA (15, 30, 45 mg/kg) were administered by oral gavage to Sprague Dawley (SD) rats over 28 days. Haematological and biochemical metrics were followed with tissue histology performed on sacrifice. Whether presented as nCsA or mCsA, 45 mg/kg dose caused significant loss of body weight and lowered food consumption compared to untreated control. Across the doses, both nCsA and mCsA produce significant decreases in lymphocyte numbers compared to controls, commensurate with the proprietary product, Neoral ® 15. Dosing with nCsA showed higher serum drug levels than mCsA presumably owing to the smaller particle size facilitating absorption. The treatment had no noticeable effects on inflammatory/oxidative stress markers or antioxidant enzyme levels, except an increase in ceruloplasmin (CP) levels for high dose nCsA/mCsA group. Further, only subtle, sub-lethal changes were observed in histology of nCsA/mCsA treated rat organs. Blank (drug-free) particles did not induce changes in the parameters studied. Therefore, it is extremely important that the encapsulated drug in the nano-products is

  15. Synthesis and Performances of Phase Change Microcapsules with a Polymer/Diatomite Hybrid Shell for Thermal Energy Storage

    Directory of Open Access Journals (Sweden)

    Yanli Sun

    2018-05-01

    Full Text Available The mechanical behavior of phase-change microcapsules (microPCMs is of vital significance for practical applications in thermal energy storage. Hence, a new type of microPCMs based on an n-octadecane (C18 core and a melamine-urea-formaldehyde (MUF/diatomite hybrid shell was developed through in situ polymerization. Based on SEM micrographs, most microPCMs exhibited a nearly spherical and smooth microstructure, with broadened particle size distributions. It was confirmed by Fourier transform infrared (FTIR that successful polymerization of diatomite into the microPCMs occurred, and that additional diatomite had no effect on the core coated by the shell. In addition, the results of the differential scanning calorimeter (DSC and Atomic Force Microscopy (AFM demonstrated that the mechanical properties of the microPCMs were remarkably improved by the addition of a moderate amount of diatomite, but that the heat enthalpy and encapsulated efficiency (η decreased slightly. The incorporation of 2 wt % diatomite resulted in the average Young’s modulus of microPCMs, which was 1.64 times greater than those of microPCMs without diatomite. Furthermore, the melting and crystallization enthalpies and the encapsulated efficiency of the microPCMs were as high as 237.6 J/g, 234.4 J/g and 77.90%, respectively. The microPCMs with a polymer/diatomite hybrid shell may become the potential materials in the application of thermal energy storage.

  16. Micro-encapsulation of ozonated red pepper seed oil with antimicrobial activity and application to nonwoven fabric.

    Science.gov (United States)

    Özyildiz, F; Karagönlü, S; Basal, G; Uzel, A; Bayraktar, O

    2013-03-01

    In recent years, functional fabrics possessing antimicrobial activity have drawn significant interest because antibiotic resistance is becoming widespread among pathogenic micro-organisms. The aim of this study was to produce microcapsules incorporating ozonated red pepper seed oil (ORPSO) with antimicrobial properties and apply them to nonwoven fabrics to prepare functional textiles. Red pepper seed oil (RPSO) was ozonated and micro-encapsulated via a complex coacervation method using gelatin (GE) and gum arabic (GA) as wall materials. While micro-encapsulation yield and oil loading decreased with increases in the amount of surfactant, the mean particle size increased. The antimicrobial activity of the oil was tested via the disc diffusion method. The microcapsules were also tested using the agar well method. While RPSO had no effect on the test micro-organisms, the ORPSO and microcapsules containing ORPSO were found to be active against the test micro-organisms. The microcapsules were then applied to nonwoven fabric using the padding method to produce a disposable functional textile. The microcapsule-impregnated functional fabrics provided a 5 log decrease in 1 h. It is therefore possible to functionalize nonwoven fabrics to have antimicrobial activity against antibiotic-resistant micro-organisms, using microcapsules containing ORPSO. This is the first report on the antimicrobial action of RPSO after ozonation process. These findings suggest that ozonated red pepper seed oil (ORPSO) may be a useful and effective antimicrobial agent against the micro-organisms with antibiotic resistance. Therefore, as a natural product, RPSO represents a sustainable alternative to the use of synthetic antimicrobial agents. To our knowledge, this is also the first time that ORPSO has been micro-encapsulated for the preparation of functional textile material with significant antimicrobial activity. © 2012 The Society for Applied Microbiology.

  17. Protein encapsulated magnetic carriers for micro/nanoscale drug delivery systems.

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Y.; Kaminski, M. D.; Mertz, C. J.; Finck, M. R.; Guy, S. G.; Chen, H.; Rosengart, A. J.; Chemical Engineering; Univ. of Chicago, Pritzker School of Medicine

    2005-01-01

    Novel methods for drug delivery may be based on nanotechnology using non-invasive magnetic guidance of drug loaded magnetic carriers to the targeted site and thereafter released by external ultrasound energy. The key building block of this system is to successfully synthesize biodegradable, magnetic drug carriers. Magnetic carriers using poly(D,L-lactide-co-glycolide) (PLGA) or poly(lactic acid)-poly(ethylene glycol) (PLA-PEG) as matrix materials were loaded with bovine serum albumin (BSA) by a double-emulsion technique. BSA-loaded magnetic microspheres were characterized for size, morphology, surface charge, and magnetization. The BSA encapsulation efficiency was determined by recovering albumin from the microspheres using dimethyl sulfoxide and 0.05N NaOH/0.5% SDS then quantifying with the Micro-BCA protein assay. BSA release profiles were also determined by the Micro-BCA protein assay. The microspheres had drug encapsulation efficiencies up to 90% depending on synthesis parameters. Particles were spherical with a smooth or porous surface having a size range less than 5 {mu}m. The surface charge (expressed as zeta potential) was near neutral, optimal for prolonged intravascular survival. The magnetization of these BSA loaded magnetic carriers was 2 to 6 emu/g, depending on the specific magnetic materials used during synthesis.

  18. A numerical study on the heat and mass transfer of a micro heat pipe with a phase-change interface analysis

    Science.gov (United States)

    Jung, Eui Guk; Boo, Joon Hong

    2017-11-01

    A numerical study was conducted to analyze the heat and mass transfer in a micro heat pipe, with the thin-film theory applied to the phase change at the liquid-vapor interface. The model described the liquid and vapor distributions, phase change rate, wall temperature, pressure drop, and heat transfer rate in a micro heat pipe under normal operation. The reference cross-sectional geometry of the micro heat pipe was triangular, but the model could be applied to various geometries by utilizing a hydraulic diameter. In previous studies, to predict the thermal performance of a micro heat pipe, the phase change interface has usually been modeled using the Young-Laplace capillary equation, and the phase-change ratio has been estimated using terms such as vapor pressure, liquid pressure, and capillary pressure. In this study, a thermal numerical model for a micro heat pipe was developed using an augmented Young-Laplace equation. Consequently, terms that have been commonly excluded in previous studies, including the disjoining pressure, were included. The validity of the model was verified using the experimental results for the wall temperature of the micro heat pipe, wherein the relative error bound was less than 1 °C and 6 °C for the operating and condenser temperatures, respectively. The influence of the disjoining pressure on the heat transfer was analyzed and discussed for various operating temperatures and tilt angles.

  19. Effect of N-isopropylacrylamide on the preparation and properties of microencapsulated phase change materials

    International Nuclear Information System (INIS)

    Li, Dan; Wang, Jianping; Wang, Yanan; Li, Wei; Wang, Xuechen; Shi, Haifeng; Zhang, Xingxiang

    2016-01-01

    NIPAm (N-isopropylacrylamide), a thermosensitive monomer, was introduced into a system for synthesis of MicroPCMs (microencapsulated phase change materials) through free radical emulsion polymerization with n-oct (n-octadecane) as the core and cross-linked PMMA (poly (methyl methacrylate)) as the shell. The effect of NIPAm on the formation mechanism, surface morphologies, crystallization properties, and thermal stabilities of the MicroPCMs were studied using FTIR (Fourier transform infrared spectroscopy), SEM (scanning electron microscopy), DSC (differential scanning calorimetry), and TGA (thermogravimetric analysis), respectively. The results indicate that addition of NIPAm causes a significant increase in the enthalpy of the heterogeneous nucleation (approximately 2–4 times more than without NIPAm). The diameter distribution of microcapsules becomes narrower (the PDI (polydispersity index) has a minimum of 0.073) and the encapsulation ratio and encapsulation efficiency increase. On the contrary, the microcapsules that have some irregular holes were obtained by adding NIPAm prepolymer. - Highlights: • We designed and synthesized a lower supercooling microPCMs with the PNIPAm as nucleating agent. • Optimum dosage of monomer PNIPAm is 1.8 g. • The mass loss of microcapsules is less than 0.6% after repeated thermal cycling. • The formation mechanism of the microcapsules is discussed.

  20. PEG encapsulated by porous triamide-linked polymers as support for solid-liquid phase change materials for energy storage

    Science.gov (United States)

    Andriamitantsoa, Radoelizo S.; Dong, Wenjun; Gao, Hongyi; Wang, Ge

    2017-03-01

    A series of porous triamide-linked polymers labeled as PTP were prepared by condensation of 1,3,5-benzenetricarbonyl trichloride with benzene-1,4-diamine (A), 4,4‧-methylenediamine (B) and 1,3,5-triazine-2,4,6-triamine (C) respectively. The as-synthesized polymers exhibit permanent porosity and high surface areas which guarantee to hold polyethylene glycol (PEG) molecules in their network for shape-stabilized phase change materials. They possess different effects on the phase change properties of the composite due to their different porosities. PTP-A have intrinsic well-ordered morphology, microstructure and good enough pores to keep the PCMs compared to PTP-B and PTP-C. PEG 2000 used as PCMs could be retained up to 85 wt% in PTP-A polymer materials and these composites were defined as form-stable composite PCMs without the leakage of melted PCM. The thermal study revealed a good storage effect of encapsulated polymer and the enthalpy of melting increases in the order PTP-C PCMs.

  1. Development of carboxymethyl cellulose-chitosan hybrid micro- and macroparticles for encapsulation of probiotic bacteria.

    Science.gov (United States)

    Singh, P; Medronho, B; Alves, L; da Silva, G J; Miguel, M G; Lindman, B

    2017-11-01

    Novel carboxymethyl cellulose-chitosan (CMC-Cht) hybrid micro- and macroparticles were successfully prepared in aqueous media either by drop-wise addition or via nozzle-spray methods. The systems were either physically or chemically crosslinked using genipin as the reticulation agent. The macroparticles (ca. 2mm) formed are found to be essentially of the core-shell type, while the microparticles (ca. 5μm) are apparently homogeneous. The crosslinked particles are robust, thermally resistant and less sensitive to pH changes. On the other hand, the physical systems are pH sensitive presenting a remarkable swelling at pH 7.4, while little swelling is observed at pH 2.4. Furthermore, model probiotic bacteria (Lactobacillus rhamnosus GG) was for the first time successfully encapsulated in the CMC-Cht based particles with acceptable viability count. Overall, the systems developed are highly promising for probiotic encapsulation and potential delivery in the intestinal tract with the purpose of modulating gut microbiota and improving human health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Ultra-thin film encapsulation processes for micro-electro-mechanical devices and systems

    International Nuclear Information System (INIS)

    Stoldt, Conrad R; Bright, Victor M

    2006-01-01

    A range of physical properties can be achieved in micro-electro-mechanical systems (MEMS) through their encapsulation with solid-state, ultra-thin coatings. This paper reviews the application of single source chemical vapour deposition and atomic layer deposition (ALD) in the growth of submicron films on polycrystalline silicon microstructures for the improvement of microscale reliability and performance. In particular, microstructure encapsulation with silicon carbide, tungsten, alumina and alumina-zinc oxide alloy ultra-thin films is highlighted, and the mechanical, electrical, tribological and chemical impact of these overlayers is detailed. The potential use of solid-state, ultra-thin coatings in commercial microsystems is explored using radio frequency MEMS as a case study for the ALD alloy alumina-zinc oxide thin film. (topical review)

  3. Encapsulation of thermal energy storage media

    Science.gov (United States)

    Dhau, Jaspreet; Goswami, Dharendra; Jotshi, Chand K.; Stefanakos, Elias K.

    2017-09-19

    In one embodiment, a phase change material is encapsulated by forming a phase change material pellet, coating the pellet with flexible material, heating the coated pellet to melt the phase change material, wherein the phase change materials expands and air within the pellet diffuses out through the flexible material, and cooling the coated pellet to solidify the phase change material.

  4. Biscuits fortified with micro-encapsulated shrimp oil: characteristics and storage stability.

    Science.gov (United States)

    Takeungwongtrakul, Sirima; Benjakul, Soottawat

    2017-04-01

    Characteristics and storage stability of biscuits fortified with micro-encapsulated shrimp oil (MSO) were determined. The addition of MSO increased spread ratio, whilst decreased the thickness of biscuit. The highest hardness of biscuit was obtained with addition of 9 or 12% MSO. Biscuit surface showed higher redness and yellowness when MSO was incorporated ( p  < 0.05). The addition of MSO up to 6% had no adverse effect on biscuit quality and acceptability. When biscuits added with 6% MSO were stored under different illumination conditions (light and dark), lipid oxidation in all samples increased throughout the storage of 12 days. Light accelerated lipid oxidation of biscuits as evidenced by the increases in both peroxide values and abundance of volatile compounds. No marked change in EPA, DHA and astaxanthin contents were noticeable in biscuit fortified with MSO after 12 days of storage. Therefore, the biscuit could be fortified with MSO up to 6% and must be stored in dark to assure its oxidative stability.

  5. Fabrication of Phase-Change Polymer Colloidal Photonic Crystals

    Directory of Open Access Journals (Sweden)

    Tianyi Zhao

    2014-01-01

    Full Text Available This paper presents the preparation of phase-change polymer colloidal photonic crystals (PCs by assembling hollow latex spheres encapsulated with dodecanol for the first time. The monodispersed hollow latex spheres were obtained by phase reversion of monodispersed core-shell latex spheres in the n-hexane, which dissolves the PS core and retains the PMMA/PAA shell. The as-prepared phase-change colloidal PCs show stable phase-change behavior. This fabrication of phase-change colloidal PCs would be significant for PC’s applications in functional coatings and various optic devices.

  6. Using Encapsulated Phase Change Material in Thermal Energy Storage for Baseload Concentrating Solar Power (EPCM-TES)

    Energy Technology Data Exchange (ETDEWEB)

    Mathur, Anoop [Terrafore Technologies LLC, Minneapolis, MN (United States)

    2013-12-15

    Terrafore successfully demonstrated and optimized the manufacturing of capsules containing phase-changing inorganic salts. The phase change was used to store thermal energy collected from a concentrating solar-power plant as latent heat. This latent heat, in addition to sensible heat increased the energy density (energy stored per unit weight of salt) by over 50%, thus requiring 40% less salt and over 60% less capsule container. Therefore, the cost to store high-temperature thermal energy collected in a concentrating solar power plant will be reduced by almost 40% or more, as compared to conventional two-tank, sensible-only storage systems. The cost for thermal energy storage (TES) system is expected to achieve the Sun Shot goal of $15 per kWh(t). Costs associated with poor heat-transfer in phase change materials (PCM) were also eliminated. Although thermal energy storage that relies on the latent heat of fusion of PCM improves energy density by as much as 50%, upon energy discharge the salt freezes and builds on the heat transfer surfaces. Since these salts have low thermal conductivity, large heat-transfer areas, or larger conventional heat-exchangers are needed, which increases costs. By encapsulating PCM in small capsules we have increased the heat transfer area per unit volume of salt and brought the heat transfer fluid in direct contact with the capsules. These two improvements have increased the heat transfer coefficient and boosted heat transfer. The program was successful in overcoming the phenomenon of melt expansion in the capsules, which requires the creation of open volume in the capsules or shell to allow for expansion of the molten salt on melting and is heated above its melting point to 550°C. Under contract with the Department of Energy, Terrafore Inc. and Southwest Research Institute, developed innovative method(s) to economically create the open volume or void in the capsule. One method consists of using a sacrificial polymer coating as the

  7. Spatiotemporal control over molecular delivery and cellular encapsulation from electropolymerized micro- and nanopatterned surfaces.

    Science.gov (United States)

    Stern, Eric; Jay, Steven M; Demento, Stacey L; Murelli, Ryan P; Reed, Mark A; Malinski, Tadeusz; Spiegel, David A; Mooney, David J; Fahmy, Tarek M

    2009-07-13

    Bioactive, patterned micro- and nanoscale surfaces that can be spatially engineered for three-dimensional ligand presentation and sustained release of signaling molecules represent a critical advance for the development of next-generation diagnostic and therapeutic devices. Lithography is ideally suited to patterning such surfaces due to its precise, easily scalable, high-throughput nature; however, to date polymers patterned by these techniques have not demonstrated the capacity for sustained release of bioactive agents. We demonstrate here a class of lithographically-defined, electropolymerized polymers with monodisperse micro- and nanopatterned features capable of sustained release of bioactive drugs and proteins. We show that precise control can be achieved over the loading capacity and release rates of encapsulated agents and illustrate this aspect using a fabricated surface releasing a model antigen (ovalbumin) and a cytokine (interleukin-2) for induction of a specific immune response. We further demonstrate the ability of this technique to enable three-dimensional control over cellular encapsulation. The efficacy of the described approach is buttressed by its simplicity, versatility, and reproducibility, rendering it ideally suited for biomaterials engineering.

  8. Influence of Microencapsulated Phase Change Material (PCM) Addition on (Micro) Mechanical Properties of Cement Paste

    Science.gov (United States)

    Schlangen, Erik

    2017-01-01

    Excessive cracking can be a serious durability problem for reinforced concrete structures. In recent years, addition of microencapsulated phase change materials (PCMs) to concrete has been proposed as a possible solution to crack formation related to temperature gradients. However, the addition of PCM microcapsules to cementitious materials can have some drawbacks, mainly related to strength reduction. In this work, a range of experimental techniques has been used to characterize the microcapsules and their effect on properties of composite cement pastes. On the capsule level, it was shown that they are spherical, enabling good distribution in the material during the mixing process. Force needed to break the microcapsules was shown to depend on the capsule diameter and the temperature, i.e., whether it is below or above the phase change temperature. On the cement paste level, a marked drop of compressive strength with increasing PCM inclusion level was observed. The indentation modulus has also shown to decrease, probably due to the capsules themselves, and to a lesser extent due to changes in porosity caused by their inclusion. Finally, a novel micro-cube splitting technique was used to characterize the tensile strength of the material on the micro-meter length scale. It was shown that the strength decreases with increasing PCM inclusion percentage, but this is accompanied by a decrease in measurement variability. This study will contribute to future developments of cementitious composites incorporating phase change materials for a variety of applications. PMID:28773225

  9. Phase change material thermal storage for biofuel preheating in micro trigeneration application: A numerical study

    International Nuclear Information System (INIS)

    Wu, Dawei; Chen, Junlong; Roskilly, Anthony P.

    2015-01-01

    Highlights: • Engine exhaust heat driven phase change material thermal storage. • Fuel preheating for direct use of straight plant oil on diesel engine. • CFD aided design of the phase change material thermal storage. • Melting and solidification model considering natural convection. - Abstract: A biofuel micro trigeneration prototype has been developed to utilise local energy crop oils as fuel in rural areas and developing countries. Straight plant oils (SPOs) only leave behind very little carbon footprint during its simply production process compared to commercial biodiesels in refineries, but the high viscosity of SPOs causes difficulties at engine cold starts, which further results in poor fuel atomisation, compromised engine performance and fast engine deterioration. In this study, a phase change material (PCM) thermal storage is designed to recover and store engine exhaust heat to preheat SPOs at cold starts. High temperature commercial paraffin is selected as the PCM to meet the optimal preheating temperature range of 70–90 °C, in terms of the SPO property study. A numerical model of the PCM thermal storage is developed and validated by references. The PCM melting and solidification processes with the consideration of natural convection in liquid zone are simulated in ANSYS-FLUENT to verify the feasibility of the PCM thermal storage as a part of the self-contained biofuel micro trigeneration prototype

  10. High throughput single-cell and multiple-cell micro-encapsulation.

    Science.gov (United States)

    Lagus, Todd P; Edd, Jon F

    2012-06-15

    signals from bioreactor products. Drops also provide the ability to re-merge drops into larger aqueous samples or with other drops for intercellular signaling studies. The reduction in dilution implies stronger detection signals for higher accuracy measurements as well as the ability to reduce potentially costly sample and reagent volumes. Encapsulation of cells in drops has been utilized to improve detection of protein expression, antibodies, enzymes, and metabolic activity for high throughput screening, and could be used to improve high throughput cytometry. Additional studies present applications in bio-electrospraying of cell containing drops for mass spectrometry and targeted surface cell coatings. Some applications, however, have been limited by the lack of ability to control the number of cells encapsulated in drops. Here we present a method of ordered encapsulation which increases the demonstrated encapsulation efficiencies for one and two cells and may be extrapolated for encapsulation of a larger number of cells. To achieve monodisperse drop generation, microfluidic "flow focusing" enables the creation of controllable-size drops of one fluid (an aqueous cell mixture) within another (a continuous oil phase) by using a nozzle at which the streams converge. For a given nozzle geometry, the drop generation frequency f and drop size can be altered by adjusting oil and aqueous flow rates Q(oil) and Q(aq). As the flow rates increase, the flows may transition from drop generation to unstable jetting of aqueous fluid from the nozzle. When the aqueous solution contains suspended particles, particles become encapsulated and isolated from one another at the nozzle. For drop generation using a randomly distributed aqueous cell suspension, the average fraction of drops D(k) containing k cells is dictated by Poisson statistics, where D(k) = λ(k) exp(-λ)/(k!) and λ is the average number of cells per drop. The fraction of cells which end up in the "correctly" encapsulated

  11. High-efficiency single cell encapsulation and size selective capture of cells in picoliter droplets based on hydrodynamic micro-vortices.

    Science.gov (United States)

    Kamalakshakurup, Gopakumar; Lee, Abraham P

    2017-12-05

    Single cell analysis has emerged as a paradigm shift in cell biology to understand the heterogeneity of individual cells in a clone for pathological interrogation. Microfluidic droplet technology is a compelling platform to perform single cell analysis by encapsulating single cells inside picoliter-nanoliter (pL-nL) volume droplets. However, one of the primary challenges for droplet based single cell assays is single cell encapsulation in droplets, currently achieved either randomly, dictated by Poisson statistics, or by hydrodynamic techniques. In this paper, we present an interfacial hydrodynamic technique which initially traps the cells in micro-vortices, and later releases them one-to-one into the droplets, controlled by the width of the outer streamline that separates the vortex from the flow through the streaming passage adjacent to the aqueous-oil interface (d gap ). One-to-one encapsulation is achieved at a d gap equal to the radius of the cell, whereas complete trapping of the cells is realized at a d gap smaller than the radius of the cell. The unique feature of this technique is that it can perform 1. high efficiency single cell encapsulations and 2. size-selective capturing of cells, at low cell loading densities. Here we demonstrate these two capabilities with a 50% single cell encapsulation efficiency and size selective separation of platelets, RBCs and WBCs from a 10× diluted blood sample (WBC capture efficiency at 70%). The results suggest a passive, hydrodynamic micro-vortex based technique capable of performing high-efficiency single cell encapsulation for cell based assays.

  12. Micro-encapsulation of refined olive oil: influence of capsule wall components and the addition of antioxidant additives on the shelf life and chemical alteration.

    Science.gov (United States)

    Calvo, Patricia; Castaño, Angel Luís; Lozano, Mercedes; González-Gómez, David

    2012-10-01

    Although refined olive oils (ROOs) exhibit lower quality and less stability toward thermal stress than extra-virgin olive oils, these types of oil are gaining importance in the food industry. The inclusion of ROOs in processed food may alter the oxidative stability of the manufactured products, and therefore having technological alternatives to increase oil stability will be an important achievement. For this reason the main goal of this study was to assess the influence of the micro-encapsulation process on the ROO chemical composition and its oxidative stability. Factors such as microcapsule wall constituents and the addition of the antioxidant butyl hydroxytoluene were investigated in order to establish the most appropriate conditions to ensure no alteration of the refined olive oil chemical characteristics. The optimised methodology exhibited high encapsulation yield (>98%), with micro-encapsulation efficiency ranging from 35 to 69% according to the nature of the wall components. The encapsulation process slightly altered the chemical composition of the olive oil and protected the oxidative stability for at least 11 months when protein components were included as wall components. It was concluded that the presence of proteins constituents in the microcapsule wall material extended the shelf life of the micro-encapsulated olive oil regardless the use of antioxidant additives. Copyright © 2012 Society of Chemical Industry.

  13. The Influence of Phase Change Materials on the Properties of Self-Compacting Concrete

    Directory of Open Access Journals (Sweden)

    Miguel Ángel Álvarez

    2013-08-01

    Full Text Available The aim of this paper is to research new thermally-efficient concrete walls, analyzing the mechanical behavior of a self-compacting concrete to manufacture an uncoated solid structural panel, with the incorporation of a micro-encapsulated phase change material as additive. Different dosages are tested and mechanical properties of the product obtained from the molding of concrete specimens are evaluated, testing mechanical compressive strength, slump flow, and density. The results reveal the optimum percentage of additive in the mixture that enables compliance with the technical specifications required by the product to be manufactured. A test is also performed for measuring the thermal conductivity for the optimal sample obtained and it evidences the reduction thereof.

  14. The Influence of Phase Change Materials on the Properties of Self-Compacting Concrete.

    Science.gov (United States)

    Fenollera, María; Míguez, José Luis; Goicoechea, Itziar; Lorenzo, Jaime; Ángel Álvarez, Miguel

    2013-08-15

    The aim of this paper is to research new thermally-efficient concrete walls, analyzing the mechanical behavior of a self-compacting concrete to manufacture an uncoated solid structural panel, with the incorporation of a micro-encapsulated phase change material as additive. Different dosages are tested and mechanical properties of the product obtained from the molding of concrete specimens are evaluated, testing mechanical compressive strength, slump flow, and density. The results reveal the optimum percentage of additive in the mixture that enables compliance with the technical specifications required by the product to be manufactured. A test is also performed for measuring the thermal conductivity for the optimal sample obtained and it evidences the reduction thereof.

  15. Encapsulation of a bioactive steroid in a polymer matrix (micro-encapsulation of DI-31 in chitosan by spray drying for various purposes)

    OpenAIRE

    Collado , A ,; Hernández , G.; Morejón , V.; Coll , F.; Peniche , C.

    2017-01-01

    International audience; DI-31 is a synthetic analog of brasinosteroids (ABR), the active ingredient (PA) of Biobras, a plant growth stimulant, which has shown positive impact on Cuban agriculture, especially in rice cultivation. However, it has the drawback of having low solubility in water and being rapidly metabolized by the plants. An alternative to overcome these limitations is its micro-encapsulation in a polymer matrix. Chitosan (CHI) has been investigated as an excellent candidate for ...

  16. Encapsulation by Janus spheroids

    OpenAIRE

    Li, Wei; Liu, Ya; Brett, Genevieve; Gunton, James D.

    2011-01-01

    The micro/nano encapsulation technology has acquired considerable attention in the fields of drug delivery, biomaterial engineering, and materials science. Based on recent advances in chemical particle synthesis, we propose a primitive model of an encapsulation system produced by the self-assembly of Janus oblate spheroids, particles with oblate spheroidal bodies and two hemi-surfaces coded with dissimilar chemical properties. Using Monte Carlo simulation, we investigate the encapsulation sys...

  17. Solid-Phase Immunoassay of Polystyrene-Encapsulated Semiconductor Coreshells for Cardiac Marker Detection

    Directory of Open Access Journals (Sweden)

    Sanghee Kim

    2012-01-01

    Full Text Available A solid-phase immunoassay of polystyrene-encapsulated semiconductor nanoparticles was demonstrated for cardiac troponin I (cTnI detection. CdSe/ZnS coreshells were encapsulated with a carboxyl-functionalized polystyrene nanoparticle to capture the target antibody through a covalent bonding and to eliminate the photoblinking and toxicity of semiconductor luminescent immunosensor. The polystyrene-encapsulated CdSe/ZnS fluorophores on surface-modified glass chip identified cTnI antigens at the level of ~ng/mL. It was an initial demonstration of diagnostic chip for monitoring a cardiovascular disease.

  18. Feasibility of using microencapsulated phase change materials as filler for improving low temperature performance of rubber sealing materials.

    Science.gov (United States)

    Tiwari, Avinash; Shubin, Sergey N; Alcock, Ben; Freidin, Alexander B; Thorkildsen, Brede; Echtermeyer, Andreas T

    2017-11-01

    The feasibility of a novel composite rubber sealing material to improve sealing under transient cooling (in a so-called blowdown scenario) is investigated here. A composite of hydrogenated nitrile butadiene rubber (HNBR) filled with Micro Encapsulated Phase Change Materials (MEPCM) is described. The fillers contain phase change materials that release heat during the phase transformation from liquid to solid while cooling. This exotherm locally heats the rubber and may improve the function of the seal during a blowdown event. A representative HNBR-MEPCM composite was made and the critical thermal and mechanical properties were obtained by simulating the temperature distribution during a blowdown event. Simulations predict that the MEPCM composites can delay the temperature decrease in a region of the seal during the transient blowdown. A sensitivity analysis of material properties is also presented which highlights possible avenues of improvement of the MEPCMs for sealing applications.

  19. Microencapsulated n-octadecane with different methylmethacrylate-based copolymer shells as phase change materials for thermal energy storage

    International Nuclear Information System (INIS)

    Qiu, Xiaolin; Li, Wei; Song, Guolin; Chu, Xiaodong; Tang, Guoyi

    2012-01-01

    Microcapsules containing n-octadecane with different methylmethacrylate (MMA (methyl methacrylate))-based copolymer shells were fabricated by a suspension-like polymerization. Butyl acrylate (BA), butyl methacrylate (BMA), lauryl methacrylate (LMA) and stearyl methacrylate (SMA) were employed as monomers to copolymerize with MMA. Pentaerythritol tetraacrylate (PETRA) was employed as a crosslinking agent. The (microencapsulted phase change materials) MicroPCMs were characterized using Fourier transformed infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). Thermal properties and thermal resistances of MicroPCMs were investigated by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA), respectively. Phase change enthalpies and PCM contents of MicroPCMs increased with the length decreasing of the side chain of the monomers. The n-octadecane content of as much as 77.3% can be obtained in the crosslinked MicroPCMs with P(MMA-co-BMA) as shell, and accompanied by the highest melting enthalpy (173.7 J/g) and crystallization enthalpy (174.4 J/g). Heat capacities of crosslinked MicroPCMs are higher than those of their uncrosslinked counterparts. The crosslinked MicroPCMs exhibit significantly greater thermal stabilities compared with their uncrosslinked counterparts and the n-ontadecane bulk. The crosslinked MicroPCMs with P(MMA-co-SMA) displays the highest thermal resistance temperature up to 255 °C. Therefore, MicroPCMs with MMA-based copolymer as shells, especially crosslinked copolymer shells, show excellent potentials for thermal energy storage. -- Highlights: ► n-Octadecane was encapsulated with methylmethacrylate(MMA)-based copolymer shells. ► n-Octadecane content of Microcapsules increased with length decreasing of side chain of monomers. ► Microcapsule with P(MMA-co-butyl methacrylate) has the highest latent heat. ► Microcapsule with P(MMA-co-stearyl methacrylate) has the greatest thermal stability.

  20. A comprehensive overview on the micro- and nano-technological encapsulation advances for enhancing the chemical stability and bioavailability of carotenoids.

    Science.gov (United States)

    Soukoulis, Christos; Bohn, Torsten

    2018-01-02

    Carotenoids are lipophilic secondary plant compounds, and their consumption within fruits and vegetables has been positively correlated with a decreased risk of developing several chronic diseases. However, their bioavailability is often compromised due to incomplete release from the food matrix, poor solubility and potential degradation during digestion. In addition, carotenoids in food products are prone to oxidative degradation, not only lowering the nutritional value of the product but also triggering other quality deteriorative changes, such as formation of lipid pro-oxidants (free radicals), development of discolorations or off-flavor defects. Encapsulation refers to a physicochemical process, aiming to entrap an active substance in structurally engineered micro- or nano-systems, in order to develop an effective thermodynamical and physical barrier against deteriorative environmental conditions, such as water vapor, oxygen, light, enzymes or pH. In this context, encapsulation of carotenoids has shown to be a very effective strategy to improve their chemical stability under common processing conditions including storage. In addition, encapsulation may also enhance bioavailability (via influencing bioaccessibility and absorption) of lipophilic bioactives, via modulating their release kinetics from the carrier system, solubility and interfacial properties. In the present paper, it is aimed to present the state of the art of carotenoid microencapsulation in order to enhance storability and bioavailability alike.

  1. Encapsulated, High-Performance, Stretchable Array of Stacked Planar Micro-Supercapacitors as Waterproof Wearable Energy Storage Devices.

    Science.gov (United States)

    Kim, Hyoungjun; Yoon, Jangyeol; Lee, Geumbee; Paik, Seung-Ho; Choi, Gukgwon; Kim, Daeil; Kim, Beop-Min; Zi, Goangseup; Ha, Jeong Sook

    2016-06-29

    We report the fabrication of an encapsulated, high-performance, stretchable array of stacked planar micro-supercapacitors (MSCs) as a wearable energy storage device for waterproof applications. A pair of planar all-solid-state MSCs with spray-coated multiwalled carbon nanotube electrodes and a drop-cast UV-patternable ion-gel electrolyte was fabricated on a polyethylene terephthalate film using serial connection to increase the operation voltage of the MSC. Additionally, multiple MSCs could be vertically stacked with parallel connections to increase both the total capacitance and the areal capacitance owing to the use of a solid-state patterned electrolyte. The overall device of five parallel-connected stacked MSCs, a microlight-emitting diode (μ-LED), and a switch was encapsulated in thin Ecoflex film so that the capacitance remained at 82% of its initial value even after 4 d in water; the μ-LED was lit without noticeable decrease in brightness under deformation including bending and stretching. Furthermore, an Ecoflex encapsulated oximeter wound around a finger was operated using the stored energy of the MSC array attached to the hand (even in water) to give information on arterial pulse rate and oxygen saturation in the blood. This study suggests potential applications of our encapsulated MSC array in wearable energy storage devices especially in water.

  2. Encapsulation plant preliminary design, phase 2. Repository connected facility

    International Nuclear Information System (INIS)

    Kukkola, T.

    2006-12-01

    The disposal facility of the spent nuclear fuel will be located in Olkiluoto. The encapsulation plant is a part of the disposal facility. In this report, an independent encapsulation plant is located above the underground repository. In the encapsulation plant, the spent fuel is received and treated for disposal. In the fuel handling cell, the spent fuel assemblies are unloaded from the spent fuel transport casks and loaded into the disposal canisters. The gas atmosphere of the disposal canister is changed, the bolted inner canister lid is closed, and the electron beam welding method is used to close the lid of the outer copper canister. The disposal canisters are cleaned and transferred into the buffer store after the machining and inspection of the copper lid welds. From the buffer store, the disposal canisters are transferred into the repository spaces by help of the canister lift. All needed stages of operation are to be performed safely without any activity releases or remarkable personnel doses. The bentonite block interim storage is associated with the encapsulation plant. The bentonite blocks are made from bentonite powder. The bentonite blocks are used as buffer material around the disposal canister in the deposition hole. The average production rate of the encapsulation plant is 40 canisters per year. The nominal maximum production capacity is 100 canisters per year in one shift operation. (orig.)

  3. Nanoencapsulation of phase change materials for advanced thermal energy storage systems

    Science.gov (United States)

    Shchukina, E. M.; Graham, M.; Zheng, Z.

    2018-01-01

    Phase change materials (PCMs) allow the storage of large amounts of latent heat during phase transition. They have the potential to both increase the efficiency of renewable energies such as solar power through storage of excess energy, which can be used at times of peak demand; and to reduce overall energy demand through passive thermal regulation. 198.3 million tons of oil equivalent were used in the EU in 2013 for heating. However, bulk PCMs are not suitable for use without prior encapsulation. Encapsulation in a shell material provides benefits such as protection of the PCM from the external environment and increased specific surface area to improve heat transfer. This review highlights techniques for the encapsulation of both organic and inorganic PCMs, paying particular attention to nanoencapsulation (capsules with sizes energy release/uptake. PMID:29658558

  4. Nanoencapsulation of phase change materials for advanced thermal energy storage systems.

    Science.gov (United States)

    Shchukina, E M; Graham, M; Zheng, Z; Shchukin, D G

    2018-04-16

    Phase change materials (PCMs) allow the storage of large amounts of latent heat during phase transition. They have the potential to both increase the efficiency of renewable energies such as solar power through storage of excess energy, which can be used at times of peak demand; and to reduce overall energy demand through passive thermal regulation. 198.3 million tons of oil equivalent were used in the EU in 2013 for heating. However, bulk PCMs are not suitable for use without prior encapsulation. Encapsulation in a shell material provides benefits such as protection of the PCM from the external environment and increased specific surface area to improve heat transfer. This review highlights techniques for the encapsulation of both organic and inorganic PCMs, paying particular attention to nanoencapsulation (capsules with sizes energy release/uptake.

  5. Thermal Energy Storage with Phase Change Material

    Directory of Open Access Journals (Sweden)

    Lavinia Gabriela SOCACIU

    2012-08-01

    Full Text Available Thermal energy storage (TES systems provide several alternatives for efficient energy use and conservation. Phase change materials (PCMs for TES are materials supplying thermal regulation at particular phase change temperatures by absorbing and emitting the heat of the medium. TES in general and PCMs in particular, have been a main topic in research for the last 30 years, but although the information is quantitatively enormous, it is also spread widely in the literature, and difficult to find. PCMs absorb energy during the heating process as phase change takes place and release energy to the environment in the phase change range during a reverse cooling process. PCMs possesses the ability of latent thermal energy change their state with a certain temperature. PCMs for TES are generally solid-liquid phase change materials and therefore they need encapsulation. TES systems using PCMs as a storage medium offers advantages such as high TES capacity, small unit size and isothermal behaviour during charging and discharging when compared to the sensible TES.

  6. Electrospun Phospholipid Fibers as Micro-Encapsulation and Antioxidant Matrices.

    Science.gov (United States)

    Shekarforoush, Elhamalsadat; Mendes, Ana C; Baj, Vanessa; Beeren, Sophie R; Chronakis, Ioannis S

    2017-10-17

    Electrospun phospholipid (asolectin) microfibers were investigated as antioxidants and encapsulation matrices for curcumin and vanillin. These phospholipid microfibers exhibited antioxidant properties which increased after the encapsulation of both curcumin and vanillin. The total antioxidant capacity (TAC) and the total phenolic content (TPC) of curcumin/phospholipid and vanillin/phospholipid microfibers remained stable over time at different temperatures (refrigerated, ambient) and pressures (vacuum, ambient). ¹H-NMR confirmed the chemical stability of both encapsulated curcumin and vanillin within phospholipid fibers. Release studies in aqueous media revealed that the phenolic bioactives were released mainly due to swelling of the phospholipid fiber matrix over time. The above studies confirm the efficacy of electrospun phospholipid microfibers as encapsulation and antioxidant systems.

  7. Electrospun Phospholipid Fibers as Micro-Encapsulation and Antioxidant Matrices

    Directory of Open Access Journals (Sweden)

    Elhamalsadat Shekarforoush

    2017-10-01

    Full Text Available Electrospun phospholipid (asolectin microfibers were investigated as antioxidants and encapsulation matrices for curcumin and vanillin. These phospholipid microfibers exhibited antioxidant properties which increased after the encapsulation of both curcumin and vanillin. The total antioxidant capacity (TAC and the total phenolic content (TPC of curcumin/phospholipid and vanillin/phospholipid microfibers remained stable over time at different temperatures (refrigerated, ambient and pressures (vacuum, ambient. 1H-NMR confirmed the chemical stability of both encapsulated curcumin and vanillin within phospholipid fibers. Release studies in aqueous media revealed that the phenolic bioactives were released mainly due to swelling of the phospholipid fiber matrix over time. The above studies confirm the efficacy of electrospun phospholipid microfibers as encapsulation and antioxidant systems.

  8. Preparation of Paraffin@Poly(styrene-co-acrylic acid) Phase Change Nanocapsules via Combined Miniemulsion/Emulsion Polymerization.

    Science.gov (United States)

    Zhang, Feng; Liu, Tian-Yu; Hou, Gui-Hua; Guan, Rong-Feng; Zhang, Jun-Hao

    2018-06-01

    The fast development of solid-liquid phase change materials calls for nanomaterials with large specific surface area for rapid heat transfer and encapsulation of phase change materials to prevent potential leakage. Here we report a combined miniemulsion/emulsion polymerization method to prepare poly(styrene-co-acrylic acid)-encapsulated paraffin (paraffin@P(St-co-AA)) nanocapsules. The method could suppress the shortcomings of common miniemulsion polymerization (such as evaporation of monomer and decomposition of initiator during ultrasonication). The paraffin@P(St-co-AA) nanocapsules are uniform in size and the polymer shell can be controlled by the weight ratio of St to paraffin. The phase change behavior of the nanocapsules is similar to that of pure paraffin. We believe our method can also be utilized to synthesize other core-shell phase change materials.

  9. Electrospun Phospholipid Fibers as Micro-Encapsulation and Antioxidant Matrices

    DEFF Research Database (Denmark)

    Shekarforoush, Elhamalsadat; Mendes, Ana Carina Loureiro; Baj, Vanessa

    2017-01-01

    Electrospun phospholipid (asolectin) microfibers were investigated as antioxidants and encapsulation matrices for curcumin and vanillin. These phospholipid microfibers exhibited antioxidant properties which increased after the encapsulation of both curcumin and vanillin. The total antioxidant...... capacity (TAC) and the total phenolic content (TPC) of curcumin/phospholipid and vanillin/phospholipid microfibers remained stable over time at different temperatures (refrigerated, ambient) and pressures (vacuum, ambient). ¹H-NMR confirmed the chemical stability of both encapsulated curcumin and vanillin...

  10. High Throughput Single-cell and Multiple-cell Micro-encapsulation

    OpenAIRE

    Lagus, Todd P.; Edd, Jon F.

    2012-01-01

    Microfluidic encapsulation methods have been previously utilized to capture cells in picoliter-scale aqueous, monodisperse drops, providing confinement from a bulk fluid environment with applications in high throughput screening, cytometry, and mass spectrometry. We describe a method to not only encapsulate single cells, but to repeatedly capture a set number of cells (here we demonstrate one- and two-cell encapsulation) to study both isolation and the interactions between cells in groups of ...

  11. Facile and low energy consumption synthesis of microencapsulated phase change materials with hybrid shell for thermal energy storage

    Science.gov (United States)

    Wang, Hao; Zhao, Liang; Chen, Lijie; Song, Guolin; Tang, Guoyi

    2017-12-01

    We designed a photocurable pickering emulsion polymerization to create microencapsulated phase change materials (MicroPCM) with polymer-silica hybrid shell. The emulsion was stabilized by modified SiO2 particles without any surfactant or dispersant. The polymerization process can be carried out at ambient temperature only for 5 min ultraviolet radiation, which is a low-energy procedure. The resultant capsules were shown a good core-shell structure and uniform in size. The surface of the microcapsules was covered by SiO2 particles. According to the DSC and TGA examinations, the microcapsules has good thermal energy storage-release performance, enhanced thermal reliability and thermal stability. When ratio of MMA/n-octadecane was 1.5/1.5. The encapsulation efficiency of the microcapsules reached 62.55%, accompanied with 122.31 J/g melting enthalpy. The work is virtually applicable to the construction of a wide variety of organic-inorganic hybrid shell MicroPCM. Furthermore, with the application of this method, exciting opportunities may arise for realizing rapid, continuous and large-scale industrial preparation of MicroPCM.

  12. Assessment of Composite Delamination Self-Healing Via Micro-Encapsulation

    Science.gov (United States)

    O'Brien, T. Kevin; White, Scott R.

    2008-01-01

    Composite skin/stringer flange debond specimens manufactured from composite prepreg containing interleaf layers with a polymer based healing agent encapsulated in thin walled spheres were tested. As a crack develops and grows in the base polymer, the spheres fracture releasing the healing agent. The agent reacts with catalyst and polymerizes healing the crack. In addition, through-thickness reinforcement, in the form of pultruded carbon z-pins were included near the flange tips to improve the resistance to debonding. Specimens were manufactured with 14 plies in the skin and 10 plies in the stiffener flange. Three-point bend tests were performed to measure the skin/stiffener debonding strength and the recovered strength after healing. The first three tests performed indicated no healing following unloading and reloading. Micrographs showed that delaminations could migrate to the top of the interleaf layer due to the asymmetric loading, and hence, bypass most of the embedded capsules. For two subsequent tests, specimens were clamped in reverse bending before reloading. In one case, healing was observed as evidenced by healing agent that leaked to the specimen edge forming a visible "scar". The residual strength measured upon reloading was 96% of the original strength indicating healing had occurred. Hence, self-healing is possible in fiber reinforced composite material under controlled conditions, i.e., given enough time and contact with pressure on the crack surfaces. The micro-encapsulation technique may prove more robust when capsule sizes can be produced that are small enough to be embedded in the matrix resin without the need for using an interleaf layer. However, in either configuration, the amount of healing that can occur may be limited to the volume of healing agent available relative to the crack volume that must be filled.

  13. A review on phase change energy storage: materials and applications

    International Nuclear Information System (INIS)

    Farid, Mohammed M.; Khudhair, Amar M.; Razack, Siddique Ali K.; Al-Hallaj, Said

    2004-01-01

    Latent heat storage is one of the most efficient ways of storing thermal energy. Unlike the sensible heat storage method, the latent heat storage method provides much higher storage density, with a smaller temperature difference between storing and releasing heat. This paper reviews previous work on latent heat storage and provides an insight to recent efforts to develop new classes of phase change materials (PCMs) for use in energy storage. Three aspects have been the focus of this review: PCM materials, encapsulation and applications. There are large numbers of phase change materials that melt and solidify at a wide range of temperatures, making them attractive in a number of applications. Paraffin waxes are cheap and have moderate thermal energy storage density but low thermal conductivity and, hence, require large surface area. Hydrated salts have larger energy storage density and higher thermal conductivity but experience supercooling and phase segregation, and hence, their application requires the use of some nucleating and thickening agents. The main advantages of PCM encapsulation are providing large heat transfer area, reduction of the PCMs reactivity towards the outside environment and controlling the changes in volume of the storage materials as phase change occurs. The different applications in which the phase change method of heat storage can be applied are also reviewed in this paper. The problems associated with the application of PCMs with regards to the material and the methods used to contain them are also discussed

  14. Formulation, stabilisation and encapsulation of bacteriophage for phage therapy.

    Science.gov (United States)

    Malik, Danish J; Sokolov, Ilya J; Vinner, Gurinder K; Mancuso, Francesco; Cinquerrui, Salvatore; Vladisavljevic, Goran T; Clokie, Martha R J; Garton, Natalie J; Stapley, Andrew G F; Kirpichnikova, Anna

    2017-11-01

    for formulation and encapsulation is shelf life and storage of phage to ensure reproducible dosages. Other drivers include formulation of phage for encapsulation in micro- and nanoparticles for effective delivery, encapsulation in stimuli responsive systems for triggered controlled or sustained release at the targeted site of infection. Encapsulation of phage (e.g. in liposomes) may also be used to increase the circulation time of phage for treating systemic infections, for prophylactic treatment or to treat intracellular infections. We then proceed to document approaches used in the published literature on the formulation and stabilisation of phage for storage and encapsulation of bacteriophage in micro- and nanostructured materials using freeze drying (lyophilization), spray drying, in emulsions e.g. ointments, polymeric microparticles, nanoparticles and liposomes. As phage therapy moves forward towards Phase III clinical trials, the review concludes by looking at promising new approaches for micro- and nanoencapsulation of phages and how these may address gaps in the field. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Encapsulation process for diffraction gratings.

    Science.gov (United States)

    Ratzsch, Stephan; Kley, Ernst-Bernhard; Tünnermann, Andreas; Szeghalmi, Adriana

    2015-07-13

    Encapsulation of grating structures facilitates an improvement of the optical functionality and/or adds mechanical stability to the fragile structure. Here, we introduce novel encapsulation process of nanoscale patterns based on atomic layer deposition and micro structuring. The overall size of the encapsulated structured surface area is only restricted by the size of the available microstructuring and coating devices; thus, overcoming inherent limitations of existing bonding processes concerning cleanliness, roughness, and curvature of the components. Finally, the process is demonstrated for a transmission grating. The encapsulated grating has 97.5% transmission efficiency in the -1st diffraction order for TM-polarized light, and is being limited by the experimental grating parameters as confirmed by rigorous coupled wave analysis.

  16. Micro-fabricated Liquid Encapsulated Energy Harvester with Polymer Barrier Layer as Liquid Electret Interface

    International Nuclear Information System (INIS)

    Bu, L; Xu, H Y; Xu, B J; Song, L

    2014-01-01

    This paper addresses the electret discharge issue for liquid based electret energy harvesters. An interface structure of PDMS/PTFE polymer barrier layer between liquid and electrets is introduced, achieving 75% charge retain rate over 100h, compared with 0% without the proposed layer over 100h. Further, the PDMS/PTFE layer is introduced into liquid encapsulated energy harvester (LEEH) and is compatible with micro-fabrication process. The retain rate of device voltage is about 47%∼65% over 100h. At 100h after corona charging, the device generates maximally 3.7V, 0.55μW @1Hz rotation

  17. Elastic silicone encapsulation of n-hexadecyl bromide by microfluidic approach as novel microencapsulated phase change materials

    International Nuclear Information System (INIS)

    Fu, Zhenjin; Su, Lin; Li, Jing; Yang, Ruizhuang; Zhang, Zhanwen; Liu, Meifang; Li, Jie; Li, Bo

    2014-01-01

    Highlights: • n-Hexadecyl bromide was encapsuled in elastic silicone shell. • The surfaces of microcapsules were smooth and the cross sections were compact. • Latent heat of microcapsules was 76.35 J g −1 . • The microencapsulation ratio was 49 wt.%. • The microcapsules had good thermal stability. - Abstract: The elastic silicone/n-hexadecyl bromide microcapsules were prepared as novel microencapsulated phase change materials by microfluidic approach with the co-flowing channels, where the double oil1-in-oil2-in-water (O1/O2/W) droplets with a core–shell geometry were fabricated. The thermal characterizations of the microcapsules were investigated using differential scanning calorimetry (DSC) and thermogravimetry analysis (TGA). The DSC results showed that the microcapsules had good energy storage capacity with melting and freezing enthalpies 76.35 J g −1 and 78.67 J g −1 , respectively. The TGA investigation showed that the microcapsules had good thermal stability. The surfaces of microcapsules were smooth and the cross sections were compact from the results of optical microscope and scanning electron microscopy (SEM). Optical microscope showed that the silicone shell can provide expansion place due to its elastic property. Therefore, the silicone/n-hexadecyl bromide microcapsules showed good potential as thermal regulating textile and thermal insulation materials

  18. Investigation on rare earth magnets recycling by organophosphoric extractant encapsulated polymeric beads for separation of dysprosium

    International Nuclear Information System (INIS)

    Yadav, Kartikey K.; Singh, D.K.; Kain, V.

    2017-01-01

    Rare earth elements (REEs) are a basic requirement of the electronics and new industries including green technology. In the present work an organophosphoric extractant encapsulating polyethersulfone (PES) beads has been developed and employed for dysprosium (Dy) separation from aqueous stream. Polyethersulfonic beads encapsulating PC88A were prepared by phase inversion method. During the synthesis of the beads, preparatory parameters were also optimized to obtain best suited beads which were subsequently characterized for their encapsulation capacity and micro structural investigation. The results obtained in the present investigation suggested that PES/PVAJPC88A composite beads could be used for separation of rare earths from aqueous medium obtained from the solubilisation of magnetic scrap materials

  19. Cone-shaped membrane liquid phase micro extraction

    International Nuclear Information System (INIS)

    Hong, Heng See; Sanagi, M.M.; Ibrahim, W.A.W.; Naim, A.A.

    2008-01-01

    A novel sample pre-treatment technique termed cone-shaped membrane liquid phase micro extraction (CSM-LPME) was developed and combined with micro-liquid chromatography (micro-LC) for the determination of selected pesticides in water samples. Several important extraction parameters such as types of extraction solvent, agitation rate, pH value, total exposure time and effect of salt and humic acids were investigated and optimized. Enrichment factors of >50 folds were easily achieved within 20 min of extraction. The new developed method demonstrated an excellent performance in terms of speed, cost effectiveness, reproducibility, as well as exceptional low detection limits. Current work provides a great interest to further investigate on the applicability of the CSM-LPME technique in analytical chemistry and explores the possibility of replacing conventional extraction techniques such as soxhlet, solid phase extraction (SPE) and solid phase micro extraction (SPME). (author)

  20. Nano-in-Micro Self-Reporting Hydrogel Constructs.

    Science.gov (United States)

    Tirella, Annalisa; La Marca, Margherita; Brace, Leigh-Anne; Mattei, Giorgio; Aylott, Jonathan W; Ahluwalia, Arti

    2015-08-01

    Highly reproducible Nano-in-Micro constructs are fabricated to provide a well-defined and self-reporting biomimetic environment for hepatocytes. Based on a protein/hydrogel formulation with controlled shape, size and composition, the constructs enable efficient nutrient exchange and provide an adhesive 3D framework to cells. Co-encapsulation of hepatocytes and ratiometric optical nanosensors with pH sensitivity in the physiological range allows continuous monitoring of the microenvironment. The lobule-sized microbeads are fabricated using an automated droplet generator, Sphyga (Spherical Hydrogel Generator) combining alginate, collagen, decellularized hepatic tissue, pH-nanosensors and hepatocytes. The pH inside the Nano-in-Micro constructs is monitored during culture, while assaying media for hepatic function and vitality markers. Although the local pH changes by several units during bead fabrication, when encapsulated cells are most likely to undergo stress, it is stable and buffered by cell culture media thereafter. Albumin secretion and urea production are significantly higher in the microbeads compared with controls, indicating that the encapsulated Nano-in-Micro environment is conducive to enhanced hepatic function.

  1. Design and characterization of a 3D encapsulation with silicon vias for radio frequency micro-electromechanical system resonator

    International Nuclear Information System (INIS)

    Zhao Ji-Cong; Yuan Quan; Wang Feng-Xiang; Kan Xiao; Han Guo-Wei; Yang Jin-Ling; Yang Fu-Hua; Sun Ling; Sun Hai-Yan

    2017-01-01

    In this paper, we present a three-dimensional (3D) vacuum packaging technique at a wafer level for a radio frequency micro-electromechanical system (RF MEMS) resonator, in which low-loss silicon vias is used to transmit RF signals. Au–Sn solder bonding is adopted to provide a vacuum encapsulation as well as electrical conductions. A RF model of the encapsulation cap is established to evaluate the parasitic effect of the packaging, which provides an effective design solution of 3D RF MEMS encapsulation. With the proposed packaging structure, the signal-to-background ratio (SBR) of 24 dB is achieved, as well as the quality factor ( Q -factor) of the resonator increases from 8000 to 10400 after packaging. The packaged resonator has a linear frequency–temperature ( f – T ) characteristic in a temperature range between 0 °C and 100 °C. And the package shows favorable long-term stability of the Q -factor over 200 days, which indicates that the package has excellent hermeticity. Furthermore, the average shear strength is measured to be 43.58 MPa among 10 samples. (paper)

  2. Alginate micro-encapsulation of mesenchymal stromal cells enhances modulation of the neuro-inflammatory response.

    Science.gov (United States)

    Stucky, Elizabeth C; Schloss, Rene S; Yarmush, Martin L; Shreiber, David I

    2015-10-01

    Modulation of inflammation after brain trauma is a key therapeutic goal aimed at limiting the consequences of the subsequent injury cascade. Mesenchymal stromal cells (MSCs) have been demonstrated to dynamically regulate the inflammatory environment in several tissue systems, including the central nervous system. There has been limited success, however, with the use of direct implantation of cells in the brain caused by low viability and engraftment at the injury site. To circumvent this, we encapsulated MSCs in alginate microspheres and evaluated the ability of these encapsulated MSCs to attenuate inflammation in rat organotypic hippocampal slice cultures (OHSC). OHSC were administered lipopolysaccharide to induce inflammation and immediately co-cultured with encapsulated or monolayer human MSCs. After 24 h, culture media was assayed for the pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-α) produced by OHSC, as well as MSC-produced trophic mediators. Encapsulated MSCs reduced TNF-α more effectively than did monolayer MSCs. Additionally, there was a strong correlation between increased prostaglandin E2 (PGE2) and reduction of TNF-α. In contrast to monolayer MSCs, inflammatory signals were not required to stimulate PGE2 production by encapsulated MSCs. Further encapsulation-stimulated changes were revealed in a multiplex panel analyzing 27 MSC-produced cytokines and growth factors, from which additional mediators with strong correlations to TNF-α levels were identified. These results suggest that alginate encapsulation of MSCs may not only provide an improved delivery vehicle for transplantation but may also enhance MSC therapeutic benefit for treating neuro-inflammation. Copyright © 2015. Published by Elsevier Inc.

  3. Encapsulation of health-promoting ingredients: applications in foodstuffs.

    Science.gov (United States)

    Tolve, Roberta; Galgano, Fernanda; Caruso, Marisa Carmela; Tchuenbou-Magaia, Fideline Laure; Condelli, Nicola; Favati, Fabio; Zhang, Zhibing

    2016-12-01

    Many nutritional experts and food scientists are interested in developing functional foods containing bioactive agents and many of these health-promoting ingredients may benefit from nano/micro-encapsulation technology. Encapsulation has been proven useful to improve the physical and the chemical stability of bioactive agents, as well as their bioavailability and efficacy, enabling their incorporation into a wide range of formulations aimed to functional food production. There are several reviews concerning nano/micro-encapsulation techniques, but none are focused on the incorporation of the bioactive agents into food matrices. The aim of this paper was to investigate the development of microencapsulated food, taking into account the different bioactive ingredients, the variety of processes, techniques and coating materials that can be used for this purpose.

  4. Heat transfer characteristics of building walls using phase change material

    Science.gov (United States)

    Irsyad, M.; Pasek, A. D.; Indartono, Y. S.; Pratomo, A. W.

    2017-03-01

    Minimizing energy consumption in air conditioning system can be done with reducing the cooling load in a room. Heat from solar radiation which passes through the wall increases the cooling load. Utilization of phase change material on walls is expected to decrease the heat rate by storing energy when the phase change process takes place. The stored energy is released when the ambient temperature is low. Temperature differences at noon and evening can be utilized as discharging and charging cycles. This study examines the characteristics of heat transfer in walls using phase change material (PCM) in the form of encapsulation and using the sleeve as well. Heat transfer of bricks containing encapsulated PCM, tested the storage and released the heat on the walls of the building models were evaluated in this study. Experiments of heat transfer on brick consist of time that is needed for heat transfer and thermal conductivity test as well. Experiments were conducted on a wall coated by PCM which was exposed on a day and night cycle to analyze the heat storage and heat release. PCM used in these experiments was coconut oil. The measured parameter is the temperature at some points in the brick, walls and ambient temperature as well. The results showed that the use of encapsulation on an empty brick can increase the time for thermal heat transfer. Thermal conductivity values of a brick containing encapsulated PCM was lower than hollow bricks, where each value was 1.3 W/m.K and 1.6 W/m.K. While the process of heat absorption takes place from 7:00 am to 06:00 pm, and the release of heat runs from 10:00 pm to 7:00 am. The use of this PCM layer can reduce the surface temperature of the walls of an average of 2°C and slows the heat into the room.

  5. Polymer Assembly Encapsulation of Lanthanide Nanoparticles as Contrast Agents for In Vivo Micro-CT.

    Science.gov (United States)

    Cruje, Charmainne; Dunmore-Buyze, Joy; MacDonald, Jarret P; Holdsworth, David W; Drangova, Maria; Gillies, Elizabeth R

    2018-03-12

    Despite recent technological advancements in microcomputed tomography (micro-CT) and contrast agent development, preclinical contrast agents are still predominantly iodine-based. Higher contrast can be achieved when using elements with higher atomic numbers, such as lanthanides; lanthanides also have X-ray attenuation properties that are ideal for spectral CT. However, the formulation of lanthanide-based contrast agents at the high concentrations required for vascular imaging presents a significant challenge. In this work, we developed an erbium-based contrast agent that meets micro-CT imaging requirements, which include colloidal stability upon redispersion at high concentrations, evasion of rapid renal clearance, and circulation times of tens of minutes in small animals. Through systematic studies with poly(ethylene glycol) (PEG)-poly(propylene glycol), PEG-polycaprolactone, and PEG-poly(l-lactide) (PLA) block copolymers, the amphiphilic block copolymer PEG 114 -PLA 53 was identified to be ideal for encapsulating oleate-coated lanthanide-based nanoparticles for in vivo intravenous administration. We were able to synthesize a contrast agent containing 100 mg/mL of erbium that could be redispersed into colloidally stable particles in saline after lyophilization. Contrast enhancement of over 250 HU was achieved in the blood pool for up to an hour, thereby meeting the requirements of live animal micro-CT.

  6. Review of solid–liquid phase change materials and their encapsulation technologies

    OpenAIRE

    Su, Weiguang; Darkwa, Jo; Kokogiannakis, Georgios

    2017-01-01

    Various types of solid–liquid phase change materials (PCMs) have been reviewed for thermal energy storage applications. The review has shown that organic solid–liquid PCMs have much more advantages and capabilities than inorganic PCMs but do possess low thermal conductivity and density as well as being flammable. Inorganic PCMs possess higher heat storage capacities and conductivities, cheaper and readily available as well as being non-flammable, but do experience supercooling and phase segre...

  7. Conservation and multiplication of encapsulated micro shoots of Rauvolfia vomitoria--an endangered medicinal tree: ISSR and RAPD based evaluation of genetic fidelity of converted plantlets.

    Science.gov (United States)

    Mehrotra, Shakti; Rahman, Liaq Ur; Mishra, Jahnvi; Kukreja, Arun K

    2012-12-01

    The in vitro grown axillary micro shoots of Rauvolfia vomitoria were encapsulated in alginate beads. Following 6 months of normal storage at 25 +/- 2 degrees C the regrowth of encapsulated micro shoots, reached 95.2% within 40 days of incubation on MS medium containing 1.0 mg/L BAP and 0.1 mg/L NAA. Among the responding encapsulated explants 69.6% showed emergence of multiple shoots. The developing shoots showed rhizogenesis in two weeks following their transfer to rooting medium. Healthy plants were established in a glass house with 95% survival. Of the 50 RAPD primers tested, 10 produced 23 clear and reproducible amplicons, with an average of 2.3 bands per primer. Eleven ISSR primers produced a total of 42 bands, with a size range of 0.1-1.9 kb. The number of scorable bands for each primer varied from 2 to 6, with an average of 3.81. The similarity matrix, calculated individually from the results obtained from ISSR and RAPD analysis, showed similarity coefficients ranging from 1.0 for RAPD and 0.85 to 1.0 for ISSR.

  8. Phase-change-materials as energy source for micro aerial vehicles (MAV)

    International Nuclear Information System (INIS)

    Lidor, A.; Sher, E.; Weihs, D.

    2014-01-01

    While there are many different challenges in the development of micro aerial vehicles (MAV), one of the severe limiting factors in terms of weight is the energy storage/power system. Most of the MAVs developed to date are based on electrical motors. In the present study, several potential alternative energy storage/power systems are examined, evaluated for their specific energy and specific power, and compared to electrical batteries and hydrocarbon fuel storage. Analysis of the power and energy requirements of different MAV configurations, suggests that a specific power of 35–60 W/kg for fixed wing MAV and 65–85 W/kg for rotary wing MAV are needed. The required specific energy for a short mission of 20 min is 15–25 W h/kg for fixed wing MAV and 30–40 W h/kg for rotary wing MAV. Based on these requirements, a novel PCM open-cycle storage/power system is proposed. It comprises of an open cycle that uses the ambient temperature as its hot reservoir. Promising initial results, in terms of specific power (45–70 W/kg), specific energy (24–45 W h/kg) and open-cycle thermodynamic efficiency (22–54%), are presented. Owing to the high potential of the proposed PCM open-cycle, we believe that the development of new PCM materials specifically designed for this purpose is highly deserving. - Highlights: •A novel phase change material open-cycle is proposed for micro aerial vehicles. •The ambient is used as its hot reservoir. •Analysis shows promising results in terms of specific energy and thermal efficiency

  9. Elastic silicone encapsulation of n-hexadecyl bromide by microfluidic approach as novel microencapsulated phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Zhenjin [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); Su, Lin; Li, Jing; Yang, Ruizhuang; Zhang, Zhanwen; Liu, Meifang; Li, Jie [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Li, Bo, E-mail: LB6711@126.com [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China)

    2014-08-20

    Highlights: • n-Hexadecyl bromide was encapsuled in elastic silicone shell. • The surfaces of microcapsules were smooth and the cross sections were compact. • Latent heat of microcapsules was 76.35 J g{sup −1}. • The microencapsulation ratio was 49 wt.%. • The microcapsules had good thermal stability. - Abstract: The elastic silicone/n-hexadecyl bromide microcapsules were prepared as novel microencapsulated phase change materials by microfluidic approach with the co-flowing channels, where the double oil1-in-oil2-in-water (O1/O2/W) droplets with a core–shell geometry were fabricated. The thermal characterizations of the microcapsules were investigated using differential scanning calorimetry (DSC) and thermogravimetry analysis (TGA). The DSC results showed that the microcapsules had good energy storage capacity with melting and freezing enthalpies 76.35 J g{sup −1} and 78.67 J g{sup −1}, respectively. The TGA investigation showed that the microcapsules had good thermal stability. The surfaces of microcapsules were smooth and the cross sections were compact from the results of optical microscope and scanning electron microscopy (SEM). Optical microscope showed that the silicone shell can provide expansion place due to its elastic property. Therefore, the silicone/n-hexadecyl bromide microcapsules showed good potential as thermal regulating textile and thermal insulation materials.

  10. Rheological and thermal properties of suspensions of microcapsules containing phase change materials.

    Science.gov (United States)

    Cao, Vinh Duy; Salas-Bringas, Carlos; Schüller, Reidar Barfod; Szczotok, Anna M; Hiorth, Marianne; Carmona, Manuel; Rodriguez, Juan F; Kjøniksen, Anna-Lena

    2018-01-01

    The thermal and rheological properties of suspensions of microencapsulated phase change materials (MPCM) in glycerol were investigated. When the microcapsule concentration is raised, the heat storage capacity of the suspensions becomes higher and a slight decline in the thermal conductivity of the suspensions is observed. The temperature-dependent shear-thinning behaviour of the suspensions was found to be strongly affected by non-encapsulated phase change materials (PCM). Accordingly, the rheological properties of the MPCM suspensions could be described by the Cross model below the PCM melting point while a power law model best described the data above the PCM melting point. The MPCM suspensions are interesting for energy storage and heat transfer applications. However, the non-encapsulated PCM contributes to the agglomeration of the microcapsules, which can lead to higher pumping consumption and clogging of piping systems.

  11. Morphology of Major Stone Types, As Shown by Micro Computed Tomography (micro CT)

    International Nuclear Information System (INIS)

    Jackson, Molly E.; Beuschel, Christian A.; McAteer, James A.; Williams, James C.

    2008-01-01

    Micro CT offers the possibility of providing a non-destructive method of stone analysis that allows visualization of 100% of the stone's volume. For the present study, micro CT analysis was completed on stones of known composition with isotropic voxel sizes of either 7 or 9.1 μm. Each mineral type was distinctive, either by x-ray attenuation values or by morphology. Minor components, such as the presence of apatite in oxalate stones, were easily seen. The analysis of stones by micro CT opens up the possibility of exploring the stone as an encapsulated history of the patient's disease, showing changes in mineral deposition with time.

  12. Mechanical Robustness and Hermeticity Monitoring for MEMS Thin Film Encapsulation

    NARCIS (Netherlands)

    Santagata, F.

    2011-01-01

    Many Micro-Electro-Mechanical-Systems (MEMS) require encapsulation, to prevent delicate sensor structures being exposed to external perturbations such as dust, humidity, touching, and gas pressure. An upcoming and cost-effective way of encapsulation is zero-level packaging or thin-film

  13. In-line phase contrast micro-CT reconstruction for biomedical specimens.

    Science.gov (United States)

    Fu, Jian; Tan, Renbo

    2014-01-01

    X-ray phase contrast micro computed tomography (micro-CT) can non-destructively provide the internal structure information of soft tissues and low atomic number materials. It has become an invaluable analysis tool for biomedical specimens. Here an in-line phase contrast micro-CT reconstruction technique is reported, which consists of a projection extraction method and the conventional filter back-projection (FBP) reconstruction algorithm. The projection extraction is implemented by applying the Fourier transform to the forward projections of in-line phase contrast micro-CT. This work comprises a numerical study of the method and its experimental verification using a biomedical specimen dataset measured at an X-ray tube source micro-CT setup. The numerical and experimental results demonstrate that the presented technique can improve the imaging contrast of biomedical specimens. It will be of interest for a wide range of in-line phase contrast micro-CT applications in medicine and biology.

  14. Toward single enzyme analysis in a droplet-based micro and nanofluidic system

    NARCIS (Netherlands)

    Arayanarakool, Rerngchai

    2012-01-01

    In this thesis, we have demonstrated the application of micro- and nanofluidic devices to generate an array of aqueous droplets in oil phase for single-enzyme encapsulation and activity measurement. We chose droplet-based microfluidics for this purpose of monitoring single-enzyme reactions since the

  15. Liquid Crystal Mediated Nano-assembled Gold Micro-shells

    Science.gov (United States)

    Quint, Makiko; Sarang, Som; Quint, David; Huang, Kerwyn; Gopinathan, Ajay; Hirst, Linda; Ghosh, Sayantani

    We have created 3D nano-assenbled micro-shell by using thermotropic liquid crystal (LC), 4-Cyano-4'-pentylbiphenyl (5CB), doped with mesogen-functionalized gold nanoparticles (AuNPs). The assembly process is driven by the isotropic-nematic phase transition dynamics. We uniformly disperse the functionalized AuNPs into isotropic liquid crystal matrix and the mixture is cooled from the isotropic to the nematic phase. During the phase transition, the separation of LC-AuNP rich isotropic and ordered 5CB rich domains cause the functionalized AuNPs to move into the shrinking isotropic regions. The mesogenic ligands are locally crystalized during this process, which leads to the formation of a spherical shell with a densely packed wall of AuNPs. These micro-shells are capable of encapsulating fluorescence dye without visible leakages for several months. Additionally, they demonstrate strong localized surface plasmon resonance, which leads to localized heating on optical excitation. This photothermal effect disrupts the structure, releasing contents within seconds. Our results exhibiting the capture and optically regulated release of encapsulated substances is a novel platform that combines drug-delivery and photothermal therapy in one versatile and multifunctional unit. This work is supported by the NSF Grants No. DMR-1056860, ECC-1227034, and a University of California Merced Faculty Mentor Fellowship.

  16. Preparation, microstructure and thermal properties of Mg−Bi alloys as phase change materials for thermal energy storage

    International Nuclear Information System (INIS)

    Fang, Dong; Sun, Zheng; Li, Yuanyuan; Cheng, Xiaomin

    2016-01-01

    Highlights: • The microstructure and thermal properties of Mg−Bi alloys are determined. • The relationship between melting enthalpies and phase composition are studied. • The activation energy of Mg−54%Bi alloy is calculated by multiple DSC technology. • Mg−54%Bi alloy is proposed as a phase change material at high (>420 °C) temperature. - Abstract: Comparing with Al-based phase change material, Mg-based phase change material is getting more and more attention due to its high corrosion resistance with encapsulation materials based on iron. This study focuses on the characterization of Mg−36%Bi, Mg−54%Bi and Mg−60%Bi (wt. %) alloys as phase change materials for thermal energy storage at high temperature. The phase compositions, microstructure and phase change temperatures were investigated by X-ray diffusion (XRD), electron probe micro-analysis (EPMA) and differential scanning calorimeter (DSC) analysis, respectively. The results indicates that the microstructure of Mg−36%Bi and Mg−54%Bi alloys are mainly composed of α-Mg matrix and α-Mg + Mg_3Bi_2 eutectic phases, Mg−60%Bi alloy are mainly composed of the Mg_3Bi_2 phase and α-MgMg_3Bi_2 eutectic phases. The melting enthalpies of Mg−36%Bi, Mg−54%Bi and Mg−60%Bi alloys are 138.2, 180.5 and 48.7 J/g, with the phase change temperatures of 547.6, 546.3 and 548.1 °C, respectively. The Mg−54%Bi alloy has the highest melting enthalpy in three alloys. The main reason may be that it has more proportion of α-Mg + Mg_3Bi_2 eutectic phases. The thermal expansion of three alloys increases with increasing temperature. The values of the thermal conductivity decrease with increasing Bi content. Besides, the activation energy of Mg−54%Bi was calculated by multiple DSC technology.

  17. Analysis of a microscale 'Saturation Phase-change Internal Carnot Engine'

    International Nuclear Information System (INIS)

    Lurie, Eli; Kribus, Abraham

    2010-01-01

    A micro heat engine, based on a cavity filled with a stationary working fluid under liquid-vapor saturation conditions and encapsulated by two membranes, is described and analyzed. This engine design is easy to produce using MEMS technologies and is operated with external heating and cooling. The motion of the membranes is controlled such that the internal pressure and temperature are constant during the heat addition and removal processes, and thus the fluid executes a true internal Carnot cycle. A model of this Saturation Phase-change Internal Carnot Engine (SPICE) was developed including thermodynamic, mechanical and heat transfer aspects. The efficiency and maximum power of the engine are derived. The maximum power point is fixed in a three-parameter space, and operation at this point leads to maximum power density that scales with the inverse square of the engine dimension. Inclusion of the finite heat capacity of the engine wall leads to a strong dependence of performance on engine frequency, and the existence of an optimal frequency. Effects of transient reverse heat flow, and 'parasitic heat' that does not participate in the thermodynamic cycle are observed.

  18. Simulation For Synchronization Of A Micro-Grid With Three-Phase Systems

    Directory of Open Access Journals (Sweden)

    Mohammad Jafari Far

    2015-08-01

    Full Text Available Abstract today due to the high reliability of the micro-grids they have developed significantly. They have two states of operation the island state and connection to the main grid. Under certain circumstances the micro-grid is connected to or disconnected from the network. Synchronization of a micro-grid with the network must be done when its voltage is synchronized with the voltage in the main grid. Phase lock loops are responsible to identify the voltage phase of the micro-gird and the main grid and when these two voltages are in the same phase they connect the micro-grid to the main grid. In this research the connection of a micro-grid to the main grid in the two phases of synchronous and asynchronous voltage is simulated and investigated.

  19. Fluid phase passivation and polymer encapsulation of InP/InGaAs heterojunction bipolar transistors

    International Nuclear Information System (INIS)

    Oxland, R K; Rahman, F

    2008-01-01

    This paper reports on the development of effective passivation techniques for improving and stabilizing the characteristics of InP/InGaAs heterojunction bipolar transistors. Two different methods for carrying out sulfur-based surface passivations are compared. These include exposure to gaseous hydrogen sulfide and immersion treatment in an ammonium sulfide solution. The temporal behaviour of effects resulting from such passivation treatments is reported. It is shown that liquid phase passivation has a larger beneficial effect on device performance than gas phase passivation. This is explained in terms of the polarity of passivating species and the exposed semiconductor surface. Finally, device encapsulation in a novel chalcogenide polymer is shown to be effective in preserving the benefits of surface passivation treatments. The relevant properties of this encapsulation material are also discussed

  20. Micro-Texture Synthesis by Phase Randomization

    Directory of Open Access Journals (Sweden)

    Bruno Galerne

    2011-09-01

    Full Text Available This contribution is concerned with texture synthesis by example, the process of generating new texture images from a given sample. The Random Phase Noise algorithm presented here synthesizes a texture from an original image by simply randomizing its Fourier phase. It is able to reproduce textures which are characterized by their Fourier modulus, namely the random phase textures (or micro-textures.

  1. Microencapsulation of butyl stearate as a phase change material by interfacial polycondensation in a polyurea system

    Energy Technology Data Exchange (ETDEWEB)

    Chen Liang [College of Material Science and Engineering, Nanjing University of Technology, Nanjing 210009 (China)], E-mail: doseng_1982@hotmail.com; Xu Lingling; Shang Hongbo; Zhang Zhibin [College of Material Science and Engineering, Nanjing University of Technology, Nanjing 210009 (China)

    2009-03-15

    For the last 20 years, microencapsulated phase change materials (MicroPCMs), which combine microencapsulation technology and phase change material, have been attracted more and more interest. By overcoming some limitations of the PCMs, the MicroPCMs improve the efficiency of PCMs and make it possible to apply PCMs in many areas. In this experiment, polyurea microcapsules containing phase change materials were prepared using interfacial polycondensation method. Toluene-2,4-diisocyanate (TDI) and ethylenediamine (EDA) were chosen as monomers. Butyl stearate was employed as a core material. The MicroPCMs' properties have been characterized by dry weight analysis, differential scanning calorimetry, Fourier transform IR spectra analysis and optical microscopy. The results show that the MicroPCMs were synthesized successfully and that, the phase change temperature was about 29 deg. C, the latent heat of fusion was about 80 J g{sup -1}, the particle diameter was 20-35 {mu}m.

  2. Microencapsulation of butyl stearate as a phase change material by interfacial polycondensation in a polyurea system

    International Nuclear Information System (INIS)

    Chen Liang; Xu Lingling; Shang Hongbo; Zhang Zhibin

    2009-01-01

    For the last 20 years, microencapsulated phase change materials (MicroPCMs), which combine microencapsulation technology and phase change material, have been attracted more and more interest. By overcoming some limitations of the PCMs, the MicroPCMs improve the efficiency of PCMs and make it possible to apply PCMs in many areas. In this experiment, polyurea microcapsules containing phase change materials were prepared using interfacial polycondensation method. Toluene-2,4-diisocyanate (TDI) and ethylenediamine (EDA) were chosen as monomers. Butyl stearate was employed as a core material. The MicroPCMs' properties have been characterized by dry weight analysis, differential scanning calorimetry, Fourier transform IR spectra analysis and optical microscopy. The results show that the MicroPCMs were synthesized successfully and that, the phase change temperature was about 29 deg. C, the latent heat of fusion was about 80 J g -1 , the particle diameter was 20-35 μm

  3. Microencapsulation of butyl stearate as a phase change material by interfacial polycondensation in a polyurea system

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Chen; Lingling, Xu; Hongbo, Shang; Zhibin, Zhang [College of Material Science and Engineering, Nanjing University of Technology, Nanjing 210009 (China)

    2009-03-15

    For the last 20 years, microencapsulated phase change materials (MicroPCMs), which combine microencapsulation technology and phase change material, have been attracted more and more interest. By overcoming some limitations of the PCMs, the MicroPCMs improve the efficiency of PCMs and make it possible to apply PCMs in many areas. In this experiment, polyurea microcapsules containing phase change materials were prepared using interfacial polycondensation method. Toluene-2,4-diisocyanate (TDI) and ethylenediamine (EDA) were chosen as monomers. Butyl stearate was employed as a core material. The MicroPCMs' properties have been characterized by dry weight analysis, differential scanning calorimetry, Fourier transform IR spectra analysis and optical microscopy. The results show that the MicroPCMs were synthesized successfully and that, the phase change temperature was about 29 C, the latent heat of fusion was about 80 J g{sup -1}, the particle diameter was 20-35 {mu}m. (author)

  4. Microencapsulation of phase change materials with carbon nanotubes reinforced shell for enhancement of thermal conductivity

    Science.gov (United States)

    Cui, Weiwei; Xia, Yongpeng; Zhang, Huanzhi; Xu, Fen; Zou, Yongjin; Xiang, Cuili; Chu, Hailiang; Qiu, Shujun; Sun, Lixian

    2017-03-01

    Novel microencapsulated phase change materials (micro-PCMs) were synthesized via in-situ polymerization with modified carbon nanotubes(CNTs) reinforced melamine-formaldehyde resin as shell material and CNTs reinforced n-octadecane as PCMs core. DSC results confirm that the micro-PCMs possess good phase change behavior and excellent thermal cycling stability. Melting enthalpy of the micro-PCMs can achieve 133.1 J/g and has slight changes after 20 times of thermal cyclings. And the incorporation of CNTs supplies the micro-PCMs with fast thermal response rate which increases the crystallization temperature of the micro-PCMs. Moreover, the thermal conductivity of the micro-PCMs has been significantly enhanced by introducing CNTs into their shell and core materials. And the thermal conductivity of micro-PCMs with 1.67 wt.% CNTs can increase by 25%. These results exhibit that the obtained micro-PCMs have a good prospect in thermal energy storage applications.

  5. Maximizing the energy storage performance of phase change thermal storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Amin, N.A.M.; Bruno, F.; Belusko, M. [South Australia Univ., Mawson Lakes, South Australia (Australia). Inst. for Sustainable Systems and Technologies

    2009-07-01

    The demand for electricity in South Australia is highly influenced by the need for refrigeration and air-conditioning. An extensive literature review has been conducted on the use of phase change materials (PCMs) in thermal storage systems. PCMs use latent heat at the solid-liquid phase transition point to store thermal energy. They are considered to be useful as a thermal energy storage (TES) material because they can provide much higher energy storage densities compared to conventional sensible thermal storage materials. This paper reviewed the main disadvantages of using PCMs for energy storage, such as low heat transfer, super cooling and system design issues. Other issues with PCMs include incongruence and corrosion of heat exchanger surfaces. The authors suggested that in order to address these problems, future research should focus on maximizing heat transfer by optimizing the configuration of the encapsulation through a parametric analysis using a PCM numerical model. The effective conductivity in encapsulated PCMs in a latent heat thermal energy storage (LHTES) system can also be increased by using conductors in the encapsulation that have high thermal conductivity. 47 refs., 1 tab., 1 fig.

  6. Fabrication of a multifunctional nano-in-micro drug delivery platform by microfluidic templated encapsulation of porous silicon in polymer matrix.

    Science.gov (United States)

    Zhang, Hongbo; Liu, Dongfei; Shahbazi, Mohammad-Ali; Mäkilä, Ermei; Herranz-Blanco, Bárbara; Salonen, Jarno; Hirvonen, Jouni; Santos, Hélder A

    2014-07-09

    A multifunctional nano-in-micro drug delivery platform is developed by conjugating the porous silicon nanoparticles with mucoadhesive polymers and subsequent encapsulation into a pH-responsive polymer using microfluidics. The multistage platform shows monodisperse size distribution and pH-responsive payload release, and the released nanoparticles are mucoadhesive. Moreover, this platform is capable of simultaneously loading and releasing multidrugs with distinct properties. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Optimization of folic acid nano-emulsification and encapsulation by maltodextrin-whey protein double emulsions.

    Science.gov (United States)

    Assadpour, Elham; Maghsoudlou, Yahya; Jafari, Seid-Mahdi; Ghorbani, Mohammad; Aalami, Mehran

    2016-05-01

    Due to susceptibility of folic acid like many other vitamins to environmental and processing conditions, it is necessary to protect it by highly efficient methods such as micro/nano-encapsulation. Our aim was to prepare and optimize real water in oil nano-emulsions containing folic acid by a low energy (spontaneous) emulsification technique so that the final product could be encapsulated within maltodextrin-whey protein double emulsions. A non ionic surfactant (Span 80) was used for making nano-emulsions at three dispersed phase/surfactant ratios of 0.2, 0.6, and 1.0. Folic acid content was 1.0, 2.0, and 3.0mg/mL of dispersed phase by a volume fraction of 5.0, 8.5, and 12%. The final optimum nano-emulsion formulation with 12% dispersed phase, a water to surfactant ratio of 0.9 and folic acid content of 3mg/mL in dispersed phase was encapsulated within maltodextrin-whey protein double emulsions. It was found that the emulsification time for preparing nano-emulsions was between 4 to 16 h based on formulation variables. Droplet size decreased at higher surfactant contents and final nano-emulsions had a droplet size<100 nm. Shear viscosity was higher for those formulations containing more surfactant. Our results revealed that spontaneous method could be used successfully for preparing stable W/O nano-emulsions containing folic acid. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Enhancement of survival of alginate-encapsulated Lactobacillus casei NCDC 298.

    Science.gov (United States)

    Mandal, Surajit; Hati, Subrota; Puniya, Anil Kumar; Khamrui, Kaushik; Singh, Kishan

    2014-08-01

    Micro-encapsulation of hydrocolloids improves the survival of sensitive probiotic bacteria in the harsh conditions that prevail in foods and during gastrointestinal passage by segregating them from environments. Incorporation of additives in encapsulating hydrocolloids and coatings of microcapsules further improves the survival of the probiotics. In this study, the effect of incorporation of resistant-maize starch in alginate for micro-encapsulation and coating of microcapsules with poly-l-lysine, stearic acid and bees wax on the survival of encapsulated Lactobacillus casei NCDC 298 at pH 1.5, 2% high bile salt, 65 °C for 20 min and release of viable lactobacilli cells from the capsule matrix in simulated aqueous solutions of colonic pH were assessed. Addition of resistant maize starch (2%) improved the survival of encapsulated L. casei NCDC 298. Coating of microcapsules with poly-L-lysine did not further improve the protection of encapsulated cells from the harsh conditions; however, bees wax and stearic acid (2%) improved the survival under similar conditions. Incorporation of maize starch (2%) in alginate followed by coating of beads with stearic acid (2%) led to better protection and complete release of entrapped lactobacilli in simulated colonic pH solution was observed. Additional treatments improve the survival of alginate-encapsulated lactobacilli cells without hindering the release of active cells from the capsule matrix and hence, the resulting encapsulated probiotics can be exploited in the development of probiotic functional foods with better survival of sensitive probiotic organisms. © 2013 Society of Chemical Industry.

  9. Liquid as template for next generation micro devices

    International Nuclear Information System (INIS)

    Charmet, Jerome; Haquette, Henri; Laux, Edith; Keppner, Herbert; Gorodyska, Ganna; Textor, Marcus; Durante, Guido Spinola; Portuondo-Campa, Erwin; Knapp, Helmut; Bitterli, Roland; Noell, Wilfried

    2009-01-01

    Liquids have fascinated generations of scientists and engineers. Since ancient Greece, the perfect natural shape of liquids has been used to create optical systems. Nowadays, the natural shape of liquid is used in the fabrication of microlens arrays that rely on the melting of glass or photoresist to generate high quality lenses. However shrinkage normally associated to the liquid to solid phase transition will affect the initial shape and quality of the liquid structure. In this contribution, a novel fabrication technique that enables the encapsulation and replication of liquid templates without affecting their natural shape is presented. The SOLID (SOlid on LIquid Deposition) process allows for a transparent solid film to be deposited and grown onto a liquid template (droplet, film, line) in a way that the liquid shapes the overgrowing solid layer. The resulting configuration of the SOLID devices is chemically and mechanically stable and is the base of a huge variety of new micro-nano systems in the field of microfluidics, biomedical devices and micro-optics among others. The SOLID process enables in a one step process the encapsulation of liquid microlenses, fluidics channels, drug reservoir or any naturally driven liquid structure. The phenomenon and solid-liquid interface resulting from the SOLID process is new and still unexploited. The solid layer used for the SOLID process chosen in this paper is poly-para-xylylene called Parylene, a transparent biocompatible polymer with excellent mechanical and chemical properties. Moreover, as the solid layer is growing over a liquid template, atomically smooth surfaces channels can be obtained. The polymerization of Parylene does not exert stress and does not change the shape of the liquid; this latter aspect is particularly interesting for manufacturing naturally driven liquid structures. In this paper the authors explore the limits of this new method by testing different designs of SOLID encapsulated structures and

  10. Preparation, characterization and thermal properties of nanocapsules containing phase change material n-dodecanol by miniemulsion polymerization with polymerizable emulsifier

    International Nuclear Information System (INIS)

    Chen, Zhong-Hua; Yu, Fei; Zeng, Xing-Rong; Zhang, Zheng-Guo

    2012-01-01

    Highlights: ► We prepare nanocapsules containing n-dodecanol via miniemulsion polymerization. ► Polymerizable emulsifier plays important role in the preparation of nanocapsules. ► Adding co-emulsifier into water phase is helpful to encapsulate n-dodecanol. ► The phase change latent heat of nanocapsule is 98.8 J/g with temperature of 18.2 °C. -- Abstract: Nanocapsules containing phase change material (PCM) n-dodecanol as core and polymethyl methacrylate (PMMA) as shell were synthesized by miniemulsion polymerization with polymerizable emulsifier DNS-86 and co-emulsifier hexadecane (HD). The nanocapsules were characterized by using Fourier transform infrared spectroscopy (FTIR), transmission electron microscope (TEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and laser particle diameter analyzer. The effects of polymerizable emulsifier and co-emulsifier on the properties of nanocapsules were studied. The results show that thermal properties of nanocapsules are affected greatly by the addition methods of HD and the amounts of DNS-86 and HD. Adding HD into water phase is helpful for the encapsulation of n-dodecanol. When the mass ratios of DNS-86 to n-dodecanol and the mass ratios of HD to n-dodecanol were 3% and 2%, the phase change latent heat and the encapsulation efficiency of nanocapsules reached to the maximum value of 98.8 J/g and 82.2%, respectively. Spherical nanocapsules with mean diameter of 150 nm and phase change temperature of 18.2 °C are obtained, which are sure to have a good potential for energy storage.

  11. Structural-functional integrated concrete with macro-encapsulated inorganic PCM

    Science.gov (United States)

    Mohseni, Ehsan; Tang, Waiching; Wang, Zhiyu

    2017-09-01

    Over the last few years the application of thermal energy storage system incorporating phase change materials (PCMs) to foster productivity and efficiency of buildings energy has grown rapidly. In this study, a structural-functional integrated concrete was developed using macro-encapsulated PCM-lightweight aggregate (LWA) as partial replacement (25 and 50% by volume) of coarse aggregate in control concrete. The PCM-LWA was prepared by incorporation of an inorganic PCM into porous LWAs through vacuum impregnation. The mechanical and thermal performance of PCM-LWA concrete were studied. The test results revealed that though the compressive strength of concrete with PCM-LWA was lower than the control concrete, but ranged from 22.02 MPa to 42.88 MPa which above the minimum strength requirement for structural application. The thermal performance test indicated that macro-encapsulated PCM-LWA has underwent the phase change transition reducing the indoor temperature.

  12. Emergence of DNA-encapsulating liposomes from a DNA-lipid blend film

    Science.gov (United States)

    Shimobayashi, Shunsuke; Hishida, Mafumi; Kurimura, Tomo; Ichikawa, Masatoshi

    A Micro-scale giant unilamellar vesicle (GUV) densely encapsulating molecular systems is one of the simplest life-mimicking model systems. The dehydration-rehydration process proposed by Deamer et al. more than 30 years ago generates vesicles to satisfy the constraints of micro-scale size, unilamellarity and densely polymer-encapsulation. Nevertheless, the physico-chemical mechanism of a set of dehydration-rehydration process has been poorly understood. The present study reveals crucial factors on the process through fluorescent microscopic observation and small angle x-ray scattering. From the results, we propose a plausible physical mechanism for the process, making it possible to optimize the encapsulation of any agent This work was supported by Grant-in-Aid for JSPS Fellows Grant (No. 25-1270) and by KAKENHI (Nos. 26707020, 25103012, and 26115709).

  13. Synthesis and Characterization of Microencapsulated Phase Change Materials with Poly(urea-urethane) Shells Containing Cellulose Nanocrystals.

    Science.gov (United States)

    Yoo, Youngman; Martinez, Carlos; Youngblood, Jeffrey P

    2017-09-20

    The main objective of this study is to develop microencapsulation technology for thermal energy storage incorporating a phase change material (PCM) in a composite wall shell, which can be used to create a stable environment and allow the PCM to undergo phase change without any outside influence. Surface modification of cellulose nanocrystals (CNCs) was conducted by grafting poly(lactic acid) oligomers and oleic acid to improve the dispersion of nanoparticles in a polymeric shell. A microencapsulated phase change material (methyl laurate) with poly(urea-urethane) (PU) composite shells containing the hydrophobized cellulose nanocrystals (hCNCs) was fabricated using an in situ emulsion interfacial polymerization process. The encapsulation process of the PCMs with subsequent interfacial hCNC-PU to form composite microcapsules as well as their morphology, composition, thermal properties, and release rates was examined in this study. Oil soluble Sudan II dye solution in methyl laurate was used as a model hydrophobic fill, representing other latent fills with low partition coefficients, and their encapsulation efficiency as well as dye release rates were measured spectroscopically in a water medium. The influence of polyol content in the PU polymer matrix of microcapsules was investigated. An increase in polyol contents leads to an increase in the mean size of microcapsules but a decrease in the gel content (degree of cross-linking density) and permeability of their shell structure. The encapsulated PCMs for thermal energy storage demonstrated here exhibited promising performance for possible use in building or paving materials in terms of released heat, desired phase transformation temperature, chemical and physical stability, and concrete durability during placement.

  14. Liquid-Phase Packaging of a Glucose Oxidase Solution with Parylene Direct Encapsulation and an Ultraviolet Curing Adhesive Cover for Glucose Sensors

    Directory of Open Access Journals (Sweden)

    Seiichi Takamatsu

    2010-06-01

    Full Text Available We have developed a package for disposable glucose sensor chips using Parylene encapsulation of a glucose oxidase solution in the liquid phase and a cover structure made of an ultraviolet (UV curable adhesive. Parylene was directly deposited onto a small volume (1 μL of glucose oxidase solution through chemical vapor deposition. The cover and reaction chamber were constructed on Parylene film using a UV-curable adhesive and photolithography. The package was processed at room temperature to avoid denaturation of the glucose oxidase. The glucose oxidase solution was encapsulated and unsealed. Glucose sensing was demonstrated using standard amperometric detection at glucose concentrations between 0.1 and 100 mM, which covers the glucose concentration range of diabetic patients. Our proposed Parylene encapsulation and UV-adhesive cover form a liquid phase glucose-oxidase package that has the advantages of room temperature processing and direct liquid encapsulation of a small volume solution without use of conventional solidifying chemicals.

  15. Fabrication of PLA/CaCO3 hybrid micro-particles as carriers for water-soluble bioactive molecules.

    Science.gov (United States)

    Kudryavtseva, Valeriya L; Zhao, Li; Tverdokhlebov, Sergei I; Sukhorukov, Gleb B

    2017-09-01

    We propose the use of polylactic acid/calcium carbonate (PLA/CaCO 3 ) hybrid micro-particles for achieving improved encapsulation of water-soluble substances. Biodegradable porous CaCO 3 microparticles can be loaded with wide range of bioactive substance. Thus, the formation of hydrophobic polymeric shell on surface of these loaded microparticles results on encapsulation and, hence, sealing internal cargo and preventing their release in aqueous media. In this study, to encapsulate proteins, we explore the solid-in-oil-in-water emulsion method for fabricating core/shell PLA/CaCO 3 systems. We used CaCO 3 particles as a protective core for encapsulated bovine serum albumin, which served as a model protein system. We prepared a PLA coating using dichloromethane as an organic solvent and polyvinyl alcohol as a surfactant for emulsification; in addition, we varied experimental parameters such as surfactant concentration and polymer-to-CaCO 3 ratio to determine their effect on particle-size distribution, encapsulation efficiency and capsule permeability. The results show that the particle size decreased and the size distribution narrowed as the surfactant concentration increased in the external aqueous phase. In addition, when the CaCO 3 /PLA mass ratio dropped below 0.8, the hybrid micro-particles were more likely to resist treatment by ethylenediaminetetraacetic acid and thus retained their bioactive cargos within the polymer-coated micro-particles. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Analysis of a microscale 'Saturation Phase-change Internal Carnot Engine'

    Energy Technology Data Exchange (ETDEWEB)

    Lurie, Eli [School of Mechanical Engineering, Tel Aviv University, Tel Aviv 69978 (Israel); Kribus, Abraham, E-mail: kribus@eng.tau.ac.i [School of Mechanical Engineering, Tel Aviv University, Tel Aviv 69978 (Israel)

    2010-06-15

    A micro heat engine, based on a cavity filled with a stationary working fluid under liquid-vapor saturation conditions and encapsulated by two membranes, is described and analyzed. This engine design is easy to produce using MEMS technologies and is operated with external heating and cooling. The motion of the membranes is controlled such that the internal pressure and temperature are constant during the heat addition and removal processes, and thus the fluid executes a true internal Carnot cycle. A model of this Saturation Phase-change Internal Carnot Engine (SPICE) was developed including thermodynamic, mechanical and heat transfer aspects. The efficiency and maximum power of the engine are derived. The maximum power point is fixed in a three-parameter space, and operation at this point leads to maximum power density that scales with the inverse square of the engine dimension. Inclusion of the finite heat capacity of the engine wall leads to a strong dependence of performance on engine frequency, and the existence of an optimal frequency. Effects of transient reverse heat flow, and 'parasitic heat' that does not participate in the thermodynamic cycle are observed.

  17. Characterization of Bitumen Micro-Mechanical Behaviors Using AFM, Phase Dynamics Theory and MD Simulation

    Directory of Open Access Journals (Sweden)

    Yue Hou

    2017-02-01

    Full Text Available Fundamental understanding of micro-mechanical behaviors in bitumen, including phase separation, micro-friction, micro-abrasion, etc., can help the pavement engineers better understand the bitumen mechanical performances at macroscale. Recent researches show that the microstructure evolution in bitumen will directly affect its surface structure and micro-mechanical performance. In this study, the bitumen microstructure and micro-mechanical behaviors are studied using Atomic Force Microscopy (AFM experiments, Phase Dynamics Theory and Molecular Dynamics (MD Simulation. The AFM experiment results show that different phase-structure will occur at the surface of the bitumen samples under certain thermodynamic conditions at microscale. The phenomenon can be explained using the phase dynamics theory, where the effects of stability parameter and temperature on bitumen microstructure and micro-mechanical behavior are studied combined with MD Simulation. Simulation results show that the saturates phase, in contrast to the naphthene aromatics phase, plays a major role in bitumen micro-mechanical behavior. A high stress zone occurs at the interface between the saturates phase and the naphthene aromatics phase, which may form discontinuities that further affect the bitumen frictional performance.

  18. Characterization of Bitumen Micro-Mechanical Behaviors Using AFM, Phase Dynamics Theory and MD Simulation.

    Science.gov (United States)

    Hou, Yue; Wang, Linbing; Wang, Dawei; Guo, Meng; Liu, Pengfei; Yu, Jianxin

    2017-02-21

    Fundamental understanding of micro-mechanical behaviors in bitumen, including phase separation, micro-friction, micro-abrasion, etc., can help the pavement engineers better understand the bitumen mechanical performances at macroscale. Recent researches show that the microstructure evolution in bitumen will directly affect its surface structure and micro-mechanical performance. In this study, the bitumen microstructure and micro-mechanical behaviors are studied using Atomic Force Microscopy (AFM) experiments, Phase Dynamics Theory and Molecular Dynamics (MD) Simulation. The AFM experiment results show that different phase-structure will occur at the surface of the bitumen samples under certain thermodynamic conditions at microscale. The phenomenon can be explained using the phase dynamics theory, where the effects of stability parameter and temperature on bitumen microstructure and micro-mechanical behavior are studied combined with MD Simulation. Simulation results show that the saturates phase, in contrast to the naphthene aromatics phase, plays a major role in bitumen micro-mechanical behavior. A high stress zone occurs at the interface between the saturates phase and the naphthene aromatics phase, which may form discontinuities that further affect the bitumen frictional performance.

  19. Simulation For Synchronization Of A Micro-Grid With Three-Phase Systems

    OpenAIRE

    Mohammad Jafari Far

    2015-01-01

    Abstract today due to the high reliability of the micro-grids they have developed significantly. They have two states of operation the island state and connection to the main grid. Under certain circumstances the micro-grid is connected to or disconnected from the network. Synchronization of a micro-grid with the network must be done when its voltage is synchronized with the voltage in the main grid. Phase lock loops are responsible to identify the voltage phase of the micro-gird and the main...

  20. Mixing efficiency inside micro-droplets coalesced by two components in cross-structure

    Science.gov (United States)

    Ren, Yanlin; Liu, Zhaomiao; Pang, Yan

    2017-11-01

    The mixing of micro-droplets is used in analytical chemistry, medicine production and material synthesis owing to its advantages including the encapsulation and narrow time residence distribution. In this work, droplets are coalesced by two dispersed phase with different flow rates, generated in cross-structure and mixed in planar serpentine structure. The mixing efficiency of micro-droplets under control characters including the width of entrance and the flow rate of dispersed phases have been investigated by experiments and numerical simulations. The UDS (user-defined scalar) as dimensionless concentration of the solution is adopted in simulation, and is used to calculate the concentration and the mixing effect. By changing the flow rates and the entrances` width, the changing rules of the mixing characters have been obtained. The asymmetry distributions of components make rapid mixing process in half part of each droplet when travel through a straight channel. Increasing of the ratio of entrance width result into larger droplet and weaken the chaotic mixing effect. Meanwhile, the coalesced mechanism can be performed by ranging the ratio of flow rates, the ranges are also determined by the widths of entrances. The authors gratefully acknowledge the support of National Natural Science Foundation of China (Grant No. 11572013).

  1. Silk sericin-alginate-chitosan microcapsules: hepatocytes encapsulation for enhanced cellular functions.

    Science.gov (United States)

    Nayak, Sunita; Dey, Sanchareeka; Kundu, Subhas C

    2014-04-01

    The encapsulation based technology permits long-term delivery of desired therapeutic products in local regions of body without the need of immunosuppressant drugs. In this study microcapsules composed of sericin and alginate micro bead as inner core and with an outer chitosan shell are prepared. This work is proposed for live cell encapsulation for potential therapeutic applications. The sericin protein is obtained from cocoons of non-mulberry silkworm Antheraea mylitta. The sericin-alginate micro beads are prepared via ionotropic gelation under high applied voltage. The beads further coated with chitosan and crosslinked with genipin. The microcapsules developed are nearly spherical in shape with smooth surface morphology. Alamar blue assay and confocal microscopy indicate high cell viability and uniform encapsulated cell distribution within the sericin-alginate-chitosan microcapsules indicating that the microcapsules maintain favourable microenvironment for the cells. The functional analysis of encapsulated cells demonstrates that the glucose consumption, urea secretion rate and intracellular albumin content increased in the microcapsules. The study suggests that the developed sericin-alginate-chitosan microcapsule contributes towards the development of cell encapsulation model. It also offers to generate enriched population of metabolically and functionally active cells for the future therapeutics especially for hepatocytes transplantation in acute liver failure. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. OSR encapsulation basis -- 100-KW

    International Nuclear Information System (INIS)

    Meichle, R.H.

    1995-01-01

    The purpose of this report is to provide the basis for a change in the Operations Safety Requirement (OSR) encapsulated fuel storage requirements in the 105 KW fuel storage basin which will permit the handling and storing of encapsulated fuel in canisters which no longer have a water-free space in the top of the canister. The scope of this report is limited to providing the change from the perspective of the safety envelope (bases) of the Safety Analysis Report (SAR) and Operations Safety Requirements (OSR). It does not change the encapsulation process itself

  3. Design and characterization of a 3D encapsulation with silicon vias for radio frequency micro-electromechanical system resonator

    Science.gov (United States)

    Zhao, Ji-Cong; Yuan, Quan; Wang, Feng-Xiang; Kan, Xiao; Han, Guo-Wei; Sun, Ling; Sun, Hai-Yan; Yang, Jin-Ling; Yang, Fu-Hua

    2017-06-01

    In this paper, we present a three-dimensional (3D) vacuum packaging technique at a wafer level for a radio frequency micro-electromechanical system (RF MEMS) resonator, in which low-loss silicon vias is used to transmit RF signals. Au-Sn solder bonding is adopted to provide a vacuum encapsulation as well as electrical conductions. A RF model of the encapsulation cap is established to evaluate the parasitic effect of the packaging, which provides an effective design solution of 3D RF MEMS encapsulation. With the proposed packaging structure, the signal-to-background ratio (SBR) of 24 dB is achieved, as well as the quality factor (Q-factor) of the resonator increases from 8000 to 10400 after packaging. The packaged resonator has a linear frequency-temperature (f-T) characteristic in a temperature range between 0 °C and 100 °C. And the package shows favorable long-term stability of the Q-factor over 200 days, which indicates that the package has excellent hermeticity. Furthermore, the average shear strength is measured to be 43.58 MPa among 10 samples. Project supported by the National Natural Science Foundation of China (Grant Nos. 61234007, 61404136, and 61504130), the Fund from the Ministry of Science and Technology of China (Grant No. 2013YQ16055103), the Key Research & Development Program of Jiangsu Province, China (Grant No. BE2016007-2), and the Major Project of Natural Science Research of the Higher Education Institutions of Jiangsu Province, China (Grant No. 16KJA510006).

  4. Novel encapsulation systems and processes for overcoming the challenges of polypharmacy.

    Science.gov (United States)

    Orlu-Gul, Mine; Topcu, Ahmet Alptekin; Shams, Talayeh; Mahalingam, Suntharavathanan; Edirisinghe, Mohan

    2014-10-01

    The encapsulation process has been studied to develop smart drug delivery systems for decades. In particular, micro-encapsulation and nano-encapsulation approaches have gained wide interest in the development of particulate drug delivery and achieved progress in specialties such as nano-medicine. Encapsulation technologies have evolved through various platforms including emulsion solvent evaporation, spray drying and polymer conjugation. Among current encapsulation methods, electrohydrodynamic and microfluidic processes stand out by enabling the making of formulations with uniform shape and nanoscale size. Pressurized gyration is a new method of combining rotation and controlled pressure to produce encapsulated structures of various morphologies. In this review we address key developments in electrohydrodynamic, microfluidic, their combined and new approaches as well as their potential to obtain combined therapies with desired drug release profiles. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Preparation of CMC-modified melamine resin spherical nano-phase change energy storage materials.

    Science.gov (United States)

    Hu, Xiaofeng; Huang, Zhanhua; Zhang, Yanhua

    2014-01-30

    A novel carboxymethyl cellulose (CMC)-modified melamine-formaldehyde (MF) phase change capsule with excellent encapsulation was prepared by in situ polymerization. Effects of CMC on the properties of the capsules were studied by Fourier transformation infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), scanning electronic microscopy (SEM), X-ray diffractometry (XRD), and thermogravimetric analysis (TGA). The results showed that the CMC-modified capsules had an average diameter of about 50nm and good uniformity. The phase change enthalpy of the capsules was increased and the cracking ratio decreased by incorporating a suitable amount of CMC. The optimum phase change enthalpy of the nanocapsules was 83.46J/g, and their paraffin content was 63.1%. The heat resistance of the capsule shells decreased after CMC modification. In addition, the nanocapsule cracking ratio of the nanocapsules was 11.0%, which is highly attractive for their application as nano phase change materials. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Study of phase changing characteristics of granular composites using differential scanning calorimetry

    International Nuclear Information System (INIS)

    Rady, Mohamed

    2009-01-01

    Characterization of the phase changing behavior of granular materials is an important issue for design and optimization of latent heat thermal energy storage (LHTES) systems. In the present work, differential scanning calorimetry (DSC) has been used to study the phase changing behavior of granular composites consisting of ceramic encapsulated phase change material (EPCM) with particle diameters of 1-3 mm. The obtained DSC curves characterizing melting and solidification of the composite material are shown to be dependent upon the values of heating and cooling rates. Direct utilization of the measured DSC curves could result in an inexact representation of the sample enthalpy change. A simple procedure has been advised to obtain accurate quantitative results from the DSC measurements based on the estimation of the thermal resistance between the sample and its enclosure. Analysis of the evolution of latent heat of EPCM with temperature at different values of cooling/heating rates is presented.

  7. Thermal energy storage characteristics of micro-nanoencapsulated heneicosane and octacosane with poly(methylmethacrylate) shell.

    Science.gov (United States)

    Sarı, Ahmet; Alkan, Cemil; Biçer, Alper

    2016-05-01

    In this study, PMMA/heneicosane (C21) and PMMA/octacosane (C28) micro-nano capsules were fabricated via emulsion polymerisation method. The chemical structures of the fabricated capsules were verified with the FT-IR spectroscopy analysis. The results of POM, SEM and PSD analysis indicated that most of the capsules were consisted of micro/nano-sized spheres with compact surface. The DSC measurements showed that the capsules had melting temperature in the range of about 39-60 °C and latent heat energy storage capacity in the range of about 138-152 J/g. The results of TGA showed that sublimit temperature values regarding the first degradation steps of both capsules were quite over the phase change or working temperatures of encapsulated paraffins. The thermal cycling test exhibited that the capsules had good thermal reliability and chemical stability. Additionally, the prepared capsules had reasonably high thermal conductivity.

  8. Micro-macro model for prediction of local temperature distribution in heterogeneous and two-phase media

    Directory of Open Access Journals (Sweden)

    Furmański Piotr

    2014-09-01

    Full Text Available Heat flow in heterogeneous media with complex microstructure follows tortuous path and therefore determination of temperature distribution in them is a challenging task. Two-scales, micro-macro model of heat conduction with phase change in such media was considered in the paper. A relation between temperature distribution on the microscopic level, i.e., on the level of details of microstructure, and the temperature distribution on the macroscopic level, i.e., on the level where the properties were homogenized and treated as effective, was derived. The expansion applied to this relation allowed to obtain its more simplified, approximate form corresponding to separation of micro- and macro-scales. Then the validity of this model was checked by performing calculations for 2D microstructure of a composite made of two constituents. The range of application of the proposed micro-macro model was considered in transient states of heat conduction both for the case when the phase change in the material is present and when it is absent. Variation of the effective thermal conductivity with time was considered and a criterion was found for which application of the considered model is justified.

  9. Nano-encapsulation of olive leaf phenolic compounds through WPC-pectin complexes and evaluating their release rate.

    Science.gov (United States)

    Mohammadi, Adeleh; Jafari, Seid Mahdi; Assadpour, Elham; Faridi Esfanjani, Afshin

    2016-01-01

    In this study, W/O micro-emulsions as primary emulsions and a complex of whey protein concentrate (WPC) and pectin in the external aqueous phase were used to produce W/O/W emulsions. Average droplet size of primary W/O emulsion and multiple emulsions stabilized by WPC or WPC-pectin after one day of production was 6.16, 675.7 and 1443 nm, respectively, which achieved to 22.97, 347.7 and, 1992.4 nm after 20 days storage without any sedimentation. The encapsulation efficiency of phenolic compounds for stabilized W/O/W emulsions with WPC and WPC-pectin were 93.34% and 96.64%, respectively, which was decreased to 72.73% and 88.81% at 20th storage day. The lowest release of phenolics observed in multiple emulsions of WPC-pectin. These results suggest that nano-encapsulation of olive leaf extract within inner aqueous phase of W/O/W emulsions was successful, and there could be a high potential for the application of olive leaf extract in fortification of food products. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Preparation and Properties of Paraffin/TiO2/Active-carbon Composite Phase Change Materials

    Directory of Open Access Journals (Sweden)

    HAO Yong-gan

    2016-11-01

    Full Text Available A novel composite phase change materials (PCMs of paraffin/TiO2/active-carbon was prepared by a microemulsion method, where paraffin acted as a PCM and titanium dioxide (TiO2 as matrix material, and a small amount of active carbon was added to improve the thermal conductivity. The compositions, morphology and thermal properties of the paraffin/TiO2/active-carbon composite PCMs were characterized by XRD, SEM, TGA and DSC respectively. The shape stability during phase change process of this composite was also tested. The results show that paraffin is well encapsulated by TiO2 matrix, and thus exhibiting excellent shape-stabilized phase change feature. Besides, this composite PCM also presents superhydrophobic property. Therefore, these multifunctional features will endow PCMs with important application potential in energy efficient buildings.

  11. Characterization of a lime-pozzolan plaster containing phase change material

    International Nuclear Information System (INIS)

    Pavlíková, Milena; Pavlík, Zbyšek; Trník, Anton; Pokorný, Jaroslav; Černý, Robert

    2015-01-01

    A PCM (Phase Change Material) modified lime-pozzolan plaster for improvement of thermal energy storage of building envelopes is studied in the paper. The investigated plaster is composed of lime hydrate, pozzolan admixture based on metakaolin and mudstone, silica sand, water and paraffin wax encapsulated in polymer capsule. The reference plaster without PCM application is studied as well. The analyzed materials are characterized by bulk density, matrix density, total open porosity, compressive strength and pore size distribution. The temperature of phase change, heat of fusion and crystallization are studied using DSC (Difference Scanning Calorimetry) analysis performed in air atmosphere. In order to get information on materials hygrothermal performance, determination of thermal and hygric properties is done in laboratory conditions. Experimental data reveal a substantial improvement of heat storage capacity of PCM-modified plaster as compared to the reference material without PCM

  12. Light-Responsive Polymer Micro- and Nano-Capsules

    Directory of Open Access Journals (Sweden)

    Valentina Marturano

    2016-12-01

    Full Text Available A significant amount of academic and industrial research efforts are devoted to the encapsulation of active substances within micro- or nanocarriers. The ultimate goal of core–shell systems is the protection of the encapsulated substance from the environment, and its controlled and targeted release. This can be accomplished by employing “stimuli-responsive” materials as constituents of the capsule shell. Among a wide range of factors that induce the release of the core material, we focus herein on the light stimulus. In polymers, this feature can be achieved introducing a photo-sensitive segment, whose activation leads to either rupture or modification of the diffusive properties of the capsule shell, allowing the delivery of the encapsulated material. Micro- and nano-encapsulation techniques are constantly spreading towards wider application fields, and many different active molecules have been encapsulated, such as additives for food-packaging, pesticides, dyes, pharmaceutics, fragrances and flavors or cosmetics. Herein, a review on the latest and most challenging polymer-based micro- and nano-sized hollow carriers exhibiting a light-responsive release behavior is presented. A special focus is put on systems activated by wavelengths less harmful for living organisms (mainly in the ultraviolet, visible and infrared range, as well as on different preparation techniques, namely liposomes, self-assembly, layer-by-layer, and interfacial polymerization.

  13. Experimental research on the use of micro-encapsulated Phase Change Materials to store solar energy in concrete floors and to save energy in Dutch houses

    NARCIS (Netherlands)

    Entrop, Alexis Gerardus; Brouwers, Jos; Reinders, Angelina H.M.E.

    2011-01-01

    In this paper an experimental research is presented on a new use of Phase Change Materials (PCMs) in concrete floors, in which thermal energy provided by the sun is stored in a mix of concrete and PCMs. When this thermal energy is being released – in moderate sea climates during the evening and

  14. Micro-Raman spectroscopy studies of the phase separation mechanisms of transition-metal phosphate glasses

    International Nuclear Information System (INIS)

    Mazali, Italo Odone; Alves, Oswaldo Luiz; Gimenez, Iara de Fatima

    2009-01-01

    Glass-ceramics are prepared by controlled separation of crystal phases in glasses, leading to uniform and dense grain structures. On the other hand, chemical leaching of soluble crystal phases yields porous glass-ceramics with important applications. Here, glass/ceramic interfaces of niobo-, vanado- and titano-phosphate glasses were studied by micro-Raman spectroscopy, whose spatial resolution revealed the multiphase structures. Phase-separation mechanisms were also determined by this technique, revealing that interface composition remained unchanged as the crystallization front advanced for niobo- and vanadophosphate glasses (interface-controlled crystallization). For titanophosphate glasses, phase composition changed continuously with time up to the equilibrium composition, indicating a spinodal-type phase separation. (author)

  15. Nanofluid based on self-nanoencapsulated metal/metal alloys phase change materials with tuneable crystallisation temperature.

    Science.gov (United States)

    Navarrete, Nuria; Gimeno-Furio, Alexandra; Mondragon, Rosa; Hernandez, Leonor; Cabedo, Luis; Cordoncillo, Eloisa; Julia, J Enrique

    2017-12-14

    Nanofluids using nanoencapsulated Phase Change Materials (nePCM) allow increments in both the thermal conductivity and heat capacity of the base fluid. Incremented heat capacity is produced by the melting enthalpy of the nanoparticles core. In this work two important advances in this nanofluid type are proposed and experimentally tested. It is firstly shown that metal and metal alloy nanoparticles can be used as self-encapsulated nePCM using the metal oxide layer that forms naturally in most commercial synthesis processes as encapsulation. In line with this, Sn/SnOx nanoparticles morphology, size and thermal properties were studied by testing the suitability and performance of encapsulation at high temperatures and thermal cycling using a commercial thermal oil (Therminol 66) as the base fluid. Secondly, a mechanism to control the supercooling effect of this nePCM type based on non-eutectic alloys was developed.

  16. Selective encapsulation by Janus particles

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wei, E-mail: wel208@mrl.ucsb.edu [Materials Research Laboratory, University of California, Santa Barbara, California 93106 (United States); Ruth, Donovan; Gunton, James D. [Department of Physics, Lehigh University, Bethlehem, Pennsylvania 18015 (United States); Rickman, Jeffrey M. [Department of Physics, Lehigh University, Bethlehem, Pennsylvania 18015 (United States); Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015 (United States)

    2015-06-28

    We employ Monte Carlo simulation to examine encapsulation in a system comprising Janus oblate spheroids and isotropic spheres. More specifically, the impact of variations in temperature, particle size, inter-particle interaction range, and strength is examined for a system in which the spheroids act as the encapsulating agents and the spheres as the encapsulated guests. In this picture, particle interactions are described by a quasi-square-well patch model. This study highlights the environmental adaptation and selectivity of the encapsulation system to changes in temperature and guest particle size, respectively. Moreover, we identify an important range in parameter space where encapsulation is favored, as summarized by an encapsulation map. Finally, we discuss the generalization of our results to systems having a wide range of particle geometries.

  17. Introducing lattice strain to graphene encapsulated in hBN

    Science.gov (United States)

    Tomori, Hikari; Hiraide, Rineka; Ootuka, Youiti; Watanabe, Kenji; Taniguchi, Takashi; Kanda, Akinobu

    Due to the characteristic lattice structure, lattice strain in graphene produces an effective gauge field. Theories tell that by controlling spatial variation of lattice strain, one can tailor the electronic state and transport properties of graphene. For example, under uniaxial local strain, graphene exhibits a transport gap at low energies, which is attractive for a graphene application to field effect devices. Here, we develop a method for encapsulating a strained graphene film in hexagonal boron-nitride (hBN). It is known that the graphene carrier mobility is significantly improved by the encapsulation of graphene in hBN, which has never been applied to strained graphene. We encapsulate graphene in hBN using the van der Waals assembly method. Strain is induced by sandwiching a graphene film between patterned hBN sheets. Spatial variation of strain is confirmed with micro Raman spectroscopy. Transport measurement of encapsulated strained graphene is in progress.

  18. Heat storage properties of organic phase-change materials confined in the nanospace of mesoporous SBA-15 and CMK-3.

    Science.gov (United States)

    Kadoono, Tomosuke; Ogura, Masaru

    2014-03-28

    A novel type of material encapsulating phase-change materials (PCMs) is reported concerning their implication for use as thermal energy storage devices. The composites of siliceous SBA-15 or carbonaceous CMK-3 mesoporous assemblies and organic PCMs could be used to make leak-free devices that retain their capabilities over many thermal cycles for heat storage/release. A confinement effect was observed that alters the thermal properties of the encapsulated PCM, especially in CMK-3 without any similar effects in other carbon materials.

  19. Encapsulation of fish oil into hollow solid lipid micro- and nanoparticles using carbon dioxide.

    Science.gov (United States)

    Yang, Junsi; Ciftci, Ozan Nazim

    2017-09-15

    Fish oil was encapsulated in hollow solid lipid micro- and nanoparticles formed from fully hydrogenated soybean oil (FHSO) using a novel green method based on atomization of supercritical carbon dioxide (SC-CO 2 )-expanded lipid. The highest fish oil loading efficiency (97.5%, w/w) was achieved at 50%, w/w, initial fish oil concentration. All particles were spherical and in the dry free-flowing form; however, less smooth surface with wrinkles was observed when the initial fish oil concentration was increased up to 50%. With increasing initial fish oil concentration, melting point of the fish oil-loaded particles shifted to lower onset melting temperatures, and major polymorphic form transformed from α to β and/or β'. Oxidative stability of the loaded fish oil was significantly increased compared to the free fish oil (p<0.05). This innovative method forms free-flowing powder products that are easy-to-use solid fish oil formulation, which makes the handling and storage feasible and convenient. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Osmotic pressure-dependent release profiles of payloads from nanocontainers by co-encapsulation of simple salts

    Science.gov (United States)

    Behzadi, Shahed; Rosenauer, Christine; Kappl, Michael; Mohr, Kristin; Landfester, Katharina; Crespy, Daniel

    2016-06-01

    The encapsulation of payloads in micro- to nano-scale capsules allows protection of the payload from the surrounding environment and control of its release profile. Herein, we program the release of hydrophilic payloads from nanocontainers by co-encapsulating simple inorganic salts for adjusting the osmotic pressure. The latter either leads to a burst release at high concentrations of co-encapsulated salts or a sustained release at lower concentrations. Osmotic pressure causes swelling of the nanocapsule's shell and therefore sustained release profiles can be adjusted by crosslinking it. The approach presented allows for programing the release of payloads by co-encapsulating inexpensive salts inside nanocontainers without the help of stimuli-responsive materials.The encapsulation of payloads in micro- to nano-scale capsules allows protection of the payload from the surrounding environment and control of its release profile. Herein, we program the release of hydrophilic payloads from nanocontainers by co-encapsulating simple inorganic salts for adjusting the osmotic pressure. The latter either leads to a burst release at high concentrations of co-encapsulated salts or a sustained release at lower concentrations. Osmotic pressure causes swelling of the nanocapsule's shell and therefore sustained release profiles can be adjusted by crosslinking it. The approach presented allows for programing the release of payloads by co-encapsulating inexpensive salts inside nanocontainers without the help of stimuli-responsive materials. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01882c

  1. Encapsulation of high temperature molten salts

    Science.gov (United States)

    Oxley, James D.; Mathur, Anoop Kumar

    2017-05-16

    The present disclosure relates to a method of encapsulating microcapsules containing relatively high temperature phase change materials and the microcapsules so produced. The microcapsules are coated with an inorganic binder, film former and an inorganic filler. The microcapsules may include a sacrificial layer that is disposed between the particle and the coating. The microcapsules may also include an inner coating layer, sacrificial layer and outer coating layer. The microcapsules are particularly useful for thermal energy storage in connection with, e.g., heat collected from concentrating solar collectors.

  2. Analysis of implementing phase change materials in open-air swimming pools

    OpenAIRE

    Zsembinszki, Gabriel; Farid, Mohammed M.; Cabeza, Luisa F.

    2012-01-01

    Open-air swimming pools in Mediterranean climate regions are heated by direct solar radiation with no auxiliary heating systems. In order to extend the swimming season or improve comfort conditions, solar collectors or pool coverings may be used. In this paper, another approach was followed through the use of phase change materials (PCM). Two methods of introducing the PCM were considered: (1) encapsulated in the sidewalls and bottom of the pool, and (2) use the PCM in an external he...

  3. Thermal performance of solar air collection-storage system with phase change material based on flat micro-heat pipe arrays

    International Nuclear Information System (INIS)

    Wang, Teng-yue; Diao, Yan-hua; Zhu, Ting-ting; Zhao, Yao-hua; Liu, Jing; Wei, Xiang-qian

    2017-01-01

    Highlights: • A new type of solar air collection-storage thermal system with PCM is proposed. • Flat micro-heat pipe array is used as the core heat transfer element. • Air volume flow rate influence charging and discharging time obviously. • Air-side thermal resistance dominates during charging and discharging. - Abstract: In this study, a new type of solar air collection-storage thermal system (ACSTS) with phase change material (PCM) is designed using flat micro-heat pipe arrays (FMHPA) as the heat transfer core element. The solar air collector comprises FMHPA and vacuum tubes. The latent thermal storage device (LTSD) utilizes lauric acid, which is a type of fatty acid, as PCM. The experiments test the performance of collector efficiency and charging and discharging time of thermal storage device through different air volume flow rates. After a range of tests, high air volume flow rate is concluded to contribute to high collector efficiency and short charging and discharging time and enhance instantaneous heat transfer, whereas an air volume flow rate of 60 m"3/h during discharging provides a steady outlet temperature. The cumulative heat transfer during discharging is between 4210 and 4300 kJ.

  4. High throughput micro-well generation of hepatocyte micro-aggregates for tissue engineering.

    Directory of Open Access Journals (Sweden)

    Elien Gevaert

    Full Text Available The main challenge in hepatic tissue engineering is the fast dedifferentiation of primary hepatocytes in vitro. One successful approach to maintain hepatocyte phenotype on the longer term is the cultivation of cells as aggregates. This paper demonstrates the use of an agarose micro-well chip for the high throughput generation of hepatocyte aggregates, uniform in size. In our study we observed that aggregation of hepatocytes had a beneficial effect on the expression of certain hepatocyte specific markers. Moreover we observed that the beneficial effect was dependent on the aggregate dimensions, indicating that aggregate parameters should be carefully considered. In a second part of the study, the selected aggregates were immobilized by encapsulation in methacrylamide-modified gelatin. Phenotype evaluations revealed that a stable hepatocyte phenotype could be maintained during 21 days when encapsulated in the hydrogel. In conclusion we have demonstrated the beneficial use of micro-well chips for hepatocyte aggregation and the size-dependent effects on hepatocyte phenotype. We also pointed out that methacrylamide-modified gelatin is suitable for the encapsulation of these aggregates.

  5. High throughput micro-well generation of hepatocyte micro-aggregates for tissue engineering.

    Science.gov (United States)

    Gevaert, Elien; Dollé, Laurent; Billiet, Thomas; Dubruel, Peter; van Grunsven, Leo; van Apeldoorn, Aart; Cornelissen, Ria

    2014-01-01

    The main challenge in hepatic tissue engineering is the fast dedifferentiation of primary hepatocytes in vitro. One successful approach to maintain hepatocyte phenotype on the longer term is the cultivation of cells as aggregates. This paper demonstrates the use of an agarose micro-well chip for the high throughput generation of hepatocyte aggregates, uniform in size. In our study we observed that aggregation of hepatocytes had a beneficial effect on the expression of certain hepatocyte specific markers. Moreover we observed that the beneficial effect was dependent on the aggregate dimensions, indicating that aggregate parameters should be carefully considered. In a second part of the study, the selected aggregates were immobilized by encapsulation in methacrylamide-modified gelatin. Phenotype evaluations revealed that a stable hepatocyte phenotype could be maintained during 21 days when encapsulated in the hydrogel. In conclusion we have demonstrated the beneficial use of micro-well chips for hepatocyte aggregation and the size-dependent effects on hepatocyte phenotype. We also pointed out that methacrylamide-modified gelatin is suitable for the encapsulation of these aggregates.

  6. Thermal performance study of form-stable composite phase change material with polyacrylic

    Science.gov (United States)

    Kee, Shin Yiing; Munusamy, Yamuna; Ong, Kok Seng; Chee, Swee Yong; Sanmuggam, Shimalaa

    2017-04-01

    Phase change material (PCM) is one of the most popular and widely used as thermal energy storage material because it is able to absorb and release a large amount of latent heat during a phase change process over a narrow temperature range. In this work, the form-stable composite PCM was prepared by blending of PMMA and myristic acid in different weight percentage. PMMA was used as a supporting material while myristic acid was used as PCM. Theoretically, PCM can be encapsulated in the support material after blending. However, a small amount of liquid PCMs can leak out from supporting material due to the volume change in phase change process. Therefore, a form-stable composite PCM with polyacrylic coating was studied. Leakage test was carried out to determine the leakage percentage of the form-stable composite PCM. Fourier transform infrared spectroscopy (FTIR) was used to characterize the chemical compatibility of the form-stable PCM composite while differential scanning calorimetry (DSC) was used to study the melting, freezing point and the latent heat of melting and freezing for the form-stable composite PCM.

  7. Enhancement in thermal property and mechanical property of phase change microcapsule with modified carbon nanotube

    International Nuclear Information System (INIS)

    Li, Min; Chen, Meirong; Wu, Zhishen

    2014-01-01

    Highlights: • Carbon nanotubes was grafted and used to enhance the thermal conductivities of the microcapsules. • The average particle size of the prepared MicroPCMs/CNTs-SA is 0.1 μm. • The thermal conductivity of MicroPCMs/CNTs-SA with 4% of CNTs increased by 79.2% compared with MicroPCMs. • MicroPCMs/CNTs-SA has better durability and thermal stability compared to the original MicroPCMs. - Abstract: Carbon nanotubes grafted with stearyl alcohol (CNTs-SA) was used in synthesizing phase change microcapsules (MicroPCMs) in order to enhance the thermal conductivities of the microcapsules. Urea–formaldehyde resin (UFR) was used as wall material. Scanning Electron Microscope (SEM), laser particle size analyzer, Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimeter (DSC) are employed to characterize the prepared MicroPCMs containing the grafted CNTs (MicroPCMs/CNTs-SA). The results indicated that CNTs improved the performance of microcapsules. The average particle diameter of MicroPCMs/CNTs-SA is much smaller than that of MicroPCMs. There was no chemical reaction among paraffin, CNTs and UFR. The phase change temperature and latent heat of MicroPCMs/CNTs-SA was 26.2 °C and 47.7 J/g, respectively. The thermal conductivity of MicroPCMs/CNTs-SA with 4% of CNTs increased by 79.2% compared with MicroPCMs. The initial decomposition temperature of MicroPCMs/CNTs-SA is 38 °C higher than that of MicroPCMs. After 100 heating and cooling cycles, MicroPCMs/CNTs-SA still has good durability and thermal stability

  8. The Effect of Emulation Formulation to Encapsulation of Fe3O4 Magnetic nanoparticle with Poly (Lactic Acid)

    International Nuclear Information System (INIS)

    Evi Yuliyanti; Sudaryanto; Mujamilah; Yoki Yulizar

    2008-01-01

    The research to study the effect of emulsion formulation to encapsulation Fe 3 O 4 magnetic nanoparticle with Poly(Lactic Acid) (PLA) has been done. Microemulsion by ultrasonic probe is used in encapsulation process and continued by solvent evaporation. Emulsion formulation has been varied by changing oil phase volume in the oil in water (o/w) emulsion system from 6 mL, 8 mL, 10 mL, 12 mL and 14 mL, whereas water phase volume is constant (55 mL). Sample characterization is carried on by Scanning Electron Microscope (SEM) to know the morphology and sample size. X-Ray Diffractometer (XRD) is used to identify the phase, Vibrating Sample Magnetometer (VSM) is used to measure magnetic saturation while Neutron Activation Analysis (NAA) is used to measure encapsulation percentage of Fe 3 O 4 with PLA. The smallest nanosphere is resulted by emulsion formulation (o/w) of 14/55 with the main sample size 382 nm. The maximum magnetic saturation of Fe 3 O 4 + PLA nanosphere is 2.556 emu/g and encapsulation percentage is 24.94 %. (author)

  9. Poly(dodecyl methacrylate) as solvent of paraffins for phase change materials and thermally reversible light scattering films.

    Science.gov (United States)

    Puig, Julieta; Williams, Roberto J J; Hoppe, Cristina E

    2013-09-25

    Paraffins are typical organic phase change materials (PCM) used for latent heat storage. For practical applications they must be encapsulated to prevent leakage or agglomeration during fusion. In this study it is shown that eicosane (C20H42 = C20) in the melted state could be dissolved in the hydrophobic domains of poly(dodecyl methacrylate) (PDMA) up to concentrations of 30 wt %, avoiding the need of encapsulation. For a 30 wt % solution, the heat of phase change was close to 69 J/g, a reasonable value for its use as a PCM. The fully converted solution remained transparent at 80 °C with no evidence of phase separation but became opaque by cooling as a consequence of paraffin crystallization. Heating above the melting temperature regenerated a transparent material. A high contrast ratio and abrupt transition between opaque and transparent states was observed for the 30 wt % blends, with a transparent state at 35 °C and an opaque state at 23 °C. This behavior was completely reproducible during consecutive heating/cooling cycles, indicating the possible use of this material as a thermally reversible light scattering (TRLS) film.

  10. Accelerated thermal aging of rubber modified epoxy encapsulants

    International Nuclear Information System (INIS)

    Sayre, J.A.

    1979-01-01

    A program is outlined to enable prediction of physical properties of rubber modified epoxy encapsulants over the life time of the extended life neutron generators. Preliminary results show that the chief aging phenomenon occurring is increased crosslink density of the epoxy matrix. No changes in the rubber phase have been detected. The effect of increased epoxy crosslink density has been higher volume resistivity at 66 0 C, increased tensile strength, and decreased ultimate elongation

  11. Experimental research on the use of micro-encapsulated Phase Change Materials to store solar energy in concrete floors in order to save energy in Dutch houses

    NARCIS (Netherlands)

    Entrop, A.G.; Brouwers, H.J.H.; Reinders, A.H.M.E.

    2011-01-01

    In this paper an experimental research is presented on a new use of Phase Change Materials (PCMs) in concrete floors, in which thermal energy provided by the sun is stored in a mix of concrete and PCMs. When this thermal energy is being released – in moderate sea climates during the evening and

  12. Preparation and characterization of form-stable paraffin/polyurethane composites as phase change materials for thermal energy storage

    International Nuclear Information System (INIS)

    Chen, Keping; Yu, Xuejiang; Tian, Chunrong; Wang, Jianhua

    2014-01-01

    Highlights: • Paraffin/polyurethane composite as form-stable phase change material was prepared by bulk polymerization. • Paraffin/polyurethane composite possesses typical character of dual phase transition. • Total latent heat of n-eicosane/PUPCM is as high as 141.2 J/g. • Maximum encapsulation ratio for n-octadecane/PUPCM composites is 25% w/w. - Abstract: Polyurethane phase change material (PUPCM) has been demonstrated to be effective solid–solid phase change material for thermal energy storage. However, the high cost and complex process on preparation of PUPCMs with high enthalpy and broad phase transition temperature range can prohibit industrial-scale applications. In this work, a series of novel form-stable paraffin/PUPCMs composites (n-octadecane/PUPCM, n-eicosane/PUPCM and paraffin wax/PUPCM) with high enthalpy and broad phase transition temperature range (20–65 °C) were directly synthesized via bulk polymerization. The composites were prepared at different mass fractions of n-octadecane (10, 20, 25, 30% w/w). The results indicated that the maximum encapsulation ratio for n-octadecane/PUPCM10000 composites was around 25% w/w. The chemical structure and crystalline properties of these composites were characterized by Fourier transform infrared spectroscopy (FT-IR), polarizing optical microscopy (POM), wide-angle X-ray diffraction (WAXD). Thermal properties and thermal reliability of the composites were determined using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). From DSC analysis, the composites showed a typical dual phase change temperature. The enthalpy for the composite with 25% w/w n-eicosane was as high as 141.2 J/g. TGA analysis indicated that the composites degraded at considerably high temperatures. The process of preparation of PUPCMs and their composites was very simple, inexpensive, environmental friendly and easy to process into desired shapes, which could find the promising applications in solar

  13. Development of Hollow Steel Ball Macro-Encapsulated PCM for Thermal Energy Storage Concrete

    Directory of Open Access Journals (Sweden)

    Zhijun Dong

    2016-01-01

    Full Text Available The application of thermal energy storage with phase change materials (PCMs for energy efficiency of buildings grew rapidly in the last few years. In this research, octadecane paraffin was served as a PCM, and a structural concrete with the function of indoor temperature control was developed by using a macro-encapsulated PCM hollow steel ball (HSB. The macro-encapsulated PCM-HSB was prepared by incorporation of octadecane into HSBs through vacuum impregnation. Test results showed that the maximum percentage of octadecane carried by HSBs was 80.3% by mass. The macro-encapsulated PCM-HSB has a latent heat storage capacity as high as 200.5 J/g. The compressive strength of concrete with macro-encapsulated PCM-HSB at 28 days ranged from 22 to 40 MPa. The indoor thermal performance test revealed that concrete with macro-encapsulated octadecane-HSB was capable of reducing the peak indoor air temperature and the fluctuation of indoor temperature. It can be very effective in transferring the heating and cooling loads away from the peak demand times.

  14. Development of Hollow Steel Ball Macro-Encapsulated PCM for Thermal Energy Storage Concrete.

    Science.gov (United States)

    Dong, Zhijun; Cui, Hongzhi; Tang, Waiching; Chen, Dazhu; Wen, Haibo

    2016-01-19

    The application of thermal energy storage with phase change materials (PCMs) for energy efficiency of buildings grew rapidly in the last few years. In this research, octadecane paraffin was served as a PCM, and a structural concrete with the function of indoor temperature control was developed by using a macro-encapsulated PCM hollow steel ball (HSB). The macro-encapsulated PCM-HSB was prepared by incorporation of octadecane into HSBs through vacuum impregnation. Test results showed that the maximum percentage of octadecane carried by HSBs was 80.3% by mass. The macro-encapsulated PCM-HSB has a latent heat storage capacity as high as 200.5 J/g. The compressive strength of concrete with macro-encapsulated PCM-HSB at 28 days ranged from 22 to 40 MPa. The indoor thermal performance test revealed that concrete with macro-encapsulated octadecane-HSB was capable of reducing the peak indoor air temperature and the fluctuation of indoor temperature. It can be very effective in transferring the heating and cooling loads away from the peak demand times.

  15. Development of Hollow Steel Ball Macro-Encapsulated PCM for Thermal Energy Storage Concrete

    Science.gov (United States)

    Dong, Zhijun; Cui, Hongzhi; Tang, Waiching; Chen, Dazhu; Wen, Haibo

    2016-01-01

    The application of thermal energy storage with phase change materials (PCMs) for energy efficiency of buildings grew rapidly in the last few years. In this research, octadecane paraffin was served as a PCM, and a structural concrete with the function of indoor temperature control was developed by using a macro-encapsulated PCM hollow steel ball (HSB). The macro-encapsulated PCM-HSB was prepared by incorporation of octadecane into HSBs through vacuum impregnation. Test results showed that the maximum percentage of octadecane carried by HSBs was 80.3% by mass. The macro-encapsulated PCM-HSB has a latent heat storage capacity as high as 200.5 J/g. The compressive strength of concrete with macro-encapsulated PCM-HSB at 28 days ranged from 22 to 40 MPa. The indoor thermal performance test revealed that concrete with macro-encapsulated octadecane-HSB was capable of reducing the peak indoor air temperature and the fluctuation of indoor temperature. It can be very effective in transferring the heating and cooling loads away from the peak demand times. PMID:28787859

  16. Fabrication and characterization of microencapsulated phase change material with low supercooling for thermal energy storage

    International Nuclear Information System (INIS)

    Tang, Xiaofen; Li, Wei; Zhang, Xingxiang; Shi, Haifeng

    2014-01-01

    Microencapsulated phase change material with a low supercooling degree is one of the increasing important researches as well as industrial application for thermal energy storage. This study develops a novel and low supercooling microencapsulated n-octadecane (MicroC18) with n-octadecyl methacrylate (ODMA)–methacrylic acid (MAA) copolymer as shell using suspension-like polymerization. The fabrication and properties of MicroC18 were characterized by using a field-emission scanning electron microscope (FE-SEM), Fourier transformed infrared spectroscopy (FTIR), particle size distribution analysis, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The MicroC18 with spherical shapes and an average diameter of 1.60–1.68 μm are fabricated. The onset crystallizing temperatures of MicroC18 are only 4 °C below that of n-octadecane. The unique copolymer shell has a significant impact on the low supercooling of MicroC18. The n-octadecane in all of the samples crystalizes by heterogeneous nucleation. The content of n-octadecane in the microcapsules is low; however, the microcapsules still exhibit high enthalpy through the contribution of the shells. At a monomers/n-octadecane mass ratio is 2:1, as used in the recipes, the MicroC18 with highest phase change enthalpy was obtained. The temperature of thermal resistant of MicroC18 is approximately 235.6 °C, which is affected by the thickness of the polymer shell. - Highlights: • Microencapsulated n-octadecane with comb-like copolymer shell has low supercooling. • The unique shell plays a significant role in suppressing supercooling. • The types of cross-linker affect morphologies and heat enthalpies of microcapsules. • Microcapsules exhibit high phase change enthalpies and thermal stabilities

  17. A solution phase fabrication of magnetic nanoparticles encapsulated in carbon

    International Nuclear Information System (INIS)

    Wei Xianwen; Zhu Guoxing; Xia Chuanjun; Ye Yin

    2006-01-01

    To avoid high energy consumption, intensive use of hardware and high cost in the manufacture of nanoparticles encapsulated in carbon, a simple, efficient and economical solution-phase method for the fabrication of FeNi at C nanostructures has been explored. The reaction to the magnetic metal at C structures here is conducted at a relatively low temperature (160 deg. C) and this strategy can be transferred to prepare other transition metal at C core-shell nanostructures. The saturation magnetization of metal in metal at C nanostructures is similar to those of the corresponding buck metals. Magnetic metal at C nanostructures with magnetic metal nanoparticles inside and a functionalized carbon surface outside may not only provide the opportunity to tailor the magnetic properties for magnetic storage devices and therapeutics but also make possible the loading of other functional molecules (e.g. enzymes, antigens) for clinic diagnostics, molecular biology, bioengineering, and catalysis

  18. Effect of mixing mode and emulsifying agents on micro/nanoencapsulation of low viscosity self-healing agents in polymethyl methacrylate shell

    Science.gov (United States)

    Ahangaran, Fatemeh; Navarchian, Amir H.; Hayaty, Mehran; Esmailpour, Karim

    2016-09-01

    In this study, epoxy prepolymer (EC 157) and pentaerythritol tetrakis (3-mercaptopropionate) (PETMP) as hardener were encapsulated separately in polymethyl methacrylate (PMMA) shells through an internal phase separation method. Chemical structures, morphologies, and thermal properties of healing agent micro/nanocapsules were characterized by Fourier transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FESEM), and thermal gravimetric analysis (TGA) respectively. The effects of encapsulation processing conditions such as mechanical mixing rate, ultrasonication, emulsifier type, and co-emulsifier concentration on encapsulation yield, capsule mean diameter and core content were studied using the Taguchi experimental design approach. The results indicated that the main significant factors affecting the yield of encapsulation are emulsifier type and ultrasonication. The most important factors which affect the mean diameter of capsules are emulsifier type and mechanical mixing rate. The core content was influenced by ultrasonication and mechanical mixing rate. The relative optimum condition of encapsulation was also determined using overall evaluation criteria.

  19. Phase analysis of Fe-nanowires encapsulated into multi-walled carbon nanotubes via 57Fe Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Ruskov, T.; Spirov, I.; Ritschel, M.; Mueller, C.; Leonhardt, A.; Ruskov, R.

    2007-01-01

    We have performed morphological analysis of samples of Fe-nanowires encapsulated into aligned multi-walled carbon nanotubes (Fe-MWCNT) via 57 Fe Moessbauer spectroscopy. The aligned Fe-MWCNTs were obtained by pyrolysis of ferrocene onto an oxidized Si substrate. Transmission Moessbauer spectroscopy (TMS) and back scattered conversion electron Moessbauer spectroscopy (CEMS) were applied in order to distinguish different Fe-phases and their spatial distribution within the whole sample and along the tubes' height. A characterization (on a large spatial scale) of the aligned CNT samples were performed by obtaining TMS spectra for selected spots positioned at different locations of the sample. While the total Fe content changes considerably from one location to another, the γ-Fe/α-Fe phase ratio is constant onto a relatively large area. Using TMS and CEMS for all aligned Fe-MWCNTs samples it is also shown that along the CNT axes, going to the top of the nanotube the relative content of the γ-Fe phase increases. Going to the opposite direction, i.e. towards the silicon substrate, the relative content of the Fe 3 C phase increases, that is in agreement with our previous works. The results of an additional Moessbauer spectroscopy experiment in TMS and CEMS modes performed on a non-aligned sample support the conclusion that in our case the iron phases in the channels of carbon nanotubes are spatially separated as individual nanoparticles. The relative intensity ratio of the α-Fe phase Moessbauer sextets show good magnetic texture along nanotubes axis for one of the aligned samples and the lack of such orientation for the others. (authors)

  20. Quality changes and shelf-life extension of ready-to-eat fish patties by adding encapsulated citric acid.

    Science.gov (United States)

    Bou, Ricard; Claret, Anna; Stamatakis, Antonios; Martínez, Brigitte; Guerrero, Luis

    2017-12-01

    Citric acid is commonly used as a flavoring and preservative in food and beverages. The effect of adding citric acid directly or encapsulated (each at 1 and 2 g kg -1 ) on the quality and shelf-life of ready-to-eat sea bass patties was evaluated during storage at 4 °C in vacuum skin packaging. Microbial growth and total basic volatile nitrogen were maintained at relatively low levels up to 8 weeks of storage. With respect to oxidative stability, the addition of encapsulated citric acid minimized secondary oxidation values more efficiently than its direct addition, regardless of the concentration. This is in agreement with the decreased fishy odor observed in those patties containing encapsulated citric acid. Accordingly, sensory analysis showed that the addition of encapsulated citric acid at 1 g kg -1 resulted in lower scores in fish aroma compared to that of the control. Sourness is dependent on the amount of citric acid added, regardless of the form (direct or encapsulated). The form of citric acid addition, rather than the amount of citric acid added, caused changes in texture. Therefore, the use of encapsulated citric acid represents a suitable strategy that is of great interest in the seafood industry. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  1. Simultaneous thermal and optical imaging of two-phase flow in a micro-model.

    Science.gov (United States)

    Karadimitriou, N K; Nuske, P; Kleingeld, P J; Hassanizadeh, S M; Helmig, R

    2014-07-21

    In the study of non-equilibrium heat transfer in multiphase flow in porous media, parameters and constitutive relations, like heat transfer coefficients between phases, are unknown. In order to study the temperature development of a relatively hot invading immiscible non-wetting fluid and, ultimately, approximate heat transfer coefficients, a transparent micro-model is used as an artificial porous medium. In the last few decades, micro-models have become popular experimental tools for two-phase flow studies. In this work, the design of an innovative, elongated, PDMS (polydimethylsiloxane) micro-model with dimensions of 14.4 × 39 mm(2) and a constant depth of 100 microns is described. A novel setup for simultaneous thermal and optical imaging of flow through the micro-model is presented. This is the first time that a closed flow cell like a micro-model is used in simultaneous thermal and optical flow imaging. The micro-model is visualized by a novel setup that allowed us to monitor and record the distribution of fluids throughout the length of the micro-model continuously and also record the thermal signature of the fluids. Dynamic drainage and imbibition experiments were conducted in order to obtain information about the heat exchange between the phases. In this paper the setup as well as analysis and qualitative results are presented.

  2. miRNA control of vegetative phase change in trees.

    Directory of Open Access Journals (Sweden)

    Jia-Wei Wang

    2011-02-01

    Full Text Available After germination, plants enter juvenile vegetative phase and then transition to an adult vegetative phase before producing reproductive structures. The character and timing of the juvenile-to-adult transition vary widely between species. In annual plants, this transition occurs soon after germination and usually involves relatively minor morphological changes, whereas in trees and other perennial woody plants it occurs after months or years and can involve major changes in shoot architecture. Whether this transition is controlled by the same mechanism in annual and perennial plants is unknown. In the annual forb Arabidopsis thaliana and in maize (Zea mays, vegetative phase change is controlled by the sequential activity of microRNAs miR156 and miR172. miR156 is highly abundant in seedlings and decreases during the juvenile-to-adult transition, while miR172 has an opposite expression pattern. We observed similar changes in the expression of these genes in woody species with highly differentiated, well-characterized juvenile and adult phases (Acacia confusa, Acacia colei, Eucalyptus globulus, Hedera helix, Quercus acutissima, as well as in the tree Populus x canadensis, where vegetative phase change is marked by relatively minor changes in leaf morphology and internode length. Overexpression of miR156 in transgenic P. x canadensis reduced the expression of miR156-targeted SPL genes and miR172, and it drastically prolonged the juvenile phase. Our results indicate that miR156 is an evolutionarily conserved regulator of vegetative phase change in both annual herbaceous plants and perennial trees.

  3. Nanoprecipitation process: From encapsulation to drug delivery.

    Science.gov (United States)

    Martínez Rivas, Claudia Janeth; Tarhini, Mohamad; Badri, Waisudin; Miladi, Karim; Greige-Gerges, Hélène; Nazari, Qand Agha; Galindo Rodríguez, Sergio Arturo; Román, Rocío Álvarez; Fessi, Hatem; Elaissari, Abdelhamid

    2017-10-30

    Drugs encapsulation is a suitable strategy in order to cope with the limitations of conventional dosage forms such as unsuitable bioavailability, stability, taste, and odor. Nanoprecipitation technique has been used in the pharmaceutical and agricultural research as clean alternative for other drug carrier formulations. This technique is based on precipitation mechanism. Polymer precipitation occurs after the addition of a non-solvent to a polymer solution in four steps mechanism: supersaturation, nucleation, growth by condensation, and growth by coagulation that leads to the formation of polymer nanoparticles or aggregates. The scale-up of laboratory-based nanoprecipitation method shows a good reproducibility. In addition, flash nanoprecipitation is a good strategy for industrial scale production of nanoparticles. Nanoprecipitation is usually used for encapsulation of hydrophobic or hydrophilic compounds. Nanoprecipitation was also shown to be a good alternative for the encapsulation of natural compounds. As a whole, process and formulation related parameters in nanoprecipitation technique have critical effect on nanoparticles characteristics. Biodegradable or non-biodegradable polymers have been used for the preparation of nanoparticles intended to in vivo studies. Literature studies have demonstrated the biodistribution of the active loaded nanoparticles in different organs after administration via various routes. In general, in vitro drug release from nanoparticles prepared by nanoprecipitation includes two phases: a first phase of "burst release" which is followed by a second phase of prolonged release. Moreover, many encapsulated active molecules have been commercialized in the pharmaceutical market. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. A grid-connected single-phase photovoltaic micro inverter

    Science.gov (United States)

    Wen, X. Y.; Lin, P. J.; Chen, Z. C.; Wu, L. J.; Cheng, S. Y.

    2017-11-01

    In this paper, the topology of a single-phase grid-connected photovoltaic (PV) micro-inverter is proposed. The PV micro-inverter consists of DC-DC stage with high voltage gain boost and DC-AC conversion stage. In the first stage, we apply the active clamp circuit and two voltage multipliers to achieve soft switching technology and high voltage gain. In addition, the flower pollination algorithm (FPA) is employed for the maximum power point tracking (MPPT) in the PV module in this stage. The second stage cascades a H-bridge inverter and LCL filter. To feed high quality sinusoidal power into the grid, the software phase lock, outer voltage loop and inner current loop control method are adopted as the control strategy. The performance of the proposed topology is tested by Matlab/Simulink. A PV module with maximum power 300W and maximum power point voltage 40V is applied as the input source. The simulation results indicate that the proposed topology and the control strategy are feasible.

  5. Chalcogenide phase-change thin films used as grayscale photolithography materials.

    Science.gov (United States)

    Wang, Rui; Wei, Jingsong; Fan, Yongtao

    2014-03-10

    Chalcogenide phase-change thin films are used in many fields, such as optical information storage and solid-state memory. In this work, we present another application of chalcogenide phase-change thin films, i.e., as grayscale photolithgraphy materials. The grayscale patterns can be directly inscribed on the chalcogenide phase-change thin films by a single process through direct laser writing method. In grayscale photolithography, the laser pulse can induce the formation of bump structure, and the bump height and size can be precisely controlled by changing laser energy. Bumps with different height and size present different optical reflection and transmission spectra, leading to the different gray levels. For example, the continuous-tone grayscale images of lifelike bird and cat are successfully inscribed onto Sb(2)Te(3) chalcogenide phase-change thin films using a home-built laser direct writer, where the expression and appearance of the lifelike bird and cat are fully presented. This work provides a way to fabricate complicated grayscale patterns using laser-induced bump structures onto chalcogenide phase-change thin films, different from current techniques such as photolithography, electron beam lithography, and focused ion beam lithography. The ability to form grayscale patterns of chalcogenide phase-change thin films reveals many potential applications in high-resolution optical images for micro/nano image storage, microartworks, and grayscale photomasks.

  6. Novel technology development through thermal drying of encapsulated Kluyveromyces marxianus in micro- and nano-tubular cellulose in lactose fermentation and its evaluation for food production.

    Science.gov (United States)

    Papapostolou, Harris; Servetas, Yiannis; Bosnea, Loulouda A; Kanellaki, Maria; Koutinas, Athanasios A

    2012-12-01

    A novel technology development based on the production of a low-cost starter culture for ripening of cheeses and baking is reported in the present study. The starter culture comprises thermally dried cells of Kluyveromyces marxianus encapsulated in micro- and nano-tubular cellulose. For production of a low-cost and effective biocatalyst, whey was used as raw material for biomass production and thermal drying methods (convective, conventional, and vacuum) were applied and evaluated at drying temperatures ranging from 35 to 60 °C. The effect of drying temperature of biocatalysts on fermentability of lactose and whey was evaluated. Storage stability and suitability of biocatalysts as a commercial starter cultures was also assessed and evaluated. All thermally dried biocatalysts were found to be active in lactose and whey fermentation. In all cases, there was sugar conversion ranging from 92 to 100 %, ethanol concentration of up to 1.47 % (v/v), and lactic acid concentrations ranged from 4.1 to 5.5 g/l. However, convective drying of the encapsulated cells of K. marxianus in micro- and nano-tubular cellulose was faster and a more effective drying method while drying at 42 °C appear to be the best drying temperature in terms of cell activity, ethanol, and lactic acid formation. Storage of the biocatalysts for 3 months at 4 °C proved maintenance of its activity even though fermentation times increased by 50-100 % compared with the fresh dried ones.

  7. Hydrodynamics of multi-phase packed bed micro-reactors

    NARCIS (Netherlands)

    Márquez Luzardo, N.M.

    2010-01-01

    Why to use packed bed micro-reactors for catalyst testing? Miniaturized packed bed reactors have a large surface-to-volume ratio at the reactor and particle level that favors the heat- and mass-transfer processes at all scales (intra-particle, inter-phase and inter-particle or reactor level). If the

  8. TRU transmutation using ThO2-UO2 and fully ceramic micro-encapsulated fuels in LWR fuel assemblies

    International Nuclear Information System (INIS)

    Bae, Gonghoon; Hong, Sergi

    2012-01-01

    The objective of this work is to design new LWR fuel assemblies which are able to efficiently destroy TRU (transuranics) nuclide without degradation of safety aspects by using ThO 2 -UO 2 fuel pins and FCM (Fully Ceramic Micro-encapsulated) fuel pins containing TRU fuel particles. Thorium was mixed to UO 2 in order to reduce the generation of plutonium nuclides and to save the uranium resources in the UO 2 pins. Additionally, the use of thorium contributes to the extension of the fuel cycle length. All calculations were performed by using DeCART (Deterministic Core Analysis based on Ray Tracing) code. The results show that the new concept of fuel assembly has the TRU destruction rates of ∼40% and ∼25% per 1200 EFPD (Effective Full Power Day) over the TRU FCM pins and the overall fuel assembly, respectively, without degradation of FTC and MTC

  9. [Encapsulation of a mechatronic implant that restores the ability to accommodate].

    Science.gov (United States)

    Rheinschmitt, L; Gengenbach, U; Bretthauer, G

    2010-12-01

    In order to restore the ability of accommodation of the human eye, a lens implant manufactured by micro system technology can be used. This highly integrated Artificial Accommodation System contains sensitive electronics as well as moving components in order to adapt its refractive power. One challenge of the production of this system is the encapsulation. It has to be a biocompatible and long-term reliable package. In this paper the advantages of a hermetic glass package over other approaches of encapsulation are introduced. Concepts of production for a glass package are presented. The package is thereby optimised to be placed in the optical path of the eye, but it can also be used for the encapsulation of other implants. © Georg Thieme Verlag KG Stuttgart · New York.

  10. A novel deep reactive ion etched (DRIE) glass micro-model for two-phase flow experiments.

    Science.gov (United States)

    Karadimitriou, N K; Joekar-Niasar, V; Hassanizadeh, S M; Kleingeld, P J; Pyrak-Nolte, L J

    2012-09-21

    In the last few decades, micro-models have become popular experimental tools for two-phase flow studies. In this work, the design and fabrication of an innovative, elongated, glass-etched micro-model with dimensions of 5 × 35 mm(2) and constant depth of 43 microns is described. This is the first time that a micro-model with such depth and dimensions has been etched in glass by using a dry etching technique. The micro-model was visualized by a novel setup that allowed us to monitor and record the distribution of fluids throughout the length of the micro-model continuously. Quasi-static drainage experiments were conducted in order to obtain equilibrium data points that relate capillary pressure to phase saturation. By measuring the flow rate of water through the flow network for known pressure gradients, the intrinsic permeability of the micro-model's flow network was also calculated. The experimental results were used to calibrate a pore-network model and test its validity. Finally, we show that glass-etched micro-models can be valuable tools in single and/or multi-phase flow studies and their applications.

  11. The encapsulation of an amphiphile into polystyrene microspheres of narrow size distribution

    Directory of Open Access Journals (Sweden)

    Pellach Michal

    2011-12-01

    Full Text Available Abstract Encapsulation of compounds into nano- or microsized organic particles of narrow size distribution is of increasing importance in fields of advanced imaging and diagnostic techniques and drug delivery systems. The main technology currently used for encapsulation of molecules within uniform template particles while retaining their size distribution is based on particle swelling methodology, involving penetration of emulsion droplets into the particles. The swelling method, however, is efficient for encapsulation only of hydrophobic compounds within hydrophobic template particles. In order to be encapsulated, the molecules must favor the hydrophobic phase of an organic/aqueous biphasic system, which is not easily achieved for molecules of amphiphilic character. The following work overcomes this difficulty by presenting a new method for encapsulation of amphiphilic molecules within uniform hydrophobic particles. We use hydrogen bonding of acid and base, combined with a pseudo salting out effect, for the entrapment of the amphiphile in the organic phase of a biphasic system. Following the entrapment in the organic phase, we demonstrated, using fluorescein and (antibiotic tetracycline as model molecules, that the swelling method usually used only for hydrophobes can be expanded and applied to amphiphilic molecules.

  12. Cementitious building material incorporating end-capped polyethylene glycol as a phase change material

    Science.gov (United States)

    Salyer, Ival O.; Griffen, Charles W.

    1986-01-01

    A cementitious composition comprising a cementitious material and polyethylene glycol or end-capped polyethylene glycol as a phase change material, said polyethylene glycol and said end-capped polyethylene glycol having a molecular weight greater than about 400 and a heat of fusion greater than about 30 cal/g; the compositions are useful in making pre-formed building materials such as concrete blocks, brick, dry wall and the like or in making poured structures such as walls or floor pads; the glycols can be encapsulated to reduce their tendency to retard set.

  13. Experimental research on single phase convection heat transfer in micro-fin tube

    International Nuclear Information System (INIS)

    Fan Guangming; Sun Zhongning; Zhu Sheng

    2011-01-01

    An experimental investigation of heat transfer and flow resistance characteristics of single phase water in three micro-fin tubes with different fin height was conducted. At the same time, the efficiency of micro-fin tubes within the experimental scope was evaluated and the optimal working region was determined. Based on the experimental data in the optimal working region, correlations for predicting the heat transfer and flow resistance were also given by multiple regression method. The result indicates that the micro-fin tubes can greatly enhance the single-phase heat transfer in turbulent flow, and the increase of heat transfer coefficient is higher than the increase of flow resistance. The accuracy of the correlation is very high, of which the deviation from the experimental value is very small. (authors)

  14. Experimental evaluation and computational modeling of the effects of encapsulation on the time-profile of glucose-stimulated insulin release of pancreatic islets.

    Science.gov (United States)

    Buchwald, Peter; Cechin, Sirlene R; Weaver, Jessica D; Stabler, Cherie L

    2015-03-28

    In type 1 diabetic patients, who have lost their ability to produce insulin, transplantation of pancreatic islet cells can normalize metabolic control in a manner that is not achievable with exogenous insulin. To be successful, this procedure has to address the problems caused by the immune and autoimmune responses to the graft. Islet encapsulation using various techniques and materials has been and is being extensively explored as a possible approach. Within this framework, it is of considerable interest to characterize the effect encapsulation has on the insulin response of pancreatic islets. To improve our ability to quantitatively describe the glucose-stimulated insulin release (GSIR) of pancreatic islets in general and of micro-encapsulated islets in particular, we performed dynamic perifusion experiments with frequent sampling. We used unencapsulated and microencapsulated murine islets in parallel and fitted the results with a complex local concentration-based finite element method (FEM) computational model. The high-resolution dynamic perifusion experiments allowed good characterization of the first-phase and second-phase insulin secretion, and we observed a slightly delayed and blunted first-phase insulin response for microencapsulated islets when compared to free islets. Insulin secretion profiles of both free and encapsulated islets could be fitted well by a COMSOL Multiphysics model that couples hormone secretion and nutrient consumption kinetics with diffusive and convective transport. This model, which was further validated and calibrated here, can be used for arbitrary geometries and glucose stimulation sequences and is well suited for the quantitative characterization of the insulin response of cultured, perifused, transplanted, or encapsulated islets. The present high-resolution GSIR experiments allowed for direct characterization of the effect microencapsulation has on the time-profile of insulin secretion. The multiphysics model, further validated

  15. Enhanced heat transport in environmental systems using microencapsulated phase change materials

    Science.gov (United States)

    Colvin, D. P.; Mulligan, J. C.; Bryant, Y. G.

    1992-01-01

    A methodology for enhanced heat transport and storage that uses a new two-component fluid mixture consisting of a microencapsulated phase change material (microPCM) for enhanced latent heat transport is outlined. SBIR investigations for NASA, USAF, SDIO, and NSF since 1983 have demonstrated the ability of the two-component microPCM coolants to provide enhancements in heat transport up to 40 times over that of the carrier fluid alone, enhancements of 50 to 100 percent in the heat transfer coefficient, practically isothermal operation when the coolant flow is circulated in an optimal manner, and significant reductions in pump work.

  16. Experimental research of inclined-micro-fin flat tube on single phase convection heat transfer

    International Nuclear Information System (INIS)

    Fan Guangming; Sun Zhongning; Wang Meng

    2011-01-01

    The experimental research of heat transfer and flow resistance characteristics of single phase water in four inclined-micro-fin flat tubes with different physical dimensions was conducted. At the same time,suitable criteria were selected to evaluate the efficiency of inclined-micro-fin flat tubes within the experimental scope and the optimal working region was determined. The results indicate that inclined-micro-fin flat tubes can greatly enhance the single-phase heat transfer in turbulent flow and the maximum heat transfer coefficient attains to 5.9 times of that in smooth tube. The quantities of heat transfer for inclined-micro-fin flat tubes are three times higher than that of smooth tube with the same of heat exchange area and pump power. (authors)

  17. Asymmetrical Polyhedral Configuration of Giant Vesicles Induced by Orderly Array of Encapsulated Colloidal Particles.

    Science.gov (United States)

    Natsume, Yuno; Toyota, Taro

    2016-01-01

    Giant vesicles (GVs) encapsulating colloidal particles by a specific volume fraction show a characteristic configuration under a hypertonic condition. Several flat faces were formed in GV membrane with orderly array of inner particles. GV shape changed from the spherical to the asymmetrical polyhedral configuration. This shape deformation was derived by entropic interaction between inner particles and GV membrane. Because a part of inner particles became to form an ordered phase in the region neighboring the GV membrane, free volume for the other part of particles increased. Giant vesicles encapsulating colloidal particles were useful for the model of "crowding effect" which is the entropic interaction in the cell.

  18. Encapsulation of nanoparticles into single-crystal ZnO nanorods and microrods.

    Science.gov (United States)

    Liu, Jinzhang; Notarianni, Marco; Rintoul, Llew; Motta, Nunzio

    2014-01-01

    One-dimensional single crystal incorporating functional nanoparticles of other materials could be an interesting platform for various applications. We studied the encapsulation of nanoparticles into single-crystal ZnO nanorods by exploiting the crystal growth of ZnO in aqueous solution. Two types of nanodiamonds with mean diameters of 10 nm and 40 nm, respectively, and polymer nanobeads with size of 200 nm have been used to study the encapsulation process. It was found that by regrowing these ZnO nanorods with nanoparticles attached to their surfaces, a full encapsulation of nanoparticles into nanorods can be achieved. We demonstrate that our low-temperature aqueous solution growth of ZnO nanorods do not affect or cause degradation of the nanoparticles of either inorganic or organic materials. This new growth method opens the way to a plethora of applications combining the properties of single crystal host and encapsulated nanoparticles. We perform micro-photoluminescence measurement on a single ZnO nanorod containing luminescent nanodiamonds and the spectrum has a different shape from that of naked nanodiamonds, revealing the cavity effect of ZnO nanorod.

  19. Tracking of the micro-structural changes of levonorgestrel-releasing intrauterine system by positron annihilation lifetime spectroscopy.

    Science.gov (United States)

    Patai, Kálmán; Szente, Virág; Süvegh, Károly; Zelkó, Romána

    2010-12-01

    The morphology and the micro-structural changes of levonorgestrel-releasing intrauterine systems (IUSs) were studied in relation to the duration of their application. The morphology of the removed IUSs was examined without pre-treatment by scanning electron microscopy. The micro-structural changes of the different layers of IUSs were tracked by positron annihilation lifetime spectroscopy. Besides the previously found incrustation formation, the free volume of the hormone containing reservoir was remarkably increased after 3 years of application, thus increasing the real volume of the core of the systems. Although the free volume of the membrane encasing the core was not significantly changed in the course of the application, as a result of the core expansion, microcracks could be formed on the membrane surface. Along these cracks, deposits of different compositions can be formed, causing inflammatory complications and influencing the drug release of IUSs. Stability tests in combination with micro-structural screening of such IUSs could be required during their development phase to avoid the undesired side effects. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  20. Modic (endplate) changes in the lumbar spine: bone micro-architecture and remodelling.

    Science.gov (United States)

    Perilli, Egon; Parkinson, Ian H; Truong, Le-Hoa; Chong, Kuan C; Fazzalari, Nicola L; Osti, Orso L

    2015-09-01

    In the literature, inter-vertebral MRI signal intensity changes (Modic changes) were associated with corresponding histological observations on endplate biopsies. However, tissue-level studies were limited. No quantitative histomorphometric study on bone biopsies has yet been conducted for Modic changes. The aim of this study was to characterise the bone micro-architectural parameters and bone remodelling indices associated with Modic changes. Forty patients suffering from disabling low back pain, undergoing elective spinal surgery, and exhibiting Modic changes on MRI (Modic 1, n = 9; Modic 2, n = 25; Modic 3, n = 6), had a transpedicular vertebral body biopsy taken of subchondral bone. Biopsies were first examined by micro-CT, for 3D morphometric analysis of bone volume fraction (BV/TV), trabecular thickness (Tb.Th), trabecular separation, trabecular number, and structure model index. Then, samples underwent histological analysis, for determination of bone remodelling indices: osteoid surface to bone surface ratio (OS/BS), eroded surface to bone surface (ES/BS) and osteoid surface to eroded surface ratio (OS/ES). Micro-CT analysis revealed significantly higher BV/TV (up to 70% increase, p < 0.01) and Tb.Th (up to +57%, p < 0.01) in Modic 3 biopsies, compared to Modic 1 and 2. Histological analysis showed significantly lower OS/BS in Modic 2 biopsies (more than 28% decrease, p < 0.05) compared to 1 and 3. ES/BS progressively decreased from Modic 1 to 2 to 3, whereas OS/ES progressively increased with significantly higher values in Modic 3 (up to 159% increase, p < 0.05) than in Modic 1 and 2. Significant differences were found in bone micro-architectural parameters and remodelling indices among Modic types. Modic 1 biopsies had evidence of highest bone turnover, possibly due to an inflammatory process; Modic 2 biopsies were consistent with a reduced bone formation/remodelling stage; Modic 3 biopsies suggested a more stable sclerotic phase, with significantly

  1. Thermal properties of a novel nanoencapsulated phase change material for thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Fuensanta, Mónica, E-mail: monica.fuensanta@aidico.es [AIDICO, Technological Institute of Construction, Camí de Castella, 4, 03660 Novelda, Alicante (Spain); Paiphansiri, Umaporn [Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz (Germany); Romero-Sánchez, María Dolores, E-mail: md.romero@aidico.es [AIDICO, Technological Institute of Construction, Camí de Castella, 4, 03660 Novelda, Alicante (Spain); Guillem, Celia; López-Buendía, Ángel M. [AIDICO, Technological Institute of Construction, Camí de Castella, 4, 03660 Novelda, Alicante (Spain); Landfester, Katharina [Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz (Germany)

    2013-08-10

    Highlights: • A paraffin wax RT80 was encapsulated in styrene–butyl acrylate copolymer as polymer shell using miniemulsion polymerization process to obtain a novel nanoencapsulated PCM with 80 °C melting temperature. • Nano-PCMs have high compact structure, spherical morphology and thermal stability. • The nano-PCMs have potential applications as thermal energy storage materials. - Abstract: A novel nanoencapsulation of a paraffine type phase change material, RT80, in a styrene–butyl acrylate copolymer shell using the miniemulsion polymerization process was carried out. General characteristics of the RT80 nanoparticles in terms of thermal properties, morphology, chemical composition and particle size distribution were characterized by Differential Scanning Calorimetry (DSC), Thermal Gravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FT-IR) and Dynamic Light Scattering (DLS). The influence of different monomers (styrene, butyl acrylate) and the surfactant/paraffin mass ratios on nanoparticles properties such as thermal capacity, particle size and morphology were systematically investigated. In all cases studied, encapsulation efficiency was close to 80 wt% with a particle size distribution between 52 and 112 nm and regular spherical shape and uniform structure. The amount of encapsulated paraffin achieved was comprised between 8 and 20%. Melting and crystallization heats were found to be approximately 5–25 J g{sup −1}, mainly depending on surfactant/paraffin mass ratio. Melting temperature of RT80 nanoparticles slightly decreased (1–7 °C) respect to the raw RT80. In addition, the encapsulated RT80 nanoparticles show thermal stability even after 200 thermal (heat-cooling) cycles.

  2. Thermal properties of a novel nanoencapsulated phase change material for thermal energy storage

    International Nuclear Information System (INIS)

    Fuensanta, Mónica; Paiphansiri, Umaporn; Romero-Sánchez, María Dolores; Guillem, Celia; López-Buendía, Ángel M.; Landfester, Katharina

    2013-01-01

    Highlights: • A paraffin wax RT80 was encapsulated in styrene–butyl acrylate copolymer as polymer shell using miniemulsion polymerization process to obtain a novel nanoencapsulated PCM with 80 °C melting temperature. • Nano-PCMs have high compact structure, spherical morphology and thermal stability. • The nano-PCMs have potential applications as thermal energy storage materials. - Abstract: A novel nanoencapsulation of a paraffine type phase change material, RT80, in a styrene–butyl acrylate copolymer shell using the miniemulsion polymerization process was carried out. General characteristics of the RT80 nanoparticles in terms of thermal properties, morphology, chemical composition and particle size distribution were characterized by Differential Scanning Calorimetry (DSC), Thermal Gravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FT-IR) and Dynamic Light Scattering (DLS). The influence of different monomers (styrene, butyl acrylate) and the surfactant/paraffin mass ratios on nanoparticles properties such as thermal capacity, particle size and morphology were systematically investigated. In all cases studied, encapsulation efficiency was close to 80 wt% with a particle size distribution between 52 and 112 nm and regular spherical shape and uniform structure. The amount of encapsulated paraffin achieved was comprised between 8 and 20%. Melting and crystallization heats were found to be approximately 5–25 J g −1 , mainly depending on surfactant/paraffin mass ratio. Melting temperature of RT80 nanoparticles slightly decreased (1–7 °C) respect to the raw RT80. In addition, the encapsulated RT80 nanoparticles show thermal stability even after 200 thermal (heat-cooling) cycles

  3. Measurement of gas-liquid two-phase flow in micro-pipes by a capacitance sensor.

    Science.gov (United States)

    Ji, Haifeng; Li, Huajun; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing

    2014-11-26

    A capacitance measurement system is developed for the measurement of gas-liquid two-phase flow in glass micro-pipes with inner diameters of 3.96, 2.65 and 1.56 mm, respectively. As a typical flow regime in a micro-pipe two-phase flow system, slug flow is chosen for this investigation. A capacitance sensor is designed and a high-resolution and high-speed capacitance measurement circuit is used to measure the small capacitance signals based on the differential sampling method. The performance and feasibility of the capacitance method are investigated and discussed. The capacitance signal is analyzed, which can reflect the voidage variation of two-phase flow. The gas slug velocity is determined through a cross-correlation technique using two identical capacitance sensors. The simulation and experimental results show that the presented capacitance measurement system is successful. Research work also verifies that the capacitance sensor is an effective method for the measurement of gas liquid two-phase flow parameters in micro-pipes.

  4. Impact of culture conditions on β-carotene encapsulation using Yarrowia lipolytica cells

    Science.gov (United States)

    Dang, Tran Hai; Minh, Ho Thi Thu; Van Nhi, Tran Nguyen; Ngoc, Ta Thi Minh

    2017-09-01

    Yeast cell was reported as an effective natural preformed material for use in encapsulation of hydrophobic compounds. The encapsulation process was normally considered as passive transfer through cellular wall and cellular membrane. Beside solubility of hydrophobic compound in phospholipid membrane or plasmolysis, membrane characteristics of yeast cell which are differed between strains and influenced by culture conditions are main factors involving the accumulation of hydrophobic compound into yeast cell. In this study, the oleaginous yeast Yarrowia lipolytica was used as micro-container shell to encapsulate a high hydrophobic compound - β-carotene. Yeast cell was cultured under different conditions and wet yeast biomass was incubated with β-carotene which was dissolved in soybean oil overnight. β-carotene accumulation was then extracted and evaluated by UV-VIS spectrometry. Optimization of culture condition was investigated using the Box-Behnken model. β-carotene encapsulation efficiency in Y. lipolytica was showed to be affected by both pH of medium and agitation conditions. The highest β-carotene encapsulation efficiency was optimized at 42.8 μg/g with Y. lipolytica cultured at pH 4.5, medium volume equal to 115 ml and agitation speed at 211 rpm.

  5. A review on energy conservation in building applications with thermal storage by latent heat using phase change materials

    International Nuclear Information System (INIS)

    Khudhair, Amar M.; Farid, Mohammed M.

    2004-01-01

    Energy storage in the walls, ceiling and floor of buildings may be enhanced by encapsulating suitable phase change materials (PCMs) within these surfaces to capture solar energy directly and increase human comfort by decreasing the frequency of internal air temperature swings and maintaining the temperature closer to the desired temperature for a longer period of time. This paper summarizes the investigation and analysis of thermal energy storage systems incorporating PCMs for use in building applications. Researches on thermal storage in which the PCM is encapsulated in concrete, gypsum wallboard, ceiling and floor have been ongoing for some time and are discussed. The problems associated with the application of PCMs with regard to the selection of materials and the methods used to contain them are also discussed

  6. Cryopreservation of human insulin expressing cells macro-encapsulated in a durable therapeutic immunoisolating device theracyte.

    Science.gov (United States)

    Yakhnenko, Ilya; Wong, Wallace K; Katkov, Igor I; Itkin-Ansari, Pamela

    2012-01-01

    Encapsulating insulin producing cells (INPCs) in an immunoisolation device have been shown to cure diabetes in rodents without the need for immunosuppression. However, micro-encapsulation in semi-solid gels raises longevity and safety concerns for future use of stem cell derived INPCs. We have focused on a durable and retrievable macro-encapsulation (> 10(6) cells) device (TheraCyte). Cryopreservation (CP) of cells preloaded into the device is highly desirable but may require prolonged exposure to cryoprotectants during loading and post-thaw manipulations. Here, we are reporting survival and function of a human islet cell line frozen as single cells or as islet-like cell clusters. The non-clusterized cells exhibited high cryosurvival after prolonged pre-freeze or post-thaw exposure to 10 percent DMSO. However, both clusterization and especially loading INPCs into the device reduced viable yield even without CP. The survived cryopreserved macro-encapsulated INPCs remained fully functional suggesting that CP of macro-encapsulated cells is a promising tool for cell based therapies.

  7. Thermal stability of carbon-encapsulated Fe-Nd-B nanoparticles

    International Nuclear Information System (INIS)

    Bystrzejewski, M.; Cudzilo, S.; Huczko, A.; Lange, H.

    2006-01-01

    Thermal stability of various magnetic nanomaterials is very essential, due to their prospective future applications. In this paper, thermal behaviour of the carbon-encapsulated Fe-Nd-B nanoparticles is studied. These nanostructures were produced by direct current arcing of carbon anodes filled with Nd 2 Fe 14 B material. The thermogravimetry and differential thermal analysis curves were recorded in an oxygen atmosphere. The thermal processes were monitored by X-ray diffraction to follow the changes in the phase composition. The investigated samples have been thermally stable up to 600 K

  8. Hybrid Encapsulated Ionic Liquids for Post-Combustion Carbon Dioxide (CO2) Capture

    Energy Technology Data Exchange (ETDEWEB)

    Brennecke, Joan; Degnan, Thomas; McCready, Mark; Stadtherr, Mark; Stolaroff, Joshuah; Ye, Congwang

    2016-09-30

    Ionic liquids (ILs) and Phase Change Ionic Liquids (PCILs) are excellent materials for selective removal of carbon dioxide from dilute post-combustion streams. However, they are typically characterized as having high viscosities, which impairs their effectiveness due to mass transfer limitations, caused by the high viscosities. In this project, we are examining the benefits of encapsulating ILs and PCILs in thin polymeric shells to produce particles of approximately 100 to 600 μm in diameter that can be used in a fluidized bed absorber. The particles are produced by microencapsulation of the ILs and PCILs in CO2-permeable polymer shells. Here we report on the synthesis of the IL and PCIL materials, measurements of thermophysical properties including CO2 capacity and reprotonation equilibrium and kinetics, encapsulation of the ILs and PCILs, mechanical and thermodynamic testing of the encapsulated materials, development of a rate based model of the absorber, and the design of a laboratory scale unit to test the encapsulated particles for CO2 capture ability and efficiency. We show that the IL/PCIL materials can be successfully encapsulated, that they retain CO2 uptake capacity, and that the uptake rates are increased relative to a stagnant sample of IL liquid or PCIL powder.

  9. Externally controlled triggered-release of drug from PLGA micro and nanoparticles.

    Directory of Open Access Journals (Sweden)

    Xin Hua

    Full Text Available Biofilm infections are extremely hard to eradicate and controlled, triggered and controlled drug release properties may prolong drug release time. In this study, the ability to externally control drug release from micro and nanoparticles was investigated. We prepared micro/nanoparticles containing ciprofloxacin (CIP and magnetic nanoparticles encapsulated in poly (lactic-co-glycolic acid PLGA. Both micro/nanoparticles were observed to have narrow size distributions. We investigated and compared their passive and externally triggered drug release properties based on their different encapsulation structures for the nano and micro systems. In passive release studies, CIP demonstrated a fast rate of release in first 2 days which then slowed and sustained release for approximately 4 weeks. Significantly, magnetic nanoparticles containing systems all showed ability to have triggered drug release when exposed to an external oscillating magnetic field (OMF. An experiment where the OMF was turned on and off also confirmed the ability to control the drug release in a pulsatile manner. The magnetically triggered release resulted in a 2-fold drug release increase compared with normal passive release. To confirm drug integrity following release, the antibacterial activity of released drug was evaluated in Pseudomonas aeruginosa biofilms in vitro. CIP maintained its antimicrobial activity after encapsulation and triggered release.

  10. Externally controlled triggered-release of drug from PLGA micro and nanoparticles.

    Science.gov (United States)

    Hua, Xin; Tan, Shengnan; Bandara, H M H N; Fu, Yujie; Liu, Siguo; Smyth, Hugh D C

    2014-01-01

    Biofilm infections are extremely hard to eradicate and controlled, triggered and controlled drug release properties may prolong drug release time. In this study, the ability to externally control drug release from micro and nanoparticles was investigated. We prepared micro/nanoparticles containing ciprofloxacin (CIP) and magnetic nanoparticles encapsulated in poly (lactic-co-glycolic acid) PLGA. Both micro/nanoparticles were observed to have narrow size distributions. We investigated and compared their passive and externally triggered drug release properties based on their different encapsulation structures for the nano and micro systems. In passive release studies, CIP demonstrated a fast rate of release in first 2 days which then slowed and sustained release for approximately 4 weeks. Significantly, magnetic nanoparticles containing systems all showed ability to have triggered drug release when exposed to an external oscillating magnetic field (OMF). An experiment where the OMF was turned on and off also confirmed the ability to control the drug release in a pulsatile manner. The magnetically triggered release resulted in a 2-fold drug release increase compared with normal passive release. To confirm drug integrity following release, the antibacterial activity of released drug was evaluated in Pseudomonas aeruginosa biofilms in vitro. CIP maintained its antimicrobial activity after encapsulation and triggered release.

  11. Effect of micro-encapsulated n-3 fatty acids on quality properties of two types of dry sausages

    Directory of Open Access Journals (Sweden)

    Zdeněk Pavlík

    2014-01-01

    Full Text Available Dry sausages are popular traditional meat products. As these products are a rich source of animal fat, there is an effort to improve their fatty acid ratio. The aim of this work was to study the effect of micro-encapsulated n-3 fatty acids added into dry sausages. Samples of dry sausages (Poličan and Vysočina enriched with unsaturated fatty acids (36 g for 6 kg of mixture and rosemary extract (0.3 g·kg-1 were made along with control samples. Physicochemical, instrumental analyses were performed, fatty acid profile was measured by gas chromatography, and oxidation processes were monitored by determination of thiobarbituric acid reactive substances. No significant differences (P ≥ 0.05 in quality indicators were found between samples, however, there were differences in oxidation processes. Sausages enriched with unsaturated fatty acids showed an increase in thiobarbituric acid reactive substances (> 2 mg·kg-1 and > 3 mg·kg-1 in Poličan and Vysočina, respectively, compared to control. Sausages enriched with unsaturated fatty acids and also with rosemary extract have the similar concentration of thiobarbituric acid reactive substances as the control. An increase in the proportion of monounsaturated fatty acids and polyunsaturated fatty acids was seen in samples of Poličan supplemented with unsaturated fatty acids in combination with rosemary extract. The addition of rosemary extract had also a significant effect in increasing the proportion of unsaturated fatty acids in samples of Vysočina. From the viewpoint of quality indicators, changes in the properties of the product were not seen in any samples.

  12. Physicomechanical properties of single- and two-phase polycrystalline materials on micro- and macroscopic levels

    International Nuclear Information System (INIS)

    Kuksa, L.V.; Arzamaskova, L.M.

    2000-01-01

    The results of studies on elastic and plastic properties of the single- and two-phase polycrystalline materials in dependence on the choice of the consideration scale level are presented. The experimental and theoretical methods, making it possible to study the role of the scale factor by consideration on the micro- and macrolevel and the peculiarities of forming the physicomechanical properties of the material as a whole, are developed. The dependences, characterizing the change of the physicomechanical properties by different scales of consideration, are obtained [ru

  13. Secure Encapsulation and Publication of Biological Services in the Cloud Computing Environment

    Science.gov (United States)

    Zhang, Weizhe; Wang, Xuehui; Lu, Bo; Kim, Tai-hoon

    2013-01-01

    Secure encapsulation and publication for bioinformatics software products based on web service are presented, and the basic function of biological information is realized in the cloud computing environment. In the encapsulation phase, the workflow and function of bioinformatics software are conducted, the encapsulation interfaces are designed, and the runtime interaction between users and computers is simulated. In the publication phase, the execution and management mechanisms and principles of the GRAM components are analyzed. The functions such as remote user job submission and job status query are implemented by using the GRAM components. The services of bioinformatics software are published to remote users. Finally the basic prototype system of the biological cloud is achieved. PMID:24078906

  14. Secure Encapsulation and Publication of Biological Services in the Cloud Computing Environment

    Directory of Open Access Journals (Sweden)

    Weizhe Zhang

    2013-01-01

    Full Text Available Secure encapsulation and publication for bioinformatics software products based on web service are presented, and the basic function of biological information is realized in the cloud computing environment. In the encapsulation phase, the workflow and function of bioinformatics software are conducted, the encapsulation interfaces are designed, and the runtime interaction between users and computers is simulated. In the publication phase, the execution and management mechanisms and principles of the GRAM components are analyzed. The functions such as remote user job submission and job status query are implemented by using the GRAM components. The services of bioinformatics software are published to remote users. Finally the basic prototype system of the biological cloud is achieved.

  15. Secure encapsulation and publication of biological services in the cloud computing environment.

    Science.gov (United States)

    Zhang, Weizhe; Wang, Xuehui; Lu, Bo; Kim, Tai-hoon

    2013-01-01

    Secure encapsulation and publication for bioinformatics software products based on web service are presented, and the basic function of biological information is realized in the cloud computing environment. In the encapsulation phase, the workflow and function of bioinformatics software are conducted, the encapsulation interfaces are designed, and the runtime interaction between users and computers is simulated. In the publication phase, the execution and management mechanisms and principles of the GRAM components are analyzed. The functions such as remote user job submission and job status query are implemented by using the GRAM components. The services of bioinformatics software are published to remote users. Finally the basic prototype system of the biological cloud is achieved.

  16. Safeguards by Design at the Encapsulation Plant in Finland

    International Nuclear Information System (INIS)

    Ingegneri, M.; Baird, K.; Park, W.-S.; Coyne, J.M.; Enkhjin, L.; Chew, L.S.; Plenteda, R.; Sprinkle, J.; Yudin, Y.; Ciuculescu, C.; Koutsoyannopoulos, C.; Murtezi, M.; Schwalbach, P.; Vaccaro, S.; Pekkarinen, J.; Thomas, M.; Zein, A.; Honkamaa, T.; Hamalainen, M.; Martikka, E.; Moring, M.; Okko, O.

    2015-01-01

    Finland has launched a spent fuel disposition project to encapsulate all of its spent fuel assemblies and confine the disposal canisters in a deep geological repository. The construction of the underground premises started several years ago with the drilling, blasting and reinforcement of tunnels and shafts to ensure the safe deep underground construction and disposal techniques in the repository, while the design of the encapsulation plant (EP) enters the licencing phase preliminary to its construction. The spent fuel assemblies, which have been safeguarded for decades at the nuclear power plants, are going to be transported to the EP, loaded into copper canisters and stored in underground tunnels where they become inaccessible after backfilling. Safeguards measures are needed to ensure that final spent fuel verification is performed before its encapsulation and that no nuclear material is diverted during the process. This is an opportunity for the inspectorates to have the infrastructure necessary for the safeguards equipment incorporated in the design of the encapsulation plant before licencing for construction occurs. The peculiarity of this project is that it is going to run for more than a century. Therefore, significant changes are to be expected in the technical capabilities available for implementing safeguards (e.g., verification techniques and instruments), as well as in the process itself, e.g., redesign for the encapsulation of future fuel types. For these reasons a high degree of flexibility is required in order to be able to shift to different solutions at a later stage while minimizing the interference with the licencing process and facility operations. This paper describes the process leading to the definition of the technical requirements by IAEA and Euratom to be incorporated in the facility's design. (author)

  17. Encapsulating contact allergens in liposomes, ethosomes, and polycaprolactone may affect their sensitizing properties

    DEFF Research Database (Denmark)

    Madsen, Jakob Torp; Vogel, Stefan; Johansen, Jeanne Duus

    2011-01-01

    Attempts to improve formulation of topical products are a continuing process and the development of micro- and nanovesicular systems as well as polymeric microparticles has led to marketing of topical drugs and cosmetics using these technologies. Encapsulation of some well-known contact allergens...... in ethanolic liposomes have been reported to enhance allergenicity compared with the allergens in similar vehicles without liposomes. The present report includes data on more sensitization studies using the mouse local lymph node assay with three contact allergens encapsulated in different dermal drug...... dichromate compared with control solutions. However, encapsulating the lipophilic contact allergen dinitrochlorobenzene (DNCB) in polycaprolactone reduced the sensitizing capacity to 1211 ± 449 compared with liposomes (7602 ± 2658) and in acetone:olive oil (4:1) (5633 ± 666). The same trend was observed...

  18. Long term investigations of carbon nanotube transistors encapsulated by atomic-layer-deposited Al2O3 for sensor applications

    International Nuclear Information System (INIS)

    Helbling, T; Hierold, C; Roman, C; Durrer, L; Mattmann, M; Bright, V M

    2009-01-01

    Single-walled carbon nanotube field-effect transistors (CNFETs) are promising functional structures in future micro- or nanoelectronic systems and sensor applications. Research on the fundamental device concepts includes the investigation of the conditions for stable long term CNFET operation. CNFET operation in ambient air leads to on-state current degradation and fluctuating signals due to the well-known sensitivity of the electronic properties of the CNT to many environmental condition changes. It is the goal of device and sensor research to understand various kinds of sensor-environment interactions and to overcome the environmental sensitivity. Here, we show that the encapsulation of CNFETs by a thermal atomic-layer-deposited (ALD) aluminium oxide (Al 2 O 3 ) layer of approximately 100 nm leads to stable device operation for 260 days and reduces their sensitivity to the environment. The characteristics of CNFETs prior to and after Al 2 O 3 encapsulation are comparatively investigated. It is found that encapsulation improves the stability of the CNFET characteristics with respect to the gate threshold voltage, hysteresis width and the on-state current, while 1/f noise is lowered by up to a factor of 7. Finally, CNFETs embedded in a dielectric membrane are employed as pressure sensors to demonstrate sensor operation of CNFETs encapsulated by ALD as piezoresistive transducers.

  19. Encapsulation of Active Compounds in Fruit and Vegetable Juice Processing: Current State and Perspectives.

    Science.gov (United States)

    Speranza, Barbara; Petruzzi, Leonardo; Bevilacqua, Antonio; Gallo, Mariangela; Campaniello, Daniela; Sinigaglia, Milena; Corbo, Maria Rosaria

    2017-06-01

    The production of value-added and/or functional juices has increased significantly in recent years, following an increased consumer demand to promote health and/or prevent disease through diet and nutrition. Micro and nano-encapsulation are promising technologies to protect and deliver sensitive compounds, allowing a controlled release in the target sites. This paper offers an overview of current applications, limits and challenges of encapsulation technologies in the production of fruit and vegetable juices, with a particular emphasis on products derived from different botanical sources. © 2017 Institute of Food Technologists®.

  20. Effect of applied voltage on phase components of composite coatings prepared by micro-arc oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wenjun [Department of Prosthodontics, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055 (China); Fang, Yu-Jing [Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060 (China); Zheng, Huade [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Tan, Guoxin [Guangdong University of Technology, Guangdong Province 510006 (China); Cheng, Haimei [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Ning, Chengyun, E-mail: imcyning@scut.edu.cn [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China)

    2013-10-01

    In this report, we present results from our experiments on composite coatings formed on biomedical titanium substrates by micro-arc oxidation (MAO) in constant-voltage mode. The coatings were prepared on the substrates in an aqueous electrolyte containing calcium acetate and β-glycerol phosphate disodium salt pentahydrate (β-GP). We analyzed the element distribution and phase components of the coatings prepared at different voltages by X-ray diffraction, thin-coating X-ray diffraction, electron-probe microanalysis, and Fourier-transform infrared spectroscopy. The results show that the composite coatings formed at 500 V consist of titania (TiO{sub 2}), hydroxylapatite (HA), and calcium carbonate (CaCO{sub 3}). Furthermore, the concentration of Ca, P, and Ti gradually changes with increasing applied voltage, and the phase components of the composite coatings gradually change from the bottom of the coating to the top: the bottom layer consists of TiO{sub 2}, the middle layer consists of TiO{sub 2} and HA, and the top layer consists of HA and a small amount of CaCO{sub 3}. The formation of HA directly on the coating surface by MAO technique can greatly enhance the surface bioactivity. - Highlights: • Coatings prepared on biomedical titanium substrate by micro-arc oxidation • Coatings composed of titania, hydroxyapatite and calcium carbonate • Hydroxyapatite on the coating surface can enhance the surface bioactivity.

  1. Residual effect of a micro-encapsulated formulation of organophosphates and piriproxifen on the mortality of deltamethrin resistant Triatoma infestans populations in rural houses of the Bolivian Chaco region

    Directory of Open Access Journals (Sweden)

    Abraham Gemio Alarico

    2010-09-01

    Full Text Available The Bolivian Chaco is part of the endemic region of Chagas disease and an area where pyrethroid resistant Triatoma infestans (Hemiptera: Reduviidae populations has been reported. The World Health Organization identified these resistant populations as an important focus for research. The objective of this study was to evaluate the residual effect of a micro-encapsulated formulation containing organophosphate active ingredients and a juvenile hormone analogue (Inesfly 5A IGR on the mortality of T. infestans. Studies took place in rural houses of the Bolivian Chaco that were treated up to 34 months before and evaluated the susceptibility to pyrethroids of the offspring of field collected insects. Thirty houses were randomly selected within three communities to carry out wall bio-assays with T. infestans nymphs. Mortality was recorded 24, 48 and 72 h after wall contact. Eggs laid by females collected in the area were used to obtain first-instar nymphs and carry out pyrethroid susceptibility tests. The wall bio-assays showed that the micro-encapsulated insecticide eliminates T. infestans populations and produces detectable mortality of insects exposed to walls treated 34 months prior to the tests. The discriminant dose of deltamethrin (0.01 mg/mL showed 65% nymph survival, whereas at the highest tested dose (1.0 mg/mL 14% of the nymphs survived. These results show that Inesfly 5A IGR is an appropriate tool for the elimination of intradomestic and peridomestic populations of T. infestans resistant to pyrethroids.

  2. Encapsulation of nanoparticles into single-crystal ZnO nanorods and microrods

    Directory of Open Access Journals (Sweden)

    Jinzhang Liu

    2014-04-01

    Full Text Available One-dimensional single crystal incorporating functional nanoparticles of other materials could be an interesting platform for various applications. We studied the encapsulation of nanoparticles into single-crystal ZnO nanorods by exploiting the crystal growth of ZnO in aqueous solution. Two types of nanodiamonds with mean diameters of 10 nm and 40 nm, respectively, and polymer nanobeads with size of 200 nm have been used to study the encapsulation process. It was found that by regrowing these ZnO nanorods with nanoparticles attached to their surfaces, a full encapsulation of nanoparticles into nanorods can be achieved. We demonstrate that our low-temperature aqueous solution growth of ZnO nanorods do not affect or cause degradation of the nanoparticles of either inorganic or organic materials. This new growth method opens the way to a plethora of applications combining the properties of single crystal host and encapsulated nanoparticles. We perform micro-photoluminescence measurement on a single ZnO nanorod containing luminescent nanodiamonds and the spectrum has a different shape from that of naked nanodiamonds, revealing the cavity effect of ZnO nanorod.

  3. Solid phase micro-extraction in environmental atmosphere

    International Nuclear Information System (INIS)

    Tao Ping; Wei Lifan; Tan Yun

    2002-01-01

    Solid phase micro-extraction (SPME) is an advanced technique of sample pretreatment in environmental atmosphere analysis, i.e., a sampling method of extracting volatile organic compounds from environmental gas. According to the primary survey on the theory and application of SPME, a suitable extraction tip, i.e., a coated fused silica fiber, is selected to construct a SPME apparatus. This SPME apparatus is used to extract volatile organic compounds from environmental atmosphere and a qualitative detection is conducted in gas chromatography-mass spectrometer system. Good experimental results are obtained

  4. Improved detection limits for phthalates by selective solid-phase micro-extraction

    KAUST Repository

    Zia, Asif I.; Afsarimanesh, Nasrin; Xie, Li; Nag, Anindya; Al-Bahadly, I. H.; Yu, P. L.; Kosel, Jü rgen

    2016-01-01

    Presented research reports on an improved method and enhanced limits of detection for phthalates; a hazardous additive used in the production of plastics by solid-phase micro-extraction (SPME) polymer in comparison to molecularly imprinted solid

  5. Micro-radiography and micro-computerized tomography with absorption and phase contrast for materials characterization; Mikro-Radiografie und Mikro-Computertomografie mit Absorptions- und Phasenkontrast fuer die Materialcharakterisierung

    Energy Technology Data Exchange (ETDEWEB)

    Kastner, Johann [FH Oberoesterreich, Wels (Austria)

    2017-08-01

    The contribution describes modern techniques in micro-radiography and micro-computerized tomography for materials characterization using absorption and phase contrast. Using micro- and nano-focus tubes and adequate high.-resolution detectors it is possible to reach resolutions significantly below 1 micron. The CT technology allows in-situ deformation testing to study the damaging mechanism of materials. The application of the Talbot-Lau interferometer with CT a differential phase contrast tomography is available. Dark-field tomography is used to study individual carbon fiber bundles in carbon fiber reinforced laminates.

  6. Performance of Transuranic-Loaded Fully Ceramic Micro-Encapsulated Fuel in LWRs Final Report, Including Void Reactivity Evaluation

    International Nuclear Information System (INIS)

    Pope, Michael A.; Sen, R. Sonat; Boer, Brian; Ougouag, Abderrafi M.; Youinou, Gilles

    2011-01-01

    The current focus of the Deep Burn Project is on once-through burning of transuranics (TRU) in light-water reactors (LWRs). The fuel form is called Fully-Ceramic Micro-encapsulated (FCM) fuel, a concept that borrows the tri-isotropic (TRISO) fuel particle design from high-temperature reactor technology. In the Deep Burn LWR (DB-LWR) concept, these fuel particles are pressed into compacts using SiC matrix material and loaded into fuel pins for use in conventional LWRs. The TRU loading comes from the spent fuel of a conventional LWR after 5 years of cooling. Unit cell and assembly calculations have been performed using the DRAGON-4 code to assess the physics attributes of TRU-only FCM fuel in an LWR lattice. Depletion calculations assuming an infinite lattice condition were performed with calculations of various reactivity coefficients performed at each step. Unit cells and assemblies containing typical UO2 and mixed oxide (MOX) fuel were analyzed in the same way to provide a baseline against which to compare the TRU-only FCM fuel. Then, assembly calculations were performed evaluating the performance of heterogeneous arrangements of TRU-only FCM fuel pins along with UO2 pins.

  7. Encapsulating contact allergens in liposomes, ethosomes, and polycaprolactone may affect their sensitizing properties

    DEFF Research Database (Denmark)

    Madsen, Jakob Torp; Vogel, Stefan; Johansen, Jeanne Duus

    2011-01-01

    Attempts to improve formulation of topical products are a continuing process and the development of micro- and nanovesicular systems as well as polymeric microparticles has led to marketing of topical drugs and cosmetics using these technologies. Encapsulation of some well-known contact allergens...... in ethanolic liposomes have been reported to enhance allergenicity compared with the allergens in similar vehicles without liposomes. The present report includes data on more sensitization studies using the mouse local lymph node assay with three contact allergens encapsulated in different dermal drug...... dichromate compared with control solutions. However, encapsulating the lipophilic contact allergen dinitrochlorobenzene (DNCB) in polycaprolactone reduced the sensitizing capacity to 1211 ± 449 compared with liposomes (7602 ± 2658) and in acetone:olive oil (4:1) (5633 ± 666). The same trend was observed...

  8. Picosecond laser pulse-driven crystallization behavior of SiSb phase change memory thin films

    International Nuclear Information System (INIS)

    Huang Huan; Li Simian; Zhai Fengxiao; Wang Yang; Lai Tianshu; Wu Yiqun; Gan Fuxi

    2011-01-01

    Highlights: → We reported crystallization dynamics of a novel SiSb phase change material. → We measured optical constants of as-deposited and irradiated SiSb areas. → Optical properties of as-deposited and irradiated SiSb thin film were compared. → Crystallization of irradiated SiSb was confirmed by using AFM and micro-Raman spectra. → The heat conduction effect of lower metal layer of multi-layer films was studied. - Abstract: Transient phase change crystallization process of SiSb phase change thin films under the irradiation of picosecond (ps) laser pulse was studied using time-resolved reflectivity measurements. The ps laser pulse-crystallized domains were characterized by atomic force microscope, Raman spectra and ellipsometrical spectra measurements. A reflectivity contrast of about 15% can be achieved by ps laser pulse-induced crystallization. A minimum crystallization time of 11 ns was achieved by a low-fluence single ps laser pulse after pre-irradiation. SiSb was shown to be very promising for fast phase change memory applications.

  9. Active self-healing encapsulation of vaccine antigens in PLGA microspheres

    Science.gov (United States)

    Desai, Kashappa-Goud H.; Schwendeman, Steven P.

    2013-01-01

    Herein, we describe the detailed development of a simple and effective method to microencapsulate vaccine antigens in poly(lactic-co-glycolic acid) (PLGA) by simple mixing of preformed active self-microencapsulating (SM) PLGA microspheres in a low concentration aqueous antigen solution at modest temperature (10-38 °C). Co-encapsulating protein-sorbing vaccine adjuvants and polymer plasticizers were used to “actively” load the protein in the polymer pores and facilitate polymer self-healing at temperature > hydrated polymer glass transition temperature, respectively. The microsphere formulation parameters and loading conditions to provide optimal active self-healing microencapsulation of vaccine antigen in PLGA was investigated. Active self-healing encapsulation of two vaccine antigens, ovalbumin and tetanus toxoid (TT), in PLGA microspheres was adjusted by preparing blank microspheres containing different vaccine adjuvant (aluminum hydroxide (Al(OH)3) or calcium phosphate). Active loading of vaccine antigen in Al(OH)3-PLGA microspheres was found to: a) increase proportionally with an increasing loading of Al(OH)3 (0.88-3 wt%) and addition of porosigen, b) decrease when the inner Al(OH)3/trehalose phase to 1 mL outer oil phase and size of microspheres was respectively > 0.2 mL and 63 μm, and c) change negligibly by PLGA concentration and initial incubation (loading) temperature. Encapsulation of protein sorbing Al(OH)3 in PLGA microspheres resulted in suppression of self-healing of PLGA pores, which was then overcome by improving polymer chain mobility, which in turn was accomplished by coincorporating hydrophobic plasticizers in PLGA. Active self-healing microencapsulation of manufacturing process-labile TT in PLGA was found to: a) obviate micronization- and organic solvent-induced TT degradation, b) improve antigen loading (1.4-1.8 wt% TT) and encapsulation efficiency (~ 97%), c) provide nearly homogeneous distribution and stabilization of antigen in polymer

  10. Droplets formation and merging in two-phase flow microfluidics.

    Science.gov (United States)

    Gu, Hao; Duits, Michel H G; Mugele, Frieder

    2011-01-01

    Two-phase flow microfluidics is emerging as a popular technology for a wide range of applications involving high throughput such as encapsulation, chemical synthesis and biochemical assays. Within this platform, the formation and merging of droplets inside an immiscible carrier fluid are two key procedures: (i) the emulsification step should lead to a very well controlled drop size (distribution); and (ii) the use of droplet as micro-reactors requires a reliable merging. A novel trend within this field is the use of additional active means of control besides the commonly used hydrodynamic manipulation. Electric fields are especially suitable for this, due to quantitative control over the amplitude and time dependence of the signals, and the flexibility in designing micro-electrode geometries. With this, the formation and merging of droplets can be achieved on-demand and with high precision. In this review on two-phase flow microfluidics, particular emphasis is given on these aspects. Also recent innovations in microfabrication technologies used for this purpose will be discussed.

  11. X-ray phase-contrast micro-tomography and image analysis of wood microstructure

    International Nuclear Information System (INIS)

    Mayo, Sheridan; Evans, Robert; Chen, Fiona; Lagerstrom, Ryan

    2009-01-01

    A number of commercially important properties of wood depend on details of the wood micro- and nano- structure. CSIRO Forest Biosciences have developed SilviScan, an analytical instrument which uses a number of high-speed techniques for analyzing these properties. X-ray micro-tomographic analysis of wood samples provides detailed 3D reconstructions of the wood microstructure which can be used to validate results from SilviScan measurements. A series of wood samples was analysed using laboratory-based phase-contrast x-ray micro-tomography. Image analysis techniques were applied to the 3D data sets to extract significant features and statistical properties of the specimens. These data provide a means of verification of results from the more rapid SilviScan techniques, and will clarify the results of micro-diffraction studies of wood microfibrils.

  12. The effect of different soft segments on the formation and properties of binary core microencapsulated phase change materials with polyurea/polyurethane double shell.

    Science.gov (United States)

    Ma, Yanhong; Chu, Xiaodong; Tang, Guoyi; Yao, Youwei

    2013-02-15

    A series of polyurea/polyurethane microcapsules with butyl stearate and paraffin as binary core materials are successfully synthesized via interfacial polymerization method. The phase change temperature of these microencapsulated phase change materials (micro-PCMs) can be adjusted by regulating the composition of the binary core. SEM photographs show that these micro-PCMs have relatively spherical profiles and compact surfaces with diameter ranging from 5 to 15 μm. DSC results indicate that the binary core content in micro-PCMs is in a range of 45-60 wt%. Moreover, after being treated under 50°C for 7 days or subjected to thermal-cycling test for 500 times, the micro-PCMs keep good thermal performances and stabilities. Besides, these micro-PCMs show good thermal stability, and the degradation temperature differs from the different compositions of the binary core and molecular weight of the water-soluble monomers. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Performance of Deacetyled Glucomannan as Iron Encapsulation Excipient

    Directory of Open Access Journals (Sweden)

    Wardhani Dyah H.

    2018-01-01

    Full Text Available Encapsulation protects iron from degradation or oxidation possibilities due to its encapsulation material. Glucomannan (GM is a neutral polysaccharide consist of D-mannose and D-glucose connected with β-1,4 linkage. Deactylation transforms solubility of glucomannan as well as its gel structure. These properties support for excipient application. The aim of this work was to determine performance of deacetylated glucomannan as iron matrix. Deacetylation was conducted heterogeneously. Deacetylation did not change the backbone of GM. Higher alkali concentration has better ability to encapsulate iron. Extended deacetylation time and alkali concentration affect insignificantly on the performance of encapsulation to protect iron from oxidation. The release of iron from the matrix influences by deacetylation degree.

  14. Phase-shifting Real-time Holographic Microscopy applied in micro-structures surface analysis

    International Nuclear Information System (INIS)

    Brito, I V; Gesualdi, M R R; Muramatsu, M; Ricardo, J

    2011-01-01

    The microscopic real-time analysis of micro structured materials is of great importance in various domains of science and technology. For other hand, the holographic interferometry comprises a group of powerful optical methods for non-destructive testing in surface analysis. The holographic microscopy uses the holographic interferometric techniques to obtain quantitative intensity and phase information of the optical waves by microscopic systems. With the development of CCD cameras, computers (hardware and software), and new materials for holographic recording, these techniques can be used to replace the classical form of registration and became promising tools in surface analysis. In this work, we developed a prototype of Photorefractive and Digital Holographic Microscope for real-time analysis of micro-structured systems based on the phase-shifting real-time holographic interferometry techniques. Using this apparatus, we are made analysis of shapes and surfaces to obtain the phase maps and the 3D profiles of some samples.

  15. Stories of change: The case of a foundation phase teacher professional development programme

    Directory of Open Access Journals (Sweden)

    Bruce Brown

    2015-09-01

    Full Text Available The study reported in this article responds to the need for empirical studies that provide evidence of positive change in education at the micro-level of the classroom – an important component of the complex education environment in South Africa. This article describes teachers’ and principals’ reports of micro-level changes that occurred during a professional development programme for foundation phase teachers at a South African university. An overview of the principles underpinning the programme design and implementation is given, followed by a description of the qualitative research design and grounded theory methodology used to research changes in the practices of teachers participating in the programme. The study provides evidence of changes in the classroom and professional practice of the teachers, aligned with changes in academic practice and children’s learning in the classroom. We argue that the programme’s strong orientation to practice, its focus on teachers’ understanding of children, and the model of teacher professional development that is located in reflexive practice together may have facilitated positive changes in the teachers’ practices.

  16. Wax encapsulation of water-soluble compounds for application in foods.

    Science.gov (United States)

    Mellema, M; Van Benthum, W A J; Boer, B; Von Harras, J; Visser, A

    2006-11-01

    Water-soluble ingredients have been successfully encapsulated in wax using two preparation techniques. The first technique ('solid preparation') leads to relatively large wax particles. The second technique ('liquid preparation') leads to relatively small wax particles immersed in vegetable oil. On the first technique: stable encapsulation of water-soluble colourants (dissolved at low concentration in water) has been achieved making use of beeswax and PGPR. The leakage from the capsules, for instance of size 2 mm, is about 30% after 16 weeks storage in water at room temperature. To form such capsules a minimum wax mass of 40% relative to the total mass is needed. High amounts of salt or acids at the inside water phase causes more leaking, probably because of the osmotic pressure difference. Osmotic matching of inner and outer phase can lead to a dramatic reduction in leakage. Fat capsules are less suitable to incorporate water soluble colourants. The reason for this could be a difference in crystal structure (fat is less ductile and more brittle). On the second technique: stable encapsulation of water-soluble colourants (encapsulated in solid wax particles) has been achieved making use of carnauba wax. The leakage from the capsules, for instance of size 250 mm, is about 40% after 1 weeks storage in water at room temperature.

  17. Ultrasonographic findings of sclerosing encapsulating peritonitis

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jong Kyu; Lee, Hae Kyung; Moon, Chul; Hong, Hyun Sook; Kwon, Kwi Hyang; Choi, Deuk Lin [Soonchunhyangi University College of Medicine, Seoul (Korea, Republic of)

    2001-03-15

    To evaluate the ultrasonographic findings of the patients with sclerosing encapsulating peritonitis (SEP). Thirteen patients with surgically confirmed sclerosing encapsulating peritonitis were involved in this study. Because of intestinal obstruction, all patients had received operations. Among 13 patients, 12 cases had continuous ambulatory peritoneal dialysis (CAPD) for 2 months-12 years and 4 months from (mean; 6 years and 10 months), owing to chronic renal failure and one patient had an operation due to variceal bleeding caused by liver cirrhosis. On ultrasonographic examination, all patients showed loculated ascites which were large (n=7) or small (n=6) in amount with multiple separations. The small bowel loops were tethered posteriorly perisaltic movement and covered with the thick membrane. The ultrasonographic of findings of sclerosing encapsulating peritonitis were posteriorly tethered small bowels covered with a thick membrane and loculated ascites with multiple septa. Ultrasonographic examination can detect the thin membrane covering the small bowel loops in the early phase of the disease, therefore ultrasonography would be a helpful modality to diagnose SEP early.

  18. Supported liquid phase catalyst coating in micro flow Mizoroki-Heck reaction

    NARCIS (Netherlands)

    Stouten, S.C.; Noël, T.; Wang, Q.; Hessel, V.

    2015-01-01

    A Supported Liquid Phase Catalyst (SLPC) coating was successfully applied for the Mizoroki–Heck reaction in micro flow. Foremost, extended on stream operation was enabled and the on stream performance stability was verified. Stable catalytic activity was achieved during two consecutive runs totaling

  19. Encapsulation layer design and scalability in encapsulated vertical 3D RRAM

    International Nuclear Information System (INIS)

    Yu, Muxi; Fang, Yichen; Wang, Zongwei; Chen, Gong; Pan, Yue; Yang, Xue; Yin, Minghui; Yang, Yuchao; Li, Ming; Cai, Yimao; Huang, Ru

    2016-01-01

    Here we propose a novel encapsulated vertical 3D RRAM structure with each resistive switching cell encapsulated by dielectric layers, contributing to both the reliability improvement of individual cells and thermal disturbance reduction of adjacent cells due to the effective suppression of unwanted oxygen vacancy diffusion. In contrast to the traditional vertical 3D RRAM, encapsulated bar-electrodes are adopted in the proposed structure substituting the previous plane-electrodes, thus encapsulated resistive switching cells can be naturally formed by simply oxidizing the tip of the metal bar-electrodes. In this work, TaO x -based 3D RRAM devices with SiO 2 and Si 3 N 4 as encapsulation layers are demonstrated, both showing significant advantages over traditional unencapsulated vertical 3D RRAM. Furthermore, it was found thermal conductivity and oxygen blocking ability are two key parameters of the encapsulation layer design influencing the scalability of vertical 3D RRAM. Experimental and simulation data show that oxygen blocking ability is more critical for encapsulation layers in the relatively large scale, while thermal conductivity becomes dominant as the stacking layers scale to the sub-10 nm regime. Finally, based on the notable impacts of the encapsulation layer on 3D RRAM scaling, an encapsulation material with both excellent oxygen blocking ability and high thermal conductivity such as AlN is suggested to be highly desirable to maximize the advantages of the proposed encapsulated structure. The findings in this work could pave the way for reliable ultrahigh-density storage applications in the big data era. (paper)

  20. Robust microfluidic encapsulation of cholesteric liquid crystals toward photonic ink capsules.

    Science.gov (United States)

    Lee, Sang Seok; Kim, Bomi; Kim, Su Kyung; Won, Jong Chan; Kim, Yun Ho; Kim, Shin-Hyun

    2015-01-27

    Robust photonic microcapsules are created by microfluidic encapsulation of cholesteric liquid crystals with a hydrogel membrane. The membrane encloses the cholesteric core without leakage in water and the core exhibits pronounced structural colors. The photonic ink capsules, which have a precisely controlled bandgap position and size, provide new opportunities in colorimetric micro-thermometers and optoelectric applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. [Micro-droplet characterization and its application for amino acid detection in droplet microfluidic system].

    Science.gov (United States)

    Yuan, Huiling; Dong, Libing; Tu, Ran; Du, Wenbin; Ji, Shiru; Wang, Qinhong

    2014-01-01

    Recently, the droplet microfluidic system attracts interests due to its high throughput and low cost to detect and screen. The picoliter micro-droplets from droplet microfluidics are uniform with respect to the size and shape, and could be used as monodispensed micro-reactors for encapsulation and detection of single cell or its metabolites. Therefore, it is indispensable to characterize micro-droplet and its application from droplet microfluidic system. We first constructed the custom-designed droplet microfluidic system for generating micro-droplets, and then used the micro-droplets to encapsulate important amino acids such as glutamic acid, phenylalanine, tryptophan or tyrosine to test the droplets' properties, including the stability, diffusivity and bio-compatibility for investigating its application for amino acid detection and sorting. The custom-designed droplet microfluidic system could generate the uniformed micro-droplets with a controllable size between 20 to 50 microm. The micro-droplets could be stable for more than 20 h without cross-contamination or fusion each other. The throughput of detection and sorting of the system is about 600 micro-droplets per minute. This study provides a high-throughput platform for the analysis and screening of amino acid-producing microorganisms.

  2. Solid-phase micro-extraction in bioanalysis, exemplified by lidocaine determination

    NARCIS (Netherlands)

    de Jong, GJ; Koster, EHM

    2000-01-01

    Solid-phase micro-extraction (SPME) is a never sample preparation technique that can be used for gaseous, liquid or solid samples in conjunction with GC, HPLC or CE (e.g. [1]). The use of SPME for the analysis of drugs in biofluids is also becoming popular (e.g. [2]). The principle is that a fused

  3. Encapsulation of 3-hydroxyflavone and fisetin in β-cyclodextrins: Excited state proton transfer fluorescence and molecular mechanics studies

    Science.gov (United States)

    Banerjee, Anwesha; Sengupta, Pradeep K.

    2006-06-01

    Excited-state intramolecular proton-transfer (ESIPT) and dual emission properties (emission profile, anisotropy and decay kinetics) of 3-hydroxyflavone (a synthetic, model flavonol) and fisetin (3,7,3',4'-OH-flavone, a therapeutically active plant flavonol) have been exploited to study their encapsulation in nano-cavities comprising of natural and chemically modified β-cyclodextrins. In the presence of β-CDs, both the flavonols show significantly enhanced relative yields (along with changes in other emission parameters) of the tautomer emission. In addition, for fisetin, large blue shifts are observed for the normal emission (which has significant charge transfer character). From these we infer that the flavonols are encaged in predominantly hydrophobic micro-environments, where external hydrogen bonding perturbations (interfering with the intrinsic ESIPT), and dipolar relaxation effects, are minimized. This is further explained from results of molecular mechanics calculations which indicate selectivity in orientation of the encapsulated flavonols. Moreover, chemical modification of the β-CDs is found to profoundly influence the binding affinities of the guest flavonols.

  4. Study of colloids transport during two-phase flow using a novel polydimethylsiloxane micro-model.

    Science.gov (United States)

    Zhang, Qiulan; Karadimitriou, N K; Hassanizadeh, S M; Kleingeld, P J; Imhof, A

    2013-07-01

    As a representation of a porous medium, a closed micro-fluidic device made of polydimethylsiloxane (PDMS), with uniform wettability and stable hydrophobic properties, was designed and fabricated. A flow network, with a mean pore size of 30 μm, was formed in a PDMS slab, covering an area of 1 mm × 10 mm. The PDMS slab was covered and bonded with a 120-μm-thick glass plate to seal the model. The glass plate was first spin-coated with a thin layer, roughly 10 μm, of PDMS. The micro-model was treated with silane in order to make it uniformly and stably hydrophobic. Fluorescent particles of 300 μm in diameter were used as colloids. It is known that more removal of colloids occurs under unsaturated conditions, compared to saturated flow in soil. At the same time, the change of saturation has been observed to cause remobilization of attached colloids. The mechanisms for these phenomena are not well understood. This is the first time that a closed micro-model, made of PDMS with uniform and stable wettability, has been used in combination with confocal microscopy to study colloid transport under transient two-phase flow conditions. With confocal microscopy, the movement of fluorescent particles and flow of two liquids within the pores can be studied. One can focus at different depths within the pores and thus determine where the particles exactly are. Thus, remobilization of attached colloids by moving fluid-fluid interfaces was visualized. In order to allow for the deposition and subsequent remobilization of colloids during two-phase flow, three micro-channels for the injection of liquids with and without colloids were constructed. An outlet channel was designed where effluent concentration breakthrough curves can be quantified by measuring the fluorescence intensity. A peak concentration also indicated in the breakthrough curve with the drainage event. The acquired images and breakthrough curve successfully confirmed the utility of the combination of such a PDMS

  5. Thermophysical and heat transfer properties of phase change material candidate for waste heat transportation system

    Science.gov (United States)

    Kaizawa, Akihide; Maruoka, Nobuhiro; Kawai, Atsushi; Kamano, Hiroomi; Jozuka, Tetsuji; Senda, Takeshi; Akiyama, Tomohiro

    2008-05-01

    A waste heat transportation system trans-heat (TH) system is quite attractive that uses the latent heat of a phase change material (PCM). The purpose of this paper is to study the thermophysical properties of various sugars and sodium acetate trihydrate (SAT) as PCMs for a practical TH system and the heat transfer property between PCM selected and heat transfer oil, by using differential scanning calorimetry (DSC), thermogravimetry-differential thermal analysis (TG-DTA) and a heat storage tube. As a result, erythritol, with a large latent heat of 344 kJ/kg at melting point of 117°C, high decomposition point of 160°C and excellent chemical stability under repeated phase change cycles was found to be the best PCM among them for the practical TH system. In the heat release experiments between liquid erythritol and flowing cold oil, we observed foaming phenomena of encapsulated oil, in which oil droplet was coated by solidification of PCM.

  6. 预聚合条件对密胺树脂相变微胶囊包覆效率的影响%Effects of Prepolymerization Conditions on the Encapsulation Efficiency of Phase Change Microcapsules Based on Melamine-Formaldehyde

    Institute of Scientific and Technical Information of China (English)

    王先锋; 赵涛

    2017-01-01

    通过改变预聚合条件制备了一系列密胺树脂相变微胶囊,采用扫描电镜(SEM)、差示扫描量热仪(DSC)和热重分析仪(T3)对其进行表征.探究了微胶囊包覆效率的计算方法,并结合SEM的测试结果,系统地研究了甲醛与三聚氰胺(F/M)摩尔比、预聚合时间和预聚体质量分数等因素对包覆效率(En)的影响.实验结果表明,采用DSC-TG联用的方法计算得到的En可以更准确地表征相变微胶囊的包覆情况.En随F/M摩尔比的增加和预聚合时间的缩短而增大,随预聚体质量分数的增加先增大后减小.当F/M摩尔比为2.5,预聚合时间为30 min,预聚体质量分数为10%时,所制备微胶囊的En可以达到88.6%.%A series of phase change microcapsules based on melamine-formaldehyde were synthesized under different prepolymerization conditions.The properties of obtained microcapsules were investigated by SEM,differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA).The calculation of encapsulation efficiency was discussed.Combined with SEM,the effects of parameters including formaldehyde/melamine (F/M) mole ratio,reaction time and mass concentration of prepolymer on the encapsulation efficiency were studied systematically.The experimental results indicate that the encapsulation efficiency(En) based on the results of DSC and TGA can reflect the effects of these parameters more accurately.The encapsulation efficiency shows significant increase with the decrease of reaction time and the increase of F/M mole ratio.And it decreases after obvious increase with the rise of mass concentration.When the F/M mole ratio is 2.5,the reaction time is 30 min and the mass fraction of prepolymer is 10 %,the encapsulation efficiency of fabricated microcapsules can reach up to 88.6 %.

  7. Macro-Encapsulated PCM Cylinder Module Based on Paraffin and Float Stones

    Directory of Open Access Journals (Sweden)

    Kailiang Huang

    2016-05-01

    Full Text Available Organic phase change material (PCM with macro-encapsulation is attractive in energy storage applications as it has relatively low cost. This study focuses on using PET plastic pipes to encapsulate paraffin and using low-cost float stones to increase the thermal conductivity of PCM modules as they have a special structure of high porosity. Float stones were immersed in the liquid PCM and an ultrasonic welding method used to prevent leakage of the PET plastic pipes. Scanning electron microscopy (SEM was used to discover the appearance of the composite PCM. The thermal performance of the PCM cylinder module was analyzed through experimental tests of a constant-temperature water bath and numerical simulations. The result indicates that this PCM Ccylinder module is superior in thermal energy storage compared with the reference module even though fewer PCM was contained and the latent heat loss is considerable. The pipe diameter is an important parameter when using this kind of PCM cylinder module in water tanks.

  8. The direct incorporation of micro-encapsulated phase change materials in the concrete mixing process

    NARCIS (Netherlands)

    Hunger, M.; Entrop, A.G.; Mandilaras, I.; Brouwers, H.J.H.; Founti, M.; Durmisevic, E.

    2009-01-01

    The present study refers to a set of tests using different amounts of microencapsulated PCM directly mixed into self-compacting concrete. This SCC is investigated regarding its fresh and hardened properties. It will be shown that increasing PCM amounts lead to lower thermal conductivity and

  9. Optically reconfigurable metasurfaces and photonic devices based on phase change materials

    Science.gov (United States)

    Wang, Qian; Rogers, Edward T. F.; Gholipour, Behrad; Wang, Chih-Ming; Yuan, Guanghui; Teng, Jinghua; Zheludev, Nikolay I.

    2016-01-01

    Photonic components with adjustable parameters, such as variable-focal-length lenses or spectral filters, which can change functionality upon optical stimulation, could offer numerous useful applications. Tuning of such components is conventionally achieved by either micro- or nanomechanical actuation of their constituent parts, by stretching or by heating. Here, we report a novel approach for making reconfigurable optical components that are created with light in a non-volatile and reversible fashion. Such components are written, erased and rewritten as two-dimensional binary or greyscale patterns into a nanoscale film of phase-change material by inducing a refractive-index-changing phase transition with tailored trains of femtosecond pulses. We combine germanium-antimony-tellurium-based films with a diffraction-limited resolution optical writing process to demonstrate a variety of devices: visible-range reconfigurable bichromatic and multi-focus Fresnel zone plates, a super-oscillatory lens with subwavelength focus, a greyscale hologram, and a dielectric metamaterial with on-demand reflection and transmission resonances.

  10. Melting of nanoparticles-enhanced phase change material (NEPCM) in vertical semicircle enclosure: numerical study

    Energy Technology Data Exchange (ETDEWEB)

    Jourabian, Mahmoud [University of Trieste, Piazzale (Italy); Farhadi, Mousa [Babol Noshirvani University of Technology, Shariati Avenue (Iran, Islamic Republic of)

    2015-09-15

    Convection melting of ice as a Phase change material (PCM) dispersed with Cu nanoparticles, which is encapsulated in a semicircle enclosure is studied numerically. The enthalpy-based Lattice Boltzmann method (LBM) combined with a Double distribution function (DDF) model is used to solve the convection-diffusion equation. The increase in solid concentration of nanoparticles results in the enhancement of thermal conductivity of PCM and the decrease in the latent heat of fusion. By enhancing solid concentration of nanoparticles, the viscosity of nanofluid increases and convective heat transfer dwindles. For all Rayleigh numbers investigated in this study, the insertion of nanoparticles in PCM has no effect on the average Nusselt number.

  11. Melting of nanoparticles-enhanced phase change material (NEPCM) in vertical semicircle enclosure: numerical study

    International Nuclear Information System (INIS)

    Jourabian, Mahmoud; Farhadi, Mousa

    2015-01-01

    Convection melting of ice as a Phase change material (PCM) dispersed with Cu nanoparticles, which is encapsulated in a semicircle enclosure is studied numerically. The enthalpy-based Lattice Boltzmann method (LBM) combined with a Double distribution function (DDF) model is used to solve the convection-diffusion equation. The increase in solid concentration of nanoparticles results in the enhancement of thermal conductivity of PCM and the decrease in the latent heat of fusion. By enhancing solid concentration of nanoparticles, the viscosity of nanofluid increases and convective heat transfer dwindles. For all Rayleigh numbers investigated in this study, the insertion of nanoparticles in PCM has no effect on the average Nusselt number.

  12. Examination of a size-change test for photovoltaic encapsulation materials

    Science.gov (United States)

    Miller, David C.; Gu, Xiaohong; Ji, Liang; Kelly, George; Nickel, Nichole; Norum, Paul; Shioda, Tsuyoshi; Tamizhmani, Govindasamy; Wohlgemuth, John H.

    2012-10-01

    We examine a proposed test standard that can be used to evaluate the maximum representative change in linear dimensions of sheet encapsulation products for photovoltaic modules (resulting from their thermal processing). The proposed protocol is part of a series of material-level tests being developed within Working Group 2 of the Technical Committee 82 of the International Electrotechnical Commission. The characterization tests are being developed to aid module design (by identifying the essential characteristics that should be communicated on a datasheet), quality control (via internal material acceptance and process control), and failure analysis. Discovery and interlaboratory experiments were used to select particular parameters for the size-change test. The choice of a sand substrate and aluminum carrier is explored relative to other options. The temperature uniformity of +/-5°C for the substrate was confirmed using thermography. Considerations related to the heating device (hot-plate or oven) are explored. The time duration of 5 minutes was identified from the time-series photographic characterization of material specimens (EVA, ionomer, PVB, TPO, and TPU). The test procedure was revised to account for observed effects of size and edges. The interlaboratory study identified typical size-change characteristics, and also verified the absolute reproducibility of +/-5% between laboratories.

  13. PEGylated lipid nanocapsules with improved drug encapsulation and controlled release properties.

    Science.gov (United States)

    Hervella, Pablo; Alonso-Sande, Maria; Ledo, Francisco; Lucero, Maria L; Alonso, Maria J; Garcia-Fuentes, Marcos

    2014-01-01

    Drugs with poor lipid and water solubility are some of the most challenging to formulate in nanocarriers, typically resulting in low encapsulation efficiencies and uncontrolled release profiles. PEGylated nanocapsules (PEG-NC) are known for their amenability to diverse modifications that allow the formation of domains with different physicochemical properties, an interesting feature to address a drug encapsulation problem. We explored this problem by encapsulating in PEG-NC the promising anticancer drug candidate F10320GD1, used herein as a model for compounds with such characteristics. The nanocarriers were prepared from Miglyol(®), lecithin and PEG-sterate through a solvent displacement technique. The resulting system was a homogeneous suspension of particles with size around 200 nm. F10320GD1 encapsulation was found to be very poor (<15%) if PEG-NC were prepared using water as continuous phase; but we were able to improve this value to 85% by fixing the pH of the continuous phase to 9. Interestingly, this modification also improved the controlled release properties and the chemical stability of the formulation during storage. These differences in pharmaceutical properties together with physicochemical data suggest that the pH of the continuous phase used for PEG-NC preparation can modify drug allocation, from the external shell towards the inner lipid core of the nanocapsules. Finally, we tested the bioactivity of the drug-loaded PEG-NC in several tumor cell lines, and also in endothelial cells. The results indicated that drug encapsulation led to an improvement on drug cytotoxicity in tumor cells, but not in non-tumor endothelial cells. Altogether, the data confirms that PEG-NC show adequate delivery properties for F10320GD1, and underlines its possible utility as an anticancer therapy.

  14. Temperature stabilisation in Fischer–Tropsch reactors using phase change material (PCM)

    International Nuclear Information System (INIS)

    Odunsi, Ademola O.; O'Donovan, Tadhg S.; Reay, David A.

    2016-01-01

    The Fischer–Tropsch (FT) reaction is highly exothermic. The exothermicity combined with a high sensitivity of product selectivity to temperature constitute the main challenges in the design of FT reactors. Temperature control is particularly critical to the process in order to ensure longevity of the catalyst, optimise the product distribution, and to ensure thermo-mechanical reliability of the entire process. The use of encapsulated, Phase Change Material (PCM), in conjunction with a supervisory temperature control mechanism, could help mitigate these challenges and intensify the heat transport from the reactor. A 2D-axisymmetric, pseudo-homogeneous, steady-state model, with the dissipation of the enthalpy of reaction into an isothermal PCM sink, in a wall-cooled, single-tube fixed bed reactor is presented. Effective temperature control shows a shift in thermodynamic equilibrium, favouring the selectivity of longer chain hydrocarbons (C_5_+) to the disadvantage of CH_4 selectivity-a much desired outcome in the hydrocarbon Gas-to-Liquid (GTL) industry. - Highlights: • Phase change material is used to control temperature in a Fischer–Tropsch reactor. • Effective temperature control favours the production of C_5_+ over CH_4. • A 2D-axisymmetric, steady-state model is presented. • The model is verified against similar experimental work done in literature.

  15. Capillary hydrodynamics and transport processes during phase change in microscale systems

    Science.gov (United States)

    Kuznetsov, V. V.

    2017-09-01

    The characteristics of two-phase gas-liquid flow and heat transfer during flow boiling and condensing in micro-scale heat exchangers are discussed in this paper. The results of numerical simulation of the evaporating liquid film flowing downward in rectangular minichannel of the two-phase compact heat exchanger are presented and the peculiarities of microscale heat transport in annular flow with phase changes are discussed. Presented model accounts the capillarity induced transverse flow of liquid and predicts the microscale heat transport processes when the nucleate boiling becomes suppressed. The simultaneous influence of the forced convection, nucleate boiling and liquid film evaporation during flow boiling in plate-fin heat exchangers is considered. The equation for prediction of the flow boiling heat transfer at low flux conditions is presented and verified using experimental data.

  16. Phase-change materials handbook

    Science.gov (United States)

    Hale, D. V.; Hoover, M. J.; Oneill, M. J.

    1972-01-01

    Handbook describes relationship between phase-change materials and more conventional thermal control techniques and discusses materials' space and terrestrial applications. Material properties of most promising phase-change materials and purposes and uses of metallic filler materials in phase-change material composites are provided.

  17. Neutronics Studies Of Uranium-Based Fully Ceramic Micro-Encapsulated Fuel For PWRs

    International Nuclear Information System (INIS)

    Maldonado, G. Ivan; Gehin, Jess C.

    2012-01-01

    This study evaluates the core neutronics and fuel cycle characteristics that result from employing uranium-based fully ceramic micro-encapsulated (FCM) fuel in a pressurized water reactor (PWR). Specific PWR bundle designs with FCM fuel have been developed, which by virtue of their TRISO particle based elements, are expected to safely reach higher fuel burnups while also increasing the tolerance to fuel failures. The SCALE 6.1 code package, developed and maintained at ORNL, was the primary software employed to model these designs. Analysis was performed using the SCALE double-heterogeneous (DH) fuel modeling capabilities. For cases evaluated with the NESTLE full-core three-dimensional nodal simulator, because the feature to perform DH lattice physics branches with the SCALE/TRITON sequence is not yet available, the Reactivity-Equivalent Physical Transformation (RPT) method was used as workaround to support the full core analyses. As part of the fuel assembly design evaluations, fresh feed lattices were modeled to analyze the within-assembly pin power peaking. Also, a color-set array of assemblies was constructed to evaluate power peaking and power sharing between a once-burned and a fresh feed assembly. In addition, a parametric study was performed by varying the various TRISO particle design features; such as kernel diameter, coating layer thicknesses, and packing fractions. Also, other features such as the selection of matrix material (SiC, Zirconium) and fuel rod dimensions were perturbed. After evaluating different uranium-based fuels, the higher physical density of uranium mononitride (UN) proved to be favorable, as the parametric studies showed that the FCM particle fuel design will need roughly 12% additional fissile material in comparison to that of a standard UO2 rod in order to match the lifetime of an 18-month PWR cycle. Neutronically, the FCM fuel designs evaluated maintain acceptable design features in the areas of fuel lifetime, temperature

  18. NEUTRONICS STUDIES OF URANIUM-BASED FULLY CERAMIC MICRO-ENCAPSULATED FUEL FOR PWRs

    Energy Technology Data Exchange (ETDEWEB)

    George, Nathan M [ORNL; Maldonado, G Ivan [ORNL; Terrani, Kurt A [ORNL; Gehin, Jess C [ORNL; Godfrey, Andrew T [ORNL

    2012-01-01

    This study evaluates the core neutronics and fuel cycle characteristics that result from employing uranium-based fully ceramic micro-encapsulated (FCM) fuel in a pressurized water reactor (PWR). Specific PWR bundle designs with FCM fuel have been developed, which by virtue of their TRISO particle based elements, are expected to safely reach higher fuel burnups while also increasing the tolerance to fuel failures. The SCALE 6.1 code package, developed and maintained at ORNL, was the primary software employed to model these designs. Analysis was performed using the SCALE double-heterogeneous (DH) fuel modeling capabilities. For cases evaluated with the NESTLE full-core three-dimensional nodal simulator, because the feature to perform DH lattice physics branches with the SCALE/TRITON sequence is not yet available, the Reactivity-Equivalent Physical Transformation (RPT) method was used as workaround to support the full core analyses. As part of the fuel assembly design evaluations, fresh feed lattices were modeled to analyze the within-assembly pin power peaking. Also, a color-set array of assemblies was constructed to evaluate power peaking and power sharing between a once-burned and a fresh feed assembly. In addition, a parametric study was performed by varying the various TRISO particle design features; such as kernel diameter, coating layer thicknesses, and packing fractions. Also, other features such as the selection of matrix material (SiC, Zirconium) and fuel rod dimensions were perturbed. After evaluating different uranium-based fuels, the higher physical density of uranium mononitride (UN) proved to be favorable, as the parametric studies showed that the FCM particle fuel design will need roughly 12% additional fissile material in comparison to that of a standard UO2 rod in order to match the lifetime of an 18-month PWR cycle. Neutronically, the FCM fuel designs evaluated maintain acceptable design features in the areas of fuel lifetime, temperature

  19. Patterned three-dimensional encapsulation of embryonic stem cells using dielectrophoresis and stereolithography.

    Science.gov (United States)

    Bajaj, Piyush; Marchwiany, Daniel; Duarte, Carlos; Bashir, Rashid

    2013-03-01

    Controlling the assembly of cells in three dimensions is very important for engineering functional tissues, drug screening, probing cell-cell/cell-matrix interactions, and studying the emergent behavior of cellular systems. Although the current methods of cell encapsulation in hydrogels can distribute them in three dimensions, these methods typically lack spatial control of multi-cellular organization and do not allow for the possibility of cell-cell contacts as seen for the native tissue. Here, we report the integration of dielectrophoresis (DEP) with stereolithography (SL) apparatus for the spatial patterning of cells on custom made gold micro-electrodes. Afterwards, they are encapsulated in poly (ethylene glycol) diacrylate (PEGDA) hydrogels of different stiffnesses. This technique can mimic the in vivo microscale tissue architecture, where the cells have a high degree of three dimensional (3D) spatial control. As a proof of concept, we show the patterning and encapsulation of mouse embryonic stem cells (mESCs) and C2C12 skeletal muscle myoblasts. mESCs show high viability in both the DEP (91.79% ± 1.4%) and the no DEP (94.27% ± 0.5%) hydrogel samples. Furthermore, we also show the patterning of mouse embryoid bodies (mEBs) and C2C12 spheroids in the hydrogels, and verify their viability. This robust and flexible in vitro platform can enable various applications in stem cell differentiation and tissue engineering by mimicking elements of the native 3D in vivo cellular micro-environment. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Micropillar arrays enabling single microbial cell encapsulation in hydrogels.

    Science.gov (United States)

    Park, Kyun Joo; Lee, Kyoung G; Seok, Seunghwan; Choi, Bong Gill; Lee, Moon-Keun; Park, Tae Jung; Park, Jung Youn; Kim, Do Hyun; Lee, Seok Jae

    2014-06-07

    Single microbial cell encapsulation in hydrogels is an important task to find valuable biological resources for human welfare. The conventional microfluidic designs are mainly targeted only for highly dispersed spherical bioparticles. Advanced structures should be taken into consideration for handling such aggregated and non-spherical microorganisms. Here, to address the challenge, we propose a new type of cylindrical-shaped micropillar array in a microfluidic device for enhancing the dispersion of cell clusters and the isolation of individual cells into individual micro-hydrogels for potential practical applications. The incorporated micropillars act as a sieve for the breaking of Escherichia coli (E. coli) clusters into single cells in a polymer mixture. Furthermore, the combination of hydrodynamic forces and a flow-focusing technique will improve the probability of encapsulation of a single cell into each hydrogel with a broad range of cell concentrations. This proposed strategy and device would be a useful platform for genetically modified microorganisms for practical applications.

  1. Design and Fabrication of Piezoresistive Based Encapsulated Poly-Si Cantilevers for Bio/chemical Sensing

    Science.gov (United States)

    Krishna, N. P. Vamsi; Murthy, T. R. Srinivasa; Reddy, K. Jayaprakash; Sangeeth, K.; Hegde, G. M.

    Cantilever-based sensing is a growing research field not only within micro regime but also in nano technology. The technology offers a method for rapid, on-line and in-situ monitoring of specific bio/chemical substances by detecting the nanomechanical responses of a cantilever sensor. Cantilever with piezoresistive based detection scheme is more attractive because of its electronics compatibility. Majority of commercially available micromachined piezoresistive sensors are bulk micromachined devices and are fabricated using single crystal silicon wafers. As substrate properties are not important in surface micromachining, the expensive silicon wafers can be replaced by cheaper substrates, such as poly-silicon, glass or plastic. Here we have designed SU-8 based bio/chemical compatible micro electro mechanical device that includes an encapsulated polysilicon piezoresistor for bio/chemical sensing. In this paper we report the design, fabrication and analysis of the encapsulated poly-Si cantilevers. Design and theoretical analysis are carried out using Finite Element Analysis software. For fabrication of poly-silicon piezoresistive cantilevers we followed the surface micromachining process steps. Preliminary characterization of the cantilevers is presented.

  2. Enhanced structural stability of DNA origami nanostructures by graphene encapsulation

    International Nuclear Information System (INIS)

    Matković, Aleksandar; Vasić, Borislav; Pešić, Jelena; Gajić, Radoš; Prinz, Julia; Bald, Ilko; Milosavljević, Aleksandar R

    2016-01-01

    We demonstrate that a single-layer graphene replicates the shape of DNA origami nanostructures very well. It can be employed as a protective layer for the enhancement of structural stability of DNA origami nanostructures. Using the AFM based manipulation, we show that the normal force required to damage graphene encapsulated DNA origami nanostructures is over an order of magnitude greater than for the unprotected ones. In addition, we show that graphene encapsulation offers protection to the DNA origami nanostructures against prolonged exposure to deionized water, and multiple immersions. Through these results we demonstrate that graphene encapsulated DNA origami nanostructures are strong enough to sustain various solution phase processing, lithography and transfer steps, thus extending the limits of DNA-mediated bottom-up fabrication. (paper)

  3. Examination of rapid phase change in copper wires to improve material models and understanding of burst

    Science.gov (United States)

    Olles, Joseph; Garasi, Christopher; Ball, J. Patrick

    2017-11-01

    Electrically-pulsed wires undergo multiple phase changes including a postulated metastable phase resulting in explosive wire growth. Simulations using the MHD approximation attempt to account for the governing physics, but lack the material properties (equations-of-state and electrical conductivity) to accurately predict the phase evolution of the exploding (bursting) wire. To explore the dynamics of an exploding copper wire (in water), we employ a digital micro-Schlieren streak photography technique. This imaging quantifies wire expansion and shock waves emitted from the wire during phase changes. Using differential voltage probes, a Rogowski coil, and timing fiducials, the phase change of the wire is aligned with electrical power and energy deposition. Time-correlated electrical diagnostics and imaging allow for detailed validation of MHD simulations, comparing observed phases with phase change details found in the material property descriptions. In addition to streak imaging, a long exposure image is taken to capture axial striations along the length of the wire. These images are used to compare with results from 3D MHD simulations which propose that these perturbations impact the rate of wire expansion and temporal change in phases. If successful, the experimental data will identify areas for improvement in the material property models, and modeling results will provide insight into the details of phase change in the wire with correlation to variations in the electrical signals.

  4. A phenomenological approach of solidification of polymeric phase change materials

    Science.gov (United States)

    Bahrani, Seyed Amir; Royon, Laurent; Abou, Bérengère; Osipian, Rémy; Azzouz, Kamel; Bontemps, André

    2017-01-01

    Phase Change Materials (PCMs) are widely used in thermal energy storage and thermal management systems due to their small volume for a given stored energy and their capability for maintaining nearly constant temperatures. However, their performance is limited by their low thermal conductivity and possible leaks while in the liquid phase. One solution is to imprison the PCM inside a polymer mesh to create a Polymeric Phase Change Material (PPCM). In this work, we have studied the cooling and solidification of five PPCMs with different PCMs and polymer fractions. To understand the heat transfer mechanisms involved, we have carried out micro- and macrorheological measurements in which Brownian motion of tracers embedded in PPCMs has been depicted and viscoelastic moduli have been measured, respectively. Beyond a given polymer concentration, it was shown that the Brownian motion of the tracers is limited by the polymeric chains and that the material exhibits an elastic behavior. This would suggest that heat transfer essentially occurs by conduction, instead of convection. Experiments were conducted to measure temperature variation during cooling of the five samples, and a semi-empirical model based on a phenomenological approach was proposed as a practical tool to choose and size PPCMs.

  5. Micro versus macro solid phase extraction for monitoring water contaminants: a preliminary study using trihalomethanes.

    Science.gov (United States)

    Alexandrou, Lydon D; Spencer, Michelle J S; Morrison, Paul D; Meehan, Barry J; Jones, Oliver A H

    2015-04-15

    Solid phase extraction is one of the most commonly used pre-concentration and cleanup steps in environmental science. However, traditional methods need electrically powered pumps, can use large volumes of solvent (if multiple samples are run), and require several hours to filter a sample. Additionally, if the cartridge is open to the air volatile compounds may be lost and sample integrity compromised. In contrast, micro cartridge based solid phase extraction can be completed in less than 2 min by hand, uses only microlitres of solvent and provides comparable concentration factors to established methods. It is also an enclosed system so volatile components are not lost. The sample can also be eluted directly into a detector (e.g. a mass spectrometer) if required. However, the technology is new and has not been much used for environmental analysis. In this study we compare traditional (macro) and the new micro solid phase extraction for the analysis of four common volatile trihalomethanes (trichloromethane, bromodichloromethane, dibromochloromethane and tribromomethane). The results demonstrate that micro solid phase extraction is faster and cheaper than traditional methods with similar recovery rates for the target compounds. This method shows potential for further development in a range of applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Development of thin film encapsulation process for piezoresistive MEMS gyroscope with wide gaps

    Science.gov (United States)

    Ayanoor-Vitikkate, Vipin

    The gyroscope is an inertial sensor used to measure the angular rate of a rotating object. This helps to determine the pitch and yaw rate of any moving body. A number of applications have been developed for consumer and automotive markets, for e.g. vehicle stability control, navigation assist, roll over detection. These are primarily used in high-end cars, where cost is not a major factor. Other areas where a MEMS Gyro can be used are robotics, camcorder stabilization, virtual reality, and more. Primarily due to cost and the size most of these applications have not reached any significant volume. One reason for this is the relatively high cost of MEMS gyros compared to other MEMS sensors like accelerometers or pressure sensors. Generally the cost of packaging a MEMS sensor is about 85-90% of the total cost. Currently most MEMS based gyroscopes are made using bulk or surface micromachining, after which they are packaged using wafer bonding. This unfortunately leads to wastage of silicon and increase in the package size, thus reducing the yield. One way to reduce the cost of packaging is by wafer scale thin film encapsulation of MEMS gyroscopes. The goal of the present work is to fabricate a rate grade MEMS gyroscope and encapsulate it by modifying an existing thin-film encapsulation technique. Packaging is an important step towards commercialization of the device and we plan to use thin wafer scale encapsulation technique developed previously in our group to package these devices. The silicon micro machined gyroscope will be fabricated on SOI (Silicon-on-Insulator) wafers using Bosch DRIE etching techniques. The encapsulation of the device is carried out using epitaxial polysilicon in order to provide a high vacuum inside the device chamber. The advantages offered by this technique are the reduction in area of the die and thus less silicon surface is wasted. In addition to this the encapsulation technique helps in creating a vacuum inside the micro device, which

  7. Micro-Encapsulated Porphyrins and Phthalocyanines - New Formulations in Photodynamic Therapy

    Science.gov (United States)

    Ion, R. M.

    2017-06-01

    Photodynamic therapy (PDT), as an innovative method for cancer tretament is based on a concerted action of some drugs, called sensitizers, which generate reactive oxygen species via a photochemical mechanism, leading to cellular necrosis or apoptosis. The present work aims at loading some sensitizers, as porphyrins (P) and phthalocyanines (Pc) into alginate particles. Particles were prepared by dropping alginate into an aqueous solution containing P or Pc and CaCl2, which allows the formation of particles through ionic crosslinking. It was obtained P or Pc loaded alginate beads with an average diameter of about 100 μm. For these systems, this paper analyses the spectroscopic properties, encapsulation into microcapsules, controlled releasing action and their photosensitizer capacity (singlet oxygen generation).

  8. Thermal conductivity of microPCMs-filled epoxy matrix composites

    OpenAIRE

    Su, J.F.; Wang, X.Y; Huang, Z.; Zhao, Y.H.; Yuan, X.Y.

    2011-01-01

    Microencapsulated phase change materials (microPCMs) have been widely applied in solid matrix as thermal-storage or temperature-controlling functional composites. The thermal conductivity of these microPCMs/matrix composites is an important property need to be considered. In this study, a series of microPCMs have been fabricated using the in situ polymerization with various core/shell ratio and average diameter; the thermal conductivity of microPCMs/epoxy composites were investigated in detai...

  9. Droplets Formation and Merging in Two-Phase Flow Microfluidics

    Directory of Open Access Journals (Sweden)

    Hao Gu

    2011-04-01

    Full Text Available Two-phase flow microfluidics is emerging as a popular technology for a wide range of applications involving high throughput such as encapsulation, chemical synthesis and biochemical assays. Within this platform, the formation and merging of droplets inside an immiscible carrier fluid are two key procedures: (i the emulsification step should lead to a very well controlled drop size (distribution; and (ii the use of droplet as micro-reactors requires a reliable merging. A novel trend within this field is the use of additional active means of control besides the commonly used hydrodynamic manipulation. Electric fields are especially suitable for this, due to quantitative control over the amplitude and time dependence of the signals, and the flexibility in designing micro-electrode geometries. With this, the formation and merging of droplets can be achieved on-demand and with high precision. In this review on two-phase flow microfluidics, particular emphasis is given on these aspects. Also recent innovations in microfabrication technologies used for this purpose will be discussed.

  10. Cyclic water-trimer encapsulation into D2 (22)-C84 fullerene

    Science.gov (United States)

    Slanina, Zdeněk; Uhlík, Filip; Nagase, Shigeru; Akasaka, Takeshi; Lu, Xing; Adamowicz, Ludwik

    2018-03-01

    The cyclic water-trimer encapsulations into D2 (22)-C84 fullerene are evaluated. The encapsulation energy is computed at the M06-2X/6-31++G∗∗ level and it is found that the trimer storage in C84 yields the potential-energy gain of 10.4 kcal/mol. The encapsulated trimer can have two different forms, either the conformation known with the free gas-phase water trimer or the arrangement with the three non-hydrogen bonded H atoms on the same side of the O-O-O plane. The latter endohedral isomer is lower in the potential energy by 0.071 kcal/mol and forms about 57% of their equilibrium mixture at room temperature.

  11. VOLATILE COMPOUNDS OF LITHRAEA CAUSTICA (LITRE) DETERMINATED BY SOLID PHASE MICRO-EXTRACTION (SPME)

    OpenAIRE

    GARBARINO, JUAN A; SALVATORE, GIUSEPPE; PIVANOVO, MARISA; CHAMY, MARÍA CRISTINA; NICOLETTI, MARCELLO; DE IOANNES, ALFREDO

    2002-01-01

    The head space of the aerial parts of Lithraea caustica was analyzed by Solid Phase Micro-Extraction (SPME) technique, obtaining as main volatile compounds the monoterpenes, myrcene, a -pinene, , p-cymene and limonene, as well as the sesquiterpene caryophylene. De las partes áereas de Lithraea caustica y usando la técnica de Micro-Extracción en Fase Sólida (MEFS), fueron identificados y cuantificados los principales compuestos volátiles: los monoterpenos, mirceno, a -pineno, p-cimeno y lim...

  12. Differential permeation of piroxicam-loaded PLGA micro/nanoparticles and their in vitro enhancement

    International Nuclear Information System (INIS)

    Shankarayan, Raju; Kumar, Sumit; Mishra, Prashant

    2013-01-01

    Piroxicam is a non-steroidal anti-inflammatory drug used for the treatment of musculoskeletal pain. The main problem encountered when piroxicam is administered orally is its gastric side-effect (ulcer, bleeding and holes in the stomach). Transmucosal delivery and encapsulation of piroxicam in biodegradable particles offer potential advantages over conventional oral delivery. The present study was aimed to develop an alternative to piroxicam-delivery which could overcome the direct contact of the drug at the mucosal membrane and its permeation through the mucosal membrane was studied. To achieve this, the piroxicam was encapsulated in Poly (lactide-co-glycolide) (PLGA) microparticles (size 1–4 μm, encapsulation efficiency 80–85 %) and nanoparticles (size 151.6 ± 28.6 nm, encapsulation efficiency 92.17 ± 3.08 %). Various formulation process parameters were optimised for the preparation of piroxicam-loaded PLGA nanoparticles of optimal size and encapsulation efficiency. Transmucosal permeability of piroxicam-loaded PLGA micro- and nanoparticles through the porcine oesophageal mucosa was studied. Using fluorescently labelled PLGA micro- and nanoparticles, size-dependent permeation was demonstrated. Furthermore, the effect of different permeation enhancers on the flux rate and permeability coefficient for the permeation of nanoparticles was investigated. The results suggested that amongst the permeation enhancers used the most efficient enhancement of permeation was observed with 10 mM sodium dodecyl sulphate.

  13. Differential permeation of piroxicam-loaded PLGA micro/nanoparticles and their in vitro enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Shankarayan, Raju; Kumar, Sumit; Mishra, Prashant, E-mail: pmishra@dbeb.iitd.ac.in [Indian Institute of Technology Delhi, Department of Biochemical Engineering and Biotechnology (India)

    2013-03-15

    Piroxicam is a non-steroidal anti-inflammatory drug used for the treatment of musculoskeletal pain. The main problem encountered when piroxicam is administered orally is its gastric side-effect (ulcer, bleeding and holes in the stomach). Transmucosal delivery and encapsulation of piroxicam in biodegradable particles offer potential advantages over conventional oral delivery. The present study was aimed to develop an alternative to piroxicam-delivery which could overcome the direct contact of the drug at the mucosal membrane and its permeation through the mucosal membrane was studied. To achieve this, the piroxicam was encapsulated in Poly (lactide-co-glycolide) (PLGA) microparticles (size 1-4 {mu}m, encapsulation efficiency 80-85 %) and nanoparticles (size 151.6 {+-} 28.6 nm, encapsulation efficiency 92.17 {+-} 3.08 %). Various formulation process parameters were optimised for the preparation of piroxicam-loaded PLGA nanoparticles of optimal size and encapsulation efficiency. Transmucosal permeability of piroxicam-loaded PLGA micro- and nanoparticles through the porcine oesophageal mucosa was studied. Using fluorescently labelled PLGA micro- and nanoparticles, size-dependent permeation was demonstrated. Furthermore, the effect of different permeation enhancers on the flux rate and permeability coefficient for the permeation of nanoparticles was investigated. The results suggested that amongst the permeation enhancers used the most efficient enhancement of permeation was observed with 10 mM sodium dodecyl sulphate.

  14. Differential permeation of piroxicam-loaded PLGA micro/nanoparticles and their in vitro enhancement

    Science.gov (United States)

    Shankarayan, Raju; Kumar, Sumit; Mishra, Prashant

    2013-03-01

    Piroxicam is a non-steroidal anti-inflammatory drug used for the treatment of musculoskeletal pain. The main problem encountered when piroxicam is administered orally is its gastric side-effect (ulcer, bleeding and holes in the stomach). Transmucosal delivery and encapsulation of piroxicam in biodegradable particles offer potential advantages over conventional oral delivery. The present study was aimed to develop an alternative to piroxicam-delivery which could overcome the direct contact of the drug at the mucosal membrane and its permeation through the mucosal membrane was studied. To achieve this, the piroxicam was encapsulated in Poly (lactide- co-glycolide) (PLGA) microparticles (size 1-4 μm, encapsulation efficiency 80-85 %) and nanoparticles (size 151.6 ± 28.6 nm, encapsulation efficiency 92.17 ± 3.08 %). Various formulation process parameters were optimised for the preparation of piroxicam-loaded PLGA nanoparticles of optimal size and encapsulation efficiency. Transmucosal permeability of piroxicam-loaded PLGA micro- and nanoparticles through the porcine oesophageal mucosa was studied. Using fluorescently labelled PLGA micro- and nanoparticles, size-dependent permeation was demonstrated. Furthermore, the effect of different permeation enhancers on the flux rate and permeability coefficient for the permeation of nanoparticles was investigated. The results suggested that amongst the permeation enhancers used the most efficient enhancement of permeation was observed with 10 mM sodium dodecyl sulphate.

  15. Study of a phase change energy storage using spherical capsules. Part II: Numerical modelling

    International Nuclear Information System (INIS)

    Bedecarrats, J.P.; Castaing-Lasvignottes, J.; Strub, F.; Dumas, J.P.

    2009-01-01

    The objective of this work is the numerical study of an industrial process of energy storage which consists in the use of a cylindrical tank filled with encapsulated phase change materials (PCM). A particularity is present in this kind of processes; it concerns the delay of the crystallization of the PCM, called supercooling phenomenon. The development of the model for cold storage with heat transfer fluid flowing enables a detailed analysis of this process. The effects of different parameters on the behaviour of the tank, such as the inlet temperature, the flow rate, are examined when the tank is in vertical position. There is substantial agreement between the prediction and the experimental values already presented in part I.

  16. Application of image processing technology to problems in manuscript encapsulation. [Codex Hammer

    Science.gov (United States)

    Glackin, D. L.; Korsmo, E. P.

    1983-01-01

    The long term effects of encapsulation individual sheets of the Codex Hammer were investigated. The manuscript was simulated with similar sheets of paper which were photographed under repeatable raking light conditions to enhance their surface texture, encapsulated in plexiglas, cycled in an environmental test chamber, and rephotographed at selected intervals. The film images were digitized, contrast enhanced, geometrically registered, and apodized. An FFT analysis of a control sheet and two experimental sheets indicates no micro-burnishing, but reveals that the ""mesoscale'' deformations with sizes 8mm are degrading monotonically, which is of no concern. Difference image analysis indicates that the sheets were increasingly stressed with time and that the plexiglas did not provide a sufficient environmental barrier under the simulation conditions. The relationship of these results to the Codex itself is to be determined.

  17. Encapsulation of metalloporphyrins improves their capacity to block the viability of the human malaria parasite Plasmodium falciparum.

    Science.gov (United States)

    Alves, Eduardo; Iglesias, Bernardo A; Deda, Daiana K; Budu, Alexandre; Matias, Tiago A; Bueno, Vânia B; Maluf, Fernando V; Guido, Rafael V C; Oliva, Glaucius; Catalani, Luiz H; Araki, Koiti; Garcia, Celia R S

    2015-02-01

    Several synthetic metallated protoporphyrins (M-PPIX) were tested for their ability to block the cell cycle of the lethal human malaria parasite Plasmodium falciparum. After encapsulating the porphyrin derivatives in micro- and nanocapsules of marine atelocollagen, their effects on cultures of red blood cells infected (RBC) with P. falciparum were verified. RBCs infected with synchronized P. falciparum incubated for 48 h showed a toxic effect over a micromolar range. Strikingly, the IC50 of encapsulated metalloporphyrins reached nanomolar concentrations, where Zn-PPIX showed the best antimalarial effect, with an IC50=330 nM. This value is an 80-fold increase in the antimalarial activity compared to the antimalarial effect of non-encapsulated Zn-PPIX. These findings reveal that the incubation of P. falciparum infected-RBCs with 20 μM Zn-PPIX reduced the size of hemozoin crystal by 34%, whereas a 28% reduction was noticed with chloroquine, confirming the importance of heme detoxification pathway in drug therapy. In this study, synthetic metalloporphyrins were tested as therapeutics that target Plasmodium falciparum. The IC50 of encapsulated metalloporphyrins was found to be in the nanomolar concentration range, with encapsulated Zn-PPIX showing an 80-fold increase in its antimalarial activity compared to the non-encapsulated form. Copyright © 2015. Published by Elsevier Inc.

  18. Liquid-Phase Packaging of a Glucose Oxidase Solution with Parylene Direct Encapsulation and an Ultraviolet Curing Adhesive Cover for Glucose Sensors

    OpenAIRE

    Seiichi Takamatsu; Hisanori Takano; Nguyen Binh-Khiem; Tomoyuki Takahata; Eiji Iwase; Kiyoshi Matsumoto; Isao Shimoyama

    2010-01-01

    We have developed a package for disposable glucose sensor chips using Parylene encapsulation of a glucose oxidase solution in the liquid phase and a cover structure made of an ultraviolet (UV) curable adhesive. Parylene was directly deposited onto a small volume (1 μL) of glucose oxidase solution through chemical vapor deposition. The cover and reaction chamber were constructed on Parylene film using a UV-curable adhesive and photolithography. The package was processed at room temperature to ...

  19. New polyurethane/docosane microcapsules as phase-change materials for thermal energy storage.

    Science.gov (United States)

    Felix De Castro, Paula; Shchukin, Dmitry G

    2015-07-27

    Polyurethane microcapsules were prepared by mini-emulsion interfacial polymerization for encapsulation of phase-change material (n-docosane) for energy storage. Three steps were followed with the aim to optimize synthesis conditions of the microcapsules. First, polyurethane microcapsules based on silicone oil core as an inert template with different silicone oil/poly(ethylene glycol)/4,4'-diphenylmethane diisocyanate wt % ratio were synthesized. The surface morphology of the capsules was analyzed by scanning electronic microscopy (SEM) and the chemical nature of the shell was monitored by Fourier transform infrared spectroscopy (FT-IR). Capsules with the silicone oil/poly(ethylene glycol)/4,4'-diphenylmethane diisocyanate 10/20/20 wt % ratio showed the best morphological features and shell stability with average particle size about 4 μm, and were selected for the microencapsulation of the n-docosane. In the second stage, half of the composition of silicone oil was replaced with n-docosane and, finally, the whole silicone oil content was replaced with docosane following the same synthetic procedure used for silicone oil containing capsules. Thermal and cycling stability of the capsules were investigated by thermal gravimetric analysis (TGA) and the phase-change behavior was evaluated by differential scanning calorimetry (DSC). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Preparation, characterization, and thermal properties of the microencapsulation of a hydrated salt as phase change energy storage materials

    International Nuclear Information System (INIS)

    Huang, Jin; Wang, Tingyu; Zhu, Panpan; Xiao, Junbin

    2013-01-01

    Highlights: ► Phase change point and fusion heat of samples are about 51 °Cand 150 J/g respectively. ► DSC results indicated the core material is not Na 2 HPO 4 ·12H 2 O but Na 2 HPO 4 ·7H 2 O. ► Encapsulation takes a significant role in reducing subcooling degree. - Abstract: Microcapsules loaded by disodium hydrogen phosphate heptahydrate (Na 2 HPO 4 ·7H 2 O) were prepared by means of the suspension copolymerization-solvent volatile method, with modified polymethylmethacrylate (PMMA) as coating polymer under the conditions of various organic solvents. The formation of the microencapsulated phase change materials (MEPCMs)-PMMA/Na 2 HPO 4 ·7H 2 O was investigated and analyzed. The morphology of the resultant materials was characterized by using scanning electron microscope (SEM) and phase contrast microscope. Its final composition was confirmed by the Fourier transformation infrared (FT-IR). Thermo gravimetric analyzer (TGA) and differential scanning calorimetry (DSC) were adopted to reveal its thermal stability and thermal properties. Results indicated that the materials owned improved subcooling degree and good thermal properties, enabling the materials to be one promising phase change materials for thermal energy storage

  1. Preparation, characterization, and thermal properties of the microencapsulation of a hydrated salt as phase change energy storage materials

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jin, E-mail: huangjiner@126.com [School of Materials and Energy, Guangdong University of Technology, 510006 Guangzhou (China); Wang, Tingyu; Zhu, Panpan; Xiao, Junbin [School of Materials and Energy, Guangdong University of Technology, 510006 Guangzhou (China)

    2013-04-10

    Highlights: ► Phase change point and fusion heat of samples are about 51 °Cand 150 J/g respectively. ► DSC results indicated the core material is not Na{sub 2}HPO{sub 4}·12H{sub 2}O but Na{sub 2}HPO{sub 4}·7H{sub 2}O. ► Encapsulation takes a significant role in reducing subcooling degree. - Abstract: Microcapsules loaded by disodium hydrogen phosphate heptahydrate (Na{sub 2}HPO{sub 4}·7H{sub 2}O) were prepared by means of the suspension copolymerization-solvent volatile method, with modified polymethylmethacrylate (PMMA) as coating polymer under the conditions of various organic solvents. The formation of the microencapsulated phase change materials (MEPCMs)-PMMA/Na{sub 2}HPO{sub 4}·7H{sub 2}O was investigated and analyzed. The morphology of the resultant materials was characterized by using scanning electron microscope (SEM) and phase contrast microscope. Its final composition was confirmed by the Fourier transformation infrared (FT-IR). Thermo gravimetric analyzer (TGA) and differential scanning calorimetry (DSC) were adopted to reveal its thermal stability and thermal properties. Results indicated that the materials owned improved subcooling degree and good thermal properties, enabling the materials to be one promising phase change materials for thermal energy storage.

  2. Deposition and Characterization of CVD-Grown Ge-Sb Thin Film Device for Phase-Change Memory Application

    Directory of Open Access Journals (Sweden)

    C. C. Huang

    2012-01-01

    Full Text Available Germanium antimony (Ge-Sb thin films with tuneable compositions have been fabricated on SiO2/Si, borosilicate glass, and quartz glass substrates by chemical vapour deposition (CVD. Deposition takes place at atmospheric pressure using metal chloride precursors at reaction temperatures between 750 and 875°C. The compositions and structures of these thin films have been characterized by micro-Raman, scanning electron microscope (SEM with energy dispersive X-ray analysis (EDX and X-ray diffraction (XRD techniques. A prototype Ge-Sb thin film phase-change memory device has been fabricated and reversible threshold and phase-change switching demonstrated electrically, with a threshold voltage of 2.2–2.5 V. These CVD-grown Ge-Sb films show promise for applications such as phase-change memory and optical, electronic, and plasmonic switching.

  3. Encapsulation plant at Forsmark

    International Nuclear Information System (INIS)

    Nystroem, Anders

    2007-08-01

    SKB has already carried out a preliminary study of an encapsulation plant detached from Clab (Central interim storage for spent fuels). This stand-alone encapsulation plant was named FRINK and its assumed siting was the above-ground portion of the final repository, irrespective of the repository's location. The report previously presented was produced in cooperation with BNFL Engineering Ltd in Manchester and the fuel reception technical solution was examined by Gesellschaft fuer Nuklear-Service mbH (GNS) in Hannover and by Societe Generale pour les Techniques Nouvelles (SGN) in Paris. This report is an update of the earlier preliminary study report and is based on the assumption that the encapsulation plant and also the final repository will be sited in the Forsmark area. SKB's main alternative for siting the encapsulation plant is next to Clab. Planning of this facility is ongoing and technical solutions from the planning work have been incorporated in this report. An encapsulation plant placed in proximity to any final repository in Forsmark forms part of the alternative presentation in the application for permission to construct and operate an installation at Clab. The main technical difference between the planned encapsulation plant at Clab and an encapsulation plant at a final repository at Forsmark is how the fuel is managed and prepared before actual encapsulation. Fuel reception at the encapsulation plant in Forsmark would be dry, i.e. there would be no water-filled pools at the facility. Clab is used for verificatory fuel measurements, sorting and drying of the fuel before transport to Forsmark. This means that Clab will require a measure of rebuilding and supplementary equipment. In purely technical terms, the prospects for building an encapsulation plant sited at Forsmark are good. A description of the advantages and drawbacks of siting the encapsulation plant at Clab as opposed to any final repository at Forsmark is presented in a separate report

  4. Encapsulation plant at Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Nystroem, Anders

    2007-08-15

    SKB has already carried out a preliminary study of an encapsulation plant detached from Clab (Central interim storage for spent fuels). This stand-alone encapsulation plant was named FRINK and its assumed siting was the above-ground portion of the final repository, irrespective of the repository's location. The report previously presented was produced in cooperation with BNFL Engineering Ltd in Manchester and the fuel reception technical solution was examined by Gesellschaft fuer Nuklear-Service mbH (GNS) in Hannover and by Societe Generale pour les Techniques Nouvelles (SGN) in Paris. This report is an update of the earlier preliminary study report and is based on the assumption that the encapsulation plant and also the final repository will be sited in the Forsmark area. SKB's main alternative for siting the encapsulation plant is next to Clab. Planning of this facility is ongoing and technical solutions from the planning work have been incorporated in this report. An encapsulation plant placed in proximity to any final repository in Forsmark forms part of the alternative presentation in the application for permission to construct and operate an installation at Clab. The main technical difference between the planned encapsulation plant at Clab and an encapsulation plant at a final repository at Forsmark is how the fuel is managed and prepared before actual encapsulation. Fuel reception at the encapsulation plant in Forsmark would be dry, i.e. there would be no water-filled pools at the facility. Clab is used for verificatory fuel measurements, sorting and drying of the fuel before transport to Forsmark. This means that Clab will require a measure of rebuilding and supplementary equipment. In purely technical terms, the prospects for building an encapsulation plant sited at Forsmark are good. A description of the advantages and drawbacks of siting the encapsulation plant at Clab as opposed to any final repository at Forsmark is presented in a separate

  5. Hybrid Encapsulated Ionic Liquids for Post-Combustion Carbon Dioxide (CO2) Capture

    Energy Technology Data Exchange (ETDEWEB)

    Brennecke, Joan F [Univ. of Texas, Austin, TX (United States); Degnan, Jr, Thomas Francis [Univ. of Notre Dame, IN (United States); McCready, Mark J. [Univ. of Notre Dame, IN (United States); Stadtherr, Mark A. [Univ. of Texas, Austin, TX (United States); Stolaroff, Joshua K [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ye, Congwang [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-11-03

    Ionic liquids (ILs) and Phase Change Ionic Liquids (PCILs) are excellent materials for selective removal of carbon dioxide from dilute post-combustion streams. However, they are typically characterized as having high viscosities, which impairs their effectiveness due to mass transfer limitations, caused by the high viscosities. In this project, we are examining the benefits of encapsulating ILs and PCILs in thin polymeric shells to produce particles of approximately 100 to 600 µm in diameter that can be used in a fluidized bed absorber. The particles are produced by microencapsulation of the ILs and PCILs in CO2-permeable polymer shells. Here we report on the encapsulation of the IL and PCIL materials, thermodynamic testing of the encapsulated materials, mass transfer measurements in both a fluidized bed and a packed bed, determination of the effect of impurities (SO2, NOx and water) on the free and encapsulated IL and PCIL, recyclability of the CO2 uptake, selection and synthesis of kg quantities of the IL and PCIL, identification of scale-up methods for encapsulation and production of a kg quantity of the PCIL, construction and shakedown of the laboratory scale unit to test the encapsulated particles for CO2 capture ability and efficiency, use of our mass transfer model to predict mass transfer and identify optimal properties of the encapsulated particles, and initial testing of the encapsulated particles in the laboratory scale unit. We also show our attempts at developing shell materials that are resistant to water permeation. Overall, we have shown that the selected IL and PCIL can be successfully encapsulated in polymer shells and the methods scaled up to production levels. The IL/PCIL and encapsulated IL/PCIL react irreversibly with SO2 and NOx so the CO2 capture unit would need to be placed after the flue gas desulfurization and NOx reduction units. However

  6. Micro-fabricated semi-packed column for gas chromatography by using functionalized parylene as a stationary phase

    International Nuclear Information System (INIS)

    Nakai, T; Nishiyama, S; Shuzo, M; Delaunay, J-J; Yamada, I

    2009-01-01

    The conformal coating of effective stationary phases onto micro-fabricated columns having complex geometries such as semi-packed columns poses a real challenge. Here, we report for the first time the conformal coating of a semi-packed column with amino-functionalized parylene diX-AM (poly-aminomethyl-[2,2]-paracyclophane), which was found to be an effective stationary-phase material for the chromatography of short-retention-time compounds. A semi-packed column (consisting of a zigzag array of 30 µm square micro-pillars in a 1.0 m long, 180 µm wide and 230 µm deep channel) and an open tubular column (1.0 m long, 160 µm wide and 230 µm deep channel) used for comparison purposes were micro-fabricated on silicon that was subsequently coated with diX-AM parylene and thermally bonded. The chromatograms recorded on a commercial gas chromatograph demonstrated the usefulness of the conformal diX-AM coating as a stationary phase for semi-packed columns. The separation efficiency of the semi-packed column was found to be more than ten times that of the open tubular column

  7. Targeted nanoparticle delivery of therapeutic antisense microRNAs presensitizes glioblastoma cells to lower effective doses of temozolomide in vitro and in a mouse model.

    Science.gov (United States)

    Malhotra, Meenakshi; Sekar, Thillai Veerapazham; Ananta, Jeyarama S; Devulapally, Rammohan; Afjei, Rayhaneh; Babikir, Husam A; Paulmurugan, Ramasamy; Massoud, Tarik F

    2018-04-20

    Temozolomide (TMZ) chemotherapy for glioblastoma (GBM) is generally well tolerated at standard doses but it can cause side effects. GBMs overexpress microRNA-21 and microRNA-10b, two known oncomiRs that promote cancer development, progression and resistance to drug treatment. We hypothesized that systemic injection of antisense microRNAs (antagomiR-21 and antagomiR-10b) encapsulated in cRGD-tagged PEG-PLGA nanoparticles would result in high cellular delivery of intact functional antagomiRs, with consequent efficient therapeutic response and increased sensitivity of GBM cells to lower doses of TMZ. We synthesized both targeted and non-targeted nanoparticles, and characterized them for size, surface charge and encapsulation efficiency of antagomiRs. When using targeted nanoparticles in U87MG and Ln229 GBM cells, we showed higher uptake-associated improvement in sensitivity of these cells to lower concentrations of TMZ in medium. Co-inhibition of microRNA-21 and microRNA-10b reduced the number of viable cells and increased cell cycle arrest at G2/M phase upon TMZ treatment. We found a significant increase in expression of key target genes for microRNA-21 and microRNA-10b upon using targeted versus non-targeted nanoparticles. There was also significant reduction in tumor volume when using TMZ after pre-treatment with loaded nanoparticles in human GBM cell xenografts in mice. In vivo targeted nanoparticles plus different doses of TMZ showed a significant therapeutic response even at the lowest dose of TMZ, indicating that preloading cells with antagomiR-21 and antagomiR-10b increases cellular chemosensitivity towards lower TMZ doses. Future clinical applications of this combination therapy may result in improved GBM response by using lower doses of TMZ and reducing nonspecific treatment side effects.

  8. Examination of a Size-Change Test for Photovoltaic Encapsulation Materials: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Miller, D. C.; Wohlgemuth, J. H.; Gu, X.; Ji, L.; Kelly, G.; Gu, X.; Nickel, N.; Norum, P.; Shioda, T.; Tamizhmani, G.

    2012-08-01

    We examine a proposed test standard that can be used to evaluate the maximum representative change in linear dimensions of sheet encapsulation products for photovoltaic modules (resulting from their thermal processing). The proposed protocol is part of a series of material-level tests being developed within Working Group 2 of the Technical Committee 82 of the International Electrotechnical Commission. The characterization tests are being developed to aid module design (by identifying the essential characteristics that should be communicated on a datasheet), quality control (via internal material acceptance and process control), and failure analysis. Discovery and interlaboratory experiments were used to select particular parameters for the size-change test. The choice of a sand substrate and aluminum carrier is explored relative to other options. The temperature uniformity of +/- 5C for the substrate was confirmed using thermography. Considerations related to the heating device (hot-plate or oven) are explored. The time duration of 5 minutes was identified from the time-series photographic characterization of material specimens (EVA, ionomer, PVB, TPO, and TPU). The test procedure was revised to account for observed effects of size and edges. The interlaboratory study identified typical size-change characteristics, and also verified the absolute reproducibility of +/- 5% between laboratories.

  9. Temperature-Dependent Change of Packing Structure of Condensed-Phase in a Micro-Phase Separated Langmuir Monolayer Studied by Grazing-Incidence X-ray Diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Iimura, Ken-ichi [Department of Applied Chemisty, Faculty of Engineering, Utsunomiya University, 7-1-2 Yoto, Utsunomiya 321-8585, Utsunomiya (Japan); Kato, Teiji [Department of Applied Chemisty, Faculty of Engineering, Utsunomiya University, 7-1-2 Yoto, Utsunomiya 321-8585, Utsunomiya (Japan); Brezesinski, Gerald [Max-Planck Instutite of Colloids and Interfaces, Research Campus Golm, D-14476 Potsdam (Germany)

    2007-10-15

    Packing structure of condensed-phase in a binary mixed Langmuir monolayer of behenic acid (C22) and perfluoro-2,5,8-trimethyl-3,6,9-trioxadodecanoic acid (PFPE) on a cadmium acetate aqueous solution was studied by grazing incidence X-ray diffraction (GIXD) as a function of the subphase temperature. The measurements were made during temperature scan at a fixed molecular area to explain the morphological change of the condensed-phase domains due to a thermal treatment reported previously. Analysis of GIXD data implies that the condensed-phase domains are composed of only the C22 molecules perpendicularly oriented and very closely packed in a centered rectangular unit cell with orthorhombic distortion at low temperatures. As the temperature increases the area occupied by molecule increases, and above 25 deg. C the lattice becomes disordered, which would allow morphological transformation of the condensed-phase domains. The process of packing structure change is almost reversible except for non-equilibrium phases observed for the monolayer spread at a low temperature, 5.5 deg. C.

  10. Temperature-Dependent Change of Packing Structure of Condensed-Phase in a Micro-Phase Separated Langmuir Monolayer Studied by Grazing-Incidence X-ray Diffraction

    International Nuclear Information System (INIS)

    Iimura, Ken-ichi; Kato, Teiji; Brezesinski, Gerald

    2007-01-01

    Packing structure of condensed-phase in a binary mixed Langmuir monolayer of behenic acid (C22) and perfluoro-2,5,8-trimethyl-3,6,9-trioxadodecanoic acid (PFPE) on a cadmium acetate aqueous solution was studied by grazing incidence X-ray diffraction (GIXD) as a function of the subphase temperature. The measurements were made during temperature scan at a fixed molecular area to explain the morphological change of the condensed-phase domains due to a thermal treatment reported previously. Analysis of GIXD data implies that the condensed-phase domains are composed of only the C22 molecules perpendicularly oriented and very closely packed in a centered rectangular unit cell with orthorhombic distortion at low temperatures. As the temperature increases the area occupied by molecule increases, and above 25 deg. C the lattice becomes disordered, which would allow morphological transformation of the condensed-phase domains. The process of packing structure change is almost reversible except for non-equilibrium phases observed for the monolayer spread at a low temperature, 5.5 deg. C

  11. Critical factors affecting cell encapsulation in superporous hydrogels

    International Nuclear Information System (INIS)

    Desai, Esha S; Tang, Mary Y; Gemeinhart, Richard A; Ross, Amy E

    2012-01-01

    We recently showed that superporous hydrogel (SPH) scaffolds promote long-term stem cell viability and cell driven mineralization when cells were seeded within the pores of pre-fabricated SPH scaffolds. The possibility of cell encapsulation within the SPH matrix during its fabrication was further explored in this study. The impact of each chemical component used in SPH fabrication and each step of the fabrication process on cell viability was systematically examined. Ammonium persulfate, an initiator, and sodium bicarbonate, the gas-generating compound, were the two components having significant toxicity toward encapsulated cells at the concentrations necessary for SPH fabrication. Cell survival rates were 55.7% ± 19.3% and 88.8% ± 9.4% after 10 min exposure to ammonium persulfate and sodium bicarbonate solutions, respectively. In addition, solution pH change via the addition of sodium bicarbonate had significant toxicity toward encapsulated cells with cell survival of only 50.3% ± 2.5%. Despite toxicity of chemical components and the SPH fabrication method, cells still exhibited significant overall survival rates within SPHs of 81.2% ± 6.8% and 67.0% ± 0.9%, respectively, 48 and 72 h after encapsulation. This method of cell encapsulation holds promise for use in vitro and in vivo as a scaffold material for both hydrogel matrix encapsulation and cell seeding within the pores. (paper)

  12. Peripheral blood microRNA and VEGFA mRNA changes following electroconvulsive therapy: implications for psychotic depression.

    Science.gov (United States)

    Kolshus, E; Ryan, K M; Blackshields, G; Smyth, P; Sheils, O; McLoughlin, D M

    2017-12-01

    MicroRNAs are short, non-coding molecules that regulate gene expression. Here, we investigate the role of microRNAs in depression and electroconvulsive therapy (ECT). We performed three studies: a deep sequencing discovery-phase study of miRNA changes in whole blood following ECT (n = 16), followed by a validation study in a separate cohort of patients pre-/post-ECT (n = 37) and matched healthy controls (n = 34). Changes in an experimentally validated gene target (VEGFA) were then analysed in patients pre-/post-ECT (n = 97) and in matched healthy controls (n = 53). In the discovery-phase study, we found no statistically significant differences in miRNA expression from baseline to end of treatment in the group as a whole, but post hoc analysis indicated a difference in patients with psychotic depression (n = 3). In a follow-up validation study, patients with psychotic depression (n = 7) had elevated baseline levels of miR-126-3p (t = 3.015, P = 0.006) and miR-106a-5p (t = 2.598, P = 0.025) compared to healthy controls. Following ECT, these differences disappeared. Baseline VEGFA levels were significantly higher in depressed patients compared to healthy controls (F(1,144) = 27.688, P = <0.001). Following ECT, there was a significant change in VEGFA levels in the psychotic group only (t = 2.915, P = 0.010). Molecular differences (miRNA and VEGFA) may exist between psychotic and non-psychotic depression treated with ECT. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Encapsulation in the food industry: a review.

    Science.gov (United States)

    Gibbs, B F; Kermasha, S; Alli, I; Mulligan, C N

    1999-05-01

    Encapsulation involves the incorporation of food ingredients, enzymes, cells or other materials in small capsules. Applications for this technique have increased in the food industry since the encapsulated materials can be protected from moisture, heat or other extreme conditions, thus enhancing their stability and maintaining viability. Encapsulation in foods is also utilized to mask odours or tastes. Various techniques are employed to form the capsules, including spray drying, spray chilling or spray cooling, extrusion coating, fluidized bed coating, liposome entrapment, coacervation, inclusion complexation, centrifugal extrusion and rotational suspension separation. Each of these techniques is discussed in this review. A wide variety of foods is encapsulated--flavouring agents, acids bases, artificial sweeteners, colourants, preservatives, leavening agents, antioxidants, agents with undesirable flavours, odours and nutrients, among others. The use of encapsulation for sweeteners such as aspartame and flavours in chewing gum is well known. Fats, starches, dextrins, alginates, protein and lipid materials can be employed as encapsulating materials. Various methods exist to release the ingredients from the capsules. Release can be site-specific, stage-specific or signalled by changes in pH, temperature, irradiation or osmotic shock. In the food industry, the most common method is by solvent-activated release. The addition of water to dry beverages or cake mixes is an example. Liposomes have been applied in cheese-making, and its use in the preparation of food emulsions such as spreads, margarine and mayonnaise is a developing area. Most recent developments include the encapsulation of foods in the areas of controlled release, carrier materials, preparation methods and sweetener immobilization. New markets are being developed and current research is underway to reduce the high production costs and lack of food-grade materials.

  14. Multilayer emulsions as a strategy for linseed oil and α-lipoic acid micro-encapsulation: study on preparation and in vitro characterization.

    Science.gov (United States)

    Huang, Juan; Wang, Qiang; Li, Tong; Xia, Nan; Xia, Qiang

    2018-01-04

    Linseed oil and α-lipoic acid are bioactive ingredients, which play an important role in human nutrition and health. However, their application in functional foods is limited because of their instabilities and poor solubilities in hydrophilic matrices. Multilayer emulsions are particularly useful to protect encapsulated bioactive ingredients. The aim of this study was to fabricate multilayer emulsions by a high-pressure homogenization method to encapsulate linseed oil and α-lipoic acid simultaneously. Tween 20 and lecithin were used as surfactants to stabilize the oil droplets of primary emulsions. Multilayer emulsions were produced by using an electrostatic layer-by-layer deposition process of lecithin-chitosan membranes. Thermal treatment exhibited that chitosan encapsulation could improve the thermal stability of primary emulsions. During in vitro digestion, it was found that chitosan encapsulation had little effect on the lipolysis of linseed oil and bioaccessibility of α-lipoic acid. The oxidation stability of linseed oil in multilayer emulsions was improved effectively by chitosan encapsulation and α-lipoic acid. Chitosan encapsulation could inhibit the degradation of α-lipoic acid. A physical stability study indicated that multilayer emulsions had good centrifugal, dilution and storage stabilities. Multilayer emulsion is an effective delivery system to incorporate linseed oil and α-lipoic acid into functional foods and beverages. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  15. Fracture Toughness and Micro-Strain of Y-TZP Nanoceramics at Different Sintering Temperature

    Directory of Open Access Journals (Sweden)

    Rabiha S. Yaseen

    2017-11-01

    Full Text Available The objective of this research is to study the effect of sintering temperature on the mechanical properties and micro-strain of yttria tetragonal zirconia polycrystalls (Y-TZP nanostructure.   Where green disk formed by uniaxially press, sintered at (1500 – 1550 – 1600⁰C in air for 2hr then polished to mirror shape for fracture toughness and micro-hardness measurement by Vickers indenter at (60 kg to 100gm loads. Atomic force microscopy (AFM technique was use to measure the change in grain size and shape of the samples, X-ray diffraction (XRD evaluated to identify the phases and to measure the micro-strain of the samples.          The Results show that increasing sintering temperature will increase the grain size with increasing the average of micro-strain. Tetragonal  phase is the prevailing phase with small amount of cubic phase and the amount of monoclinic phase was under detection limite after sintering but there is increas in lattice dimension according to micro-strain calculation and grinding process produce micro-strain. With increasing the sintering temperature micro-hardness and fracture toughness will increas.

  16. Microfluidics and BIO-encapsulation for drug- and cell-therapy

    Science.gov (United States)

    Aloisi, A.; Toma, C. C.; Di Corato, R.; Rinaldi, R.

    2017-08-01

    We present the construction and the application of biocompatible micro- and nano-structures that can be administered systemically and transport in a targeted and effective way drugs, small molecules, stem cells or immune system cells. These polymeric nano-systems represent a primary goal for the treatment of a wide family of neurological/systemic disorders, as well as tumors and/or acute injuries. As natural, biocompatible, biodegradable and non-immunogenic building blocks, alginate and chitosan are been currently exploited. Ionotropic pre-gelation of the alginate core, followed by chitosan polyelectrolyte complexation, allows to encapsulate selected active molecules by means of physical entrapment and electrostatic interactions within sub-micron sized hydrogel vesicles. Here we present a microfluidicassisted assembly method of nano- and micro-vesicles -under sterile, closed environment and gas exchange adjustable conditions, which is a critical issue, when the cargo to be uploaded is very sensitive. Polymer/polymer and polymer/drug mass ratio relationship are crucial in order to attain the optimum in terms of shuttle size and cargo concentration. By modulating polymer reticulation conditions, it become possible to control drug loading efficiency as well as drug delivery dynamics. Recent results on the application of these vesicles for the encapsulation and delivery of Inhibin-A and Decorin, proteins involved in acute kidney injury (AKI), for Renal tubular cell regeneration will be presented. Finally, the impact of these polysaccharide sub-micron vesicles on Human Immune cells and the metabolic and functional activity of cells embedded in the assembled vesicles will be presented and discussed.

  17. interThermalPhaseChangeFoam—A framework for two-phase flow simulations with thermally driven phase change

    Directory of Open Access Journals (Sweden)

    Mahdi Nabil

    2016-01-01

    Full Text Available The volume-of-fluid (VOF approach is a mature technique for simulating two-phase flows. However, VOF simulation of phase-change heat transfer is still in its infancy. Multiple closure formulations have been proposed in the literature, each suited to different applications. While these have enabled significant research advances, few implementations are publicly available, actively maintained, or inter-operable. Here, a VOF solver is presented (interThermalPhaseChangeFoam, which incorporates an extensible framework for phase-change heat transfer modeling, enabling simulation of diverse phenomena in a single environment. The solver employs object oriented OpenFOAM library features, including Run-Time-Type-Identification to enable rapid implementation and run-time selection of phase change and surface tension force models. The solver is packaged with multiple phase change and surface tension closure models, adapted and refined from earlier studies. This code has previously been applied to study wavy film condensation, Taylor flow evaporation, nucleate boiling, and dropwise condensation. Tutorial cases are provided for simulation of horizontal film condensation, smooth and wavy falling film condensation, nucleate boiling, and bubble condensation. Validation and grid sensitivity studies, interfacial transport models, effects of spurious currents from surface tension models, effects of artificial heat transfer due to numerical factors, and parallel scaling performance are described in detail in the Supplemental Material (see Appendix A. By incorporating the framework and demonstration cases into a single environment, users can rapidly apply the solver to study phase-change processes of interest.

  18. interThermalPhaseChangeFoam-A framework for two-phase flow simulations with thermally driven phase change

    Science.gov (United States)

    Nabil, Mahdi; Rattner, Alexander S.

    The volume-of-fluid (VOF) approach is a mature technique for simulating two-phase flows. However, VOF simulation of phase-change heat transfer is still in its infancy. Multiple closure formulations have been proposed in the literature, each suited to different applications. While these have enabled significant research advances, few implementations are publicly available, actively maintained, or inter-operable. Here, a VOF solver is presented (interThermalPhaseChangeFoam), which incorporates an extensible framework for phase-change heat transfer modeling, enabling simulation of diverse phenomena in a single environment. The solver employs object oriented OpenFOAM library features, including Run-Time-Type-Identification to enable rapid implementation and run-time selection of phase change and surface tension force models. The solver is packaged with multiple phase change and surface tension closure models, adapted and refined from earlier studies. This code has previously been applied to study wavy film condensation, Taylor flow evaporation, nucleate boiling, and dropwise condensation. Tutorial cases are provided for simulation of horizontal film condensation, smooth and wavy falling film condensation, nucleate boiling, and bubble condensation. Validation and grid sensitivity studies, interfacial transport models, effects of spurious currents from surface tension models, effects of artificial heat transfer due to numerical factors, and parallel scaling performance are described in detail in the Supplemental Material (see Appendix A). By incorporating the framework and demonstration cases into a single environment, users can rapidly apply the solver to study phase-change processes of interest.

  19. Improvement of skin whitening agents efficiency through encapsulation: Current state of knowledge.

    Science.gov (United States)

    Ephrem, Elissa; Elaissari, Hamid; Greige-Gerges, Hélène

    2017-06-30

    Hyperpigmentation is one of the most common skin disorder that affects both men and women of all ethnic groups, caused by several factors, such as UV exposure and skin inflammation. Topical whitening agents were found to be the best and the least aggressive therapy for treating hyperpigmentation compared to instrumental approaches. However, topical treatment faces several obstacles due to the low stability of the whitening agents. Therefore, the encapsulation of these agents was found to be crucial as it enhances their physicochemical stability and increases their concentration at the targeted site via an improved skin permeation, penetration or distribution. In this article, we review the literature aimed to enhance the stability and the targeting of skin whitening agents through their encapsulation in various nano and micro-particulate systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Encapsulation of radioactive waste

    International Nuclear Information System (INIS)

    Pordes, O.; Plows, J.P.

    1980-01-01

    A method is described for encapsulating a particular radioactive waste which consists of suspending the waste in a viscous liquid encapsulating material, of synthetic resin monomers or prepolymers, and setting the encapsulating material by addition or condensation polymerization to form a solid material in which the waste is dispersed. (author)

  1. Micro/nanoencapsulated n-nonadecane with poly(methyl methacrylate) shell for thermal energy storage

    International Nuclear Information System (INIS)

    Sarı, Ahmet; Alkan, Cemil; Biçer, Alper; Altuntaş, Ayşe; Bilgin, Cahit

    2014-01-01

    Graphical abstract: This paper was aimed to prepare, characterize and determinate of thermal energy storage properties of PMMA/C19 micro/nanocapsules as a novel encapsulated phase change material (M/N-EPCM). The chemical structure of the prepared M/N-EPCM was verified using FTIR spectroscopy method. The analysis results obtained from POM and SEM indicated that the synthesized capsules had virtually spherical-shape. The PSD analysis indicated that the M/N-EPCM capsules had mean diameter of 8.18 μm and the percentage of the capsules with nanosize was 4.90 (v/v). The DSC results showed that the synthesized M/N-PCM had a melting temperature and total latent heat value as 31.23 °C and 139.20 J/g, respectively. It can be also deduced from all results that the synthesized M/N-EPCM had promising thermal energy storage potential due to its good latent heat thermal energy storage properties, thermal durability, thermal reliability, chemical stability, thermal conductivity and phase change reversibility properties. - Highlights: • The chemical structure of the prepared M/N-EPCM was verified using FTIR spectroscopy method. • POM and SEM results indicated that the M/N-EPCM had virtually spherical shape-appearance. • The M/N-EPCM had mean diameter of 8.18 μm and the percentage of the capsules with nanosize was 4.90 (v/v). • The M/N-PCM had a melting temperature and total latent heat value as 31.23 °C and 139.20 J/g, respectively. • The M/N-EPCM had promising thermal energy storage potential. - Abstract: This paper was aimed to prepare, characterize and determine the thermal energy storage properties of poly(methyl methacrylate) (PMMA)/n-nonadecane (C19) capsules as a novel micro/nanoencapsulated phase change material (M/N-EPCM). The M/N-EPCM was fabricated via emulsion polymerization reaction of methylmethacrylate (MMA) monomer occurred around C19 used as core material. The chemical structure of the prepared M/N-EPCM was verified using Fourier transform infrared

  2. Do encapsulated heat storage materials really retain their original thermal properties?

    Science.gov (United States)

    Chaiyasat, Preeyaporn; Noppalit, Sayrung; Okubo, Masayoshi; Chaiyasat, Amorn

    2015-01-14

    The encapsulation of Rubitherm®27 (RT27), which is one of the most common commercially supplied heat storage materials, by polystyrene (PS), polydivinyl benzene (PDVB) and polymethyl methacrylate (PMMA) was carried out using conventional radical microsuspension polymerization. The products were purified to remove free RT27 and free polymer particles without RT27. In the cases of PS and PDVB microcapsules, the latent heats of melting and crystallization for RT27 ( and , J/g-RT27) were clearly decreased by the encapsulation. On the other hand, those of the PMMA microcapsules were the same as pure RT27. A supercooling phenomenon was observed not only for PS and PDVB but also for the PMMA microcapsules. These results indicate that the thermal properties of the heat storage materials encapsulated depend on the type of polymer shells, i.e., encapsulation by polymer shell changes the thermal properties of RT27. This is quite different from the idea of other groups in the world, in which they discussed the thermal properties based on the ΔHm and ΔHc values expressed in J/g-capsule, assuming that the thermal properties of the heat storage materials are not changed by the encapsulation. Hereafter, this report should raise an alarm concerning the "wrong" common knowledge behind developing the encapsulation technology of heat storage materials.

  3. Growth of potassium niobate micro-hexagonal tablets with monoclinic phase and its excellent piezoelectric property

    Science.gov (United States)

    Chen, Zhong; Huang, Jingyun; Wang, Ye; Yang, Yefeng; Wu, Yongjun; Ye, Zhizhen

    2012-09-01

    Potassium niobate micro-hexagonal tablets were synthesized through hydrothermal reaction with KOH, H2O and Nb2O5 as source materials by using a polycrystalline Al2O3 as substrate. X-ray diffraction, Raman spectra and selected area electron diffraction analysis results indicated that the tablets exhibit monoclinic phase structure and are highly crystallized. Meanwhile, piezoelectric property of the micro-hexagonal tablets was investigated. The as-synthesized tablets exhibit excellent piezoactivities in the experiments, and an effective piezoelectric coefficient of around 80 pm/V was obtained. The tablets have huge potential applications in micro/nano-integrated piezoelectric and optical devices.

  4. Structure and phase transition of BiFeO3 cubic micro-particles prepared by hydrothermal method

    International Nuclear Information System (INIS)

    Zhou, Jian-Ping; Yang, Ruo-Lin; Xiao, Rui-Juan; Chen, Xiao-Ming; Deng, Chao-Yong

    2012-01-01

    Graphical abstract: Bismuth ferrite (BiFeO 3 ) cubic micro-particles with smooth surfaces were synthesized. BiFeO 3 has a hexagonal perovskite structure with a space group R3c below 370 °C and rhombohedral perovskite structure with a space group R3m below 755 °C, undergoes a phase transition in the temperature range of 755–817 °C to a cubic structure, then decompose to liquid and Fe 2 O 3 above 939 °C. Highlights: ► BiFeO 3 micro-particles with smooth surface were synthesized by hydrothermal method. ► BiFeO 3 enjoys hexagonal structure with well element ratio and chemical valence. ► BiFeO 3 transition from rhombohedral phase to cubic phase lasts 60 °C. -- Abstract: Single-phase bismuth ferrite (BiFeO 3 ) powders were synthesized with a hydrothermal method by controlling the experimental conditions carefully. The powder structure, morphology and composition were characterized by using X-ray diffraction (XRD), scanning electron microscopy, transmission electron microscope, Raman measurement and X-ray photoelectron spectroscopy. The particles change from irregular agglomerations to regular cubes with increasing KOH concentration. The large BiFeO 3 cubic particles enjoy much smooth surfaces with well-matched element ratio (Bi:Fe:O = 1:1:3) and chemical valence (Bi 3+ , Fe 3+ and O 2− ). The high temperature XRD and differential scanning calorimetry show that BiFeO 3 powders have a hexagonal perovskite structure with a space group R3c below 370 °C and a rhombohedral structure with a space group R3m below 755 °C. BiFeO 3 undergoes a phase transition in the temperature range of 755–817 °C from rhombohedral structure to a cubic phase, then decomposes to liquid and Fe 2 O 3 above 939 °C.

  5. Multifunctional Mesoporous Carbon Capsules and their Robust Coatings for Encapsulation of Actives: Antimicrobial and Anti-bioadhesion Functions.

    Science.gov (United States)

    Mishra, Gargi; Mittal, Nitesh; Sharma, Ashutosh

    2017-06-14

    We present the synthesis and applications of multifunctional hollow porous carbon spheres with well-ordered pore architecture and ability to encapsulate functional nanoparticles. In the present work, the applications of hollow mesoporous carbon capsules (HMCCs) are illustrated in two different contexts. In the first approach, the hollow capsule core is used to encapsulate silver nanoparticles to impart antimicrobial characteristics. It is shown that silver-loaded HMCCs (concentration ∼100 μg/mL) inhibit the growth and multiplication of bacterial colonies of Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) up to 96% and 83%, respectively. In the second part, the fabrication of hierarchical micro- and nanostructured superhydrophobic coatings of HMCCs (without encapsulation with silver nanoparticles) is evaluated for anti-bioadhesion properties. Studies of protein adsorption and microorganism and platelet adhesion have shown a significant reduction (up to 100%) for the HMCC-based superhydrophobic surfaces compared with the control surfaces. Therefore, this unique architecture of HMCCs and their coatings with the ability to encapsulate functional materials make them a promising candidate for a variety of applications.

  6. Phase change based cooling for high burst mode heat loads with temperature regulation above the phase change temperature

    Science.gov (United States)

    The United States of America as represented by the United States Department of Energy

    2009-12-15

    An apparatus and method for transferring thermal energy from a heat load is disclosed. In particular, use of a phase change material and specific flow designs enables cooling with temperature regulation well above the fusion temperature of the phase change material for medium and high heat loads from devices operated intermittently (in burst mode). Exemplary heat loads include burst mode lasers and laser diodes, flight avionics, and high power space instruments. Thermal energy is transferred from the heat load to liquid phase change material from a phase change material reservoir. The liquid phase change material is split into two flows. Thermal energy is transferred from the first flow via a phase change material heat sink. The second flow bypasses the phase change material heat sink and joins with liquid phase change material exiting from the phase change material heat sink. The combined liquid phase change material is returned to the liquid phase change material reservoir. The ratio of bypass flow to flow into the phase change material heat sink can be varied to adjust the temperature of the liquid phase change material returned to the liquid phase change material reservoir. Varying the flowrate and temperature of the liquid phase change material presented to the heat load determines the magnitude of thermal energy transferred from the heat load.

  7. Preparation, characterization and nonlinear absorption studies of cuprous oxide nanoclusters, micro-cubes and micro-particles

    Science.gov (United States)

    Sekhar, H.; Narayana Rao, D.

    2012-07-01

    Cuprous oxide nanoclusters, micro-cubes and micro-particles were successfully synthesized by reducing copper(II) salt with ascorbic acid in the presence of sodium hydroxide via a co-precipitation method. The X-ray diffraction and FTIR studies revealed that the formation of pure single-phase cubic. Raman and EPR spectral studies show the presence of CuO in as-synthesized powders of Cu2O. Transmission electron microscopy and field emission scanning electron microscopy data revealed that the morphology evolves from nanoclusters to micro-cubes and micro-particles by increasing the concentration of NaOH. Linear optical measurements show absorption peak maximum shifts towards red with changing morphology from nanoclusters to micro-cubes and micro-particles. The nonlinear optical properties were studied using open aperture Z-scan technique with 532 nm 6 ns laser pulses. Samples-exhibited both saturable as well as reverse saturable absorption. Due to confinement effects (enhanced band gap), we observed enhanced nonlinear absorption coefficient (β) in the case of nanoclusters compared to their micro-cubes and micro-particles.

  8. Effect of nonionic compound emulsifiers Tween80 and Span80 on the properties of microencapsulated phase change materials.

    Science.gov (United States)

    Zhan, Shiping; Zhou, Zhiyi; Wang, Weijing; Zhao, Qicheng; Hou, Weimin

    2014-01-01

    In this article, the nonionic compound emulsifiers Tween80 and Span80 were used to prepare microcapsules containing phase change materials (microPCMs) with melamine-formaldehyde (MF) shells by in situ polymerization method. The effects of compound emulsifiers Tween80 and Span80 on the structure, morphologies and properties of microPCMs containing paraffin were studied. SEM morphological investigation suggests that a complex of Tween80 and Span80 as emulsifiers are optimal for the fabrication of microPCMs in this study compared to Tween60 or OP-10. The diameter distributions of microPCMs synthesized with different amounts of compound emulsifiers are uniform, whereas compound emulsifiers' amount affect the mean diameter of microPCMs decreasing from 5.34 to 3.05 µm. These microPCMs with the core/shell weight ratio 3/1 have smoother surface and a higher core content of 68.7% than other core/shell ratio. Anti-osmosis measurements indicate that microPCMs have good compactness and stable performance compared to those synthesized by one type of emulsifier.

  9. Fabrication of hemispherical liquid encapsulated structures based on droplet molding

    Science.gov (United States)

    Ishizuka, Hiroki; Miki, Norihisa

    2015-12-01

    We have developed and demonstrated a method for forming spherical structures of a thin polydimethylsiloxane (PDMS) membrane encapsulating a liquid. Liquid encapsulation can enhance the performance of microelectromechanical systems (MEMS) devices by providing deformability and improved dielectric properties. Parylene deposition and wafer bonding are applied to encapsulate liquid into a MEMS device. In parylene deposition, a parylene membrane is directly formed onto a liquid droplet. However, since the parylene membrane is stiff, the membrane is fragile. Although wafer bonding can encapsulate liquid between two substrates, the surface of the fabricated structure is normally flat. We propose a new liquid encapsulation method by dispensing liquid droplets. At first, a 20 μl PDMS droplet is dispensed on ethylene glycol. A 70 μl glycerin droplet is dispensed into a PDMS casting solution layer. The droplet forms a layer on heated ethylene glycol. Glycerin and ethylene glycol are chosen for their high boiling points. Additionally, a glycerin droplet is dispensed on the layer and surrounded by a thin PDMS casting solution film. The film is baked for 1 h at 75 °C. As the result, a structure encapsulating a liquid in a flexible PDMS membrane is obtained. We investigate the effects of the volume, surface tension, and guide thickness on the shape of the formed structures. We also evaluated the effect of the structure diameter on miniaturization. The structure can be adapted for various functions by changing the encapsulated liquid. We fabricated a stiffness-tunable structure by dispensing a magnetorheoligical fluid droplet with a stiffness that can be changed by an external magnetic field. We also confirmed that the proposed structure can produce stiffness differences that are distinguishable by humans.

  10. Micro solid-phase radioimmunoassay for detection of herpesvirus type-specific antibody: specificity and sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Adler-Storthz, K.; Matson, D.O.; Adam, E.; Dreesman, G.R. (Baylor Univ., Houston, TX (USA). Coll. of Medicine)

    1983-02-01

    The specificity and sensitivity of a micro solid-phase radioimmunoassay (micro-SPRIA) that detects type-specific IgG antibody to herpes simplex virus types 1 and 2 (HSV1 and HSV2) were evaluated. Glycoproteins VP123 (molecular weight, 123,000) of HSV1 and VP119 (molecular weight, 119,000) of HSV2 were found to display the greatest degree of antigenic type-specificity of several HSV antigens tested with the micro-SPRIA technique. When testing a group of sera, negative for anti-HSV antibodies by microneutralization, in the micro-SPRIA, a range of negative reactivities was noted, suggesting that cut-points should be determined for each antigen preparation. The micro-SPRIA detected appropriate antibody activity in patients with recurrent infection and a marked agreement was noted in comparison to detection of anti-HSV antibodies measured with the microneutralization test. The type-specificity of the micro-SPRIA was substantiated by the independence of test results using VP119 and VP123 antigens for a random group of positive sera. The assay is rapid, specific, and sensitive and allows the testing of multiple serum samples with a standardized set of reagents.

  11. Investigations of effect of phase change mass transfer rate on cavitation process with homogeneous relaxation model

    Energy Technology Data Exchange (ETDEWEB)

    He, Zhixia; Zhang, Liang; Saha, Kaushik; Som, Sibendu; Duan, Lian; Wang, Qian

    2017-12-01

    The super high fuel injection pressure and micro size of nozzle orifice has been an important development trend for the fuel injection system. Accordingly, cavitation transient process, fuel compressibility, amount of noncondensable gas in the fuel and cavitation erosion have attracted more attention. Based on the fact of cavitation in itself is a kind of thermodynamic phase change process, this paper takes the perspective of the cavitation phase change mass transfer process to analyze above mentioned phenomenon. The two-phase cavitating turbulent flow simulations with VOF approach coupled with HRM cavitation model and U-RANS of standard k-ε turbulence model were performed for investigations of cavitation phase change mass transfer process. It is concluded the mass transfer time scale coefficient in the Homogenous Relaxation Model (HRM) representing mass transfer rate should tend to be as small as possible in a condition that ensured the solver stable. At very fast mass transfer rate, the phase change occurs at very thin interface between liquid and vapor phase and condensation occurs more focused and then will contribute predictably to a more serious cavitation erosion. Both the initial non-condensable gas in fuel and the fuel compressibility can accelerate the cavitation mass transfer process.

  12. Encapsulated Presentation: A New Paradigm of Blended Learning

    Science.gov (United States)

    Rose, Richard; Ray, Jan

    2011-01-01

    This article is a presentation of a new mode of blended learning whose only goal is to enrich the quality of instruction in the face-to-face classroom through the simultaneous delivery of online and face-to-face components. Encapsulated presentation is the delivery of the entire presentation phase of a lesson in the classroom by electronic methods…

  13. Encapsulation of Lactobacillus kefiri in alginate microbeads using a double novel aerosol technique.

    Science.gov (United States)

    Demitri, Christian; Lamanna, Leonardo; De Benedetto, Egidio; Damiano, Fabrizio; Cappello, Maria Stella; Siculella, Luisa; Sannino, Alessandro

    2017-08-01

    Alginate micro beads containing Lactobacillus kefiri (the principal bacteria present in the kefir probiotic drink) were produced by a novel technique based on dual aerosols spaying of alginate based solution and CaCl 2 as cross linking agent. Carboxymethylcellulose (CMC) has been also added to the alginate in order to change the physic-chemical properties (viscosity and permeability) of the microbeads. Calcium alginate and CMC are biopolymers that can be used for developing oral drug-delivery systems. These biopolymers have been reported to show a pH-dependent swelling behaviour. Calcium alginate and CMC have also been known to possess an excellent mucoadhesive property. The loaded microbeads have been characterized in terms of morphology, chemical composition and stability in different conditions mimicking the gastric environment. In this study, we demonstrate the feasibility of a continuous fabrication of alginate microbeads in a range of 50-70μm size, encapsulating L. kefiri as active ingredient. The technique involves the use of a double aerosols of alginate based solution and CaCl 2 as crosslinking agent. Moreover, the encapsulation process was proved to be effective and not detrimental to bacteria viability. At the same time, it was verified the protective efficacy of the microcapsules against the gastric environment using both SGF pH1.2 (fasted state) and pH2.2 (feed state). Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Development and evaluation of a two-level functional structure for the thin film encapsulation

    International Nuclear Information System (INIS)

    Lee, Jae-Wung; Sharma, Jaibir; Singh, Navab; Kwong, Dim-Lee

    2013-01-01

    This paper reports a two level capping structure for encapsulating micro-electro-mechanical system (MEMS) devices. The two level capping solves the main issue of the longer release time as well as safe sealing in thin film encapsulation (TFE). In this technique, the first cap layer has many etch holes, which were uniformly distributed on it to enhance the removal of the sacrificial layer. The second cap layer forms a cap on every etch hole in the first cap layer to protect the mass loading on MEMS devices. This technique was found to be very effective in reducing the release time of the TFE. For the 1200 µm × 1200 µm sized cavity encapsulation, this technique decreases the release time of the TFE by a factor of 24 in comparison to the sidewall located channel scheme. The presented technique also helps in reducing the size of TFE as the etch holes are uniformly distributed on the TFE itself. Wide seal rings were not required to accommodate sidewall channels. (paper)

  15. Biodegradable Poly(D,L-lactic-co-glycolic acid)-Based Micro ...

    African Journals Online (AJOL)

    ... drug encapsulation efficiency and release profile of PLGA mico/nanoparticles. The current knowledge of protein instability during preparation, storage and release from PLGA micro/nanoparticles and protein stabilization approaches has also been discussed in this review. Keywords: Poly(D, L-lactic-co-glycolic acid), ...

  16. Preparation of O/I1-type Emulsions and S/I1-type Dispersions Encapsulating UV-Absorbing Agents.

    Science.gov (United States)

    Aramaki, Kenji; Kimura, Minami; Masuda, Kazuki

    2015-01-01

    Oil-in-cubic phase (O/I1) emulsions encapsulating the cosmetic UV absorbing agents 2-ethylhexyl 4-methoxycinnamate (EHMC), 2-ethylhexyl 2-cyano-3,3-diphenylacrylate (octocrylene, OCR) and 1-(4-tertbutylphenyl)-3-(4-methoxyphenyl)-1,3-propanedione (Avobenzone, TBMP) were prepared by vortex mixing accompanied by a heating-cooling process. A ternary phase diagram in a water/C12EO25/EHMC system at 25°C was constructed and the two-phase equilibrium of an oil phase and an I1 phase, which is necessary to prepare the O/I1-type emulsions, was confirmed. Also, the melting of the I1 phase into a fluid micellar solution phase was confirmed, allowing emulsification by a heating-cooling process. The O/I1-type emulsions were formulated in the ternary system as well as a quaternary system. The four-component system contained an additional cosolvent, isopropyl myristate (IPM). The use of the cosolvent allows the use of reduced amounts of EHMC, which is desirable because EHMC can cause temporary skin irritation. Formulation of the O/I1-type emulsions with other UV absorbing agents (OCR and TBMP) was also possible using the same emulsification method. When IPM was changed to tripalmitin, which has a melting point greater than room temperature, a solid-oil dispersion in I1 phase was formed. We have termed this a "solidin-cubic phase (S/I1) type dispersion". These novel emulsions have not been reported previously. The UV absorbability of the O/I1-type emulsions and S/I1-type dispersions that encapsulate the UV absorbing agents was confirmed by measurement of UV absorption spectra.

  17. Cytokine production induced by non-encapsulated and encapsulated Porphyromonas gingivalis strains

    NARCIS (Netherlands)

    Kunnen, A.; Dekker, D.C.; van Pampus, M.G.; Harmsen, H.J.; Aarnoudse, J.G.; Abbas, F.; Faas, M.M.

    Objective: Although the exact reason is not known, encapsulated gram-negative Porphyromonas gingivalis strains are more virulent than non-encapsulated strains. Since difference in virulence properties may be due to difference in cytokine production following recognition of the bacteria or their

  18. Nanoscale phase-change materials and devices

    International Nuclear Information System (INIS)

    Zheng, Qinghui; Wang, Yuxi; Zhu, Jia

    2017-01-01

    Phase-change materials (PCMs) that can reversibly transit between crystalline and amorphous phases have been widely used for data-storage and other functional devices. As PCMs scale down to nanoscale, the properties and transition procedures can vary, bringing both challenges and opportunities in scalability. This article describes the physical structures, properties and applications of nanoscale phase-change materials and devices. The limitations and performance of scaling properties in phase-change materials and the recent progress and challenges in phase-change devices are presented. At the end, some emerging applications related to phase-change materials are also introduced. (topical review)

  19. Nanoscale phase-change materials and devices

    Science.gov (United States)

    Zheng, Qinghui; Wang, Yuxi; Zhu, Jia

    2017-06-01

    Phase-change materials (PCMs) that can reversibly transit between crystalline and amorphous phases have been widely used for data-storage and other functional devices. As PCMs scale down to nanoscale, the properties and transition procedures can vary, bringing both challenges and opportunities in scalability. This article describes the physical structures, properties and applications of nanoscale phase-change materials and devices. The limitations and performance of scaling properties in phase-change materials and the recent progress and challenges in phase-change devices are presented. At the end, some emerging applications related to phase-change materials are also introduced.

  20. Nanoscale phase change memory materials.

    Science.gov (United States)

    Caldwell, Marissa A; Jeyasingh, Rakesh Gnana David; Wong, H-S Philip; Milliron, Delia J

    2012-08-07

    Phase change memory materials store information through their reversible transitions between crystalline and amorphous states. For typical metal chalcogenide compounds, their phase transition properties directly impact critical memory characteristics and the manipulation of these is a major focus in the field. Here, we discuss recent work that explores the tuning of such properties by scaling the materials to nanoscale dimensions, including fabrication and synthetic strategies used to produce nanoscale phase change memory materials. The trends that emerge are relevant to understanding how such memory technologies will function as they scale to ever smaller dimensions and also suggest new approaches to designing materials for phase change applications. Finally, the challenges and opportunities raised by integrating nanoscale phase change materials into switching devices are discussed.

  1. Thermal engineering and micro-technology; Thermique et microtechnologie

    Energy Technology Data Exchange (ETDEWEB)

    Kandlikar, S. [Rochester Inst. of Tech., NY (United States); Luo, L. [Institut National Polytechnique, 54 - Nancy (France); Gruss, A. [CEA Grenoble, GRETH, 38 (France); Wautelet, M. [Mons Univ. (Belgium); Gidon, S. [CEA Grenoble, Lab. d' Electronique et de Technologie de l' Informatique (LETI), 38 (France); Gillot, C. [Ecole Nationale Superieure d' Ingenieurs Electriciens de Grenoble, 38 - Saint Martin d' Heres (France)]|[CEA Grenoble, Lab. Electronique et de Technologie de l' Informatique (LETI), 38 (France); Therme, J.; Marvillet, Ch.; Vidil, R. [CEA Grenoble, 38 (France); Dutartre, D. [ST Microelectronique, France (France); Lefebvre, Ph. [SNECMA, 75 - Paris (France); Lallemand, M. [Institut National des Sciences Appliquees (INSA), 69 - Villeurbanne (France); Colin, S. [Institut National des Sciences Appliquees (INSA), 31 - Toulouse (France); Joulin, K. [Ecole Nationale Superieure de Mecanique et d' Aerotechnique (ENSMA), 86 - Poitiers (France); Gad el Hak, M. [Virginia Univ., Charlottesville, VA (United States)

    2003-07-01

    This document gathers the abstracts and transparencies of 5 invited conferences of this congress of the SFT about heat transfers and micro-technologies: Flow boiling in microchannels: non-dimensional groups and heat transfer mechanisms (S. Kandlikar); Intensification and multi-scale process units (L. Luo and A. Gruss); Macro-, micro- and nano-systems: different physics? (M. Wautelet); micro-heat pipes (M. Lallemand); liquid and gas flows inside micro-ducts (S. Colin). The abstracts of the following presentations are also included: Electro-thermal writing of nano-scale memory points in a phase change material (S. Gidon); micro-technologies for cooling in micro-electronics (C. Gillot); the Minatec project (J. Therme); importance and trends of thermal engineering in micro-electronics (D. Dutartre); Radiant heat transfers at short length scales (K. Joulain); Momentum and heat transfer in micro-electromechanical systems (M. Gad-el-Hak). (J.S.)

  2. Encapsulation of black carrot juice using spray and freeze drying.

    Science.gov (United States)

    Murali, S; Kar, Abhijit; Mohapatra, Debabandya; Kalia, Pritam

    2015-12-01

    Black carrot juice extracted using pectinase enzyme was encapsulated in three different carrier materials (maltodextrin 20DE, gum arabic and tapioca starch) using spray drying at four inlet temperatures (150, 175, 200 and 225 ℃) and freeze drying at a constant temperature of - 53 ℃ and vacuum of 0.22-0.11 mbar with the constant feed mixture. The products were analyzed for total anthocyanin content, antioxidant activity, water solubility index, encapsulation efficiency and total colour change. For both the drying methods followed in this study, maltodextrin 20DE as the carrier material has proven to be better in retaining maximum anthocyanin and antioxidant activity compared to gum arabic and tapioca starch. The best spray dried product, was obtained at 150 ℃. The most acceptable was the freeze dried product with maximum anthocyanin content, antioxidant activity, water solubility index, encapsulation efficiency and colour change. © The Author(s) 2014.

  3. High loading efficiency and sustained release of siRNA encapsulated in PLGA nanoparticles: quality by design optimization and characterization.

    Science.gov (United States)

    Cun, Dongmei; Jensen, Ditte Krohn; Maltesen, Morten Jonas; Bunker, Matthew; Whiteside, Paul; Scurr, David; Foged, Camilla; Nielsen, Hanne Mørck

    2011-01-01

    Poly(DL-lactide-co-glycolide acid) (PLGA) is an attractive polymer for delivery of biopharmaceuticals owing to its biocompatibility, biodegradability and outstanding controlled release characteristics. The purpose of this study was to understand and define optimal parameters for preparation of small interfering RNA (siRNA)-loaded PLGA nanoparticles by the double emulsion solvent evaporation method and characterize their properties. The experiments were performed according to a 2(5-1) fractional factorial design based on five independent variables: The volume ratio between the inner water phase and the oil phase, the PLGA concentration, the sonication time, the siRNA load and the amount of acetylated bovine serum albumin (Ac-BSA) in the inner water phase added to stabilize the primary emulsion. The effects on the siRNA encapsulation efficiency and the particle size were investigated. The most important factors for obtaining an encapsulation efficiency as high as 70% were the PLGA concentration and the volume ratio whereas the size was mainly affected by the PLGA concentration. The viscosity of the oil phase was increased at high PLGA concentration, which explains the improved encapsulation by stabilization of the primary emulsion and reduction of siRNA leakage to the outer water phase. Addition of Ac-BSA increased the encapsulation efficiency at low PLGA concentrations. The PLGA matrix protected siRNA against nuclease degradation, provided a burst release of surface-localized siRNA followed by a triphasic sustained release for two months. These results enable careful understanding and definition of optimal process parameters for preparation of PLGA nanoparticles encapsulating high amounts of siRNA with immediate and long-term sustained release properties. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Structure and phase transition of BiFeO{sub 3} cubic micro-particles prepared by hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jian-Ping, E-mail: zhoujp@snnu.edu.cn [College of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062 (China); Yang, Ruo-Lin; Xiao, Rui-Juan; Chen, Xiao-Ming [College of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062 (China); Deng, Chao-Yong [Department of Electronic Science, Guizhou University, Guizhou Guiyang 550025 (China)

    2012-11-15

    Graphical abstract: Bismuth ferrite (BiFeO{sub 3}) cubic micro-particles with smooth surfaces were synthesized. BiFeO{sub 3} has a hexagonal perovskite structure with a space group R3c below 370 °C and rhombohedral perovskite structure with a space group R3m below 755 °C, undergoes a phase transition in the temperature range of 755–817 °C to a cubic structure, then decompose to liquid and Fe{sub 2}O{sub 3} above 939 °C. Highlights: ► BiFeO{sub 3} micro-particles with smooth surface were synthesized by hydrothermal method. ► BiFeO{sub 3} enjoys hexagonal structure with well element ratio and chemical valence. ► BiFeO{sub 3} transition from rhombohedral phase to cubic phase lasts 60 °C. -- Abstract: Single-phase bismuth ferrite (BiFeO{sub 3}) powders were synthesized with a hydrothermal method by controlling the experimental conditions carefully. The powder structure, morphology and composition were characterized by using X-ray diffraction (XRD), scanning electron microscopy, transmission electron microscope, Raman measurement and X-ray photoelectron spectroscopy. The particles change from irregular agglomerations to regular cubes with increasing KOH concentration. The large BiFeO{sub 3} cubic particles enjoy much smooth surfaces with well-matched element ratio (Bi:Fe:O = 1:1:3) and chemical valence (Bi{sup 3+}, Fe{sup 3+} and O{sup 2−}). The high temperature XRD and differential scanning calorimetry show that BiFeO{sub 3} powders have a hexagonal perovskite structure with a space group R3c below 370 °C and a rhombohedral structure with a space group R3m below 755 °C. BiFeO{sub 3} undergoes a phase transition in the temperature range of 755–817 °C from rhombohedral structure to a cubic phase, then decomposes to liquid and Fe{sub 2}O{sub 3} above 939 °C.

  5. Assessment of Possible Cycle Lengths for Fully-Ceramic Micro-Encapsulated Fuel-Based Light Water Reactor Concepts

    International Nuclear Information System (INIS)

    Sen, R. Sonat; Pope, Michael A.; Ougouag, Abderrafi M.; Pasamehmetoglu, Kemal O.

    2012-01-01

    The tri-isotropic (TRISO) fuel developed for High Temperature reactors is known for its extraordinary fission product retention capabilities (1). Recently, the possibility of extending the use of TRISO particle fuel to Light Water Reactor (LWR) technology, and perhaps other reactor concepts, has received significant attention (2). The Deep Burn project (3) currently focuses on once-through burning of transuranic fissile and fissionable isotopes (TRU) in LWRs. The fuel form for this purpose is called Fully-Ceramic Micro-encapsulated (FCM) fuel, a concept that borrows the TRISO fuel particle design from high temperature reactor technology, but uses SiC as a matrix material rather than graphite. In addition, FCM fuel may also use a cladding made of a variety of possible material, again including SiC as an admissible choice. The FCM fuel used in the Deep Burn (DB) project showed promising results in terms of fission product retention at high burnup values and during high-temperature transients. In the case of DB applications, the fuel loading within a TRISO particle is constituted entirely of fissile or fissionable isotopes. Consequently, the fuel was shown to be capable of achieving reasonable burnup levels and cycle lengths, especially in the case of mixed cores (with coexisting DB and regular LWR UO2 fuels). In contrast, as shown below, the use of UO2-only FCM fuel in a LWR results in considerably shorter cycle length when compared to current-generation ordinary LWR designs. Indeed, the constraint of limited space availability for heavy metal loading within the TRISO particles of FCM fuel and the constraint of low (i.e., below 20 w/0) 235U enrichment combine to result in shorter cycle lengths compared to ordinary LWRs if typical LWR power densities are also assumed and if typical TRISO particle dimensions and UO2 kernels are specified. The primary focus of this summary is on using TRISO particles with up to 20 w/0 enriched uranium kernels loaded in Pressurized Water

  6. Nootkatone encapsulation by cyclodextrins: Effect on water solubility and photostability.

    Science.gov (United States)

    Kfoury, Miriana; Landy, David; Ruellan, Steven; Auezova, Lizette; Greige-Gerges, Hélène; Fourmentin, Sophie

    2017-12-01

    Nootkatone (NO) is a sesquiterpenoid volatile flavor, used in foods, cosmetics and pharmaceuticals, possessing also insect repellent activity. Its application is limited because of its low aqueous solubility and stability; this could be resolved by encapsulation in cyclodextrins (CDs). This study evaluated the encapsulation of NO by CDs using phase solubility studies, Isothermal Titration Calorimetry, Nuclear Magnetic Resonance spectroscopy and molecular modeling. Solid CD/NO inclusion complex was prepared and characterized for encapsulation efficiency and loading capacity using UV-Visible. Thermal properties were investigated by thermogravimetric-differential thermal analysis and release studies were performed using multiple headspace extraction. Formation constants (K f ) proved the formation of stable inclusion complexes. NO aqueous solubility, photo- and thermal stability were enhanced and the release could be insured from solid complex in aqueous solution. This suggests that CDs are promising carrier to improve NO properties and, consequently, to enlarge its use in foods, cosmetics, pharmaceuticals and agrochemicals preparations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Mechanisms and modeling development of water transport/phase change in catalyst layers of portion exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Yexiang [Dept. of Thermal Engineering, Tsinghua University Beijing (China)], email: Yexiang.Xiao@energy.lth.se; Yuan, Jinliang; Sunden, Bengt [Dept. of Energy Sciences, Faculty of Engineering, Lund University (Sweden)], email: Jinliang.yuan@energy.lth.se, email: bengt.sunden@energy.lth.se

    2011-07-01

    Research on proton exchange membrane fuel cells has shown that incorporation of nanosized catalysts can effectively increase active areas and catalyst activity and make a great contribution to development in performance and catalyst utilization. Multiphase transport processes are as significant and complicated as water generation/transfer processes which occur in nano-structured catalyst layers. A review project has been launched aimed at gaining a comprehensive understanding of the mechanisms of water generation or transport phenomena. It covers catalytic reactions and water-phase change within the catalyst layers. The review proceeds in three main stages: Firstly, it characterizes and reconstructs the nano/micro-structured pores and solid-phases; secondly, it emphasises the importance of sensitive and consistent analysis of various water-phase change and transport schemes; and thirdly, it recommends development of microscopic models for multi-phase transport processes in the pores and the solid phases.

  8. Co-Pt nanoparticles encapsulated in carbon cages prepared by sonoelectrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Luong, Nguyen Hoang; Hai, Nguyen Hoang; Phu, Nguyen Dang [Center for Materials Science, Faculty of Physics, Hanoi University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi (Viet Nam); MacLaren, D A, E-mail: luongnh@vnu.edu.vn [School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ (United Kingdom)

    2011-07-15

    Co-Pt nanoparticles encapsulated in carbon cages have been prepared by sonoelectrodeposition followed by annealing in a CO atmosphere. Sonoelectrodeposition is a useful technique to make metallic nanoparticles, using ultrasound during electrodeposition to remove nanoparticles as they grow on the cathode surface. We used an electrolyte containing chloroplatinic acid and cobalt chloride and found that the atomic ratio of Co:Pt in the as-formed materials varied from 0.2 to 0.8 as the deposition current density was changed from 15 to 35 mA cm{sup -2}. However, the as-deposited materials were inhomogeneous, comprising a mixture of Pt-rich and Co-rich nanoparticles. X-ray diffraction indicated that subsequent heat treatment (700 deg. C for 1 h) under CO gas created an ordered CoPt alloy phase that exhibited hard magnetic properties. Transmission electron microscopy showed many of the resulting nanoparticles to be encapsulated in carbon cages, which we ascribe to Co-catalyzed decomposition of CO during annealing. The thickness of the carbon cages was about ten layers, which may have helped reduce sintering during annealing. The size of the resultant nanoparticles was about 100 nm diameter, larger than the typical 5-10 nm diameter of as-deposited nanoparticles.

  9. Poly(Dimethylsiloxane)-Poly(Vinyl Alcohol) Coated Solid Phase Micro extraction Fiber for Chloropyrifos Analysis

    International Nuclear Information System (INIS)

    Wan Aini Wan Ibrahim; Nor Fairul Zukry Ahmad Rasdy; Norfazilah Muhamad

    2016-01-01

    Traditional liquid - liquid extraction of pesticides consumes large volumes of organic solvent which are hazardous to the operator and is not environment friendly. Solid phase micro extraction (SPME) is a solvent less extraction method which is safer to the operator and is environmental friendly. A sol-gel hybrid fibre coating material, poly(dimethylsiloxane)-poly(vinyl alcohol) (PDMS-PVA) was synthesized and used in head space solid phase micro extraction (HS-SPME) of chloropyrifos. The thickness of the synthesised PDMS-PVA fiber coating was 13.5 μm and it is thermally stable up to 400 degree Celsius. The PDMS-PVA sol-gel hybrid fiber was also stable to two organic solvents tested; acetonitrile and dichloromethane (1 hour dipping) and showed no significant changes in extraction performance for chloropyrifos. Extracted chloropyrifos was analysed using gas chromatography electron capture detector (GC-ECD). Optimum SPME parameters affecting the PDMS-PVA HS-SPME performance namely extraction time (15 min), extraction temperature (50 degree Celsius), desorption time (5 min), desorption temperature (260 degree Celsius) and stirring rate (120 rpm) were used for extraction. It was found that HSSPME using PDMS-PVA sol-gel fiber gave significantly better extraction performance of chloropyrifos compared to commercial 100 μm PDMS fiber. The PDMS-PVA fiber showed excellent operational performances such as temperature stability (up to 380 degree Celsius), coating lifetime (up to 170 times use) and organic solvent stability. The PDMS-PVA-HS-SPME method showed excellent recovery for chloropyrifos from tomatoes (98.0 %, 5.9 % RSD) at 0.01 μg/ g spiked level (5 times lower than maximum residue limit set by European Union). (author)

  10. Thermal oxidation of cesium loaded Prussian blue as a precaution for exothermic phase change in extreme conditions

    International Nuclear Information System (INIS)

    Parajuli, Durga; Tanaka, Hisashi; Takahashi, Akira; Kawamoto, Tohru

    2013-01-01

    Cesium adsorbed Prussian blue is studied for the thermal oxidation. The TG-DTA shows exothermic phase change of micro aggregates of nano-PB at above 270°C. For this reason, Cs loaded PB was heated between 180 to 260°C. Heating at 180 removed only the water. Neither the oxidation of Iron nor the removal of cyanide is observed at this temperature. Oxidation of cyanide is observed upon heating above 200°C while loaded Cs is released after heating at >250°C followed by washing with water. Thermal oxidation between 200 to 220°C for more than 2 h showed control on exothermic phase change and loaded Cs is also not solubilized. (author)

  11. Encapsulation of Polymethoxyflavones in Citrus Oil Emulsion-Based Delivery Systems.

    Science.gov (United States)

    Yang, Ying; Zhao, Chengying; Chen, Jingjing; Tian, Guifang; McClements, David Julian; Xiao, Hang; Zheng, Jinkai

    2017-03-01

    The purpose of this work was to elucidate the effects of citrus oil type on polymethoxyflavone (PMF) solubility and on the physicochemical properties of PMF-loaded emulsion-based delivery systems. Citrus oils were extracted from mandarin, orange, sweet orange, and bergamot. The major constituents were determined by GC/MS: sweet orange oil (97.4% d-limonene); mandarin oil (72.4% d-limonene); orange oil (67.2% d-limonene); and bergamot oil (34.6% linalyl acetate and 25.3% d-limonene). PMF-loaded emulsions were fabricated using 10% oil phase (containing 0.1% w/v nobiletin or tangeretin) and 90% aqueous phase (containing 1% w/v Tween 80) using high-pressure homogenization. Delivery systems prepared using mandarin oil had the largest mean droplet diameters (386 or 400 nm), followed by orange oil (338 or 390 nm), bergamot oil (129 or 133 nm), and sweet orange oil (122 or 126 nm) for nobiletin- or tangeretin-loaded emulsions, respectively. The optical clarity of the emulsions increased with decreasing droplet size due to reduced light scattering. The viscosities of the emulsions (with or without PMFs) were similar (1.3 to 1.4 mPa·s), despite appreciable differences in oil phase viscosity. The loading capacity and encapsulation efficiency of the emulsions depended on carrier oil type, with bergamot oil giving the highest loading capacity. In summary, differences in the composition and physical characteristics of citrus oils led to PMF-loaded emulsions with different encapsulation and physicochemical characteristics. These results will facilitate the rational design of emulsion-based delivery systems for encapsulation of PMFs and other nutraceuticals in functional foods and beverages.

  12. Food-grade micro-encapsulation systems that may induce satiety via delayed lipolysis: A review.

    Science.gov (United States)

    Corstens, Meinou N; Berton-Carabin, Claire C; de Vries, Renko; Troost, Freddy J; Masclee, Ad A M; Schroën, Karin

    2017-07-03

    The increasing prevalence of overweight and obesity requires new, effective prevention and treatment strategies. One approach to reduce energy intake is by developing novel foods with increased satiating properties, which may be accomplished by slowing down lipolysis to deliver substrates to the ileum, thereby enhancing natural gut-brain signaling pathways of satiety that are normally induced by meal intake. To develop slow release food additives, their processing in the gastrointestinal tract has to be understood; therefore, we start from a general description of the digestive system and relate that to in vitro modeling, satiety, and lipolytic mechanisms. The effects of physicochemical lipid composition, encapsulation matrix, and interfacial structure on lipolysis are emphasized. We give an overview of techniques and materials used, and discuss partitioning, which may be a key factor for encapsulation performance. Targeted release capsules that delay lipolysis form a real challenge because of the high efficiency of the digestive system; hardly any proof was found that intact orally ingested lipids can be released in the ileum and thereby induce satiety. We expect that this challenge could be tackled with structured o/w-emulsion-based systems that have some protection against lipase, e.g., by hindering bile salt adsorption and/or delaying lipase diffusion.

  13. Evaluation Selection of Encapsulating Plastics for Ordnance Electronic Assemblies

    Science.gov (United States)

    1981-05-01

    ISP-100 Dow Two-component urethane (>70D) 10 B635/1- 4BD Uniroyal Two-component urethane (ɟD) 68 4. CIRCUIT ENCAPSULATION 4.1 Introduction This phase...HARRY DIAs ’ND LABORATORIES 3975 MCMM RD ATTN CO/ TD /TSO/DIVISION DIRFXTORS ATTN JERRY KRAMR ATTN RECORD COPY, 81200 CINCINNATI, ON 45245 ATTN HDL LIBRARY

  14. Synthesis of Polyamidoamine Dendrimer for Encapsulating Tetramethylscutellarein for Potential Bioactivity Enhancement.

    Science.gov (United States)

    Shadrack, Daniel M; Mubofu, Egid B; Nyandoro, Stephen S

    2015-11-04

    The biomedical potential of flavonoids is normally restricted by their low water solubility. However, little has been reported on their encapsulation into polyamidoamine (PAMAM) dendrimers to improve their biomedical applications. Generation four (G4) PAMAM dendrimer containing ethylenediaminetetraacetic acid core with acrylic acid and ethylenediamine as repeating units was synthesized by divergent approach and used to encapsulate a flavonoid tetramethylscutellarein (TMScu, 1) to study its solubility and in vitro release for potential bioactivity enhancement. The as-synthesized dendrimer and the dendrimer-TMScu complex were characterized by spectroscopic and spectrometric techniques. The encapsulation of 1 into dendrimer was achieved by a co-precipitation method with the encapsulation efficiency of 77.8% ± 0.69% and a loading capacity of 6.2% ± 0.06%. A phase solubility diagram indicated an increased water solubility of 1 as a function of dendrimer concentration at pH 4.0 and 7.2. In vitro release of 1 from its dendrimer complex indicated high percentage release at pH 4.0. The stability study of the TMScu-dendrimer at 0, 27 and 40 °C showed the formulations to be stable when stored in cool and dark conditions compared to those stored in light and warmer temperatures. Overall, PAMAM dendrimer-G4 is capable of encapsulating 1, increasing its solubility and thus could enhance its bioactivity.

  15. Experimental study on void fraction of two-phase flow inside a micro-fin tube

    OpenAIRE

    Koyama, Shigeru; Chen, Yongchang; Kitano, Ryuji; Kuwahara, Ken

    2001-01-01

    In this paper the void fraction and flow pattern of the two-phase flow in a micro-fin tube were investigated experimentally for a pure refrigerant HFC134a. The experiment was carried out at a pressure range of 0.6 and 1.2MPa with mass velocities of 90 and 180kg/m^2 s, in which the vapor quality varied from 0 to 1. The void fraction was measured by means of simultaneously closing valves of both sides of the test tube at adiabatic condition. Experimental results for the micro-fin tube were comp...

  16. Bioprinting of Micro-Organ Tissue Analog for Drug Metabolism Study

    Science.gov (United States)

    Sun, Wei

    An evolving application of tissue engineering is to develop in vitro 3D cell/tissue models for drug screening and pharmacological study. In order to test in space, these in vitro models are mostly manufactured through micro-fabrication techniques and incorporate living cells with MEMS or microfluidic devices. These cell-integrated microfluidic devices, or referred as microorgans, are effective in furnishing reliable and inexpensive drug metabolism and toxicity studies [1-3]. This paper will present an on-going research collaborated between Drexel University and NASA JSC Radiation Physics Laboratory for applying a direct cell printing technique to freeform fabrication of 3D liver tissue analog in drug metabolism study. The paper will discuss modeling, design, and solid freeform fabrication of micro-fluidic flow patterns and bioprinting of 3D micro-liver chamber that biomimics liver physiological microenvironment for enhanced drug metabolization. Technical details to address bioprinting of 3D liver tissue analog, integration with a microfluidic device, and basic drug metabolism study for NASA's interests will presented. 1. Holtorf H. Leslie J. Chang R, Nam J, Culbertson C, Sun W, Gonda S, "Development of a Three-Dimensional Tissue-on-a-Chip Micro-Organ Device for Pharmacokinetic Analysis", the 47th Annual Meeting of the American Society for Cell Biology, Washington, DC, December 1-5, 2007. 2. Chang, R., Nam, J., Culbertson C., Holtorf, H., Jeevarajan, A., Gonda, S. and Sun, W., "Bio-printing and Modeling of Flow Patterns for Cell Encapsulated 3D Liver Chambers For Pharmacokinetic Study", TERMIS North America 2007 Conference and Exposition, Westin Harbour Castle, Toronto, Canada, June 13-16, 2007. 3.Starly, B., Chang, R., Sun, W., Culbertson, C., Holtorf, H. and Gonda, S., "Bioprinted Tissue-on-chip Application for Pharmacokinetic Studies", Proceedings of World Congress on Tissue Engineering and Regenerative Medicine, Pittsburgh, PA, USA, April 24-27, 2006.

  17. Preliminary results for X-ray phase contrast micro-tomography on the biomedical imaging beamline at SSRF

    International Nuclear Information System (INIS)

    Chen Rongchang; Du Guohao; Xie Honglan; Deng Biao; Tong Yajun; Hu Wen; Xue Yanling; Chen Can; Ren Yuqi; Zhou Guangzhao; Wang Yudan; Xiao Tiqiao; Xu Hongjie; Zhu Peiping

    2009-01-01

    With X-ray phase contrast micro-tomography(CT), one is able to obtain edge-enhanced image of internal structure of the samples. This allows visualization of the fine internal features for biology tissues, which is not able to resolve by conventional absorption CT. After preliminary modulation, monochromatic X-rays (8-72.5 keV) are available for experiments on the experimental station of the biomedical imaging beamline at Shanghai Synchrotron Radiation Facility(SSRF). In this paper, we report the in line phase contrast micro-tomography(IL-XPCT) of biology sample (locust) on the beamline. The reconstruct slice images and three dimensional rendering images of the locust were obtained, with clearly visible images of locus's wing, surface texture and internal tissue distribution. (authors)

  18. Using ß-cyclodextrin and Arabic Gum as Wall Materials for Encapsulation of Saffron Essential Oil.

    Science.gov (United States)

    Atefi, Mohsen; Nayebzadeh, Kooshan; Mohammadi, Abdorreza; Mortazavian, Amir Mohammad

    2017-01-01

    Saffron essential oil has a pleasant aroma and medicinal activities. However, it is sensible into the environmental condition. Therefore, it should be protected against unwanted changes during storage or processing. Encapsulation is introduced as a process by which liable materials are protected from unwanted changes. In the present study, different ratios (0:100, 25:75, 50:50, 75:25, and 100:0) of ß-cyclodextrin (ß-CD) and arabic gum (GA) were used as wall martial for encapsulation saffron essential oil. In order to calculate of loading capacity (LC) and encapsulation efficiency (EE), and release (RE), safranal was determined as indicator of saffron essential oil using GC. According to the results, the highest LC and EE were related to the mixture of ß-CD/GA at a 75:25 ratio. In contrast, the lowest encapsulate hygroscopicity (EH) and RE were observed when only ß-CD was applied as wall material (P≤0.05). Comparing the differential scanning calorimetry (DSC) thermograms of the control and encapsulate of ß-CD/GA (75:25) confirmed encapsulation of saffron essential oil. Scanning electron microscopy (SEM) images with high magnifications showed the rhombic structure that partially coated by GA. The mixture of ß-CD/GA at a 75:25 ratio can be recommended for saffron essential oil encapsulation.

  19. Ibuprofen-in-cyclodextrin-in-W/O/W emulsion - Improving the initial and long-term encapsulation efficiency of a model active ingredient.

    Science.gov (United States)

    Hattrem, Magnus N; Kristiansen, Kåre A; Aachmann, Finn L; Dille, Morten J; Draget, Kurt I

    2015-06-20

    A challenge in formulating water-in-oil-in-water (W/O/W) emulsions is the uncontrolled release of the encapsulated compound prior to application. Pharmaceuticals and nutraceuticals usually have amphipathic nature, which may contribute to leakage of the active ingredient. In the present study, cyclodextrins (CyDs) were used to impart a change in the relative polarity and size of a model compound (ibuprofen) by the formation of inclusion complexes. Various inclusion complexes (2-hydroxypropyl (HP)-β-CyD-, α-CyD- and γ-CyD-ibuprofen) were prepared and presented within W/O/W emulsions, and the initial and long-term encapsulation efficiency was investigated. HP-β-CyD-ibuprofen provided the highest encapsulation of ibuprofen in comparison to a W/O/W emulsion with unassociated ibuprofen confined within the inner water phase, with a four-fold increase in the encapsulation efficiency. An improved, although lower, encapsulation efficiency was obtained for the inclusion complex γ-CyD-ibuprofen in comparison to HP-β-CyD-ibuprofen, whereas α-CyD-ibuprofen had a similar encapsulation efficiency to that of unassociated ibuprofen. The lower encapsulation efficiency of ibuprofen in combination with α-CyD and γ-CyD was attributed to a lower association constant for the γ-CyD-ibuprofen inclusion complex and the ability of α-CyD to form inclusion complexes with fatty acids. For the W/O/W emulsion prepared with HP-β-CyD-ibuprofen, the highest encapsulation of ibuprofen was obtained at hyper- and iso-osmotic conditions and by using an excess molar ratio of CyD to ibuprofen. In the last part of the study, it was suggested that the chemical modification of the HP-β-CyD molecule did not influence the encapsulation of ibuprofen, as a similar encapsulation efficiency was obtained for an inclusion complex prepared with mono-1-glucose-β-CyD. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Selective Co-Encapsulation Inside an M6 L4 Cage.

    Science.gov (United States)

    Leenders, Stefan H A M; Becker, René; Kumpulainen, Tatu; de Bruin, Bas; Sawada, Tomohisa; Kato, Taito; Fujita, Makoto; Reek, Joost N H

    2016-10-17

    There is broad interest in molecular encapsulation as such systems can be utilized to stabilize guests, facilitate reactions inside a cavity, or give rise to energy-transfer processes in a confined space. Detailed understanding of encapsulation events is required to facilitate functional molecular encapsulation. In this contribution, it is demonstrated that Ir and Rh-Cp-type metal complexes can be encapsulated inside a self-assembled M 6 L 4 metallocage only in the presence of an aromatic compound as a second guest. The individual guests are not encapsulated, suggesting that only the pair of guests can fill the void of the cage. Hence, selective co-encapsulation is observed. This principle is demonstrated by co-encapsulation of a variety of combinations of metal complexes and aromatic guests, leading to several ternary complexes. These experiments demonstrate that the efficiency of formation of the ternary complexes depends on the individual components. Moreover, selective exchange of the components is possible, leading to formation of the most favorable complex. Besides the obvious size effect, a charge-transfer interaction may also contribute to this effect. Charge-transfer bands are clearly observed by UV/Vis spectrophotometry. A change in the oxidation potential of the encapsulated electron donor also leads to a shift in the charge-transfer energy bands. As expected, metal complexes with a higher oxidation potential give rise to a higher charge-transfer energy and a larger hypsochromic shift in the UV/Vis spectrum. These subtle energy differences may potentially be used to control the binding and reactivity of the complexes bound in a confined space. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  1. Oxygen incorporation into GST phase-change memory matrix

    Energy Technology Data Exchange (ETDEWEB)

    Golovchak, R., E-mail: holovchakr@apsu.edu [Department of Physics and Astronomy, Austin Peay State University, Clarksville, TN 37044 (United States); Choi, Y.G. [Department of Materials Science and Engineering, Korea Aerospace University, Gyeonggi 412-791 (Korea, Republic of); Kozyukhin, S. [Kurnakov Institute of General and Inorganic Chemistry of RAS, 31 Leninsky Pr., Moscow 119991 (Russian Federation); National Research Tomsk State University, 36 Lenin Pr., Tomsk 634050 (Russian Federation); Chigirinsky, Yu. [Scientific-Research Physicotechnical Institute at the Nizhnii Novgorod State University, Nizhnii Novgorod 603600 (Russian Federation); Kovalskiy, A.; Xiong-Skiba, P.; Trimble, J. [Department of Physics and Astronomy, Austin Peay State University, Clarksville, TN 37044 (United States); Pafchek, R.; Jain, H. [Department of Materials Science and Engineering, Lehigh University, 5 East Packer Avenue, Bethlehem, PA 18015-3195 (United States)

    2015-03-30

    Graphical abstract: - Highlights: • Surfaces of GST-225 films are depleted in Te as a result of the reaction with oxygen. • Top layers of oxidized GST-225 are formed by Sb and Ge oxide complexes. • Depth profiles of Sb and Ge oxide complexes are found to be different. • Crystallization at 300 °C in O{sub 2} atmosphere leads to Ge redistribution. - Abstract: Structural changes in amorphous and crystallized GST-225 films induced by the reaction with oxygen are studied at different depth scales. The mechanism of interaction of the very top surface layers with oxygen is studied with low-energy ion scattering (LEIS) technique, while the modifications of chemistry in the underlying surface layers are investigated with high-resolution X-ray photoelectron spectroscopy (XPS). The changes averaged through the overall film thickness are characterized by micro-Raman spectroscopy. The oxygen exposure leads to a depletion of GST-225 film surfaces in Te and formation of the antimony and germanium oxides. The antimony oxide complexes are found throughout the whole thickness of the films after their prolonged storage in air, whereas no evidence for formation of pure GeO{sub 2} phase is found in the volume of the films through Raman spectroscopy. A tendency to form Ge-rich phase within the ∼10 nm surface layer is additionally observed by LEIS profiling during crystallization of GST-225 film at 300 °C in oxygen atmosphere.

  2. Cryogenic micro-calorimeters for beta spectroscopy: A status report

    International Nuclear Information System (INIS)

    Lowry, M.M.; Deptuck, D.; Girit, I.C.; Calaprice, F.P.

    1992-01-01

    Status of efforts to develop a cryogenic micro-calorimeter as a beta spectrometer for 17 keV neutrino searches is given. Experimental requirements are derived. Using NTD germanium thermometry, adequate detector performance (1.5 keV resolution at a base temperature of 130 mK) is demonstrated. Exploration of source deposition and encapsulation is underway. (orig.)

  3. Design and fabrication of micro X-ray diffraction system

    International Nuclear Information System (INIS)

    Park, Yang Soon; Han, Sun Ho; Kim, Jong Goo; Jee, Kwang Yong

    2006-10-01

    It has been observed that microstructure changes occur at the pellet periphery(rim) of the fuel at very high burn-up. Despite its narrow range (below some hundreds microns in depth), this peripheral region(rim) determines the behaviour of nuclear fuel. To determine lattice parameter with XRD at intervals as small as 30-50 μ m in radial direction of irradiated fuel samples, a micro X-ray diffraction system was designed and fabricated. This report describes the micro X-ray diffraction system consisted of an X-ray microbeam alignment system and a sample micro translation system, its characterization, and its performance test through the analysis for the micro region of some specimens. This system will be set in a radiation shielded glove box, and then used for analysis of lattice parameter change and the phase change at intervals as small as 30-50 μ m in radial direction of the rim of an irradiated fuel sample and a fuel cladding

  4. Design and fabrication of micro X-ray diffraction system

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yang Soon; Han, Sun Ho; Kim, Jong Goo; Jee, Kwang Yong

    2006-10-15

    It has been observed that microstructure changes occur at the pellet periphery(rim) of the fuel at very high burn-up. Despite its narrow range (below some hundreds microns in depth), this peripheral region(rim) determines the behaviour of nuclear fuel. To determine lattice parameter with XRD at intervals as small as 30-50 {mu} m in radial direction of irradiated fuel samples, a micro X-ray diffraction system was designed and fabricated. This report describes the micro X-ray diffraction system consisted of an X-ray microbeam alignment system and a sample micro translation system, its characterization, and its performance test through the analysis for the micro region of some specimens. This system will be set in a radiation shielded glove box, and then used for analysis of lattice parameter change and the phase change at intervals as small as 30-50 {mu} m in radial direction of the rim of an irradiated fuel sample and a fuel cladding.

  5. Accelerated/abbreviated test methods of the low-cost silicon solar array project. Study 4, task 3: Encapsulation

    Science.gov (United States)

    Kolyer, J. M.; Mann, N. R.

    1977-01-01

    Methods of accelerated and abbreviated testing were developed and applied to solar cell encapsulants. These encapsulants must provide protection for as long as 20 years outdoors at different locations within the United States. Consequently, encapsulants were exposed for increasing periods of time to the inherent climatic variables of temperature, humidity, and solar flux. Property changes in the encapsulants were observed. The goal was to predict long term behavior of encapsulants based upon experimental data obtained over relatively short test periods.

  6. A functional form-stable phase change composite with high efficiency electro-to-thermal energy conversion

    International Nuclear Information System (INIS)

    Wu, Wenhao; Huang, Xinyu; Li, Kai; Yao, Ruimin; Chen, Renjie; Zou, Ruqiang

    2017-01-01

    Graphical abstract: The thermal conductivity of PU was enhanced to 43 times of the pristine value by encapsulation in a PGF, PU@PGF can be used for highly efficient electro-to-heat energy conversion and storage with the highest energy storage efficiency up to 85%. - Highlights: • The composite exhibits an in-situ solid-solid phase change behavior. • The enthalpy of polyurethane is enhanced within the matrix. • The thermal conductivity of the composite is 43 times as much as that of the polyurethane. • Supercooling of polyurethane is greatly reduced. • The composite is applied to cold protection as a wear layer. - Abstract: A novel solid-to-solid phase change composite brick was prepared by combination of polyurethane (PU) and pitch-based graphite foam (PGF). The carbonaceous support, which can be used for mass production, not only greatly improves the thermal conductivity but promote electro-to-heat conversion efficiency of organic phase change materials (PCMs). Our composite retained the enthalpy of PCM and exhibited a greatly reduced supercooling temperature. The novel composite was investigated by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and scanning electron microscope (SEM). The enthalpy of polyurethane has increased about 8.6% after infiltrating into graphite foam. The composite was very stable during thermal cycle test, and the electro-to-heat conversion efficiency achieves to 85% at lower voltages (1.5–1.8 V), which can vastly reduce energy consumption. The as-prepared composite was used in a wear layer to test its performance comparing with normal fabric.

  7. Developments in organic solid–liquid phase change materials and their applications in thermal energy storage

    International Nuclear Information System (INIS)

    Sharma, R.K.; Ganesan, P.; Tyagi, V.V.; Metselaar, H.S.C.; Sandaran, S.C.

    2015-01-01

    Highlights: • Review of organic phase change materials for thermal energy storage. • Review of the eutectic mixtures of organic PCMs. • Review of the techniques of PCM encapsulations and enhancing the thermal conductivity. • Applications of low and medium temperature organic PCMs are listed in detail. • Recommendations are made for future applications of organic PCMs. - Abstract: Thermal energy storage as sensible or latent heat is an efficient way to conserve the waste heat and excess energy available such as solar radiation. Storage of latent heat using organic phase change materials (PCMs) offers greater energy storage density over a marginal melting and freezing temperature difference in comparison to inorganic materials. These favorable characteristics of organic PCMs make them suitable in a wide range of applications. These materials and their eutectic mixtures have been successfully tested and implemented in many domestic and commercial applications such as, building, electronic devices, refrigeration and air-conditioning, solar air/water heating, textiles, automobiles, food, and space industries. This review focuses on three aspects: the materials, encapsulation and applications of organic PCMs, and provides an insight on the recent developments in applications of these materials. Organic PCMs have inherent characteristic of low thermal conductivity (0.15–0.35 W/m K), hence, a larger surface area is required to enhance the heat transfer rate. Therefore, attention is also given to the thermal conductivity enhancement of the materials, which helps to keep the area of the system to a minimum. Besides, various available techniques for material characterization have also been discussed. It has been found that a wide range of the applications of organic PCMs in buildings and other low and medium temperature solar energy applications are in abundant use but these materials are not yet popular among space applications and virtual data storage media. In

  8. Liposome Encapsulation of Vitamins to Enhance Storage Properties of Space-Bound Food, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — InnoSense LLC (ISL) proposes to develop a nanoparticle encapsulation systems for water- and fat-soluble vitamins (VitaCap™) to increase shelf life up to five years...

  9. A Study on the Preparation of Spherical PCM Particle and Its Encapsulation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.K. [Dept. of Chemical Engineering, Konyang University (Korea); Yoon, W.S.; Jung, K.T.; Shul, Y.G. [Dept. of Chemical Engineering, Yonsei University, Seoul (Korea); Joo, H.K.; Jeon, M.S.; Lee, T.K. [Korea Institute of Energy Research, Taejon (Korea)

    1999-04-01

    Spherical shape of phase change materials(PCM) were prepared by using sodium acetate trihydrate as a latent heat storage medium and then encapsulated with PMMA and wax. Gelatin was used as an effective thickener to prevent undesirable phase separation and sodium pyrophosphate decahydrate was used as nucleator to decrease the degree of supercooling in the thickened PCM. The optimal composition of PCM was 2 wt% thickener and 2wt% nucleator. Spherical shape of PCM particles of 3-3.5 mm in diameter were continuously manufactured varing the effluent velocity of molten PCM from 1.3 to 1.8 ml/min. Tertiary coatings of PMMA-wax-PMMA onto the PCM particles obtained were 0.03 mm, 0.25 mm, and 0.4 mm. Freezing-thaw cycle test of the coated PCM particle was done using dodecane as heat transfer medium by the experimental apparatus and DSC. 15 refs., 11 figs., 5 tabs.

  10. A self-resetting spiking phase-change neuron

    Science.gov (United States)

    Cobley, R. A.; Hayat, H.; Wright, C. D.

    2018-05-01

    Neuromorphic, or brain-inspired, computing applications of phase-change devices have to date concentrated primarily on the implementation of phase-change synapses. However, the so-called accumulation mode of operation inherent in phase-change materials and devices can also be used to mimic the integrative properties of a biological neuron. Here we demonstrate, using physical modelling of nanoscale devices and SPICE modelling of associated circuits, that a single phase-change memory cell integrated into a comparator type circuit can deliver a basic hardware mimic of an integrate-and-fire spiking neuron with self-resetting capabilities. Such phase-change neurons, in combination with phase-change synapses, can potentially open a new route for the realisation of all-phase-change neuromorphic computing.

  11. A self-resetting spiking phase-change neuron.

    Science.gov (United States)

    Cobley, R A; Hayat, H; Wright, C D

    2018-05-11

    Neuromorphic, or brain-inspired, computing applications of phase-change devices have to date concentrated primarily on the implementation of phase-change synapses. However, the so-called accumulation mode of operation inherent in phase-change materials and devices can also be used to mimic the integrative properties of a biological neuron. Here we demonstrate, using physical modelling of nanoscale devices and SPICE modelling of associated circuits, that a single phase-change memory cell integrated into a comparator type circuit can deliver a basic hardware mimic of an integrate-and-fire spiking neuron with self-resetting capabilities. Such phase-change neurons, in combination with phase-change synapses, can potentially open a new route for the realisation of all-phase-change neuromorphic computing.

  12. Microextração por fase sólida SPME, Solid Phase Micro-Extration

    Directory of Open Access Journals (Sweden)

    Antonio Luiz Pires Valente

    2000-08-01

    Full Text Available Fundamental aspects of Solid Phase Micro-Extraction (SPME are discussed in the present paper. The application of SPME as a microtechnique of sample preparation for gas chromatographic analysis is considered and related to existing theoretical models. Both research prototypes and commercial SPME devices are considered.

  13. Structural-phase changes of α-Fe implanted with high ion doses

    International Nuclear Information System (INIS)

    Ivanov, Y.F.; Pogrebnyak, A.; Martynenko, V.

    2001-01-01

    The CEMS method was used to examine and implanted layer of α-Fe with a thickness of up to 100 nm. The radiation of α-Fe with carbon ions results of the formation of the solid solution of carbon in α-Fe and the precipitation of the iron carbides Fe 2 C. The implantation of aluminium in the α-Fe is accompanied by the formation of the order phase Fe 3 Al. The results of show that the phase the composition of the surface layer of α-Fe, irradiated with titanium, is represented by the solid solution of the titanium in α-Fe, and also by the micro-clusters of iron characterised by different environment of the titanium atoms of the level of several co-ordination spheres. The presence of these micro-clusters indicates the non-uniform distribution of titanium in α-Fe. The additional Auger analysis of the specimens of α-Fe, implanted with titanium with a dose of 5 x 10 -17 cm -2 , showed a high concentration of carbon (up to 20 at.%) in the layer up to 50 nm thick. The authors of 2 assumed that the carbon, implanted from the residual atmosphere, affects not only the resultant profile of the distribution of titanium in the depth of α-Fe, but also the change of the physical-mechanical properties of the surface layer. The main aim of the investigations was to examine the phase composition and the formation of secondary defects (dislocations and dislocation sub structures) in the surface layer of α-Fe, implanted with titanium, aluminium, carbon, with a dose of 5 x 10 -17 cm -2

  14. Micro solid-phase radioimmunoassay for detection of herpesvirus type-specific antibody: parameters involved in standardization

    Energy Technology Data Exchange (ETDEWEB)

    Matson, D.O.; Adler-Storthz, K.; Adam, E.; Dreesman, G.R. (Baylor Univ., Houston, TX (USA). Coll. of Medicine)

    1983-02-01

    A micro solid-phase radioimmunoassay (micro-SPRIA) was developed to demonstrate type-specific antibodies to herpes simplex virus types 1 and 2 (HSV1 and HSV2). Glycoproteins from the 123,000 dalton region of HSV1 (VP123) and the 119,000 dalton region of HSV2 (VP119) were isolated on preparative polyacrylamide gels for use as antigens in the micro-SPRIA. Human sera selected from clinical samples by virological history and appropriate microneutralization data were used to standardize the micro-SPRIA. Optimization of the assay required the use of siliconized microtiter wells for adsorption of antigen. Maximized results were highly dependent on the concentrations of antigen, primary antibody, and secondary antibody as well as the diluents used for these principal test reagents. Incorporation of HSV glycoproteins of each respective type with the optimal condition established in this study facilitates the direct detection of type-specific antibody in human sera.

  15. Encapsulation of a trinuclear silver(I) cluster by two imido-nitrido metalloligands [{Ti(eta5-C5Me5)(micro-NH)}3(micro3-N)].

    Science.gov (United States)

    Martín, Avelino; Martínez-Espada, Noelia; Mena, Miguel; Yélamos, Carlos

    2007-07-28

    Treatment of the metalloligand [{Ti(eta(5)-C(5)Me(5))(micro-NH)}(3)(micro(3)-N)] with silver(i) trifluoromethanesulfonate in different molar ratios gives the ionic compounds [Ag{(micro(3)-NH)(3)Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)}(2)][O(3)SCF(3)] and [Ag{(micro(3)-NH)(3)Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)}][O(3)SCF(3)] or the triangular silver cluster [(CF(3)SO(2)O)(3)Ag(3){(micro(3)-NH)(3)Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)}(2)] in which each face is capped by a metalloligand.

  16. Effect of in Vitro Gastrointestinal Digestion on Encapsulated and Nonencapsulated Phenolic Compounds of Carob (Ceratonia siliqua L.) Pulp Extracts and Their Antioxidant Capacity.

    Science.gov (United States)

    Ydjedd, Siham; Bouriche, Sihem; López-Nicolás, Rubén; Sánchez-Moya, Teresa; Frontela-Saseta, Carmen; Ros-Berruezo, Gaspar; Rezgui, Farouk; Louaileche, Hayette; Kati, Djamel-Edine

    2017-02-01

    To determine the effect of in vitro gastrointestinal digestion on the release and antioxidant capacity of encapsulated and nonencapsulated phenolics carob pulp extracts, unripe and ripe carob pulp extracts were microencapsulated with polycaprolactone via double emulsion/solvent evaporation technique. Microcapsules' characterization was performed using scanning electron microscopy and Fourier transform infrared spectrometry analysis. Total phenolics and flavonoids content and antioxidant activities (ORAC, DPPH, and FRAP) were evaluated after each digestion step. The release of phenolic acids and flavonoids was measured along the digestion process by HPLC-MS/MS analysis. The most important phenolics and flavonoids content as well as antioxidant activities were observed after gastric and intestinal phases for nonencapsulated and encapsulated extracts, respectively. The microencapsulation of carob polyphenols showed a protective effect against pH changes and enzymatic activities along digestion, thereby promoting a controlled release and targeted delivery of the encapsulated compound, which contributed to an increase in its bioaccessibility in the gut.

  17. Encapsulated Bacillus anthracis interacts closely with liver endothelium.

    Science.gov (United States)

    Piris-Gimenez, Alejandro; Corre, Jean-Philippe; Jouvion, Gregory; Candela, Thomas; Khun, Huot; Goossens, Pierre L

    2009-11-01

    The Bacillus anthracis poly-gamma-D-glutamate capsule is essential for virulence. It impedes phagocytosis and protects bacilli from the immune system, thus promoting systemic dissemination. To further define the virulence mechanisms brought into play by the capsule, we characterized the interactions between encapsulated nontoxinogenic B. anthracis and its host in vivo through histological analysis, perfusion, and competition experiments with purified capsule. Clearance of encapsulated bacilli from the blood was rapid (>90% clearance within 5 min), with 75% of the bacteria being trapped in the liver. Competition experiments with purified capsule polyglutamate inhibited this interaction. At the septicemic phase of cutaneous infection with spores, the encapsulated bacilli were trapped in the vascular spaces of the liver and interacted closely with the liver endothelium in the sinusoids and terminal and portal veins. They often grow as microcolonies containing capsular material shed by the bacteria. We show that, in addition to its inhibitory effect on the interaction with the immune system, the capsule surrounding B. anthracis plays an active role in mediating the trapping of the bacteria within the liver and may thus contribute to anthrax pathogenesis. Because other microorganisms produce polyglutamate, it may also represent a general mechanism of virulence or in vivo survival.

  18. Comparison of Experimental and Numerical Two-Phase Flows in a Porous Micro-Model

    Directory of Open Access Journals (Sweden)

    Dustin Crandall

    2009-12-01

    Full Text Available Characterizing two-phase flow in porous media is important to provide estimates of sweep efficiency in enhanced oil recovery and storage estimates in potential geological CO2 sequestration repositories. To further the current understanding of two-phase flow in porous media a micro-model of interconnected channels was designed and fabricated using stereolithography to experimentally study gas-liquid flows. This flowcell was created with a wide variability of throat dimensions to represent naturally occurring porous media. Low flow rate experiments of immiscible two-phase drainage were performed within this cell. Additionally, a computational model for analyzing two-phase flows in the same flowcell was developed and used to simulate conditions not possible with our laboratory settings. The computational model was first tested for the identical conditions used in the experimental studies, and was shown to be in good agreement with the experimentally determined fractal dimension of the invading gas structure, time until breakthrough, and fluid saturation. The numerical model was then used to study two-phase air-water flows in flowcells with the same geometry and different gas-liquid-solid contact angles. The percent saturation of air and the motion of the fluids through the cell were found to vary with changes in these parameters. Finally, to simulate flows expected during geologic carbon sequestration, the fluid properties and interface conditions were set to model the flow of CO2 into a brine-saturated porous medium at representative subsurface conditions. The CO2 flows were shown to have larger gas saturations than the previous air into water studies. Thus the accuracy of the computational model was supported by the flowcell experiments, and the computational model extended the laboratory results to conditions not possible with the apparatus used in the experiments.

  19. Numerical Analysis of Flow and Heat Transfer Characteristics of CO2 at Vapour and Supercritical Phases in Micro-Channels

    Directory of Open Access Journals (Sweden)

    Rao N.T.

    2016-01-01

    Full Text Available Supercritical carbon dioxide (CO2 has special thermal properties with better heat transfer and flow characteristics. Due to this reason, supercritical CO2 is being used recently in air-condition and refrigeration systems to replace non environmental friendly refrigerants. Even though many researches have been done, there are not many literatures for heat transfer and flow characteristics of supercritical CO2. Therefore, the main purpose of this study is to develop flow and heat transfer CFD models on two different phases; vapour and supercritical of CO2 to investigate the heat transfer characteristics and pressure drop in micro-channels. CO2 is considered to be in different phases with different flow pressures but at same temperature. For the simulation, the CO2 flow was assumed to be turbulent, nonisothermal and Newtonian. The numerical results for both phases are compared. From the numerical analysis, for both vapour and supercritical phases, the heat energy from CO2 gas transferred to water to attain thermal equilibrium. The temperature of CO2 at vapour phase decreased 1.78% compared to supercritical phase, which decreased for 0.56% from the inlet temperature. There was a drastic increase of 72% for average Nu when the phase changed from vapour to supercritical. The average Nu decreased rapidly about 41% after total pressure of 9.0 MPa. Pressure drop (ΔP increased together with Reynolds number (Re for vapour and supercritical phases. When the phase changed from vapour to supercritical, ΔP was increased about 26%. The results obtained from this study can provide information for further investigations on supercritical CO2.

  20. Retention of gene expression in porcine islets after agarose encapsulation and long-term culture

    International Nuclear Information System (INIS)

    Dumpala, Pradeep R.; Holdcraft, Robert W.; Martis, Prithy C.; Laramore, Melissa A.; Parker, Thomas S.; Levine, Daniel M.; Smith, Barry H.; Gazda, Lawrence S.

    2016-01-01

    Agarose encapsulation of porcine islets allows extended in vitro culture, providing ample time to determine the functional capacity of the islets and conduct comprehensive microbiological safety testing prior to implantation as a treatment for type 1 diabetes mellitus. However, the effect that agarose encapsulation and long-term culture may have on porcine islet gene expression is unknown. The aim of the present study was to compare the transcriptome of encapsulated porcine islets following long-term in vitro culture against free islets cultured overnight. Global gene expression analysis revealed no significant change in the expression of 98.47% of genes. This indicates that the gene expression profile of free islets is highly conserved following encapsulation and long-term culture. Importantly, the expression levels of genes that code for critical hormones secreted by islets (insulin, glucagon, and somatostatin) as well as transcripts encoding proteins involved in their packaging and secretion are unchanged. While a small number of genes known to play roles in the insulin secretion and insulin signaling pathways are differentially expressed, our results show that overall gene expression is retained following islet isolation, agarose encapsulation, and long-term culture. - Highlights: • Effect of agarose encapsulation and 8 week culture on porcine islets was analyzed. • Transcriptome analysis revealed no significant change in a majority (98%) of genes. • Agarose encapsulation allows for long-term culture of porcine islets. • Islet culture allows for functional and microbial testing prior to clinical use.

  1. Retention of gene expression in porcine islets after agarose encapsulation and long-term culture

    Energy Technology Data Exchange (ETDEWEB)

    Dumpala, Pradeep R., E-mail: pdumpala@rixd.org [The Rogosin Institute – Xenia Division, 740 Birch Road, Xenia, OH 45385 (United States); Holdcraft, Robert W.; Martis, Prithy C.; Laramore, Melissa A. [The Rogosin Institute – Xenia Division, 740 Birch Road, Xenia, OH 45385 (United States); Parker, Thomas S.; Levine, Daniel M. [The Rogosin Institute, 505 East 70th Street, New York, NY 10021 (United States); Smith, Barry H. [The Rogosin Institute, 505 East 70th Street, New York, NY 10021 (United States); NewYork-Presbyterian Hospital, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021 (United States); Gazda, Lawrence S. [The Rogosin Institute – Xenia Division, 740 Birch Road, Xenia, OH 45385 (United States)

    2016-08-05

    Agarose encapsulation of porcine islets allows extended in vitro culture, providing ample time to determine the functional capacity of the islets and conduct comprehensive microbiological safety testing prior to implantation as a treatment for type 1 diabetes mellitus. However, the effect that agarose encapsulation and long-term culture may have on porcine islet gene expression is unknown. The aim of the present study was to compare the transcriptome of encapsulated porcine islets following long-term in vitro culture against free islets cultured overnight. Global gene expression analysis revealed no significant change in the expression of 98.47% of genes. This indicates that the gene expression profile of free islets is highly conserved following encapsulation and long-term culture. Importantly, the expression levels of genes that code for critical hormones secreted by islets (insulin, glucagon, and somatostatin) as well as transcripts encoding proteins involved in their packaging and secretion are unchanged. While a small number of genes known to play roles in the insulin secretion and insulin signaling pathways are differentially expressed, our results show that overall gene expression is retained following islet isolation, agarose encapsulation, and long-term culture. - Highlights: • Effect of agarose encapsulation and 8 week culture on porcine islets was analyzed. • Transcriptome analysis revealed no significant change in a majority (98%) of genes. • Agarose encapsulation allows for long-term culture of porcine islets. • Islet culture allows for functional and microbial testing prior to clinical use.

  2. Chiral metal-organic frameworks bearing free carboxylic acids for organocatalyst encapsulation.

    Science.gov (United States)

    Liu, Yan; Xi, Xiaobing; Ye, Chengcheng; Gong, Tengfei; Yang, Zhiwei; Cui, Yong

    2014-12-08

    Two chiral carboxylic acid functionalized micro- and mesoporous metal-organic frameworks (MOFs) are constructed by the stepwise assembly of triple-stranded heptametallic helicates with six carboxylic acid groups. The mesoporous MOF with permanent porosity functions as a host for encapsulation of an enantiopure organic amine catalyst by combining carboxylic acids and chiral amines in situ through acid-base interactions. The organocatalyst-loaded framework is shown to be an efficient and recyclable heterogeneous catalyst for the asymmetric direct aldol reactions with significantly enhanced stereoselectivity in relative to the homogeneous organocatalyst. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Digital holographic setups for phase object measurements in micro and macro scale

    Directory of Open Access Journals (Sweden)

    Lédl Vít

    2015-01-01

    Full Text Available The measurement of properties of so called phase objects is being solved for more than one Century starting probably with schlieren technique 1. Classical interferometry served as a great measurement tool for several decades and was replaced by holographic interferometry, which disposes with many benefits when compared to classical interferometry. Holographic interferometry undergone an enormous development in last decade when digital holography has been established as a standard technique and most of the drawbacks were solved. The paper deals with scope of the huge applicability of digital holographic interferometry in heat and mass transfer measurement from micro to macro scale and from simple 2D measurement up to complex tomographic techniques. Recently the very complex experimental setups are under development in our labs combining many techniques leading to digital holographic micro tomography methods.

  4. Encapsulation of nodal segments of lobelia chinensis

    Directory of Open Access Journals (Sweden)

    Weng Hing Thong

    2015-04-01

    Full Text Available Lobelia chinensis served as an important herb in traditional chinese medicine. It is rare in the field and infected by some pathogens. Therefore, encapsulation of axillary buds has been developed for in vitro propagation of L. chinensis. Nodal explants of L. chinensis were used as inclusion materials for encapsulation. Various combinations of calcium chloride and sodium alginate were tested. Encapsulation beads produced by mixing 50 mM calcium chloride and 3.5% sodium alginate supported the optimal in vitro conversion potential. The number of multiple shoots formed by encapsulated nodal segments was not significantly different from the average of shoots produced by non-encapsulated nodal segments. The encapsulated nodal segments regenerated in vitro on different medium. The optimal germination and regeneration medium was Murashige-Skoog medium. Plantlets regenerated from the encapsulated nodal segments were hardened, acclimatized and established well in the field, showing similar morphology with parent plants. This encapsulation technology would serve as an alternative in vitro regeneration system for L. chinensis.

  5. A phase change processor method for solving a one-dimensional phase change problem with convection boundary

    Energy Technology Data Exchange (ETDEWEB)

    Halawa, E.; Saman, W.; Bruno, F. [Institute for Sustainable Systems and Technologies, School of Advanced Manufacturing and Mechanical Engineering, University of South Australia, Mawson Lakes SA 5095 (Australia)

    2010-08-15

    A simple yet accurate iterative method for solving a one-dimensional phase change problem with convection boundary is described. The one-dimensional model takes into account the variation in the wall temperature along the direction of the flow as well as the sensible heat during preheating/pre-cooling of the phase change material (PCM). The mathematical derivation of convective boundary conditions has been integrated into a phase change processor (PCP) algorithm that solves the liquid fraction and temperature of the nodes. The algorithm is based on the heat balance at each node as it undergoes heating or cooling which inevitably involves phase change. The paper presents the model and its experimental validation. (author)

  6. The carbon matrices made of pyrolyzed phthalocyanines as a base for encapsulation of the long-lived nuclides of iodine, technetium and minor actinides

    International Nuclear Information System (INIS)

    Tikhonov, V.I.; Moskalev, P.N.; Kapustin, V.K.

    2007-01-01

    The creation and careful investigation of suitable materials and forms for transmutation of the long-lived radioactive waste (RW) is mainly in the starting stage. A new carbon material formed as a result of pyrolysis of bis-phthalocyanine, Pc2Me, gives a chance to solve this goal successfully. The pyrolysis takes place under an argon (Ar) atmosphere at temperature of 700 - 800 deg. C. The release of atoms encapsulated inside this carbon matrix occurs only at temperatures above 1200 deg. C, and a correlation between the efficiency of the atoms' release and their atomic radius has been revealed. It is caused with creation of closed micro-cavities in the carbon skeleton during pyrolysis of MeC 2. Due to inert features and high thermostability of carbon, an inculcation of the long-lived radionuclides in these micro-cavities by means of their phthalocyanines pyrolysis gives unique opportunities for both their transmutation and storage. The first results on encapsulation within matrixes of radionuclides of europium (Eu), technetium (Te), iodine (I) and 'minor actinides' are presented. The efficiency of encapsulation is close to 100% for all studied elements excluding iodine, for the last one, it is near 85-90%. The results on thermochemical stability, leaching and other tests of these matrixes are presented. (authors)

  7. Electromagnetic characterization of photo-definable ferrite loaded polymers and their applications in micro-rectangular coaxial phase shifters

    Science.gov (United States)

    Sholiyi, Olusegun Samuel

    As the demand for smaller size, lighter weight, lower loss and cost of communications transmit and receive (T/R) modules increases, there is an urgent need to focus investigation to the major subsystem or components that can improve these parameters. Phase shifters contribute greatly to the cost of T/R modules, and thus this research investigation examines a new way to reduce the weight and cost by miniaturizing the phaser design. Characterization of hexaferrite powders compatible with the sequential multilayer micro-fabrication technology and numerical simulations of a novel rectangular micro-coaxial phase shifter are investigated. This effort aims to integrate ferrite material into a rectangular micro-coaxial waveguide at Ka-band using electromagnetic finite element numerical tools. The proposed technique exploits rectangular coaxial waveguide with a symmetrically placed inner signal conductor inside an outer conductor connected to the ground. Strontium ferrite-SU8 composite is used as an anisotropic material of choice in the modelled design. Numerical modeling is employed using High Frequency Structure Simulator, HFSS, a 3-D full wave electromagnetic solver for analyzing the performance of the device. Two model structures were designed for reciprocal and non-reciprocal applications. The first model (Model A) produced a tunable phase shift of almost 60 degrees /cm across 0 to 400 kA/m applied field and at 1800 Gauss. In model B, a non-reciprocal phase shift performance of 20 degrees /cm from a reference phase of 24 degrees at 0 A/m was realized at the same saturation magnetization. A return loss better than 20 dB and an insertion loss less than 1.5 dB were obtained for both models.

  8. Mineral assemblage transformation of a metakaolin-based waste form after geopolymer encapsulation

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Benjamin D., E-mail: Benjamin.Williams@pnnl.gov [Pacific Northwest National Laboratory, PO Box 999, MSIN P7-54, Richland, WA 99352 (United States); Neeway, James J., E-mail: James.Neeway@pnnl.gov [Pacific Northwest National Laboratory, PO Box 999, MSIN P7-54, Richland, WA 99352 (United States); Snyder, Michelle M.V., E-mail: Michelle.ValentaSnyder@pnnl.gov [Pacific Northwest National Laboratory, PO Box 999, MSIN P7-54, Richland, WA 99352 (United States); Bowden, Mark E., E-mail: Mark.Bowden@pnnl.gov [Pacific Northwest National Laboratory, PO Box 999, MSIN P7-54, Richland, WA 99352 (United States); Amonette, James E., E-mail: Jim.Amonette@pnnl.gov [Pacific Northwest National Laboratory, PO Box 999, MSIN P7-54, Richland, WA 99352 (United States); Arey, Bruce W., E-mail: Bruce.Arey@pnnl.gov [Pacific Northwest National Laboratory, PO Box 999, MSIN P7-54, Richland, WA 99352 (United States); Pierce, Eric M., E-mail: pierceem@ornl.gov [Oak Ridge National Laboratory, PO Box 2008, MS-6035, Room 372, Oak Ridge, TN 37831 (United States); Brown, Christopher F., E-mail: Christopher.Brown@pnnl.gov [Pacific Northwest National Laboratory, PO Box 999, MSIN P7-54, Richland, WA 99352 (United States); Qafoku, Nikolla P., E-mail: Nik.Qafoku@pnnl.gov [Pacific Northwest National Laboratory, PO Box 999, MSIN P7-54, Richland, WA 99352 (United States)

    2016-05-15

    Mitigation of hazardous and radioactive waste can be improved through conversion of existing waste to a more chemically stable and physically robust waste form. One option for waste conversion is the fluidized bed steam reforming (FBSR) process. The resulting FBSR granular material was encapsulated in a geopolymer matrix referred to here as Geo-7. This provides mechanical strength for ease in transport and disposal. However, it is necessary to understand the phase assemblage evolution as a result of geopolymer encapsulation. In this study, we examine the mineral assemblages formed during the synthesis of the multiphase ceramic waste form. The FBSR granular samples were created from waste simulant that was chemically adjusted to resemble Hanford tank waste. Another set of samples was created using Savannah River Site Tank 50 waste simulant in order to mimic a blend of waste collected from 68 Hanford tank. Waste form performance tests were conducted using the product consistency test (PCT), the Toxicity Characteristic Leaching Procedure (TCLP), and the single-pass flow-through (SPFT) test. X-ray diffraction analyses revealed the structure of a previously unreported NAS phase and indicate that monolith creation may lead to a reduction in crystallinity as compared to the primary FBSR granular product. - Highlights: • Simulated Hanford waste was treated by the Fluidized Bed Steam Reformer (FBSR) process. • The FBSR granular product was encapsulated in a geopolymer monolith. • Leach tests were performed to examine waste form performance. • XRD revealed the structure of a previously unreported sodium aluminosilicate phase. • Monolithing of granular waste forms may lead to a reduction in crystallinity.

  9. Application of phase-change materials in memory taxonomy.

    Science.gov (United States)

    Wang, Lei; Tu, Liang; Wen, Jing

    2017-01-01

    Phase-change materials are suitable for data storage because they exhibit reversible transitions between crystalline and amorphous states that have distinguishable electrical and optical properties. Consequently, these materials find applications in diverse memory devices ranging from conventional optical discs to emerging nanophotonic devices. Current research efforts are mostly devoted to phase-change random access memory, whereas the applications of phase-change materials in other types of memory devices are rarely reported. Here we review the physical principles of phase-change materials and devices aiming to help researchers understand the concept of phase-change memory. We classify phase-change memory devices into phase-change optical disc, phase-change scanning probe memory, phase-change random access memory, and phase-change nanophotonic device, according to their locations in memory hierarchy. For each device type we discuss the physical principles in conjunction with merits and weakness for data storage applications. We also outline state-of-the-art technologies and future prospects.

  10. Equivalent Simplification Method of Micro-Grid

    OpenAIRE

    Cai Changchun; Cao Xiangqin

    2013-01-01

    The paper concentrates on the equivalent simplification method for the micro-grid system connection into distributed network. The equivalent simplification method proposed for interaction study between micro-grid and distributed network. Micro-grid network, composite load, gas turbine synchronous generation, wind generation are equivalent simplification and parallel connect into the point of common coupling. A micro-grid system is built and three phase and single phase grounded faults are per...

  11. Static and dynamic micro deformable mirror characterization by phase-shifting and time-averaged interferometry

    Science.gov (United States)

    Liotard, Arnaud; Zamkotsian, Frédéric

    2017-11-01

    The micro-opto-electro-mechanical systems (MOEMS), based on mature technologies of micro-electronics, are essential in the design of future astronomical instruments. One of these key-components is the microdeformable mirror for wave-front correction. Very challenging topics like search of exo-planets could greatly benefit from this technology. Design, realization and characterization of micro-Deformable Mirrors are under way at Laboratoire d'Astrophysique de Marseille (LAM) in collaboration with Laboratoire d'Analyse et d'Architecture des Systèmes (LAAS). In order to measure the surface shape and the deformation parameters during operation of these devices, a high-resolution Twyman-Green interferometer has been developed. Measurements have been done on a tiltable micro-mirror (170*100μm2) designed by LAM-LAAS and realized by an American foundry, and also on an OKO deformable mirror (15mm diameter). Static characterization is made by phase shifting interferometry and dynamic measurements have been made by quantitative time-averaged interferometry. The OKO mirror has an actuator stroke of 370+/-10nm for 150V applied and its resonant frequency is 1170+/-50 Hz, and the tiltable mirror has a rotation cut-off frequency of 31+/-3 kHz.

  12. Micro morphological and Chemical Approaches to Understand Changes in Ecological Functions of Metal-Impacted Soils under Various Land Uses

    International Nuclear Information System (INIS)

    Acosta, J.A; Martinez, S.M; Faz, A; Van Mourik, J.M; Arocena, J.M

    2011-01-01

    We investigated the changes in faunal activities as measures of the ecological functions of soils impacted by potentially toxic metals (PTMs) under urban, industrial, agricultural, and natural uses. Concentrations and distributions of Zn, Cd, Pb, Cu, Mn, and Fe were estimated by sequential chemical extractions, while relicts and present faunal activities were studied by micro morphological analyses. Urban and natural lands were contaminated with Pb, Cd, and Zn. Micro arthropods and fungi are observed to be active in the litter decomposition in natural, agricultural and urban lands which indicates that total concentration of PTMs in soils is not a good indicator to evaluate the limitations of PTMs to fauna activity. Metals immobilization on carbonates and Fe/Mn oxides, and fertilizations reduced the negative effects of metals on faunal activity. Micro morphological analyses showed the impacts of metal on soil ecological functions in industrial site, where the surface soils are devoid of any evidence of faunal activity; likely due to high proportion of Pb and Zn in organic components. Therefore, the impacts of metals in soil fauna activities, hence ecological functions of soils, are best evaluated by the knowledge of metal partitioning on solid phases in combination with observations of fauna activities using micro morphological techniques.

  13. Review of encapsulation technologies

    International Nuclear Information System (INIS)

    Shaulis, L.

    1996-09-01

    The use of encapsulation technology to produce a compliant waste form is an outgrowth from existing polymer industry technology and applications. During the past 12 years, the Department of Energy (DOE) has been researching the use of this technology to treat mixed wastes (i.e., containing hazardous and radioactive wastes). The two primary encapsulation techniques are microencapsulation and macroencapsulation. Microencapsulation is the thorough mixing of a binding agent with a powdered waste, such as incinerator ash. Macroencapsulation coats the surface of bulk wastes, such as lead debris. Cement, modified cement, and polyethylene are the binding agents which have been researched the most. Cement and modified cement have been the most commonly used binding agents to date. However, recent research conducted by DOE laboratories have shown that polyethylene is more durable and cost effective than cements. The compressive strength, leachability, resistance to chemical degradation, etc., of polyethylene is significantly greater than that of cement and modified cement. Because higher waste loads can be used with polyethylene encapsulant, the total cost of polyethylene encapsulation is significantly less costly than cement treatment. The only research lacking in the assessment of polyethylene encapsulation treatment for mixed wastes is pilot and full-scale testing with actual waste materials. To date, only simulated wastes have been tested. The Rocky Flats Environmental Technology Site had planned to conduct pilot studies using actual wastes during 1996. This experiment should provide similar results to the previous tests that used simulated wastes. If this hypothesis is validated as anticipated, it will be clear that polyethylene encapsulation should be pursued by DOE to produce compliant waste forms

  14. A cytometry microparticle platform approach for screening tobacco microRNA changes after agrobacterium delivery

    Energy Technology Data Exchange (ETDEWEB)

    Powell, Joshua D.; Chen, Qiang; Mason, Hugh S.

    2016-08-01

    Abstract Key message nta-miR-398 is significantly up-regulated while nta-miR-428d is significantly down-regulated in tobacco after agroinfiltration AbstractMicroRNAs are a class of non-coding regulatory RNAs that can modulate development as well as alter innate antiviral defenses in plants. In this study we explored host changes at the microRNA level within tobacco (Nicotiana benthamiana) after expression of a recombinant anti-Ebola GP1 antibody through Agrobacterium tumefaciens agroinfiltration delivery. A multiplex nanoparticle-based cytometry assay tracked the host expression changes of 53 tobacco microRNAs. Our results revealed that the most abundant microRNAs in actively growing leaves corresponded to nanoparticle probes specific to nta-mir-6149 and nta-miR-168b. After agroinfiltration, probes targeting nta-mir-398 and nta-mir-482d were significantly altered in their respective expression levels and were further verified through RT-qPCR analysis. To our knowledge this study is the first to profile microRNA expression in tobacco after agroinfiltration using a multiplex nanoparticle approach.

  15. Sub-nanosecond laser-induced structural changes in the phase change material Ge2Sb2Te5 measured by an optical pump/x-ray probe technique: Structural snapshots with a 500 ps shutter

    International Nuclear Information System (INIS)

    Fons, P.; Brewe, D.; Stern, E.; Kolobov, A.V.; Fukaya, T.; Suzuki, M.; Uruga, T.; Kawamura, N.; Takagaki, M.; Ohsawa, H.; Tanida, H.; Tominaga, J.

    2007-01-01

    Phase-change alloys are characterized by reversible switching between amorphous and crystalline phases either by laser irradiation or by an electric programming current; the resulting changes in material properties can be used for non-volatile data storage. Switching typically occurs on nanosecond or less time scales. Considering the conflicting requirements for high-speed switching, yet long term data storage integrity, a deeper understanding of the switching processes in these materials is essential for insightful application development. Although, high-speed optical pump/probe observations have been made of reflectivity changes during the Ge 2 Sb 2 Te 5 switching process, due to the nanosecond order time scales involved little is known about the corresponding changes in structure. In addition as the amorphous phase does not diffract, its structural analysis is not amenable to analysis by high-speed diffraction techniques. We have used synchrotron-based time-resolved x-ray absorption fine structure spectroscopy (XAFS), a technique equally suitable for amorphous and crystalline phases to elaborate details in structural changes in the phase-change process. We report on two experiments using high-speed pulsed lasers that serve as optical pumps to induced material changes followed by synchrotron produced x-ray burst that serve as a time resolved structural probe. The first experiment carried out at the Advanced Photon source focuses on changes due to heating in the amorphous phase. Our experimental results indicate that the maximum temperature reached during the re-amorphization process are less than the melting point indicated in the bulk phase diagram of Ge 2 Sb 2 Te 5 reaching a maximum temperature of 620 C and in addition, do not share the same bond length distribution of a true melt. These findings strongly suggest the possibility of non-thermal melting. In the second experiment, we have obtained near-edge x-ray absorption data for a Ge 2 Sb 2 Te 5 film in the

  16. Effect of antioxidant properties of lecithin emulsifier on oxidative stability of encapsulated bioactive compounds.

    Science.gov (United States)

    Pan, Yuanjie; Tikekar, Rohan V; Nitin, N

    2013-06-25

    Oxidation of encapsulated bioactive compounds in emulsions is one of the key challenges that limit shelf life of emulsion containing products. Oxidation in these emulsions is triggered by permeation of free radicals generated at the emulsion interface. The objective of this study was to evaluate the role of antioxidant properties of common emulsifiers (lecithin and Tween 20) in reducing permeation of free radicals across the emulsion interface. Radical permeation rates were correlated with oxidative stability of a model bioactive compound (curcumin) encapsulated in these emulsions. Rate of permeation of peroxyl radicals from the aqueous phase to the oil phase of emulsion was inversely proportional to the antioxidant properties of emulsifiers. The rate of radical permeation was significantly higher (plecithin compared to native lecithin that showed higher antioxidant activity. Free radical permeation rate correlated with stability of curcumin in emulsions and was significantly higher (plecithin stabilized emulsions as compared to Tween 20 emulsions. Overall, this study demonstrates that antioxidant activity of emulsifiers significantly influences permeation of free radicals across the emulsion interface and the rate of oxidation of bioactive encapsulant. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Laser spectroscopic and theoretical studies of the structures and encapsulation motifs of functional molecules

    Energy Technology Data Exchange (ETDEWEB)

    Ebata, Takayuki; Kusaka, Ryoji [Department of Chemistry, Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima, 739-8526 (Japan); Xantheas, Sotiris S. [Chemical and Materials Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, MS K1-83, Richland, WA 99352 (United States)

    2015-01-22

    Extensive laser spectroscopic and theoretical studies have been recently carried out with the aim to reveal the structure and dynamics of encapsulation complexes in the gas phase. The characteristics of the encapsulation complexes are governed by the fact that (i) most of the host molecules are flexible and (ii) the complexes form high dimensional structures by using weak non-covalent interactions. These characteristics result in the possibility of the coexistence of many conformers in close energetic proximity. The combination of supersonic jet/laser spectroscopy and high level quantum chemical calculations is essential in tackling these challenging problems. In this report we describe our recent studies on the structures and dynamics of the encapsulation complexes formed by calix[4]arene (C4A), dibenzo-18-crown-6-ether (DB18C6), and benzo-18-crown-6-ether (B18C6) 'hosts' interacting with N{sub 2}, acetylene, water, and ammonia 'guest' molecules. The gaseous host-guest complexes are generated under jet-cooled conditions. We apply various laser spectroscopic methods to obtain the conformer- and isomer-specified electronic and IR spectra. The experimental results are complemented with quantum chemical calculations ranging from density functional theory to high level first principles calculations at the MP2 and CCSD(T) levels of theory. We discuss the possible conformations of the bare host molecules, the structural changes they undergo upon complexation, and the key interactions that are responsible in stabilizing the specific complexes.

  18. Evaluation of antinociceptive activity of nanoliposome-encapsulated and free-form diclofenac in rats and mice.

    Science.gov (United States)

    Goh, Jun Zheng; Tang, Sook Nai; Chiong, Hoe Siong; Yong, Yoke Keong; Zuraini, Ahmad; Hakim, Muhammad Nazrul

    2015-01-01

    Diclofenac is a nonsteroidal anti-inflammatory drug (NSAID) that exhibits anti-inflammatory, antinociceptive, and antipyretic activities. Liposomes have been shown to improve the therapeutic efficacy of encapsulated drugs. The present study was conducted to compare the antinociceptive properties between liposome-encapsulated and free-form diclofenac in vivo via different nociceptive assay models. Liposome-encapsulated diclofenac was prepared using the commercialized proliposome method. Antinociceptive effects of liposome-encapsulated and free-form diclofenac were evaluated using formalin test, acetic acid-induced abdominal writhing test, Randall-Selitto paw pressure test, and plantar test. The results of the writhing test showed a significant reduction of abdominal constriction in all treatment groups in a dose-dependent manner. The 20 mg/kg liposome-encapsulated diclofenac demonstrated the highest antinociceptive effect at 78.97% compared with 55.89% in the free-form group at equivalent dosage. Both liposome-encapsulated and free-form diclofenac produced significant results in the late phase of formalin assay at a dose of 20 mg/kg, with antinociception percentages of 78.84% and 60.71%, respectively. Significant results of antinociception were also observed in both hyperalgesia assays. For Randall-Sellito assay, the highest antinociception effect of 71.38% was achieved with 20 mg/kg liposome-encapsulated diclofenac, while the lowest antinociceptive effect of 17.32% was recorded with 0 mg/kg liposome formulation, whereas in the plantar test, the highest antinociceptive effect was achieved at 56.7% with 20 mg/kg liposome-encapsulated diclofenac, and the lowest effect was shown with 0 mg/kg liposome formulation of 8.89%. The present study suggests that liposome-encapsulated diclofenac exhibits higher antinociceptive efficacy in a dose-dependent manner in comparison with free-form diclofenac.

  19. Phase and Micro-Structural Characterization of Sanitary-Ware Fired at Different Temperature

    OpenAIRE

    ATHER HASSAN; YASEEN IQBAL; SYED ZAFAR ILYAS

    2017-01-01

    The three main ingredients of sanitary-ware are clay, feldspar and quartz. This ware is being widely used and has therefore, attracted the attention of researchers from time to time. Consequently, it has been extensively investigated. The present study describes the phase and micro-structural analysis of sanitary-ware samples collected from local (Durr Ceramics Peshawar) industry. XRD (X-Ray Diffraction) of samples fired at 1100oC reveals the presence of ? ? ? ? ?-quartz and primary mullite o...

  20. Design and development of a surface micro-machined push–pull-type true-time-delay phase shifter on an alumina substrate for Ka-band T/R module application

    International Nuclear Information System (INIS)

    Dey, Sukomal; Koul, Shiban K

    2012-01-01

    A radio frequency micro-electro-mechanical system (RF-MEMS) phase shifter based on the distributed MEMS transmission line (DMTL) concept towards maximum achievable phase shift with low actuation voltage with good figure of merit (FOM) is presented in this paper. This surface micro-machined analog DMTL phase shifter demonstrates low power consumption for implementation in a Ka-band transmit/receive (T/R) module. The push–pull-type switch has been designed and optimized with an analytical method and validated with simulation, which is the fundamental building block of the design of a true-time-delay phase shifter. Change in phase has been designed and optimized in push and pull states with reference to the up-state performance of the phase shifter. The working principle of this push–pull-type DMTL phase shifter has been comprehensively worked out. A thorough detail of the design and performance analysis of the phase shifter has been carried out with various structural parameters using commercially available simulation tools with reference to a change in phase shift and has been verified using a system level simulation. The phase shifter is fabricated on the alumina substrate, using a suspended gold bridge membrane with a surface micromachining process. Asymmetric behaviour of push–pull bridge configuration has been noted and a corresponding effect on mechanical, electrical and RF performances has been extensively investigated. It is demonstrated 114° dB −1 FOM over 0–40 GHz band, which is the highest achievable FOM from a unit cell on an alumina substrate reported so far. A complete phase shifter contributes to a continuous differential phase shift of 0°–360° over 0–40 GHz band with a minimum actuation voltage of 8.1 V which is the highest achievable phase shift with the lowest actuation voltage as per till date on the alumina substrate with good repeatability and return loss better than 11.5 dB over 0–40 GHz band. (paper)

  1. Material Performance of Fully-Ceramic Micro-Encapsulated Fuel under Selected LWR Design Basis Scenarios: Final Report

    International Nuclear Information System (INIS)

    Boer, B.; Sen, R.S.; Pope, M.A.; Ougouag, A.M.

    2011-01-01

    The extension to LWRs of the use of Deep-Burn coated particle fuel envisaged for HTRs has been investigated. TRISO coated fuel particles are used in Fully-Ceramic Microencapsulated (FCM) fuel within a SiC matrix rather than the graphite of HTRs. TRISO particles are well characterized for uranium-fueled HTRs. However, operating conditions of LWRs are different from those of HTRs (temperature, neutron energy spectrum, fast fluence levels, power density). Furthermore, the time scales of transient core behavior during accidents are usually much shorter and thus more severe in LWRs. The PASTA code was updated for analysis of stresses in coated particle FCM fuel. The code extensions enable the automatic use of neutronic data (burnup, fast fluence as a function of irradiation time) obtained using the DRAGON neutronics code. An input option for automatic evaluation of temperature rise during anticipated transients was also added. A new thermal model for FCM was incorporated into the code; so-were updated correlations (for pyrocarbon coating layers) suitable to estimating dimensional changes at the high fluence levels attained in LWR DB fuel. Analyses of the FCM fuel using the updated PASTA code under nominal and accident conditions show: (1) Stress levels in SiC-coatings are low for low fission gas release (FGR) fractions of several percent, as based on data of fission gas diffusion in UO 2 kernels. However, the high burnup level of LWR-DB fuel implies that the FGR fraction is more likely to be in the range of 50-100%, similar to Inert Matrix Fuels (IMFs). For this range the predicted stresses and failure fractions of the SiC coating are high for the reference particle design (500 (micro)mm kernel diameter, 100 (micro)mm buffer, 35 (micro)mm IPyC, 35 (micro)mm SiC, 40 (micro)mm OPyC). A conservative case, assuming 100% FGR, 900K fuel temperature and 705 MWd/kg (77% FIMA) fuel burnup, results in a 8.0 x 10 -2 failure probability. For a 'best-estimate' FGR fraction of 50

  2. Preparation, thermal properties and thermal reliabilities of microencapsulated n-octadecane with acrylic-based polymer shells for thermal energy storage

    International Nuclear Information System (INIS)

    Qiu, Xiaolin; Song, Guolin; Chu, Xiaodong; Li, Xuezhu; Tang, Guoyi

    2013-01-01

    Highlights: ► n-Octadecane was encapsulated by p(butyl methacrylate) (PBMA) and p(butyl acrylate). ► Microcapsules using divinylbenzene as crosslinking agent have better quality. ► Microcapsule with butyl methacrylate–divinylbenzene has highest latent heat. ► Microcapsule with butyl methacrylate–divinylbenzene has greatest thermal stability. ► Phase change temperatures and enthalpies of the microcapsules varied little after thermal cycle. - Abstract: Microencapsulation of n-octadecane with crosslinked p(butyl methacrylate) (PBMA) and p(butyl acrylate) (PBA) as shells for thermal energy storage was carried out by a suspension-like polymerization. Divinylbenzene (DVB) and pentaerythritol triacrylate (PETA) were employed as crosslinking agents. The surface morphologies of the microencapsulated phase change materials (microPCMs) were studied by scanning electron microscopy (SEM). Thermal properties, thermal reliabilities and thermal stabilities of the as-prepared microPCMs were investigated by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). The microPCMs prepared by using DVB exhibit greater heat capacities and higher thermal stabilities compared with those prepared by using PETA. The thermal resistant temperature of the microPCM with BMA–DVB polymer was up to 248 °C. The phase change temperatures and latent heats of all the as-prepared microcapsules varied little after 1000 thermal cycles.

  3. Engineering Changes During the Service Phase

    DEFF Research Database (Denmark)

    Vianello, Giovanna; Ahmed, Saeema

    2008-01-01

    This paper focuses upon understanding the characteristics of engineering changes, in particular changes that emerge during the service phase of complex products, and on how these changes can be related to the product development process. For this purpose, a set of engineering change reports from...... an aerospace engine has been analyzed and the findings have been compared with change documentation from drilling machinery for the oil industry. These findings give insights into which phases of the design process should be modified in order to reduce the number of change requests from the service phase...... and to enable designers to efficiently answer the unavoidable change requests. This can be used to improve the product development process in order to take into account the factors leading to changes....

  4. Multiphase flows with phase change

    Indian Academy of Sciences (India)

    Multiphase flows with phase change are ubiquitous in many industrial sectors ranging from energy and infra-structure to specialty chemicals and pharmaceuticals. My own interest in mul- tiphase flows with phase change started more than 15 years ago when I had initiated work on riser reactor for fluid catalytic cracking and ...

  5. Sound propagation in water containing large tethered spherical encapsulated gas bubbles with resonance frequencies in the 50 Hz to 100 Hz range.

    Science.gov (United States)

    Lee, Kevin M; Hinojosa, Kevin T; Wochner, Mark S; Argo, Theodore F; Wilson, Preston S; Mercier, Richard S

    2011-11-01

    The efficacy of large tethered encapsulated gas bubbles for the mitigation of low frequency underwater noise was investigated with an acoustic resonator technique. Tethered latex balloons were used as the bubbles, which had radii of approximately 5 cm. Phase speeds were inferred from the resonances of a water and balloon-filled waveguide approximately 1.8 m in length. The Commander and Prosperetti effective-medium model [J. Acoust. Soc. Am. 85, 732-746 (1989)] quantitatively described the observed dispersion from well below to just below the individual bubble resonance frequency, and it qualitatively predicted the frequency range of high attenuation for void fractions between 2% and 5% for collections of stationary balloons within the waveguide. A finite-element model was used to investigate the sensitivity of the waveguide resonance frequencies, and hence the inferred phase speeds, to changes in individual bubble size and position. The results indicate that large tethered encapsulated bubbles could be used mitigate low frequency underwater noise and that the Commander and Prosperetti model would be useful in the design of such a system.

  6. Microscopic deformation and strain hardening analysis of ferrite–bainite dual-phase steels using micro-grid method

    International Nuclear Information System (INIS)

    Ishikawa, Nobuyuki; Yasuda, Kyono; Sueyoshi, Hitoshi; Endo, Shigeru; Ikeda, Hiroshi; Morikawa, Tatsuya; Higashida, Kenji

    2015-01-01

    The local strain measurement method using nanometer-scaled micro grids printed on the surface of a specimen by an electron lithography technique (the micro-grid method) has been established. Microscopic deformation behavior of the ferrite–bainite steels with different bainite volume fraction, 16% and 40% of bainite, was evaluated. Strain localization in the ferrite phase adjacent to the ferrite/bainite boundary was clearly observed and visualized. Highly strained regions expanded toward the inner region of the ferrite phase and connected each other with an increase of macroscopic strain. The existence of hard bainite phase plays an important role for inducing strain localization in the ferrite phase by plastic constraint in the boundary parallel to the tensile direction. In order to obtain further understanding of microscopic deformation behavior, finite element analysis using the representative volume element, which is expressed by the axisymmetric unit cell containing a hard phase surrounded by a soft phase matrix, was conducted. It was found that the macroscopic stress–strain behavior of ferrite–bainite steels was well simulated by the unit cell models. Strain concentration in the ferrite phase was highly enhanced for the ferrite-40% bainite steel, and this imposed higher internal stress in the bainite phase, resulting in higher strain hardening rate in the early stage of the deformation. However, smaller ferrite volume fraction of ferrite-40% bainite steel induced bainite plastic deformation in order to fulfill the macroscopic strain of the steel. Accordingly, strain hardening capacity of the ferrite-40% bainite steel was reduced to a significant degree, resulting in a smaller uniform elongation than the ferrite-16% bainite steel

  7. Polytetrafluorethylene film-based liquid-three phase micro extraction coupled with differential pulse voltammetry for the determination of atorvastatin calcium.

    Science.gov (United States)

    Ensafi, Ali A; Khoddami, Elaheh; Rezaei, Behzad

    2013-01-01

    In this paper, we describe a new combination method based on polytetrafluorethylene (PTFE) film-based liquid three-phase micro extraction coupled with differential pulse voltammetry (DPV) for the micro extraction and quantification of atorvastatin calcium (ATC) at the ultra-trace level. Different factors affecting the liquid-three phases micro extraction of atorvastatin calcium, including organic solvent, pH of the donor and acceptor phases, concentration of salt, extraction time, stirring rate and electrochemical factors, were investigated, and the optimal extraction conditions were established. The final stable signal was achieved after a 50 min extraction time, which was used for analytical applications. An enrichment factor of 21 was achieved, and the relative standard deviation (RSD) of the method was 4.5% (n = 4). Differential pulse voltammetry exhibited two wide linear dynamic ranges of 20.0-1000.0 pmol L(-1) and 0.001-11.0 µmol L(-1) of ATC. The detection limit was found to be 8.1 pmol L(-1) ATC. Finally, the proposed method was used as a new combination method for the determination of atorvastatin calcium in real samples, such as human urine and plasma.

  8. Note: Automated optical focusing on encapsulated devices for scanning light stimulation systems

    International Nuclear Information System (INIS)

    Bitzer, L. A.; Benson, N.; Schmechel, R.

    2014-01-01

    Recently, a scanning light stimulation system with an automated, adaptive focus correction during the measurement was introduced. Here, its application on encapsulated devices is discussed. This includes the changes an encapsulating optical medium introduces to the focusing process as well as to the subsequent light stimulation measurement. Further, the focusing method is modified to compensate for the influence of refraction and to maintain a minimum beam diameter on the sample surface

  9. Encapsulation of ionic electroactive polymers: reducing the interaction with environment

    Science.gov (United States)

    Jaakson, P.; Aabloo, A.; Tamm, T.

    2016-04-01

    Ionic electro-active polymer (iEAP) actuators are composite materials that change their mechanical properties in response to external electrical stimulus. The interest in these devices is mainly driven by their capability to generate biomimetic movements, and their potential use in soft robotics. The driving voltage of an iEAP-actuator (0.5… 3 V) is at least an order of magnitude lower than that needed for other types of electroactive polymers. To apply iEAP-actuators in potential real-world applications, the capability of operating in different environments (open air, different solvents) must be available. In their natural form, the iEAP-actuators are capable of interacting with the surrounding environment (evaporation of solvent from the electrolyte solution, ion or solvent exchange, humidity effects), therefore, for prevention of unpredictable behavior of the actuator and the contamination of the environment, encapsulation of the actuator is needed. The environmental contamination aspect of the encapsulation material is substantial when selecting an applicable encapsulant. The suitable encapsulant should form thin films, be light in weight, elastic, fit tightly, low cost, and easily reproducible. The main goal of the present study is to identify and evaluate the best potential encapsulation techniques for iEAPactuators. Various techniques like thin film on liquid coating, dip coating, hot pressing, hot rolling; and several materials like polydimethylsiloxane, polyurethane, nitrocellulose, paraffin-composite-films were investigated. The advantages and disadvantages of the combinations of the above mentioned techniques and materials are discussed. Successfully encapsulated iEAP-actuators gained durability and were stably operable for long periods of time under ambient conditions. The encapsulation process also increased the stability of the iEAP-actuator by minimizing the environment effects. This makes controlling iEAP-actuators more straight-forward and

  10. Liposomal encapsulated Zn-DTPA for removing intracellular 169Yb

    International Nuclear Information System (INIS)

    Blank, M.L.; Cress, E.A.; Byrd, B.L.; Washburn, L.C.; Snyder, F.

    1980-01-01

    Multilamellar liposomes possessing neutral positive or negative charges were tested for their capacity to encapsulate sodium ethylenediaminetetraacetate (EDTA) and for their selectivity in depositing in specific tissues after being injected into rats. Negative-charged liposomes had the greatest trapping efficiency over a wide range of lipid-to-aqueous phase ratios. In contrast, except for lung, liposomal charge had no significant effect on the tissue distribution of encapsulated EDTA; liver and spleen exhibited the highest uptake with all preparations. The proportion of encapsulated EDTA taken up by the liver decreased as the amount of injected liposomes was increased. Free zinc diethylenetriaminepentaacetate (Zn-DTPA) and multilamellar liposomes containing entrapped Zn-DTPA were administered to rats that had been injected with 169 Yb-citrate 24 hr earlier. At doses of 14 mg Zn-DTPA per kg body weight, both free Zn-DPTA and the liposomal-bound Zn-DTPA caused increased removal of 169 Yb from the animals. However, treatment with the liposomal Zn-DTPA caused significantly more of the 169 Yb to be removed than did the free Zn-DTPA treatment by itself. Our data indicate that lipophilic forms of chelators can effectively increase the removal rates of heavy metal contamination in tissues. (author)

  11. A novel Deep Reactive Ion Etched (DRIE) glass micro-model for two-phase flow experiments

    NARCIS (Netherlands)

    Karadimitriou, N.K.; Joekar-Niasar, V.; Hassanizadeh, S.M.; Kleingeld, P.J.; Pyrak-Nolte, L.J.

    2012-01-01

    In the last few decades, micro-models have become popular experimental tools for two-phase flow studies. In this work, the design and fabrication of an innovative, elongated, glass-etched micromodel with dimensions of 5 6 35 mm2 and constant depth of 43 microns is described. This is the

  12. Encapsulation of nuclear wastes

    International Nuclear Information System (INIS)

    Arnold, J.L.; Boyle, R.W.

    1978-01-01

    Toxic waste materials are encapsulated by the method wherein the waste material in liquid or finely divided solid form is uniformly dispersed in a vinyl ester resin or an unsaturated polyester and the resin cured under conditions that the exotherm does not rise above the temperature at which the integrity of the encapsulating material is destroyed

  13. On-line liquid phase micro-extraction based on drop-in-plug sequential injection lab-at-valve platform for metal determination

    Energy Technology Data Exchange (ETDEWEB)

    Mitani, Constantina [Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University, Thessaloniki 54124 (Greece); Anthemidis, Aristidis N., E-mail: anthemid@chem.auth.gr [Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University, Thessaloniki 54124 (Greece)

    2013-04-10

    Highlights: ► Drop-in-plug micro-extraction based on SI-LAV platform for metal preconcentration. ► Automatic liquid phase micro-extraction coupled with FAAS. ► Organic solvents with density higher than water are used. ► Lead determination in environmental water and urine samples. -- Abstract: A novel automatic on-line liquid phase micro-extraction method based on drop-in-plug sequential injection lab-at-valve (LAV) platform was proposed for metal preconcentration and determination. A flow-through micro-extraction chamber mounted at the selection valve was adopted without the need of sophisticated lab-on-valve components. Coupled to flame atomic absorption spectrometry (FAAS), the potential of this lab-at-valve scheme is demonstrated for trace lead determination in environmental and biological water samples. A hydrophobic complex of lead with ammonium pyrrolidine dithiocarbamate (APDC) was formed on-line and subsequently extracted into an 80 μL plug of chloroform. The extraction procedure was performed by forming micro-droplets of aqueous phase into the plug of the extractant. All critical parameters that affect the efficiency of the system were studied and optimized. The proposed method offered good performance characteristics and high preconcentration ratios. For 10 mL sample consumption an enhancement factor of 125 was obtained. The detection limit was 1.8 μg L{sup −1} and the precision expressed as relative standard deviation (RSD) at 50.0 μg L{sup −1} of lead was 2.9%. The proposed method was evaluated by analyzing certified reference materials and applied for lead determination in natural waters and urine samples.

  14. Micro- and nano bio-based delivery systems for food applications: In vitro behavior.

    Science.gov (United States)

    de Souza Simões, Lívia; Madalena, Daniel A; Pinheiro, Ana C; Teixeira, José A; Vicente, António A; Ramos, Óscar L

    2017-05-01

    Micro- and nanoencapsulation is an emerging technology in the food field that potentially allows the improvement of food quality and human health. Bio-based delivery systems of bioactive compounds have a wide variety of morphologies that influence their stability and functional performance. The incorporation of bioactive compounds in food products using micro- and nano-delivery systems may offer extra health benefits, beyond basic nutrition, once their encapsulation may provide protection against undesired environmental conditions (e.g., heat, light and oxygen) along the food chain (including processing and storage), thus improving their bioavailability, while enabling their controlled release and target delivery. This review provides an overview of the bio-based materials currently used for encapsulation of bioactive compounds intended for food applications, as well as the main production techniques employed in the development of micro- and nanosystems. The behavior of such systems and of bioactive compounds entrapped into, throughout in vitro gastrointestinal systems, is also tracked in a critical manner. Comparisons between various in vitro digestion systems (including the main advantages and disadvantages) currently in use, as well as correlations between the behavior of micro- and nanosystems studied through in vitro and in vivo systems were highlighted and discussed here for the first time. Finally, examples of bioactive micro- and nanosystems added to food simulants or to real food matrices are provided, together with a revision of the main challenges for their safe commercialization, the regulatory issues involved and the main legislation aspects. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Transport of encapsulated nuclear fuels

    International Nuclear Information System (INIS)

    Broman, Ulrika; Dybeck, Peter; Ekendahl, Ann-Mari

    2005-12-01

    The transport system for encapsulated fuel is described, including a preliminary drawing of a transport container. In the report, the encapsulation plant is assumed to be located to Oskarshamn, and the repository to Oskarshamn or Forsmark

  16. Hydroformylation of dihydrofurans catalyzed by rhodium complex encapsulated hexagonal mesoporous silica

    KAUST Repository

    Khokhar, Munir; Shukla, Ram S.; Jasra, Raksh Vir

    2015-01-01

    HRh(CO)(PPh3)3 encapsulated hexagonal mesoporous silica (HMS) is found to be an efficient heterogeneous catalyst for the selective hydroformylation of 2,3-dihydrofuran (2,3DHF) and 2,5-dihydrofuran (2,5DHF). The Rh-complex encapsulated in situ in the organic phase of template inside the pores of HMS was found to act as nano phase reactors. Conversion of 2,3-DHF and 2,5-DHF and selectivity of the corresponding aldehydes were thoroughly investigated by studying the reaction parameters: catalyst amount, substrate concentration, partial as well as total pressure of CO and H2, and temperature. The selectivity for the formation of tetrahydrofuran-2-carbaldehyde (THF-2-carbaldehyde) from the hydroformylation of 2,3-DHF was found to be more than the selectivity of the formation of tetrahydrofuran-3-carbaldehyde (THF-3-carbaldehyde) from 2,5-DHF. The reaction paths are suggested and discussed for the selective formation of the corresponding aldehydes. The catalyst was elegantly separated and effectively recycled for six times.

  17. Hydroformylation of dihydrofurans catalyzed by rhodium complex encapsulated hexagonal mesoporous silica

    KAUST Repository

    Khokhar, Munir

    2015-05-01

    HRh(CO)(PPh3)3 encapsulated hexagonal mesoporous silica (HMS) is found to be an efficient heterogeneous catalyst for the selective hydroformylation of 2,3-dihydrofuran (2,3DHF) and 2,5-dihydrofuran (2,5DHF). The Rh-complex encapsulated in situ in the organic phase of template inside the pores of HMS was found to act as nano phase reactors. Conversion of 2,3-DHF and 2,5-DHF and selectivity of the corresponding aldehydes were thoroughly investigated by studying the reaction parameters: catalyst amount, substrate concentration, partial as well as total pressure of CO and H2, and temperature. The selectivity for the formation of tetrahydrofuran-2-carbaldehyde (THF-2-carbaldehyde) from the hydroformylation of 2,3-DHF was found to be more than the selectivity of the formation of tetrahydrofuran-3-carbaldehyde (THF-3-carbaldehyde) from 2,5-DHF. The reaction paths are suggested and discussed for the selective formation of the corresponding aldehydes. The catalyst was elegantly separated and effectively recycled for six times.

  18. Reverse micelle-loaded lipid nano-emulsions: new technology for nano-encapsulation of hydrophilic materials.

    Science.gov (United States)

    Anton, Nicolas; Mojzisova, Halina; Porcher, Emilien; Benoit, Jean-Pierre; Saulnier, Patrick

    2010-10-15

    This study presents novel, recently patented technology for encapsulating hydrophilic species in lipid nano-emulsions. The method is based on the phase-inversion temperature method (the so-called PIT method), which follows a low-energy and solvent-free process. The nano-emulsions formed are stable for months, and exhibit droplet sizes ranging from 10 to 200 nm. Hydrophilic model molecules of fluorescein sodium salt are encapsulated in the oily core of these nano-emulsion droplets through their solubilisation in the reverse micellar system. As a result, original, multi-scaled nano-objects are generated with a 'hydrophilic molecule in a reverse-micelles-in-oil-in-water' structure. Once fluorescein has been encapsulated it remains stable, for thermodynamic reasons, and the encapsulation yields can reach 90%. The reason why such complex objects can be formed is due to the soft method used (PIT method) which allows the conservation of the structure of the reverse micelles throughout the formulation process, up to their entrapment in the nano-emulsion droplets. In this study, we focus the investigation on the process itself, revealing its potential and limits. Since the formulation of nanocarriers for the encapsulation of hydrophilic substances still remains a challenge, this study may constitute a significant advance in this field. Copyright 2010 Elsevier B.V. All rights reserved.

  19. Ionization Electron Signal Processing in Single Phase LArTPCs II. Data/Simulation Comparison and Performance in MicroBooNE

    Energy Technology Data Exchange (ETDEWEB)

    Adams, C.; et al.

    2018-04-07

    The single-phase liquid argon time projection chamber (LArTPC) provides a large amount of detailed information in the form of fine-grained drifted ionization charge from particle traces. To fully utilize this information, the deposited charge must be accurately extracted from the raw digitized waveforms via a robust signal processing chain. Enabled by the ultra-low noise levels associated with cryogenic electronics in the MicroBooNE detector, the precise extraction of ionization charge from the induction wire planes in a single-phase LArTPC is qualitatively demonstrated on MicroBooNE data with event display images, and quantitatively demonstrated via waveform-level and track-level metrics. Improved performance of induction plane calorimetry is demonstrated through the agreement of extracted ionization charge measurements across different wire planes for various event topologies. In addition to the comprehensive waveform-level comparison of data and simulation, a calibration of the cryogenic electronics response is presented and solutions to various MicroBooNE-specific TPC issues are discussed. This work presents an important improvement in LArTPC signal processing, the foundation of reconstruction and therefore physics analyses in MicroBooNE.

  20. Evaluation of needle trap micro-extraction and solid-phase micro-extraction: Obtaining comprehensive information on volatile emissions from in vitro cultures.

    Science.gov (United States)

    Oertel, Peter; Bergmann, Andreas; Fischer, Sina; Trefz, Phillip; Küntzel, Anne; Reinhold, Petra; Köhler, Heike; Schubert, Jochen K; Miekisch, Wolfram

    2018-05-14

    Volatile organic compounds (VOCs) emitted from in vitro cultures may reveal information on species and metabolism. Owing to low nmol L -1 concentration ranges, pre-concentration techniques are required for gas chromatography-mass spectrometry (GC-MS) based analyses. This study was intended to compare the efficiency of established micro-extraction techniques - solid-phase micro-extraction (SPME) and needle-trap micro-extraction (NTME) - for the analysis of complex VOC patterns. For SPME, a 75 μm Carboxen®/polydimethylsiloxane fiber was used. The NTME needle was packed with divinylbenzene, Carbopack X and Carboxen 1000. The headspace was sampled bi-directionally. Seventy-two VOCs were calibrated by reference standard mixtures in the range of 0.041-62.24 nmol L -1 by means of GC-MS. Both pre-concentration methods were applied to profile VOCs from cultures of Mycobacterium avium ssp. paratuberculosis. Limits of detection ranged from 0.004 to 3.93 nmol L -1 (median = 0.030 nmol L -1 ) for NTME and from 0.001 to 5.684 nmol L -1 (median = 0.043 nmol L -1 ) for SPME. NTME showed advantages in assessing polar compounds such as alcohols. SPME showed advantages in reproducibility but disadvantages in sensitivity for N-containing compounds. Micro-extraction techniques such as SPME and NTME are well suited for trace VOC profiling over cultures if the limitations of each technique is taken into account. Copyright © 2018 John Wiley & Sons, Ltd.

  1. Nanostructured pillars based on vertically aligned carbon nanotubes as the stationary phase in micro-CEC.

    Science.gov (United States)

    Wu, Ren-Guei; Yang, Chung-Shi; Wang, Pen-Cheng; Tseng, Fan-Gang

    2009-06-01

    We present a micro-CEC chip carrying out a highly efficient separation of dsDNA fragments through vertically aligned multi-wall carbon nanotubes (MWCNTs) in a microchannel. The vertically aligned MWCNTs were grown directly in the microchannel to form straight nanopillar arrays as ordered and directional chromatographic supports. 1-Pyrenedodecanoic acid was employed for the surface modification of the MWCNTs' stationary phase to adsorb analytes by hydrophobic interactions. This device was used for separating dsDNA fragments of three different lengths (254, 360, and 572 bp), and fluorescence detection was employed to verify the electrokinetic transport in the MWCNT array. The micro-CEC separation of the three compounds was achieved in less than 300 s at a field strength of 66 V/cm due to superior laminar flow patterns and a lower flow resistance resulting from the vertically aligned MWCNTs being used as the stationary phase medium. In addition, a fivefold reduction of band broadening was obtained when the analyte was separated by the chromatographic MWCNT array channel instead of the CE channel. From all of the results, we suggest that an in situ grown and directional MWCNT array can potentially be useful for preparing more diversified forms of stationary phases for vertically efficient chip-based electrochromatography.

  2. Experimental study of discontinuous plastic flow, phase transformation and micro-damage evolution in ductile materials at cryogenic temperatures

    CERN Document Server

    Marcinek, Dawid Jarosław; Sgobba, S

    2009-01-01

    The present Thesis deals with three low temperature phenomena occurring in ductile materials subjected to mechanical loads: serrated yielding, plastic strain induced γ-α’ phase transformation and evolution of micro-damage: - the Thesis explains the physical mechanisms governing each phenomenon at the micro and macroscopic levels; - the document describes in detail the advanced laboratory equipment needed for cryogenic experiments; - the results of tests carried out with unique precision and focused on serrated yielding and evolution of micro-damage (the observations were made with different strain rates and with the use of different materials) are presented; - validation of suitable kinetic laws and identification of parameters for tested materials is carried out.

  3. Encyclopedia of two-phase heat transfer and flow IV modeling methodologies, boiling of CO₂, and micro-two-phase cooling

    CERN Document Server

    2018-01-01

    Set IV is a new addition to the previous Sets I, II and III. It contains 23 invited chapters from international specialists on the topics of numerical modeling of pulsating heat pipes and of slug flows with evaporation; lattice Boltzmann modeling of pool boiling; fundamentals of boiling in microchannels and microfin tubes, CO2 and nanofluids; testing and modeling of micro-two-phase cooling systems for electronics; and various special topics (flow separation in microfluidics, two-phase sensors, wetting of anisotropic surfaces, ultra-compact heat exchangers, etc.). The invited authors are leading university researchers and well-known engineers from leading corporate research laboratories (ABB, IBM, Nokia Bell Labs). Numerous "must read" chapters are also included here for the two-phase community. Set IV constitutes a "must have" engineering and research reference together with previous Sets I, II and III for thermal engineering researchers and practitioners.

  4. Flipping interferometry and its application for quantitative phase microscopy in a micro-channel.

    Science.gov (United States)

    Roitshtain, Darina; Turko, Nir A; Javidi, Bahram; Shaked, Natan T

    2016-05-15

    We present a portable, off-axis interferometric module for quantitative phase microscopy of live cells, positioned at the exit port of a coherently illuminated inverted microscope. The module creates on the digital camera an interference pattern between the image of the sample and its flipped version. The proposed simplified module is based on a retro-reflector modification in an external Michelson interferometer. The module does not contain any lenses, pinholes, or gratings and its alignment is straightforward. Still, it allows full control of the off-axis angle and does not suffer from ghost images. As experimentally demonstrated, the module is useful for quantitative phase microscopy of live cells rapidly flowing in a micro-channel.

  5. Encapsulation of Clay Platelets inside Latex Particles

    NARCIS (Netherlands)

    Voorn, D.J.; Ming, W.; Herk, van A.M.; Fernando, R.H.; Sung, Li-Piin

    2009-01-01

    We present our recent attempts in encapsulating clay platelets inside latex particles by emulsion polymerization. Face modification of clay platelets by cationic exchange has been shown to be insufficient for clay encapsulation, leading to armored latex particles. Successful encapsulation of

  6. From phase-change materials to thermoelectrics?

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Matthias N.; Rosenthal, Tobias; Oeckler, Oliver [Dept. of Chemistry, Ludwig Maximilian Univ. Munich (Germany); Stiewe, Christian [German Aerospace Center, Cologne (Germany)

    2010-07-01

    Metastable tellurides play an important role as phase-change materials in data storage media and non-volatile RAM devices. The corresponding crystalline phases with very simple basic structures are not stable as bulk materials at ambient conditions, however, for a broad range of compositions they represent stable high-temperature phases. In the system Ge/Sb/Te, rocksalt-type high-temperature phases are characterized by a large number of vacancies randomly distributed over the cation position, which order as 2D vacancy layers upon cooling. Short-range order in quenched samples produces pronounced nanostructures by the formation of twin domains and finite intersecting vacancy layers. As phase-change materials are usually semimetals or small-bandgap semiconductors and efficient data storage requires low thermal conductivity, bulk materials with similar compositions and properties can be expected to exhibit promising thermoelectric characteristics. Nanostructuring by phase transitions that involve partial vacancy ordering may enhance the efficiency of such thermoelectrics. We have shown that germanium antimony tellurides with compositions close to those used as phase-change materials in rewritable Blu-Ray Discs, e.g. (GeTe){sub 12}Sb{sub 2}Te{sub 3}, exhibit thermoelectric figures of merit of up to ZT = 1.3 at 450 C if a nanodomain structure is induced by rapidly quenching the cubic high-temperature phase. Structural changes have been elucidated by X-ray diffraction and high-resolution electron microscopy. (orig.)

  7. 3D visualization of two-phase flow in the micro-tube by a simple but effective method

    International Nuclear Information System (INIS)

    Fu, X; Zhang, P; Hu, H; Huang, C J; Huang, Y; Wang, R Z

    2009-01-01

    The present study provides a simple but effective method for 3D visualization of the two-phase flow in the micro-tube. An isosceles right-angle prism combined with a mirror located 45° bevel to the prism is employed to synchronously obtain the front and side views of the flow patterns with a single camera, where the locations of the prism and the micro-tube for clear imaging should satisfy a fixed relationship which is specified in the present study. The optical design is proven successfully by the tough visualization work at the cryogenic temperature range. The image deformation due to the refraction and geometrical configuration of the test section is quantitatively investigated. It is calculated that the image is enlarged by about 20% in inner diameter compared to the real object, which is validated by the experimental results. Meanwhile, the image deformation by adding a rectangular optical correction box outside the circular tube is comparatively investigated. It is calculated that the image is reduced by about 20% in inner diameter with a rectangular optical correction box compared to the real object. The 3D re-construction process based on the two views is conducted through three steps, which shows that the 3D visualization method can easily be applied for two-phase flow research in micro-scale channels and improves the measurement accuracy of some important parameters of the two-phase flow such as void fraction, spatial distribution of bubbles, etc

  8. Determination of Young's modulus of epoxy coated polyethylene micro-cantilever using phase-shift shadow moiré method

    Science.gov (United States)

    Lim, J. H.; Ratnam, M. M.; Azid, I. A.; Mutharasu, D.

    2011-11-01

    Young's moduli of various epoxy coated polyethylene terephthalate (PET) micro-cantilevers were determined from the deflection results obtained using the phase-shift shadow moiré (PSSM) method. The filler materials for epoxy coatings were aluminum and graphite powders that were mixed with epoxy at various percentages. Young's moduli were calculated from theory based on the deflection results. The PET micro-cantilever coated with aluminum-epoxy coating showed increasing value of Young's modulus when the ratios of the aluminum-epoxy were increased. The graphite-epoxy coating on the PET micro-cantilever also showed the same trend. The experimental results also show that Young's modulus of the graphite-epoxy coating is higher than aluminum-epoxy coating in comparison at the same mixing ratio.

  9. Stochastic modelling of two-phase flows including phase change

    International Nuclear Information System (INIS)

    Hurisse, O.; Minier, J.P.

    2011-01-01

    Stochastic modelling has already been developed and applied for single-phase flows and incompressible two-phase flows. In this article, we propose an extension of this modelling approach to two-phase flows including phase change (e.g. for steam-water flows). Two aspects are emphasised: a stochastic model accounting for phase transition and a modelling constraint which arises from volume conservation. To illustrate the whole approach, some remarks are eventually proposed for two-fluid models. (authors)

  10. Nanoscale encapsulation: the structure of cations in hydrophobic microporous aluminosilicates

    International Nuclear Information System (INIS)

    Wasserman, S.R.; Yuchs, S.E.; Giaquinta, D.; Soderholm, L.; Song, Kang.

    1996-01-01

    Hydrophobic microporous aluminosilicates, created by organic surface modification of inherently hydrophilic materials such as zeolites and clays, are currently being investigated as storage media for hazardous cations. Use of organic monolayers to modify the surface of an aluminosilicate after introducing an ion into the zeolite/clay reduces the interaction of water with the material. Resulting systems are about 20 times more resistant to leaching of stored ion. XAS spectra from the encapsulated ion demonstrate that byproducts from the organic modifier can complex with the stored cation. This complexation can result in a decreased affinity of the cation for the aluminosilicate matrix. Changing the organic modifier eliminates this problem. XAS spectra also indicate that the reactivity and speciation of the encapsulated ion may change upon application of the hydrophobic layer

  11. Modeling and impacts of the latent heat of phase change and specific heat for phase change materials

    Science.gov (United States)

    Scoggin, J.; Khan, R. S.; Silva, H.; Gokirmak, A.

    2018-05-01

    We model the latent heats of crystallization and fusion in phase change materials with a unified latent heat of phase change, ensuring energy conservation by coupling the heat of phase change with amorphous and crystalline specific heats. We demonstrate the model with 2-D finite element simulations of Ge2Sb2Te5 and find that the heat of phase change increases local temperature up to 180 K in 300 nm × 300 nm structures during crystallization, significantly impacting grain distributions. We also show in electrothermal simulations of 45 nm confined and 10 nm mushroom cells that the higher amorphous specific heat predicted by this model increases nucleation probability at the end of reset operations. These nuclei can decrease set time, leading to variability, as demonstrated for the mushroom cell.

  12. Use of Melt Flow Rate Test in Reliability Study of Thermoplastic Encapsulation Materials in Photovoltaic Modules

    Energy Technology Data Exchange (ETDEWEB)

    Moseley, J.; Miller, D.; Shah, Q.-U.-A. S. J.; Sakurai, K.; Kempe, M.; Tamizhmani, G.; Kurtz, S.

    2011-10-01

    Use of thermoplastic materials as encapsulants in photovoltaic (PV) modules presents a potential concern in terms of high temperature creep, which should be evaluated before thermoplastics are qualified for use in the field. Historically, the issue of creep has been avoided by using thermosetting polymers as encapsulants, such as crosslinked ethylene-co-vinyl acetate (EVA). Because they lack crosslinked networks, however, thermoplastics may be subject to phase transitions and visco-elastic flow at the temperatures and mechanical stresses encountered by modules in the field, creating the potential for a number of reliability and safety issues. Thermoplastic materials investigated in this study include PV-grade uncured-EVA (without curing agents and therefore not crosslinked); polyvinyl butyral (PVB); thermoplastic polyurethane (TPU); and three polyolefins (PO), which have been proposed for use as PV encapsulation. Two approaches were used to evaluate the performance of these materials as encapsulants: module-level testing and a material-level testing.

  13. Recent progresses and achievements in photovoltaic-phase change material technology: A review with special treatment on photovoltaic thermal-phase change material systems

    International Nuclear Information System (INIS)

    Islam, M.M.; Pandey, A.K.; Hasanuzzaman, M.; Rahim, N.A.

    2016-01-01

    Highlights: • Broad summary of phase change materials based cooling for photovoltaic modules. • Compendium on phase change materials that are mostly used in photovoltaic systems. • Extension of heat availability period by 75–100% with phase change material. • Heat storage potential improves by 33–50% more with phase change material. • Future trend and move in photovoltaic thermal research. - Abstract: This communication lays out an appraisal on the recent works of phase change materials based thermal management techniques for photovoltaic systems with special focus on the so called photovoltaic thermal-phase change material system. Attempt has also been made to draw wide-ranging classification of both photovoltaic and photovoltaic thermal systems and their conventional cooling or heat harvesting methods developed so far so that feasible phase change materials application area in these systems can be pointed out. In addition, a brief literature on phase change materials with particular focus on their solar application has also been presented. Overview of the researches and studies establish that using phase change materials for photovoltaic thermal control is technically viable if some issues like thermal conductivity or phase stability are properly addressed. The photovoltaic thermal-phase change material systems are found to offer 33% (maximum 50%) more heat storage potential than the conventional photovoltaic-thermal water system and that with 75–100% extended heat availability period and around 9% escalation in output. Reduction in temperature attained with photovoltaic thermal-phase change material system is better than that with regular photovoltaic-thermal water system, too. Studies also show the potential of another emerging technology of photovoltaic thermal-microencapsulated phase change material system that makes use of microencapsulated phase change materials in thermal regulation. Future focus areas on photovoltaic thermal-phase change

  14. Modeling complicated rheological behaviors in encapsulating shells of lipid-coated microbubbles accounting for nonlinear changes of both shell viscosity and elasticity.

    Science.gov (United States)

    Li, Qian; Matula, Thomas J; Tu, Juan; Guo, Xiasheng; Zhang, Dong

    2013-02-21

    It has been accepted that the dynamic responses of ultrasound contrast agent (UCA) microbubbles will be significantly affected by the encapsulating shell properties (e.g., shell elasticity and viscosity). In this work, a new model is proposed to describe the complicated rheological behaviors in an encapsulating shell of UCA microbubbles by applying the nonlinear 'Cross law' to the shell viscous term in the Marmottant model. The proposed new model was verified by fitting the dynamic responses of UCAs measured with either a high-speed optical imaging system or a light scattering system. The comparison results between the measured radius-time curves and the numerical simulations demonstrate that the 'compression-only' behavior of UCAs can be successfully simulated with the new model. Then, the shell elastic and viscous coefficients of SonoVue microbubbles were evaluated based on the new model simulations, and compared to the results obtained from some existing UCA models. The results confirm the capability of the current model for reducing the dependence of bubble shell parameters on the initial bubble radius, which indicates that the current model might be more comprehensive to describe the complex rheological nature (e.g., 'shear-thinning' and 'strain-softening') in encapsulating shells of UCA microbubbles by taking into account the nonlinear changes of both shell elasticity and shell viscosity.

  15. Modeling complicated rheological behaviors in encapsulating shells of lipid-coated microbubbles accounting for nonlinear changes of both shell viscosity and elasticity

    International Nuclear Information System (INIS)

    Li Qian; Tu Juan; Guo Xiasheng; Zhang Dong; Matula, Thomas J

    2013-01-01

    It has been accepted that the dynamic responses of ultrasound contrast agent (UCA) microbubbles will be significantly affected by the encapsulating shell properties (e.g., shell elasticity and viscosity). In this work, a new model is proposed to describe the complicated rheological behaviors in an encapsulating shell of UCA microbubbles by applying the nonlinear ‘Cross law’ to the shell viscous term in the Marmottant model. The proposed new model was verified by fitting the dynamic responses of UCAs measured with either a high-speed optical imaging system or a light scattering system. The comparison results between the measured radius–time curves and the numerical simulations demonstrate that the ‘compression-only’ behavior of UCAs can be successfully simulated with the new model. Then, the shell elastic and viscous coefficients of SonoVue microbubbles were evaluated based on the new model simulations, and compared to the results obtained from some existing UCA models. The results confirm the capability of the current model for reducing the dependence of bubble shell parameters on the initial bubble radius, which indicates that the current model might be more comprehensive to describe the complex rheological nature (e.g., ‘shear-thinning’ and ‘strain-softening’) in encapsulating shells of UCA microbubbles by taking into account the nonlinear changes of both shell elasticity and shell viscosity. (paper)

  16. A numerical study of bulk evaporation and condensation problem

    International Nuclear Information System (INIS)

    Ding, Z.; Anghaie, S.

    1996-01-01

    A numerical model is developed to simulate the dynamic behavior of bulk evaporation and condensation process in an encapsulated container with internal heat generation at micro-gravity level. Thermal performance of a multi-phase system with internal heat generation is investigated. The numerical simulation yields the evolution of the bulk liquid-vapor phase change process. This includes the evolution of the liquid-vapor interface, the formation and development of the liquid film covering the side wall surface, the temperature distribution and the convection flow field. An example of such systems is a phase change nuclear fuel element which was first introduced by Ding and Anghaie with application in high temperature space nuclear power and propulsion systems

  17. Entransy in phase-change systems

    CERN Document Server

    Gu, Junjie

    2014-01-01

    Entransy in Phase-Change Systems summarizes recent developments in the area of entransy, especially on phase-change processes. This book covers new developments in the area including the great potential for energy saving for process industries, decreasing carbon dioxide emissions, reducing energy bills and improving overall efficiency of systems. This concise volume is an ideal book for engineers and scientists in energy-related industries.

  18. A Robust Oil-in-Oil Emulsion for the Nonaqueous Encapsulation of Hydrophilic Payloads.

    Science.gov (United States)

    Lu, Xiaocun; Katz, Joshua S; Schmitt, Adam K; Moore, Jeffrey S

    2018-03-14

    Compartmentalized structures widely exist in cellular systems (organelles) and perform essential functions in smart composite materials (microcapsules, vasculatures, and micelles) to provide localized functionality and enhance materials' compatibility. An entirely water-free compartmentalization system is of significant value to the materials community as nonaqueous conditions are critical to packaging microcapsules with water-free hydrophilic payloads while avoiding energy-intensive drying steps. Few nonaqueous encapsulation techniques are known, especially when considering just the scalable processes that operate in batch mode. Herein, we report a robust oil-in-oil Pickering emulsion system that is compatible with nonaqueous interfacial reactions as required for encapsulation of hydrophilic payloads. A major conceptual advance of this work is the notion of the partitioning inhibitor-a chemical agent that greatly reduces the payload's distribution between the emulsion's two phases, thus providing appropriate conditions for emulsion-templated interfacial polymerization. As a specific example, an immiscible hydrocarbon-amine pair of liquids is emulsified by the incorporation of guanidinium chloride (GuHCl) as a partitioning inhibitor into the dispersed phase. Polyisobutylene (PIB) is added into the continuous phase as a viscosity modifier for suitable modification of interfacial polymerization kinetics. The combination of GuHCl and PIB is necessary to yield a robust emulsion with stable morphology for 3 weeks. Shell wall formation was accomplished by interfacial polymerization of isocyanates delivered through the continuous phase and polyamines from the droplet core. Diethylenetriamine (DETA)-loaded microcapsules were isolated in good yield, exhibiting high thermal and chemical stabilities with extended shelf-lives even when dispersed into a reactive epoxy resin. The polyamine phase is compatible with a variety of basic and hydrophilic actives, suggesting that this

  19. Encapsulation methods for organic electrical devices

    Science.gov (United States)

    Blum, Yigal D.; Chu, William Siu-Keung; MacQueen, David Brent; Shi, Yijian

    2013-06-18

    The disclosure provides methods and materials suitable for use as encapsulation barriers in electronic devices. In one embodiment, for example, there is provided an electroluminescent device or other electronic device encapsulated by alternating layers of a silicon-containing bonding material and a ceramic material. The encapsulation methods provide, for example, electronic devices with increased stability and shelf-life. The invention is useful, for example, in the field of microelectronic devices.

  20. Micro-emulsification/encapsulation of krill oil by complex coacervation with krill protein isolated using isoelectric solubilization/precipitation.

    Science.gov (United States)

    Shi, Liu; Beamer, Sarah K; Yang, Hong; Jaczynski, Jacek

    2018-04-01

    This study determined feasibility of krill protein isolated with isoelectric solubilization/precipitation (ISP) as wall material to microencapsulate krill oil by freeze-drying. Effects of krill oil/krill protein ratio on properties of microcapsules were investigated. With increased ratio, crude protein of microcapsules decreased, while total lipid increased. Although microcapsule oil loading capacity increased, loading and encapsulation efficiencies decreased. Thin layer chromatography (TLC) confirmed abundance of phospholipids, which are amphiphilic; and thus, resulted in stable emulsion (emulsion stability index). Microcapsules contained ω-3 polyunsaturated fatty acids (PUFAs) at 43-60, including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) at 28-41 and 9-11 g/100g of total FAs, respectively. SDS-PAGE electrophoresis revealed proteolysis of ISP krill protein, probably causing reduced loading and encapsulation efficiencies. SEM showed that krill oil/krill protein ratio affected surface microstructure. ISP krill protein showed potential as a wall material to microencapsulate krill oil; and thus, expand application of krill oil/protein for human consumption. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Revision of Import and Export Requirements for Controlled Substances, Listed Chemicals, and Tableting and Encapsulating Machines, Including Changes To Implement the International Trade Data System (ITDS); Revision of Reporting Requirements for Domestic Transactions in Listed Chemicals and Tableting and Encapsulating Machines; and Technical Amendments. Final rule.

    Science.gov (United States)

    2016-12-30

    The Drug Enforcement Administration is updating its regulations for the import and export of tableting and encapsulating machines, controlled substances, and listed chemicals, and its regulations relating to reports required for domestic transactions in listed chemicals, gamma-hydroxybutyric acid, and tableting and encapsulating machines. In accordance with Executive Order 13563, the Drug Enforcement Administration has reviewed its import and export regulations and reporting requirements for domestic transactions in listed chemicals (and gamma-hydroxybutyric acid) and tableting and encapsulating machines, and evaluated them for clarity, consistency, continued accuracy, and effectiveness. The amendments clarify certain policies and reflect current procedures and technological advancements. The amendments also allow for the implementation, as applicable to tableting and encapsulating machines, controlled substances, and listed chemicals, of the President's Executive Order 13659 on streamlining the export/import process and requiring the government-wide utilization of the International Trade Data System (ITDS). This rule additionally contains amendments that implement recent changes to the Controlled Substances Import and Export Act (CSIEA) for reexportation of controlled substances among members of the European Economic Area made by the Improving Regulatory Transparency for New Medical Therapies Act. The rule also includes additional substantive and technical and stylistic amendments.

  2. The Role of Phase Changes in TiO2/Pt/TiO2 Filaments

    Science.gov (United States)

    Bíró, Ferenc; Hajnal, Zoltán; Dücső, Csaba; Bársony, István

    2018-04-01

    This work analyses the role of phase changes in TiO2/Pt/TiO2 layer stacks for micro-heater application regarding their stability and reliable operation. The polycrystalline Pt layer wrapped in a TiO2 adhesion layer underwent a continuous recrystallisation in a self-heating operation causing a drift in the resistance ( R) versus temperature ( T) performance. Simultaneously, the TiO2 adhesion layer also deteriorates at high temperature by phase changes from amorphous to anatase and rutile crystallite formation, which not only influences the Pt diffusion in different migration phenomena, but also reduces the cross section of the Pt heater wire. Thorough scanning electron microscopy, energy dispersive spectroscopy, cross-sectional transmission electron microscopy (XTEM) and electron beam diffraction analysis of the structures operated at increasing temperature revealed the elemental structural processes leading to the instabilities and the accelerated degradation, resulting in rapid breakdown of the heater wire. Owing to stability and reliability criteria, the conditions for safe operation of these layer structures could be determined.

  3. Effect of pH and ionic strength on exposure and toxicity of encapsulated lambda-cyhalothrin to Daphnia magna.

    Science.gov (United States)

    Son, Jino; Hooven, Louisa A; Harper, Bryan; Harper, Stacey L

    2015-12-15

    Encapsulation of pesticide active ingredients in polymers has been widely employed to control the release of poorly water-soluble active ingredients. Given the high dispersibility of these encapsulated pesticides in water, they are expected to behave differently compared to their active ingredients; however, our current understanding of the fate and effects of encapsulated pesticides is still limited. In this study, we employed a central composite design (CCD) to investigate how pH and ionic strength (IS) affect the hydrodynamic diameter (HDD) and zeta potential of encapsulated λ-cyhalothrin and how those changes affect the exposure and toxicity to Daphnia magna. R(2) values greater than 0.82 and 0.84 for HDD and zeta potential, respectively, irrespective of incubation time suggest those changes could be predicted as a function of pH and IS. For HDD, the linear factor of pH and quadratic factor of pH×pH were found to be the most significant factors affecting the change of HDD at the beginning of incubation, whereas the effects of IS and IS×IS became significant as incubation time increased. For zeta potential, the linear factor of IS and quadratic factor of IS×IS were found to be the most dominant factors affecting the change of zeta potential of encapsulated λ-cyhalothrin, irrespective of incubation time. The toxicity tests with D. magna under exposure conditions in which HDD or zeta potential of encapsulated λ-cyhalothrin was maximized or minimized in the overlying water also clearly showed the worst-case exposure condition to D. magna was when the encapsulated λ-cyhalothrin is either stable or small in the overlying water. Our results show that water quality could modify the fate and toxicity of encapsulated λ-cyhalothrin in aquatic environments, suggesting understanding their aquatic interactions are critical in environmental risk assessment. Herein, we discuss the implications of our findings for risk assessment. Copyright © 2015 Elsevier B.V. All

  4. Melting of Pb clusters encapsulated in large fullerenes

    International Nuclear Information System (INIS)

    Delogu, Francesco

    2011-01-01

    Graphical abstract: Encapsulation significantly increases the melting point of nanometer-sized Pb particles with respect to the corresponding unsupported ones. Highlights: → Nanometer-sized Pb particles are encapsulated in fullerene cages. → Their thermal behavior is studied by molecular dynamics simulations. → Encapsulated particles undergo a pressure rise as temperature increases. → Encapsulated particles melt at temperatures higher than unsupported ones. - Abstract: Molecular dynamics simulations have been employed to explore the melting behavior of nanometer-sized Pb particles encapsulated in spherical and polyhedral fullerene cages of suitable size. The encapsulated particles, as well as the corresponding unsupported ones for comparison, were submitted to a gradual temperature rise. Encapsulation is shown to severely affect the thermodynamic behavior of Pb particles due to the different thermal expansion coefficients of particles and cages. This determines a volume constraint that induces a rise of pressure inside the fullerene cages, which operate for particles as rigid confinement systems. The result is that surface pre-melting and melting processes occur in encapsulated particles at temperatures higher than in unsupported ones.

  5. Temperature-triggered release of a liquid cross-linker micro-encapsulated in a glassy polymer for low temperature curing

    NARCIS (Netherlands)

    Senatore, D.; Cate, ten A.T.; Laven, J.; Benthem, van R.A.T.M.; With, de G.

    2013-01-01

    In order to prevent a liquid epoxy cross-linker from premature, Arrhenius-law predicted, reaction with an acid-functional polyester resin, the liquid cross-linker has been physically separated from the resin by encapsulation while release is only possible by a temperature-controlled trigger. The

  6. Evaluation of thermal aging effect on primary pipe material in nuclear power plant by micro hardness test method

    International Nuclear Information System (INIS)

    Xue Fei; Yu Weiwei; Wang Zhaoxi; Ma Qinzheng; Liu Wei

    2012-01-01

    The investigation was carried out on the changes in mechanical properties of the primary pipe material Z3CN20.09M after 10000 h aging at 400℃ by using micro- Vickers and impact testing machine. The results show that the impact energy of testing material decreases. However, the micro-Vickers hardness of ferrite phase and austenite phase which constitute the testing material increase and keep constant, respectively. The intrinsic relations were analyzed between the micro-Vickers hardness and the impact energy to make an attempt to present the micro-Vickers hardness measurement as a method applicable to evaluating the thermal aging of the primary pipe material. (authors)

  7. Study of process parameters effect on the filling phase of micro injection moulding using weld lines as flow markers

    DEFF Research Database (Denmark)

    Tosello, Guido; Gava, Alberto; Hansen, Hans Nørgaard

    2010-01-01

    , the relationships between the filling pattern and the different process parameter settings have to be established. In this paper, a novel approach based on the use of weld lines as flow markers to trace the development of the flow front during the filling is proposed. The effects on the filling stage of process......Micro-injection moulding (micro-moulding) is a process which enables the mass production of polymer microproducts. In order to produce high-quality injection moulded micro-parts, a crucial aspect to be fully understood and optimised is the filling of the cavity by the molten polymer. As a result...... manufactured by micro-electrodischarge machining. A commercially available polystyrene grade polymer has been moulded using a high-speed injection moulding machine. The design of experiment technique was employed to determine the effect of the process parameters on the filling phase of the micro...

  8. An Experimental Design Approach for the Analysis of Liquid Phase Products in Water for Hydrogenolysis of Glycerol using Immersed Solid-Phase Micro extraction

    International Nuclear Information System (INIS)

    Noraini Hamzah; Rozita Osman; Noraini Hamzah; Mohd Ambar Yarmo

    2013-01-01

    In this study, a response surface methodology (RSM) was applied to optimize the immersed-solid-phase micro extraction (immersed-SPME) conditions for the first time using a polyacrylate (PA) coated fiber. This was to determine liquid phase compounds in water for hydrogenolysis reaction of glycerol. There are a three-factor response surface experimental design was used to evaluate the interactive effects of extraction temperature (30-70 degree Celsius), extraction time (10-30 minutes) and desorption time (2-18 minutes) on the analysis of liquid phase compounds in water for hydrogenolysis of glycerol using immersed-solid-phase micro extraction (immersed-SPME). The extraction conditions using immersed-SPME were optimized in order to achieve high enrichment of the analytes from aqueous samples. The isolated compounds from the SPME fiber were desorbed and separated on a capillary polar column of a gas chromatography-flame ionization detector (GC-FID). The extraction time and desorption time were found significant in increasing the amount of glycerol in aqueous hydrogenolysis of glycerol. Nevertheless, the effect of extraction temperature was not significant. In terms of interactions between the effects, the relation between extraction temperature and extraction time was the most significant. The optimised immersed-SPME conditions were at extraction temperature of 27 degree Celsius, extraction time of 30 minutes and 15 minutes of desorption time. Thus, the application of SPME was found to be a rapid and effective technique in the determination of glycerol and propylene glycol compounds in aqueous hydrogenolysis glycerol. (author)

  9. Experimental Study of 5-fluorouracil Encapsulated Ethosomes Combined with CO2 Fractional Laser to Treat Hypertrophic Scar.

    Science.gov (United States)

    Zhang, Zhen; Chen, Jun; Huang, Jun; Wo, Yan; Zhang, Yixin; Chen, Xiangdong

    2018-01-18

    This study is designed to explore permeability of ethosomes encapsulated with 5-florouracil (5-FU) mediated by CO 2 fractional laser on hypertrophic scar tissues. Moreover, therapeutic and duration effect of CO 2 fractional laser combined with 5-FU encapsulated ethosomes in rabbit ear hypertrophic scar model will be evaluated. The permeated amount of 5-FU and retention contents of 5-FU were both determined by high-performance liquid chromatography (HPLC). Fluorescence intensities of ethosomes encapsulated with 5-FU (5E) labeled with Rodanmin 6GO (Rho) were measured by confocal laser scanning microscopy (CLSM). The permeability promotion of 5E labeled with Rho in rabbit ear hypertrophic scar mediated by CO 2 fractional laser was evaluated at 0 h, 6 h, 12 h, 24 h, 3 days and 7 days after the irradiation. The opening rates of the micro-channels were calculated according to CLSM. The therapeutic effect of 5EL was evaluated on rabbit ear hypertrophic scar in vivo. Relative thickness of rabbit ear hypertrophic scar before and after the treatment was measured by caliper method. Scar elevation index (SEI) of rabbit ear hypertrophic scar was measured using H&E staining. The data showed that the penetration amount of 5EL group was higher than 5E group (4.15 ± 2.22 vs. 0.73 ± 0.33; p 5E group (107.61 ± 13.27 vs. 20.73 ± 3.77; p 5E group (24.42 ± 4.37 vs.12.25 ± 1.64; p 5E group at different time points (1, 6, and 24 h). The opening rates of the micro-channels were decreased gradually within 24 h, and micro-channels were closed completely 3 days after the irradiation by CO 2 fractional laser. The relative thickness and SEI of rabbit ear hypertrophic scar after 7 days of treatment in the 5EL group were significantly lower than the 5E group. CO 2 fractional laser combined with topical 5E can be effective in the treatment of hypertrophic scar in vivo and supply a novel therapy method for human hypertrophic scar.

  10. Phase behaviour and microstructure of the micro-emulsions composed of cholinium-based ionic liquid, Triton X-100 and water

    International Nuclear Information System (INIS)

    Pei, Yuanchao; Huang, Yanjie; Li, Lin; Wang, Jianji

    2014-01-01

    Highlights: • The microemulsions composed of cholinium-based ionic liquid, Triton X-100 and water have been prepared and characterised. • Ternary phase diagrams of the microemulsions have been established at T = 298.15 K. • The microemulsions exhibit IL-in-water, bicontinuous and water-in-IL microstructures. • Droplets with the size smaller than 20 nm are formed in these IL-based microemulsions. - Abstract: In this paper, micro-emulsions composed of cholinium-based ionic liquids (ILs), octylphenol ethoxylate (Triton X-100) and water were prepared. These ternary systems were found to be stable over 12 months at room temperature. Their phase behaviour was investigated by using cloud titrations, and their microstructures were characterised by means of cyclic voltammetry and electrical conductance measurements at T = 298.15 K. It was shown that the micro-emulsions exhibited IL-in-water, bi-continuous and water-in-IL microstructures. Dynamic light scattering data suggest that Triton X-100 forms micelles in water, which were swelled by the ILs added. Droplets with the size about 20 nm were formed in these IL-based micro-emulsions, and the droplet size increased with the increase of the IL concentrations. These IL-based micro-emulsions may have potential in drug delivery, chemical reactions and nanomaterial preparation as a new type of nanoreactors

  11. Dose fractionation in synchrotron radiation x-ray phase micro-tomography

    International Nuclear Information System (INIS)

    Frachon, Thibaut; Weber, Loriane; Hesse, Bernhard; Rit, Simon; Dong, Pei; Olivier, Cecile; Peyrin, Françoise; Langer, Max

    2015-01-01

    Phase sensitive x-ray imaging expands the applicability of standard attenuation based techniques by offering several orders of magnitude of increase in sensitivity. Due to the short wavelength, x-ray phase is not directly measurable, but has to be put in evidence by the use of phase contrast techniques. The phase can then be reconstructed from one or several phase contrast images. In this study, we consider synchrotron x-ray phase micro-computed tomography (μCT) based on free space propagation for heterogeneous and strongly absorbing objects. This technique generally relies on acquiring several scans of the sample at different detector distances. It is also generally believed that multi-distance phase μCT needs a higher dose input than single distance phase μCT. The purpose of this work is to study the impact of different means of dose fractionation on the reconstructed image quality. We define different acquistion schemes in multi-distance in-line phase μCT. Previously, the exposure time at each sample-to-detector distance was usually kept the same. Here, we let not only the number of distances vary but also the fraction of exposure time at each distance, the total exposure time being kept constant. Phase retrieval is performed with the mixed approach algorithm. The reconstructed μCT images are compared in terms of accuracy, precision and resolution. In addition, we also compare the result of dose fractionated multi distance phase μCT to single distance phase μCT using the same total radiation dose. In the multi-distance approach, we find that using different exposure times on each distance improves the image quality in the reconstructed image. Further, we show that, despite having the same total dose delivery, the multi distance imaging method gives better image quality than the single distance method, at the cost of an additional overhead from camera displacements and reference images. We show that by optimizing the acquistion parameters in terms of

  12. NANOEMULSIFIKASI SPONTAN EKSTRAK JINTAN HITAM DAN KARAKTERISTIK PRODUK ENKAPSULASINYA [Spontaneous Nanoemulsification of Black Cumin Extract and the Characteristics of the Encapsulation Product

    Directory of Open Access Journals (Sweden)

    Rovie Farah Diba1*

    2014-12-01

    Full Text Available Research on the use of low energy nano technology on black cumin is still limited. Encapsulation of black cumin extract nanoemulsion has been developed and the products have been characterized. The aims of this study were to determine the extraction method of the black cumin seed, produce black cumin extract nanoemulsion by spontaneous emulsification technique, and produce encapsulated black cumin extract nanoemulsion. Three steps of experiments were done in this study, i.e. extraction, nanoemulsification and encapsulation. In the first step, extraction was done using maceration and reflux methods and the best result was sent to the next step. Second, a spontaneous nanoemulsification was performed using organic phase (ethanol 70%, and water phase (Tween 80 solution at 1, 2 and 3% w/w to produce the best nanoemulsion. Finally, the best nanoemulsion based on size, homogeneity, and stability of the particles, was encapsulated using two different encapsulating material compositions, i.e. maltodextrin (100% and a combination of maltodextrin and soy protein isolate at a ratio of 80 : 20 (w/w. The results showed that the three-hour reflux method produced better black cumin extract properties than that of maceration. Use of 3% surfactant gave a stable nanoemulsion with average droplet size of 10.93 nm. Reconstitution of the encapsulated nanoemulsion resulted in products with more spherical globules, indicating an efficient encapsulation process. The combination of of maltodextrin and soy protein isolate provided a better preservation of phenolic content and antioxidant capacity as compared to the use of maltodextrin alone.

  13. Preparation and characterization of PLGA nanospheres encapsulated with Autoclaved Leishmania Major (ALM) and Quillaja Saponin

    International Nuclear Information System (INIS)

    Tafaghodi, M.; Tabasi, S. Abolghasem Sajadi; Kharazizdeh, M.

    2008-01-01

    Several antigens, adjuvants and delivery systems have been evaluated for induction of protective immune responses against leishmaniasis, but have mostly been inefficient. In this study, poly (d,1-lactide-co-glycolide) (PLGA) nanospheres as antigen delivery system and Quillaja saponins (QS) as an immunoadjuvant have been used to increase the immune responses against Autoclaved Lieshmania major (ALM). PLGA nanospheres were prepared using a double emulsion (W/O/W) technique. The internal aqueous phase contained ALM and saponin, while the oily phase contained the solution of PLGA in dichloromethane and the external aqueous phase was polyvinylacohol (PVA) 7.5% (W/V) solution. Particulate characteristics were studied by scanning electron microscope and particle size analyzer. The encapsulation efficiency was determined by Lowry method and the release profile of antigen and saponin from nanospheres was evaluated for one week. Nanospheres were spherical in shape having smooth surfaces. Mean diameters for nanospheres loaded with ALM and ALM+QS were 300+-123 nm and 294+-106 nm respectively. Encapsulation efficiencies for ALM and QS were found 71+-14.8% and 55.8+- 23.1% respectively. Evaluation of the release profiles of ALM and QS from nanospheres in one week showed that 44.8 +-0.8% of ALM and 29.5+- 0.21% of QS had been released from naospheres. In conclusion, the prepared nanospheres with desirable size, encapsulation efficiency, and slow rate of release, had acceptable features for future in vivo studies. (author)

  14. Characteristics and oxidative stability of bread fortified with encapsulated shrimp oil

    Directory of Open Access Journals (Sweden)

    Sirima Takeungwongtrakul

    2015-12-01

    Full Text Available Characteristics and oxidative stability of bread fortified with micro-encapsulated shrimp oil (MSO were determined. The addition of MSO could improve the loaf volume of bread. Chewiness,gumminess and resilience of resulting bread were decreased. Bread crust and crumb showed higher redness and yellowness when MSO was incorporated (P<0.05. Microstructure study revealed that MSO remained intact with bread crumbs. The addition of MSO up to 3% had no adverse effect on bread quality and sensory acceptability. Oxidation took place in bread fortified with 5%MSO to a higher extent, compared with those with 1 or 3% MSO. Therefore, the bread could be fortified with MSO up to 3%.

  15. Design and Fabrication of Radiation Shielded Micro X-Ray Diffraction System

    International Nuclear Information System (INIS)

    Park, Yang Soon; Han, Sun Ho; Ha, Kyeong Yeong; Jee, Kwang Yong

    2006-12-01

    It has been observed that microstructure changes occur at the radial edge of pellet(rim) of the fuel at a high burn-up and extended fuel cycle. The thickness of a rim is some hundreds of micrometers. Despite its narrow range, a rim would affect the behaviour of nuclear fuel. To determine lattice parameter with micro-XRD at intervals as small as 30 - 50 μm in radial direction of irradiated fuel samples, a radiation shielded micro-XRD system was designed and fabricated. This report describes the concept, shielding analysis, the structural design and the fabrication of a radiation shielded glove box for micro-XRD system. This radiation shielded micro-XRD system will be used for analysis of lattice parameter change and the phase distribution at intervals as small as 30 - 50 μm in radial direction of the rim of an irradiated fuel sample and a fuel cladding

  16. Design and Fabrication of Radiation Shielded Micro X-Ray Diffraction System

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yang Soon; Han, Sun Ho; Ha, Kyeong Yeong; Jee, Kwang Yong

    2006-12-15

    It has been observed that microstructure changes occur at the radial edge of pellet(rim) of the fuel at a high burn-up and extended fuel cycle. The thickness of a rim is some hundreds of micrometers. Despite its narrow range, a rim would affect the behaviour of nuclear fuel. To determine lattice parameter with micro-XRD at intervals as small as 30 - 50 {mu}m in radial direction of irradiated fuel samples, a radiation shielded micro-XRD system was designed and fabricated. This report describes the concept, shielding analysis, the structural design and the fabrication of a radiation shielded glove box for micro-XRD system. This radiation shielded micro-XRD system will be used for analysis of lattice parameter change and the phase distribution at intervals as small as 30 - 50 {mu}m in radial direction of the rim of an irradiated fuel sample and a fuel cladding.

  17. Phase characteristics of rheograms. Original classification of phase-related changes of rheos

    Directory of Open Access Journals (Sweden)

    Mikhail Y. Rudenko

    2014-05-01

    Full Text Available The phase characteristics of a rheogram are described in literature in general only. The existing theory of impedance rheography is based on an analysis of the form of rheogram envelopes, but not on the phase-related processes and their interpretation according to the applicable laws of physics. The aim of the present paper is to describe the phase-related characteristics of a rheogram of the ascending aorta. The method of the heart cycle phase analysis has been used for this purpose. By synchronizing an ECG of the aorta and a rheogram, an analysis of specific changes in the aorta blood filling in each phase is provided. As a result, the phase changes of a rheogram associated with the ECG phase structure are described and tabulated for first time. The author hereof offers his own original classification of the phase-related changes of rheograms.

  18. The inhibitory effect of disulfiram encapsulated PLGA NPs on tumor growth: Different administration routes.

    Science.gov (United States)

    Fasehee, Hamidreza; Zarrinrad, Ghazaleh; Tavangar, Seyed Mohammad; Ghaffari, Seyed Hamidollah; Faghihi, Shahab

    2016-06-01

    The strong anticancer activity of disulfiram is hindered by its rapid degradation in blood system. A novel folate-receptor-targeted poly (lactide-co-glycolide) (PLGA)-polyethylene glycol (PEG) nanoparticle (NP) is developed for encapsulation and delivery of disulfiram into breast cancer tumor using passive (EPR effect) and active (folate receptor) targeting. The anticancer activity of disulfiram and its effect on caspase-3 activity and cell cycle are studied. The administration of encapsulated PLGA NPs using intra-peritoneal, intravenous and intra-tumor routes is investigated using animal model. Disulfiram shows strong cytotoxicity against MCF7 cell line. The activity of caspase-3 inhibited with disulfiram via dose dependent manner while the drug causes cell cycle arrest in G0/G1 and S phase time-dependently. The encapsulated disulfiram shows higher activity in apoptosis induction as compared to free drug. In nontoxic dose of encapsulated disulfiram, the highest and lowest efficacy of NPs in tumor growth inhibition is observed for intravenous injection and intraperitoneal injection. It is suggested that administration of disulfiram by targeted PLGA nanoparticles using intravenous injection would present an alternative therapeutic approach for solid tumor treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Nitrogen-doped Sb-rich Si–Sb–Te phase-change material for high-performance phase-change memory

    International Nuclear Information System (INIS)

    Zhou, Xilin; Wu, Liangcai; Song, Zhitang; Cheng, Yan; Rao, Feng; Ren, Kun; Song, Sannian; Liu, Bo; Feng, Songlin

    2013-01-01

    The effects of nitrogen doping on the phase-change performance of Sb-rich Si–Sb–Te materials are systemically investigated, focusing on the chemical state and the role of nitrogen upon crystallization. The tendency of N atoms to bond with Si (SiN x ) in the crystalline film is analyzed by X-ray photoelectron spectroscopy. The microstructures of the materials mixed with Sb 2 Te crystal grains and amorphous Si/SiN x regions are elucidated via in situ transmission electron microscopy, from which a percolation behavior is demonstrated to possibly describe the random crystallization feature in the nucleation-dominated nanocomposite material. The phase-change memory cells based on N-doped Sb-rich Si–Sb–Te materials display more stable and reliable electrical performance than the nitrogen-free ones. An endurance characteristic in the magnitude of 10 7 cycles of the phase-change memory cells is realized with moderate nitrogen addition, meaning that the nitrogen incorporation into Si–Sb–Te material is a suitable method to achieve high-performance phase-change memory for commercial applications

  20. Polypyrrole-magnetite dispersive micro-solid-phase extraction combined with ultraviolet-visible spectrophotometry for the determination of rhodamine 6G and crystal violet in textile wastewater.

    Science.gov (United States)

    Kamaruddin, Amirah Farhan; Sanagi, Mohd Marsin; Wan Ibrahim, Wan Aini; Md Shukri, Dyia S; Abdul Keyon, Aemi S

    2017-11-01

    Polypyrrole-magnetite dispersive micro-solid-phase extraction method combined with ultraviolet-visible spectrophotometry was developed for the determination of selected cationic dyes in textile wastewater. Polypyrrole-magnetite was used as adsorbent due to its thermal stability, magnetic properties, and ability to adsorb Rhodamine 6G and crystal violet. Dispersive micro-solid-phase extraction parameters were optimized, including sample pH, adsorbent amount, extraction time, and desorption solvent. The optimum polypyrrole-magnetite dispersive micro-solid phase-extraction conditions were sample pH 8, 60 mg polypyrrole-magnetite adsorbent, 5 min of extraction time, and acetonitrile as the desorption solvent. Under the optimized conditions, the polypyrrole-magnetite dispersive micro-solid-phase extraction with ultraviolet-visible method showed good linearity in the range of 0.05-7 mg/L (R 2  > 0.9980). The method also showed a good limit of detection for the dyes (0.05 mg/L) and good analyte recoveries (97.4-111.3%) with relative standard deviations extraction and determination of dyes at trace concentration levels. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Photopolymerizable liquid encapsulants for microelectronic devices

    Science.gov (United States)

    Baikerikar, Kiran K.

    2000-10-01

    Plastic encapsulated microelectronic devices consist of a silicon chip that is physically attached to a leadframe, electrically interconnected to input-output leads, and molded in a plastic that is in direct contact with the chip, leadframe, and interconnects. The plastic is often referred to as the molding compound, and is used to protect the chip from adverse mechanical, thermal, chemical, and electrical environments. Encapsulation of microelectronic devices is typically accomplished using a transfer molding process in which the molding compound is cured by heat. Most transfer molding processes suffer from significant problems arising from the high operating temperatures and pressures required to fill the mold. These aspects of the current process can lead to thermal stresses, incomplete mold filling, and wire sweep. In this research, a new strategy for encapsulating microelectronic devices using photopolymerizable liquid encapsulants (PLEs) has been investigated. The PLEs consist of an epoxy novolac-based vinyl ester resin (˜25 wt.%), fused silica filler (70--74 wt.%), and a photoinitiator, thermal initiator, and silane coupling agent. For these encapsulants, the use of light, rather than heat, to initiate the polymerization allows precise control over when the reaction starts, and therefore completely decouples the mold filling and the cure. The low viscosity of the PLEs allows for low operating pressures and minimizes problems associated with wire sweep. In addition, the in-mold cure time for the PLEs is equivalent to the in-mold cure times of current transfer molding compounds. In this thesis, the thermal and mechanical properties, as well as the viscosity and adhesion of photopolymerizable liquid encapsulants, are reported in order to demonstrate that a UV-curable formulation can have the material properties necessary for microelectronic encapsulation. In addition, the effects of the illumination time, postcure time, fused silica loading, and the inclusion

  2. Single-phase heat transfer enhancement in micro/minichannels using nanofluids: Theory and applications

    International Nuclear Information System (INIS)

    Hussien, Ahmed A.; Abdullah, Mohd Z.; Al-Nimr, Moh’d A.

    2016-01-01

    Highlights: • Review recent experimental and numerical studies on heat transfer in micro/minichannels and nanofluids. • Display the new applications of using nanofluids and micro/minichannels to enhance thermal performance. • Explain the factors affecting the thermal conductivity enhancement ratio of nanofluids. • The challenges of using the mini/microchannels and nanofluids. - Abstract: New cooling techniques are being explored for the dissipation of heat fluxes. Many recent studies on heat transfer in micro/minichannels (M/MCs) with nanofluids have focused on combining the advantages of both, for the purpose of obtaining higher single-phase enhancement of heat transfer. Developing of many applications such as cooling electronic device, solar cell, and automotive technology is highly demanded now a day to obtain high efficiency and reduce the operating cost. This review article summarizes recent studies, with a focus on two main topics: The first part contains the main concepts such as scaling effects of M/MCs, physical properties and convective heat transfer. The second part displays the main recent applications of M/MCs with nanofluids with the challenges to be widely used. The purpose of this article to provide exhaustive and comprehensive review of updated works published in this new area, with general conclusions.

  3. Structure-property relationships in flavour-barrier membranes with reduced high-temperature diffusivity

    International Nuclear Information System (INIS)

    Heitfeld, Kevin A.; Schaefer, Dale W.

    2009-01-01

    Encapsulation is used to decrease the premature release of volatile flavour ingredients while offering protection against environmental damage such as oxidation, light-induced reactions, etc. Hydroxypropyl cellulose (HPC) is investigated here as a 'smart,' temperature responsive membrane for flavour encapsulation and delivery. Gel films were synthesized and characterized by diffusion and small-angle neutron and X-ray scattering techniques. Increasing temperature typically increases the diffusion rate across a membrane; HPC, however, can be tailored to give substantially improved elevated temperature properties. Scattering results indicate processing conditions have a significant impact on membrane morphology (micro phase separation). Under certain synthetic conditions, micro phase separation is mitigated and the membranes show temperature-independent diffusivity between 25 C and 60 C.

  4. Poly(lactide-co-glycolide) encapsulated hydroxyapatite microspheres for sustained release of doxycycline

    International Nuclear Information System (INIS)

    Wang Xiaoyun; Xu Hui; Zhao Yanqiu; Wang Shaoning; Abe, Hiroya; Naito, Makio; Liu Yanli; Wang Guoqing

    2012-01-01

    Highlights: ► PLGA encapsulated HAP-MSs were used for the sustained delivery of Doxycycline (Doxy, a broad spectrum tetracycline antibiotic). ► Sustained Doxy release without obvious burst was observed. ► Mechanism of the sustained Doxy release was illustrated. ► Sustained Doxy release character in vivo was also obtained, the plasma Doxy levels were relatively lower and steady compared to that of the un-encapsulated HAP-MSs. - Abstract: The purpose of this study was to prepare a poly(lactide-co-glycolide) (PLGA) encapsulated hydroxyapatite microspheres (HAP-MSs) as injectable depot for sustained delivery of Doxycycline (Doxy). Doxy loaded HAP-MSs (Doxy-HAP-MSs) were encapsulated with PLGA by solid-in-oil-in-water (S/O/W) emulsion-solvent evaporation technique, the effects of the PLGA used (various intrinsic viscosity and LA/GA ratio) and ratio of PLGA/HAP-MSs on the formation of Doxy-HAP-MSs and in vitro release of Doxy were studied. The results showed that sustained drug release without obvious burst was obtained by using PLGA encapsulated HAP-MSs as the carrier, also the drug release rate could be tailored by changing the ratio of PLGA/HAP-MSs, or PLGA of various intrinsic viscosities or LA/GA ratio. Lower ratio of PLGA/HAP-MSs corresponded faster Doxy release, e.g. for the microspheres of PLGA/HAP-MSs ratio of 8 and 0.25, the in vitro Doxy release percents at the end of 7days were about 23% and 76%, respectively. Higher hydrophilicity (higher ratio of GA to LA) and lower molecular weight of PLGA corresponded to higher Doxy release rates. For in vivo release study, PLGA encapsulated HAP-MSs were subcutaneously injected to the back of mice, and the results showed good correlation between the in vivo and in vitro drug release. Meanwhile, the plasma Doxy levels after subcutaneous administration of PLGA encapsulated Doxy-HAP-MSs were relatively lower and steady compared to that of the un-encapsulated microspheres. In conclusion, PLGA encapsulated HAP-MSs may

  5. Hybrid chip-on-board LED module with patterned encapsulation

    Science.gov (United States)

    Soer, Wouter Anthon; Helbing, Rene; Huang, Guan

    2018-02-27

    Different wavelength conversion materials, or different concentrations of a wavelength conversion material are used to encapsulate the light emitting elements of different colors of a hybrid light emitting module. In an embodiment of this invention, second light emitting elements (170) of a particular color are encapsulated with a transparent second encapsulant (120;420;520), while first light emitting elements (160) of a different color are encapsulated with a wavelength conversion first encapsulant (110;410;510). In another embodiment of this invention, a particular second set of second and third light emitting elements (170,580) of different colors is encapsulated with a different encapsulant than another first set of first light emitting elements (160).

  6. Crystal growth within a phase change memory cell.

    Science.gov (United States)

    Sebastian, Abu; Le Gallo, Manuel; Krebs, Daniel

    2014-07-07

    In spite of the prominent role played by phase change materials in information technology, a detailed understanding of the central property of such materials, namely the phase change mechanism, is still lacking mostly because of difficulties associated with experimental measurements. Here, we measure the crystal growth velocity of a phase change material at both the nanometre length and the nanosecond timescale using phase-change memory cells. The material is studied in the technologically relevant melt-quenched phase and directly in the environment in which the phase change material is going to be used in the application. We present a consistent description of the temperature dependence of the crystal growth velocity in the glass and the super-cooled liquid up to the melting temperature.

  7. Development of bifunctional microencapsulated phase change materials with crystalline titanium dioxide shell for latent-heat storage and photocatalytic effectiveness

    International Nuclear Information System (INIS)

    Chai, Luxiao; Wang, Xiaodong; Wu, Dezhen

    2015-01-01

    Highlights: • We designed and synthesized a sort of bifunctional PCMs-based microcapsules. • These microcapsules have an n-eicosane core and a crystalline TiO 2 shell. • Such a crystalline TiO 2 shell exhibited a good photocatalytic activity. • The microcapsules showed good performance in energy storage and sterilization. - Abstract: A sort of novel bifunctional microencapsulated phase change material (PCM) was designed by encapsulating n-eicosane into a crystalline titanium dioxide (TiO 2 ) shell and, then, was successfully synthesized through in-situ polycondensation in the sol–gel process using tetrabutyl titanate as a titania precursor. The resultant microcapsule samples were characterized by Fourier-transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy to determine their chemical compositions and structures. Furthermore, the crystallinity of the TiO 2 shell was verified by powder X-ray diffraction patterns. It was confirmed that the fluorinions could induce the phase transition from the amorphous TiO 2 to the brookite-form crystals during the sol–gel process, thus resulting in a crystalline TiO 2 shell for the microencapsulated n-eicosane. The scanning and transmission electron microscopy investigations indicated that all of the resultant microcapsules presented a perfect spherical shape with a uniform particle size of 1.5–2 μm, and they also exhibited a well-defined core–shell structure as well as a smooth and compact shell. The crystalline TiO 2 shell made the resultant microcapsules a photocatalytic activity, and therefore, these microcapsules demonstrated a good photocatalytic effect for the chemical degradation and an antimicrobial function for some of the Gram-negative bacteria. Most of all, all of the microencapsulated n-eicosane samples indicated good phase-change performance and high thermal reliability for latent-heat storage and release, and moreover, they achieved a high

  8. Microencapsulation of metal-based phase change material for high-temperature thermal energy storage.

    Science.gov (United States)

    Nomura, Takahiro; Zhu, Chunyu; Sheng, Nan; Saito, Genki; Akiyama, Tomohiro

    2015-03-13

    Latent heat storage using alloys as phase change materials (PCMs) is an attractive option for high-temperature thermal energy storage. Encapsulation of these PCMs is essential for their successful use. However, so far, technology for producing microencapsulated PCMs (MEPCMs) that can be used above 500°C has not been established. Therefore, in this study, we developed Al-Si alloy microsphere MEPCMs covered by α-Al2O3 shells. The MEPCM was prepared in two steps: (1) the formation of an AlOOH shell on the PCM particles using a boehmite treatment, and (2) heat-oxidation treatment in an O2 atmosphere to form a stable α-Al2O3 shell. The MEPCM presented a melting point of 573°C and latent heat of 247 J g(-1). The cycling performance showed good durability. These results indicated the possibility of using MEPCM at high temperatures. The MEPCM developed in this study has great promise in future energy and chemical processes, such as exergy recuperation and process intensification.

  9. Acoustically excited encapsulated microbubbles and mitigation of biofouling

    KAUST Repository

    Qamar, Adnan

    2017-08-31

    Provided herein is a universally applicable biofouling mitigation technology using acoustically excited encapsulated microbubbles that disrupt biofilm or biofilm formation. For example, a method of reducing biofilm formation or removing biofilm in a membrane filtration system is provided in which a feed solution comprising encapsulated microbubbles is provided to the membrane under conditions that allow the encapsulated microbubbles to embed in a biofilm. Sonication of the embedded, encapsulated microbubbles disrupts the biofilm. Thus, provided herein is a membrane filtration system for performing the methods and encapsulated microbubbles specifically selected for binding to extracellular polymeric substances (EFS) in a biofilm.

  10. An improved excitation control technique of three-phase induction machine operating as dual winding generator for micro-wind domestic application

    International Nuclear Information System (INIS)

    Chatterjee, Arunava; Chatterjee, Debashis

    2015-01-01

    Highlights: • A three-phase induction machine working as single phase generator is studied. • The generator is assisted by an inverter and photovoltaic panel for excitation. • Proposed control involves operating the machine as balanced two-phase generator. • Torque pulsations associated with unbalanced phase currents are minimized. • The generator can be used for grid-isolated micro-wind power generation. - Abstract: Single-phase generation schemes are widely utilized for harnessing wind power in remote and grid secluded applications. This paper presents a novel control methodology for a three-phase induction machine working as a single-phase dual winding induction generator. Three-phase induction machines providing single-phase output with proper control strategy can be beneficial in grid secluded micro-wind energy conversion systems compared to single-phase induction generators. Three-phase induction machines operating in single-phase mode are mostly excited asymmetrically to provide single-phase power leading to unbalanced current flow in the stator windings causing heating and insulation breakdown. The asymmetrical excitation also initiates torque pulsations which results in additional stress and vibration at the machine shaft and bearings degrading the machine performance. The proposed control is chiefly aimed to minimize this unbalance. The variable excitation required for the proposed generator is provided through a single-phase inverter with photovoltaic panels. The suitability for such a generator along with its control is tested with appropriate simulations and experimental results. The induction generator with the proposed control strategy is expected to be useful in remote and grid isolated households as a standalone source of single-phase electrical power

  11. Thin film Encapsulations of Flexible Organic Light Emitting Diodes

    Directory of Open Access Journals (Sweden)

    Tsai Fa-Ta

    2016-01-01

    Full Text Available Various encapsulated films for flexible organic light emitting diodes (OLEDs were studied in this work, where gas barrier layers including inorganic Al2O3 thin films prepared by atomic layer deposition, organic Parylene C thin films prepared by chemical vapor deposition, and their combination were considered. The transmittance and water vapor transmission rate of the various organic and inorgabic encapsulated films were tested. The effects of the encapsulated films on the luminance and current density of the OLEDs were discussed, and the life time experiments of the OLEDs with these encapsulated films were also conducted. The results showed that the transmittance are acceptable even the PET substrate were coated two Al2O3 and Parylene C layers. The results also indicated the WVTR of the PET substrate improved by coating the barrier layers. In the encapsulation performance, it indicates the OLED with Al2O3 /PET, 1 pair/PET, and 2 pairs/PET presents similarly higher luminance than the other two cases. Although the 1 pair/PET encapsulation behaves a litter better luminance than the 2 pairs/PET encapsulation, the 2 pairs/PET encapsulation has much better life time. The OLED with 2 pairs/PET encapsulation behaves near double life time to the 1 pair encapsulation, and four times to none encapsulation.

  12. Perspective of metal encapsulation of waste

    International Nuclear Information System (INIS)

    Jardine, L.J.; Steindler, M.J.

    1978-01-01

    A conceptual flow sheet is presented for encapsulating solid, stabilized calcine (e.g., supercalcine) in a solid lead alloy, using existing or developing technologies. Unresolved and potential problem areas of the flow sheet are outlined and suggestions are made as how metal encapsulation might be applied to other solid wastes from the fuel cycle. It is concluded that metal encapsulation is a technique applicable to many forms of solid wastes and is likely to meet future waste isolation criteria and regulations

  13. Preparation, thermal properties and thermal reliabilities of microencapsulated n-octadecane with acrylic-based polymer shells for thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Xiaolin [Advanced Materials Institute and Clearer Production Key Laboratory, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Key Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Haidian District, Beijing 100084 (China); Song, Guolin; Chu, Xiaodong; Li, Xuezhu [Advanced Materials Institute and Clearer Production Key Laboratory, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Tang, Guoyi, E-mail: tanggy@tsinghua.edu.cn [Advanced Materials Institute and Clearer Production Key Laboratory, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Key Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Haidian District, Beijing 100084 (China)

    2013-01-10

    Highlights: Black-Right-Pointing-Pointer n-Octadecane was encapsulated by p(butyl methacrylate) (PBMA) and p(butyl acrylate). Black-Right-Pointing-Pointer Microcapsules using divinylbenzene as crosslinking agent have better quality. Black-Right-Pointing-Pointer Microcapsule with butyl methacrylate-divinylbenzene has highest latent heat. Black-Right-Pointing-Pointer Microcapsule with butyl methacrylate-divinylbenzene has greatest thermal stability. Black-Right-Pointing-Pointer Phase change temperatures and enthalpies of the microcapsules varied little after thermal cycle. - Abstract: Microencapsulation of n-octadecane with crosslinked p(butyl methacrylate) (PBMA) and p(butyl acrylate) (PBA) as shells for thermal energy storage was carried out by a suspension-like polymerization. Divinylbenzene (DVB) and pentaerythritol triacrylate (PETA) were employed as crosslinking agents. The surface morphologies of the microencapsulated phase change materials (microPCMs) were studied by scanning electron microscopy (SEM). Thermal properties, thermal reliabilities and thermal stabilities of the as-prepared microPCMs were investigated by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). The microPCMs prepared by using DVB exhibit greater heat capacities and higher thermal stabilities compared with those prepared by using PETA. The thermal resistant temperature of the microPCM with BMA-DVB polymer was up to 248 Degree-Sign C. The phase change temperatures and latent heats of all the as-prepared microcapsules varied little after 1000 thermal cycles.

  14. THE EFFECT OF IRRADIATION ON ENAMEL MICRO-STRUCTURE CHANGES

    Directory of Open Access Journals (Sweden)

    Harun Gunawan

    2015-06-01

    Full Text Available Radiotherapy plays an important role in the management of head and neck carcinoma therapy. The radiation dose ranges from 40 – 70 Gy, depends on the severity and location of the malignancy. Many patients experience an increased dental caries or sensitivity occurrence following radiotherapy. The objective of this study is to analyze the enamel micro-structure changes after irradiation. Nine polished enamel slabs were prepared from impacted 3rd molars. The slabs were flushed in non-ionic distilled water and dried by using air spray and divided into 3 groups, the control, 20 Gy and 40 Gy irradiation group. Irradiations were performed from Co60 using Gammacell-220E, with duration variables to produce the irradiation doses of 20 and 40 Gy. Philips pW370-XRD was used to examine specimen microstructure changes after irradiation. 1-way ANOVA was used for statistics analysis. It was revealed that grain size after 40 Gy irradiation was 66.29±2.7 nm, and after 20 Gy was 51.64±15.8 whilst 43.95±11.1 nm for the control group. The micro-stain deviation of the 40 Gy group was 0.594±0.15 N/m, and 0.45±2.6 N/m for the 20 Gy group, and 0.378±0.27 N/m for control group. Statistic analysis showed significant grain size differences between 40 Gy compared to both 20 Gy and control groups, but not between 20 Gy compared to the control group. Similarly, there were micro-stain differences between 40 Gy compared to 20 Gy and control groups, but not between 20 Gy compared to control group. It was concluded that irradiation with 40 Gy caused elevation of the enamel microstrain and apaite grainsize. Elevation of the enamel microstrain could lead to enamel crack and gave hypersensitive sensation.

  15. Development, testing, and demonstration of geotechnical and cement-based encapsulant materials for the stabilization of radioactive and hazardous waste disposal structures

    International Nuclear Information System (INIS)

    Phillips, S.J.; Cammann, J.W.; Benny, H.L.; Serne, R.J.; Martin, P.F.; Ames, L.L.

    1991-09-01

    A zeolite fluidized-bed treatment system is being developed and tested for the treatment of radioactive and hazardous waste-contaminated subsurface disposal structures. Formulations of cement, fly ash, and slag slurries and sequestering agents also are being tested and evaluated. Leach resistance of radionuclides, heavy metals, and hazardous inorganic compounds in the solidified cement-based encapsulant has been determined. These results simulate the resistance to water leaching of the solidified product after it has been injected an open and interstitial void volume in and proximal to liquid waste disposal structures. Micro- and macro-encapsulation of contaminants within and geologic media surrounding subsurface disposal structures is being demonstrated as an alternative technology for waste site remediation. 5 refs., 1 fig., 1 tab

  16. Waste encapsulation storage facility (WESF) standards/requirements identification document (S/RIDS)

    Energy Technology Data Exchange (ETDEWEB)

    Maddox, B.S., Westinghouse Hanford

    1996-07-29

    This Standards/Requirements Identification Document (S/RID) sets forth the Environmental Safety and Health (ES{ampersand}H) standards/requirements for the Waste Encapsulation Storage Facility (WESF). This S/RID is applicable to the appropriate life cycle phases of design, construction, operation, and preparation for decommissioning. These standards/requirements are adequate to ensure the protection of the health and safety of workers, the public, and the environment.

  17. Experimental study on the thermal performance of a new type of thermal energy storage based on flat micro-heat pipe array

    International Nuclear Information System (INIS)

    Li, Feng-fei; Diao, Yan-hua; Zhao, Yao-hua; Zhu, Ting-ting; Liu, Jing

    2016-01-01

    Highlights: • A novel thermal energy storage based on flat micro-heat pipe array is proposed. • The thermal storage shows excellent thermal performance in the working process. • The novel thermal storage has the advantage of low flow resistance. - Abstract: The thermal performance of an air-based phase change storage unit is analyzed and discussed in this study. The thermal energy storage uses flat micro-heat pipe array (FMHPA) as the core heat transfer component and lauric acid as phase change material (PCM). An experimental system is devised to test the heat storage–release property of the storage unit under different inlet temperatures and flow rates of the heat transfer medium. The performance of the storage unit and the melting/solidification curves of the phase change material are obtained based on extensive experimental data. Experimental results indicate that the flat micro-heat pipe array exhibits excellent temperature uniformity in the heat storage–release process, and the performance of the storage unit is efficient and steady.

  18. Sonochemically born proteinaceous micro- and nanocapsules.

    Science.gov (United States)

    Vassileva, Elena D; Koseva, Neli S

    2010-01-01

    The use of proteins as a substrate in the fabrication of micro- and nanoparticulate systems has attracted the interest of scientists, manufactures, and consumers. Albumin-derived particles were commercialized as contrast agents or anticancer therapeutics. Food proteins are widely used in formulated dietary products. The potential benefits of proteinaceous micro- and nanoparticles in a wide range of biomedical applications are indisputable. Protein-based particles are highly biocompatible and biodegradable structures that can impart bioadhesive properties or mediate particle uptake by specific interactions with the target cells. Currently, protein microparticles are engineered as vehicles for covalent attachment and/or encapsulation of bioactive compounds, contrast agents for magnetic resonance imaging, thermometric and oximetric imaging, sonography and optical coherence tomography, etc. Ultrasound irradiation is a versatile technique which is widely used in many and different fields as biology, biochemistry, dentistry, geography, geology, medicine, etc. It is generally recognized as an environmental friendly, cost-effective method which is easy to be scaled up. Currently, it is mainly applied for homogenization, drilling, cleaning, etc. in industry, as well for noninvasive scanning of the human body, treatment of muscle strains, dissolution of blood clots, and cancer therapy. Proteinaceous micro- and nanocapsules could be easily produced in a one-step process by applying ultrasound to an aqueous protein solution. The origin of this process is in the chemical changes, for example, sulfhydryl groups oxidation, that takes place as a result of acoustically generated cavitation. Partial denaturation of the protein most probably occurs which makes the hydrophobic interactions dominant and also responsible for the formation of stable capsules. This chapter aims to present the current state-of-the-art in the field of sonochemically produced protein micro- and nanocapsules

  19. Product evaluation phase 1 report

    International Nuclear Information System (INIS)

    Kearsey, H.A.; Page, R.J.

    1984-01-01

    This report concerns the intermediate-level radioactive waste arisings from the reprocessing of irradiated nuclear fuel at BNFL Sellafield. The graphite waste arises from the reprocessing of CAGR fuel assemblies. Headings are: introduction (origin of waste; future arisings); waste characterisation; initial evaluation of encapsulation options - evaluation of potential matrices for encapsulation of waste in form suitable for disposal; waste simulation; relevance to other phase II studies. (UK)

  20. New method for fabrication of loaded micro- and nanocontainers: emulsion encapsulation by polyelectrolyte layer-by-layer deposition on the liquid core.

    Science.gov (United States)

    Grigoriev, D O; Bukreeva, T; Möhwald, H; Shchukin, D G

    2008-02-05

    A novel approach to the emulsion encapsulation was developed by combining the advantages of direct encapsulation of a liquid colloidal core with the accuracy and multifunctionality of layer-by-layer polyelectrolyte deposition. Experimental data obtained for the model oil-in-water emulsion confirm unambiguously the alternating PE assembly in the capsule shell as well as the maintenance of the liquid colloidal core. Two different mechanisms of capsule destruction upon interaction with the solid substrate were observed and qualitatively explained. The proposed method can be easily generalized to the preparation of oil-filled capsules in various oil/water/polyelectrolyte systems important in the field of pharmacy, medicine, and food industry.

  1. Formation, Phase, and Elemental Composition of Micro- and Nano-Dimensional Particles of the Fe-Ti System

    Science.gov (United States)

    Dresvyannikov, A. F.; Kolpakov, M. E.

    2018-05-01

    X-ray fluorescence, X-ray phase analysis, and transmission Mössbauer and NGR spectrometry are used to study the formation, phase, and elemental composition of Fe-Ti particles. The interaction between Fe(III) ions and dispersed titanium in an aqueous solution containing chloride ions and HF is studied. It is shown that the resulting Fe-Ti samples are a set of core-shell microparticles with titanium cores coated with micro- and nanosized α-Fe nucleation centers with the thinness outer layer of iron(III) oxide characterized by a developed surface.

  2. Bioactive Encapsulation for Military Food Applications: Request for Enhanced Nano and Micro Particle Fabrication and Characterization Facilities

    Science.gov (United States)

    2016-01-25

    light exposure, while also enhancing the bioaccessibility of the microen- capsulated nutraceutical after they are dispersed in foods and beverages ...2013 21-Jul-2014 Approved for Public Release; Distribution Unlimited Final Report: Bioactive Encapsulation for Military Food Applications: Request for...information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. University of Massachusetts

  3. Aging mechanisms in amorphous phase-change materials.

    Science.gov (United States)

    Raty, Jean Yves; Zhang, Wei; Luckas, Jennifer; Chen, Chao; Mazzarello, Riccardo; Bichara, Christophe; Wuttig, Matthias

    2015-06-24

    Aging is a ubiquitous phenomenon in glasses. In the case of phase-change materials, it leads to a drift in the electrical resistance, which hinders the development of ultrahigh density storage devices. Here we elucidate the aging process in amorphous GeTe, a prototypical phase-change material, by advanced numerical simulations, photothermal deflection spectroscopy and impedance spectroscopy experiments. We show that aging is accompanied by a progressive change of the local chemical order towards the crystalline one. Yet, the glass evolves towards a covalent amorphous network with increasing Peierls distortion, whose structural and electronic properties drift away from those of the resonantly bonded crystal. This behaviour sets phase-change materials apart from conventional glass-forming systems, which display the same local structure and bonding in both phases.

  4. Spectroscopic and electrochemical characterization of cytochrome c encapsulated in a bio sol-gel matrix.

    Science.gov (United States)

    Deriu, Daniela; Pagnotta, Sara Emanuela; Santucci, Roberto; Rosato, Nicola

    2008-08-01

    Sol-gel technique represents a remarkably versatile method for protein encapsulation. To enhance sol-gel biocompatibility, systems envisaging the presence of calcium and phosphates in the sol-gel composition were recently prepared and investigated. Unfortunately, the low pH at which solutions were prepared (pH proteins, because the acidic environment induces protein denaturation. In this paper we apply a new protocol based on the introduction of calcium nitrate to the inorganic phase, with formation of a binary bioactive system. In this case protein encapsulation results versatile and secure, being achieved at a pH close to neutrality (pH 6.0); also, the presence of calcium is expected to enhance system biocompatibility. To determine the properties of the salt-doped sol-gel and the influence exerted on entrapped biosystems, the structural and functional properties of embedded cytochrome c have been investigated. Data obtained indicate that the salt-doped sol-gel induces no significant change in the structure and the redox properties of the embedded protein; also, the matrix increases protein stability. Interestingly, the presence of calcium nitrate appears determinant for refolding of the acid-denatured protein. This is of interest in the perspective of future applications in biosensoristic area.

  5. PLA micro- and nano-particles.

    Science.gov (United States)

    Lee, Byung Kook; Yun, Yeonhee; Park, Kinam

    2016-12-15

    Poly(d,l-lactic acid) (PLA) has been widely used for various biomedical applications for its biodegradable, biocompatible, and nontoxic properties. Various methods, such as emulsion, salting out, and precipitation, have been used to make better PLA micro- and nano-particle formulations. They are widely used as controlled drug delivery systems of therapeutic molecules, including proteins, genes, vaccines, and anticancer drugs. Even though PLA-based particles have challenges to overcome, such as low drug loading capacity, low encapsulation efficiency, and terminal sterilization, continuous innovations in particulate formulations will lead to development of clinically useful formulations. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Encapsulation Efficiency, Oscillatory Rheometry

    Directory of Open Access Journals (Sweden)

    Z. Mohammad Hassani

    2014-01-01

    Full Text Available Nanoliposomes are one of the most important polar lipid-based nanocarriers which can be used for encapsulation of both hydrophilic and hydrophobic active compounds. In this research, nanoliposomes based on lecithin-polyethylene glycol-gamma oryzanol were prepared by using a modified thermal method. Only one melting peak in DSC curve of gamma oryzanol bearing liposomes was observed which could be attributed to co-crystallization of both compounds. The addition of gamma oryzanol, caused to reduce the melting point of 5% (w/v lecithin-based liposome from 207°C to 163.2°C. At high level of lecithin, increasing of liposome particle size (storage at 4°C for two months was more obvious and particle size increased from 61 and 113 to 283 and 384 nanometers, respectively. The encapsulation efficiency of gamma oryzanol increased from 60% to 84.3% with increasing lecithin content. The encapsulation stability of oryzanol in liposome was determined at different concentrations of lecithin 3, 5, 10, 20% (w/v and different storage times (1, 7, 30 and 60 days. In all concentrations, the encapsulation stability slightly decreased during 30 days storage. The scanning electron microscopy (SEM images showed relatively spherical to elliptic particles which indicated to low extent of particles coalescence. The oscillatory rheometry showed that the loss modulus of liposomes were higher than storage modulus and more liquid-like behavior than solid-like behavior. The samples storage at 25°C for one month, showed higher viscoelastic parameters than those having been stored at 4°C which were attributed to higher membrane fluidity at 25°C and their final coalescence.Nanoliposomes are one of the most important polar lipid based nanocarriers which can be used for encapsulation of both hydrophilic and hydrophobic active compounds. In this research, nanoliposomes based on lecithin-polyethylene glycol-gamma oryzanol were prepared by using modified thermal method. Only one

  7. Low-dose cardio-respiratory phase-correlated cone-beam micro-CT of small animals.

    Science.gov (United States)

    Sawall, Stefan; Bergner, Frank; Lapp, Robert; Mronz, Markus; Karolczak, Marek; Hess, Andreas; Kachelriess, Marc

    2011-03-01

    Micro-CT imaging of animal hearts typically requires a double gating procedure because scans during a breath-hold are not possible due to the long scan times and the high respiratory rates, Simultaneous respiratory and cardiac gating can either be done prospectively or retrospectively. True five-dimensional information can be either retrieved with retrospective gating or with prospective gating if several prospective gates are acquired. In any case, the amount of information available to reconstruct one volume for a given respiratory and cardiac phase is orders of magnitud lower than the total amount of information acquired. For example, the reconstruction of a volume from a 10% wide respiratory and a 20% wide cardiac window uses only 2% of the data acquired. Achieving a similar image quality as a nongated scan would therefore require to increase the amount of data and thereby the dose to the animal by up to a factor of 50. To achieve the goal of low-dose phase-correlated (LDPC) imaging, the authors propose to use a highly efficient combination of slightly modified existing algorithms. In particular, the authors developed a variant of the McKinnon-Bates image reconstruction algorithm and combined it with bilateral filtering in up to five dimensions to significantly reduce image noise without impairing spatial or temporal resolution. The preliminary results indicate that the proposed LDPC reconstruction method typically reduces image noise by a factor of up to 6 (e.g., from 170 to 30 HU), while the dose values lie in a range from 60 to 500 mGy. Compared to other publications that apply 250-1800 mGy for the same task [C. T. Badea et al., "4D micro-CT of the mouse heart," Mol. Imaging 4(2), 110-116 (2005); M. Drangova et al., "Fast retrospectively gated quantitative four-dimensional (4D) cardiac micro computed tomography imaging of free-breathing mice," Invest. Radiol. 42(2), 85-94 (2007); S. H. Bartling et al., "Retrospective motion gating in small animal CT of mice

  8. The Specification of Cement Powders for Waste Encapsulation Processes at Sellafield site

    International Nuclear Information System (INIS)

    Angus, M.; Borwick, J.; Cann, G.; Hayes, M.; McLuckie, B.; Jowsey, J.

    2012-01-01

    Requirements are described for Portland Cement (CEM I), Ground Granulated Blast-furnace Slag (GGBS) and Fly Ash (FA) powders used for the encapsulation of Intermediate Level Radioactive Waste (ILW) in UK, with particular reference to Sellafield site encapsulation processes. Differences between the powders used by the UK nuclear industry and the equivalent British and European cement standards are explained. Research over the last 20 years to respond to changes in the performance of these powders is summarised and options for dealing with potential future changes are discussed. These include the use of special blends of GGBS to achieve the desired flow properties or alternatively poly-carboxylate super-plasticizers to produce grouts with consistent performance using cement powders with a wide range of composition. (authors)

  9. A model for acoustic vaporization dynamics of a bubble/droplet system encapsulated within a hyperelastic shell.

    Science.gov (United States)

    Lacour, Thomas; Guédra, Matthieu; Valier-Brasier, Tony; Coulouvrat, François

    2018-01-01

    Nanodroplets have great, promising medical applications such as contrast imaging, embolotherapy, or targeted drug delivery. Their functions can be mechanically activated by means of focused ultrasound inducing a phase change of the inner liquid known as the acoustic droplet vaporization (ADV) process. In this context, a four-phases (vapor + liquid + shell + surrounding environment) model of ADV is proposed. Attention is especially devoted to the mechanical properties of the encapsulating shell, incorporating the well-known strain-softening behavior of Mooney-Rivlin material adapted to very large deformations of soft, nearly incompressible materials. Various responses to ultrasound excitation are illustrated, depending on linear and nonlinear mechanical shell properties and acoustical excitation parameters. Different classes of ADV outcomes are exhibited, and a relevant threshold ensuring complete vaporization of the inner liquid layer is defined. The dependence of this threshold with acoustical, geometrical, and mechanical parameters is also provided.

  10. SPATIALLY EXPLICIT MICRO-LEVEL MODELLING OF LAND USE CHANGE AT THE RURAL-URBAN INTERFACE. (R828012)

    Science.gov (United States)

    This paper describes micro-economic models of land use change applicable to the rural–urban interface in the US. Use of a spatially explicit micro-level modelling approach permits the analysis of regional patterns of land use as the aggregate outcomes of many, disparate...

  11. Chalcogenides Metastability and Phase Change Phenomena

    CERN Document Server

    Kolobov, Alexander V

    2012-01-01

    A state-of-the-art description of metastability observed in chalcogenide alloys is presented with the accent on the underlying physics. A comparison is made between sulphur(selenium)-based chalcogenide glasses, where numerous photo-induced phenomena take place entirely within the amorphous phase, and tellurides where a reversible crystal-to-amorphous phase-change transformation is a major effect. Applications of metastability in devices¿optical memories and nonvolatile electronic phase-change random-access memories among others are discussed, including the latest trends. Background material essential for understanding current research in the field is also provided.

  12. Improved detection limits for phthalates by selective solid-phase micro-extraction

    KAUST Repository

    Zia, Asif I.

    2016-03-30

    Presented research reports on an improved method and enhanced limits of detection for phthalates; a hazardous additive used in the production of plastics by solid-phase micro-extraction (SPME) polymer in comparison to molecularly imprinted solid-phase extraction (MISPE) polymer. The polymers were functionalized on an interdigital capacitive sensor for selective binding of phthalate molecules from a complex mixture of chemicals. Both polymers owned predetermined selectivity by formation of valuable molecular recognition sites for Bis (2-ethylhexyl) phthalate (DEHP). Polymers were immobilized on planar electrochemical sensor fabricated on a single crystal silicon substrate with 500 nm sputtered gold electrodes fabricated using MEMS fabrication techniques. Impedance spectra were obtained using electrochemical impedance spectroscopy (EIS) to determine sample conductance for evaluation of phthalate concentration in the spiked sample solutions with various phthalate concentrations. Experimental results revealed that the ability of SPME polymer to adsorb target molecules on the sensing surface is better than that of MISPE polymer for phthalates in the sensing system. Testing the extracted samples using high performance liquid chromatography with photodiode array detectors validated the results.

  13. Phase change and heat transfer characteristics of a eutectic mixture of palmitic and stearic acids as PCM in a latent heat storage system

    International Nuclear Information System (INIS)

    Baran, Guelseren; Sari, Ahmet

    2003-01-01

    The phase change and heat transfer characteristics of a eutectic mixture of palmitic and stearic acids as phase change material (PCM) during the melting and solidification processes were determined experimentally in a vertical two concentric pipes energy storage system. This study deals with three important subjects. First is determination of the eutectic composition ratio of the palmitic acid (PA) and stearic acid (SA) binary system and measurement of its thermophysical properties by differential scanning calorimetry (DSC). Second is establishment of the phase transition characteristics of the mixture, such as the total melting and solidification temperatures and times, the heat transfer modes in the melted and solidified PCM and the effect of Reynolds and Stefan numbers as initial heat transfer fluid (HTF) conditions on the phase transition behaviors. Third is calculation of the heat transfer coefficients between the outside wall of the HTF pipe and the PCM, the heat recovery rates and heat fractions during the phase change processes of the mixture and also discussion of the effect of the inlet HTF parameters on these characteristics. The DSC results showed that the PA-SA binary system in the mixture ratio of 64.2:35.8 wt% forms a eutectic, which melts at 52.3 deg. C and has a latent heat of 181.7 J g -1 , and thus, these properties make it a suitable PCM for passive solar space heating and domestic water heating applications with respect to climate conditions. The experimental results also indicated that the eutectic mixture of PA-SA encapsulated in the annulus of concentric double pipes has good phase change and heat transfer characteristics during the melting and solidification processes, and it is an attractive candidate as a potential PCM for heat storage in latent heat thermal energy storage systems

  14. Microfluidic Production of Alginate Hydrogel Particles for Antibody Encapsulation and Release.

    Science.gov (United States)

    Mazutis, Linas; Vasiliauskas, Remigijus; Weitz, David A

    2015-12-01

    Owing to their biocompatibility and reduced side effects, natural polymers represent an attractive choice for producing drug delivery systems. Despite few successful examples, however, the production of monodisperse biopolymer-based particles is often hindered by high viscosity of polymer fluids. In this work, we present a microfluidic approach for production of alginate-based particles carrying encapsulated antibodies. We use a triple-flow micro-device to induce hydrogel formation inside droplets before their collection off-chip. The fast mixing and gelation process produced alginate particles with a unique biconcave shape and dimensions of the mammalian cells. We show slow and fast dissolution of particles in different buffers and evaluate antibody release over time. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Limonene encapsulation in freeze dried gellan systems.

    Science.gov (United States)

    Evageliou, Vasiliki; Saliari, Dimitra

    2017-05-15

    The encapsulation of limonene in freeze-dried gellan systems was investigated. Surface and encapsulated limonene content was determined by measurement of the absorbance at 252nm. Gellan matrices were both gels and solutions. For a standard gellan concentration (0.5wt%) gelation was induced by potassium or calcium chloride. Furthermore, gellan solutions of varying concentrations (0.25-1wt%) were also studied. Limonene was added at two different concentrations (1 and 2mL/100g sample). Gellan gels encapsulated greater amounts of limonene than solutions. Among all gellan gels, the KCl gels had the greater encapsulated limonene content. However, when the concentration of limonene was doubled in these KCl gels, the encapsulated limonene decreased. The surface limonene content was significant, especially for gellan solutions. The experimental conditions and not the mechanical properties of the matrices were the dominant factor in the interpretation of the observed results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Preliminary investigation of cryopreservation by encapsulation ...

    African Journals Online (AJOL)

    Protocorm-like bodies (PLBs) of Brassidium Shooting Star, a new commercial ornamental orchid hybrid, were cryopreserved by an encapsulation-dehydration technique. The effects of PLB size, various sucrose concentrations in preculture media and sodium alginate concentration for encapsulation were the main ...

  17. Effects of SiO2 encapsulation and laser processing on single CdTe/ZnTe quantum dots grown on Si (001) substrates

    International Nuclear Information System (INIS)

    Lee, Hong Seok; Rastelli, Armando; Schmidt, Oliver G.; Kim, Tae Whan; Lee, In Won

    2011-01-01

    Micro-photoluminescence (μ-PL) measurements are carried out to investigate the effects of SiO 2 encapsulation and laser processing of single CdTe/ZnTe quantum dots (QDs) grown on Si (001) substrates by using molecular beam epitaxy and atomic layer epitaxy. After laser processing, the μ-PL peak shift for the 200-nm SiO 2 capped single QD is larger than that of the as-grown sample. The large μ-PL peak shift in the 200-nm SiO 2 capped sample is related to the compressive stress induced by the ZnTe cap layer during laser processing. These results indicate that SiO 2 encapsulation and laser processing represent effective methods for achieving local wavelength tuning in single QDs.

  18. Blue laser phase change recording system

    International Nuclear Information System (INIS)

    Hofmann, Holger; Dambach, S.Soeren; Richter, Hartmut

    2002-01-01

    The migration paths from DVD phase change recording with red laser to the next generation optical disk formats with blue laser and high NA optics are discussed with respect to optical aberration margins and disc capacities. A test system for the evaluation of phase change disks with more than 20 GB capacity is presented and first results of the recording performance are shown

  19. Poly(lactide-co-glycolide) encapsulated hydroxyapatite microspheres for sustained release of doxycycline

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xiaoyun [School of Pharmacy, Shenyang Pharmaceutical University, 103, Wenhua Road, Shenyang 110016 (China); Department of Pharmacy, Shandong Drug and Food Vocational College, Science and Technology Town, Hightech Industrial Development Zone, Weihai 264210 (China); Xu Hui; Zhao Yanqiu [School of Pharmacy, Shenyang Pharmaceutical University, 103, Wenhua Road, Shenyang 110016 (China); Wang Shaoning, E-mail: wsn-xh@126.com [School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103, Wenhua Road, Shenyang 110016 (China); Abe, Hiroya; Naito, Makio [Joining and Welding Research Institute, Osaka University, 11-1, Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Liu Yanli [School of Pharmacy, Shenyang Pharmaceutical University, 103, Wenhua Road, Shenyang 110016 (China); Wang Guoqing [School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103, Wenhua Road, Shenyang 110016 (China)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer PLGA encapsulated HAP-MSs were used for the sustained delivery of Doxycycline (Doxy, a broad spectrum tetracycline antibiotic). Black-Right-Pointing-Pointer Sustained Doxy release without obvious burst was observed. Black-Right-Pointing-Pointer Mechanism of the sustained Doxy release was illustrated. Black-Right-Pointing-Pointer Sustained Doxy release character in vivo was also obtained, the plasma Doxy levels were relatively lower and steady compared to that of the un-encapsulated HAP-MSs. - Abstract: The purpose of this study was to prepare a poly(lactide-co-glycolide) (PLGA) encapsulated hydroxyapatite microspheres (HAP-MSs) as injectable depot for sustained delivery of Doxycycline (Doxy). Doxy loaded HAP-MSs (Doxy-HAP-MSs) were encapsulated with PLGA by solid-in-oil-in-water (S/O/W) emulsion-solvent evaporation technique, the effects of the PLGA used (various intrinsic viscosity and LA/GA ratio) and ratio of PLGA/HAP-MSs on the formation of Doxy-HAP-MSs and in vitro release of Doxy were studied. The results showed that sustained drug release without obvious burst was obtained by using PLGA encapsulated HAP-MSs as the carrier, also the drug release rate could be tailored by changing the ratio of PLGA/HAP-MSs, or PLGA of various intrinsic viscosities or LA/GA ratio. Lower ratio of PLGA/HAP-MSs corresponded faster Doxy release, e.g. for the microspheres of PLGA/HAP-MSs ratio of 8 and 0.25, the in vitro Doxy release percents at the end of 7days were about 23% and 76%, respectively. Higher hydrophilicity (higher ratio of GA to LA) and lower molecular weight of PLGA corresponded to higher Doxy release rates. For in vivo release study, PLGA encapsulated HAP-MSs were subcutaneously injected to the back of mice, and the results showed good correlation between the in vivo and in vitro drug release. Meanwhile, the plasma Doxy levels after subcutaneous administration of PLGA encapsulated Doxy-HAP-MSs were relatively lower and steady

  20. Aluminum Nitride Micro-Channels Grown via Metal Organic Vapor Phase Epitaxy for MEMs Applications

    Energy Technology Data Exchange (ETDEWEB)

    Rodak, L.E.; Kuchibhatla, S.; Famouri, P.; Ting, L.; Korakakis, D.

    2008-01-01

    Aluminum nitride (AlN) is a promising material for a number of applications due to its temperature and chemical stability. Furthermore, AlN maintains its piezoelectric properties at higher temperatures than more commonly used materials, such as Lead Zirconate Titanate (PZT) [1, 2], making AlN attractive for high temperature micro and nanoelectromechanical (MEMs and NEMs) applications including, but not limited to, high temperature sensors and actuators, micro-channels for fuel cell applications, and micromechanical resonators. This work presents a novel AlN micro-channel fabrication technique using Metal Organic Vapor Phase Epitaxy (MOVPE). AlN easily nucleates on dielectric surfaces due to the large sticking coefficient and short diffusion length of the aluminum species resulting in a high quality polycrystalline growth on typical mask materials, such as silicon dioxide and silicon nitride [3,4]. The fabrication process introduced involves partially masking a substrate with a silicon dioxide striped pattern and then growing AlN via MOVPE simultaneously on the dielectric mask and exposed substrate. A buffered oxide etch is then used to remove the underlying silicon dioxide and leave a free standing AlN micro-channel. The width of the channel has been varied from 5 ìm to 110 ìm and the height of the air gap from 130 nm to 800 nm indicating the stability of the structure. Furthermore, this versatile process has been performed on (111) silicon, c-plane sapphire, and gallium nitride epilayers on sapphire substrates. Reflection High Energy Electron Diffraction (RHEED), Atomic Force Microscopy (AFM), and Raman measurements have been taken on channels grown on each substrate and indicate that the substrate is influencing the growth of the AlN micro-channels on the SiO2 sacrificial layer.

  1. Preparation of Surlyn films reinforced with cellulose nanofibres and feasibility of applying the transparent composite films for organic photovoltaic encapsulation

    Science.gov (United States)

    Lertngim, Anantaya; Phiriyawirut, Manisara; Wootthikanokkhan, Jatuphorn; Yuwawech, Kitti; Sangkhun, Weradesh; Kumnorkaew, Pisist; Muangnapoh, Tanyakorn

    2017-10-01

    This research concerns the development of Surlyn film reinforced with micro-/nanofibrillated celluloses (MFC) for use as an encapsulant in organic photovoltaic (OPV) cells. The aim of this work was to investigate the effects of fibre types and the mixing methods on the structure-properties of the composite films. Three types of cellulose micro/nanofibrils were prepared: the as-received MFC, the dispersed MFC and the esterified MFC. The fibres were mixed with Surlyn via an extrusion process, using two different mixing methods. It was found that the extent of fibre disintegration and tensile modulus of the composite films prepared by the master-batching process was superior to that of the composite system prepared by the direct mixing method. Using the esterified MFC as a reinforcement, compatibility between polymer and the fibre increased, accompanied with the improvement of the percentage elongation of the Surlyn composite film. The percentage of light transmittance of the Surlyn/MFC films was above 88, regardless of the fibre types and fibre concentrations. The water vapour transmission rate of the Surlyn/esterified MFC film was 65% lower than that of the neat Surlyn film. This contributed to the longer lifetime of the OPV encapsulated with the Surlyn/esterified MFC film.

  2. SERS active Ag encapsulated Fe@SiO2 nanorods in electromagnetic wave absorption and crystal violet detection.

    Science.gov (United States)

    Senapati, Samarpita; Srivastava, Suneel Kumar; Singh, Shiv Brat; Kulkarni, Ajit R

    2014-11-01

    The present work is focused on the preparation of Fe nanorods by the chemical reduction of FeCl3 (aq) using NaBH4 in the presence of glycerol as template followed by annealing of the product at 500°C in the presence of H2 gas flow. Subsequently, its surface has been modified by silica followed by silver nanoparticles to form silica coated Fe (Fe@SiO2) and Ag encapsulated Fe@SiO2 nanostructure employing the Stöber method and silver mirror reaction respectively. XRD pattern of the products confirmed the formation of bcc phase of iron and fcc phase of silver, though silica remained amorphous. FESEM images established the growth of iron nanorods from the annealed product and also formation of silica and silver coating on its surface. The appearance of the characteristics bands in FTIR confirmed the presence of SiO2 on the Fe surface. Magnetic measurements at room temperature indicated the ferromagnetic behavior of as prepared iron nanorods, Fe@SiO2 and silver encapsulated Fe@SiO2 nanostructures. All the samples exhibited strong microwave absorption property in the high frequency range (10GHz), though it is superior for Ag encapsulated Fe@SiO2 (-14.7dB) compared with Fe@SiO2 (-9.7dB) nanostructures of the same thickness. The synthesized Ag encapsulated Fe@SiO2 nanostructure also exhibited the SERS phenomena, which is useful in the detection of the carcinogenic dye crystal violet (CV) upto the concentration of 10(-10)M. All these findings clearly demonstrate that the Ag encapsulated Fe@SiO2 nanostructure could efficiently be used in the environmental remediation. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Encapsulation of Single Nanoparticle in Fast-Evaporating Micro-droplets Prevents Particle Agglomeration in Nanocomposites.

    Science.gov (United States)

    Pan, Ming; Shi, Xinjian; Lyu, Fengjiao; Levy-Wendt, Ben Louis; Zheng, Xiaolin; Tang, Sindy K Y

    2017-08-09

    This work describes the use of fast-evaporating micro-droplets to finely disperse nanoparticles (NPs) in a polymer matrix for the fabrication of nanocomposites. Agglomeration of particles is a key obstacle for broad applications of nanocomposites. The classical approach to ensure the dispersibility of NPs is to modify the surface chemistry of NPs with ligands. The surface properties of NPs are inevitably altered, however. To overcome the trade-off between dispersibility and surface-functionality of NPs, we develop a new approach by dispersing NPs in a volatile solvent, followed by mixing with uncured polymer precursors to form micro-droplet emulsions. Most of these micro-droplets contain no more than one NP per drop, and they evaporate rapidly to prevent the agglomeration of NPs during the polymer curing process. As a proof of concept, we demonstrate the design and fabrication of TiO 2 NP@PDMS nanocomposites for solar fuel generation reactions with high photocatalytic efficiency and recyclability arising from the fine dispersion of TiO 2 . Our simple method eliminates the need for surface functionalization of NPs. Our approach is applicable to prepare nanocomposites comprising a wide range of polymers embedded with NPs of different composition, sizes, and shapes. It has the potential for creating nanocomposites with novel functions.

  4. Development of a polymer based fully flexible electrode tip for neuronal micro-stimulation applications

    Science.gov (United States)

    David, Romain; Miki, Norihisa

    2017-06-01

    Neural stimulation systems design is highly impacted by the overall resolution and adaptability of the device to the targeted application and area to stimulate. In this paper, we report a novel design for neural micro-stimulation electrode presenting high resolution and adaptability to any targeted area via a high flexibility. We propose the use of liquid metal micro-channels encapsulated into a polymer volume, achieving micro-stimulation pads at the tip of the channels. It presents a high degree of patternability to match different possible targeted applications, and good flexibility and mechanic properties to make it insertable and adaptable into soft tissues. A stable fabrication process, including insertion of the liquid alloy into 50 µm half-channels, the necessity of the U-shape to produce functional conductive micro-channels and the mechanical integrity of the device are discussed.

  5. Optimization of a method based on micro-matrix solid-phase dispersion (micro-MSPD for the determination of PCBs in mussel samples

    Directory of Open Access Journals (Sweden)

    Nieves Carro

    2017-03-01

    Full Text Available This paper reports the development and optimization of micro-matrix solid-phase dispersion (micro-MSPD of nine polychlorinated biphenyls (PCBs in mussel samples (Mytilus galloprovincialis by using a two-level factorial design. Four variables (amount of sample, anhydrous sodium sulphate, Florisil and solvent volume were considered as factors in the optimization process. The results suggested that only the interaction between the amount of anhydrous sodium sulphate and the solvent volume was statistically significant for the overall recovery of a trichlorinated compound, CB 28. Generally most of the considered species exhibited a similar behaviour, the sample and Florisil amounts had a positive effect on PCBs extractions and solvent volume and sulphate amount had a negative effect. The analytical determination and confirmation of PCBs were carried out by using GC-ECD and GC-MS/MS, respectively. The method was validated having satisfactory precision and accuracy with RSD values below 6% and recoveries between 81 and 116% for all congeners. The optimized method was applied to the extraction of real mussel samples from two Galician Rías.

  6. Photovoltaic module encapsulation design and materials selection, volume 1

    Science.gov (United States)

    Cuddihy, E.; Carroll, W.; Coulbert, C.; Gupta, A.; Liang, R. H.

    1982-01-01

    Encapsulation material system requirements, material selection criteria, and the status and properties of encapsulation materials and processes available are presented. Technical and economic goals established for photovoltaic modules and encapsulation systems and their status are described. Available encapsulation technology and data are presented to facilitate design and material selection for silicon flat plate photovoltaic modules, using the best materials available and processes optimized for specific power applications and geographic sites. The operational and environmental loads that encapsulation system functional requirements and candidate design concepts and materials that are identified to have the best potential to meet the cost and performance goals for the flat plate solar array project are described. Available data on encapsulant material properties, fabrication processing, and module life and durability characteristics are presented.

  7. Airway Secretory microRNAome Changes during Rhinovirus Infection in Early Childhood.

    Directory of Open Access Journals (Sweden)

    Maria J Gutierrez

    Full Text Available Innate immune responses are fine-tuned by small noncoding RNA molecules termed microRNAs (miRs that modify gene expression in response to the environment. During acute infections, miRs can be secreted in extracellular vesicles (EV to facilitate cell-to-cell genetic communication. The purpose of this study was to characterize the baseline population of miRs secreted in EVs in the airways of young children (airway secretory microRNAome and examine the changes during rhinovirus (RV infection, the most common cause of asthma exacerbations and the most important early risk factor for the development of asthma beyond childhood.Nasal airway secretions were obtained from children (≤3 yrs. old during PCR-confirmed RV infections (n = 10 and age-matched controls (n = 10. Nasal EVs were isolated with polymer-based precipitation and global miR profiles generated using NanoString microarrays. We validated our in vivo airway secretory miR data in an in vitro airway epithelium model using apical secretions from primary human bronchial epithelial cells (HBEC differentiated at air-liquid interface (ALI. Bioinformatics tools were used to determine the unified (nasal and bronchial signature airway secretory miRNAome and changes during RV infection in children.Multiscale analysis identified four signature miRs comprising the baseline airway secretory miRNAome: hsa-miR-630, hsa-miR-302d-3p, hsa- miR-320e, hsa-miR-612. We identified hsa-miR-155 as the main change in the baseline miRNAome during RV infection in young children. We investigated the potential biological relevance of the airway secretion of hsa-mir-155 using in silico models derived from gene datasets of experimental in vivo human RV infection. These analyses confirmed that hsa-miR-155 targetome is an overrepresented pathway in the upper airways of individuals infected with RV.Comparative analysis of the airway secretory microRNAome in children indicates that RV infection is associated with airway

  8. Transient thermal response of a packed bed for energy storage unit utilizing phase change material: experimental and numerical study

    International Nuclear Information System (INIS)

    Bemansour, A.

    2006-01-01

    The present work concerns the numerical and experimental study of the transient response of a packed bed latent heat thermal energy storage system. Experiments were carried out to measures the transient temperature distributions inside a cylindrical bed, which is randomly packed with spheres having uniform sizes and encapsulated the paraffin wax as a phase change material (PCM), with air as a working fluid. A two-dimensional separate phases formulation is used to develop a numerical analysis of the transient response of the bed, considering the influence of both axial and radial thermal dispersion. The fluid energy equation was transformed by finite difference approximation and solved by alternating direction implicit scheme, while the PCM energy equation was solved using fully explicit scheme. This analysis can be applied for both charging and recovery modes and a broad range of Reynolds numbers. Measurements of both fluid and PCM temperature were conducted at different axial and radial positions and at different operating parameters. Experimental measurements of temperature distribution compare favorably with the numerical results over a broad range of Reynolds numbers.(Author)

  9. Modeling of MEMS Mirrors Actuated by Phase-Change Mechanism

    Directory of Open Access Journals (Sweden)

    David Torres

    2017-04-01

    Full Text Available Given the multiple applications for micro-electro-mechanical system (MEMS mirror devices, most of the research efforts are focused on improving device performance in terms of tilting angles, speed, and their integration into larger arrays or systems. The modeling of these devices is crucial for enabling a platform, in particular, by allowing for the future control of such devices. In this paper, we present the modeling of a MEMS mirror structure with four actuators driven by the phase-change of a thin film. The complexity of the device structure and the nonlinear behavior of the actuation mechanism allow for a comprehensive study that encompasses simpler electrothermal designs, thus presenting a general approach that can be adapted to most MEMS mirror designs based on this operation principle. The MEMS mirrors presented in this work are actuated by Joule heating and tested using optical techniques. Mechanical and thermal models including both pitch and roll displacements are developed by combining theoretical analysis (using both numerical and analytical tools with experimental data and subsequently verifying with quasi-static and dynamic experiments.

  10. Evaluation of antinociceptive activity of nanoliposome-encapsulated and free-form diclofenac in rats and mice

    Directory of Open Access Journals (Sweden)

    Goh JZ

    2014-12-01

    Full Text Available Jun Zheng Goh,1 Sook Nai Tang,1 Hoe Siong Chiong,1,2 Yoke Keong Yong,3 Ahmad Zuraini,1 Muhammad Nazrul Hakim1,4 1Department of Biomedical Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; 2InQpharm Group, Kuala Lumpur, Malaysia; 3Department of Human Anatomy, 4Halal Product Research Institute, Universiti Putra Malaysia, Serdang, Selangor, Malaysia Abstract: Diclofenac is a nonsteroidal anti-inflammatory drug (NSAID that exhibits anti-inflammatory, antinociceptive, and antipyretic activities. Liposomes have been shown to improve the therapeutic efficacy of encapsulated drugs. The present study was conducted to compare the antinociceptive properties between liposome-encapsulated and free-form diclofenac in vivo via different nociceptive assay models. Liposome-encapsulated diclofenac was prepared using the commercialized proliposome method. Antinociceptive effects of liposome-encapsulated and free-form diclofenac were evaluated using formalin test, acetic acid-induced abdominal writhing test, Randall–Selitto paw pressure test, and plantar test. The results of the writhing test showed a significant reduction of abdominal constriction in all treatment groups in a dose-dependent manner. The 20 mg/kg liposome-encapsulated diclofenac demonstrated the highest antinociceptive effect at 78.97% compared with 55.89% in the free-form group at equivalent dosage. Both liposome-encapsulated and free-form diclofenac produced significant results in the late phase of formalin assay at a dose of 20 mg/kg, with antinociception percentages of 78.84% and 60.71%, respectively. Significant results of antinociception were also observed in both hyperalgesia assays. For Randall–Sellito assay, the highest antinociception effect of 71.38% was achieved with 20 mg/kg liposome-encapsulated diclofenac, while the lowest antinociceptive effect of 17.32% was recorded with 0 mg/kg liposome formulation, whereas in the plantar test, the highest antinociceptive effect

  11. Development of Magnesium Silicate Hydrate cement system for nuclear waste encapsulation

    International Nuclear Information System (INIS)

    Zhang, T.; Vandeperre, L.J.; Cheeseman, C.R.

    2012-01-01

    A novel low pH cement system for encapsulating nuclear industry wastes containing aluminium has been developed using blends of MgO and silica fume (SF). Identification of the hydrated phases in MgO/silica fume samples showed that brucite formed in early stages of hydration and then reacted with the silica fume to produce a magnesium silicate hydrate (M-S-H) gel phase. When all brucite reacts with silica fume a cement system with an equilibrium pH just below 10 was achieved. Selected mixes have been characterized for hydration reactions, setting time and strength development. Mortar samples with w/s ratios of 0.5 and 50% by weight of sand added achieved compressive strengths in excess of 95 MPa after 28 days. The addition of MgCO 3 buffered the early pH and the addition of fine sand particles eliminated shrinkage cracking. The interaction of the optimised mortar with Al metal has been investigated. Al metal strips were firmly bound into the MgO:SF:sand samples and no H 2 gas detected, and this indicates that the novel systems developed in this work have potential for encapsulating certain types of problematic legacy wastes from the nuclear industry. (authors)

  12. Different encapsulation strategies for implanted electronics

    Directory of Open Access Journals (Sweden)

    Winkler Sebastian

    2017-09-01

    Full Text Available Recent advancements in implant technology include increasing application of electronic systems in the human body. Hermetic encapsulation of electronic components is necessary, specific implant functions and body environments must be considered. Additional functions such as wireless communication systems require specialized technical solutions for the encapsulation.

  13. Anomalous phase change characteristics in Fe-Te materials

    International Nuclear Information System (INIS)

    Fu, X. T.; Song, W. D.; Ji, R.; Ho, H. W.; Wang, L.; Hong, M. H.

    2012-01-01

    Phase change materials have become significantly attractive due to its unique characteristics for its extensive applications. In this paper, a kind of phase change material, which consists of Fe and Te components, is developed. The crystallization temperature of the Fe-Te materials is 180 deg. C for Fe 1.19 Te and can be adjusted by the Fe/Te ratio. High-speed phase change in the Fe-Te materials has been demonstrated by nanosecond laser irradiation. Comparing to conventional phase change materials, the Fe-Te materials exhibit an anomalous optical property that has higher reflectivity at amorphous than crystalline state, which is useful for data storage design.

  14. Theoretical study on the combined systems of peanut-shaped carbon nanotubes encapsulated in single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Wang, Guo; Huang, Yuanhe

    2012-01-01

    Highlights: ► The combined systems of peanut-shaped carbon nanotubes encapsulated in single-walled carbon nanotubes are investigated. ► The band structures and related electronic properties are calculated by using crystal orbital method. ► The carrier mobility and mean free path are evaluated under the deformation potential theory. -- Abstract: The combined systems of peanut-shaped carbon nanotubes encapsulated in both semiconducting and metallic single-walled carbon nanotubes are investigated by using self-consistent field crystal orbital method based on the density functional theory. The investigation indicates that the interaction between the two constituents is mainly contributed by the π orbitals. The encapsulation does not change the semiconducting or metallic nature of the single-walled carbon nanotubes, but significantly changes the band dispersion and decreases the frontier band width of the metallic one. The carrier mobility and mean free path of the metallic single-walled carbon nanotube increase greatly after the encapsulation. The calculated mobilities have the order of 10 3 cm 2 V −1 s −1 for both of the semiconducting and metallic double-walled carbon nanotubes.

  15. Application of phase-change materials in memory taxonomy

    OpenAIRE

    Wang, Lei; Tu, Liang; Wen, Jing

    2017-01-01

    Abstract Phase-change materials are suitable for data storage because they exhibit reversible transitions between crystalline and amorphous states that have distinguishable electrical and optical properties. Consequently, these materials find applications in diverse memory devices ranging from conventional optical discs to emerging nanophotonic devices. Current research efforts are mostly devoted to phase-change random access memory, whereas the applications of phase-change materials in other...

  16. Reversible switching in phase-change materials

    OpenAIRE

    Wojciech Wełnic; Matthias Wuttig

    2008-01-01

    Phase-change materials are successfully employed in optical data storage and are becoming a promising candidate for future electronic storage applications. Despite the increasing technological interest, many fundamental properties of these materials remain poorly understood. However, in the last few years the understanding of the material properties of phase-change materials has increased significantly. At the same time, great advances have been achieved in technological applications in elect...

  17. Multilayer SnSb4-SbSe Thin Films for Phase Change Materials Possessing Ultrafast Phase Change Speed and Enhanced Stability.

    Science.gov (United States)

    Liu, Ruirui; Zhou, Xiao; Zhai, Jiwei; Song, Jun; Wu, Pengzhi; Lai, Tianshu; Song, Sannian; Song, Zhitang

    2017-08-16

    A multilayer thin film, comprising two different phase change material (PCM) components alternatively deposited, provides an effective means to tune and leverage good properties of its components, promising a new route toward high-performance PCMs. The present study systematically investigated the SnSb 4 -SbSe multilayer thin film as a potential PCM, combining experiments and first-principles calculations, and demonstrated that these multilayer thin films exhibit good electrical resistivity, robust thermal stability, and superior phase change speed. In particular, the potential operating temperature for 10 years is shown to be 122.0 °C and the phase change speed reaches 5 ns in the device test. The good thermal stability of the multilayer thin film is shown to come from the formation of the Sb 2 Se 3 phase, whereas the fast phase change speed can be attributed to the formation of vacancies and a SbSe metastable phase. It is also demonstrated that the SbSe metastable phase contributes to further enhancing the electrical resistivity of the crystalline state and the thermal stability of the amorphous state, being vital to determining the properties of the multilayer SnSb 4 -SbSe thin film.

  18. Encapsulated Islet Transplantation: Where Do We Stand?

    Science.gov (United States)

    Vaithilingam, Vijayaganapathy; Bal, Sumeet; Tuch, Bernard E

    2017-01-01

    Transplantation of pancreatic islets encapsulated within immuno-protective microcapsules is a strategy that has the potential to overcome graft rejection without the need for toxic immunosuppressive medication. However, despite promising preclinical studies, clinical trials using encapsulated islets have lacked long-term efficacy, and although generally considered clinically safe, have not been encouraging overall. One of the major factors limiting the long-term function of encapsulated islets is the host's immunological reaction to the transplanted graft which is often manifested as pericapsular fibrotic overgrowth (PFO). PFO forms a barrier on the capsule surface that prevents the ingress of oxygen and nutrients leading to islet cell starvation, hypoxia and death. The mechanism of PFO formation is still not elucidated fully and studies using a pig model have tried to understand the host immune response to empty alginate microcapsules. In this review, the varied strategies to overcome or reduce PFO are discussed, including alginate purification, altering microcapsule geometry, modifying alginate chemical composition, co-encapsulation with immunomodulatory cells, administration of pharmacological agents, and alternative transplantation sites. Nanoencapsulation technologies, such as conformal and layer-by-layer coating technologies, as well as nanofiber, thin-film nanoporous devices, and silicone based NanoGland devices are also addressed. Finally, this review outlines recent progress in imaging technologies to track encapsulated cells, as well as promising perspectives concerning the production of insulin-producing cells from stem cells for encapsulation.

  19. Controlled release of beta-estradiol from PLAGA microparticles: the effect of organic phase solvent on encapsulation and release.

    Science.gov (United States)

    Birnbaum, D T; Kosmala, J D; Henthorn, D B; Brannon-Peppas, L

    2000-04-03

    To determine the effect of the organic solvent used during microparticle preparation on the in vitro release of beta-estradiol, a number of formulations were evaluated in terms of size, shape and drug delivery performance. Biodegradable microparticles of poly(lactide-co-glycolide) were prepared containing beta-estradiol that utilized dichloromethane, ethyl acetate or a mixture of dichloromethane and methanol as the organic phase solvent during the particle preparation. The drug delivery behavior from the microparticles was studied and comparisons were made of their physical properties for different formulations. The varying solubilities of beta-estradiol and poly(lactide-co-glycolide) in the solvents studied resulted in biodegradable microparticles with very different physical characteristics. Microparticles prepared from solid suspensions of beta-estradiol using dichloromethane as the organic phase solvent were similar in appearance to microparticles prepared without drug. Microparticles prepared from dichloromethane/methanol solutions appeared transparent to translucent depending on the initial amount of drug used in the formulation. Microparticles prepared using ethyl acetate appeared to have the most homogeneous encapsulation of beta-estradiol, appearing as solid white spheres regardless of initial drug content. Studies showed that microparticles prepared from either ethyl acetate or a mixture of dichloromethane and methanol gave a more constant release profile of beta-estradiol than particles prepared using dichloromethane alone. For all formulations, an initial burst of release increased with increasing drug loading, regardless of the organic solvent used.

  20. Thermal conductivity and latent heat thermal energy storage properties of LDPE/wax as a shape-stabilized composite phase change material

    International Nuclear Information System (INIS)

    Trigui, Abdelwaheb; Karkri, Mustapha; Krupa, Igor

    2014-01-01

    Highlights: • This study deals with the comparison of experimental results for different PCM composite to be used in passive solar walls. • This paper reports on the successful use of a specific experimental method in order to characterize the phase change effects. • The results have shown that most important thermal properties of these composites at the solid and liquid states. • Results indicate the thermal effectiveness of phase change material and significant amount of energy saving can be achieved. • Heat flux measurements are a very interesting experimental source of data which comes to complete the calorimetric device (DSC). - Abstract: Phase change material (PCM) composites based on low-density polyethylene (LDPE) with paraffin waxes were investigated in this study. The composites were prepared using a meltmixing method with a Brabender-Plastograph. The LDPE as the supporting matrix kept the molten waxes in compact shape during its phase transition from solid to liquid. Immiscibility of the PCMs (waxes) and the supporting matrix (LDPE) is a necessary property for effective energy storage. Therefore, this type paraffin can be used in a latent heat storage system without encapsulation. The objective of this research is to use PCM composite as integrated components in a passive solar wall. The proposed composite TROMBE wall allows daily storage of the solar energy in a building envelope and restitution in the evening, with a possible control of the air flux in a ventilated air layer. An experimental set-up was built to determine the thermal response of these composites to thermal solicitations. In addition, a DSC analysis was carried out. The results have shown that most important thermal properties of these composites at the solid and liquid states, like the “apparent” thermal conductivity, the heat storage capacity and the latent heat of fusion. Results indicate the performance of the proposed system is affected by the thermal effectiveness of