Sample records for micellar bulk solution

  1. A micellar solution

    Jewulski, J.


    The subject of the invention is a micellar solution used in oil extraction when flooding a deposit and washing out the critical zone. It contains ethanolamine salt of alkylobenzolsulfonic acid (10 to 56 percent by mass), higher alcohol (4 to 56 percent) an organic solvent and water (2.4 to 57.2 percent) and is distinguished by the fact that an amyl alcohol of the third series is used as the higher alcohol, while oil in a volume of 19 to 71 percent or gasoline in a volume of 6 to 16 percent) is used as the solvent.

  2. Small-angle neutron scattering from micellar solutions

    V K Aswal; P S Goyal


    Micellar solutions are the suspension of the colloidal aggregates of the surfactant molecules in aqueous solutions. The structure (shape and size) and the interaction of these aggregates, referred to as micelles, depend on the molecular architecture of the surfactant molecule, presence of additives and the solution conditions such as temperature, concentration etc. This paper gives the usefulness of small-angle neutron scattering to the study of micellar solutions with some of our recent results.

  3. Flow-induced structured phase in nonionic micellar solutions.

    Cardiel, Joshua J; Tonggu, Lige; de la Iglesia, Pablo; Zhao, Ya; Pozzo, Danilo C; Wang, Liguo; Shen, Amy Q


    In this work, we consider the flow of a nonionic micellar solution (precursor) through an array of microposts, with focus on its microstructural and rheological evolution. The precursor contains polyoxyethylene(20) sorbitan monooleate (Tween-80) and cosurfactant monolaurin (ML). An irreversible flow-induced structured phase (NI-FISP) emerges after the nonionic precursor flows through the hexagonal micropost arrays, when subjected to strain rates ~10(4) s(-1) and strain ~10(3). NI-FISP consists of close-looped micellar bundles and multiconnected micellar networks as evidenced by transmission electron microscopy (TEM) and cryo-electron microscopy (cryo-EM). We also conduct small-angle neutron scattering (SANS) measurements in both precursor and NI-FISP to illustrate the structural transition. We propose a potential mechanism for the NI-FISP formation that relies on the micropost arrays and the flow kinematics in the microdevice to induce entropic fluctuations in the micellar solution. Finally, we show that the rheological variation from a viscous precursor solution to a viscoelastic micellar structured phase is associated with the structural evolution from the precursor to NI-FISP.

  4. Photodegradation in Micellar Aqueous Solutions of Erythrosin Esters Derivatives.

    Herculano, Leandro Silva; Lukasievicz, Gustavo Vinicius Bassi; Sehn, Elizandra; Caetano, Wilker; Pellosi, Diogo Silva; Hioka, Noboru; Astrath, Nelson Guilherme Castelli; Malacarne, Luis Carlos


    Strong light absorption and high levels of singlet oxygen production indicate erythrosin B as a viable candidate as a photosensitizer in photodynamic therapy or photodynamic inactivation of microorganisms. Under light irradiation, erythrosin B undergoes a photobleaching process that can decrease the production of singlet oxygen. In this paper, we use thermal lens spectroscopy to investigate photobleaching in micellar solutions of erythrosin ester derivatives: methyl, butyl, and decyl esters in low concentrations of non-ionic micellar aqueous solutions. Using a previously developed thermal lens model, it was possible to determine the photobleaching rate and fluorescence quantum efficiency for dye-micelle solutions. The results suggest that photobleaching is related to the intensity of the dye-micelle interaction and demonstrate that the thermal lens technique can be used as a sensitive tool for quantitative measurement of photochemical properties in very diluted solutions.

  5. A new insight on the dynamics of sodium dodecyl sulfate aqueous micellar solutions by dielectric spectroscopy.

    Lanzi, Leandro; Carlà, Marcello; Lanzi, Leonardo; Gambi, Cecilia M C


    Aqueous sodium dodecyl sulfate micellar solutions were investigated by a recently developed double-differential dielectric spectroscopy technique in the frequency range 100 MHz-3 GHz at 22 degrees C, in the surfactant concentration range 29.8-524 mM, explored for the first time above 104 mM. The micellar contribution to dielectric spectra was analyzed according to three models containing, respectively, a single Debye relaxation, a Cole-Cole relaxation and a double Debye relaxation. The single Debye model is not accurate enough. Both Cole-Cole and double Debye models fit well the experimental dielectric spectra. With the double Debye model, two characteristic relaxation times were identified: the slower one, in the range 400-900 ps, is due to the motion of counterions bound to the micellar surface (lateral motion); the faster one, in the range 100-130 ps, is due to interfacial bound water. Time constants and amplitudes of both processes are in fair agreement with Grosse's theoretical model, except at the largest concentration values, where interactions between micelles increase. For each sample, the volume fraction of bulk water and the effect of bound water as well as the conductivity in the low frequency limit were computed. The bound water increases as the surfactant concentration increases, in quantitative agreement with the micellar properties. The number of water molecules per surfactant molecule was also computed. The conductivity values are in agreement with Kallay's model over the whole surfactant concentration range.

  6. Terahertz absorption spectroscopy of protein-containing reverse micellar solution

    Murakami, H.; Toyota, Y.; Nishi, T.; Nashima, S.


    Terahertz time-domain spectroscopy has been carried out for AOT/isooctane reverse micellar solution with myoglobin at the water-to-surfactant molar ratios ( w0) of 0.2 and 4.4. The amplitude of the absorption spectrum increases with increasing the protein concentration at w0 = 0.2, whereas it decreases at w0 = 4.4. The molar extinction coefficients of the protein-filled reverse micelle, and the constituents, i.e., myoglobin, water, and AOT, have been derived by use of the structural parameters of the micellar solution. The experimental results are interpreted in terms of hydration onto the protein and surfactant in the reverse micelle.

  7. [Electroanalytical characteristics of ofloxacin in micellar solution].

    Zhang, Z Q; He, X M; Li, Y F; Qin, S


    In a pH 6.30 buffer solution containing 0.001% Tween-80, ofloxacin (OFX) gives a sensitive polarographic wave at -1.46 V (vs SCE), which can be used for the determination of OFX down to 10(-8) mol.L-1. The linear range is from 1.39 x 10(-7) to 1.39 x 10(-5) mol.L-1. The proposed method was applied to determination of OFX in urine and serum samples with relative standard deviation less than 7.0%.

  8. Effects of divalent ions on displacement of oil from porous media by micellar solutions

    Mobarak, S.A.M.


    Micellar solutions are currently being investigated by a number of oil companies and research institutes as potential candidates for tertiary oil recovery processes. Micellar solutions can be used in either secondary or tertiary recovery operations. The process is being tested in some fields, but the results are inconclusive. In general, the limited field trials indicate that micellar solutions do not work as effectively as predicted from laboratory data. This research was to investigate the effect of presence of calcium ions in formation water on oil recovery using micellar solutions. Adsorption of surfactant on sand grain surfaces as a function of calcium ions concentrations also was investigated. A series of laboratory experiments was conducted in which oil was displaced from porous media by micellar solution (Amoco Floodaid 131) driven by viscous water and plain water, respectively. Based on the experimental results, micellar solutions proved to be very effective in displacing oil from porous media. The recovery of oil from porous media by micellar solution in the presence of calcium ions in formation water was improved when ethylene diamene tetracetic acid was added to the micellar solution. (Longer abstract available)

  9. Worming Their Way into Shape: Toroidal Formations in Micellar Solutions

    Cardiel Rivera, Joshua J.; Tonggu, Lige; Dohnalkova, Alice; de la Iglesia, Pablo; Pozzo, Danilo C.; Shen, Amy


    We report the formation of nanostructured toroidal micellar bundles (nTMB) from a semidilute wormlike micellar solution, evidenced by both cryogenicelectron microscopy and transmission electron microscopy images. Our strategy for creating nTMB involves a two-step protocol consisting of a simple prestraining process followed by flow through a microfluidic device containing an array of microposts, producing strain rates in the wormlike micelles on the order of 105 s^1. In combination with microfluidic confinement, these unusually large strain rates allow for the formation of stable nTMB. Electron microscopy images reveal a variety of nTMB morphologies and provide the size distribution of the nTMB. Small-angle neutron scattering indicates the underlying microstructural transition from wormlike micelles to nTMB. We also show that other flow-induced approaches such as sonication can induce and control the emergence of onion-like and nTMB structures, which may provide a useful tool for nanotemplating.

  10. The use of micellar solutions for novel separation techniques

    Roberts, Bruce Lynn [Univ. of Oklahoma, Norman, OK (United States)


    Surfactant based separation techniques based on the solubilization of organic compounds into the nonpolar interior of a micelle or electrostatic attraction of ionized metals and metal complexes to the charged surface of a micelle were studied in this work. Micellar solutions were used to recover two model volatile organic compounds emitted by the printing and painting industries (toluene and amyl acetate) and to investigate the effect of the most important variables in the surfactant enhanced carbon regeneration (SECR) process. SECR for liquid phase applications was also investigated in which the equilibrium adsorption of cetyl pyridinium chloride (CPC) and sodium dodecyl sulfate (SDS) on activated carbon were measured. Micellar-enhanced ultrafiltration (MEUF) was investigated using spiral wound membranes for the simultaneous removal of organic compounds, metals and metal complexes dissolved in water, with emphasis on pollution control applications. Investigations of MEUF to remove 99+ per cent of trichloroethylene (TCE) from contaminated groundwater using criteria such as: membrane flux, solubilization equilibrium constant, surfactant molecular weight, and Krafft temperature led to the selection of an anionic disulfonate with a molecular weight of 642 (DOWFAX 8390). These data and results from supporting experiments were used to design a system which could clean-up water in a 100,000 gallon/day operation. A four stage process was found to be an effective design and estimated cost for such an operation were found to be in the range of the cost of mature competitive technologies.

  11. The use of micellar solutions for novel separation techniques

    Roberts, B.L.


    Surfactant based separation techniques based on the solubilization of organic compounds into the nonpolar interior of a micelle or electrostatic attraction of ionized metals and metal complexes to the charged surface of a micelle were studied in this work. Micellar solutions were used to recover two model volatile organic compounds emitted by the printing and painting industries (toluene and amyl acetate) and to investigate the effect of the most important variables in the surfactant enhanced carbon regeneration (SECR) process. SECR for liquid phase applications was also investigated in which the equilibrium adsorption of cetyl pyridinium chloride (CPC) and sodium dodecyl sulfate (SDS) on activated carbon were measured. Micellar-enhanced ultrafiltration (MEUF) was investigated using spiral wound membranes for the simultaneous removal of organic compounds, metals and metal complexes dissolved in water, with emphasis on pollution control applications. Investigations of MEUF to remove 99+ per cent of trichloroethylene (TCE) from contaminated groundwater using criteria such as: membrane flux, solubilization equilibrium constant, surfactant molecular weight, and Krafft temperature led to the selection of an anionic disulfonate with a molecular weight of 642 (DOWFAX 8390). These data and results from supporting experiments were used to design a system which could clean-up water in a 100,000 gallon/day operation. A four stage process was found to be an effective design and estimated cost for such an operation were found to be in the range of the cost of mature competitive technologies.

  12. Molecular thermodynamics for micellar branching in solutions of ionic surfactants.

    Andreev, Vasily A; Victorov, Alexey I


    We develop an analytical molecular-thermodynamic model for the aggregation free energy of branching portions of wormlike ionic micelles in 1:1 salt solution. The junction of three cylindrical aggregates is represented by a combination of pieces of the torus and bilayer. A geometry-dependent analytical solution is obtained for the linearized Poisson-Boltzmann equation. This analytical solution is applicable to saddle-like structures and reduces to the solutions known previously for planar, cylindrical, and spherical aggregates. For micellar junctions, our new analytical solution is in excellent agreement with numerical results over the range of parameters typical of ionic surfactant systems with branching micelles. Our model correctly predicts the sequence of stable aggregate morphologies, including a narrow bicontinuous zone, in dependence of hydrocarbon tail length, head size, and solution salinity. For predicting properties of a spatial network of wormlike micelles, our aggregation free energy is used in the Zilman-Safran theory. Our predictions are compared with experimental data for branching micelles of ionic surfactants.

  13. A theory of phase separation in asphaltene-micellar solutions

    Pacheco Sanchez, Juan H. [Instituto Mexicano del Petroleo, Mexico D.F. (Mexico)


    A theory of phase separation in micellar solutions of asphaltene in aromatic hydrocarbons was reported in this paper, based on both the approach of the phase behavior of amphiphile/water micelles, and the self-association of asphaltene in aromatic core. Several experimental techniques have been used by different investigators showing the existence of some kind of critical micellar concentration (CMC) on asphaltenes in aromatic solutions. So, at least asphaltene-monomer and asphaltene-micellar phases are experimentally demonstrated facts. These two phases are the main purpose in this report on a theoretical model. Some results show the temperature versus asphaltene concentration phase diagram. The phase diagram is examined against the limited critical micelle concentration data for asphaltenes-in-toluene systems. Such phase diagram is also qualitatively examined against an experimental demonstration of phase separation. The asphaltene-micelle growth depends on the parameter K responsible for the shape and size of it. At the same time, parameter K depends on both the number of asphaltene-monomer associated in the asphaltene-micelle, and the chemical potentials in the interior and in the periphery of the micelle. An expression for getting the number of asphaltene-monomers self-associated in the asphaltene-micelle was obtained. [Spanish] Se reporta una teoria de separacion de fases en soluciones micelares de asfalteno en hidrocarburos aromaticos, basada tanto en la conducta de fase de micelas formadas por anififilos en agua como en la autoasociacion de asfaltenos en nucleos aromaticos. Se han usado diversas tecnicas experimentales por diferentes investigadores que demuestran la existancia de algun tipo de concentracion micelar critica (CMC) de soluciones de asfaltenos en aromaticos. Entonces, al menos las fases de asfalteno-monomerico y de asfalteno-micelar son hechos experimentalmente demostrados. Esta dos fases son el principal proposito de este reporte en un modelo

  14. Effect of calcium chelators on physical changes in casein micelles in concentrated micellar casein solutions

    Kort, de E.J.P.; Minor, M.; Snoeren, T.H.M.; Hooijdonk, van A.C.M.; Linden, van der E.


    The effect of calcium chelators on physical changes of casein micelles in concentrated micellar casein solutions was investigated by measuring calcium-ion activity, viscosity and turbidity, and performing ultracentrifugation. The highest viscosities were measured on addition of sodium

  15. Brownian Dynamics Simulation of Microstructures and Elongational Viscosities of Micellar Surfactant Solution

    WEI Jin-Jia; KAWAGUCHI Yasuo; YU Bo; LI Feng-Chen


    @@ Brownian dynamics simulation is conducted for a dilute surfactant solution under a steady uniaxial elongational flow.A new inter-cluster potential is used for the interaction among surfactant micelles to determine the micellar network structures in the surfactant solution.The micellar network is successfully simulated.It is formed at low elongation rates and destroyed by high elongation rates.The computed elongational viscosities show elongation-thinning characteristics.The relationship between the elongational viscosities and the microstructure of the surfactant solution is revealed.

  16. Micellar high performance liquid chromatographic determination of flunixin meglumine in bulk, pharmaceutical dosage forms, bovine liver and kidney

    Fathalla F. Belal


    Full Text Available A simple, sensitive and rapid liquid chromatographic method was developed and validated for the analysis of flunixin meglumine (flunixin-M in bulk, pharmaceutical dosage forms, bovine liver and kidney. Analytical separation was performed in less than 4 min using a C18 column with UV detection at 284 nm. A micellar solution composed of 0.15 M sodium dodecyl sulphate, 8% n-butanol and 0.3% triethylamine in 0.02 M phosphoric acid buffered at pH 7.0 was used as the mobile phase. The method was fully validated in accordance with the International Conference on Harmonization (ICH guidelines. The limit of detection and the limit of quantitation were 0.02 and 0.06 μg mL−1, respectively. The recoveries obtained were in range of 95.58–106.94% for bovine liver and kidney. High extraction efficiency was obtained without matrix interference in the extraction process and in the subsequent chromatographic determination. The method showed good repeatability, linearity and sensitivity according to the evaluation of the validation parameters.

  17. The magnetoviscous effect of micellar solutions doped with water based ferrofluids

    Arantes, Fabiana R., E-mail: [Institute of Physics, University of Sao Paulo (Brazil); Institute of Fluid Mechanics, Technische Universität Dresden (Germany); Odenbach, Stefan, E-mail: [Institute of Fluid Mechanics, Technische Universität Dresden (Germany)


    This work presents a magnetorheological study of micellar solutions of potassium laurate and water doped with magnetite nanoparticles, accompanied by auxiliary dynamic light scattering measurements. An increase in the viscosity of the samples under applied field was observed and, furthermore, a considerable magnetoviscous effect was revealed even at magnetic particles' concentrations as low as 0.005–0.01 vol%. This indicates that the rheological behavior of the micelles is changed by the interaction of the magnetic particles with the applied field, leading to different microscopic arrangements in the micellar solutions. - Highlights: • We study the magnetorheological behavior of micellar solutions doped with ferrofluids. • We observe an increase in the viscosity of the samples under an applied field. • We find a large magnetoviscous effect even at low magnetic particles' concentration. • Interaction of particles with the field changes the micelles' rheological behavior.

  18. Protonation of 5, 10, 15, 20-Tetra(4-hydroxyphenyl)-porphyrin in SDS Micellar Solution

    Xiao Hong ZHAO; Yun Hong ZHANG


    An amphiphilic porphyrin, 5, 10, 15, 20-tetra(4-hydroxyphenyl)-porphyrin (P) was solubilized in SDS micellar solutions. By taking advantage of protonation property of pyridine groups of amphiphilic porphyrin and the UV-Vis spectral sensitivity of Soret band and Q bands to the microenvironment of the porphyrin moiety, two-step protonation was studied in detail by means of UV-Vis spectroscopy. The free base, monocation and dication were described in detail in SDS micellar solution. The possibility of microphase transition was proposed to relate to the observation of two isosbestic points.

  19. [Solubilization of nitrobenzene in micellar solutions of Tween 80 and inorganic salts].

    Li, Sui; Zhao, Yong-sheng; Xu, Wei; Dai, Ning


    The solubilization of nitrobenzene by a nonionic surfactant Tween 80 was investigated at 10 degrees C. Experimental results indicated that the solubility of nitrobenzene in water was greatly enhanced by Tween 80 at surfactant concentration above CMC(critical micelle concentration) and a linear relationship was obtained between surfactant concentration and nitrobenzene concentration from the solubility curve. The molar solubilization ratio (MSR) value was 5.093 and IgKm was 3.499. The solubilization was attributed to the ethoxylation group in Tween 80 micellar. Effect of four inorganic salts such as NaCl, KCl, CaCl2 , MgCl2 on water solubilities of nitrobenzene in Tween 80 micellar solutions was also investigated by a matrix of batch experiments. Mix the Tween 80-inorganic salts at the total mass ratios of 2:1, 5:1 and 10:1. The results show that the inorganic salts at a high concentration( > or = 500 mg x L(-1)) can enhance the solubilization capacities of Tween 80 micellar solution and increase the value of MSR and IgKm . Because of the salting-out effect between the micellar of Tween 80 and inorganic salts, the volume of micelle turns bigger, which may provide larger solubility volume for nitrobenzene. The mixture of nonionic surfactant and inorganic salts can be used in subsurface remediation as a flushing solution.

  20. Composition-insensitive highly viscous wormlike micellar solutions formed in anionic and cationic surfactant systems.

    Aramaki, Kenji; Iemoto, Suzuka; Ikeda, Naoaki; Saito, Keitaro


    We investigated phase behavior and rheological properties of aqueous micellar phase formed in water/cocoyl glutamate neutralized with triethanol amine (CGT-n)/hexadecyl trimethylammonium salt (CTAB or CTAC) systems, where n is a degree of neutralization. Micellar phase appears in wide composition range with respect to the surfactant mixing fraction in ternary phase diagrams at 25 degrees C. At high mixing fraction of cationic surfactant in the water/CGT-n/CTAB systems, one can observe a highly viscous micellar phase in which worm-like micelles are expected to form. Contrary to conventional systems in which worm-like micelles are formed, the zero-shear viscosity of the micellar solution in the water/CGT-n/CTAB system with n=1.2 increases with the addition of cationic cosurfactant and once decreases after a maximum, then increases again and decreases after the second maximum. At n=1.5 and 2, highly viscous solution is observed in the relatively wide range of surfactant mixing fraction instead of two maxima of the viscosity curve observed at n=1.2. In the case of CTAC instead of CTAB we can observe narrow composition range for the maximum viscosity. Frequency sweep measurements were performed on the highly viscous samples in the water/CGT-1.5/CTAB system. Typical viscoelastic behavior of worm-like micellar solutions is observed; i.e. the curves of storage (G') and loss (G") moduli make a crossover and the data points of G' and G" can be fitted to the Maxwell model. Relaxation time against the mixing fraction of two surfactants behaves similarly to the zero-shear viscosity change, whereas the plateau modulus continuously increases in the plateau region for the zero-shear viscosity curve.

  1. Micellar Packing in Aqueous Solutions of As-Received and Pure Pluronic Block Copolymers

    Ryu, Chang; Park, Han Jin


    Pluronic block copolymers (Pluronics) are produced on a commercial scale to enable wide range of novel applications from emulsification and colloidal stabilization as nonionic surfactants. While the Pluronic block copolymers offer the advantages of being readily available for such applications, it contains non-micellizable low molecular weight (MW) impurities that would interfere with the self-assembly and micellar packing of PEO-PPO-PEO triblock copolymers in aqueous solutions. The impacts of the low MW impurities will be discussed on the micellar packing of Pluronics F108 and F127 solutions, which form BCC and FCC. While as-received Pluronic samples typically contain about 20 wt.% low MW impurities, we were able to reduce the impurity level to less than 2 wt.% using our large scale purification technique. Comparative studies on small angle x-ray scattering (SAXS) experiments on as-received and purified Pluronics solutions revealed that the contents of triblock copolymers in solutions essentially governs the inter-micellar distance of Pluronic cubic structures. A universal relationship between triblock copolymer concentration and SAXS-based domain spacing has been finally discussed. Funding from Agency for Defense Development, Korea.

  2. Solubilization of benzene, toluene, and xylene (BTX) in aqueous micellar solutions of amphiphilic imidazolium ionic liquids.

    Łuczak, Justyna; Jungnickel, Christian; Markiewicz, Marta; Hupka, Jan


    Water-soluble ionic liquids may be considered analogues to cationic surfactants with a corresponding surface activity and ability to create organized structures in aqueous solutions. For the first time, the enhanced solubility of the aromatic hydrocarbons, benzene, toluene, and xylene, in aqueous micellar systems of 1-alkyl-3-methylimidazolium chlorides was investigated. Above a critical micelle concentration, a gradual increase in the concentration of aromatic hydrocarbons in the miceller solution was observed. This phenomenon was followed by means of the molar solubilization ratio, the micellar/water partition coefficient, and the number of solubilizate molecules per IL micelle. The molar solubilization ratio for ionic liquid micelles was found to be significantly higher when compared to that of ionic surfactants of similar chain length. The incorporation of the hydrocarbon into the micelle affects also an increase of the aggregation number.

  3. Conditions for and characteristics of nonaqueous micellar solutions and microemulsions with ionic liquids

    Zech, Oliver; Kunz, Werner


    Research on nonaqueous microemulsions containing ionic liquids as polar and/or apolar phase, respectively, is growing at a fast rate. One key property of ionic liquids that highlights their potential and their diversification compared to water is their wide liquid temperature range. In this emerging-area review article we survey recent developments in the field of nonaqueous micellar solutions and microemulsions containing ionic liquids in general with a strong emphasis on the effect of tempe...

  4. Solubility limits and phase diagrams for fatty alcohols in anionic (SLES) and zwitterionic (CAPB) micellar surfactant solutions.

    Tzocheva, Sylvia S; Danov, Krassimir D; Kralchevsky, Peter A; Georgieva, Gergana S; Post, Albert J; Ananthapadmanabhan, Kavssery P


    By analysis of experimental data, a quantitative theoretical interpretation of the solubility limit of medium- and long-chain fatty alcohols in micellar solutions of water-soluble surfactants is presented. A general picture of the phase behavior of the investigated systems is given in the form of phase diagrams. The limited solubility of the fatty alcohols in the micelles of conventional surfactants is explained with the precipitation of their monomers in the bulk, rather than with micelle phase separation. The long chain fatty alcohols (with n=14, 16 and 18 carbon atoms) exhibit an ideal mixing in the micelles of the anionic surfactant sodium laurylethersulfate (SLES) and the zwitterionic surfactant cocamidopropyl betaine (CAPB) at temperatures of 25, 30, 35 and 40 °C. Deviations from ideality are observed for the alcohols of shorter chain (n=10 and 12), which can be explained by a mismatch with the longer chains of the surfactant molecules. Using the determined thermodynamic parameters of the systems, their phase diagrams are constructed. Such a diagram consists of four domains, viz. mixed micelles; coexistent micelles and precipitate (dispersed crystallites or droplets); precipitate without micelles, and molecular solution. The four boundary lines intersect in a quadruple point, Q. For ionic surfactants (like SLES), a detailed theory for calculating the boundary lines of the phase diagrams is developed and verified against data for the positions of the kinks in surface tension isotherms. The theory takes into account the electrostatic interactions in the micellar solutions and the effect of counterion binding. The results can be useful for a quantitative interpretation and prediction of the phase behavior of mixed solutions of two (or more) surfactants, one of them being water soluble and forming micelles, whereas the other one has a limited water solubility, but readily forms mixed micelles with the former surfactant.

  5. Thermodynamic analysis of unimer-micelle and sphere-to-rod micellar transitions of aqueous solutions of sodium dodecylbenzenesulfonate


    Temperature dependence of specific conductivity of sodium dodecylbenzenesulfonate (NaDBS) aqueous solutions was analyzed. Two breaks on the plot appeared for all temperature, which suggest two micellar transitions. This has been corroborated by surface tension measurements. The first transition concentration occurs at the critical micelle concentration (CMC), whilst the second critical concentration (so-called transition micellar concentration, TMC) is due to a sphere-to-rod micelles transiti...

  6. Solidified reverse micellar solutions (SRMS): A novel approach for ...

    ... approach for controlling drug release from various lipids based drug delivery systems. ... Its formulation methods, characterisation and delivery systems were ... solutions (SRMS), lipids, wide angle X-ray diffraction analysis (WAXD), small ...

  7. Structural investigation of viscoelastic micellar water/CTAB/NaNO3 solutions

    K Kuperkar; L Abezgauz; D Danino; G Verma; P A Hassan; V K Aswal; D Varade; P Bahadur


    A highly viscoelastic worm-like micellar solution is formed in hexa-decyltrimethylammonium bromide (CTAB) in the presence of sodium nitrate (NaNO3). A gradual increase in micellar length with increasing NaNO3 was assumed from the rheological measurements where the zero-shear viscosity (0) versus NaNO3 concentration curve exhibits a maximum. However, upon increase in temperature, the viscosity decreases. Changes in the structural parameters of the micelles with addition of NaNO3 were inferred from small angle neutron scattering measurements (SANS). The intensity of scattered neutrons in the low region was found to increase with increasing NaNO3 concentration. This suggests an increase in the size of the micelles and/or decrease of intermicellar interaction with increasing salt concentration. Analysis of the SANS data using prolate ellipsoidal structure and Yukawa form of interaction potential between mi-celles indicate that addition of NaNO3 leads to a decrease in the surface charge of the ellipsoidal micelles which induces micellar growth. Cryo-TEM measurements support the presence of thread-like micelles in CTAB and NaNO3.

  8. Stratification of a Foam Film Formed from a Nonionic Micellar Solution: Experiments and Modeling.

    Lee, Jongju; Nikolov, Alex; Wasan, Darsh


    Thin liquid films containing surfactant micelles or other nanocolloidal particles are considered to be the key structural elements of foams containing gas and liquid. We report here the experimental results and theoretical modeling for the phenomenon of the stratification (stepwise thinning) of a foam film formed from a nonionic micellar solution. The film stratification phenomenon was experimentally observed by reflected light microinterferometry. We observed that the stepwise layer-by-layer decrease of the film thickness is due to the appearance and growth of a dark spot of one layer less than the film thickness in the film. The dark spot expansion is driven by the diffusion of the dislocation (or vacancy) in the micellar lattice. The vacancies from the meniscus diffuse and condense into the dark spot, leading to its expansion inside the film. We experimentally observed the expansion of the dark spot at various film thicknesses (i.e., the number of micellar layers) and at different film sizes. We also measured the contact angle between the film and the meniscus; we used the data to estimate the structural film interaction energy barrier and the apparent diffusion coefficient. We used the two-dimensional diffusion model to model the dynamics of the dark spot expansion with consideration to the apparent diffusion coefficient and the film size. The model predictions are in good agreement with the experimental observations. On the basis of this model, we carried out a parametric study depicting the effects of the film thickness (or the number of micellar layers) and film area on the rate of the dark spot expansion. We also generalized the model previously proposed by Kralchevsky et al. [ Langmuir 1990 , 6 , 1180 - 1189 ], incorporating the effects of the film size, film thickness, and apparent diffusion coefficient to predict the dark spot expansion rate.

  9. Organisation and shape of micellar solutions of block-copolymers

    Gaspard, J.P.; Creutz, S.; Bouchat, P.; Jerome, R.; Cohen Stuart, M.A.


    Diblock copolymers of polymethacrylic acid sodium salt, forming the hair, and styrene derivatives have been studied in aqueous solutions by SANS and SAXS. The influence of both the chemical nature and the length of the hydrophobic bloxk on the size and shape of micelles have been investigated. The m

  10. Study of monoprotic acid-base equilibria in aqueous micellar solutions of nonionic surfactants using spectrophotometry and chemometrics.

    Babamoradi, Hamid; Abdollahi, Hamid


    Many studies have shown the distribution of solutes between aqueous phase and micellar pseudo-phase in aqueous micellar solutions. However, spectrophotometric studies of acid-base equilibria in these media do not confirm such distribution because of the collinearity between concentrations of chemical species in the two phases. The collinearity causes the number of detected species to be equal to the number of species in a homogenous solution that automatically misinterpreted as homogeneity of micellar solutions, therefore the collinearity is often neglected. This interpretation is in contradiction to the distribution theory in micellar media that must be avoided. Acid-base equilibrium of an indicator was studied in aqueous micellar solutions of a nonionic surfactant to address the collinearity using UV/Visible spectrophotometry. Simultaneous analysis (matrix augmentation) of the equilibrium and solvation data was applied to eliminate the collinearity from the equilibrium data. A model was then suggested for the equilibrium that was fitted to the augmented data to estimate distribution coefficients of the species between the two phases. Moreover, complete resolution of concentration and spectral profiles of species in each phase was achieved.

  11. An Asymptotic Theory for the Re-Equilibration of a Micellar Surfactant Solution

    Griffiths, I. M.


    Micellar surfactant solutions are characterized by a distribution of aggregates made up predominantly of premicellar aggregates (monomers, dimers, trimers, etc.) and a region of proper micelles close to the peak aggregation number, connected by an intermediate region containing a very low concentration of aggregates. Such a distribution gives rise to a distinct two-timescale reequilibration following a system dilution, known as the t1 and t2 processes, whose dynamics may be described by the Becker-Döring equations. We use a continuum version of these equations to develop a reduced asymptotic description that elucidates the behavior during each of these processes.© 2012 Society for Industrial and Applied Mathematics.

  12. Micellar liquid chromatographic determination of sertaconazole and terconazole in bulk, pharmaceutical dosage forms and spiked human plasma

    Mohamed Rizk


    Full Text Available A micellar liquid chromatographic method was developed for the determination of sertaconazole and terconazole in bulk, dosage forms and human plasma using intersil cyano column and mobile phase consisting of 0.1 M sodium dodecyl sulphate, 20% 1-propanol, and 0.3% triethylamine in 0.02 M ortho-phosphoric acid (pH 4 at 225 nm. Different chromatographic parameters were studied, e.g. types of columns, pH of mobile phase, concentration of sodium dodecyl sulphate, 1-propanol, triethylamine, etc. The method was validated over the concentration ranges 8–40 and 16–80 μg/ml, for sertaconazole and terconazole, respectively. The method was sensitive with limits of detection of 1.24 and 1.67 μg/ml for sertaconazole and terconazole in bulk, respectively. Inter and intra-day results showed % RSD < 0.9% and 1.55% for sertaconazole and terconazole, respectively. The result obtained by the proposed method was compared with that obtained by the reference HPLC technique. Furthermore, the proposed method was successfully applied as a stability-indicating method for the determination of drugs under different stressed conditions. The method showed good selectivity, repeatability, linearity and sensitivity according to the evaluation of the validation parameters.

  13. Impact of Micellar Surfactant on Supersaturation and Insight into Solubilization Mechanisms in Supersaturated Solutions of Atazanavir.

    Indulkar, Anura S; Mo, Huaping; Gao, Yi; Raina, Shweta A; Zhang, Geoff G Z; Taylor, Lynne S


    The goals of this study were to determine: 1) the impact of surfactants on the "amorphous solubility"; 2) the thermodynamic supersaturation in the presence of surfactant micelles; 3) the mechanism of solute solubilization by surfactant micelles in supersaturated solutions. The crystalline and amorphous solubility of atazanavir was determined in the presence of varying concentrations of micellar sodium dodecyl sulfate (SDS). Flux measurements, using a side-by-side diffusion cell, were employed to determine the free and micellar-bound drug concentrations. The solubilization mechanism as a function of atazanavir concentration was probed using fluorescence spectroscopy. Pulsed gradient spin-echo proton nuclear magnetic resonance (PGSE-NMR) spectroscopy was used to determine the change in micelle size with a change in drug concentration. Changes in the micelle/water partition coefficient, K m/w , as a function of atazanavir concentration led to erroneous estimates of the supersaturation when using concentration ratios. In contrast, determining the free drug concentration using flux measurements enabled improved determination of the thermodynamic supersaturation in the presence of micelles. Fluorescence spectroscopic studies suggested that K m/w changed based on the location of atazanavir solubilization which in turn changed with concentration. Thus, at a concentration equivalent to the crystalline solubility, atazanavir is solubilized by adsorption at the micelle corona, whereas in highly supersaturated solutions it is also solubilized in the micellar core. This difference in solubilization mechanism can lead to a breakdown in the prediction of amorphous solubility in the presence of SDS as well as challenges with determining supersaturation. PGSE-NMR suggested that the size of the SDS micelle is not impacted at the crystalline solubility of the drug but increases when the drug concentration reaches the amorphous solubility, in agreement with the proposed changes in

  14. Effect of the salt-induced micellar microstructure on the nonlinear shear flow behavior of ionic cetylpyridinium chloride surfactant solutions

    Gaudino, D.; Pasquino, R.; Kriegs, H.; Szekely, N.; Pyckhout-Hintzen, W.; Lettinga, M. P.; Grizzuti, N.


    The shear flow dynamics of linear and branched wormlike micellar systems based on cetylpyridinium chloride and sodium salicylate in brine solution is investigated through rheometric and scattering techniques. In particular, the flow and the structural flow response are explored via velocimetry measurements and rheological and rheometric small-angle neutron scattering (SANS) experiments, respectively. Although all micellar solutions display a similar shear thinning behavior in the nonlinear regime, the experimental results show that shear banding sets in only when the micelle contour length L ¯ is sufficiently long, independent of the nature of the micellar connections (either linear or branched micelles). Using rheometric SANS, we observe that the shear banding systems both show very similar orientational ordering as a function of Weissenberg number, while the short branched micelles manifest an unexpected increase of ordering at very low Weissenberg numbers. This suggests the presence of an additional flow-induced relaxation process that is peculiar for branched systems.

  15. Optical properties and inclusion of an organic fluorophore in organized media of micellar solutions and beta-cyclodextrin

    El-Sayed, Yusif S.


    In this study, we prepared a new chalcone compound (3-(4'-diethylaminophenyl)-1-(2-pyridinyl) prop-2-en-1-one abbreviated as DEAPPP) and examined its characterization and photophysical properties such as singlet absorption, molar absorptivity, fluorescence spectra, and fluorescence quantum yield (ϕf). DEAPPP dye exhibited a large red shift in both absorption and emission spectra as solvent polarity increases, indicating a large change in dipole moment of molecule upon excitation. Also, the fluorescence quantum yield was solvent dependent. The absorption and fluorescence emission spectral properties of DEAPPP have been investigated in organized media of aqueous micellar and β-cyclodextrin (CD) solutions. While the absorption spectra were less sensitive to the nature of the added surfactant or CD, the characteristics of the intramolecular charge transfer (ICT) fluorescence were highly sensitive to the properties of the medium. The ICT maximum was strongly blue-shifted with a great enhancement in the fluorescence quantum yield on adding micellar or CD. This indicated that the solubilization of DEAPPP increased in the micellar core and an inclusion complex with β-CD was formed. The critical micelle concentration (CMC) as well as the polarity of the micellar core of sodium dodecyl sulfate (SDS), Cetyltrimethylammonium bromide (CTAB) and Triton X-100 (TX-100) have been determined. The CMC values were in good agreement with the reported values while the polarity was lower indicating that DEAPPP molecules were incorporated in the micellar core not at the micellar interface. The binding constants of DEAPPP: micelles or DEAPPP: CD complexes have been also determined.

  16. Origin of shear thickening in semidilute wormlike micellar solutions and evidence of elastic turbulence

    Marín-Santibáñez, Benjamín M. [Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, U.P.A.L.M. C.P. 07738, Col. S. P. Zacatenco, Del. Gustavo A. Madero, Mexico D.F. (Mexico); Pérez-González, José, E-mail: [Laboratorio de Reología y Física de la Matería Blanda, Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, U.P.A.L.M. C.P. 07730, Col. S. P. Zacatenco, Del. Gustavo A. Madero, Mexico D.F. (Mexico); Rodríguez-González, Francisco [Departamento de Biotecnología, Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, C.P. 62731, Col. San Isidro, Yautepec, Morelos (Mexico)


    The origin of shear thickening in an equimolar semidilute wormlike micellar solution of cetylpyridinium chloride and sodium salicylate was investigated in this work by using Couette rheometry, flow visualization, and capillary Rheo-particle image velocimetry. The use of the combined methods allowed the discovery of gradient shear banding flow occurring from a critical shear stress and consisting of two main bands, one isotropic (transparent) of high viscosity and one structured (turbid) of low viscosity. Mechanical rheometry indicated macroscopic shear thinning behavior in the shear banding regime. However, local velocimetry showed that the turbid band increased its viscosity along with the shear stress, even though barely reached the value of the viscosity of the isotropic phase. This shear band is the precursor of shear induced structures that subsequently give rise to the average increase in viscosity or apparent shear thickening of the solution. Further increase in the shear stress promoted the growing of the turbid band across the flow region and led to destabilization of the shear banding flow independently of the type of rheometer used, as well as to vorticity banding in Couette flow. At last, vorticity banding disappeared and the flow developed elastic turbulence with chaotic dynamics.


    Although surfactants have received considerable attention as a potential means for enhancing the recovery of organic compounds from the subsurface, only limited information is available regarding the micellar solubilization of common groundwater contaminants by nonionic surfactan...

  18. Fast relaxation of a hexagonal Poiseuille shear-induced near-surface phase in a threadlike micellar solution.

    Hamilton, W A; Butler, P D; Magid, L J; Han, Z; Slawecki, T M


    The dynamics of near-surface conformations in complex fluids under flow should dramatically affect their rheological properties. We have made the first measurements resolving the decay kinetics of a hexagonal phase induced in a threadlike polyionic micellar system under Poiseuille shear near a quartz surface. Upon cessation of shearing flow, this minimum interference crystalline phase formed within approximately 20 microm of the surface "melts" to a metastable two-dimensional liquid of aligned micelles in approximately 0.7 s. This is some three orders of magnitude shorter than the time required for bulk (Couette) shear-aligned micelles in this system to reach a fully entangled state.

  19. Fluid-Induced Propulsion of Rigid Particles in Wormlike Micellar Solutions

    Gagnon, David A; Shen, Xiaoning; Arratia, Paulo E


    In the absence of inertia, a reciprocal swimmer achieves no net motion in a viscous Newtonian fluid. Here, we investigate the ability of a reciprocally actuated particle to translate through a complex, "structured" fluid using tracking methods and birefringence imaging. A geometrically polar particle, a rod with a bead on one end, is reciprocally rotated using magnetic fields. The particle is immersed in a wormlike micellar solution that is known to be susceptible to shear banding and the formation of local anisotropic structures. Results show that the nonlinearities present in this structured fluid break time-reversal symmetry under certain conditions, and enable propulsion of an artificial "swimmer." We find three regimes dependent on the Deborah number (De): net motion towards the bead at low De, net motion towards the rod at intermediate De, and no propulsion at high De. At low De, we believe propulsion is caused by an imbalance in the first normal stress differences between the two ends of the particle (...

  20. Bulk viscosity, interaction and the viability of phantom solutions

    Leyva, Yoelsy


    We study the dynamics of a bulk viscosity model in the Eckart approach for a spatially flat Friedmann-Robertson-Walker (FRW) universe. We have included radiation and dark energy, assumed as perfect fluids, and dark matter treated as an imperfect fluid having bulk viscosity. We also introduce an interaction term between the dark matter and dark energy components. Considering that the bulk viscosity is proportional to the dark matter energy density and imposing a complete cosmological dynamics, we find bounds on the bulk viscosity in order to reproduce a matter-dominated era (MDE). This constraint is independent of the interaction term. Some late time phantom solutions are mathematically possible. However, the constraint imposed by a MDE restricts the interaction parameter, in the phantom solutions, to a region consistent with a null value, eliminating the possibility of late time stable solutions with $w<-1$. From the different cases that we study, the only possible scenario, with bulk viscosity and interac...

  1. Structural and phase transition changes of sodium dodecyl sulfate micellar solution in alcohols probed by small-angle neutron scattering (SANS)

    Putra, Edy Giri Rachman [Neutron Scattering Laboratory, National Nuclear Energy Agency of Indonesia (BATAN), Gedung 40 BATAN, Kawasan Puspiptek Serpong, Tangerang 15314 (Indonesia); Patriati, Arum [Neutron Scattering Laboratory, National Nuclear Energy Agency of Indonesia (BATAN), Gedung 40 BATAN, Kawasan Puspiptek Serpong, Tangerang 15314 (Indonesia); Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Gadjah Mada, Bulaksumur, Yogyakarta 55281, Indonesia (Indonesia)


    Small-angle neutron scattering (SANS) measurements on 0.3M sodium dodecyl sulfate (SDS) micellar solutions have been performed in the presence of n-alcohols, from ethanol to decanol at different alcohol concentrations, 2–10 wt%. The ellipsoid micellar structure which occurred in the 0.3M SDS in aqueous solution with the size range of 30–50 Å has different behavior at various hydrocarbon chain length and concentration of alcohols. At low concentration and short chain-length of alcohols, such as ethanol, propanol, and butanol, the size of micelles reduced and had a spherical-like structure. The opposite effect occurred as medium to long chain alcohols, such as hexanol, octanol and decanol was added into the 0.3M SDS micellar solutions. The micelles structure changed to be more elongated in major axis and then crossed the critical phase transition from micellar solution into liquid crystal phase as lamellar structure emerged by further addition of alcohols. The inter-lamellar distances were also depending on the hydrocarbon chain length and concentration of alcohols. In the meantime, the persistent micellar structures occurred in addition of medium chain of n-alcohol, pentanol at all concentrations.

  2. Fast relaxation of a hexagonal Poiseuille shear-induced near-surface phase in a threadlike micellar solution

    Hamilton, W.A. [Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6393 (United States); Butler, P.D.; Slawecki, T.M. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Magid, L.J.; Han, Z. [Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996 (United States)


    The dynamics of near-surface conformations in complex fluids under flow should dramatically affect their rheological properties. We have made the first measurements resolving the decay kinetics of a hexagonal phase induced in a threadlike polyionic micellar system under Poiseuille shear near a quartz surface. Upon cessation of shearing flow, this minimum interference crystalline phase formed within {approximately}20 {mu}m of the surface {open_quotes}melts{close_quotes} to a metastable two-dimensional liquid of aligned micelles in {approximately}0.7 s. This is some three orders of magnitude shorter than the time required for bulk (Couette) shear-aligned micelles in this system to reach a fully entangled state. {copyright} {ital 1999} {ital The American Physical Society}

  3. Micellar properties and surface activity of some bolaform drugs in aqueous solution.

    Attwood, D; Natarajan, R


    The micellar properties of a series of dicationic drugs with structures resembling those of the bolaform electrolytes have been examined using light scattering, surface tension and conductivity techniques. The compounds investigated included, demecarium bromide, ambenonium chloride, dequalinium acetate, distigmine bromide and chlorhexidine acetate. Demecarium and dequalinium formed micelles at critical concentrations of 9 x 10(-3) and 4 x 10(-3) mol kg-1 respectively. No significant association of chlorhexidine acetate could be detected, contrary to previous reports.

  4. On the predictions and limitations of the Becker–Döring model for reaction kinetics in micellar surfactant solutions

    Griffiths, I.M.


    We investigate the breakdown of a system of micellar aggregates in a surfactant solution following an order-one dilution. We derive a mathematical model based on the Becker-Döring system of equations, using realistic expressions for the reaction constants fit to results from Molecular Dynamics simulations. We exploit the largeness of typical aggregation numbers to derive a continuum model, substituting a large system of ordinary differential equations for a partial differential equation in two independent variables: time and aggregate size. Numerical solutions demonstrate that re-equilibration occurs in two distinct stages over well-separated timescales, in agreement with experiment and with previous theories. We conclude by exposing a limitation in the Becker-Döring theory for re-equilibration of surfactant solutions. © 2011 Elsevier Inc.

  5. Mixtures of lecithin and bile salt can form highly viscous wormlike micellar solutions in water.

    Cheng, Chih-Yang; Oh, Hyuntaek; Wang, Ting-Yu; Raghavan, Srinivasa R; Tung, Shih-Huang


    The self-assembly of biological surfactants in water is an important topic for study because of its relevance to physiological processes. Two common types of biosurfactants are lecithin (phosphatidylcholine) and bile salts, which are both present in bile and involved in digestion. Previous studies on lecithin-bile salt mixtures have reported the formation of short, rodlike micelles. Here, we show that lecithin-bile salt micelles can be further induced to grow into long, flexible wormlike structures. The formation of long worms and their resultant entanglement into transient networks is reflected in the rheology: the fluids become viscoelastic and exhibit Maxwellian behavior, and their zero-shear viscosity can be up to a 1000-fold higher than that of water. The presence of worms is further confirmed by data from small-angle neutron and X-ray scattering and from cryo-transmission electron microscopy (cryo-TEM). We find that micellar growth peaks at a specific molar ratio (near equimolar) of bile salt:lecithin, which suggests a strong binding interaction between the two species. In addition, micellar growth also requires a sufficient concentration of background electrolyte such as NaCl or sodium citrate that serves to screen the electrostatic repulsion of the amphiphiles and to "salt out" the amphiphiles. We postulate a mechanism based on changes in the molecular geometry caused by bile salts and electrolytes to explain the micellar growth.

  6. Enhanced Micellar Catalysis LDRD.

    Betty, Rita G.; Tucker, Mark D; Taggart, Gretchen; Kinnan, Mark K.; Glen, Crystal Chanea; Rivera, Danielle; Sanchez, Andres; Alam, Todd Michael


    The primary goals of the Enhanced Micellar Catalysis project were to gain an understanding of the micellar environment of DF-200, or similar liquid CBW surfactant-based decontaminants, as well as characterize the aerosolized DF-200 droplet distribution and droplet chemistry under baseline ITW rotary atomization conditions. Micellar characterization of limited surfactant solutions was performed externally through the collection and measurement of Small Angle X-Ray Scattering (SAXS) images and Cryo-Transmission Electron Microscopy (cryo-TEM) images. Micellar characterization was performed externally at the University of Minnesotas Characterization Facility Center, and at the Argonne National Laboratory Advanced Photon Source facility. A micellar diffusion study was conducted internally at Sandia to measure diffusion constants of surfactants over a concentration range, to estimate the effective micelle diameter, to determine the impact of individual components to the micellar environment in solution, and the impact of combined components to surfactant phase behavior. Aerosolized DF-200 sprays were characterized for particle size and distribution and limited chemical composition. Evaporation rates of aerosolized DF-200 sprays were estimated under a set of baseline ITW nozzle test system parameters.

  7. Application of Surfactant Micellar Solutions as Extractants and Mobile Phases for TLC-Determination of Purine Bases and Doping Agents in Biological Liquids

    Daria Victorovna Yedamenko


    Full Text Available Separation of caffeine and its metabolites (theophylline and theobromine and doping agents (spironolactone, propranolol, and ephedrine and determination of caffeine in serum sample and propranolol and ephedrine in urine were studied on normal-phase thin layers (“Sorbfil-UV-254”. Aqueous organic solvents and aqueous micellar surfactant solutions were compared as the mobile phases for separation. The acceptable separation of purine bases and doping agents was achieved by micellar Thin Layer Chromatography and normal-phase Thin Layer Chromatography. Anionic surfactant solution with added 1-propanol was the best eluent as for caffeine, theophylline, and theobromine separation, as for doping agents. The best characteristics of caffeine extraction from serum, and propranolol and ephedrine from urine were achieved when micellar eluent based on non-ionic Tween-80 surfactant was used. DOI:

  8. Effect of calcium chelators on heat coagulation and heat-induced changes of concentrated micellar casein solutions: The role of calcium-ion activity and micellar integrity

    Kort, de E.J.P.; Minor, M.; Snoeren, T.A.L.; Hooijdonk, van A.C.M.; Linden, van der E.


    There is general consensus that calcium chelators enhance heat stability in milk. However, they increase the heat stability to considerably different extents. For this reason, the effect of various calcium chelators on heat coagulation and heat-induced changes of concentrated micellar casein

  9. Effect of calcium chelators on heat coagulation and heat-induced changes of concentrated micellar casein solutions: The role of calcium-ion activity and micellar integrity

    Kort, de E.J.P.; Minor, M.; Snoeren, T.A.L.; Hooijdonk, van A.C.M.; Linden, van der E.


    There is general consensus that calcium chelators enhance heat stability in milk. However, they increase the heat stability to considerably different extents. For this reason, the effect of various calcium chelators on heat coagulation and heat-induced changes of concentrated micellar casein solutio

  10. Bulk viscosity, interaction and the viability of phantom solutions

    Leyva, Yoelsy; Sepulveda, Mirko [Universidad de Tarapaca, Departamento de Fisica, Facultad de Ciencias, Arica (Chile)


    We study the dynamics of a bulk viscosity model in the Eckart approach for a spatially flat Friedmann-Robertson-Walker (FRW) Universe. We have included radiation and dark energy, assumed as perfect fluids, and dark matter treated as an imperfect fluid having bulk viscosity. We also introduce an interaction term between the dark matter and dark energy components. Considering that the bulk viscosity is proportional to the dark matter energy density and imposing a complete cosmological dynamics, we find bounds on the bulk viscosity in order to reproduce a matter-dominated era (MDE). This constraint is independent of the interaction term. Some late time phantom solutions are mathematically possible. However, the constraint imposed by a MDE restricts the interaction parameter, in the phantom solutions, to a region consistent with a null value, eliminating the possibility of late time stable solutions with w < -1. From the different cases that we study, the only possible scenario, with bulk viscosity and interaction term, belongs to the quintessence region. In the latter case, we find bounds on the interaction parameter compatible with latest observational data. (orig.)

  11. A simple spectrophotometric method for the determination of trace level lead in biological samples in the presence of aqueous micellar solutions

    Khan, Humaira; Ahmed, M. Jamaluddin; Bhanger, M. Iqbal


    A very simple, ultra-sensitive and fairly selective new spectrophotometric method has been developed for the rapid determination of lead(II) at ultra-trace level using 1,5-diphenylthiocarbazone (dithizone) in presence of aqueous micellar solutions. The proposed method enabled the determination of lead down to µg l−1 in human blood and urine in aqueous media without resource of any “clean-up” step. The most remarkable point of this method is that the presence of micellar system avoids the prev...

  12. On the appearance of vorticity and gradient shear bands in wormlike micellar solutions of different CPCl/salt systems

    Mütze, Annekathrin, E-mail:; Heunemann, Peggy; Fischer, Peter [ETH Zürich, Institute of Food, Nutrition and Health, Schmelzbergstrasse 9, 8092 Zürich (Switzerland)


    Wormlike micellar salt/surfactant solutions (X-salicylate, cetylpyridinium chloride) are studied with respect to the applied shear stress, concentration, temperature, and composition of the counterions (X = lithium, sodium, potassium, magnesium, and calcium) of the salicylate salt solute to determine vorticity and gradient shear bands. A combination of rheological measurements, laser technique, video analysis, and rheo-small-angle neutron scattering allow for a detailed exploration of number and types of shear bands. Typical flow curves of the solutions show Newtonian, shear-thinning, and shear-thickening flow behavior. In the shear-thickening regime, the solutions show vorticity and gradient shear bands simultaneously, in which vorticity shear bands dominate the visual effect, while gradient shear bands always coexist and predominate the rheological response. It is shown that gradient shear bands change their phases (turbid, clear) with the same frequency as the shear rate oscillates, whereas vorticity shear bands change their phases with half the frequency of the shear rate. Furthermore, we show that with increasing molecular mass of the counterions the number of gradient shear bands increases, while the number of vorticity shear bands remains constant. The variation of temperature, shear stress, concentration, and counterions results in a predictable change in the rheological behavior and therefore allows adjustment of the number of vorticity shear bands in the shear band regime.

  13. A rapid spectrophotometric method for the determination of trace level lead using 1,5-diphenylthiocarbazone in aqueous micellar solutions.

    Khan, Humaira; Ahmed, M Jamaluddin; Bhanger, M Iqbal


    A very simple, ultra-sensitive and fairly selective direct spectrophotmetric method is presented for the rapid determination of lead(II) at ultra-trace level using 1,5-diphenylthiocarbazone (dithizone) in micellar media. The presence of the micellar system avoids the previous steps of solvent extraction and reduces the cost and toxicity while enhancing the sensitivity, selectivity and the molar absorptivity. The molar absorptivities of the lead-dithizone complex formed in the presence of the cationic cetyltrimethylammonium bromide (CTAB) surfactants are almost ten times the value observed in the standard method, resulting in an increase in the sensitivity of the method. The reaction is instantaneous and the absorbance remains stable for over 24 h. The average molar absorption coefficient was found to be 3.99 x 10(5) L mol(-1) cm(-1) and Sandell's sensitivity was 30 ng cm(-2) of Pb. Linear calibration graphs were obtained for 0.06-60 mg L(-1) of Pb(II); the stoichiometric composition of the chelate is 1:2 (Pb:dithizone). The interference from over 50 cations, anions and complexing agents has been studied at 1 mg L(-1) of Pb(II). The method was successfully used in the determination of lead in several standard reference materials (alloys and steels), environmental water samples (potable and polluted), biological samples (human blood and urine), soil samples and solutions containing both lead(II) and lead(IV) and complex synthetic mixtures. The method has high precision and accuracy (sigma = +/-0.01 for 0.5 mg L(-1)).

  14. Corrosion behavior of bulk metallic glasses in different aqueous solutions


    The corrosion behavior of as-cast fully amorphous, structural relaxed amorphous and crystallized Fe65.5Cr4Mo4Ga4P12C5B5.5 bulk metallic glasses (BMGs) in NaCl, HCl and NaOH solutions was investigated by electrochemical polarization and immersion methods. X-ray photoelectron spectroscopy measurements was used to analyze the changes of the elements on the alloy surface before and after immersion in various solutions. The corrosion resistance of the Fe65.5Cr4Mo4Ga4P12C5B5.5 BMG was better than its structural relaxation/crystallization counterparts and common alloys (such as stainless steel, carbonized steel, and steel) in the selected aqueous solutions. The high corrosion resistance of this alloy in corrosive solutions leads to the formation of Fe-, Cr- and Mo-enriched protective thin surface films.

  15. Capillary Separation: Micellar Electrokinetic Chromatography

    Terabe, Shigeru


    Micellar electrokinetic chromatography (MEKC), a separation mode of capillary electrophoresis (CE), has enabled the separation of electrically neutral analytes. MEKC can be performed by adding an ionic micelle to the running solution of CE without modifying the instrument. Its separation principle is based on the differential migration of the ionic micelles and the bulk running buffer under electrophoresis conditions and on the interaction between the analyte and the micelle. Hence, MEKC's separation principle is similar to that of chromatography. MEKC is a useful technique particularly for the separation of small molecules, both neutral and charged, and yields high-efficiency separation in a short time with minimum amounts of sample and reagents. To improve the concentration sensitivity of detection, several on-line sample preconcentration techniques such as sweeping have been developed.

  16. Spectrophotometric determination of acidity constant of some indicators in various micellar media solutions by rank annihilation factor analysis.

    Niazi, Ali; Zolgharnein, Javad; Davoodabadi, Mohammad Reza


    Rank annihilation factor analysis (RAFA) was used to the spectrophotometric studies of the acidity constant of methyl orange, methyl red and methyl violet in water and different micellar solutions at 25 degrees C and an ionic strength of 0.1M. When the acidity constants (surfactant concentration dependent acidity constant) acts as an optimizing object, and simply combined with the pure spectrum of acidic and basic forms, the rank of original data matrix can be reduced. The residual standard deviation (R.S.D.) of the residual matrix after bi-linearization of the background matrix is regarded as the evaluation function. Results show that the acidity constant of these indicators are influenced as the percentages of neutral, cationic and anionic surfactant such as Triton X-100 (poly(oxyethylene)(9.5)p-(1,1,3,3-tetramethyl), sodiumdodecylsulfate (SDS) and cethyltrimethylammonium (CTAB), respectively, added to the solution of these reagents. Also, RAFA is an efficient chemometrics algorithm for completely analysis of acid-base equilibrium systems by spectrophotometric method. Effects of surfactant on acidity constant and absorption spectra are also discussed.

  17. Dielectric model and theoretical analysis of cationic reverse micellar solutions in CTAB/isooctane/n-hexanol/water systems.

    Yang, Likun; Zhao, Kongshuang


    Dielectric relaxation spectra of CTAB reverse micellar solutions, CTAB/isooctane/n-hexanol/water systems with different concentrations of CTAB and different water contents, were investigated in the frequency range from 40 Hz to 110 MHz. Two striking dielectric relaxations were observed at about 10(4) Hz and 10(5) Hz, respectively. Dielectric parameters were obtained by fitting the data using the Cole-Cole equation with two Cole-Cole dispersion terms and the electrode polarization term. These parameters show different variation with the increase of the concentration of CTAB or the water content. In order to explain the two relaxations systematically and obtain detailed information on the systems and the inner surface of the reverse micelles, an electrical model has been constituted. On the basis of this model, the low-frequency dielectric relaxation was interpreted by the radial diffusion of free counterions in the diffuse layer with Grosse model. For the high-frequency dielectric relaxation, Hanai theory and the corresponding analysis method were used to calculate the phase parameters of the constituent phases in these systems. The reasonable analysis results suggest that the high-frequency relaxation probably originated from the interfacial polarization. The structural and electrical information of the present systems were obtained from the phase parameters simultaneously.

  18. Multiscale Modeling of the Effects of Salt and Perfume Raw Materials on the Rheological Properties of Commercial Threadlike Micellar Solutions.

    Tang, Xueming; Zou, Weizhong; Koenig, Peter H; McConaughy, Shawn D; Weaver, Mike R; Eike, David M; Schmidt, Michael J; Larson, Ronald G


    We link micellar structures to their rheological properties for two surfactant body-wash formulations at various concentrations of salts and perfume raw materials (PRMs) using molecular simulations and micellar-scale modeling, as well as traditional surfactant packing arguments. The two body washes, namely, BW-1EO and BW-3EO, are composed of sodium lauryl ethylene glycol ether sulfate (SLEnS, where n is the average number of ethylene glycol repeat units), cocamidopropyl betaine (CAPB), ACCORD (which is a mixture of six PRMs), and NaCl salt. BW-3EO is an SLE3S-based body wash, whereas BW-1EO is an SLE1S-based body wash. Additional PRMs are also added into the body washes. The effects of temperature, salt, and added PRMs on micellar lengths, breakage times, end-cap free energies, and other properties are obtained from fits of the rheological data to predictions of the "Pointer Algorithm" [ Zou , W. ; Larson , R.G. J. Rheol. 2014 , 58 , 1 - 41 ], which is a simulation method based on the Cates model of micellar dynamics. Changes in these micellar properties are interpreted using the Israelachvili surfactant packing argument. From coarse-grained molecular simulations, we infer how salt modifies the micellar properties by changing the packing between the surfactant head groups, with the micellar radius remaining nearly constant. PRMs do so by partitioning to different locations within the micelles according to their octanol/water partition coefficient POW and chemical structures, adjusting the packing of the head and/or tail groups, and by changing the micelle radius, in the case of a large hydrophobic PRM. We find that relatively hydrophilic PRMs with log POW 4, are isolated deep inside the micelle, separating from the tails and swelling the radius of the micelle, leading to shorter micelles and much lower viscosities, leading eventually to swollen-droplet micelles.

  19. Solution processed organic bulk heterojunction tandem solar cells

    Albrecht, Steve; Neher, Dieter [Soft Matter Physics, University of Potsdam, D-14476 Potsdam (Germany)


    One of the critical issues regarding the preparation of organic tandem solar cells from solution is the central recombination contact. This contact should be highly transparent and conductive to provide high recombination currents. Moreover it should protect the 1st subcell from the solution processing of the 2nd subcell. Here, we present a systematic study of various recombination contacts in organic bulk heterojunction tandem solar cells made from blends of different polymers with PCBM. We compare solution processed recombination contacts fabricated from metal-oxides (TiO{sub 2} and ZnO) and PEDOT:PSS with evaporated recombination contacts made from thin metal layers and molybdenum-oxide. The solar cell characteristics as well as the morphology of the contacts measured by AFM and SEM are illustrated. To compare the electrical properties of the varying contacts we show measurements on single carrier devices for different contact-structures. Alongside we present the results of optical modeling of the subcells and the complete tandem device and relate these results to experimental absorption and reflection spectra of the same structures. Based on these studies, layer thicknesses were adjusted for optimum current matching and device performance.

  20. The effect of polymeric additives on the solubilisation of a poorly-soluble drug in micellar solutions of Pluronic F127.

    Oliveira, Cristiane P; Vasconcellos, Luiz C G; Ribeiro, Maria Elenir N P; Ricardo, Nágila M P S; Souza, Ticiane V de P; Costa, Flávia de M L L; Chaibundit, Chiraphon; Yeates, Stephen G; Attwood, David


    The solubilisation of griseofulvin in 1wt% aqueous micellar solutions of Pluronic F127 at 37°C has been modified by adding polyethylene glycol PEG 35000 or poly(vinylpyrrolidone) PVP K30. The solubilisation capacity expressed in terms of unit weight of F127 is increased by the addition of 0.5wt% PEG 35000 to a value approaching double that of a 2.5wt% solution of F127 alone, but there is no advantage in adding 0.5wt% PVP K30.

  1. Spectral and Acid-Base Properties of Hydroxyflavones in Micellar Solutions of Cationic Surfactants

    Lipkovska, N. A.; Barvinchenko, V. N.; Fedyanina, T. V.; Rugal', A. A.


    It has been shown that the spectral characteristics (intensity, position of the absorption band) and the acid-base properties in a series of structurally similar hydroxyflavones depend on the concentration of the cationic surfactants miramistin and decamethoxin in aqueous solutions, and the extent of their changes is more pronounced for hydrophobic quercetin than for hydrophilic rutin. For the first time, we have determined the apparent dissociation constants of quercetin and rutin in solutions of these cationic surfactants (pKa1) over a broad concentration range and we have established that they decrease in the series water-decamethoxin-miramistin.

  2. Highly Selective Derivative Spectrophotometry for Determination of Nickel Using 1-(2-Pyridylazo)-2-naphthol in Tween 80 Micellar Solutions

    Eskandari, Habibollah [University of Mohaghegh Ardebili, Ardebil (Iran, Islamic Republic of)


    A spectrophotometric and first derivative spectrophotometric method was developed in aquatic Tween 80 micellar solutions for selective determination of nickel without using any pre-separation step. 1-(2-Pyridylazo)- 2-naphthol (PAN), as a sensitive chromogenic complexing agent formed a red-colored Ni(II)-PAN complex in Tween 80 media with satisfactory solubility and stability. Conditions such as pH, PAN concentration, type and concentration of micellizing agent were optimized. Molar absorptivity of Ni-PAN complex was found 4.62 x 10{sup 4} L cm{sup -1} mol{sup -1} at 569 nm, under the optimum condition. Calibration graphs were derived by zero, first and second derivative spectrophotometry at maximum wavelengths of 569, 578 and 571 nm with linear ranges of 30-1800, 20-2500 and 30-2000 ng mL{sup -1}, respectively. Precision as standard deviation as well as accuracy as recovery percent were in the range of 1-20 ng mL{sup -1} and 93.3-103.3%, respectively, for the entire of the linear ranges. Spectrophotometric detection limit was 3 ng mL{sup -1} and effects of diverse ions on the first derivative determination of nickel were studied to investigate selectivity of the method. Interferences of cobalt and copper on the nickel determination were prevented using o-phenanthroline as masking agent. The recommended procedures were applied to the various synthetic and stainless steel alloys, tea leaves and human hair, with satisfactory results.

  3. Small angle neutron scattering study of two nonionic surfactants in water micellar solutions

    Rajewska Aldona


    Two classic nonionic surfactants – C14E7 (heptaethylene glycol monotetra-decyl ether) and C10E7 (heptaethylene glycol monodecyl ether) were investigated in heavy water solution for concentration = 0.17% (dilute regime) at different temperatures in the range = 10–35°C by small angle neutron scattering (SANS) method. In the case of C14E7 surfactant – for all temperatures at = 0.17% there are two axial ellipsoidal micelles with longer axis 15 nm at 10°C and 49.5 nm at 35°C in investigated solutions. For C10E7 surfactant at the same concentration of solution and temperature – two axial ellipsoidal micelles were observed, too. The longer axis is equal to 7.5 nm at 10°C, 9 nm at 20°C and at 35°C this axis is equal to 12 nm. Micelles of C10E7 nonionic surfactant are smaller than those of C14E7 surfactant in the same experimental conditions.

  4. Skin Permeation of Testosterone from Viscoelastic Lecithin Reverse Wormlike Micellar Solution.

    Imai, Miko; Hashizaki, Kaname; Yanagi, Aiko; Taguchi, Hiroyuki; Saito, Yoshihiro; Motohashi, Shigeyasu; Fujii, Makiko


    We evaluated testosterone-containing lecithin reverse wormlike micelles (reverse worms) composed of a polar substance/lecithin/isopropyl myristate for transdermal application. Water, D-ribose, or tetraglycerol were used as the polar substance and were key ingredients for forming the reverse worms. Using the reverse worms, 1 wt% of testosterone could be stably solubilized. When using D-ribose as polar substance, the maximum zero-shear viscosity of the reverse worms solution was higher than that of systems using water or tetraglycerol as the polar substance. The mechanism of skin permeation of testosterone from reverse worms solution was elucidated using skin permeation experiments with hairless mouse skin. When the structure of the reverse worms transitioned to lamellar liquid crystals at the skin/formulation interface, testosterone became supersaturated in the formulations. The structural transition occurred in systems using water or D-ribose as the polar substance, increasing the flux of testosterone. The flux of testosterone from reverse worms solution thus depends on the type of polar substance used.

  5. Conformational transition and mass transfer in extraction of proteins by AOT--alcohol--isooctane reverse micellar systems.

    Hong, D P; Lee, S S; Kuboi, R


    We examined quantitatively the effect of alcohols on protein and reverse micellar structure. We used circular dichroism (CD) to compare the effects of various alcohols on the protein structure, and percolation phenomena to evaluate the effects of various alcohols on reverse micellar structure. Upon the addition of alcohols to the bulk aqueous phase, proteins were denatured significantly, depending on the alcohol species and concentration, suggesting that use of alcohol directly to the stripping solution is not effective in back-extraction processes of proteins. In the present study, a new method, a small amount of alcohol is added to the surfactant-organic solution to improve the back-extraction behaviors of proteins. Practically, in the back-extraction process, the alcohols suppressing the cluster formation of reverse micelles (high value of beta1), remarkably improved the back-extraction behavior of proteins. In addition, the same alcohol molecules showed a positive effect on the rate and fraction of protein back-extraction. From a result of the CD measurement of the back-extracted proteins, it was known that the alcohols added to reverse micellar solution allowed the proteins to back-extract safely without causing structural changes. These results show that the values of beta(t), defined by the variation of percolation processes, and the back-extraction behaviors of proteins have a good relationship, suggesting that the back-extraction processes were controlled by the micellar-micellar and protein-micellar interactions.

  6. Multicomponent adhesive hard sphere models and short-ranged attractive interactions in colloidal or micellar solutions.

    Gazzillo, Domenico; Giacometti, Achille; Fantoni, Riccardo; Sollich, Peter


    We investigate the dependence of the stickiness parameters tij=1/(12tauij)--where the tauij are the conventional Baxter parameters--on the solute diameters sigmai and sigmaj in multicomponent sticky hard sphere (SHS) models for fluid mixtures of mesoscopic neutral particles. A variety of simple but realistic interaction potentials, utilized in the literature to model short-ranged attractions present in real solutions of colloids or reverse micelles, is reviewed. We consider: (i) van der Waals attractions, (ii) hard-sphere-depletion forces, (iii) polymer-coated colloids, and (iv) solvation effects (in particular hydrophobic bonding and attractions between reverse micelles of water-in-oil microemulsions). We map each of these potentials onto an equivalent SHS model by requiring the equality of the second virial coefficients. The main finding is that, for most of the potentials considered, the size-dependence of tij(T,sigmai,sigmaj) can be approximated by essentially the same expression, i.e., a simple polynomial in the variable sigmaisigmaj/sigmaij2, with coefficients depending on the temperature T, or--for depletion interactions--on the packing fraction eta0 of the depletant particles.

  7. Nonlinear oscillatory rheology and structure of wormlike micellar solutions and colloidal suspensions

    Gurnon, Amanda Kate

    The complex, nonlinear flow behavior of soft materials transcends industrial applications, smart material design and non-equilibrium thermodynamics. A long-standing, fundamental challenge in soft-matter science is establishing a quantitative connection between the deformation field, local microstructure and macroscopic dynamic flow properties i.e., the rheology. Soft materials are widely used in consumer products and industrial processes including energy recovery, surfactants for personal healthcare (e.g. soap and shampoo), coatings, plastics, drug delivery, medical devices and therapeutics. Oftentimes, these materials are processed by, used during, or exposed to non-equilibrium conditions for which the transient response of the complex fluid is critical. As such, designing new dynamic experiments is imperative to testing these materials and further developing micromechanical models to predict their transient response. Two of the most common classes of these soft materials stand as the focus of the present research; they are: solutions of polymer-like micelles (PLM or also known as wormlike micelles, WLM) and concentrated colloidal suspensions. In addition to their varied applications these two different classes of soft materials are also governed by different physics. In contrast, to the shear thinning behavior of the WLMs at high shear rates, the near hard-sphere colloidal suspensions are known to display increases, sometimes quite substantial, in viscosity (known as shear thickening). The stress response of these complex fluids derive from the shear-induced microstructure, thus measurements of the microstructure under flow are critical for understanding the mechanisms underlying the complex, nonlinear rheology of these complex fluids. A popular micromechanical model is reframed from its original derivation for predicting steady shear rheology of polymers and WLMs to be applicable to weakly nonlinear oscillatory shear flow. The validity, utility and limits of

  8. Solubilization of parabens in aqueous Pluronic solutions: investigating the micellar growth and interaction as a function of paraben composition.

    Khimani, M; Ganguly, R; Aswal, V K; Nath, S; Bahadur, P


    The influence of methyl paraben (MP) and butyl paraben (BP) on the aggregation characteristics of Pluronics in an aqueous medium has been investigated by DLS, SANS, viscometry, and fluorescence measurement techniques. Parabens are extensively used as preservatives in cosmetic, pharmaceutical, and food products. In this paper, we show that their influence on the restructuring and growth of Pluronics micelles vary quite significantly with their aqueous solubility and with the composition of Pluronics. In the case of P105 and P104, MP reduces the sphere-to-rod transition temperature down to room temperature, but BP with significantly less aqueous solubility than MP suppresses such micellar transition and leads to the formation of micellar clusters due to the onset of intermicellar attractive interaction. In the case of more hydrophobic Pluronic P103, on the other hand, both MP and BP are able to induce rapid room temperature sphere-to-rod micellar growth, which is not observed in the presence of water structure making salts like NaCl and Na(3)PO(4). These observations have been attributed to modulation of growth and restructuring processes of the Pluronic micelles arising due to different locations of parabens within the micellar corona as determined by their aqueous solubility and the hydrophobicity of the Pluronics.

  9. Magnetic isotope effect on kinetic parameters and quantum beats of radical pairs in micellar solution studied by optically detected esr using pulsed microwave.

    Kitahama, Yasutaka; Sakaguchi, Yoshio


    We investigated the quantum beats, the oscillation between singlet and triplet states of radical pairs induced by the microwave field resonant to one of the component radicals. They were observed as the alternation of the yields of the component radicals by a nanosecond time-resolved optical absorption with the X-band (9.15 GHz) resonant microwave pulse. This technique was applied to the photochemical reaction of benzophenone, benzophenone-d(10), and benzophenone-carbonyl-(13)C in a sodium dodecylsulfate micellar solution with a step-by-step increase of the resonant microwave pulse width. The yields of the component radicals showed alternation with an increase of the microwave pulse width. This indicates that the radical pair retains spin coherence in the micellar solution. The magnetic isotope effect on the amplitude of the quantum beat was observed. The MW effect on the quantum beat of BP-(13)C decreases from 80% to 60% of that of BP by irradiation of the pi-pulse MW due to spin-locking. The kinetic parameters were also determined using the X- or Ku-band (17.44 GHz) region. They are almost similar to each other except for the intersystem recombination rate in the system of BP-(13)C, which may be slightly higher than those in other systems.

  10. Cosmological Solutions on Compactified AdS_5 with a Thermal Bulk

    Rothstein, I Z


    This paper is an investigation of the effects of a thermal bulk fluid in brane world models compactified on AdS_5. Our primary purpose is to study how such a fluid changes the bulk dynamics and to compare these effects with those generated by matter localized to the branes. We find an exact cosmological solution for a thermally excited massless bulk field, as well as perturbative solutions with matter on the brane and in the bulk. We then perturb around these solutions to find solutions for a massive bulk mode in the limit where the bulk mass (m_B) is small compared to the AdS curvature scale and T< m_B. We find that without a stabilizing potential there are no physical solutions for a thermal bulk fluid. We then include a stabilizing potential and calculate the shift in the radion as well as the time dependence of the weak scale as a function of the bulk mass. It is shown that, as opposed to a brane fluid, the bulk fluid contribution to the bulk dynamics is controlled by the bulk mass.

  11. Micellar Enzymology for Thermal, pH, and Solvent Stability.

    Minteer, Shelley D


    This chapter describes methods for enzyme stabilization using micellar solutions. Micellar solutions have been shown to increase the thermal stability, as well as the pH and solvent tolerance of enzymes. This field is traditionally referred to as micellar enzymology. This chapter details the use of ionic and nonionic micelles for the stabilization of polyphenol oxidase, lipase, and catalase, although this method could be used with any enzymatic system or enzyme cascade system.

  12. Excitation energy transfer in europium chelate with doxycycline in the presence of a second ligand in micellar solutions of nonionic surfactants

    Smirnova, T. D.; Shtykov, S. N.; Kochubei, V. I.; Khryachkova, E. S.


    The complexation of Eu3+ with doxycycline (DC) antibiotic in the presence of several second ligands and surfactant micelles of different types is studied by the spectrophotometric and luminescence methods. It is found that the efficiency of excitation energy transfer in Eu3+-DC chelate depends on the nature of the second ligand and surfactant micelles. Using thenoyltrifluoroacetone (TTA) as an example, it is shown that the second ligand additionally sensitizes the europium fluorescence, and the possibility of intermediate sensitization of DC and then of europium is shown by the example of 1,10-phenanthroline. In all cases, the excitation energy transfer efficiency was increased due to the so-called antenna effect. The decay kinetics of the sensitized fluorescence of the binary and mixed-ligand chelates in aqueous and micellar solutions of nonionic surfactants is studied and the relative quantum yields and lifetimes of fluorescence are determined.

  13. Pressure-induced melting of micellar crystal

    Mortensen, K.; Schwahn, D.; Janssen, S.


    Aqueous solutions of triblock copolymers of poly(ethylene oxide) and poly(propylene oxide) aggregate at elevated temperatures into micelles which for polymer concentrations greater-than-or-equal-to 20% make a hard sphere crystallization to a cubic micellar crystal. Structural studies show...... that pressure improves the solvent quality of water, thus resulting in decomposition of the micelles and consequent melting of the micellar crystal. The combined pressure and temperature dependence reveals that in spite of the apparent increase of order on the 100 angstrom length scale upon increasing...... temperature (decreasing pressure) the overall entropy increases through the inverted micellar crystallization characteristic....

  14. Regular Bulk Solutions in Brane-worlds with Inhomogeneous Dust and Generalized Dark Radiation

    Herrera-Aguilar, A; da Rocha, Roldao


    From the dynamics of a brane-world with matter fields present in the bulk, the bulk metric and the black string solution near the brane are generalized, when both the dynamics of inhomogeneous dust/generalized dark radiation on the brane-world and inhomogeneous dark radiation in the bulk as well are considered -- as exact dynamical collapse solutions. Based on the analysis on the inhomogeneous static exterior of a collapsing sphere of homogeneous dark radiation on the brane, the associated black string warped horizon is studied, as well as the 5D bulk metric near the brane. Moreover, the black string and the bulk are shown to be more regular upon time evolution, for suitable values for the dark radiation parameter in the model, by analyzing the physical soft singularities.

  15. Regular Bulk Solutions in Brane-Worlds with Inhomogeneous Dust and Generalized Dark Radiation

    A. Herrera-Aguilar


    Full Text Available From the dynamics of a brane-world with matter fields present in the bulk, the bulk metric and the black string solution near the brane are generalized, when both the dynamics of inhomogeneous dust/generalized dark radiation on the brane-world and inhomogeneous dark radiation in the bulk as well are considered as exact dynamical collapse solutions. Based on the analysis on the inhomogeneous static exterior of a collapsing sphere of homogeneous dark radiation on the brane, the associated black string warped horizon is studied, as well as the 5D bulk metric near the brane. Moreover, the black string and the bulk are shown to be more regular upon time evolution, for suitable values for the dark radiation parameter in the model, by analyzing the soft physical singularities.

  16. Mixed micellar properties of sodium n-octanoate(SOC) with n-octylammonium chloride(OAC) in aqueous solution

    Lee, Byung Hwan [Korea University of Technology, Chonan (Korea, Republic of)


    The critical concentration(CMC) and the counterion binding constant(B) for the mixed micellization of sodium n-octanoate(SOC) with n-octylammonium chloride(OAC) were determined as a function of the overall mole fraction of SOC({alpha}{sub 1}). Various thermodynamic parameters(X{sub i}, {gamma}{sub i}, C{sub i}, a{sub i}{sup M}, and {delta}H{sub mix}) for the mixed micellization of the SOC/OAC systems have been calculated and analyzed by means of the equations derived from the nonideal mixed micellar model. The results show that there are great deviations from the ideal behavior for the mixed micellization of these systems. And other thermodynamic parameters({delta}G{sub m}{sup o}, {delta}H{sub m}{sup o}, and {delta}S{sub m}{sup o}) associated with the micellization of SOC, OAC, and their mixture({alpha}{sub 1}=0.5) have been also estimated from the temperature dependence of CMC and B values, and the significance of these parameters and their relation to the theory of the micelle formation have been considered and analyzed by comparing each other.

  17. Excimer formation and singlet-singlet energy transfer of organoluminophores in the premicellar and micellar-polyelectrolytes solutions

    Bisenbaev, Adel K.; Levshin, L. V.; Saletsky, A. M.


    Recently the investigation of photoprocesses in organized synthetical structures (ionic micelles, vesicles, linear polyelectrolytes, polymer gels etc.), intermolecular interactions of which are formed by hydrophobic and electric forces, have been of great interest.12 These systems are of particular interest due to the possibility of using luminescent data, which reflected the peculiarities of photoprocesses in organized assemblies. This can be used to establishing the mechanism of photobiological processes. Due to the very complex nature of biostructures our approximation can be considered phenomenological, however it gives the possibility of revealing the energy dissipation path in biosystems. Such model approach is based on a principal resemblance between a living matter and synthetical polymolecular structures with a certain degree of organization. This resemblance is displayed in theoretical models of synthetic polymers,3 which are the foundation of modern ideas on biomolecule conformation. Organized synthetical structures like ionic micelles, polymer gel, bilayer and strong polyelectrolytes could be made to represent biosystems like cell, protoplasm, membrane and NADH, respectively. In this paper we report some new results on the complex formation of dyes and detergents in premicellar region and singlet-singlet energy transfer from pyrene (Py) excimer to dye monomers in ionic micellar-polyion-water system.

  18. Removal of asphaltene and paraffin deposits using micellar solutions and fused reactions. Final report, 1995--1997

    Chang, C.L.; Nalwaya, V.; Singh, P.; Fogler, H.S.


    Chemical treatments of paraffin and asphaltene deposition by means of cleaning fluids were carried out in this research project. Research focused on the characterization of asphaltene and paraffin materials and dissolution of asphaltene and paraffin deposits using surfactant/micellar fluids developed early in the project. The key parameters controlling the dissolution rate were identified and the process of asphaltene/paraffin dissolution were examined using microscopic apparatus. Numerical modeling was also carried out to understand the dissolution of paraffin deposits. The results show that fused chemical reaction systems are a promising way of removing paraffin deposits in subsea pipelines. The fused system may be in the form of alternate pulses, emulsions systems or encapsulated catalyst systems. Fused reaction systems, in fact, are extremely cost-effective--less than 10% of the cost of replacing entire sections of the blocked pipeline. The results presented in this report can have a real impact on the petroleum industry and the National Oil Program, if it is realized that the remediation technologies developed here can substantially delay abandonment (due to asphaltene/paraffin plugging) of domestic petroleum resources. The report also sheds new light on the nature and properties of asphaltenes and paraffin deposits which will ultimately help the scientific and research community to develop effective methods in eliminating asphaltene/paraffin deposition problems. It must also be realized that asphaltene remediation technologies developed and presented in this report are a real alternative to aromatic cleaning fluids currently used by the petroleum industry.

  19. Family of singular solutions in a SUSY bulk-boundary system

    Ichinose, Shoichi; Murayama, Akihiro


    A set of classical solutions of a singular type is found in a 5D SUSY bulk-boundary system. The 'parallel' configuration, where the whole components of fields or branes are parallel in the iso-space, naturally appears. It has three free parameters related to the scale freedom in the choice of the brane-matter sources and the 'free' wave property of the extra component of the bulk-vector field. The solutions describe brane, anti-brane and brane-anti-brane configurations depending on the parameter choice. Some solutions describe the localization behaviour even after the non-compact limit of the extra space. Stableness is assured. Their meaning in the brane world physics is examined in relation to the stableness, localization, non-singular (kink) solution and the bulk Higgs mechanism.

  20. Family of singular solutions in a SUSY bulk-boundary system

    Ichinose, Shoichi; Murayama, Akihiro


    A set of classical solutions of a singular type is found in a 5D SUSY bulk-boundary system. The "parallel" configuration, where the whole components of fields or branes are parallel in the iso-space, naturally appears. It has three free parameters related to the scale freedom in the choice of the brane-matter sources and the "free" wave property of the extra component of the bulk-vector field. The solutions describe brane, anti-brane and brane-anti-brane configurations depending on the parameter choice. Some solutions describe the localization behaviour even after the non-compact limit of the extra space. Stableness is assured. Their meaning in the brane world physics is examined in relation to the stableness, localization, non-singular (kink) solution and the bulk Higgs mechanism.

  1. Family of Singular Solutions in A SUSY Bulk-Boundary System

    Ichinose, S; Ichinose, Shoichi; Murayama, Akihiro


    A set of classical solutions of a singular type is found in a 5D SUSY bulk-boundary system. The "parallel" configuration, where the whole components of fields or branes are parallel in the iso-space, naturally appears. It has three {\\it free} parameters related to the {\\it scale freedom} in the choice of the brane-matter sources and the {\\it "free" wave} property of the extra component of the bulk-vector field. The solutions describe brane, anti-brane and brane-anti-brane configurations depending on the parameter choice. Some solutions describe the localization behaviour even after the non-compact limit of the extra space. Stableness is assured. Their meaning in the brane world physics is examined in relation to the stableness, localization, non-singular (kink) solution and the bulk Higgs mechanism.

  2. Solution-processed inorganic bulk nano-heterojunctions and their application to solar cells

    Rath, Arup K.; Bernechea, Maria; Martinez, Luis; de Arquer, F. Pelayo Garcia; Osmond, Johann; Konstantatos, Gerasimos


    In the last decade, solution-processed quantum dot/nanocrystal solar cells have emerged as a very promising technology for third-generation thin-film photovoltaics because of their low cost and high energy-harnessing potential. Quantum dot solar cell architectures developed to date have relied on the use of bulk-like thin films of colloidal quantum dots. Here, we introduce the bulk nano-heterojunction concept for inorganic solution-processed semiconductors. This platform can be readily implemented by mixing different semiconductor nanocrystals in solution and allows for the development of optoelectronic nanocomposite materials with tailored optoelectronic properties. We present bulk nano-heterojunction solar cells based on n-type Bi2S3 nanocrystals and p-type PbS quantum dots, which demonstrate a more than a threefold improvement in device performance compared to their bilayer analogue, as a result of suppressed recombination.

  3. Exact solutions of a Flat Full Causal Bulk viscous FRW cosmological model through factorization

    Cornejo-Pérez, O


    We study the classical flat full causal bulk viscous FRW cosmological model through the factorization method. The method allows to find some new exact parametric solutions for different values of the viscous parameter $s$. Special attention is given to the well known case $s=1/2$, for which the cosmological model admits scaling symmetries. Also, some exact parametric solutions for $s=1/2$ are obtained through the Lie group method.

  4. Micellar solutions of PEO-PPO-PEO block copolymers for in situ phenol removal from fermentation broth

    Heerema, L.D.; Cakali, D.; Roelands, C.P.M.; Goetheer, E.L.V.; Verdoes, D.; Keurentjes, J.


    The applicability of aqueous solutions of Pluronics for the removal of the model product phenol was evaluated. Phenol is a chemical that can be produced by a recombinant strain of the solvent tolerant bacterium Pseudomonas putida S12. However, the growth of the micro-organisms and the phenol

  5. Micellar solutions of PEO-PPO-PEO block copolymers for in situ phenol removal from fermentation broth

    Heerema, L.D.; Cakali, D.; Roelands, C.P.M.; Goetheer, E.L.V.; Verdoes, D.; Keurentjes, J.


    The applicability of aqueous solutions of Pluronics for the removal of the model product phenol was evaluated. Phenol is a chemical that can be produced by a recombinant strain of the solvent tolerant bacterium Pseudomonas putida S12. However, the growth of the micro-organisms and the phenol product

  6. Phenothiazines solution complexity - Determination of pKa and solubility-pH profiles exhibiting sub-micellar aggregation at 25 and 37°C.

    Pobudkowska, Aneta; Ràfols, Clara; Subirats, Xavier; Bosch, Elisabeth; Avdeef, Alex


    The ionization constants (pKa) and the pH-dependent solubility (log S-pH) of six phenothiazine derivatives (promazine hydrochloride, chlorpromazine hydrochloride, triflupromazine hydrochloride, fluphenazine dihydrochloride, perphenazine free base, and trifluoperazine dihydrochloride) were determined at 25 and 37°C. The pKa values of these low-soluble surface active molecules were determined by the cosolvent method (n-propanol/water at 37°C and methanol/water at 25°C). The log S-pH profiles were measured at 24h incubation time in 0.15M phosphate buffers. The log S-pH "shape-template" method, which critically depends on accurate pKa values (determined independently of solubility data), was used to propose speciation models, which were subsequently refined by rigorous mass-action weighted regression procedure described recently. Differential scanning calorimetry (DSC), UV-visible spectrophotometry, potentiometric, and high performance liquid chromatography (HPLC) measurements were used to characterize the compounds. The intrinsic solubility (S0) values of the three least-soluble drugs (chlorpromazine·HCl, triflupromazine·HCl, and trifluoperazine·2HCl) at 25°C were 0.5, 1.1, and 2.7μg/mL (resp.). These values increased to 5.5, 9.2, and 8.7μg/mL (resp.) at the physiological temperature. The enthalpies of solution for the latter compounds were exceptionally high positive (endothermic) values (99-152kJ·mol(-1)). Cationic sub-micellar aggregates were evident (from the distortions in the log S-pH profiles) for chlorpromazine, fluphenazine, perphenazine, and trifluoperazine at 25°C. The effects persisted at 37°C for chlorpromazine and trifluoperazine. The solids in suspension were apparently amorphous in cases where the drugs were introduced as the chloride salts.

  7. TAML activator/peroxide-catalyzed facile oxidative degradation of the persistent explosives trinitrotoluene and trinitrobenzene in micellar solutions.

    Kundu, Soumen; Chanda, Arani; Khetan, Sushil K; Ryabov, Alexander D; Collins, Terrence J


    TAML activators are well-known for their ability to activate hydrogen peroxide to oxidize persistent pollutants in water. The trinitroaromatic explosives, 2,4,6-trinitrotoluene (TNT) and 1,3,5-trinitrobenzene (TNB), are often encountered together as persistent, toxic pollutants. Here we show that an aggressive TAML activator with peroxides boosts the effectiveness of the known surfactant/base promoted breakdown of TNT and transforms the surfactant induced nondestructive binding of base to TNB into an extensive multistep degradation process. Treatment of basic cationic surfactant solutions of either TNT or TNB with TAML/peroxide (hydrogen peroxide and tert-butylhydroperoxide, TBHP) gave complete pollutant removal for both in 75% of the nitrogen and ≥20% of the carbon converted to nitrite/nitrate and formate, respectively. For TNT, the TAML advantage is to advance the process toward mineralization. Basic surfactant solutions of TNB gave the colored solutions typical of known Meisenheimer complexes which did not progress to degradation products over many hours. However with added TAML activator, the color was bleached quickly and the TNB starting compound was degraded extensively toward minerals within an hour. A slower surfactant-free TAML activator/peroxide process also degrades TNT/TNB effectively. Thus, TAML/peroxide amplification effectively advances TNT and TNB water treatment giving reason to explore the environmental applicability of the approach.

  8. Complex Behavior of Aqueous α-Cyclodextrin Solutions. Interfacial Morphologies Resulting from Bulk Aggregation.

    Hernandez-Pascacio, Jorge; Piñeiro, Ángel; Ruso, Juan M; Hassan, Natalia; Campbell, Richard A; Campos-Terán, José; Costas, Miguel


    The spontaneous aggregation of α-cyclodextrin (α-CD) molecules in the bulk aqueous solution and the interactions of the resulting aggregates at the liquid/air interface have been studied at 283 K using a battery of techniques: transmission electron microscopy, dynamic light scattering, dynamic surface tensiometry, Brewster angle microscopy, neutron reflectometry, and ellipsometry. We show that α-CD molecules spontaneously form aggregates in the bulk that grow in size with time. These aggregates adsorb to the liquid/air interface with their size in the bulk determining the adsorption rate. The material that reaches the interface coalesces laterally to form two-dimensional domains on the micrometer scale with a layer thickness on the nanometer scale. These processes are affected by the ages of both the bulk and the interface. The interfacial layer formed is not in fast dynamic equilibrium with the subphase as the resulting morphology is locked in a kinetically trapped state. These results reveal a surprising complexity of the parallel physical processes taking place in the bulk and at the interface of what might have seemed initially like a simple system.

  9. Micellar copolymerization of poly(acrylamide-g-propylene oxide): rheological evaluation and solution characterization; Copolimerizacao micelar de poli(acrilamida-g-oxido de propileno): avaliacao reologica e caracterizacao de suas solucoes

    Sadicoff, Bianca L.; Brandao, Edimir M.; Lucas, Elizabete F. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Macromoleculas]. E-mail:; Amorim, Marcia C.V. [Universidade Estadual, Rio de Janeiro, RJ (Brazil). Inst. de Quimica


    Graft copolymers of polyacrylamide and poly(propylene oxide) were synthesized by a micellar copolymerization technique. The rheological properties of the copolymers solutions were evaluated and compared with literature data for solutions of the same copolymers, synthesized by solution polymerization. The effect of hydrophobe content, salt addition and surfactant addition on the rheological properties were also investigated. Increasing hydrophobe content resulted in higher solution viscosities in the semi-dilute regime. Upon addition of salts, the hydrophobic groups associated to minimize their exposure to water. In the semi-dilute region, higher contents of surfactant added resulted in lower reduced viscosities of the polymer solutions. The copolymers were qualitatively characterized by infra-red spectrometry. (author)

  10. Protolytic properties and complexation of DL-alpha-alanine and DL-alpha-valine and their dipeptides in aqueous and micellar solutions of surfactants

    Chernyshova, O. S.; Boychenko, Oleksandr; Abdulrahman, H.; Loginova, L. P.


    In this work we investigated the effect of the micellar media of anionic (sodium dodecylsulfate, SDS), cationic (cetylpiridinium chloride, CPC) and non-ionic (Brij-35) surfactants on the protolytic properties of amino acids DL-alpha-alanine, DL-alpha-valine and dipeptides L-alpha-alanyl-L-alpha-alan

  11. Study of the micellization and micellar growth in pure alkanediyl-alpha-omega-bis(dodecyldimethylammonium) bromide and MEGA10 surfactant solutions and their mixtures. Influence of the spacer on the enthalpy change accompanying sphere-to-rod transitions.

    Martín, Victoria Isabel; Rodríguez, Amalia; Graciani, María del Mar; Robina, Inmaculada; Moyá, María Luisa


    The micellization and micellar growth in pure aqueous alkanediyl-alpha-omega-bis(dodecyldimethylammonium) bromide, 12-s-12,2Br(-) (with s = 2,5,6,8,10,12), and N-decanoyl-N-methylglucamide MEGA10 solutions and their mixtures are investigated at 303 K. Application of different theoretical approaches to the binary mixtures shows a nonideal behavior. It also shows that the spacer length does not play an important role in the attractive interactions shown by the mixed systems. The sphere-to-rod morphological transition in the pure dimeric micellar solutions is studied at 303 K. From comparison of these results with those at 298 K the key role played by the spacer in the micellar growth is shown. The spacer length controls not only the surfactant concentration at which the morphological transition happens but also the sign of the enthalpy change accompanying the sphere-to-rod equilibrium. Spacers with an even number of methylenes show smaller C* values than those with an odd number of -CH(2)- units. An endothermic enthalpy change is found for even spacers whereas an exothermic enthalpy change is found for odd spacers. To the authors knowledge, this is the first time this experimental trend has been shown. Addition of MEGA10 diminishes the tendency of the aggregates to grow. An increment in the solution mole fraction of MEGA10 makes the formation of elongated micelles difficult. Microviscosity measurements provide additional information about the influence of the MEGA10 content on the sphere-to-rod transition.

  12. Solutions on a brane in a bulk spacetime with Kalb–Ramond field

    Chakraborty, Sumanta, E-mail:; SenGupta, Soumitra, E-mail:


    Effective gravitational field equations on a brane have been derived, when the bulk spacetime is endowed with the second rank antisymmetric Kalb–Ramond field. Since both the graviton and the Kalb–Ramond field are closed string excitations, they can propagate in the bulk. After deriving the effective gravitational field equations on the brane, we solve them for a static spherically symmetric solution. It turns out that the solution so obtained represents a black hole or naked singularity depending on the parameter space of the model. The stability of this model is also discussed. Cosmological solutions to the gravitational field equations have been obtained, where the Kalb–Ramond field is found to behave as normal pressure free matter. For certain specific choices of the parameters in the cosmological solution, the solution exhibits a transition in the behaviour of the scale factor and hence a transition in the expansion history of the universe. The possibility of accelerated expansion of the universe in this scenario is also discussed.

  13. Relaxation times and modes of disturbed aggregate distribution in micellar solutions with fusion and fission of micelles

    Zakharov, Anatoly I.; Adzhemyan, Loran Ts.; Shchekin, Alexander K., E-mail: [Department of Statistical Physics, Faculty of Physics, St. Petersburg State University, Ulyanovskaya 1, Petrodvoretz, St. Petersburg 198504 (Russian Federation)


    We have performed direct numerical calculations of the kinetics of relaxation in the system of surfactant spherical micelles under joint action of the molecular mechanism with capture and emission of individual surfactant molecules by molecular aggregates and the mechanism of fusion and fission of the aggregates. As a basis, we have taken the difference equations of aggregation and fragmentation in the form of the generalized kinetic Smoluchowski equations for aggregate concentrations. The calculations have been made with using the droplet model of molecular surfactant aggregates and two modified Smoluchowski models for the coefficients of aggregate-monomer and aggregate-aggregate fusions which take into account the effects of the aggregate size and presence of hydrophobic spots on the aggregate surface. A full set of relaxation times and corresponding relaxation modes for nonequilibrium aggregate distribution in the aggregation number has been found. The dependencies of these relaxation times and modes on the total concentration of surfactant in the solution and the special parameter controlling the probability of fusion in collisions of micelles with other micelles have been studied.

  14. Characterization of poly(4-vinylpyridine 1-oxide) by free-solution capillary electrophoresis and micellar electrokinetic chromatography.

    Beneito-Cambra, Miriam; Herrero-Martínez, José M; Ramis-Ramos, Guillermo


    The migration characteristics of poly(4-vinylpyridine 1-oxide) (PVP-NO) in phosphate buffers of acidic pH (20 mM H3PO4 or NaH2PO4) have been studied using both free-solution capillary electrophoresis (FSCE) and MEKC. To inhibit adsorption, 250 mM o-phosphoethanolamine (2-aminoethyl dihydrogen phosphate) was used. In FSCE, PVP-NO showed a narrow peak and a broader band, both having anionic behavior. These peak and band were attributed to the free and aggregated or micellized PVP-NO forms, respectively. According to surface tension measurements, the CMC of SDS in the BGE was 1.8 and 0.48 mM in the absence and in the presence of 1000 microg/mL PVP-NO, respectively, and the association of the polymer with SDS was completed at 9.7 mM SDS. Using MEKC, a narrow peak and a broader band also appeared at SDS concentrations of ca. 1 mM, and their intensity increased with the SDS concentration. These peak and band were attributed to the formation of mixed micelles constituted by both free PVP-NO/SDS and aggregated PVP-NO/SDS, respectively. The determination of PVP-NO by FSCE in commercial additives for laundry was demonstrated.

  15. Interstitial solute transport in 3D reconstructed neuropil occurs by diffusion rather than bulk flow

    Holter, Karl Erik; Kehlet, Benjamin; Devor, Anna; Sejnowski, Terrence J.; Dale, Anders M.; Omholt, Stig W.; Ottersen, Ole Petter; Nagelhus, Erlend Arnulf; Mardal, Kent-André; Pettersen, Klas H.


    The brain lacks lymph vessels and must rely on other mechanisms for clearance of waste products, including amyloid β that may form pathological aggregates if not effectively cleared. It has been proposed that flow of interstitial fluid through the brain’s interstitial space provides a mechanism for waste clearance. Here we compute the permeability and simulate pressure-mediated bulk flow through 3D electron microscope (EM) reconstructions of interstitial space. The space was divided into sheets (i.e., space between two parallel membranes) and tunnels (where three or more membranes meet). Simulation results indicate that even for larger extracellular volume fractions than what is reported for sleep and for geometries with a high tunnel volume fraction, the permeability was too low to allow for any substantial bulk flow at physiological hydrostatic pressure gradients. For two different geometries with the same extracellular volume fraction the geometry with the most tunnel volume had 36% higher permeability, but the bulk flow was still insignificant. These simulation results suggest that even large molecule solutes would be more easily cleared from the brain interstitium by diffusion than by bulk flow. Thus, diffusion within the interstitial space combined with advection along vessels is likely to substitute for the lymphatic drainage system in other organs. PMID:28847942

  16. Solubilisation des hydrocarbures dans les solutions micellaires Influence de la structure et de la masse moléculaire Solubilization of Hydrocarbons in Micellar Solutions Influence of Structure and Molecular Weight

    Baviere M.


    (paraffines, résines, asphaltènes sur les propriétés interfaciales, d'une part avec le brut de Daqing, pour effectuer des essais complémentaires, d'autre part avec des constituants modèles en solution dans un solvant approprié. Optimizing the formulation of micellar surfactant solutions used for enhanced oil recovery consists in obtaining interfacial tensions that are as low as possible in multiphase systems resulting from the mixing of the injected solution with formation fluids. The solubilization of hydrocarbons by the micellar phases of such systems is linked directly to the interfacial efficiency of surfactants. Indeed, as has been shown by numerous research projects such as the one by Reed and Healy [1], the amount of hydrocarbons solubilized by the surfactant is all the greater as the interfacial tension between the micellar phase and the hydrocarbons is low. This solubilization depends in particular, although to a great extent, on the nature of the hydrocarbons or, for the processes we are concerned with here, of the hydrocarbon mixtures encountered [181. Likewise, the criteria generally used in applying the process to a reservoir may also be fulfilled (temperature, salinity of the water, viscosity of the oil, nature and permeability of the rock, whereas the chemical nature of the oil turns out to be responsible for very mediocre efficiency. Hence this insufficiency of criteria is revealed for relatively heavy oils such as the oil in the Daqing field in China, for which production may still depend on this recovery method, a priori. The solubilization of this oil by the surfactants normally used is extremely reduced and may perhaps even by almost nil. This particularly unfavorable behavior has brought out the need of specifying selection criteria for fields from the standpoint of the nature of the oil, so as to be able to assess the quality of a crude oil and to detect possible difficulties in applying the process-diff iculties linked to the composition of the

  17. First- and Second-Derivative Spectrophotometry for Simultaneous Determination of Copper and Cobalt by 1-(2-Pyridylazo)-2-naphthol in Tween 80 Micellar Solutions

    Eskandari, Habibollah; SAGHSELOO, Ali Ghanbari


    1-(2-Pyridylazo)-2-naphthol (PAN) has been used for the simultaneous determination of copper and cobalt at trace levels. PAN at pH 1.89 forms red and green complexes with copper and cobalt, respectively, which are soluble in aqueous Tween 80 micellar media and are stable for at least 3 days. Under optimum conditions, calibration graphs were obtained for individual determination of copper and cobalt by zero- and first-derivative spectrophotometry and for simultaneous determination by ...

  18. First- and Second-Derivative Spectrophotometry for Simultaneous Determination of Copper and Cobalt by 1-(2-Pyridylazo)-2-naphthol in Tween 80 Micellar Solutions

    Eskandari, Habibollah; SAGHSELOO, Ali Ghanbari


    1-(2-Pyridylazo)-2-naphthol (PAN) has been used for the simultaneous determination of copper and cobalt at trace levels. PAN at pH 1.89 forms red and green complexes with copper and cobalt, respectively, which are soluble in aqueous Tween 80 micellar media and are stable for at least 3 days. Under optimum conditions, calibration graphs were obtained for individual determination of copper and cobalt by zero- and first-derivative spectrophotometry and for simultaneous determination by ...

  19. Micellar Electrokinetic Chromatography

    Bald, Edward; Kubalczyk, Paweł

    Since the introduction of micellar electrokinetic chromatography by Terabe, several authors have paid attention to the fundamental characteristics of this separation method. In this chapter the theoretical and practical aspects of resolution optimization, as well as the effect of different separation parameters on the migration behavior are discussed. These among others include fundamentals of separation, retention factor and resolution equation, efficiency, selectivity, and various surfactants and additives. Initial conditions for method development and instrumental approaches such as mass spectrometry detection are also mentioned covering the proposals for overcoming the difficulties arising from the coupling micellar electrokinetic chromatography with mass spectrometry detection.

  20. The electrochemical corrosion of bulk nanocrystalline ingot iron in acidic sulfate solution.

    Wang, S G; Shen, C B; Long, K; Zhang, T; Wang, F H; Zhang, Z D


    The corrosion properties of bulk nanocrystalline ingot iron (BNII) fabricated from conventional polycrystalline ingot iron (CPII) by severe rolling were investigated by means of immersion test, potentiodynamic polarization (PDP), electrochemical impedance spectroscopy (EIS) tests, and scanning electron microscopy (SEM) observation. These experimental results indicate that BNII possesses excellent corrosion resistance in comparison with CPII in acidic sulfate solution at room temperature. It may mainly result from different surface microstructures between CPII and BNII. However, the corrosion resistance of nanocrystalline materials is usually degraded because of their metastable microstructure nature, and the residual stress in nanocrystalline materials also can result in degradation of corrosion resistance according to the traditional point of view.

  1. A new application of micellar liquid chromatography in the determination of free ampicillin concentration in the drug-human serum albumin standard solution in comparison with the adsorption method.

    Stępnik, Katarzyna E; Malinowska, Irena; Maciejewska, Małgorzata


    The determination of free drug concentration is a very important issue in the field of pharmacology because only the unbound drug fraction can achieve a pharmacological effect. Due to the ability to solubilize many different compounds in micellar aggregates, micellar liquid chromatography (MLC) can be used for direct determination of free drug concentration. Proteins are not retained on the stationary phase probably due to the formation of protein - surfactant complexes which are excluded from the pores of stationary phase. The micellar method is simple and fast. It does not require any pre-preparation of the tested samples for analysis. The main aim of this paper is to demonstrate a completely new applicability of the analytical use of MLC concerning the determination of free drug concentration in the standard solution of human serum albumin. The well-known adsorption method using RP-HPLC and the spectrophotometric technique was applied as the reference method. The results show that the free drug concentration value obtained in the MLC system (based on the RP-8 stationary phase and CTAB) is similar to that obtained by the adsorption method: both RP-HPLC (95.83μgmL(-1), 79.86% of free form) and spectrophotometry (95.71μgmL(-1), 79.76%). In the MLC the free drug concentration was 93.98μgmL(-1) (78.3%). This indicates that the obtained results are within the analytical range of % of free ampicillin fraction and the MLC with direct sample injection can be treated like a promising method for the determination of free drug concentration.

  2. Solution-Processed Cu2Se Nanocrystal Films with Bulk-Like Thermoelectric Performance.

    Forster, Jason D; Lynch, Jared J; Coates, Nelson E; Liu, Jun; Jang, Hyejin; Zaia, Edmond; Gordon, Madeleine P; Szybowski, Maxime; Sahu, Ayaskanta; Cahill, David G; Urban, Jeffrey J


    Thermoelectric power generation can play a key role in a sustainable energy future by converting waste heat from power plants and other industrial processes into usable electrical power. Current thermoelectric devices, however, require energy intensive manufacturing processes such as alloying and spark plasma sintering. Here, we describe the fabrication of a p-type thermoelectric material, copper selenide (Cu2Se), utilizing solution-processing and thermal annealing to produce a thin film that achieves a figure of merit, ZT, which is as high as its traditionally processed counterpart, a value of 0.14 at room temperature. This is the first report of a fully solution-processed nanomaterial achieving performance equivalent to its bulk form and represents a general strategy to reduce the energy required to manufacture advanced energy conversion and harvesting materials.

  3. Sodium chloride methanol solution spin-coating process for bulk-heterojunction polymer solar cells

    Liu, Tong-Fang; Hu, Yu-Feng; Deng, Zhen-Bo; Li, Xiong; Zhu, Li-Jie; Wang, Yue; Lv, Long-Feng; Wang, Tie-Ning; Lou, Zhi-Dong; Hou, Yan-Bing; Teng, Feng


    The sodium chloride methanol solution process is conducted on the conventional poly(3-hexylthiophene) (P3HT)/[6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) polymer bulk heterojunction solar cells. The device exhibits a power conversion efficiency of up to 3.36%, 18% higher than that of the device without the solution process. The measurements of the active layer by x-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and ultraviolet photoelectron spectroscopy (UPS) indicate a slight phase separation in the vertical direction and a sodium chloride distributed island-like interface between the active layer and the cathode. The capacitance-voltage (C-V) and impedance spectroscopy measurements prove that the sodium chloride methanol process can reduce the electron injection barrier and improve the interfacial contact of polymer solar cells. Therefore, this one-step solution process not only optimizes the phase separation in the active layers but also forms a cathode buffer layer, which can enhance the generation, transport, and collection of photogenerated charge carriers in the device simultaneously. This work indicates that the inexpensive and non-toxic sodium chloride methanol solution process is an efficient one-step method for the low cost manufacturing of polymer solar cells. Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. 2014JBZ009) and the National Natural Science Foundation of China (Grant Nos. 61274063, 61377028, 61475014, and 61475017).

  4. The bulk crystallization of alpha-lactose monohydrate from aqueous solution.

    Raghavan, S L; Ristic, R I; Sheen, D B; Sherwood, J N


    The bulk crystallization of alpha-lactose monohydrate from aqueous solution by primary nucleation has been studied under controlled conditions of supersaturation, temperature, and pH. The induction times to nucleation were extremely long compared with those generally observed for other materials, even at the high supersaturations used in the experiment. As a result, it was necessary to stir the supersaturated solution vigorously to induce nucleation in a reasonable but still lengthy working time. Even then, nucleation only occurred to a limited extent, following which growth ceased for 8-10 h before resuming. After this period, growth recommenced but again slowed to a low rate after another 8 h. At this stage, the yield of product was low and in most cases the particles had achieved sizes close to the maximum noted. The yields increased with further crystallization time (22-72 h total from the recommencement of growth) to give, under high initial supersaturation conditions, amounts of product close to the theoretical value. For the most part, however, the particle size did not increase with this later increase in yield, showing only significant changes after the extremely long total crystallization times. It is proposed that these extreme properties result from the formation in solution by mutarotation of the anomer alpha-lactose, which inhibits nucleation as well as its previously observed influence on growth.

  5. Micellar Copolymerization:the State of the Arts

    FENG Yu-jun


    Over the past two decades, hydrophobically modified water-soluble polymers (HMWSPs),particularly hydrophobically associating polyacrylamides (HAPAMs), have attracted increased interest owing to their practical and fundamental importance[1]. This system usually consists of a hydrophilic backbone with a small proportion (generally less than 2 mol %) of hydrophobic pendent groups. When dissolved in aqueous solutions, the apolar moieties tend to exclude water and are held together by intra- and intermolecular hydrophobic associations. This leads to a transitional network structure that induces a substantial increase in solution viscosity. Such viscosity-building ability is further elevated upon adding salt or increasing temperature due to the enhanced polarity.Additionally, the dynamic associating junctions can be ruptured upon high shear stress, but re-formed when the force ceases. All these unique properties enable HAPAMs attractiveness to various industrial uses in which the control of fluid theology is required.However, it is a great challenge to synthesize HAPAMs since acrylamide and hydrophobic comonomers are mutually incompatible. After attempts using heterogeneous, inverse emulsion,microemulsion, and precipitation copolymerization processes, the commonly accepted method is micellar free radical copolymerization in which an appropriate surfactant is used to solubilize the hydrophobic comonomer[2].In this paper, the sate of the arts for micellar copolymerization is comprehensively reviewed:1. the mechanism of micellar copolymerization;2. parameters affecting micellar copolymerization, including:(1) nature and level of hydrophobic comonomer;(2) nature and content of surfactant used;(3) initiator and temperature.3. structural characteristics of HAPAMs prepared via micellar copolymerization;4. properties of HAPAMs prepared via micellar copolymerization:(1) dilute solution properties;(2) semi-dilute solution properties.5. applications of micellar copolymerization

  6. Electron transfer between excited states of some sulfonated phtha-locyanines and tyrosine as well as trptophan in homogeneous aqueous solution and aqueous micellar media

    张先付; 许慧君; 沈涛


    Rate constants for electron transfer between excited states of several tetrasulfonated phthalocyanines (MTSPC, M = H2, Zn, ClAl, ClGa) and tyrosine or trptophan have been measured in homogeneous aqueous and aqueous micellar media. Cationic micelles formed by surfactant cetyl trimethyl ammonium chloride (CTAC) promote the electron transfer reaction, whereas neutral micelles formed by Triton X-100 depress this process. The calculated free energy change shows that phthalocyanines act as electron donors in the electron transfer reaction of its excited singlet states with tyrosine or trptophan (Type Is), whereas they act as electron acceptors in the reaction of its excited triplet states with tyrosine or trptophan (type IT). The two different electron transfer processes involving singlet and triplet of sensitizer respectively compete with each other and form different intermediates which may induce the formation of different products. Factors that govern the importance of Type Is in the whole reaction includ

  7. Molecular dynamics computer simulation studies of aqueous solutions in clusters, in bulk, and at interfaces

    Yeh, In-Chul


    This dissertation investigates the structural and dynamical properties of aqueous solutions in clusters, in bulk, and at interfaces using molecular dynamics computer simulations. First, the photodetachment spectra of Cl- (H 2O)n (n = 2,3,...15) clusters have been calculated. The dependence of the spectra on the variations in the temperature of the clusters, the potential parameter for the postejected ion, and the type of the potential (pair-wise non-polarizable vs. many-body polarizable) has been investigated. Next, I have compared structural and dynamical properties of bulk water calculated by the simple point charge (SPC) and extended simple point charge (SPC/E) models. Tetrahedral network in SPC water is found to be weaker than those in SPC/E water due to smaller point charges, resulting in a larger self-diffusion coefficient. As a model interfacial system, I discuss the structure of water next to metal surfaces: Pt(100) and Pt(111). The two dimensional Ewald summation technique has been used for the calculation of long range Coulombic forces. Water next to an uncharged metallic surface is perturbed to a distance of 1 nm. Next to the charged surface water is reorienting and when the external field is strong, undergoes a layering transition. The dielectric constant of water as a function of electric fields has been also calculated. Simulations of water between walls and bulk water have been done to confirm the macroscopic nature of the dielectric constant. Calculated dielectric constants have been compared with those obtained by a theoretical prediction and a recent simulation study. Distance dependent density profiles of water near charged Ag(111) surfaces have been calculated and compared with experimental profiles. The effect of ionic screening is accounted for by an exponetially decaying electric field. Finally, I propose a modification in the three dimensional Ewald summation technique for calculations of long-range Coulombic forces for systems with a slab

  8. Dynamic fluorescence quenching of quinine sulfate dication by chloride ion in ionic and neutral micellar environments

    Joshi, Sunita; Varma Y, Tej Varma; Pant, Debi D.


    Fluorescence quenching of Quinine sulfate dication (QSD) by chloride-ion (Cl-) in micellar environments of anionic, sodium dodecyl sulfate (SDS), cationic, cetyltrimethylammonium bromide (CTAB) and neutral, triton X-100 (TX-100) in aqueous phase has been investigated by time-resolved and steady- state fluorescence measurements. The quenching follows linear Stern-Volmer relation in micellar solutions and is dynamic in nature.

  9. Micellar kinetics of a fluorosurfactant through stopped-flow NMR.

    Yushmanov, Pavel V; Furó, István; Stilbs, Peter


    19F NMR chemical shifts and transverse relaxation times T2 were measured as a function of time after quick stopped-flow dilution of aqueous solutions of sodium perfluorooctanoate (NaPFO) with water. Different initial concentrations of micellar solution and different proportions of mixing were tested. Previous stopped-flow studies by time-resolved small-angle X-ray scattering (TR-SAXS) detection indicated a slow (approximately 10 s) micellar relaxation kinetics in NaPFO solutions. In contrast, no evidence of any comparable slow (>100 ms) relaxation process was found in our NMR studies. Possible artifacts of stopped-flow experiments are discussed as well as differences between NMR and SAXS detection methods. Upper bounds on the relative weight of a slow relaxation process are given within existing kinetic theories of micellar dissolution.

  10. Measurements of optical parameters of phantom solution and bulk animal tissues ex vivo at 650 nm

    Sun, Ping; Wang, Yu; Liu, Jian


    Optical parameters of biological tissues, including absorption coefficient (μa), reduced scattering coefficient (μs') or scattering coefficient (μs), anisotropy factor (g) and refractive index (n) are investigated extensively and systemically at wavelength of 650 nm. Intralipid solution was selected to be the tissue phantom in order to test the validity of measurements. Considering the factors of fiber orientation and haemoglobin content, we chose some fresh bulk animal tissues in vitro which were bovine adipose, bovine muscle, porcine adipose, porcine muscle, porcine kidney, porcine liver, mutton and chicken breast. The basic assumption is that in vitro samples are a reasonable representation of the in vivo situation. We have gained numbers of experimental data of Intralipid and some tissues. Particularly, we have set up the close relationships among six optical parameters involving μa, μs', μs, g, n and μt. The experimental results show that for animal tissues, μa, μs' or μs and n rely deeply on muscle fiber orientations. Both of μs and μt range from 10mm-1 to 20mm-1. μa ranges from 10-2 mm-1 to 10-3 mm-1 and g from 0.95 to 0.99. The results of this study will be helpful in further understanding of optical properties of tissues.

  11. An exact solution of three interacting friendly walks in the bulk

    Tabbara, R.; Owczarek, A. L.; Rechnitzer, A.


    We find the exact solution of three interacting friendly directed walks on the square lattice in the bulk, modelling a system of homopolymers that can undergo a multiple polymer fusion or zipping transition by introducing two distinct interaction parameters that differentiate between the zipping of only two or all three walks. We establish functional equations for the model’s corresponding generating function that are subsequently solved exactly by means of the obstinate kernel method. We then proceed to analyse our model, first considering the case where triple-walk interaction effects are ignored, finding that our model exhibits two phases which we classify as free and gelated (or zipped) regions, with the system exhibiting a second-order phase transition. We then analyse the full model where both interaction parameters are incorporated, presenting the full phase diagram and highlighting the additional existence of a first-order gelation (zipping) boundary. Dedicated to Professor Rodney Baxter on the occasion of his 75th birthday.

  12. Micellar liquid chromatography

    Basova, Elena M.; Ivanov, Vadim M.; Shpigun, Oleg A.


    Background and possibilities of practical applications of micellar liquid chromatography (MLC) are considered. Various retention models in MLC, the effects of the nature and concentration of surfactants and organic modifiers, pH, temperature and ionic strength on the MLC efficiency and selectivity are discussed. The advantages and limitations of MLC are demonstrated. The performance of MLC is critically evaluated in relationship to the reversed-phase HPLC and ion-pair chromatography. The potential of application of MLC for the analysis of pharmaceuticals including that in biological fluids and separation of inorganic anions, transition metal cations, metal chelates and heteropoly compounds is described. The bibliography includes 146 references.

  13. Solution electrostatic levitator for measuring surface properties and bulk structures of an extremely supersaturated solution drop above metastable zone width limit

    Lee, Sooheyong; Jo, Wonhyuk; Cho, Yong chan; Lee, Hyun Hwi; Lee, Geun Woo


    We report on the first integrated apparatus for measuring surface and thermophysical properties and bulk structures of a highly supersaturated solution by combining electrostatic levitation with real-time laser/x-ray scattering. Even today, a proper characterization of supersaturated solutions far above their solubility limits is extremely challenging because heterogeneous nucleation sites such as container walls or impurities readily initiate crystallization before the measurements can be performed. In this work, we demonstrate simultaneous measurements of drying kinetics and surface tension of a potassium dihydrogen phosphate (KH2PO4) aqueous solution droplet and its bulk structural evolution beyond the metastable zone width limit. Our experimental finding shows that the noticeable changes of the surface properties are accompanied by polymerizations of hydrated monomer clusters. The novel electrostatic levitation apparatus presented here provides an effective means for studying a wide range of highly concentrated solutions and liquids in deep metastable states.

  14. 胶束及反胶束微环境中的槲皮素金属配合物%Study on Quercetin-Metal Complexes in Micelle Solutions and Reversed Micellar Systems

    李方; 张进; 张新申; 李波


    The critical micelle concentrations (cmc) of surfactants in the Quercetin-metal coordination complex solutions have been determined by using the method of conductance ratio. In Quercetin coordination complex solution there were two cmc values at the lower concentration area of CTAB [C16H33N(CH3)3Br]. And this phenomenon about two cmc points was much similar to that of natural bio-surfactant. All the CTAB, SDBS (C12H25C6H4SO3Na) and Tween-80 could improve the water-solubility of Quercetin coordination complexes when the concentrations of these suffactants were above the cmc values, but only CTAB increased the oil-solubility of these complexes. Therefore, Quercetin-metal-CTAB micelle congeries could go into the octanol phase through oil-water interface. In phospholipid reversed micellar system, the transfer efficiency of complex between the two phases was influenced by pH of the water phase, and around pH 7 the complexes were easy to enter the phospholipid-octanol phase.

  15. Derivation and solution of effective-medium equations for bulk heterojunction organic solar cells

    Richardson, Giles; Please, Colin; Styles, Vanessa


    A drift-diffusion model for charge transport in an organic bulk-heterojunction solar cell, formed by conjoined acceptor and donor materials sandwiched between two electrodes, is formulated. The model accounts for (i) bulk photogeneration of excitons, (ii) exciton drift and recombination, (iii) exciton dissociation (into polarons) on the acceptor-donor interface, (iv) polaron recombination, (v) polaron dissociation into a free electron (in the acceptor) and a hole (in the donor), (vi) electron...

  16. Principles of micellar electrokinetic capillary chromatography applied in pharmaceutical analysis.

    Hancu, Gabriel; Simon, Brigitta; Rusu, Aura; Mircia, Eleonora; Gyéresi, Arpád


    Since its introduction capillary electrophoresis has shown great potential in areas where electrophoretic techniques have rarely been used before, including here the analysis of pharmaceutical substances. The large majority of pharmaceutical substances are neutral from electrophoretic point of view, consequently separations by the classic capillary zone electrophoresis; where separation is based on the differences between the own electrophoretic mobilities of the analytes; are hard to achieve. Micellar electrokinetic capillary chromatography, a hybrid method that combines chromatographic and electrophoretic separation principles, extends the applicability of capillary electrophoretic methods to neutral analytes. In micellar electrokinetic capillary chromatography, surfactants are added to the buffer solution in concentration above their critical micellar concentrations, consequently micelles are formed; micelles that undergo electrophoretic migration like any other charged particle. The separation is based on the differential partitioning of an analyte between the two-phase system: the mobile aqueous phase and micellar pseudostationary phase. The present paper aims to summarize the basic aspects regarding separation principles and practical applications of micellar electrokinetic capillary chromatography, with particular attention to those relevant in pharmaceutical analysis.

  17. Principles of Micellar Electrokinetic Capillary Chromatography Applied in Pharmaceutical Analysis

    Árpád Gyéresi


    Full Text Available Since its introduction capillary electrophoresis has shown great potential in areas where electrophoretic techniques have rarely been used before, including here the analysis of pharmaceutical substances. The large majority of pharmaceutical substances are neutral from electrophoretic point of view, consequently separations by the classic capillary zone electrophoresis; where separation is based on the differences between the own electrophoretic mobilities of the analytes; are hard to achieve. Micellar electrokinetic capillary chromatography, a hybrid method that combines chromatographic and electrophoretic separation principles, extends the applicability of capillary electrophoretic methods to neutral analytes. In micellar electrokinetic capillary chromatography, surfactants are added to the buffer solution in concentration above their critical micellar concentrations, consequently micelles are formed; micelles that undergo electrophoretic migration like any other charged particle. The separation is based on the differential partitioning of an analyte between the two-phase system: the mobile aqueous phase and micellar pseudostationary phase. The present paper aims to summarize the basic aspects regarding separation principles and practical applications of micellar electrokinetic capillary chromatography, with particular attention to those relevant in pharmaceutical analysis.

  18. High Quality, Low Cost Bulk Gallium Nitride Substrates Grown by the Electrochemical Solution Growth Method

    Seacrist, Michael [SunEdison Inc., St. Peters, MO (United States)


    The objective of this project was to develop the Electrochemical Solution Growth (ESG) method conceived / patented at Sandia National Laboratory into a commercially viable bulk gallium nitride (GaN) growth process that can be scaled to low cost, high quality, and large area GaN wafer substrate manufacturing. The goal was to advance the ESG growth technology by demonstrating rotating seed growth at the lab scale and then transitioning process to prototype commercial system, while validating the GaN material and electronic / optical device quality. The desired outcome of the project is a prototype commercial process for US-based manufacturing of high quality, large area, and lower cost GaN substrates that can drive widespread deployment of energy efficient GaN-based power electronic and optical devices. In year 1 of the project (Sept 2012 – Dec 2013) the overall objective was to demonstrate crystalline GaN growth > 100um on a GaN seed crystal. The development plan included tasks to demonstrate and implement a method for purifying reagent grade salts, develop the reactor 1 process for rotating seed Electrochemical Solution Growth (ESG) of GaN, grow and characterize ESG GaN films, develop a fluid flow and reaction chemistry model for GaN film growth, and design / build an improved growth reactor capable of scaling to 50mm seed diameter. The first year’s project objectives were met in some task areas including salt purification, film characterization, modeling, and reactor 2 design / fabrication. However, the key project objective of the growth of a crystalline GaN film on the seed template was not achieved. Amorphous film growth on the order of a few tenths of a micron has been detected with a film composition including Ga and N, plus several other impurities originating from the process solution and hardware. The presence of these impurities, particularly the oxygen, has inhibited the demonstration of crystalline GaN film growth on the seed template. However, the

  19. Crystallization in Micellar Cores: confinement effects and dynamics

    Lund, Reidar; Zinn, Thomas; Willner, Lutz; Department of Chemistry, University of Oslo Team; Forschungszentrum Jülich Collaboration

    It is well known that liquids confined to small nanoscopic pores and droplets exhibit thermal behavior very different from bulk samples. Here we demonstrate that n-alkanes forming 2-3 nm small micellar cores are considerably affected by confinement in analogue with hard confined systems. We study micelles form by self-assembly of a series of well-defined n-Alkyl-PEO polymers in aqueous solutions. By using small-angle X-ray scattering (SAXS), densiometry and differential scanning calorimetry (DSC), we show that n-alkane exhibit a first-order phase transition i.e. melting. Correlating the structural and thermodynamic data, we find that a melting depression can be accurately described by the Gibbs-Thomson equation. ∖f1 The effect of core crystallinity on the molecular exchange kinetics is investigated using time-resolved small-angle neutron scattering (TR-SANS). We show that there are considerable entropic and enthalpic contributions from the chain packing that affect the kinetic stability of micelles. ∖pard

  20. Solution-processed solar cells based on inorganic bulk heterojunctions with evident hole contribution to photocurrent generation.

    Qiu, Zeliang; Liu, Changwen; Pan, Guoxing; Meng, Weili; Yue, Wenjin; Chen, Junwei; Zhou, Xun; Zhang, Fapei; Wang, Mingtai


    To develop solution-processed and novel device structures is of great importance for achieving advanced and low-cost solar cells. In this paper, we report the solution-processed solar cells based on inorganic bulk heterojunctions (BHJs) featuring a bulk crystalline Sb2S3 absorbing layer interdigitated with a TiO2 nanoarray as an electron transporter. A solution-processed amorphous-to-crystalline transformation strategy is used for the preparation of Sb2S3/TiO2-BHJs. Steady-state and dynamic results demonstrate that the crystalline structure in the Sb2S3 absorbing layer is crucial for efficient devices, and a better Sb2S3 crystallization favors a higher device performance by increasing the charge collection efficiency for a higher short-circuit current, due to reduced interfacial and bulk charge recombinations, and enhancing the open-circuit voltage and fill factor with the reduced defect states in the Sb2S3 layer as well. Moreover, an evident contribution to photocurrent generation from the photogenerated holes in the Sb2S3 layer is revealed by experimental and simulated dynamic data. These results imply a kind of potential non-excitonic BHJ for energy conversion.

  1. Absorption, fluorescence, and acid-base equilibria of rhodamines in micellar media of sodium dodecyl sulfate

    Obukhova, Elena N.; Mchedlov-Petrossyan, Nikolay O.; Vodolazkaya, Natalya A.; Patsenker, Leonid D.; Doroshenko, Andrey O.; Marynin, Andriy I.; Krasovitskii, Boris M.


    Rhodamine dyes are widely used as molecular probes in different fields of science. The aim of this paper was to ascertain to what extent the structural peculiarities of the compounds influence their absorption, emission, and acid-base properties under unified conditions. The acid-base dissociation (HR+ ⇄ R + H+) of a series of rhodamine dyes was studied in sodium n-dodecylsulfate micellar solutions. In this media, the form R exists as a zwitterion R±. The indices of apparent ionization constants of fifteen rhodamine cations HR+ with different substituents in the xanthene moiety vary within the range of pKaapp = 5.04 to 5.53. The distinct dependence of emission of rhodamines bound to micelles on pH of bulk water opens the possibility of using them as fluorescent interfacial acid-base indicators.

  2. Analysis of Some Biogenic Amines by Micellar Liquid Chromatography

    Irena Malinowska


    Full Text Available Micellar liquid chromatography (MLC with the use of high performance liquid chromatography (HPLC was used to determine some physicochemical parameters of six biogenic amines: adrenaline, dopamine, octopamine, histamine, 2-phenylethylamine, and tyramine. In this paper, an influence of surfactant’s concentration and pH of the micellar mobile phase on the retention of the tested substances was examined. To determine the influence of surfactant’s concentration on the retention of the tested amines, buffered solutions (at pH 7.4 of ionic surfactant—sodium dodecyl sulfate SDS (at different concentrations with acetonitrile as an organic modifier (0.8/0.2 v/v were used as the micellar mobile phases. To determine the influence of pH of the micellar mobile phase on the retention, mobile phases contained buffered solutions (at different pH values of sodium dodecyl sulfate SDS (at 0.1 M with acetonitrile (0.8/0.2 v/v. The inverse of value of retention factor (1/ versus concentration of micelles ( relationships were examined. Other physicochemical parameters of solutes such as an association constant analyte—micelle (ma—and partition coefficient of analyte between stationary phase and water (hydrophobicity descriptor (swΦ were determined by the use of Foley’s equation.

  3. GaN Bulk Growth and Epitaxy from Ca-Ga-N Solutions Project

    National Aeronautics and Space Administration — This SBIR proposal addresses the liquid phase epitaxy (LPE) of gallium nitride (GaN) films using nitrogen-enriched metal solutions. Growth of GaN from solutions...

  4. Evaluation of an integrated extraction process for in-situ phenol removal with micellar solutions of PEO-PPO-PEO block copolymers

    Heerema, L.D.; Cakali, D.; Roelands, C.P.M.; Goetheer, E.L.V.; Verdoes, D.; Keurentjes, J.


    This paper evaluates the applicability of aqueous solutions of Pluronics for the removal of phenol in a separation and regeneration process. Experimental results show that Pluronic P103 micelles allow extraction of phenol from aqueous solutions at 30°C. The phenol can be released due to the transiti

  5. Efficient electroreduction of CO2 on bulk silver electrode in aqueous solution via the inhibition of hydrogen evolution

    Quan, Fengjiao; Xiong, Mubing; Jia, Falong; Zhang, Lizhi


    Electrochemical CO2 reduction provides a desirable pathway to convert greenhouse gas into useful chemicals. It is a great challenge to reduce CO2 efficiently in aqueous solution, especially on commercial bulk metal electrodes. Here, we report substantial improvement in CO2 reduction on bulk silver electrode through the introduction of ionic surfactant in aqueous electrolyte. The hydrogen evolution on the electrode surface is greatly suppressed by the surfactant, while the catalytic ability of silver towards CO2 reduction is maintained. The Faradaic efficiency for CO is greatly enhanced from 50% to 95% after the addition of this low-cost surfactant. This study may provide new pathways towards efficient CO2 reduction through the inhibition of proton reduction.

  6. Fullerene-containing polymeric stars in bulk and solution by neutron spin-echo

    Lebedev, V T; Toeroek, G; Cser, L; Bershtein, V A; Zgonnik, V N; Melenevskaya, E Y; Vinogradova, L V


    Stars with C sub 6 sub 0 fullerene core and poly (styrene) (PS) arms have been studied in benzene and in the bulk by neutron spin echo (NSE). Behaviours of stars (six arms, each with a mass M=5.10 sup 3) at momentum transfer q=0.2-0.6 nm sup - sup 1 in the time range t=0.01-20 ns at temperatures T=20-60 C were compared with dynamics of free PS chains. Displaying depressed molecular mobility, the stars did not obey the usual dynamic Zimm or Rouse model. The fullerene polymer interaction at a specific molecular architecture results in oscillating dynamics. (orig.)

  7. Effect of Micelle Composition on Acidic Drugs Separation Behavior by Micellar Electrokinetic Capillary Chromatography


    Micellar electrokinetic capillary chromatography (MECC) separation of four acidic drugs similar in structure was studied. Both anionic surfactant sodium dodecyl sulfate (SDS) and nonionic surfactant Tween 20 were used to form single micelles and mixed micelles as pseudostationary phases. The effects of the composition of micellar solution on retention behaviors were studied. The results indicate that there is markedly different selectivity among SDS, Tween 20 and the mixed micelles systems.

  8. Measurements of optical parameters of phantom solution and bulk animal tissues in vitro at 650 nm

    Sun, Ping; Wang, Yu


    Optical parameters of bulk animal tissue in vitro, including absorption coefficient ( μa), reduced scattering coefficient ( μ' s) or scattering coefficient ( μs), total attenuation coefficient ( μt), anisotropy factor ( g) and refractive index ( n) are measured at wavelength of 650 nm. Clinical Intralipid-10% is diluted in distilled water into different concentrations to use as tissue phantoms. Four types of animal tissues in vitro are studied. The relationships among the optical parameters are analyzed systemically. For animal tissues, μa, μ' s or μs and n rely on muscle fiber orientations. μs and μt range from 10 to 20 mm -1, μa from 10 -2 to 10 -3 mm -1 and g from 0.95 to 0.99.

  9. Hydrogels with micellar hydrophobic (nanodomains

    Miloslav ePekař


    Full Text Available Hydrogels containing hydrophobic domains or nanodomains, especially of the micellar type, are reviewed. Examples of the reasons for introducing hydrophobic domains into hydrophilic gels are given; typology of these materials is introduced. Synthesis routes are exemplified and properties of a variety of such hydrogels in relation with their intended applications are described. Future research needs are identified briefly.

  10. Small-angle neutron scattering study of the structure of mixed micellar solutions based on heptaethylene glycol monotetradecyl ether and cesium dodecyl sulfate

    Rajewska, A., E-mail: [Joint Institute for Nuclear Research (Russian Federation); Medrzycka, K.; Hallmann, E. [Gdansk University of Technology (Poland); Soloviov, D. V. [Joint Institute for Nuclear Research (Russian Federation)


    The micellization in mixed aqueous systems based on a nonionic surfactant, heptaethylene glycol monotetradecyl ether (C{sub 14}E{sub 7}), and an anionic surfactant, cesium dodecyl sulfate, has been investigated by small-angle neutron scattering. Preliminary data on the behavior of the C{sub 14}E{sub 7} aqueous solutions (with three concentrations, 0.17, 0.5, and 1%) mixed with a small amount of anionic surfactant, cesium dodecyl sulfate, are reported.

  11. Activated carbon enhanced ozonation of oxalate attributed to HO oxidation in bulk solution and surface oxidation: effect of activated carbon dosage and pH.

    Xing, Linlin; Xie, Yongbing; Minakata, Daisuke; Cao, Hongbin; Xiao, Jiadong; Zhang, Yi; Crittenden, John C


    Ozonation of oxalate in aqueous phase was performed with a commercial activated carbon (AC) in this work. The effect of AC dosage and solution pH on the contribution of hydroxyl radicals (HO) in bulk solution and oxidation on the AC surface to the removal of oxalate was studied. We found that the removal of oxalate was reduced by tert-butyl alcohol (tBA) with low dosages of AC, while it was hardly affected by tBA when the AC dosage was greater than 0.3g/L. tBA also inhibited ozone decomposition when the AC dosage was no more than 0.05g/L, but it did not work when the AC dosage was no less than 0.1g/L. These observations indicate that HO in bulk solution and oxidation on the AC surface both contribute to the removal of oxalate. HO oxidation in bulk solution is significant when the dosage of AC is low, whereas surface oxidation is dominant when the dosage of AC is high. The oxalate removal decreased with increasing pH of the solution with an AC dosage of 0.5g/L. The degradation of oxalate occurs mainly through surface oxidation in acid and neutral solution, but through HO oxidation in basic bulk solution. A mechanism involving both HO oxidation in bulk solution and surface oxidation was proposed for AC enhanced ozonation of oxalate.

  12. Solution-Processed Bulk Heterojunction Solar Cells with Silyl End-Capped Sexithiophene

    Jung Hei Choi


    Full Text Available We fabricated solution-processed organic photovoltaic cells (OPVs using substituted two sexithiophenes, a,w-bis(dimethyl-n-octylsilylsexithiophene (DSi-6T and a,w-dihexylsexithiophene (DH-6T, as electron donors, and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM as an electron acceptor. Solution-processed OPVs using DH-6T and DSi-6T showed good photovoltaic properties in spite of their poor solubility. The best performance was observed on DSi-6T : PCBM 1 : 5 (w/w blend cell with an open circuit voltage (Voc of 0.63 V, short circuit current density (Jsc of 1.34 mA/cm2, fill factor (FF of 55%, and power conversion efficiency of 0.44% under AM 1.5 G illumination. Although DH-6T has higher hole mobility than DSi-6T, the DSi-6T : PCBM blend cell showed higher hole mobility than DH-6T : PCBM cell. Therefore, DSi-6T cell showed higher device performance than DH-6T cell due to its silyl substitutions, which lead to the increase of the solubility. The incorporation of solution-processed TiO2 interfacial layer in the DSi-6T : PCBM devices significantly enhances FF due to the reduced charge recombination near active layer/Al interface.

  13. Application of micellar liquid chromatography for the determination of antitumoral and antiretroviral drugs in plasma.

    Peris-Vicente, Juan; Casas-Breva, Inmaculada; Roca-Genovés, Pasqual; Esteve-Romero, Josep


    In micellar liquid chromatography, the mobile phase is made of a surfactant and, eventually, an alcohol. This article describes several methods to measure the concentration of antitumoral and antiretroviral drugs in plasma, utilizing micellar liquid chromatography. Samples can be injected after dilution with a micellar solution and filtration, because proteins and other endogenous compounds are solubilized in micellar medium. We will discuss the following optimized parameters: dilution ratio, type of column, detection conditions and mobile phase composition. This article will also cover the validation performed following the International Conference on Harmonization guidelines and the results reported in the literature, indicating that the methods are useful for the routine analysis of plasma samples for clinical purposes.

  14. Highly efficient solutions for smart and bulk power transmission of 'green energy'

    Breuer, Wilfried; Retzmann, Dietmar; Uecker, Karl


    Environmental constraints, loss minimization and CO2 reduction will play an increasingly more important role in future. Security and sustainability of power supply as well as economic efficiency needs application of advanced technologies. Innovative solutions with HVDC (High Voltage Direct Current) and FACTS (Flexible AC Transmission Systems) have the potential to cope with these challenges. They provide the features which are necessary to avoid technical problems in power systems, they increase the transmission capacity and system stability very efficiently and help prevent cascading outages. Furthermore, they are essential for Grid Access of Renewable Energy Sources such as Hydro, Wind and Solar-Energy.

  15. Effect of mixed micellar lipid on the absorption of cholesterol and vitamin D3 into lymph

    Thompson, Gilbert R.; Ockner, Robert K.; Isselbacher, Kurt J.


    The absorption of endogenous cholesterol, labeled with tracer doses of cholesterol 14C or cholesterol-3H and of near physiological doses of vitamin D3-3H was studied in rats with cannulated intestinal lymphatics. The effects of administering mixed micellar solutions of fatty acid, monoglyceride, and bile salt on the absorption of these labeled sterols was determined. It was observed that the specific activity of free cholesterol and the amounts of vitamin D3 appearing in lymph were significantly increased during the intraduodenal administration of mixed micellar solutions of either linoleic or palmitic acid, in contrast to control rats receiving a micellar solution of taurocholate. These increases were related linearly to the lymph triglyceride level. In addition it was observed that when the linoleic acid solution was administered there was a more marked increase in the ratio of the specific activities of free and esterified cholesterol in lymph than with either the palmitic acid or taurocholate solutions. Additional studies in rats with intact lymphatics showed that the uptake of labeled cholesterol and vitamin D3 from the intestinal lumen into the wall was similar whether the sterols were administered in taurocholate or in mixed micellar solution. These findings suggest that mixed micellar lipid increased the rate of appearance of labeled free cholesterol and vitamin D3 in lymph by enhancing their transport out of the intestinal mucosa, rather than by an effect on uptake. PMID:4303790

  16. Micellar systems: Novel family for drug carriers

    Rana, Meenakshi; Chowdhury, Papia


    Micellar systems have attracted a great deal of interest, especially in the field of biomedical sciences. The paper deals with the encapsulation behavior of Pyrrole-2-carboxyldehyde (PCL) an anti-cancer drug in different micellar systems. The inculsion capability of PCL is verified experimentally (UV-Vis, Photoluminescence and Raman spectroscopy) in polymer matrix. Two-micellar systems sodium dodecyl sulfate (SDS) and Polysorbate 80 (TWEEN 80) have been studied with a poorly water soluble PCL. The present work provides the effects of biocompatible organic PCL molecule entrap in micellar system in polymer phase due to its vast applicability in drug industry.

  17. Flow-induced gelation of living (micellar) polymers

    Bruinsma, Robijn; Gelbart, William M.; Ben-Shaul, Avinoam


    The effect of shear velocity gradients on the size (L) of rodlike micelles in dilute and semidilute solution is considered. A kinetic equation is introduced for the time-dependent concentration of aggregates of length L, consisting of 'bimolecular' combination processes L + L-prime yield (L + L-prime) and unimolecular fragmentations L yield L + (L - L-prime). The former are described by a generalization (from spheres to rods) of the Smoluchowski mechanism for shear-induced coalesence of emulsions, and the latter by incorporating the tension-deformation effects due to flow. Steady-state solutions to the kinetic equation are obtained, with the corresponding mean micellar size evaluated as a function of the Peclet number P (i.e., the dimensionless ratio of the flow rate and the rotational diffusion coefficient). For sufficiently dilute solutions, only a weak dependence of the micellar size on P is found. In the semidilute regime, however, an apparent divergence in the micellar size at P of about 1 suggests a flow-induced first-order gelation phenomenon.

  18. Micellar effect on the kinetics of oxidation of methyl blue by Ce(IV in sulfuric acid medium

    Mohammed Hassan


    Full Text Available The kinetics of oxidation of methyl blue (MB by Ce(IV in aqueous and surfactant media has been carried out to explore the micellar effect on the rate and kinetic parameters of the reaction. The reaction was found to be first order with respect to both oxidant and substrate and fractional order with respect to H+. The active kinetic species of the oxidant was found to be Ce(SO4+2 based on the effect of ionic strength and sulfate ion on the rate of the reaction. The presence of micelles was found to inhibit the reaction and this effect has been explained by the association of one of the reactants with the micelles leaving the other reactant in the bulk solution. The binding constant and first order rate constant in micellar medium has been obtained by the application of pseudo-phase model to the experimental data. Interestingly, the temperature dependence of the reaction reveals that the reaction has negative activation energy in the absence of micelles, which turns to a positive value in the presence of micelles.

  19. Beyond Fullerenes: Designing Alternative Molecular Electron Acceptors for Solution-Processable Bulk Heterojunction Organic Photovoltaics.

    Sauvé, Geneviève; Fernando, Roshan


    Organic photovoltaics (OPVs) are promising candidates for providing a low cost, widespread energy source by converting sunlight into electricity. Solution-processable active layers have predominantly consisted of a conjugated polymer donor blended with a fullerene derivative as the acceptor. Although fullerene derivatives have been the acceptor of choice, they have drawbacks such as weak visible light absorption and poor energy tuning that limit overall efficiencies. This has recently fueled new research to explore alternative acceptors that would overcome those limitations. During this exploration, one question arises: what are the important design principles for developing nonfullerene acceptors? It is generally accepted that acceptors should have high electron affinity, electron mobility, and absorption coefficient in the visible and near-IR region of the spectra. In this Perspective, we argue that alternative molecular acceptors, when blended with a conjugated polymer donor, should also have large nonplanar structures to promote nanoscale phase separation, charge separation and charge transport in blend films. Additionally, new material design should address the low dielectric constant of organic semiconductors that have so far limited their widespread application.

  20. Performance optimization studies of solution processed bulk-heterojunction solar cells

    Ali, Bakhtyar


    Organic Solar Cells (OSCs), which rely on the concept of bulk-heterojunction, stand out due primarily to their simple construction, mechanical flexibility and exceptional ease of processing. These characteristics make them potential candidates to substitute for the expensive photovoltaic counterparts. Among other OSCs, devices containing poly(3-hexylthiophene) (P3HT) and phenyl C61 butaric acid methyl ester (PCBM) as photo-active layer have shown promising results. However, the power conversion efficiency (PCE) is still lower than the required commercialization mark (˜10%). Devices with structure glass/ITO/PEDOT:PSS/P3HT:PCBM/LiF/Al, annealed and un-annealed with device area ˜0.4 cm2 (unless otherwise stated), have been studied. An investigation of the device processing variables has led to the conclusion that the optimum loading of PCBM in the blend for optimum performance is in the range of 1:1 to 1:2. Characterization of the active layer with UV-vis absorption, PL spectra and XRD reveal that the addition of PCBM to P3HT matrix is detrimental for the self-organization of P3HT chains (crystallinity) and it also increases the resistivity. Similarly, 1,2 dichlorobenzene (DCB) has been found to be the best solvent among other solvents such as chloroform (CF) and chlorobenzene (CB), for optimum PCE. The rho(T) data from the samples (pristine P3HT and P3HT/PCBM blends) exhibit anisotropy in conduction where it follows the variable range hoping (VRH) in the lateral (parallel to film) and polaronic behavior in vertical (perpendicular to film) transport. The activation energy obtained from the fit to polaronic model is 329 meV for P3HT/ PCBM blend (1:1). Furthermore, the photovoltaic parameters extracted from a lumped circuit analysis of voltage and temperature dependence of photocurrent, JL(V), in P3HT/PCBM OSCs, completely describe the illuminated J-V data from far reverse bias to beyond the open circuit voltage (Voc). A simple model for carrier collection has been

  1. Effects of thermal treatment and depth profiling analysis of solution processed bulk-heterojunction organic photovoltaic cells.

    Mbule, Pontsho S; Swart, Hendrik C; Ntwaeaborwa, Odireleng M


    We report the use of solution processed zinc oxide (ZnO) nanoparticles as a buffer layer inserted between the top metal electrode and the photo-active layer in bulk-heterojunction (BHJ) organic solar cell (OSC) devices. The photovoltaic properties were compared for devices annealed before (Device A) or after (Device B) the deposition of the Al top electrode. The post-annealing treatment was shown to improve the power conversion efficiency up to 2.93% and the fill factor (FF) up to 63% under AM1.5 (100mW/cm(2)) illumination. We performed the depth profile/interface analysis and elemental mapping using the time-of-flight secondary ion mass spectrometry (TOF-SIMS). Signals arising from (27)Al, (16)O, (12)C, (32)S, (64)Zn, (28)Si, (120)Sn and (115)In give an indication of successive deposition of Al, ZnO, P3HT:PCBM and PEDOT:PSS layers on ITO coated glass substrates. Furthermore, we discuss the surface imaging and visualize the chemical information on the surface of the devices.

  2. Micellar electrokinetic chromatography on microchips.

    Kitagawa, Fumihiko; Otsuka, Koji


    This review highlights the methodological and instrumental developments in microchip micellar EKC (MCMEKC) from 1995. The combination of higher separation efficiencies in micellar EKC (MEKC) with high-speed separation in microchip electrophoresis (MCE) should provide high-throughput and high-performance analytical systems. The chip-based separation technique has received considerable attention due to its integration ability without any connector. This advantage allows the development of a multidimensional separation system. Several types of 2-D separation microchips are described in the review. Since complicated channel configurations can easily be fabricated on planar substrates, various sample manipulations can be carried out prior to MCMEKC separations. For example, mixing for on-chip reactions, on-line sample preconcentration, on-chip assay, etc., have been integrated on MEKC microchips. The application of on-line sample preconcentration to MCMEKC can provide not only sensitivity enhancement but also the elucidation of the preconcentration mechanism due to the visualization ability of MCE. The characteristics of these sample manipulations on MEKC microchips are presented in this review. The scope of applications in MCMEKC covers mainly biogenic compounds such as amino acids, peptides, proteins, biogenic amines, DNA, and oestrogens. This review provides a comprehensive table listing the applications in MCMEKC in relation to detection methods.

  3. Laser photolysis study of phenanthrenequione in ethylene glycol homogenous and its TX-100 aqueous micellar solution%乙二醇均相及其TX-100胶束溶液中光敏分子菲醌的激光光解研究

    许新胜; 史蕾; 刘毅; 崔执凤


    The photochemical reaction mechanism of phenanthrenequione in ethylene glycol homogenous and its TX-100 aqueous micellar solution has been studied through time resolved ESR and transient absorptive spectra technique. In EG homogenous solution, CIDEP spectra and transient absorptive spectra indicate that neutral radical (PAQH) was formed through hydrogen transfer reaction between excited triplet phenanthrenequinone (3PAQ*) and EG. Triplet mechanism is the mainly mechanism to generate CIDEP. In TX-100 aqueous micellar solution, the signals of CIDEP of phenanthrenequinone anion radical were observed, which were generated from the dissociation of PAQH accompanying spin polarization transfer.%用时间分辨电子自旋共振(TR-ESR)和瞬态吸收光谱技术,研究了菲醌在乙二醇均相及其TX-100含水胶束溶液中的光化学反应机理.化学诱导动态电子极化(CIDEP)谱和瞬态吸收光谱都表明,在乙二醇均相溶液中,菲醌光激发三重态3PAQ*夺取氢原子形成中性自由基PAQH·,三重态机理是CIDEP形成的主要机理.在TX-100含水胶束溶液中,光解主要得到菲醌负离子基PAQ·-,PAQ·-由PAQH·解离形成,解离过程中伴随着极化转移.

  4. Influence of critical current density on magnetic force of HTSC bulk above PMR with 3D-modeling numerical solutions

    Lu, Yiyun; Qin, Yujie


    Numerical simulations of thermo-electromagnetic properties of a high temperature superconducting (HTS) bulk levitating over a permanent magnetic guideway (PMG) are performed by resorting to the quasistatic approximation of the H-method coupling with the classical description of the heat conduction equation. The numerical resolving codes are practiced with the help of the finite element program generation system (FEPG) platform using finite element method (FEM). The E-J power law is used to describe the electric current nonlinear characteristics of HTS bulk. The simulation results show that the heat conduction and the critical current density are tightly relative to the thermal effects of the HTS bulk over the PMG. The heat intensity which responds to the heat loss of the HTS bulk is mainly distributed at the two bottom-corners of the bulk sample.

  5. Bulk elastic moduli and solute potentials in leaves of freshwater, coastal and marine hydrophytes. Are marine plants more rigid?

    Touchette, Brant W; Marcus, Sarah E; Adams, Emily C


    Bulk modulus of elasticity (ɛ), depicting the flexibility of plant tissues, is recognized as an important component in maintaining internal water balance. Elevated ɛ and comparatively low osmotic potential (Ψπ) may work in concert to effectively maintain vital cellular water content. This concept, termed the 'cell water conservation hypothesis', may foster tolerance for lower soil-water potentials in plants while minimizing cell dehydration and shrinkage. Therefore, the accumulation of solutes in marine plants, causing decreases in Ψπ, play an important role in plant-water relations and likely works with higher ɛ to achieve favourable cell volumes. While it is generally held that plants residing in marine systems have higher leaf tissue ɛ, to our knowledge no study has specifically addressed this notion in aquatic and wetland plants residing in marine and freshwater systems. Therefore, we compared ɛ and Ψπ in leaf tissues of 38 freshwater, coastal and marine plant species using data collected in our laboratory, with additional values from the literature. Overall, 8 of the 10 highest ɛ values were observed in marine plants, and 20 of the lowest 25 ɛ values were recorded in freshwater plants. As expected, marine plants often had lower Ψπ, wherein the majority of marine plants were below -1.0 MPa and the majority of freshwater plants were above -1.0 MPa. While there were no differences among habitat type and symplastic water content (θsym), we did observe higher θsym in shrubs when compared with graminoids, and believe that the comparatively low θsym observed in aquatic grasses may be attributed to their tendency to develop aerenchyma that hold apoplastic water. These results, with few exceptions, support the premise that leaf tissues of plants acclimated to marine environments tend to have higher ɛ and lower Ψπ, and agree with the general tenets of the cell water conservation hypothesis.

  6. Phase Behavior and Micellar Packing of Impurity-Free Pluronic Block Copolymers in Water

    Ryu, Chang Yeol; Park, Hanjin

    We have investigated the impacts of the non-micellizable polymeric impurities on the micellar packing and solution phase behavior of Pluronic block copolymers in water. In particular, small angle x-ray scattering, rheology and dynamic light scattering techniques have been employed to elucidate how the low MW impurities affect the micellar packing and solution phase diagram in water, when ordered cubic structures of spherical micelles are formed. A silica slurry method has been developed using the competitive adsorption of the PEO-PPO-PEO triblock copolymers over the low MW polymeric impurities for a large scale purification of Pluronics and it purity of Pluronics has been assessed by interaction chromatography. Based on the comparative studies on micellar packing between As-Received (AR) and Purified (Pure) Pluronic F108 solutions, we found experimental evidence to support the hypothesis that the inter-micellar distance of Pluronic cubic structures in aqueous solution is governed by the effective polymer concentration in terms of PEO-PPO-PEO triblock copolymers. Removal of the impurities in AR F108 offers an important clue on window into the onset of BCC ordering via hydrodynamic contact between micelles in solution. NSF DMR Polymers.

  7. Catalysis in micellar and macromoleular systems

    Fendler, Janos


    Catalysis in Micellar and Macromolecular Systems provides a comprehensive monograph on the catalyses elicited by aqueous and nonaqueous micelles, synthetic and naturally occurring polymers, and phase-transfer catalysts. It delineates the principles involved in designing appropriate catalytic systems throughout. Additionally, an attempt has been made to tabulate the available data exhaustively. The book discusses the preparation and purification of surfactants; the physical and chemical properties of surfactants and micelles; solubilization in aqueous micellar systems; and the principles of

  8. Quantification of Lipophilicity of 1,2,4-Triazoles Using Micellar Chromatography.

    Janicka, Małgorzata; Stępnik, Katarzyna; Pachuta-Stec, Anna


    High-performance liquid chromatography (HPLC), over-pressured-layer chromatography (OPLC) and thin-layer chromatography (TLC) techniques with micellar mobile phases were proposed to evaluate the lipophilicity of 21 newly synthesized 1,2,4-triazoles, compounds of potential importance in medicine or agriculture as fungicides. Micellar parameters log k(m) were compared with extrapolated R(M0) values determined from reversed-phase (RP) TLC experimental data obtained on RP-8 stationary phases as well as with log P values (Alog Ps, AClog P, Alog P, Mlog P, KowWin, xlog P2 and xlog P3) calculated from molecular structures of solutes tested. The results obtained by applying principal component analysis (PCA) and linear regression showed considerable similarity between partition and retention parameters as alternative lipophilicity descriptors, and indicated micellar chromatography as a suitable technique to study lipophilic properties of organic substances. In micellar HPLC, RP-8e column (Purospher) was applied, whereas in OPLC and TLC, RP-CN plates were applied, which was the novelty of this study and allowed the use of micellar effluents in planar chromatography measurements.

  9. Adsorption characteristics of zinc ions on sodium dodecyl sulfate in process of micellar-enhanced ultrafiltration


    To separate zinc ions from aqueous solution efficiently, micellar-enhanced ultrafiltration(MEUF) of hollow ultrafiltration membrane was used with sodium dodecyl sulfate(SDS) as surfactant. The formation of micellar and the adsorption mechanism were investigated, including the influence of the ratio of SDS to zinc ions on the micelle quantity, the micelle ratio, the gross adsorptive capacity, the rejection of zinc ions and the adsorption isotherm law. The results show that the rejection rate of zinc ions reaches 97% and the adsorption of zinc ions on SDS conforms to the Langmuir adsorption isotherm and the adsorption is a chemical adsorption process.

  10. Separation of Aniline Derivatives by Micellar Electrokinetic Capillary Chromatography

    Jun LI; Zhuo Bin YUAN


    A micellar electrokinetic capillary chromatography (MECC) was developed for the determination of aniline and 6 substituted anilines.The seven components were separated within 25 min in the buffer solution of 40 mmol/L sodium borate and 100 mmol/L SDS.It was found that the separation was dependent on operating voltage, pH value, borate and SDS concentrations.The analytical performance was examined in terms of linear response and reproducibility.Wastewater was determined by the established method.

  11. Use of micellar liquid chromatography to analyze darunavir, ritonavir, emtricitabine, and tenofovir in plasma.

    Peris-Vicente, Juan; Villarreal-Traver, Mónica; Casas-Breva, Inmaculada; Carda-Broch, Samuel; Esteve-Romero, Josep


    Danuravir, ritonavir, emtricitabine, and tenofovir are together prescribed against AIDS as a highly active antiretroviral therapy regimen. Micellar liquid chromatography has been applied to determine these four antiretroviral drugs in plasma. The sample preparation is shortened to the dilution of the sample in a micellar solution, filtration, and injection. Clean-up steps are avoided, due to the solubilization of plasma matrix in micellar media. The drugs were analyzed in 0.995), accuracy (89.3-103.2%), precision (<8.2%) and robustness (<7.5%). Real plasma sample from patients taking this therapy were analyzed. This is the first paper showing the simultaneous detection of this four drugs. Therefore, the methodology was proven useful for the routine analysis of these samples in a hospital laboratory for clinical purposes.

  12. An analytical solution to calculate bulk mole fractions for any number of components in aerosol droplets after considering partitioning to a surface layer

    D. Topping


    Full Text Available Calculating the equilibrium composition of atmospheric aerosol particles, using all variations of Köhler theory, has largely assumed that the total solute concentrations define both the water activity and surface tension. Recently however, bulk to surface phase partitioning has been postulated as a process which significantly alters the predicted point of activation. In this paper, an analytical solution to calculate the removal of material from a bulk to a surface layer in aerosol particles has been derived using a well established and validated surface tension framework. The applicability to an unlimited number of components is possible via reliance on data from each binary system. Whilst assumptions regarding behaviour at the surface layer have been made to facilitate derivation, it is proposed that the framework presented can capture the overall impact of bulk-surface partitioning. Predictions made by the model across a range of surface active properties should be tested against measurements. The computational efficiency of using the solution presented in this paper is roughly a factor of 20 less than a similar iterative approach, a comparison with highly coupled approaches not available beyond a 3 component system.

  13. Use of a commercially available nucleating agent to control the morphological development of solution-processed small molecule bulk heterojunction organic solar cells

    Sharenko, Alexander


    © the Partner Organisations 2014. The nucleating agent DMDBS is used to modulate the crystallization of solution-processed small molecule donor molecules in bulk heterojunction organic photovoltaic (BHJ OPV) devices. This control over donor molecule crystallization leads to a reduction in optimized thermal annealing times as well as smaller donor molecule crystallites, and therefore more efficient devices, when using an excessive amount of solvent additive. We therefore demonstrate the use of nucleating agents as a powerful and versatile processing strategy for solution-processed, small molecule BHJ OPVs. This journal is


    Bulk syntheses of silver (Ag) and iron (Fe) nanorods using poly (ethylene glycol), PEG, under microwave irradiation (MW) conditions are reported. Favorable conditions to make Ag nanorods were established and can be extended to make Fe nanorods with uniform size and shape. The nan...

  15. Structure-Processing Relationships in Solution Processable Polymer Thin Film Transistors and Small Molecule Bulk Heterojunction Solar Cells

    Perez, Louis A.

    A regio-regular (RR) conjugated copolymer based on cyclopenta[2,1-b:3,4- b]dithiophene (CDT) and pyridal[2,1,3]thiadiazole (PT) structural units was prepared by using polymerization reactions involving reactants specifically designed to avoid random orientation of the asymmetric PT heterocycle. Compared to its regio-irregular (RI) counterpart, the RR polymer exhibits a two orders of magnitude increase in hole mobility from 0.005 to 0.6 cm2V -1s-1. To probe the reason for this difference in mobility, we examined the crystalline structure and its orientation in thin films of both copolymers as a function of depth via grazing incidence wide angle X-ray scattering (GIWAXS). In the RI film, the pi-pi stacking direction of the crystallites is mainly perpendicular to the substrate normal (edge-on orientation) while in the RR film the crystallites adopt a mixed pi-pi stacking orientation in the center of the film as well as near the interface between the polymer and the dielectric layer. These results demonstrate that control of backbone regularity is another important design criterion to consider in the synthesis and optimization of new conjugated copolymers with asymmetric structural units. Solution processed organic photovoltaic devices (OPVs) have emerged as a promising sustainable energy technology due to their ease of fabrication, potential to enable low-cost manufacturing, and ability to be incorporated onto light-weight flexible substrates. To date, the most efficacious OPV device architecture, the bulk heterojunction (BHJ), consists of a blend of a light-harvesting conjugated organic electron donating molecule and a strong electron-accepting compound (usually a soluble fullerene derivative e.g. [6,6]-phenyl C71 butyric acid methyl ester (PC71BM). BHJ layer morphology, which has been shown to be highly dependent on processing, has a significant effect on OPV performance. It is postulated that optimal BHJ morphologies consist of discrete bicontinuous nanoscale

  16. Quantitation of antihistamines in pharmaceutical preparations by liquid chromatography with a micellar mobile phase of sodium dodecyl sulfate and pentanol.

    Gil-Agustí, M; Monferrer-Pons, L; Esteve-Romero, J; García-Alvarez-Coque, M C


    A reversed-phase liquid chromatographic procedure with a micellar mobile phase of sodium dodecyl sulfate (SDS), containing a small amount of pentanol, was developed for the control of 7 antihistamines of diverse action in pharmaceutical preparations (tablets, capsules, powders, solutions, and syrups): azatadine, carbinoxamine, cyclizine, cyproheptadine, diphenhydramine, doxylamine, and tripelennamine. The retention times of the drugs were <9 min with a mobile phase of 0.15M SDS-6% (v/v) pentanol. The recoveries with respect to the declared compositions were in the range of 93-110%, and the intra- and interday repeatabilities and interday reproducibility were <1.2%. The results were similar to those obtained with a conventional 60 + 40 (v/v) methanol-water mixture, with the advantage of reduced toxicity, flammability, environmental impact, and cost of the micellar-pentanol solutions. The lower risk of evaporation of the organic solvent dissolved in the micellar solutions also increased the stability of the mobile phase.

  17. The performance studies on swallow-tailed naphthalene diimide derivatives in solution processed inverted bulk heterojunction solar cells

    Turkmen, Gulsah; Sarica, Hizir; Erten-Ela, Sule


    Two different soluble swallow-tailed naphthalene diimide derivatives were synthesized, 1,4:5,8-naphthalene diimides (NDIs), N,N‧-bis-(1-butylpentyl)-naphthalenetetracarboxylic-1,4:5,8-biscarboximide (NDI-1) and N,N‧-bis-(1-pentylhexyl)-naphthalenetetracarboxylic-1,4:5,8-biscarboximide (NDI-2). Thermal stabilities were also measured with thermal gravimetry analyser (TGA). Naphthalene diimides showed high thermal stability. NDI derivatives exhibited good thermal stabilities that thermal decomposition peak appeared at 438 °C and 421 °C, respectively for NDI-1 and NDI-2. Highly soluble naphthalene diimide derivatives were used in inverted bulk heterojunction solar cells. Two different ZnO cathode layers were used to fabricate bulk heterojunction solar cells. One of them was single layer consists of dense ZnO layer and the other was double layer comprising porous ZnO layer onto dense ZnO layer. Inverted bulk heterojunction devices were designed in a FTO/ ZnO (single or double layer)/P3HT:C60:NDI device geometry. Best efficiency was obtained for FTO/ZnO (single or double layer)/P3HT:C60:NDI-2 device as 8.78 mA/cm2 of short circuit photocurrent density, 300 mV of open circuit voltage, 0.28 of filling factor, 0.74 of overall conversion efficiency.

  18. Improvement of corrosion resistance in NaOH solution and glass forming ability of as-cast Mg-based bulk metallic glasses by microalloying

    Peng Hao


    Full Text Available The influences of the addition of Ag on the glass forming ability (GFA and corrosion behavior were investigated in the Mg-Ni-based alloy system by X-ray diffraction (XRD and electrochemical polarization in 0.1 mol/L NaOH solution. Results shows that the GFA of the Mg-Ni-based BMGs can be improved dramatically by the addition of an appropriate amount of Ag; and the addition element Ag can improve the corrosion resistance of Mg-Ni-based bulk metallic glass. The large difference in atomic size and large negative mixing enthalpy in alloy system can contribute to the high GFA. The addition element Ag improves the forming speed and the stability of the passive film, which is helpful to decrease the passivation current density and to improve the corrosion resistance of Mg-Ni-based bulk metallic glass.

  19. Controlling solution-phase polymer aggregation with molecular weight and solvent additives to optimize polymer-fullerene bulk heterojunction solar cells

    Bartelt, Jonathan A.


    The bulk heterojunction (BHJ) solar cell performance of many polymers depends on the polymer molecular weight (M n) and the solvent additive(s) used for solution processing. However, the mechanism that causes these dependencies is not well understood. This work determines how M n and solvent additives affect the performance of BHJ solar cells made with the polymer poly(di(2-ethylhexyloxy)benzo[1,2-b:4,5-b\\']dithiophene-co- octylthieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD). Low M n PBDTTPD devices have exceedingly large fullerene-rich domains, which cause extensive charge-carrier recombination. Increasing the M n of PBDTTPD decreases the size of these domains and significantly improves device performance. PBDTTPD aggregation in solution affects the size of the fullerene-rich domains and this effect is linked to the dependency of PBDTTPD solubility on M n. Due to its poor solubility high M n PBDTTPD quickly forms a fibrillar polymer network during spin-casting and this network acts as a template that prevents large-scale phase separation. Furthermore, processing low M n PBDTTPD devices with a solvent additive improves device performance by inducing polymer aggregation in solution and preventing large fullerene-rich domains from forming. These findings highlight that polymer aggregation in solution plays a significant role in determining the morphology and performance of BHJ solar cells. The performance of poly(di(2-ethylhexyloxy) benzo[1,2-b:4,5-b\\']dithiophene-co-octylthieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD) bulk heterojunction solar cells strongly depends on the polymer molecular weight, and processing these bulk heterojunctions with a solvent additive preferentially improves the performance of low molecular weight devices. It is demonstrated that polymer aggregation in solution significantly impacts the thin-film bulk heterojunction morphology and is vital for high device performance. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions.

    Marenich, Aleksandr V; Cramer, Christopher J; Truhlar, Donald G


    We present a new continuum solvation model based on the quantum mechanical charge density of a solute molecule interacting with a continuum description of the solvent. The model is called SMD, where the "D" stands for "density" to denote that the full solute electron density is used without defining partial atomic charges. "Continuum" denotes that the solvent is not represented explicitly but rather as a dielectric medium with surface tension at the solute-solvent boundary. SMD is a universal solvation model, where "universal" denotes its applicability to any charged or uncharged solute in any solvent or liquid medium for which a few key descriptors are known (in particular, dielectric constant, refractive index, bulk surface tension, and acidity and basicity parameters). The model separates the observable solvation free energy into two main components. The first component is the bulk electrostatic contribution arising from a self-consistent reaction field treatment that involves the solution of the nonhomogeneous Poisson equation for electrostatics in terms of the integral-equation-formalism polarizable continuum model (IEF-PCM). The cavities for the bulk electrostatic calculation are defined by superpositions of nuclear-centered spheres. The second component is called the cavity-dispersion-solvent-structure term and is the contribution arising from short-range interactions between the solute and solvent molecules in the first solvation shell. This contribution is a sum of terms that are proportional (with geometry-dependent proportionality constants called atomic surface tensions) to the solvent-accessible surface areas of the individual atoms of the solute. The SMD model has been parametrized with a training set of 2821 solvation data including 112 aqueous ionic solvation free energies, 220 solvation free energies for 166 ions in acetonitrile, methanol, and dimethyl sulfoxide, 2346 solvation free energies for 318 neutral solutes in 91 solvents (90 nonaqueous

  1. Copolimerização micelar de poli(acrilamida-g-óxido de propileno: avaliação reológica e caracterização de suas soluções Micellar copolymerization of poly(acrylamide-g-propylene oxide: rheologic evaluation and solution characterization

    Bianca L. Sadicoff


    Full Text Available Copolímeros graftizados de poliacrilamida e poli(óxido de propileno (PPO foram sintetizados via técnica de polimerização micelar. Foram investigadas as mudanças de viscosidade das suas soluções frente à variação do teor de monômero hidrófobo incorporado ao copolímero, adição de sal e de tensoativo. O maior teor de grupos hidrófobos resultou em aumento da viscosidade aparente das soluções poliméricas. A adição de sal provocou maior interação entre os grupos hidrófobos verificada pela desestabilização do sistema polimérico. A adição de tensoativos gerou decréscimo das viscosidades reduzidas das soluções poliméricas. Os copolímeros obtidos foram caracterizados, qualitativamente, por espectrometria de absorção na região do infravermelho (FTIR.Graft copolymers of polyacrylamide and poly(propylene oxide (PPO were synthesized by a micellar copolymerization technique. The rheological properties of the copolymers solutions were evaluated and compared with literature data for solutions of the same copolymers, synthesized by solution polymerization. The effect of hydrophobe content, salt addition and surfactant addition on the rheological properties were also investigated. Increasing hydrophobe content resulted in higher solution viscosities in the semi-dilute regime. Upon addition of salts, the hydrophobic groups associated to minimize their exposure to water. In the semi-dilute region, higher contents of surfactant added resulted in lower reduced viscosities of the polymer solutions. The copolymers were qualitatively characterized by infra-red spectrometry (IR.

  2. Structural micellar transition for fluorinated and hydrogenated sodium carboxylates induced by solubilization of benzyl alcohol.

    González-Pérez, Alfredo; Ruso, Juan M; Prieto, Gerardo; Sarmiento, Félix


    The solubility of benzyl alcohol in micellar solutions of sodium octanoate and sodium perfluorooctanoate was studied. From the isotherms of specific conductivity versus molality at different alcohol concentrations, the critical micelle concentration and the degree of ionization of the micelles were determined. The cmc linearly decreases upon increasing the amount of benzyl alcohol present in aqueous solutions with two distinct slopes. This phenomenon was interpreted as a clustering of alcohol molecules above a critical point, around 0.1 mol kg(-1). Attending to the equivalent conductivity versus square root of molality, the presence of a second micellar structure for the fluorinated compound was assumed. The thermodynamic parameters associated with the process of micellization were estimated by applying Motomura's model for binary surfactant mixtures, modified by Pérez-Villar et al. (Colloid Polym. Sci 1990, 268, 965) for the case of alcohol-surfactant solutions. A comparison of the hydrogenated and fluorinated compounds was carried out and discussed.

  3. Hydrogels with Micellar Hydrophobic (Nano)Domains

    Pekař, Miloslav


    Hydrogels containing hydrophobic domains or nanodomains, especially of the micellar type, are reviewed. Examples of the reasons for introducing hydrophobic domains into hydrophilic gels are given; typology of these materials is introduced. Synthesis routes are exemplified and properties of a variety of such hydrogels in relation with their intended applications are described. Future research needs are identified briefly.

  4. Hydrogels with micellar hydrophobic (nano)domains

    Miloslav ePekař


    Hydrogels containing hydrophobic domains or nanodomains, especially of the micellar type, are reviewed. Examples of the reasons for introducing hydrophobic domains into hydrophilic gels are given; typology of these materials is introduced. Synthesis routes are exemplified and properties of a variety of such hydrogels in relation with their intended applications are described. Future research needs are identified briefly.

  5. Hydrogels with micellar hydrophobic (nano)domains

    Pekař, Miloslav


    Hydrogels containing hydrophobic domains or nanodomains, especially of the micellar type, are reviewed. Examples of the reasons for introducing hydrophobic domains into hydrophilic gels are given; typology of these materials is introduced. Synthesis routes are exemplified and properties of a variety of such hydrogels in relation with their intended applications are described. Future research needs are identified briefly.

  6. On the Configurational Entropy of Nanoscale Solutions for More Accurate Surface and Bulk Nano-Thermodynamic Calculations

    Andras Dezso


    Full Text Available The configurational entropy of nanoscale solutions is discussed in this paper. As follows from the comparison of the exact equation of Boltzmann and its Stirling approximation (widely used for both macroscale and nanoscale solutions today, the latter significantly over-estimates the former for nano-phases and surface regions. On the other hand, the exact Boltzmann equation cannot be used for practical calculations, as it requires the calculation of the factorial of the number of atoms in a phase, and those factorials are such large numbers that they cannot be handled by commonly used computer codes. Herewith, a correction term is introduced in this paper to replace the Stirling approximation by the so-called “de Moivre approximation”. This new approximation is a continuous function of the number of atoms/molecules and the composition of the nano-solution. This correction becomes negligible for phases larger than 15 nm in diameter. However, the correction term does not cause mathematical difficulties, even if it is used for macro-phases. Using this correction, future nano-thermodynamic calculations will become more precise. Equations are worked out for both integral and partial configurational entropies of multi-component nano-solutions. The equations are correct only for nano-solutions, which contain at least a single atom of each component (below this concentration, there is no sense to make any calculations.

  7. X-ray imager using solution processed organic transistor arrays and bulk heterojunction photodiodes on thin, flexible plastic substrate

    Gelinck, G.H.; Kumar, A.; Moet, D.; Steen, J.L. van der; Shafique, U.; Malinowski, P.E.; Myny, K.; Rand, B.P.; Simon, M.; Rütten, W.; Douglas, A.; Jorritsma, J.; Heremans, P.L.; Andriessen, H.A.J.M.


    We describe the fabrication and characterization of large-area active-matrix X-ray/photodetector array of high quality using organic photodiodes and organic transistors. All layers with the exception of the electrodes are solution processed. Because it is processed on a very thin plastic substrate o

  8. Pseudo Peak Phenomena in Micellar Electrokinetic Capillary Chromatography by Using Ionic Surfactant


    The origin of pseudo peak was studied by means of micellar electrokinetic capillary chromatography with cetyltrimethylaminium bromide as the pseudo stationary phase. It has been pointed that two peaks may appear for one component under certain conditions. Experiments showed that the relative areas of the two peaks of analyte depended on the time and the temperature of reaction between analyte and surfactant, and the concentration of surfactant in the sample solution. It means that the interaction between the analyte and the surfactant is a slow process, and a stable substance can be produced from the interaction. It is the substance and the analyte that may lead to the formation of two peaks. The fast interaction mechanism between the solute and the micellar should be queried from the experiment result.

  9. Pseudo Peak Phenomena in Micellar Electrokinetic Capillary Chromatography by Using Ionic Surfactant

    CHENGuan-hua; YANGGeng-liang; TIANYi-ling; CHENYi


    The origin of pseudo peak was studied by means of micellar electrokinetic capillary chromatography with cetyltrimethylaminium bormide as the pseudo stationary phase.It has been pointed that two peaks may appear for one component under certain conditions.Experiments showed that the relative areas of the two peaks of analyte depended on the time and the temperature of reaction between analyte and surfactant,and the concentration of surfactant in the sample solution.It means that the interaction between the analyte and the surfactant is a slow process,and a stable substance can be produced from the interaction.It is the substance and the analyte that may lead to the formation of two peaks.The fast interaction mechanism between the solute and the micellar should be queried from the experiment result.

  10. Interfacial properties of nonionic micellar agregates as a function of temperatures and concentrations

    Falconi, L; Briganti, G; D'Arrigo, G; Falconi, Luca; Maccarini, Marco; Briganti, Giuseppe; Arrigo, Giovanni D'


    By means of density, dielectric spectroscopy and sound velocity measurements we perform a systematic study on the polyoxyethylene $C_{12}E_{6}$ nonionic surfactant solutions as a function of temperature and concentration. Both density and sound velocity data, at about $34^{\\circ}C$, coincide with the value obtained for pure water. Above this temperature the density is lower than the water density whereas below it is greater, the opposite happens for the compressibility. Combining results from these different techniques we tempt a very detailed description of the evolution of the micellar interfacial properties with temperature. It is well known that nonionic surfactant solutions dehydrate, growing temperature. Our results indicate that this process is associated with a continuous change in the polymer conformation and in the local density of the micellar interface.

  11. In situ morphology studies of the mechanism for solution additive effects on the formation of bulk heterojunction films

    Richter, Lee J.


    The most successful active film morphology in organic photovoltaics is the bulk heterojunction (BHJ). The performance of a BHJ arises from a complex interplay of the spatial organization of the segregated donor and acceptor phases and the local order/quality of the respective phases. These critical morphological features develop dynamically during film formation, and it has become common practice to control them by the introduction of processing additives. Here, in situ grazing incidence X-ray diffraction (GIXD) and grazing incidence small angle X-ray scattering (GISAXS) studies of the development of order in BHJ films formed from the donor polymer poly(3-hexylthiophene) and acceptor phenyl-C61-butyric acid methyl ester under the influence of two common additives, 1,8-octanedithiol and 1-chloronaphthalene, are reported. By comparing optical aggregation to crystallization and using GISAXS to determine the number and nature of phases present during drying, two common mechanisms by which the additives increase P3HT crystallinity are identified. Additives accelerate the appearance of pre-crystalline nuclei by controlling solvent quality and allow for extended crystal growth by delaying the onset of PCBM-induced vitrification. The glass transition effects vary system-to-system and may be correlated to the number and composition of phases present during drying. Synchrotron X-ray scattering measurements of nanoscale structure evolution during the drying of polymer-fullerene photovoltaic films are described. Changes in the number and nature of phases, as well as the order within them, reveals the mechanisms by which formulation additives promote structural characteristics leading to higher power conversion efficiencies.

  12. Determination of oxolinic acid, danofloxacin, ciprofloxacin, and enrofloxacin in porcine and bovine meat by micellar liquid chromatography with fluorescence detection.

    Terrado-Campos, David; Tayeb-Cherif, Khaled; Peris-Vicente, Juan; Carda-Broch, Samuel; Esteve-Romero, Josep


    A method was developed for the determination of oxolinic acid, danofloxacin, ciprofloxacin and enrofloxacin by micellar liquid chromatography - fluorescence detection in commercial porcine and bovine meat. The samples were ultrasonicated in a micellar solution, free of organic solvent, to extract the analytes, and the supernatant was directly injected. The quinolones were resolved in 0.9998), trueness (89.3-105.1%), precision (<8.3%), decision limit (<12% over the maximum residue limit), detection capability (<21% over the maximum residue limit), ruggedness (<5.6%) and stability. The procedure was rapid, eco-friendly, safe and easy-to-handle.

  13. A mode coupling theory analysis of viscoelasticity near the kinetic glass transition of a copolymer micellar system

    Mallamace, Francesco [Department of Nuclear Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Tartaglia, Piero [Dipartimento di Fisica, INFM and Statistical Mechanics and Complexity Center, Universita di Roma La Sapienza, I-00185 Rome (Italy); Chen W R [Department of Nuclear Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Faraone, Antonio [Department of Nuclear Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Chen, S H [Department of Nuclear Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)


    We report a set of viscoelastic measurements in concentrated aqueous solutions of a copolymer micellar system with short-range inter-micellar attractive interactions, a colloidal system characterized, in different regions of the composition-temperature phase diagram, by the existence of a percolation line (PT) and a kinetic glass transition (KGT). Both these transitions cause dramatic changes in the system viscoelasticity. Whereas the observed variations of the shear moduli at the PT are described in terms of percolation models, for the structural arrest at the KGT we investigate the frequency-dependent shear modulus behaviours by using a mode coupling theory (MCT) approach.

  14. SANS study of three-layer micellar particles

    Plestil, J; Kuklin, A I; Cubitt, R


    Three-layer nanoparticles were prepared by polymerization of methyl methacrylate (MMA) in aqueous micellar solutions of poly(methyl methacrylate)-block-poly(methacrylic acid) (PMMA-b-PMA) and polystyrene-block-poly(methacrylic acid) (PS-b-PMA). The resulting polymer forms a layer on the core surface of the original micelles. SANS curves were fitted using an ellipsoidal (PMMA/PMMA/PMA) or spherical (PS/PMMA/PMA) model for the particle core. The particle size (for the presented series of the PMMA/PMMA/PMA particles, the core semiaxes ranged from 87 to 187 A and the axis ratio was about 6) can be finely tuned by variation of monomer concentration. Time-resolved SANS experiments were carried out to describe the growth of the PS/PMMA/PMA particles during polymerization. (orig.)

  15. Separation of cationic analytes by nonionic micellar electrokinetic chromatography using polyoxyethylene lauryl ether surfactants with different polyoxyethylene length.

    Quirino, Joselito P; Kato, Masaru


    Although nonionic micellar electrokinetic chromatography is used for the separation of charged compounds that are not easily separated by capillary zone electrophoresis, the effect of the hydrophilic moiety of the nonionic surfactant has not been studied well. In this study, the separation of ultraviolet-absorbing amino acids was studied in electrokinetic chromatography using neutral polyoxyethylene lauryl ether surfactants (Adekatol) in the separation solution. The effect of the polyethylene moiety (the number of repeating units was from 6.5 to 50) of the hydrophobic test amino acids (methionine, tryptophan, and tysorine) was studied using a 10 cm effective length capillary. The separation mechanism was based on hydrophobic as well as hydrogen bonding interactions at the micellar surface, which was made of the polyoxyethylene moiety. The length of the polyoxyethylene moiety of the surfactants was not important in nonionic micellar electrokinetic chromatography mode.

  16. Solution-Processed Small-Molecule Bulk Heterojunctions: Leakage Currents and the Dewetting Issue for Inverted Solar Cells.

    Destouesse, Elodie; Chambon, Sylvain; Courtel, Stéphanie; Hirsch, Lionel; Wantz, Guillaume


    In organic photovoltaic (PV) devices based on solution-processed small molecules, we report here that the physicochemical properties of the substrate are critical for achieving high-performances organic solar cells. Three different substrates were tested: ITO coated with PSS, ZnO sol-gel, and ZnO nanoparticles. PV performances are found to be low when the ZnO nanoparticles layer is used. This performance loss is attributed to the formation of many dewetting points in the active layer, because of a relatively high roughness of the ZnO nanoparticles layer, compared to the other layers. We successfully circumvented this phenomenon by adding a small quantity of polystyrene (PS) in the active layer. The introduction of PS improves the quality of film forming and reduces the dark currents of solar cells. Using this method, high-efficiency devices were achieved, even in the case of substrates with higher roughness.

  17. Microwave enhanced electroanalysis of formulations: processes in micellar media at glassy carbon and at platinum electrodes.

    Ghanem, Mohamed A; Compton, Richard G; Coles, Barry A; Canals, Antonio; Marken, Frank


    The direct electroanalysis of complex formulations containing alpha-tocopherol (vitamin E) is possible in micellar solution and employing microwave-enhanced voltammetry. In the presence of microwave radiation substantial heating and current enhancement effects have been observed at 330 microm diameter glassy carbon electrodes placed into a micellar aqueous solution and both hydrophilic and highly hydrophobic redox systems are detected. For the water soluble Fe(CN)(6)(3-/4-) redox system in micellar aqueous solutions of 0.1 M NaCl and 0.1 M sodium dodecylsulfate (SDS) at low to intermediate microwave power, thermal effects and convection effects are observed. At higher microwave power, thermal cavitation is induced and dominates the mass transport at the electrode surface. For the micelle-soluble redox systems tert-butylferrocene and 2,5-di-tert-butyl-1,4-benzoquinone, strong and concentration dependent current responses are observed only in the presence of microwave radiation. For the oxidation of micelle-soluble alpha-tocopherol current responses at glassy carbon electrodes are affected by adsorption and desorption processes whereas at platinum electrodes, analytical limiting currents are obtained over a wide range of alpha-tocopherol concentrations. However, for the determination of alpha-tocopherol in a commercial formulation interference from proteins is observed at platinum electrodes and direct measurements are possible only over a limited concentration range and at glassy carbon electrodes.

  18. Hunting liquid micro-pockets in snow and ice: Phase transition in salt solutions at the bulk and interface with X-ray photoelectron spectroscopy.

    Bartels-Rausch, Thorsten; Orlando, Fabrizio; Kong, Xiangrui; Waldner, Astrid; Artiglia, Luca; Ammann, Markus; Huthwelker, Thomas


    Sea salt, and in particular chloride, is an important reactant in the atmosphere. Chloride in air-borne sea salt aerosol is - once chemically converted to a molecular halogen (Cl2, BrCl) and released to the atmosphere - well known as important atmospheric reactant, driving large-scale changes to the atmospheric composition and in particular to ozone levels in remote areas, but also in coastal mega cities. Similar chemistry has been proposed for sea salt deposits in polar snow covers. A crucial factor determining the overall reactivity is the local physical environment of the chloride ion. For example, the reactivity of liquid aerosols decreases significantly upon crystallization. Surprisingly, the phases of NaCl-containing systems are still under debate, partially due to the limited availability of in situ measurements directly probing the local environment at the surface of frozen NaCl-water binary systems. Using core electron spectroscopy of the oxygen atoms in water, we previously showed that these systems follow the phase rules at the air-ice interface. This finding contrasts some earlier observations, where the presence of liquid below the eutectic point of bulk solutions was postulated. In the present study, we present new electron yield near-edge X-ray absorption fine structure spectroscopy (NEXAFS) data obtained at near-ambient pressures up to 20 mbar of NaCl frozen solutions. The method is sensitive to small changes in the local environment of the chlorine atom. The measurements were performed at the PHOENIX beamline at SLS. The study indicates frapant differences in the phases of NaCl - water mixtures at temperatures blow the freezing point for the surface of the ice vs. the bulk. This has significant impact on modelling chemical reactions in snow or ice and it's environmental consequences.

  19. Anhydrous ringwoodites in the mantle transition zone: Their bulk modulus, solid solution behavior, compositional variation, and sound velocity feature

    Xi Liu


    Full Text Available The isothermal bulk moduli of anhydrous Mg2SiO4-ringwoodite (Rw and Fe2SiO4-Rw, and other 4–2 oxide spinels at ambient P-T condition have been evaluated, and empirically fitted to a model as KT0 = 270.8(300 + 0.343(59*V0 + 23.04(269*EN-total, where KT0 is the isothermal bulk modulus in GPa, V0 the unit-cell volume in Å3 and EN-total the electronegativity total of all cations in the chemical formula. This model well reproduces all data used in its calibration, and may be used to predict the KT0 of other 4–2 oxide spinels. Combined with the generally linear volume–composition relationship of the Rw solid solutions along the join Mg2SiO4–Fe2SiO4, this model leads to a much smaller composition effect on the KT0: KT0 = 185.0(1 + 7.0(1*XFe, where XFe is the atomic ratio Fe/(Fe + Mg. Furthermore, a bulk composition-independent compositional variation with P has been disclosed for the Rw at the P-T conditions of the lower part of the mantle transition zone (MTZ: XFe = 0.222(41 – 0.0053(19*P, with P in GPa. The nearly ideal mixing behavior, much smaller composition effect on the bulk modulus, and significant compositional variation of the Rw in the lower part of the MTZ substantially increase the gradients of the Vs-P and Vp-P profiles to generally match those constrained by the seismic reference models PREM and AK135. If there is any global low-T anomaly at the depth of 660 km, its required magnitude is most likely not larger than 200 K.

  20. Jet A fuel recovery using micellar flooding: Design and implementation.

    Kostarelos, Konstantinos; Lenschow, Søren R; Stylianou, Marinos A; de Blanc, Phillip C; Mygind, Mette Marie; Christensen, Anders G


    Surfactants offer two mechanisms for recovering NAPLs: 1) to mobilize NAPL by reducing NAPL/water interfacial tension, and; 2) to increase the NAPL's aqueous solubility-called solubilization-as an enhancement to pump & treat. The second approach has been well-studied and applied successfully in several pilot-scale and a few full-scale tests within the last 15years, known as Surfactant Enhanced Aquifer Remediation (SEAR). A useful source of information for this second approach is the "Surfactant-enhanced aquifer remediation (SEAR) design manual" from the U.S. Navy Facilities Engineering Command. Few attempts, however, have been made at recovering NAPLs using the mobilization approach presented in this paper. Now, a full-scale field implementation of the mobilization approach is planned to recover an LNAPL (Jet A fuel) from a surficial sand aquifer located in Denmark using a smaller amount of surfactant solution and fewer PVs of throughput compared with the SEAR approach. The approach will rely on mobilizing the LNAPL so that it is recovered ahead of the surfactant microemulsion, also known as a micellar flood. This paper will review the laboratory work performed as part of the design for a full-scale implementation of a micellar flood. Completed lab work includes screening of surfactants, phase behavior and detailed salinity scans of the most promising formulations, and generating a ternary diagram to be used for the numerical simulations of the field application. The site owners and regulators were able to make crucial decisions such as the anticipated field results based on this work.

  1. Study of Micellar-Enhanced Ultrafiltration. Progress report, March 1, 1985-February 28, 1986

    Scamehorn, J.F.; Christian, S.D.


    The feasibility of Micellar-Enhanced Ultrafiltration (MEUF) to remove dissolved organics from water has been established. One of the first tasks was to determine the best surfactant to use in MEUF for various situations. From a thorough analysis of the properties and characteristics of a variety of surfactants, combined with preliminary runs with several surfactants, cationic surfactants were determined to be the best surfactant for general use in MEUF. Further, cetylpyridinium chloride was identifid as a near-optimum surfactant in most applications. Therefore, all further studies reported used this surfactant. Elimination of surfactant type as a variable permits more detailed investigation of other important variables. A major effort has been made to develop techniques for measuring the extent of solubilization of organic solutes by aqueous micellar systems. An important accomplishment during the past year has been the development of the so-called semi-equilibrium dealysis (SED) technique for studying solubilization.

  2. Inhibition mechanism of hydroxypropyl methylcellulose acetate succinate on drug crystallization in gastrointestinal fluid and drug permeability from a supersaturated solution.

    Ueda, Keisuke; Higashi, Kenjirou; Kataoka, Makoto; Yamashita, Shinji; Yamamoto, Keiji; Moribe, Kunikazu


    The effects of drug-crystallization inhibitor in bile acid/lipid micelles solution on drug permeation was evaluated during the drug crystallization process. Hydroxypropyl methylcellulose acetate succinate (HPMC-AS) was used as a drug-crystallization inhibitor, which efficiently suppressed dexamethasone (DEX) crystallization in a gastrointestinal fluid model containing sodium taurocholate (NaTC) and egg-phosphatidylcholine (egg-PC). Changes of molecular state of supersaturated DEX during the DEX crystallization process was monitored in real time using proton nuclear magnetic resonance (1H NMR). It revealed that DEX distribution to bulk water and micellar phases formed by NaTC and egg-PC was not changed during the DEX crystallization process even in the presence of HPMC-AS. DEX permeation during DEX crystallization was evaluated using dissolution/permeability system. The combination of crystallization inhibition by HPMC-AS and micellar encapsulation by NaTC and egg-PC led to considerably higher DEX concentrations and improvement of DEX permeation at the beginning of the DEX crystallization process. Crystallization inhibition by HPMC-AS can efficiently work even in the micellar solution, where NaTC/egg-PC micelles encapsulates some DEX. It was concluded that a crystallization inhibitor contributed to improvement of permeation of a poorly water-soluble drug in gastrointestinal fluid.

  3. Comparative Investigation between In Situ Laser Ablation Versus Bulk Sample (Solution Mode) Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Analysis of Trinitite Post-Detonation Materials.

    Dustin, Megan K; Koeman, Elizabeth C; Simonetti, Antonio; Torrano, Zachary; Burns, Peter C


    In the event of the interception of illicit nuclear materials or detonation of a nuclear device, timely and accurate deciphering of the chemical and isotopic composition of pertinent samples is pivotal in enhancing both nuclear security and source attribution. This study reports the results from a first time (to our knowledge), detailed comparative investigation conducted of Trinitite post-detonation materials using both solution mode (SM) and laser ablation (LA) inductively coupled plasma mass spectrometry (ICP-MS) techniques. Trace element abundances determined for bulk Trinitite samples subsequent to digestion and preparation for SM-ICP-MS analysis compare favorably to calculated median concentrations based on LA-ICP-MS analyses for the identical samples. The trace element concentrations obtained by individual LA-ICP-MS analyses indicate a large scatter compared to the corresponding bulk sample SM-ICP-MS results for the same sample; this feature can be attributed to the incorporation into the blast melt of specific, precursor accessory minerals (minerals in small quantities, such as carbonates, sulfates, chlorites, clay, and mafic minerals) present at ground zero. The favorable comparison reported here validates and confirms the use of the LA-ICP-MS technique in obtaining accurate forensic information at high spatial resolution in nuclear materials for source attribution purposes. This investigation also reports device-like (240)Pu/(239)Pu ratios (∼0.022) for Pu-rich regions of the blast melt that are also characterized by higher Ca and U contents, which is consistent with results from previous studies. © The Author(s) 2016.

  4. Vertical gradient solution growth of N-type Si0.73Ge0.27 bulk crystals with homogeneous composition and its thermoelectric properties

    Omprakash, M.; Arivanandhan, M.; Sabarinathan, M.; Koyama, T.; Momose, Y.; Ikeda, H.; Tatsuoka, H.; Aswal, D. K.; Bhattacharya, S.; Inatomi, Y.; Hayakawa, Y.


    Compositionally homogeneous Sb-doped (5×1018 and 1×1019 cm-3) Si0.73Ge0.27 bulk crystals were grown by a vertical gradient solution growth method. The sandwich sample Si (seed)/Sb-doped Ge/ Si(feed) was set up inside a furnace under a mild temperature gradient 0.57 °C/mm for homogeneous growth. The Si composition was analyzed by electron probe micro- analysis (EPMA). It revealed that the Si composition was homogeneous and the lengths of the Sb-doped (5×1018 and 1×1019 cm-3) Si0.73Ge0.27 bulk crystals were 18.3 and 15.1 mm, respectively. Grain distribution was investigated by electron backscattered diffraction spectrum (EBSD). The Seebeck coefficients (-440 and -426 μV/K) of Sb-doped (5×1018 and 1×1019 cm-3) Si0.73Ge0.27 were higher than the reported value (-211 μV/K) of P-doped (5×1019 cm-3) Si0.8Ge0.2 at room temperature. Thermal conductivity of Ga and Sb-doped SiGe was decreased with temperature due to scattering of phonon at the temperature range between 313 and 913 K. The maximum ZT values of Ga and Sb-doped SiGe were 0.34 and 0.44 at 820 K, respectively. The ZT values of Ga and Sb-doped SiGe were higher (0.07 and 0.13) than the reported value of Ga-doped Si0.81Ge0.19 (0.05) and P-doped (5×1019 cm-3) Si0.8Ge0.2 bulk crystals at room temperature. The improvement in ZT value was caused by a decrease of thermal conductivity which related to a composition of the alloy and doping concentration in the crystal.

  5. Glassy states in attractive micellar systems

    Mallamace, F.; Broccio, M.; Faraone, A.; Chen, W. R.; Chen, S.-H.


    Recent mode coupling theory (MCT) calculations show that in attractive colloids one may observe a new type of glass originating from clustering effects, as a result of the attractive interaction. This happens in addition to the known glass-forming mechanism due to cage effects in the hard sphere system. MCT also indicates that, within a certain volume fraction range, varying the external control parameter, the effective temperature, makes the glass-to-liquid-to-glass re-entrance and the glass-to-glass transitions possible. Here we present experimental evidence and details on this complex phase behavior in a three-block copolymer micellar system.

  6. Robust analysis of the hydrophobic basic analytes loratadine and desloratadine in pharmaceutical preparations and biological fluids by sweeping-cyclodextrin-modified micellar electrokinetic chromatography.

    El-Awady, Mohamed; Belal, Fathalla; Pyell, Ute


    The analysis of hydrophobic basic analytes by micellar electrokinetic chromatography (MEKC) is usually challenging because of the tendency of these analytes to be adsorbed onto the inner capillary wall in addition to the difficulty to separate these compounds as they exhibit extremely high retention factors. A robust and reliable method for the simultaneous determination of loratadine (LOR) and its major metabolite desloratadine (DSL) is developed based on cyclodextrin-modified micellar electrokinetic chromatography (CD-MEKC) with acidic sample matrix and basic background electrolyte (BGE). The influence of the sample matrix on the reachable focusing efficiency is studied. It is shown that the application of a low pH sample solution mitigates problems associated with the low solubility of the hydrophobic basic analytes in aqueous solution while having advantages with regard to on-line focusing. Moreover, the use of a basic BGE reduces the adsorption of these analytes in the separation compartment. The separation of the studied analytes is achieved in less than 7min using a BGE consisting of 10mmolL(-1) disodium tetraborate buffer, pH 9.30 containing 40mmolL(-1) SDS and 20mmolL(-1) hydroxypropyl-β-CD while the sample solution is composed of 10mmolL(-1) phosphoric acid, pH 2.15. A full validation study of the developed method based on the pharmacopeial guidelines is performed. The method is successfully applied to the analysis of the studied drugs in tablets without interference of tablet additives as well as the analysis of spiked human urine without any sample pretreatment. Furthermore, DSL can be detected as an impurity in LOR bulk powder at the stated pharmacopeial limit (0.1%, w/w). The selectivity of the developed method allows the analysis of LOR and DSL in combination with the co-formulated drug pseudoephedrine. It is shown that in CD-MEKC with basic BGE, solute-wall interactions are effectively suppressed allowing the development of efficient and precise

  7. Strong work-hardening behavior induced by the solid solution strengthening of dendrites in TiZr-based bulk metallic glass matrix composites

    Ma, D.Q. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Jiao, W.T. [College of Education, Hebei Normal University of Science and Technology, Qinhuangdao 066004 (China); Zhang, Y.F. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Hebei Vocational and Technical College of Building Materials, Qinhuangdao 066004 (China); Wang, B.A.; Li, J.; Zhang, X.Y. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Ma, M.Z., E-mail: [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Liu, R.P. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China)


    Highlights: • Hardness of dendrite of TiZr-based BMGMCs increases. • Strong work-hardening behavior is obtained after solid solution strengthening. • Lattice distortions of dendrite suffering from rapid cooling are detected. - Abstract: A series of TiZr-based bulk metallic glass matrix composites (BMGMCs) with distinguished mechanical properties are successfully fabricated by adding different volume fractions of Ta (Ti{sub 38.8}Zr{sub 28.8}Cu{sub 6.2}Be{sub 16.2}Nb{sub 10} as the basic composition, denoted as Ta{sub 0.0}–Ta{sub 8.0}). Along with the growth of precipitated phase, typical dendritic morphology is fully developed in the TiZr-based BMGMCs of Ta{sub 8.0}. Energy-dispersive spectrometry analysis of the dendrites and glass matrix indicates that the metallic elements of Nb and Ta should preferentially form solid solution into dendrites. The chaotic structure of high-temperature precipitate phase is trapped down by the rapid cooling of the copper-mould. The detected lattice distortions in the dendrites are attributed to the strong solid solution strengthening of the metallic elements of Ti, Zr, Nb, and Ta. These lattice distortions increase the resistance of the dislocation motion and pin the dislocations, thus the strength and hardness of dendrite increase. Dendrites create a strong barrier for the shear band propagation and generate multiple shear bands after solid solution strengthening, thereby providing the TiZr-based BMGMCs with greatly improved capacity to sustain plastic deformation and resistance to brittle fracture. Thus, the TiZr-based BMGMCs possess distinguished work-hardening capability. Among these TiZr-based BMGMCs, the sample Ta{sub 0.5} possesses the largest plastic strain (ε{sub p}) at 20.3% and ultimate strength (σ{sub max}) of 2613 MPa during compressive loading. In addition, the sample of Ta{sub 0.5} exhibits work-hardening up to an ultrahigh tensile strength of 1680 MPa during the tensile process, and then progressively

  8. Dye-sensitized photo-oxidation of amino acids in reversed micellar membrane mimetic system

    刘剑波; 张复实; 赵瑜; 赵福群; 唐应武; 宋心琦


    The photochemistry of a novel photosensitizer H[TBC(O’Pr)4P(OH)],and the photo-oxidation of amino acids sensitized by H[TBC(OiPr)4P(OH)] have been investigated in the AOT/H2O/toluene reversed micellar system.Absorption and fluorescence measurements indicate that H[TBC(O’Pr)4P(OH)] can interact with the re versed micelles by adsorption to the micellar surface,resulting in the disaggregation of the sensitizer and the enhance ment of its photoactivity.In micellar solutions,H[TBC(O’Pr)4P(OH)] can efficiently photo-generate O2(Type Ⅱ mechanism) and O2(Type Ⅰ mechanism) as shown by stationary photolysis and ESR spin-trapping techniques Amino acids dissolved in water pools of reversed micelles can be photo-oxidized via Type Ⅱ mechanism as sensitized by H[TBC(O’Pr)4P(OH)].The photo-oxidation of tryptophan follows the first-order kinetics,while that of tyrosine is much slower.Kinetic studies of the photodynamic behavior in this microheterogeneous system shows that the micro-heterogeneity can alter the mechani

  9. Isocratic and gradient elution in micellar liquid chromatography with Brij-35.

    Peris-García, Ester; Ortiz-Bolsico, Casandra; Baeza-Baeza, Juan José; García-Alvarez-Coque, María Celia


    Polyoxyethylene(23)lauryl ether (known as Brij-35) is a nonionic surfactant, which has been considered as an alternative to the extensively used in micellar liquid chromatography anionic surfactant sodium lauryl (dodecyl) sulfate, for the analysis of drugs and other types of compounds. Brij-35 is the most suitable nonionic surfactant for micellar liquid chromatography, owing to its commercial availability, low cost, low toxicity, high cloud temperature, and low background absorbance. However, it has had minor use. In this work, we gather and discuss some results obtained in our laboratory with several β-blockers, sulfonamides, and flavonoids, concerning the use of Brij-35 as mobile phase modifier in the isocratic and gradient modes. The chromatographic performance for purely micellar eluents (with only surfactant) and hybrid eluents (with surfactant and acetonitrile) is compared. Brij-35 increases the polarity of the alkyl-bonded stationary phase and its polyoxyethylene chain with the hydroxyl end group allows hydrogen-bond interactions, especially for phenolic compounds. This offers the possibility of using aqueous solutions of Brij-35 as mobile phases with sufficiently short retention times. The use of gradients of acetonitrile to keep the concentration of Brij-35 constant is another interesting strategy that yields a significant reduction in the peak widths, which guarantee high resolution.

  10. Can neutral analytes be concentrated by transient isotachophoresis in micellar electrokinetic chromatography and how much?

    Matczuk, Magdalena; Foteeva, Lidia S; Jarosz, Maciej; Galanski, Markus; Keppler, Bernhard K; Hirokawa, Takeshi; Timerbaev, Andrei R


    Transient isotachophoresis (tITP) is a versatile sample preconcentration technique that uses ITP to focus electrically charged analytes at the initial stage of CE analysis. However, according to the ruling principle of tITP, uncharged analytes are beyond its capacity while being separated and detected by micellar electrokinetic chromatography (MEKC). On the other hand, when these are charged micelles that undergo the tITP focusing, one can anticipate the concentration effect, resulting from the formation of transient micellar stack at moving sample/background electrolyte (BGE) boundary, which increasingly accumulates the analytes. This work expands the enrichment potential of tITP for MEKC by demonstrating the quantitative analysis of uncharged metal-based drugs from highly saline samples and introducing to the BGE solution anionic surfactants and buffer (terminating) co-ions of different mobility and concentration to optimize performance. Metallodrugs of assorted lipophilicity were chosen so as to explore whether their varying affinity toward micelles plays the role. In addition to altering the sample and BGE composition, optimization of the detection capability was achieved due to fine-tuning operational variables such as sample volume, separation voltage and pressure, etc. The results of optimization trials shed light on the mechanism of micellar tITP and render effective determination of selected drugs in human urine, with practical limits of detection using conventional UV detector.

  11. Probing the Energy Level Alignment and the Correlation with Open-Circuit Voltage in Solution-Processed Polymeric Bulk Heterojunction Photovoltaic Devices.

    Yang, Qing-Dan; Li, Ho-Wa; Cheng, Yuanhang; Guan, Zhiqiang; Liu, Taili; Ng, Tsz-Wai; Lee, Chun-Sing; Tsang, Sai-Wing


    Energy level alignment at the organic donor and acceptor interface is a key to determine the photovoltaic performance in organic solar cells, but direct probing of such energy alignment is still challenging especially for solution-processed bulk heterojunction (BHJ) thin films. Here we report a systematic investigation on probing the energy level alignment with different approaches in five commonly used polymer:[6,6]-phenyl-C71-butyric acid methyl ester (PCBM) BHJ systems. We find that by tuning the weight ratio of polymer to PCBM the electronic features from both polymer and PCBM can be obtained by photoemission spectroscopy. Using this approach, we find that some of the BHJ blends simply follow vacuum level alignment, but others show strong energy level shifting as a result of Fermi level pinning. Independently, by measuring the temperature-dependent open-circuit voltage (VOC), we find that the effective energy gap (Eeff), the energy difference between the highest occupied molecular orbital of the polymer donor (EHOMO-D) and lowest unoccupied molecular orbital of the PCBM acceptor (ELUMO-A), obtained by photoemission spectroscopy in all polymer:PCBM blends has an excellent agreement with the extrapolated VOC at 0 K. Consequently, the photovoltage loss of various organic BHJ photovoltaic devices at room temperature is in a range of 0.3-0.6 V. It is believed that the demonstrated direct measurement approach of the energy level alignment in solution-processed organic BHJ will bring deeper insight into the origin of the VOC and the corresponding photovoltage loss mechanism in organic photovoltaic cells.

  12. Synthesis of High cis-Polybutadiene in Styrene Solution with Neodymium-Based Catalysts: Towards the Preparation of HIPS and ABS via In Situ Bulk Polymerization

    Ramón Díaz de León


    Full Text Available In a first step, 1,3-butadiene was selectively polymerized at 60°C in styrene as solvent using NdV3/DIBAH/EASC as the catalyst system. The catalyst system activation process, the addition order of monomers and catalyst components, and the molar ratios [Al]/[Nd] and [Cl]/[Nd] were studied. The catalyst system allowed the selective 1,3-butadiene polymerization, reaching conversions between 57.5 and 88.1% with low polystyrene contents in the order of 6.3 to 15.4%. Molecular weights ranging from 39,000 to 150,000 g/mol were obtained, while cis-1,4 content was found in the interval of 94.4 to 96.4%. On the other hand, the glass transition temperatures of synthesized materials were established in the range of −101.9 to −107.4°C, explained by the presence of polystyrene segments in the polybutadiene chains; in the same sense, the polybutadienes did not show the typical melting endotherm of high cis-polybutadienes. In a second step, the resulting styrene/high cis-1,4 polybutadiene solutions were used to synthesize ABS (adding a fraction of acrylonitrile monomer and HIPS via in situ bulk polymerizations and the results were discussed in terms of morphological development, molecular parameters, dynamical mechanical behavior, and mechanical properties.

  13. Kinetic Study of Copper(II Simultaneous Extraction/Stripping from Aqueous Solutions by Bulk Liquid Membranes Using Coupled Transport Mechanisms

    Loreto León


    Full Text Available Heavy metals removal/recovery from industrial wastewater has become a prime concern for both economic and environmental reasons. This paper describes a comparative kinetic study of the removal/recovery of copper(II from aqueous solutions by bulk liquid membrane using two types of coupled facilitated transport mechanisms and three carriers of different chemical nature: benzoylacetone, 8-hydroxyquinoline, and tri-n-octylamine. The results are analyzed by means of a kinetic model involving two consecutive irreversible first-order reactions (extraction and stripping. Rate constants and efficiencies of the extraction (k1, EE and the stripping (k2, SE reactions, and maximum fluxes through the membrane, were determined for the three carriers to compare their efficiency in the Cu(II removal/recovery process. Counter-facilitated transport mechanism using benzoylacetone as carrier and protons as counterions led to higher maximum flux and higher extraction and stripping efficiencies due to the higher values of both the extraction and the stripping rate constants. Acceptable linear relationships between EE and k1, and between SE and k2, were found.

  14. Glutathione transferase mimics : Micellar catalysis of an enzymic reaction

    Lindkvist, Björn; Weinander, Rolf; Engman, Lars; Koetse, Marc; Engberts, Jan B.F.N.; Morgenstern, Ralf


    Substances that mimic the enzyme action of glutathione transferases (which serve in detoxification) are described. These micellar catalysts enhance the reaction rate between thiols and activated halogenated nitroarenes as well as alpha,beta-unsaturated carbonyls. The nucleophilic aromatic substituti

  15. Micellar control of the photooxidation pathways of 10-methyl phenothiazine: electron versus energy transfer mechanisms.

    Manju, Thankamoniamma; Manoj, Narayanapillai; López Gejo, Juan; Braun, André M; Oliveros, Esther


    10-Methyl phenothiazine (MPS) was chosen as a model compound to investigate the effects of compartmentalisation and of charged interfaces on the primary mechanisms involved in the phototoxic reactions related to phenothiazine drugs. Two most important pathways resulting from the interaction of the triplet excited state of MPS ((3)MPS*) with molecular oxygen ((3)O2) have to be considered: (i) energy transfer producing singlet oxygen ((1)O2) and (ii) electron transfer generating the superoxide anion (O2˙(-)) and the radical cation (MPS˙(+)). The quantum yields of (1)O2 production by MPS solubilized in the dispersed pseudo-phase of aqueous micellar systems were found to be similar to those determined in solvents of various polarities, regardless of the anionic or cationic nature of the surfactant (SDS or CTAC). However, micellar compartmentalisation and surfactant charge affect considerably both the sensitized and the self-sensitized photooxidation of MPS. The formation of 10-methyl phenothiazine sulfoxide (MPSO), produced by the reaction of MPS with (1)O2, proceeds at a higher rate in SDS micelles than in neat polar solvents. This result may be explained by the protonation of the zwitterionic intermediate Z (MPS(+)OO(-)) at the micellar interface to yield the corresponding cation C (MPS(+)OOH) that is stabilized in the negatively charged micelles and reacts much faster with MPS than Z to yield MPSO. The electron transfer reaction from (3)MPS* to O2 yielding MPS˙(+) and O2˙(-) is also enhanced in SDS micelles, as back electron transfer (BET) is prevented by ejection of O2˙(-) to the aqueous bulk phase and stabilization of MPS˙(+) in the anionic micelles. The size of the SDS micelles modulates the relative contribution of each pathway (formation of MPSO or MPS˙(+)) to the overall conversion of MPS to its oxidation products. Photooxidation of MPS in cationic micelles is a very slow process, as the formation of neither C nor MPS˙(+) is favoured in positively

  16. Mobilization and micellar solubilization of NAPL contaminants in aquifer rocks

    Javanbakht, Gina; Goual, Lamia


    Surfactant-enhanced aquifer remediation is often performed to overcome the capillary forces that keep residual NAPL phases trapped within contaminated aquifers. The surfactant selection and displacement mechanism usually depend on the nature of NAPL constituents. For example, micellar solubilization is often used to cleanup DNAPLs from aquifers whereas mobilization is desirable in aquifers contaminated by LNAPLs. Although the majority of crude oils are LNAPLs, they often contain heavy organic macromolecules such as asphaltenes that are classified as DNAPLs. Asphaltenes contain surface-active components that tend to adsorb on rocks, altering their wettability. Previous studies revealed that surfactants that formed Winsor type III microemulsions could promote both mobilization and solubilization. However the extent by which these two mechanisms occur is still unclear, particularly in oil-contaminated aquifers. In this study we investigated the remediation of oil-contaminated aquifers using an environmentally friendly surfactant such as n-Dodecyl β-D-maltoside. Focus was given on asphaltenes to better understand the mechanisms of surfactant cleanup. Through phase behavior, spontaneous imbibition, dynamic interfacial tension and contact angle measurements, we showed that microemulsions formed by this surfactant are able to mobilize bulk NAPL (containing 9 wt.% asphaltenes) in the porous rock and solubilize DNAPL (i.e., 4-6 wt.% adsorbed asphaltenes) from the rock surface. Spontaneous imbibition tests, in particular, indicated that the ratio of mobilized to solubilized NAPL is about 6:1. Furthermore, aging the cores in NAPL beyond 3 days allowed for more NAPL to be trapped in the large pores of the rock but did not alter the amount of asphaltenes adsorbed on the mineral surface.

  17. Viscoelastic processes in non-ergodic states (percolation and glass transitions) of attractive micellar systems

    Mallamace, F.; Broccio, M.; Tartaglia, P.; Chen, W. R.; Faraone, A.; Chen, S. H.


    We report a set of viscoelastic measurements in aqueous solutions of a copolymer micellar system with attractive interactions, a system characterized by a percolation line (PT), and a structural arrest (SA) in the particle diffusion motions of a kinetic glass transition (KGT). We observe, in both transitions, dramatic variations in both the elastic (or storage G‧( ω)) and loss components ( G″( ω)) of the shear moduli. At the PT, rheological data are characterized by a scaling behavior, whereas at the SA G‧ and G″ develop a plateau and a marked minimum, respectively. These behaviors are described in the frame of percolation models and mode coupling theory (MCT).

  18. Enantiomeric Separation of Epinephrine and Salbutamol by Micellar Electrokinetic Chromatography Using β-Cyclodextrin as Chiral Additive

    Yan Peng ZHENG; Jin Yuan MO


    Enantiomeric separation of epinephrine and salbutamol was investigated by micellar electrokinetic chromatography employing β-cyclodextrin as chiral additive in ammonium chloride-ammonia solution. The analytes were detected by electrochemistry using gold microelectrode at +0.65 V versus SCE reference electrode. The effects of detection potential,concentration of β-cyclodextrin, concentration of sodium dodecyl sulfate, pH value of electrolyte and applied voltage were discussed.

  19. Solidified reverse micellar solutions (SRMS): A novel approach for ...


    mesophase after melting on contact with water; this transformation enables controlled release of solubilized .... crystalline interface which is also influenced when either the free acid ... to the ease of wetting of the hydrophobic drug particles in.

  20. Regioselective dimerization of ferulic acid in a micellar solution

    Larsen, E; Andreasen, Mette Findal; Christensen, L P


    that regioisomeric ferulic acid dehydrodimers can be obtained in one step from trans-ferulic acid after attachment to these micelles and using the biomimetic peroxidase-H2O2 system. The surfactant hexadecyltrimethylammonium hydroxide yielded trans-4-(4-hydroxy-3-methoxybenzylidene)-2-(4-hydroxy-3-methoxyphenyl)-5......-oxotetrahydrofuran-3-carboxylic acid (25%), (E,E)-4,4'-dihydroxy-5,5'-dimethoxy-3,3'-bicinnamic acid (21%), and trans-5-[(E)-2-carboxyvinyl]-2-(4-hydroxy-3-methoxyphenyl)-7-methoxy-2,3-dihydrobenzofuran-3-carboxylic acid (14%), whereas the surfactant tetradecyltrimethylammonium bromide gave 4-cis, 8-cis-bis(4...

  1. Solution-processable low-molecular weight extended arylacetylenes: versatile p-type semiconductors for field-effect transistors and bulk heterojunction solar cells.

    Silvestri, Fabio; Marrocchi, Assunta; Seri, Mirko; Kim, Choongik; Marks, Tobin J; Facchetti, Antonio; Taticchi, Aldo


    We report the synthesis and characterization of a series of five extended arylacetylenes, 9,10-bis-{[m,p-bis(hexyloxy)phenyl]ethynyl}-anthracene (A-P6t, 1), 9,10-bis-[(p-{[m,p-bis(hexyloxy) phenyl]ethynyl}phenyl)ethynyl]-anthracene (PA-P6t, 2), 4,7-bis-{[m,p-bis(hexyloxy)phenyl]ethynyl}-2,1,3-benzothiadiazole (BTZ-P6t, 5), 4,7-bis(5-{[m,p-bis(hexyloxy)phenyl]ethynyl}thien-2-yl)-2,1,3-benzothiadiazole (TBTZ-P6t, 6), and 7,7'-({[m,p-bis(hexyloxy)phenyl]ethynyl}-2,1,3-benzothiadiazol-4,4'-ethynyl)-2,5-thiophene (BTZT-P6t, 7), and two arylvinylenes, 9,10-bis-{(E)-[m,p-bis(hexyloxy)phenyl]vinyl}-anthracene (A-P6d, 3), 9,10-bis-[(E)-(p-{(E)-[m,p-bis(hexyloxy)phenyl]vinyl}phenyl)vinyl]-anthracene (PA-P6d, 4). Trends in optical absorption spectra and electrochemical redox processes are first described. Next, the thin-film microstructures and morphologies of films deposited from solution under various conditions are investigated, and organic field-effect transistors (OFETs) and bulk heterojunction photovoltaic (OPV) cells fabricated. We find that substituting acetylenic for olefinic linkers on the molecular cores significantly enhances device performance. OFET measurements reveal that all seven of the semiconductors are FET-active and, depending on the backbone architecture, the arylacetylenes exhibit good p-type mobilities (mu up to approximately 0.1 cm(2) V(-1) s(-1)) when optimum film microstructural order is achieved. OPV cells using [6,6]-phenyl C(61)-butyric acid methyl ester (PCBM) as the electron acceptor exhibit power conversion efficiencies (PCEs) up to 1.3% under a simulated AM 1.5 solar irradiation of 100 mW/cm(2). These results demonstrate that arylacetylenes are promising hole-transport materials for p-channel OFETs and promising donors for organic solar cells applications. A direct correlation between OFET arylacetylene hole mobility and OPV performance is identified and analyzed.

  2. A universal concept for stacking neutral analytes in micellar capillary electrophoresis.

    Palmer, J; Munro, N J; Landers, J P


    Unlike recent studies that have depended on manipulation of separation buffer parameters to facilitate stacking of neutral analytes in micellar capillary electrophoresis (MCE) mode, we have developed a method of stacking based simply on manipulation of the sample matrix. Many solutions for sample stacking in MCE are based on strict control of pH, micelle type, electroosmotic flow (EOF) rate, and separation-mode polarity. However, a universal solution to sample stacking in MCE should allow for free manipulation of separation buffer parameters without substantially affecting separation of analytes. Analogous to sample stacking in capillary zone electrophoresis by invoking field amplification of charged analytes in a low-conductivity sample matrix, the proposed method utilizes a high-conductivity sample matrix to transfer field amplification from the sample zone to the separation buffer. This causes the micellar carrier in the separation buffer to stack before it enters the sample zone. Neutral analytes moving out of the sample zone with EOF are efficiently concentrated at the micelle front. Micelle stacking is induced by simply adding salt to the sample matrix to increase the conductivity 2-3-fold higher than the separation buffer. This solution allows free optimization of separation buffer parameters such as micelle concentration, organic modifiers, and pH, providing a method that may complement virtually any existing MCE protocol without restricting the separation method.

  3. Bulk Availability.


    and are omitted from this 0 report. It should be noted that the initial value of time to has been taken as to=O in deriving the above forms of solution...Initial conditions are specified for some value of time , to, at which the model behavior becomes governed by the Region 2 form. As in ,0. Chapter given above. It should be noted that the initial value of time to has been taken as to=O in deriving the above forms of solution. This means that

  4. Application des techniques de diffusion de la lumière des rayons x et des neutrons à l'étude des systèmes colloïdaux. Deuxième partie : étude des différents systèmes : polymères en solution à l'état solide, solutions micellaires, systèmes fractals Application of Light, X-Ray and Neutron Diffusion Techniques to the Study of Colloidal Systems. Part Two: Research on Different Systems: Polymers in Solution in the Solid State, Micellar Solutions, Fractals Systems

    Espinat D.


    article takes up polymer and colloidal solutions. Particular attention is paid to the importance of scattering techniques for characterizing polymers in solution and micellar solutions. A look is also taken at the information that central scattering can provide on the macrostructure of crystallized or amorphous polymers in a solid state. Many systems have a structure of the fractal type. After describing several examples, the article demonstrates that scattering methods can provide some information about materials, and especially about the fractal dimension.

  5. Preparation of TiO2 nanometer thin films with high photocatalytic activity by reverse micellar method


    Two kinds of TiO2 nanometer thin films were prepared on stainless steel by the reverse micellar and sol-gelmethods, respectively. The calcined TiO2 thin films were characterized by X-ray diffraction (XRD), atomic force micros-copy (AFM), BET surface area and X-ray photoelectron spectroscopy (XPS). Photocatalytic activity was evaluated byphotocatalytic decoloration of methyl orange aqueous solution. The results showed that the TiO2 thin films prepared by re-verse micellar method (designated as RM-TiO2 films) showed higher photocatalytic activity than those by sol-gel method(designated as SG-TiO2 films). This is attributed to the fact that the former is composed of smaller monodispersed sphericalparticles with a size of about 15 nm and possesses higher surface areas.

  6. Enantiomeric Separation of Epinephrine and Salbutamol by Micellar Electrokinetic Chromatography Using β-Cyclodextrin as Chiral Additive

    ZHENG,Yan-Peng(郑妍鹏); MO,Jin-Yuan(莫金垣)


    Enantiomeric separations of epinephrine and salbutamol, by means of micellar electrokinetic chromatography (MEKC) employing β-cyclodextrin as chiral additive in ammonium chloride-ammonia solution were investigated.In this system, the analytes migrated with the micellar phase towards the anode and were detected by electrochemistry using gold microelectrode at +0.65 V vs. SCE. The success of the chiral separations is strongly dependent on the concentration of β-CD and SDS, and the optimal concentration is 8 mmol·L-1 and 15 mmol·L-1 respectively.The effects of detection potential, pH value of electrolyte and applied voltage were discussed also. Using the proposed method, baseline separation of the enantiomers could be accomplished in 6 min. Further, an attempt was made to elucidate the plausible mechanism of the chiral recognition.

  7. Can affinity interactions influence the partitioning of glucose-6-phosphate dehydrogenase in two-phase aqueous micellar systems?

    André M. Lopes


    Full Text Available In this work, we provide an investigation of the role and strength of affinity interactions on the partitioning of the glucose-6-phosphate dehydrogenase in aqueous two-phase micellar systems. These systems are constituted of micellar surfactant solutions and offer both hydrophobic and hydrophilic environments, providing selectivity to biomolecules. We studied G6PD partitioning in systems composed of the nonionic surfactants, separately, in the presence and absence of affinity ligands. We observed that G6PD partitions to the micelle-poor phase, owing to the strength of excluded-volume interactions in these systems that drive the protein to the micelle-poor phase, where there is more free volume available.


    WANG Erjian; FANG Peiji; FENG Xinde


    A kind of cationic compounds, having benzophenone end group and various length chain (PKT) (BP-CH2N + R2R'·X-, R&R' different chain length alkyl group)were used as photosensitizers. Various BP/TEA systems have been used for study, The efficiency of MMA photopolymerization initiated by them shows PKT > BP in homogeneous water solution and PKT> BP/CTAB in micellar water solution. The results obtained indicate that catalytic effects of PKT type functional micelles are far greater than that of common micelle with the enhancement of polymerization rate over 10 times compared with BP in water solution. The catalytic role,reaction character of PKT, effect of counter ions and retarding effect of oxygen have also been discussed.

  9. Analysis of catechins in Theobroma cacao beans by cyclodextrin-modified micellar electrokinetic chromatography.

    Gotti, Roberto; Furlanetto, Sandra; Pinzauti, Sergio; Cavrini, Vanni


    A micellar electrokinetic chromatography (MEKC) method was developed for the quantitation of polyphenols (+)-catechin and (-)-epicatechin (catechin monomers) and the methylxanthine theobromine in Theobroma cacao beans. Owing to the poor stability of catechin monomers in alkaline conditions, a 50 mM Britton-Robinson buffer at a pH 2.50 was preferred as the background electrolyte. Under these conditions, the addition of hydroxypropyl-beta-cyclodextrin (HP-beta-CD) at a concentration of 12 mM to the SDS micellar solution (90 mM), resulted in a cyclodextrin-modified micellar electrokinetic chromatography (CD-MEKC) endowed with two peculiar advantages compare to the conventional MEKC: (i) strong improvement of separation of the most important phytomarkers of T. cacao and (ii) enantioselectivity toward (+/-)-catechin. In particular, separation of methylxanthines (theobromine and caffeine), procyanidin dimers B1 and B2, and catechins (epicatechin and catechin) was obtained simultaneously to the enantioseparation of racemic catechin within 10min. The enantioselectivity of the method makes it suitable in evaluation of possible epimerisation at the C-2 position of epicatechin monomer potentially occurring during heat processing and storage of T. cacao beans. The extraction procedure of the phytomarkers from the beans was approached using ultrasonic bath under mild conditions optimized by a multivariate strategy. The method was validated for robustness, selectivity, sensitivity, linearity, range, accuracy and precision and it was applied to T. cacao beans from different countries; interestingly, the native enantiomer (+)-catechin was found in the beans whereas, for the first time we reported that in chocolate, predominantly (-)-catechin is present, probably yielded by epimerisation of (-)-epicatechin occurred during the manufacture of chocolate.

  10. Chloromethylation of 2-chloroethylbenzene catalyzed by micellar catalysis

    LIU QiFa; LU Ming; WEI Wei


    The chloromethylation reaction of 2-chloroethylbenzene was performed successfully by micellar catalysis in the biphasic oil/water system.The effects of anionic,cationic and non-ionic surfactants on the reaction were compared.The mechanism of chloromethyiation reaction and the mechanism of micellar catalysis were investigated.The results show that the micellar catalysis is an effective way to realize the chloromethylation of 2-chloroethylbenzene,and the cationic surfactant shows the most effectiveness.The longer the hydrophobic chain of the cationic surfactant is,the better the catalysis effect will be,and the addition of inorganic electrolyte into the aqueous phase can markedly promote the catalysis effect.

  11. The Universe With Bulk Viscosity


    Exact solutions for a model with variable G, A and bulk viscosity areobtained. Inflationary solutions with constant (de Sitter-type) and variable energydensity are found. An expanding anisotropic universe is found to isotropize duringits expansion but a static universe cannot isotropize. The gravitational constant isfound to increase with time and the cosmological constant decreases with time asAo∝t-2.

  12. Micellar liquid chromatography of terephthalic acid impurities.

    Richardson, Ashley E; McPherson, Shakeela D; Fasciano, Jennifer M; Pauls, Richard E; Danielson, Neil D


    The production of terephthalic acid (TPA) by oxidation of p-xylene is an important industrial process because high purity TPA is required for the synthesis of polyethylene terephthalate, the primary polymer used to make plastic beverage bottles. Few separation methods have been published that aim to separate TPA from eight major aromatic acid impurities. This work describes a "green" micellar liquid chromatography (MLC) method using a C18 column (100×2.1mm, 3.5μm), an acidic 1% sodium dodecyl sulfate (SDS) mobile phase, and a simple step flow rate gradient to separate TPA and eight impurities in less than 20min. The resulting chromatogram shows excellent peak shape and baseline resolution of all nine acids, in which there are two sets of isomers. Partition coefficients and equilibrium constants have been calculated for the two sets of isomers by plotting the reciprocal of the retention factor versus micelle concentration. Quantitation of the nine analytes in an actual industrial TPA sample is possible. Limits of detection for all nine acids range from 0.180 to 1.53ppm (2.16-19.3 pmoles) and limits of quantitation range from 0.549 to 3.45ppm (6.48-43.0 pmoles). In addition, the method was tested on two other reversed phase C18 columns of similar dimensions and particle diameter from different companies. Neither column showed quite the same peak resolution as the original column, however slight modifications to the mobile phase could improve the separation. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Thermodynamics of sodium dodecyl sulphate-salicylic acid based micellar systems and their potential use in fruits postharvest.

    Cid, A; Morales, J; Mejuto, J C; Briz-Cid, N; Rial-Otero, R; Simal-Gándara, J


    Micellar systems have excellent food applications due to their capability to solubilise a large range of hydrophilic and hydrophobic substances. In this work, the mixed micelle formation between the ionic surfactant sodium dodecyl sulphate (SDS) and the phenolic acid salicylic acid have been studied at several temperatures in aqueous solution. The critical micelle concentration and the micellization degree were determined by conductometric techniques and the experimental data used to calculate several useful thermodynamic parameters, like standard free energy, enthalpy and entropy of micelle formation. Salicylic acid helps the micellization of SDS, both by increasing the additive concentration at a constant temperature and by increasing temperature at a constant concentration of additive. The formation of micelles of SDS in the presence of salicylic acid was a thermodynamically spontaneous process, and is also entropically controlled. Salicylic acid plays the role of a stabilizer, and gives a pathway to control the three-dimensional water matrix structure. The driving force of the micellization process is provided by the hydrophobic interactions. The isostructural temperature was found to be 307.5 K for the mixed micellar system. This article explores the use of SDS-salicylic acid based micellar systems for their potential use in fruits postharvest.

  14. Impact of selected wastewater constituents on the removal of sulfonamide antibiotics via ultrafiltration and micellar enhanced ultrafiltration.

    Exall, Kirsten; Balakrishnan, Vimal K; Toito, John; McFadyen, Renée


    To better understand the environmental mobility of sulfonamide antibiotics and develop improved processes for their removal during wastewater treatment, stirred cell ultrafiltration (UF) experiments were conducted using both synthetic and real wastewater effluent. The interactions between selected sulfonamides (sulfaguanidine, sulfathiazole and sulfamerazine), solids and dissolved organic matter were systematically explored. The further impact of micellar enhanced ultrafiltration (MEUF), a process in which surfactants are added at micellar concentrations to enhance removal of various trace contaminants from aqueous streams, was then explored by using a cationic surfactant, cetyltrimethylammonium bromide (CTAB). Ultrafiltration of sulfonamides in the absence of other materials generally removed only 15-20% of the antibiotics. The presence of micellar solutions of CTAB generally improved removal of sulfonamides over UF alone, with rejections ranging from 20 to 74%. Environmental solids (sediment) further increased retention of sulfonamides using both UF and MEUF, but the presence of DOM did not influence rejection. Similar trends were observed on UF and MEUF of real effluent samples that had been spiked with the sulfonamides, confirming the environmental relevance of the observed interactions between sulfonamides, surfactant, and wastewater constituents. The results demonstrate that MEUF processes can be designed for the selective removal of such trace contaminants as sulfonamide antibiotics.

  15. Determination of the hydrolysis kinetics of alpha-naphthyl acetate in micellar systems and the effect of HPMC (catalyst present).

    Werawatganone, Pornpen; Wurster, Dale Eric


    The change in the hexadecyltrimethylammonium bromide (CTAB) critical aggregation concentration (CAC) was studied in the presence of various concentrations and grades of hydroxypropylmethyl cellulose (HPMC) using surface tension measurement (duNoüy ring and Wilhelmy plate) and oil red O solubilization. According to the surface tension methods, the CAC was higher than the CTAB critical micelle concentration (CMC). CAC and CMC were not different when the solubilization method was used. Micellar solutions of CTAB have been found to accelerate the hydrolysis of alpha-naphthyl acetate (alpha-NA) by o-iodosobenzoic acid (IBA), a strong nucleophile. Pseudo-first-order kinetics were utilized for rate constant determination. The observed rate constants for the degradation of alpha-NA in the presence of varying CTAB concentrations with and without HPMC were analyzed according to the pseudophase model. The micellar rate constants and the micellar binding constants for the substrates were obtained. The presence of HPMC retarded the reaction rate, and the rate constant decreased as the polymer concentration increased. However, there was no obvious difference in the observed rate constants among the different grades of HPMC (Methocel E5, Methocel E15, Methocel E50). The decrease in the rate constant was likely due to the polymer-micelle interaction interfering with substrate binding to the CTAB micelles.

  16. Prediction of retention in micellar electrokinetic chromatography based on molecular structural descriptors by using the heuristic method

    Liu Huanxiang [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Yao Xiaojun [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China)]. E-mail:; Liu Mancang [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Hu Zhide [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Fan Botao [Universite Paris 7-Denis Diderot, ITODYS 1, rue Guy de la Brosse, 75005 Paris (France)


    Based on calculated molecular descriptors from the solutes' structure alone, the micelle-water partition coefficients of 103 solutes in micellar electrokinetic chromatography (MEKC) were predicted using the heuristic method (HM). At the same time, in order to show the influence of different molecular descriptors on the micelle-water partition of solute and to well understand the retention mechanism in MEKC, HM was used to build several multivariable linear models using different numbers of molecular descriptors. The best 6-parameter model gave the following results: the square of correlation coefficient R {sup 2} was 0.958 and the mean relative error was 3.98%, which proved that the predictive values were in good agreement with the experimental results. From the built model, it can be concluded that the hydrophobic, H-bond, polar interactions of solutes with the micellar and aqueous phases are the main factors that determine their partitioning behavior. In addition, this paper provided a simple, fast and effective method for predicting the retention of the solutes in MEKC from their structures and gave some insight into structural features related to the retention of the solutes.

  17. Two-peak phenomena and formation origin in micellar electrokinetic capillary chromatography

    陈冠华; 杨更亮; 田益玲; 陈义


    The formation origin of two peaks in micellar electrokinetic capillary chromatography by using cetyltrimethylaminium bromide (or sodium dodecyl sulfate) as pseudo stationary phase is studied. It is pointed out that two peaks may appear for one component in certain conditions. Experiments show that the relative areas of the two peaks of the corresponding component depend on the time and temperature of reaction between the analyte and the surfactant, and the concentration of surfactant in the sample solution. One of the two peaks increase with the increase of surfactant concentration in the sample solution while reverse for another peak. Temperature can accelerate the reaction process. This means that the interaction between analyte and surfactant is a slow process, and a stable substance can be produced from the interaction and leads to the formation of two peaks. The standpoint is confirmed by the infrared and nuclear magnetic resonance spectra of the product from the reaction between cetyltrimethylaminium bromide and m-hydroxyl benzoic acid.

  18. Indirect detection by semiconductor laser-induced fluorometry in micellar electrokinetic chromatography

    Kaneta, Takashi; Imasaka, Totaro


    Indirect fluorescence detection of electrically neutral compounds separated by micellar electrokinetic chromatography is performed using a semiconductor laser as an exciting light source. Oxazine 750 is used as a visualizing agent of which absorption maximum is near 680 nm. A surfactant, tetradecyltrimethylammonium chloride, is used to form micelles and to prevent adsorption of oxazine 750 with a positive charge on the capillary wall negatively charged. This surfactant coats on the capillary wall so that oxazine 750 is repulsed electrically on the capillary wall. In this technique, some aromatic compounds with relatively polar functional groups, such as aniline and nitrobenzene, could be separated and detected, while nonpolar compounds such as benzene and toluene can not be detected. The range of the detection limit is from 4.2 X 10-4 to 1.6 X 10-3 M (S/N equals 3) for the aromatic compounds. The detection mechanism is based on enhancement of the fluorescence intensity in the micellar solution and on exclusion of the fluorophore attached at the hydrophilic moiety of the micelle by a hydrophilic sample.

  19. Micellar LC Separation of Sesquiterpenic Acids and Their Determination in Valeriana officinalis L. Root and Extracts

    Artem U. Kulikov


    Full Text Available A simple micellar liquid chromatography (MLC method was developed and validated according to ICH Guidelines for the determination of sesquiterpenic acids (valerenic, hydroxyvalerenic, and acetoxyvalerenic acids in root and rhizome extract from Valeriana officinalis L. and valerian dry hydroalcoholic extract. Samples were analyzed on Nucleosil C18 column (150mm×4.6mm, 5 μm using an isocratic mobile phase which consisted of Brij 35 (5% (w/v aqueous solution; pH 2.3±0.1 by phosphoric acid and 1-butanol (6% (v/v; UV detection was at 220 nm. Micellar mobile phase using allows to fully separate valerenic acids within 25 minutes. Linearity for hydroxyvalerenic, acetoxyvalerenic, and valerenic acids was 1.9–27.9, 4.2–63.0, and 6.1–91·3 μg.mL−1, and limit of detection was 0.14, 0.037, and 0.09 μg·mL−1, respectively. Intraday and interday precisions were not less than 2% for all investigated compounds. The proposed method was found to be reproducible and convenient for quantitative analysis of sesquiterpenic acids in valerian root and related preparations.

  20. Aliphatic carboxylic acids and alcohols as efficiency and elution strength enhancers in micellar liquid chromatography.

    Boichenko, Alexander P; Berthod, Alain


    Micellar liquid chromatography (MLC) uses surfactant solutions as mobile phases with added organic additives to enhance both the elution strength and the chromatographic efficiency. Two aliphatic carboxylic acids (1-butanoic and 1-pentanoic) were used as MLC additives and compared with the two corresponding alcohols (1-butanol, 1-pentanol) in terms of elution strength, efficiency and selectivity. A set of 11 phenol derivatives was used as probe compounds. All micellar mobile phases were prepared with sodium dodecylsulfate (SDS) with concentration ranging from 0.05 to 0.15M and the modifier content within 1.0 and 5.0% (v/v). The elution strength of different mobile phases containing a constant amount of SDS and different amounts of modifiers; and mobile phases containing a constant amount of modifier and different SDS concentration were determined and discussed. The effect of the acid modifiers on efficiency was studied constructing van Deemter plots that showed no minimum within the 0.01-0.7mL/min flow rate range studied. Temperature effects were also studied constructing the classical van't Hoff plots. The slight curvature of the plots in the 25-70 degrees C range may indicate some modification of the surfactant-bonded moiety layer on the stationary phase surface. Since no definitive advantage of the use of aliphatic acids were established compared to their alcohol counterpart, their terrible smell will probably preclude their use as MLC organic modifiers.

  1. Ordering fluctuations in a shear-banding wormlike micellar system

    Angelico, R.; Rossi, C. Oliviero; Ambrosone, L.;


    We present a first investigation about the non-linear flow properties and transient orientational-order fluctuations observed in the shear-thinning lecithin–water–cyclohexane wormlike micellar system at a concentration near to the zero-shear isotropic–nematic phase transition. From rheological...


    The combination of micellar electrokinetic chromatography (MEKC) with mass spectrometry (MS) is very attractive for the direct identification of analyte molecules, for the possibility of selectivity enhancement, and for the structure confirmation and analysis in a MS-MS mode. The...

  3. Use of a fluorosurfactant in micellar electrokinetic capillary chromatography.

    de Ridder, R; Damin, F; Reijenga, J; Chiari, M


    A fluorosurfactant, the anionic N-ethyl-N-[(heptadecafluorooctyl)sulfonyl]glycine potassium salt, trade name FC-129 [CAS 2991-51-7] was investigated for possible application in micellar electrokinetic capillary chromatography (MEKC). The surfactant was characterized with conductometric titration and test sample mixtures were investigated in MEKC systems, and compared with sodium dodecylsulphate. An increased efficiency and interesting selectivity differences were observed.

  4. Efficient "on-the-fly" calculation of Raman spectra from \\textit{ab-initio} molecular dynamics: Application to hydrophobic/hydrophilic solutes in bulk water

    Partovi-Azar, Pouya


    We present a computational method to accurately calculate Raman spectra from first principles with an at least one order of magnitude higher efficiency. This scheme thus allows to routinely calculate finite-temperature Raman spectra "on-the-fly" by means of \\textit{ab-initio} molecular dynamics simulations. To demonstrate the predictive power of this approach we investigate the effect of hydrophobic and hydrophilic solutes in water solution on the infrared and Raman spectra.

  5. Rheological Properties of Hydrophobically Associative Copolymers Prepared in a Mixed Micellar Method Based on Methacryloxyethyl-dimethyl Cetyl Ammonium Chloride as Surfmer

    Rui Liu


    Full Text Available A novel cationic surfmer, methacryloxyethyl-dimethyl cetyl ammonium chloride (DMDCC, is synthesized. The micellar properties, including critical micelle concentration and aggregation number, of DMDCC-SDS mixed micelle system are studied using conductivity measurement and a steady-state fluorescence technique. A series of water-soluble associative copolymers with acrylamide and DMDCC are prepared using the mixed micellar polymerization. Compared to conventional micellar polymerization, this new method could not only reasonably adjust the length of the hydrophobic microblock, that is, NH, but also sharply reduce the amount of surfactant. Their rheological properties related to hydrophobic microblock and stickers are studied by the combination of steady flow and linear viscoelasticity experiments. The results indicate that both the hydrophobic content and, especially the length of the hydrophobic microblock are the dominating factors effecting the intermolecular hydrophobic association. The presence of salt influences the dynamics of copolymers, resulting in the variation of solution characters. Viscosity measurement indicates that mixed micelles between the copolymer chain and SDS molecules serving as junction bridges for transitional network remarkably enhance the viscosity. Moreover, the microscopic structures of copolymers at different experimental conditions are conducted by ESEM. This method gives us an insight into the preparation of hydrophobically associative water-soluble copolymers by cationic surfmer-anionic surfactant mixed micellar polymerization with good performance.

  6. Implementation of gradients of organic solvent in micellar liquid chromatography using DryLab(®): separation of basic compounds in urine samples.

    Rodenas-Montano, J; Ortiz-Bolsico, C; Ruiz-Angel, M J; García-Alvarez-Coque, M C


    In micellar liquid chromatography (MLC), chromatographic peaks are more evenly distributed compared to conventional reversed-phase liquid chromatography (RPLC). This is the reason that most procedures are implemented using isocratic elution. However, gradient elution may be still useful in MLC to analyse mixtures of compounds within a wide range of polarities, decreasing the analysis time. Also, it benefits the determination of moderately to low polar compounds in physiological fluids performing direct injection: an initial micellar eluent with a low organic solvent content, or a pure micellar (without surfactant) solution, will provide better protection of the column against the proteins in the physiological fluid, and once the proteins are swept away, the elution strength can be increased using a positive linear gradient of organic solvent to reduce the analysis time. This work aims to encourage analysts to implement gradients of organic solvent in MLC, which is rather simple and allows rapid analytical procedures without pre-treatment or the need of re-equilibration. The implementation of gradient elution is illustrated through the separation of eight basic compounds (β-blockers) in urine samples directly injected into the chromatograph, the most hydrophobic showing large retention in both conventional RPLC and MLC. The use of the DryLab(®) software to optimise gradients of organic solvent with eluents containing a fixed amount of surfactant above the critical micellar concentration is shown to provide satisfactory predictions, and can facilitate greatly the implementation of gradient protocols.

  7. Second harmonic generation in metal nano-spheres: full-wave analytical solution with both local-surface and nonlocal-bulk nonlinear sources

    Capretti, Antonio; Negro, Luca Dal; Miano, Giovanni


    We present a full-wave analytical solution for the problem of second-harmonic generation from spherical particles made of lossy centrosymmetric materials. Both the local-surface and nonlocalbulk nonlinear sources are included in the generation process, under the undepleted-pump approximation. The solution is derived in the framework of the Mie theory by expanding the pump field, the non-linear sources and the second-harmonic fields in series of spherical vector wave functions. We apply the proposed solution to the second-harmonic generation properties of noble metal nano-spheres as function of the polarization, the pump wavelength and the particle size. This approach provides a rigorous methodology to understand second-order optical processes in metal nanoparticles, and to design novel nanoplasmonic devices in the nonlinear regime.

  8. Micellar and sub-micellar ultra-high performance liquid chromatography of hydroxybenzoic acid and phthalic acid positional isomers.

    Fasciano, Jennifer M; Danielson, Neil D


    Micellar liquid chromatography (MLC) has been used primarily for the separation of neutral analytes of varying polarities, most commonly phenols and polyaromatic hydrocarbons, but does not seem to have been used to study aromatic hydroxy acids in detail. We have studied the separation of hydroxybenzoic acid mixtures, including monohydroxybenzoic and dihydroxybenzoic acid positional isomers by MLC. Sodium dodecylsulfate (SDS) is investigated as the modifying surfactant on a C18 ultra-high performance liquid chromatography (UHPLC) column (100 × 2.1mm, 1.8 μm). The addition of only SDS (no organic solvent) to the mobile phase reduced the influence of hydrophobic interactions while improving the retention times, resolution, and peak shapes, even at concentrations below the critical micellization concentration (CMC). The UHPLC separation of 7 hydroxybenzoic acids, including 6 dihydroxybenzoic acid positional isomers and one trihydroxybenzoic acid, is achieved with high efficiency using 0.1% SDS in 1.84 mM sulfuric acid (pH 2.43) mobile phase, in less than 6 min with a flow rate of 0.3 mL min(-1), and in less than four min with a flow rate of 0.7 mL min(-1). Six monohydroxybenzoic acid isomers are also effectively separated by MLC, using a 0.5% SDS mobile phase modifier, in less than 20 min with a flow rate of 0.3 mL min(-1), and in less than 14 min with a flow rate of 0.7 mL min(-1). The 3 phthalic acid isomers could be separated using a similar mobile phase and flow rates in less than 6 and 4 min. Solute-micelle equilibrium constants and partition coefficients are calculated for 6 monohydroxybenzoic acids based on a plot of MLC retention factor vs. mobile phase micelle concentration. All aromatic acid isomers studied can be classified as binding solutes in the MLC retention mechanism. Less effective separations are observed with shorter chain surfactants, leading to higher retention times and poor peak shapes. It is concluded that increasing chain length led to more

  9. Solubilization isotherms of aromatic solutes in surfactant aggregates

    Gadelle, F.; Koros, W.J.; Schechter, R.S. (Univ. of Texas, Austin, TX (United States). Dept. of Chemical Engineering)


    Several factors affecting solubilization of aromatic solutes in surfactant micelles have been investigated. Solubilization isotherms of benzene, toluene, and chlorobenzene in various aqueous micellar solutions were determined using head space gas chromatography. Cationic surfactants such as cetylpyridinium chloride or cetyltrimethylammonium bromide present high solubilization capacities. Comparable anionic surfactants exhibit lower solubilization and a greater tendency to precipitate. It was observed that nonionic surfactants show high solubilization on a molar basis. Solubilization in mixed cationic-anionic micelles was also investigated. It also appears that the molecular size of the solute determines the extent of the solubilization. Finally, the shape of the different isotherms indicates that knowing the amount solubilized at saturation of the micellar solution is not sufficient to estimate solubilization at solute concentrations lower than the solute aqueous solubility. Solubilization of organics in surfactant micelles is of major importance in many applications. One new application is micellar-enhanced ultrafiltration. Another application of interest is the surfactant-enhanced aquifer remediation, a process in which a micellar aqueous solution is flushed into contaminated groundwaters to enhance recovery of pollutants by micellar solubilization.

  10. Matching phosphate and maleate buffer systems for dissolution of weak acids: Equivalence in terms of buffer capacity of bulk solution or surface pH?

    Cristofoletti, Rodrigo; Dressman, Jennifer B


    The development of in vitro dissolution tests able to anticipate the in vivo fate of drug products has challenged pharmaceutical scientists over time, especially in the case of ionizable compounds. In the seminal model proposed by Mooney et al. thirty-five years ago, the pH at the solid-liquid interface (pH0) was identified as a key parameter in predicting dissolution rate. In the current work it is demonstrated that the in vitro dissolution of the weak acid ibuprofen in maleate and phosphate buffer systems is a function of the pH0, which in turn is affected by properties of the drug and the medium. The reported pH0 for ibuprofen dissolution in bicarbonate buffer, the predominant buffer species in the human small intestine under fasting conditions, can be achieved by reducing the phosphate buffer concentration to 5.0mM or the maleate buffer concentration to 2.2mM. Using this approach to identify the appropriate buffer/buffer capacity combination for in vitro experiments in FaSSIF-type media, it would be possible to increase the physiological relevance of this important biopharmaceutics tool. However, the necessity of monitoring and adjusting the bulk pH during the experiments carried out in 5.0mM phosphate or 2.2mM maleate buffers must also be taken into consideration. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Au-Pt alloy nanoparticles obtained by nanosecond laser irradiation of gold and platinum bulk targets in an ethylene glycol solution

    Moniri, Samira; Reza Hantehzadeh, Mohammad; Ghoranneviss, Mahmood; Asadi Asadabad, Mohsen


    Au-Pt alloy nanoparticles (NPs) of different compositions ( Au0Pt100 , Au30Pt70 , Au50Pt50 , Au70Pt30 , and Au100Pt0 were obtained using the nanosecond laser ablation of gold and platinum bulk targets in ethylene glycol, followed by mixing highly monodisperse Au and Pt nanocolloids, for the first time. UV-vis absorption spectra of NPs showed that by increasing the Au content in the Au-Pt NPs, the surface plasmon resonance (SPR) peak red-shifted, from 260 to 573nm in a nonlinear way. In addition, the mean crystalline size, crystal structure, d-spacing, and lattice parameters of NPs were estimated from the XRD spectra. Microscopy studies revealed the most NPs have a spherical or near-spherical shape, and the average sizes of Au0Pt100 , Au30Pt70 , Au50Pt50 , Au70Pt30 , and Au100Pt0 NPs were calculated to be 12.50, 14.15, 18.53, 19.29, and 26.38nm, respectively. Also, the chemical identity of the molecules adhering to the NPs surface was considered by Raman and FT-IR spectroscopy techniques. Among different synthesis methods, the demonstrated technique allows easy synthesis of alloy NPs in aqueous media at room temperature with no formation of by-products.

  12. Study of Tea Digitized Chromatographic Fingerprint Spectra Using Micellar Electrokinetic Chromatography

    SONG, Guan-Qun; LIN, Jin-Ming; QU, Feng; DONG, Wen-Ju


    This paper described the principle of digitized chromatographic fingerprint spectrum and established digitized chromatographic fingerprint spectra of ten brands of Chinese famous tea by the micellar electrokinetic chromatography. This work was done using a 25 mmol. L- 1 sodium dodecylsulfate in a 20 mmol· L-1borate (pH 7.0) solution as running buffer, 20 kV applied potential and detection at 280 nm. The chromatographic fingerprint spectra were digitized by the relative retention value (α)and the relative area (Sr), and were analyzed to identify the tea samples. In the absence of the standard samples, the present method was easy setup and inexpensive, and provided the applicable information for the quality assessment of teas.

  13. Development and validation of a stability-indicating micellar liquid chromatographic method for the determination of timolol maleate in the presence of its degradation products.

    Rizk, Mohamed S; Merey, Hanan A; Tawakkol, Shereen M; Sweilam, Mona N


    A stability-indicating micellar liquid chromatographic (MLC) method was developed and validated for the quantitative determination of timolol maleate (TM) in the presence of its degradation products resulting from accelerated degradation in a run time not more than 8 min. TM was subjected to stress conditions of hydrolysis (including alkaline, acidic and thermal hydrolysis) and oxidation. An isocratic, rapid and mobile phase saving the micellar LC method was developed with a BioBasic phenyl column (150 × 1.0 mm, 5 µm particle size) and a micellar mobile phase composed of 0.1 M sodium dodecyl sulfate, 10% of 1-propanol and 0.1% of triethylamine in 0.035 M ortho-phosphoric acid. The flow rate of the mobile phase was 0.1 mL/min. UV detection was adjusted at 298 nm and performed at room temperature. The method has been validated according to the International Conference on Harmonisation guidelines. The method is successfully applied for the determination of TM in bulk powder and pharmaceutical dosage form.

  14. Glycerol in micellar confinement with tunable rigidity

    Lannert, Michael; Müller, Allyn; Gouirand, Emmanuel; Talluto, Vincenzo; Rosenstihl, Markus; Walther, Thomas; Stühn, Bernd; Blochowicz, Thomas; Vogel, Michael


    We investigate the glassy dynamics of glycerol in the confinement of a microemulsion system, which is stable on cooling down to the glass transition of its components. By changing the composition, we vary the viscosity of the matrix, while keeping the confining geometry intact, as is demonstrated by small angle X-ray scattering. By means of 2H NMR, differential scanning calorimetry, and triplet solvation dynamics we, thus, probe the dynamics of glycerol in confinements of varying rigidity. 2H NMR results show that, at higher temperatures, the dynamics of confined glycerol is unchanged compared to bulk behavior, while the reorientation of glycerol molecules becomes significantly faster than in the bulk in the deeply supercooled regime. However, comparison of different 2H NMR findings with data from calorimetry and solvation dynamics reveals that this acceleration is not due to the changed structural relaxation of glycerol, but rather due to the rotational motion of essentially rigid glycerol droplets or of aggregates of such droplets in a more fluid matrix. Thus, independent of the matrix mobility, the glycerol dynamics remains unchanged except for the smallest droplets, where an increase of Tg and, thus, a slowdown of the structural relaxation is observed even in a fluid matrix.

  15. [Separation of cefoperazone and its S-isomer and other related substances by micellar electrokinetic capillary chromatography].

    Zhang, Huiwen; Hu, Changqin; Xu, Mingzhe; Li, Yaping; Hang, Taijun


    The separation of cefoperazone, its S-isomer, impurity A and other unknown related substances by micellar electrokinetic capillary chromatography (MECC) using sodium dodecyl sulphate (SDS) as the micellar phase was investigated. The effects of pH, concentration of phosphate buffer solution, SDS micelle concentration, methanol volume fraction, applied voltage and temperature on the separation were studied. It was found that the migration of these compounds was affected by these factors, especially by pH of the solution. The elution, as well as the migration time and separation efficiency of cefoperazone, its S-isomer, impurity A and other related substances changed with the acidity of the solution. The optimized separation conditions consisted of a running buffer of 70 mmol/L sodium phosphate buffer, at pH 6.5, containing 100 mmol/L SDS, with an applied voltage of 15 kV and a temperature of 25 degrees C. An uncoated fused-silica capillary of 51.0 cm x 75 microm (42.5 cm of effective length) was used. The sample was injected into the column by pressure (5 kPa) for 5 s. The detection wavelength was set at 254 nm. Twenty-eight impurities in cefoperazone sodium could be detected. Cefoperazone sodium and the degradation products could be separated well. The method was applied to separate and determine cefoperazone and its related substances successfully.

  16. Phosphatidylcholine embedded micellar systems: enhanced permeability through rat skin.

    Spernath, Aviram; Aserin, Abraham; Sintov, Amnon C; Garti, Nissim


    Micellar and microemulsion systems are excellent potential vehicles for delivery of drugs because of their high solubilization capacity and improved transmembrane bioavailability. Mixtures of propylene glycol (PG) and nonionic surfactants with sodium diclofenac (DFC) were prepared in the presence of phosphatidylcholine (PC) as transmembrane transport enhancers. Fully dilutable systems with maximum DFC solubilization capacity (SC) at pH 7 are presented. It was demonstrated that the concentrates underwent phase transitions from reverse micelles to swollen reverse micelles and, via the bicontinuous transitional mesophase, into inverted O/W microstructures. The SC decreases as a function of dilution. DFC transdermal penetration using rat skin in vitro correlated with SC, water content, effect of phospholipid content, presence of an oil phase, and ethanol. Skin penetration from the inverted bicontinuous mesophase and the skin penetration from the O/W-like microstructure were higher than that measured from the W/O-like droplets, especially when the micellar system containing the nonionic surfactant, sugar ester L-1695, and hexaglycerol laurate. PC embedded within the micelle interface significantly increased the penetration flux across the skin compared to micellar systems without the embedded PC at their interface. Moreover, the combination of PC with HECO40 improved the permeation rate (P) and shortened the lag-time (T(L)).

  17. Dependence of Device Characteristics of Bulk-Heterojunction Organic Thin-Film Solar Cells on Concentration of Glycerol and Sorbitol Addition in Pedot:. PSS Solutions for Fabricating Buffer Layers

    Yamaki, Yusuke; Marumoto, Kazuhiro; Fujimori, Takuya; Mori, Tatsuo

    We have investigated the dependence of device characteristics of bulk-heterojunction organic thin-film solar cells on the concentration of glycerol and sorbitol addition in poly(3,4-ethylenedioxy thiophene):poly(4-styrene sulfonate) (PEDOT:PSS) solutions for fabricating buffer layers. The device structure is ITO/buffer/regioregular poly(3-hexylthiophene) (P3HT):[6,6]-phenyl C61-butyric acid methylester (PCBM)/Al. Glycerol addition is effective for increasing power conversion efficiency (PCE) from 1.25 to 1.41% because of the increase in short-circuit current density (Jsc) without decreasing open-circuit voltage (Voc). On the other hand, sorbitol addition decreases PCE from 1.25 to 1.04%, owing to the decrease in Voc. This difference in Voc behavior is ascribed to different work function of PEDOT:PSS with glycerol and sorbitol treatment.


    Maria de Hoyos Guajardo, Ph.D. Candidate, M.Sc., B.Eng.


    Full Text Available The theory that is presented below aims to conceptualise how a group of undergraduate students tackle non-routine mathematical problems during a problem-solving course. The aim of the course is to allow students to experience mathematics as a creative process and to reflect on their own experience. During the course, students are required to produce a written ‘rubric’ of their work, i.e., to document their thoughts as they occur as well as their emotionsduring the process. These ‘rubrics’ were used as the main source of data.Students’ problem-solving processes can be explained as a three-stage process that has been called ‘solutioning’. This process is presented in the six sections below. The first three refer to a common area of concern that can be called‘generating knowledge’. In this way, generating knowledge also includes issues related to ‘key ideas’ and ‘gaining understanding’. The third and the fourth sections refer to ‘generating’ and ‘validating a solution’, respectively. Finally, once solutions are generated and validated, students usually try to improve them further before presenting them as final results. Thus, the last section deals with‘improving a solution’. Although not all students go through all of the stages, it may be said that ‘solutioning’ considers students’ main concerns as they tackle non-routine mathematical problems.

  19. Analysis of epinephrine, norepinephrine, and dopamine in urine samples of hospital patients by micellar liquid chromatography.

    García Ferrer, Daniel; García García, Aurelio; Peris-Vicente, Juan; Gimeno-Adelantado, José Vicente; Esteve-Romero, Josep


    An analytical method based on micellar liquid chromatography was developed to determine the concentration of three catecholamines (epinephrine, norepinephrine, and dopamine) in urine. The detection of these compounds in urine can be useful to diagnose several diseases, related to stress and sympathoadrenal system dysfunction, using a non-invasive collection procedure. The sample pretreatment was a simple dilution in a micellar solution, filtration, and direct injection, thus avoiding time-consuming and tedious extraction steps. Therefore, there is no need to use an internal standard. The three catecholamines were eluted using a C18 column and a mobile phase of 0.055 M sodium dodecyl sulfate-1.5% methanol buffered at pH 3.8 running at 1.5 mL/min under isocratic mode in less than 25 min. The detection was performed by amperometry applying a constant potential of +0.5 V. The procedure was validated following the guidelines of the European Medicines Agency in terms of the following: calibration range (0.09-5 μg/mL), linearity (r(2) > 0.9995), limit of detection (0.02 μg/mL), within- and between-run accuracy (-6.5 to +8.4%) and precision (<10.2%), dilution integrity, matrix effect, robustness (<8.4), and stability. The obtained values were below those required by the guide. The method was rapid, easy-to-handle, eco-friendly, and safe and provides reliable quantitative data, and is thus useful for routine analysis. The procedure was applied to the analysis of epinephrine, norepinephrine, and dopamine in urine samples from patients of a local hospital.

  20. A method to quantify several tyrosine kinase inhibitors in plasma by micellar liquid chromatography and validation according to the European Medicines Agency guidelines.

    Garrido-Cano, Iris; García-García, Aurelio; Peris-Vicente, Juan; Ochoa-Aranda, Enrique; Esteve-Romero, Josep


    A procedure based on micellar liquid chromatography has been developed to monitor five tyrosine kinase inhibitors in plasma, prescribed against several kinds of cancer: erlotinib, imatinib, sunitinib, sorafenib and lapatinib. The sample was diluted in a micellar solution and directly injected, thus clean-up steps were not required. The analytes were resolved without interferences in 0.990), limit of detection (15-35 ng/mL), carry-over effect, accuracy (-10.4 to +11.0%), precision (<9.2%), matrix effect, robustness (<8.4%) and stability. The procedure is rapid, easy-to-handle, uses a low amount of toxic chemical provide reliable results. Finally, the method was successfully used to analyze the studied tyrosine kinase inhibitors in plasma from cancer patients.

  1. Polymeric micellar drug carriers with fluorescent properties

    Abreu, Ana Sofia Lemos Machado; Sá, Arsénio Vasconcelos; Oliveira, Manuel; Moura, I; Machado, A.V.


    Self-assembling polymeric surfactants, based on amphiphilic block copolymers into nanosized aggregates in aqueous solution, are of great interest in the biomedical fields as one class of promising carrier systems, for drug delivery, gene therapy and diagnostic biosensors.[1] The incorporation of fluorescent probes into polymeric micelles has been fulfilled either by physically encapsulation or chemically attachment of fluorophores. [2] These micelle-based fluorescent probes not only facili...

  2. Influence of calcium chelators on concentrated micellar casein solutions : from micellar structure to viscosity and heat stability

    Kort, de E.J.P.


    In practice it is challenging to prepare a concentrated medical product with high heat stability
    and low viscosity. Calcium chelators are often added to dairy products to improve heat stability,
    but this may increase viscosity through interactions with the casein proteins. The aim of

  3. Influence of calcium chelators on concentrated micellar casein solutions : from micellar structure to viscosity and heat stability

    Kort, de E.J.P.


    In practice it is challenging to prepare a concentrated medical product with high heat stability
    and low viscosity. Calcium chelators are often added to dairy products to improve heat stability,
    but this may increase viscosity through interactions with the casein proteins. The aim of thi

  4. Predicting drug penetration across the blood-brain barrier: comparison of micellar liquid chromatography and immobilized artificial membrane liquid chromatography.

    De Vrieze, Mike; Lynen, Frédéric; Chen, Kai; Szucs, Roman; Sandra, Pat


    Several in vitro methods have been tested for their ability to predict drug penetration across the blood-brain barrier (BBB) into the central nervous system (CNS). In this article, the performance of a variety of micellar liquid chromatographic (MLC) methods and immobilized artificial membrane (IAM) liquid chromatographic approaches were compared for a set of 45 solutes. MLC measurements were performed on a C18 column with sodium dodecyl sulfate (SDS), polyoxyethylene (23) lauryl ether (Brij35), or sodium deoxycholate (SDC) as surfactant in the micellar mobile phase. IAM liquid chromatography measurements were performed with Dulbecco's phosphate-buffered saline (DPBS) and methanol as organic modifier in the mobile phase. The corresponding retention and computed descriptor data for each solute were used for construction of models to predict transport across the blood-brain barrier (log BB). All data were correlated with experimental log BB values and the relative performance of the models was studied. SDS-based models proved most suitable for prediction of log BB values, followed closely by a simplified IAM method, in which it could be observed that extrapolation of retention data to 0% modifier in the mobile phase was unnecessary.

  5. A novel, rapid and automated conductometric method to evaluate surfactant-cells interactions by means of critical micellar concentration analysis.

    Tiecco, Matteo; Corte, Laura; Roscini, Luca; Colabella, Claudia; Germani, Raimondo; Cardinali, Gianluigi


    Conductometry is widely used to determine critical micellar concentration and micellar aggregates surface properties of amphiphiles. Current conductivity experiments of surfactant solutions are typically carried out by manual pipetting, yielding some tens reading points within a couple of hours. In order to study the properties of surfactant-cells interactions, each amphiphile must be tested in different conditions against several types of cells. This calls for complex experimental designs making the application of current methods seriously time consuming, especially because long experiments risk to determine alterations of cells, independently of the surfactant action. In this paper we present a novel, accurate and rapid automated procedure to obtain conductometric curves with several hundreds reading points within tens of minutes. The method was validated with surfactant solutions alone and in combination with Saccharomyces cerevisiae cells. An easy-to use R script, calculates conductometric parameters and their statistical significance with a graphic interface to visualize data and results. The validations showed that indeed the procedure works in the same manner with surfactant alone or in combination with cells, yielding around 1000 reading points within 20 min and with high accuracy, as determined by the regression analysis.

  6. Stability of an ophthalmic micellar formulation of cyclosporine A in unopened multidose eyedroppers and in simulated use conditions.

    Chennell, P; Delaborde, L; Wasiak, M; Jouannet, M; Feschet-Chassot, E; Chiambaretta, F; Sautou, V


    Cyclosporine A eye drops are used at concentrations ranging from 0.5 to 20mg/mL to treat a variety of ophthalmic diseases. Cyclosporine A formulations at high concentrations are difficult to manufacture because of cyclosporine's lipophilicity, and generally require an oil based vector. In this study, we investigated the physicochemical and microbiological stability of two high concentrations (10mg/mL and 20mg/mL) of an ophthalmic cyclosporine A micellar solution in a low density polyethylene multidose eyedropper, at two conservation conditions (5°C and 25°C), before and with simulated use. Analyses used were the following: visual inspection, cyclosporine quantification by a stability-indicating liquid chromatography method, osmolality and pH measurements and turbidity. A complementary analysis by dynamic light scattering was implemented to evaluate potential particle formation or micelle size change. In the in-use study, cyclosporine quantification was also performed on the drops emitted from the multidose eyedroppers. Our results show that the cyclosporine micellar formulation retains good physicochemical and microbiological stability, as all parameters stayed within acceptable range limits, however a higher variability in cyclosporine concentrations was observed for 20mg/mL units stored at 25°C. The in-use study showed that cyclosporine concentrations in the emitted drops were also within acceptable range limits. The micellar formulation presented in this study can therefore be stored at 5°C or at ≤25°C for up to 6months. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Effects of depleting ionic strength on (31)P nuclear magnetic resonance spectra of micellar casein during membrane separation and diafiltration of skim milk.

    Boiani, Mattia; McLoughlin, Padraig; Auty, Mark A E; FitzGerald, Richard J; Kelly, Phil M


    Membrane separation processes used in the concentration and isolation of micellar casein-based milk proteins from skim milk rely on extensive permeation of its soluble serum constituents, especially lactose and minerals. Whereas extensive literature exists on how these processes influence the gross composition of milk proteins, we have little understanding of the effects of such ionic depletion on the core structural unit of micellar casein [i.e., the casein phosphate nanocluster (CPN)]. The (31)P nuclear magnetic resonance (NMR) is an analytical technique that is capable of identifying soluble and organic forms of phosphate in milk. Thus, our objective was to investigate changes to the (31)P NMR spectra of skim milk during microfiltration (MF) and diafiltration (DF) by tracking movements in different species of phosphate. In particular, we examined the peak at 1.11 ppm corresponding to inorganic phosphate in the serum, as well as the low-intensity broad signal between 1.5 and 3.0 ppm attributed to casein-associated phosphate in the retentate. The MF concentration and DF using water caused a shift in the relevant (31)P NMR peak that could be minimized if orthophosphate was added to the DF water. However, this did not resolve the simultaneous change in retentate pH and increased solubilization of micellar casein protein. The addition of calcium in combination with orthophosphate prevented micellar casein solubilization and simultaneously contributed to preservation of the CPN structure, except for overcorrection of retentate pH in the acidic direction. A more complex DF solution, involving a combination of phosphate, calcium, and citrate, succeeded in both CPN and micellar casein structure preservation while maintaining retentate pH in the region of the original milk pH. The combination of (31)P NMR as an analytical technique and experimental probe during MF/DF processes provided useful insights into changes occurring to CPN while retaining the micellar state of

  8. Analysis of anthraquinones in Rumex crispus by micellar electrokinetic chromatography.

    Başkan, Selda; Daut-Ozdemir, Ayşe; Günaydin, Keriman; Erim, F Bedia


    A micellar electrochromatographic method was performed for the analysis of the pharmaceutically important anthraquinones from the root of Rumex crispus. The separation of 1,5-dihydroxy-3-methylanthraquinone (1); 1,3,5-trihydroxy-6-hydroxymethylanthraquinone (2); 1,5-dihydroxy-3-methoxy-7-methylanthraquinone (3) was achieved in 6min using a running buffer containing 10mmol/l sodium borate, 50mmol/l sodium dodecylsulfate, and 25% acetonitrile at pH 10.6. The method is simple, rapid, and reproducible.

  9. Non-monotonic compositional dependence of isothermal bulk modulus of the (Mg1–xMnxCr2O4 spinel solid solutions, and its origin and implication

    Xi Liu


    Full Text Available The compressibility of the spinel solid solutions, (Mg1−xMnxCr2O4 with x = 0.00 (0, 0.20 (0, 0.44 (2, 0.61 (2, 0.77 (2 and 1.00 (0, has been investigated by using a diamond-anvil cell coupled with synchrotron X-ray radiation up to ∼10 GPa (ambient T. The second-order Birch–Murnaghan equation of state was used to fit the PV data, yielding the following values for the isothermal bulk moduli (KT, 198.2 (36, 187.8 (87, 176.1 (32, 168.7 (52, 192.9 (61 and 199.2 (61 GPa, for the spinel solid solutions with x = 0.00 (0, 0.20 (0, 0.44 (2, 0.61 (2, 0.77 (2 and 1.00 (0, respectively (KT′ fixed as 4. The KT value of the MgCr2O4 spinel is in good agreement with existing experimental determinations and theoretical calculations. The correlation between the KT and x is not monotonic, with the KT values similar at both ends of the binary MgCr2O4MnCr2O4, but decreasing towards the middle. This non-monotonic correlation can be described by two equations, KT = −49.2 (11x + 198.0 (4 (x ≤ ∼0.6 and KT = 92 (41x + 115 (30 (x ≥ ∼0.6, and can be explained by the evolution of the average bond lengths of the tetrahedra and octahedra of the spinel solid solutions. Additionally, the relationship between the thermal expansion coefficient and composition is correspondingly reinterpreted, the continuous deformation of the oxygen array is demonstrated, and the evolution of the component polyhedra is discussed for this series of spinel solid solutions. Our results suggest that the correlation between the KT and composition of a solid solution series may be complicated, and great care should be paid while estimating the KT of some intermediate compositions from the KT of the end-members.

  10. Use of spectroscopic technique to develop a reagent for Mo(VI) utilizing micellar effects on complex formation

    Taşcioğlu, Sülin; Kaki, E.; Taşcioğlu, Senay


    Ultraviolet and visible spectral properties of aqueous solutions of molybdenum(VI) (Mo), gallic acid (GA), Lalanine (Ala), and L-Phenylalanine (Phe), and of their binary and ternary solutions were investigated in the absence and presence of anionic, cationic, and nonionic surfactant micelles. Evaluation of the spectra in a comparative way revealed that both Ala and Phe form ternary complexes with Mo and GA. The formation of a quaternary complex between Mo, GA, Phe, and cetyltrimethylammonium bromide at pH 4.5 provided a reagent system with a strikingly high sensitivity (1.2•106 l/(mol•cm)) for use in the spectrophotometric determination of Mo. A mechanism of micellar effects was discussed in terms of the substrate molecular charge and hydrophobicity, and rationalized on the basis of the spectral data obtained above and below the isoelectric pH of the amino acids.

  11. Determination of the macromolecular dimensions of hydrophobically modified polymers by micellar size exclusion chromatography coupled with multiangle light scattering.

    Dupuis, Guillaume; Rigolini, Julien; Clisson, Gérald; Rousseau, David; Tabary, René; Grassl, Bruno


    The present work demonstrates that the use of a nonionic surfactant in the mobile phase together with light scattering coupled to size exclusion chromatography (SEC) provides an accurate determination of macromolecular dimensions of hydrophobically modified water-soluble polymer and polyelectrolyte, i.e., weight-average molar mass M(w) and polydispersity I(p). This method, called micellar SEC, is based on the dissociation of the aggregates in aqueous solution and the formation of mixed micelles between the surfactant and the polymer hydrophobic groups. The methodology and its application are presented for synthetic sulfonated polyacrylamides (5 and 20 mol %) modified with three hydrophobic alkyl side groups (C8, C12, and C18) and with Triton X-100 as a nonionic surfactant and are discussed according to the associativity of polymers. The results are compared to those obtained by classical SEC in 0.1 M NaNO(3) and by static light scattering in formamide solution.

  12. Performance of different C18 columns in reversed-phase liquid chromatography with hydro-organic and micellar-organic mobile phases.

    Ruiz-Angel, M J; Pous-Torres, S; Carda-Broch, S; García-Alvarez-Coque, M C


    Column selection in reversed-phase liquid chromatography (RPLC) can become a challenge if the target compounds interact with the silica-based packing. One of such interactions is the attraction of cationic solutes to the free silanols in silica-based columns, which is a slow sorption-desorption interaction process that gives rise to tailed and broad peaks. The effect of silanols is minimised by the addition of a competing agent in the mobile phase, such as the anionic surfactant sodium dodecyl sulphate (SDS). In micellar-organic RPLC, the adsorption of an approximately fixed amount of SDS monomers gives rise to a stable modified stationary phase, with properties remarkably different from those of the underlying bonded phase. The chromatographic behaviour (in terms of selectivity, analysis time and peak shape) of eight C18 columns in the analysis of weakly acidic phenols and basic β-blockers was examined with hydro-organic and micellar-organic mobile phases. The behaviour of the columns differed significantly when the cationic basic drugs were eluted with hydro-organic mobile phases. With micellar-organic mobile phases, the adsorption of surfactant, instead of making the columns similar, gave rise to a greater diversity of behaviours (especially in terms of selectivity and analysis time), for both groups of phenols and β-blockers, which should be explained by the residual effect of the underlying bonded stationary phase and the different amount of surfactant covering the packing. Therefore, the implementation of a micellar-organic procedure in RPLC will depend significantly on the selected type of C18 column.

  13. Effect of high pressure--low temperature treatments on structural characteristics of whey proteins and micellar caseins.

    Baier, Daniel; Purschke, Benedict; Schmitt, Christophe; Rawel, Harshadrai M; Knorr, Dietrich


    In this study, structural changes in micellar caseins and whey proteins due to high pressure--low temperature treatments (HPLT) were investigated and compared to changes caused by high pressure treatments at room temperature. Whey protein isolate (WPI) solutions as well as micellar casein (MC) dispersions and mixtures were treated at 500 MPa (pH 7.0 and 5.8) at room temperature, -15 °C and -35 °C. Surface hydrophobicity and accessible thiol groups remained nearly unchanged after HPLT treatments whereas HP treatments at room temperature caused an unfolding of the WPI, resulting in an increase in surface hydrophobicity and exposure of the thiol groups. For HPLT treatments, distinct changes in the secondary structure (increase in the amount of β-sheets) were observed while the tertiary structure remained unchanged. Large flocs, stabilized by hydrophobic interactions and hydrogen bonds, were formed in casein containing samples due to HPLT treatments. Depending on the pH and the applied HPLT treatment parameters, these interactions differed significantly from the interactions determined in native micelles.

  14. Commercial scale demonstration enhanced oil recovery by micellar-polymer flood. Annual report, October 1979-September 1980

    Howell, J.C.; Snyder, W.O.


    This commercial scale test, known as the M-1 Project, is located in Crawford County, Illinois. It encompasses 407 acres of Robinson sand reservoir and covers portions of several waterflood projects that were approaching economic limit. The project includes 248 acres developed on a 2.4-acre five-spot pattern and 159 acres developed on a 5.0-acre five-spot pattern. Development work commenced in late 1974 and has previously been reported. Micellar solution (slug) injection was initiated on February 10, 1977, and is now completed. After 10% of a pore volume of micellar slug was injected, injection of 11% pore volume of Dow 700 Pusher polymer was conducted at a concentration of 1156 ppM. At the end of this reporting period, 625 ppM polymer was being injected into the 2.5-acre pattern and 800 ppM polymer was being injected into the 5.0-acre pattern. The oil cut of the 2.5 and 5.0-acre patterns increased from 8.6% and 5.2%, respectively in September 1979, to 11.0% and 5.9% in September 1980. The oil cut performance has consistently exceeded that predicted for the project. This Fourth Annual Report is organized under the following three Work Breakdown Structures: fluid injection; production; and performance monitoring.

  15. Two-phase aqueous micellar systems: an alternative method for protein purification

    Rangel-Yagui C. O.


    Full Text Available Two-phase aqueous micellar systems can be exploited in separation science for the extraction/purification of desired biomolecules. This article reviews recent experimental and theoretical work by Blankschtein and co-workers on the use of two-phase aqueous micellar systems for the separation of hydrophilic proteins. The experimental partitioning behavior of the enzyme glucose-6-phosphate dehydrogenase (G6PD in two-phase aqueous micellar systems is also reviewed and new results are presented. Specifically, we discuss very recent work on the purification of G6PD using: i a two-phase aqueous micellar system composed of the nonionic surfactant n-decyl tetra(ethylene oxide (C10E4, and (ii a two-phase aqueous mixed micellar system composed of C10E4 and the cationic surfactant decyltrimethylammonium bromide (C10TAB. Our results indicate that the two-phase aqueous mixed (C10E4/C10TAB micellar system can improve significantly the partitioning behavior of G6PD relative to that observed in the two-phase aqueous C10E4 micellar system.

  16. Conductivity measurements in a shear-banding wormlike micellar system.

    Photinos, Panos J; López-González, M R; Hoven, Corey V; Callaghan, Paul T


    Shear banding in the cetylpyridinium chloride/sodium salicylate micellar system is investigated using electrical conductivity measurements parallel to the velocity and parallel to the vorticity in a cylindrical Couette cell. The measurements show that the conductivity parallel to the velocity (vorticity) increases (decreases) monotonically with applied shear rate. The shear-induced anisotropy is over one order of magnitude lower than the anisotropy of the N(c) nematic phase. The steady-state conductivity measurements indicate that the anisotropy of the shear induced low-viscosity (high shear rate) phase is not significantly larger than the anisotropy of the high viscosity (low shear rate) phase. We estimate that the micelles in the shear induced low viscosity band are relatively short, with a characteristic length to diameter ratio of 5-15. The relaxation behavior following the onset of shear is markedly different above and below the first critical value γ1, in agreement with results obtained by other methods. The transient measurements show that the overall anisotropy of the sample decreases as the steady state is approached, i.e., the micellar length/the degree of order decrease.

  17. Percolation and Critical Phenomena of AN Attractive Micellar System

    Mallamace, F.; Chen, S. H.; Gambadauro, P.; Lombardo, D.; Faraone, A.; Tartaglia, P.

    In this work we study an attractive micellar system for which the percolation curve terminates near the critical point. We have studied such an intriguing situation by means of scattering (elastic and dynamical) and viscoelasticity experiments. Obtained data are accounted by considering in a proper way the fractal clustering processes typical of percolating systems and the related scaling concepts. We observe that the main role in the system structure and dynamics it is played by the cluster's partial screening of hydrodynamic interaction. This behaves on approaching the percolation threshold dramatic effects on the system rheological properties and on the density decay relaxations. The measured correlation functions assume a stretched exponential form and the system becomes strongly viscoelastic. The overall behavior of the measured dynamical and structural parameters indicates, that in the present micellar system, the clustering process originates dilute, poly-disperse and swelling structures. Finally, this originates an interesting situation observed in the present experiment. As it has been previously, proposed by A. Coniglio et al., percolation clusters can be considered to be "Ising clusters" with the same properties as the Fisher's critical droplets. Therefore at the critical point the percolation connectedness length (ξp) can be assumed as the diverging correlation length (ξp ≡ ξ) and the mean cluster size diverges as the susceptibility.

  18. The usage of micellar extraction for analysis of fluvastatin in water and wastewater samples.

    Hryniewicka, Marta; Starczewska, Barbara


    This work illustrates the development of new procedures for the isolation and preconcentration of fluvastatin (FLU) from aqueous solutions. Micellar extraction (ME) combined with high performance liquid chromatography (HPLC-UV) has been successfully applied for this purpose. It was found that the analyte created micelle with anionic sodium dodecylsulfate (SDS) and/or with the binary mixture of surfactants nonionic triton X114 (TX114) and cationic tetra-n-butyloammonium bromide (TBAB). The optimal analytical conditions for the proposed extraction procedures (solution pH, concentration of surfactants, centrifugation time and electrolyte type) were ascertained. The calibration curves were recorded. The linearity ranges for FLU, isolated by SDS and the mixture of TX114/TBAB, were 0.21-28.79 μg mL(-1) and 0.21-16.45 μg mL(-1) with limit of detection (LOD) 0.19 μg mL(-1) and 0.14 μg mL(-1), respectively. The recoveries afforded by the proposed methods were high, approximately 97%. These preconcentration procedures were applied for the isolation of the statin from water and wastewater samples taken from the local rivers and wastewater treatment plants.

  19. Role of spacer lengths of gemini surfactants in the synthesis of silver nanorods in micellar media.

    Bhattacharya, Santanu; Biswas, Joydeep


    In this work, we have prepared Ag-nanorods using biscationic gemini surfactant micelles as the media by a seed-mediated wet synthesis method. Towards this end, we first synthesized Ag-nanoseeds of diameter ~7 nm stabilized by trisodium citrate (as the capping agent). Then these Ag-nanoseeds were used to synthesize Ag-nanorods of different aspect ratios. With decreasing Ag-nanoseed concentration, the aspect ratios of the Ag-nanorods stabilized by these gemini surfactants increased gradually. Various Ag-nanoseeds and Ag-nanospecies were characterized using UV-Vis spectroscopy (to know the surface plasmon bands), transmission electron microscopy (to find out their particle sizes and distribution), energy-dispersive X-ray spectroscopy and X-ray diffraction. When we used micelles derived from gemini surfactants of shorter spacer -(CH(2))(n)- (n = 2 or 4) to stabilize the Ag-nanorods, the λ(max) of the longitudinal band shifted more towards the blue region compared to that of the gemini surfactant micelles with a longer spacer -(CH(2))(n)- (n = 5, 12) at a given amount of the Ag-nanoseed solution. So, the growth of Ag-nanorods in the gemini micellar solutions depends on the spacer-chain length of gemini surfactants employed.

  20. Spherically symmetric brane spacetime with bulk gravity

    Chakraborty, Sumanta; SenGupta, Soumitra


    Introducing term in the five-dimensional bulk action we derive effective Einstein's equation on the brane using Gauss-Codazzi equation. This effective equation is then solved for different conditions on dark radiation and dark pressure to obtain various spherically symmetric solutions. Some of these static spherically symmetric solutions correspond to black hole solutions, with parameters induced from the bulk. Specially, the dark pressure and dark radiation terms (electric part of Weyl curvature) affect the brane spherically symmetric solutions significantly. We have solved for one parameter group of conformal motions where the dark radiation and dark pressure terms are exactly obtained exploiting the corresponding Lie symmetry. Various thermodynamic features of these spherically symmetric space-times are studied, showing existence of second order phase transition. This phenomenon has its origin in the higher curvature term with gravity in the bulk.

  1. Utilization of micellar electrokinetic chromatography-tandem mass spectrometry employed volatile micellar phase in the analysis of cathinone designer drugs.

    Švidrnoch, Martin; Lněníčková, Ludmila; Válka, Ivo; Ondra, Peter; Maier, Vítězslav


    A micellar electrokinetic chromatography method with tandem mass spectrometry has been developed for the selective separation, identification and determination of twelve new designer drugs from the group of synthetic cathinones. Ammonium salt of perfluorooctanoic acid at various concentrations as a volatile background electrolyte (BGE) to create micellar phase was studied for separation of selected synthetic cathinones with direct tandem mass spectrometry without significant loss of detection sensitivity. The optimized BGE contained 100 mM perfluorooctanoic acid with 200 mM ammonium hydroxide providing acceptable resolution of studied drugs in the MEKC step. In order to minimize interferences with matrix components and to preconcentrate target analytes, solid phase extraction was introduced as a clean-up step. The method was linear in the concentration range of 10-5000 ng mL(-1) and the limits of detection were in the range of 10-78 ng mL(-1). The method was demonstrated to be specific, sensitive, and reliable for the systematic toxicological analysis of these derivatives in urine samples.

  2. Bulk Moisture and Salinity Sensor

    Nurge, Mark; Monje, Oscar; Prenger, Jessica; Catechis, John


    Measurement and feedback control of nutrient solutions in plant root zones is critical to the development of healthy plants in both terrestrial and reduced-gravity environments. In addition to the water content, the amount of fertilizer in the nutrient solution is important to plant health. This typically requires a separate set of sensors to accomplish. A combination bulk moisture and salinity sensor has been designed, built, and tested with different nutrient solutions in several substrates. The substrates include glass beads, a clay-like substrate, and a nutrient-enriched substrate with the presence of plant roots. By measuring two key parameters, the sensor is able to monitor both the volumetric water content and salinity of the nutrient solution in bulk media. Many commercially available moisture sensors are point sensors, making localized measurements over a small volume at the point of insertion. Consequently, they are more prone to suffer from interferences with air bubbles, contact area of media, and root growth. This makes it difficult to get an accurate representation of true moisture content and distribution in the bulk media. Additionally, a network of point sensors is required, increasing the cabling, data acquisition, and calibration requirements. measure the dielectric properties of a material in the annular space of the vessel. Because the pore water in the media often has high salinity, a method to measure the media moisture content and salinity simultaneously was devised. Characterization of the frequency response for capacitance and conductance across the electrodes was completed for 2-mm glass bead media, 1- to 2-mm Turface (a clay like media), and 1- to 2-mm fertilized Turface with the presence of root mass. These measurements were then used to find empirical relationships among capacitance (C), the dissipation factor (D), the volumetric water content, and the pore water salinity.

  3. Effect of the interaction of heat-processing style and fat type on the micellarization of lipid-soluble pigments from green and red pungent peppers (Capsicum annuum).

    Victoria-Campos, Claudia I; Ornelas-Paz, José de Jesús; Yahia, Elhadi M; Failla, Mark L


    The high diversity of carotenoids and chlorophylls in foods contrasts with the reduced number of pigments that typically are investigated in micellarization studies. In this study, pepper samples (raw and heat-treated) contained 68 individual pigments, but only 38 of them were micellarized after in vitro digestion. The micellarization of pigments was majorly determined by the interaction effect of processing style (food matrix effect) and fat type (saturated and unsaturated). The highest micellarization was observed with raw peppers. Unsaturated fat increased the micellarization of carotenoid esters, while the impact of fat on the micellarization of free carotenoids seemed to be dependent on pigment structure. The micellarization efficiency was diminished as the esterification level of carotenoids increased. The type of fatty acid moiety and the polarity of the carotenoids modulated their micellarization. Chlorophylls were transformed into pheophytins by heat-processing and digestion, with the pheophytins being stable under gastrointestinal conditions. Micellarization of pheophytins was improved by fat.

  4. Effects of bulk viscosity on cosmological evolution

    Pimentel, L O; Pimentel, L O; Diaz-Rivera, L M


    Abstract:The effect of bulk viscisity on the evolution of the homogeneous and isotropic cosmological models is considered. Solutions are found, with a barotropic equation of state, and a viscosity coefficient that is proportional to a power of the energy density of the universe. For flat space, power law expansions, related to extended inflation are found as well as exponential solutions, related to old inflation; also a solution with expansion that is an exponential of an exponential of the time is found.

  5. Bulk Nanostructured Materials

    Koch, C. C.; Langdon, T. G.; Lavernia, E. J.


    This paper will address three topics of importance to bulk nanostructured materials. Bulk nanostructured materials are defined as bulk solids with nanoscale or partly nanoscale microstructures. This category of nanostructured materials has historical roots going back many decades but has relatively recent focus due to new discoveries of unique properties of some nanoscale materials. Bulk nanostructured materials are prepared by a variety of severe plastic deformation methods, and these will be reviewed. Powder processing to prepare bulk nanostructured materials requires that the powders be consolidated by typical combinations of pressure and temperature, the latter leading to coarsening of the microstructure. The thermal stability of nanostructured materials will also be discussed. An example of bringing nanostructured materials to applications as structural materials will be described in terms of the cryomilling of powders and their consolidation.

  6. Removal of Pyrethrin from Aqueous Effluents by Adsorptive Micellar Flocculation

    Pardon K. Kuipa


    Full Text Available The equilibrium adsorption of pyrethrin onto aggregates formed by the flocculation of micelles of the surfactant sodium dodecyl sulphate (SDS with aluminium sulphate is reported. The experimental results were analysed using different adsorption isotherms (Langmuir, Freundlich, Redlich-Peterson, Sips, Radke-Prausnitz, Temkin, linear equilibrium, and the Dubin-Radushkevich isotherms. The Freundlich and linear equilibrium isotherms best describe the adsorption of pyrethrin onto SDS micellar flocs, with the Freundlich adsorption constant, KF, and the mass distribution coefficient, KD, of 64.266 ((mg/g(L/mg1/n and 119.65 L/g, respectively. Applicability of the Freundlich adsorption model suggests that heterogeneous surface adsorption affects the adsorption. The mean free energy value estimated using the Dubinin-Radushkevich isotherm was 0.136 kJ/mol indicating that physisorption may be predominant in the adsorption process.

  7. Influence of solvent on micellar morphologies of semifluorinated block copolymers.

    Lee, Min Young; Kim, Sang Jae; Jeong, Yeon Tae; Kim, Joo Hyun; Gal, Yeong-Soon; Lim, Kwon Taek


    The influence of solvents on micellar architectures of block copolymers composed of poly(1H,1H-dihydroperfluorooctyl methacrylate) and poly(ethylene oxide) was investigated. In this study, binary solvents with desired proportions were chosen, which had remarkable influence on the morphology of the resulting micelles. With simple adjusting the composition of the binary solvent of chloroform and trichlorofluoromethane, interesting shapes of micelle-like aggregates, such as core-shell, cylinder, worm-like and inverted micelles were formed with sizes of 15, 70, 30 and 250 nm, respectively. In the case of methanol/water system, core-shell spheres and vesicles were produced by varying the proportion of the contents. The morphologies were also tuned to honeycomb-like and bowl-shaped micelles as well as large planar lamellae with holes in DMF and water binary solvent.

  8. Micellar electrokinetic chromatography (MEKC) separation of furanonaphthoquinones from Tabebuia impetiginosa.

    Koyama, J; Morita, I; Kino, A; Tagahara, K


    The separation of nine furanonaphthoquinones by micellar electrokinetic chromatography (MEKC) is described. The running electrolytes used in this method were 0.03 M sodium dodecyl sulphate (SDS) in 0.09 M borate buffer (pH 9) containing 10% methanol, with an applied voltage of 20 kV. Application of this technique in the determination of the main furanonaphthoquinones, 5-hydroxy-2-(1-hydroxyethyl)naphtho[2,3-b]furan-4,9-dione, 8-hydroxy-2-(1-hydroxyethyl)naphtho[2,3-b]furan-4,9-dione, and 2-(1-hydroxyethyl)naphtho[2,3-b]furan-4,9-dione, of Tabebuia impetiginosa is demonstrated in this paper.

  9. Separation of bisbenzylisoquinoline alkaloids by micellar electrokinetic chromatography.

    Kuo, Ching-Hua; Sun, Shao-Wen


    The micellar electrokinetic chromatographic (MEKC) separation of seven bisbenzylisoquinoline alkaloids has been developed. The effects of various separating factors were studied. Optimum separation was achieved using a buffer (pH 9.2) of 20 mM sodium borate and 20 mM sodium dihydrogen phosphate buffer containing 55 mM sodium cholate; the optimum voltage and injection time were 21 kV and 0.05 min, respectively. Highest peak efficiency was obtained when the analytes were dissolved in 10 mM sodium dodecyl sulphate as sample matrix for injection. The elution order of the bisbenzylisoquinoline alkaloids was related to their lipophilicity. The resolution, run time and detection limits of the MEKC method were compared with those of an HPLC method developed previously.

  10. Separation of Six Pyridoncarboylxic Acid Derivatives by Micellar and Microemulsion Electrokinetic Chromatography


    Micellar and microemulsion electrokinetic chromatography (MEKC & MEEKC) separation of six closely structural pyridoncarboylxic acid derivatives were studied and compared. Both anionic surfactant sodium dodecyl sulfate (SDS) and cationic surfactant hexadecyl-trimethyl ammonium bromide (CTAB) were used to form micellar and microemulsion as pseudostation phases, respectively. The effects of the separation conditions on retention time and selectivity were studied. Good resolutions were obtained in selected systems, indicating that there is markably different selectivity between SDS and CTAB systems.

  11. Evidence for near-Surface NiOOH Species in Solution-Processed NiOx Selective Interlayer Materials: Impact on Energetics and the Performance of Polymer Bulk Heterojunction Photovoltaics

    Ratcliff, Erin L.; Meyer, Jens; Steirer, K. Xerxes; Garcia, Andres; Berry, Joseph J.; Ginley, David S.; Olson, Dana C.; Kahn, Antoine; Armstrong, Neal R.


    The characterization and implementation of solution-processed, wide bandgap nickel oxide (NiO{sub x}) hole-selective interlayer materials used in bulk-heterojunction (BHJ) organic photovoltaics (OPVs) are discussed. The surface electrical properties and charge selectivity of these thin films are strongly dependent upon the surface chemistry, band edge energies, and midgap state concentrations, as dictated by the ambient conditions and film pretreatments. Surface states were correlated with standards for nickel oxide, hydroxide, and oxyhydroxide components, as determined using monochromatic X-ray photoelectron spectroscopy. Ultraviolet and inverse photoemission spectroscopy measurements show changes in the surface chemistries directly impact the valence band energies. O₂-plasma treatment of the as-deposited NiO{sub x} films was found to introduce the dipolar surface species nickel oxyhydroxide (NiOOH), rather than the p-dopant Ni₂O₃, resulting in an increase of the electrical band gap energy for the near-surface region from 3.1 to 3.6 eV via a vacuum level shift. Electron blocking properties of the as-deposited and O₂-plasma treated NiO{sub x} films are compared using both electron-only and BHJ devices. O₂-plasma-treated NiO{sub x} interlayers produce electron-only devices with lower leakage current and increased turn on voltages. The differences in behavior of the different pretreated interlayers appears to arise from differences in local density of states that comprise the valence band of the NiO{sub x} interlayers and changes to the band gap energy, which influence their hole-selectivity. The presence of NiOOH states in these NiO{sub x} films and the resultant chemical reactions at the oxide/organic interfaces in OPVs is predicted to play a significant role in controlling OPV device efficiency and lifetime.

  12. Bell Creek field micellar-polymer pilot demonstration. Third annual report, October 1978-September 1979

    Goldburg, A.


    Gary Energy Corporation is conducting a DOE Demonstration Pilot to determine if micellar-polymer flooding is an economically feasible technique to enhance oil recovery from the Bell Creek Field, Powder River County, southeastern Montana. The pilot is a contained 40-acre 5-spot located in a representative watered-out portion of Unit A Reservoir. The pay is sandstone with an average net pay of 6.4 feet, air permeability of 1050 md, and water TDS of 4000 ppM. The current average remaining oil saturation in the 40-acre pilot area is estimated to be 28%. The pilot has four injectors (Wells MPP-1, MPP-2, MPP-3, and MPP-4) and one producer (Well 12-1). The overall micellar-polymer oil recovery is estimated at 47% of the remaining oil at the initiation of the micellar-polymer flood. In the third contract year (October 1978 to September 1979), all tasks including the initiation of soluble oil/micellar injection were completed. Test site development included completion of: (1) radioactive tracer survey and analysis, (2) core analysis, (3) pressure pulse tests and analysis, (4) reservoir description, and (5) test site facilities. Based on test site development data, soluble oil/micellar formulation was finalized and mathematical simulation work by Intercomp completed. The preflush injection phase of the demonstration program was completed, and the soluble oil/micellar injection was initiated at the end of the contract year. The pilot demonstration project has progressed as scheduled.

  13. Aliphatic carboxylic acids as new modifiers for separation of 2,4-dinitrophenyl amino acids by micellar liquid chromatography.

    Boichenko, Alexander P; Kulikov, Artem U; Loginova, Lidia P; Iwashchenko, Anna L


    The possibilities of isocratic separation of 2,4-dinitrophenyl derivatives of 12 amino acids that considerably differ in hydrophobicity by micellar mobile phases with different organic modifiers have been discussed. For the first time aliphatic carboxylic acids have been used as modifiers of micellar eluent in micellar liquid chromatography with C18 columns. Elution strength of hybrid micellar phases on the basis of sodium dodecylsulfate and aliphatic carboxylic acids increases in sequence: aceticacid. The effect of sodium dodecylsulfate micelles on aliphatic carboxylic acids has been characterized by their micellar-induced shifts of ionization constants. The use of aliphatic carboxylic acids as modifiers of SDS micellar eluents provides better overall resolution of 2,4-dinitrophenyl-amino acids in comparison with aliphatic alcohols.

  14. Determination of polymer log D distributions by micellar and microemulsion electrokinetic chromatography.

    Jin, Xiaoyun; Leclercq, Laurent; Cottet, Hervé


    The characterization of the hydrophobicity of polymer compounds in solution remains a challenging issue of importance, especially for biomedical or pharmaceutical applications. To our knowledge, there is no data of polymer hydrophobicity (log D) in the literature. In this work, for the first time, the log D distributions of cationic polymers were characterized using micellar or microemulsion electrokinetic chromatography at physiological pH. The log D distributions of the polymer samples were obtained from the electrophoretic/chromatographic retardation of the polymer derivatives in presence of neutral micelles (or neutral microemulsion), using small cationic molecules for calibration. Separating electrolytes were based on a TRIS–chloride buffer containing a neutral surfactant (polyoxyethyleneglycoldodecyl ether) for the formation of micelles (in water) or microemulsion (in water/n-pentanol mixture).The log D distributions obtained at pH 7.4 using this method were in good agreement with the chemical structures of cationic polypeptides: poly(lys, phe) 1:1 > poly(lys, tyr) 1:1 > poly(lys, trp) 4:1 > poly(lys, ser)3:1 > poly(l-lysine), where x:y represents the molar ratio of each amino acid in the copolymer. Weight average octanol–water log D values and the dispersion of the log D distribution were also defined and determined for each polymer sample.

  15. Micellar nanotubes dispersed electrokinetic chromatography for the simultaneous determination of antibiotics in bovine milk.

    Springer, Valeria H; Lista, Adriana G


    A method to determine four antibiotics for veterinary use (ciprofloxacin, enrofloxacin, florfenicol, and chloramphenicol) of different families (fluoroquinolones and amphenicols) in bovine milk was developed. The determination of the analytes was carried out using micellar electrokinetic capillary chromatography (MEKC) with a common sodium borate-SDS buffer solution containing single-walled carbon nanotubes (SWCNTs). In this way, a great improvement in the electrophoretic resolution and the separation efficiency was achieved compared to MEKC. An online reverse electrode polarity-stacking mode (REPSM) was carried out to enhance sensitivity. This step was performed in only 2 min and it allowed a stacked percentage of 103. That means that all the amount of injected analytes is effectively stacked. When this stacking procedure was combined with an off-line preconcentration step, based on SPE, analytes could be detected in lower concentration than the established maximum residue limits (MRLs). The LODs for the four compounds were between 6.8 and 13.8 μg L(-1) and the RSD values were between 1.1% and 6.6%. The whole method was applied to spiked real samples with acceptable precision and satisfactory recoveries.

  16. Iron(Ⅱ) tetrasulfophthalocyanine mimetic enzymatic synthesis of conducting polyaniline in micellar system

    HU Xing; LIU Hui; ZOU Guo-lin


    Iron(Ⅱ) tetrasulfophthalocyanine (FeTSPc), as a novel mimetic enzyme of peroxidase, was used in the synthesis of a conducting polyaniline (PANI)/sodium dodecylsulfate (SDS) complex in SDS aqueous micellar solutions. The effects of pH, concentrations of aniline, SDS and H_2O_2, and reaction time on polymerization of aniline were studied in this case as shown by UV-Vis absorption spectroscopy. The results show that a wide range of pH (0.5-4.0) is required to produce the conducting PANI, and the optimal pH is 1.0 in SDS micelle. The optimal concentrations of aniline, SDS and H_2O_2 in feed, and reaction time in this case for the production of conducting PANI are respectively 10 mmol/L, 10 mmol/L, 25 mmol/L, and 15 h. FT-IR spectrum, elemental analysis, conductivity, cyclic voltammetry and thermogravimetric analysis confirm the thermal stability and electroactive form of PANI.

  17. Influence of ultrasound on chemically induced gelation of micellar casein systems.

    Chandrapala, Jayani; Zisu, Bogdan; Kentish, Sandra; Ashokkumar, Muthupandian


    Gelation is a significant operation in dairy processing. Protein gelation can be affected by several factors such as temperature, pH, or enzyme addition. Recently, the use of ultrasonication has been shown to have a significant impact on the formation of whey protein gels. In this work, the effect of ultrasonication on the gelation of casein systems was investigated. Gels were formed by the addition of 7.6 mm Tetra Sodium Pyro Phosphate (TSPP) to 5 wt% micellar casein (MC) solutions. Sonication at 20 KHz and 31 W for up to 30 min changed the surface hydrophobicity of the proteins, whereas surface charge was unaltered. Sonication before the addition of TSPP formed a firm gel with a fine protein network and low syneresis. Conversely, sonication after TSPP addition led to an inconsistent weak-gel-like structure with high syneresis. Gel strength in both cases increased significantly after short sonication times, while the viscoelastic properties were less affected. Overall, the results showed that ultrasonication can have a significant effect on the final gel properties of casein systems.

  18. Modeling transport effects of perfluorinated and hydrocarbon surfactants in groundwater by using micellar liquid chromatography

    Simmons, Rashad N. [Department of Chemistry and Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824-1322 (United States); McGuffin, Victoria L. [Department of Chemistry and Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824-1322 (United States)], E-mail:


    The effects of hydrocarbon and perfluorinated surfactants, above their critical micelle concentration (CMC), on the transport of neutral environmental pollutants are compared. Reversed-phase micellar liquid chromatography is used to model the groundwater system. The octadecylsilica stationary phase serves to simulate soil particles containing organic matter, whereas the aqueous surfactant mobile phases serve to simulate groundwater containing a surfactant at varying concentrations. Sodium dodecyl sulfate and lithium perfluorooctane sulfonate are used as representatives of the hydrocarbon and perfluorinated surfactants, respectively. Benzene, mono- and perhalogenated benzenes, and polycyclic aromatic hydrocarbons are used as models for environmental pollutants. Transport effects were elucidated from the retention factor, k, and the equilibrium constant per micelle, K{sub eq}, of the model pollutants in the individual surfactants. Based on k values, the transport of the model pollutants increased in both surfactant solutions in comparison to pure water. As the concentration of the surfactants increased, the transport of the pollutants increased as well. Notably, the K{sub eq} values of the pollutants in the perfluorinated surfactant were at least an order of magnitude less than those in the hydrocarbon surfactant. Overall, these results suggest that the presence of a perfluorinated surfactant, above its CMC, increases the transport of pollutants in a groundwater system. However, the perfluorinated surfactant exhibits a lesser transport effect than the hydrocarbon surfactant.

  19. Headspace in-tube microextraction coupled with micellar electrokinetic chromatography of neutral aromatic compounds.

    Cho, Sung Min; Park, Bum Su; Jung, Woo Sung; Lee, Sang Won; Jung, Yunhwan; Chung, Doo Soo


    Headspace (HS) extraction can be carried out easily and aptly via single drop microextraction coupled with capillary electrophoresis (CE). However, one drawback is the difficulty of keeping the single drop stably at the capillary tip. To solve this problem, we have recently demonstrated HS in-tube microextraction (ITME) of acidic compounds such as chlrophenols in an acidic sample using a basic run buffer plug in the separation capillary for CE as an acceptor phase. In this report, an organic acceptor plug in a capillary was used to extract neutral organic volatile pollutants such as BTEX (benzene, toluene, ethylbenzene, and m-xylene). After extraction, the analytes enriched in the organic acceptor plug were analyzed with micellar electrokinetic chromatography (MEKC). The enrichment factors for BTEX in a standard solution were up to 350 under an optimal condition of 25°C for 20 min. As an application, BTEX spiked into bottled water were analyzed with HS-ITME-MEKC, and the enrichment factors for BTEX were up to 320. The limits of detections were 1-4 ppb, which are at least 200 times lower than the US Environmental Protection Agency guidelines for drinking water, except benzene. The entire procedure of HS-ITME-MEKC was carried out automatically using a commercial CE instrument.

  20. Extraction of catechins and caffeine from different tealeaves and comparison with micellar electrokinetic chromatography

    SONG Guanqun; LIN Jinming; Qu Feng; C.W.Huie


    This work describes the simultaneous deter- mination of catechins and caffeine in green, black tealeaves and canned tea-drink using micellar electrokinetic chromatography. The catechins analyzed include (+)-catechin, (-)- epicatechin, (-)-epigallocatechin, (-)-epicatechin gallate and (-)-epigallocatechin gallate. Using UV absorption method at 280 nm, the limits of detections of catechins and caffeine are 10-6 mol/L, which is suitable for the real sample determination. Using this analytical method, the extraction of these compounds from the tealeaves with hot water is compared under different temperatures. The effects of temperature on the amount of catechins and caffeine extracted are evident, showing that (-)-epigallocatechin gallate is the most easiest to be extracted at 100℃. The stability of catechins and caffeine in stocking solution of tea-drink at 4℃ is also compared on five consecutive days. The contents of catechins and caffeine in green and black teas are discussed and the difference of the content between different tealeaves can provide a reference for the assessment of tea quality.

  1. Quantitative analysis of flavonoids and phenolic acids in Arnica montana L. by micellar electrokinetic capillary chromatography.

    Ganzera, Markus; Egger, Christoph; Zidorn, Christian; Stuppner, Hermann


    Arnica montana preparations have been used in Europe for centuries to treat skin disorders. Among the biologically active ingredients in the flower heads of the plant are sequiterpenes, flavonoids and phenolic acids. For the simultaneous determination of compounds belonging to the latter two groups a micellar electrokinetic capillary chromatography (MEKC) method was developed and validated. By using an electrolyte solution containing 50 mM borax, 25 mM sodium dodecyl sulfate and 30% of acetonitrile the separation of seven flavonoids and four caffeic acid derivatives was feasible in less than 20 min. The optimized system was validated for repeatability (sigma(rel) or = 0.9996), and then successfully applied to assay several plant samples. In all of them the most dominant flavonoid was found to be quercetin 3-O-glucuronic acid, whereas 3,5-dicaffeoylquinic acid was the major phenolic acid; the total content of flavonoids and phenolic acids varied in the samples from 0.60 to 1.70%, and 1.03 to 2.24%, respectively.

  2. Micellar-polymer for enhanced oil recovery for Upper Assam Basin

    B.M. Das


    Full Text Available One of the major enhanced oil recovery (EOR processes is chemical flooding especially for the depleted reservoirs. Chemical flooding involves injection of various chemicals like surfactant, alkali, polymer etc. to the aqueous media. Bhogpara and Nahorkatiya are two depleted reservoirs of upper Assam basin where chemical flooding can be done to recover the trapped oil that cannot be recovered by conventional flooding process. Micellar-polymer (MP flooding involves injection of micelle and polymer to the aqueous phase to reduce interfacial tension and polymer is added to control the mobility of the solution, which helps in increasing both displacement and volumetric sweep efficiency and thereby leads to enhanced oil recovery. This work represents the use of black liquor as micelle or surfactant that is a waste product of Nowgong Paper Mills, Jagiroad, Assam, which is more efficient than the synthetic surfactants. The present study examines the effect of MP flooding through the porous media of two depleted oil fields of upper Assam basin i.e. Bhogpara and Nahorkatiya for MP EOR. This work also compares the present MP flood with the earlier work done on surfactant (S flooding. It was experimentally determined that the MP flood is more efficient EOR process for Bhogpara and Nahorkatiya reservoirs. The study will pertain to the comprehensive interfacial tension (IFT study and the displacement mechanism in conventional core samples.

  3. Effect of micellar species on photoinduced hydrogen production with Mg chlorophyll-a from spirulina and colloidal platinum

    Tomonou, Yumiko; Amao, Yutaka [Oita Univ., Dept. of Applied Chemistry, Oita (Japan)


    Effect of micellar species on the photostability of Mg chlorophyll-a and the photoinduced hydrogen production with Mg chlorophyll-a by use of three component system consisting of NADPH, methylviologen and colloidal platinum was investigated. Triton X-100 and CTAB solubilized Mg chlorophyll-a solution were rapidly bleached by irradiation and 50% of Mg chlorophyll-a was degraded in 90 min irradiation. On the other hand, the decay rate of Mg chlorophyll-a concentration in the presence of NADPH was suppressed and the degradation rate was 15% in 90 min irradiation. The effective hydrogen production system was developed using CTAB solubilized Mg chlorophyll-a (2.7 {mu}mol in 4 h), compared with that using Triton X-100 solubilized Mg chlorophyll-a (0.1 {mu}mol in 4 h). (Author)

  4. Large area bulk superconductors

    Miller, Dean J.; Field, Michael B.


    A bulk superconductor having a thickness of not less than about 100 microns is carried by a polycrystalline textured substrate having misorientation angles at the surface thereof not greater than about; the bulk superconductor may have a thickness of not less than about 100 microns and a surface area of not less than about 50 cm.sup.2. The textured substrate may have a thickness not less than about 10 microns and misorientation angles at the surface thereof not greater than about Also disclosed is a process of manufacturing the bulk superconductor and the polycrystalline biaxially textured substrate material.

  5. Direct Injection of Seawater for the Analysis of Nitroaromatic Explosives and their Degradation Products by Micellar Electrokinetic Chromatography


    micellar electrokinetic chromatography Braden C. Giordanoa,∗, Dean S. Burgib, Greg E. Collinsa a Uanited States Naval Research Laboratory, Chemistry...threats to our coastal regions. Micellar electrokinetic chromatography (MEKC) has been demonstrated to be a useful analytical tool in the anal- ysis of...injection of seawater for the analysis of nitroaromatic explosives and their degradation products by micellar electrokinetic chromatography 5a. CONTRACT

  6. Micellar aggregates of saponins from Chenopodium quinoa: characterization by dynamic light scattering and transmission electron microscopy.

    Verza, S G; de Resende, P E; Kaiser, S; Quirici, L; Teixeira, H F; Gosmann, G; Ferreira, F; Ortega, G G


    Entire seeds of Chenopodium quinoa Willd are a rich protein source and are also well-known for their high saponin content. Due to their amphiphily quinoa saponins are able to form intricate micellar aggregates in aqueous media. In this paper we study the aggregates formed by self-association of these compounds from two quinoa saponin fractions (FQ70 and FQ90) as well as several distinctive nanostructures obtained after their complexation with different ratios of cholesterol (CHOL) and phosphatidylcholine (PC). The FQ70 and FQ90 fractions were obtained by reversed-phase preparative chromatography. The structural features of their resulting aggregates were determined by Dynamic Light Scattering (DLS) and Transmission Electron Microscopy (TEM). Novel nanosized spherical vesicles formed by self-association with mean diameter about 100-200 nm were observed in FQ70 aqueous solutions whereas worm-like micelles an approximate width of 20 nm were detected in FQ90 aqueous solutions. Under experimental conditions similar to those reported for the preparation of Quillaja saponaria ISCOM matrices, tubular and ring-like micelles arose from FQ70:CHOL:PC and FQ90:CHOL:PC formulations, respectively. However, under these conditions no cage-like ISCOM matrices were observed. The saponin composition of FQ70 and FQ90 seems to determine the nanosized structures viewed by TEM. Phytolaccagenic acid, predominant in FQ70 and FQ90 fractions, is accountable for the formation of the nanosized vesicles and tubular structures observed by TEM in the aqueous solutions of both samples. Conversely, ring-like micelles observed in FQ90:CHOL:PC complexes can be attributed to the presence of less polar saponins present in FQ90, in particular those derived from oleanolic acid.




    Catalysis of organic reactions by unfunctionalized surfactant aggregates (micelles, vesicles) in aqueous solution is largely determined by medium effects induced at the micellar binding sites and by entropy effects due to compartimentalization. The efficiency of these catalytic effects responds to c

  8. Characterization and classification of pseudo-stationary phases in micellar electrokinetic chromatography using chemometric methods.

    Fu, Cexiong; Khaledi, Morteza G


    Two types of chemometric methods, principal component analysis (PCA) and cluster analysis, are employed to characterize and classify a total of 70 pseudostationary phases (54 distinct systems and 16 decoy systems) in micellar electrokinetic chromatography (MEKC). PCA excels at removing redundant information for micellar phase characterization and retaining principal determinants for phase classification. While PCA is useful in the characterization of micelle selectivities, it is ineffective in defining the grouping of micellar phases. Hierarchical clustering yields a complete dendrogram of cluster structures but provides only limited cluster characterizations. The combination of these two chemometric methods leads to a comprehensive interpretation of the micellar phase classification. Moreover, the k-means analysis can further discern subtle differences among those closely located micellar phases. All three chemometric methods result in similar classifications with respect to the similarities and differences of the 70 micelle systems investigated. These systems are categorized into 3 major clusters: fluoro-surfactants represent cluster I, identified as strong hydrogen bond donors and dipolar but weak hydrogen bond acceptors. Cluster II includes sulfonated acrylamide/acrylate copolymers and surfactants with trimethylammonium head groups, characterized by strong hydrophobicity (v) and weak hydrogen bond acidity (b). The last cluster consists of two subclusters: clusters III and IV. Cluster III includes siloxane-based polymeric micelles, exhibiting weak hydrophobicity and medium hydrogen bond acidity and basicity (a), and the cluster IV micellar systems are characterized by their strong hydrophobicity and medium hydrogen bond acidity and basicity but rather weak dipolarity. Cluster III differs from cluster IV by its slightly weaker hydrophobicity and hydrogen bond donating capability. The classification by chemometric methods is in good agreement with the

  9. Modified micellar electrokinetic chromatography in the analysis of catechins and xanthines in chocolate.

    Gotti, Roberto; Fiori, Jessica; Mancini, Francesca; Cavrini, Vanni


    Modified micellar electrokinetic chromatography (MEKC) analysis of monomeric flavanols (catechin and epicatechin) and methylxanthines (caffeine and theobromine) in chocolate and cocoa was performed by using sodium dodecyl sulfate (SDS) as a principal component of the running buffer. Because of the reported poor stability of catechins in alkaline solutions, acidic conditions (pH 2.5) were chosen and consequently the electroosmotic flow (EOF) was significantly suppressed; this resulted in a fast anodic migration of the analytes partitioned into the SDS micelles. Under these conditions, variations of either pH value in acidic range or SDS concentration, showed to be not suitable to modulate the selectivity. To overcome this limit, use of additives to the SDS-based running buffer was successfully applied and three different systems were optimized for the separation of (+)-catechin, (-)-epicatechin, caffeine, and theobromine in chocolate and cocoa powder samples. In particular, two mixed micelle systems were applied; the first consisted of a mixture of SDS and 3-[(3-cholamidopropyl)dimethylammonio]-1-propansulfonate (CHAPS) with a composition of 90 mM and 10 mM, respectively; the second was SDS and taurodeoxycholic acid sodium salt (TDC) with a composition of 70 mM and 30 mM, respectively. A further MEKC approach was developed by addition of 10 mM hydroxypropyl-beta-cyclodextrin (HP-beta-CD) to the SDS solution (90 mM); it provided a useful cyclodextrin(CD)-modified MEKC. By applying the optimized conditions, different separation profiles of the flavanols and methylxanthines were obtained showing interesting potential of these combined systems; their integrated application showed to be useful for the identification of the low level of (+)-catechin in certain real samples. The CD-MEKC approach was validated and applied to the determination of catechins and methylxanthines in aqueous extracts from four different commercial chocolate types (black and milk) and two cocoa

  10. Carrier Bulk-Lifetime Measurements

    M. Solcansky


    Full Text Available For the measurement of the minority carrier bulk-lifetime the characterization method MW-PCD is used, where the result of measurement is the effective carrier lifetime, which is very dependent on the surface recombination velocity and therefore on the quality of a silicon surface passivation. This work deals with an examination of a different solution types for the chemical passivation of a silicon surface. Various solutions are tested on silicon wafers for their consequent comparison. The main purpose is to find optimal solution, which suits the requirements of a time stability and start-up velocity of passivation, reproducibility of the measurements and a possibility of a perfect cleaning of a passivating solution remains from a silicon surface, so that the parameters of a measured silicon wafer will not worsen and there will not be any contamination of the other wafers series in the production after a repetitive return of the measured wafer into the production process. The cleaning process itself is also a subject of a development.

  11. Polymer-fullerene bulk heterojunction solar cells

    Janssen, RAJ; Hummelen, JC; Saricifti, NS


    Nanostructured phase-separated blends, or bulk heterojunctions, of conjugated Polymers and fullerene derivatives form a very attractive approach to large-area, solid-state organic solar cells.The key feature of these cells is that they combine easy, processing from solution on a variety of substrate

  12. Biopartitioning micellar chromatography as a predictive tool for skin and corneal permeability of newly synthesized 17β-carboxamide steroids.

    Dobričić, Vladimir; Nikolic, Katarina; Vladimirov, Sote; Čudina, Olivera


    In this paper, human skin and corneal permeability of twenty-two newly synthesized 17β-carboxamide steroids was predicted using biopartitioning micellar chromatography (BMC). These compounds are potential soft glucocorticoids with local anti-inflammatory activity when applied to the skin or eye. BMC systems are used to simulate physicochemical properties of human skin (BMC-skin) and cornea (BMC-cornea). Micellar mobile phase, consisted of 0.04 M solution of polyoxyethylene (23) lauryl ether (Brij 35), was prepared at different pH values - 5.50 (BMC-skin) and 7.50 (BMC-cornea). Retention factors (k), obtained by use of BMC, were calculated for all newly synthesized 17β-carboxamide steroids as well as for parent glucocorticoids (hydrocortisone, prednisolone, methylprednisolone, dexamethasone and betamethasone). Good correlation was obtained between BMC-skin retention factors and permeability coefficients calculated by use of the artificial membrane that simulates stratum corneum of the human skin. Quantitative structure-retention relationship (QSRR) study was performed in order to explain retention factors of these compounds in the tested BMC systems. ANN-QSRR(k), PLS-QSRR(k) and MLR-QSRR(k) models, created by use of BMC-skin retention data, were compared and optimal model (PLS-QSRR(k)) was selected. Molecular descriptors of the selected model indicate that lipophilicity and number of short C-C fragments of tested compounds have the strongest influence on the retention in the BMC-skin system and presumably on their in vivo permeability through human skin. The same model can be applied to the BMC-cornea system and the same conclusion can be drawn for corneal permeability. This model could be used as a predictive tool for the synthesis of novel 17β-carboxamide steroids with desirable permeability through human skin or cornea, depending on their potential pharmacological application.

  13. Commercial scale demonstration: enhanced oil recovery by micellar-polymer flood. Annual report, October 1980-September 1981

    Howell, J.C.


    This commercial scale test, known as the M-1 Project, is located in Crawford County, Illinois. It encompasses 407 acres of Robinson sand reservoir and covers portions of several waterflood projects that were approaching economic limit. The project includes 248 acres developed on a 2.5-acre five-spot pattern and 159 acres developed on a 5.0-acre five-spot pattern. Development work commenced in late 1974 and has previously been reported. Micellar solution (slug) injection was initiated on February 10, 1977, and is now completed. After 10% of a pore volume of micellar slug was injected, injection of 11% pore volume of Dow 700 Pusher polymer was conducted at a concentration of 1156 ppM. At the end of this reporting period, 625 ppM polymer was being injected into the 2.5-acre pattern and 800 ppM polymer was being injected into the 5.0-acre pattern. The oil cut of the 2.5-acre pattern has decreased from 11.0% in September 1980, to 7.9% in September 1981. The 2.5-acre pattern had been on a plateau since May 1980, and as of May 1981 appears to be on a decline. The oil cut of the 5.0-acre pattern has increased from 5.9% in September 1980, to 10.9% in September 1981. The 5.0-acre pattern experienced a sharp increase in oil cut after 34% of a pore volume of total fluid had been injected and appears to be continuing its incline. This fifth annual report is organized under the following three work breakdown structures: fluid injection; production; and performance monitoring.

  14. Radiation decomposition of alcohols and chloro phenols in micellar systems; Descomposicion por irradiacion de alcoholes y clorofenoles en sistemas micelares

    Moreno A, J


    The effect of surfactants on the radiation decomposition yield of alcohols and chloro phenols has been studied with gamma doses of 2, 3, and 5 KGy. These compounds were used as typical pollutants in waste water, and the effect of the water solubility, chemical structure, and the nature of the surfactant, anionic or cationic, was studied. The results show that anionic surfactant like sodium dodecylsulfate (SDS), improve the radiation decomposition yield of ortho-chloro phenol, while cationic surfactant like cetyl trimethylammonium chloride (CTAC), improve the radiation decomposition yield of butyl alcohol. A similar behavior is expected for those alcohols with water solubility close to the studied ones. Surfactant concentrations below critical micellar concentration (CMC), inhibited radiation decomposition for both types of alcohols. However radiation decomposition yield increased when surfactant concentrations were bigger than the CMC. Aromatic alcohols decomposition was more marked than for linear alcohols decomposition. On a mixture of alcohols and chloro phenols in aqueous solution the radiation decomposition yield decreased with increasing surfactant concentration. Nevertheless, there were competitive reactions between the alcohols, surfactants dimers, hydroxyl radical and other reactive species formed on water radiolysis, producing a catalytic positive effect in the decomposition of alcohols. Chemical structure and the number of carbons were not important factors in the radiation decomposition. When an alcohol like ortho-chloro phenol contained an additional chlorine atom, the decomposition of this compound was almost constant. In conclusion the micellar effect depend on both, the nature of the surfactant (anionic or cationic) and the chemical structure of the alcohols. The results of this study are useful for wastewater treatment plants based on the oxidant effect of the hydroxyl radical, like in advanced oxidation processes, or in combined treatment such as

  15. Selection of reservoirs amenable to micellar flooding. First annual report, October 1978-December 1979

    Goldburg, A.; Price, H.


    The overall project objective is to build a solid engineering base upon which the Department of Energy (DOE) can improve and accelerate the application of micellar-polymer recovery technology to Mid-Continent and California sandstone reservoirs. The purpose of the work carried out under these two contracts is to significantly aid, both DOE and the private sector, in gaining the following Project Objectives: to select the better micellar-polymer prospects in the Mid-Continent and California regions; to assess all of the available field and laboratory data which has a bearing on recovering oil by micellar-polymer projects in order to help identify and resolve both the technical and economic constraints relating thereto; and to design and analyze improved field pilots and tests and to develop a micellar-polymer applications matrix for use by the potential technology users; i.e., owner/operators. The report includes the following: executive summary and project objectives; development of a predictive model for economic evaluation of reservoirs; reservoir data bank for micellar-polymer recovery evaluation; PECON program for preliminary economic evaluation; ordering of candidate reservoirs for additional data acquisition; validation of predictive model by numerical simulation; and work forecast. Tables, figures and references are included.

  16. Chemometric Deconvolution of Continuous Electrokinetic Injection Micellar Electrokinetic Chromatography Data for the Quantitation of Trinitrotoluene in Mixtures of Other Nitroaromatic Compounds


    ABSTRACT Chemometric Deconvolution of Continuous Electrokinetic Injection Micellar Electrokinetic Chromatography Data for the Quantitation of...Unclassified Unlimited Unclassified Unlimited 13 Braden C. Giordano (202) 404-6320 Micellar electrokinetic chromatography Nitroaromatic explosives...Capillary electrophoresis DNT – Dinitrotoluene EOF – Electroosmotic flow MEKC – Micellar electrokinetic chromatography PLS – Partial least squares regression TNT – Trinitrotoluene 11

  17. Glass and percolation transitions in dense attractive micellar system

    Mallamace, F.; Beneduci, R.; Gambadauro, P.; Lombardo, D.; Chen, S. H.


    In this work, we study a copolymer-micellar system characterized by clustering processes due to a short-range attractive interaction. This originates a percolation process and a new type of kinetic glass transition. We have studied these intriguing dynamical situations by means of an extensive set of light scattering and viscoelasticity experiments. Obtained data, in both the phenomena, are accounted for by considering in a proper way fractal clustering processes and the related scaling concepts. Near the percolation line the main role in the system structure and dynamics is played by the cluster's partial screening of hydrodynamic interaction, that behaves, on approaching the percolation threshold, dramatic effects on the rheological properties and on the density decay relaxations. The ergodic-nonergodic transition line (glass transition) is studied in terms of the intermediate scattering functions (ISF) in the frame of the mode coupling theory. The measured ISF gives evidence of a logarithmic decay on the density fluctuation followed by a power law behavior. This latter phenomenon is the signature of a high-order glass transition of the A3 type (cusp-like singularity).

  18. Micellar electrokinetic chromatography of organic and peroxide-based explosives.

    Johns, Cameron; Hutchinson, Joseph P; Guijt, Rosanne M; Hilder, Emily F; Haddad, Paul R; Macka, Mirek; Nesterenko, Pavel N; Gaudry, Adam J; Dicinoski, Greg W; Breadmore, Michael C


    CE methods have been developed for the analysis of organic and peroxide-based explosives. These methods have been developed for deployment on portable, in-field instrumentation for rapid screening. Both classes of compounds are neutral and were separated using micellar electrokinetic chromatography (MEKC). The effects of sample composition, separation temperature, and background electrolyte composition were investigated. The optimised separation conditions (25 mM sodium tetraborate, 75 mM sodium dodecyl sulfate at 25°C, detection at 200 nm) were applied to the separation of 25 organic explosives in 17 min, with very high efficiency (typically greater than 300,000 plates m(-1)) and high sensitivity (LOD typically less than 0.5 mg L(-1); around 1-1.5 μM). A MEKC method was also developed for peroxide-based explosives (10 mM sodium tetraborate, 100 mM sodium dodecyl sulfate at 25°C, detection at 200 nm). UV detection provided LODs between 5.5 and 45.0 mg L(-1) (or 31.2-304 μM), which is comparable to results achieved using liquid chromatography. Importantly, no sample pre-treatment or post-column reaction was necessary and the peroxide-based explosives were not decomposed to hydrogen peroxide. Both MEKC methods have been applied to pre-blast analysis and for the detection of post-blast residues recovered from controlled, small scale detonations of organic and peroxide-based explosive devices.

  19. Simultaneous micellar LC determination of lidocaine and tolperisone.

    Youngvises, Napaporn; Liawruangrath, Boonsom; Liawruangrath, Saisunee


    A micellar liquid chromatography (MLC) procedure was developed for the simultaneous separation and determination of lidocaine hydrochloride (LD HCl) and tolperisone hydrochloride (TP HCl) using a short-column C18 (12.5 mm x 4.6 mm, 5 microm), sodium dodecyl sulfate (SDS) with a small amount of isopropanol, and diode array detector. The optimum conditions for the simultaneous determination of both drugs were 0.075 mol l(-1) SDS-7.5% (v/v) isopropanol with a flow rate of 0.7 ml min(-1) and detection at 210 nm. The LOD (2S/N) of LD HCl was 0.73 ng 20 microl(-1), whereas that of TP HCl was 1.43 ng 20 microl(-1). The calibration curves for LD HCl and TP HCl were linear over the ranges 0.125-500 microg ml(-1) (r(2)=0.9999) and 1.00-500 microg ml(-1) (r(2)=0.9997), respectively. The %recoveries of both drugs were in the range 98-103% and the %RSD values were less than 2. The proposed method has been successfully applied to the simultaneous determination of TP HCl and LD HCl in various pharmaceutical preparations.

  20. PH-triggered micellar membrane for controlled release microchips

    Yang, Xiaoqiang


    A pH-responsive membrane based on polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP) block copolymer was developed on a model glass microchip as a promising controlled polymer delivery system. The PS-b-P4VP copolymer assembles into spherical and/or worm-like micelles with styrene block cores and pyridine coronas in selective solvents. The self-assembled worm-like morphology exhibited pH-responsive behaviour due to the protonation of the P4VP block at low pH and it\\'s deprotonation at high pH and thus constituting a switchable "off/on" system. Doxorubicin (Dox) was used as cargo to test the PS-b-P4VP membrane. Luminescence experiments indicated that the membrane was able to store Dox molecules within its micellar structure at neutral pH and then release them as soon as the pH was raised to 8.0. The performance of the cast membrane was predictable and most importantly reproducible. The physiochemical and biological properties were also investigated carefully in terms of morphology, cell viability and cell uptake. This journal is © The Royal Society of Chemistry.

  1. Adsorption of the anionic surfactant sodium dodecyl sulfate on a C18 column under micellar and high submicellar conditions in reversed-phase liquid chromatography.

    Ortiz-Bolsico, C; Ruiz-Angel, M J; García-Alvarez-Coque, M C


    Micellar liquid chromatography makes use of aqueous solutions or aqueous-organic solutions containing a surfactant, at a concentration above its critical micelle concentration. In the mobile phase, the surfactant monomers aggregate to form micelles, whereas on the surface of the nonpolar alkyl-bonded stationary phases they are significantly adsorbed. If the mobile phase contains a high concentration of organic solvent, micelles break down, and the amount of surfactant adsorbed on the stationary phase is reduced, giving rise to another chromatographic mode named high submicellar liquid chromatography. The presence of a thinner coating of surfactant enhances the selectivity and peak shape, especially for basic compounds. However, the risk of full desorption of surfactant is the main limitation in the high submicellar mode. This study examines the adsorption of the anionic surfactant sodium dodecyl sulfate under micellar and high submicellar conditions on a C18 column, applying two methods. One of them uses a refractive index detector to obtain direct measurements of the adsorbed amount of sodium dodecyl sulfate, whereas the second method is based on the retention and peak shape for a set of cationic basic compounds that indirectly reveal the presence of adsorbed monomers of surfactant on the stationary phase.

  2. A dispersive liquid-liquid micellar microextraction for the determination of pharmaceutical compounds in wastewaters using ultra-high-performace liquid chromatography with DAD detection.

    Montesdeoca-Esponda, Sarah; Mahugo-Santana, Cristina; Sosa-Ferrera, Zoraida; Santana-Rodríguez, José Juan


    A dispersive liquid-liquid micellar microextraction (DLLMME) method coupled with ultra-high-performance liquid chromatography (UHPLC) using Diode Array Detector (DAD) detector was developed for the analysis of five pharmaceutical compounds of different nature in wastewaters. A micellar solution of a surfactant, polidocanol, as extraction solvent (100 μL) and chloroform as dispersive solvent (200 μL) were used to extract and preconcentrate the target analytes. Samples were heated above critical temperature and the cloudy solution was centrifuged. After removing the chloroform, the reduced volume of surfactant was then injected in the UHPLC system. In order to obtain high extraction efficiency, the parameters affecting the liquid-phase microextraction, such as time and temperature extraction, ionic strength and surfactant and organic solvent volume, were optimized using an experimental design. Under the optimized conditions, this procedure allows enrichment factors of up to 47-fold. The detection limit of the method ranged from 0.1 to 2.0 µg/L for the different pharmaceuticals. Relative standard deviations were <26% for all compounds. The procedure was applied to samples from final effluent collected from wastewater treatment plants in Las Palmas de Gran Canaria (Spain), and two compounds were measured at 67 and 113 µg/L in one of them.

  3. Bulk chemicals from biomass

    Haveren, van J.; Scott, E.L.; Sanders, J.P.M.


    Given the current robust forces driving sustainable production, and available biomass conversion technologies, biomass-based routes are expected to make a significant impact on the production of bulk chemicals within 10 years, and a huge impact within 20-30 years. In the Port of Rotterdam there is a

  4. Auctioning Bulk Mobile Messages

    S. Meij (Simon); L-F. Pau (Louis-François); H.W.G.M. van Heck (Eric)


    textabstractThe search for enablers of continued growth of SMS traffic, as well as the take-off of the more diversified MMS message contents, open up for enterprises the potential of bulk use of mobile messaging , instead of essentially one-by-one use. In parallel, such enterprises or value added

  5. Bulk chemicals from biomass

    Haveren, van J.; Scott, E.L.; Sanders, J.P.M.


    Given the current robust forces driving sustainable production, and available biomass conversion technologies, biomass-based routes are expected to make a significant impact on the production of bulk chemicals within 10 years, and a huge impact within 20-30 years. In the Port of Rotterdam there is a

  6. Demonstrating Chemical and Analytical Concepts in the Undergraduate Laboratory Using Capillary Electrophoresis and Micellar Electrokinetic Chromatography

    Palmer, Christopher P.


    This paper describes instrumental analysis laboratory exercises that utilize capillary electrophoresis and micellar electrokinetic chromatography to demonstrate several analytical and chemical principles. Alkyl parabens (4-hydroxy alkyl benzoates), which are common ingredients in cosmetic formulations, are separated by capillary electrophoresis. The electrophoretic mobilities of the parabens can be explained on the basis of their relative size. 3-Hydroxy ethylbenzoate is also separated to demonstrate the effect of substituent position on the acid dissociation constant and the effect this has on electrophoretic mobility. Homologous series of alkyl benzoates and alkyl phthalates (common plasticizers) are separated by micellar electrokinetic chromatography at four surfactant concentrations. This exercise demonstrates the separation mechanism of micellar electrokinetic chromatography, the concept of chromatographic phase ratio, and the concepts of micelle formation. A photodiode array detector is used in both exercises to demonstrate the advantages and limitations of the detector and to demonstrate the effect of pH and substituent position on the spectra of the analytes.

  7. Wheat alkylresorcinols reduce micellar solubility of cholesterol in vitro and increase cholesterol excretion in mice.

    Horikawa, Kazumasa; Hashimoto, Chiaki; Kikuchi, Yosuke; Makita, Miki; Fukudome, Shin-Ichi; Okita, Kimiko; Wada, Naoyuki; Oishi, Katsutaka


    Epidemiological studies have shown that the consumption of whole grains can reduce risk for metabolic disorders. We recently showed that chronic supplementation with wheat alkylresorcinols (ARs) prevents glucose intolerance and insulin resistance with hepatic lipid accumulation induced in mice by a high-fat high-sucrose diet (HFHSD). This study examines the effects of ARs on the micellar solubility of cholesterol in vitro, as well as the effects of transient AR supplementation on faecal lipid excretion and plasma lipid levels in mice. We found that ARs formed bile micelles with taurocholate independently of phospholipids, and dose-dependently decreased the micellar solubility of cholesterol in a biliary micelle model. Transient AR supplementation with HFHSD increased faecal cholesterol and triglyceride contents and decreased plasma cholesterol concentrations. These suggest that one underlying mechanism through which ARs suppress diet-induced obesity is by interfering with the micellar cholesterol solubilisation in the digestive tract, which subsequently decreases cholesterol absorption.

  8. Effective solubilization of chalcones in micellar phase: Conductivity and voltammetric study

    Ahmed, Safeer; Khan, Gul Tiaz; Shah, Syed Sakhawat


    The solubilization of four chalcones, between aqueous and micellar phases of ionic surfactants (SDS and CTAB), was investigated by conductivity and cyclic voltammetry (CV) techniques. From conductivity data, a decrease in the critical micellar concentration (CMC) of the surfactants, in presence of the chalcones was ascribed to the decreased charge density over the surfactants. The results were seconded by thermodynamic parameters including degree of ionization (α), counter ion binding (β), and standard Gibbs free energy of micellization (Δ G {m/○}). The added surfactant decreased the peak current of the oxidized chalcone and shifted the peak potential either positively (in presence of SDS) or negatively (in presence of CTAB). The effect is rationalized as chalcone-surfactant interaction and quantitated as binding constant ( K b) assorting values from 8.78 to 552.97 M-1. The preferred solubilization of the chalcones in the micellar phase has been inferred.

  9. Micellar lipid composition affects micelle interaction with class B scavenger receptor extracellular loops.

    Goncalves, Aurélie; Gontero, Brigitte; Nowicki, Marion; Margier, Marielle; Masset, Gabriel; Amiot, Marie-Josèphe; Reboul, Emmanuelle


    Scavenger receptors (SRs) like cluster determinant 36 (CD36) and SR class B type I (SR-BI) play a debated role in lipid transport across the intestinal brush border membrane. We used surface plasmon resonance to analyze real-time interactions between the extracellular protein loops and various ligands ranging from single lipid molecules to mixed micelles. Micelles mimicking physiological structures were necessary for optimal binding to both the extracellular loop of CD36 (lCD36) and the extracellular loop of SR-BI (lSR-BI). Cholesterol, phospholipid, and fatty acid micellar content significantly modulated micelle binding to and dissociation from the transporters. In particular, high phospholipid micellar concentrations inhibited micelle binding to both receptors (-53.8 and -74.4% binding at 0.32 mM compared with 0.04 mM for lCD36 and lSR-BI, respectively, P < 0.05). The presence of fatty acids was crucial for micelle interactions with both proteins (94.4 and 81.3% binding with oleic acid for lCD36 and lSR-BI, respectively, P < 0.05) and fatty acid type substitution within the micelles was the component that most impacted micelle binding to the transporters. These effects were partly due to subsequent modifications in micellar size and surface electric charge, and could be correlated to micellar vitamin D uptake by Caco-2 cells. Our findings show for the first time that micellar lipid composition and micellar properties are key factors governing micelle interactions with SRs.

  10. Use of ligand-modified micellar-enhanced ultrafiltration to selectively separate copper ions from wastewater streams

    Shadizadeh, S.B.


    The selective removal of target ions from an aqueous solution containing ions of like charge by ligand-modified micellar-enhanced ultrafiltration (LM-MEUF), is presented. In LM-MEUF, surfactant and specially tailored ligand are added to the contaminated stream. The surfactant forms aggregates called micelles, the hydrocarbon core of which the ligand complexed with the target species will solubilize. The surfactant is chosen to have the same charge type as the target ion; therefore, other ions (with similar charge) will not associate with the micelle, which makes the separation of the target ion selective. The solution is then processed by ultrafiltration, using a membrane with pore size small enough to block the passage of the micelles. In this study the divalent copper is the target ion in the solution containing divalent calcium. The surfactant is cetylpyridinium chloride (CPC) and the ligand is 4-hexadecyloxybenzyliminodiacetic acid (C{sub 16}BIDA). Experiments were conducted with batch stirred cells and the results have been compared to separation that take place under a variety of conditions in the LM-MEUF process. Rejections of copper of up to 99.8% are observed, with almost no rejection of calcium, showing that LM-MEUF has excellent selectivity and separation efficiency.

  11. Stability-indicating micellar electrokinetic chromatography method for the analysis of sumatriptan succinate in pharmaceutical formulations.

    Al Azzam, Khaldun M; Saad, Bahruddin; Tat, Chai Yuan; Mat, Ishak; Aboul-Enein, Hassan Y


    A micellar electrokinetic chromatography method for the determination of sumatriptan succinate in pharmaceutical formulations was developed. The effects of several factors such as pH, surfactant and buffer concentration, applied voltage, capillary temperature, and injection time were investigated. Separation took about 5 min using phenobarbital as internal standard. The separation was carried out in reversed polarity mode at 20 °C, 26 kV and using hydrodynamic injection for 10s. Separation was achieved using a bare fused-silica capillary 50 μm×40 cm and background electrolyte of 25 mM sodium dihydrogen phosphate-adjusted with concentrated phosphoric acid to pH 2.2, containing 125 mM sodium dodecyl sulfate and detection was at 226 nm. The method was validated with respect to linearity, limits of detection and quantification, accuracy, precision and selectivity. The calibration curve was linear over the range of 100-2000 μg mL(-1). The relative standard deviations of intra-day and inter-day precision for migration time, peak area, corrected peak area, ratio of corrected peak area and ratio of peak area were less than 0.68, 3.48, 3.28, 2.97 and 2.83% and 2.01, 5.50, 4.46, 4.92 and 4.07%, respectively. The proposed method was successfully applied to the determinations of the analyte in tablet. Forced degradation studies were conducted by introducing a sample of sumatriptan succinate standard solution to different forced degradation conditions using neutral (water), basic (0.1 M NaOH), acidic (0.1 M HCl), oxidative (10% H(2)O(2)) and photolytic (exposure to UV light at 254 nm for 2 h). It is concluded that the stability-indicating method for sumatriptan succinate can be used for the analysis of the drug in various samples.

  12. El Dorado Micellar-Polymer demonstration project. First annual report, January 1974-June 1975

    Coffman, C.L.; Rosenwald, G.W. (ed.); Miller, R.J. (ed.)


    Progress made in the implementation of a project designed to determine the economic feasibility of improved oil recovery using micellar-polymer processes and to determine the associated benefits and problems of each system tested is reported. The project allows a side-by-side comparison of two distinct micellar-polymer processes in the same abandoned field so that the reservoir conditions for the two floods are as nearly alike as possible. Results are reported for test wells drilled to obtain reservoir data, field injectivity and interference tests, and performance predictions. Engineering operations are summarized. (JSR)

  13. Radiative Bulk Viscosity

    Chen, X


    Viscous resistance to changes in the volume of a gas arises when different degrees of freedom have different relaxation times. Collisions tend to oppose the resulting departures from equilibrium and, in so doing, generate entropy. Even for a classical gas of hard spheres, when the mean free paths or mean flight times of constituent particles are long, we find a nonvanishing bulk viscosity. Here we apply a method recently used to uncover this result for a classical rarefied gas to radiative transfer theory and derive an expression for the radiative stress tensor for a gray medium with absorption and Thomson scattering. We determine the transport coefficients through the calculation of the comoving entropy generation. When scattering dominates absorption, the bulk viscosity becomes much larger than either the shear viscosity or the thermal conductivity.

  14. Micellar HPLC Method for Simultaneous Determination of Ethamsylate and Mefenamic Acid in Presence of Their Main Impurities and Degradation Products.

    Ibrahim, Fawzia; Sharaf El-Din, Mohie K; El-Deen, Asmaa Kamal; Shimizu, Kuniyoshi


    An eco-friendly sensitive, rapid and less hazardous micellar liquid chromatographic method was developed and validated for the simultaneous analysis of ethamsylate (ETM) and mefenamic acid (MFA) in the presence of hydroquinone (HQ) and 2,3-dimethylaniline (DMA) the main impurities of ETM and MFA, respectively. Good chromatographic separation was attained using Eclipse XDB-C8 column (150 mm × 4.6 mm, 5 μm particle size) adopting UV detection at 300 nm with micellar mobile phase consisting of 0.12 M sodium dodecyl sulfate, 0.3% triethylamine and 15% 2-propanol in 0.02 M orthophosphoric acid (pH 7.0) at 1.0 mL/min. The analytes were well resolved in <6.0 min, ETM (tR = 1.55 min), HQ (tR = 1.95 min), MFA (tR = 4.55 min) and DMA (tR = 5.80 min). Different validation parameters were examined as recommended by international conference on harmonization (ICH) guidelines. The method was linear over the concentration ranges of 0.5-18.0, 0.5-20.0, 0.01-0.5 and 0.02-0.2 µg/mL with limits of detection of 0.118, 0.159, 0.005 and 0.005 µg/mL and limits of quantification of 0.358, 0.482, 0.014 and 0.015 µg/mL for ETM, MFA, HQ and DMA, respectively. The suggested method was successfully applied for the determination of the two drugs in their bulk powder, laboratory-prepared mixtures, single-ingredient and co-formulated tablets. The obtained results were in accordance with those of the comparison method. The method can also detect trace amounts of HQ and DMA as the main impurities of ETM and MFA, respectively, within the BP limit (0.1%) for both impurities. Furthermore, it is a stability-indicating one for the determination of ETM in its pure form, single-component tablet and co-formulated tablets with other drugs. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email:

  15. Control of the structure and properties of water-soluble associating polymers synthesized by micellar copolymerization; Controle de la structure et des proprietes de polymeres hydrosolubles associatifs synthetises par copolymerisation micellaire

    Caputo, M.R.; Selb, J. [Institut Charles Sadron, CNRS, 67 - Strasbourg (France)


    In the so-called micellar copolymerization process, hydrophilic and hydrophobic monomers are radically co-polymerized in aqueous solution in the presence of surfactant micelles. This process leads to water-soluble polymers in which hydrophobic units are distributed as short blocks whose length can be easily varied. Such copolymers exhibit associative thickening properties. The kinetics of the hydrophobia incorporation within the hydrophilic polyacrylamide backbone has been compared for various anionic and cationic surfactants. A fluorescence technique based on excimer formation between fluorescent hydrophobic groups has been used to characterize the copolymer structure and the chain conformation in solution. (author)

  16. Bulk viscous cosmology in early Universe

    C P Singh


    The effect of bulk viscosity on the early evolution of Universe for a spatially homogeneous and isotropic Robertson-Walker model is considered. Einstein's field equations are solved by using `gamma-law' equation of state = ( - 1)ρ, where the adiabatic parameter gamma () depends on the scale factor of the model. The `gamma' function is defined in such a way that it describes a unified solution of early evolution of the Universe for inflationary and radiation-dominated phases. The fluid has only bulk viscous term and the coefficient of bulk viscosity is taken to be proportional to some power function of the energy density. The complete general solutions have been given through three cases. For flat space, power-law as well as exponential solutions are found. The problem of how the introduction of viscosity affects the appearance of singularity, is briefly discussed in particular solutions. The deceleration parameter has a freedom to vary with the scale factor of the model, which describes the accelerating expansion of the Universe.

  17. Extension of the analytical kinetics of micellar relaxation: Improving a relation between the Becker-Döring difference equations and their Fokker-Planck approximation

    Babintsev, I. A.; Adzhemyan, L. Ts.; Shchekin, A. K.


    Relaxation of micellar systems can be described with the help of the Becker-Döring kinetic difference equations for aggregate concentrations. Passing in these equations to continual description, when the aggregation number is considered as continuous variable and the concentration difference is replaced by the concentration differential, allows one to find analytically the eigenvalues (to whom the inverse times of micellar relaxation are related) and eigenfunctions (or the modes of fast relaxation) of the linearized differential operator of the kinetic equation corresponding to the Fokker-Planck approximation. At this the spectrum of eigenvalues appears to be degenerated at some surfactant concentrations. However, as has been recently found by us, there is no such a degeneracy at numerical determination of the eigenvalues of the matrix of coefficients for the linearized difference Becker-Döring equations. It is shown in this work in the frameworks of the perturbation theory, that taking into account the corrections to the kinetic equation produced by second derivatives at transition from differences to differentials and by deviation of the aggregation work from a parabolic form in the vicinity of the work minimum, lifts the degeneracy of eigenvalues and improves markedly the agreement of concentration-dependent fast relaxation time with the results of the numerical solution of the linearized Becker-Döring difference equations.

  18. Determination of selected synthetic cannabinoids and their metabolites by micellar electrokinetic chromatography--mass spectrometry employing perfluoroheptanoic acid-based micellar phase.

    Švidrnoch, Martin; Přibylka, Adam; Maier, Vítězslav


    Perfluoroheptanoic acid was employed as a volatile micellar phase in background electrolyte for micellar electrokinetic chromatography-tandem mass spectrometry separation and determination of 15 selected naphthoyl- and phenylacetylindole- synthetic cannabinoids and main metabolites derived from JWH-018, JWH-019, JWH-073, JWH-200 and JWH-250. The influence of concentration of perfluoroheptanoic acid in background electrolytes on the separation was studied as well as the influence of perfluoroheptanoic acid on mass spectrometry detection. The background electrolyte consisted of 75 mM perfluoroheptanoic acid, 150 mM ammonium hydroxide pH 9.2 with 10% (v/v) propane-2-ol allowed micellar electrokinetic chromatography separation together with mass spectrometry identification of the studied parent synthetic cannabinoids and their metabolites. The limits of detection of studied synthetic cannabinoids and metabolites were in the range from 0.9 ng/mL for JWH-073 to 3.0 ng/mL for JWH-200 employing liquid-liquid extraction. The developed method was applied on the separation and identification of studied analytes after liquid-liquid extraction of spiked urine and serum samples to demonstrate the potential of the method applicability for forensic and toxicological purposes.

  19. Comparative study of multi walled carbon nanotubes-based electrodes in micellar media and their application to micellar electrokinetic capillary chromatography.

    Chicharro, Manuel; Arribas, Alberto Sánchez; Moreno, Mónica; Bermejo, Esperanza; Zapardiel, Antonio


    This work reports on a comparative study of the electrochemical performance of carbon nanotubes-based electrodes in micellar media and their application for amperometric detection in micellar electrokinetic capillary chromatography (MEKC) separations. These electrodes were prepared in two different ways: immobilization of a layer of carbon nanotubes dispersed in polyethylenimine (PEI), ethanol or Nafion onto glassy carbon electrodes or preparation of paste electrodes using mineral oil as binder. Scanning electron microscopy (SEM) was employed for surface morphology characterization while cyclic voltammetry of background electrolyte was used for capacitance estimation. The amperometric responses to hydrogen peroxide, amitrol, diuron and 2,3-dichlorophenol (2,3CP) in the presence and in the absence of sodium dodecylsulphate (SDS) were studied by flow injection analysis (FIA), demonstrating that the electrocatalytic activity, background current and electroanalytical performance were strongly dependent on the electrodes preparation procedure. Glassy carbon electrodes modified with carbon nanotubes dispersed in PEI (GC/(CNT/PEI)) displayed the most adequate performance in micellar media, maintaining good electrocatalytic properties combined with acceptable background currents and resistance to passivation. The advantages of using GC/(CNT/PEI) as detectors in capillary electrophoresis were illustrated for the MEKC separations of phenolic pollutants (phenol, 3-chlorophenol, 2,3-dichlorophenol and 4-nitrophenol) and herbicides (amitrol, asulam, diuron, fenuron, monuron and chlortoluron).

  20. The Mobile Phase Motion in Ascending Micellar Thin-Layer Chromatography with Normal-Phase Plates

    Boichenko, Alexander P.; Makhno, Iryna V.; Renkevich, Anton Yu.; Loginova, Lidia P.


    The physical chemical characteristics (surface tension and viscosity) of micellar mobile phases based on the cationic surfactant cetylpiridinium chloride and additives of alcohols (ethanol, 1-propanol, 1-butanol, 1-pentanol) have been obtained in this work. The effect of mobile phase properties on t

  1. Accelerating Strain-Promoted Azide-Alkyne Cycloaddition Using Micellar Catalysis.

    Anderton, Grant I; Bangerter, Alyssa S; Davis, Tyson C; Feng, Zhiyuan; Furtak, Aric J; Larsen, Jared O; Scroggin, Triniti L; Heemstra, Jennifer M


    Bioorthogonal conjugation reactions such as strain-promoted azide-alkyne cycloaddition (SPAAC) have become increasingly popular in recent years, as they enable site-specific labeling of complex biomolecules. However, despite a number of improvements to cyclooctyne design, reaction rates for SPAAC remain significantly lower than those of the related copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. Here we explore micellar catalysis as a means to increase reaction rate between a cyclooctyne and hydrophobic azide. We find that anionic and cationic surfactants provide the most efficient catalysis, with rate enhancements of up to 179-fold for reaction of benzyl azide with DIBAC cyclooctyne. Additionally, we find that the presence of surfactant can provide up to 51-fold selectivity for reaction with a hydrophobic over hydrophilic azide. A more modest, but still substantial, 11-fold rate enhancement is observed for micellar catalysis of the reaction between benzyl azide and a DIBAC-functionalized DNA sequence, demonstrating that micellar catalysis can be successfully applied to hydrophilic biomolecules. Together, these results demonstrate that micellar catalysis can provide higher conjugation yields in reduced time when using hydrophobic SPAAC reagents.

  2. The Mobile Phase Motion in Ascending Micellar Thin-Layer Chromatography with Normal-Phase Plates

    Boichenko, Alexander P.; Makhno, Iryna V.; Renkevich, Anton Yu.; Loginova, Lidia P.


    The physical chemical characteristics (surface tension and viscosity) of micellar mobile phases based on the cationic surfactant cetylpiridinium chloride and additives of alcohols (ethanol, 1-propanol, 1-butanol, 1-pentanol) have been obtained in this work. The effect of mobile phase properties on

  3. Deracemization of bilirubin as the marker of the chirality of micellar aggregates.

    Sorrenti, Alessandro; Altieri, Barbara; Ceccacci, Francesca; Di Profio, Pietro; Germani, Raimondo; Giansanti, Luisa; Savelli, Gianfranco; Mancini, Giovanna


    The deracemization of bilirubin in micellar aggregates of structurally correlated chiral surfactants was studied by circular dichroism experiments and exploited as the marker of the expression of chirality of the aggregates. The obtained results suggest that the hydrophobic interactions control the transfer of chirality from the monomers to the aggregates, and that different regions of the same aggregate might feature opposite enantiorecognition capabilities.

  4. A kinetic study of 1,3-dipolar cycloadditions in micellar media

    Rispens, T; Engberts, JBFN


    The kinetics of the 1,3-dipolar cycloadditions (DC) of benzonitrile oxide with a series of N-substituted maleimides in micellar media have been investigated. Surfactants studied include anionic sodium dodecyl sulfate, cationic cetyltrimethylammonium bromide, and a series of nonionic alkyl poly(ethyl

  5. The Nature of the Micellar Stern Region As Studied by Reaction Kinetics. 2

    Buurma, Niklaas J.; Serena, Paola; Blandamer, Michael J.; Engberts, Jan B.F.N.


    The nature of rate-retarding effects of cationic micelles on the water-catalyzed hydrolyses of a series of para-substituted 1-benzoyl-1,2,4-triazoles (1a-f) and 1-benzoyl-3-phenyl-1,2,4-triazole (2) has been studied using kinetic methods. A comparison is drawn between medium effects in the micellar

  6. The Mobile Phase Motion in Ascending Micellar Thin-Layer Chromatography with Normal-Phase Plates

    Boichenko, Alexander P.; Makhno, Iryna V.; Renkevich, Anton Yu.; Loginova, Lidia P.


    The physical chemical characteristics (surface tension and viscosity) of micellar mobile phases based on the cationic surfactant cetylpiridinium chloride and additives of alcohols (ethanol, 1-propanol, 1-butanol, 1-pentanol) have been obtained in this work. The effect of mobile phase properties on t

  7. El Dorado Micellar-Polymer Demonstration Project third annual report, June 1976--August 1977

    Rosenwald, G.W.; Miller, R.J.; Vairogs, J. (eds.)


    The primary objectives of this project are to determine the economic feasibility of improved oil recovery using two micellar-polymer processes and to determine the associated benefits and problems of each process. The El Dorado Demonstration Project is designed to allow a side-by-side comparison of two distinct micellar-polymer processes in the same field so that the reservoir conditions for the two floods are as nearly alike as possible. Selection of sulfonates and polymers for both patterns was completed. Salinity changes in produced fluids and in observation well samples have shown that breakthrough of preflush (or preflood) has occurred at some wells in both patterns. Observation well sampling and logging data showed that preflush arrived earlier at the observation wells in the north pattern than the south pattern. Injectivities of the micellar system designed for the south pattern and components of that system were tested in three monitoring wells. Similarly, extensive injectivity testing of the surfactant and polymer slugs designed for the north pattern was conducted using two monitoring wells. Recommended preflush volumes for the south pattern were revised to reflect corrections in reservoir data (primarily due to the lack of the upper zone at well MP-213). Reservoir pressure forecasts of the superposition-of-line-sources simulator were compared with observed monitoring well pressures. Injection of the chemical preflush for the south pattern began on June 20, 1976. The micellar fluid injection began in the south pattern on March 22, 1977. (LK)

  8. Formation of DNA Adducts by Ellipticine and Its Micellar Form in Rats — A Comparative Study

    Marie Stiborova


    Full Text Available The requirements for early diagnostics as well as effective treatment of cancer diseases have increased the pressure on development of efficient methods for targeted drug delivery as well as imaging of the treatment success. One of the most recent approaches covering the drug delivery aspects is benefitting from the unique properties of nanomaterials. Ellipticine and its derivatives are efficient anticancer compounds that function through multiple mechanisms. Formation of covalent DNA adducts after ellipticine enzymatic activation is one of the most important mechanisms of its pharmacological action. In this study, we investigated whether ellipticine might be released from its micellar (encapsulated form to generate covalent adducts analogous to those formed by free ellipticine. The 32P-postlabeling technique was used as a useful imaging method to detect and quantify covalent ellipticine-derived DNA adducts. We compared the efficiencies of free ellipticine and its micellar form (the poly(ethylene oxide-block-poly(allyl glycidyl ether (PAGE-PEO block copolymer, P 119 nanoparticles to form ellipticine-DNA adducts in rats in vivo. Here, we demonstrate for the first time that treatment of rats with ellipticine in micelles resulted in formation of ellipticine-derived DNA adducts in vivo and suggest that a gradual release of ellipticine from its micellar form might produce the enhanced permeation and retention effect of this ellipticine-micellar delivery system.

  9. First example of a lipophilic porphyrin-cardanol hybrid embedded in a cardanol-based micellar nanodispersion.

    Bloise, Ermelinda; Carbone, Luigi; Colafemmina, Giuseppe; D'Accolti, Lucia; Mazzetto, Selma Elaine; Vasapollo, Giuseppe; Mele, Giuseppe


    Cardanol is a natural and renewable organic raw material obtained as the major chemical component by vacuum distillation of cashew nut shell liquid. In this work a new sustainable procedure for producing cardanol-based micellar nanodispersions having an embedded lipophilic porphyrin itself peripherally functionalized with cardanol substituents (porphyrin-cardanol hybrid) has been described for the first time. In particular, cardanol acts as the solvent of the cardanol hybrid porphyrin and cholesterol as well as being the main component of the nanodispersions. In this way a "green" micellar nanodispersion, in which a high percentage of the micellar system is derived from renewable "functional" molecules, has been produced.

  10. Depleted bulk heterojunction colloidal quantum dot photovoltaics

    Barkhouse, D.A.R. [Department of Electrical and Computer Engineering, University of Toronto, 10 King' s College Road, Toronto, Ontario M5S 3G4 (Canada); IBM Thomas J. Watson Research Center, Kitchawan Road, Yorktown Heights, NY, 10598 (United States); Debnath, Ratan; Kramer, Illan J.; Zhitomirsky, David; Levina, Larissa; Sargent, Edward H. [Department of Electrical and Computer Engineering, University of Toronto, 10 King' s College Road, Toronto, Ontario M5S 3G4 (Canada); Pattantyus-Abraham, Andras G. [Department of Electrical and Computer Engineering, University of Toronto, 10 King' s College Road, Toronto, Ontario M5S 3G4 (Canada); Quantum Solar Power Corporation, 1055 W. Hastings, Ste. 300, Vancouver, BC, V6E 2E9 (Canada); Etgar, Lioz; Graetzel, Michael [Laboratory for Photonics and Interfaces, Institute of Chemical Sciences and Engineering, School of Basic Sciences, Swiss Federal Institute of Technology, CH-1015 Lausanne (Switzerland)


    The first solution-processed depleted bulk heterojunction colloidal quantum dot solar cells are presented. The architecture allows for high absorption with full depletion, thereby breaking the photon absorption/carrier extraction compromise inherent in planar devices. A record power conversion of 5.5% under simulated AM 1.5 illumination conditions is reported. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Depleted Bulk Heterojunction Colloidal Quantum Dot Photovoltaics

    Barkhouse, D. Aaron R.


    The first solution-processed depleted bulk heterojunction colloidal quantum dot solar cells are presented. The architecture allows for high absorption with full depletion, thereby breaking the photon absorption/carrier extraction compromise inherent in planar devices. A record power conversion of 5.5% under simulated AM 1.5 illumination conditions is reported. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Bulk-Fill Resin Composites

    Benetti, Ana Raquel; Havndrup-Pedersen, Cæcilie; Honoré, Daniel;


    the restorative procedure. The aim of this study, therefore, was to compare the depth of cure, polymerization contraction, and gap formation in bulk-fill resin composites with those of a conventional resin composite. To achieve this, the depth of cure was assessed in accordance with the International Organization...... for Standardization 4049 standard, and the polymerization contraction was determined using the bonded-disc method. The gap formation was measured at the dentin margin of Class II cavities. Five bulk-fill resin composites were investigated: two high-viscosity (Tetric EvoCeram Bulk Fill, SonicFill) and three low......-viscosity (x-tra base, Venus Bulk Fill, SDR) materials. Compared with the conventional resin composite, the high-viscosity bulk-fill materials exhibited only a small increase (but significant for Tetric EvoCeram Bulk Fill) in depth of cure and polymerization contraction, whereas the low-viscosity bulk...

  13. Explosive bulk charge

    Miller, Jacob Lee


    An explosive bulk charge, including: a first contact surface configured to be selectively disposed substantially adjacent to a structure or material; a second end surface configured to selectively receive a detonator; and a curvilinear side surface joining the first contact surface and the second end surface. The first contact surface, the second end surface, and the curvilinear side surface form a bi-truncated hemispherical structure. The first contact surface, the second end surface, and the curvilinear side surface are formed from an explosive material. Optionally, the first contact surface and the second end surface each have a substantially circular shape. Optionally, the first contact surface and the second end surface consist of planar structures that are aligned substantially parallel or slightly tilted with respect to one another. The curvilinear side surface has one of a smooth curved geometry, an elliptical geometry, and a parabolic geometry.

  14. The Incredible Bulk

    Fukushima, Keita; Kumar, Jason; Sandick, Pearl; Yamamoto, Takahiro


    Recent experimental results from the LHC have placed strong constraints on the masses of colored superpartners. The MSSM parameter space is also constrained by the measurement of the Higgs boson mass, and the requirement that the relic density of lightest neutralinos be consistent with observations. Although large regions of the MSSM parameter space can be excluded by these combined bounds, leptophilic versions of the MSSM can survive these constraints. In this paper we consider a scenario in which the requirements of minimal flavor violation, vanishing $CP$-violation, and mass universality are relaxed, specifically focusing on scenarios with light sleptons. We find a large region of parameter space, analogous to the original bulk region, for which the lightest neutralino is a thermal relic with an abundance consistent with that of dark matter. We find that these leptophilic models are constrained by measurements of the magnetic and electric dipole moments of the electron and muon, and that these models have ...

  15. Creating bulk nanocrystalline metal.

    Fredenburg, D. Anthony (Georgia Institute of Technology, Atlanta, GA); Saldana, Christopher J. (Purdue University, West Lafayette, IN); Gill, David D.; Hall, Aaron Christopher; Roemer, Timothy John (Ktech Corporation, Albuquerque, NM); Vogler, Tracy John; Yang, Pin


    Nanocrystalline and nanostructured materials offer unique microstructure-dependent properties that are superior to coarse-grained materials. These materials have been shown to have very high hardness, strength, and wear resistance. However, most current methods of producing nanostructured materials in weapons-relevant materials create powdered metal that must be consolidated into bulk form to be useful. Conventional consolidation methods are not appropriate due to the need to maintain the nanocrystalline structure. This research investigated new ways of creating nanocrystalline material, new methods of consolidating nanocrystalline material, and an analysis of these different methods of creation and consolidation to evaluate their applicability to mesoscale weapons applications where part features are often under 100 {micro}m wide and the material's microstructure must be very small to give homogeneous properties across the feature.

  16. Cooperative hydrolysis of aryl esters on functionalized membrane surfaces and in micellar solutions

    Poznik, Michal; König, Burkhard


    Catalytic hydrolysis of peptides, proteins, phosphates or carboxylate esters in nature is catalysed by enzymes, which are efficient, fast and selective. Most of the hydrolytic chemical catalysts published so far mimic the active site of enzymes and contain metal complexes and amino acid residues. Their synthesis can be laborious, while the hydrolytic activity is still limited compared to enzymes. We present an approach that uses fluid membranes of vesicles and micelles as a support for amphip...

  17. New methodologies for the conservation of cultural heritage: micellar solutions, microemulsions, and hydroxide nanoparticles.

    Giorgi, Rodorico; Baglioni, Michele; Berti, Debora; Baglioni, Piero


    Modern civilization's inherited artworks have a powerful impact on society, from political, sociological, and anthropological points of view, so the conservation of our Cultural Heritage is fundamental for conveying to future generations our culture, traditions, and ways of thinking and behaving. In the conservation of cultural artifacts, scientists intervene in the degradation of often unique handcrafts, resulting from a delicate balance of aging, unpredicted events, environmental conditions, and sometimes incorrect previous restoration treatments, the details of which are often not precisely known. Nanoscience and nanotechnology are revolutionizing materials science in a pervasive way, in a manner similar to polymer chemistry's revolution of materials science over the preceding century. The continuous development of novel nanoparticle-based materials and the study of physicochemical phenomena at the nanoscale are creating new approaches to conservation science, leading to new methodologies that can "revert" the degradation processes of the works of art, in most cases "restoring" them to their original magnificent appearance. Until recently, serendipity and experiment have been the most frequent design principles of formulations for either cleaning or consolidation of works of art. Accordingly, the past has witnessed a number of actively detrimental treatments, such as the application of acrylic and vinyl resins to wall paintings, which can irreversibly jeopardize the appearance (or even the continued existence) of irreplaceable works of art. Current research activity in conservation science is largely based on the paradigm that compatibility of materials is the most important prerequisite for obtaining excellent and durable results. The most advanced current methodologies are (i) the use of water-based micelles and microemulsions (neat or combined with gels) for the removal of accidental contaminants and polymers used in past restorations and (ii) the application of calcium hydroxide nanoparticles for the consolidation of works of art. In this Account, we highlight how conservation science can benefit from the conceptual and the methodological background derived from both soft (microemulsions and micelles for cleaning) and hard (nanoparticles for consolidation) nanoscience. A combination of different nanotechnologies allows today's conservators to provide, in each restoration step, interventions respectful of the physicochemical characteristics of the materials used by artists. The "palette" of methods provided by nanoscience is continuously enriching the field, and the development of novel nanomaterials and the study of nanoscale physicochemical phenomena will further improve the performance of restoration formulations and our comprehension of degradation mechanisms.

  18. Femtosecond Transient Absorption Spectra and Relaxation Dynamics of SWNT in SDS Micellar Solutions

    Nadtochenko, V. A.; Lobach, A. S.; Gostev, F. E.; Tcherbinin, D. O.; Sobennikov, A.; Sarkisov, O. M.


    Transient absorption spectra and relaxation dynamics of excited SWNT were studied by femtosecond absorption spectroscopy as a function of: the energy of excitation quanta (ℏω = 2 eV, 2.5 eV, 4 eV); the density of the excitation energy; polarizations of the pump and probe pulses. The transient absorption spectra were monitored by white supercontinuum light pulse in the spectral region of ˜ 1.2 ÷ 3.6 eV. The induced transient absorption spectra of SWNT are considered as filling of the size-quantized energy bands with nonequilibrium carriers; renormalization of the one-dimensional energy bands at high density of the induced plasma; quantum confined Stark effect and screening of excitons. The anisotropic relaxation rate is observed.

  19. Application of thermodynamic models to study micellar properties of sodium perfluoroalkyl carboxylates in aqueous solutions

    Gonzalez-Perez, Alfredo [Group of Biophysics and Interfaces, Department of Applied Physics, Faculty of Physics, University of Santiago de Compostela, E-15782 Santiago de Compostela (Spain)], E-mail:; Ruso, Juan M. [Group of Biophysics and Interfaces, Department of Applied Physics, Faculty of Physics, University of Santiago de Compostela, E-15782 Santiago de Compostela (Spain); Romero, Maria J. [Department of Inorganic Chemistry, Faculty of Chemistry, University of Santiago de Compostela, E-15782 Santiago de Compostela (Spain); Blanco, Elena [Group of Biophysics and Interfaces, Department of Applied Physics, Faculty of Physics, University of Santiago de Compostela, E-15782 Santiago de Compostela (Spain); Prieto, Gerardo [Group of Biophysics and Interfaces, Department of Applied Physics, Faculty of Physics, University of Santiago de Compostela, E-15782 Santiago de Compostela (Spain); Sarmiento, Felix [Group of Biophysics and Interfaces, Department of Applied Physics, Faculty of Physics, University of Santiago de Compostela, E-15782 Santiago de Compostela (Spain)


    Sodium perfluoroalkyl carboxylates (CnFONa) with n = 6, 9, 10 have been studied by conductivity measurements at different temperatures. The Krafft point was determined for C9FONa and C10FONa at the highest concentration studied by measuring the temperature dependence of the specific conductivity. The critical micelle concentration (cmc) and the ionization degree of the micelle ({beta}) were estimated from conductivity vs. molality plots at different temperatures. Using these data and previous results on temperature dependence of cmc and {beta} of sodium perfluoroheptanoate and perfluorooctanoate, different models were applied to obtain the thermodynamic properties of micellization. The results are discussed in terms of alkyl chain length.


    Micellar electrokinetic chromatography (MEKC) with laser-induced fluorescence (LIF) detection was used for the trace analysis of phenoxy acid herbicides. Capillary electrophoresis (CE) with LIF detection, which has not previously been used for pesticide analysis, overcomes the po...

  1. Penn Grade Micellar Displacement Project. Third annual report, June 1977--June 1978. [Lawry project in Bradford field

    Danielson, H.H.; Paynter, W.T.; Ondrusek, P.S.; Finalle, L.L.


    During third year operations of the jointly funded Penn Grade Micellar Displacement Project, the plant facilities were completed for the 24-acre test designated Phase II. The transient testing program and the pre-flush brine and micellar slug injection stages were all completed. Biopolymer injection was initiated. This report details the development, testing, and operations of Phase II, as well as plans for continuing the test.

  2. Wormlike micelles in poly(oxyethylene) surfactant solution: Growth control through hydrophilic-group size variation.

    Ahmed, Toufiq; Aramaki, Kenji


    Viscoelastic micellar solutions are formed in poly(oxyethylene) cholesteryl ether (ChEO(m), m=15, 30) aqueous solutions on addition of tri(ethyleneglycol) mono n-dodecyl ether (C(12)EO(3)). The steady-shear and dynamic rheological behavior of the systems is characteristic of wormlike micellar solution. In either system, the plateau modulus (G(0)) and relaxation time (tau) are found to increase with increasing cosurfactant mixing fractions. The plateau modulus of the ChEO(30)-C(12)EO(3) system at the maximum viscosity region is found to be higher than that in the ChEO(15)-C(12)EO(3) system at the maximum viscosity region, whereas for the relaxation time the opposite relation is found. The maximum viscosities obtained in the two systems are of the same order of magnitude. In the ChEO(30)-C(12)EO(3) system, the maximum viscosity is obtained at a higher cosurfactant mixing fraction than that in the ChEO(15)-C(12)EO(3) system. It is concluded that decreasing the head-group size of the hydrophilic surfactant favors micellar growth. Monolaurin, another hydrophobic surfactant known to induce growth in some systems, is found to cause phase separation before significant micellar growth occurs in ChEO(m) solutions, although the effect of head-group size of ChEO(m) is found to be similar to the ChEO(m)-C(12)EO(3) systems.

  3. Amino acid catalyzed bulk-phase gelation of organoalkoxysilanes via a transient co-operative self-assembly.

    Shen, Shukun; Hu, Daodao; Sun, Peipei; Zhang, Xiaoru; Parikh, Atul N


    We report acceleration in the rate of bulk phase gelation of an organoalkoxysilane, 3-methacryloxypropyltrimethoxysilane (MAPTMS), in the presence of an amphiphilic additive, N-phenyl glycine (NPG). The MAPTMS gelation occurs within 30 min in the presence of 0.5 wt % NPG, which took several months in the absence of NPG. Using a combination of ATR-FT IR, (29)Si NMR, (1)H NMR, viscosity analysis, SEM, UV-vis, and pi-A isotherm measurements, we elucidate the molecular-level details of the structural changes during NPG-catalyzed MPTMS gelation rate. On the basis of these results, we propose a gelation mechanism in which a transient cooperative self-assembly process fosters hydrolysis and retards early condensation thereby promoting the formation of extended three-dimensionally cross-linked gels. Specifically, the amphiphilic character of the hydrolysis product of MAPTMS, consisting of a hydrophobic tail R = -CH(2)CH(2)CH(2)O(CO)C(CH(3)) horizontal lineCH(2) and a hydrophilic Si-OH headgroup, promotes micelle formation at high MAPTMS/water ratio. NPG readily inserts within these micelles thus retarding the topotactic condensation of silanols at the micellar surface. This in turn allows for a more complete hydrolysis of Si-OCH(3) groups prior to condensation in MAPTMS. With increased silanol concentration at the micellar periphery, a delayed condensation phase initiates. This formation of a covalently bonded Si-O-Si framework (and possibly also the formation of the methanol byproduct) likely destabilizes the micellar motif thus promoting its transformation into condensed mesophases (e.g., lamellar microstructure) upon gelation. Because of the generality of this transient and co-operative organic-inorganic self-assembly between hydrolyzed amphiphilic organoalkoxysilanes and surfactant-like amino acid additives, we envisage applications in controlling bulk phase gelation of many chain-substituted organoalkoxysilanes.

  4. The forward and backward transport processes in the AOT/hexane reversed micellar extraction of soybean protein.

    Chen, Jun; Chen, Fengliang; Wang, Xianchang; Zhao, Xiaoyan; Ao, Qiang


    Soybean protein was taken as a model protein to investigate two aspects of the protein extraction by sodium bis(2-ethylhexyl) sulfosuccinate (AOT) reverse micelles: (1) the forward protein extraction from the solid state, and the effect of pH, AOT concentration, alcohol and water content (W0) on the transfer efficiency; (2) the back-transfer, the capability of the protein to be recovered from the micellar solution. The experimental results led to the conclusion that the highest forward extraction efficiency of soybean protein was reached at AOT concentration 180 mmol l(-1), aqueous pH 7.0, KCl concentration 0.05 mol l(-1), 0.5 % (v/v) alcohol, W0 18. Under these conditions, the forward extraction efficiency of soybean protein achieved 70.1 %. It was noted that the percentage of protein back extraction depended on the salt concentration and pH value. Around 92 % of protein recovery was obtained after back extraction.

  5. Field-Amplified Sample Injection-Micellar Electrokinetic Chromatography for the Determination of Benzophenones in Food Simulants

    Cristina Félez


    Full Text Available A field-amplified sample injection-micellar electrokinetic chromatography (FASI-MEKC method for the determination of 14 benzophenones (BPs in a food simulant used in migration studies of food packaging materials was developed, allowing almost baseline separation in less than 21 min. The use of a 10 mM sodium dodecyl sulfate (SDS solution as sample matrix was mandatory to achieve FASI enhancement of the analyzed BPs. A 21- to 784-fold sensitivity enhancement was achieved with FASI-MEKC, obtaining limits of detection down to 5.1–68.4 µg/L, with acceptable run-to-run precisions (RSD values lower than 22.3% and accuracy (relative errors lower than 21.0%. Method performance was evaluated by quantifying BPs in the food simulant spiked at 500 µg/L (bellow the established specific migration limit for BP (600 µg/L by EU legislation. For a 95% confidence level, no statistical differences were observed between found and spiked concentrations (probability at the confidence level, p value, of 0.55, showing that the proposed FASI-MEKC method is suitable for the analysis of BPs in food packaging migration studies at the levels established by EU legislation.

  6. Application of principal component analysis-multivariate adaptive regression splines for the simultaneous spectrofluorimetric determination of dialkyltins in micellar media.

    Ghasemi, Jahan B; Zolfonoun, Ehsan


    A new multicomponent analysis method, based on principal component analysis-multivariate adaptive regression splines (PC-MARS) is proposed for the determination of dialkyltin compounds. In Tween-20 micellar media, dimethyl and dibutyltin react with morin to give fluorescent complexes with the maximum emission peaks at 527 and 520nm, respectively. The spectrofluorimetric matrix data, before building the MARS models, were subjected to principal component analysis and decomposed to PC scores as starting points for the MARS algorithm. The algorithm classifies the calibration data into several groups, in each a regression line or hyperplane is fitted. Performances of the proposed methods were tested in term of root mean square errors of prediction (RMSEP), using synthetic solutions. The results show the strong potential of PC-MARS, as a multivariate calibration method, to be applied to spectral data for multicomponent determinations. The effect of different experimental parameters on the performance of the method were studied and discussed. The prediction capability of the proposed method compared with GC-MS method for determination of dimethyltin and/or dibutyltin. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Small angle neutron scattering study of sodium dodecyl sulfate micellar growth driven by addition of a hydrotropic salt.

    Hassan, P A; Fritz, Gerhard; Kaler, Eric W


    The structures of aggregates formed in aqueous solutions of an anionic surfactant, sodium dodecyl sulfate (SDS), with the addition of a cationic hydrotropic salt, p-toluidine hydrochloride (PTHC), have been investigated by small angle neutron scattering (SANS). The SANS spectra exhibit a pronounced peak at low salt concentration, indicating the presence of repulsive intermicellar interactions. Model-independent real space information about the structure is obtained from a generalized indirect Fourier transformation (GIFT) technique in combination with a suitable model for the interparticle structure factor. The interparticle interaction is captured using the rescaled mean spherical approximation (RMSA) closure relation and a Yukawa form of the interaction potential. Further quantification of the geometrical parameters of the micelles was achieved by a complete fit of the SANS data using a prolate ellipsoidal form factor and the RMSA structure factor. The present study shows that PTHC induces a decrease in the fractional charge of the micelles due to adsorption at the micellar surface and consequent growth of the SDS micelles from nearly globular to rodlike as the concentration of PTHC increases.

  8. Rapid determination of piracetam in human plasma and cerebrospinal fluid by micellar electrokinetic chromatography with sample direct injection.

    Yeh, Hsin-Hua; Yang, Yuan-Han; Ko, Ju-Yun; Chen, Su-Hwei


    A simple micellar electrokinetic chromatography (MEKC) method with UV detection at 200 nm for analysis of piracetam in plasma and in cerebrospinal fluid (CSF) by direct injection without any sample pretreatment is described. The separation of piracetam from biological matrix was performed at 25 degrees C using a background electrolyte consisting of Tris buffer with sodium dodecyl sulfate (SDS) as the electrolyte solution. Several parameters affecting the separation of the drug from biological matrix were studied, including the pH and concentrations of the Tris buffer and SDS. Under optimal MEKC condition, good separation with high efficiency and short analyses time is achieved. Using imidazole as an internal standard (IS), the linear ranges of the method for the determination of piracetam in plasma and in CSF were all between 5 and 500 microg/mL; the detection limit of the drug in plasma and in CSF (signal-to-noise ratio=3; injection 0.5 psi, 5s) was 1.0 microg/mL. The applicability of the proposed method for determination of piracetam in plasma and CSF collected after intravenous administration of 3g piracetam every 6h and oral administration 1.2g every 6h in encephalopathy patients with aphasia was demonstrated.

  9. Micellar copolymerization of associative polymers: study of the effect of acrylamide on sodium dodecyl sulfate-poly(propylene oxide) methacrylate mixed micelles.

    Bastiat, Guillaume; Grassl, Bruno; François, Jeanne


    Mixed micelles of sodium dodecyl sulfate (SDS) and poly(propylene oxide) methacrylate (PPOMA) have been studied in the presence of acrylamide using conductimetry, fluorescence spectroscopy, and small-angle neutron scattering (SANS) under the following conditions: (i) the SDS-acrylamide binary system in water; (ii) the SDS-acrylamide-PPOMA ternary system in water. The addition of acrylamide in SDS solutions perturbs the micellization of the surfactant by decreasing the aggregation number of the micelles and increasing their ionization degree. The variations of the various micellar parameters versus the weight ratio R=PPOMA/SDS are different in the presence of acrylamide or in pure water. These differences are much more pronounced for the lower than for the higher PPOMA concentrations. There is competition between acrylamide and PPOMA and at higher PPOMA concentration, acrylamide tends to be released from SDS micelles and is completely replaced by PPOMA.

  10. Simultaneous determination of gaseous and particulate carbonyls in air by coupling micellar electrokinetic capillary chromatography with molecular imprinting solid-phase extraction.

    Sun, Hui; Lai, Jia-Ping; Fung, Ying Sing


    A novel method coupling molecular imprinting solid-phase extraction (MISPE) and micellar electrokinetic capillary chromatography (MEKC) was developed to enable the hourly determination of low level of ambient carbonyls, and study their partition between gaseous phase and particulate phase. With 2,4-dinitroaniline (DNAN) as dummy imprinting template, the unreacted 2,4-Dinitrophenylhydrazine (DNPH) in sampling solution could be removed effectively using MISPE, and an average recovery of 97±5.3% (n=5) for the carbonyl-DNPH derivatives was achieved. Owing to the high enrichment due to sample clean-up, and the improvement of MEKC separation efficiency, many low abundant carbonyls could be detected by hourly in the field study.

  11. Developing bulk exchange spring magnets

    Mccall, Scott K.; Kuntz, Joshua D.


    A method of making a bulk exchange spring magnet by providing a magnetically soft material, providing a hard magnetic material, and producing a composite of said magnetically soft material and said hard magnetic material to make the bulk exchange spring magnet. The step of producing a composite of magnetically soft material and hard magnetic material is accomplished by electrophoretic deposition of the magnetically soft material and the hard magnetic material to make the bulk exchange spring magnet.

  12. Spherically symmetric brane spacetime with bulk f(R) gravity

    Chakraborty, Sumanta [IUCAA, Ganeshkhind, Pune University Campus, Post Bag 4, Pune (India); SenGupta, Soumitra [Indian Association for the Cultivation of Science, Department of Theoretical Physics, Kolkata (India)


    Introducing f(R) term in the five-dimensional bulk action we derive effective Einstein's equation on the brane using Gauss-Codazzi equation. This effective equation is then solved for different conditions on dark radiation and dark pressure to obtain various spherically symmetric solutions. Some of these static spherically symmetric solutions correspond to black hole solutions, with parameters induced from the bulk. Specially, the dark pressure and dark radiation terms (electric part of Weyl curvature) affect the brane spherically symmetric solutions significantly. We have solved for one parameter group of conformal motions where the dark radiation and dark pressure terms are exactly obtained exploiting the corresponding Lie symmetry. Various thermodynamic features of these spherically symmetric space-times are studied, showing existence of second order phase transition. This phenomenon has its origin in the higher curvature term with f(R) gravity in the bulk. (orig.)

  13. Estrogenic compounds determination in water samples by dispersive liquid-liquid microextraction and micellar electrokinetic chromatography coupled to mass spectrometry.

    D'Orazio, Giovanni; Asensio-Ramos, María; Hernández-Borges, Javier; Fanali, Salvatore; Rodríguez-Delgado, Miguel Ángel


    In this work, a group of 12 estrogenic compounds, i.e., four natural sexual hormones (estrone, 17β-estradiol, 17α-estradiol and estriol), an exoestrogen (17α-ethynylestradiol), a synthetic stilbene (dienestrol), a mycotoxin (zearalenone) and some of their major metabolites (2-methoxyestradiol, α-zearalanol, β-zearalanol, α-zearalenol and β-zearalenol) have been separated and determined by micellar electrokinetic chromatography (MEKC) coupled to electrospray ion trap mass spectrometry. For this purpose, a background electrolyte containing an aqueous solution of 45 mM of perfluorooctanoic acid (PFOA) adjusted to pH 9.0 with an ammonia solution, as MS friendly surfactant, and methanol (10% (v/v)), as organic modifier, was used. To further increase the sensitivity, normal stacking mode was applied by injecting the sample dissolved in an aqueous solution of 11.5mM of ammonium PFO (APFO) at pH 9.0 containing 10% (v/v) of methanol for 25s. Dispersive liquid-liquid microextraction, using 110 μL of chloroform and 500 μL of acetonitrile as extraction and dispersion solvents, respectively, was employed to extract and preconcentrate the target analytes from different types of environmental water samples (mineral, run-off and wastewater) containing 30% (w/v) NaCl and adjusted to pH 3.0 with 1M HCl. The limits of detection achieved were in the range 0.04-1.10 μg/L. The whole method was validated in terms of linearity, precision, recovery and matrix effect for each type of water, showing determination coefficients higher than 0.992 for matrix-matched calibration and absolute recoveries in the range 43-91%.

  14. Micellar emulsions composed of mPEG-PCL/MCT as novel nanocarriers for systemic delivery of genistein: a comparative study with micelles

    Zhang TP


    Full Text Available Tianpeng Zhang,* Huan Wang,* Yanghuan Ye, Xingwang Zhang, Baojian Wu Division of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, People’s Republic of China *These authors contributed equally to this work Abstract: Polymeric micelles receive considerable attention as drug delivery vehicles, depending on the versatility in drug solubilization and targeting therapy. However, their use invariably suffers with poor stability both in in vitro and in vivo conditions. Here, we aimed to develop a novel nanocarrier (micellar emulsions, MEs for a systemic delivery of genistein (Gen, a poorly soluble anticancer agent. Gen-loaded MEs (Gen-MEs were prepared from methoxy poly(ethylene glycol-block-(ε-caprolactone and medium-chain triglycerides (MCT by solvent-diffusion technique. Nanocarriers were characterized by dynamic light scattering, transmission electron microscopy, and in vitro release. The resulting Gen-MEs were approximately 46 nm in particle size with a narrow distribution. Gen-MEs produced a different in vitro release profile from the counterpart of Gen-ME. The incorporation of MCT significantly enhanced the stability of nanoparticles against dilution with simulated body fluid. Pharmacokinetic study revealed that MEs could notably extend the mean retention time of Gen, 1.57- and 7.38-fold as long as that of micelles and solution formulation, respectively, following intravenous injection. Furthermore, MEs markedly increased the elimination half-life (t1/2β of Gen, which was 2.63-fold larger than that of Gen solution. Interestingly, Gen distribution in the liver and kidney for MEs group was significantly low relative to the micelle group in the first 2 hours, indicating less perfusion in such two tissues, which well accorded with the elongated mean retention time. Our findings suggested that MEs may be promising carriers as an alternative of micelles to systemically deliver poorly soluble drugs. Keywords: genistein, micellar

  15. A core cross-linked polymeric micellar platium(IV) prodrug with enhanced anticancer efficiency.

    Hou, Jie; Shang, Jincai; Jiao, Chengbin; Jiang, Peiyue; Xiao, Huijie; Luo, Lan; Liu, Tongjun


    A core cross-linked polymeric micellar cisplatin(IV) conjugate prodrug is prepared by attaching the cisplatin(IV) to mPEG-b-PLL biodegradable copolymers to form micellar nanoparticles that can disintegrate to release the active anticancer agent cisplatin(II) in a mild reducing environment. Moreover, in vitro studies show that this cisplatin(IV) conjugate prodrug displays enhanced cytotoxicity against HepG2 cancer cells compared with cisplatin(II). Further studies demonstrate that the high cellular uptake and platinum-DNA adduct of this cisplatin(IV) conjugate prodrug can induce more cancer-cell apoptosis than cisplatin(II), which is responsible for its enhanced anticancer activity.

  16. Nanoparticles of complex metal oxides synthesized using the reverse-micellar and polymeric precursor routes

    Ashok K Ganguli; Tokeer Ahmad; Padam R Arya; Pika Jha


    Current interest in the properties of materials having grains in the nanometer regime has led to the investigation of the size-dependent properties of various dielectric and magnetic materials. We discuss two chemical methods, namely the reverse-micellar route and the polymeric citrate precursor route used to obtain homogeneous and monophasic nanoparticles of several dielectric oxides like BaTiO3, Ba2TiO4, SrTiO3, PbTiO3, PbZrO3 etc. In addition we also discuss the synthesis of some transition metal (Mn and Cu) oxalate nanorods using the reverse-micellar route. These nanorods on decomposition provide a facile route to the synthesis of transition metal oxide nanoparticles. We discuss the size dependence of the dielectric and magnetic properties in some of the above oxides.

  17. Mixed-micellar proliposomal systems for enhanced oral delivery of progesterone.

    Potluri, Praveen; Betageri, Guru V


    The objective of our study was to develop a mixed-micellar proliposomal formulation of poorly water-soluble drug progesterone and evaluate the dissolution profile and membrane transport. Several formulations of proliposomes were prepared by mixing different concentrations of lipid, progesterone, polysorbate 80, and microcrystalline cellulose. The mixed-micellar formulation of drug:dimyristoyl-phosphatidycholine:polysorbate 80 (1:20:3.3) exhibited the maximum dissolution (75.27%), while pure progesterone resulted in low dissolution. The above formulation showed a 4-fold increase in transport in Caco-2 cells and a 6-fold increase in transport across the everted rat intestinal sac experiments compared with control. Proliposomal formulations enhance the extent of dissolution and membrane transport of progesterone and serve as ideal carriers for oral delivery of drugs with low water solubility.

  18. Penn Grade Micellar Displacement project. First annual report, June 1975--June 1976

    Danielson, H.H.; Paynter, W.T.; Midkiff, F.R.; Finalle, L.L.


    The main objective of the Penn Grade-ERDA Micellar Displacement Project is to assess and hopefully, demonstrate the feasibility of commercial application of the micellar-polymer process for tertiary oil recovery from a rather large, but relatively ''tight'' section of the Bradford Third Sand. The initial phase of this project involves pertinent core and field injectivity measurements from a freshly drilled well, as a basis for assessing the feasibility of a small demonstration test flood to be performed under Phase II. This report details the work done and results obtained under Phase I (Injectivity Test) completed during the first year of the project. These results, having indicated that the pattern test envisaged under Phase II is indeed feasible, work is now in progress to carry the project to the pattern test phase, in pursuit of project goals.

  19. Bulk solitary waves in elastic solids

    Samsonov, A. M.; Dreiden, G. V.; Semenova, I. V.; Shvartz, A. G.


    A short and object oriented conspectus of bulk solitary wave theory, numerical simulations and real experiments in condensed matter is given. Upon a brief description of the soliton history and development we focus on bulk solitary waves of strain, also known as waves of density and, sometimes, as elastic and/or acoustic solitons. We consider the problem of nonlinear bulk wave generation and detection in basic structural elements, rods, plates and shells, that are exhaustively studied and widely used in physics and engineering. However, it is mostly valid for linear elasticity, whereas dynamic nonlinear theory of these elements is still far from being completed. In order to show how the nonlinear waves can be used in various applications, we studied the solitary elastic wave propagation along lengthy wave guides, and remarkably small attenuation of elastic solitons was proven in physical experiments. Both theory and generation for strain soliton in a shell, however, remained unsolved problems until recently, and we consider in more details the nonlinear bulk wave propagation in a shell. We studied an axially symmetric deformation of an infinite nonlinearly elastic cylindrical shell without torsion. The problem for bulk longitudinal waves is shown to be reducible to the one equation, if a relation between transversal displacement and the longitudinal strain is found. It is found that both the 1+1D and even the 1+2D problems for long travelling waves in nonlinear solids can be reduced to the Weierstrass equation for elliptic functions, which provide the solitary wave solutions as appropriate limits. We show that the accuracy in the boundary conditions on free lateral surfaces is of crucial importance for solution, derive the only equation for longitudinal nonlinear strain wave and show, that the equation has, amongst others, a bidirectional solitary wave solution, which lead us to successful physical experiments. We observed first the compression solitary wave in the

  20. Interaction of antihypertensive drug amiloride with metal ions in micellar medium using fluorescence spectroscopy

    Gujar, Varsha; Pundge, Vijaykumar; Ottoor, Divya, E-mail:


    Steady state and life time fluorescence spectroscopy have been employed to study the interaction of antihypertensive drug amiloride with biologically important metal ions i.e. Cu{sup 2+}, Fe{sup 2+}, Ni{sup 2+} and Zn{sup 2+} in various micellar media (anionic SDS (sodium dodecyl sulfate), nonionic TX-100 (triton X-100) and cationic CTAB (cetyl trimethyl ammonium bromide)). It was observed that fluorescence properties of drug remain unaltered in the absence of micellar media with increasing concentration of metal ions. However, addition of Cu{sup 2+}, Fe{sup 2+} and Ni{sup 2+} caused fluorescence quenching of amiloride in the presence of anionic micelle, SDS. Binding of drug with metal ions at the charged micellar interface could be the possible reason for this pH-dependent metal-mediated fluorescence quenching. There were no remarkable changes observed due to metal ions addition when drug was present in cationic and nonionic micellar medium. The binding constant and bimolecular quenching constant were evaluated and compared for the drug–metal complexes using Stern–Volmer equation and fluorescence lifetime values. - Highlights: • Interaction of amiloride with biologically important metal ions, Fe{sup 2+}, Cu{sup 2+}, Ni{sup 2+} and Zn{sup 2+}. • Monitoring the interaction in various micelle at different pH by fluorescence spectroscopy. • Micelles acts as receptor, amiloride as transducer and metal ions as analyte in the present system. • Interaction study provides pH dependent quenching and binding mechanism of drug with metal ions.

  1. Applying Theoretical Approach for Predicting the Selective Calcium Channel Blockers Pharmacological Parameter by Biopartitioning Micellar Chromatography

    WANG Su-Min; YANG Geng-Liang; LI Zhi-Wei; LIU Hai-Yan; GUO Hui-Juan


    The usefulness of biopartitioning micellar chromatography (BMC) for predicting oral drug acute toxicity and apparent bioavailability was demonstrated. A logarithmic model (an LD50 model) and the second order polynomial models (apparent bioavailability model) have been obtained using the retention data of the selective calcium channel blockers to predict pharmacological properties of compounds. The use of BMC is simple, reproducible and can provide key information about the acute toxicity and transport properties of new compounds during the drug discovery process.

  2. Studies of Micellar Electrokinetic Chromatography as an Analytical Technique in Pharmaceutical Analysis - an Industrial Perspective

    Stubberud, Karin


    Studies have been performed to evaluate the use of micellar electrokinetic chromatography (MEKC), one mode of capillary electrophoresis (CE), as an analytical technique in industrial pharmaceutical analysis. The potential for using chemometrics for the optimisation of MEKC methods has also been studied as well as the possibilities of coupling MEKC with mass spectrometry (MS). Two methods were developed, one for the determination of ibuprofen and codeine and another for pilocarpine, together ...

  3. Carbon nanotubes grown on bulk materials and methods for fabrication

    Menchhofer, Paul A.; Montgomery, Frederick C.; Baker, Frederick S.


    Disclosed are structures formed as bulk support media having carbon nanotubes formed therewith. The bulk support media may comprise fibers or particles and the fibers or particles may be formed from such materials as quartz, carbon, or activated carbon. Metal catalyst species are formed adjacent the surfaces of the bulk support material, and carbon nanotubes are grown adjacent the surfaces of the metal catalyst species. Methods employ metal salt solutions that may comprise iron salts such as iron chloride, aluminum salts such as aluminum chloride, or nickel salts such as nickel chloride. Carbon nanotubes may be separated from the carbon-based bulk support media and the metal catalyst species by using concentrated acids to oxidize the carbon-based bulk support media and the metal catalyst species.

  4. Bulk locality and boundary creating operators

    Nakayama, Yu; Ooguri, Hirosi


    We formulate a minimum requirement for CFT operators to be localized in the dual AdS. In any spacetime dimensions, we show that a general solution to the requirement is a linear superposition of operators creating spherical boundaries in CFT, with the dilatation by the imaginary unit from their centers. This generalizes the recent proposal by Miyaji et al. for bulk local operators in the three dimensional AdS. We show that Ishibashi states for the global conformal symmetry in any dimensions and with the imaginary di-latation obey free field equations in AdS and that incorporating bulk interactions require their superpositions. We also comment on the recent proposals by Kabat et al., and by H. Verlinde.

  5. Bulk Locality and Boundary Creating Operators

    Nakayama, Yu


    We formulate a minimum requirement for CFT operators to be localized in the dual AdS. In any spacetime dimensions, we show that a general solution to the requirement is a linear superposition of operators creating spherical boundaries in CFT, with the dilatation by the imaginary unit from their centers. This generalizes the recent proposal by Miyaji et al. for bulk local operators in the three dimensional AdS. We show that Ishibashi states for the global conformal symmetry in any dimensions and with the imaginary dilatation obey free field equations in AdS and that incorporating bulk interactions require their superpositions. We also comment on the recent proposals by Kabat et al., and by H. Verlinde.

  6. Bulk locality and boundary creating operators

    Nakayama, Yu [Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, California 91125 (United States); Ooguri, Hirosi [Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, California 91125 (United States); Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan)


    We formulate a minimum requirement for CFT operators to be localized in the dual AdS. In any spacetime dimensions, we show that a general solution to the requirement is a linear superposition of operators creating spherical boundaries in CFT, with the dilatation by the imaginary unit from their centers. This generalizes the recent proposal by Miyaji et al. for bulk local operators in the three dimensional AdS. We show that Ishibashi states for the global conformal symmetry in any dimensions and with the imaginary dilatation obey free field equations in AdS and that incorporating bulk interactions require their superpositions. We also comment on the recent proposals by Kabat et al., and by H. Verlinde.

  7. Large bulk Micromegas detectors for TPC applications

    Anvar, S; Boyer, M; Beucher, J; Calvet, D; Colas, P; De La Broise, X; Delagnes, E; Delbart, A; Druillole, F; Emery, S; Giganti, C; Giomataris, I; Mazzucato, E; Monmarthe, E; Nizery, F; Pierre, F; Ritou, J L; Sarrat, A; Zito, M; Catanesi, M G; Radicioni, E; De Oliveira, R; Blondel, A; Di Marco, M; Ferrere, D; Perrin, E; Ravonel, M; Jover, G; Lux, T; Rodriguez, A Y; Sanchez, F; Cervera, A; Hansen, C; Monfregola, L


    A large volume TPC will be used in the near future in a variety of experiments including T2K. The bulk Micromegas detector for this TPC is built using a novel production technique particularly suited for compact, thin and robust low mass detectors. The capability to pave a large surface with a simple mounting solution and small dead space is of particular interest for these applications. We have built several large bulk Micromegas detectors () and we have tested one in the former HARP field cage with a magnetic field. Prototypes cards of the T2K front end electronics, based on the AFTER ASIC chip, have been used in this TPC test for the first time. Cosmic ray data have been acquired in a variety of experimental conditions. Good detector performances, space point resolution and energy loss measurement have been achieved.

  8. Bulk micromegas detectors for large TPC applications

    Bouchez, J; Cavata, Ch; Colas, P; De La Broise, X; Delbart, A; Giganon, Arnaud; Giomataris, Ioanis; Graffin, P; Mols, J Ph; Pierre, F; Ritou, J L; Sarrat, A; Virique, E; Zito, M; Radicioni, E; De Oliveira, R; Dumarchez, J; Abgrall, N; Bene, P; Blondel, A; Cervera-Villanueva, Anselmo; Ferrère, D; Maschiocchi, F; Perrin, E; Richeux, J P; Schroeter, R; Jover, G; Lux,; Rodriguez, A Y; Sánchez, F


    A large volume TPC will be used in the near future in a variety of experiments including T2K. The bulk Micromegas detector for this TPC is built using a novel production technique particularly suited for compact and robust low mass detectors. The capability to pave a large surface with a simple mounting solution and small dead space between modules is of particular interest for these applications. We have built several large bulk Micromegas detectors and we have tested them in the former HARP field cage setup with a magnetic field. Cosmic ray data have been acquired in a variety of experimental conditions. Good detector performances and space point resolution have been achieved.

  9. Simultaneous isocratic separation of phenolic acids and flavonoids using micellar liquid chromatography.

    Hadjmohammadi, Mohammad Reza; Nazari, S Saman S J


    The simultaneous isocratic separation of a mixture of five phenolic acids and four flavonoids (two important groups of natural polyphenolic compounds with very different polarities) was investigated in three different RPLC modes using a hydro-organic mobile phase, and mobile phases containing SDS at concentrations below and above the critical micellar concentration (submicellar LC and micellar LC (MLC), respectively). In the hydro-organic mode, methanol and acetonitrile; in the submicellar mode methanol; and in the micellar mode, methanol and 1-propanol were examined individually as organic modifiers. Regarding the other modes, MLC provided more appropriate resolutions and analysis time and was preferred for the separation of the selected compounds. Optimization of separation in MLC was performed using an interpretative approach for each alcohol. In this way, the retention of phenolic acids and flavonoids were modeled using the retention factors obtained from five different mobile phases, then the Pareto optimality method was applied to find the best compatibility between analysis time and quality of separation. The results of this study showed some promising advantages of MLC for the simultaneous separation of phenolic acids and flavonoids, including low consumption of organic solvent, good resolution, short analysis time, and no requirement of gradient elution.

  10. Polymeric micellar nanocarriers of benzoyl peroxide as potential follicular targeting approach for acne treatment.

    Kahraman, Emine; Özhan, Gül; Özsoy, Yıldız; Güngör, Sevgi


    The aim of this work was to optimize polymeric nano-sized micellar carriers of the anti-acne compound benzoyl peroxide (BPO) and to examine the ability of these carriers to deposit into hair follicles with the objective of improving skin delivery of BPO. BPO loaded polymeric micelles composed of Pluronic(®) F127 were prepared by the thin film hydration method and characterized in terms of size, loading capacity, morphology and physical stability. The optimized micelle formulation was then selected for skin delivery studies. The penetration of BPO loaded micellar carriers into skin and skin appendages across full thickness porcine skin was examined in vitro. Confocal microscopy images confirmed the penetration of Nile Red into hair follicles, which was loaded into micellar carriers as a model fluorescent compound. The relative safety of the polymeric micelles was evaluated with the MTT viability test using mouse embryonic fibroblasts. The results indicated that nano-sized polymeric micelles of BPO composed of Pluronic(®) F127 offer a potential approach to enhance skin delivery of BPO and that targeting of micelles into hair follicles may be an effective and safe acne treatment.

  11. Bell Creek Field micellar-polymer pilot demonstration. Fourth annual report, October 1979-September 1980

    Goldburg, A.


    The pilot is a contained 40-acre 5-spot located in a representative watered-out portion of the Unit A Reservoir. The pay is sandstone with an average net pay of 6.4 feet, air permeability of 1050 md, and water TDS of 2500 ppM. The average remaining oil saturation in the 40-acre pilot area was estimated to be 28% at the start of chemical injection. The Pilot has four injectors (Wells MPP-1, MPP-2, MPP-3, and MPP-4) and one producer (Well 12-1). The overall micellar-polymer oil recovery is estimated at 47% of the remaining oil at the initiation of the micellar-polymer flood. In the fourth contract year, micellar slug injection was completed and injection of the graded mobility buffer began. A second radioactive/chemical tracer test was begun at the start of the polymer phase. A delay of approximately one year was experienced during the reservoir description phase. Otherwise, the project has remained on schedule.

  12. Bell Creek Fiel micellar-polymer pilot demonstration first annual report, July 1976--September 1977


    A Pilot Demonstration is being conducted to determine whether micellar-polymer flooding is an economically feasible technique for enhanced oil recovery from the Muddy Sand Unit ''A'' Reservoir of the Bell Creek Field, Powder River and Carter Counties, Montana. During the first year of this project extensive reservoir studies, site and pattern selection, design and selection of an optimal micellar-polymer system, water flood history matching and preliminary process simulations by numerical models, and development of pilot injection and production wells were completed. The major effort during the first contract year was the design for the Bell Creek pilot of two optimal micellar-polymer processes--one oil-external and one water-external; and the concomitant development of a Selection Methodology by which to decide upon the more suitable process by means of a standard set of laboratory experiments and numerical simulations. This effort was completed. The oil-external design was selected for Bell Creek application based upon its superior performance in the standard test series and simulations. The advantages of the Bell Creek oil-external design appear to be better recovery performance, mobility control, and protection against divalent ions. 30 tables, 41 figs.

  13. Hydrophobically modified inulin as an amphiphilic carbohydrate polymer for micellar delivery of paclitaxel for intravenous route.

    Muley, Pratik; Kumar, Sunny; El Kourati, Fadoua; Kesharwani, Siddharth S; Tummala, Hemachand


    Micellization offers several advantages for the delivery of water insoluble drugs including a nanoparticulate 'core-shell' delivery system for drug targeting. Recently, hydrophobically modified polysaccharides (HMPs) are gaining recognition as micelle forming polymers to encapsulate hydrophobic drugs. In this manuscript, for the first time, we have evaluated the self-assembling properties of a lauryl carbamate derivative of the poly-fructose natural polymer inulin (Inutec SP1(®) (INT)) to form paclitaxel (PTX) loaded micelles. INT self-assembled into well-defined micellar structures in aqueous environment with a low critical micellar concentration of 27.8 μg/ml. INT micelles exhibited excellent hemocompatibility and low toxicity to cultured cells. PTX loaded INT micelles exhibited a mean size of 256.37 ± 10.45 nm with excellent drug encapsulation efficiency (95.66 ± 2.25%) and loading (8.69 ± 0.22%). PTX loaded micelles also displayed sustained release of PTX and enhanced anti-cancer efficacy in-vitro in mouse melanoma cells (B16F10) compared to Taxol formulation with Cremophor EL as solvent. In addition, PTX loaded INT micelles exhibited comparable in-vivo antitumor activity in B16F10 allograft mouse model at half the dose of Taxol. In conclusion, INT offers safe, inexpensive and natural alternative to widely used PEG-modified polymers for the formulation of micellar delivery systems for paclitaxel.

  14. Brane Couplings from Bulk Loops

    Georgi, Howard; Grant, Aaron K.; Hailu, Girma


    We compute loop corrections to the effective action of a field theory on a five-dimensional $S_1/Z_2$ orbifold. We find that the quantum loop effects of interactions in the bulk produce infinite contributions that require renormalization by four-dimensional couplings on the orbifold fixed planes. Thus bulk couplings give rise to renormalization group running of brane couplings.

  15. Can bulk viscosity drive inflation

    Pacher, T.; Stein-Schabes, J.A.; Turner, M.S.


    Contrary to other claims, we argue that bulk viscosity associated with the interactions of non- relativistic particles with relativistic particles around the time of the grand unified theory (GUT) phase transition cannot lead to inflation. Simply put, the key ingredient for inflation, negative pressure, cannot arise due to the bulk-viscosity effects of a weakly interacting mixture of relativistic and nonrelativistic particles.

  16. Micellization of Zonyl FSN-100 Fluorosurfactant in Aqueous Solutions

    Skvarla, Juraj; Uchman, M.; Procházka, K.; Tošner, Z.; Garamus, V. M.; Pispas, S.; Štěpánek, M.


    We report on micellization of nonionic fluorosurfactant Zonyl FSN-100 in aqueous solutions studied by means of NMR spectroscopy, light and small-angle X-ray scattering, surface tension measurements, isothermal titration calorimetry and fluorescence spectroscopy. The results allow for determination of basic parameters of Zonyl FSN-100 association like critical micellar concentration, size and association number of Zonyl FSN-100 micelles which have a core–shell structure with the core of fluoro...

  17. Microrheology of viscoelastic solutions studied by magnetic rotational spectroscopy

    Berret, Jean-François


    Magnetic rotational spectroscopy is based on the use of magnetic micron-size wires for viscosity measurements. Submitted to a rotational magnetic field with increasing frequency, the wires undergo a hydrodynamic instability between a synchronous and an asynchronous regime. From a comparison between predictions and experiments, the static shear viscosity and elastic modulus of wormlike micellar solutions are here determined. The values agree with the determination by cone-and-plate rheometry.

  18. Eco Issues in Bulk Materials Handling Technologies in Ports

    Nenad Zrnić


    Full Text Available This paper deals with eco issues in bulk materials handling in ports. Solid, free-flowing materials are said to be in bulk. Bulk materials handling is very difficult, because it incorporates all the features of liquids, gasses and mass solids. Energy efficiency, dust emissions in nearby environment, dust explosions, jamming, noise, handling of hazardous materials and protection of materials from contamination are issues that will be considered in this paper. Here are also presented possible solutions for some of these issues

  19. The use of biopartitioning micellar chromatography and immobilized artificial membrane column for in silico and in vitro determination of blood-brain barrier penetration of phenols.

    Stępnik, Katarzyna E; Malinowska, Irena


    Biopartitioning Micellar Chromatography (BMC) is a mode of micellar liquid chromatography that uses C18 stationary phases and micellar mobile phases of Brij35 under adequate experimental conditions and can be useful to mimic human drug absorption, blood-brain barrier distribution or partitioning processes in biological systems. BMC system can be useful in constructing good predictive models because the characteristics of the BMC system are similar to biological barriers and extracellular fluids. Immobilized Artificial Membrane (IAM) chromatography uses stationary phase which consists of a monolayer of phosphatidylcholine covalently immobilized on an inert silica support. IAM columns are thought to mimic very closely a membrane bilayer and are used in a HPLC system with a physiological buffer as eluent. In this paper the usefulness of BMC and IAM system for in silico and in vitro determination of blood-brain barrier (BBB) penetration of phenols has been demonstrated. The most important pharmacokinetic parameters of brain have been obtained for the determination of BBB penetration, i.e. BBB permeability - surface area product (PS), usually given as a logPS, brain/plasma equilibration rate (log(PS×fu,brain)) and fraction unbound in plasma (Fu). Moreover, the relationships between retention of eighteen phenols and different parameters of molecular size, lipophilicity and BBB penetration were studied. Extrapolated to pure water values of the logarithms of retention factors (logkw) have been compared with the corresponding octanol-water partition coefficient (logPo-w) values of the solutes. In addition, different physicochemical parameters from Foley's equation for BMC system have been collated with the chromatographic data. The Linear Solvation Energy Relationship (LSER) using Abraham model for the describing of phenols penetration across BBB has been used. Four equations were developed as a multiple linear regression using retention data from IAM and BMC system (QRAR

  20. Micellar structure of amphiphilic poly(2-oxazoline) diblock copolymers

    Papadakis, C.M.; Ivanova, R.; Lüdtke, K.


    Amphiphilic diblock copolymers from poly(2-oxazoline)s in aqueous solution can form micelles. By means of small-angle neutron scattering, we have found that poly[(n-nonyl-2-oxazoline)-b-(methyl-2-oxazoline)] {P[(NOx)-b-(MOx)]} diblock copolymers in aqueous solution form micelles of core-shell type....... We have determined the core radius and the shell thickness of the micelles. Comparing the values obtained to the stretched lengths of the blocks leads to the conclusion that the P(NOx) core blocks are stretched, whereas the P(MOx) shell blocks are coiled....

  1. Hubble Parameter in Bulk Viscous Cosmology

    Tawfik, A; Wahba, M


    We discuss influences of bulk viscosity on the Early Universe, which is modeled by Friedmann-Robertson-Walker metric and Einstein field equations. We assume that the matter filling the isotropic and homogeneous background is relativistic viscous characterized by ultra-relativistic equations of state deduced from recent lattice QCD simulations. We obtain a set of complicated differential equations, for which we suggest approximate solutions for Hubble parameter $H$. We find that finite viscosity in Eckart and Israel-Stewart fluids would significantly modify our picture about the Early Universe.

  2. Förster Resonance Energy Transfer Switchable Self-Assembled Micellar Nanoprobe: Ratiometric Fluorescent Trapping of Endogenous H2S Generation via Fluvastatin-Stimulated Upregulation.

    Zhao, Chunchang; Zhang, Xiuli; Li, Kaibin; Zhu, Shaojia; Guo, Zhiqian; Zhang, Lili; Wang, Feiyi; Fei, Qiang; Luo, Sihang; Shi, Ping; Tian, He; Zhu, Wei-Hong


    H2S produced in small amounts by mammalian cells has been identified in mediating biological signaling functions. However, the in situ trapping of endogenous H2S generation is still handicapped by a lack of straightforward methods with high selectivity and fast response. Here, we encapsulate a semi-cyanine-BODIPY hybrid dye (BODInD-Cl) and its complementary energy donor (BODIPY1) into the hydrophobic interior of an amphiphilic copolymer (mPEG-DSPE), especially for building up a ratiometric fluorescent H2S nanoprobe with extraordinarily fast response. A remarkable red-shift in the absorption band with a gap of 200 nm in the H2S response can efficiently switch off the Förster resonance energy transfer (FRET) from BODIPY1 to BODInD-Cl, subsequently recovering the donor fluorescence. Impressively, both the interior hydrophobicity of supramolecular micelles and electron-withdrawing nature of indolium unit in BODInD-Cl can sharply increase aromatic nucleophilic substitution with H2S. The ratiometric strategy based on the unique self-assembled micellar aggregate NanoBODIPY achieves an extremely fast response, enabling in situ imaging of endogenous H2S production and mapping its physiological and pathological consequences. Moreover, the amphiphilic copolymer renders the micellar assembly biocompatible and soluble in aqueous solution. The established FRET-switchable macromolecular envelope around BODInD-Cl and BODIPY1 enables cellular uptake, and makes a breakthrough in the trapping of endogenous H2S generation within raw264.7 macrophages upon stimulation with fluvastatin. This study manifests that cystathione γ-lyase (CSE) upregulation contributes to endogenous H2S generation in fluvastatin-stimulated macrophages, along with a correlation between CSE/H2S and activating Akt signaling pathway.

  3. Sphere-to-Rod Transitions of Nonionic Surfactant Micelles in Aqueous Solution Modeled by Molecular Dynamics Simulations

    Velinova, Maria; Sengupta, Durba; Tadjer, Alia V.; Marrink, Siewert-Jan


    Control of the size and agglomeration of micellar systems is important for pharmaceutical applications such as drug delivery. Although shape-related transitions in surfactant solutions are studied experimentally, their molecular mechanisms are still not well understood. In this study, we use coarse-

  4. Can bulk viscosity drive inflation

    Pacher, T.; Stein-Schabes, J.A.; Turner, M.S.


    Contrary to other claims, we argue that, bulk viscosity associated with the interactions of nonrelativistic particles with relativistic particles around the time of the grand unified theory (GUT) phase transition cannot lead to inflation. Simply put, the key ingredient for inflation, negative pressure, cannot arise due to the bulk viscosity effects of a weakly-interacting mixture of relativistic and nonrelativistic particles. 13 refs., 1 fig.

  5. Investigating self-assembly and metal nanoclusters in aqueous di-block copolymers solutions

    Lo Celso, F; Triolo, R; Triolo, A; Strunz, P; Bronstein, L; Zwanziger, J; Lin, J S


    Self-assembling properties of di-block copolymers/ surfactant hybrids in aqueous solution can be exploited to obtain metal nanoparticles stable dispersion. Results will be presented here for polystyrene-block-poly(ethylene oxide) solutions. A SANS structural investigation has been performed over different molecular weights of both hydrophilic and hydrophobic block, by varying temperature and concentration of the copolymer. A SAXS characterization of micellar systems containing Pt nanoparticles is reported. (orig.)

  6. Dependence of the solubility of atmospheric oxygen in weakly alkaline aqueous solutions on surfactant concentration

    Chistyakova, G. V.; Koksharov, S. A.; Vladimirova, T. V.


    The solubility of atmospheric oxygen in solutions of surfactants of different natures at 293 K and pH 8 is determined by gas chromatography. It is found that additives of nonionic surfactants decrease the oxygen content in the solution in the premicellar region and increase its solubility in the micellar region. It is shown that, for anionic surfactants, a decrease in the solubility of O2 is observed over the entire concentration range.

  7. Micellization behavior of mixtures of amphiphilic promazine hydrochloride and cationic aniline hydrochloride in aqueous and electrolyte solutions

    Rub, Malik Abdul; Azum, Naved; Asiri, Abdullah M. [King Abdulaziz University, Jeddah (Saudi Arabia); Khan, Farah [Aligarh Muslim University, Aligarh (India); Al-Sehemi, Abdullah G. [Research Center for Advanced Materials Science, King Khalid University, Abha (Saudi Arabia)


    We studied the influence of cationic hydrotrope aniline hydrochloride on the micellization behavior of cationic amphiphilic phenothiazine drug promazine hydrochloride in the presence and absence of 50mmol kg{sup -1} NaCl. The experimental critical micelle concentration (CMC) values came out to be lower than ideal CMC (CMCid) values, signifying attractive interactions between the two components in mixed micelles. NaCl further decreases the CMC of pure PMZ and aniline hydrochloride as well as their mixture due to screening of the electrostatic repulsion among the polar head groups. The bulk properties of solution were examined by using different theoretical models for justification and comparison of results. The micellar mole fraction of aniline hydrochloride (X{sup Rub}{sub ,} X{sup M}{sub 1}, X{sup Rod}{sub 1} and X{sup id}{sub 1}) was evaluated by different proposed models, showing greater contribution of hydrotrope in mixed micelle. The negative values of interaction parameter (β) indicate synergistic interactions and negative values of β further decrease by the addition of salt in mixed systems. From the CMC values as a function of temperature, various thermodynamic properties have been evaluated and discussed in detail.

  8. First Example of a Lipophilic Porphyrin-Cardanol Hybrid Embedded in a Cardanol-Based Micellar Nanodispersion

    Giuseppe Vasapollo


    Full Text Available Cardanol is a natural and renewable organic raw material obtained as the major chemical component by vacuum distillation of cashew nut shell liquid. In this work a new sustainable procedure for producing cardanol-based micellar nanodispersions having an embedded lipophilic porphyrin itself peripherally functionalized with cardanol substituents (porphyrin-cardanol hybrid has been described for the first time. In particular, cardanol acts as the solvent of the cardanol hybrid porphyrin and cholesterol as well as being the main component of the nanodispersions. In this way a “green” micellar nanodispersion, in which a high percentage of the micellar system is derived from renewable “functional” molecules, has been produced.

  9. Surface Attachment of Gold Nanoparticles Guided by Block Copolymer Micellar Films and Its Application in Silicon Etching

    Mingjie Wei


    Full Text Available Patterning metallic nanoparticles on substrate surfaces is important in a number of applications. However, it remains challenging to fabricate such patterned nanoparticles with easily controlled structural parameters, including particle sizes and densities, from simple methods. We report on a new route to directly pattern pre-formed gold nanoparticles with different diameters on block copolymer micellar monolayers coated on silicon substrates. Due to the synergetic effect of complexation and electrostatic interactions between the micellar cores and the gold particles, incubating the copolymer-coated silicon in a gold nanoparticles suspension leads to a monolayer of gold particles attached on the coated silicon. The intermediate micellar film was then removed using oxygen plasma treatment, allowing the direct contact of the gold particles with the Si substrate. We further demonstrate that the gold nanoparticles can serve as catalysts for the localized etching of the silicon substrate, resulting in nanoporous Si with a top layer of straight pores.

  10. Single step purification of lactoperoxidase from whey involving reverse micelles-assisted extraction and its comparison with reverse micellar extraction.

    Nandini, K E; Rastogi, Navin K


    The extraction of lactoperoxidase (EC from whey was studied using single step reverse micelles-assisted extraction and compared with reverse micellar extraction. The reverse micelles-assisted extraction resulted in extraction of contaminating proteins and recovery of lactoperoxidase in the aqueous phase leading to its purification. Reverse micellar extraction at the optimized condition after forward and backward steps resulted in activity recovery of lactoperoxidase and purification factor of the order of 86.60% and 3.25-fold, respectively. Whereas reverse micelles-assisted extraction resulted in higher activity recovery of lactoperoxidase (127.35%) and purification factor (3.39-fold). The sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) profiles also evidenced that higher purification was obtained in reverse micelles-assisted extraction as compared of reverse micellar extracted lactoperoxidase.

  11. The Schwarzschild's Braneworld Solution

    Ovalle, J


    In the context of the Randall-Sundrum braneworld, the minimal geometric deformation approach, which has been successfully used to generate exact interior solutions to Einstein's field equations for static braneworld stars with local and non-local bulk terms, is used to obtain the braneworld version of the Schwarzschild's interior solution. Using this new solution, the behaviour of the Weyl functions is elucidated in terms of the compactness for different stellar distributions.

  12. The Schwarzschild's Braneworld Solution

    Ovalle, J.

    In the context of the Randall-Sundrum braneworld, the minimal geometric deformation approach, which has been successfully used to generate exact interior solutions to Einstein's field equations for static braneworld stars with local and nonlocal bulk terms, is used to obtain the braneworld version of the Schwarzschild's interior solution. Using this new solution, the behavior of the Weyl functions is elucidated in terms of the compactness for different stellar distributions.

  13. Improving Performance in Dense Wireless Spaces by Controlling Bulk Traffic

    Marat Zhanikeev


    Full Text Available The growing number of wireless devices nowadays often results in congestion of wireless channels. In research, this topic is referred to as networking in dense wireless spaces. The literature on the topic shows that the biggest problem is the high number of concurrent sessions to a wireless access point. The obvious solution is to reduce the number of concurrent sessions. This paper proposes a simple method called Bulk-n-Pick which minimizes the number of prolonged concurrent sessions by separating bulk from sync traffic. Aiming at educational applications, under the proposed design, web applications would distribute the main bulk of content once at the beginning of a class and then rely on small messages for real time sync traffic during the class. For realistic performance analysis, this paper first performs real-life experiments with various counts of wireless devices, bulk sizes, and levels of sync intensity. Based on the experiments, this paper shows that the proposed Bulk-n-Pick method outperforms the traditional design even when only two concurrent bulk sessions are allowed. The experiment shows that up to 10 concurrent bulk sessions are feasible in practice. Based on these results, a method for online performance optimization is proposed and validated in a trace-based emulation.

  14. Efficiency enhancements in micellar liquid chromatography through selection of stationary phase and alcohol modifier.

    Thomas, David P; Foley, Joe P


    Micellar liquid chromatography (MLC) remains hindered by reduced chromatographic efficiency compared to reversed phase liquid chromatography (RPLC) using hydro-organic mobile phases. The reduced efficiency has been partially explained by the adsorption of surfactant monomers onto the stationary phase, resulting in a slow mass transfer of the analyte within the interfacial region of the mobile phase and stationary phase. Using an array of 12 columns, the effects of various bonded stationary phases and silica pore sizes, including large-pore short alkyl chain, non-porous, superficially porous and perfluorinated, were evaluated to determine their impact on efficiency in MLC. Additionally, each stationary phase was evaluated using 1-propanol and 1-butanol as separate micellar mobile phase alcohol additives, with several columns also evaluated using 1-pentanol. A simplified equation for calculation of A' and C' terms from reduced plate height (h) versus reduced velocity (nu) plots was used to compare the efficiency data obtained with the different columns and mobile phases. Analyte diffusion coefficients needed for the h versus nu plots were determined by the Taylor-Aris dispersion technique. The use of a short alkyl chain, wide-pore silica column, specifically, Nucleosil C4, 1000A, was shown to have the most improved efficiency when using a micellar mobile phase compared to a hydro-organic mobile phase for all columns evaluated. The use of 1-propanol was also shown to provide improved efficiency over 1-butanol or 1-pentanol in most cases. In a second series of experiments, column temperatures were varied from 40 to 70 degrees C to determine the effect of temperature on efficiency for a subset of the stationary phases. Efficiency improvements ranging from 9% for a Chromegabond C8 column to 58% for a Zorbax ODS column were observed over the temperature range. Based on these observed improvements, higher column temperatures may often yield significant gains in column

  15. Removal of phenol from synthetic waste water using Gemini micellar-enhanced ultrafiltration (GMEUF)

    Zhang, Wenxiang [MOE Key Laboratory of Regional Energy and Environmental Systems Optimization, Resources and Environmental Research Academy, North China Electric Power University, Beijing 102206 (China); Huang, Guohe, E-mail: [MOE Key Laboratory of Regional Energy and Environmental Systems Optimization, Resources and Environmental Research Academy, North China Electric Power University, Beijing 102206 (China); Wei, Jia [Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan, Canada S4S 0A2 (Canada); Li, Huiqin; Zheng, Rubing; Zhou, Ya [MOE Key Laboratory of Regional Energy and Environmental Systems Optimization, Resources and Environmental Research Academy, North China Electric Power University, Beijing 102206 (China)


    Highlights: Black-Right-Pointing-Pointer Gemini surfactant micellar enhanced ultrafiltration was used to remove phenol. Black-Right-Pointing-Pointer The effect of different hydrophilic head groups of surfactant was analyzed. Black-Right-Pointing-Pointer SEM, ATR-FTIR and mercury porosimeter were applied to elucidate membrane fouling. Black-Right-Pointing-Pointer Gemini surfactant had superior performance in comparing with conventional surfactant. - Abstract: Comprehensive studies were conducted on the phenol wastewater ultrafiltration (UF) with the help of various concentrations of cationic Gemini surfactant (N1-dodecyl-N1,N1,N2,N2-tetramethyl-N2-octylethane-1,2-diaminium bromide, CG), conventional cationic surfactant (dodecyl trimethyl ammonium bromide, DTAB), anionic surfactant (sodium dodecyl sulfate, SDS) and nonionic surfactant ((dodecyloxy)polyethoxyethanol, Brij35). A flat sheet module with polyethersulfone (PES) membrane was employed in this investigation. The effects of feed concentration (phenol and surfactant) on the retention of phenol and surfactant, permeate flux and membrane fouling by micelles were evaluated. The distribution coefficient (D), the loading of the micelles (L{sub m}) and the equilibrium distribution constant (K) were also utilized to estimate the micellar-enhanced ultrafiltration ability for phenol. Scanning electron microscope (SEM), Fourier transform infrared spectrometer with attenuated total reflectance accessory (ATR-FTIR) and mercury porosimeter were applied to analyze membrane surface morphology, membrane material characteristics and membrane fouling for the original and fouled membranes. Based on the above analysis, the performance of the selected Gemini surfactant was proved superior in the following aspects: retention of phenol/surfactant (peak value is 95.8% for phenol retention), permeate flux and membrane fouling with respect to other conventional surfactants possessing equal alkyl chain length. These results demonstrated

  16. DNA packaging induced by micellar aggregates: a novel in vitro DNA condensation system.

    Ghirlando, R; Wachtel, E J; Arad, T; Minsky, A


    Evidence for a conceptually novel DNA packaging process is presented. X-ray scattering, electron microscopy, and circular dichroism measurements indicate that in the presence of positively charged micellar aggregates and flexible anionic polymers, such as negatively charged polypeptides or single-stranded RNA species, a complex is formed in which DNA molecules are partially embedded within a micellar scaffold and partially condensed into highly packed chiral structures. Based on studies of micelle-DNA and micelle-flexible anionic polymer systems, as well as on the known effects of a high charge density upon the micellar organization, a DNA packaging model is proposed. According to this model, the DNA induces the elongation of the micelles into rodlike aggregates, forming a closely packed matrix in which the DNA molecules are immobilized. In contrast, the flexible anionic polymers stabilize clusters of spherical micelles which are proposed to effect a capping of the rodlike micelles, thus arresting their elongation and creating surfactant-free segments of the DNA that are able to converge and collapse. Thus, unlike other in vitro DNA packaging systems, in which condensation follows encounters between charge-neutralized DNA molecules, a prepackaging phase where the DNA is immobilized within a matrix is proposed in this case. Cellular and nuclear membranes have been implicated in DNA packaging processes in vivo, and negatively charged polyelectrolytes were shown to be involved in the processes. These observations, combined with the basic tenets of the DNA condensation system described here, allow for the progression to the study of more elaborate model systems and thus might lead to insights into the nature and roles of the intricate in vivo DNA-membrane complexes.

  17. Micellar bolaform and omega-carboxylate phosphatidylcholines as substrates for phospholipases.

    Lewis, K A; Soltys, C E; Yu, K; Roberts, M F


    A series of mixed-chain diacyl-PCs which contain an omega-COOH on the sn-2 chain [1-Cx-2-Cy-(COOH)-PC] and bolaform (1-Cx-2,2'-Cy-1'-Cx-PC) phosphatidylcholines were synthesized and examined as substrates for phospholipase A2 (Naja naja naja) and C (Bacillus cereus). There is very little detectable phospholipase A2 activity toward pure micellar 1-acyl-2-acyl-(omega-COOH) species. In addition, when these same omega-COOH species are present at concentrations above their CMCs, they are potent inhibitors of phospholipase A2 hydrolysis of other micellar lipids. In contrast, phospholipase C hydrolysis of the same 1-acyl-2-acyl-omega-COOH)-PC species proceeds with rates comparable to that of diheptanoyl-PC. The bolaform lipids, which are tethered through a common sn-2 acyl chain, (e.g., 1-C8-2,2'-C12-1'-C8-PC) display quite different kinetic results. Under limiting Ca2+ conditions (100 microM) all the available sn-2 acyl bonds of the dimer are hydrolyzed. However, at high Ca2+ concentrations (1-10 mM) the reaction curves have a biphasic nature, characterized by an initial burst of activity followed by much slower rate. This is consistent with only the micellar 1-acyl-2-acyl-(omega-COOH)-PC produced in situ from phospholipase A2 hydrolysis of the dimer acting as an inhibitor of subsequent phospholipase A2 activity. Phospholipase C hydrolysis of the PC dimer and the sn-2 omega-COOH PC is rapid, with both available glycerophosphate groups cleaved at presumably the same rate. These results are discussed in terms of the unique physical properties (as measured by NMR and fluorescence experiments) of these phospholipids.

  18. Influence of salts on the coexistence curve and protein partitioning in nonionic aqueous two-phase micellar systems

    A. M. Lopes


    Full Text Available Aqueous two-phase micellar systems (ATPMS can be exploited in separation science for the extraction/purification of desired biomolecules. Prior to phase separation the surfactant solution reaches a cloud point temperature, which is influenced by the presence of electrolytes. In this work, we provide an investigation on the cloud point behavior of the nonionic surfactant C10E4 in the presence of NaCl, Li2SO4 and KI. We also investigated the salts' influence on a model protein partitioning. NaCl and Li2SO4 promoted a depression of the cloud point. The order of salts and the concentration that decreased the cloud point was: Li2SO4 0.5 M > NaCl 0.5 M ≈ Li2SO4 0.2 M. On the other hand, 0.5 M KI dislocated the curve to higher cloud point values. For our model protein, glucose-6-phosphate dehydrogenase (G6PD, partitioning experiments with 0.5 M NaCl or 0.2 M Li2SO4 at 13.85 ºC showed similar results, with K G6PD ~ 0.46. The lowest partition coefficient was obtained in the presence of 0.5 M KI (K G6PD = 0.12, with major recovery of the enzyme in the micelle-dilute phase (%Recovery = 90%. Our results show that choosing the correct salt to add to ATPMS may be useful to attain the desired partitioning conditions at more extreme temperatures. Furthermore, this system can be effective to separate a target biomolecule from fermented broth contaminants.

  19. Micellar-polymer joint demonstration project, Wilmington Field, California. Third annual report, June 1978-July 1979

    Staub, H.L.


    The micellar-polymer demonstration project to be conducted - through the design phase - in the HXa sand of Wilmington Field is proceeding satisfactorily but has fallen behind schedule. Results of some core floods were unsatisfactory. The recovery efficiencies were much lower than those achieved using the laboratory sample cosurfactant final design slug. Nearly six months of reformulating and additional core testing were required to finally achieve satisfactory laboratory results. Other laboratory tests were performed to optimize the polymer buffer for size and concentration. Other reservoir and reservoir fluid problems have been encountered in production and injection operations during the pre-flush period.

  20. Application of micellar electrokinetic capillary chromatography for routine analysis of different materials

    Injac Rade


    Full Text Available Micellar electrokinetic capillary chromatography (MEKC has become a popular mode among the several capillary electro-migration techniques. Most drug analysis can be performed by using MEKC because of its wide applicability. Separation of very complex mixtures, determination of drugs in the biological materials, etc., can be successfully achieved by MEKC. This review surveys typical applications of MEKC analysis. Recent advances in MEKC, especially with solid-phase extraction and large-volume sample stacking, are described. Modes of electrokinetic chromatography including MEKC, a separation theory of MEKC, environmental friendly analysis, and selectivity manipulation in MEKC are also briefly mentioned.

  1. Features of the micellar solubility of metal-containing surfactants in hydrocarbons

    Fedorov, A.B.; Zdobnova, O.L.; Zaichenko, L.P.; Proskuryakov, V.A.


    Metal-containing surfactants (SF) are now widely used as different additives to oils and fuels. The micellar solubility of a series of individual metal-containing SF and widely used additives was investigated as a function of the structure and polarity of the additive, type of hydrocarbon solvent, and presence of water in this study. Individual decyl benzenesulfonates (DBS) of different metals and samples of surfactant additives for oils of the alkylphenolate (VNII NP-370), sulfonate (PMSA, PMSya, S-150, S-300, Lubrizol 58, SB-3, PMSya (bariated), alkylsalicylate (ASK, MASK), and dialkyldithiophosphate (DF-11, VNII NP-354) types were investigated.

  2. Monte Carlo simulation for the micellar behavior of amphiphilic comb-like copolymers

    冯莺; 隋家贤; 赵季若; 陈欣方


    Micellar behaviors in 2D and 3D lattice models for amphiphilic comb-like copolymers in water phase and in water/oil mixtures were simulated. A dynamical algorithm together with chain reptation movements was used in the simulation. Three-dimension displaying program was pro-grammed and free energy was estimated by Monte Carlo technigue. The results demonstrate that reduced interaction energy influences morphological structures of micelle and emulsion ??stems greatly; 3D simulation showing can display more direct images of morphological structures; the amphiphilic comb-like polymers with a hydrophobic main chain and hydrophilic side chains have lower energy in water than in oil.

  3. Effect of acidity of drugs on the prediction of human oral absorption by biopartitioning micellar chromatography


    Biopartitioning micellar chromatography(BMC)is a potentially high throughput and low cost alternative for in vitro prediction of drug absorption,which can mimic the drug partitioning process in biological systems.In this paper,a data set of 56 compounds representing acidic,basic,neutral and amphoteric drugs from various structure classes with human oral absorption(HOA)data available were employed to show the effect of acidity of drugs in oral absorption prediction.HOA was reciprocally correlated to the nega...

  4. Quantitative determination of amygdalin epimers by cyclodextrin-modified micellar electrokinetic chromatography.

    Isoza, T; Matano, Y; Yamamoto, K; Kosaka, N; Tani, T


    A new capillary electrophoresis method was developed for the quantitative determination of the amygdalin epimers, amygdalin and neoamygdalin, which are biologically significant constituents in the crude drugs, namely Persicae Semen and Armeniacae Semen. The effects of surfactants, additives and other analytical parameters were studied. As a result, the resolution of two epimers was performed by cyclodextrin-modified micellar electrokinetic chromatography with a buffer containing alpha-cyclodextrin and sodium deoxycholate. By the application of this method, a simple, fast and simultaneous quantitative determinations of amygdalin epimers in the crude drugs (Persicae Semen and Armeniacae Semen) and the Chinese herbal prescriptions (Keishi-bukuryo-gan and Mao-to) were achieved.

  5. Effect of KBr on the micellar properties of CTAB


    The effect of KBr on the size, shape and microviscosity of CTAB micelles has been investigated by means of laser light scattering (LLS), 1H NMR measurements and fluorescence probe. The data obtained from the various techniques are quantitatively in agreement. The Rh of micelles in 0.01 mol.L-1 CTAB solution increases from 3.5 nm to 43 nm and Rg increases to 89 nm with addition of KBr salt. In this process, both the microviscosity and molecular weight of micelles Mw have noticeable increases, too. The rod-like micelles are formed at 0.1 mol.L-1 KBr and the worm-like micelles are formed at above 0.2 mol.L-1 KBr.

  6. Pinch-off of rods by bulk diffusion

    Aagesen, L.K.; Johnson, A.E.; Fife, J.L.;


    The morphology of a rod embedded in a matrix undergoing pinching by interfacial-energy-driven bulk diffusion is determined near the point of pinching. We find a self-similar solution that gives a unique temporal power law and interfacial shape prior to pinching and self-similar solutions after pi......, and thus provide estimates of the time required for capillarity-driven break-up of microstructures from the detachment of secondary dendrite arms to polymer blends....

  7. Looking for a bulk point

    Maldacena, Juan; Zhiboedov, Alexander


    We consider Lorentzian correlators of local operators. In perturbation theory, singularities occur when we can draw a position-space Landau diagram with null lines. In theories with gravity duals, we can also draw Landau diagrams in the bulk. We argue that certain singularities can arise only from bulk diagrams, not from boundary diagrams. As has been previously observed, these singularities are a clear diagnostic of bulk locality. We analyze some properties of these perturbative singularities and discuss their relation to the OPE and the dimensions of double-trace operators. In the exact nonperturbative theory, we expect no singularity at these locations. We prove this statement in 1+1 dimensions by CFT methods.

  8. Bulk nano-crystalline alloys

    T.-S. Chin; Lin, C. Y.; Lee, M.C.; R.T. Huang; S. M. Huang


    Bulk metallic glasses (BMGs) Fe–B–Y–Nb–Cu, 2 mm in diameter, were successfully annealed to become bulk nano-crystalline alloys (BNCAs) with α-Fe crystallite 11–13 nm in size. A ‘crystallization-and-stop’ model was proposed to explain this behavior. Following this model, alloy-design criteria were elucidated and confirmed successful on another Fe-based BMG Fe–B–Si–Nb–Cu, 1 mm in diameter, with crystallite sizes 10–40 nm. It was concluded that BNCAs can be designed in general by the proposed cr...

  9. Growth and Characterization of Bulk GeSi Solid Solutions

    Ritter, Timothy M.


    In this work we have grown and characterized several GeSi samples in order to investigate the effects that Silicon concentration, applied magnetic field, and liquid encapsulation have on crystalline quality. Characterization techniques include NDIC microscopy and microprobe spectroscopy. Two samples were grown with a Silicon concentration of approximately 3% and are compared to previous growths having a Silicon fraction of approximately 5%. Growth conditions for one of these samples was varied with the presence of an external applied magnetic field to investigate the possibility of magnetic field damping. A comparison between these two ingots, and with previously grown material, revealed no clear improvement in sample crystalline quality. Three additional samples were grown using a CaCl2 liquid encapsulation technique that produced GeSi material with improved structural quality over previous samples. Comparisons to prior non-encapsulation grown material, details of our methodology, and suggestions for further improvements are discussed.

  10. Micellarization and intestinal cell uptake of beta-carotene and lutein from drumstick (Moringa oleifera) leaves.

    Pullakhandam, Raghu; Failla, Mark L


    The leaves and pods of the drumstick tree are used as food and medicine in some Asian and African countries. Although relatively high concentrations of beta-carotene and lutein have been reported in the leaves, the bioavailability of these carotenoids from this source is unknown. We have analyzed the digestive stability and bioaccessibility of carotenoids in fresh and lyophilized drumstick leaves using the coupled in vitro digestion/Caco-2 cell model. Beta-carotene and lutein were stable during simulated gastric and small intestinal digestion. The efficiency of micellarization of lutein during the small intestinal phase of digestion exceeded that of beta-carotene. Addition of peanut oil (5% vol/wt) to the test food increased micellarization of both carotenoids, and particularly beta-carotene. Caco-2 cells accumulated beta-carotene and lutein from micelles generated during digestion of drumstick leaves in a time- and concentration-dependent manner. The relatively high bioaccessibility of beta-carotene and lutein from drumstick leaves ingested with oil supports the potential use of this plant food for improving vitamin A nutrition and perhaps delaying the onset of some degenerative diseases such as cataracts.

  11. A micellar liquid chromatography method for the quantification of abacavir, lamivudine and raltegravir in plasma.

    Peris-Vicente, Juan; Villareal-Traver, Mónica; Casas-Breva, Inmaculada; Carda-Broch, Samuel; Esteve-Romero, Josep


    An analytical methodology based on micellar liquid chromatography has been developed to quantify abacavir, lamivudine and raltegravir in plasma. These three antiretroviral drugs are prescribed as a set in highly active antiretroviral therapy to acquired immunodeficiency syndrome patients. The experimental procedure consists in the dilution of the sample in micellar media, followed by filtration and, without cleanup step. The analytes were resolved in less than 30min using a mobile phase of 0.05M sodium dodecyl sulphate at pH 7, running at 1mLmin(-1) under isocratic mode at room temperature through a C18 column (125×4.6mm, 5μm particle size). The UV detection wavelength was set at 260nm. The method was successfully validated following the requirements of ICH guidelines in terms of: linear range (0.25-2.5μgmL(-1)), linearity (r(2)>0.990), intra- and interday precision (<6.8%) and accuracy (92.3-104.2%) and robustness (<7.1%). To the extent of our knowledge, this is the first published method to quantify these three drugs in plasma. Several blood samples from AIDS patients taking this HAART set provided by a local hospital were analyzed with satisfactory results.

  12. A concise review of applications of micellar liquid chromatography to study biologically active compounds.

    Stępnik, Katarzyna E


    The features of micellar systems are outstanding compared with conventional RP-LC ones. Therefore, the unique properties of micellar chromatography (MLC) are widely recognized. In this short review the applicability of MLC as an in vitro method for the determination of biological activity is discussed. For this purpose many specific examples of MLC applications supported by the theoretical backgrounds of the cited biological activity areas as well as the factors affecting them are presented. This study collects and organizes the most important references of bioactivity determination which were created both recently and in the past, using the MLC method. Although there are many papers on the MLC there is no literature review focused particularly on its applicability in the study of biological activity of various compounds. This work can be treated as a significant review of so far published papers which particularly emphasizes the importance of MLC as in vitro method for determination of bioactivity of different compounds. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Removal of phenol from synthetic waste water using Gemini micellar-enhanced ultrafiltration (GMEUF).

    Zhang, Wenxiang; Huang, Guohe; Wei, Jia; Li, Huiqin; Zheng, Rubing; Zhou, Ya


    Comprehensive studies were conducted on the phenol wastewater ultrafiltration (UF) with the help of various concentrations of cationic Gemini surfactant (N1-dodecyl-N1,N1,N2,N2-tetramethyl-N2-octylethane-1,2-diaminium bromide, CG), conventional cationic surfactant (dodecyl trimethyl ammonium bromide, DTAB), anionic surfactant (sodium dodecyl sulfate, SDS) and nonionic surfactant ((dodecyloxy)polyethoxyethanol, Brij35). A flat sheet module with polyethersulfone (PES) membrane was employed in this investigation. The effects of feed concentration (phenol and surfactant) on the retention of phenol and surfactant, permeate flux and membrane fouling by micelles were evaluated. The distribution coefficient (D), the loading of the micelles (L(m)) and the equilibrium distribution constant (K) were also utilized to estimate the micellar-enhanced ultrafiltration ability for phenol. Scanning electron microscope (SEM), Fourier transform infrared spectrometer with attenuated total reflectance accessory (ATR-FTIR) and mercury porosimeter were applied to analyze membrane surface morphology, membrane material characteristics and membrane fouling for the original and fouled membranes. Based on the above analysis, the performance of the selected Gemini surfactant was proved superior in the following aspects: retention of phenol/surfactant (peak value is 95.8% for phenol retention), permeate flux and membrane fouling with respect to other conventional surfactants possessing equal alkyl chain length. These results demonstrated that CG surfactant with exceptional structure has favorable prospects in the treatment of phenol wastewater by the micellar-enhanced ultrafiltration. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Inhibitory effect of post-micellar SDS concentration on thermal aggregation and activity of papain.

    Qadeer, A; Zaman, M; Khan, R H


    Papain, a cysteine protease isolated from the latex of Carica papaya, is known to undergo irreversible thermal unfolding. In this study, we found that thermal unfolding of papain is accompanied by a simultaneous self-assembly process where this protein is observed to aggregate above 50°C. The extent of aggregation increased with increasing protein concentration from 3-40 µM. The aggregation was confirmed by enhanced turbidity, light scattering intensity, 1-anilino-8-naphthalene sulfonate (ANS) fluorescence intensity and by transmission electron microscopy. Furthermore, we noted that post-micellar concentration of sodium dodecyl sulfate (SDS) remarkably suppresses the thermal aggregation of papain. Far-UV circular dichroism studies revealed that SDS significantly enhances α-helical content of the protein and also tends to prevent its unfolding, and thus inhibits aggregation. Additionally, papain showed maximal activity at 65°C in neutral buffer. However, in the presence of 6 mM SDS (above its critical micellar concentration), the enzyme lost activity by about 10-fold. Thus, promoting the helical propensity of the protein does not appear to be a suitable strategy to overcome the aggregation related problems of industrially important proteins such as papain, which are not only required to be protected against aggregation but also need to remain functionally active in the presence of aggregation inhibitors.

  15. Chromatographic performance of large-pore versus small-pore columns in micellar liquid chromatography.

    McCormick, Timothy J; Foley, Joe P; Lloyd, David K


    Micellar liquid chromatography (MLC) is useful in bioanalysis because proteinaceous biofluids can be directly injected onto the column. The technique has been limited in part because of the apparently weak eluting power of micellar mobile phases. It has recently been shown [Anal. Chem. 72 (2000) 294] that this may be overcome by the use of large pore size stationary phases. In this work, large-pore (1000 A) C(18) stationary phases were evaluated relative to conventional small-pore (100 A) C(18) stationary phases for the direct sample injection of drugs in plasma. Furthermore, the difference between the large and small pore phases in gradient elution separations of mixtures of widely varying hydrophobicities was investigated. Large-pore stationary phases were found to be very effective for eluting moderately to highly hydrophobic compounds such as ibuprofen, crotamiton, propranolol, and dodecanophenone, which were highly retained on the small-pore stationary phases typically used in MLC. The advantages of direct introduction of biological samples (drugs in plasma) and rapid column re-equilibration after gradient elution in MLC were maintained with large-pore phases. Finally, recoveries, precision, linearity, and detection limits for the determination of quinidine and DPC 961 in spiked bovine plasma were somewhat better using MLC with wide pore phases.

  16. Use of micellar mobile phases for the chromatographic determination of clorazepate, diazepam, and diltiazem in pharmaceuticals.

    Gil-Agustí, M; Carda-Broch, S; García-Alvarez-Coque, M C; Esteve-Romero, J


    An ODS-2 column, a micellar mobile phase of high elution strength containing 0.1M sodium dodecyl sulfate and 3% (v/v) butanol, and ultraviolet detection at 230 nm are used for the determination of either of two benzodiazepines (clorazepate and diazepam) and a benzothiazepine (diltiazem) in pharmaceuticals. The procedure is shown to be competitive against conventional chromatography with methanol-water mobile phases, especially for diltiazem. The composition of the micellar mobile phase is selected using a predictive strategy based on an accurate retention model and assisted by computer simulation. Calibration graphs are linear at least in the 2.5 to 20 microg/mL, 4 to 20 microg/mL, and 5 to 40 microg/mL ranges for clorazepate, diazepam, and diltiazem, respectively. The intra- and interday repeatabilities (%) are clorazepate (1.7, 5.2), diazepam (0.43, 3.7), and diltiazem (0.36, 3.1). Limits of detection are well below the concentrations of the drugs found in the commercial pharmaceutical preparations analyzed. The drug contents evaluated with the proposed procedure are compared with the declared contents given by the manufacturers. The achieved percentages of label claim are usually between 95 and 104%.

  17. Magnetic Properties of FePt Nanoparticles Prepared by a Micellar Method

    Gao Y


    Full Text Available Abstract FePt nanoparticles with average size of 9 nm were synthesized using a diblock polymer micellar method combined with plasma treatment. To prevent from oxidation under ambient conditions, immediately after plasma treatment, the FePt nanoparticle arrays were in situ transferred into the film-growth chamber where they were covered by an SiO2 overlayer. A nearly complete transformation of L10 FePt was achieved for samples annealed at temperatures above 700 °C. The well control on the FePt stoichiometry and avoidance from surface oxidation largely enhanced the coercivity, and a value as high as 10 kOe was obtained in this study. An evaluation of magnetic interactions was made using the so-called isothermal remanence (IRM and dc-demagnetization (DCD remanence curves and Kelly–Henkel plots (ΔM measurement. The ΔM measurement reveals that the resultant FePt nanoparticles exhibit a rather weak interparticle dipolar coupling, and the absence of interparticle exchange interaction suggests no significant particle agglomeration occurred during the post-annealing. Additionally, a slight parallel magnetic anisotropy was also observed. The results indicate the micellar method has a high potential in preparing FePt nanoparticle arrays used for ultrahigh density recording media.

  18. Bending energetics of tablet-shaped micelles: a novel approach to rationalize micellar systems.

    Bergström, L Magnus


    A novel approach to rationalize micellar systems is expounded in which the structural behavior of tablet-shaped micelles is theoretically investigated as a function of the three bending elasticity constants: spontaneous curvature (H0), bending rigidity (k(c)), and saddle-splay constant (k(c)). As a result, experimentally accessible micellar properties, such as aggregation number, length-to-width ratio, and polydispersity, may be related to the different bending elasticity constants. It is demonstrated that discrete micelles or connected cylinders form when H0 > 1/4xi, where xi is the thickness of a surfactant monolayer, whereas various bilayer structures are expected to predominate when H0 bending rigidity is lowered, approaching the critical point at k(c) = 0, whereas monodisperse globular micelles (small length-to-width ratio) are expected to be present at large k(c) values. The spontaneous curvature mainly determines the width of tablet-shaped or ribbonlike micelles, or the radius of disklike micelles, whereas the saddle-splay constant primarily influences the size but not the shape of the micelles.

  19. Micellar cathodes from self-assembled nitroxide-containing block copolymers in battery electrolytes.

    Hauffman, Guillaume; Maguin, Quentin; Bourgeois, Jean-Pierre; Vlad, Alexandru; Gohy, Jean-François


    This contribution describes the synthesis of block copolymers containing electrochemically active blocks, their micellization, and finally their use as micellar cathodes in a lithium battery. The self-assembly of the synthesized poly(styrene)-block-poly(2,2,6,6-tetramethylpiperidinyloxy-4-yl methacrylate) (PS-b-PTMA) diblock copolymers is realized in a typical battery electrolyte made of 1 m lithium trifluoromethanesulfonate dissolved in a mixture of ethylene carbonate/diethyl carbonate/dimethyl carbonate(1:1:1, in volume). Dynamic light scattering and atomic force micro-scopy indicate the formation of well-defined spherical micelles with a PS core and a PTMA corona. The electrochemical properties of those micelles are further investigated. Cyclic voltammograms show a reversible redox reaction at 3.6 V (vs Li(+) /Li). The charge/discharge profiles indicate a flat and reversible plateau around 3.6 V (vs Li(+) /Li). Finally, the cycling performances of the micellar cathodes are demonstrated. Such self-assembled block copolymers open new opportunities for nanostructured organic radical batteries. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Longitudinal bulk acoustic mass sensor

    Hales, Jan Harry; Teva, Jordi; Boisen, Anja


    A polycrystalline silicon longitudinal bulk acoustic cantilever is fabricated and operated in air at 51 MHz. A mass sensitivity of 100 Hz/fg (1 fg=10(-15) g) is obtained from the preliminary experiments where a minute mass is deposited on the device by means of focused ion beam. The total noise...

  1. Bulk viscosity and deflationary universes

    Lima, J A S; Waga, I


    We analyze the conditions that make possible the description of entropy generation in the new inflationary model by means of a nearequilibrium process. We show that there are situations in which the bulk viscosity cannot describe particle production during the coherent field oscillations phase.

  2. Capillaries modified by noncovalent anionic polymer adsorption for capillary zone electrophoresis, micellar electrokinetic capillary chromatography and capillary electrophoresis mass spectrometry

    Bendahl, L; Hansen, S H; Gammelgaard, Bente


    A simple coating procedure for generation of a high and pH-independent electroosmotic flow in capillary zone electrophoresis (CZE) and micellar electrokinetic capillary chromatography (MEKC) is described. The bilayer coating was formed by noncovalent adsorption of the ionic polymers Polybrene...

  3. Equipment for the Characterization of Synthetic Bio-hybrid Polymers and Micellar Nanoparticles for Stimuli Responsive Materials


    reactions. These materials couple together synthetic polymers with biopolymers including DNA, peptides and proteins. The project therefore requires a... Synthetic Bio-hybrid Polymers and Micellar Nanoparticles for Stimuli Responsive Materials. The views, opinions and/or findings contained in this...this instrument in terms of fully characterizing biomolecule interactions occurring at the interface of semi- synthetic biopolymer -based nano materials

  4. Isobaric Heat Capacities of Micelle Formation by 1-Methyl-4-n-dodecylpyridinium Iodide in Aqueous Solution; Effects of Added Urea

    Posthumus, Willem; Engberts, Jan B.F.N.; Bijma, Koos; Blandamer, Michael J.


    Over the temperature range from 303 to 333 K, the enthalpy of micelle formation by 1-methyl-4-n-dodecylpyridinium iodide in aqueous solution is exothermic, characterised by an isobaric heat capacity of micelle formation equal to -439 ± 10 J K-1 mol-1. At 303 K, the critical micellar concentration (2

  5. Thermophoresis and thermoelectricity in surfactant solutions.

    Vigolo, Daniele; Buzzaccaro, Stefano; Piazza, Roberto


    In electrolyte solutions, the differential migration of the ionic species induced by the presence of a thermal gradient leads to the buildup of a steady-state electric field. Similarly to what happens for the Seebeck effect in solids, the sample behaves therefore as a thermocell. Here, we provide clear evidence for the presence of thermoelectric fields in liquids by detecting and quantifying their strong effects on colloid thermophoresis. Specifically, by contrasting the effects of the addition of NaCl or NaOH on the Soret effect of micellar solutions of sodium dodecyl sulfate, we show that the presence of highly thermally responsive ions such as OH(-) may easily lead to the reversal of particle motion. Our experimental results can be quantitatively explained by a simple model that takes into account interparticle interactions and explicitly includes the micellar electrophoretic transport driven by such a thermally generated electric field. The chance of carefully controlling colloid thermophoresis by tuning the solvent electrolyte composition may prove to be very useful in microfluidic applications and field-flow fractionation methods.

  6. Multicompartment micellar aggregates of linear ABC amphiphiles in solvents selective for the C block: A Monte Carlo simulation

    Zhu, Yutian


    In the current study, we applied the Monte Carlo method to study the self-assembly of linear ABC amphiphiles composed of two solvophobic A and B blocks and a solvophilic C block. A great number of multicompartment micelles are discovered from the simulations and the detailed phase diagrams for the ABC amphiphiles with different block lengths are obtained. The simulation results reveal that the micellar structure is largely controlled by block length, solvent quality, and incompatibility between the different block types. When the B block is longer than or as same as the terminal A block, a rich variety of micellar structures can be formed from ABC amphiphiles. By adjusting the solvent quality or incompatibility between the different block types, multiple morphological transitions are observed. These morphological sequences are well explained and consistent with all the previous experimental and theoretical studies. Despite the complexity of the micellar structures and morphological transitions observed for the self-assembly of ABC amphiphiles, two important common features of the phase behavior are obtained. In general, the micellar structures obtained in the current study can be divided into zero-dimensional (sphere-like structures, including bumpy-surfaced spheres and sphere-on-sphere structures), one-dimensional (cylinder-like structures, including rod and ring structures), two-dimensional (layer-like structures, including disk, lamella and worm-like and hamburger structures) and three-dimensional (vesicle) structures. It is found that the micellar structures transform from low- to high- dimensional structures when the solvent quality for the solvophobic blocks is decreased. In contrast, the micellar structures transform from high- to low-dimensional structures as the incompatibility between different block types increases. Furthermore, several novel micellar structures, such as the CBABC five-layer vesicle, hamburger, CBA three-layer ring, wormlike shape with

  7. Bulk nanocrystalline Al prepared by cryomilling


    Bulk nanocrystalline Al was fabricated by mechanically milling at cryogenic temperature (cryomilling) and then by hot pressing in vacuum. By using X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), the microstructure evolution of the material during cryomilling and consolidation was investigated. With increasing the milling time, the grain size decreased sharply and reduced to 42 nm when cryomilled for 12 h. The grains had grown up, and the columnar grain was formed under the hot pressing and extrusion compared with the cryomilled powders. The grain size of as-extruded specimen was approximately 300-500 nm. The reason of high thermal stability of this bulk was attributed primarily to the Zener pinning from the grain boundary of the AlN arising from cryomilling and the solute drag of the impurity. Tensile tests show that the strength of nanocrystalline Al is enhanced with decreasing grain size. The ultimate tensile strength and tensile elongation were 173 MPa and 17.5%, respectively. It appears that the measured high strength in the cryomilled Al is related to a grain-size effect, dispersion strengthening, and dislocation strengthening.

  8. Zinc uptake by brain cells: `surface' versus `bulk'

    DeStasio, Gelsomina; Pochon, S.; Lorusso, G. F.; Tonner, B. P.; Mercanti, Delio; Ciotti, M. Teresa; Oddo, Nino; Galli, Paolo; Perfetti, P.; Margaritondo, G.


    The uptake of zinc by cerebellar rat cultures upon exposure to 0022-3727/29/8/023/img12 solutions was comparatively investigated using two well known condensed matter physics techniques: synchrotron photoelectron spectromicroscopy and inductively coupled plasma atomic emission spectroscopy. The objective was to apply a strategy - well known in surface physics - to distinguish between `surface' and `bulk' phenomena. The results clearly demonstrate that exposure significantly enhances the bulk (cell cytoplasm) Zn concentration with respect to the physiological level, whereas the effect on the surface (cell membrane) is negligible.

  9. BRST Hamiltonian for Bulk-Quantized Gauge Theory

    Rutenburg, A


    By treating the bulk-quantized Yang-Mills theory as a constrained system we obtain a consistent gauge-fixed BRST hamiltonian in the minimal sector. This provides an independent derivation of the 5-d lagrangian bulk action. The ground state is independent of the (anti)ghosts and is interpreted as the solution of the Fokker-Planck equation, thus establishing a direct connection to the Fokker-Planck hamiltonian. The vacuum state correlators are shown to be in agreement with correlators in lagrangian 5-d formulation. It is verified that the complete propagators remain parabolic in one-loop dimensional regularization.

  10. Cosmic bulk viscosity through backreaction

    Barbosa, Rodrigo M; Zimdahl, Winfried; Piattella, Oliver F


    We consider an effective viscous pressure as the result of a backreaction of inhomogeneities within Buchert's formalism. The use of an effective metric with a time-dependent curvature radius allows us to calculate the luminosity distance of the backreaction model. This quantity is different from its counterpart for a "conventional" spatially flat bulk viscous fluid universe. Both expressions are tested against the SNIa data of the Union2.1 sample with only marginally different results.

  11. Bulk Superconductors in Mobile Application

    Werfel, F. N.; Delor, U. Floegel-; Rothfeld, R.; Riedel, T.; Wippich, D.; Goebel, B.; Schirrmeister, P.

    We investigate and review concepts of multi - seeded REBCO bulk superconductors in mobile application. ATZ's compact HTS bulk magnets can trap routinely 1 T@77 K. Except of magnetization, flux creep and hysteresis, industrial - like properties as compactness, power density, and robustness are of major device interest if mobility and light-weight construction is in focus. For mobile application in levitated trains or demonstrator magnets we examine the performance of on-board cryogenics either by LN2 or cryo-cooler application. The mechanical, electric and thermodynamical requirements of compact vacuum cryostats for Maglev train operation were studied systematically. More than 30 units are manufactured and tested. The attractive load to weight ratio is more than 10 and favours group module device constructions up to 5 t load on permanent magnet (PM) track. A transportable and compact YBCO bulk magnet cooled with in-situ 4 Watt Stirling cryo-cooler for 50 - 80 K operation is investigated. Low cooling power and effective HTS cold mass drives the system construction to a minimum - thermal loss and light-weight design.

  12. Differentiation between naproxen, naproxen-protein conjugates, and naproxen-lysine in plasma via micellar electrokinetic capillary chromatography : a new approach in the bioanalysis of drug targeting preparations

    Albrecht, C.; Reichen, J; Visser, Jan; Meijer, D.K F; Thormann, W


    Pharmacotherapy through the targeting of drugs is a promising new approach that requires adequate analytical methods capable of differentiating between the free drug the drug carrier, and metabolites. Using micellar electrokinetic capillary chromatography (MECC), we report the separation of naproxen

  13. Effect of tartarate and citrate based food additives on the micellar properties of sodium dodecylsulfate for prospective use as food emulsifier.

    Banipal, Tarlok S; Kaur, Harjinder; Kaur, Amanpreet; Banipal, Parampaul K


    Citrate and tartarate based food preservatives can be used to enhance the emulsifying properties of sodium dodecylsulfate (SDS) based micellar system and thus making it appropriate for food applications. Exploration of interactions between the two species is the key constraint for execution of such ideas. In this work various micellar and thermodynamic parameters of SDS like critical micellar concentration (CMC), standard Gibbs free energy of micellization (ΔG(0)mic.) etc. have been calculated in different concentrations of disodium tartarate (DST) and trisodium citrate (TSC) in the temperature range (288.15-318.15)K from the conductivity and surface tension measurements. The parameters obtained from these studies reveal the competitive nature of both the additives with SDS for available positions at the air/water interface. TSC is found to be more effective additive in order to make SDS micellar system better for its potential applications as food emulsifier.

  14. Collapse suppression and soliton stabilization through nonlocality in bulk Kerr media

    Bang, Ole; Chemineau, E. T.; Krolikowski, Wieslaw


    We show that self-focusing cannot occur in bulk Kerr media with a nonlocal nonlinear response. We find the stationary solutions and show that nonlocality makes them stable. The results are verified numerically....

  15. Bianchi Type-I String Cosmological Model with Bulk Viscosity and Time-Dependent A term

    R.K.Tiwari; S.Sharma


    Einstein Geld equations with the cosmological constant is considered in the presence of bulk viscosity in a Bianchi type-I universe. Solutions of the field equations are obtained by assuming the following conditions: the bulk viscosity is proportional to the expansion scalar £ oc 0; the expansion scalar is proportional to shear scalar 6 oc cr; and A is proportional to the Hubble parameter A on H. The corresponding interpretations of the cosmological solutions are also discussed.%@@ Einstein field equations with the cosmological constant is considered in the presence of bulk viscosity in a Bianchi type-I universe.Solutions of the field equations are obtained by assuming the following conditions:the bulk viscosity is proportional to the expansion scalar ξ∝θ;the expansion scalar is proportional to shear scalar θ∝σ;and ∧ is proportional to the Hubble parameter ∧∝ H.The corresponding interpretations of the cosmological solutions are also discussed.

  16. Importance of critical micellar concentration for the prediction of solubility enhancement in biorelevant media.

    Ottaviani, G; Wendelspiess, S; Alvarez-Sánchez, R


    This study evaluated if the intrinsic surface properties of compounds are related to the solubility enhancement (SE) typically observed in biorelevant media like fasted state simulated intestinal fluids (FaSSIF). The solubility of 51 chemically diverse compounds was measured in FaSSIF and in phosphate buffer and the surface activity parameters were determined. This study showed that the compound critical micellar concentration parameter (CMC) correlates strongly with the solubility enhancement (SE) observed in FaSSIF compared to phosphate buffer. Thus, the intrinsic capacity of molecules to form micelles is also a determinant for each compound's affinity to the micelles of biorelevant surfactants. CMC correlated better with SE than lipophilicity (logD), especially over the logD range typically covered by drugs (2 media, thereby enhancing oral bioavailability of drug candidates.

  17. Biomedical Evaluation of Cortisol, Cortisone, and Corticosterone along with Testosterone and Epitestosterone Applying Micellar Electrokinetic Chromatography

    Bączek, Tomasz; Olędzka, Ilona; Konieczna, Lucyna; Kowalski, Piotr; Plenis, Alina


    The validated micellar electrokinetic chromatography (MEKC) was proposed for the determination of five steroid hormones in human urine samples. That technique allowed for the separation and quantification of cortisol, cortisone, corticosterone, testosterone, and epitestosterone and was sensitive enough to detect low concentrations of these searched steroids in urine samples at the range of 2–300 ng/mL. The proposed MEKC technique with solid-phase extraction (SPE) procedure was simple, rapid, and has been successfully applied as a routine procedure to analyze steroids in human urine samples. The MEKC method offered a potential in clinical routine practice because of the short analysis time (8 min), low costs, and simultaneous analysis of five endogenous hormones. Due to its simplicity, speed, accuracy, and high recovery, the proposed method could offer a tool to determine steroid hormones as potential biomarkers in biomedical investigations, what was additionally revealed with healthy volunteers. PMID:22536129

  18. Determination of adrenal steroids by microfluidic chip using micellar electrokinetic chromatography.

    Shen, Shuanglong; Li, Yan; Wakida, Shin-ichi; Takeda, Sahori


    This paper describes a sensitive and convenient method to separate progesterone, 17alpha-hydroxy progesterone, cortexolone, hydrocortisone and cortisone, all of which are steroids and have similar structures, using microfluidic chip-based technology with UV detection at 252 nm. We successfully obtained high-speed separation of the five steroids within 70 s in optimized microfluidic controls and micellar electrokinetic chromatography (MEKC) separation conditions. Fairly good linearity with correlation coefficient of over 0.98 from 10 or 20 to 100 mg/l steroid chemicals was obtained. The limits of detection obtained at a signal to noise ratio of 3 were from 3.89 to 7.80 mg/l. The values of the relative standard deviation (RSD) were 0.98-1.34% for repetitive injection (n = 12) and the intraday and interday RSDs were below 6%. The highly stable response reflected the feasibility of this method.

  19. Analysis of pharmaceutical preparations containing antihistamine drugs by micellar liquid chromatography.

    Martínez-Algaba, C; Bermúdez-Saldaña, J M; Villanueva-Camañas, R M; Sagrado, S; Medina-Hernández, M J


    Rapid chromatographic procedures for analytical quality control of pharmaceutical preparations containing antihistamine drugs, alone or together with other kind of compounds are proposed. The method uses C18 stationary phases and micellar mobile phases of cetyltrimethylammonium bromide (CTAB) with either 1-propanol or 1-butanol as organic modifier. The proposed procedures allow the determination of the antihistamines: brompheniramine, chlorcyclizine, chlorpheniramine, diphenhydramine, doxylamine, flunarizine, hydroxyzine, promethazine, terfenadine, tripelennamine and triprolidine, in addition to caffeine, dextromethorphan, guaifenesin, paracetamol and pyridoxine in different pharmaceutical presentations (tablets, capsules, suppositories, syrups and ointments). The methods require minimum handling sample and are rapid (between 3 and 12 min at 1 mLmin(-1) flow rate) and reproducible (R.S.D. values<5%). Limits of detection are lower than 1 microgmL(-1) and the recoveries of the analytes in the pharmaceutical preparations are in the range 100+/-10%.

  20. Separation of human, bovine, and porcine insulins, three very closely related proteins, by micellar electrokinetic chromatography.

    Lamalle, Caroline; Roland, Diane; Crommen, Jacques; Servais, Anne-Catherine; Fillet, Marianne


    Human, bovine, and porcine insulins are small proteins with very closely related amino acid sequences, which makes their separation challenging. In this study, we took advantage of the high-resolution power of CE, and more particularly of micellar electrokinetic chromatography, to separate those biomolecules. Among several surfactants, perfluorooctanoic acid ammonium salt was selected. Then, using a design of experiments approach, the optimal BGE composition was found to consist of 50 mM ammonium acetate pH 9.0, 65 mM perfluorooctanoic acid ammonium salt, and 4% MeOH. The three insulins could be separated within 12 min with a satisfactory resolution. This method could be useful to detect possible counterfeit pharmaceutical formulations. Indeed, it would be easy to determine if human insulin was replaced by bovine or porcine insulin.

  1. Predicting human intestinal absorption in the presence of bile salt with micellar liquid chromatography.

    Waters, Laura J; Shokry, Dina S; Parkes, Gareth M B


    Understanding intestinal absorption for pharmaceutical compounds is vital to estimate the bioavailability and therefore the in vivo potential of a drug. This study considers the application of micellar liquid chromatography (MLC) to predict passive intestinal absorption with a selection of model compounds. MLC is already known to aid prediction of absorption using simple surfactant systems; however, with this study the focus was on the presence of a more complex, bile salt surfactant, as would be encountered in the in vivo environment. As a result, MLC using a specific bile salt has been confirmed as an ideal in vitro system to predict the intestinal permeability for a wide range of drugs, through the development of a quantitative partition-absorption relationship. MLC offers many benefits including environmental, economic, time-saving and ethical advantages compared with the traditional techniques employed to obtain passive intestinal absorption values. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Biomedical Evaluation of Cortisol, Cortisone, and Corticosterone along with Testosterone and Epitestosterone Applying Micellar Electrokinetic Chromatography

    Tomasz Bączek


    Full Text Available The validated micellar electrokinetic chromatography (MEKC was proposed for the determination of five steroid hormones in human urine samples. That technique allowed for the separation and quantification of cortisol, cortisone, corticosterone, testosterone, and epitestosterone and was sensitive enough to detect low concentrations of these searched steroids in urine samples at the range of 2–300 ng/mL. The proposed MEKC technique with solid-phase extraction (SPE procedure was simple, rapid, and has been successfully applied as a routine procedure to analyze steroids in human urine samples. The MEKC method offered a potential in clinical routine practice because of the short analysis time (8 min, low costs, and simultaneous analysis of five endogenous hormones. Due to its simplicity, speed, accuracy, and high recovery, the proposed method could offer a tool to determine steroid hormones as potential biomarkers in biomedical investigations, what was additionally revealed with healthy volunteers.

  3. Chiral cyclodextrin-modified micellar electrokinetic chromatography and chemometric techniques for green tea samples origin discrimination.

    Pasquini, Benedetta; Orlandini, Serena; Goodarzi, Mohammad; Caprini, Claudia; Gotti, Roberto; Furlanetto, Sandra


    Catechins and methylxanthines were determined in 92 green tea (GT) samples originating from Japan and China by using micellar electrokinetic chromatography with the addition of (2-hydroxypropyl)-β-cyclodextrin. GT samples showed high concentrations of (-)-epigallocatechin gallate and caffeine, with (-)-epigallocatechin, (-)-epicatechin gallate and (-)-epicatechin in relevant content and (+)-catechin, (-)-catechin and theobromine in much lower amounts. The amount of all the considered compounds was higher for Chinese GTs, with the exception of (-)-epicatechin gallate. Pattern recognition methods were applied to discriminate GTs according to geographical origin, which is an important factor to determine quality and reputation of a commercial tea product. Data analysis was performed by principal component analysis and hierarchical cluster analysis as exploratory techniques. Linear discriminant analysis and quadratic discriminant analysis were utilized as discrimination techniques, obtaining a very good rate of correct classification and prediction.

  4. Silver and gold nanocluster catalyzed reduction of methylene blue by arsine in micellar medium

    Subrata Kundu; Sujit Kumar Ghosh; Madhuri Mandal; Tarasankar Pal


    Arsenic can be determined in parts-per-million (ppm) level by absorbance measurement. This method is based on the quantitative colour bleaching of the dye, methylene blue by arsine catalyzed by nanoparticles in micellar medium. The arsine has been generated in situ from sodium arsenate by NaBH4 reduction. The absorbance measurement was carried out at the max of the dye at 660 nm. The calibration graph set-up for three linear dynamic ranges (LDR) are 0–8.63 ppm, 0–1.11 ppm and 0–0.11 ppm and limit of detections (LODs) are 1.3, 0.53 and 0.03 ppm, respectively. This method is simple, sensitive and easy to carry out. It is free from phosphate and silicate interference and applicable to real sample analysis.

  5. Amplification of Chirality through Self-Replication of Micellar Aggregates in Water

    Bukhriakov, Konstantin


    We describe a system in which the self-replication of micellar aggregates results in a spontaneous amplification of chirality in the reaction products. In this system, amphiphiles are synthesized from two "clickable" fragments: a water-soluble "head" and a hydrophobic "tail". Under biphasic conditions, the reaction is autocatalytic, as aggregates facilitate the transfer of hydrophobic molecules to the aqueous phase. When chiral, partially enantioenriched surfactant heads are used, a strong nonlinear induction of chirality in the reaction products is observed. Preseeding the reaction mixture with an amphiphile of one chirality results in the amplification of this product and therefore information transfer between generations of self-replicating aggregates. Because our amphiphiles are capable of catalysis, information transfer, and self-assembly into bounded structures, they present a plausible model for prenucleic acid "lipid world" entities. © 2015 American Chemical Society.

  6. Determination of catechins in matcha green tea by micellar electrokinetic chromatography.

    Weiss, David J; Anderton, Christopher R


    Catechins in green tea are known to have many beneficial health properties. Recently, it has been suggested that matcha has greater potential health benefits than other green teas. Matcha is a special powdered green tea used in the Japanese tea ceremony. However, there has been no investigation to quantitate the catechin intake from matcha compared to common green teas. We have developed a rapid method of analysis of five catechins and caffeine in matcha using micellar electrokinetic chromatography. Results are presented for water and methanol extractions of matcha compared with water extraction of a popular green tea. Using a mg catechin/g of dry leaf comparison, results indicate that the concentration of epigallocatechin gallate (EGCG) available from drinking matcha is 137 times greater than the amount of EGCG available from China Green Tips green tea, and at least three times higher than the largest literature value for other green teas.

  7. Influence of boundary conditions and confinement on nonlocal effects in flows of wormlike micellar systems.

    Masselon, Chloé; Colin, Annie; Olmsted, Peter D


    In this paper we report on the influence of different geometric and boundary constraints on nonlocal (spatially inhomogeneous) effects in wormlike micellar systems. In a previous paper, nonlocal effects were observable by measuring the local rheological flow curves of micelles flowing in a microchannel under different pressure drops, which appeared to differ from the flow curve measured using conventional rheometry. Here we show that both the confinement and the boundary conditions can influence those nonlocal effects. The role of the nature of the surface is analyzed in detail using a simple scalar model that incorporates inhomogeneities, which captures the flow behavior in both wide and confined geometries. This leads to an estimate for the nonlocal "diffusion" coefficient (i.e., the shear curvature viscosity) which corresponds to a characteristic length from 1 to 10 microm.

  8. Simultaneous determination of four bioactive constituents in Liuwei Dihuang Pills by micellar electrokinetic chromatography.

    Zhao, Xinfeng; Wang, Yue; Sun, Yuqing


    A micellar electrokinetic chromatography (MEKC) method for the simultaneous determination of four bioactive constituents (morroniside, loganin, paeoniflorin and paeonal) in the Chinese patent medicine Liuwei Dihuang Pills is established. A carrier composed of 0.2M boric acid, 0.02 M sodium dodecyl sulfate (SDS) and 5% acetonitrile (pH was adjusted to 10.5 with 0.1 M NaOH) is found to be the most suitable electrolyte for this separation. The four constituents in Liuwei Dihuang Pills can be easily determined within 16 min. Optimization of separation is realized with the univariate approach by studying the effects of four factors relevant to run buffer on migration times.

  9. Fluoride binding in water with the use of micellar nanodevices based on salophen complexes.

    Keymeulen, Flore; De Bernardin, Paolo; Giannicchi, Ilaria; Galantini, Luciano; Bartik, Kristin; Dalla Cort, Antonella


    The use of micelles to transpose lipophilic receptors, such as uranyl-salophen complexes, into an aqueous environment is a valuable and versatile tool. Receptor 1 incorporated into CTABr micelles forms a supramolecular system that exhibits excellent binding properties towards fluoride in water, despite the competition of the aqueous medium. To fully evaluate the potential of micellar nanodevices, we extended our previous study to other types of surfactants and to a uranyl-salophen receptor with a more extended aromatic surface. Paramagnetic relaxation enhancement experiments were used to obtain information on the location of the two receptors within the micelles and complementary information was obtained from dynamic light scattering experiments. With these data it is possible to account for the key factors necessary to obtain an efficient supramolecular device for anion binding in water.

  10. Optimization of the Separation of Quinolines in Micellar Liquid Chromatography by Experimental Design and Regression Models



    The chemometrics approach was applied to the optimization of separation of quinolines in micellar liquid tigated by means of multivariate analysis. The factors considered were the concentration of sodium dodecyl sulfate (SDS), the organic modifier concentration and the length of its alkyl chain, and pH of the mobile phase. The ex-periments were performed according to a face centered cube response surface experimental design. In order to op-timize the separation a Pareto-optimality method was employed. The models were verified, because a good agree-ment was observed between the predicted and experimental values of the chromatographic response function in the optimal condition. The obtained regression models were characterized by both descriptive and predictive ability (R2≥0.97 and R2cv≥0.92) and allowed the chromatographic separation of the quinolines with a good resolution and a total analysis time of 50 min.

  11. Nonequilibrium Fluctuation Relation for Sheared Micellar Gel in a Jammed State

    Majumdar, Sayantan; Sood, A. K.


    We show that the shear rate at a fixed shear stress in a micellar gel in a jammed state exhibits large fluctuations, showing positive and negative values, with the mean shear rate being positive. The resulting probability distribution functions of the global power flux to the system vary from Gaussian to non-Gaussian, depending on the driving stress, and in all cases show similar symmetry properties as predicted by the Gallavotti-Cohen steady state fluctuation relation. The fluctuation relation allows us to determine an effective temperature related to the structural constraints of the jammed state. We have measured the stress dependence of the effective temperature. Further, experiments reveal that the effective temperature and the standard deviation of the shear-rate fluctuations increase with the decrease of the system size.

  12. Electrophoretic concentration and sweeping-micellar electrokinetic chromatography analysis of cationic drugs in water samples.

    Wuethrich, Alain; Haddad, Paul R; Quirino, Joselito P


    Sample preparation by electrophoretic concentration, followed by analysis using sweeping-micellar electrokinetic chromatography, was studied as a green and simple analytical strategy for the trace analysis of cationic drugs in water samples. Electrophoretic concentration was conducted using 50 mmol/L ammonium acetate at pH 5 as acceptor electrolyte. Electrophoretic concentration was performed at 1.0 kV for 50 min and 0.5 kV and 15 min for purified and 10-fold diluted waste water samples, respectively. Sweeping-micellar electrokinetic chromatography was with 100 mmol/L sodium phosphate at pH 2, 100 mmol/L sodium dodecyl sulfate and 27.5%-v/v acetonitrile as separation electrolyte. The separation voltage was -20 kV, UV-detection was at 200 nm, and the acidified concentrate was injected for 36 s at 1 bar (or 72% of the total capillary length, 60 cm). Both purified water and 10-fold diluted waste water exhibited a linear range of two orders of concentration magnitude. The coefficient of determination, and intra- and interday repeatability were 0.991-0.997, 2.5-6.2, and 4.4-9.7%RSD (n=6), respectively, for purified water. The values were 0.991-0.997, 3.4-7.1, and 8.7-9.8%RSD (n=6), correspondingly, for 10-fold diluted waste water. The method detection limit was in the range from 0.04-0.09 to 1.20-6.97 ng/mL for purified and undiluted waste water, respectively.

  13. Formation and properties of reverse micellar cubic liquid crystals and derived emulsions.

    Rodríguez-Abreu, Carlos; Shrestha, Lok Kumar; Varade, Dharmesh; Aramaki, Kenji; Maestro, Alicia; Quintela, Arturo López; Solans, Conxita


    The structure of the reverse micellar cubic (I2) liquid crystal and the adjacent micellar phase in amphiphilic block copolymer/water/oil systems has been studied by small-angle X-ray scattering (SAXS), rheometry, and differential scanning calorimetry (DSC). Upon addition of water to the copolymer/oil mixture, spherical micelles are formed and grow in size until a disorder-order transition takes place, which is related to a sudden increase in the viscosity and shear modulus. The transition is driven by the packing of the spherical micelles into a Fd3m cubic lattice. The single-phase I2 liquid crystals show gel-like behavior and elastic moduli higher than 104 Pa, as determined by oscillatory measurements. Further addition of water induces phase separation, and it is found that reverse water-in-oil emulsions with high internal phase ratio and stabilized by I2 liquid crystals can be prepared in the two-phase region. Contrary to liquid-liquid emulsions, both the elastic modulus and the viscosity decrease with the fraction of dispersed water, due to a decrease in the crystalline fraction in the sample, although the reverse emulsions remain gel-like even at high volume fractions of the dispersed phase. A temperature induced order-disorder transition can be detected by calorimetry and rheometry. Upon heating the I2 liquid crystals, two thermal events associated with small enthalpy values were detected: one endothermic, related to the "melting" of the liquid crystal, and the other exothermic, attributed to phase separation. The melting of the liquid crystal is associated with a sudden drop in viscosity and shear moduli. Results are relevant for understanding the formation of cubic-phase-based reverse emulsions and for their application as templates for the synthesis of structured materials.

  14. Micellar-polymer joint demonstration project, Wilmington Field, California. Annual report, 1976--1977

    Wade, J.E.


    Work accomplished under the contract during the first year of operation consisted of Micellar-Polymer laboratory systems design; Test Pattern Model Studies; Drilling and coring injection well FT-1; Pressure Transient Tests of Wells Z-81, Z1-16and FT-1; as well as design and construction of a portion of the surface facilities. Radial core floods conducted by Marathon Research Center using reservoir rock and fluid samples from the Wilmington Field demonstrated that Micellar-Polymer systems showing good recovery efficiency could be made from several different commercially available sulfonates. Residual oil saturations obtained were as low as 7 to 10% pore volume. Sulfonates made from Wilmington crude oil also proved to be effective. Polyacrylamides, both liquid and dry, as well as polysaccharides proved equally effective as a mobility buffer. Test pattern model studies were conducted on seven different arrays of wells. These studies showed that the pattern originally proposed exhibited poor areal sweep efficiency and was seriously affected by waterflood operations in the North Flank of the fault block. An E-W staggered line drive backed-up against the Pier A Fault appeared to be the best pattern studied, assuming the Pier A Fault to be a pressure barrier. Injection well FT-1 was drilled, cored and completed in the Hx/sub a/ sand. Cores were taken using low-solids, polymer drilling fluid and were frozen on site. The frozen cores from the project area will be used in the Phase B laboratory work. Pressure Transient Tests run in Z-81 and Z1-16 indicated the Pier A Fault to be pressure competent. The plant site was located adjacent to a railroad siding near the injection wells. The site was graded and seven 2000 barrel tanks were erected. The tanks were internally plastic coated on site. Mixing, filtering and injection facilities are being installed.

  15. Invertible micellar polymer assemblies for delivery of poorly water-soluble drugs.

    Hevus, Ivan; Modgil, Amit; Daniels, Justin; Kohut, Ananiy; Sun, Chengwen; Stafslien, Shane; Voronov, Andriy


    Strategically designed amphiphilic invertible polymers (AIPs) are capable of (i) self-assembling into invertible micellar assemblies (IMAs) in response to changes in polarity of environment, polymer concentration, and structure, (ii) accommodating (solubilizing) substances that are otherwise insoluble in water, and (iii) inverting their molecular conformation in response to changes in the polarity of the local environment. The unique ability of AIPs to invert the molecular conformation depending on the polarity of the environment can be a decisive factor in establishing the novel stimuli-responsive mechanism of solubilized drug release that is induced just in response to a change in the polarity of the environment. The IMA capability to solubilize lipophilic drugs and deliver and release the cargo molecules by conformational inversion of polymer macromolecules in response to a change of the polarity of the environment was demonstrated by loading IMA with a phytochemical drug, curcumin. It was demonstrated that four sets of micellar vehicles based on different AIPs were capable of delivering the curcumin from water to an organic medium (1-octanol) by means of unique mechanism: AIP conformational inversion in response to changing polarity from polar to nonpolar. The IMAs are shown to be nontoxic against human cells up to a concentration of 10 mg/L. On the other hand, the curcumin-loaded IMAs are cytotoxic to breast carcinoma cells at this concentration, which confirms the potential of IMA-based vehicles in controlled delivery of poorly water-soluble drug candidates and release by means of this novel stimuli-responsive mechanism.

  16. Binding of chloroquine to ionic micelles: Effect of pH and micellar surface charge

    Souza Santos, Marcela de, E-mail: [Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, s/n, Ribeirão Preto, São Paulo 14040-903 (Brazil); Perpétua Freire de Morais Del Lama, Maria, E-mail: [Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, s/n, Ribeirão Preto, São Paulo 14040-903 (Brazil); Instituto Nacional de Ciência e Tecnologia de Bioanalítica, Departamento de Química Analítica, Universidade Estadual de Campinas, Cidade Universitária Zeferino Vaz, s/n, Campinas, São Paulo 13083-970 (Brazil); Siuiti Ito, Amando, E-mail: [Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes, 3900, Ribeirão Preto, São Paulo 14040-901 (Brazil); and others


    The pharmacological action of chloroquine relies on its ability to cross biological membranes in order to accumulate inside lysosomes. The present work aimed at understanding the basis for the interaction between different chloroquine species and ionic micelles of opposite charges, the latter used as a simple membrane model. The sensitivity of absorbance and fluorescence of chloroquine to changes in its local environment was used to probe its interaction with cetyltrimethylammonium micelles presenting bromide (CTAB) and sulfate (CTAS) as counterions, in addition to dodecyl sulfate micelles bearing sodium (SDS) and tetramethylammonium (TMADS) counterions. Counterion exchange was shown to have little effect on drug–micelle interaction. Chloroquine first dissociation constant (pKa{sub 1}) shifted to opposite directions when anionic and cationic micelles were compared. Chloroquine binding constants (K{sub b}) revealed that electrostatic forces mediate charged drug–micelle association, whereas hydrophobic interactions allowed neutral chloroquine to associate with anionic and cationic micelles. Fluorescence quenching studies indicated that monoprotonated chloroquine is inserted deeper into the micelle surface of anionic micelles than its neutral form, the latter being less exposed to the aqueous phase when associated with cationic over anionic assemblies. The findings provide further evidence that chloroquine–micelle interaction is driven by a tight interplay between the drug form and the micellar surface charge, which can have a major effect on the drug biological activity. -- Highlights: • Chloroquine (CQ) pKa{sub 1} increased for SDS micelles and decreased for CTAB micelles. • CQ is solubilized to the surface of both CTAB and SDS micelles. • Monoprotonated CQ is buried deeper into SDS micelles than neutral CQ. • Neutral CQ is less exposed to aqueous phase in CTAB over SDS micelles. • Local pH and micellar surface charge mediate interaction of CQ with

  17. Relação entre potássio na solução do solo, umidade e condutividade elétrica aparente do solo Relationship between potassium in the soil solution, soil water content and bulk electrical conductivity

    Gessionei da S. Santana


    Full Text Available Através de modelos que relacionam umidade (teta, condutividade elétrica aparente do solo (CEa e condutividade elétrica da solução do solo (CEw, objetivou-se avaliar, para condição de laboratório, a viabilidade de se estimar a concentração de potássio na solução do solo (K, para solos de classe textural franca (CTf e franco-arenosa (CTfa. Cinco soluções de cloreto de potássio, referentes a cinco condutividades elétricas (1,0, 2,5, 4,0, 5,5 e 7,0 dS m-1, foram aplicadas sobre o solo acondicionado em colunas de PVC, de forma a se obter cinco teta do solo (17,0 ± 1,4, 19,0 ± 1,8, 21,4 ± 2,2, 23,4 ± 2,2 e 26,0 ± 3,0%, em volume. Efetuaram-se leituras de teta e CEa com um aparelho de reflectometria no domínio do tempo (TDR e se extraiu solução do solo com extrator de cápsula de cerâmica, para determinar a CEw e o K. Três modelos foram ajustados aos dados, por meio de planilha eletrônica. É viável estimar a concentração de K na solução do solo, a partir detetae CEa, para condição de laboratório, por meio dos modelos de Rhoades et al. (1976, Vogeler et al. (1996 e Mualen & Friedman (1991, adaptados com uma relação entre CEw e K do tipo potência, nas faixas de 0 a 60 e 0 a 120 mg L-1, para solos de CTf e CTfa, respectivamente.The objective of this work was to evaluate the feasibility of estimating the potassium (K concentration in the soil solution, under laboratory conditions, for loamy (CTf and sandy loam (CTfa soils, through models that relate soil water content (theta, bulk electrical conductivity (CEa and soil solution electrical conductivity (CEw. Five potassium chloride solutions with electrical conductivities of 1.0, 2.5, 4.0, 5.5 and 7.0 dS m-1, were applied in a soil packed in PVC columns in order to obtain five soil water contents (17.0 ± 1.4, 19.0 ± 1.8, 21.4 ± 2.2, 23.4 ± 2.2 and 26.0 ± 3.0%, on volume basis. Readings of theta and CEa were obtained by using time domain reflectometry (TDR

  18. The heat-chill method for preparation of self-assembled amphiphilic poly(ε-caprolactone)-poly(ethylene glycol) block copolymer based micellar nanoparticles for drug delivery.

    Payyappilly, Sanal Sebastian; Dhara, Santanu; Chattopadhyay, Santanu


    A new method is developed for preparation of amphiphilic block copolymer micellar nanoparticles and investigated as a delivery system for celecoxib, a hydrophobic model drug. Biodegradable block copolymers of poly(ethylene glycol) (PEG) and poly(ε-caprolactone) (PCL) were synthesized by ring opening copolymerization and characterized thoroughly using FTIR, (1)H NMR and GPC. The block copolymer was dispersed in distilled water at 60 °C and then it was chilled in an ice bath for the preparation of the micellar nanoparticles. Polymers self-assembled to form micellar nanoparticles (HR-TEM, DLS and DSC. The cytotoxicity of the polymer micellar nanoparticles was investigated against HaCaT cell lines. The study of celecoxib release from the micellar nanoparticles was carried out to assess their suitability as a drug delivery vehicle. Addition of the drug to the system at low temperature is an added advantage of this method compared to the other temperature assisted nanoparticle preparation techniques. In a nutshell, polymer micellar nanoparticles prepared using the heat-chill method are believed to be promising for the controlled drug release system of labile drugs, which degrade in toxic organic solvents and at higher temperatures.

  19. Geometrical Tachyon Inflation in the Presence of a Bulk Tachyon Field

    Zamarias, Vassilios


    We present the study of the dynamics of the geometrical tachyon field on an unstable D3-brane in the background of a bulk tachyon field of a D3-brane solution of Type-0 string theory. We find that the geometrical tachyon potential is modified by a function of the bulk tachyon and inflation occurs at weak string coupling, where the bulk tachyon condenses, near the top of the geometrical tachyon potential. We also find a late accelerating phase when the bulk tachyon asymptotes to zero and the g...

  20. Geometrical Tachyon Dynamics in the Background of a Bulk Tachyon Field

    Papantonopoulos, Eleftherios; Pappa, Ioanna; Zamarias, Vassilios


    We study the dynamics of a D3-brane moving in the background of a bulk tachyon field of a D3-brane solution of Type-0 string theory. We show that the dynamics on the probe D3-brane can be described by a geometrical tachyon field rolling down its potential which is modified by a function of the bulk tachyon and inflation occurs at weak string coupling, where the bulk tachyon condenses, near the top of the geometrical tachyon potential. We also find a late accelerating phase when the bulk tachy...

  1. 混合反胶团萃取α-淀粉酶%Purification of α-Amylase Using CTAB/Tween-60 Mixed Reverse Micellar System

    高树刚; 宋伟明; 安红


    Reverse micellar system consisting of the surfactants cetyltrimethyl ammonium bromide(CTAB) and Tween-60 in dissolved in n-butanol-isooctane mixture was used for α-amylase purification by reversed micellar extraction.Extraction efficiency of α-amylase was investigated under different extraction conditions using a reverse micellar phase consisting of 4 g/L(CTAB +Tween-60,2.0:1.0,n/n) in n-butanol-isooctane mixture(1.0:1.0,V/V) and an aqueous phase made up of crude α-amylase solution containing 0.04 mol/L NaCl.The extraction efficiency of α-amylase was 91% when the extraction temperature,ratio of organic phase to aqueous phase and oscillation time were 40 ℃,2.0:1.0 and 10 min,respectively.The reverse extraction efficiency of α-amylase was 65% after 10 min oscillation at 50 ℃ when the aqueous phase was comprised of aqueous phase and organic phase at a ratio of 1.0:2.0(V/V) at pH 4.5 containing 2.5 mol/L NaCl.The reverse micelles could be repeatedly used and the extraction efficiency of α-amylase at an aqueous phase-to-organic phase ratio of 1.0:2.75 remained 71% in the second use.%以十六烷基三甲基溴化铵(CTAB)和脱水山梨醇单硬脂酸酯聚氧乙烯醚(Tween-60)为混合表面活性剂溶于正丁醇-异辛烷中构成反胶团系统,萃取纯化α-淀粉酶。研究不同萃取条件下,α-淀粉酶的萃取率。其中反胶团相组成为:ρ(CTAB+Tween-60)=4g/L;n(CTAB):n(Tween-60)=2.0:1.0;V(正丁醇):V(异辛烷)=1.0:1.0。水相组成为:α-淀粉酶配制的粗酶液,此时c(NaCl)=0.04mol/L,水相pH11.04。结果表明:萃取温度40℃、V(有机相):V(水相)=2.0:1.0、振荡时间10min时,α-淀粉酶萃取率可达91%;反萃取水相组成为c(NaCl)=2.5mol/L、pH4.5、V(水相):V(有机相)=1.0:2.0,反萃取振荡时间10min、温度50℃时,α-淀粉酶反萃取率可达65%。反胶团相可重复使用,当V

  2. Toughness of Bulk Metallic Glasses

    Shantanu V. Madge


    Full Text Available Bulk metallic glasses (BMGs have desirable properties like high strength and low modulus, but their toughness can show much variation, depending on the kind of test as well as alloy chemistry. This article reviews the type of toughness tests commonly performed and the factors influencing the data obtained. It appears that even the less-tough metallic glasses are tougher than oxide glasses. The current theories describing the links between toughness and material parameters, including elastic constants and alloy chemistry (ordering in the glass, are discussed. Based on the current literature, a few important issues for further work are identified.

  3. Optimization of Micellar Electrokinetic Chromatography Method for the Simultaneous Determination of Seven Hydrophilic and Four Lipophilic Bioactive Components in Three Salvia Species.

    Cao, Jiliang; Hu, Ji; Wei, Jinchao; Li, Baocai; Zhang, Mi; Xiang, Cheng; Li, Peng


    A micellar electrokinetic chromatography (MEKC) method was developed for the simultaneous determination of seven hydrophilic phenolic acids and four lipophilic tanshinones in three Salvia species. In normal MEKC mode using SDS as surfactant, the investigated 11 compounds could not be well separated. Therefore, several buffer modifiers including β-cyclodextrins (β-CD), ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim]BF4) and organic solvents have been added to the buffer solution to improve the separation selectivity. Under the optimized conditions (BGE, 15 mM sodium tetraborate with 10 mM SDS, 5 mM β-CD, 10 mM [bmim]BF4 and 15% ACN (v/v) as additives; buffer pH, 9.8; voltage, 20 kV; temperature, 25 °C), the 11 investigated analytes could achieve baseline separation in 34 min. The proposed MEKC was additionally validated by evaluating the linearity (R(2) ≥ 0.9965), LODs (0.27-1.39 μg·mL(-1)), and recovery (94.26%-105.17%), demonstrating this method was reproducible, accurate and reliable. Moreover, the contents of the 11 compounds in three Salvia species, including S. miltiorrhiza, S. przewalskii and S. castanea were analyzed. The result showed that the established MEKC method was simple and practical for the simultaneous determination of the hydrophilic and lipophilic bioactive components in Salvia species, which could be used to effectively evaluate the quality of these valued medicinal plants.

  4. Use of micellar liquid chromatography to analyze oxolinic acid, flumequine, marbofloxacin and enrofloxacin in honey and validation according to the 2002/657/EC decision.

    Tayeb-Cherif, K; Peris-Vicente, J; Carda-Broch, S; Esteve-Romero, J


    A micellar liquid chromatographic method was developed for the analysis of oxolinic acid, flumequine, marbofloxacin and enrofloxacin in honey. These quinolines are unethically used in beekeeping, and a zero-tolerance policy to antibiotic residues in honey has been stated by the European Union. The sample pretreatment was a 1:1 dilution with a 0.05M SDS at pH 3 solution, filtration and direct injection, thus avoiding extraction steps. The quinolones were eluted without interferences using mobile phase of 0.05M SDS/12.5% 1-propanol/0.5% triethylamine at pH 3, running at 1mL/min under isocratic room through a C18 column. The analytes were detected by fluorescence. The method was successfully validated according to the requirements of the European Union Decision 2002/657/EC in terms of: specificity, linearity (r(2)>0.995), limit of detection and decision limit (0.008-0.070mg/kg), lower limit of quantification (0.02-0.2mg/kg), detection capability (0.010-0.10mg/kg), recovery (82.1-110.0%), precision (<9.4%), matrix effects, robustness (<10.4%), and stability. The procedure was applied to several commercial honey supplied by a local supermarket, and the studied antibiotics were not detected. Therefore, the method was rapid, simple, safe, eco friendly, reliable and useful for the routine analysis of honey samples.

  5. Monitoring the quality consistency of Fufang Danshen Pills using micellar electrokinetic chromatography fingerprint coupled with prediction of antioxidant activity and chemometrics.

    Ji, Zhengchao; Sun, Wanyang; Sun, Guoxiang; Zhang, Jin


    A fast micellar electrokinetic chromatography fingerprint method combined with quantification was developed and validated to evaluate the quality of Fufang Danshen Pills, a traditional Chinese Medicine, which has been used in the treatment of cardiovascular system diseases, in which the tetrahedron optimization method was first used to optimize the background electrolyte solution. Subsequently, the index of the fingerprint information amount of I was performed as an excellent objective indictor to investigate the experimental conditions. In addition, a systematical quantified fingerprint method was constructed for evaluating the quality consistency of 20 batches of test samples obtained from the same drug manufacturer. The fingerprint analysis combined with quantitative determination of two components showed that the quality consistency of the test samples was quite good within the same commercial brand. Furthermore, the partial least squares model analysis was used to explore the fingerprint-efficacy relationship between active components and antioxidant activity in vitro, which can be applied for the assessment of anti-oxidant activity of Fufang Danshen pills and provide valuable medicinal information for quality control. The result illustrated that the present study provided a reliable and reasonable method for monitoring the quality consistency of Fufang Danshen pills.

  6. The Role of pH in Modulating the Electronic State Properties of Minocycline Drug and Its Inclusion within Micellar Carriers.

    Clementi, Catia; Cesaretti, Alessio; Carlotti, Benedetta; Elisei, Fausto


    A detailed investigation of the spectral and photophysical properties of minocycline (MC) in water at different pHs, solvents of different polarity, and micellar surfactant solutions was carried out in this study. An unusual behavior was highlighted with respect to other tetracyclines due to the presence of an additional dimethylamino group in the MC molecular structure. In particular, four equilibrium constants associated with mono-deprotonation reactions were characterized by steady-state spectroscopy. Femtosecond time-resolved pump-probe and fluorescence up-conversion measurements allowed the dynamics of the lowest excited singlet state of the five different acid-base species of MC to be characterized in terms of lifetimes and transient spectra. Two emissive species associated with keto-enol tautomerism resulting from excited-state intramolecular proton transfer (ESIPT) were revealed with time constants of a few and tens of picoseconds. TD-DFT quantum mechanical calculations were also performed to define the state order and nature of the differently protonated species, together with their absorption spectra. The role of pH proved to be fundamental in modulating the drug charge and therefore the interaction with cationic micelles where the neutral form of MC, that is the biologically active one, resulted efficiently included.

  7. Dithiol-mediated incorporation of CdS nanoparticles from reverse micellar system into Zn-doped SBA-15 mesoporous silica and their photocatalytic properties.

    Hirai, Takayuki; Nanba, Masanori; Komasawa, Isao


    CdS nanoparticles, as prepared in reverse micellar systems, were incorporated into alkanedithiol-modified Zn-doped SBA-15 mesoporous silica (dtz.sbnd;ZnSBA-15; pore diameter, ca. 4 nm), which were themselves prepared via hydrolysis of tetraethylorthosilicate (TEOS) in the presence of Zn(NO(3))(2) and triblock copolymer, as a nonsurfactant template and pore-forming agent, followed by contact with dithiol molecules. A particle-sieving effect for the dtz.sbnd;ZnSBA-15 was observed, in that the incorporation of the nanoparticles was remarkably decreased with increasing the nanoparticle size. The resulting CdSz.sbnd;ZnSBA-15 composite was then used as photocatalysts for the generation of H(2) from 2-propanol aqueous solution. Under UV irradiation (lambda>300 nm), a high photocatalytic activity was observed for this composite material. This is effected by electron transfer from the photoexcited ZnS (dithiol-bonded Zn on SBA-15) to CdS nanoparticles. The photocatalytic activity is increased with a decrease in the number of methylene groups in the dithiol molecules, according to the rank order 1,10-decanedithiol < 1,6-hexanedithiol < 1,2-ethanedithiol.

  8. Running with rugby balls: bulk renormalization of codimension-2 branes

    Williams, M.; Burgess, C. P.; van Nierop, L.; Salvio, A.


    We compute how one-loop bulk effects renormalize both bulk and brane effective interactions for geometries sourced by codimension-two branes. We do so by explicitly integrating out spin-zero, -half and -one particles in 6-dimensional Einstein-Maxwell-Scalar theories compactified to 4 dimensions on a flux-stabilized 2D geometry. (Our methods apply equally well for D dimensions compactified to D - 2 dimensions, although our explicit formulae do not capture all divergences when D > 6.) The renormalization of bulk interactions are independent of the boundary conditions assumed at the brane locations, and reproduce standard heat-kernel calculations. Boundary conditions at any particular brane do affect how bulk loops renormalize this brane's effective action, but not the renormalization of other distant branes. Although we explicitly compute our loops using a rugby ball geometry, because we follow only UV effects our results apply more generally to any geometry containing codimension-two sources with conical singularities. Our results have a variety of uses, including calculating the UV sensitivity of one-loop vacuum energy seen by observers localized on the brane. We show how these one-loop effects combine in a surprising way with bulk back-reaction to give the complete low-energy effective cosmological constant, and comment on the relevance of this calculation to proposed applications of codimension-two 6D models to solutions of the hierarchy and cosmological constant problems.

  9. An equilibrium model for ligand-modified micellar-enhanced ultrafiltration. Selective separation of metal ions using iminoacetic substituted polyamines and a theoretical model for the titration behavior of polyamines

    Dharmawardana, Udeni Rajaratna [Univ. of Oklahoma, Norman, OK (United States)


    This thesis consists of three chapters. Chapter 1, An equilibrium model for ligand-modified micellar-enhanced ultrafiltration, describes a theoretical model and experimental investigations which used the semi-equilibrium-dialysis method with N-n-dodecyl iminodiacetic acid as the ligand. In Chapter 2, Selective separation of metal ions using iminoacetic substituted polyamines, polyamines with a substituted ligand group are synthesized and used in investigating selective separation of copper ions from aqueous solution. In Chapter 3, A theoretical model for the titration behavior of polyamines, a novel approach to explain the titration behavior of polymeric amines based on the binding behavior of counterions is described. The application of this study is to the investigation of inexpensive and efficient methods of industrial waste water treatment.

  10. Micellar electrokinetic chromatography of aromatic anions and non-ionic aromatic compounds with stepwise changes of the concentration of cetyltrimethylammonium chloride.

    Esaka, Yukihiro; Kobayashi, Miki; Murakami, Hiroya; Uno, Bunji


    Micellar electrokinetic chromatography in which the concentration of cetyltrimetylammmonium chloride (CTAC) was sequentially changed in the separation system was investigated using 10 aromatic anions and 11 non-ionic aromatic compounds as model analytes. All separations were performed in the absence of electroosmotic flow (EOF), and thus, analytes were detected in the order of their strength of interaction with micelles in the system. In isocratic elutions without EOF, the model analytes could be separated better with lower concentrations of CTAC but migration times of the analytes possessing relatively higher polarities increased markedly, and thus, long analysis times were required. Therefore, we attempted to increase the concentration of CTAC during a single measurement to reduce the analysis time without hindering the resultant separation of analytes obtained with lower concentrations. Briefly, the present surfactant stepwise elution can be performed by a sequential increase in CTAC concentrations of the running solution in the anodic reservoir from 30 to 50mM for the anions and from 20 to 50 mM for the non-ionic compounds. Additionally, to perform expected gradient separations with good reproducibility, each running solution with a different CTAC concentration was treated with tetraethylammmonium chloride as an additive to adjust electric conductivities of each running solution to be equal. Under this condition, CTAC micelles of each zone of different CTAC concentrations would migrate with practically the same velocity. Consequently, by the present stepwise method, both the 10 anionic analytes and the 11 non-ionic analytes were well separated within reasonable periods which corresponded approximately to two-third and less than half of those by the isocratic elutions, respectively.

  11. Solvent blends can control cationic reversed micellar interdroplet interactions. The effect of n-heptane:benzene mixture on BHDC reversed micellar interfacial properties: droplet sizes and micropolarity.

    Agazzi, Federico M; Falcone, R Dario; Silber, Juana J; Correa, N Mariano


    We have investigated, for the first time, the effect of the composition of the nonpolar organic media on the benzyl-n-hexadecyl-dimethylammonium chloride (BHDC) reversed micelles (RMs) properties at fixed temperature. To achieve this goal we have used the solvatochromic behavior of 1-methyl-8-oxyquinolinium betaine (QB) as absorption probe and dynamic light scattering (DLS), to monitor droplet sizes, interfacial micropolarity, and sequestrated water structure of water/BHDC/n-heptane:benzene RMs. DLS results confirm the formation of the water/BHDC/n-heptane:benzene RMs at every n-heptane mole fraction (X(Hp)) investigated, that is, X(Hp) = 0.00, 0.13, 0.21, 0.30, and 0.38. Also, DLS was used to measure the RMs diffusion coefficient and to calculate the apparent droplet hydrodynamic diameter (d(App)) at different compositions of the nonpolar organic medium. The data suggest that as the n-heptane content increases, the interdroplet attractive interactions also increase with the consequent increment in the droplet size. Moreover, the interdroplet attractive interactions can be "switched on (increased)" or "switched off (decreased)" by formulation of appropriate n-heptane:benzene mixtures. Additionally, QB spectroscopy was used to obtain the "operational" critical micellar concentration (cmc) and to investigate both the RMs interfacial micropolarity and the sequestrated water structure in every RMs studied. The results show that BHDC RMs are formed at lower surfactant concentration when n-heptane or water content increases. When the interdroplet interaction "switches on", the RMs droplet sizes growth expelling benzene molecules from the RMs interface, favoring the water-BHDC interaction at the interface with the consequent increases in the interfacial micropolarity. Therefore, changing the solvent blend is possible to affect dramatically the interfacial micropolarity, the droplet sizes and the structure of the entrapped water.

  12. Differentiating surface and bulk interactions in nanoplasmonic interferometric sensor arrays

    Zeng, Beibei; Bartoli, Filbert J


    Detecting specific target analytes and differentiating them from interfering background effects is a crucial but challenging task in complex multi-component solutions commonly encountered in environmental, chemical, biological, and medical sensing applications. Here we present a simple nanoplasmonic interferometric sensor platform that can differentiate the adsorption of a thin protein layer on the sensor surface (surface effects) from bulk refractive index changes (interfering background effects) at a single sensing spot, exploiting the different penetration depths of multiple propagating surface plasmon polaritons excited in the ring-hole nanostructures. A monolayer of bovine serum albumin (BSA) molecules with an effective thickness of 1.91nm is detected and differentiated from a 10-3 change in the bulk refractive index unit of the solution. The noise level of the retrieved real-time sensor output compares favorably with traditional prism-based surface plasmon resonance sensors, but is achieved using a sign...

  13. Bulk Viscous Matter-dominated Universes: Asymptotic Properties

    Avelino, Arturo; Gonzalez, Tame; Nucamendi, Ulises; Quiros, Israel


    By means of a combined study of the type Ia supernovae test,together with a study of the asymptotic properties in the equivalent phase space -- through the use of the dynamical systems tools -- we demonstrate that the bulk viscous matter-dominated scenario is not a good model to explain the accepted cosmological paradigm, at least, under the parametrization of bulk viscosity considered in this paper. The main objection against such scenarios is the absence of conventional radiation and matter-dominated critical points in the phase space of the model. This entails that radiation and matter dominance are not generic solutions of the cosmological equations, so that these stages can be implemented only by means of very particular solutions. Such a behavior is in marked contradiction with the accepted cosmological paradigm which requires of an earlier stage dominated by relativistic species, followed by a period of conventional non-relativistic matter domination, during which the cosmic structure we see was formed...

  14. Assessment of bioburden encapsulated in bulk materials

    Schubert, Wayne W.; Newlin, Laura; Chung, Shirley Y.; Ellyin, Raymond


    The National Aeronautics and Space Administration (NASA) imposes bioburden limitations on all spacecraft destined for solar system bodies that might harbor evidence of extant or extinct life. The subset of microorganisms trapped within solid materials during manufacture and assembly is referred to as encapsulated bioburden. In the absence of spacecraft-specific data, NASA relies on specification values to estimate total spacecraft encapsulated bioburden, typically 30 endospores/cm3 or 300 viable cells/cm3 in non-electronic materials. Specification values for endospores have been established conservatively, and represent no less than an order of magnitude greater abundance than that derived from empirical assessments of actual spacecraft materials. The goal of this study was to generate data germane to determining whether revised bulk encapsulated material values (lower than those estimated by historical specifications) tailored specifically to the materials designated in modern-day spacecraft design could be used, on a case-by-case basis, to comply with planetary protection requirements. Organic materials having distinctly different chemical properties and configurations were selected. This required more than one experimental and analytical approach. Filtration was employed for liquid electrolytes, lubricants were suspended in an aqueous solution and solids (wire and epoxy sealant) were cryogenically milled. The final data characteristic for all bioburden estimates was microbial colony formation in rich agar growth medium. To assess survival potential, three non-spore-forming bacterial cell lines were systematically encapsulated in an epoxy matrix, liberated via cryogenic grinding, and cultured. Results suggest that bulk solid materials harbor significantly fewer encapsulated microorganisms than are estimated by specification values. Lithium-ion battery electrolyte reagents housed fewer than 1 CFU/cm3. Results also demonstrated that non-spore-forming microorganisms

  15. Nonuniform Braneworld Stars: AN Exact Solution

    Ovalle, J.

    In this paper the first exact interior solution to Einstein's field equations for a static and nonuniform braneworld star with local and nonlocal bulk terms is presented. It is shown that the bulk Weyl scalar U(r) is always negative inside the stellar distribution, and in consequence it reduces both the effective density and the effective pressure. It is found that the anisotropy generated by bulk gravity effect has an acceptable physical behavior inside the distribution. Using a Reissner-Nördstrom-like exterior solution, the effects of bulk gravity on pressure and density are found through matching conditions.

  16. Spectroscopic Behavior of Some A3B Type Tetrapyrrolic Complexes in Several Organic Solvents and Micellar Media

    Radu Socoteanu


    Full Text Available The paper presents spectral studies of some unsymmetrical A3B tetrapyrrolic, porphyrin-type complexes with Cu(II and Zn(II in different solvents and micellar media aimed at estimating their properties in connection with the living cell. The results indicate that the position of the absorption and emission peaks is mostly influenced by the central metal ion and less by the environmental polarity or the peripheric substituents of the porphyrinic core. The comparison between the overall absorption and emission spectra of the compounds in methanol or cyclohexane vs. direct and reverse Triton X micellar systems, respectively, suggests for all compounds the localization at the interface between the polyethylene oxide chains and the tert-octyl-phenyl etheric residue of the Triton X-100 molecules. These findings could be important when testing the compounds embedded in liposomes or other delivery systems to the targeted cell.

  17. Accelerating cosmological expansion from shear and bulk viscosity

    Floerchinger, Stefan; Wiedemann, Urs Achim


    The dissipation of energy from local velocity perturbations in the cosmological fluid affects the time evolution of spatially averaged fluid dynamic fields and the cosmological solution of Einstein's field equations. We show how this backreaction effect depends on shear and bulk viscosity and other material properties of the dark sector, as well as the spectrum of perturbations. If sufficiently large, this effect could account for the acceleration of the cosmological expansion.

  18. Accelerating Cosmological Expansion from Shear and Bulk Viscosity

    Floerchinger, Stefan; Tetradis, Nikolaos; Wiedemann, Urs Achim


    The dissipation of energy from local velocity perturbations in the cosmological fluid affects the time evolution of spatially averaged fluid dynamic fields and the cosmological solution of Einstein's field equations. We show how this backreaction effect depends on shear and bulk viscosity and other material properties of the dark sector, as well as the spectrum of perturbations. If sufficiently large, this effect could account for the acceleration of the cosmological expansion.

  19. Issues in the growth of bulk crystals of infrared materials

    Bachmann, K. J.; Golowsky, H.


    Attention is given to the relevant criteria governing materials choice in the growth of IR optoelectronic bulk single crystals of III-V and II-VI alloy and I-III-VI2 compound types. The most important considerations concern the control of crystal purity, microstructural perfection, stoichiometry, and uniformity during crystal growth, as well as the control of surface properties in wafer fabrication. Specific examples are given to illustrate the problems encountered and their preferred solutions.

  20. Handling of bulk solids theory and practice

    Shamlou, P A


    Handling of Bulk Solids provides a comprehensive discussion of the field of solids flow and handling in the process industries. Presentation of the subject follows classical lines of separate discussions for each topic, so each chapter is self-contained and can be read on its own. Topics discussed include bulk solids flow and handling properties; pressure profiles in bulk solids storage vessels; the design of storage silos for reliable discharge of bulk materials; gravity flow of particulate materials from storage vessels; pneumatic transportation of bulk solids; and the hazards of solid-mater

  1. Separation and analysis of cis-diol-containing compounds by boronate affinity-assisted micellar electrokinetic chromatography.

    Wang, Heye; Lü, Chenchen; Li, Hengye; Chen, Yang; Zhou, Min; Ouyang, Jian; Liu, Zhen


    Cis-diol-containing compounds (CDCCs) are usually highly hydrophilic compounds and are therefore difficult to separate by conventional reversed-phase-based micellar electrokinetic chromatography (MEKC) due to poor selectivity. Here, we report a new method, called boronate affinity-assisted micellar electrokinetic chromatography (BAA-MEKC), to solve this issue. A boronic acid with a hydrophobic alkyl chain was added to the background electrolyte, which acted as a modifier to adjust the selectivity. CDCCs can covalently react with the boronic acid to form negatively charged surfactant-like complexes, which can partition into micelles formed with a cationic surfactant. Thus, CDCCs can be separated according to the differential partition constants of their boronic acid complexes between the micellar phase and the surrounding aqueous phase. To verify this method, eight nucleosides were employed as the test compounds and their separation confirmed that the combination of boronate affinity interaction with MEKC can effectively enhance the separation of CDCCs. The effects of experimental conditions on the separation were investigated. Finally, the BAA-MEKC method was applied to the separation and analysis of nucleosides extracted from human urine. BAA-MEKC exhibited better selectivity and improved separation as compared with conventional MEKC and CZE. Successful quantitative analysis of urinary nucleosides by BAA-MEKC was demonstrated.

  2. Rapid ultrasonic and microwave-assisted micellar extraction of zingiberone, shogaol and gingerols from gingers using biosurfactants.

    Peng, Li-Qing; Cao, Jun; Du, Li-Jing; Zhang, Qi-Dong; Xu, Jing-Jing; Chen, Yu-Bo; Shi, Yu-Ting; Li, Rong-Rong


    Two kinds of extraction methods ultrasonic-assisted micellar extraction (UAME) and microwave-assisted micellar extraction (MAME) coupled with ultra-high performance liquid chromatography with ultraviolet detector (UHPLC-UV) were developed and evaluated for extraction and determination of zingerone, 6-gingerol, 8-gingerol, 6-shogaol and 10-gingerol in Rhizoma Zingiberis and Rhizoma Zingiberis Preparata. A biosurfactant, hyodeoxycholic acid sodium salt, was used in micellar extraction. Several experimental parameters were studied separately by a univariate method. The result indicated that the MAME was more efficient than UAME. The optimal conditions of MAME were as follows: 100mM of hyodeoxycholic acid sodium salt was used as surfactant, the irradiation time was set at 10s and the extraction temperature was set at 60°C. The validation results indicated that the limits of detection were in the range of 3.80-8.11ng/mL. The average recoveries were in the range of 87.32-103.12% for the two samples at two spiking levels. Compared with other reported methods, the proposed MAME-UHPLC-UV method was more effective, quicker (10s) and more eco-friendly. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. New fermions in the bulk

    de Brito, K P S


    Spinor fields on 5-dimensional Lorentzian manifolds are classified, according to the geometric Fierz identities that involve their bilinear covariants. Based upon this classification that generalises the celebrated 4-dimensional Lounesto classification of spinor fields, new non-trivial classes of 5-dimensional spinor fields are, hence, found, with important potential applications regarding bulk fermions and their subsequent localisation on brane-worlds. In addition, quaternionic bilinear covariants are used to derive the quaternionic spin density, through the truncated exterior bundle. In order to accomplish a realisation of these new spinors, a Killing vector field is constructed on the horizon of 5-dimensional Kerr black holes. This Killing vector field is shown to reach the time-like Killing vector field at the spatial infinity, through a current 1-form density, constructed with the derived new spinor fields. The current density is, moreover, expressed as the f\\"unfbein components, assuming a condensed for...

  4. New fermions in the bulk

    de Brito, K. P. S.; da Rocha, Roldão


    The spinor fields on 5-dimensional Lorentzian manifolds are classified according to the geometric Fierz identities, which involve their bilinear covariants. Based upon this classification, which generalises the celebrated 4-dimensional Lounesto classification of spinor fields, new non-trivial classes of 5-dimensional spinor fields are hence found, with important potential applications regarding bulk fermions and their subsequent localisation on brane-worlds. In addition, quaternionic bilinear covariants are used to derive the quaternionic spin density through the truncated exterior bundle. In order to accomplish the realisation of these new spinors, a Killing vector field is constructed on the horizon of a 5-dimensional Kerr black hole. This Killing vector field is shown to reach the time-like Killing vector field at spatial infinity through a current 1-form density, constructed with the new derived spinor fields. The current density is, moreover, expressed as the fünfbein component, assuming a condensed form.

  5. Nanofluidics, from bulk to interfaces.

    Bocquet, Lydéric; Charlaix, Elisabeth


    Nanofluidics has emerged recently in the footsteps of microfluidics, following the quest for scale reduction inherent to nanotechnologies. By definition, nanofluidics explores transport phenomena of fluids at nanometer scales. Why is the nanometer scale specific? What fluid properties are probed at nanometric scales? In other words, why does 'nanofluidics' deserve its own brand name? In this critical review, we will explore the vast manifold of length scales emerging for fluid behavior at the nanoscale, as well as the associated mechanisms and corresponding applications. We will in particular explore the interplay between bulk and interface phenomena. The limit of validity of the continuum approaches will be discussed, as well as the numerous surface induced effects occurring at these scales, from hydrodynamic slippage to the various electro-kinetic phenomena originating from the couplings between hydrodynamics and electrostatics. An enlightening analogy between ion transport in nanochannels and transport in doped semi-conductors will be discussed (156 references).

  6. Production efficiency of micellar casein concentrate using polymeric spiral-wound microfiltration membranes.

    Beckman, S L; Zulewska, J; Newbold, M; Barbano, D M


    Most current research has focused on using ceramic microfiltration (MF) membranes for micellar casein concentrate production, but little research has focused on the use of polymeric spiral-wound (SW) MF membranes. A method for the production of a serum protein (SP)-reduced micellar casein concentrate using SW MF was compared with a ceramic MF membrane. Pasteurized (79°C, 18s) skim milk (1,100 kg) was microfiltered at 50°C [about 3 × concentration] using a 0.3-μm polyvinylidene fluoride spiral-wound membrane, bleed-and-feed, 3-stage process, using 2 diafiltration stages, where the retentate was diluted 1:2 with reverse osmosis water. Skim milk, permeate, and retentate were analyzed for SP content, and the reduction of SP from skim milk was determined. Theoretically, 68% of the SP content of skim milk can be removed using a single-stage 3× MF. If 2 subsequent water diafiltration stages are used, an additional 22% and 7% of the SP can be removed, respectively, giving a total SP removal of 97%. Removal of SP greater than 95% has been achieved using a 0.1-μm pore size ceramic uniform transmembrane pressure (UTP) MF membrane after a 3-stage MF with diafiltration process. One stage of MF plus 2 stages of diafiltration of 50°C skim milk using a polyvinylidene fluoride polymeric SW 0.3-μm membrane yielded a total SP reduction of only 70.3% (stages 1, 2, and 3: 38.6, 20.8, and 10.9%, respectively). The SP removal rate for the polymeric SW MF membrane was lower in all 3 stages of processing (stages 1, 2, and 3: 0.05, 0.04, and 0.03 kg/m(2) per hour, respectively) than that of the comparable ceramic UTP MF membrane (stages 1, 2, and 3: 0.30, 0.11, and 0.06 kg/m(2) per hour, respectively), indicating that SW MF is less efficient at removing SP from 50°C skim milk than the ceramic UTP system. To estimate the number of steps required for the SW system to reach 95% SP removal, the third-stage SP removal rate (27.4% of the starting material SP content) was used to

  7. Estimativa da condutividade elétrica da solução do solo a partir do teor de água e da condutividade elétrica aparente do solo Estimative of soil solution electrical conductivity from soil water content and soil bulk electrical conductivity

    Gessionei da S. Santana


    Full Text Available O crescente uso da técnica de fertirrigação não tem sido acompanhado com pesquisas para disponibilizar informações capazes de proporcionar o correto manejo dessa técnica. A reflectometria no domínio do tempo (TDR possibilita o monitoramento simultâneo e contínuo do teor de água (teta e da condutividade elétrica aparente do solo (CEa. A literatura apresenta diversos modelos que relacionam teta e CEa com a condutividade elétrica da solução do solo (CEw, com vistas à predição da CEw a partir de dados de teta e CEa obtidos por meio da técnica da TDR. Porém, muitas pesquisas demonstram a necessidade de avaliação e calibração desses modelos para solos de diferentes classes texturais. Neste trabalho, foram avaliados seis modelos com o objetivo de conhecer a capacidade dos mesmos em relacionar teta, CEa e CEw. Experimentos de laboratório foram feitos, com solo de classes texturais franca e franco-arenosa, aplicando-se soluções com cinco condutividades elétricas combinadas com cinco teores de água no solo, resultando em 25 colunas de solo. Os modelos demonstraram capacidade para relacionar teta, CEa e CEw.The increase of fertigation techniques has not been followed by researches that generate available information to guide a correct fertigation management. The time-domain reflectometry allows the simultaneously monitoring of soil water content (theta and bulk electrical conductivity (CEa. Literature presents various models which relate TDR readings of theta and CEa to soil solution electrical conductivity (CEw. Nevertheless, many researches demonstrate the need for evaluation and calibration of these models under different soil conditions. In this work, six mathematical models were evaluated in order to establish the relationship among theta, CEa e CEw. Laboratory experiments were carried out using two soil materials, by means of applying five electrical conductivities combined with five soil water contents in PVC columns

  8. Spectrofluorimetric study of the interaction between europium(III) and moxifloxacin in micellar solution and its analytical application.

    Kamruzzaman, Mohammad; Alam, Al-Mahmnur; Lee, Sang Hak; Ragupathy, Dhanusuraman; Kim, Young Ho; Park, Sang-Ryoul; Kim, Sung Hong


    A sensitive spectrofluorimetric method has been developed for the determination of moxifloxacin (MOX) using europium(III)-MOX complex as a fluorescence probe in the presence of an anionic surfactant, sodium dodecyl benzene sulfonate (SDBS). The fluorescence (FL) intensity of Eu(3+) was enhanced by complexation with MOX at 614 nm after excitation at 373 nm. The FL intensity of the Eu(3+)-MOX complex was significantly intensified in the presence of SDBS. Under the optimum conditions, it was found that the enhanced FL intensity of the system showed a good linear relationship with the concentration of MOX over the range of 1.8 × 10(-11)-7.3 × 10(-9) g mL(-1) with a correlation coefficient of 0.9998. The limit of detection of MOX was found to be 2.8 × 10(-12) g mL(-1) with relative standard deviation (RSD) of 1.25% for 5 replicate determination of 1.5 × 10(-8) g mL(-1) MOX. The proposed method is simple, offers higher sensitivity with wide linear range and can be successfully applied to determine MOX in pharmaceutical and biological samples with good reproducibility. The luminescence mechanism is also discussed in detail with ultraviolet absorption spectra.

  9. Coupling brane fields to bulk supergravity

    Parameswaran, Susha L. [Uppsala Univ. (Sweden). Theoretical Physics; Schmidt, Jonas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)


    In this note we present a simple, general prescription for coupling brane localized fields to bulk supergravity. We illustrate the procedure by considering 6D N=2 bulk supergravity on a 2D orbifold, with brane fields localized at the fixed points. The resulting action enjoys the full 6D N=2 symmetries in the bulk, and those of 4D N=1 supergravity at the brane positions. (orig.)

  10. Relative entropy equals bulk relative entropy

    Jafferis, Daniel L; Maldacena, Juan; Suh, S Josephine


    We consider the gravity dual of the modular Hamiltonian associated to a general subregion of a boundary theory. We use it to argue that the relative entropy of nearby states is given by the relative entropy in the bulk, to leading order in the bulk gravitational coupling. We also argue that the boundary modular flow is dual to the bulk modular flow in the entanglement wedge, with implications for entanglement wedge reconstruction.

  11. Separation and determination of nimesulide related substances for quality control purposes by micellar electrokinetic chromatography.

    Zacharis, Constantinos K; Tzanavaras, Paraskevas D; Notou, Maria; Zotou, Anastasia; Themelis, Demetrius G


    A micellar electrokinetic chromatography (MEKC) method has been developed and validated for the determination of nimesulide related compounds in pharmaceutical formulations. Electrophoretic separation of six European Pharmacopoeia (EP) impurities (A-F) was performed using a fused silica capillary (L(eff.)=50 cm, L(tot.)=57 cm, 50 microm i.d.) with a background electrolyte (BGE) containing 25 mM borate buffer (pH 9.5), 30 mM sodium dodecyl sulphate and phi=3% (v/v) acetonitrile. The influence of several factors (surfactant and buffer concentration, pH, organic modifier, applied voltage, capillary temperature and injection time) was studied. The method was suitably validated with respect to linearity, limit of detection and quantification, accuracy, precision and selectivity. The calibration curves obtained for the six compounds were linear over the range 5-12 microgml(-1) (0.05-0.12%). The relative standard deviations (s(r)) of intra- and inter-day experiments were less than 5.0%. The detection limits ranged between 0.7 and 1.6 microgml(-1) depending on the impurity. The proposed method was applied successfully to the quantification of nimesulide impurities in its pharmaceutical formulation.

  12. Environmental monitoring of phenolic pollutants in water by cloud point extraction prior to micellar electrokinetic chromatography

    Stege, Patricia W.; Sombra, Lorena L.; Messina, German A.; Martinez, Luis D. [National University of San Luis, CONICET, INQUISAL, Department of Chemistry, San Luis (Argentina); Silva, Maria F. [Universidad Nacional de Cuyo, Departamento de Biomatematica y Fisicoquimica, Facultad de Ciencias Agrarias, Mendoza (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnologicas (CONICET), Buenos Aires (Argentina)


    Many aromatic compounds can be found in the environment as a result of anthropogenic activities and some of them are highly toxic. The need to determine low concentrations of pollutants requires analytical methods with high sensitivity, selectivity, and resolution for application to soil, sediment, water, and other environmental samples. Complex sample preparation involving analyte isolation and enrichment is generally necessary before the final analysis. The present paper outlines a novel, simple, low-cost, and environmentally friendly method for the simultaneous determination of p-nitrophenol (PNP), p-aminophenol (PAP), and hydroquinone (HQ) by micellar electrokinetic capillary chromatography after preconcentration by cloud point extraction. Enrichment factors of 180 to 200 were achieved. The limits of detection of the analytes for the preconcentration of 50-ml sample volume were 0.10{mu}g L{sup -1} for PNP, 0.20 {mu}g L{sup -1} for PAP, and 0.16{mu}g L{sup -1} for HQ. The optimized procedure was applied to the determination of phenolic pollutants in natural waters from San Luis, Argentina. (orig.)

  13. Application of Sigmoidal Transformation Functions in Optimization of Micellar Liquid Chromatographic Separation of Six Quinolone Antibiotics.

    Hadjmohammadi, Mohammadreza; Salary, Mina


    A chemometrics approach has been used to optimize the separation of six quinolone compounds by micellar liquid chromatography (MLC). A Derringer's desirability function, a multicriteria decision-making (MCDM) method, was tested for evaluation of two different measures of chromatographic performance (resolution and analysis time). The effect of three experimental parameters on a chromatographic response function (CRF) expressed as a product of two sigmoidal desirability functions was investigated. The sigmoidal functions were used to transform the optimization criteria, resolution and analysis time into the desirability values. The factors studied were the concentration of sodium dodecyl sulfate, butanol content and pH of the mobile phase. The experiments were done according to the face-centered cube central composite design, and the calculated CRF values were fitted to a polynomial model to correlate the CRF values with the variables and their interactions. The developed regression model showed good descriptive and predictive ability (R(2) = 0.815, F = 6.919, SE = 0.038, [Formula: see text]) and used, by a grid search algorithm, to optimize the chromatographic conditions for the separation of the mixture. The efficiency of prediction of polynomial model was confirmed by performing the experiment under the optimal conditions.

  14. Preparation of PEO/Clay Nanocomposites Using Organoclay Produced via Micellar Adsorption of CTAB

    Ahmet Gürses


    Full Text Available The aim of this study was the preparation of polyethylene oxide (PEO/clay nanocomposites using organoclay produced via micellar adsorption of cethyltrimethyl ammonium bromide (CTAB and their characterisation by X-ray diffraction (XRD, and Fourier transform infrared (FT-IR spectra, and the investigation of certain mechanical properties of the composites. The results show that the basal distance between the layers increased with the increasing CTAB/clay ratio as parallel with the zeta potential values of particles. By considering the aggregation number of CTAB micelles and interlayer distances of organo-clay, it could be suggested that the predominant micelle geometry at lower CTAB/clay ratios is an ellipsoidal oblate, whereas, at higher CTAB/clay ratios, sphere-ellipsoid transition occurs. The increasing tendency of the exfoliation degree with an increase in clay content may be attributed to easier diffusion of PEO chains to interlayer regions. FT-IR spectra show that the intensity of Si-O stretching vibrations of the organoclays (1050 cm−1 increased, especially in the ratios of 1.0 g/g clay and 1.5 g/g clay with the increasing CTAB content. It was observed that the mechanical properties of the composites are dependent on both the CTAB/clay ratios and clay content of the composites.

  15. On the role of a coumarin derivative for sensing applications: Nucleotide identification using a micellar system.

    Bettoschi, Alexandre; Ceglie, Andrea; Lopez, Francesco; Meli, Valeria; Murgia, Sergio; Tamburro, Manuela; Caltagirone, Claudia; Cuomo, Francesca


    The recognition of nucleotides is of crucial importance because they are the basic constituents of nucleic acids. The present study is focused on the selective interaction between a novel amphiphilic fluorophore containing coumarin and imidazole, CI (1-methyl-3-(12-((2-oxo-2H-chromen-7-yl)oxy)dodecyl)-1H-imidazol-3-ium bromide), and different nucleotide-monophosphates (NMPs). It was supposed that the solubilization of the low water soluble CI in a micelle system of hexadecyltrimethylammonium chloride (CTAC) would make the coumarin moiety of CI available to the interaction with the water-soluble NMPs. Changes in CTAC critical micelle concentration suggested that CI strongly interacted with the host cationic surfactant, thus forming a positively charged interface enriched with coumarin able to interact with the anionic NMPs. Steady-state fluorescence quenching revealed that CI/CTAC system was capable of distinguish between purine- and pyrimidine-based nucleotides. A modified Stern-Volmer equation permitted the use of a quenching model that accounted for the possible interactions between the micelles and the nucleotides. The data analysis allowed calculating selective parameters that differentiated according to the type of nucleotide either at 25 or 50°C. Our results established the utility of the novel coumarin derivative fluorophore, supported by the simple and suitable micellar systems, as a tool for DNA sensing applications.


    Noor Rehman; Abbas Khan; Iram Bibi; Mohammad Siddiq


    The interactions of non-ionic amphiphilic diblock copolymer poly(oxyethylene/oxybutylene) (E39B18) with anionic surfactant sodium dodecyl sulphate (SDS) and cationic surfactant hexadecyltrimethylammonium bromide (CTAB) were studied by using various techniques such as surface tension,conductivity,steady-state fluorescence and dynamic light scattering.Surface tension measurements were used to determine the critical micelle concentration (CMC) and thereby the free energy of micellization (AGmic),free energy of adsorption (AGads),surface excess concentration (F) and minimum area per molecule (A).Conductivity measurements were used to determine the critical micelle concentration (CMC),critical aggregation concentration (CAC),polymer saturation point (PSP),degree of ionization (α) and counter ion binding (β).Dynamic light scattering experiments were performed to check the changes in physiochemical properties of the block copolymer micelles taken place due to the interactions of diblock copolymers with ionic surfactants.The ratio of the first and third vibronic peaks (I1/I13) indicated the polarity of the pyrene micro environment and was used for the detection of micelle as well as polymer-surfactant interactions.Aggregation number (N),number of binding sites (n) and free energy of binding (AGb) for pure surfactants as well as for polymer-surfactant mixed micellar systems were determined by the fluorescence quenching method.

  17. Micellar enhanced ultrafiltration process for the treatment of olive mill wastewater.

    El-Abbassi, Abdelilah; Khayet, Mohamed; Hafidi, Abdellatif


    Olive mill wastewater (OMW) is an important environmental pollution problem, especially in the Mediterranean, which is the main olive oil production region worldwide. Environmental impact of OMW is related to its high organic load and particularly to the phytotoxic and antibacterial action of its phenolic content. In fact, polyphenols are known as powerful antioxidants with interesting nutritional and pharmaceutical properties. In the present work, the efficiency of OMW Micellar Enhanced Ultrafiltration (MEUF) treatment for removal and concentration of polyphenols was investigated, using an anionic surfactant (Sodium Dodecyl Sulfate salt, SDS) and a hydrophobic poly(vinyldene fluoride) (PVDF) membrane. The effects of the process experimental conditions on the permeate flux were investigated, and the secondary membrane resistance created by SDS molecules was evaluated. The initial fluxes of OMW processing by MEUF using SDS were 25.7 and 44.5 l/m2 h under transmembrane pressures of 3.5 and 4.5 bar, respectively. The rejection rate of polyphenols without using any surfactant ranged from 5 to 28%, whereas, it reached 74% when SDS was used under optimum pH (pH 2). The MEUF provides a slightly colored permeate (about 88% less dark), which requires clearly less chemical oxygen demand (COD) for its oxidation (4.33% of the initial COD). These results showed that MEUF process can efficiently be applied to the treatment of OMW and for the concentration and recovery of polyphenols.

  18. Micellar Liquid Chromatographic Determination of Carbaryl and 1-Naphthol in Water, Soil, and Vegetables

    Mei-Liang Chin-Chen


    Full Text Available A liquid chromatographic procedure has been developed for the determination of carbaryl, a phenyl-N-methylcarbamate, and its main metabolite 1-naphthol, using a C18 column (250’mm’ × ’4.6’mm with a micellar mobile phase and fluorescence detection at maximum excitation/emission wavelengths of 225/333’nm, respectively. In the optimization step, surfactants sodium dodecyl sulphate (SDS, Brij-35 and N-cetylpyridinium chloride monohydrate, and organic solvents propanol, butanol, and pentanol were considered. The selected mobile phase was 0.15’M SDS-6% (v/v-pentanol-0.01’M NaH2PO4 buffered at pH 3. Validation studies, according to the ICH Tripartite Guideline, included linearity (r>0.999, limit of detection (5 and 18’ng mL-1, for carbaryl and 1-naphthol, resp., and limit of quantification (15 and 50’ng mL-1, for carbaryl and 1-naphthol, resp., with intra- and interday precisions below 1%, and robustness parameters below 3%. The results show that the procedure was adequate for the routine analysis of these two compounds in water, soil, and vegetables samples.

  19. Micellar electrokinetic chromatography method development for simultaneous determination of thiabendazole, carbendazim, and fuberidazole.

    Soliman, Laiel C; Donkor, Kingsley K


    Thiabendazole (TBz), carbendazim (CBz), and fuberidazole (FBz) are systemic benzimidazole-type fungicides used for pre- and post-harvest treatment to control various types of fungal diseases on a variety of crops. Significant levels of these fungicides could alter the composition or flavour of crops, and being possible carcinogens, they could also pose risks for humans and the environment. A mode of capillary electrophoresis called micellar electrokinetic chromatography (MEKC) was investigated for the determination of these three benzimidazole fungicides. The study involved two kinds of surfactants in which several experimental conditions were optimized, i.e., buffer concentration, pH, micelle concentration, and percent organic modifier (methanol). Using the optimum experimental conditions, the fungicides were successfully separated by MEKC. The limits of detection and quantification were in the range of 0.6-0.7 and 2.1-2.5 mg L(-1), respectively, and the calibration curves were linear over the range of 5-60 mg L(-1) for the three fungicides. The potential of the proposed MEKC method was demonstrated by analyzing water samples which were fortified with the fungicides. The proposed method enabled simultaneous determination of the three benzimidazole fungicides and method validation with spiked water samples yielded satisfactory quantitative recoveries for all the three fungicides.

  20. Determination of seven preservatives in cosmetic products by micellar electrokinetic chromatography.

    Huang, Jun-Qiang; Hu, Cho-Chun; Chiu, Tai-Chia


    A micellar electrokinetic chromatography method using cetyltrimethylammonium bromide (CTAB) as a cationic surfactant, coupled with UV-Vis detection, was developed for the simultaneous determination of seven preservatives, including methyl-, ethyl-, propyl- and butyl-paraben and phenol, phenoxyethanol and resorcinol. The method involved optimizing the pH of the phosphate buffer and concentrations of CTAB, ethanol and 2-hydroxypropyl-β-cyclodextrin (HP-β-CD). The preservatives were well separated using optimum conditions and separated within 10 min at a separation voltage of -12.5 kV with the 1.0 mM phosphate buffer (pH 7.0) containing 90 mM CTAB, 25 mM HP-β-CD and 10% (v/v) ethanol. Satisfactory recoveries (84.1-103.0%), migration time (RSD < 3.1%) and peak area (RSD < 4.5%) repeatabilities were achieved. Detection limits of the preservatives were between 0.31 and 1.52 μg mL(-1) (S/N = 3, n = 5). The optimized method was successfully applied to the simultaneous determination of these preservatives in 10 commercial cosmetic products.