WorldWideScience

Sample records for micellar bulk solution

  1. Vertical structures in vibrated wormlike micellar solutions

    Science.gov (United States)

    Epstein, Tamir; Deegan, Robert

    2008-11-01

    Vertically vibrated shear thickening particulate suspensions can support a free-standing interfaces oriented parallel to gravity. We find that shear thickening worm-like micellar solutions also support such vertical interfaces. Above a threshold in acceleration, the solution spontaneously accumulates into a labyrinthine pattern characterized by a well-defined vertical edge. The formation of vertical structures is of interest because they are unique to shear-thickening fluids, and they indicate the existence of an unknown stress bearing mechanism.

  2. Photonics of dyes molecules in reverse micellar solution

    International Nuclear Information System (INIS)

    Ibragimova, M.R.; Laurinas, V.Ch.

    2001-01-01

    Spectral luminescent characteristics of the dye acridine orange and eosin has been studied in reverse micellar solutions of sodium bis(2-ethyl-hexyl)sulfosuccinate. It was shown that the increase of the nucleus volume of reverse micelles. (author)

  3. Structural study of concentrated micellar solutions

    International Nuclear Information System (INIS)

    Zemb, Thomas

    1985-01-01

    This research thesis reports the study of the structure of concentrated soap-water binary micelles with a comparison of measurements of light, neutrons and X-ray scattering, and the relaxation induced by paramagnetic ions adsorbed at the interface. In the first part, the author discusses the specific sensitivity ranges of different experimental techniques, outlines the resolution which can be obtained with scattering experiments, and proposes a critical analysis of results published in the relevant literature. In a second part, the author discusses the compared results of the application of various techniques (magnetic resonance, X-light and neutron scattering) on the two most used model systems: sodium octanoate and sodium dodecyl sulfate (SDS) in solution. Then, the author addresses the case of ternary systems: study of the influence of the presence of a co-surfactant on the structure, study of the effect of interfacial charge on the micellar structure, use of the same previous quantitative methods to study the disturbances brought to the structure due to the presence of reactants [fr

  4. Strip waves in vibrated shear-thickening wormlike micellar solutions

    Science.gov (United States)

    Epstein, T.; Deegan, R. D.

    2010-06-01

    We present an instability in vertically vibrated dilute wormlike micellar solutions. Above a critical driving acceleration the fluid forms elongated solitary domains of high amplitude waves. We model this instability using a Mathieu equation modified to account for the non-Newtonian character of the fluid. We find that our model successfully reproduces the observed transitions.

  5. Marginalism, quasi-marginalism and critical phenomena in micellar solutions

    International Nuclear Information System (INIS)

    Reatto, L.

    1986-01-01

    The observed nonuniversal critical behaviour of some micellar solutions is interpreted in terms of quasi-marginalism, i.e. the presence of a coupling which scales with an exponent very close to the spatial dimensionality. This can give rise to a preasymptotic region with varying effective critical exponents with a final crossover to the Ising ones. The reduced crossover temperature is estimated to be below 10 -6 . The exponents β and γ measured in C 12 e 5 are in good agreement with the scaling law expected to hold for the effective exponents. The model considered by Shnidman is found unable to explain the nonuniversal critical behaviour

  6. Organisation and shape of micellar solutions of block copolymers

    Science.gov (United States)

    Gaspard, J. P.; Creutz, S.; Bouchat, Ph.; Jérôme, R.; Cohen Stuart, M.

    1997-02-01

    Diblock copolymers of polymethacrylic acid sodium salt, forming the hair, and styrene derivatives have been studied in aqueous solutions by SANS and SAXS. The influence of both the chemical nature and the length of the hydrophobic bloxk on the size and shape of micelles have been investigated. The micellar core size is in agreement with the theoretical evaluation for copolymers with a short hydrophobic sequence. In contrast, in case of larger hydrophobic blocks, the measured size is incompatible with a star-like model. Various hypotheses are presented for the latter.

  7. A theory of phase separation in asphaltene-micellar solutions

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco Sanchez, Juan H. [Instituto Mexicano del Petroleo, Mexico D.F. (Mexico)

    2001-08-01

    A theory of phase separation in micellar solutions of asphaltene in aromatic hydrocarbons was reported in this paper, based on both the approach of the phase behavior of amphiphile/water micelles, and the self-association of asphaltene in aromatic core. Several experimental techniques have been used by different investigators showing the existence of some kind of critical micellar concentration (CMC) on asphaltenes in aromatic solutions. So, at least asphaltene-monomer and asphaltene-micellar phases are experimentally demonstrated facts. These two phases are the main purpose in this report on a theoretical model. Some results show the temperature versus asphaltene concentration phase diagram. The phase diagram is examined against the limited critical micelle concentration data for asphaltenes-in-toluene systems. Such phase diagram is also qualitatively examined against an experimental demonstration of phase separation. The asphaltene-micelle growth depends on the parameter K responsible for the shape and size of it. At the same time, parameter K depends on both the number of asphaltene-monomer associated in the asphaltene-micelle, and the chemical potentials in the interior and in the periphery of the micelle. An expression for getting the number of asphaltene-monomers self-associated in the asphaltene-micelle was obtained. [Spanish] Se reporta una teoria de separacion de fases en soluciones micelares de asfalteno en hidrocarburos aromaticos, basada tanto en la conducta de fase de micelas formadas por anififilos en agua como en la autoasociacion de asfaltenos en nucleos aromaticos. Se han usado diversas tecnicas experimentales por diferentes investigadores que demuestran la existancia de algun tipo de concentracion micelar critica (CMC) de soluciones de asfaltenos en aromaticos. Entonces, al menos las fases de asfalteno-monomerico y de asfalteno-micelar son hechos experimentalmente demostrados. Esta dos fases son el principal proposito de este reporte en un modelo

  8. Effect of calcium chelators on physical changes in casein micelles in concentrated micellar casein solutions

    NARCIS (Netherlands)

    Kort, de E.J.P.; Minor, M.; Snoeren, T.H.M.; Hooijdonk, van A.C.M.; Linden, van der E.

    2011-01-01

    The effect of calcium chelators on physical changes of casein micelles in concentrated micellar casein solutions was investigated by measuring calcium-ion activity, viscosity and turbidity, and performing ultracentrifugation. The highest viscosities were measured on addition of sodium

  9. The magnetoviscous effect of micellar solutions doped with water based ferrofluids

    Energy Technology Data Exchange (ETDEWEB)

    Arantes, Fabiana R., E-mail: farantes@if.usp.br [Institute of Physics, University of Sao Paulo (Brazil); Institute of Fluid Mechanics, Technische Universität Dresden (Germany); Odenbach, Stefan, E-mail: stefan.odenbach@tu-dresden.de [Institute of Fluid Mechanics, Technische Universität Dresden (Germany)

    2015-09-15

    This work presents a magnetorheological study of micellar solutions of potassium laurate and water doped with magnetite nanoparticles, accompanied by auxiliary dynamic light scattering measurements. An increase in the viscosity of the samples under applied field was observed and, furthermore, a considerable magnetoviscous effect was revealed even at magnetic particles' concentrations as low as 0.005–0.01 vol%. This indicates that the rheological behavior of the micelles is changed by the interaction of the magnetic particles with the applied field, leading to different microscopic arrangements in the micellar solutions. - Highlights: • We study the magnetorheological behavior of micellar solutions doped with ferrofluids. • We observe an increase in the viscosity of the samples under an applied field. • We find a large magnetoviscous effect even at low magnetic particles' concentration. • Interaction of particles with the field changes the micelles' rheological behavior.

  10. Molecular motion of micellar solutes: a 13C NMR relaxation study

    International Nuclear Information System (INIS)

    Stark, R.E.; Kasakevich, M.L.; Granger, J.W.

    1982-01-01

    A series of simple NMR relaxation experiments have been performed on nitrobenzene and aniline dissolved in the ionic detergents sodium dodecyl sulfate (SDS) and hexadecyltrimethylammonium bromide (CTAB). Using 13 C relaxation rates at various molecular sites, and comparing data obtained in organic media with those for micellar solutions, the viscosity at the solubilization site was estimated and a detailed picture of motional restrictions imposed by the micellar enviroment was derived. Viscosities of 8 to 17 cp indicate a rather fluid environment for solubilized nitrobenzene; both additives exhibit altered motional preferences in CTAB solutions only. As an aid in interpretation of the NMR data, quasi-elastic light scattering and other physical techniques have been used to evaluate the influence of organic solutes on micellar size and shape. The NMR methods are examined critically in terms of their general usefulness for studies of solubilization in detergent micelles. 48 references

  11. Energy transfer from triplet aromatic hydrocarbons to Tb3+ and Eu3+ in aqueous micellar solutions

    International Nuclear Information System (INIS)

    Almgren, M.; Grieser, F.; Thomas, J.K.

    1979-01-01

    The sensitization of Tb 3+ and Eu 3+ luminescence by energy transfer from aromatic triplet donors like naphthalene, bromonaphthalene, biphenyl, and phenanthrene in micellar sodium lauryl sulfate solution has been studied. Formal second-order rate constants for the energy transfer process in the micellar solutions were determined as 5 x 10 5 and 1.8 x 10 5 M -1 S -1 for transfer from biphenyl to Tb 3+ . The method of converting these rate constants to second-order constants pertaining to the micellar microenvironment is discussed; it is estimated that the transfer process at the micelles is charaterized by rate constants about one order of magnitude smaller than the formal ones. The transfer process is thus extremely slow. 7 figures

  12. Study of the Reaction 2-(p-Nitrophenylethyl Bromide + OH− in Dimeric Micellar Solutions

    Directory of Open Access Journals (Sweden)

    María Luisa Moyá

    2011-11-01

    Full Text Available The dehydrobromination reaction 2-(p-nitrophenylethyl bromide + OH− was investigated in several alkanediyl-a-w-bis(dodecyldimethylammonium bromide, 12-s-12,2Br− (with s = 2, 3, 4, 5, 6, 8, 10, 12 micellar solutions, in the presence of NaOH 5 × 10−3 M. The kinetic data were quantitatively rationalized within the whole surfactant concentration range by using an equation based on the pseudophase ion-exchange model and taking the variations in the micellar ionization degree caused by the morphological transitions into account. The agreement between the theoretical and the experimental data was good in all the dimeric micellar media studied, except for the 12-2-12,2Br− micellar solutions. In this case, the strong tendency to micellar growth shown by the 12-2-12,2Br− micelles could be responsible for the lack of accordance. Results showed that the dimeric micelles accelerate the reaction more than two orders of magnitude as compared to water.

  13. Self-association of analgesics in aqueous solution: micellar properties of dextropropoxyphene hydrochloride and methadone hydrochloride.

    Science.gov (United States)

    Attwood, D; Tolley, J A

    1980-08-01

    The solution properties of several analgesics including dextropropoxyphene hydrochloride, methadone hydrochloride, dextromoramide acid tartrate and dipipanone hydrochloride have been examined using light scattering, conductivity, vapour pressure osmometry and surface tension techniques. A micellar pattern of association was established for dextropropoxyphene hydrochloride and methadone hydrochloride and critical micelle concentrations and aggregation numbers are reported. The hydrophobic contribution to the free energy of micellization of dextropropoxyphene was determined from measurement of the critical micelle concentration in the presence of added electrolyte.

  14. Microstructural evolution of a model, shear-banding micellar solution during shear startup and cessation.

    Science.gov (United States)

    López-Barrón, Carlos R; Gurnon, A Kate; Eberle, Aaron P R; Porcar, Lionel; Wagner, Norman J

    2014-04-01

    We present direct measurements of the evolution of the segmental-level microstructure of a stable shear-banding polymerlike micelle solution during flow startup and cessation in the plane of flow. These measurements provide a definitive, quantitative microstructural understanding of the stages observed during flow startup: an initial elastic response with limited alignment that yields with a large stress overshoot to a homogeneous flow with associated micellar alignment that persists for approximately three relaxation times. This transient is followed by a shear (kink) band formation with a flow-aligned low-viscosity band that exhibits shear-induced concentration fluctuations and coexists with a nearly isotropic band of homogenous, highly viscoelastic micellar solution. Stable, steady banding flow is achieved only after approximately two reptation times. Flow cessation from this shear-banded state is also found to be nontrivial, exhibiting an initial fast relaxation with only minor structural relaxation, followed by a slower relaxation of the aligned micellar fluid with the equilibrium fluid's characteristic relaxation time. These measurements resolve a controversy in the literature surrounding the mechanism of shear banding in entangled wormlike micelles and, by means of comparison to existing literature, provide further insights into the mechanisms driving shear-banding instabilities in related systems. The methods and instrumentation described should find broad use in exploring complex fluid rheology and testing microstructure-based constitutive equations.

  15. The different-ligand complexing of europium with complexones and β-diketones in micellar solution

    International Nuclear Information System (INIS)

    Svetlova, I.E.; Dobrynina, N.A.; Smirnova, N.S.; Martynenko, L.I.; Evseev, A.M.; Savitskij, A.P.

    1989-01-01

    Method of pH-metric titration with mathematical simulation was used to study the effect of nonionic surfactant (polyoxyethyleneoctylphenyl este) on stability of europium complexes with cyclohexanediaminetetraacetic and ethylenediaminetetraacetic acids. Optimal conditions for ternary complex formation in the system Eu 3+ -complexone-β-diketone at pH 7.0-9.0 were found. Complex-compositions were determined and their stability constants were calculated. It is shown that complex stability decreases by several orders in micellar solutions, tecause β-diketone introduction to the solution decreases thermodynamic stability of complexes

  16. Regioselective dimerization of ferulic acid in a micellar solution

    DEFF Research Database (Denmark)

    Larsen, E; Andreasen, Mette Findal; Christensen, L P

    2001-01-01

    Dehydrodimers of hydroxycinnamates play an important role in the cross-linking of plant cell walls. An aqueous solution of quaternary ammonium salts with a long aliphatic chain is known to spontaneously organize itself into micelles with the ionic part at the outer sphere. It is shown...

  17. Micellar effects on positronium lifetime in aqueous SDS solutions

    International Nuclear Information System (INIS)

    Vass, Sz.; Kajcsos, Zs.; Molnar, B.; Stergiopoulos, Ch.

    1981-09-01

    Positron lifetime measurements have been performed in aqueous SDS (Sodium Dodecyl Sulphate) solutions. The lifetime distributions measured by fast-slow coincidence technique have been found to be influenced by surfactant concentration, which varied in the range of 1.25x10 -3 - 3.2x10 -1 mol/dm 3 (i.e. 2.27x10 -5 - 5.82x10 -3 mole fractions). The lifetime of the long living component connected to positronium formation and decay increases with increasing surfactant concentration. Lifetime data suggest that a direct positronium-micelle electron-exchange reaction leading to pick-off annihilation is contraindicated. (author)

  18. An Asymptotic Theory for the Re-Equilibration of a Micellar Surfactant Solution

    KAUST Repository

    Griffiths, I. M.; Bain, C. D.; Breward, C. J. W.; Chapman, S. J.; Howell, P. D.; Waters, S. L.

    2012-01-01

    Micellar surfactant solutions are characterized by a distribution of aggregates made up predominantly of premicellar aggregates (monomers, dimers, trimers, etc.) and a region of proper micelles close to the peak aggregation number, connected by an intermediate region containing a very low concentration of aggregates. Such a distribution gives rise to a distinct two-timescale reequilibration following a system dilution, known as the t1 and t2 processes, whose dynamics may be described by the Becker-Döring equations. We use a continuum version of these equations to develop a reduced asymptotic description that elucidates the behavior during each of these processes.© 2012 Society for Industrial and Applied Mathematics.

  19. Evolution of ZnS Nanoparticles via Facile CTAB Aqueous Micellar Solution Route: A Study on Controlling Parameters

    Directory of Open Access Journals (Sweden)

    Gradzielski Michael

    2008-01-01

    Full Text Available Abstract Synthesis of semiconductor nanoparticles with new photophysical properties is an area of special interest. Here, we report synthesis of ZnS nanoparticles in aqueous micellar solution of Cetyltrimethylammonium bromide (CTAB. The size of ZnS nanodispersions in aqueous micellar solution has been calculated using UV-vis spectroscopy, XRD, SAXS, and TEM measurements. The nanoparticles are found to be polydispersed in the size range 6–15 nm. Surface passivation by surfactant molecules has been studied using FTIR and fluorescence spectroscopy. The nanoparticles have been better stabilized using CTAB concentration above 1 mM. Furthermore, room temperature absorption and fluorescence emission of powdered ZnS nanoparticles after redispersion in water have also been investigated and compared with that in aqueous micellar solution. Time-dependent absorption behavior reveals that the formation of ZnS nanoparticles depends on CTAB concentration and was complete within 25 min.

  20. Dynamic and structural characterisation of micellar solutions of surfactants by spin relaxation and translational diffusion

    International Nuclear Information System (INIS)

    Mahieu, Nathalie

    1992-01-01

    The work reported in this research thesis aimed at characterizing micellar phases formed by some surfactants (sodium carboxylates) in aqueous solution. After some recalls on nuclear magnetic resonance dealing with spin relaxation (longitudinal relaxation, transverse relaxation, relaxation in the rotating coordinate system, and crossed relaxation), and comments on the dipolar mechanism responsible of relaxation phenomena, the author presents the methods used for relaxation parameter measurement and the data processing software issued from experiments. He presents experiments which allowed the self-diffusion coefficient to be measured, reports data processing, and addresses problems of special diffusion and of coherence transfers during diffusion measurements. Results of proton relaxation measurements are then presented and discussed. They are used to determine the micellar state of the studied carboxylates. The case of the oleate is also addressed. Measurements of carbon-13 relaxation times are reported, and exploited in terms of structural parameters by using the Relaxator software. An original method of the hetero-nuclear Overhauser method is presented, and used to assess the average distance between water molecules and micelle surface [fr

  1. Correlation between the solubility of aromatic hydrocarbons in water and micellar solutions, with their normal boiling points

    International Nuclear Information System (INIS)

    Almgren, M.; Grieser, F.; Powell, J.R.; Thomas, J.K.

    1979-01-01

    A linear correlation between the logarithm of the solubility in water of aromatic hydrocarbons and their normal boiling points is shown. Similarly, the logarithm of the distribution ratio of aromatic hydrocarbons in aqueous micellar solution is shown to be linearly related to the boiling points of the hydrocarbons. 2 figures, 2 tables

  2. Thermodynamic analysis of unimer-micelle and sphere-to-rod micellar transitions of aqueous solutions of sodium dodecylbenzenesulfonate

    International Nuclear Information System (INIS)

    Valente, Artur J.M.; López Cascales, J.J.; Fernández Romero, Antonio J.

    2014-01-01

    Highlights: • Unimer-micelle and sphere-to-rod micellar transitions were observed to sodium dodecylbenzenesulfonate in aqueous solutions. • Two micellar transitions were seen by electrical conductivity and surface tension. • An anomalous ΔS 0 and ΔH 0 increase with T was found for the second critical transition. • More stable aggregates are evidenced for spherical micelles than for the other shapes. - Abstract: Temperature dependence of specific conductivity of sodium dodecylbenzenesulfonate (NaDBS) aqueous solutions was analyzed. Two breaks on the plot appeared for all temperature, which suggest two micellar transitions. This has been corroborated by surface tension measurements. The first transition concentration occurs at the critical micelle concentration (CMC), whilst the second critical concentration (so-called transition micellar concentration, TMC) is due to a sphere-to-rod micelles transition. The dependence of CMC and TMC on the temperature allows the computation of the corresponding thermodynamic functions: Gibbs free energy, enthalpy and entropy changes. For the CMC, enthalpy and entropy increments were found that decrease with the temperature values. However, an anomalous behavior was obtained for the TMC, where both ΔS 0 and ΔH 0 values raised with the temperature increase. However, for both transitions, an (enthalpy + entropy) compensation is observed. These results will be compared with similar systems reported in the literature

  3. Study of micellar solutions of the 'sodium lauryl sulphate-heavy water' system by using pulsed NMR

    International Nuclear Information System (INIS)

    Fouchet, C.

    1972-01-01

    This research thesis reports the study of the nuclear magnetic resonance of protons contained by micellar solutions of sodium lauryl sulphate and heavy water. Relaxation times have been measured with respect to various parameters: concentration, temperature, frequency. The author presents the main properties of micellar solutions and indicate the various possible movements. Then, he addresses the implemented technique, and shows that NMR is sensitive to short range interactions, and allows micellar movements to be studied over an extended rate range. Experimental results are then presented and interpreted [fr

  4. Thermosetting microemulsions and mixed micellar solutions as drug delivery systems for periodontal anesthesia.

    Science.gov (United States)

    Scherlund, M; Malmsten, M; Holmqvist, P; Brodin, A

    2000-01-20

    In the present study, thermosetting microemulsions and mixed micellar solutions were investigated as drug delivery systems for anesthetizing the periodontal pocket. The structure of the systems, consisting of the active ingredients lidocaine and prilocaine, as well as two block copolymers (Lutrol F127 and Lutrol F68), was investigated by NMR spectroscopy and photon correlation spectroscopy (PCS). The results obtained for dilute (1-3% w/w) solutions show discrete micelles with a diameter of 20-30 nm and a critical micellization temperature of 25-35 degrees C. Gel permeation chromatography (GPC) was used to study the distribution of the active ingredients, and indicates a preferential solubilization of the active components in micelles over unimers. Analogous to the Lutrol F127 single component system these formulations display an abrupt gelation on increasing temperature. The gelation temperature was found to depend on both the drug ionization and concentration. These systems have several advantages over emulsion-based formulations including good stability, ease of preparation, increased drug release rate, and improved handling due to the transparency of the formulations.

  5. Origin of shear thickening in semidilute wormlike micellar solutions and evidence of elastic turbulence

    International Nuclear Information System (INIS)

    Marín-Santibáñez, Benjamín M.; Pérez-González, José; Rodríguez-González, Francisco

    2014-01-01

    The origin of shear thickening in an equimolar semidilute wormlike micellar solution of cetylpyridinium chloride and sodium salicylate was investigated in this work by using Couette rheometry, flow visualization, and capillary Rheo-particle image velocimetry. The use of the combined methods allowed the discovery of gradient shear banding flow occurring from a critical shear stress and consisting of two main bands, one isotropic (transparent) of high viscosity and one structured (turbid) of low viscosity. Mechanical rheometry indicated macroscopic shear thinning behavior in the shear banding regime. However, local velocimetry showed that the turbid band increased its viscosity along with the shear stress, even though barely reached the value of the viscosity of the isotropic phase. This shear band is the precursor of shear induced structures that subsequently give rise to the average increase in viscosity or apparent shear thickening of the solution. Further increase in the shear stress promoted the growing of the turbid band across the flow region and led to destabilization of the shear banding flow independently of the type of rheometer used, as well as to vorticity banding in Couette flow. At last, vorticity banding disappeared and the flow developed elastic turbulence with chaotic dynamics

  6. Spectroscopic studies on the molecular interaction between salicylic acid and riboflavin (B{sub 2}) in micellar solution

    Energy Technology Data Exchange (ETDEWEB)

    Bhattar, S.L.; Kolekar, G.B. [Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur-416 004, Maharashtra (India); Patil, S.R., E-mail: srp_fsl@rediffmail.co [Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur-416 004, Maharashtra (India)

    2010-03-15

    The interaction between salicylic acid (SA) and riboflavin (RF) was studied by Fluorescence Resonance Energy Transfer (FRET) in micellar solution. The riboflavin strongly quenches the intrinsic fluorescence of SA by radiative energy transfer. The extent of energy transfer in sodium dodecyl sulphate (SDS) micellar solution of different concentration is quantified from the energy transfer efficiency data. It is seen that the energy transfer is more efficient in the micellar solution. The critical energy transfer distance (R{sub 0}) was determined from which the mean distance between SA and RF molecules was calculated. The quenching was found to fit into Stern-Volmer relation. The results on variation of Stern-Volmer constant (K{sub sv}) with quencher concentration obtained at different temperatures suggested the formation of complex between SA and RF. The association constant of complex formation was estimated and found to decrease with temperature. The values of thermodynamic parameters DELTAH, DELTAG and DELTAS at different temperatures were estimated and the results indicated that the molecular interaction between SA and RF is electrostatic in nature.

  7. Effect of ionic strength on the kinetics of ionic and micellar reactions in aqueous solution

    International Nuclear Information System (INIS)

    Dung, M.H.; Kozak, J.J.

    1982-01-01

    The effect of electrostatic forces on the rate of reaction between ions in aqueous solutions of intermediate ionic strength is studied in this paper. We consider the kinetics of reactions involving simple ionic species (1--1 and 2--2 electrolyte systems) as well as kinetic processes mediated by the presence of micellar ions (or other charged organizates). In the regime of ionic strength considered, dielectric saturation of the solvent in the vicinity of the reacting ions must be taken into account and this is done by introducing several models to describe the recovery of the solvent from saturation to its continuum dielectric behavior. To explore the effects of ion size, charge number, and ionic strength on the overall rate constant for the process considered, we couple the traditional theory of ionic reactions in aqueous solution with calculations of the electrostatic potential obtained via solution of the nonlinear Poisson--Boltzmann equation. The great flexibility of the nonlinear Poisson--Boltzmann theory allows us to explore quantitatively the influence of each of these effects, and our simulations show that the short-range properties of the electrostatic potential affect primarily kinetically controlled processes (to varying degrees, depending on the ionic system considered) whereas the down-range properties of the potential play a (somewhat) greater role in influencing diffusion-controlled processes. A detailed examination is made of ionic strength effects over a broad range of ionic concentrations. In the regime of low ionic strength, the limiting slope and intercept of the curve describing the dependence of log k/sub D/ on I/sup 1/2//(1+I/sup 1/2/) may differ considerably from the usual Debye--Hueckel limiting relations, depending on the particular model chosen to describe local saturation effects

  8. Diffusion and localization of o-Ps in Dsub(2)O determined from positron annihilation in SDS micellar solutions

    International Nuclear Information System (INIS)

    Vass, Sz.; Kajcsos, Zs.; Molnar, B.

    1985-04-01

    A microscopic diffusion model is presented for the determination of orthopositronium (o-Ps) lifetime in micellar solutions. Among other parameters, the lifetime density function depends on the o-Ps diffusion coefficient in the water phase. Orthopositronium diffusion coefficients are determined by fitting this lifetime density function to positron annihilation spectra obtained from 1 mol/dmsup(3) solution of sodium dodecylsulphate (SDS) in Dsub(2)O at different temperatures. The activation energy of the o-Ps diffusion in Dsub(2)O obtained from the Arrhenius-plot as Esub(a)=(0.9sub(22)+-0.1sub(03)) eV indicates strong localization. (author)

  9. Complexation of lysozyme with sodium caseinate and micellar casein in aqueous buffered solutions

    NARCIS (Netherlands)

    Antonov, Y.A.; Moldenaers, P.; Cardinaels, R.M.

    We present an extended structural and morphological study of the complexation of lysozyme (Lys) with sodium caseinate (SC) and micellar casein (MC) by means of turbidity measurements, phase analysis, dynamic, static and electrophoretic light scattering, bright-field and confocal laser scanning

  10. Effect of Concentration on the Interfacial and Bulk Structure of Ionic Liquids in Aqueous Solution.

    Science.gov (United States)

    Cheng, H-W; Weiss, H; Stock, P; Chen, Y-J; Reinecke, C R; Dienemann, J-N; Mezger, M; Valtiner, M

    2018-02-27

    Bio and aqueous applications of ionic liquids (IL) such as catalysis in micelles formed in aqueous IL solutions or extraction of chemicals from biologic materials rely on surface-active and self-assembly properties of ILs. Here, we discuss qualitative relations of the interfacial and bulk structuring of a water-soluble surface-active IL ([C 8 MIm][Cl]) on chemically controlled surfaces over a wide range of water concentrations using both force probe and X-ray scattering experiments. Our data indicate that IL structuring evolves from surfactant-like surface adsorption at low IL concentrations, to micellar bulk structure adsorption above the critical micelle concentration, to planar bilayer formation in ILs with Interfacial structuring is controlled by mesoscopic bulk structuring at high water concentrations. Surface chemistry and surface charges decisively steer interfacial ordering of ions if the water concentration is low and/or the surface charge is high. We also demonstrate that controlling the interfacial forces by using self-assembled monolayer chemistry allows tuning of interfacial structures. Both the ratio of the head group size to the hydrophobic tail volume as well as the surface charging trigger the bulk structure and offer a tool for predicting interfacial structures. Based on the applied techniques and analyses, a qualitative prediction of molecular layering of ILs in aqueous systems is possible.

  11. Fluorescence resonance energy transfer between perylene and riboflavin in micellar solution and analytical application on determination of vitamin B2

    International Nuclear Information System (INIS)

    Bhattar, S.L.; Kolekar, G.B.; Patil, S.R.

    2008-01-01

    Fluorescence resonance energy transfer (FRET) between perylene and riboflavin is studied in micellar solution of sodium dodecyl sulfate. The fluorescence of perylene is quenched by riboflavin and quenching is in accordance with Stern-Volmer relation. The efficiency of energy transfer is found to depend on the concentration of riboflavin. The value of critical energy transfer distance (R 0 ) calculated by using Foster relation is 32.13 A, and as it is less than 50 A, it indicates efficient energy transfer in the present system. The analytical relation was established between extent of sensitization and concentration of riboflavin, which helped to estimate vitamin B 2 directly from pharmaceutical tablets

  12. Structural and phase transition changes of sodium dodecyl sulfate micellar solution in alcohols probed by small-angle neutron scattering (SANS)

    Energy Technology Data Exchange (ETDEWEB)

    Putra, Edy Giri Rachman [Neutron Scattering Laboratory, National Nuclear Energy Agency of Indonesia (BATAN), Gedung 40 BATAN, Kawasan Puspiptek Serpong, Tangerang 15314 (Indonesia); Patriati, Arum [Neutron Scattering Laboratory, National Nuclear Energy Agency of Indonesia (BATAN), Gedung 40 BATAN, Kawasan Puspiptek Serpong, Tangerang 15314 (Indonesia); Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Gadjah Mada, Bulaksumur, Yogyakarta 55281, Indonesia giri@batan.go.id (Indonesia)

    2015-04-16

    Small-angle neutron scattering (SANS) measurements on 0.3M sodium dodecyl sulfate (SDS) micellar solutions have been performed in the presence of n-alcohols, from ethanol to decanol at different alcohol concentrations, 2–10 wt%. The ellipsoid micellar structure which occurred in the 0.3M SDS in aqueous solution with the size range of 30–50 Å has different behavior at various hydrocarbon chain length and concentration of alcohols. At low concentration and short chain-length of alcohols, such as ethanol, propanol, and butanol, the size of micelles reduced and had a spherical-like structure. The opposite effect occurred as medium to long chain alcohols, such as hexanol, octanol and decanol was added into the 0.3M SDS micellar solutions. The micelles structure changed to be more elongated in major axis and then crossed the critical phase transition from micellar solution into liquid crystal phase as lamellar structure emerged by further addition of alcohols. The inter-lamellar distances were also depending on the hydrocarbon chain length and concentration of alcohols. In the meantime, the persistent micellar structures occurred in addition of medium chain of n-alcohol, pentanol at all concentrations.

  13. Structural and phase transition changes of sodium dodecyl sulfate micellar solution in alcohols probed by small-angle neutron scattering (SANS)

    International Nuclear Information System (INIS)

    Putra, Edy Giri Rachman; Patriati, Arum

    2015-01-01

    Small-angle neutron scattering (SANS) measurements on 0.3M sodium dodecyl sulfate (SDS) micellar solutions have been performed in the presence of n-alcohols, from ethanol to decanol at different alcohol concentrations, 2–10 wt%. The ellipsoid micellar structure which occurred in the 0.3M SDS in aqueous solution with the size range of 30–50 Å has different behavior at various hydrocarbon chain length and concentration of alcohols. At low concentration and short chain-length of alcohols, such as ethanol, propanol, and butanol, the size of micelles reduced and had a spherical-like structure. The opposite effect occurred as medium to long chain alcohols, such as hexanol, octanol and decanol was added into the 0.3M SDS micellar solutions. The micelles structure changed to be more elongated in major axis and then crossed the critical phase transition from micellar solution into liquid crystal phase as lamellar structure emerged by further addition of alcohols. The inter-lamellar distances were also depending on the hydrocarbon chain length and concentration of alcohols. In the meantime, the persistent micellar structures occurred in addition of medium chain of n-alcohol, pentanol at all concentrations

  14. Enhanced Micellar Catalysis LDRD.

    Energy Technology Data Exchange (ETDEWEB)

    Betty, Rita G.; Tucker, Mark D; Taggart, Gretchen; Kinnan, Mark K.; Glen, Crystal Chanea; Rivera, Danielle; Sanchez, Andres; Alam, Todd Michael

    2012-12-01

    The primary goals of the Enhanced Micellar Catalysis project were to gain an understanding of the micellar environment of DF-200, or similar liquid CBW surfactant-based decontaminants, as well as characterize the aerosolized DF-200 droplet distribution and droplet chemistry under baseline ITW rotary atomization conditions. Micellar characterization of limited surfactant solutions was performed externally through the collection and measurement of Small Angle X-Ray Scattering (SAXS) images and Cryo-Transmission Electron Microscopy (cryo-TEM) images. Micellar characterization was performed externally at the University of Minnesotas Characterization Facility Center, and at the Argonne National Laboratory Advanced Photon Source facility. A micellar diffusion study was conducted internally at Sandia to measure diffusion constants of surfactants over a concentration range, to estimate the effective micelle diameter, to determine the impact of individual components to the micellar environment in solution, and the impact of combined components to surfactant phase behavior. Aerosolized DF-200 sprays were characterized for particle size and distribution and limited chemical composition. Evaporation rates of aerosolized DF-200 sprays were estimated under a set of baseline ITW nozzle test system parameters.

  15. Mixtures of lecithin and bile salt can form highly viscous wormlike micellar solutions in water.

    Science.gov (United States)

    Cheng, Chih-Yang; Oh, Hyuntaek; Wang, Ting-Yu; Raghavan, Srinivasa R; Tung, Shih-Huang

    2014-09-02

    The self-assembly of biological surfactants in water is an important topic for study because of its relevance to physiological processes. Two common types of biosurfactants are lecithin (phosphatidylcholine) and bile salts, which are both present in bile and involved in digestion. Previous studies on lecithin-bile salt mixtures have reported the formation of short, rodlike micelles. Here, we show that lecithin-bile salt micelles can be further induced to grow into long, flexible wormlike structures. The formation of long worms and their resultant entanglement into transient networks is reflected in the rheology: the fluids become viscoelastic and exhibit Maxwellian behavior, and their zero-shear viscosity can be up to a 1000-fold higher than that of water. The presence of worms is further confirmed by data from small-angle neutron and X-ray scattering and from cryo-transmission electron microscopy (cryo-TEM). We find that micellar growth peaks at a specific molar ratio (near equimolar) of bile salt:lecithin, which suggests a strong binding interaction between the two species. In addition, micellar growth also requires a sufficient concentration of background electrolyte such as NaCl or sodium citrate that serves to screen the electrostatic repulsion of the amphiphiles and to "salt out" the amphiphiles. We postulate a mechanism based on changes in the molecular geometry caused by bile salts and electrolytes to explain the micellar growth.

  16. On the predictions and limitations of the Becker–Döring model for reaction kinetics in micellar surfactant solutions

    KAUST Repository

    Griffiths, I.M.

    2011-08-01

    We investigate the breakdown of a system of micellar aggregates in a surfactant solution following an order-one dilution. We derive a mathematical model based on the Becker-Döring system of equations, using realistic expressions for the reaction constants fit to results from Molecular Dynamics simulations. We exploit the largeness of typical aggregation numbers to derive a continuum model, substituting a large system of ordinary differential equations for a partial differential equation in two independent variables: time and aggregate size. Numerical solutions demonstrate that re-equilibration occurs in two distinct stages over well-separated timescales, in agreement with experiment and with previous theories. We conclude by exposing a limitation in the Becker-Döring theory for re-equilibration of surfactant solutions. © 2011 Elsevier Inc.

  17. Application of Surfactant Micellar Solutions as Extractants and Mobile Phases for TLC-Determination of Purine Bases and Doping Agents in Biological Liquids

    Directory of Open Access Journals (Sweden)

    Daria Victorovna Yedamenko

    2015-04-01

    Full Text Available Separation of caffeine and its metabolites (theophylline and theobromine and doping agents (spironolactone, propranolol, and ephedrine and determination of caffeine in serum sample and propranolol and ephedrine in urine were studied on normal-phase thin layers (“Sorbfil-UV-254”. Aqueous organic solvents and aqueous micellar surfactant solutions were compared as the mobile phases for separation. The acceptable separation of purine bases and doping agents was achieved by micellar Thin Layer Chromatography and normal-phase Thin Layer Chromatography. Anionic surfactant solution with added 1-propanol was the best eluent as for caffeine, theophylline, and theobromine separation, as for doping agents. The best characteristics of caffeine extraction from serum, and propranolol and ephedrine from urine were achieved when micellar eluent based on non-ionic Tween-80 surfactant was used. DOI: http://dx.doi.org/10.17807/orbital.v7i1.632

  18. Simultaneous Extraction, Enrichment and Removal of Dyes from Aqueous Solutions Using a Magnetic Aqueous Micellar Two-Phase System

    Directory of Open Access Journals (Sweden)

    Shuanggen Wu

    2017-12-01

    Full Text Available The magnetic aqueous micellar two-phase system (MAMTPS has the advantages combined of magnetic solid phase extraction (MSPE and aqueous micellar two-phase system (AMTPS. Thus, MAMTPS based on Fe3O4 magnetic nanoparticles (MNPs and a nonionic surfactant Triton X-114 (TX-114 was developed for the extraction, enrichment and removal of three dyes (Congo red, methyl blue, and methyl violet from aqueous solutions in this study. The MNPs Fe3O4@NH2 was screened as the optimal MNPs benefiting the extraction. Then, the influencing factors of MNPs amount, TX-114 concentration, vibration time, and extraction temperature were investigated in detail. The results showed that the extraction efficiencies of three dyes almost reached 100% using MAMTPS under the optimal conditions; MAMTPS had higher extraction ability than the individual MSPE or AMTPS. Thus, MAMTPS had the advantages of simple operation, high extraction ability, easy recycling of MNPs, and short phase-separation time, which showspotential for use in the extraction and analysis of contaminants from water samples.

  19. One-electron redox potentials and rate of electron transfer in aqueous micellar solution. Partially solubilized quinones

    International Nuclear Information System (INIS)

    Almgren, M.; Grieser, F.; Thomas, J.K.

    1979-01-01

    The electron transfer equilibrium between AQS/AQS - and DQ/DQ - (where AQS is sodium 9,10-arthraquinone-2-sulfonate and DQ, duroquinone) has been studied by pulse radiolysis in aqueous micellar solutions of sodium lauryl sulfate. The equilibrium constant is changed as would be expected if AQS, AQS - , and DQ- were all mainly in the aqueous solution, and DQ distributed between the micelles and the aqueous phase with a distribution constant of K/sub D//N = 150 M -1 , in agreement with the independently determined value of this constant. The kinetics of the equilibration show, however, that electron transfer at the micelle surface is important, indicating that also AQS and DQ - are associated with the micelle to some extent. With reasonable assumptions regarding the distribution constants of these species (that have some independent support), the observed catalytic effect of the micelles on the electron transfer from DQ - to AQS can be understood

  20. Effect of the hydrophilic block length on the surface-active and micellar thermodynamic properties of oxyethylene-oxybutylene diblock copolymers in aqueous solution

    International Nuclear Information System (INIS)

    Khan, A.; Usman, M.; Siddiq, M.; Fatima, G.; Harrison, W.

    2009-01-01

    The effect of hydrophilic block length on the surface and micellar thermodynamic properties of aqueous solution of E/sub 40/B/sub 8/, E/sub 80/B/sub 8/ and E/sub 120/B/sub 8/ diblock copolymers, were studied by surface tension measurements over a wide concentration and temperature range; where E stands for an oxyethylene unit and B for an oxybutylene unit. Like conventional surfactants, two breaks (change in the slope) were observed in the surface tension vs logarithm of concentration curve for all the three copolymers. Surface tension measurements were used to estimate surface excess concentrations (r m), area per molecule at air/water interface a and thermodynamic parameters for all adsorption of the pre-micellar region in the temperature range 20 to 50 degree C. Likewise the critical micelle concentration, CMC and thermodynamic parameters for micellization were also calculated for the post-micellar solutions at all temperatures. For comparison the thermodynamic parameters of adsorption and micellization are discussed in detail. The impact of varying E-block length and temperature on all calculated parameters are also discussed. This study shows the importance of hydrophobic-hydrophilic-balance (HHB) of copolymers on various surface and micellar properties. (author)

  1. On the appearance of vorticity and gradient shear bands in wormlike micellar solutions of different CPCl/salt systems

    Energy Technology Data Exchange (ETDEWEB)

    Mütze, Annekathrin, E-mail: muetzea@ethz.ch; Heunemann, Peggy; Fischer, Peter [ETH Zürich, Institute of Food, Nutrition and Health, Schmelzbergstrasse 9, 8092 Zürich (Switzerland)

    2014-11-01

    Wormlike micellar salt/surfactant solutions (X-salicylate, cetylpyridinium chloride) are studied with respect to the applied shear stress, concentration, temperature, and composition of the counterions (X = lithium, sodium, potassium, magnesium, and calcium) of the salicylate salt solute to determine vorticity and gradient shear bands. A combination of rheological measurements, laser technique, video analysis, and rheo-small-angle neutron scattering allow for a detailed exploration of number and types of shear bands. Typical flow curves of the solutions show Newtonian, shear-thinning, and shear-thickening flow behavior. In the shear-thickening regime, the solutions show vorticity and gradient shear bands simultaneously, in which vorticity shear bands dominate the visual effect, while gradient shear bands always coexist and predominate the rheological response. It is shown that gradient shear bands change their phases (turbid, clear) with the same frequency as the shear rate oscillates, whereas vorticity shear bands change their phases with half the frequency of the shear rate. Furthermore, we show that with increasing molecular mass of the counterions the number of gradient shear bands increases, while the number of vorticity shear bands remains constant. The variation of temperature, shear stress, concentration, and counterions results in a predictable change in the rheological behavior and therefore allows adjustment of the number of vorticity shear bands in the shear band regime.

  2. Magnetic and micellar effects on photoreactions. 1. 13C isotopic enrichment of dibenzyl ketone via photolysis in aqueous detergent solution

    International Nuclear Information System (INIS)

    Turro, N.J.; Chow, M.F.; Chung, C.J.; Kraeutler, B.

    1981-01-01

    The photolysis of dibenzyl ketone (DBK) in homogeneous organic solutions and in micelle-containing detergent solutions has been investigated from the standpoint of determining the extent and location of 13 C enrichment that occurs. In a series of experiments it is established that for incomplete conversions the residual, recovered DBK is enriched in 13 C relative to the initial unphotolyzed DBK. The efficiency of the 13 C/ 12 C separation is shown to be characterized by an isotope enrichment parameter, α, which is independent of the extent of conversion. A combination of mass spectrometry and nuclear magnetic resonance spectroscopy provides support for the primary location of the 13 C enrichment at C-1 (the carbonyl carbon) with a lesser but significant enrichment at C-2 (the methylene carbon). A very small but experimentally distinct enrichment of the aromatic rings is indicated by 13 C NMR analysis. An isomer of DBK, 1-phenyl-4'-methylacetophenone (PMAP) is formed as a minor product of photolysis in micellar solutions. PMAP, like the recovered, residual DBK, is found to be substantially enriched in 13 C relative to the starting DBK. The magnitude of α is found to be significantly influenced by the application of laboratory magnetic fields to the photolysis sample. The latter result, along with the unusually large magnitude of α, suggests that the mechanism involved in isotopic enrichment is not dominated by kinetic mass isotope effects but rather by nuclear magnetic moment and/or magnetic spin isotope effects

  3. Bulk viscosity, interaction and the viability of phantom solutions

    Energy Technology Data Exchange (ETDEWEB)

    Leyva, Yoelsy; Sepulveda, Mirko [Universidad de Tarapaca, Departamento de Fisica, Facultad de Ciencias, Arica (Chile)

    2017-06-15

    We study the dynamics of a bulk viscosity model in the Eckart approach for a spatially flat Friedmann-Robertson-Walker (FRW) Universe. We have included radiation and dark energy, assumed as perfect fluids, and dark matter treated as an imperfect fluid having bulk viscosity. We also introduce an interaction term between the dark matter and dark energy components. Considering that the bulk viscosity is proportional to the dark matter energy density and imposing a complete cosmological dynamics, we find bounds on the bulk viscosity in order to reproduce a matter-dominated era (MDE). This constraint is independent of the interaction term. Some late time phantom solutions are mathematically possible. However, the constraint imposed by a MDE restricts the interaction parameter, in the phantom solutions, to a region consistent with a null value, eliminating the possibility of late time stable solutions with w < -1. From the different cases that we study, the only possible scenario, with bulk viscosity and interaction term, belongs to the quintessence region. In the latter case, we find bounds on the interaction parameter compatible with latest observational data. (orig.)

  4. Macroscopic and microscopic structural integrity in magnetic colloids-cationic micellar solution: Rheology, SANS and magneto-optical study

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Rajesh, E-mail: rjp@bhavuni.ed [Department of Physics, Bhavnagar University, Bhavnagar 364 022 (India); Upadhyay, R.V., E-mail: rvu.as@ecchanga.ac.i [Charotar Institute of Applied Sciences, Education Campus, Changa 388421, Anand, Gujarat (India); Aswal, V.K. [Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Joshi, J.V.; Goyal, P.S. [UGC- DAE Consortium for Scientific Research, Mumbai Centre, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2011-03-15

    A stable mixture of two colloid system composed of double surfactant coated aqueous nanomagnetic fluid and aqueous micellar solution of cationic micelles of cetyletrymethyl ammonium bromide (CTABr) is prepared as a function of nanomagnetic fluid concentration. This mixed system is analyzed using three techniques such as zero field and field induced viscosity measurements, Small Angle Neutron Scattering technique and magneto-optical birefringence measurements. In field induced viscosity measurement it is observed that even 20% magnetic fluid concentration in CTABr aqueous solution shows 75% increase in viscosity compared to pure magnetic fluid. This suggests that in presence of CTABr micelles, a novel magneto rheological effect for low concentration of magnetic fluid is observed. From SANS measurements it is observed that aggregation number and a/b ratio increases with magnetic fluid concentration and magnetic birefringence reveals non-superimpose behavior of normalized field induced retardation. Results of these experiments are compared and indicate zero fields and field induced structural integrity between magnetic particles and soft micelles. - Research Highlights: {yields} This study exhibits zero field and field induced structural integrity between soft micelles and magnetic nanoparticles. {yields} The techniques used are viscosity measurements, Small Angle Neutron Scattering technique and magneto-optical birefringence. {yields} Study is useful for magnetic hyperthermia via micelles, as soft actuators, as an artificial micro-muscles, micro-manipulators, etc.

  5. Intermolecular electron transfer between coumarin dyes and aromatic amines in Triton-X-100 micellar solutions: Evidence for Marcus inverted region

    Science.gov (United States)

    Kumbhakar, Manoj; Nath, Sukhendu; Mukherjee, Tulsi; Pal, Haridas

    2004-02-01

    Photoinduced electron transfer (ET) between coumarin dyes and aromatic amines has been investigated in Triton-X-100 micellar solutions and the results have been compared with those observed earlier in homogeneous medium. Significant static quenching of the coumarin fluorescence due to the presence of high concentration of amines around the coumarin fluorophore in the micelles has been observed in steady-state fluorescence studies. Time-resolved studies with nanosecond resolutions mostly show the dynamic part of the quenching for the excited coumarin dyes by the amine quenchers. A correlation of the quenching rate constants, estimated from the time-resolved measurements, with the free energy changes (ΔG0) of the ET reactions shows the typical bell shaped curve as predicted by Marcus outer-sphere ET theory. The inversion in the ET rates for the present systems occurs at an exergonicity (-ΔG0) of ~0.7-0.8 eV, which is unusually low considering the polarity of the Palisade layer of the micelles where the reactants reside. Present results have been rationalized on the basis of the two dimensional ET model assuming that the solvent relaxation in micellar media is much slower than the rate of the ET process. Detailed analysis of the experimental data shows that the diffusional model of the bimolecular quenching kinetics is not applicable for the ET reactions in the micellar solutions. In the present systems, the reactions can be better visualized as equivalent to intramolecular electron transfer processes, with statistical distribution of the donors and acceptors in the micelles. A low electron coupling (Vel) parameter is estimated from the correlation of the experimentally observed and the theoretically calculated ET rates, which indicates that the average donor-acceptor separation in the micellar ET reactions is substantially larger than for the donor-acceptor contact distance. Comparison of the Vel values in the micellar solution and in the donor-acceptor close

  6. Multiscale Modeling of the Effects of Salt and Perfume Raw Materials on the Rheological Properties of Commercial Threadlike Micellar Solutions.

    Science.gov (United States)

    Tang, Xueming; Zou, Weizhong; Koenig, Peter H; McConaughy, Shawn D; Weaver, Mike R; Eike, David M; Schmidt, Michael J; Larson, Ronald G

    2017-03-23

    We link micellar structures to their rheological properties for two surfactant body-wash formulations at various concentrations of salts and perfume raw materials (PRMs) using molecular simulations and micellar-scale modeling, as well as traditional surfactant packing arguments. The two body washes, namely, BW-1EO and BW-3EO, are composed of sodium lauryl ethylene glycol ether sulfate (SLEnS, where n is the average number of ethylene glycol repeat units), cocamidopropyl betaine (CAPB), ACCORD (which is a mixture of six PRMs), and NaCl salt. BW-3EO is an SLE3S-based body wash, whereas BW-1EO is an SLE1S-based body wash. Additional PRMs are also added into the body washes. The effects of temperature, salt, and added PRMs on micellar lengths, breakage times, end-cap free energies, and other properties are obtained from fits of the rheological data to predictions of the "Pointer Algorithm" [ Zou , W. ; Larson , R.G. J. Rheol. 2014 , 58 , 1 - 41 ], which is a simulation method based on the Cates model of micellar dynamics. Changes in these micellar properties are interpreted using the Israelachvili surfactant packing argument. From coarse-grained molecular simulations, we infer how salt modifies the micellar properties by changing the packing between the surfactant head groups, with the micellar radius remaining nearly constant. PRMs do so by partitioning to different locations within the micelles according to their octanol/water partition coefficient P OW and chemical structures, adjusting the packing of the head and/or tail groups, and by changing the micelle radius, in the case of a large hydrophobic PRM. We find that relatively hydrophilic PRMs with log P OW 4, are isolated deep inside the micelle, separating from the tails and swelling the radius of the micelle, leading to shorter micelles and much lower viscosities, leading eventually to swollen-droplet micelles.

  7. Adsorption kinetics of diblock copolymers from a micellar solution on silica and titania.

    NARCIS (Netherlands)

    Bijsterbosch, H.D.; Cohen Stuart, M.A.; Fleer, G.J.

    1998-01-01

    The solution and adsorption behavior of a series of diblock copolymers of hydrophobic poly(dimethyl siloxane) and hydrophilic poly(2-ethyl-2-oxazoline) was studied. These block copolymers formed large polydisperse micelles in an aqueous solution. The critical micelle concentration was lower than 2

  8. Removal of copper ions from aqueous solutions by means of micellar-enhanced ultrafiltration

    Directory of Open Access Journals (Sweden)

    Kowalska Izabela

    2017-01-01

    Full Text Available The aim of the study was to assess the usefulness of micellar–enhanced ultrafiltration (MEUF for removal of copper ions from water solutions in comparison with classic ultrafiltration process. The tests were conducted in a semi–pilot membrane installation with the use of ultrafiltration module KOCH/ROMICON® at a transmembrane pressure of 0.05 MPa. The effect of concentration of copper ions on ultrafiltration process efficiency was investigated. The second part of the tests concerned the removal of copper ions by MEUF under wide range of anionic surfactant concentration (0.25, 1, and 5 CMC (critical micelle concentration. Concentration of copper ions in model solutions was equal to 5, 20, and 50 mg Cu/L. Furthermore, the effect of surfactant leakage to the permeate side during filtration was evaluated. Conducted experiments confirmed effectiveness of MEUF in copper ions removal. For the highest copper concentration in the feed (i.e. 50 mg/L, the average concentration of copper ions in the permeate ranged from 1.2–4.7 mg Cu/L depending on surfactant concentration. During filtration experiments, UF module exhibited stable transport properties for model solutions containing copper. For the highest concentration of metal, the decrease of permeate flux did not exceed 11% after 60 minutes of filtration. In the presence of the surfactant, a slight deterioration of transport properties was observed.

  9. Nonlinear oscillatory rheology and structure of wormlike micellar solutions and colloidal suspensions

    Science.gov (United States)

    Gurnon, Amanda Kate

    The complex, nonlinear flow behavior of soft materials transcends industrial applications, smart material design and non-equilibrium thermodynamics. A long-standing, fundamental challenge in soft-matter science is establishing a quantitative connection between the deformation field, local microstructure and macroscopic dynamic flow properties i.e., the rheology. Soft materials are widely used in consumer products and industrial processes including energy recovery, surfactants for personal healthcare (e.g. soap and shampoo), coatings, plastics, drug delivery, medical devices and therapeutics. Oftentimes, these materials are processed by, used during, or exposed to non-equilibrium conditions for which the transient response of the complex fluid is critical. As such, designing new dynamic experiments is imperative to testing these materials and further developing micromechanical models to predict their transient response. Two of the most common classes of these soft materials stand as the focus of the present research; they are: solutions of polymer-like micelles (PLM or also known as wormlike micelles, WLM) and concentrated colloidal suspensions. In addition to their varied applications these two different classes of soft materials are also governed by different physics. In contrast, to the shear thinning behavior of the WLMs at high shear rates, the near hard-sphere colloidal suspensions are known to display increases, sometimes quite substantial, in viscosity (known as shear thickening). The stress response of these complex fluids derive from the shear-induced microstructure, thus measurements of the microstructure under flow are critical for understanding the mechanisms underlying the complex, nonlinear rheology of these complex fluids. A popular micromechanical model is reframed from its original derivation for predicting steady shear rheology of polymers and WLMs to be applicable to weakly nonlinear oscillatory shear flow. The validity, utility and limits of

  10. Sulfonated methyl esters of fatty acids in aqueous solutions: Interfacial and micellar properties.

    Science.gov (United States)

    Danov, Krassimir D; Stanimirova, Rumyana D; Kralchevsky, Peter A; Basheva, Elka S; Ivanova, Veronika I; Petkov, Jordan T

    2015-11-01

    The interest to sulfonated methyl esters of fatty acids (SME) has been growing during the last decade, because these surfactants are considered as an environmentally friendly and renewable alternative of the linear alkyl-benzene sulfonates (LAS). Here, we present a quantitative study on the properties of aqueous SME solutions, and especially on their surface tension isotherms, critical micelle concentration (CMC) and its dependence on the concentration of added NaCl. It is demonstrated that the CMC of an ionic surfactant determined by electrical conductivity is insensitive to the presence of a small nonionic admixture, so that the CMC values determined by conductivity represent the CMC of the pure surfactant. Using SME as an example, we have demonstrated the application of a new and powerful method for determining the physicochemical parameters of the pure ionic surfactant by theoretical data analysis ("computer purification") if the used surfactant sample contains nonionic admixtures, which are present as a rule. This method involves fits of the experimental data for surface tension and conductivity by a physicochemical model based on a system of mass-balance, chemical-equilibrium and electric-double-layer equations, which allows us to determine the adsorption and micellization parameters of C12-, C14-, C16- and C18-SME, as well the fraction of nonionic admixtures (if any). Having determined these parameters, we can further predict the interfacial and micellization properties of the surfactant solutions, such as surface tension, adsorption, degree of counterion binding, and surface electric potential at every surfactant, salt and co-surfactant concentrations. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Solution processed organic bulk heterojunction tandem solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, Steve; Neher, Dieter [Soft Matter Physics, University of Potsdam, D-14476 Potsdam (Germany)

    2011-07-01

    One of the critical issues regarding the preparation of organic tandem solar cells from solution is the central recombination contact. This contact should be highly transparent and conductive to provide high recombination currents. Moreover it should protect the 1st subcell from the solution processing of the 2nd subcell. Here, we present a systematic study of various recombination contacts in organic bulk heterojunction tandem solar cells made from blends of different polymers with PCBM. We compare solution processed recombination contacts fabricated from metal-oxides (TiO{sub 2} and ZnO) and PEDOT:PSS with evaporated recombination contacts made from thin metal layers and molybdenum-oxide. The solar cell characteristics as well as the morphology of the contacts measured by AFM and SEM are illustrated. To compare the electrical properties of the varying contacts we show measurements on single carrier devices for different contact-structures. Alongside we present the results of optical modeling of the subcells and the complete tandem device and relate these results to experimental absorption and reflection spectra of the same structures. Based on these studies, layer thicknesses were adjusted for optimum current matching and device performance.

  12. Novel Schiff base (DBDDP) selective detection of Fe (III): Dispersed in aqueous solution and encapsulated in silica cross-linked micellar nanoparticles in living cell.

    Science.gov (United States)

    Gai, Fangyuan; Yin, Li; Fan, Mengmeng; Li, Ling; Grahn, Johnny; Ao, Yuhui; Yang, Xudong; Wu, Xuming; Liu, Yunling; Huo, Qisheng

    2018-03-15

    This work demonstrated the synthesis of (4E)-4-(4-(diphenylamino)benzylideneamino)-1,2-dihydro-1,5- dimethyl-2-phenylpyrazol-3-one (DBDDP) for Fe (III) detection in aqueous media and in the core of silica cross-linked micellar nanoparticles in living cells. The free DBDDP performed fluorescence enhancement due to Fe (III)-promoted hydrolysis in a mixed aqueous solution, while the DBDDP-doped silica cross-linked micellar nanoparticles (DBDDP-SCMNPs) performed an electron-transfer based fluorescence quenching of Fe (III) in living cells. The quenching fluorescence of DBDDP-SCMNPs and the concentration of Fe (III) exhibited a linear correlation, which was in accordance with the Stern-Volmer equation. Moreover, DBDDP-SCMNPs showed a low limit of detection (LOD) of 0.1 ppm and an excellent selectivity against other metal ions. Due to the good solubility and biocompatibility, DBDDP-SCMNPs could be applied as fluorescence quenching nanosensors in living cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Thermo-acoustical analysis of sodium dodecyl sulfate: Fluconazole (antifungal drug) based micellar system in hydro-ethanol solutions for potential drug topical application

    International Nuclear Information System (INIS)

    Bhardwaj, Tarun; Bhardwaj, Varun; Sharma, Kundan; Gupta, Abhishek; Cameotra, Swaranjit Singh; Sharma, Poonam

    2014-01-01

    Highlights: • The mixed micellar system was analyzed for sodium dodecyl sulfate and fluconazole. • Early micellization was found with CMC shift towards lower surfactant concentration. • Negative ΔG m o values suggested that the micelle formation is spontaneous and feasible. • Thermo-acoustical parameters revealed the existence of intermolecular interactions within the molecules. - Abstract: Micellar systems hold excellent drug delivery applications due to their capability to solubilize a large number of hydrophobic and hydrophilic molecules. In this present work, the mixed micelle formation between the anionic surfactant sodium dodecyl sulfate (SDS) and the ‘Azole’ derivative antifungal drug fluconazole (FLZ) have been studied at four temperatures in different hydro-ethanolic solutions. The critical micelle concentration (CMC) was determined by specific conductance techniques and the experimental data was used to calculate several useful thermodynamic parameters, like standard free energy, enthalpy and entropy of micelle formation. Early micellization was found with critical micelle concentration shifting towards lower concentration (CMC) than the standard concentration of SDS in water at 25 °C suggesting that drug and the solvent system facilitates the micellization process. In addition, the transport properties were examined by employing controlled approaches likely, apparent molar volume (ϕ v ), apparent molar adiabatic compression (ϕ k ), and isentropic compression (κ s ) of SDS in presence of FLZ. These parameters revealed the existence of intermolecular interactions within the molecules. Therefore, this study would cast light on utilizing surfactant immobilized FLZ system for better topical biological action

  14. Redox behavior and optical response of nanostructured poly(3,4-ethylenedioxythiophene) films grown in a camphorsulfonic acid based micellar solution

    International Nuclear Information System (INIS)

    Bhandari, Shweta; Deepa, M.; Singh, S.; Gupta, Govind; Kant, Rama

    2008-01-01

    Poly(3,4-ethylenedioxythiophene) (PEDOT) films have been electropolymerized from an aqueous micellar solution comprising camphorsulfonic acid (CSA), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ) and EDOT. The inclusion of the dopants CS - and CF 3 SO 3 - in the polymer structure and an unusually high doping level of 0.54 have been ascertained by the X-ray photoelectron spectroscopy. Transmission electron microscopy and atomic force microscopy studies show that the micellar effect of CSA leads to a morphology wherein polymer particles link together to form elongated shapes and also endows the film with a surface roughness of 25-30 nm. These nanostructures permit a facile intercalation-deintercalation of anions in the film during redox cycling. Electrochemical impedance spectroscopy show that the charge transfer phenomenon at the PEDOT-electrolyte interface is dominant in the high frequency region and diffusion controlled ionic movement prevails in the low frequency regime. The use of these films as potential cathodes in electrochromic windows is rationalized not only on the basis of their high scalability and ease of processing but also due to their large coloration efficiency (123 cm 2 C -1 ) and transmission modulation (50%) at a photopic wavelength of 550 nm. But further improvement in color-bleach kinetics and reproducibility of redox behavior is desirable to broaden their spectrum of utility

  15. Pressure-induced melting of micellar crystal

    DEFF Research Database (Denmark)

    Mortensen, K.; Schwahn, D.; Janssen, S.

    1993-01-01

    that pressure improves the solvent quality of water, thus resulting in decomposition of the micelles and consequent melting of the micellar crystal. The combined pressure and temperature dependence reveals that in spite of the apparent increase of order on the 100 angstrom length scale upon increasing......Aqueous solutions of triblock copolymers of poly(ethylene oxide) and poly(propylene oxide) aggregate at elevated temperatures into micelles which for polymer concentrations greater-than-or-equal-to 20% make a hard sphere crystallization to a cubic micellar crystal. Structural studies show...... temperature (decreasing pressure) the overall entropy increases through the inverted micellar crystallization characteristic....

  16. Orientational order and dynamics of water in bulk and in aqueous solutions of uranyl ions

    International Nuclear Information System (INIS)

    Chopra, Manish; Choudhury, Niharendu

    2014-01-01

    Molecular dynamics simulations in canonical ensemble of aqueous solutions of uranyl nitrate and bulk water at ambient condition have been carried out to investigate orientational order and dynamics of water. The orientational distributions of water around a central water molecule in bulk water and around a uranyl ion in an aqueous uranyl solution have been calculated. Orientational dynamics of water in bulk and in aqueous uranyl nitrate solution have also been analysed. (author)

  17. Fluorescence resonance energy transfer between perylene and riboflavin in micellar solution and analytical application on determination of vitamin B{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Bhattar, S.L.; Kolekar, G.B. [Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur 416 004, Maharashtra (India); Patil, S.R. [Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur 416 004, Maharashtra (India)], E-mail: srp_fsl@rediffmail.com

    2008-03-15

    Fluorescence resonance energy transfer (FRET) between perylene and riboflavin is studied in micellar solution of sodium dodecyl sulfate. The fluorescence of perylene is quenched by riboflavin and quenching is in accordance with Stern-Volmer relation. The efficiency of energy transfer is found to depend on the concentration of riboflavin. The value of critical energy transfer distance (R{sub 0}) calculated by using Foster relation is 32.13 A, and as it is less than 50 A, it indicates efficient energy transfer in the present system. The analytical relation was established between extent of sensitization and concentration of riboflavin, which helped to estimate vitamin B{sub 2} directly from pharmaceutical tablets.

  18. Neutron- and light-scattering studies of the liquid-to-glass and glass-to-glass transitions in dense copolymer micellar solutions

    International Nuclear Information System (INIS)

    Chen Weiren; Chen Sowhsin; Mallamace, Francesco; Glinka, Charles J.; Fratini, Emiliano

    2003-01-01

    Recent mode coupling theory (MCT) calculations show that if a short-range attractive interaction is added to the pure hard sphere system, one may observe a new type of glass originating from the clustering effect (the attractive glass) as a result of the attractive interaction. This is in addition to the known glass-forming mechanism due to the cage effect in the hard sphere system (the repulsive glass). The calculations also indicate that if the range of attraction is sufficiently short compared to the diameter of the particle, within a certain interval of volume fractions where the two glass-forming mechanisms nearly balance each other, varying the external control parameter, the effective temperature, makes the glass-to-liquid-to-glass reentrance and the glass-to-glass transitions possible. Here we present experimental evidence of both transitions, obtained from small-angle neutron-scattering and photon correlation measurements taken from dense L64 copolymer micellar solutions in heavy water. Varying the temperature in certain predicted volume fraction range triggers a sharp transition between these two different types of glass. In particular, according to MCT, there is an end point (called A 3 singularity) of this glass-to-glass transition line, beyond which the long-time dynamics of the two glasses become identical. Our findings confirm this theoretical prediction. Surprisingly, although the Debye-Waller factors, the long-time limit of the coherent intermediate scattering functions, of these two glasses obtained from photon correlation measurements indeed become identical at the predicted volume fraction, they exhibit distinctly different intermediate time relaxation. Furthermore, our experimental results obtained from volume fractions beyond the end point are characterized by the same features as the repulsive glass obtained before the end point. A complete phase diagram giving the boundaries of the structural arrest transitions for L64 micellar system is

  19. On the mechanism of dechlorination of polychlorinated biphenyls (PCBs) induced by electron beam irradiation in aqueous and aqueous micellar solutions, transformer oil, and sediment

    International Nuclear Information System (INIS)

    Chaychian, M.; Silverman, J.; Al-Sheirkhly, M.

    2011-01-01

    Complete text of publication follows. The widespread release of PCBs into the environment presents a serious problem due to their persistence and toxicity. Ionizing radiation, such as gamma rays and high-energy electron beam, is remarkably effective in dechlorinating PCBs into biphenyls. The kinetics of the reductive dechlorination of PCBs in aqueous and aqueous micellar solutions and in transformer oil is being studied by pulse radiolysis and steady-state radiolysis. In aqueous micellar solutions, dichlori-, tetrachloro-, and decachlorobiphenyl congeners were solubilized in water using a commercially available non-ionic surfactant, Triton X-100, and subsequently pulse irradiated by electron accelerator using optical detection method. The reaction rate constant between decachlorobiphenyl and aqueous electrons e aq ·- , and Triton with e aq ·- in the 2% Triton solution, were measured as 2.6 x 10 9 Lmol -1 s -1 and 1.2 x 10 7 Lmol -1 s -1 , respectively. We have also measured in aqueous solutions, the reaction rate constant of e aq ·- with dichlorobiphenyl as 3.8 x 10 9 Lmol -1 s -1 . In aqueous-propanol, the reaction rate constants of e aq ·- with dichlorobiphenyl, tetrachlorobiphenyl, and dechachlorobiphenyl are 2 x 10 9 Lmol -1 s -1 , 3 x 10 9 Lmol -1 s -1 , and 7 x 10 9 Lmol -1 s -1 , respectively. In addition to the presence of PCBs as high-dielectric component, transformer oil contains many aromatic hydrocarbons; the most abundant being biphenyl, fluorine, and phenanthrene. Solvated electrons formed by irradiation of the oil react either with PCB to lead to dechlorination or with the aromatic hydrocarbons present in the oil to form radical anions. These species are shown to transfer an electron to chlorinated biphenyls relative rapidly, leading to dechlorination. The rate constants for several such reactions, determined in 2-propanol solutions, are in the range of 10 7 - 10 8 Lmol -1 s -1 . These rapid reactions explain why PCB can be dechlorinated in oil

  20. Sustained-release diclofenac potassium-loaded solid lipid microparticle based on solidified reverse micellar solution: in vitro and in vivo evaluation.

    Science.gov (United States)

    Chime, Salome Amarachi; Attama, Anthony Amaechi; Builders, Philip F; Onunkwo, Godswill C

    2013-01-01

    To formulate sustained-release diclofenac potassium-loaded solid lipid microparticles (SLMs) based on solidified reverse micellar solution (SRMS) and to evaluate the in vitro and in vivo properties. SRMS consisting of mixtures of Phospholipon® 90H and Softisan® 154 were used to formulate diclofenac potassium-loaded SLMs. Characterization based on the particle size and morphology, stability and encapsulation efficiency (EE%) were carried out on the SLMs. In vitro release was carried out in simulated intestinal fluid (pH 7.5). Anti-inflammatory and ulcerogenic properties were studied using rats. Maximum EE% of 95%, 94% and 93% were obtained for SLMs formulated with SRMS 1:1, 2:1 and 1:2, respectively. In vitro release showed about 85-90% drug release at 13 h. Diclofenac potassium-loaded SLMs showed good anti-inflammatory and gastro-protective properties. Diclofenac potassium-loaded SLMs based on SRMS could be used orally or parenterally under controlled conditions, for once daily administration.

  1. Regular Bulk Solutions in Brane-Worlds with Inhomogeneous Dust and Generalized Dark Radiation

    International Nuclear Information System (INIS)

    Rocha, Roldão da; Kuerten, A. M.; Herrera-Aguilar, A.

    2015-01-01

    From the dynamics of a brane-world with matter fields present in the bulk, the bulk metric and the black string solution near the brane are generalized, when both the dynamics of inhomogeneous dust/generalized dark radiation on the brane-world and inhomogeneous dark radiation in the bulk as well are considered as exact dynamical collapse solutions. Based on the analysis on the inhomogeneous static exterior of a collapsing sphere of homogeneous dark radiation on the brane, the associated black string warped horizon is studied, as well as the 5D bulk metric near the brane. Moreover, the black string and the bulk are shown to be more regular upon time evolution, for suitable values for the dark radiation parameter in the model, by analyzing the soft physical singularities

  2. Micellar solutions of PEO-PPO-PEO block copolymers for in situ phenol removal from fermentation broth

    NARCIS (Netherlands)

    Heerema, L.D.; Cakali, D.; Roelands, C.P.M.; Goetheer, E.L.V.; Verdoes, D.; Keurentjes, J.

    2010-01-01

    The applicability of aqueous solutions of Pluronics for the removal of the model product phenol was evaluated. Phenol is a chemical that can be produced by a recombinant strain of the solvent tolerant bacterium Pseudomonas putida S12. However, the growth of the micro-organisms and the phenol

  3. SALT-INDUCED TRANSITION FROM A MICELLAR TO A LAMELLAR LIQUID-CRYSTALLINE PHASE IN DILUTE MIXTURES OF ANIONIC AND NONIONIC SURFACTANTS IN AQUEOUS-SOLUTION

    NARCIS (Netherlands)

    SEIN, A; ENGBERTS, JBFN; VANDERLINDEN, E; VANDEPAS, JC

    In dilute mixtures of anionic surfactant, sodium dodecylbenzenesulfonate (NaDoBS), and nonionic poly(ethylene oxide) alkyl monoether (C13-15E(7)) a transition from a micellar to a lamellar phase is found at high salting-out electrolyte (NaCit) concentrations. With an increase of the salt

  4. Protolytic properties and complexation of DL-alpha-alanine and DL-alpha-valine and their dipeptides in aqueous and micellar solutions of surfactants

    NARCIS (Netherlands)

    Chernyshova, O. S.; Boychenko, Oleksandr; Abdulrahman, H.; Loginova, L. P.

    In this work we investigated the effect of the micellar media of anionic (sodium dodecylsulfate, SDS), cationic (cetylpiridinium chloride, CPC) and non-ionic (Brij-35) surfactants on the protolytic properties of amino acids DL-alpha-alanine, DL-alpha-valine and dipeptides

  5. In-line bulk supersaturation measurement by electrical conductometry in KDP crystal growth from aqueous solution

    Science.gov (United States)

    Bordui, P. F.; Loiacono, G. M.

    1984-07-01

    A method is presented for in-line bulk supersaturation measurement in crystal growth from aqueous solution. The method is based on a computer-controlled concentration measurement exploiting an experimentally predetermined cross-correlation between the concentration, electrical conductivity, and temperature of the growth solution. The method was applied to Holden crystallization of potassium dihydrogen phosphate (KDP). An extensive conductivity-temperature-concentration data base was generated for this system over a temperature range of 31 to 41°C. The method yielded continous, automated bulk supersaturation output accurate to within ±0.05 g KDP100 g water (±0.15% relative supersaturation).

  6. Micellar copolymerization of poly(acrylamide-g-propylene oxide): rheological evaluation and solution characterization; Copolimerizacao micelar de poli(acrilamida-g-oxido de propileno): avaliacao reologica e caracterizacao de suas solucoes

    Energy Technology Data Exchange (ETDEWEB)

    Sadicoff, Bianca L.; Brandao, Edimir M.; Lucas, Elizabete F. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Macromoleculas]. E-mail: elucas@ima.ufrj.br; Amorim, Marcia C.V. [Universidade Estadual, Rio de Janeiro, RJ (Brazil). Inst. de Quimica

    2001-06-01

    Graft copolymers of polyacrylamide and poly(propylene oxide) were synthesized by a micellar copolymerization technique. The rheological properties of the copolymers solutions were evaluated and compared with literature data for solutions of the same copolymers, synthesized by solution polymerization. The effect of hydrophobe content, salt addition and surfactant addition on the rheological properties were also investigated. Increasing hydrophobe content resulted in higher solution viscosities in the semi-dilute regime. Upon addition of salts, the hydrophobic groups associated to minimize their exposure to water. In the semi-dilute region, higher contents of surfactant added resulted in lower reduced viscosities of the polymer solutions. The copolymers were qualitatively characterized by infra-red spectrometry. (author)

  7. Bulk etching characteristics of CR-39 track detectors in hydroxide solutions

    International Nuclear Information System (INIS)

    Fonseca, E.S. da; Knoefel, T.M.J.; Tavares, O.A.P.

    1983-01-01

    A systematic study of the bulk etch rate of CR-39 track detectors in KOH and NaOH aqueous solutions is presented. A number of unirradiated and non-thermally treated CR-39 samples were chemically attacked in KOH and NaOH solutions of concentration and temperature in the range 2-10 N and 50-90 0 C, respectively. From measurements of the thickness of layers removed as a function of the etching time, the bulk etch rate υ β and the induction time T ο for surface removal were obtained for each etching condition. For both NaOH and KOH solution the activation energy of the process was derived as E = 0.76 ± 0.05 eV. It was observed that the induction time decreases both with increasing normality and temperature of the solution. (author) [pt

  8. Solubilisation des hydrocarbures dans les solutions micellaires Influence de la structure et de la masse moléculaire Solubilization of Hydrocarbons in Micellar Solutions Influence of Structure and Molecular Weight

    Directory of Open Access Journals (Sweden)

    Baviere M.

    2006-11-01

    (paraffines, résines, asphaltènes sur les propriétés interfaciales, d'une part avec le brut de Daqing, pour effectuer des essais complémentaires, d'autre part avec des constituants modèles en solution dans un solvant approprié. Optimizing the formulation of micellar surfactant solutions used for enhanced oil recovery consists in obtaining interfacial tensions that are as low as possible in multiphase systems resulting from the mixing of the injected solution with formation fluids. The solubilization of hydrocarbons by the micellar phases of such systems is linked directly to the interfacial efficiency of surfactants. Indeed, as has been shown by numerous research projects such as the one by Reed and Healy [1], the amount of hydrocarbons solubilized by the surfactant is all the greater as the interfacial tension between the micellar phase and the hydrocarbons is low. This solubilization depends in particular, although to a great extent, on the nature of the hydrocarbons or, for the processes we are concerned with here, of the hydrocarbon mixtures encountered [181. Likewise, the criteria generally used in applying the process to a reservoir may also be fulfilled (temperature, salinity of the water, viscosity of the oil, nature and permeability of the rock, whereas the chemical nature of the oil turns out to be responsible for very mediocre efficiency. Hence this insufficiency of criteria is revealed for relatively heavy oils such as the oil in the Daqing field in China, for which production may still depend on this recovery method, a priori. The solubilization of this oil by the surfactants normally used is extremely reduced and may perhaps even by almost nil. This particularly unfavorable behavior has brought out the need of specifying selection criteria for fields from the standpoint of the nature of the oil, so as to be able to assess the quality of a crude oil and to detect possible difficulties in applying the process-diff iculties linked to the composition of the

  9. Phase separation in living micellar networks

    Science.gov (United States)

    Cristobal, G.; Rouch, J.; Curély, J.; Panizza, P.

    We present a lattice model based on two n→0 spin vectors, capable of treating the thermodynamics of living networks in micellar solutions at any surfactant concentration. We establish an isomorphism between the coupling constants in the two spin vector Hamiltonian and the surfactant energies involved in the micellar situation. Solving this Hamiltonian in the mean-field approximation allows one to calculate osmotic pressure, aggregation number, free end and cross-link densities at any surfactant concentration. We derive a phase diagram, including changes in topology such as the transition between spheres and rods and between saturated and unsaturated networks. A phase separation can be found between a saturated network and a dilute solution composed of long flexible micelles or a saturated network and a solution of spherical micelles.

  10. A new application of micellar liquid chromatography in the determination of free ampicillin concentration in the drug-human serum albumin standard solution in comparison with the adsorption method.

    Science.gov (United States)

    Stępnik, Katarzyna E; Malinowska, Irena; Maciejewska, Małgorzata

    2016-06-01

    The determination of free drug concentration is a very important issue in the field of pharmacology because only the unbound drug fraction can achieve a pharmacological effect. Due to the ability to solubilize many different compounds in micellar aggregates, micellar liquid chromatography (MLC) can be used for direct determination of free drug concentration. Proteins are not retained on the stationary phase probably due to the formation of protein - surfactant complexes which are excluded from the pores of stationary phase. The micellar method is simple and fast. It does not require any pre-preparation of the tested samples for analysis. The main aim of this paper is to demonstrate a completely new applicability of the analytical use of MLC concerning the determination of free drug concentration in the standard solution of human serum albumin. The well-known adsorption method using RP-HPLC and the spectrophotometric technique was applied as the reference method. The results show that the free drug concentration value obtained in the MLC system (based on the RP-8 stationary phase and CTAB) is similar to that obtained by the adsorption method: both RP-HPLC (95.83μgmL(-1), 79.86% of free form) and spectrophotometry (95.71μgmL(-1), 79.76%). In the MLC the free drug concentration was 93.98μgmL(-1) (78.3%). This indicates that the obtained results are within the analytical range of % of free ampicillin fraction and the MLC with direct sample injection can be treated like a promising method for the determination of free drug concentration. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Interstitial solute transport in 3D reconstructed neuropil occurs by diffusion rather than bulk flow.

    Science.gov (United States)

    Holter, Karl Erik; Kehlet, Benjamin; Devor, Anna; Sejnowski, Terrence J; Dale, Anders M; Omholt, Stig W; Ottersen, Ole Petter; Nagelhus, Erlend Arnulf; Mardal, Kent-André; Pettersen, Klas H

    2017-09-12

    The brain lacks lymph vessels and must rely on other mechanisms for clearance of waste products, including amyloid [Formula: see text] that may form pathological aggregates if not effectively cleared. It has been proposed that flow of interstitial fluid through the brain's interstitial space provides a mechanism for waste clearance. Here we compute the permeability and simulate pressure-mediated bulk flow through 3D electron microscope (EM) reconstructions of interstitial space. The space was divided into sheets (i.e., space between two parallel membranes) and tunnels (where three or more membranes meet). Simulation results indicate that even for larger extracellular volume fractions than what is reported for sleep and for geometries with a high tunnel volume fraction, the permeability was too low to allow for any substantial bulk flow at physiological hydrostatic pressure gradients. For two different geometries with the same extracellular volume fraction the geometry with the most tunnel volume had [Formula: see text] higher permeability, but the bulk flow was still insignificant. These simulation results suggest that even large molecule solutes would be more easily cleared from the brain interstitium by diffusion than by bulk flow. Thus, diffusion within the interstitial space combined with advection along vessels is likely to substitute for the lymphatic drainage system in other organs.

  12. Micellar liquid chromatography

    International Nuclear Information System (INIS)

    Basova, Elena M; Ivanov, Vadim M; Shpigun, Oleg A

    1999-01-01

    Background and possibilities of practical applications of micellar liquid chromatography (MLC) are considered. Various retention models in MLC, the effects of the nature and concentration of surfactants and organic modifiers, pH, temperature and ionic strength on the MLC efficiency and selectivity are discussed. The advantages and limitations of MLC are demonstrated. The performance of MLC is critically evaluated in relationship to the reversed-phase HPLC and ion-pair chromatography. The potential of application of MLC for the analysis of pharmaceuticals including that in biological fluids and separation of inorganic anions, transition metal cations, metal chelates and heteropoly compounds is described. The bibliography includes 146 references.

  13. Small molecule solution-processed bulk heterojunction solar cells with inverted structure using porphyrin donor

    Science.gov (United States)

    Yamamoto, Takaki; Hatano, Junichi; Nakagawa, Takafumi; Yamaguchi, Shigeru; Matsuo, Yutaka

    2013-01-01

    Utilizing tetraethynyl porphyrin derivative (TE-Por) as a small molecule donor material, we fabricated a small molecule solution-processed bulk heterojunction (BHJ) solar cell with inverted structure, which exhibited 1.6% power conversion efficiency (JSC (short-circuit current) = 4.6 mA/cm2, VOC (open-circuit voltage) = 0.90 V, and FF (fill factor) = 0.39) in the device configuration indium tin oxide/TiOx (titanium sub-oxide)/[6,6]-phenyl-C61-butyric acid methyl ester:TE-Por (5:1)/MoOx (molybdenum sub-oxide)/Au under AM1.5 G illumination at 100 mW/cm2. Without encapsulation, the small molecule solution-processed inverted BHJ solar cell also showed remarkable durability to air, where it kept over 73% of its initial power conversion efficiency after storage for 28 days under ambient atmosphere in the dark.

  14. Controlled Bulk Properties of Composite Polymeric Solutions for Extensive Structural Order of Honeycomb Polysulfone Membranes.

    Science.gov (United States)

    Gugliuzza, Annarosa; Perrotta, Maria Luisa; Drioli, Enrico

    2016-05-16

    This work provides additional insights into the identification of operating conditions necessary to overcome a current limitation to the scale-up of the breath figure method, which is regarded as an outstanding manufacturing approach for structurally ordered porous films. The major restriction concerns, indeed, uncontrolled touching droplets at the boundary. Herein, the bulk of polymeric solutions are properly managed to generate honeycomb membranes with a long-range structurally ordered texture. Water uptake and dynamics are explored as chemical environments are changed with the intent to modify the hydrophilic/hydrophobic balance and local water floatation. In this context, a model surfactant such as the polyoxyethylene sorbitan monolaurate is used in combination with alcohols at different chain length extents and a traditional polymer such as the polyethersufone. Changes in the interfacial tension and kinematic viscosity taking place in the bulk of composite solutions are explored and examined in relation to competitive droplet nucleation and growth rate. As a result, extensive structurally ordered honeycomb textures are obtained with the rising content of the surfactant while a broad range of well-sized pores is targeted as a function of the hydrophilic-hydrophobic balance and viscosity of the composite polymeric mixture. The experimental findings confirm the consistency of the approach and are expected to give propulsion to the commercially production of breath figures films shortly.

  15. Controlled Bulk Properties of Composite Polymeric Solutions for Extensive Structural Order of Honeycomb Polysulfone Membranes

    Directory of Open Access Journals (Sweden)

    Annarosa Gugliuzza

    2016-05-01

    Full Text Available This work provides additional insights into the identification of operating conditions necessary to overcome a current limitation to the scale-up of the breath figure method, which is regarded as an outstanding manufacturing approach for structurally ordered porous films. The major restriction concerns, indeed, uncontrolled touching droplets at the boundary. Herein, the bulk of polymeric solutions are properly managed to generate honeycomb membranes with a long-range structurally ordered texture. Water uptake and dynamics are explored as chemical environments are changed with the intent to modify the hydrophilic/hydrophobic balance and local water floatation. In this context, a model surfactant such as the polyoxyethylene sorbitan monolaurate is used in combination with alcohols at different chain length extents and a traditional polymer such as the polyethersufone. Changes in the interfacial tension and kinematic viscosity taking place in the bulk of composite solutions are explored and examined in relation to competitive droplet nucleation and growth rate. As a result, extensive structurally ordered honeycomb textures are obtained with the rising content of the surfactant while a broad range of well-sized pores is targeted as a function of the hydrophilic-hydrophobic balance and viscosity of the composite polymeric mixture. The experimental findings confirm the consistency of the approach and are expected to give propulsion to the commercially production of breath figures films shortly.

  16. Solution processable organic polymers and small molecules for bulk-heterojunction solar cells: A review

    International Nuclear Information System (INIS)

    Sharma, G. D.

    2011-01-01

    Solution processed bulk heterojunction (BHJ) organic solar cells (OSCs) have gained wide interest in past few years and are established as one of the leading next generation photovoltaic technologies for low cost power production. Power conversion efficiencies up to 6% and 6.5% have been reported in the literature for single layer and tandem solar cells, respectively using conjugated polymers. A recent record efficiency about 8.13% with active area of 1.13 cm 2 has been reported. However Solution processable small molecules have been widely applied for photovoltaic (PV) devices in recent years because they show strong absorption properties, and they can be easily purified and deposited onto flexible substrates at low cost. Introducing different donor and acceptor groups to construct donor--acceptor (D--A) structure small molecules has proved to be an efficient way to improve the properties of organic solar cells (OSCs). The power conversion efficiency about 4.4 % has been reported for OSCs based on the small molecules. This review deals with the recent progress of solution processable D--A structure small molecules and discusses the key factors affecting the properties of OSCs based on D--A structure small molecules: sunlight absorption, charge transport and the energy level of the molecules.

  17. An exact solution of three interacting friendly walks in the bulk

    International Nuclear Information System (INIS)

    Tabbara, R; Owczarek, A L; Rechnitzer, A

    2016-01-01

    We find the exact solution of three interacting friendly directed walks on the square lattice in the bulk, modelling a system of homopolymers that can undergo a multiple polymer fusion or zipping transition by introducing two distinct interaction parameters that differentiate between the zipping of only two or all three walks. We establish functional equations for the model’s corresponding generating function that are subsequently solved exactly by means of the obstinate kernel method. We then proceed to analyse our model, first considering the case where triple-walk interaction effects are ignored, finding that our model exhibits two phases which we classify as free and gelated (or zipped) regions, with the system exhibiting a second-order phase transition. We then analyse the full model where both interaction parameters are incorporated, presenting the full phase diagram and highlighting the additional existence of a first-order gelation (zipping) boundary. (paper)

  18. Steam bubble growth in the bulk of overheated N2O4-NO chemically reacting solution

    International Nuclear Information System (INIS)

    Nemtsev, V.A.; Cherkashin, A.M.

    1989-01-01

    A mathematical model and numerical investigation of the vapour bubble growth that begins from the bubble critical size at the positive radius fluctuation during the initial moment in the bulk of the overheated N 2 O 4 -NO liquid solution are presented. The mathematical model has been stated under the following assumptions: the movement of a bubble wall and surrounding liquid is spherically symmetrical; thermal parameters in the bubble are distributed uniformly; the vapour phase follows the ideal gas law; heat transfer is not affected by the compressibility of liquid; if dissolution of light components is determined by Henry's law, then Hertz-Knudsen's equation determines the velocity of phase transition for a N 2 O 4 component. The mathematical model presented can be applied to another fluids, including chemically reacting ones

  19. Principles of Micellar Electrokinetic Capillary Chromatography Applied in Pharmaceutical Analysis

    Directory of Open Access Journals (Sweden)

    Árpád Gyéresi

    2013-02-01

    Full Text Available Since its introduction capillary electrophoresis has shown great potential in areas where electrophoretic techniques have rarely been used before, including here the analysis of pharmaceutical substances. The large majority of pharmaceutical substances are neutral from electrophoretic point of view, consequently separations by the classic capillary zone electrophoresis; where separation is based on the differences between the own electrophoretic mobilities of the analytes; are hard to achieve. Micellar electrokinetic capillary chromatography, a hybrid method that combines chromatographic and electrophoretic separation principles, extends the applicability of capillary electrophoretic methods to neutral analytes. In micellar electrokinetic capillary chromatography, surfactants are added to the buffer solution in concentration above their critical micellar concentrations, consequently micelles are formed; micelles that undergo electrophoretic migration like any other charged particle. The separation is based on the differential partitioning of an analyte between the two-phase system: the mobile aqueous phase and micellar pseudostationary phase. The present paper aims to summarize the basic aspects regarding separation principles and practical applications of micellar electrokinetic capillary chromatography, with particular attention to those relevant in pharmaceutical analysis.

  20. The electrochemical corrosion of bulk nanocrystalline ingot iron in HCl solutions with different concentrations

    International Nuclear Information System (INIS)

    Wang, S.G.; Sun, M.; Cheng, P.C.; Long, K.

    2011-01-01

    Highlights: → The corrosion resistance of BNII was enhanced in comparison with CPII in 0.1-0.4 mol L -1 solution. → The function work of BNII is 0.47 eV larger that of CPII. → The energy state density of 4s electrons of BNII is 13.73% less than that of CPII. → BNII corrosion resistance was enhanced due to its larger work function and less 4s electrons weight. → The specific adsorption of Cl - on BNII was weaker than that of CPII due to its larger function work. - Abstract: We studied the corrosion properties of bulk nanocrystalline ingot iron (BNII) and conventional polycrystalline ingot iron (CPII) in HCl solutions from 0.1 mol L -1 to 0.4 mol L -1 at room temperature. The corrosion resistance of BNII was enhanced in comparison with CPII. We investigated the surface energy state densities of BNII and CPII with ultra-violet photoelectron spectroscopy. The energy state density of BNII 4s electrons was 13.73% less than that of CPII. The function work of BNII was 0.47 eV larger that of CPII. The corrosion resistance of BNII was enhanced in comparison with CPII due to its less energy state density of 4s electrons, larger work function and weaker Cl - specific adsorption.

  1. Bulk-heterojunction organic solar cells sandwiched by solution processed molybdenum oxide and titania nanosheet layers

    Science.gov (United States)

    Itoh, Eiji; Goto, Yoshinori; Fukuda, Katsutoshi

    2014-02-01

    The contributions of ultrathin titania nanosheet (TN) crystallites were studied in both an inverted bulk-heterojunction (BHJ) cell in an indium-tin oxide (ITO)/titania nanosheet (TN)/poly(3-hexylthiophene) (P3HT):phenyl-C61-butyric acid methylester (PCBM) active layer/MoOx/Ag multilayered photovoltaic device and a conventional BHJ cell in ITO/MoOx/P3HT:PCBM active layer/TN/Al multilayered photovoltaic device. The insertion of only one or two layers of poly(diallyldimethylammonium chloride) (PDDA) and TN multilayered film prepared by the layer-by-layer deposition technique effectively decreased the leakage current and increased the open circuit voltage (VOC), fill factor (FF), and power conversion efficiency (η). The conventional cell sandwiched between a solution-processed, partially crystallized molybdenum oxide hole-extracting buffer layer and a TN electron extracting buffer layer showed comparable cell performance to a device sandwiched between vacuum-deposited molybdenum oxide and TN layers, whereas the inverted cell with solution-processed molybdenum oxide showed a poorer performance probably owing to the increment in the leakage current across the film. The abnormal S-shaped curves observed in the inverted BHJ cell above VOC disappeared with the use of a polyfluorene-based cationic semiconducting polymer as a substitute for an insulating PDDA film, resulting in the improved cell performance.

  2. Efficient solution-processed small molecule: Cadmium selenide quantum dot bulk heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Vinay, E-mail: drvinaygupta@netscape.net [Physics of Energy Harvesting Division, Organic and Hybrid Solar Cell Group, CSIR-National Physical Laboratory, New Delhi-110012 (India); Department of Physics, University of California, Santa Barbara, California 93106 (United States); Upreti, Tanvi; Chand, Suresh [Physics of Energy Harvesting Division, Organic and Hybrid Solar Cell Group, CSIR-National Physical Laboratory, New Delhi-110012 (India)

    2013-12-16

    We report bulk heterojunction solar cells based on blends of solution-processed small molecule [7,7′-(4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b′]dithiophene-2,6-diyl) bis(6-fluoro-4-(5′-hexyl-[2,2′-bithiophen]-5yl)benzo[c] [1,2,5] thiadiazole)] p-DTS(FBTTh{sub 2}){sub 2}: Cadmium Selenide (CdSe) (70:30, 60:40, 50:50, and 40:60) in the device configuration: Indium Tin Oxide /poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/p-DTS(FBTTh{sub 2}){sub 2}: CdSe/Ca/Al. The optimized ratio of p-DTS(FBTTh{sub 2}){sub 2}:CdSe::60:40 leads to a short circuit current density (J{sub sc}) = 5.45 mA/cm{sup 2}, open circuit voltage (V{sub oc}) = 0.727 V, and fill factor (FF) = 51%, and a power conversion efficiency = 2.02% at 100 mW/cm{sup 2} under AM1.5G illumination. The J{sub sc} and FF are sensitive to the ratio of p-DTS(FBTTh{sub 2}){sub 2}:CdSe, which is a crucial factor for the device performance.

  3. Efficient solution-processed small molecule: Cadmium selenide quantum dot bulk heterojunction solar cells

    International Nuclear Information System (INIS)

    Gupta, Vinay; Upreti, Tanvi; Chand, Suresh

    2013-01-01

    We report bulk heterojunction solar cells based on blends of solution-processed small molecule [7,7′-(4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b′]dithiophene-2,6-diyl) bis(6-fluoro-4-(5′-hexyl-[2,2′-bithiophen]-5yl)benzo[c] [1,2,5] thiadiazole)] p-DTS(FBTTh 2 ) 2 : Cadmium Selenide (CdSe) (70:30, 60:40, 50:50, and 40:60) in the device configuration: Indium Tin Oxide /poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/p-DTS(FBTTh 2 ) 2 : CdSe/Ca/Al. The optimized ratio of p-DTS(FBTTh 2 ) 2 :CdSe::60:40 leads to a short circuit current density (J sc ) = 5.45 mA/cm 2 , open circuit voltage (V oc ) = 0.727 V, and fill factor (FF) = 51%, and a power conversion efficiency = 2.02% at 100 mW/cm 2 under AM1.5G illumination. The J sc and FF are sensitive to the ratio of p-DTS(FBTTh 2 ) 2 :CdSe, which is a crucial factor for the device performance

  4. The impact of kosmotropes and chaotropes on bulk and hydration shell water dynamics in a model peptide solution

    International Nuclear Information System (INIS)

    Russo, Daniela

    2008-01-01

    Kosmotropic (order-making) and chaotropic (order-breaking) co-solvents influence stability and biochemical equilibrium in aqueous solutions of proteins, acting indirectly through the structure and dynamics of the hydration water that surrounds the protein molecules. We have investigated the influence of kosmotropic and chaotropic co-solvents on the hydrogen bonding network dynamics of both bulk water and hydration water. To this end the evolution of bulk water and hydration water dynamics of a prototypical hydrophobic amino acid with polar backbone, N-acetyl-leucine-methylamide (NALMA), has been studied by quasielastic neutron scattering as a function of solvent composition. The results show that bulk water and hydration water dynamics, apart from a dynamical suppression that depends on the NALMA solute, exhibit the same dependence on addition of co-solvent for all of the co-solvents studied (urea, glycerol, MgSO 4 , and dimethyl sulfoxide). The hydrophobic solute and the high concentration water-structuring additive have the same effect on the water hydrogen bonding network. Water remains the preferential hydration of the hydrophobic side chain and backbone. We also find that the reorganization of the bulk water hydrogen bond network, upon addition of kosmotrope and chaotrope additives, is not dynamically perturbed, and that the hydrogen bond lifetime is maintained at 1 ps as in pure bulk water. On the other hand the addition of NALMA to the water/co-solvent binary system causes reorganization of the hydrogen bonds, resulting in an increased hydrogen bond lifetime. Furthermore, the solute's side chain dynamics is not affected by high concentrations of co-solvent. We shall discuss the hydration dynamics results in the context of protein folding and protein-solvent interactions

  5. Redox reactions in micellar systems. communication 4. Eosin-photosensitized reduction of methylviologen

    Energy Technology Data Exchange (ETDEWEB)

    Nadtochenko, V.; Dzhabiev, T.S.; Rubtsov, I.V.

    1985-12-10

    The authors present data on photosensitized reduction of methylviologen (MV/sup 2 +/) by disodium ethylenediaminetetraacetate (EDTA) in micellar systems modeling, in a first approximation, the structural organization of components of the chain of energy and electron transfer in natural photosynthesis. Photosensitized reduction of methylviologen by EDTA in micellar solutions can model photosystem I of plants with structure formation of reagents and transfer of excitation energy before the step of occurrence of a redox reaction in the active center.

  6. Contact resistance problems applying ERT on low bulk density forested stony soils. Is there a solution?

    Science.gov (United States)

    Deraedt, Deborah; Touzé, Camille; Robert, Tanguy; Colinet, Gilles; Degré, Aurore; Garré, Sarah

    2015-04-01

    contact resistance reduced to 5222 Ω. This improved the contact resistance substantially, but complicates the execution of a pulse tracer experiment. To date we did not find any better solution to this problem and we keep searching a way to improve the contact resistance in stony forested soils with very low bulk density. We would like to exchange on these questions with EGU attendees in order to improve the experimental design or point out a new research path for these specific conditions. This could lead to enhance the use of ERT in soils with low density and high stone content.

  7. High Quality, Low Cost Bulk Gallium Nitride Substrates Grown by the Electrochemical Solution Growth Method

    Energy Technology Data Exchange (ETDEWEB)

    Seacrist, Michael [SunEdison Inc., St. Peters, MO (United States)

    2017-08-15

    The objective of this project was to develop the Electrochemical Solution Growth (ESG) method conceived / patented at Sandia National Laboratory into a commercially viable bulk gallium nitride (GaN) growth process that can be scaled to low cost, high quality, and large area GaN wafer substrate manufacturing. The goal was to advance the ESG growth technology by demonstrating rotating seed growth at the lab scale and then transitioning process to prototype commercial system, while validating the GaN material and electronic / optical device quality. The desired outcome of the project is a prototype commercial process for US-based manufacturing of high quality, large area, and lower cost GaN substrates that can drive widespread deployment of energy efficient GaN-based power electronic and optical devices. In year 1 of the project (Sept 2012 – Dec 2013) the overall objective was to demonstrate crystalline GaN growth > 100um on a GaN seed crystal. The development plan included tasks to demonstrate and implement a method for purifying reagent grade salts, develop the reactor 1 process for rotating seed Electrochemical Solution Growth (ESG) of GaN, grow and characterize ESG GaN films, develop a fluid flow and reaction chemistry model for GaN film growth, and design / build an improved growth reactor capable of scaling to 50mm seed diameter. The first year’s project objectives were met in some task areas including salt purification, film characterization, modeling, and reactor 2 design / fabrication. However, the key project objective of the growth of a crystalline GaN film on the seed template was not achieved. Amorphous film growth on the order of a few tenths of a micron has been detected with a film composition including Ga and N, plus several other impurities originating from the process solution and hardware. The presence of these impurities, particularly the oxygen, has inhibited the demonstration of crystalline GaN film growth on the seed template. However, the

  8. Importance of Interfacial Interactions to Access Shear Elasticity of Liquids and Understand Flow Induced Birefringence from Liquid Crystals to Worm-Like Micellar Solutions

    Directory of Open Access Journals (Sweden)

    Noirez Laurence

    2017-03-01

    Full Text Available This work points out the importance of the substrate boundary conditions to lower the dissipation in the dynamic measurement and access the closest dynamic characteristics of liquids, in particular to access the low frequency shear elasticity. The liquid/surface interface is a source of dissipation that enters and impacts the measurement. Examples of steady-state shear flows or flow birefringence are presented to highlight the non-universality of the behavior with respect to the nature of the substrate or the sheared thickness. Additionally the present development completes and extends the identification of low frequency shear elasticity made at sub-millimeter gaps in various one-component liquids to salt-free aqueous solutions (CTAB-water (Hexadecyl-TrimethylAmmonium Bromide.

  9. Impact of ultrasonication time on elution of super heavy oil and its biomarkers from aging soils using a Triton X-100 micellar solution

    International Nuclear Information System (INIS)

    Ji Guodong; Zhou Guohui

    2010-01-01

    An ultrasound-enhanced elution system with Triton X-100 solution was used to remediate aging soils contaminated with super heavy oil. We used GC/MS, SEM, and X-ray diffraction (XRD) to analyze the effect of ultrasonic time (0-1800 s) on the elution of super heavy oil and its three characteristic biomarkers (C 26-34 17α 25-norhopanes, C 26-28 triaromatic steroid [TAS], and C 27-29 methyl triaromatic steroid [MTAS]). The oil and biomarkers remaining in the treated soils followed similar second-order functions with increasing ultrasonication times. Biomarker elution was closely related to carbon numbers in the marker. For C 26-34 17α 25-norhopanes, the smaller molecules were more readily eluted during 0-360 s ultrasound. This trend was reversed upon application of ultrasound during 1080-1800 s, with improved elution of larger molecules and elution followed a similar second-order function. For C 26-28 TAS, smaller molecules were more readily eluted but the elution of larger molecules followed a similar second-order function. For C 27-29 MTAS, elution of larger molecules was close to that of C 26-34 17α 25-norhopanes. Results of SEM and XRD indicated that the mineral and chemical compositions of soils eluted at ultrasonication times of 1080-1800 s closely resembled clean soils.

  10. GaN Bulk Growth and Epitaxy from Ca-Ga-N Solutions, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR proposal addresses the liquid phase epitaxy (LPE) of gallium nitride (GaN) films using nitrogen-enriched metal solutions. Growth of GaN from solutions...

  11. How are flexible tanks becoming a solution for wine in bulk transportation?

    OpenAIRE

    Aaltonen, Alisa

    2015-01-01

    Past decades have proven that logistics is taking a crucial role in both domestic and international trade. Additionally, logistics have played an essential role in wars recorded in past human history. Bulk shipping is becoming an increasingly attractive option for wine shippers around the world because this method of shipping allows transporting up to 13,400 litres more of the product when compared to the conventional method of wine transportation, which dramatically cuts transportation costs...

  12. Micellar effect on the kinetics of oxidation of methyl blue by Ce(IV in sulfuric acid medium

    Directory of Open Access Journals (Sweden)

    Mohammed Hassan

    2015-01-01

    Full Text Available The kinetics of oxidation of methyl blue (MB by Ce(IV in aqueous and surfactant media has been carried out to explore the micellar effect on the rate and kinetic parameters of the reaction. The reaction was found to be first order with respect to both oxidant and substrate and fractional order with respect to H+. The active kinetic species of the oxidant was found to be Ce(SO4+2 based on the effect of ionic strength and sulfate ion on the rate of the reaction. The presence of micelles was found to inhibit the reaction and this effect has been explained by the association of one of the reactants with the micelles leaving the other reactant in the bulk solution. The binding constant and first order rate constant in micellar medium has been obtained by the application of pseudo-phase model to the experimental data. Interestingly, the temperature dependence of the reaction reveals that the reaction has negative activation energy in the absence of micelles, which turns to a positive value in the presence of micelles.

  13. Aqueous pathways dominate permeation of solutes across Pisum sativum seed coats and mediate solute transport via diffusion and bulk flow of water.

    Science.gov (United States)

    Niemann, Sylvia; Burghardt, Markus; Popp, Christian; Riederer, Markus

    2013-05-01

    The permeability of seed coats to solutes either of biological or anthropogenic origin plays a major role in germination, seedling growth and seed treatment by pesticides. An experimental set-up was designed for investigating the mechanisms of seed coat permeation, which allows steady-state experiments with isolated seed coats of Pisum sativum. Permeances were measured for a set of organic model compounds with different physicochemical properties and sizes. The results show that narrow aqueous pathways dominate the diffusion of solutes across pea seed coats, as indicated by a correlation of permeances with the molecular sizes of the compounds instead of their lipophilicity. Further indicators for an aqueous pathway are small size selectivity and a small effect of temperature on permeation. The application of an osmotic water potential gradient across isolated seed coats leads to an increase in solute transfer, indicating that the aqueous pathways form a water-filled continuum across the seed coat allowing the bulk flow of water. Thus, the uptake of organic solutes across pea testae has two components: (1) by diffusion and (2) by bulk water inflow, which, however, is relevant only during imbibition. © 2012 Blackwell Publishing Ltd.

  14. Fullerene-containing polymeric stars in bulk and solution by neutron spin-echo

    CERN Document Server

    Lebedev, V T; Toeroek, G; Cser, L; Bershtein, V A; Zgonnik, V N; Melenevskaya, E Y; Vinogradova, L V

    2002-01-01

    Stars with C sub 6 sub 0 fullerene core and poly (styrene) (PS) arms have been studied in benzene and in the bulk by neutron spin echo (NSE). Behaviours of stars (six arms, each with a mass M=5.10 sup 3) at momentum transfer q=0.2-0.6 nm sup - sup 1 in the time range t=0.01-20 ns at temperatures T=20-60 C were compared with dynamics of free PS chains. Displaying depressed molecular mobility, the stars did not obey the usual dynamic Zimm or Rouse model. The fullerene polymer interaction at a specific molecular architecture results in oscillating dynamics. (orig.)

  15. Efficient electroreduction of CO{sub 2} on bulk silver electrode in aqueous solution via the inhibition of hydrogen evolution

    Energy Technology Data Exchange (ETDEWEB)

    Quan, Fengjiao; Xiong, Mubing; Jia, Falong, E-mail: fljia@mail.ccnu.edu.cn; Zhang, Lizhi

    2017-03-31

    Highlights: • High Faradic efficiency for CO (95%) is achieved on bulk Ag electrode. • The addition of DTAB contributes to enhanced CO{sub 2} conversion efficiency. • Hydrogen evolution is suppressed by the adsorbed DTAB on Ag electrode. - Abstract: Electrochemical CO{sub 2} reduction provides a desirable pathway to convert greenhouse gas into useful chemicals. It is a great challenge to reduce CO{sub 2} efficiently in aqueous solution, especially on commercial bulk metal electrodes. Here, we report substantial improvement in CO{sub 2} reduction on bulk silver electrode through the introduction of ionic surfactant in aqueous electrolyte. The hydrogen evolution on the electrode surface is greatly suppressed by the surfactant, while the catalytic ability of silver towards CO{sub 2} reduction is maintained. The Faradaic efficiency for CO is greatly enhanced from 50% to 95% after the addition of this low-cost surfactant. This study may provide new pathways towards efficient CO{sub 2} reduction through the inhibition of proton reduction.

  16. A stationary bulk planar ideal flow solution for the double shearing model

    Science.gov (United States)

    Lyamina, E. A.; Kalenova, N. V.; Date, P. P.

    2018-04-01

    This paper provides a general ideal flow solution for the double shearing model of pressure-dependent plasticity. This new solution is restricted to a special class of stationary planar flows. A distinguished feature of this class of solutions is that one family of characteristic lines is straight. The solution is analytic. The mapping between Cartesian and principal lines based coordinate systems is given in parametric form with characteristic coordinates being the parameters. A simple relation that connects the scale factor for one family of coordinate curves of the principal lines based coordinate system and the magnitude of velocity is derived. The original ideal flow theory is widely used as the basis for inverse methods for the preliminary design of metal forming processes driven by minimum plastic work. The new theory extends this area of application to granular materials.

  17. Controlling solution-phase polymer aggregation with molecular weight and solvent additives to optimize polymer-fullerene bulk heterojunction solar cells

    KAUST Repository

    Bartelt, Jonathan A.; Douglas, Jessica D.; Mateker, William R.; El Labban, Abdulrahman; Tassone, Christopher J.; Toney, Michael F.; Fré chet, Jean Mj J; Beaujuge, Pierre; McGehee, Michael D.

    2014-01-01

    The bulk heterojunction (BHJ) solar cell performance of many polymers depends on the polymer molecular weight (M n) and the solvent additive(s) used for solution processing. However, the mechanism that causes these dependencies is not well

  18. Performance Evaluation of Bulk Liquid Membrane Technique on p-Nitrophenol Removal from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    K. Pourkhanali

    2018-03-01

    Full Text Available The transport of p-nitrophenol (PNP through a bulk liquid membrane (BLM was investigated to evaluate the effect of different experimental conditions on PNP partitioning behavior. The influence of solvent type, different salts in feed phase, the feed phase pH and PNP concentration in feed phase on transport efficiency of PNP through the BLM were studied. The results indicated that the highest removal efficiency of PNP was observed for 80 % xylene + 20 % toluene as liquid membrane, Na2SO4 as salt in feed phase, in the acidic feed phase and in 150 min. The effect of initial concentration of PNP on the efficiency of the separation PNP showed that the increase in initial concentration up to 350 ppm had positive effect, and more than 350 ppm had negative effect on the PNP removal behavior. Also, pertraction in BLM systems were described by a kinetic model of two consecutive irreversible first order chemical reactions.

  19. Bulk diffusion and solubility of silver and nickel in lead, lead-silver and lead-nickel solid solutions

    International Nuclear Information System (INIS)

    Amenzou-Badrour, H.; Moya, G.; Bernardini, J.

    1988-01-01

    The results of a study of solubility and bulk diffusion of /sup 110/Ag and /sup 63/Ni in lead, lead-silver and lead-nickel solid solutions in the temperature range 220 to 88 0 C are reported. Owing to the low solubility of silver and nickel in lead, Fick's solution corresponding to the boundary condition of a constant concentration of solute at the surface has been used. Depth profile concentration analysis suggests a fundamental difference between the diffusion mechanisms of silver and nickel. Since silver penetration profiles in pure lead give diffusion coefficients independent of the penetration depth and silver concentration, it is suggested that slight decreases of silver diffusivity in lead-silver solid solutions have no significance. This implies that the interstitial silver atoms do not associate significantly with each other to form Ag-Ag dimers. In contrast, different behaviors of /sup 63/Ni depth profile concentration in pure lead and saturated PbNi solid solutions agree with a Ni-Ni interaction leading to the formation of less mobile dimers near the surface in pure lead

  20. Ascorbyl radical disproportionation in reverse micellar systems

    Science.gov (United States)

    Gębicki, J. L.; Szymańska-Owczarek, M.; Pacholczyk-Sienicka, B.; Jankowski, S.

    2018-04-01

    Ascorbyl radical was generated by the pulse radiolysis method and observed with the fast kinetic spectrophotometry within reverse micelles stabilized by AOT in n-heptane or by Igepal CO-520 in cyclohexane at different water to surfactant molar ratio, w0. Rate constants for the disproportionation of the ascorbyl radicals were smaller than those for intermicellar exchange for both type of reverse micelles and slower than those in homogeneous aqueous solutions. However, they increased with increasing w0 for AOT/n-heptane system, while they decreased for Igepal CO-520 system. The absorption spectra of ascorbic acid AOT/n-heptane reverse micellar system showed that the "pH" sensed by this molecule is lower than that in respective homogeneous aqueous solutions. The obtained results were rationalized taking into account three main factors (i) preferential location of ascorbic acid molecules in the interfacial region of the both types of reverse micelles; (ii) postulate that the pH of the interface is lower than that of the water pool of reverse micelles and (iii) different structure of the interface of the reverse micelles made by AOT in n-heptane and those formed by Igepal CO-520 I cyclohexane. Some possible consequences of these findings are discussed.

  1. Estimation of track registration efficiency in solution medium and study of gamma irradiation effects on the bulk-etch rate and the activation energy for bulk etching of CR-39 (DOP) Solid State Nuclear Track Detector

    International Nuclear Information System (INIS)

    Kalsi, P.C.

    2010-01-01

    The fission track registration efficiency of diethylene glycol bis allyl carbonate (dioctyl phthalate doped) (CR-39 (DOP)) solid state nuclear track detector (SSNTD) in solution medium (K wet ) has been experimentally determined and is found to be (9.7 ± 0.5).10 -4 cm. This is in good agreement with the values of other SSNTDs. The gamma irradiation effects in the dose range of 50.0-220.0 kGy on the bulk etch rate, V b and the activation energy for bulk etching, E of this solid state nuclear track detector (SSNTD) have also been studied. It is observed that the bulk etch rates increase and the activation energies for bulk etching decrease with the increase in gamma dose. These results have been explained on the basis of scission of the detector due to gamma irradiation

  2. Pyrene absorption can be a convenient method for probing critical micellar concentration (cmc) and indexing micellar polarity.

    Science.gov (United States)

    Basu Ray, Gargi; Chakraborty, Indranil; Moulik, Satya P

    2006-02-01

    The critical micellar concentration (cmc) of both ionic and non-ionic surfactants can be conveniently determined from the measurements of UV absorption of pyrene in surfactant solution. The results on a number of surfactants have agreed with that realized from pyrene fluorescence measurements as well as that obtained following conductometric, tensiometric and calorimetric methods. The absorbance vs [surfactant] profiles for all the major UV spectral peaks of pyrene have been found to be sigmoidal in nature which were analyzed according to Sigmoidal-Boltzmann equation (SBE) to evaluate the cmcs of the studied surfactants. The difference between the initial and the final asymptotes (a(i) and a(f), respectively) of the sigmoidal profile, Delta a = (a(f)-a(i)) and the slope of the sigmoid, S(sig) have been observed to depend on the type of the surfactant. The Delta a has shown a linear correlation with the ratio of the fluorescence intensities of the first and the third vibronic peaks, I1/I3 of pyrene which is considered as a measure of the environmental polarity (herein micellar interior) of the probe (pyrene). Thus, Delta a values have the prospect for use as another index for the estimation of polarity of micellar interior.

  3. Complementary experimental-simulational study of surfactant micellar phase in the extraction process of metallic ions: Effects of temperature and salt concentration

    Science.gov (United States)

    Soto-Ángeles, Alan Gustavo; Rodríguez-Hidalgo, María del Rosario; Soto-Figueroa, César; Vicente, Luis

    2018-02-01

    The thermoresponsive micellar phase behaviour that exhibits the Triton-X-100 micelles by temperature effect and addition of salt in the extraction process of metallic ions was explored from mesoscopic and experimental points. In the theoretical study, we analyse the formation of Triton-X-100 micelles, load and stabilization of dithizone molecules and metallic ions extraction inside the micellar core at room temperature; finally, a thermal analysis is presented. In the experimental study, the spectrophotometric outcomes confirm the solubility of the copper-dithizone complex in the micellar core, as well as the extraction of metallic ions of aqueous environment via a cloud-point at 332.2 K. The micellar solutions with salt present a low absorbance value compared with the micellar solutions without salt. The decrease in the absorbance value is attributed to a change in the size of hydrophobic region of colloidal micelles. All transitory stages of extraction process are discussed and analysed in this document.

  4. Highly efficient solutions for smart and bulk power transmission of 'green energy'

    Energy Technology Data Exchange (ETDEWEB)

    Breuer, Wilfried; Retzmann, Dietmar; Uecker, Karl

    2010-09-15

    Environmental constraints, loss minimization and CO2 reduction will play an increasingly more important role in future. Security and sustainability of power supply as well as economic efficiency needs application of advanced technologies. Innovative solutions with HVDC (High Voltage Direct Current) and FACTS (Flexible AC Transmission Systems) have the potential to cope with these challenges. They provide the features which are necessary to avoid technical problems in power systems, they increase the transmission capacity and system stability very efficiently and help prevent cascading outages. Furthermore, they are essential for Grid Access of Renewable Energy Sources such as Hydro, Wind and Solar-Energy.

  5. Highly efficient solutions for smart and bulk power transmission of 'green energy'

    Energy Technology Data Exchange (ETDEWEB)

    Breuer, Wilfried; Retzmann, Dietmar; Uecker, Karl

    2010-09-15

    Environmental constraints, loss minimization and CO2 reduction will play an increasingly more important role in future. Security and sustainability of power supply as well as economic efficiency needs application of advanced technologies. Innovative solutions with HVDC (High Voltage Direct Current) and FACTS (Flexible AC Transmission Systems) have the potential to cope with these challenges. They provide the features which are necessary to avoid technical problems in power systems, they increase the transmission capacity and system stability very efficiently and help prevent cascading outages. Furthermore, they are essential for Grid Access of Renewable Energy Sources such as Hydro, Wind and Solar-Energy.

  6. Catalysis in micellar and macromoleular systems

    CERN Document Server

    Fendler, Janos

    1975-01-01

    Catalysis in Micellar and Macromolecular Systems provides a comprehensive monograph on the catalyses elicited by aqueous and nonaqueous micelles, synthetic and naturally occurring polymers, and phase-transfer catalysts. It delineates the principles involved in designing appropriate catalytic systems throughout. Additionally, an attempt has been made to tabulate the available data exhaustively. The book discusses the preparation and purification of surfactants; the physical and chemical properties of surfactants and micelles; solubilization in aqueous micellar systems; and the principles of

  7. Bulk Heterojunction versus Diffused Bilayer: The Role of Device Geometry in Solution p-Doped Polymer-Based Solar Cells.

    Science.gov (United States)

    Loiudice, Anna; Rizzo, Aurora; Biasiucci, Mariano; Gigli, Giuseppe

    2012-07-19

    We exploit the effect of molecular p-type doping of P3HT in diffused bilayer (DB) polymer solar cells. In this alternative device geometry, the p-doping is accomplished in solution by blending the F4-TCNQ with P3HT. The p-doping both increases the film conductivity and reduces the potential barrier at the interface with the electrode. This results in an excellent power conversion efficiency of 4.02%, which is an improvement of ∼48% over the p-doped standard bulk heterojunction (BHJ) device. Combined VOC-light intensity dependence measurements and Kelvin probe force microscopy reveal that the DB device configuration is particularly advantageous, if compared to the conventional BHJ, because it enables optimization of the donor and acceptor layers independently to minimize the effect of trapping and to fully exploit the improved transport properties.

  8. Bulk solubility and speciation of plutonium(VI) in phosphate-containing solutions

    International Nuclear Information System (INIS)

    Weger, H.T.; Okajima, S.; Cunnane, J.C.; Reed, D.T.

    1992-01-01

    The solubility and speciation of Pu(VI) with phosphate as a function of pH was investigated to determine the ability of phosphate to act as an actinide getter. The general properties were first investigated and are reported here with the goal of performing more quantitative experiments in the future. Solubility was approached from oversaturation at initial pH = 4, 10 and 13.4. Absorption spectra were recorded, the solution filtered and the filtrate counted. Absorption spectra were obtained at varying phosphate concentrations and at pH of 2.7 to 11.9. The effect of complexation on the 833 mn Pu(VI) band was characterized. Evidence for three phosphate complexes was obtained for pH -5 to 10 -6 M Pu(VI) was measured in the filtrate at pH ≤ 10 that were passed through a 50 mn filter. Pu(VI) complexes with phosphate over hydroxide at pH ≤ 11.6, but at pH ≥ 11.9, only hydrolyzed Pu(VI) was detected. At pH = 12, the concentration of Pu(VI) was as high as 10 -4 M

  9. Performance optimization studies of solution processed bulk-heterojunction solar cells

    Science.gov (United States)

    Ali, Bakhtyar

    2011-12-01

    Organic Solar Cells (OSCs), which rely on the concept of bulk-heterojunction, stand out due primarily to their simple construction, mechanical flexibility and exceptional ease of processing. These characteristics make them potential candidates to substitute for the expensive photovoltaic counterparts. Among other OSCs, devices containing poly(3-hexylthiophene) (P3HT) and phenyl C61 butaric acid methyl ester (PCBM) as photo-active layer have shown promising results. However, the power conversion efficiency (PCE) is still lower than the required commercialization mark (˜10%). Devices with structure glass/ITO/PEDOT:PSS/P3HT:PCBM/LiF/Al, annealed and un-annealed with device area ˜0.4 cm2 (unless otherwise stated), have been studied. An investigation of the device processing variables has led to the conclusion that the optimum loading of PCBM in the blend for optimum performance is in the range of 1:1 to 1:2. Characterization of the active layer with UV-vis absorption, PL spectra and XRD reveal that the addition of PCBM to P3HT matrix is detrimental for the self-organization of P3HT chains (crystallinity) and it also increases the resistivity. Similarly, 1,2 dichlorobenzene (DCB) has been found to be the best solvent among other solvents such as chloroform (CF) and chlorobenzene (CB), for optimum PCE. The rho(T) data from the samples (pristine P3HT and P3HT/PCBM blends) exhibit anisotropy in conduction where it follows the variable range hoping (VRH) in the lateral (parallel to film) and polaronic behavior in vertical (perpendicular to film) transport. The activation energy obtained from the fit to polaronic model is 329 meV for P3HT/ PCBM blend (1:1). Furthermore, the photovoltaic parameters extracted from a lumped circuit analysis of voltage and temperature dependence of photocurrent, JL(V), in P3HT/PCBM OSCs, completely describe the illuminated J-V data from far reverse bias to beyond the open circuit voltage (Voc). A simple model for carrier collection has been

  10. Tuning the probe location on zwitterionic micellar system with variation of pH and addition of surfactants with different alkyl chains: solvent and rotational relaxation studies.

    Science.gov (United States)

    Banerjee, Chiranjib; Mandal, Sarthak; Ghosh, Surajit; Rao, Vishal Govind; Sarkar, Nilmoni

    2012-09-13

    In this manuscript, we have modulated the location of an anionic probe, Coumarin-343 (C-343) in a zwitterionic (N-hexadecyl-N,N-dimethylammonio-1-propanesulfonate (SB-16)) micellar system by three different approaches. The effect of addition of the surfactant sodium dodecyl sulfate (SDS) and the room temperature ionic liquid (RTIL), 1-ethyl-3-methylimidazolium octylsulfate (EmimOs) and N,N-dimethylethanol hexanoate (DAH), to the micellar solution has been studied. The effect of pH variation has been studied as well using solvent and rotational measurements. Migration of the anionic probe, C-343, from the palisade layer of SB-16 micelle to the bulk water has been observed to varying extents with the addition of SDS and EmimOs. The effect is much more pronounced in the presence of SDS and can be ascribed to the presence of the long alkyl (dodecyl) chain on SDS which can easily orient itself and fuse inside the SB-16 micelle and facilitate the observed migration of the probe molecule. This phenomenon is confirmed by faster solvation and rotational relaxation of the investigated probe molecule. The analogous fusion process is difficult in case of EmimOs and DAH because of their comparatively smaller alkyl (octyl and hexanoate) chain. However, the direction of C-343 migration is reversed with the decrease of pH of the SB-16 micellar medium. An increase in the average solvation and rotational relaxation time of the probe in acidic medium has been observed. Since experimental conditions are maintained such that the probe molecules and the zwitterionic SB-16 micelles remain oppositely charged, the observed results can be attributed to the increased electrostatic interaction (attractive) between them. Temperature dependent study also supports this finding.

  11. Modulated photophysics of 2-anthracene sulphonate in micellar assembly

    International Nuclear Information System (INIS)

    Rana, Dipak Kumar; Sarkar, Arindam; Dhar, Sayaree; Mandal, Tapas Kumar; Bhattacharya, Subhash Chandra

    2010-01-01

    The association of a non-ionic surfactant of polyoxyethylene-p-(1,1,3,3-tetramethylbutyl)phenyl ether (Triton X) series with 2-AS in aqueous solution has been studied by means of steady-state, time-resolved fluorescence and fluorescence anisotropy techniques. The effect of the hydrophobic chain length on the structural dynamism of the fluorophore has been reported. Experimental results demonstrate that the equilibrium of this dynamism is sensitive to the environment. The association constant of the probe molecule with the non-ionic micelles of Triton X (TX), location of the probe in the micellar environment, have been determined from the change in emission characteristics of the probe as a function of surfactant concentration. The rate constant of quenching and mode of quenching of probe in micellar media have been ascertained. Quantitative estimates of the micropolarity at the binding sites of the probe molecule have been determined. Some of the environment-dependent relevant fluorescence parameters, fluorescence anisotropy (r), have been monitored for exploring the imposed motional restriction of the microenvironment around the probe. An attempt has been made to correlate the steady-state results with time resolved study.

  12. Stepwise dynamics of an anionic micellar film - Formation of crown lenses.

    Science.gov (United States)

    Lee, Jongju; Nikolov, Alex; Wasan, Darsh

    2017-06-15

    We studied the stepwise thinning of a microscopic circular foam film formed from an anionic micellar solution of sodium dodecyl sulfate (SDS). The foam film formed from the SDS micellar solution thins in a stepwise manner by the formation and expansion of a dark spot(s) of one layer less than the film thickness. During the last stages of film thinning (e.g., a film with one micellar layer), the dark spot expansion occurs via two steps. Initially, a small dark circular spot inside a film of several microns in size is formed, which expands at a constant rate. Then, a ridge along the expanding spot is formed. As the ridge grows, it becomes unstable and breaks into regular crown lenses, which are seen as white spots in the reflected light at the border of the dark spot with the surrounding thicker film. The Rayleigh type of instability contributes to the formation of the lenses, which results in the increase of the dark spot expansion rate with time. We applied the two-dimensional micellar-vacancy diffusion model and took into consideration the effects of the micellar layering and film volume on the rate of the dark spot expansion [Lee et al., 2016] to predict the rate of the dark spot expansion for a 0.06M SDS film in the presence of lenses. We briefly discuss the Rayleigh type of instability in the case of a 0.06M SDS foam film. The goals of this study are to reveal why the crown lenses are formed during the foam film stratification and to elucidate their effect on the rate of spot expansion. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Copolimerização micelar de poli(acrilamida-g-óxido de propileno: avaliação reológica e caracterização de suas soluções Micellar copolymerization of poly(acrylamide-g-propylene oxide: rheologic evaluation and solution characterization

    Directory of Open Access Journals (Sweden)

    Bianca L. Sadicoff

    2001-06-01

    Full Text Available Copolímeros graftizados de poliacrilamida e poli(óxido de propileno (PPO foram sintetizados via técnica de polimerização micelar. Foram investigadas as mudanças de viscosidade das suas soluções frente à variação do teor de monômero hidrófobo incorporado ao copolímero, adição de sal e de tensoativo. O maior teor de grupos hidrófobos resultou em aumento da viscosidade aparente das soluções poliméricas. A adição de sal provocou maior interação entre os grupos hidrófobos verificada pela desestabilização do sistema polimérico. A adição de tensoativos gerou decréscimo das viscosidades reduzidas das soluções poliméricas. Os copolímeros obtidos foram caracterizados, qualitativamente, por espectrometria de absorção na região do infravermelho (FTIR.Graft copolymers of polyacrylamide and poly(propylene oxide (PPO were synthesized by a micellar copolymerization technique. The rheological properties of the copolymers solutions were evaluated and compared with literature data for solutions of the same copolymers, synthesized by solution polymerization. The effect of hydrophobe content, salt addition and surfactant addition on the rheological properties were also investigated. Increasing hydrophobe content resulted in higher solution viscosities in the semi-dilute regime. Upon addition of salts, the hydrophobic groups associated to minimize their exposure to water. In the semi-dilute region, higher contents of surfactant added resulted in lower reduced viscosities of the polymer solutions. The copolymers were qualitatively characterized by infra-red spectrometry (IR.

  14. An analytical solution to calculate bulk mole fractions for any number of components in aerosol droplets after considering partitioning to a surface layer

    Directory of Open Access Journals (Sweden)

    D. Topping

    2010-11-01

    Full Text Available Calculating the equilibrium composition of atmospheric aerosol particles, using all variations of Köhler theory, has largely assumed that the total solute concentrations define both the water activity and surface tension. Recently however, bulk to surface phase partitioning has been postulated as a process which significantly alters the predicted point of activation. In this paper, an analytical solution to calculate the removal of material from a bulk to a surface layer in aerosol particles has been derived using a well established and validated surface tension framework. The applicability to an unlimited number of components is possible via reliance on data from each binary system. Whilst assumptions regarding behaviour at the surface layer have been made to facilitate derivation, it is proposed that the framework presented can capture the overall impact of bulk-surface partitioning. Demonstrations of the equations for two and five component mixtures are given while comparisons are made with more detailed frameworks capable at modelling ternary systems at higher levels of complexity. Predictions made by the model across a range of surface active properties should be tested against measurements. Indeed, reccomendations are given for experimental validation and to assess sensitivities to accuracy and required level of complexity within large scale frameworks. Importantly, the computational efficiency of using the solution presented in this paper is roughly a factor of 20 less than a similar iterative approach, a comparison with highly coupled approaches not available beyond a 3 component system.

  15. Effect of temperature gradient in the solution on spiral growth of YBa2Cu3O7-x bulk single crystals

    International Nuclear Information System (INIS)

    Kanamori, Y.; Shiohara, Y.

    1996-01-01

    Bulk single crystals of Y123 are required to clarify the superconductivity phenomena and develop electronic devices using unique superconductive properties. Only the Solute Rich Liquid endash Crystal Pulling (SRL-CP) method has succeeded in continuous growth of the Y123 single crystal. In this paper, we investigated the growth of Y123 single crystals under different temperature gradients in the solution in order to understand the growth mechanism of Y123. It was revealed that Y123 single crystals grow with a spiral growth mode, which is in good agreement with the BCF theory. copyright 1996 Materials Research Society

  16. Use of a commercially available nucleating agent to control the morphological development of solution-processed small molecule bulk heterojunction organic solar cells

    KAUST Repository

    Sharenko, Alexander; Treat, Neil D.; Love, John A.; Toney, Michael F.; Stingelin, Natalie; Nguyen, Thuc-Quyen

    2014-01-01

    © the Partner Organisations 2014. The nucleating agent DMDBS is used to modulate the crystallization of solution-processed small molecule donor molecules in bulk heterojunction organic photovoltaic (BHJ OPV) devices. This control over donor molecule crystallization leads to a reduction in optimized thermal annealing times as well as smaller donor molecule crystallites, and therefore more efficient devices, when using an excessive amount of solvent additive. We therefore demonstrate the use of nucleating agents as a powerful and versatile processing strategy for solution-processed, small molecule BHJ OPVs. This journal is

  17. Use of a commercially available nucleating agent to control the morphological development of solution-processed small molecule bulk heterojunction organic solar cells

    KAUST Repository

    Sharenko, Alexander

    2014-08-12

    © the Partner Organisations 2014. The nucleating agent DMDBS is used to modulate the crystallization of solution-processed small molecule donor molecules in bulk heterojunction organic photovoltaic (BHJ OPV) devices. This control over donor molecule crystallization leads to a reduction in optimized thermal annealing times as well as smaller donor molecule crystallites, and therefore more efficient devices, when using an excessive amount of solvent additive. We therefore demonstrate the use of nucleating agents as a powerful and versatile processing strategy for solution-processed, small molecule BHJ OPVs. This journal is

  18. Micellar phase boundaries under the influence of ethyl alcohol

    International Nuclear Information System (INIS)

    Bergeron, Denis E.

    2016-01-01

    The Compton spectrum quenching technique is used to monitor the effect of ethyl alcohol (EtOH) additions on phase boundaries in two systems. In toluenic solutions of the nonionic surfactant, Triton X-100, EtOH shifts the boundary separating the first clear phase from the first turbid phase to higher water:surfactant ratios. In a commonly used scintillant, Ultima Gold AB, the critical micelle concentration is not shifted. The molecular interactions behind the observations and implications for liquid scintillation counting are discussed. - Highlights: • Compton spectrum quenching technique applied to find micellar phase boundaries. • Toluenic Triton X-100 and Ultima Gold AB investigated. • Ethyl alcohol affects phase boundaries in Triton X-100, not in Ultima Gold AB. • Phase boundary observations discussed in terms of relevant molecular interactions.

  19. SANS study of three-layer micellar particles

    CERN Document Server

    Plestil, J; Kuklin, A I; Cubitt, R

    2002-01-01

    Three-layer nanoparticles were prepared by polymerization of methyl methacrylate (MMA) in aqueous micellar solutions of poly(methyl methacrylate)-block-poly(methacrylic acid) (PMMA-b-PMA) and polystyrene-block-poly(methacrylic acid) (PS-b-PMA). The resulting polymer forms a layer on the core surface of the original micelles. SANS curves were fitted using an ellipsoidal (PMMA/PMMA/PMA) or spherical (PS/PMMA/PMA) model for the particle core. The particle size (for the presented series of the PMMA/PMMA/PMA particles, the core semiaxes ranged from 87 to 187 A and the axis ratio was about 6) can be finely tuned by variation of monomer concentration. Time-resolved SANS experiments were carried out to describe the growth of the PS/PMMA/PMA particles during polymerization. (orig.)

  20. Micellar solubilization in strongly interacting binary surfactant systems. [Binary surfactant systems of: dodecyltrimethylammonium chloride + sodium dodecyl sulfate; benzyldimethyltetradecylammonium chloride + tetradecyltrimethylammonium chloride

    Energy Technology Data Exchange (ETDEWEB)

    Treiner, C. (Universite Pierre et Marie Curie, Paris (France)); Nortz, M.; Vaution, C. (Faculte de Pharmacie de Paris-sud, Chatenay-Malabry (France))

    1990-07-01

    The apparent partition coefficient P of barbituric acids between micelles and water has been determined in mixed binary surfactant solutions from solubility measurements in the whole micellar composition range. The binary systems chosen ranged from the strongly interacting system dodecyltrimethylammonium chloride + sodium dodecyl sulfate to weakly interacting systems such as benzyldimethyltetradecylammonium chloride + tetradecyltrimethyammonium chloride. In all cases studied, mixed micelle formation is unfavorable to micellar solubilization. A correlation is found between the unlike surfactants interaction energy, as measured by the regular solution parameter {beta} and the solute partition coefficient change upon surfactant mixing. By use of literature data on micellar solubilization in binary surfactant solutions, it is shown that the change of P for solutes which are solubilized by surface adsorption is generally governed by the sign and amplitude of the interaction parameter {beta}.

  1. Ultrafast relaxation dynamics of a biologically relevant probe dansyl at the micellar surface.

    Science.gov (United States)

    Sarkar, Rupa; Ghosh, Manoranjan; Pal, Samir Kumar

    2005-02-01

    We report picosecond-resolved measurement of the fluorescence of a well-known biologically relevant probe, dansyl chromophore at the surface of a cationic micelle (cetyltrimethylammonium bromide, CTAB). The dansyl chromophore has environmentally sensitive fluorescence quantum yields and emission maxima, along with large Stokes shift. In order to study the solvation dynamics of the micellar environment, we measured the fluorescence of dansyl chromophore attached to the micellar surface. The fluorescence transients were observed to decay (with time constant approximately 350 ps) in the blue end and rise with similar timescale in the red end, indicative of solvation dynamics of the environment. The solvation correlation function is measured to decay with time constant 338 ps, which is much slower than that of ordinary bulk water. Time-resolved anisotropy of the dansyl chromophore shows a bi-exponential decay with time constants 413 ps (23%) and 1.3 ns (77%), which is considerably slower than that in free solvents revealing the rigidity of the dansyl-micelle complex. Time-resolved area-normalized emission spectroscopic (TRANES) analysis of the time dependent emission spectra of the dansyl chromophore in the micellar environment shows an isoemissive point at 21066 cm-1. This indicates the fluorescence of the chromophore contains emission from two kinds of excited states namely locally excited state (prior to charge transfer) and charge transfer state. The nature of the solvation dynamics in the micellar environments is therefore explored from the time-resolved anisotropy measurement coupled with the TRANES analysis of the fluorescence transients. The time scale of the solvation is important for the mechanism of molecular recognition.

  2. An approach to the research on ion and water properties in the interphase between the plasma membrane and bulk extracellular solution.

    Science.gov (United States)

    Hibino, Hiroshi; Takai, Madoka; Noguchi, Hidenori; Sawamura, Seishiro; Takahashi, Yasufumi; Sakai, Hideki; Shiku, Hitoshi

    2017-07-01

    In vivo, cells are immersed in an extracellular solution that contains a variety of bioactive substances including ions and water. Classical electrophysiological analyses of epithelial cells in the stomach and small intestine have revealed that within a distance of several hundred micrometers above their apical plasma membrane, lies an extracellular layer that shows ion concentration gradients undetectable in the bulk phase. This "unstirred layer", which contains stagnant solutes, may also exist between the bulk extracellular solution and membranes of other cells in an organism and may show different properties. On the other hand, an earlier study using a bacterial planar membrane indicated that H + released from a transporter migrates in the horizontal direction along the membrane surface much faster than it diffuses vertically toward the extracellular space. This result implies that between the membrane surface and unstirred layer, there is a "nanointerface" that has unique ionic dynamics. Advanced technologies have revealed that the nanointerface on artificial membranes possibly harbors a highly ordered assembly of water molecules. In general, hydrogen bonds are involved in formation of the ordered water structure and can mediate rapid transfer of H + between neighboring molecules. This description may match the phenomenon on the bacterial membrane. A recent study has suggested that water molecules in the nanointerface regulate the gating of K + channels. Here, the region comprising the unstirred layer and nanointerface is defined as the interphase between the plasma membrane and bulk extracellular solution (iMES). This article briefly describes the physicochemical properties of ions and water in the iMES and their physiological significance. We also describe the methodologies that are currently used or will be applicable to the interphase research.

  3. Improvement of corrosion resistance in NaOH solution and glass forming ability of as-cast Mg-based bulk metallic glasses by microalloying

    Directory of Open Access Journals (Sweden)

    Peng Hao

    2011-02-01

    Full Text Available The influences of the addition of Ag on the glass forming ability (GFA and corrosion behavior were investigated in the Mg-Ni-based alloy system by X-ray diffraction (XRD and electrochemical polarization in 0.1 mol/L NaOH solution. Results shows that the GFA of the Mg-Ni-based BMGs can be improved dramatically by the addition of an appropriate amount of Ag; and the addition element Ag can improve the corrosion resistance of Mg-Ni-based bulk metallic glass. The large difference in atomic size and large negative mixing enthalpy in alloy system can contribute to the high GFA. The addition element Ag improves the forming speed and the stability of the passive film, which is helpful to decrease the passivation current density and to improve the corrosion resistance of Mg-Ni-based bulk metallic glass.

  4. Controlling solution-phase polymer aggregation with molecular weight and solvent additives to optimize polymer-fullerene bulk heterojunction solar cells

    KAUST Repository

    Bartelt, Jonathan A.

    2014-03-20

    The bulk heterojunction (BHJ) solar cell performance of many polymers depends on the polymer molecular weight (M n) and the solvent additive(s) used for solution processing. However, the mechanism that causes these dependencies is not well understood. This work determines how M n and solvent additives affect the performance of BHJ solar cells made with the polymer poly(di(2-ethylhexyloxy)benzo[1,2-b:4,5-b\\']dithiophene-co- octylthieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD). Low M n PBDTTPD devices have exceedingly large fullerene-rich domains, which cause extensive charge-carrier recombination. Increasing the M n of PBDTTPD decreases the size of these domains and significantly improves device performance. PBDTTPD aggregation in solution affects the size of the fullerene-rich domains and this effect is linked to the dependency of PBDTTPD solubility on M n. Due to its poor solubility high M n PBDTTPD quickly forms a fibrillar polymer network during spin-casting and this network acts as a template that prevents large-scale phase separation. Furthermore, processing low M n PBDTTPD devices with a solvent additive improves device performance by inducing polymer aggregation in solution and preventing large fullerene-rich domains from forming. These findings highlight that polymer aggregation in solution plays a significant role in determining the morphology and performance of BHJ solar cells. The performance of poly(di(2-ethylhexyloxy) benzo[1,2-b:4,5-b\\']dithiophene-co-octylthieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD) bulk heterojunction solar cells strongly depends on the polymer molecular weight, and processing these bulk heterojunctions with a solvent additive preferentially improves the performance of low molecular weight devices. It is demonstrated that polymer aggregation in solution significantly impacts the thin-film bulk heterojunction morphology and is vital for high device performance. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Radiation decomposition of alcohols and chloro phenols in micellar systems

    International Nuclear Information System (INIS)

    Moreno A, J.

    1998-01-01

    The effect of surfactants on the radiation decomposition yield of alcohols and chloro phenols has been studied with gamma doses of 2, 3, and 5 KGy. These compounds were used as typical pollutants in waste water, and the effect of the water solubility, chemical structure, and the nature of the surfactant, anionic or cationic, was studied. The results show that anionic surfactant like sodium dodecylsulfate (SDS), improve the radiation decomposition yield of ortho-chloro phenol, while cationic surfactant like cetyl trimethylammonium chloride (CTAC), improve the radiation decomposition yield of butyl alcohol. A similar behavior is expected for those alcohols with water solubility close to the studied ones. Surfactant concentrations below critical micellar concentration (CMC), inhibited radiation decomposition for both types of alcohols. However radiation decomposition yield increased when surfactant concentrations were bigger than the CMC. Aromatic alcohols decomposition was more marked than for linear alcohols decomposition. On a mixture of alcohols and chloro phenols in aqueous solution the radiation decomposition yield decreased with increasing surfactant concentration. Nevertheless, there were competitive reactions between the alcohols, surfactants dimers, hydroxyl radical and other reactive species formed on water radiolysis, producing a catalytic positive effect in the decomposition of alcohols. Chemical structure and the number of carbons were not important factors in the radiation decomposition. When an alcohol like ortho-chloro phenol contained an additional chlorine atom, the decomposition of this compound was almost constant. In conclusion the micellar effect depend on both, the nature of the surfactant (anionic or cationic) and the chemical structure of the alcohols. The results of this study are useful for wastewater treatment plants based on the oxidant effect of the hydroxyl radical, like in advanced oxidation processes, or in combined treatment such as

  6. Jet A fuel recovery using micellar flooding: Design and implementation.

    Science.gov (United States)

    Kostarelos, Konstantinos; Lenschow, Søren R; Stylianou, Marinos A; de Blanc, Phillip C; Mygind, Mette Marie; Christensen, Anders G

    2016-09-01

    Surfactants offer two mechanisms for recovering NAPLs: 1) to mobilize NAPL by reducing NAPL/water interfacial tension, and; 2) to increase the NAPL's aqueous solubility-called solubilization-as an enhancement to pump & treat. The second approach has been well-studied and applied successfully in several pilot-scale and a few full-scale tests within the last 15years, known as Surfactant Enhanced Aquifer Remediation (SEAR). A useful source of information for this second approach is the "Surfactant-enhanced aquifer remediation (SEAR) design manual" from the U.S. Navy Facilities Engineering Command. Few attempts, however, have been made at recovering NAPLs using the mobilization approach presented in this paper. Now, a full-scale field implementation of the mobilization approach is planned to recover an LNAPL (Jet A fuel) from a surficial sand aquifer located in Denmark using a smaller amount of surfactant solution and fewer PVs of throughput compared with the SEAR approach. The approach will rely on mobilizing the LNAPL so that it is recovered ahead of the surfactant microemulsion, also known as a micellar flood. This paper will review the laboratory work performed as part of the design for a full-scale implementation of a micellar flood. Completed lab work includes screening of surfactants, phase behavior and detailed salinity scans of the most promising formulations, and generating a ternary diagram to be used for the numerical simulations of the field application. The site owners and regulators were able to make crucial decisions such as the anticipated field results based on this work. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Fluorescence spectroscopic studies on substituted porphyrins in homogeneous solvents and cationic micellar medium

    International Nuclear Information System (INIS)

    Phukan, Smritakshi; Mishra, Bhupendra; Chandra Shekar, K.P.; Kumar, Anil; Kumar, Dalip; Mitra, Sivaprasad

    2013-01-01

    Steady state and time-resolved fluorescence properties of porphyrin appended 1,3,4-oxadiazoles and thiazoles were described in homogeneous medium as well as in presence of cationic surfactant cetyltrimethylammonium bromide (CTAB). The electron withdrawing substituent on the porphyrin moiety in both the cases make a donor–spacer–acceptor type of intramolecular photoinduced electron transfer (PET) system resulting substantial quenching in porphyrin fluorescence due to partial energy migration towards the acceptor in the excited state. The increase in fluorescence yield as well as appreciable difference in fluorescence decay behavior in aqueous buffer solution of pH 4.2 from that in chloroform solution is believed due to partial protonation of the porphyrin ring. All the investigated systems show preferential binding into the interfacial region of the micellar sub-domain with varying degree of penetration depending on the nature of the substituent. Almost 2–4 fold increase in fluorescence yield for the probes is explained on the basis of restricted flexibility and corresponding decrease in total nonradiative rate inside the micellar interface layer. - Highlights: ► Synthesis and detail fluorescence studies of a series of porphyrin appended 1,3,4-oxadiazoles and thiazoles. ► Comparison of homogeneous solvent study with that in CTAB. ► Substantial porphyrin fluorescence quenching in donor–spacer–acceptor type system. ► Preferential binding of the substituted porphyrins in micellar sub-domain. ► Appreciable increase in fluorescence yield in micellar interface layer is due to decrease in total nonradiative rate.

  8. X-ray imager using solution processed organic transistor arrays and bulk heterojunction photodiodes on thin, flexible plastic substrate

    NARCIS (Netherlands)

    Gelinck, G.H.; Kumar, A.; Moet, D.; Steen, J.L. van der; Shafique, U.; Malinowski, P.E.; Myny, K.; Rand, B.P.; Simon, M.; Rütten, W.; Douglas, A.; Jorritsma, J.; Heremans, P.L.; Andriessen, H.A.J.M.

    2013-01-01

    We describe the fabrication and characterization of large-area active-matrix X-ray/photodetector array of high quality using organic photodiodes and organic transistors. All layers with the exception of the electrodes are solution processed. Because it is processed on a very thin plastic substrate

  9. Can neutral analytes be concentrated by transient isotachophoresis in micellar electrokinetic chromatography and how much?

    Science.gov (United States)

    Matczuk, Magdalena; Foteeva, Lidia S; Jarosz, Maciej; Galanski, Markus; Keppler, Bernhard K; Hirokawa, Takeshi; Timerbaev, Andrei R

    2014-06-06

    Transient isotachophoresis (tITP) is a versatile sample preconcentration technique that uses ITP to focus electrically charged analytes at the initial stage of CE analysis. However, according to the ruling principle of tITP, uncharged analytes are beyond its capacity while being separated and detected by micellar electrokinetic chromatography (MEKC). On the other hand, when these are charged micelles that undergo the tITP focusing, one can anticipate the concentration effect, resulting from the formation of transient micellar stack at moving sample/background electrolyte (BGE) boundary, which increasingly accumulates the analytes. This work expands the enrichment potential of tITP for MEKC by demonstrating the quantitative analysis of uncharged metal-based drugs from highly saline samples and introducing to the BGE solution anionic surfactants and buffer (terminating) co-ions of different mobility and concentration to optimize performance. Metallodrugs of assorted lipophilicity were chosen so as to explore whether their varying affinity toward micelles plays the role. In addition to altering the sample and BGE composition, optimization of the detection capability was achieved due to fine-tuning operational variables such as sample volume, separation voltage and pressure, etc. The results of optimization trials shed light on the mechanism of micellar tITP and render effective determination of selected drugs in human urine, with practical limits of detection using conventional UV detector. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Lateral Order and Self-Organized Morphology of Diblock Copolymer Micellar Films

    Directory of Open Access Journals (Sweden)

    Jiun-You Liou

    2018-05-01

    Full Text Available We report the lateral order and self-organized morphology of diblock copolymer polystyrene-block-poly(2-vinylpyridine, P(S-b-2VP, and micelles on silicon substrates (SiOx/Si. These micellar films were prepared by spin coating from polymer solutions of varied concentration of polymer in toluene onto SiOx/Si, and were investigated with grazing-incidence small-angle X-ray scattering (GISAXS and an atomic force microscope (AFM. With progressively increased surface coverage with increasing concentration, loosely packed spherical micelles, ribbon-like nanostructures, and a second layer of spherical micelles were obtained sequentially. Quantitative analysis and simulations of the micellar packing demonstrates that the spatial ordering of the loosely packed spherical micelles altered from short-range order to hexagonal order when the micellar coverage increased from small to moderate densities of the covered surface. At large densities, anisotropic fusion between spherical micelles caused the ribbon-like nanostructures to have a short-range spatial order; the ordering quality of the second layer was governed by the rugged surface of the underlying layer because the valleys between the ribbon-like nanostructures allowed for further deposition of spherical micelles.

  11. Efflux of drugs and solutes from brain: the interactive roles of diffusional transcapillary transport, bulk flow and capillary transporters.

    Science.gov (United States)

    Groothuis, Dennis R; Vavra, Michael W; Schlageter, Kurt E; Kang, Eric W-Y; Itskovich, Andrea C; Hertzler, Shannon; Allen, Cathleen V; Lipton, Howard L

    2007-01-01

    We examined the roles of diffusion, convection and capillary transporters in solute removal from extracellular space (ECS) of the brain. Radiolabeled solutes (eight with passive distribution and four with capillary or cell transporters) were injected into the brains of rats (n=497) and multiple-time point experiments measured the amount remaining in brain as a function of time. For passively distributed compounds, there was a relationship between lipid:water solubility and total brain efflux:diffusional efflux, which dominated when k(p), the transcapillary efflux rate constant, was >10(0) h(-1); when 10(-1)transporters. The total efflux rate constant, k(eff), was the sum of a passive component (k(p)=0.0018 h(-1)), a convective component (k(csf)=0.2 h(-1)), and a variable, concentration-dependent component (k(x)=0 to 0.45 h(-1)). Compounds with cell membrane transporters had longer clearance half times as did an oligonucleotide, which interacted with cell surface receptors. Manipulation of physiologic state (n=35) did not affect efflux, but sucrose efflux half time was longer with pentobarbital anesthesia (24 h) than with no anesthesia or ketamine-xylazine anesthesia (2 to 3 h). These results show that solute clearance from normal brain ECS may involve multiple physiologic pathways, may be affected by anesthesia, and suggests that convection-mediated efflux may be manipulated to increase or decrease drug clearance from brain.

  12. Micellar electrokinetic chromatographic determination of triazine herbicides in water samples.

    Science.gov (United States)

    Li, Zhi; Zhang, Shuaihua; Yin, Xiaofang; Wang, Chun; Wang, Zhi

    2014-09-01

    Dispersive liquid-liquid microextraction combined with online sweeping preconcentration in micellar electrokinetic chromatography was developed for the simultaneous determination of five triazine herbicides (atrazine, simazine, propazine, prometon and simetryn) in water samples. Several experimental parameters affecting the extraction efficiencies such as the type and volume of both the extraction and dispersive solvents, the addition of salt to sample solution, the extraction time and the pH of the sample solution were investigated. Under optimum conditions, the linearity of the method was good in the range from 0.33 to 20 ng mL(-1) for simazine, propazine, atrazine and simetryn, and from 0.17 to 20 ng mL(-1) for prometon, respectively. The sensitivity enrichment factors were in the range from 1750 to 2100, depending on the compound. The limit of detection (S/N = 3) ranged from 0.05 to 0.10 ng mL(-1). The developed method was successfully applied to the analysis of the five triazines in river, ground and well waters. © The Author [2013]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. In situ morphology studies of the mechanism for solution additive effects on the formation of bulk heterojunction films

    KAUST Repository

    Richter, Lee J.

    2014-09-29

    The most successful active film morphology in organic photovoltaics is the bulk heterojunction (BHJ). The performance of a BHJ arises from a complex interplay of the spatial organization of the segregated donor and acceptor phases and the local order/quality of the respective phases. These critical morphological features develop dynamically during film formation, and it has become common practice to control them by the introduction of processing additives. Here, in situ grazing incidence X-ray diffraction (GIXD) and grazing incidence small angle X-ray scattering (GISAXS) studies of the development of order in BHJ films formed from the donor polymer poly(3-hexylthiophene) and acceptor phenyl-C61-butyric acid methyl ester under the influence of two common additives, 1,8-octanedithiol and 1-chloronaphthalene, are reported. By comparing optical aggregation to crystallization and using GISAXS to determine the number and nature of phases present during drying, two common mechanisms by which the additives increase P3HT crystallinity are identified. Additives accelerate the appearance of pre-crystalline nuclei by controlling solvent quality and allow for extended crystal growth by delaying the onset of PCBM-induced vitrification. The glass transition effects vary system-to-system and may be correlated to the number and composition of phases present during drying. Synchrotron X-ray scattering measurements of nanoscale structure evolution during the drying of polymer-fullerene photovoltaic films are described. Changes in the number and nature of phases, as well as the order within them, reveals the mechanisms by which formulation additives promote structural characteristics leading to higher power conversion efficiencies.

  14. In situ morphology studies of the mechanism for solution additive effects on the formation of bulk heterojunction films

    KAUST Repository

    Richter, Lee J.; DeLongchamp., Dean M.; Bokel, Felicia A.; Engmann, Sebastian; Chou, Kang Wei; Amassian, Aram; Schaible, Eric G.; Hexemer, Alexander

    2014-01-01

    The most successful active film morphology in organic photovoltaics is the bulk heterojunction (BHJ). The performance of a BHJ arises from a complex interplay of the spatial organization of the segregated donor and acceptor phases and the local order/quality of the respective phases. These critical morphological features develop dynamically during film formation, and it has become common practice to control them by the introduction of processing additives. Here, in situ grazing incidence X-ray diffraction (GIXD) and grazing incidence small angle X-ray scattering (GISAXS) studies of the development of order in BHJ films formed from the donor polymer poly(3-hexylthiophene) and acceptor phenyl-C61-butyric acid methyl ester under the influence of two common additives, 1,8-octanedithiol and 1-chloronaphthalene, are reported. By comparing optical aggregation to crystallization and using GISAXS to determine the number and nature of phases present during drying, two common mechanisms by which the additives increase P3HT crystallinity are identified. Additives accelerate the appearance of pre-crystalline nuclei by controlling solvent quality and allow for extended crystal growth by delaying the onset of PCBM-induced vitrification. The glass transition effects vary system-to-system and may be correlated to the number and composition of phases present during drying. Synchrotron X-ray scattering measurements of nanoscale structure evolution during the drying of polymer-fullerene photovoltaic films are described. Changes in the number and nature of phases, as well as the order within them, reveals the mechanisms by which formulation additives promote structural characteristics leading to higher power conversion efficiencies.

  15. Robust analysis of the hydrophobic basic analytes loratadine and desloratadine in pharmaceutical preparations and biological fluids by sweeping-cyclodextrin-modified micellar electrokinetic chromatography.

    Science.gov (United States)

    El-Awady, Mohamed; Belal, Fathalla; Pyell, Ute

    2013-09-27

    The analysis of hydrophobic basic analytes by micellar electrokinetic chromatography (MEKC) is usually challenging because of the tendency of these analytes to be adsorbed onto the inner capillary wall in addition to the difficulty to separate these compounds as they exhibit extremely high retention factors. A robust and reliable method for the simultaneous determination of loratadine (LOR) and its major metabolite desloratadine (DSL) is developed based on cyclodextrin-modified micellar electrokinetic chromatography (CD-MEKC) with acidic sample matrix and basic background electrolyte (BGE). The influence of the sample matrix on the reachable focusing efficiency is studied. It is shown that the application of a low pH sample solution mitigates problems associated with the low solubility of the hydrophobic basic analytes in aqueous solution while having advantages with regard to on-line focusing. Moreover, the use of a basic BGE reduces the adsorption of these analytes in the separation compartment. The separation of the studied analytes is achieved in less than 7min using a BGE consisting of 10mmolL(-1) disodium tetraborate buffer, pH 9.30 containing 40mmolL(-1) SDS and 20mmolL(-1) hydroxypropyl-β-CD while the sample solution is composed of 10mmolL(-1) phosphoric acid, pH 2.15. A full validation study of the developed method based on the pharmacopeial guidelines is performed. The method is successfully applied to the analysis of the studied drugs in tablets without interference of tablet additives as well as the analysis of spiked human urine without any sample pretreatment. Furthermore, DSL can be detected as an impurity in LOR bulk powder at the stated pharmacopeial limit (0.1%, w/w). The selectivity of the developed method allows the analysis of LOR and DSL in combination with the co-formulated drug pseudoephedrine. It is shown that in CD-MEKC with basic BGE, solute-wall interactions are effectively suppressed allowing the development of efficient and precise

  16. SIMULTANEOUS ESTIMATION OF MOXIFLOXACIN HYDROCHLORIDE AND DEXAMETHASONE SODIUM PHOSPHATE IN BULK AND IN OPHTHALMIC SOLUTION BY RP- HPLC

    OpenAIRE

    DHUMAL, D. M; SHIRKHEDKAR, A. A; NERKAR, P. P; SURANA, S. J

    2012-01-01

    A new simple, precise, accurate and selective RP-HPLC method has been developed and validated for simultaneous estimation of Moxifloxacin Hydrochloride (MOX) and Dexamethasone Sodium Phosphate (DSP) in Ophthalmic Solution. The method was carried out on a Qualisil RP C-8 (250 mm x 4.6 mm, 5 µm) column with a mobile phase consisting of Methanol: Water (75:25 v/v) pH adjusted to 3.0 with ortho-phosphoric acid of aqueous phase and flow rate of 1.0 mL min¹. Detection was carried out at 240 nm. The...

  17. Surface dynamics of micellar diblock copolymer films

    Science.gov (United States)

    Song, Sanghoon; Cha, Wonsuk; Kim, Hyunjung; Jiang, Zhang; Narayanan, Suresh

    2011-03-01

    We studied the structure and surface dynamics of poly(styrene)-b-poly(dimethylsiloxane) (PS-b-PDMS) diblock copolymer films with micellar PDMS surrounded by PS shells. By `in-situ' high resolution synchrotron x-ray reflectivity and diffuse scattering, we obtained exact thickness, electron density and surface tension. A segregation layer near the top surface was appeared with increasing temperature Surface dynamics were measured as a function of film thickness and temperature by x-ray photon correlation spectroscopy. The best fit to relaxation time constants as a function of in-plane wavevectors were analyzed with a theory based on capillary waves with hydrodynamics with bilayer model Finally the viscosities for the top segregated layer as well as for the bottom layer are obtained at given temperatures This work was supported by National Research Foundation of Korea (R15-2008-006-01001-0), Seoul Research and Business Development Program (10816), and Sogang University Research Grant (2010).

  18. Glutathione transferase mimics : Micellar catalysis of an enzymic reaction

    NARCIS (Netherlands)

    Lindkvist, Björn; Weinander, Rolf; Engman, Lars; Koetse, Marc; Engberts, Jan B.F.N.; Morgenstern, Ralf

    1997-01-01

    Substances that mimic the enzyme action of glutathione transferases (which serve in detoxification) are described. These micellar catalysts enhance the reaction rate between thiols and activated halogenated nitroarenes as well as alpha,beta-unsaturated carbonyls. The nucleophilic aromatic

  19. Solution-Processed Small-Molecule Bulk Heterojunctions: Leakage Currents and the Dewetting Issue for Inverted Solar Cells.

    Science.gov (United States)

    Destouesse, Elodie; Chambon, Sylvain; Courtel, Stéphanie; Hirsch, Lionel; Wantz, Guillaume

    2015-11-11

    In organic photovoltaic (PV) devices based on solution-processed small molecules, we report here that the physicochemical properties of the substrate are critical for achieving high-performances organic solar cells. Three different substrates were tested: ITO coated with PSS, ZnO sol-gel, and ZnO nanoparticles. PV performances are found to be low when the ZnO nanoparticles layer is used. This performance loss is attributed to the formation of many dewetting points in the active layer, because of a relatively high roughness of the ZnO nanoparticles layer, compared to the other layers. We successfully circumvented this phenomenon by adding a small quantity of polystyrene (PS) in the active layer. The introduction of PS improves the quality of film forming and reduces the dark currents of solar cells. Using this method, high-efficiency devices were achieved, even in the case of substrates with higher roughness.

  20. Biological activity and photostability of biflorin micellar nanostructures.

    Science.gov (United States)

    Santana, Edson R B; Ferreira-Neto, João P; Yara, Ricardo; Sena, Kêsia X F R; Fontes, Adriana; Lima, Cláudia S A

    2015-05-13

    Capraria biflora L. is a shrub from the Scrophulariaceae family which produces in its roots a compound named biflorin, an o-naphthoquinone that shows activity against Gram-positive bacteria and fungi and also presents antitumor and antimetastatic activities. However, biflorin is hydrophobic and photosensitive. These properties make its application difficult. In this work we prepared biflorin micellar nanostructures looking for a more effective vehiculation and better preservation of the biological activity. Biflorin was obtained, purified and characterized by UV-Vis, infrared (IR) and 1H- and 13C-NMR. Micellar nanostructures of biflorin were then assembled with Tween 80®, Tween 20® and saline (0.9%) and characterized by UV-Vis spectroscopy and dynamic light scattering (DLS). The results showed that the micellar nanostructures were stable and presented an average size of 8.3 nm. Biflorin micellar nanostructures' photodegradation was evaluated in comparison with biflorin in ethanol. Results showed that the biflorin in micellar nanostructures was better protected from light than biflorin dissolved in ethanol, and also indicated that biflorin in micelles were efficient against Gram-positive bacteria and yeast species. In conclusion, the results showed that the micellar nanostructures could ensure the maintenance of the biological activity of biflorin, conferring photoprotection. Moreover, biflorin vehiculation in aqueous media was improved, favoring its applicability in biological systems.

  1. Biological Activity and Photostability of Biflorin Micellar Nanostructures

    Directory of Open Access Journals (Sweden)

    Edson R. B. Santana

    2015-05-01

    Full Text Available Capraria biflora L. is a shrub from the Scrophulariaceae family which produces in its roots a compound named biflorin, an o-naphthoquinone that shows activity against Gram-positive bacteria and fungi and also presents antitumor and antimetastatic activities. However, biflorin is hydrophobic and photosensitive. These properties make its application difficult. In this work we prepared biflorin micellar nanostructures looking for a more effective vehiculation and better preservation of the biological activity. Biflorin was obtained, purified and characterized by UV-Vis, infrared (IR and 1H- and 13C-NMR. Micellar nanostructures of biflorin were then assembled with Tween 80®, Tween 20® and saline (0.9% and characterized by UV-Vis spectroscopy and dynamic light scattering (DLS. The results showed that the micellar nanostructures were stable and presented an average size of 8.3 nm. Biflorin micellar nanostructures’ photodegradation was evaluated in comparison with biflorin in ethanol. Results showed that the biflorin in micellar nanostructures was better protected from light than biflorin dissolved in ethanol, and also indicated that biflorin in micelles were efficient against Gram-positive bacteria and yeast species. In conclusion, the results showed that the micellar nanostructures could ensure the maintenance of the biological activity of biflorin, conferring photoprotection. Moreover, biflorin vehiculation in aqueous media was improved, favoring its applicability in biological systems.

  2. Temperature dependence of water-water and ion-water correlations in bulk water and electrolyte solutions probed by femtosecond elastic second harmonic scattering

    Science.gov (United States)

    Chen, Yixing; Dupertuis, Nathan; Okur, Halil I.; Roke, Sylvie

    2018-06-01

    The temperature dependence of the femtosecond elastic second harmonic scattering (fs-ESHS) response of bulk light and heavy water and their electrolyte solutions is presented. We observe clear temperature dependent changes in the hydrogen (H)-bond network of water that show a decrease in the orientational order of water with increasing temperature. Although D2O has a more structured H-bond network (giving rise to more fs-ESHS intensity), the relative temperature dependence is larger in H2O. The changes are interpreted in terms of the symmetry of H-bonds and are indicators of nuclear quantum effects. Increasing the temperature in electrolyte solutions decreases the influence of the total electrostatic field from ions on the water-water correlations, as expected from Debye-Hückel theory, since the Debye length becomes longer. The effects are, however, 1.9 times (6.3 times) larger than those predicted for H2O (D2O). Since fs-ESHS responses can be computed from known molecular coordinates, our observations provide a unique opportunity to refine quantum mechanical models of water.

  3. Thermodynamics of Micellar Systems : Comparison of Mass Action and Phase Equilibrium Models for the Calculation of Standard Gibbs Energies of Micelle Formation

    NARCIS (Netherlands)

    Blandamer, Michael J.; Cullis, Paul M.; Soldi, L. Giorgio; Engberts, Jan B.F.N.; Kacperska, Anna; Os, Nico M. van

    1995-01-01

    Micellar colloids are distinguished from other colloids by their association-dissociation equilibrium in solution between monomers, counter-ions and micelles. According to classical thermodynamics, the standard Gibbs energy of formation of micelles at fixed temperature and pressure can be related to

  4. Small-angle neutron scattering from micellar solutions

    Indian Academy of Sciences (India)

    The aggregates formed are of various types, shapes and sizes such as spherical or ... 66. Pramana – J. Phys., Vol. 63, No. 1, July 2004 ... effect of (a) spacer length, (b) flexibility vs. rigidity of the spacer, (c) hydropho- bicity vs. hydrophilicity of ...

  5. Solidified reverse micellar solutions (SRMS): A novel approach for ...

    African Journals Online (AJOL)

    AMARA

    loppment to effectively overcome physical and biological barriers related to .... preparation. The lipids are ... thermo-analytic technique for studying lipids and their mixtures. It gives ... analysis gives further insights on the preferred orientation.

  6. Solidified reverse micellar solutions (SRMS): A novel approach for ...

    African Journals Online (AJOL)

    AMARA

    The types of SRMS-based drug delivery systems include solid lipid nanoparticles (SLN), solid lipid microparticles (SLM), tablets and suppositories amongst others. The work ..... based SLM for intramuscular administration of gentamicin.

  7. Retention of bile salts in micellar electrokinetic chromatography: relation of capacity factor to octanol-water partition coefficient and critical micellar concentration.

    Science.gov (United States)

    Lucangioli, S E; Carducci, C N; Tripodi, V P; Kenndler, E

    2001-12-25

    The capacity factors of 16 anionic cholates (from six bile salts, including their glyco- and tauro-conjugates) were determined in a micellar electrokinetic chromatography (MEKC) system consisting of buffer, pH 7.5 (phosphate-boric acid; 20 mmol/l) with 50 mmol/l sodium dodecyl sulfate (SDS) as micelle former and 10% acetonitrile as organic modifier. The capacity factors of the fully dissociated, negatively charged analytes (ranging between 0.2 and 60) were calculated from their mobilities, with a reference background electrolyte (BGE) without SDS representing "free" solution. For comparison, the capacity factors were derived for a second reference BGE where the SDS concentration (5 mmol/l) is close to the critical micellar concentration (CMC). The capacity factors are compared with the logarithm of the octanol-water partition coefficient, log Pow, as measure for lipophilicity. Clear disagreement between these two parameters is found especially for epimeric cholates with the hydroxy group in position 7. In contrast, fair relation between the capacity factor of the analytes and their CMC is observed both depending strongly on the orientation of the OH groups, and tauro-conjugation as well. In this respect the retention behaviour of the bile salts in MEKC seems to reflect their role as detergents in living systems, and might serve as model parameter beyond lipophilicity.

  8. Recirculation and reutilization of micellar bile lecithin.

    Science.gov (United States)

    Robins, S J

    1975-09-01

    Bile lecithins, solubilized in micellar bile salt and radiolabeled in the 1-acyl fatty acid, phosphorus, and choline positions, were infused in the small bowel of fasted rats. Absorption of each label was virtually complete after 24 h. However, these lecithins were extensively hydrolyzed in the bowel lumen as well as after absorption, and neither the fatty acid nor phosphorus was significantly retained in the enterohepatic circulation or reutilized for biliary lecithin synthesis. In contrast, while choline was also dissociated from absorbed lecithin, choline was instead retained in the liver, reincorporated into newly synthesized hepatic lecithin, and sercreted in biliary lecithin in 10-fold greater amounts than either the fatty acid or phosphorus. However, the extent of choline incorporation into bile lecithin was limited and was not further increased when free choline was directly injected into the portal vein. The data therefore suggest that although only choline of absorbed lecithin is retained in the enterohepatic circulation and preserved for new biliary lecithin synthesis, exogenous choline utilization is regulated by the size of the available hepatic pool.

  9. Strong work-hardening behavior induced by the solid solution strengthening of dendrites in TiZr-based bulk metallic glass matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Ma, D.Q. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Jiao, W.T. [College of Education, Hebei Normal University of Science and Technology, Qinhuangdao 066004 (China); Zhang, Y.F. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Hebei Vocational and Technical College of Building Materials, Qinhuangdao 066004 (China); Wang, B.A.; Li, J.; Zhang, X.Y. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Ma, M.Z., E-mail: mz550509@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Liu, R.P. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China)

    2015-03-05

    Highlights: • Hardness of dendrite of TiZr-based BMGMCs increases. • Strong work-hardening behavior is obtained after solid solution strengthening. • Lattice distortions of dendrite suffering from rapid cooling are detected. - Abstract: A series of TiZr-based bulk metallic glass matrix composites (BMGMCs) with distinguished mechanical properties are successfully fabricated by adding different volume fractions of Ta (Ti{sub 38.8}Zr{sub 28.8}Cu{sub 6.2}Be{sub 16.2}Nb{sub 10} as the basic composition, denoted as Ta{sub 0.0}–Ta{sub 8.0}). Along with the growth of precipitated phase, typical dendritic morphology is fully developed in the TiZr-based BMGMCs of Ta{sub 8.0}. Energy-dispersive spectrometry analysis of the dendrites and glass matrix indicates that the metallic elements of Nb and Ta should preferentially form solid solution into dendrites. The chaotic structure of high-temperature precipitate phase is trapped down by the rapid cooling of the copper-mould. The detected lattice distortions in the dendrites are attributed to the strong solid solution strengthening of the metallic elements of Ti, Zr, Nb, and Ta. These lattice distortions increase the resistance of the dislocation motion and pin the dislocations, thus the strength and hardness of dendrite increase. Dendrites create a strong barrier for the shear band propagation and generate multiple shear bands after solid solution strengthening, thereby providing the TiZr-based BMGMCs with greatly improved capacity to sustain plastic deformation and resistance to brittle fracture. Thus, the TiZr-based BMGMCs possess distinguished work-hardening capability. Among these TiZr-based BMGMCs, the sample Ta{sub 0.5} possesses the largest plastic strain (ε{sub p}) at 20.3% and ultimate strength (σ{sub max}) of 2613 MPa during compressive loading. In addition, the sample of Ta{sub 0.5} exhibits work-hardening up to an ultrahigh tensile strength of 1680 MPa during the tensile process, and then progressively

  10. Probing the Energy Level Alignment and the Correlation with Open-Circuit Voltage in Solution-Processed Polymeric Bulk Heterojunction Photovoltaic Devices.

    Science.gov (United States)

    Yang, Qing-Dan; Li, Ho-Wa; Cheng, Yuanhang; Guan, Zhiqiang; Liu, Taili; Ng, Tsz-Wai; Lee, Chun-Sing; Tsang, Sai-Wing

    2016-03-23

    Energy level alignment at the organic donor and acceptor interface is a key to determine the photovoltaic performance in organic solar cells, but direct probing of such energy alignment is still challenging especially for solution-processed bulk heterojunction (BHJ) thin films. Here we report a systematic investigation on probing the energy level alignment with different approaches in five commonly used polymer:[6,6]-phenyl-C71-butyric acid methyl ester (PCBM) BHJ systems. We find that by tuning the weight ratio of polymer to PCBM the electronic features from both polymer and PCBM can be obtained by photoemission spectroscopy. Using this approach, we find that some of the BHJ blends simply follow vacuum level alignment, but others show strong energy level shifting as a result of Fermi level pinning. Independently, by measuring the temperature-dependent open-circuit voltage (VOC), we find that the effective energy gap (Eeff), the energy difference between the highest occupied molecular orbital of the polymer donor (EHOMO-D) and lowest unoccupied molecular orbital of the PCBM acceptor (ELUMO-A), obtained by photoemission spectroscopy in all polymer:PCBM blends has an excellent agreement with the extrapolated VOC at 0 K. Consequently, the photovoltage loss of various organic BHJ photovoltaic devices at room temperature is in a range of 0.3-0.6 V. It is believed that the demonstrated direct measurement approach of the energy level alignment in solution-processed organic BHJ will bring deeper insight into the origin of the VOC and the corresponding photovoltage loss mechanism in organic photovoltaic cells.

  11. Effect of Graphene Oxide on the Reaction Kinetics of Methyl Methacrylate In Situ Radical Polymerization via the Bulk or Solution Technique

    Directory of Open Access Journals (Sweden)

    Ioannis S. Tsagkalias

    2017-09-01

    Full Text Available The synthesis of nanocomposite materials based on poly(methyl methacrylate and graphene oxide (GO is presented using the in situ polymerization technique, starting from methyl methacrylate, graphite oxide, and an initiator, and carried out either with (solution or without (bulk in the presence of a suitable solvent. Reaction kinetics was followed gravimetrically and the appropriate characterization of the products took place using several experimental techniques. X-ray diffraction (XRD data showed that graphite oxide had been transformed to graphene oxide during polymerization, whereas FTIR spectra revealed no significant interactions between the polymer matrix and GO. It appears that during polymerization, the initiator efficiency was reduced by the presence of GO, resulting in a reduction of the reaction rate and a slight increase in the average molecular weight of the polymer formed, measured by gel permeation chromatography (GPC, along with an increase in the glass transition temperature obtained from differential scanning calorimetry (DSC. The presence of the solvent results in the suppression of the gel-effect in the reaction rate curves, the synthesis of polymers with lower average molecular weights and polydispersities of the Molecular Weight Distribution, and lower glass transition temperatures. Finally, from thermogravimetric analysis (TG, it was verified that the presence of GO slightly enhances the thermal stability of the nano-hybrids formed.

  12. Synthesis of High cis-Polybutadiene in Styrene Solution with Neodymium-Based Catalysts: Towards the Preparation of HIPS and ABS via In Situ Bulk Polymerization

    Directory of Open Access Journals (Sweden)

    Ramón Díaz de León

    2016-01-01

    Full Text Available In a first step, 1,3-butadiene was selectively polymerized at 60°C in styrene as solvent using NdV3/DIBAH/EASC as the catalyst system. The catalyst system activation process, the addition order of monomers and catalyst components, and the molar ratios [Al]/[Nd] and [Cl]/[Nd] were studied. The catalyst system allowed the selective 1,3-butadiene polymerization, reaching conversions between 57.5 and 88.1% with low polystyrene contents in the order of 6.3 to 15.4%. Molecular weights ranging from 39,000 to 150,000 g/mol were obtained, while cis-1,4 content was found in the interval of 94.4 to 96.4%. On the other hand, the glass transition temperatures of synthesized materials were established in the range of −101.9 to −107.4°C, explained by the presence of polystyrene segments in the polybutadiene chains; in the same sense, the polybutadienes did not show the typical melting endotherm of high cis-polybutadienes. In a second step, the resulting styrene/high cis-1,4 polybutadiene solutions were used to synthesize ABS (adding a fraction of acrylonitrile monomer and HIPS via in situ bulk polymerizations and the results were discussed in terms of morphological development, molecular parameters, dynamical mechanical behavior, and mechanical properties.

  13. Chemiluminescence from an oxidation reaction of rhodamine B with cerium(IV) in a reversed micellar medium of cetyltrimethylammonium chloride in 1-hexanol-cyclohexane/water.

    Science.gov (United States)

    Hasanin, Tamer H A; Tsunemine, Yusuke; Tsukahara, Satoshi; Okamoto, Yasuaki; Fujiwara, Terufumi

    2011-01-01

    The chemiluminescence (CL) emission, observed when rhodamine B (RB) in 1-hexanol-cyclohexane was mixed with cerium(IV) sulfate in sulfuric acid dispersed in a reversed micellar medium of cetyltrimethylammonium chloride (CTAC) in 1-hexanol-cyclohexane/water, was investigated using a flow-injection system. The CL emission from the oxidation reaction of RB with Ce(IV) was found to be stronger in the CTAC reversed micellar solution compared with an aqueous solution. Bearing on the enhancement effect of the CTAC reverse micelles on the RB-Ce(IV) CL, several studies including stopped-flow, fluorescence and electron spin resonance (ESR) spectrometries were performed. Rapid spectral changes of an intermediate in the RB-Ce(IV) reaction in the aqueous and reversed micellar solutions were successfully observed using a stopped-flow method. The effect of the experimental variables, i.e., oxidant concentration, sulfuric acid concentration, the mole fraction of 1-hexanol, water-to-surfactant molar concentration ratio, flow rate, upon the CL intensity was evaluated. Under the experimental conditions optimized for a flow-injection determination of RB based on the new reversed micellar-mediated CL reaction with Ce(IV), a detection limit of 0.08 µmol dm(-3) RB was achieved, and a linear calibration graph was obtained with a dynamic range from 0.5 to 20 µmol dm(-3). The relative standard deviation (n = 6) obtained at an RB concentration of 3 µmol dm(-3) was 3%.

  14. Application des techniques de diffusion de la lumière des rayons x et des neutrons à l'étude des systèmes colloïdaux. Deuxième partie : étude des différents systèmes : polymères en solution à l'état solide, solutions micellaires, systèmes fractals Application of Light, X-Ray and Neutron Diffusion Techniques to the Study of Colloidal Systems. Part Two: Research on Different Systems: Polymers in Solution in the Solid State, Micellar Solutions, Fractals Systems

    Directory of Open Access Journals (Sweden)

    Espinat D.

    2006-11-01

    article takes up polymer and colloidal solutions. Particular attention is paid to the importance of scattering techniques for characterizing polymers in solution and micellar solutions. A look is also taken at the information that central scattering can provide on the macrostructure of crystallized or amorphous polymers in a solid state. Many systems have a structure of the fractal type. After describing several examples, the article demonstrates that scattering methods can provide some information about materials, and especially about the fractal dimension.

  15. Bulk viscosity and cosmological evolution

    International Nuclear Information System (INIS)

    Beesham, A.

    1996-01-01

    In a recent interesting paper, Pimentel and Diaz-Rivera (Nuovo Cimento B, 109(1994) 1317) have derived several solutions with bulk viscosity in homogeneous and isotropic cosmological models. They also discussed the properties of these solutions. In this paper the authors relate the solutions of Pimentel and Diaz-Rivera by simple transformations to previous solutions published in the literature, showing that all the solutions can be derived from the known existing ones. Drawbacks to these approaches of studying bulk viscosity are pointed out, and better approaches indicated

  16. Ordering fluctuations in a shear-banding wormlike micellar system

    DEFF Research Database (Denmark)

    Angelico, R.; Rossi, C. Oliviero; Ambrosone, L.

    2010-01-01

    We present a first investigation about the non-linear flow properties and transient orientational-order fluctuations observed in the shear-thinning lecithin–water–cyclohexane wormlike micellar system at a concentration near to the zero-shear isotropic–nematic phase transition. From rheological...

  17. Determination of patulin in commercial apple juice by micellar electrokinetic chromatography.

    Science.gov (United States)

    Murillo, M; González-Peñas, E; Amézqueta, S

    2008-01-01

    A novel and validated micellar electrokinetic capillary chromatography (MEKC) method using ultraviolet detection (UV) has been applied to the quantitative analysis of patulin (PAT) in commercial apple juice. Patulin was extracted from samples with an ethylacetate solution. The micellar electrokinetic capillary chromatography (MECK) parameters studied for method optimization were buffer composition, voltage, temperature, and a separation between PAT and 5-hydroxymethylfurfural (HMF) (main interference in apple juice PAT analysis) peaks until reaching baseline. The method passes a series of validation tests including selectivity, linearity, limit of detection and quantification (0.7 and 2.5 microgL(-1), respectively), precision (within and between-day variability) and recovery (80.2% RSD=4%), accuracy, and robustness. This method was successfully applied to the measurement of 20 apple juice samples obtained from different supermarkets. One hundred percent of the samples were contaminated with a level greater than the limit of detection, with mean and median values of 41.3 and 35.7 microgL(-1), respectively.

  18. Prediction of retention in micellar electrokinetic chromatography based on molecular structural descriptors by using the heuristic method

    International Nuclear Information System (INIS)

    Liu Huanxiang; Yao Xiaojun; Liu Mancang; Hu Zhide; Fan Botao

    2006-01-01

    Based on calculated molecular descriptors from the solutes' structure alone, the micelle-water partition coefficients of 103 solutes in micellar electrokinetic chromatography (MEKC) were predicted using the heuristic method (HM). At the same time, in order to show the influence of different molecular descriptors on the micelle-water partition of solute and to well understand the retention mechanism in MEKC, HM was used to build several multivariable linear models using different numbers of molecular descriptors. The best 6-parameter model gave the following results: the square of correlation coefficient R 2 was 0.958 and the mean relative error was 3.98%, which proved that the predictive values were in good agreement with the experimental results. From the built model, it can be concluded that the hydrophobic, H-bond, polar interactions of solutes with the micellar and aqueous phases are the main factors that determine their partitioning behavior. In addition, this paper provided a simple, fast and effective method for predicting the retention of the solutes in MEKC from their structures and gave some insight into structural features related to the retention of the solutes

  19. Rheological Properties of Hydrophobically Associative Copolymers Prepared in a Mixed Micellar Method Based on Methacryloxyethyl-dimethyl Cetyl Ammonium Chloride as Surfmer

    Directory of Open Access Journals (Sweden)

    Rui Liu

    2014-01-01

    Full Text Available A novel cationic surfmer, methacryloxyethyl-dimethyl cetyl ammonium chloride (DMDCC, is synthesized. The micellar properties, including critical micelle concentration and aggregation number, of DMDCC-SDS mixed micelle system are studied using conductivity measurement and a steady-state fluorescence technique. A series of water-soluble associative copolymers with acrylamide and DMDCC are prepared using the mixed micellar polymerization. Compared to conventional micellar polymerization, this new method could not only reasonably adjust the length of the hydrophobic microblock, that is, NH, but also sharply reduce the amount of surfactant. Their rheological properties related to hydrophobic microblock and stickers are studied by the combination of steady flow and linear viscoelasticity experiments. The results indicate that both the hydrophobic content and, especially the length of the hydrophobic microblock are the dominating factors effecting the intermolecular hydrophobic association. The presence of salt influences the dynamics of copolymers, resulting in the variation of solution characters. Viscosity measurement indicates that mixed micelles between the copolymer chain and SDS molecules serving as junction bridges for transitional network remarkably enhance the viscosity. Moreover, the microscopic structures of copolymers at different experimental conditions are conducted by ESEM. This method gives us an insight into the preparation of hydrophobically associative water-soluble copolymers by cationic surfmer-anionic surfactant mixed micellar polymerization with good performance.

  20. Experimental heat capacities, excess entropies, and magnetic properties of bulk and nano Fe3O4-Co3O4 and Fe3O4-Mn3O4 spinel solid solutions

    Science.gov (United States)

    Schliesser, Jacob M.; Huang, Baiyu; Sahu, Sulata K.; Asplund, Megan; Navrotsky, Alexandra; Woodfield, Brian F.

    2018-03-01

    We have measured the heat capacities of several well-characterized bulk and nanophase Fe3O4-Co3O4 and Fe3O4-Mn3O4 spinel solid solution samples from which magnetic properties of transitions and third-law entropies have been determined. The magnetic transitions show several features common to effects of particle and magnetic domain sizes. From the standard molar entropies, excess entropies of mixing have been generated for these solid solutions and compared with configurational entropies determined previously by assuming appropriate cation and valence distributions. The vibrational and magnetic excess entropies for bulk materials are comparable in magnitude to the respective configurational entropies indicating that excess entropies of mixing must be included when analyzing entropies of mixing. The excess entropies for nanophase materials are even larger than the configurational entropies. Changes in valence, cation distribution, bonding and microstructure between the mixing ions are the likely sources of the positive excess entropies of mixing.

  1. Directly Observing Micelle Fusion and Growth in Solution by Liquid-Cell Transmission Electron Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Parent, Lucas R. [Department; amp, Biochemistry, University of California, San Diego, La Jolla, California 92093, United States; Bakalis, Evangelos [Dipartimento; Ramírez-Hernández, Abelardo [Materials; Institute; Kammeyer, Jacquelin K. [Department; amp, Biochemistry, University of California, San Diego, La Jolla, California 92093, United States; Park, Chiwoo [Department; de Pablo, Juan [Materials; Institute; Zerbetto, Francesco [Dipartimento; Patterson, Joseph P. [Department; amp, Biochemistry, University of California, San Diego, La Jolla, California 92093, United States; Laboratory; Gianneschi, Nathan C. [Department; amp, Biochemistry, University of California, San Diego, La Jolla, California 92093, United States

    2017-11-16

    Amphiphilic small molecules and polymers form commonplace nanoscale macromolecular compartments and bilayers, and as such are truly essential components in all cells and in many cellular processes. The nature of these architectures, including their formation, phase changes, and stimuli-response behaviors, is necessary for the most basic functions of life, and over the past half-century, these natural micellar structures have inspired a vast diversity of industrial products, from biomedicines to detergents, lubricants, and coatings. The importance of these materials and their ubiquity have made them the subject of intense investigation regarding their nanoscale dynamics with increasing interest in obtaining sufficient temporal and spatial resolution to directly observe nanoscale processes. However, the vast majority of experimental methods involve either bulk-averaging techniques including light, neutron, and X-ray scattering, or are static in nature including even the most advanced cryogenic transmission electron microscopy techniques. Here, we employ in situ liquid-cell transmission electron microscopy (LCTEM) to directly observe the evolution of individual amphiphilic block copolymer micellar nanoparticles in solution, in real time with nanometer spatial resolution. These observations, made on a proof-of-concept bioconjugate polymer amphiphile, revealed growth and evolution occurring by unimer addition processes and by particle-particle collision-and-fusion events. The experimental approach, combining direct LCTEM observation, quantitative analysis of LCTEM data, and correlated in silico simulations, provides a unique view of solvated soft matter nanoassemblies as they morph and evolve in time and space, enabling us to capture these phenomena in solution.

  2. Micellar enhanced spectrofluorimetric methods: application to the determination of pyrene

    Energy Technology Data Exchange (ETDEWEB)

    Singh, H.; Hinze, W.L.

    1982-01-01

    The effects of cationic hexadecyltrimethylammonium chloride (CTAC), nonionic polyoxyethylene(9.5)p-1,1,3,3-tetramethylbutylphenol, Triton X-100 (TX-100), and anionic sodium dodecylsulfate (NaLS) surfactant micelles upon the spectrofluorimetric determination of pyrene is described. It was found that the intensity of the pyrene fluorescence is enhanced from 3 to 16 times in the presence of the micellar systems. Possible reasons for this micellar induced enhanced fluorescence are discussed. The spectral parameters, fluorescence lifetimes, quantum yields, lower detection limits, and analytical figures of merit for pyrene in CTAC, NaLS, TX-100, ethanol, and water are compared. The detection limit of pyrene in the presence of micelles (approx. 1.0 x 10/sup -10/ M) is about an order of magnitude lower than that possible in alcohol alone. A brief discussion on the predicted general applicability of this new technique in fluorimetric analysis is also given. 4 figures, 2 tables.

  3. Micellar Catalysis of Diels-Alder Reactions : Substrate Positioning in the Micelle

    NARCIS (Netherlands)

    Rispens, Theo; Engberts, Jan B.F.N.

    2002-01-01

    We have studied the kinetics of the Diels-Alder reactions of cyclopentadiene, sorbyl alcohol, and sorbyltrimethylammonium bromide with a series of N-substituted maleimides in micellar media. Micellar rate constants have been determined and were found to be 20-40 times lower than the respective

  4. One electron reduction of acridine orange studied in aqueous micellar medium using pulse radiolysis technique

    International Nuclear Information System (INIS)

    Goel, Anjali; Guha, S.N.

    1994-01-01

    Absorption spectrum, decay and formation kinetics of semi reduced species formed by the reaction of hydrated electron (e aq - ) with acridine orange (AO) were evaluated in sodium lauryl sulphate (SLS) micellar medium. Fluorescence and absorption properties of AO were also studied in this micellar system. The results were compared with those in homogenous aqueous medium. (author). 2 refs., 2 figs

  5. Influence of calcium chelators on concentrated micellar casein solutions : from micellar structure to viscosity and heat stability

    NARCIS (Netherlands)

    Kort, de E.J.P.

    2012-01-01

    In practice it is challenging to prepare a concentrated medical product with high heat stability
    and low viscosity. Calcium chelators are often added to dairy products to improve heat stability,
    but this may increase viscosity through interactions with the casein proteins. The aim of

  6. A novel, rapid and automated conductometric method to evaluate surfactant-cells interactions by means of critical micellar concentration analysis.

    Science.gov (United States)

    Tiecco, Matteo; Corte, Laura; Roscini, Luca; Colabella, Claudia; Germani, Raimondo; Cardinali, Gianluigi

    2014-07-25

    Conductometry is widely used to determine critical micellar concentration and micellar aggregates surface properties of amphiphiles. Current conductivity experiments of surfactant solutions are typically carried out by manual pipetting, yielding some tens reading points within a couple of hours. In order to study the properties of surfactant-cells interactions, each amphiphile must be tested in different conditions against several types of cells. This calls for complex experimental designs making the application of current methods seriously time consuming, especially because long experiments risk to determine alterations of cells, independently of the surfactant action. In this paper we present a novel, accurate and rapid automated procedure to obtain conductometric curves with several hundreds reading points within tens of minutes. The method was validated with surfactant solutions alone and in combination with Saccharomyces cerevisiae cells. An easy-to use R script, calculates conductometric parameters and their statistical significance with a graphic interface to visualize data and results. The validations showed that indeed the procedure works in the same manner with surfactant alone or in combination with cells, yielding around 1000 reading points within 20 min and with high accuracy, as determined by the regression analysis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. O-(β-hydroxyethylrutosides determination by micellar flow injection (FI-spectrofluorimetry

    Directory of Open Access Journals (Sweden)

    Cecilia Mariana Peralta

    2014-12-01

    Full Text Available A simple, eco-friendly, sensitive and economic flow injection spectrofluorimetric method was developed for the determination of O-(β-hydroxyethylrutosides. The procedure was based on the use of an anionic surfactant such as sodium dodecyl sulfate to provide an appreciable O-(β-hydroxyethylrutosides fluorescence enhancement, increasing considerably the sensitivity of detection. All the variables affecting the fluorescence intensity were studied and optimized. The flow rate was 5 mL/min with detection at 450 nm (after excitation at 346 nm. A linear correlation between drug amount and peak area was established for O-(β-hydroxyethylrutosides in the range of 0.01–200 µg/mL with a detection limit of 0.001 µg/mL (s/n=3. Validation processes were performed by recovering studies with satisfactory results. The new methodology can be employed for the routine analysis of O-(β-hydroxyethylrutosides in bulks as well as in commercial formulations. Keywords: O-(β-hydroxyethylrutosides, Micellar enhancement, Flow injection, Spectrofluorimetry, Pharmaceuticals

  8. Differential thermodynamic signature of carbon nanomaterials using amphiphilic micellar probe

    Science.gov (United States)

    Bhattacharyya, Tamoghna; Dasgupta, Anjan Kr

    2018-04-01

    The thermodynamic signature of single-wall carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs) and reduced graphene oxide (rG-O) using amphiphilic micellar probe has been explored. The study reveals an intricate correlation between nano-surface topology and calorimetric profile of SWCNTs, MWCNTs and rG-O. The critical micelle concentration (CMC) is found to be sensitive to the topological diversity of nanomaterials. The study explores a thermodynamic approach to characterize the nano-surface topology of SWCNTs, MWCNTs and graphene surface.

  9. A pH-responsive wormlike micellar system of a noncovalent interaction-based surfactant with a tunable molecular structure.

    Science.gov (United States)

    Kang, Wanli; Wang, Pengxiang; Fan, Haiming; Yang, Hongbin; Dai, Caili; Yin, Xia; Zhao, Yilu; Guo, Shujun

    2017-02-08

    Responsive wormlike micelles are very useful in a number of applications, whereas it is still challenging to create dramatic viscosity changes in wormlike micellar systems. Here we developed a pH-responsive wormlike micellar system based on a noncovalent constructed surfactant, which is formed by the complexation of N-erucamidopropyl-N,N-dimethylamine (UC 22 AMPM) and citric acid at the molar ratio of 3 : 1 (EACA). The phase behavior, aggregate microstructure and viscoelasticity of EACA solutions were investigated by macroscopic appearance observation, rheological and cryo-TEM measurements. It was found that the phase behavior of EACA solutions undergoes transition from transparent viscoelastic fluids to opalescent solutions and then phase separation with white floaters upon increasing the pH. Upon increasing the pH from 2.03 to 6.17, the viscosity of wormlike micelles in the transparent solutions continuously increased and reached ∼683 000 mPa s at pH 6.17. As the pH was adjusted to 7.31, the opalescent solution shows a water-like flowing behaviour and the η 0 rapidly declines to ∼1 mPa s. Thus, dramatic viscosity changes of about 6 magnitudes can be triggered by varying the pH values without any deterioration of the EACA system. This drastic variation in rheological behavior is attributed to the pH dependent interaction between UC 22 AMPM and citric acid. Furthermore, the dependence on concentration and temperature of the rheological behavior of EACA solutions was also studied to assist in obtaining the desired pH-responsive viscosity changes.

  10. A New Approach to Look at the Electrical Conductivity of Streamflow: Decomposing a Bulk Signal to Recover Individual Solute Concentrations at High-Frequency

    Science.gov (United States)

    Benettin, P.; Van Breukelen, B. M.

    2017-12-01

    The ability to evaluate stream hydrochemistry is often constrained by the capacity to sample streamwater at an adequate frequency. While technology is no longer a limiting factor, economic and management efforts can still be a barrier to high-resolution water quality instrumentation. We propose a new framework to investigate the electrical conductivity (EC) of streamwater, which can be measured continuously through inexpensive sensors. We show that EC embeds information on ion content which can be isolated to retrieve solute concentrations at high resolution. The approach can already be applied to a number of datasets worldwide where water quality campaigns are conducted, provided continuous EC measurements can be collected. The essence of the approach is the decomposition of the EC signal into its "harmonics", i.e. the specific contributions of the major ions which conduct current in water. The ion contribution is used to explore water quality patterns and to develop algorithms that reconstruct solute concentrations during periods where solute measurements are not available. The approach is validated on a hydrochemical dataset from Plynlimon, Wales. Results show that the decomposition of EC is feasible and for at least two major elements the methodology provided improved estimates of high-frequency solute dynamics. Our results support the installation of EC probes to complement water quality campaigns and suggest that the potential of EC measurements in rivers is currently far from being fully exploited.

  11. Two-phase aqueous micellar systems: an alternative method for protein purification

    Directory of Open Access Journals (Sweden)

    Rangel-Yagui C. O.

    2004-01-01

    Full Text Available Two-phase aqueous micellar systems can be exploited in separation science for the extraction/purification of desired biomolecules. This article reviews recent experimental and theoretical work by Blankschtein and co-workers on the use of two-phase aqueous micellar systems for the separation of hydrophilic proteins. The experimental partitioning behavior of the enzyme glucose-6-phosphate dehydrogenase (G6PD in two-phase aqueous micellar systems is also reviewed and new results are presented. Specifically, we discuss very recent work on the purification of G6PD using: i a two-phase aqueous micellar system composed of the nonionic surfactant n-decyl tetra(ethylene oxide (C10E4, and (ii a two-phase aqueous mixed micellar system composed of C10E4 and the cationic surfactant decyltrimethylammonium bromide (C10TAB. Our results indicate that the two-phase aqueous mixed (C10E4/C10TAB micellar system can improve significantly the partitioning behavior of G6PD relative to that observed in the two-phase aqueous C10E4 micellar system.

  12. Efficient "on-the-fly" calculation of Raman spectra from ab-initio molecular dynamics: Application to hydrophobic/hydrophilic solutes in bulk water.

    Science.gov (United States)

    Partovi-Azar, Pouya; Kühne, Thomas D

    2015-11-05

    We present a novel computational method to accurately calculate Raman spectra from first principles. Together with an extension of the second-generation Car-Parrinello method of Kühne et al. (Phys. Rev. Lett. 2007, 98, 066401) to propagate maximally localized Wannier functions together with the nuclei, a speed-up of one order of magnitude can be observed. This scheme thus allows to routinely calculate finite-temperature Raman spectra "on-the-fly" by means of ab-initio molecular dynamics simulations. To demonstrate the predictive power of this approach we investigate the effect of hydrophobic and hydrophilic solutes in water solution on the infrared and Raman spectra. © 2015 Wiley Periodicals, Inc.

  13. The fabrication of highly ordered block copolymer micellar arrays: control of the separation distances of silicon oxide dots

    Science.gov (United States)

    Yoo, Hana; Park, Soojin

    2010-06-01

    We demonstrate the fabrication of highly ordered silicon oxide dotted arrays prepared from polydimethylsiloxane (PDMS) filled nanoporous block copolymer (BCP) films and the preparation of nanoporous, flexible Teflon or polyimide films. Polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) films were annealed in toluene vapor to enhance the lateral order of micellar arrays and were subsequently immersed in alcohol to produce nano-sized pores, which can be used as templates for filling a thin layer of PDMS. When a thin layer of PDMS was spin-coated onto nanoporous BCP films and thermally annealed at a certain temperature, the PDMS was drawn into the pores by capillary action. PDMS filled BCP templates were exposed to oxygen plasma environments in order to fabricate silicon oxide dotted arrays. By addition of PS homopolymer to PS-b-P2VP copolymer, the separation distances of micellar arrays were tuned. As-prepared silicon oxide dotted arrays were used as a hard master for fabricating nanoporous Teflon or polyimide films by spin-coating polymer precursor solutions onto silicon patterns and peeling off. This simple process enables us to fabricate highly ordered nanoporous BCP templates, silicon oxide dots, and flexible nanoporous polymer patterns with feature size of sub-20 nm over 5 cm × 5 cm.

  14. The fabrication of highly ordered block copolymer micellar arrays: control of the separation distances of silicon oxide dots

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Hana; Park, Soojin, E-mail: spark@unist.ac.kr [Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology, Banyeon-ri 100, Ulsan 689-798 (Korea, Republic of)

    2010-06-18

    We demonstrate the fabrication of highly ordered silicon oxide dotted arrays prepared from polydimethylsiloxane (PDMS) filled nanoporous block copolymer (BCP) films and the preparation of nanoporous, flexible Teflon or polyimide films. Polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) films were annealed in toluene vapor to enhance the lateral order of micellar arrays and were subsequently immersed in alcohol to produce nano-sized pores, which can be used as templates for filling a thin layer of PDMS. When a thin layer of PDMS was spin-coated onto nanoporous BCP films and thermally annealed at a certain temperature, the PDMS was drawn into the pores by capillary action. PDMS filled BCP templates were exposed to oxygen plasma environments in order to fabricate silicon oxide dotted arrays. By addition of PS homopolymer to PS-b-P2VP copolymer, the separation distances of micellar arrays were tuned. As-prepared silicon oxide dotted arrays were used as a hard master for fabricating nanoporous Teflon or polyimide films by spin-coating polymer precursor solutions onto silicon patterns and peeling off. This simple process enables us to fabricate highly ordered nanoporous BCP templates, silicon oxide dots, and flexible nanoporous polymer patterns with feature size of sub-20 nm over 5 cm x 5 cm.

  15. Polymeric micellar pH-sensitive drug delivery system for doxorubicin.

    Science.gov (United States)

    Hrubý, Martin; Konák, Cestmír; Ulbrich, Karel

    2005-03-02

    A novel polymeric micellar pH-sensitive system for delivery of doxorubicin (DOX) is described. Polymeric micelles were prepared by self-assembly of amphiphilic diblock copolymers in aqueous solutions. The copolymers consist of a biocompatible hydrophilic poly(ethylene oxide) (PEO) block and a hydrophobic block containing covalently bound anthracycline antibiotic DOX. The starting block copolymers poly(ethylene oxide)-block-poly(allyl glycidyl ether) (PEO-PAGE) with a very narrow molecular weight distribution (Mw/Mn ca. 1.05) were prepared by anionic ring opening polymerization using sodium salt of poly(ethylene oxide) monomethyl ether as macroinitiator and allyl glycidyl ether as functional monomer. The copolymers were covalently modified via reactive double bonds by the addition of methyl sulfanylacetate. The resulting ester subsequently reacted with hydrazine hydrate yielding polymer hydrazide. The hydrazide was coupled with DOX yielding pH-sensitive hydrazone bonds between the drug and carrier. The resulting conjugate containing ca. 3 wt.% DOX forms micelles with Rh(a)=104 nm in phosphate-buffered saline. After incubation in buffers at 37 degrees C DOX was released faster at pH 5.0 (close to pH in endosomes; 43% DOX released within 24 h) than at pH 7.4 (pH of blood plasma; 16% DOX released within 24 h). Cleavage of hydrazone bonds between DOX and carrier continues even after plateau in the DOX release from micelles incubated in aqueous solutions is reached.

  16. Micellar Self-Assembly of Recombinant Resilin-/Elastin-Like Block Copolypeptides.

    Science.gov (United States)

    Weitzhandler, Isaac; Dzuricky, Michael; Hoffmann, Ingo; Garcia Quiroz, Felipe; Gradzielski, Michael; Chilkoti, Ashutosh

    2017-08-14

    Reported here is the synthesis of perfectly sequence defined, monodisperse diblock copolypeptides of hydrophilic elastin-like and hydrophobic resilin-like polypeptide blocks and characterization of their self-assembly as a function of structural parameters by light scattering, cryo-TEM, and small-angle neutron scattering. A subset of these diblock copolypeptides exhibit lower critical solution temperature and upper critical solution temperature phase behavior and self-assemble into spherical or cylindrical micelles. Their morphologies are dictated by their chain length, degree of hydrophilicity, and hydrophilic weight fraction of the ELP block. We find that (1) independent of the length of the corona-forming ELP block there is a minimum threshold in the length of the RLP block below which self-assembly does not occur, but that once that threshold is crossed, (2) the RLP block length is a unique molecular parameter to independently tune self-assembly and (3) increasing the hydrophobicity of the corona-forming ELP drives a transition from spherical to cylindrical morphology. Unlike the self-assembly of purely ELP-based block copolymers, the self-assembly of RLP-ELPs can be understood by simple principles of polymer physics relating hydrophilic weight fraction and polymer-polymer and polymer-solvent interactions to micellar morphology, which is important as it provides a route for the de novo design of desired nanoscale morphologies from first principles.

  17. Solution-processed all-oxide bulk heterojunction solar cells based on CuO nanaorod array and TiO2 nanocrystals

    Science.gov (United States)

    Wu, Fan; Qiao, Qiquan; Bahrami, Behzad; Chen, Ke; Pathak, Rajesh; Tong, Yanhua; Li, Xiaoyi; Zhang, Tiansheng; Jian, Ronghua

    2018-05-01

    We present a method to synthesize CuO nanorod array/TiO2 nanocrystals bulk heterojunction (BHJ) on fluorine-tin-oxide (FTO) glass, in which single-crystalline p-type semiconductor of the CuO nanorod array is grown on the FTO glass by hydrothermal reaction and the n-type semiconductor of the TiO2 precursor is filled into the CuO nanorods to form well-organized nano-interpenetrating BHJ after air annealing. The interface charge transfer in CuO nanorod array/TiO2 heterojunction is studied by Kelvin probe force microscopy (KPFM). KPFM results demonstrate that the CuO nanorod array/TiO2 heterojunction can realize the transfer of photo-generated electrons from the CuO nanorod array to TiO2. In this work, a solar cell with the structure FTO/CuO nanoarray/TiO2/Al is successfully fabricated, which exhibits an open-circuit voltage (V oc) of 0.20 V and short-circuit current density (J sc) of 0.026 mA cm‑2 under AM 1.5 illumination. KPFM studies indicate that the very low performance is caused by an undesirable interface charge transfer. The interfacial surface potential (SP) shows that the electron concentration in the CuO nanorod array changes considerably after illumination due to increased photo-generated electrons, but the change in the electron concentration in TiO2 is much less than in CuO, which indicates that the injection efficiency of the photo-generated electrons from CuO to TiO2 is not satisfactory, resulting in an undesirable J sc in the solar cell. The interface photovoltage from the KPFM measurement shows that the low V oc results from the small interfacial SP difference between CuO and TiO2 because the low injected electron concentration cannot raise the Fermi level significantly in TiO2. This conclusion agrees with the measured work function results under illumination. Hence, improvement of the interfacial electron injection is primary for the CuO nanorod array/TiO2 heterojunction solar cells.

  18. Solution-processed zinc oxide/polyethylenimine nanocomposites as tunable electron transport layers for highly efficient bulk heterojunction polymer solar cells.

    Science.gov (United States)

    Chen, Hsiu-Cheng; Lin, Shu-Wei; Jiang, Jian-Ming; Su, Yu-Wei; Wei, Kung-Hwa

    2015-03-25

    In this study, we employed polyethylenimine-doped sol-gel-processed zinc oxide composites (ZnO:PEI) as efficient electron transport layers (ETL) for facilitating electron extraction in inverted polymer solar cells. Using ultraviolet photoelectron spectroscopy, synchrotron grazing-incidence small-angle X-ray scattering and transmission electron microscopy, we observed that ZnO:PEI composite films' energy bands could be tuned considerably by varying the content of PEI up to 7 wt %-the conduction band ranged from 4.32 to 4.0 eV-and the structural order of ZnO in the ZnO:PEI thin films would be enhanced to align perpendicular to the ITO electrode, particularly at 7 wt % PEI, facilitating electron transport vertically. We then prepared two types of bulk heterojunction systems-based on poly(3-hexylthiophene) (P3HT):phenyl-C61-butryric acid methyl ester (PC61BM) and benzo[1,2-b:4,5-b́]dithiophene-thiophene-2,1,3-benzooxadiazole (PBDTTBO):phenyl-C71-butryric acid methyl ester (PC71BM)-that incorporated the ZnO:PEI composite layers. When using a composite of ZnO:PEI (93:7, w/w) as the ETL, the power conversion efficiency (PCE) of the P3HT:PC61BM (1:1, w/w) device improved to 4.6% from a value of 3.7% for the corresponding device that incorporated pristine ZnO as the ETL-a relative increase of 24%. For the PBDTTBO:PC71BM (1:2, w/w) device featuring the same amount of PEI blended in the ETL, the PCE improved to 8.7% from a value of 7.3% for the corresponding device that featured pure ZnO as its ETL-a relative increase of 20%. Accordingly, ZnO:PEI composites can be effective ETLs within organic photovoltaics.

  19. Removal of Pyrethrin from Aqueous Effluents by Adsorptive Micellar Flocculation

    Directory of Open Access Journals (Sweden)

    Pardon K. Kuipa

    2015-01-01

    Full Text Available The equilibrium adsorption of pyrethrin onto aggregates formed by the flocculation of micelles of the surfactant sodium dodecyl sulphate (SDS with aluminium sulphate is reported. The experimental results were analysed using different adsorption isotherms (Langmuir, Freundlich, Redlich-Peterson, Sips, Radke-Prausnitz, Temkin, linear equilibrium, and the Dubin-Radushkevich isotherms. The Freundlich and linear equilibrium isotherms best describe the adsorption of pyrethrin onto SDS micellar flocs, with the Freundlich adsorption constant, KF, and the mass distribution coefficient, KD, of 64.266 ((mg/g(L/mg1/n and 119.65 L/g, respectively. Applicability of the Freundlich adsorption model suggests that heterogeneous surface adsorption affects the adsorption. The mean free energy value estimated using the Dubinin-Radushkevich isotherm was 0.136 kJ/mol indicating that physisorption may be predominant in the adsorption process.

  20. Micellar polymerization: Computer simulations by dissipative particle dynamics.

    Science.gov (United States)

    Shupanov, Ruslan; Chertovich, Alexander; Kos, Pavel

    2018-07-15

    Nowadays, micellar polymerization is widely used in different fields of industry and research, including modern living polymerization technique. However, this process has many variables and there is no comprehensive model to describe all features. This research presents simulation methodology which describes key properties of such reactions to take a guide through a variety of their modifications. Dissipative particle dynamics is used in addition to Monte Carlo scheme to simulate initiation, propagation, and termination events. Influence of initiation probability and different termination processes on final conversion and molecular-weight distribution are presented. We demonstrate that prolonged initiation leads to increasing in polymer average molecular weight, and surface termination events play major role in conversion limitation, in comparison with recombination. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  1. Phase behavior and micellar properties of carboxylic acid end group modified pluronic surfactants

    NARCIS (Netherlands)

    Custers, J.P.A.; Broeke, van den L.J.P.; Keurentjes, J.T.F.

    2007-01-01

    The micellar behavior of three different carboxylic acid end standing (CAE) surfactants has been characterized using conductometry, differential scanning calorimetry, isothermal titration calorimetry, and dynamic light scattering. The CAE surfactants are modified high molecular weight Pluronic

  2. Amplification of Chirality through Self-Replication of Micellar Aggregates in Water

    KAUST Repository

    Bukhriakov, Konstantin; Almahdali, Sarah; Rodionov, Valentin

    2015-01-01

    We describe a system in which the self-replication of micellar aggregates results in a spontaneous amplification of chirality in the reaction products. In this system, amphiphiles are synthesized from two "clickable" fragments: a water-soluble "head

  3. Effect of the interaction of heat-processing style and fat type on the micellarization of lipid-soluble pigments from green and red pungent peppers (Capsicum annuum).

    Science.gov (United States)

    Victoria-Campos, Claudia I; Ornelas-Paz, José de Jesús; Yahia, Elhadi M; Failla, Mark L

    2013-04-17

    The high diversity of carotenoids and chlorophylls in foods contrasts with the reduced number of pigments that typically are investigated in micellarization studies. In this study, pepper samples (raw and heat-treated) contained 68 individual pigments, but only 38 of them were micellarized after in vitro digestion. The micellarization of pigments was majorly determined by the interaction effect of processing style (food matrix effect) and fat type (saturated and unsaturated). The highest micellarization was observed with raw peppers. Unsaturated fat increased the micellarization of carotenoid esters, while the impact of fat on the micellarization of free carotenoids seemed to be dependent on pigment structure. The micellarization efficiency was diminished as the esterification level of carotenoids increased. The type of fatty acid moiety and the polarity of the carotenoids modulated their micellarization. Chlorophylls were transformed into pheophytins by heat-processing and digestion, with the pheophytins being stable under gastrointestinal conditions. Micellarization of pheophytins was improved by fat.

  4. Impact of thermooxidation of phytosteryl and phytostanyl fatty acid esters on cholesterol micellarization in vitro.

    Science.gov (United States)

    Scholz, Birgit; Weiherer, Renate; Engel, Karl-Heinz

    2017-09-01

    The effects of thermooxidation of a phytosteryl/-stanyl and a phytostanyl fatty acid ester mixture on cholesterol micellarization were investigated using an in vitro digestion model simulating enzymatic hydrolysis by cholesterol esterase and subsequent competition of the liberated phytosterols/-stanols with cholesterol for incorporation into mixed micelles. As a first step, relationships between different doses of the ester mixtures and the resulting micellarized cholesterol were established. Subsequent subjection of the thermooxidized ester mixtures to the in vitro digestion model resulted in three principal observations: (i) thermal treatment of the ester mixtures led to substantial decreases of the intact esters, (ii) in vitro digestion of cholesterol in the presence of the thermooxidized ester mixtures resulted in significant increases of cholesterol micellarization, and (iii) the extents of the observed effects on cholesterol micellarization were strongly associated to the remaining contents of intact esters. The loss of efficacy to inhibit cholesterol micellarization due to thermally induced losses of intact esters corresponded to a loss of efficacy that would have been induced by an actual removal of these amounts of esters prior to the in vitro digestion. The obtained results suggest that in particular oxidative modifications of the fatty acid moieties might be responsible for the observed increases of cholesterol micellarization. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Bulk oil clauses

    International Nuclear Information System (INIS)

    Gough, N.

    1993-01-01

    The Institute Bulk Oil Clauses produced by the London market and the American SP-13c Clauses are examined in detail in this article. The duration and perils covered are discussed, and exclusions, adjustment clause 15 of the Institute Bulk Oil Clauses, Institute War Clauses (Cargo), and Institute Strikes Clauses (Bulk Oil) are outlined. (UK)

  6. Quantitative correlation between counterion (X binding affinity to cationic micelles and X – Induced micellar growth for substituted iodobenzoates (X

    Directory of Open Access Journals (Sweden)

    Nor Saadah M. Yusof

    2017-05-01

    Full Text Available A new semi-empirical kinetic (SEK method has been used to calculate the values of KXBr or RXBr (X represents substituted iodobenzoates, with KX and KBr representing CTABr micellar binding constants of counterions X− (in the presence of either spherical or non-spherical micelles and Br− (in the presence of only spherical micelles, respectively. Steady-shear rheological properties of mixed 0.015 M CTABr/[MX] aqueous solutions reveal the presence of flexible wormlike micelles where MX represents sodium 3- and 4-iodobenzoates. The maxima of the plots of viscosity vs. [MX] at 0.015 M CTABr for MX representing sodium 3- and 4-iodobenzoates support the presence of long linear and entangled wormlike micelles.

  7. Simultaneous Determination of Eosin-Yellow and Ponceau-S Using H-Point Standard Addition Method in Micellar Media

    Directory of Open Access Journals (Sweden)

    Amandeep Kaur

    2012-01-01

    Full Text Available H-point standard addition method (HPSAM is developed for simultaneous determination of eosin-Y and ponceau-s in micellar media. Nickel chloride (NiCl2 is used as chromogenic reagent for complexes formation of eosin-Y and ponceau-S food colorants. The measurements were carried out using sodium lauryl sulphate as a surfactant, in buffered solution at pH 6.0. The concentration range of 0.115-2.53 μg/mL of eosin-Y and 0.159-3.80 μg/mL of ponceau-S. The proposed procedures have been applied successfully for the simultaneous determination of eosin-Y and ponceau-S in synthetic binary mixtures and real samples.

  8. Shape-selective synthesis of non-micellar cobalt oxide (CoO) nanomaterials by microwave irradiations

    International Nuclear Information System (INIS)

    Kundu, Subrata; Jayachandran, M.

    2013-01-01

    Shape-selective formation of CoO nanoparticles has been developed using a simple one-step in situ non-micellar microwave (MW) heating method. CoO NPs were synthesized by mixing aqueous CoCl 2 ·6H 2 O solution with poly (vinyl) alcohol (PVA) in the presence of sodium hydroxide (NaOH). The reaction mixture was irradiated using MW for a total time of 2 min. This process exclusively generated different shapes like nanosphere, nanosheet, and nanodendrite structures just by tuning the Co(II) ion to PVA molar ratios and controlling other reaction parameters. The proposed synthesis method is efficient, straightforward, reproducible, and robust. Other than in catalysis, these cobalt oxide nanomaterials can be used for making pigments, battery materials, for developing solid state sensors, and also as an anisotropy source for magnetic recording.Graphical Abstract

  9. Micellar aggregates of saponins from Chenopodium quinoa: characterization by dynamic light scattering and transmission electron microscopy.

    Science.gov (United States)

    Verza, S G; de Resende, P E; Kaiser, S; Quirici, L; Teixeira, H F; Gosmann, G; Ferreira, F; Ortega, G G

    2012-04-01

    Entire seeds of Chenopodium quinoa Willd are a rich protein source and are also well-known for their high saponin content. Due to their amphiphily quinoa saponins are able to form intricate micellar aggregates in aqueous media. In this paper we study the aggregates formed by self-association of these compounds from two quinoa saponin fractions (FQ70 and FQ90) as well as several distinctive nanostructures obtained after their complexation with different ratios of cholesterol (CHOL) and phosphatidylcholine (PC). The FQ70 and FQ90 fractions were obtained by reversed-phase preparative chromatography. The structural features of their resulting aggregates were determined by Dynamic Light Scattering (DLS) and Transmission Electron Microscopy (TEM). Novel nanosized spherical vesicles formed by self-association with mean diameter about 100-200 nm were observed in FQ70 aqueous solutions whereas worm-like micelles an approximate width of 20 nm were detected in FQ90 aqueous solutions. Under experimental conditions similar to those reported for the preparation of Quillaja saponaria ISCOM matrices, tubular and ring-like micelles arose from FQ70:CHOL:PC and FQ90:CHOL:PC formulations, respectively. However, under these conditions no cage-like ISCOM matrices were observed. The saponin composition of FQ70 and FQ90 seems to determine the nanosized structures viewed by TEM. Phytolaccagenic acid, predominant in FQ70 and FQ90 fractions, is accountable for the formation of the nanosized vesicles and tubular structures observed by TEM in the aqueous solutions of both samples. Conversely, ring-like micelles observed in FQ90:CHOL:PC complexes can be attributed to the presence of less polar saponins present in FQ90, in particular those derived from oleanolic acid.

  10. Enhancing the lateral-flow immunoassay for detection of proteins using an aqueous two-phase micellar system.

    Science.gov (United States)

    Mashayekhi, Foad; Le, Alexander M; Nafisi, Parsa M; Wu, Benjamin M; Kamei, Daniel T

    2012-10-01

    The lateral-flow (immuno)assay (LFA) has been widely investigated for the detection of molecular, macromolecular, and particle targets at the point-of-need due to its ease of use, rapid processing, and minimal power and laboratory equipment requirements. However, for some analytes, such as certain proteins, the detection limit of LFA is inferior to lab-based assays, such as the enzyme-linked immunosorbent assay, and needs to be improved. One solution for improving the detection limit of LFA is to concentrate the target protein in a solution prior to the detection step. In this study, a novel approach was used in the context of an aqueous two-phase micellar system comprised of the nonionic surfactant Triton X-114 to concentrate a model protein, namely transferrin, prior to LFA. Proteins have been shown to partition, or distribute, fairly evenly between the two phases of an aqueous two-phase system, which in turn results in their limited concentration in one of the two phases. Therefore, larger colloidal gold particles decorated with antibodies for transferrin were used in the concentration step to bind to transferrin and aid its partitioning into the top, micelle-poor phase. By manipulating the volume ratio of the two coexisting micellar phases and combining the concentration step with LFA, the transferrin detection limit of LFA was improved by tenfold from 0.5 to 0.05 μg/mL in a predictive manner. In addition to enhancing the sensitivity of LFA, this universal concentration method could also be used to improve other detection assays.

  11. pH multistage responsive micellar system with charge-switch and PEG layer detachment for co-delivery of paclitaxel and curcumin to synergistically eliminate breast cancer stem cells.

    Science.gov (United States)

    Yang, Zhe; Sun, Na; Cheng, Rui; Zhao, Chenyang; Liu, Zerong; Li, Xian; Liu, Jie; Tian, Zhongmin

    2017-12-01

    Several studies have demonstrated that cancer stem cells (CSCs) are responsible for replenishing bulk tumor cells, generating new tumors and causing metastasis and relapse. Although combination therapy with multiple chemotherapeutics is considered to be a promising approach for simultaneously eliminating non-CSCs and CSCs, it is difficult to deliver drugs into the inner region of a solid tumor where the CSCs are located due to a lack of capillaries. Here, we synthesized a pH-sensitive polymer, poly(ethylene glycol)-benzoic imine-poly(γ-benzyl-l-aspartate)-b-poly(1-vinylimidazole) block copolymer (PPBV), to develop a pH multistage responsive micellar system for co-delivering paclitaxel and curcumin and synergistically eliminating breast cancer stem cells (bCSCs) and non-bCSCs. This pH multistage responsive micellar system could intelligently switch its surface charge from neutral to positive, de-shield its PEG layer and reduce its size after long-circulation and extravasation from leaky blood vessels at tumor sites, thus facilitating their cellular uptake and deep tumor penetration. These advantages were also beneficial for the combinational therapy efficacy of PTX and CUR to reach the maximum level and achieve superior tumor inhibition activity and effective bCSCs-killing capacity in vivo. Consequently, this pH multistage responsive micellar system is a powerful platform for collaborative therapy with PTX and CUR to simultaneously eliminate bCSCs and non-CSCs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Non-monotonic compositional dependence of isothermal bulk modulus of the (Mg1–xMnxCr2O4 spinel solid solutions, and its origin and implication

    Directory of Open Access Journals (Sweden)

    Xi Liu

    2016-12-01

    Full Text Available The compressibility of the spinel solid solutions, (Mg1−xMnxCr2O4 with x = 0.00 (0, 0.20 (0, 0.44 (2, 0.61 (2, 0.77 (2 and 1.00 (0, has been investigated by using a diamond-anvil cell coupled with synchrotron X-ray radiation up to ∼10 GPa (ambient T. The second-order Birch–Murnaghan equation of state was used to fit the PV data, yielding the following values for the isothermal bulk moduli (KT, 198.2 (36, 187.8 (87, 176.1 (32, 168.7 (52, 192.9 (61 and 199.2 (61 GPa, for the spinel solid solutions with x = 0.00 (0, 0.20 (0, 0.44 (2, 0.61 (2, 0.77 (2 and 1.00 (0, respectively (KT′ fixed as 4. The KT value of the MgCr2O4 spinel is in good agreement with existing experimental determinations and theoretical calculations. The correlation between the KT and x is not monotonic, with the KT values similar at both ends of the binary MgCr2O4MnCr2O4, but decreasing towards the middle. This non-monotonic correlation can be described by two equations, KT = −49.2 (11x + 198.0 (4 (x ≤ ∼0.6 and KT = 92 (41x + 115 (30 (x ≥ ∼0.6, and can be explained by the evolution of the average bond lengths of the tetrahedra and octahedra of the spinel solid solutions. Additionally, the relationship between the thermal expansion coefficient and composition is correspondingly reinterpreted, the continuous deformation of the oxygen array is demonstrated, and the evolution of the component polyhedra is discussed for this series of spinel solid solutions. Our results suggest that the correlation between the KT and composition of a solid solution series may be complicated, and great care should be paid while estimating the KT of some intermediate compositions from the KT of the end-members.

  13. Online naphazoline quality control by micellar-enhanced spectrofluorimetry.

    Science.gov (United States)

    Peralta, Cecilia Mariana; Silva, Raúl Alejandro; Fernández, Liliana Patricia; Masi, Adriana Noemí

    2011-01-01

    The aim of this study was to develop a method for online spectrofluorimetric quality control of naphazoline (NPZ) in pharmaceuticals and raw drugs. A combination of a flow-injection analysis (FIA) system with micellar-enhanced fluorescence detection is presented as a powerful alternative for the rapid and sensitive analysis of naphazoline. Since NPZ shows low native fluorescence, the use of an anionic surfactant, such as sodium dodecyl sulphate (SDS), provides a considerable enhancement of fluorescence intensity and the nature of the technique allows a possible and easy adaptation to a FIA system. Using λ(exc) = 280 nm and λ(em) = 326 nm, a good linear relationship (LOL) was obtained in the range 0.003-10 µg mL(-1) with a detection limit (LOD) of 3 × 10(-4) µg mL(-1) (s/n = 3). Parameters related to the nature of the analytical signal and to the FIA manifold were optimized. Satisfactory recoveries were obtained in the analysis of commercial pharmaceutical formulations. The proposed method is simple, accurate and allows for high-speed sampling and considerably shorter analysis times. In addition, it requires inexpensive equipment and reagents and has easy operational conditions and no side effects, thus avoiding environmental pollution through toxic waste. Copyright © 2011 John Wiley & Sons, Ltd.

  14. PH-triggered micellar membrane for controlled release microchips

    KAUST Repository

    Yang, Xiaoqiang

    2011-01-01

    A pH-responsive membrane based on polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP) block copolymer was developed on a model glass microchip as a promising controlled polymer delivery system. The PS-b-P4VP copolymer assembles into spherical and/or worm-like micelles with styrene block cores and pyridine coronas in selective solvents. The self-assembled worm-like morphology exhibited pH-responsive behaviour due to the protonation of the P4VP block at low pH and it\\'s deprotonation at high pH and thus constituting a switchable "off/on" system. Doxorubicin (Dox) was used as cargo to test the PS-b-P4VP membrane. Luminescence experiments indicated that the membrane was able to store Dox molecules within its micellar structure at neutral pH and then release them as soon as the pH was raised to 8.0. The performance of the cast membrane was predictable and most importantly reproducible. The physiochemical and biological properties were also investigated carefully in terms of morphology, cell viability and cell uptake. This journal is © The Royal Society of Chemistry.

  15. Separation Of N-Nitrosamines By Micellar Electrokinetic Chromatography

    International Nuclear Information System (INIS)

    Nur Amira Md Ali; Mohd Marsin Sanagi; Wan Aini Wan Ibrahim

    2014-01-01

    A simple and rapid micellar electrokinetic chromatography (MEKC) method was developed for separation of three selected N-Nitrosamines namely N-nitrosodipropylamine (NDPA), N-nitrosodibutylamine (NDBA) and N-nitrosodiphenylamine (NDPhA). The effects of composition of the buffer and its pH, concentration of surfactants on the separation and migration times of nitrosamines were investigated. The instrumental variables affecting sensitivity and resolution such as power supply and injection mode were carefully optimized. The best separation was achieved using 40 mM sodium dodecyl sulfate (SDS) as a surfactant in 10 mM phosphate buffer (pH 8.0) at a temperature of 25 degree Celsius, applied voltage of 29 kV, wavelength of 230 nm and electrokinetic injection of 9 s at 5 kV within 10 min analysis time. Excellent linearity was obtained in the concentration range of 2 to 100 μg/ mL with coefficients of determination, r 2 ≥0.979. This method showed good reproducibility with relative standard deviation (RSDs) value ranging from 2.46 % to 6.61 %. The limits of detection (LOD) and limits of quantification (LOQ) ranged from 0.16 to 0.43 μg/ mL and 0.54 to 1.44 μg/mL respectively. (author)

  16. Octane-Assisted Reverse Micellar Dyeing of Cotton with Reactive Dyes

    Directory of Open Access Journals (Sweden)

    Alan Yiu-lun Tang

    2017-12-01

    Full Text Available In this study, we investigated the computer colour matching (CCM of cotton fabrics dyed with reactive dye using the octane-assisted reverse micellar approach. The aim of this study is to evaluate the colour quality and compare the accuracy between CCM forecasting and simulated dyeing produced by conventional water-based dyeing and octane-assisted reverse micellar dyeing. First, the calibration of dyeing databases for both dyeing methods was established. Standard samples were dyed with known dye concentrations. Computer colour matching was conducted by using the colour difference formula of International Commission on Illumination (CIE L*a*b*. Experimental results revealed that the predicted concentrations were nearly the same as the expected known concentrations for both dyeing methods. This indicates that octane-assisted reverse micellar dyeing system can achieve colour matching as good as the conventional water-based dyeing system. In addition, when comparing the colour produced by the conventional water-based dyeing system and the octane-assisted reverse micellar dyeing system, the colour difference (ΔE is ≤1, which indicates that the reverse micellar dyeing system could be applied for industrial dyeing with CCM.

  17. Selection of reservoirs amenable to micellar flooding. First annual report, October 1978-December 1979

    Energy Technology Data Exchange (ETDEWEB)

    Goldburg, A.; Price, H.

    1980-12-01

    The overall project objective is to build a solid engineering base upon which the Department of Energy (DOE) can improve and accelerate the application of micellar-polymer recovery technology to Mid-Continent and California sandstone reservoirs. The purpose of the work carried out under these two contracts is to significantly aid, both DOE and the private sector, in gaining the following Project Objectives: to select the better micellar-polymer prospects in the Mid-Continent and California regions; to assess all of the available field and laboratory data which has a bearing on recovering oil by micellar-polymer projects in order to help identify and resolve both the technical and economic constraints relating thereto; and to design and analyze improved field pilots and tests and to develop a micellar-polymer applications matrix for use by the potential technology users; i.e., owner/operators. The report includes the following: executive summary and project objectives; development of a predictive model for economic evaluation of reservoirs; reservoir data bank for micellar-polymer recovery evaluation; PECON program for preliminary economic evaluation; ordering of candidate reservoirs for additional data acquisition; validation of predictive model by numerical simulation; and work forecast. Tables, figures and references are included.

  18. A simplified radiometabolite analysis procedure for PET radioligands using a solid phase extraction with micellar medium

    International Nuclear Information System (INIS)

    Nakao, Ryuji; Halldin, Christer

    2013-01-01

    A solid phase extraction method has been developed for simple and high-speed direct determination of PET radioligands in plasma. Methods: This methodology makes use of a micellar medium and a solid-phase extraction cartridge for displacement of plasma protein bound radioligand and separation of PET radioligands from their radiometabolites without significant preparation. The plasma samples taken from monkey or human during PET measurements were mixed with a micellar eluent containing an anionic surfactant sodium dodecyl sulphate and loaded onto SPE cartridges. The amount of radioactivity corresponding to parent radioligand (retained on the cartridge) and its radioactive metabolites (eluted with micellar eluent) was measured. Results: Under the optimized conditions, excellent separation of target PET radioligands from their radiometabolites was achieved with a single elution and short run-time of 1 min. This method was successfully applied to study the metabolism for 11 C-labelled radioligands in human or monkey plasma. The amount of parent PET radioligands estimated by micellar solid phase extraction strongly corresponded with that determined by radio-LC. The improved throughput permitted the analysis of a large number of plasma samples (up to 13 samples per one PET study) for accurate estimation of metabolite-corrected input function during quantitative PET imaging studies. Conclusion: Solid phase extraction together with micellar medium is fast, sensitive and easy to use, and therefore it is an attractive alternative method to determine relative composition of PET radioligands in plasma

  19. Measurement of bulk etch rates for poly-allyl-diglycol carbonate (PADC) and cellulose nitrate in a broad range of concentration and temperature of NaOH etching solution

    International Nuclear Information System (INIS)

    Hermsdorf, D.; Hunger, M.; Starke, S.; Weickert, F.

    2007-01-01

    In the present work the dependence of the bulk etch rate v B for solid state nuclear track detectors (SSNTD) on the concentration c and the temperature T of the NaOH etching solution has been studied for material types PADC and cellulose nitrate. As commonly applied exponents of PADC and cellulose nitrate material, the commercial products CR-39 and LR-115 were investigated. The concentration and temperature have been varied in the ranges 0.5moll -1 -1 and 313 -1 and T between 313 and 333K for cellulose nitrate, respectively. The application of a simple Arrhenius-law of chemical reactions fails in the interpretation of the dependence on the concentration. A constant activation energy cannot describe the behaviour of v B (c,T) over the whole range of concentration. To understand the deviation, more qualified models treating the superposition of chemical and physical processes including reaction kinetics and material transport phenomena by diffusion have to be developed and tested

  20. Micellar induced regioselectivity in the two-step consecutive reaction of SO3(2-) with Br-(CH2CH2)n-Br (n=2-5).

    Science.gov (United States)

    Currie, Fredrik; Jarvoll, Patrik; Holmberg, Krister; Romsted, Laurence S; Gunaseelan, Krishnan

    2007-08-15

    High field (800 MHz) (1)H NMR was used to monitor the two-step consecutive reaction of excess SO(3)(2-) with symmetrical bifunctional alpha,omega-dibromoalkanes with butane (DBB), hexane (DBH), octane (DBO), and decane (DBD) chains in CTAB micelles at 25 degrees C. The first-order rate constant for the first substitution step for DBB and DBH is about 5 times faster than for the second, but the kinetics for DBO and DBD were not cleanly first-order. After 40 min, the solution contained about 80% of the intermediate bromoalkanesulfonate from DBB and DBH and the remainder is alkanedisulfonate and unreacted starting material. The same reactions were carried out in homogeneous MeOH/D(2)O solutions at 50 degrees C. The rate constants for all four alpha,omega-dibromoalkanes were first-order throughout the time course of the reaction and the same within +/-10%. However, because micellar solutions are organized on the nanoscale and bring together lipophilic and hydrophilic reactants into a small reaction volume at the micellar interface, they speed this substitution reaction considerably compared to reaction in MeOH/D(2)O. The CTAB micelles also induce a significant regioselectivity in product formation by speeding the first step of the consecutive reaction more than the second. The results are consistent with the bromoalkanesulfonate intermediates having a radial orientation within the micelles with the -CH(2)SO(3)(-) group in the interfacial region and the -CH(2)Br group directed into the micellar core such that the concentration of -CH(2)Br groups in the reactive zone, i.e., the micellar interface, is significantly reduced. These results provide the first example of self-assembled surfactant system altering the relative rates of the reaction steps of a consecutive reaction and, in doing so, enhancing monosubstitution of a symmetrically disubstituted species.

  1. Radiation decomposition of alcohols and chloro phenols in micellar systems; Descomposicion por irradiacion de alcoholes y clorofenoles en sistemas micelares

    Energy Technology Data Exchange (ETDEWEB)

    Moreno A, J

    1999-12-31

    The effect of surfactants on the radiation decomposition yield of alcohols and chloro phenols has been studied with gamma doses of 2, 3, and 5 KGy. These compounds were used as typical pollutants in waste water, and the effect of the water solubility, chemical structure, and the nature of the surfactant, anionic or cationic, was studied. The results show that anionic surfactant like sodium dodecylsulfate (SDS), improve the radiation decomposition yield of ortho-chloro phenol, while cationic surfactant like cetyl trimethylammonium chloride (CTAC), improve the radiation decomposition yield of butyl alcohol. A similar behavior is expected for those alcohols with water solubility close to the studied ones. Surfactant concentrations below critical micellar concentration (CMC), inhibited radiation decomposition for both types of alcohols. However radiation decomposition yield increased when surfactant concentrations were bigger than the CMC. Aromatic alcohols decomposition was more marked than for linear alcohols decomposition. On a mixture of alcohols and chloro phenols in aqueous solution the radiation decomposition yield decreased with increasing surfactant concentration. Nevertheless, there were competitive reactions between the alcohols, surfactants dimers, hydroxyl radical and other reactive species formed on water radiolysis, producing a catalytic positive effect in the decomposition of alcohols. Chemical structure and the number of carbons were not important factors in the radiation decomposition. When an alcohol like ortho-chloro phenol contained an additional chlorine atom, the decomposition of this compound was almost constant. In conclusion the micellar effect depend on both, the nature of the surfactant (anionic or cationic) and the chemical structure of the alcohols. The results of this study are useful for wastewater treatment plants based on the oxidant effect of the hydroxyl radical, like in advanced oxidation processes, or in combined treatment such as

  2. Commercial scale demonstration: enhanced oil recovery by micellar-polymer flood. Annual report, October 1980-September 1981

    Energy Technology Data Exchange (ETDEWEB)

    Howell, J.C.

    1982-05-01

    This commercial scale test, known as the M-1 Project, is located in Crawford County, Illinois. It encompasses 407 acres of Robinson sand reservoir and covers portions of several waterflood projects that were approaching economic limit. The project includes 248 acres developed on a 2.5-acre five-spot pattern and 159 acres developed on a 5.0-acre five-spot pattern. Development work commenced in late 1974 and has previously been reported. Micellar solution (slug) injection was initiated on February 10, 1977, and is now completed. After 10% of a pore volume of micellar slug was injected, injection of 11% pore volume of Dow 700 Pusher polymer was conducted at a concentration of 1156 ppM. At the end of this reporting period, 625 ppM polymer was being injected into the 2.5-acre pattern and 800 ppM polymer was being injected into the 5.0-acre pattern. The oil cut of the 2.5-acre pattern has decreased from 11.0% in September 1980, to 7.9% in September 1981. The 2.5-acre pattern had been on a plateau since May 1980, and as of May 1981 appears to be on a decline. The oil cut of the 5.0-acre pattern has increased from 5.9% in September 1980, to 10.9% in September 1981. The 5.0-acre pattern experienced a sharp increase in oil cut after 34% of a pore volume of total fluid had been injected and appears to be continuing its incline. This fifth annual report is organized under the following three work breakdown structures: fluid injection; production; and performance monitoring.

  3. Radiation decomposition of alcohols and chloro phenols in micellar systems; Descomposicion por irradiacion de alcoholes y clorofenoles en sistemas micelares

    Energy Technology Data Exchange (ETDEWEB)

    Moreno A, J

    1998-12-31

    The effect of surfactants on the radiation decomposition yield of alcohols and chloro phenols has been studied with gamma doses of 2, 3, and 5 KGy. These compounds were used as typical pollutants in waste water, and the effect of the water solubility, chemical structure, and the nature of the surfactant, anionic or cationic, was studied. The results show that anionic surfactant like sodium dodecylsulfate (SDS), improve the radiation decomposition yield of ortho-chloro phenol, while cationic surfactant like cetyl trimethylammonium chloride (CTAC), improve the radiation decomposition yield of butyl alcohol. A similar behavior is expected for those alcohols with water solubility close to the studied ones. Surfactant concentrations below critical micellar concentration (CMC), inhibited radiation decomposition for both types of alcohols. However radiation decomposition yield increased when surfactant concentrations were bigger than the CMC. Aromatic alcohols decomposition was more marked than for linear alcohols decomposition. On a mixture of alcohols and chloro phenols in aqueous solution the radiation decomposition yield decreased with increasing surfactant concentration. Nevertheless, there were competitive reactions between the alcohols, surfactants dimers, hydroxyl radical and other reactive species formed on water radiolysis, producing a catalytic positive effect in the decomposition of alcohols. Chemical structure and the number of carbons were not important factors in the radiation decomposition. When an alcohol like ortho-chloro phenol contained an additional chlorine atom, the decomposition of this compound was almost constant. In conclusion the micellar effect depend on both, the nature of the surfactant (anionic or cationic) and the chemical structure of the alcohols. The results of this study are useful for wastewater treatment plants based on the oxidant effect of the hydroxyl radical, like in advanced oxidation processes, or in combined treatment such as

  4. Molecular organization and dynamics of micellar phase of polyelectrolyte-surfactant complexes: ESR spin probe study

    Science.gov (United States)

    Wasserman, A. M.; Kasaikin, V. A.; Zakharova, Yu. A.; Aliev, I. I.; Baranovsky, V. Yu.; Doseva, V.; Yasina, L. L.

    2002-04-01

    Molecular dynamics and organization of the micellar phase of complexes of linear polyelectrolytes with ionogenic and non-ionogenic surfactants was studied by the ESR spin probe method. Complexes of polyacrylic acid (PAA) and sodium polystyrenesulfonate (PSS) with alkyltrimethylammonium bromides (ATAB), as well as complexes of poly- N, N'-dimethyldiallylammonium chloride (PDACL) with sodium dodecylsulfate (SDS) were studied. The micellar phase of such complexes is highly organized molecular system, molecular ordering of which near the polymeric chain is much higher than in the 'center' of the micelle, it depends on the polymer-detergent interaction, flexibility of polymeric chain and length of carbonic part of the detergent molecule. Complexes of polymethacrylic acid (PMAA) with non-ionic detergent (dodecyl-substituted polyethyleneglycol), show that the local mobility of surfactant in such complexes is significantly lower than in 'free' micelles and depends on the number of micellar particles participating in formation of complexes.

  5. Au/CdS Hybrid Nanoparticles in Block Copolymer Micellar Shells.

    Science.gov (United States)

    Koh, Haeng-Deog; Changez, Mohammad; Lee, Jae-Suk

    2010-10-18

    A polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) micellar structure with a P2VP core containing 5 nm CdS nanoparticles (NPs) and a PS shell formed in toluene that is a good solvent for PS block undergoes the core-shell inversion by excess addition of methanol that is a good solvent for P2VP block. It leads to the formation of micellar shell-embedded CdS NPs in the methanol major phase. The spontaneous crystalline growth of Au NPs on the CdS surfaces positioned at micellar shells without a further reduction process is newly demonstrated. The nanostructure of Au/CdS/PS-b-P2VP hybrid NPs is confirmed by transmission electron microscopy, energy-dispersive X-ray, and UV-Vis absorption. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Effect of ripening, heat processing, and fat type on the micellarization of pigments from jalapeño peppers.

    Science.gov (United States)

    Victoria-Campos, Claudia I; Ornelas-Paz, José de Jesús; Yahia, Elhadi M; Jiménez-Castro, Jorge A; Cervantes-Paz, Braulio; Ibarra-Junquera, Vrani; Pérez-Martínez, Jaime David; Zamudio-Flores, Paul B; Escalante-Minakata, Pilar

    2013-10-16

    Raw and heat-processed (boiled and grilled) jalapeño peppers at three intermediate ripening stages (brown, 50% red, and 75% red) were digested in vitro without fat and in the presence of soybean oil (SO) or beef tallow (BT), and the micellarization of their lipid soluble pigments (LSP) was measured. The micelles from digestions with brown, 50% red, and 75% red peppers contained up to 27, 35, and 29 different LSP, respectively. Boiling and grilling decreased the micellarization of LSP from brown peppers, whereas the opposite was observed with 75% red peppers. Heat processing did not clearly affect the micellarization of LSP from 50% red fruits. The impact of fat on LSP micellarization was ripening-dependent, but the micellarization of the less polar carotenoids was always increased by SO or BT. This positive effect of fat was higher with SO than with BT.

  7. A micellar model system for the role of zeaxanthin in the non-photochemical quenching process of photosynthesis--chlorophyll fluorescence quenching by the xanthophylls.

    Science.gov (United States)

    Avital, Shlomo; Brumfeld, Vlad; Malkin, Shmuel

    2006-07-01

    To get an insight to the mechanism of the zeaxanthin-dependent non-photochemical quenching in photosystem II of photosynthesis, we probed the interaction of some xanthophylls with excited chlorophyll-a by trapping both pigments in micelles of triton X-100. Optimal distribution of pigments among micelles was obtained by proper control of the micelle concentration, using formamide in the reaction mixture, which varies the micellar aggregation number over three orders of magnitude. The optimal reaction mixture was obtained around 40% (v/v) formamide in 0.2-0.4% (v/v) triton X-100 in water. Zeaxanthin in the micellar solution exhibited initially absorption and circular dichroism spectral features corresponding to a J-type aggregate. The spectrum was transformed over time (half-time values vary-an average characteristic figure is roughly 20 min) to give features representing an H-type aggregate. The isosbestic point in the series of spectral curves favors the supposition of a rather simple reaction between two pure J and H-types dimeric species. Violaxanthin exhibited immediately stable spectral features corresponding to a mixture of J-type and more predominately H-type dimers. Lutein, neoxanthin and beta-carotene did not show any aggregated spectral forms in micelles. The spectral features in micelles were compared to spectra in aqueous acetone, where the assignment to various aggregated types was established previously. The specific tendency of zeaxanthin to form the J-type dimer (or aggregate) could be important for its function in photosynthesis. The abilities of five carotenoids (zeaxanthin, violaxanthin, lutein, neoxanthin and beta-carotene) to quench chlorophyll-a fluorescence were compared. Zeaxanthin, in its two micellar dimeric forms, and beta-carotene were comparable good quenchers of chlorophyll-a fluorescence. Violaxanthin was a much weaker quencher, if at all. Lutein and neoxanthin rather enhanced the fluorescence. The implications to non

  8. Modification of silica surface by gamma ray induced Ad micellar Polymerization

    International Nuclear Information System (INIS)

    Buathong, Salukjit; Pongprayoon, Thirawudh; Suwanmala, Phiriyatorn

    2005-10-01

    Precipitated silica is often added to natural rubber compounds in order to improve performance in commercial application. A problem with using silica as filler is the poor compatibility between silica and natural rubber. In this research, polyisoprene was coated on silica surface by gamma ray induced ad micellar polymerization in order to achieve the better compatibility between silica and natural rubber. The modified silica was characterized by FT-IR, and SEM. The results show that polyisoprene was successfully coated on silica surface via gamma ray induced ad micellar polymerization

  9. Highly Viscoelastic Reverse Wormlike Micellar Systems from a Mixture of Lecithin, Polyglycerol Fatty Acid Monoesters, and an Oil.

    Science.gov (United States)

    Hashizaki, Kaname; Imai, Miko; Yako, Shuhei; Tsusaka, Hitomi; Sakanishi, Yuichi; Saito, Yoshihiro; Fujii, Makiko

    2017-09-01

    We report new lecithin reverse wormlike micelles with high viscoelasticity formed using lecithin/polyglycerol fatty acid monoester (PGLFA)/oil systems. In this study, the influence of the amphiphilicity (i.e., hydrophile-lipophile balance, HLB) of PGLFA on the phase behavior and rheological properties of reverse wormlike micelles was investigated in detail. PGLFAs with degrees of polymerization of polyglycerol varying between 6-40 and constituent fatty acids with chains between 6-18 carbon atoms long were used. Partial phase diagrams of the lecithin/PGLFA/n-decane systems indicated that the appropriate PGLFA could change the lecithin/oil solution into a highly viscoelastic solution comprising reverse wormlike micelles. Rheological measurements showed that all systems that formed reverse wormlike micelles exhibited an unusual phenomenon called "shear-thickening". Furthermore, reverse wormlike micelles grew as the PGLFA concentration increased and the zero-shear viscosity (η 0 ) of the solution rapidly increased. Our results indicate that the magnitude of the maximum η 0 depends on the degree of polymerization of the constituent polyglycerol in the PGLFA, while the size of the reverse micellar region and the highly viscous region in the phase diagram depends on the HLB value of the PGLFA.

  10. Micellar HPLC Method for Simultaneous Determination of Ethamsylate and Mefenamic Acid in Presence of Their Main Impurities and Degradation Products.

    Science.gov (United States)

    Ibrahim, Fawzia; Sharaf El-Din, Mohie K; El-Deen, Asmaa Kamal; Shimizu, Kuniyoshi

    2017-01-01

    An eco-friendly sensitive, rapid and less hazardous micellar liquid chromatographic method was developed and validated for the simultaneous analysis of ethamsylate (ETM) and mefenamic acid (MFA) in the presence of hydroquinone (HQ) and 2,3-dimethylaniline (DMA) the main impurities of ETM and MFA, respectively. Good chromatographic separation was attained using Eclipse XDB-C8 column (150 mm × 4.6 mm, 5 μm particle size) adopting UV detection at 300 nm with micellar mobile phase consisting of 0.12 M sodium dodecyl sulfate, 0.3% triethylamine and 15% 2-propanol in 0.02 M orthophosphoric acid (pH 7.0) at 1.0 mL/min. The analytes were well resolved in <6.0 min, ETM (t R = 1.55 min), HQ (t R = 1.95 min), MFA (t R = 4.55 min) and DMA (t R = 5.80 min). Different validation parameters were examined as recommended by international conference on harmonization (ICH) guidelines. The method was linear over the concentration ranges of 0.5-18.0, 0.5-20.0, 0.01-0.5 and 0.02-0.2 µg/mL with limits of detection of 0.118, 0.159, 0.005 and 0.005 µg/mL and limits of quantification of 0.358, 0.482, 0.014 and 0.015 µg/mL for ETM, MFA, HQ and DMA, respectively. The suggested method was successfully applied for the determination of the two drugs in their bulk powder, laboratory-prepared mixtures, single-ingredient and co-formulated tablets. The obtained results were in accordance with those of the comparison method. The method can also detect trace amounts of HQ and DMA as the main impurities of ETM and MFA, respectively, within the BP limit (0.1%) for both impurities. Furthermore, it is a stability-indicating one for the determination of ETM in its pure form, single-component tablet and co-formulated tablets with other drugs. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Large area bulk superconductors

    Science.gov (United States)

    Miller, Dean J.; Field, Michael B.

    2002-01-01

    A bulk superconductor having a thickness of not less than about 100 microns is carried by a polycrystalline textured substrate having misorientation angles at the surface thereof not greater than about 15.degree.; the bulk superconductor may have a thickness of not less than about 100 microns and a surface area of not less than about 50 cm.sup.2. The textured substrate may have a thickness not less than about 10 microns and misorientation angles at the surface thereof not greater than about 15.degree.. Also disclosed is a process of manufacturing the bulk superconductor and the polycrystalline biaxially textured substrate material.

  12. Water solubilization and the dielectric permeability of isomolar solutions of oleic acid and triethanolamine soap of oleic acid

    Energy Technology Data Exchange (ETDEWEB)

    Demchenko, P.A.; Novitskaya, L.D.

    The investigation of the dependence of water solubilization on the dielectric permeability of isomolar solutions of oleic acid and triethanolamine soap of oleic acid in benzene has shown that at certain acid additions, the solubilization effect can increase almost 6 times, as compared to the soap solution without acid additions. In some cases, electron donor-acceptor complexes are formed, which are more polar than the original components. This leads to a change in the molecular-disperse and micellar part of solution and affects significantly the structure and properties of micellar hydrocarbon solutions of surfactants.

  13. phenylalanine and l-tyrosine as chiral micellar media for the cat

    African Journals Online (AJOL)

    potential chiral micellar catalysts for the Diels-Alder reaction between methyl acrylate and .... hydrophobic effects, electrostatic interactions and the accompanying medium effects. In the case .... liquids as effective organocatalysts for Diels-Alder reaction. Green Chem. 2014, 16 .... Colloids and Surfaces A: Physicochem.

  14. phenylalanine and l-tyrosine as chiral micellar media for the cat

    African Journals Online (AJOL)

    polar solvents [15-18]. Hence, surfactants offer the possibility for organic reactions to occur in aqueous media, and from the viewpoint of green chemistry, water is safer, harmless and environmentally benign [19]. However, there has been limited work on the use of chiral micellar media to catalyze Diels-. Alder reactions.

  15. A kinetic study of 1,3-dipolar cycloadditions in micellar media

    NARCIS (Netherlands)

    Rispens, T; Engberts, JBFN

    2003-01-01

    The kinetics of the 1,3-dipolar cycloadditions (DC) of benzonitrile oxide with a series of N-substituted maleimides in micellar media have been investigated. Surfactants studied include anionic sodium dodecyl sulfate, cationic cetyltrimethylammonium bromide, and a series of nonionic alkyl

  16. Interaction of antihypertensive drug amiloride with metal ions in micellar medium using fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Gujar, Varsha; Pundge, Vijaykumar; Ottoor, Divya

    2015-01-01

    Steady state and life time fluorescence spectroscopy have been employed to study the interaction of antihypertensive drug amiloride with biologically important metal ions i.e. Cu 2+ , Fe 2+ , Ni 2+ and Zn 2+ in various micellar media (anionic SDS (sodium dodecyl sulfate), nonionic TX-100 (triton X-100) and cationic CTAB (cetyl trimethyl ammonium bromide)). It was observed that fluorescence properties of drug remain unaltered in the absence of micellar media with increasing concentration of metal ions. However, addition of Cu 2+ , Fe 2+ and Ni 2+ caused fluorescence quenching of amiloride in the presence of anionic micelle, SDS. Binding of drug with metal ions at the charged micellar interface could be the possible reason for this pH-dependent metal-mediated fluorescence quenching. There were no remarkable changes observed due to metal ions addition when drug was present in cationic and nonionic micellar medium. The binding constant and bimolecular quenching constant were evaluated and compared for the drug–metal complexes using Stern–Volmer equation and fluorescence lifetime values. - Highlights: • Interaction of amiloride with biologically important metal ions, Fe 2+ , Cu 2+ , Ni 2+ and Zn 2+ . • Monitoring the interaction in various micelle at different pH by fluorescence spectroscopy. • Micelles acts as receptor, amiloride as transducer and metal ions as analyte in the present system. • Interaction study provides pH dependent quenching and binding mechanism of drug with metal ions

  17. Atmospheric pressure photoionization for enhanced compatibility in on-line micellar electrokinetic chromatography-mass spectrometry

    NARCIS (Netherlands)

    Mol, Roelof; De Jong, Gerhardus J.; Somsen, Govert W.

    2005-01-01

    Atmospheric pressure photoionization (APPI) is presented as a novel means for the combination of micellar electrokinetic chromatography (MEKC) and mass spectrometry (MS). The on-line coupling is achieved using an adapted sheath flow interface installed on an orthogonal APPI source. Acetone or

  18. The Nature of the Micellar Stern Region As Studied by Reaction Kinetics. 2

    NARCIS (Netherlands)

    Buurma, Niklaas J.; Serena, Paola; Blandamer, Michael J.; Engberts, Jan B.F.N.

    2004-01-01

    The nature of rate-retarding effects of cationic micelles on the water-catalyzed hydrolyses of a series of para-substituted 1-benzoyl-1,2,4-triazoles (1a-f) and 1-benzoyl-3-phenyl-1,2,4-triazole (2) has been studied using kinetic methods. A comparison is drawn between medium effects in the micellar

  19. The Mobile Phase Motion in Ascending Micellar Thin-Layer Chromatography with Normal-Phase Plates

    NARCIS (Netherlands)

    Boichenko, Alexander P.; Makhno, Iryna V.; Renkevich, Anton Yu.; Loginova, Lidia P.

    2011-01-01

    The physical chemical characteristics (surface tension and viscosity) of micellar mobile phases based on the cationic surfactant cetylpiridinium chloride and additives of alcohols (ethanol, 1-propanol, 1-butanol, 1-pentanol) have been obtained in this work. The effect of mobile phase properties on

  20. Encapsulation and covalent binding of molecular payload in enzymatically activated micellar nanocarriers.

    Science.gov (United States)

    Rosenbaum, Ido; Harnoy, Assaf J; Tirosh, Einat; Buzhor, Marina; Segal, Merav; Frid, Liat; Shaharabani, Rona; Avinery, Ram; Beck, Roy; Amir, Roey J

    2015-02-18

    The high selectivity and often-observed overexpression of specific disease-associated enzymes make them extremely attractive for triggering the release of hydrophobic drug or probe molecules from stimuli-responsive micellar nanocarriers. Here we utilized highly modular amphiphilic polymeric hybrids, composed of a linear hydrophilic polyethylene glycol (PEG) and an esterase-responsive hydrophobic dendron, to prepare and study two diverse strategies for loading of enzyme-responsive micelles. In the first type of micelles, hydrophobic coumarin-derived dyes were encapsulated noncovalently inside the hydrophobic core of the micelle, which was composed of lipophilic enzyme-responsive dendrons. In the second type of micellar nanocarrier the hydrophobic molecular cargo was covalently linked to the end-groups of the dendron through enzyme-cleavable bonds. These amphiphilic hybrids self-assembled into micellar nanocarriers with their cargo covalently encapsulated within the hydrophobic core. Both types of micelles were highly responsive toward the activating enzyme and released their molecular cargo upon enzymatic stimulus. Importantly, while faster release was observed with noncovalent encapsulation, higher loading capacity and slower release rate were achieved with covalent encapsulation. Our results clearly indicate the great potential of enzyme-responsive micellar delivery platforms due to the ability to tune their payload capacities and release rates by adjusting the loading strategy.

  1. Polymer-fullerene bulk heterojunction solar cells

    NARCIS (Netherlands)

    Janssen, RAJ; Hummelen, JC; Saricifti, NS

    Nanostructured phase-separated blends, or bulk heterojunctions, of conjugated Polymers and fullerene derivatives form a very attractive approach to large-area, solid-state organic solar cells.The key feature of these cells is that they combine easy, processing from solution on a variety of

  2. Combating wear in bulk solids handling plants

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    A total of five papers presented at a seminar on problems of wear caused by abrasive effects of materials in bulk handling. Topics of papers cover the designer viewpoint, practical experience from the steel, coal, cement and quarry industries to create an awareness of possible solutions.

  3. Superductile bulk metallic glass

    International Nuclear Information System (INIS)

    Yao, K.F.; Ruan, F.; Yang, Y.Q.; Chen, N.

    2006-01-01

    Usually, monolithic bulk metallic glasses undergo inhomogeneous plastic deformation and exhibit poor ductility (<2%) at room temperature. We report a newly developed Pd-Si binary bulk metallic glass, which exhibits a uniform plastic deformation and a large plastic engineering strain of 82% and a plastic true strain of 170%, together with initial strain hardening, slight strain softening and final strain hardening characteristics. The uniform shear deformation and the ultrahigh plasticity are mainly attributed to strain hardening, which results from the nanoscale inhomogeneity due to liquid phase separation. The formed nanoscale inhomogeneity will hinder, deflect, and bifurcate the propagation of shear bands

  4. Multicompartment micellar aggregates of linear ABC amphiphiles in solvents selective for the C block: A Monte Carlo simulation

    KAUST Repository

    Zhu, Yutian; Yu, Haizhou; Wang, Yongmei; Cui, Jie; Kong, Weixin; Jiang, Wei

    2012-01-01

    the simulations and the detailed phase diagrams for the ABC amphiphiles with different block lengths are obtained. The simulation results reveal that the micellar structure is largely controlled by block length, solvent quality, and incompatibility between

  5. Analysis of micellar and vesicular lecithin and cholesterol in model bile using 1H- and 31P-NMR

    NARCIS (Netherlands)

    de Graaf, M. P.; Groen, A. K.; Bovée, W. M.

    1995-01-01

    The distribution of phospholipid and cholesterol between the vesicular and micellar phases in bile plays an important role in the formation of cholesterol gallstones. Conventional analytical procedures to determine the distribution are potentially unreliable because they disturb the distribution of

  6. Synthesis of CaCO3 nanoparticles by carbonation of lime solutions in reverse micellar systems

    NARCIS (Netherlands)

    Heeres, H.J.; Jain, R.; Mehra, A.; Dagaonkar, M.V.

    2004-01-01

    Application of reverse micelles for the synthesis of nano-sized calcium carbonate particles in different solvents (cyclohexane, decane and heptane) has been investigated. The effect of the mole ratio of water-to-surfactant (R) and type of solvent has been studied on the size and nature of the

  7. Thermal Reshaping of Gold Nanorods in Micellar Solution of Water/Glycerol Mixtures

    Directory of Open Access Journals (Sweden)

    Al Sayed A. Al-Sherbini

    2010-01-01

    Full Text Available Gold nanorods (Nds with aspect ratios of 4, 3.5, and 2.8 were prepared by the electrochemical method. The nanorods were thermally studied in binary solvents of aqueous glycerol at different ratios (25%–75%. The results illustrated that the longitudinal surface plasmon resonance (SPL is strongly dependent on the dielectric constant. The maximum absorption is red shifted with increasing the glycerol/water ratio. This was attributed to the decreasing value of the dielectric constant of the binary solvents. Moreover, by increasing the temperatures, the results showed relative instability of the gold nanorods. This attributed to the relative instability of the micelle capping the nanorods.

  8. Application of thermodynamic models to study micellar properties of sodium perfluoroalkyl carboxylates in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Perez, Alfredo [Group of Biophysics and Interfaces, Department of Applied Physics, Faculty of Physics, University of Santiago de Compostela, E-15782 Santiago de Compostela (Spain)], E-mail: alf@usc.es; Ruso, Juan M. [Group of Biophysics and Interfaces, Department of Applied Physics, Faculty of Physics, University of Santiago de Compostela, E-15782 Santiago de Compostela (Spain); Romero, Maria J. [Department of Inorganic Chemistry, Faculty of Chemistry, University of Santiago de Compostela, E-15782 Santiago de Compostela (Spain); Blanco, Elena [Group of Biophysics and Interfaces, Department of Applied Physics, Faculty of Physics, University of Santiago de Compostela, E-15782 Santiago de Compostela (Spain); Prieto, Gerardo [Group of Biophysics and Interfaces, Department of Applied Physics, Faculty of Physics, University of Santiago de Compostela, E-15782 Santiago de Compostela (Spain); Sarmiento, Felix [Group of Biophysics and Interfaces, Department of Applied Physics, Faculty of Physics, University of Santiago de Compostela, E-15782 Santiago de Compostela (Spain)

    2005-06-27

    Sodium perfluoroalkyl carboxylates (CnFONa) with n = 6, 9, 10 have been studied by conductivity measurements at different temperatures. The Krafft point was determined for C9FONa and C10FONa at the highest concentration studied by measuring the temperature dependence of the specific conductivity. The critical micelle concentration (cmc) and the ionization degree of the micelle ({beta}) were estimated from conductivity vs. molality plots at different temperatures. Using these data and previous results on temperature dependence of cmc and {beta} of sodium perfluoroheptanoate and perfluorooctanoate, different models were applied to obtain the thermodynamic properties of micellization. The results are discussed in terms of alkyl chain length.

  9. Application of thermodynamic models to study micellar properties of sodium perfluoroalkyl carboxylates in aqueous solutions

    International Nuclear Information System (INIS)

    Gonzalez-Perez, Alfredo; Ruso, Juan M.; Romero, Maria J.; Blanco, Elena; Prieto, Gerardo; Sarmiento, Felix

    2005-01-01

    Sodium perfluoroalkyl carboxylates (CnFONa) with n = 6, 9, 10 have been studied by conductivity measurements at different temperatures. The Krafft point was determined for C9FONa and C10FONa at the highest concentration studied by measuring the temperature dependence of the specific conductivity. The critical micelle concentration (cmc) and the ionization degree of the micelle (β) were estimated from conductivity vs. molality plots at different temperatures. Using these data and previous results on temperature dependence of cmc and β of sodium perfluoroheptanoate and perfluorooctanoate, different models were applied to obtain the thermodynamic properties of micellization. The results are discussed in terms of alkyl chain length

  10. Exchange-dynamics of a neutral hydrophobic dye in micellar solutions studied by Fluorescence Correlation Spectroscopy.

    Science.gov (United States)

    Bordello, Jorge; Novo, Mercedes; Al-Soufi, Wajih

    2010-05-15

    The dynamics of the exchange of the moderately hydrophobic neutral dye Coumarine 152 between the aqueous phase and the phase formed by neutral Triton X-100 micelles is studied by Fluorescence Correlation Spectroscopy. The changes in the photophysical properties of the dye in presence of the micelles are discussed. The low quantum yield, the low saturation threshold and the necessary high energetic excitation of this dye requires a careful selection of the experimental conditions in order to obtain dynamic and diffusional properties with reasonable precision. It is shown that the contrast between the brightness of free and bound dye has a strong influence on the sensitivity of the FCS experiment. The entry rate constant of the dye to the micelles, k(+)=(0.8±0.3)×10(10) M(-1) s(-1), is very near to the diffusion controlled limit. The high association equilibrium constant of K=(129±3)×10(3) M(-1) is mainly determined by the low exit rate constant, k(-)=(0.6±0.2)×10(5) s(-1). Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Coexistence of spheres and rods in micellar solution of dodecyldimethylamine oxide

    NARCIS (Netherlands)

    Majhi, P.R.; Dubin, P.L.; Feng, X.H.; Ruo, X.H.; Leermakers, F.A.M.; Tribet, C.

    2004-01-01

    Micelles of dimethyldodecylamine oxide (DMDAO) are known to exhibit sphere-to-rod transitions as a function of pH and ionic strength. Long micelles are stabilized at pH corresponding to half-protonation, because hydrogen bonding between nonionic and protonated monomers yields an effectively

  12. Auctioning Bulk Mobile Messages

    NARCIS (Netherlands)

    S. Meij (Simon); L-F. Pau (Louis-François); H.W.G.M. van Heck (Eric)

    2003-01-01

    textabstractThe search for enablers of continued growth of SMS traffic, as well as the take-off of the more diversified MMS message contents, open up for enterprises the potential of bulk use of mobile messaging , instead of essentially one-by-one use. In parallel, such enterprises or value added

  13. Diffusion or bulk flow

    DEFF Research Database (Denmark)

    Schulz, Alexander

    2015-01-01

    is currently matter of discussion, called passive symplasmic loading. Based on the limited material available, this review compares the different loading modes and suggests that diffusion is the driving force in apoplasmic loaders, while bulk flow plays an increasing role in plants having a continuous...

  14. Ferromagnetic bulk glassy alloys

    International Nuclear Information System (INIS)

    Inoue, Akihisa; Makino, Akihiro; Mizushima, Takao

    2000-01-01

    This paper deals with the review on the formation, thermal stability and magnetic properties of the Fe-based bulk glassy alloys in as-cast bulk and melt-spun ribbon forms. A large supercooled liquid region over 50 K before crystallization was obtained in Fe-(Al, Ga)-(P, C, B, Si), Fe-(Cr, Mo, Nb)-(Al, Ga)-(P, C, B) and (Fe, Co, Ni)-Zr-M-B (M=Ti, Hf, V, Nb, Ta, Cr, Mo and W) systems and bulk glassy alloys were produced in a thickness range below 2 mm for the Fe-(Al, Ga)-(P, C, B, Si) system and 6 mm for the Fe-Co-(Zr, Nb, Ta)-(Mo, W)-B system by copper-mold casting. The ring-shaped glassy Fe-(Al, Ga)-(P, C, B, Si) alloys exhibit much better soft magnetic properties as compared with the ring-shaped alloy made from the melt-spun ribbon because of the formation of the unique domain structure. The good combination of high glass-forming ability and good soft magnetic properties indicates the possibility of future development as a new bulk glassy magnetic material

  15. Field-Amplified Sample Injection-Micellar Electrokinetic Chromatography for the Determination of Benzophenones in Food Simulants

    Directory of Open Access Journals (Sweden)

    Cristina Félez

    2015-07-01

    Full Text Available A field-amplified sample injection-micellar electrokinetic chromatography (FASI-MEKC method for the determination of 14 benzophenones (BPs in a food simulant used in migration studies of food packaging materials was developed, allowing almost baseline separation in less than 21 min. The use of a 10 mM sodium dodecyl sulfate (SDS solution as sample matrix was mandatory to achieve FASI enhancement of the analyzed BPs. A 21- to 784-fold sensitivity enhancement was achieved with FASI-MEKC, obtaining limits of detection down to 5.1–68.4 µg/L, with acceptable run-to-run precisions (RSD values lower than 22.3% and accuracy (relative errors lower than 21.0%. Method performance was evaluated by quantifying BPs in the food simulant spiked at 500 µg/L (bellow the established specific migration limit for BP (600 µg/L by EU legislation. For a 95% confidence level, no statistical differences were observed between found and spiked concentrations (probability at the confidence level, p value, of 0.55, showing that the proposed FASI-MEKC method is suitable for the analysis of BPs in food packaging migration studies at the levels established by EU legislation.

  16. Micellar Enhanced Ultrafiltration for the Removal of Polycyclic Aromatic Hydrocarbons (PAHs Mixtures in Underground Contaminated Water in Oman

    Directory of Open Access Journals (Sweden)

    Mohamed Aoudia

    2011-12-01

    Full Text Available In an attempt to analyze polycyclic aromatic hydrocarbons (PAHs in diesel contaminated underground water in Oman (Rustaq, Gas chromatography-Mass spectrometry was first used to determine the different concentrations in a standard mixture containing 16 PAHs. Retention time and calibration curves were obtained for all aromatic compounds and were used to identify a given analyte as well as its concentration in the contaminated underground water. Micellar enhanced ultrafiltration (MEUF was then used to treat standard aqueous solution of PAHs at low concentration (~ 1 ppb using an edible nonionic surfactant (Tween 80. The totality of the mixture components was completely rejected. Within the experimental detection limit (± 0.01 ppb, the residual PAH concentrations were less than 0.01 ppb in accord with the allowed concentrations in drinking water. Likewise, excellent rejections of PAHs in MEUF treatment of diesel contaminated underground water at an Omani site (Rustaq were observed. The concentration of PAHs was reduced to less than 0.01 ppb, the accepted limit for the most toxic member of the PAH group (benzo(apyrene.

  17. Rapid determination of piracetam in human plasma and cerebrospinal fluid by micellar electrokinetic chromatography with sample direct injection.

    Science.gov (United States)

    Yeh, Hsin-Hua; Yang, Yuan-Han; Ko, Ju-Yun; Chen, Su-Hwei

    2006-07-07

    A simple micellar electrokinetic chromatography (MEKC) method with UV detection at 200 nm for analysis of piracetam in plasma and in cerebrospinal fluid (CSF) by direct injection without any sample pretreatment is described. The separation of piracetam from biological matrix was performed at 25 degrees C using a background electrolyte consisting of Tris buffer with sodium dodecyl sulfate (SDS) as the electrolyte solution. Several parameters affecting the separation of the drug from biological matrix were studied, including the pH and concentrations of the Tris buffer and SDS. Under optimal MEKC condition, good separation with high efficiency and short analyses time is achieved. Using imidazole as an internal standard (IS), the linear ranges of the method for the determination of piracetam in plasma and in CSF were all between 5 and 500 microg/mL; the detection limit of the drug in plasma and in CSF (signal-to-noise ratio=3; injection 0.5 psi, 5s) was 1.0 microg/mL. The applicability of the proposed method for determination of piracetam in plasma and CSF collected after intravenous administration of 3g piracetam every 6h and oral administration 1.2g every 6h in encephalopathy patients with aphasia was demonstrated.

  18. Recent Progress in Functional Micellar Carriers with Intrinsic Therapeutic Activities for Anticancer Drug Delivery.

    Science.gov (United States)

    Qu, Ying; Chu, BingYang; Shi, Kun; Peng, JinRong; Qian, ZhiYong

    2017-12-01

    Polymeric micelles have presented superior delivery properties for poorly water-soluble chemotherapeutic agents. However, it remains discouraging that there may be some additional short or long-term toxicities caused by the metabolites of high quantities of carriers. If carriers had simultaneous therapeutic effects with the drug, these issues would not be a concern. For this, carriers not only simply act as drug carriers, but also exert an intrinsic therapeutic effect as a therapeutic agent. The functional micellar carriers would be beneficial to maximize the anticancer effect, overcome the drug resistance and reduce the systemic toxicity. In this review, we aim to summarize the recent progress on the development of functional micellar carriers with intrinsic anticancer activities for the delivery of anticancer drugs. This review focuses on the design strategies, properties of carriers and the drug loading behavior. In addition, the combinational therapeutic effects between carriers and chemotherapeutic agents are also discussed.

  19. Responsive micellar films of amphiphilic block copolymer micelles: control on micelle opening and closing.

    Science.gov (United States)

    Chen, Zhiquan; He, Changcheng; Li, Fengbin; Tong, Ling; Liao, Xingzhi; Wang, Yong

    2010-06-01

    We reported the deliberate control on the micelle opening and closing of amphiphilic polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) micellar films by exposing them to selective solvents. We first treated the micellar films with polar solvents including ethanol and water (pH = 4, 8, and 12) that have different affinities to P2VP. We observed opening of the micelles in all the cases. Both the size of opened pores and the opening rate are dependent on the solvency of different solvents for P2VP. We then explored the closing behavior of the opened micelles using solvents having different affinities to PS. We found that the opened micelles were recovered to their initial closed micelle forms. The recovery was accompanied by a slow micelle disassociation process which gradually reduced the micelle size. The rates of the micelle closing and disassociation are also dependent on the solvency of different solvents for PS.

  20. Comparison of micellar extraction combined with ionic liquid based vortex-assisted liquid-liquid microextraction and modified quick, easy, cheap, effective, rugged, and safe method for the determination of difenoconazole in cowpea.

    Science.gov (United States)

    Chen, Xiaochu; Bian, Yanli; Liu, Fengmao; Teng, Peipei; Sun, Pan

    2017-10-06

    Two simple sample pretreatment for the determination of difenoconazole in cowpea was developed including micellar extraction combined with ionic liquid based vortex-assisted liquid-liquid microextraction (ME-IL-VALLME) prior to high performance liquid chromatography (HPLC), and modified quick, easy, cheap, effective, rugged, and safe method (QuEChERS) coupled with HPLC-MS/MS. In ME-IL-VALLME method, the target analyte was extracted by surfactant Tween 20 micellar solution, then the supernatant was diluted with 3mL water to decrease the solubility of micellar solution. Subsequently, the vortex-assisted liquid-liquid microextraction (VALLME) procedure was performed in the diluted extraction solution by using the ionic liquid of 1-hexyl-3-methylimidazolium hexafluorophosphate ([HMIM]PF 6 ) as the extraction solvent and Tween 20 as an emulsifier to enhance the dispersion of the water-immiscible ionic liquid into the aqueous phase. Parameters that affect the extraction have been investigated in both methods Under the optimum conditions, the limits of quantitation were 0.10 and 0.05mgkg -1 , respectively. And good linearity was achieved with the correlation coefficient higher than 0.9941. The relative recoveries ranged from 78.6 to 94.8% and 92.0 to 118.0% with the relative standard deviations (RSD) of 7.9-9.6% and 1.2-3.2%, respectively. Both methods were quick, simple and inexpensive. However, the ME-IL-VALLME method provides higher enrichment factor compared with conventional QuEChERS method. The ME-IL-VALLME method has a strong potential for the determination of difenoconazole in complex vegetable matrices with HPLC. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Transepithelial Transport of Curcumin in Caco-2 Cells Is significantly Enhanced by Micellar Solubilisation.

    Science.gov (United States)

    Frank, Jan; Schiborr, Christina; Kocher, Alexa; Meins, Jürgen; Behnam, Dariush; Schubert-Zsilavecz, Manfred; Abdel-Tawab, Mona

    2017-03-01

    Curcumin, the active constituent of Curcuma longa L. (family Zingiberaceae), has gained increasing interest because of its anti-cancer, anti-inflammatory, anti-diabetic, and anti-rheumatic properties associated with good tolerability and safety up to very high doses of 12 g. Nanoscaled micellar formulations on the base of Tween 80 represent a promising strategy to overcome its low oral bioavailability. We therefore aimed to investigate the uptake and transepithelial transport of native curcumin (CUR) vs. a nanoscaled micellar formulation (Sol-CUR) in a Caco-2 cell model. Sol-CUR afforded a higher flux than CUR (39.23 vs. 4.98 μg min -1  cm -2 , respectively). This resulted in a higher P app value of 2.11 × 10 -6  cm/s for Sol-CUR compared to a P app value of 0.56 × 10 -6  cm/s for CUR. Accordingly a nearly 9.5 fold higher amount of curcumin was detected on the basolateral side at the end of the transport experiments after 180 min with Sol-CUR compared to CUR. The determined 3.8-fold improvement in the permeability of curcumin is in agreement with an up to 185-fold increase in the AUC of curcumin observed in humans following the oral administration of the nanoscaled micellar formulation compared to native curcumin. The present study demonstrates that the enhanced oral bioavailability of micellar curcumin formulations is likely a result of enhanced absorption into and increased transport through small intestinal epithelial cells.

  2. One electron reduction and absorption characteristics of Cresyl violet in micellar medium

    International Nuclear Information System (INIS)

    Gawandi, Vijay B.; Guha, S.N.; Hari Mohan

    2000-01-01

    Effect of surfactant micelles on absorption characteristics of Cresyl violet (CV) and on its redox reactions have been studied. Among the various surfactants investigated anionic surfactants particularly sodium lauryl sulfate (SLS) and sodium dodecyl benzene sulfonate (SDDBS) showed marked effect on these properties. Reactions of hydrated electron in these micellar media were studied using the technique of nanosecond pulse radiolysis. Results of other surfactants, viz.BSS, CTAB and TritonX-100 have also been presented. (author)

  3. Photochemical assessment of UO2+2 complexation in Triton X-100 micellar system

    International Nuclear Information System (INIS)

    Das, S.K.; Ganguly, B.N.

    1994-01-01

    This is a report on the spectral characteristics of UO 2 +2 in the excited state in the Triton X-100 micellar medium. The downward curving of the Stern-Volmer plot explains the two kinds of populations of UO 2 +2 upon micellization. A blue shift of the quenched emission is ascribed due to the collisional encounter of UO 2 +2 with the head groups of Triton X-100. (author). 5 refs., 2 figs

  4. Deracemization of bilirubin as the marker of the chirality of micellar aggregates.

    Science.gov (United States)

    Sorrenti, Alessandro; Altieri, Barbara; Ceccacci, Francesca; Di Profio, Pietro; Germani, Raimondo; Giansanti, Luisa; Savelli, Gianfranco; Mancini, Giovanna

    2012-01-01

    The deracemization of bilirubin in micellar aggregates of structurally correlated chiral surfactants was studied by circular dichroism experiments and exploited as the marker of the expression of chirality of the aggregates. The obtained results suggest that the hydrophobic interactions control the transfer of chirality from the monomers to the aggregates, and that different regions of the same aggregate might feature opposite enantiorecognition capabilities. Copyright © 2011 Wiley-Liss, Inc.

  5. Fundamental Characterization of the Micellar Self-Assembly of Sophorolipid Esters.

    Science.gov (United States)

    Koh, Amanda; Todd, Katherine; Sherbourne, Ezekiel; Gross, Richard A

    2017-06-13

    Surfactants are ubiquitous constituents of commercial and biological systems that function based on complex structure-dependent interactions. Sophorolipid (SL) n-alkyl esters (SL-esters) comprise a group of modified naturally derived glycolipids from Candida bombicola. Herein, micellar self-assembly behavior as a function of SL-ester chain length was studied. Surface tensions as low as 31.2 mN/m and critical micelle concentrations (CMCs) as low as 1.1 μM were attained for diacetylated SL-decyl ester (dASL-DE) and SL-octyl ester, respectively. For deacetylated SL-esters, CMC values reach a lower limit at SL-ester chains above n-butyl (SL-BE, 1-3 μM). This behavior of SL-esters with increasing hydrophobic tail length is unlike other known surfactants. Diffusion-ordered spectroscopy (DOSY) and T 1 relaxation NMR experiments indicate this behavior is due to a change in intramolecular interactions, which impedes the self-assembly of SL-esters with chain lengths above SL-BE. This hypothesis is supported by micellar thermodynamics where a disruption in trends occurs at n-alkyl ester chain lengths above those of SL-BE and SL-hexyl ester (SL-HE). Diacetylated (dA) SL-esters exhibit an even more unusual trend in that CMC increases from 1.75 to 815 μM for SL-ester chain lengths of dASL-BE and dASL-DE, respectively. Foaming studies, performed to reveal the macroscopic implications of SL-ester micellar behavior, show that the observed instability in foams formed using SL-esters are due to coalescence, which highlights the importance of understanding intermicellar interactions. This work reveals that SL-esters are an important new family of green high-performing surfactants with unique structure-property relationships that can be tuned to optimize micellar characteristics.

  6. Interaction of antihypertensive drug amiloride with metal ions in micellar medium using fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gujar, Varsha; Pundge, Vijaykumar; Ottoor, Divya, E-mail: divya@chem.unipune.ac.in

    2015-05-15

    Steady state and life time fluorescence spectroscopy have been employed to study the interaction of antihypertensive drug amiloride with biologically important metal ions i.e. Cu{sup 2+}, Fe{sup 2+}, Ni{sup 2+} and Zn{sup 2+} in various micellar media (anionic SDS (sodium dodecyl sulfate), nonionic TX-100 (triton X-100) and cationic CTAB (cetyl trimethyl ammonium bromide)). It was observed that fluorescence properties of drug remain unaltered in the absence of micellar media with increasing concentration of metal ions. However, addition of Cu{sup 2+}, Fe{sup 2+} and Ni{sup 2+} caused fluorescence quenching of amiloride in the presence of anionic micelle, SDS. Binding of drug with metal ions at the charged micellar interface could be the possible reason for this pH-dependent metal-mediated fluorescence quenching. There were no remarkable changes observed due to metal ions addition when drug was present in cationic and nonionic micellar medium. The binding constant and bimolecular quenching constant were evaluated and compared for the drug–metal complexes using Stern–Volmer equation and fluorescence lifetime values. - Highlights: • Interaction of amiloride with biologically important metal ions, Fe{sup 2+}, Cu{sup 2+}, Ni{sup 2+} and Zn{sup 2+}. • Monitoring the interaction in various micelle at different pH by fluorescence spectroscopy. • Micelles acts as receptor, amiloride as transducer and metal ions as analyte in the present system. • Interaction study provides pH dependent quenching and binding mechanism of drug with metal ions.

  7. Liquid crystalline states of surfactant solutions of isotropic micelles

    International Nuclear Information System (INIS)

    Bagdassarian, C.; Gelbart, W.M.; Ben-Shaul, A.

    1988-01-01

    We consider micellar solutions whose surfactant molecules prefer strongly to form small, globular aggregates in the absence of intermicellar interactions. At sufficiently high volume fraction of surfactant, the isotropic phase of essentially spherical micelles is shown to be unstable with respect to an orientationally ordered (nematic) state of rodlike aggregates. This behavior is relevant to the phase diagrams reported for important classes of aqueous amphiphilic solutions

  8. Characterisation of bulk solids

    Energy Technology Data Exchange (ETDEWEB)

    D. McGlinchey [Glasgow Caledonian University, Glasgow (United Kingdom). Centre for Industrial Bulk Solids Handling

    2005-07-01

    Handling of powders and bulk solids is a critical industrial technology across a broad spectrum of industries, including minerals processing. With contributions from leading authors in their respective fields, this book provides the reader with a sound understanding of the techniques, importance and application of particulate materials characterisation. It covers the fundamental characteristics of individual particles and bulk particulate materials, and includes discussion of a wide range of measurement techniques, and the use of material characteristics in design and industrial practice. Contents: Characterising particle properties; Powder mechanics and rheology; Characterisation for hopper and stockpile design; Fluidization behaviour; Characterisation for pneumatic conveyor design; Explosiblility; 'Designer' particle characteristics; Current industrial practice; and Future trends. 130 ills.

  9. Micromegas in a bulk

    International Nuclear Information System (INIS)

    Giomataris, I.; De Oliveira, R.; Andriamonje, S.; Aune, S.; Charpak, G.; Colas, P.; Fanourakis, G.; Ferrer, E.; Giganon, A.; Rebourgeard, Ph.; Salin, P.

    2006-01-01

    In this paper, we present a novel way to manufacture the bulk Micromegas detector. A simple process based on the Printed Circuit Board (PCB) technology is employed to produce the entire sensitive detector. Such a fabrication process could be extended to very large area detectors made by the industry. The low cost fabrication together with the robustness of the electrode materials will make it attractive for several applications ranging from particle physics and astrophysics to medicine

  10. Probing the amphiphile micellar to hexagonal phase transition using Positron Annihilation Lifetime Spectroscopy.

    Science.gov (United States)

    Dong, Aurelia W; Fong, Celesta; Hill, Anita J; Boyd, Ben J; Drummond, Calum J

    2013-07-15

    Positron Annihilation Lifetime Spectroscopy (PALS) has been utilised only sparingly for structural characterisation in self assembled materials. Inconsistencies in approaches to experimental configuration and data analysis between studies has complicated comparisons between studies, meaning that the technique has not provided a cohesive data set across the study of different self assembled systems that advance the technique towards an important tool in soft matter research. In the current work a systematic study was conducted using ionic and non-ionic micellar systems with increasing surfactant concentration to probe positron behaviour on changes between micellar phase structures, and data analysed using contemporary approaches to fit four component spectra. A characteristic orthopositronium lifetime (in the organic regions) of 3.5±0.2 ns was obtained for the hexagonal phase for surfactants with C12 alkyl chains. Chemical quenching of the positron species was also observed for systems with ionic amphiphiles. The application of PALS has also highlighted an inconsistency in the published phase diagram for the octa(ethylene oxide) monododecyl ether (C12EO8) system. These results provide new insight into how the physical properties of micellar systems can be related to PALS parameters and means that the PALS technique can be applied to other more complex self-assembled amphiphile systems. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Hydrophobically modified inulin as an amphiphilic carbohydrate polymer for micellar delivery of paclitaxel for intravenous route.

    Science.gov (United States)

    Muley, Pratik; Kumar, Sunny; El Kourati, Fadoua; Kesharwani, Siddharth S; Tummala, Hemachand

    2016-03-16

    Micellization offers several advantages for the delivery of water insoluble drugs including a nanoparticulate 'core-shell' delivery system for drug targeting. Recently, hydrophobically modified polysaccharides (HMPs) are gaining recognition as micelle forming polymers to encapsulate hydrophobic drugs. In this manuscript, for the first time, we have evaluated the self-assembling properties of a lauryl carbamate derivative of the poly-fructose natural polymer inulin (Inutec SP1(®) (INT)) to form paclitaxel (PTX) loaded micelles. INT self-assembled into well-defined micellar structures in aqueous environment with a low critical micellar concentration of 27.8 μg/ml. INT micelles exhibited excellent hemocompatibility and low toxicity to cultured cells. PTX loaded INT micelles exhibited a mean size of 256.37 ± 10.45 nm with excellent drug encapsulation efficiency (95.66 ± 2.25%) and loading (8.69 ± 0.22%). PTX loaded micelles also displayed sustained release of PTX and enhanced anti-cancer efficacy in-vitro in mouse melanoma cells (B16F10) compared to Taxol formulation with Cremophor EL as solvent. In addition, PTX loaded INT micelles exhibited comparable in-vivo antitumor activity in B16F10 allograft mouse model at half the dose of Taxol. In conclusion, INT offers safe, inexpensive and natural alternative to widely used PEG-modified polymers for the formulation of micellar delivery systems for paclitaxel. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Stable curcumin-loaded polymeric micellar formulation for enhancing cellular uptake and cytotoxicity to FLT3 overexpressing EoL-1 leukemic cells.

    Science.gov (United States)

    Tima, Singkome; Anuchapreeda, Songyot; Ampasavate, Chadarat; Berkland, Cory; Okonogi, Siriporn

    2017-05-01

    The present study aims to develop a stable polymeric micellar formulation of curcumin (CM) with improved solubility and stability, and that is suitable for clinical applications in leukemia patients. CM-loaded polymeric micelles (CM-micelles) were prepared using poloxamers. The chemical structure of the polymers influenced micellar properties. The best formulation of CM-micelles, namely CM-P407, was obtained from poloxamer 407 at drug to polymer ratio of 1:30 and rehydrated with phosphate buffer solution pH 7.4. CM-P407 exhibited the smallest size of 30.3±1.3nm and highest entrapment efficiency of 88.4±4.1%. When stored at -80°C for 60days, CM-P407 retained high protection of CM and had no significant size change. In comparison with CM solution in dimethyl sulfoxide (CM-DMSO), CM kinetic degradation in both formulations followed a pseudo-first-order reaction, but the half-life of CM in CM-P407 was approx. 200 times longer than in CM-DMSO. Regarding the activity against FLT3 overexpressing EoL-1 leukemic cells, CM-P407 showed higher cytotoxicity than CM-DMSO. Moreover, intracellular uptake to leukemic cells of CM-P407 was 2-3 times greater than that of CM-DMSO. These promising results for CM-P407 will be further investigated in rodents and in clinical studies for leukemia treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Depleted Bulk Heterojunction Colloidal Quantum Dot Photovoltaics

    KAUST Repository

    Barkhouse, D. Aaron R.

    2011-05-26

    The first solution-processed depleted bulk heterojunction colloidal quantum dot solar cells are presented. The architecture allows for high absorption with full depletion, thereby breaking the photon absorption/carrier extraction compromise inherent in planar devices. A record power conversion of 5.5% under simulated AM 1.5 illumination conditions is reported. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Bulk-Fill Resin Composites

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Havndrup-Pedersen, Cæcilie; Honoré, Daniel

    2015-01-01

    the restorative procedure. The aim of this study, therefore, was to compare the depth of cure, polymerization contraction, and gap formation in bulk-fill resin composites with those of a conventional resin composite. To achieve this, the depth of cure was assessed in accordance with the International Organization...... for Standardization 4049 standard, and the polymerization contraction was determined using the bonded-disc method. The gap formation was measured at the dentin margin of Class II cavities. Five bulk-fill resin composites were investigated: two high-viscosity (Tetric EvoCeram Bulk Fill, SonicFill) and three low......-viscosity (x-tra base, Venus Bulk Fill, SDR) materials. Compared with the conventional resin composite, the high-viscosity bulk-fill materials exhibited only a small increase (but significant for Tetric EvoCeram Bulk Fill) in depth of cure and polymerization contraction, whereas the low-viscosity bulk...

  15. Bulk muscles, loose cables.

    Science.gov (United States)

    Liyanage, Chamari R D G; Kodali, Venkata

    2014-10-17

    The accessibility and usage of body building supplements is on the rise with stronger internet marketing strategies by the industry. The dangers posed by the ingredients in them are underestimated. A healthy young man came to the emergency room with palpitations and feeling unwell. Initial history and clinical examination were non-contributory to find the cause. ECG showed atrial fibrillation. A detailed history for any over the counter or herbal medicine use confirmed that he was taking supplements to bulk muscle. One of the components in these supplements is yohimbine; the onset of symptoms coincided with the ingestion of this product and the patient is symptom free after stopping it. This report highlights the dangers to the public of consuming over the counter products with unknown ingredients and the consequential detrimental impact on health. 2014 BMJ Publishing Group Ltd.

  16. First Example of a Lipophilic Porphyrin-Cardanol Hybrid Embedded in a Cardanol-Based Micellar Nanodispersion

    Directory of Open Access Journals (Sweden)

    Giuseppe Vasapollo

    2012-10-01

    Full Text Available Cardanol is a natural and renewable organic raw material obtained as the major chemical component by vacuum distillation of cashew nut shell liquid. In this work a new sustainable procedure for producing cardanol-based micellar nanodispersions having an embedded lipophilic porphyrin itself peripherally functionalized with cardanol substituents (porphyrin-cardanol hybrid has been described for the first time. In particular, cardanol acts as the solvent of the cardanol hybrid porphyrin and cholesterol as well as being the main component of the nanodispersions. In this way a “green” micellar nanodispersion, in which a high percentage of the micellar system is derived from renewable “functional” molecules, has been produced.

  17. Removal by irradiation of alcohols in micellar systems

    International Nuclear Information System (INIS)

    Moreno, A.J.; Mijata, T.; Arai, H.

    2003-01-01

    Mixtures of ortho-chloro phenol and butanol of 40 mg L -1 in aqueous solution in presence of the surfactant dodecyl sulfate of sodium (1 to 9 m mol L -1 ) were irradiated at 2 and 5 kGy of gamma radiation. The quantitative analysis of the irradiated and not irradiated samples carries out by gas chromatography. It was determined that the surfactant exercises a protection effect in the radiolytic removal of the studied alcohols. In general terms this it increases in function of the concentration of the surfactant. However, competition reactions exist among the substrate and some reactive species produced by the radiolysis of the water that in some moment exercise a positive catalytic effect in the removal of the substrate. (Author)

  18. Removal of phenol from synthetic waste water using Gemini micellar-enhanced ultrafiltration (GMEUF)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenxiang [MOE Key Laboratory of Regional Energy and Environmental Systems Optimization, Resources and Environmental Research Academy, North China Electric Power University, Beijing 102206 (China); Huang, Guohe, E-mail: huang@iseis.org [MOE Key Laboratory of Regional Energy and Environmental Systems Optimization, Resources and Environmental Research Academy, North China Electric Power University, Beijing 102206 (China); Wei, Jia [Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan, Canada S4S 0A2 (Canada); Li, Huiqin; Zheng, Rubing; Zhou, Ya [MOE Key Laboratory of Regional Energy and Environmental Systems Optimization, Resources and Environmental Research Academy, North China Electric Power University, Beijing 102206 (China)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Gemini surfactant micellar enhanced ultrafiltration was used to remove phenol. Black-Right-Pointing-Pointer The effect of different hydrophilic head groups of surfactant was analyzed. Black-Right-Pointing-Pointer SEM, ATR-FTIR and mercury porosimeter were applied to elucidate membrane fouling. Black-Right-Pointing-Pointer Gemini surfactant had superior performance in comparing with conventional surfactant. - Abstract: Comprehensive studies were conducted on the phenol wastewater ultrafiltration (UF) with the help of various concentrations of cationic Gemini surfactant (N1-dodecyl-N1,N1,N2,N2-tetramethyl-N2-octylethane-1,2-diaminium bromide, CG), conventional cationic surfactant (dodecyl trimethyl ammonium bromide, DTAB), anionic surfactant (sodium dodecyl sulfate, SDS) and nonionic surfactant ((dodecyloxy)polyethoxyethanol, Brij35). A flat sheet module with polyethersulfone (PES) membrane was employed in this investigation. The effects of feed concentration (phenol and surfactant) on the retention of phenol and surfactant, permeate flux and membrane fouling by micelles were evaluated. The distribution coefficient (D), the loading of the micelles (L{sub m}) and the equilibrium distribution constant (K) were also utilized to estimate the micellar-enhanced ultrafiltration ability for phenol. Scanning electron microscope (SEM), Fourier transform infrared spectrometer with attenuated total reflectance accessory (ATR-FTIR) and mercury porosimeter were applied to analyze membrane surface morphology, membrane material characteristics and membrane fouling for the original and fouled membranes. Based on the above analysis, the performance of the selected Gemini surfactant was proved superior in the following aspects: retention of phenol/surfactant (peak value is 95.8% for phenol retention), permeate flux and membrane fouling with respect to other conventional surfactants possessing equal alkyl chain length. These results demonstrated

  19. Application of micellar electrokinetic capillary chromatography for routine analysis of different materials

    Directory of Open Access Journals (Sweden)

    Injac Rade

    2008-01-01

    Full Text Available Micellar electrokinetic capillary chromatography (MEKC has become a popular mode among the several capillary electro-migration techniques. Most drug analysis can be performed by using MEKC because of its wide applicability. Separation of very complex mixtures, determination of drugs in the biological materials, etc., can be successfully achieved by MEKC. This review surveys typical applications of MEKC analysis. Recent advances in MEKC, especially with solid-phase extraction and large-volume sample stacking, are described. Modes of electrokinetic chromatography including MEKC, a separation theory of MEKC, environmental friendly analysis, and selectivity manipulation in MEKC are also briefly mentioned.

  20. Optimisation of resolution in micellar electrokinetic chromatography by multivariate evaluation of electrolytes.

    Science.gov (United States)

    Mikaeli, S; Thorsén, G; Karlberg, B

    2001-01-12

    A novel approach to multivariate evaluation of separation electrolytes for micellar electrokinetic chromatography is presented. An initial screening of the experimental parameters is performed using a Plackett-Burman design. Significant parameters are further evaluated using full factorial designs. The total resolution of the separation is calculated and used as response. The proposed scheme has been applied to the optimisation of the separation of phenols and the chiral separation of (+)-1-(9-anthryl)-2-propyl chloroformate-derivatized amino acids. A total of eight experimental parameters were evaluated and optimal conditions found in less than 48 experiments.

  1. Microfabricated Bulk Piezoelectric Transformers

    Science.gov (United States)

    Barham, Oliver M.

    Piezoelectric voltage transformers (PTs) can be used to transform an input voltage into a different, required output voltage needed in electronic and electro- mechanical systems, among other varied uses. On the macro scale, they have been commercialized in electronics powering consumer laptop liquid crystal displays, and compete with an older, more prevalent technology, inductive electromagnetic volt- age transformers (EMTs). The present work investigates PTs on smaller size scales that are currently in the academic research sphere, with an eye towards applications including micro-robotics and other small-scale electronic and electromechanical sys- tems. PTs and EMTs are compared on the basis of power and energy density, with PTs trending towards higher values of power and energy density, comparatively, indicating their suitability for small-scale systems. Among PT topologies, bulk disc-type PTs, operating in their fundamental radial extension mode, and free-free beam PTs, operating in their fundamental length extensional mode, are good can- didates for microfabrication and are considered here. Analytical modeling based on the Extended Hamilton Method is used to predict device performance and integrate mechanical tethering as a boundary condition. This model differs from previous PT models in that the electric enthalpy is used to derive constituent equations of motion with Hamilton's Method, and therefore this approach is also more generally applica- ble to other piezoelectric systems outside of the present work. Prototype devices are microfabricated using a two mask process consisting of traditional photolithography combined with micropowder blasting, and are tested with various output electri- cal loads. 4mm diameter tethered disc PTs on the order of .002cm. 3 , two orders smaller than the bulk PT literature, had the followingperformance: a prototype with electrode area ratio (input area / output area) = 1 had peak gain of 2.3 (+/- 0.1), efficiency of 33 (+/- 0

  2. Influence of salts on the coexistence curve and protein partitioning in nonionic aqueous two-phase micellar systems

    Directory of Open Access Journals (Sweden)

    A. M. Lopes

    2014-12-01

    Full Text Available Aqueous two-phase micellar systems (ATPMS can be exploited in separation science for the extraction/purification of desired biomolecules. Prior to phase separation the surfactant solution reaches a cloud point temperature, which is influenced by the presence of electrolytes. In this work, we provide an investigation on the cloud point behavior of the nonionic surfactant C10E4 in the presence of NaCl, Li2SO4 and KI. We also investigated the salts' influence on a model protein partitioning. NaCl and Li2SO4 promoted a depression of the cloud point. The order of salts and the concentration that decreased the cloud point was: Li2SO4 0.5 M > NaCl 0.5 M ≈ Li2SO4 0.2 M. On the other hand, 0.5 M KI dislocated the curve to higher cloud point values. For our model protein, glucose-6-phosphate dehydrogenase (G6PD, partitioning experiments with 0.5 M NaCl or 0.2 M Li2SO4 at 13.85 ºC showed similar results, with K G6PD ~ 0.46. The lowest partition coefficient was obtained in the presence of 0.5 M KI (K G6PD = 0.12, with major recovery of the enzyme in the micelle-dilute phase (%Recovery = 90%. Our results show that choosing the correct salt to add to ATPMS may be useful to attain the desired partitioning conditions at more extreme temperatures. Furthermore, this system can be effective to separate a target biomolecule from fermented broth contaminants.

  3. Developing bulk exchange spring magnets

    Science.gov (United States)

    Mccall, Scott K.; Kuntz, Joshua D.

    2017-06-27

    A method of making a bulk exchange spring magnet by providing a magnetically soft material, providing a hard magnetic material, and producing a composite of said magnetically soft material and said hard magnetic material to make the bulk exchange spring magnet. The step of producing a composite of magnetically soft material and hard magnetic material is accomplished by electrophoretic deposition of the magnetically soft material and the hard magnetic material to make the bulk exchange spring magnet.

  4. Carbon nanotubes grown on bulk materials and methods for fabrication

    Science.gov (United States)

    Menchhofer, Paul A [Clinton, TN; Montgomery, Frederick C [Oak Ridge, TN; Baker, Frederick S [Oak Ridge, TN

    2011-11-08

    Disclosed are structures formed as bulk support media having carbon nanotubes formed therewith. The bulk support media may comprise fibers or particles and the fibers or particles may be formed from such materials as quartz, carbon, or activated carbon. Metal catalyst species are formed adjacent the surfaces of the bulk support material, and carbon nanotubes are grown adjacent the surfaces of the metal catalyst species. Methods employ metal salt solutions that may comprise iron salts such as iron chloride, aluminum salts such as aluminum chloride, or nickel salts such as nickel chloride. Carbon nanotubes may be separated from the carbon-based bulk support media and the metal catalyst species by using concentrated acids to oxidize the carbon-based bulk support media and the metal catalyst species.

  5. Bulk solitary waves in elastic solids

    Science.gov (United States)

    Samsonov, A. M.; Dreiden, G. V.; Semenova, I. V.; Shvartz, A. G.

    2015-10-01

    A short and object oriented conspectus of bulk solitary wave theory, numerical simulations and real experiments in condensed matter is given. Upon a brief description of the soliton history and development we focus on bulk solitary waves of strain, also known as waves of density and, sometimes, as elastic and/or acoustic solitons. We consider the problem of nonlinear bulk wave generation and detection in basic structural elements, rods, plates and shells, that are exhaustively studied and widely used in physics and engineering. However, it is mostly valid for linear elasticity, whereas dynamic nonlinear theory of these elements is still far from being completed. In order to show how the nonlinear waves can be used in various applications, we studied the solitary elastic wave propagation along lengthy wave guides, and remarkably small attenuation of elastic solitons was proven in physical experiments. Both theory and generation for strain soliton in a shell, however, remained unsolved problems until recently, and we consider in more details the nonlinear bulk wave propagation in a shell. We studied an axially symmetric deformation of an infinite nonlinearly elastic cylindrical shell without torsion. The problem for bulk longitudinal waves is shown to be reducible to the one equation, if a relation between transversal displacement and the longitudinal strain is found. It is found that both the 1+1D and even the 1+2D problems for long travelling waves in nonlinear solids can be reduced to the Weierstrass equation for elliptic functions, which provide the solitary wave solutions as appropriate limits. We show that the accuracy in the boundary conditions on free lateral surfaces is of crucial importance for solution, derive the only equation for longitudinal nonlinear strain wave and show, that the equation has, amongst others, a bidirectional solitary wave solution, which lead us to successful physical experiments. We observed first the compression solitary wave in the

  6. The temperature dependence of the isothermal bulk modulus at 1 bar pressure

    International Nuclear Information System (INIS)

    Garai, J.; Laugier, A.

    2007-01-01

    It is well established that the product of the volume coefficient of thermal expansion and the bulk modulus is nearly constant at temperatures higher than the Debye temperature. Using this approximation allows predicting the values of the bulk modulus. The derived analytical solution for the temperature dependence of the isothermal bulk modulus has been applied to ten substances. The good correlations to the experiments indicate that the expression may be useful for substances for which bulk modulus data are lacking

  7. Influence of micellar calcium and phosphorus on rennet coagulation properties of cows milk.

    Science.gov (United States)

    Malacarne, Massimo; Franceschi, Piero; Formaggioni, Paolo; Sandri, Sandro; Mariani, Primo; Summer, Andrea

    2014-05-01

    The main requirement for milk processed in most cheese typologies is its rennet coagulation ability. Despite the increasing number of studies, the causes for abnormal coagulation of milk are not fully understood. The aim of this study was to ascertain relationships between milk characteristics and its rennet coagulation ability, focusing on the influence of calcium (Ca) and phosphorus (P). Ca and P are essential constituents of the micelles. Micellar P can be present as part of colloidal calcium phosphate (inorganic-P) or covalently bound to caseins as phosphate groups (casein-P). Eighty one herd milk samples (SCCproperties. Optimal milk was characterised by the highest contents of major constituents, protein fractions and minerals, lowest content of chloride and highest values of titratable acidity. Non-coagulating milk was characterised by the highest values of pH and the lowest of titratable acidity. At micellar level, Optimal milk showed the highest values of colloidal Ca, casein-P and colloidal Mg (g/100 g casein), while Non-coagulating milk showed the lowest values. Interestingly, there was no statistical difference regarding the content of colloidal inorganic-P (g/100 g casein) between Optimal and Non-coagulating milks. Overall, high mineralisation of the micelle (expressed as g inorganic-P/100 g casein) positively affect its rennetability. However, excessive mineralisation could lead to a reduction of the phosphate groups (g casein-P/100 g casein) available for curd formation.

  8. Pt/glassy carbon model catalysts prepared from PS-b-P2VP micellar templates.

    Science.gov (United States)

    Gu, Yunlong; St-Pierre, Jean; Ploehn, Harry J

    2008-11-04

    Poly(styrene)-block-poly(2-vinylpyridine) (PS-b-P2VP) diblock copolymer was used as a micellar template to fabricate arrays of Pt nanoparticles on mica and glassy carbon (GC) supports. Polymer micellar deposition yields Pt nanoparticles with tunable particle size and surface number density on both mica and GC. After deposition of precursor-loaded micelles onto GC, oxygen plasma etching removes the polymer shell, followed by thermal treatment with H2 gas to reduce the Pt. Etching conditions were optimized to maximize removal of the polymer while minimizing damage to the GC. Arrays of Pt nanoparticles with controlled size and surface number density can be prepared on mica (for particle size characterization) and GC to make Pt/GC model catalysts. These model catalysts were characterized by tapping mode atomic force microscopy, X-ray photoelectron spectroscopy, and cyclic voltammetry to measure activity for oxidation of carbon monoxide or methanol. Cyclic voltammetry results demonstrate the existence of a correlation between Pt particle size and electrocatalytic properties including onset potential, tolerance of carbonaceous adsorbates, and intrinsic activity (based on active Pt area from CO stripping voltammetry). Results obtained with Pt/GC model catalysts duplicate prior results obtained with Pt/porous carbon catalysts therefore validating the synthesis approach and offering a new, tunable platform to study catalyst structure and other effects such as aging on proton exchange membrane fuel cell (PEMFC) reactions.

  9. Mechanistic Analysis of Cocrystal Dissolution as a Function of pH and Micellar Solubilization.

    Science.gov (United States)

    Cao, Fengjuan; Amidon, Gordon L; Rodriguez-Hornedo, Nair; Amidon, Gregory E

    2016-03-07

    The purpose of this work is to provide a mechanistic understanding of the dissolution behavior of cocrystals under the influence of ionization and micellar solubilization. Mass transport models were developed by applying Fick's law of diffusion to dissolution with simultaneous chemical reactions in the hydrodynamic boundary layer adjacent to the dissolving cocrystal surface to predict the pH at the dissolving solid-liquid interface (i.e., interfacial pH) and the flux of cocrystals. To evaluate the predictive power of these models, dissolution studies of carbamazepine-saccharin (CBZ-SAC) and carbamazepine-salicylic acid (CBZ-SLC) cocrystals were performed at varied pH and surfactant concentrations above the critical stabilization concentration (CSC), where the cocrystals were thermodynamically stable. The findings in this work demonstrate that the pH dependent dissolution behavior of cocrystals with ionizable components is dependent on interfacial pH. This mass transport analysis demonstrates the importance of pH, cocrystal solubility, diffusivity, and micellar solubilization on the dissolution rates of cocrystals.

  10. ANFO bulk loading in coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Gajjar, A.

    1987-08-01

    With India's total coal production projected to increase from 152 to 237 million tons by 1990, net additional production from new mines must be more because of substantial depletion in existing mines. This article discusses the best possible application of explosive techniques in open-cast coal mines to economize production cost. The most energy-efficient and safest explosive is ANFO (ammonium nitrate, fuel oil); however, manual charging by INFO is not possible. Therefore, the solution is the application of bulk-loading systems of ANFO for giant mining operations. Cost of blasting per ton of coal production in India is in the range of Rs 25. Thus, the author suggests it will be the responsibility of mining engineers to see that the ANFO based bulk-loading system is implemented and the cost of production per ton reduced to Rs 19.50.

  11. Bulk viscous cosmology with causal transport theory

    International Nuclear Information System (INIS)

    Piattella, Oliver F.; Fabris, Júlio C.; Zimdahl, Winfried

    2011-01-01

    We consider cosmological scenarios originating from a single imperfect fluid with bulk viscosity and apply Eckart's and both the full and the truncated Müller-Israel-Stewart's theories as descriptions of the non-equilibrium processes. Our principal objective is to investigate if the dynamical properties of Dark Matter and Dark Energy can be described by a single viscous fluid and how such description changes when a causal theory (Müller-Israel-Stewart's, both in its full and truncated forms) is taken into account instead of Eckart's non-causal one. To this purpose, we find numerical solutions for the gravitational potential and compare its behaviour with the corresponding ΛCDM case. Eckart's and the full causal theory seem to be disfavoured, whereas the truncated theory leads to results similar to those of the ΛCDM model for a bulk viscous speed in the interval 10 −11 || cb 2 ∼ −8

  12. Investigating the spontaneous formation of SDS micelle in aqueous solution using a coarse-grained force field

    Directory of Open Access Journals (Sweden)

    José Maria Pires

    2012-01-01

    Full Text Available A 1µs Molecular Dynamic simulation was performed with a realistic model system of Sodium Dodecyl Sulfate (SDS micelles in aqueous solution, comprising of 360 DS-, 360 Na+ and 90000 water particles. After 300 ns three different micellar shapes and sizes 41, 68 and 95 monomers, were observed. The process led to stabilization in the total number of SDS clusters and an increase in the micellar radius to 2.23 nm, in agreement with experimental results. An important conclusion, is be aware that simulations employed in one aggregate, should be considered as a constraint. Size and shape distribution must be analyzed.

  13. In situ synthesis of Prussian blue nanoparticles within a biocompatible reverse micellar system for in vivo Cs"+ uptake

    International Nuclear Information System (INIS)

    Lavaud, Cyril; Kajdan, Marilyn; Long, Jerome; Larionova, Joulia; Guari, Yannick; Compte, Elsa; Maurel, Jean-Claude; Him, Josephine Lai Kee; Bron, Patrick; Oliviero, Erwan

    2017-01-01

    A new highly stable Prussian blue reverse micellar system comprising ultra-small Prussian blue nanoparticles in Aonyss (Peceolt, b-sitosterol, lecithin, ethanol and water) acts as an in vivo Cs"+ uptake agent presenting higher efficiency compared to commercially available Prussian blue treatment with a significant dose effect. (authors)

  14. Comparison of migration modeling in micellar electrokinetic chromatography by linear regression and by use of an artificial neural network

    NARCIS (Netherlands)

    Metting, HJ; van Zomeren, PV; van der Ley, CP; Coenegracht, PMJ; de Jong, GJ

    2000-01-01

    The concentrations of modifier (methanol or acetonitrile) and surfactant (sodium dodecyl sulfate SDS) in the running buffer are important factors influencing the mobility of analytes in micellar electrokinetic chromatography (MEKC). Response surfaces of the effective mobility can be used to predict

  15. Multicompartment micellar aggregates of linear ABC amphiphiles in solvents selective for the C block: A Monte Carlo simulation

    KAUST Repository

    Zhu, Yutian

    2012-01-01

    In the current study, we applied the Monte Carlo method to study the self-assembly of linear ABC amphiphiles composed of two solvophobic A and B blocks and a solvophilic C block. A great number of multicompartment micelles are discovered from the simulations and the detailed phase diagrams for the ABC amphiphiles with different block lengths are obtained. The simulation results reveal that the micellar structure is largely controlled by block length, solvent quality, and incompatibility between the different block types. When the B block is longer than or as same as the terminal A block, a rich variety of micellar structures can be formed from ABC amphiphiles. By adjusting the solvent quality or incompatibility between the different block types, multiple morphological transitions are observed. These morphological sequences are well explained and consistent with all the previous experimental and theoretical studies. Despite the complexity of the micellar structures and morphological transitions observed for the self-assembly of ABC amphiphiles, two important common features of the phase behavior are obtained. In general, the micellar structures obtained in the current study can be divided into zero-dimensional (sphere-like structures, including bumpy-surfaced spheres and sphere-on-sphere structures), one-dimensional (cylinder-like structures, including rod and ring structures), two-dimensional (layer-like structures, including disk, lamella and worm-like and hamburger structures) and three-dimensional (vesicle) structures. It is found that the micellar structures transform from low- to high- dimensional structures when the solvent quality for the solvophobic blocks is decreased. In contrast, the micellar structures transform from high- to low-dimensional structures as the incompatibility between different block types increases. Furthermore, several novel micellar structures, such as the CBABC five-layer vesicle, hamburger, CBA three-layer ring, wormlike shape with

  16. Improving the performance of solution-processed organic solar cells by incorporating small molecule acceptors into a ternary bulk heterojunction based on DH6T:Mq3:PCBM (M = Ga, Al)

    International Nuclear Information System (INIS)

    Muhammad, Fahmi F.; Yahya, Mohd Yazid; Sulaiman, Khaulah

    2017-01-01

    Improvement in the overall performance of solution-processed organic solar cells based on a ternary heterostructure was realized by means of incorporating small molecules of tris(8-hydroxyquinoline) gallium (Gaq3) or Alq3 electron acceptors. The donor host polymer was α,ω-dihexyl-sexithiophene (DH6T), while the ultimate acceptor was fullerene (PC 61 BM). The results showed that short circuit current (I Sc ), open circuit voltage (V oc ), and fill factor (FF) of the devices were pronouncedly enhanced by the inclusion of Gaq3 or Alq3. The maximum output power and conversion efficiency of the ternary devices were increased by an order of 5.8 times compared to that of the control devices. These improvements were ascribed to the broadened light absorption, energy levels alignment between the donor-acceptor components, a balanced charge transfer, and increased crystallinity of the devices active layer. The results were ascertained and analyzed by means of UV–Vis, PL, XRD, IV and TEM investigations. - Highlights: • Ternary solution-processed OSCs including Gaq3 and Alq3 acceptors were realized. • The power and efficiency of the devices were increased by an order of 5.8. • Broadened absorption and improved crystallinity were achieved for the active layers.

  17. Improving the performance of solution-processed organic solar cells by incorporating small molecule acceptors into a ternary bulk heterojunction based on DH6T:Mq3:PCBM (M = Ga, Al)

    Energy Technology Data Exchange (ETDEWEB)

    Muhammad, Fahmi F. [Center for Composites, Institute for Vehicle Systems & Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Soft Materials & Devices Lab, Department of Physics, Faculty of Science & Health, Koya University, Koya, Kurdistan Region (Iraq); Development Center for Research and Training, University of Human Development, Sulaimani, Kurdistan Region (Iraq); Yahya, Mohd Yazid, E-mail: yazidyahya@utm.my [Center for Composites, Institute for Vehicle Systems & Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Sulaiman, Khaulah [Low Dimensional Materials Research Centre, Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2017-02-15

    Improvement in the overall performance of solution-processed organic solar cells based on a ternary heterostructure was realized by means of incorporating small molecules of tris(8-hydroxyquinoline) gallium (Gaq3) or Alq3 electron acceptors. The donor host polymer was α,ω-dihexyl-sexithiophene (DH6T), while the ultimate acceptor was fullerene (PC{sub 61}BM). The results showed that short circuit current (I{sub Sc}), open circuit voltage (V{sub oc}), and fill factor (FF) of the devices were pronouncedly enhanced by the inclusion of Gaq3 or Alq3. The maximum output power and conversion efficiency of the ternary devices were increased by an order of 5.8 times compared to that of the control devices. These improvements were ascribed to the broadened light absorption, energy levels alignment between the donor-acceptor components, a balanced charge transfer, and increased crystallinity of the devices active layer. The results were ascertained and analyzed by means of UV–Vis, PL, XRD, IV and TEM investigations. - Highlights: • Ternary solution-processed OSCs including Gaq3 and Alq3 acceptors were realized. • The power and efficiency of the devices were increased by an order of 5.8. • Broadened absorption and improved crystallinity were achieved for the active layers.

  18. Rapid Determination of Amino Acids in Beer, Red Wine, and Donkey-Hide Gelatin by Gradient Elution of HPLC: From Micellar Liquid Chromatography to High Submicellar Liquid Chromatography.

    Science.gov (United States)

    Xie, Yunfei; Luo, Tian; Yang, Jing; Dong, Yuming

    2018-01-01

    Amino acids (AAs) in beer, red wine, and donkey-hide gelatin were rapidly determined by gradient LC elution from micellar LC to high submicellar LC. Mobile phase A was a 0.075 M sodium dodecyl sulfate solution containing 20 mM ammonium acetate with a pH value adjusted to 3.5 with acetic acid solution, and mobile phase B was acetonitrile. Optimized chromatographic conditions were as follows: mobile phase B increased from 25 to 60% (v/v) in 30 min and the use of a Venusil XBP C18 column (5 µm, 250 × 4.6 mm) as the stationary phase, with a column temperature of 35°C, flow rate of 1.2 mL/min, and detection wavelength of 266 nm. The results indicated good linearity (r2 ≥ 0.9924). The intraday precision of the retention time was RSD ≤ 1.1%, whereas interday was RSD ≤ 3.2%; intraday precision of the peak area was RSD ≤ 3.3%, whereas interday was RSD ≤ 4.9%. The range of recovery was 94.6-102.4%. The RSDs of the retention time for the AAs for the different samples were 0.04-0.31%.

  19. Determination of strobilurin fungicide residues in fruits and vegetables by nonaqueous micellar electrokinetic capillary chromatography with indirect laser-induced fluorescence.

    Science.gov (United States)

    Guo, Xin; Wang, Kun; Chen, Guan-Hua; Shi, Jie; Wu, Xian; Di, Lu-Lu; Wang, Yi

    2017-08-01

    A nonaqueous micellar electrokinetic capillary chromatography method with indirect LIF was developed for the determination of strobilurin fungicide residues in fruits and vegetables. Hydrophobic CdTe quantum dots (QDs) synthesized in aqueous phase were used as background fluorescent substance. The BGE solution, QD concentration, and separation voltage were optimized to obtain the best separation efficiency and the highest signal intensity. The optimal BGE solution consists of 40 mM phosphate, 120 mM sodium dodecyl sulfate, 15% v/v water and 15% v/v hydrophobic CdTe QDs in formamide, of which apparent pH is 9.5. The optimized separation voltage is controlled as 25 kV. The resultant detection limits of azoxystrobin, kresoxim-methyl, and pyraclostrobin are all 0.001 mg/kg, their linear dynamic ranges are 0.005-2.5 mg/kg, and the recoveries of the spiked samples are 81.7-96.1%, 86.5-95.7%, and 87.3-97.4%, respectively. This method has been proved to be sensitive enough to detect the aforementioned fungicides in fruits and vegetables at the maximum residue limits. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Reverse micellar synthesis, structural characterization and dielectric properties of Sr-doped BaZrO_3 nanoparticles

    International Nuclear Information System (INIS)

    Ahmad, Tokeer; Ubaidullah, Mohd; Shahazad, Mohd; Kumar, Dinesh; Al-Hartomy, Omar A.

    2017-01-01

    Sr-doped BaZrO_3 nanoparticles with strontium content varying from 5 to 20 mol % were successfully synthesized by reverse micellar method at 900 °C for the first time. Systematic studies have been carried out to establish the structural and electrical properties of the as prepared nanoparticles. These nanoparticles were characterized using powder X-ray diffraction, transmission electron microscopy, BET surface area and dielectric measurements. X-ray diffraction analysis showed the formation of monophasic and highly crystalline nanoparticles which could be indexed in cubic BaZrO_3 with contraction of lattice on strontium substitution. A monotonic shift of diffraction pattern towards higher angel confirms the formation of solid solutions of Ba_1_−_xSr_xZrO_3 (0.05 ≤ x ≤ 0.20) which was corroborating well with lattice parameter studies. Transmission electron microscopic studies showed the formation of cubic, spherical and hexagonal nanoparticles with an average grain size of 40–65 nm. Energy dispersive X-ray spectroscopic studies confirmed the presence of dopant (Sr"2"+) in the BaZrO_3 matrix and estimated chemical species corroborate well with the loaded composition. Specific surface area of the solid solution comes out to be in the range of 104–244 m"2 g"-"1. Smallest particle of size 40 nm shows highest surface area 244 m"2 g"-"1 for 20 mol% Sr-doped BaZrO_3. Dielectric and impedance studies were also carried out as a function of frequency and temperature to explore the electrical properties of Sr-doped BaZrO_3. The dielectric constant of Ba_1_−_xSr_xZrO_3 (0.05 ≤ x ≤ 0.20) was found to be in the range of 13–25 for x = 0.05 to x = 0.20 with nearly similar dielectric loss of the order of 0.02. The conductance increases linearly with increase in frequency at room temperature, however the impedance has an inverse effect. - Highlights: • Monophasic nanocrystalline Ba_1_−_xSr_xZrO_3 at low dopant concentration using reverse micelles for the first

  1. Reverse micellar synthesis, structural characterization and dielectric properties of Sr-doped BaZrO{sub 3} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Tokeer, E-mail: tahmad3@jmi.ac.in [Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025 (India); Ubaidullah, Mohd [Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025 (India); Department of Chemistry, Banasthali University, Tonk, Rajasthan, 304022 (India); School of Science and Technology, Glocal University, Mirzapur, Saharanpur, 247121, Uttar Pradesh (India); Shahazad, Mohd [Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025 (India); Kumar, Dinesh [Department of Chemistry, Banasthali University, Tonk, Rajasthan, 304022 (India); Al-Hartomy, Omar A. [Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589 (Saudi Arabia)

    2017-01-01

    Sr-doped BaZrO{sub 3} nanoparticles with strontium content varying from 5 to 20 mol % were successfully synthesized by reverse micellar method at 900 °C for the first time. Systematic studies have been carried out to establish the structural and electrical properties of the as prepared nanoparticles. These nanoparticles were characterized using powder X-ray diffraction, transmission electron microscopy, BET surface area and dielectric measurements. X-ray diffraction analysis showed the formation of monophasic and highly crystalline nanoparticles which could be indexed in cubic BaZrO{sub 3} with contraction of lattice on strontium substitution. A monotonic shift of diffraction pattern towards higher angel confirms the formation of solid solutions of Ba{sub 1−x}Sr{sub x}ZrO{sub 3} (0.05 ≤ x ≤ 0.20) which was corroborating well with lattice parameter studies. Transmission electron microscopic studies showed the formation of cubic, spherical and hexagonal nanoparticles with an average grain size of 40–65 nm. Energy dispersive X-ray spectroscopic studies confirmed the presence of dopant (Sr{sup 2+}) in the BaZrO{sub 3} matrix and estimated chemical species corroborate well with the loaded composition. Specific surface area of the solid solution comes out to be in the range of 104–244 m{sup 2} g{sup -1}. Smallest particle of size 40 nm shows highest surface area 244 m{sup 2} g{sup -1} for 20 mol% Sr-doped BaZrO{sub 3}. Dielectric and impedance studies were also carried out as a function of frequency and temperature to explore the electrical properties of Sr-doped BaZrO{sub 3}. The dielectric constant of Ba{sub 1−x}Sr{sub x}ZrO{sub 3} (0.05 ≤ x ≤ 0.20) was found to be in the range of 13–25 for x = 0.05 to x = 0.20 with nearly similar dielectric loss of the order of 0.02. The conductance increases linearly with increase in frequency at room temperature, however the impedance has an inverse effect. - Highlights: • Monophasic nanocrystalline Ba{sub 1

  2. Mining the bulk positron lifetime

    International Nuclear Information System (INIS)

    Aourag, H.; Guittom, A.

    2009-01-01

    We introduce a new approach to investigate the bulk positron lifetimes of new systems based on data-mining techniques. Through data mining of bulk positron lifetimes, we demonstrate the ability to predict the positron lifetimes of new semiconductors on the basis of available semiconductor data already studied. Informatics techniques have been applied to bulk positron lifetimes for different tetrahedrally bounded semiconductors in order to discover computational design rules. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Investigating self-assembly and metal nanoclusters in aqueous di-block copolymers solutions

    CERN Document Server

    Lo Celso, F; Triolo, R; Triolo, A; Strunz, P; Bronstein, L; Zwanziger, J; Lin, J S

    2002-01-01

    Self-assembling properties of di-block copolymers/ surfactant hybrids in aqueous solution can be exploited to obtain metal nanoparticles stable dispersion. Results will be presented here for polystyrene-block-poly(ethylene oxide) solutions. A SANS structural investigation has been performed over different molecular weights of both hydrophilic and hydrophobic block, by varying temperature and concentration of the copolymer. A SAXS characterization of micellar systems containing Pt nanoparticles is reported. (orig.)

  4. Flow-induced immobilization of glucose oxidase in nonionic micellar nanogels for glucose sensing.

    Science.gov (United States)

    Cardiel, Joshua J; Zhao, Ya; Tonggu, Lige; Wang, Liguo; Chung, Jae-Hyun; Shen, Amy Q

    2014-10-21

    A simple microfluidic platform was utilized to immobilize glucose oxidase (GOx) in a nonionic micellar scaffold. The immobilization of GOx was verified by using a combination of cryogenic electron microscopy (cryo-EM), scanning electron microscopy (SEM), and ultraviolet spectroscopy (UV) techniques. Chronoamperometric measurements were conducted on nanogel-GOx scaffolds under different glucose concentrations, exhibiting linear amperometric responses. Without impacting the lifetime and denaturation of GOx, the nonionic nanogel provides a favorable microenvironment for GOx in biological media. This flow-induced immobilization method in a nonionic nanogel host matrix opens up new pathways for designing a simple, fast, biocompatible, and cost-effective process to immobilize biomolecules that are averse to ionic environments.

  5. Amplification of Chirality through Self-Replication of Micellar Aggregates in Water

    KAUST Repository

    Bukhriakov, Konstantin

    2015-03-17

    We describe a system in which the self-replication of micellar aggregates results in a spontaneous amplification of chirality in the reaction products. In this system, amphiphiles are synthesized from two "clickable" fragments: a water-soluble "head" and a hydrophobic "tail". Under biphasic conditions, the reaction is autocatalytic, as aggregates facilitate the transfer of hydrophobic molecules to the aqueous phase. When chiral, partially enantioenriched surfactant heads are used, a strong nonlinear induction of chirality in the reaction products is observed. Preseeding the reaction mixture with an amphiphile of one chirality results in the amplification of this product and therefore information transfer between generations of self-replicating aggregates. Because our amphiphiles are capable of catalysis, information transfer, and self-assembly into bounded structures, they present a plausible model for prenucleic acid "lipid world" entities. © 2015 American Chemical Society.

  6. A photochemical study of uranyl ion interaction with the Triton X-100 micellar system

    International Nuclear Information System (INIS)

    Das, S.K.; Ganguly, B.N.

    1996-01-01

    This is a report on the spectroscopic characteristics of UO 2 2+ in the excited state in Triton X-100 micellar medium. It also indicates some important results of viscosity and surface tension measurements of the system which have direct relevance to the spectroscopic investigation in the excited state. The quenching of the UO 2 2+ fluorescence due to Triton X-100, upon micellization in the aqueous medium, reveals two kinds of microenvironments of the fluorophore from the Stern-Volmer plot. This has been verified by flash photolytic measurements. A blue shift of the quenched emission spectrum is ascribed to the collisional encounter of UO 2 1 + with the head groups of Triton X-100

  7. Profluorescent PPV-Based Micellar System as a Versatile Probe for Bioimaging and Drug Delivery.

    Science.gov (United States)

    Zaquen, Neomy; Lu, Hongxu; Chang, Teddy; Mamdooh, Russel; Lutsen, Laurence; Vanderzande, Dirk; Stenzel, Martina; Junkers, Thomas

    2016-12-12

    Although micelles are commonly used for drug delivery purposes, their long-term fate is often unknown due to photobleaching of the fluorescent labels or the use of toxic materials. Here, we present a metal-free, nontoxic, nonbleaching, fluorescent micelle that can address these shortcomings. A simple, yet versatile, profluorescent micellar system, built from amphiphilic poly(p-phenylenevinylene) (PPV) block copolymers, for use in drug delivery applications is introduced. Polymer micelles made from PPV show excellent stability for up to 1 year and are successfully loaded with anticancer drugs (curcumin or doxorubicin) without requiring introduction of physical or chemical cross-links. The micelles are taken up efficiently by the cells, which triggers disassembly, releasing the encapsulated material. Disassembly of the micelles and drug release is conveniently monitored as fluorescence of the single polymer chains appear, which enables not only to monitor the release of the payload, but in principle also the fate of the polymer over longer periods of time.

  8. Enantioseparation of palonosetron hydrochloride by micellar electrokinetic chromatography with sodium cholate as chiral selector.

    Science.gov (United States)

    Tian, Kan; Chen, Hongli; Tang, Jianghong; Chen, Xingguo; Hu, Zhide

    2006-11-03

    The enantioseparation of four stereoisomers of palonosetron hydrochloride by micellar electrokinetic chromatography using sodium cholate as chiral surfactant was described. Sodium cholate was shown to be effective in separating palonosetron hydrochloride stereoisomers. For method optimization, several parameters such as sodium cholate concentration, buffer pH and concentration, the types and concentration of organic modifiers and applied voltage, on the enantioseparation were evaluated and the optimum conditions were obtained as follows: 30 mM borate buffer (pH 9.40) containing 70 mM sodium cholate and 20% (v/v) methanol with an applied voltage of 20 kV. Under these conditions, baseline separation of palonosetron hydrochloride stereoisomers was achieved within 18 min.

  9. Importance of critical micellar concentration for the prediction of solubility enhancement in biorelevant media.

    Science.gov (United States)

    Ottaviani, G; Wendelspiess, S; Alvarez-Sánchez, R

    2015-04-06

    This study evaluated if the intrinsic surface properties of compounds are related to the solubility enhancement (SE) typically observed in biorelevant media like fasted state simulated intestinal fluids (FaSSIF). The solubility of 51 chemically diverse compounds was measured in FaSSIF and in phosphate buffer and the surface activity parameters were determined. This study showed that the compound critical micellar concentration parameter (CMC) correlates strongly with the solubility enhancement (SE) observed in FaSSIF compared to phosphate buffer. Thus, the intrinsic capacity of molecules to form micelles is also a determinant for each compound's affinity to the micelles of biorelevant surfactants. CMC correlated better with SE than lipophilicity (logD), especially over the logD range typically covered by drugs (2 < logD < 4). CMC can become useful to guide drug discovery scientists to better diagnose, improve, and predict solubility in biorelevant media, thereby enhancing oral bioavailability of drug candidates.

  10. Interrelated temperature dependence of bulk etch rate and track length saturation time in CR-39 detector

    International Nuclear Information System (INIS)

    Azooz, A.A.; Al-Jubbori, M.A.

    2013-01-01

    Highlights: • New empirical parameterization of CR-39 bulk etch rate. • Bulk etch rates measurements using two different methods give consistent results. • Temperature independence of track saturation length. • Two empirical relation between bulk etch rate and temperature are suggested. • Simple inverse relation between bulk etch rate and track saturation time. -- Abstract: Experimental measurements of the etching solution temperature dependence of bulk etch rate using two independent methods revealed a few interesting properties. It is found that while the track saturation length is independent of etching temperature, the etching time needed to reach saturation is strongly temperature-dependent. It is demonstrated that there is systematic simple inverse relation between track saturation time, and etching solution temperature. In addition, and although, the relation between the bulk etch rate and etching solution temperature can be reasonably described by a modified form of the Arrhenius equation, better fits can be obtained by another equation suggested in this work

  11. Binding of chloroquine to ionic micelles: Effect of pH and micellar surface charge

    Energy Technology Data Exchange (ETDEWEB)

    Souza Santos, Marcela de, E-mail: marcelafarmausp77@gmail.com [Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, s/n, Ribeirão Preto, São Paulo 14040-903 (Brazil); Perpétua Freire de Morais Del Lama, Maria, E-mail: mpemdel@fcfrp.usp.br [Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, s/n, Ribeirão Preto, São Paulo 14040-903 (Brazil); Instituto Nacional de Ciência e Tecnologia de Bioanalítica, Departamento de Química Analítica, Universidade Estadual de Campinas, Cidade Universitária Zeferino Vaz, s/n, Campinas, São Paulo 13083-970 (Brazil); Siuiti Ito, Amando, E-mail: amandosi@ffclrp.usp.br [Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes, 3900, Ribeirão Preto, São Paulo 14040-901 (Brazil); and others

    2014-03-15

    The pharmacological action of chloroquine relies on its ability to cross biological membranes in order to accumulate inside lysosomes. The present work aimed at understanding the basis for the interaction between different chloroquine species and ionic micelles of opposite charges, the latter used as a simple membrane model. The sensitivity of absorbance and fluorescence of chloroquine to changes in its local environment was used to probe its interaction with cetyltrimethylammonium micelles presenting bromide (CTAB) and sulfate (CTAS) as counterions, in addition to dodecyl sulfate micelles bearing sodium (SDS) and tetramethylammonium (TMADS) counterions. Counterion exchange was shown to have little effect on drug–micelle interaction. Chloroquine first dissociation constant (pKa{sub 1}) shifted to opposite directions when anionic and cationic micelles were compared. Chloroquine binding constants (K{sub b}) revealed that electrostatic forces mediate charged drug–micelle association, whereas hydrophobic interactions allowed neutral chloroquine to associate with anionic and cationic micelles. Fluorescence quenching studies indicated that monoprotonated chloroquine is inserted deeper into the micelle surface of anionic micelles than its neutral form, the latter being less exposed to the aqueous phase when associated with cationic over anionic assemblies. The findings provide further evidence that chloroquine–micelle interaction is driven by a tight interplay between the drug form and the micellar surface charge, which can have a major effect on the drug biological activity. -- Highlights: • Chloroquine (CQ) pKa{sub 1} increased for SDS micelles and decreased for CTAB micelles. • CQ is solubilized to the surface of both CTAB and SDS micelles. • Monoprotonated CQ is buried deeper into SDS micelles than neutral CQ. • Neutral CQ is less exposed to aqueous phase in CTAB over SDS micelles. • Local pH and micellar surface charge mediate interaction of CQ with

  12. Structural changes induced by high-pressure processing in micellar casein and milk protein concentrates.

    Science.gov (United States)

    Cadesky, Lee; Walkling-Ribeiro, Markus; Kriner, Kyle T; Karwe, Mukund V; Moraru, Carmen I

    2017-09-01

    Reconstituted micellar casein concentrates and milk protein concentrates of 2.5 and 10% (wt/vol) protein concentration were subjected to high-pressure processing at pressures from 150 to 450 MPa, for 15 min, at ambient temperature. The structural changes induced in milk proteins by high-pressure processing were investigated using a range of physical, physicochemical, and chemical methods, including dynamic light scattering, rheology, mid-infrared spectroscopy, scanning electron microscopy, proteomics, and soluble mineral analyses. The experimental data clearly indicate pressure-induced changes of casein micelles, as well as denaturation of serum proteins. Calcium-binding α S1 - and α S2 -casein levels increased in the soluble phase after all pressure treatments. Pressurization up to 350 MPa also increased levels of soluble calcium and phosphorus, in all samples and concentrations, whereas treatment at 450 MPa reduced the levels of soluble Ca and P. Experimental data suggest dissociation of calcium phosphate and subsequent casein micelle destabilization as a result of pressure treatment. Treatment of 10% micellar casein concentrate and 10% milk protein concentrate samples at 450 MPa resulted in weak, physical gels, which featured aggregates of uniformly distributed, casein substructures of 15 to 20 nm in diameter. Serum proteins were significantly denatured by pressures above 250 MPa. These results provide information on pressure-induced changes in high-concentration protein systems, and may inform the development on new milk protein-based foods with novel textures and potentially high nutritional quality, of particular interest being the soft gel structures formed at high pressure levels. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

  13. Effect of tartarate and citrate based food additives on the micellar properties of sodium dodecylsulfate for prospective use as food emulsifier.

    Science.gov (United States)

    Banipal, Tarlok S; Kaur, Harjinder; Kaur, Amanpreet; Banipal, Parampaul K

    2016-01-01

    Citrate and tartarate based food preservatives can be used to enhance the emulsifying properties of sodium dodecylsulfate (SDS) based micellar system and thus making it appropriate for food applications. Exploration of interactions between the two species is the key constraint for execution of such ideas. In this work various micellar and thermodynamic parameters of SDS like critical micellar concentration (CMC), standard Gibbs free energy of micellization (ΔG(0)mic.) etc. have been calculated in different concentrations of disodium tartarate (DST) and trisodium citrate (TSC) in the temperature range (288.15-318.15)K from the conductivity and surface tension measurements. The parameters obtained from these studies reveal the competitive nature of both the additives with SDS for available positions at the air/water interface. TSC is found to be more effective additive in order to make SDS micellar system better for its potential applications as food emulsifier. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Modelling of bulk superconductor magnetization

    International Nuclear Information System (INIS)

    Ainslie, M D; Fujishiro, H

    2015-01-01

    This paper presents a topical review of the current state of the art in modelling the magnetization of bulk superconductors, including both (RE)BCO (where RE = rare earth or Y) and MgB 2 materials. Such modelling is a powerful tool to understand the physical mechanisms of their magnetization, to assist in interpretation of experimental results, and to predict the performance of practical bulk superconductor-based devices, which is particularly important as many superconducting applications head towards the commercialization stage of their development in the coming years. In addition to the analytical and numerical techniques currently used by researchers for modelling such materials, the commonly used practical techniques to magnetize bulk superconductors are summarized with a particular focus on pulsed field magnetization (PFM), which is promising as a compact, mobile and relatively inexpensive magnetizing technique. A number of numerical models developed to analyse the issues related to PFM and optimise the technique are described in detail, including understanding the dynamics of the magnetic flux penetration and the influence of material inhomogeneities, thermal properties, pulse duration, magnitude and shape, and the shape of the magnetization coil(s). The effect of externally applied magnetic fields in different configurations on the attenuation of the trapped field is also discussed. A number of novel and hybrid bulk superconductor structures are described, including improved thermal conductivity structures and ferromagnet–superconductor structures, which have been designed to overcome some of the issues related to bulk superconductors and their magnetization and enhance the intrinsic properties of bulk superconductors acting as trapped field magnets. Finally, the use of hollow bulk cylinders/tubes for shielding is analysed. (topical review)

  15. [Simultaneous determination of five alkaloids in Niuhuang Shangqing Tablets by micellar electrokinetic chromatography-mass spectrometry using laurel acyl malic acid ester].

    Science.gov (United States)

    Hu, Mengdi; Su, Di; Fan, Xiaosu; Yu, Jianhua; Xu, Yuanjin

    2012-12-01

    A micellar electrokinetic chromatography-mass spectrometric method based on laurel acyl malic acid ester (LMAE) for the separation and determination of coptisine, berberine, jatrorrhizine, phellodendrine and ligustrazine in Niuhuang Shangqing Tablets was established. The baseline separation of the five compounds was attained within 18 min by an uncoated capillary (88 cm x 50 microm) on the operating voltage of 25 kV using 7.5 mmol/L LMAE-15 mmol/L ammonia-50 mmol/L ammonium acetate mixture (pH = 7.0) containing 12.5% (v/v) acetonitrile as the electrophoretic medium and 50% 2-propanol aqueous solution (containing 3 mmol/L acetic acid) as the sheath liquid. The peak area of each component to its concentration showed a good linear relationship. The relative standard deviations of migration times and peak areas of the five components were less than 5% and the recoveries were between 96.0% and 105%. The developed method is simple, rapid, accurate and is suitable for the routine analysis of the five alkaloid components in Niuhuang Shangqing Tablets.

  16. Monitoring the quality consistency of Fufang Danshen Pills using micellar electrokinetic chromatography fingerprint coupled with prediction of antioxidant activity and chemometrics.

    Science.gov (United States)

    Ji, Zhengchao; Sun, Wanyang; Sun, Guoxiang; Zhang, Jin

    2016-08-01

    A fast micellar electrokinetic chromatography fingerprint method combined with quantification was developed and validated to evaluate the quality of Fufang Danshen Pills, a traditional Chinese Medicine, which has been used in the treatment of cardiovascular system diseases, in which the tetrahedron optimization method was first used to optimize the background electrolyte solution. Subsequently, the index of the fingerprint information amount of I was performed as an excellent objective indictor to investigate the experimental conditions. In addition, a systematical quantified fingerprint method was constructed for evaluating the quality consistency of 20 batches of test samples obtained from the same drug manufacturer. The fingerprint analysis combined with quantitative determination of two components showed that the quality consistency of the test samples was quite good within the same commercial brand. Furthermore, the partial least squares model analysis was used to explore the fingerprint-efficacy relationship between active components and antioxidant activity in vitro, which can be applied for the assessment of anti-oxidant activity of Fufang Danshen pills and provide valuable medicinal information for quality control. The result illustrated that the present study provided a reliable and reasonable method for monitoring the quality consistency of Fufang Danshen pills. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Development and Validation of a Micellar Capillary Electrophoresis Method for Determination of IFNβ-1b in Lyophilized Formulation of a Biosimilar Product.

    Science.gov (United States)

    Dadgarnejad, Manuchehr; Rastegar, Hosein; Ilka, Hooshmand; Shekarchi, Maryam; Adib, Nooshin; Alebouyeh, Mahmood; Keypour, Nadia; Shoeibi, Shahram; Kobarfard, Farzad; Fazeli, Mohammad Reza

    2015-01-01

    Human interferons (IFNs) are key cytokines secreted by immune system. They have several effects such as antiviral and anti tumors activity, activating immune cells and healing of multiple sclerosis. The type IFNs present in humans are α ,β and Υ. IFN β is a polypeptide, normally produced by fibroblasts and seems to be more species-specific than IFN. Structural properties of IFNs are important for their biologic effects. There are a few analytical techniques for separation, identification and determination of IFNs in its formulations such as mass spectroscopy, RP-HPLC and capillary electrophoresis (CE). In this study we used Micellar Electrokinetic Chromatography (MEKC) as a unique mode of CE because of its capability to separate neutral as well as charged solutes. We used sodium tetraborate (Borax) as buffer without any modifier and sodium dodecyl sulfate (SDS) as surfactant. The optimum MECK running buffer consisted of Borate 50 Mm; SDS 20 mM pH =9.6. The validated method was used for determination of the IFN β-1b formulation which is manufactured in Iran. From 9 collected different batches, all of them had acceptable potency as claimed on their label with average 102.25 ±10.030 %. This is the first time that a MEKC method is introduced for quantification of IFN β-1b in its pharmaceutical dosage forms. The method is reliable safe, rapid and accurate.

  18. Shuffling cross-validation-bee algorithm as a new descriptor selection method for retention studies of pesticides in biopartitioning micellar chromatography.

    Science.gov (United States)

    Zarei, Kobra; Atabati, Morteza; Ahmadi, Monire

    2017-05-04

    Bee algorithm (BA) is an optimization algorithm inspired by the natural foraging behaviour of honey bees to find the optimal solution which can be proposed to feature selection. In this paper, shuffling cross-validation-BA (CV-BA) was applied to select the best descriptors that could describe the retention factor (log k) in the biopartitioning micellar chromatography (BMC) of 79 heterogeneous pesticides. Six descriptors were obtained using BA and then the selected descriptors were applied for model development using multiple linear regression (MLR). The descriptor selection was also performed using stepwise, genetic algorithm and simulated annealing methods and MLR was applied to model development and then the results were compared with those obtained from shuffling CV-BA. The results showed that shuffling CV-BA can be applied as a powerful descriptor selection method. Support vector machine (SVM) was also applied for model development using six selected descriptors by BA. The obtained statistical results using SVM were better than those obtained using MLR, as the root mean square error (RMSE) and correlation coefficient (R) for whole data set (training and test), using shuffling CV-BA-MLR, were obtained as 0.1863 and 0.9426, respectively, while these amounts for the shuffling CV-BA-SVM method were obtained as 0.0704 and 0.9922, respectively.

  19. Benzyl alcohol and block copolymer micellar lithography: a versatile route to assembling gold and in situ generated titania nanoparticles into uniform binary nanoarrays.

    Science.gov (United States)

    Polleux, Julien; Rasp, Matthias; Louban, Ilia; Plath, Nicole; Feldhoff, Armin; Spatz, Joachim P

    2011-08-23

    Simultaneous synthesis and assembly of nanoparticles that exhibit unique physicochemical properties are critically important for designing new functional devices at the macroscopic scale. In the present study, we report a simple version of block copolymer micellar lithography (BCML) to synthesize gold and titanium dioxide (TiO(2)) nanoarrays by using benzyl alcohol (BnOH) as a solvent. In contrast to toluene, BnOH can lead to the formation of various gold nanopatterns via salt-induced micellization of polystyrene-block-poly(vinylpyridine) (PS-b-P2VP). In the case of titania, the use of BCML with a nonaqueous sol-gel method, the "benzyl alcohol route", enables the fabrication of nanopatterns made of quasi-hexagonally organized particles or parallel wires upon aging a (BnOH-TiCl(4)-PS(846)-b-P2VP(171))-containing solution for four weeks to grow TiO(2) building blocks in situ. This approach was found to depend mainly on the relative lengths of the polymer blocks, which allows nanoparticle-induced micellization and self-assembly during solvent evaporation. Moreover, this versatile route enables the design of uniform and quasi-ordered gold-TiO(2) binary nanoarrays with a precise particle density due to the absence of graphoepitaxy during the deposition of TiO(2) onto gold nanopatterns. © 2011 American Chemical Society

  20. Spectroscopic Behavior of Some A3B Type Tetrapyrrolic Complexes in Several Organic Solvents and Micellar Media

    Directory of Open Access Journals (Sweden)

    Radu Socoteanu

    2011-08-01

    Full Text Available The paper presents spectral studies of some unsymmetrical A3B tetrapyrrolic, porphyrin-type complexes with Cu(II and Zn(II in different solvents and micellar media aimed at estimating their properties in connection with the living cell. The results indicate that the position of the absorption and emission peaks is mostly influenced by the central metal ion and less by the environmental polarity or the peripheric substituents of the porphyrinic core. The comparison between the overall absorption and emission spectra of the compounds in methanol or cyclohexane vs. direct and reverse Triton X micellar systems, respectively, suggests for all compounds the localization at the interface between the polyethylene oxide chains and the tert-octyl-phenyl etheric residue of the Triton X-100 molecules. These findings could be important when testing the compounds embedded in liposomes or other delivery systems to the targeted cell.

  1. Chiral separation of amino acids in biological fluids by micellar electrokinetic chromatography with laser-induced fluorescence detection.

    Science.gov (United States)

    Thorsén, G; Bergquist, J

    2000-08-18

    A method is presented for the chiral analysis of amino acids in biological fluids using micellar electrokinetic chromatography (MEKC) and laser-induced fluorescence (LIF). The amino acids are derivatized with the chiral reagent (+/-)-1-(9-anthryl)-2-propyl chloroformate (APOC) and separated using a mixed micellar separation system. No tedious pre-purification of samples is required. The excellent separation efficiency and good detection capabilities of the MEKC-LIF system are exemplified in the analysis of urine and cerebrospinal fluid. This is the first time MEKC has been reported for chiral analysis of amino acids in biological fluids. The amino acids D-alanine, D-glutamine, and D-aspartic acid have been observed in cerebrospinal fluid, and D-alanine and D-glutamic acid in urine. To the best of our knowledge no measurements of either D-alanine in cerebrospinal fluid or D-glutamic acid in urine have been presented in the literature before.

  2. Bulk metallic glass matrix composites

    International Nuclear Information System (INIS)

    Choi-Yim, H.; Johnson, W.L.

    1997-01-01

    Composites with a bulk metallic glass matrix were synthesized and characterized. This was made possible by the recent development of bulk metallic glasses that exhibit high resistance to crystallization in the undercooled liquid state. In this letter, experimental methods for processing metallic glass composites are introduced. Three different bulk metallic glass forming alloys were used as the matrix materials. Both ceramics and metals were introduced as reinforcement into the metallic glass. The metallic glass matrix remained amorphous after adding up to a 30 vol% fraction of particles or short wires. X-ray diffraction patterns of the composites show only peaks from the second phase particles superimposed on the broad diffuse maxima from the amorphous phase. Optical micrographs reveal uniformly distributed particles in the matrix. The glass transition of the amorphous matrix and the crystallization behavior of the composites were studied by calorimetric methods. copyright 1997 American Institute of Physics

  3. Interpolymer Complexation: Comparisons of Bulk and Interfacial Structures

    NARCIS (Netherlands)

    Cattoz, Beatrice; de Vos, Wiebe Matthijs; Cosgrove, Terence; Crossman, Martin; Espidel, Youssef; Prescott, Stuart W.

    2015-01-01

    The interactions between the strong polyelectrolyte sodium poly(styrenesulfonate), NaPSS, and the neutral polymer poly(vinylpyrrolidone), PVP, were investigated in bulk and at the silica/solution interface using a combination of diffusion nuclear magnetic resonance spectroscopy (NMR), small-angle

  4. An equilibrium model for ligand-modified micellar-enhanced ultrafiltration. Selective separation of metal ions using iminoacetic substituted polyamines and a theoretical model for the titration behavior of polyamines

    Energy Technology Data Exchange (ETDEWEB)

    Dharmawardana, Udeni Rajaratna [Univ. of Oklahoma, Norman, OK (United States)

    1992-01-01

    This thesis consists of three chapters. Chapter 1, An equilibrium model for ligand-modified micellar-enhanced ultrafiltration, describes a theoretical model and experimental investigations which used the semi-equilibrium-dialysis method with N-n-dodecyl iminodiacetic acid as the ligand. In Chapter 2, Selective separation of metal ions using iminoacetic substituted polyamines, polyamines with a substituted ligand group are synthesized and used in investigating selective separation of copper ions from aqueous solution. In Chapter 3, A theoretical model for the titration behavior of polyamines, a novel approach to explain the titration behavior of polymeric amines based on the binding behavior of counterions is described. The application of this study is to the investigation of inexpensive and efficient methods of industrial waste water treatment.

  5. Mechanism of the extraction of nitric acid and water by organic solutions of tertiary alkyl-amines

    International Nuclear Information System (INIS)

    Gourisse, D.

    1966-06-01

    The micellar aggregation of tri-alkyl-ammonium nitrates in low polarity organic solvents has been verified by viscosity, conductivity and sedimentation velocity measurements. The aggregation depends upon the polarity of solvent, the length of the alkyl radicals and the organic concentration of the various constituents (tri-alkyl-ammonium nitrate, tri-alkyl-amine, nitric acid, water). The amine salification law has been established and the excess nitric acid and water solubilities in the organic solutions have been measured. Nitric acid and water are slightly more soluble in micellar organic solutions than in molecular organic solutions. A description of excess nitric acid containing tri-alkyl-ammonium nitrate solutions is proposed. (author) [fr

  6. Effect of micellar collisions and polyvinylpyrrolidone confinement on the electrical conductivity percolation parameters of water/AOT/isooctane reverse micelles

    Science.gov (United States)

    Guettari, Moez; Aferni, Ahmed E. L.; Tajouri, Tahar

    2017-12-01

    The main aim of this paper is the analysis of micellar collisions and polymer confinement effects on the electrical conductivity percolative behavior of water/sodium bis(2-ethylhexyl) sulfosuccinate (AOT)/isooctane reverse micelles. Firstly, we have performed conductance measurements of the system for three AOT to isooctane volume ratio, φm = 0.1 , 0.15 and 0.2 to examine the influence of micellar collisions on the percolation parameters. All the measurements were carried out over the 298.15 K-333.15 K temperature range at a fixed water to AOT molar ratio, W0 = 45 . We have assessed that the rise of micellar collisions frequency enhances the conductance percolation. Secondly, the confinement effect of a water-soluble polymer, polyvinylpyrrolidone (PVP), on the reverse micelles conductance behavior was investigated. Temperature-induced percolation, Tp , have shown a dependence on the polymer concentration, CPVP . It was also observed that for various PVP concentrations, the activation energy of percolation decreases. Finally, the values of the critical exponents determined in the presence and absence of PVP prove that the polymer affects the dynamic of percolation.

  7. Zirconium based bulk metallic glasses

    International Nuclear Information System (INIS)

    Dey, G.K.; Neogy, S.; Savalia, R.T.; Tewari, R.; Srivastava, D.; Banerjee, S.

    2006-01-01

    Metallic glasses have come into prominence in recent times because their nanocrystalline atomic arrangement imparts many useful and unusual properties to these metallic solids. In this study, bulk glasses have been obtained in Zr based multicomponent alloy by induction melting these alloys in silica crucibles and casting these in form of rods 3 and 6 mm in diameter in a copper mould

  8. Longitudinal bulk acoustic mass sensor

    DEFF Research Database (Denmark)

    Hales, Jan Harry; Teva, Jordi; Boisen, Anja

    2009-01-01

    A polycrystalline silicon longitudinal bulk acoustic cantilever is fabricated and operated in air at 51 MHz. A mass sensitivity of 100 Hz/fg (1 fg=10(-15) g) is obtained from the preliminary experiments where a minute mass is deposited on the device by means of focused ion beam. The total noise...

  9. Bulk viscosity of molecular fluids

    Science.gov (United States)

    Jaeger, Frederike; Matar, Omar K.; Müller, Erich A.

    2018-05-01

    The bulk viscosity of molecular models of gases and liquids is determined by molecular simulations as a combination of a dilute gas contribution, arising due to the relaxation of internal degrees of freedom, and a configurational contribution, due to the presence of intermolecular interactions. The dilute gas contribution is evaluated using experimental data for the relaxation times of vibrational and rotational degrees of freedom. The configurational part is calculated using Green-Kubo relations for the fluctuations of the pressure tensor obtained from equilibrium microcanonical molecular dynamics simulations. As a benchmark, the Lennard-Jones fluid is studied. Both atomistic and coarse-grained force fields for water, CO2, and n-decane are considered and tested for their accuracy, and where possible, compared to experimental data. The dilute gas contribution to the bulk viscosity is seen to be significant only in the cases when intramolecular relaxation times are in the μs range, and for low vibrational wave numbers (<1000 cm-1); This explains the abnormally high values of bulk viscosity reported for CO2. In all other cases studied, the dilute gas contribution is negligible and the configurational contribution dominates the overall behavior. In particular, the configurational term is responsible for the enhancement of the bulk viscosity near the critical point.

  10. Bulk delivery of explosives offers positive advantages

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-09-01

    The bulk delivery of precisely-formulated explosives directly to the shothole is a safe, secure and cost effective way of bringing rock to the quarry floor. This article describes several of the latest generation of Anfo trucks. The typical Anfo truck carries ammonium nitrate and fuel oil in bulk, together with several other mix constituents, including an emulsifying agent. These are designed to form the basis of a range of emulsion-type explosives. In effect, these are water in oil emulsions where the water phase consists of droplets of a saturated solution of the oxidizing material suspended in oil. The formulations may be further tailored to the shothole requirements by the addition of oils or waxes, which can alter the viscosity of the explosive. The precise and programmable controls which determine the exact quantities of materials delivered to the mixer mean that the explosive mixtures can be tailored exactly to the requirements of the blasting operation, be it the amount of rock to be dislodged, the geological conditions, or the state of the shothole - either wet or dry. 4 systems are described in detail. 3 figs.

  11. Bulk and track etching of PET studied by spectrophotometer

    International Nuclear Information System (INIS)

    Zhu, Z.Y.; Duan, J.L.; Maekawa, Y.; Koshikawa, H.; Yoshida, M.

    2004-01-01

    UV-VIS spectra of poly(ethylene terephthalate) (PET) solutions formed by etching PET in NaOH solution were analyzed with respect to the etching time. A linear relationship between absorptions centered at 4.45 and 5.11 eV with weight loss of PET in NaOH solution was established. The relation was applied to study the influence of UV light illumination on bulk etching of PET and to evaluate pore size of etched-through tracks. It is found that bulk etching of PET can be greatly enhanced by UV illumination in air in the wavelength range around 313 nm. A surface area of about 350 nm in thickness shows a 23 times increase in bulk-etching rate after illuminated for 6 h. The phenomenon is attributed to the oxygen-assisted photo-degradation through generating of new photo-unstable species. The enhancement in bulk etching was immediately reduced as the etching proceeds below the surface with an exponential decay constant of about 1.5 μm -1 . Etching of Xe ion irradiated PET films gives extra etching products with similar chemical structure as revealed by spectrophotometer measurements. Quantitative analysis of etching products from latent tracks implies that pores of about 14.6 nm in radius are formed after etching in 0.74 N NaOH at 40 deg. C for 35 min, which is in agreement with the conductometric measurement

  12. Excitation energy of a helium 3 quasiparticle in the bulk mixture at constant pressure

    International Nuclear Information System (INIS)

    Yim, M.B.

    1981-01-01

    A 3 He quasiparticle excitation energy in bulk mixture at zero pressure and 6% solution is calculated to O(x) using the bulk effective interaction of Yim and Massey. The present 3 He quasiparticle excitation energy is in agreement with the experimental result of Hilton, Scherm and Stirling. (author)

  13. Current trends in the use of vitamin E-based micellar nanocarriers for anticancer drug delivery.

    Science.gov (United States)

    Muddineti, Omkara Swami; Ghosh, Balaram; Biswas, Swati

    2017-06-01

    Owing to the complexity of cancer pathogenesis, conventional chemotherapy can be an inadequate method of killing cancer cells effectively. Nanoparticle-based drug delivery systems have been widely exploited pre-clinically in recent years. Areas covered: Incorporation of vitamin-E in nanocarriers have the advantage of (1) improving the hydrophobicity of the drug delivery system, thereby improving the solubility of the loaded poorly soluble anticancer drugs, (2) enhancing the biocompatibility of the polymeric drug carriers, and (3) improving the anticancer potential of the chemotherapeutic agents by reversing the cellular drug resistance via simultaneous administration. In addition to being a powerful antioxidant, vitamin E demonstrated its anticancer potential by inducing apoptosis in various cancer cell lines. Various vitamin E analogs have proven their ability to cause marked inhibition of drug efflux transporters. Expert opinion: The review discusses the potential of incorporating vitamin E in the polymeric micelles which are designed to carry poorly water-soluble anticancer drugs. Current applications of various vitamin E-based polymeric micelles with emphasis on the use of α-tocopherol, D-α-tocopheryl succinate (α-TOS) and its conjugates such as D-α-tocopheryl polyethylene glycol-succinate (TPGS) in micellar system is delineated. Advantages of utilizing polymeric micelles for drug delivery and the challenges to treat cancer, including multiple drug resistance have been discussed.

  14. Determination of Sodium deoxycolate residues in vaccinal formulation by micellar electrokinetic chromatography

    International Nuclear Information System (INIS)

    Merchan, Yaima; Lucangioli, Silvia; Carducci, Clyde

    2011-01-01

    The sodium deoxycholate (DCNa) source is the surfactant used in the biopharmaceutical industry for the solubilization of outer membrane vesicles. It is well known the importance of control of this metabolite in biological materials due to its high toxicity for humans. To demonstrate significant small variations of this metabolite in vaccine formulations it is necessary to use a methodology highly selective, sensitive, specific and reproducible. In this report we used the micellar electrokinetic chromatography (MEKC) in a Capillary Ion Analyzer (Water corp. Milford MA) detection at 185 nm mercury lamp. It employed a fused silica capillary uncoated (Waters Corp. Milford MA). We assessed the purity of 2 lots of sodium deoxycholate and analyzed 15 samples of purified vesicles active pharmaceutical ingredient vaccine formulations. Data were recorded and processed with software Millennium TM (Waters Corp. Milford MA). It was found that lots of sodium deoxycholate containing 1.19 and 0.44% cholic acid and contaminate that 93% of the purified vesicles samples were from 0 to 2.44 mg protein DCNa/100 μg. MECK's results were compared with a kinetic test used to determine bile acids in blood (Merckotest). MECK system showed better results regarding the Merkotest

  15. Preparation of PEO/Clay Nanocomposites Using Organoclay Produced via Micellar Adsorption of CTAB

    Science.gov (United States)

    Gürses, Ahmet; Ejder-Korucu, Mehtap; Doğar, Çetin

    2012-01-01

    The aim of this study was the preparation of polyethylene oxide (PEO)/clay nanocomposites using organoclay produced via micellar adsorption of cethyltrimethyl ammonium bromide (CTAB) and their characterisation by X-ray diffraction (XRD), and Fourier transform infrared (FT-IR) spectra, and the investigation of certain mechanical properties of the composites. The results show that the basal distance between the layers increased with the increasing CTAB/clay ratio as parallel with the zeta potential values of particles. By considering the aggregation number of CTAB micelles and interlayer distances of organo-clay, it could be suggested that the predominant micelle geometry at lower CTAB/clay ratios is an ellipsoidal oblate, whereas, at higher CTAB/clay ratios, sphere-ellipsoid transition occurs. The increasing tendency of the exfoliation degree with an increase in clay content may be attributed to easier diffusion of PEO chains to interlayer regions. FT-IR spectra show that the intensity of Si-O stretching vibrations of the organoclays (1050 cm−1) increased, especially in the ratios of 1.0 g/g clay and 1.5 g/g clay with the increasing CTAB content. It was observed that the mechanical properties of the composites are dependent on both the CTAB/clay ratios and clay content of the composites. PMID:23365515

  16. Determination of Critical Micellar Concentration of Homologous 2-Alkoxyphenylcarbamoyloxyethyl-Morpholinium Chlorides

    Directory of Open Access Journals (Sweden)

    Lenka Stopková

    2018-05-01

    Full Text Available The critical micellar concentrations of selected alkyloxy homologues of local anesthetic 4-(2-{[(2-alkoxyphenylcarbamoyl]oxy}ethylmorpholin-4-ium chloride with nc = 2, 4, 5, 6, 7, 8, and 9 carbons in alkyloxy tail were determined by absorption spectroscopy in the UV–vis spectral region with the use of a pyrene probe. Within the homologous series of the studied amphiphilic compounds, the ln(cmc was observed to be dependent linearly on the number of carbon atoms nc in the hydrophobic tail: ln(cmc = 0.705–0.966 nc. The Gibbs free energy, necessary for the transfer of the methylene group of the alkoxy chain from the water phase into the inner part of the micelle at the temperature of 25 °C and pH ≈ 4.5–5.0, was found to be −2.39 kJ/mol. The experimentally determined cmc values showed good correlations with the predicted values of the bulkiness of the alkoxy tail expressed as the molar volume of substituent R, as well as with the surface tension of the compounds.

  17. Micellar Liquid Chromatographic Determination of Carbaryl and 1-Naphthol in Water, Soil, and Vegetables

    Directory of Open Access Journals (Sweden)

    Mei-Liang Chin-Chen

    2012-01-01

    Full Text Available A liquid chromatographic procedure has been developed for the determination of carbaryl, a phenyl-N-methylcarbamate, and its main metabolite 1-naphthol, using a C18 column (250’mm’ × ’4.6’mm with a micellar mobile phase and fluorescence detection at maximum excitation/emission wavelengths of 225/333’nm, respectively. In the optimization step, surfactants sodium dodecyl sulphate (SDS, Brij-35 and N-cetylpyridinium chloride monohydrate, and organic solvents propanol, butanol, and pentanol were considered. The selected mobile phase was 0.15’M SDS-6% (v/v-pentanol-0.01’M NaH2PO4 buffered at pH 3. Validation studies, according to the ICH Tripartite Guideline, included linearity (r>0.999, limit of detection (5 and 18’ng mL-1, for carbaryl and 1-naphthol, resp., and limit of quantification (15 and 50’ng mL-1, for carbaryl and 1-naphthol, resp., with intra- and interday precisions below 1%, and robustness parameters below 3%. The results show that the procedure was adequate for the routine analysis of these two compounds in water, soil, and vegetables samples.

  18. Modulating Pluronics micellar rupture with cyclodextrins and drugs: effect of pH and temperature

    International Nuclear Information System (INIS)

    Valero, M; Dreiss, C A

    2014-01-01

    Micelles of the triblock copolymer Pluronic F127 can encapsulate drugs with various chemical structures and their architecture has been studied by small-angle neutron scattering (SANS). Interaction with a derivative of β-cyclodextrin, namely, heptakis(2,6-di-O- methyl)-β-cyclodextrin (DIMEB), induces a complete break-up of the micelles, providing a mechanism for drug release. In the presence of drugs partitioned within the micelles, competitive interactions between polymer, drug and cyclodextrin lead to a modulation of the micellar rupture, depending on the nature of the drug and the exact composition of the ternary system. These interactions can be further adjusted by temperature and pH. While the most widely accepted mechanism for the interaction between Pluronics and cyclodextrins is through polypseudorotaxane (PR) formation, involving the threading of β-CD on the polymer backbone, time-resolved SANS experiments show that de-micellisation takes place in less than 100 ms, thus unambiguously ruling out an inclusion complex between the cyclodextrin and the polymer chains

  19. Biocatalytic synthesis of polymeric nanowires by micellar templates of ionic surfactants

    International Nuclear Information System (INIS)

    Nazari, K.; Adhami, F.; Najjar-Safari, A.; Salmani, S.; Mahmoudi, A.

    2011-01-01

    Highlights: → Soft-template production of polyguaiacol nanowire was done by peroxidase enzyme. → Main advantage of this simple method is producing soluble encapsulated nanowires. → Nanowire can be easily precipitated and separated by dilution with distilled water. → Size tuned templates of sodium decyl sulfate (d = 2.7 nm) gave nanowires with d = 2-4 nm. → Dried surfactant-coated wires recover freshly on specified and desired applications. -- Abstract: Micelle-templated polyguaiacol nanowires were successfully prepared via polymerization oxidation of guaiacol (o-methoxy phenol) by peroxidase enzyme in the presence of hydrogen peroxide at mild reaction conditions. The dimensions of the prepared nanowires were controlled by tuning the size and shape of the micelle structure via changing and controlling the type, chain length and molar concentrations of the ionic surfactant. The progress of the reaction and estimation of the size of soft micellar templates were followed by UV-Vis spectroscopy and dynamic light scattering (DLS). The resulting micelle encapsulated or purified polyguaiacol nanowires were characterized using transmission electron microscopy (TEM).

  20. Simple micellar electrokinetic chromatography method for the determination of hydrogen sulfide in hen tissues.

    Science.gov (United States)

    Kubalczyk, Paweł; Borowczyk, Kamila; Chwatko, Grażyna; Głowacki, Rafał

    2015-04-01

    A new method for the determination of hydrogen sulfide in hen tissues has been developed and validated. For estimation of hydrogen sulfide content, a sample (0.1 g) of hen tissue was treated according to the procedure consisted of some essential steps: simultaneous homogenization of a tissue and derivatization of hydrogen sulfide to its S-quinolinium derivative with 2-chloro-1-methylquinolinium tetrafluoroborate, separation of so-formed derivative by micellar electrokinetic chromatography with sweeping, and detection and quantitation with the use of UV detector set to measure analytical signals at 375 nm. Effective electrophoretic separation was achieved using fused silica capillary (effective length 41.5 cm, 75 μm id) and 0.05 mol/L, pH 8 phosphate buffer with the addition of 0.04 mol/L SDS and 26% ACN. The lower limit of quantification was 0.12 μmol hydrogen sulfide in 1 g of tissue. The calibration curve prepared in tissue homogenate for hydrogen sulfide showed linearity in the range from 0.15 to 2.0 μmol/g, with the coefficient of correlation 0.9978. The relative standard deviation of the points of the calibration curve varied from 8.3 to 3.2% RSD. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Biocatalytic synthesis of polymeric nanowires by micellar templates of ionic surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Nazari, K., E-mail: nazarikh@ripi.ir [Research Institute of Petroleum Industry, NIOC, P.O. Box 14665-137, Tehran (Iran, Islamic Republic of); Chemistry Dept., Shahr Rey Islamic Azad University, P.O. Box 18735-334, Tehran (Iran, Islamic Republic of); Adhami, F.; Najjar-Safari, A.; Salmani, S. [Chemistry Dept., Shahr Rey Islamic Azad University, P.O. Box 18735-334, Tehran (Iran, Islamic Republic of); Mahmoudi, A. [Chemistry Dept., Karaj Islamic Azad University, Karaj (Iran, Islamic Republic of)

    2011-07-15

    Highlights: {yields} Soft-template production of polyguaiacol nanowire was done by peroxidase enzyme. {yields} Main advantage of this simple method is producing soluble encapsulated nanowires. {yields} Nanowire can be easily precipitated and separated by dilution with distilled water. {yields} Size tuned templates of sodium decyl sulfate (d = 2.7 nm) gave nanowires with d = 2-4 nm. {yields} Dried surfactant-coated wires recover freshly on specified and desired applications. -- Abstract: Micelle-templated polyguaiacol nanowires were successfully prepared via polymerization oxidation of guaiacol (o-methoxy phenol) by peroxidase enzyme in the presence of hydrogen peroxide at mild reaction conditions. The dimensions of the prepared nanowires were controlled by tuning the size and shape of the micelle structure via changing and controlling the type, chain length and molar concentrations of the ionic surfactant. The progress of the reaction and estimation of the size of soft micellar templates were followed by UV-Vis spectroscopy and dynamic light scattering (DLS). The resulting micelle encapsulated or purified polyguaiacol nanowires were characterized using transmission electron microscopy (TEM).

  2. Environmental monitoring of phenolic pollutants in water by cloud point extraction prior to micellar electrokinetic chromatography.

    Science.gov (United States)

    Stege, Patricia W; Sombra, Lorena L; Messina, Germán A; Martinez, Luis D; Silva, María F

    2009-05-01

    Many aromatic compounds can be found in the environment as a result of anthropogenic activities and some of them are highly toxic. The need to determine low concentrations of pollutants requires analytical methods with high sensitivity, selectivity, and resolution for application to soil, sediment, water, and other environmental samples. Complex sample preparation involving analyte isolation and enrichment is generally necessary before the final analysis. The present paper outlines a novel, simple, low-cost, and environmentally friendly method for the simultaneous determination of p-nitrophenol (PNP), p-aminophenol (PAP), and hydroquinone (HQ) by micellar electrokinetic capillary chromatography after preconcentration by cloud point extraction. Enrichment factors of 180 to 200 were achieved. The limits of detection of the analytes for the preconcentration of 50-ml sample volume were 0.10 microg L(-1) for PNP, 0.20 microg L(-1) for PAP, and 0.16 microg L(-1) for HQ. The optimized procedure was applied to the determination of phenolic pollutants in natural waters from San Luis, Argentina.

  3. Development and validation of micellar liquid chromatographic methods for the determination of antibiotics in different matrixes.

    Science.gov (United States)

    Rambla-Alegre, Maria; Esteve-Romero, Josep; Carda-Broch, Samuel

    2011-01-01

    Antibiotics are the most important bioactive and chemotherapeutic compounds to be produced by microbiological synthesis, and they have proved their worth in a variety of fields, such as medicinal chemistry, agriculture, and the food industry. Interest in antibiotics has grown in parallel with an increasingly high degree of productivity in the field of analytical applications. Therefore, it is necessary to develop chromatographic procedures capable of determining various drugs simultaneously in the shortest possible time. Micellar liquid chromatography (MLC) is an RP-HPLC technique that offers advantages over conventional HPLC as far as sample preparation, selectivity, and versatility are concerned. Its main advantage is that samples can be injected directly into the chromatographic system with no previous preparation step. This paper mainly focuses on the results of the authors' own recent research and reports the chromatographic conditions for determination of various antibiotics (penicillins, quinolones, and sulfonamides) in different matrixes (pharmaceuticals, biological fluids, and food). The work of other authors on MLC-based antibiotic determination has been included.

  4. Analysis of Dyes Extracted from Millimeter-Size Nylon Fibers by Micellar Electrokinetic Chromatography

    International Nuclear Information System (INIS)

    Lewis, L.A.

    2001-01-01

    The Learning Objective is to present to the forensic community a potential qualitative/quantitative method for trace-fiber color comparisons using micellar electrokinetic chromatography (MEKC). Developing a means of analyzing extracted dye constituents from millimeter-size nylon fiber samples was the objective of this research initiative. Aside from ascertaining fiber type, color evaluation and source comparison of trace-fiber evidence plays a critical role in forensic-fiber examinations. Literally thousands of dyes exist to date, including both natural and synthetic compounds. Typically a three-color-dye combination is employed to affect a given color on fiber material. The result of this practice leads to a significant number of potential dye combinations capable of producing a similar color and shade. Since a typical forensic fiber sample is 2 mm or less in length, an ideal forensic dye analysis would qualitatively and quantitatively identify the extracted dye constituents from a sample size of 1 mm or smaller. The goal of this research was to develop an analytical method for comparing individual dye constituents from trace-fiber evidence with dyes extracted from a suspected source, while preserving as much of the original evidence as possible

  5. Capillary sieving electrophoresis and micellar electrokinetic capillary chromatography produce highly correlated separation of tryptic digests

    Science.gov (United States)

    Dickerson, Jane A.; Dovichi, Norman J.

    2011-01-01

    We perform two-dimensional capillary electrophoresis on fluorescently labeled proteins and peptides. Capillary sieving electrophoresis was performed in the first dimension and micellar electrokinetic capillary chromatography was performed in the second. A cellular homogenate was labeled with the fluorogenic reagent FQ and separated using the system. This homogenate generated a pair of ridges; the first had essentially constant migration time in the CSE dimension, while the second had essentially constant migration time in the MEKC dimension. In addition a few spots were scattered through the electropherogram. The same homogenate was digested using trypsin, and then labeled and subjected to the two dimensional separation. In this case, the two ridges observed from the original two-dimensional separation disappeared, and were replaced by a set of spots that fell along the diagonal. Those spots were identified using a local-maximum algorithm and each was fit using a two-dimensional Gaussian surface by an unsupervised nonlinear least squares regression algorithm. The migration times of the tryptic digest components were highly correlated (r = 0.862). When the slowest migrating components were eliminated from the analysis, the correlation coefficient improved to r = 0.956. PMID:20564272

  6. High-density arrays of titania nanoparticles using monolayer micellar films of diblock copolymers as templates.

    Science.gov (United States)

    Li, Xue; Lau, King Hang Aaron; Kim, Dong Ha; Knoll, Wolfgang

    2005-05-24

    Highly dense arrays of titania nanoparticles were fabricated using surface micellar films of poly(styrene-block-2-vinylpyridine) diblock copolymers (PS-b-P2VP) as reaction scaffolds. Titania could be introduced selectively within P2VP nanodomains in PS-b-P2VP films through the binary reaction between water molecules trapped in the P2VP domains and the TiCl(4) vapor precursors. Subsequent UV exposure or oxygen plasma treatment removed the organic matrix, leading to titania nanoparticle arrays on the substrate surface. The diameter of the titania domains and the interparticle distance were defined by the lateral scale present in the microphase-separated morphology of the initial PS-b-P2VP films. The typical diameter of titania nanoparticles obtained by oxygen plasma treatment was of the order of approximately 23 nm. Photoluminescence (PL) properties were investigated for films before and after plasma treatment. Both samples showed PL properties with major physical origin due to self-trapped excitons, indicating that the local environment of the titanium atoms is similar.

  7. Acid-base equilibria and solubility of loratadine and desloratadine in water and micellar media.

    Science.gov (United States)

    Popović, Gordana; Cakar, Mira; Agbaba, Danica

    2009-01-15

    Acid-base equilibria in homogeneous and heterogeneous systems of two antihistaminics, loratadine and desloratadine were studied spectrophotometrically in Britton-Robinson's buffer at 25 degrees C. Acidity constant of loratadine was found to be pK(a) 5.25 and those of desloratadine pK(a1) 4.41 and pK(a2) 9.97. The values of intrinsic solubilities of loratadine and desloratadine were 8.65x10(-6) M and 3.82x10(-4) M, respectively. Based on the pK(a) values and intrinsic solubilities, solubility curves of these two drugs as a function of pH were calculated. The effects of anionic, cationic and non-ionic surfactants applied in the concentration exceeding critical micelle concentration (cmc) on acid-base properties of loratadine and desloratadine, as well as on intrinsic solubility of loratadine were also examined. The results revealed a shift of pK(a) values in micellar media comparing to the values obtained in water. These shifts (DeltapK(a)) ranged from -2.24 to +1.24.

  8. Influence of buffer zone concentrations on efficiency in partial filling micellar electrokinetic chromatography.

    Science.gov (United States)

    Michalke, D; Kolb, S; Welsch, T

    2001-05-04

    The potential of counter pressure-moderated partial filling micellar electrokinetic chromatography (PF-MEKC) was investigated in this work. Plate numbers of homologous omega-phenylalcohols were measured in a two-plug PF-MEKC system varying the concentrations and hence the ionic strengths of the background buffer compared to the sodium dodecyl sulfate-containing separation buffer and the counter pressure on the cathodic buffer reservoir. It was observed that plate numbers are strongly influenced by both the buffer concentrations and the counter pressure. Highest plate numbers were obtained with a buffer system where the concentrations are adjusted such that the electroosmotic flow velocities in both zones are equal. Differences in the local electroosmotic flow velocities of the zones caused by different buffer concentrations are responsible for tremendously reduced plate numbers. The efficiency drop is explained in several models by the formation of an intersegmental pressure which produces a parabolically shaped laminar flow component in both zones. Thus, the electroosmotic plug-like flow profile is distorted and the efficiency is reduced. The effect of counter pressure on efficiency turned out to be very complex in dependence on the buffer system applied.

  9. Kinetics and mechanism of the cutinase-catalyzed transesterification of oils in AOT reversed micellar system.

    Science.gov (United States)

    Badenes, Sara M; Lemos, Francisco; Cabral, Joaquim M S

    2011-11-01

    The kinetics of the enzymatic transesterification between a mixture of triglycerides (oils) and methanol for biodiesel production in a bis(2-ethylhexyl) sodium sulfosuccinate (AOT)/isooctane reversed micellar system, using recombinant cutinase from Fusarium solani pisi as a catalyst, was investigated. In order to describe the results that were obtained, a mechanistic scheme was proposed, based on the literature and on the experimental data. This scheme includes the following reaction steps: the formation of the active enzyme-substrate complex, the addition of an alcohol molecule to the complex followed by the separation of a molecule of the fatty acid alkyl ester and a glycerol moiety, and release of the active enzyme. Enzyme inhibition and deactivation effects due to methanol and glycerol were incorporated in the model. This kinetic model was fitted to the concentration profiles of the fatty acid methyl esters (the components of biodiesel), tri-, di- and monoglycerides, obtained for a 24 h transesterification reaction performed in a stirred batch reactor under different reaction conditions of enzyme and initial substrates concentration.

  10. Determination of strobilurin fungicide residues in fruits and vegetables by micellar electrokinetic capillary chromatography with sweeping.

    Science.gov (United States)

    Wang, Kun; Chen, Guan-hua; Wu, Xian; Shi, Jie; Guo, Dong-shan

    2014-02-01

    A new assay of micellar electrokinetic capillary chromatography with sweeping was developed to determine azoxystrobin, kresoxim-methyl and pyraclostrobin in fruits and vegetables. The key factors affecting resolution and peak height were studied and the optimum conditions were obtained for separation and enrichment. The running buffer consisted of 40 mM borate, 25 mM sodium dodecyl sulfate and 15% acetonitrile, and its pH was adjusted to 8.4. The sample was injected for 677 nL and the separation voltage was 25 kV. Under the optimum conditions, the enrichment factors of azoxystrobin, kresoxim-methyl and pyraclostrobin were 861, 550 and 403; the linear dynamic ranges were all 0.01-5.0 mg/L; the limits of detection were 0.002, 0.001 and 0.002 mg/kg; the recoveries of spiked samples were 85.1-98.5%, 87.5-97.0% and 89.1-99.1%, respectively. The assay can meet the requirement of maximum residue limits for these three strobilurin fungicides, and has been applied for determining their residues in fruits and vegetables.

  11. Coulombic Fluids Bulk and Interfaces

    CERN Document Server

    Freyland, Werner

    2011-01-01

    Ionic liquids have attracted considerable interest in recent years. In this book the bulk and interfacial physico-chemical characteristics of various fluid systems dominated by Coulomb interactions are treated which includes molten salts, ionic liquids as well as metal-molten salt mixtures and expanded fluid metals. Of particular interest is the comparison of the different systems. Topics in the bulk phase concern the microscopic structure, the phase behaviour and critical phenomena, and the metal-nonmetal transition. Interfacial phenomena include wetting transitions, electrowetting, surface freezing, and the electrified ionic liquid/ electrode interface. With regard to the latter 2D and 3D electrochemical phase formation of metals and semi-conductors on the nanometer scale is described for a number of selected examples. The basic concepts and various experimental methods are introduced making the book suitable for both graduate students and researchers interested in Coulombic fluids.

  12. Electron transfer between a zinc porphyrin photo-sensitized in the visible, and various acceptors, in aqueous and micellar solutions

    International Nuclear Information System (INIS)

    Le Roux, Dominique

    1983-01-01

    This research thesis addresses the study of reactions occurring during the transformation of solar energy in chemical energy, and more precisely the search for photochemical systems allowing the dissociation of water into hydrogen and oxygen. In this study on water photolysis, the author chose to use a porphyrin soluble in water, the zinc tetra-meta-N-methylpyridinium porphyrin, as one of its isomer provided a good efficiency in hydrogen formation. Before reporting the study of electron photo-transfer, the author reports the study of photo-physical and photochemical properties of this porphyrin. Then, in the case of a well known electron acceptor (methyl viologen), he studied the influence of Coulomb effects on the kinetics of direct electron transfer, and on the kinetics of recombination of formed species. He also studied the influence of organised systems (cationic micelles) on these reactions when using a viologen with long chains. He finally reports the study of reactions of the triplet state of this porphyrin with metallic complexes

  13. Micelles and gels of oxyethylene-oxybutylene diblock copolymers in aqueous solution: The effect of oxyethylene-block length

    DEFF Research Database (Denmark)

    Derici, L.; Ledger, S.; Mai, S.M.

    1999-01-01

    and in aqueous 0.2 mol dm(-3) K(2)SO(4)), yielding the micellar association numbers, the hydrodynamic and thermodynamic radii, and related expansion factors. Micellar parameters were also obtained by small-angle neutron scattering (SANS) for solutions of a similar copolymer, E(86)B(10), in water, i......Block copolymer E(90)B(10) (E = oxyethylene, B = oxybutylene) was synthesised and characterised by gel permeation chromatography and (13)C NMR spectroscopy. Dynamic light scattering (DLS) and static light scattering (SLS) were used to characterise the micelles in solution (both in water...... of water in the micelle core. Moderately concentrated solutions of copolymer E(90)B(10) were studied in the gel state by small-angle X-ray scattering (SAXS) in tandem with rheology (oscillatory shear). Values for the dynamic elastic modulus (G') of the gels significantly exceeded 10(4) Pa across the range...

  14. Bulk Superconductors in Mobile Application

    Science.gov (United States)

    Werfel, F. N.; Delor, U. Floegel-; Rothfeld, R.; Riedel, T.; Wippich, D.; Goebel, B.; Schirrmeister, P.

    We investigate and review concepts of multi - seeded REBCO bulk superconductors in mobile application. ATZ's compact HTS bulk magnets can trap routinely 1 T@77 K. Except of magnetization, flux creep and hysteresis, industrial - like properties as compactness, power density, and robustness are of major device interest if mobility and light-weight construction is in focus. For mobile application in levitated trains or demonstrator magnets we examine the performance of on-board cryogenics either by LN2 or cryo-cooler application. The mechanical, electric and thermodynamical requirements of compact vacuum cryostats for Maglev train operation were studied systematically. More than 30 units are manufactured and tested. The attractive load to weight ratio is more than 10 and favours group module device constructions up to 5 t load on permanent magnet (PM) track. A transportable and compact YBCO bulk magnet cooled with in-situ 4 Watt Stirling cryo-cooler for 50 - 80 K operation is investigated. Low cooling power and effective HTS cold mass drives the system construction to a minimum - thermal loss and light-weight design.

  15. Toxicity of silver and copper to Cucurbita pepo: differential effects of nano and bulk-size particles.

    Science.gov (United States)

    Musante, Craig; White, Jason C

    2012-09-01

    The phytotoxicity of bulk and nanoparticle Cu and Ag was directly compared. NP Ag reduced biomass and transpiration by 66-84% when compared with bulk Ag. The Ag ion concentration was 4.4-10-times greater in NP than bulk particle solutions. The Cu ion concentration was 1.4-4.4-times greater in bulk than NP amended solutions. Humic acid (50 mg/L) decreased the ion content of bulk Cu solution by 38-42% but increased ion Cu content of NP solutions by 1.4-2.9 times. Bulk and NP Cu were highly phytotoxic; growth and transpiration were reduced by 60-70% relative to untreated controls. NP Cu phytotoxicity was unaffected by solution type, but humic acid (50 mg/L) completely alleviated phytotoxicity caused by bulk Cu. The data demonstrate differential toxicity of Ag NP relative to bulk Ag. The finding that humic acid and solution chemistry differentially impact bulk and NP behavior highlights the importance of evaluating nanoparticles under environmentally relevant conditions. Copyright © 2010 Wiley Periodicals, Inc.

  16. The Effect of Bulk Tachyon Field on the Dynamics of Geometrical Tachyon

    International Nuclear Information System (INIS)

    Papantonopoulos, Eleftherios; Pappa, Ioanna; Zamarias, Vassilios

    2007-01-01

    We study the dynamics of the geometrical tachyon field on an unstable D3-brane in the background of a bulk tachyon field of a D3-brane solution of Type-0 string theory. We find that the geometrical tachyon potential is modified by a function of the bulk tachyon and inflation occurs at weak string coupling, where the bulk tachyon condenses, near the top of the geometrical tachyon potential. We also find a late accelerating phase when the bulk tachyon asymptotes to zero and the geometrical tachyon field reaches the minimum of the potential

  17. A Comparative Study on Micellar and Solubilizing Behavior of Three EO-PO Based Star Block Copolymers Varying in Hydrophobicity and Their Application for the In Vitro Release of Anticancer Drugs

    Directory of Open Access Journals (Sweden)

    Bijal Vyas

    2018-01-01

    Full Text Available The temperature and pH dependent self-assembly of three star shaped ethylene oxide-propylene oxide (EO-PO block copolymers (Tetronics® 304, 904 and 908 with widely different hydrophobicity was examined in aqueous solutions. Physico-chemical methods viz. viscosity, cloud point, solubilization along with thermal, scattering and spectral techniques shows strongly temperature and salt dependent solution behavior. T304 possessing low molecular weight did not form micelles; moderately hydrophilic T904 remained as micelles at ambient temperature and showed micellar growth while very hydrophilic T908 formed micelles at elevated temperatures. The surface activity/micellization/solubilization power was favored in the presence of salt. The copolymers turn more hydrophilic in acidic pH due to protonation of central ethylene diamine moiety that hinders micelle formation. The solubilization of a model insoluble azo dye 1-(o-Tolylazo-2-naphthol (Orange OT and hydrophobic drugs (quercetin and curcumin for copolymer solutions in aqueous and salt solutions are also reported. Among the three copolymers, T904 showed maximum solubility of dye and drugs, hence the in vitro release of drugs from T904 micelles was estimated and the effect on cytotoxicity of loading the drugs in T904 micelles was compared with the cytotoxicity of free drugs on the CHO-K1 cells. The results from the present work provide a better insight in selection of Tetronics® for their application in different therapeutic applications.

  18. Interactions between 9,10-anthraquinone and aromatic amines in homogeneous and micellar media: A laser flash photolysis and magnetic field effect study

    International Nuclear Information System (INIS)

    Chowdhury, Adity; Basu, Samita

    2006-01-01

    The interactions between 9,10-anthraquinone (AQ) and different aromatic amines, N,N-dimethylaniline and 4,4'-bis (dimethylamino) diphenylmethane (DMDPM), have been studied using absorption, steady-state fluorescence, and laser flash photolysis techniques in organic homogeneous and heterogeneous micellar media. In polar organic homogeneous medium, electron transfer (ET) occurs from amines to excited AQ. In micellar medium, similar intermolecular ET is observed. However, in latter medium, ET predominates over hydrogen abstraction from micelles by excited AQ itself. The occurrence of ET has been further supported by the application of an external magnetic field during laser flash photolysis experiments, which modulates the yield of radical ion pairs formed through ET. Another novel feature, which has also been discussed here, is the abnormal behavior of DMDPM in micellar medium pertaining to energy transfer

  19. Running with rugby balls: bulk renormalization of codimension-2 branes

    Science.gov (United States)

    Williams, M.; Burgess, C. P.; van Nierop, L.; Salvio, A.

    2013-01-01

    We compute how one-loop bulk effects renormalize both bulk and brane effective interactions for geometries sourced by codimension-two branes. We do so by explicitly integrating out spin-zero, -half and -one particles in 6-dimensional Einstein-Maxwell-Scalar theories compactified to 4 dimensions on a flux-stabilized 2D geometry. (Our methods apply equally well for D dimensions compactified to D - 2 dimensions, although our explicit formulae do not capture all divergences when D > 6.) The renormalization of bulk interactions are independent of the boundary conditions assumed at the brane locations, and reproduce standard heat-kernel calculations. Boundary conditions at any particular brane do affect how bulk loops renormalize this brane's effective action, but not the renormalization of other distant branes. Although we explicitly compute our loops using a rugby ball geometry, because we follow only UV effects our results apply more generally to any geometry containing codimension-two sources with conical singularities. Our results have a variety of uses, including calculating the UV sensitivity of one-loop vacuum energy seen by observers localized on the brane. We show how these one-loop effects combine in a surprising way with bulk back-reaction to give the complete low-energy effective cosmological constant, and comment on the relevance of this calculation to proposed applications of codimension-two 6D models to solutions of the hierarchy and cosmological constant problems.

  20. Delocalization of brane gravity by a bulk black hole

    International Nuclear Information System (INIS)

    Seahra, Sanjeev S; Clarkson, Chris; Maartens, Roy

    2005-01-01

    We investigate the analogue of the Randall-Sundrum braneworld in the case when the bulk contains a black hole. Instead of the static vacuum Minkowski brane of the RS model, we have an Einstein static vacuum brane. We find that the presence of the bulk black hole has a dramatic effect on the gravity that is felt by brane observers. In the RS model, the 5D graviton has a stable localized zero mode that reproduces 4D gravity on the brane at low energies. With a bulk black hole, there is no such solution-gravity is delocalized by the 5D horizon. However, the brane does support a discrete spectrum of metastable massive bound states, or quasinormal modes, as was recently shown to be the case in the RS scenario. These states should dominate the high frequency component of the bulk gravity wave spectrum on a cosmological brane. We expect our results to generalize to any bulk spacetime containing a Killing horizon. (letter to the editor)

  1. Relação entre potássio na solução do solo, umidade e condutividade elétrica aparente do solo Relationship between potassium in the soil solution, soil water content and bulk electrical conductivity

    Directory of Open Access Journals (Sweden)

    Gessionei da S. Santana

    2007-04-01

    Full Text Available Através de modelos que relacionam umidade (teta, condutividade elétrica aparente do solo (CEa e condutividade elétrica da solução do solo (CEw, objetivou-se avaliar, para condição de laboratório, a viabilidade de se estimar a concentração de potássio na solução do solo (K, para solos de classe textural franca (CTf e franco-arenosa (CTfa. Cinco soluções de cloreto de potássio, referentes a cinco condutividades elétricas (1,0, 2,5, 4,0, 5,5 e 7,0 dS m-1, foram aplicadas sobre o solo acondicionado em colunas de PVC, de forma a se obter cinco teta do solo (17,0 ± 1,4, 19,0 ± 1,8, 21,4 ± 2,2, 23,4 ± 2,2 e 26,0 ± 3,0%, em volume. Efetuaram-se leituras de teta e CEa com um aparelho de reflectometria no domínio do tempo (TDR e se extraiu solução do solo com extrator de cápsula de cerâmica, para determinar a CEw e o K. Três modelos foram ajustados aos dados, por meio de planilha eletrônica. É viável estimar a concentração de K na solução do solo, a partir detetae CEa, para condição de laboratório, por meio dos modelos de Rhoades et al. (1976, Vogeler et al. (1996 e Mualen & Friedman (1991, adaptados com uma relação entre CEw e K do tipo potência, nas faixas de 0 a 60 e 0 a 120 mg L-1, para solos de CTf e CTfa, respectivamente.The objective of this work was to evaluate the feasibility of estimating the potassium (K concentration in the soil solution, under laboratory conditions, for loamy (CTf and sandy loam (CTfa soils, through models that relate soil water content (theta, bulk electrical conductivity (CEa and soil solution electrical conductivity (CEw. Five potassium chloride solutions with electrical conductivities of 1.0, 2.5, 4.0, 5.5 and 7.0 dS m-1, were applied in a soil packed in PVC columns in order to obtain five soil water contents (17.0 ± 1.4, 19.0 ± 1.8, 21.4 ± 2.2, 23.4 ± 2.2 and 26.0 ± 3.0%, on volume basis. Readings of theta and CEa were obtained by using time domain reflectometry (TDR

  2. Production efficiency of micellar casein concentrate using polymeric spiral-wound microfiltration membranes.

    Science.gov (United States)

    Beckman, S L; Zulewska, J; Newbold, M; Barbano, D M

    2010-10-01

    Most current research has focused on using ceramic microfiltration (MF) membranes for micellar casein concentrate production, but little research has focused on the use of polymeric spiral-wound (SW) MF membranes. A method for the production of a serum protein (SP)-reduced micellar casein concentrate using SW MF was compared with a ceramic MF membrane. Pasteurized (79°C, 18s) skim milk (1,100 kg) was microfiltered at 50°C [about 3 × concentration] using a 0.3-μm polyvinylidene fluoride spiral-wound membrane, bleed-and-feed, 3-stage process, using 2 diafiltration stages, where the retentate was diluted 1:2 with reverse osmosis water. Skim milk, permeate, and retentate were analyzed for SP content, and the reduction of SP from skim milk was determined. Theoretically, 68% of the SP content of skim milk can be removed using a single-stage 3× MF. If 2 subsequent water diafiltration stages are used, an additional 22% and 7% of the SP can be removed, respectively, giving a total SP removal of 97%. Removal of SP greater than 95% has been achieved using a 0.1-μm pore size ceramic uniform transmembrane pressure (UTP) MF membrane after a 3-stage MF with diafiltration process. One stage of MF plus 2 stages of diafiltration of 50°C skim milk using a polyvinylidene fluoride polymeric SW 0.3-μm membrane yielded a total SP reduction of only 70.3% (stages 1, 2, and 3: 38.6, 20.8, and 10.9%, respectively). The SP removal rate for the polymeric SW MF membrane was lower in all 3 stages of processing (stages 1, 2, and 3: 0.05, 0.04, and 0.03 kg/m(2) per hour, respectively) than that of the comparable ceramic UTP MF membrane (stages 1, 2, and 3: 0.30, 0.11, and 0.06 kg/m(2) per hour, respectively), indicating that SW MF is less efficient at removing SP from 50°C skim milk than the ceramic UTP system. To estimate the number of steps required for the SW system to reach 95% SP removal, the third-stage SP removal rate (27.4% of the starting material SP content) was used to

  3. Development of Micellar HPLC-UV Method for Determination of Pharmaceuticals in Water Samples

    Directory of Open Access Journals (Sweden)

    Danielle Cristina da Silva

    2018-01-01

    Full Text Available Method for extraction and determination of amoxicillin, caffeine, ciprofloxacin, norfloxacin, tetracycline, diclofenac, ibuprofen, nimesulide, levonorgestrel, and 17α-ethynylestradiol exploiting micellar liquid chromatography with PDA detector and solid-phase extraction was proposed. The usage of toxic solvents was low; the chromatographic separation of the medicaments was performed using a C18 column and mobile phases A and B containing 15.0% (v/v ethanol, 3.0% (m/v sodium dodecyl sulfate (SDS, and 0.02 mol·L−1 phosphate at pHs 7.0 and 8.0, respectively. The method is simple, selective, and fast, and the analytes were separated in 23.0 min. For extraction, 1000 mL of sample containing 2.0% (v/v ethanol and 0.002 mol·L−1 citric acid at pH 2.50 was loaded through a 1000 mg of C18 cartridge. The analytes were eluted using 3.0 mL of ethanol, which were evaporated and redissolved in 0.5 mL of mobile phase. Concentration factors better than 1200, except amoxicillin (224, were obtained. The analytical curves were linear (R2 better than 0.992; LOD and LOQ n=10 presented values in the range of 0.019–0.247 and 0.058–0.752 mg·L−1, respectively. Recoveries of 99% were obtained, and the results are in agreement with those obtained by the comparative methods.

  4. Thermodynamic models to elucidate the enantioseparation of drugs with two stereogenic centers by micellar electrokinetic chromatography.

    Science.gov (United States)

    Guo, Xuming; Liu, Qiuxia; Hu, Shaoqiang; Guo, Wenbo; Yang, Zhuo; Zhang, Yonghua

    2017-08-25

    An equilibrium model depicting the simultaneous protonation of chiral drugs and partitioning of protonated ions and neutral molecules into chiral micelles in micellar electrokinetic chromatography (MEKC) has been introduced. It was used for the prediction and elucidation of complex changes in migration order patterns with experimental conditions in the enantioseparation of drugs with two stereogenic centers. Palonosetron hydrochloride (PALO), a weakly basic drug with two stereogenic centers, was selected as a model drug. Its four stereoisomers were separated by MEKC using sodium cholate (SC) as chiral selector and surfactant. Based on the equilibrium model, equations were derived for a calculation of the effective mobility and migration time of each stereoisomer at a certain pH. The migration times of four stereoisomers at different pHs were calculated and then the migration order patterns were constructed with derived equations. The results were in accord with the experiment. And the contribution of each mechanism to the separation and its influence on the migration order pattern was analyzed separately by introducing virtual isomers, i.e., hypothetical stereoisomers with only one parameter changed relative to a real PALO stereoisomer. A thermodynamic model for a judgment of the correlation of interactions between two stereogenic centers of stereoisomers and chiral selector was also proposed. According to this model, the interactions of two stereogenic centers of PALO stereoisomers in both neutral molecules and protonated ions with chiral selector are not independent, so the chiral recognition in each pair of enantiomers as well as the recognition for diastereomers is not simply the algebraic sum of the contributions of two stereogenic centers due to their correlation. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Micellar dipolar rearrangement is sensitive to hydrophobic chain length: Implication for structural switchover of piroxicam.

    Science.gov (United States)

    Sethy, Dasaratha; Chakraborty, Hirak

    2016-10-01

    The interfacial properties of the membrane are exceptionally vital in drug-membrane interaction. They not only select out a particular prototropic form of the drug molecule for incorporation, but are also potent enough to induce structural switchover of these drugs in several cases. In this work, we quantitatively monitored the change in dipolar rearrangement of the micellar interface (as a simplified membrane mimic) by measuring the dielectric constant and dipole potential with the micellization of SDS at pH 3.6. The dielectric constant and dipole potential were measured utilizing the fluorescence of polarity sensitive probe, pyrene and potential-sensitive probe, di-8-ANEPPS, respectively. Our study demonstrates that the change in dipolar rearrangement directly influences the switchover equilibrium between the anionic and neutral from of piroxicam. We have further extended our work to evaluate the effect of hydrophobic chain length of the surfactants on the dipolar rearrangement and its effect on the structural switchover of piroxicam. It is interesting that the extent of switchover of piroxicam is directly correlated with the dipolar rearrangement induced bythe varying hydrophobic chain length of the surfactants. To the best of our knowledge, our results constitute the first report to show the dependence of dipole potential on the hydrophobic chain length of the surfactant and demonstrate that the dipolar rearrangement directly tunes the extent of structural switchover of piroxicam, which was so far only intuitive. We consider that this new finding would have promising implication in drug distribution and drug efficacy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Synthesis and antibacterial activity of water-dispersible silver nanoparticles via micellar nanoreactors

    Science.gov (United States)

    Pofali, Prasad; Shirolikar, Seema; Borde, Lalit; Pattani, Aditya; Dandekar, Prajakta; Jain, Ratnesh

    2018-04-01

    We have synthesized silver nanoparticles (AgNPs) using micelles of sugar fatty acid ester by dissolving the surfactant in a mixture of iso-octane and n-butanol, with solid-liquid extraction. Highly concentrated, water-dispersible AgNPs were obtained after thorough washing with alcohol, to remove excess of sucrose fatty acid ester DK SS and salt, followed by drying. The particles were characterized for their size, morphology and crystallinity using UV-Visible spectrophotometry, Transmission Electron Microscopy and x-ray diffractometry. Antibacterial study, confirmed the activity of nanoparticles against E. coli, P. aeruginosa and S. aureus, which causes diseases including diarrhoea and several life-threatening infections. Antibacterial activity of E. coli and P. aeruginosa was found to be 2.5 fold and for S. aureus 1.6 fold compared to 50 ppm conc. of Silver Nitrate. Our method of producing nanoparticles is employed as a platform technology for synthesizing other inorganic nanoparticles. This is the first report discussing the use of micellar carriers for obtaining silver nanopowder, to the best of our knowledge, which has the potential to overcome limitations during fabrication of AgNPs using reverse/inverse micelles. Our method yielded nano-sized, water-dispersible AgNPs via an easy and economic approach. The one-pot approach possesses advantages in terms of cost and simplicity, as compared with traditional methods of producing powdered AgNPs using energy intensive and expensive techniques like lyophilisation. The developed method, thus, possesses immense potential for commercial synthesis of AgNPs.

  7. Ordered bulk degradation via autophagy

    DEFF Research Database (Denmark)

    Dengjel, Jörn; Kristensen, Anders Riis; Andersen, Jens S

    2008-01-01

    During amino acid starvation, cells undergo macroautophagy which is regarded as an unspecific bulk degradation process. Lately, more and more organelle-specific autophagy subtypes such as reticulophagy, mitophagy and ribophagy have been described and it could be shown, depending on the experimental...... at proteasomal and lysosomal degradation ample cross-talk between the two degradation pathways became evident. Degradation via autophagy appeared to be ordered and regulated at the protein complex/organelle level. This raises several important questions such as: can macroautophagy itself be specific and what...

  8. Diffusion of aqueous solutions of ionic, zwitterionic, and polar solutes

    Science.gov (United States)

    Teng, Xiaojing; Huang, Qi; Dharmawardhana, Chamila Chathuranga; Ichiye, Toshiko

    2018-06-01

    The properties of aqueous solutions of ionic, zwitterionic, and polar solutes are of interest to many fields. For instance, one of the many anomalous properties of aqueous solutions is the behavior of water diffusion in different monovalent salt solutions. In addition, solutes can affect the stabilities of macromolecules such as proteins in aqueous solution. Here, the diffusivities of aqueous solutions of sodium chloride, potassium chloride, tri-methylamine oxide (TMAO), urea, and TMAO-urea are examined in molecular dynamics simulations. The decrease in the diffusivity of water with the concentration of simple ions and urea can be described by a simple model in which the water molecules hydrogen bonded to the solutes are considered to diffuse at the same rate as the solutes, while the remainder of the water molecules are considered to be bulk and diffuse at almost the same rate as pure water. On the other hand, the decrease in the diffusivity of water with the concentration of TMAO is apparently affected by a decrease in the diffusion rate of the bulk water molecules in addition to the decrease due to the water molecules hydrogen bonded to TMAO. In other words, TMAO enhances the viscosity of water, while urea barely affects it. Overall, this separation of water molecules into those that are hydrogen bonded to solute and those that are bulk can provide a useful means of understanding the short- and long-range effects of solutes on water.

  9. Flow-injection fluorimetric determination of menadione using on-line photo-reduction in micellar media

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Ruiz, Tomas; Martinez-Lozano, Carmen; Tomas, Virginia; Martin, Jesus

    2004-07-01

    A very sensitive fluorimetric method for the determination of menadione using a flow injection system is proposed. The method is based on the on-line reduction of menadione in dodecylsulphate micelles upon irradiation with UV light. The strong fluorescence of the reduced menadione in micellar medium is measured at 410 nm with excitation at 340 nm. The method shows a linear range between 2.42 and 245 ng ml{sup -1} and a limit of detection of 0.18 ng ml{sup -1}. The sample throughput was 90 injections per hour. The applicability of the assay was demonstrated by analysing this vitamin in commercial pharmaceutical preparations.

  10. Flow-injection fluorimetric determination of menadione using on-line photo-reduction in micellar media

    International Nuclear Information System (INIS)

    Perez-Ruiz, Tomas; Martinez-Lozano, Carmen; Tomas, Virginia; Martin, Jesus

    2004-01-01

    A very sensitive fluorimetric method for the determination of menadione using a flow injection system is proposed. The method is based on the on-line reduction of menadione in dodecylsulphate micelles upon irradiation with UV light. The strong fluorescence of the reduced menadione in micellar medium is measured at 410 nm with excitation at 340 nm. The method shows a linear range between 2.42 and 245 ng ml -1 and a limit of detection of 0.18 ng ml -1 . The sample throughput was 90 injections per hour. The applicability of the assay was demonstrated by analysing this vitamin in commercial pharmaceutical preparations

  11. Study of the mechanism of acetonitrile stacking and its application for directly combining liquid-phase microextraction with micellar electrokinetic chromatography.

    Science.gov (United States)

    Sun, Jingru; Feng, Jing; Shi, Ludi; Liu, Laping; He, Hui; Fan, Yingying; Hu, Shibin; Liu, Shuhui

    2016-08-26

    Acetonitrile stacking is an online concentration method that is distinctive due to its inclusion of a high proportion of organic solvent in sample matrices. We previously designed a universal methodology for the combination of liquid-phase microextraction (LPME) and capillary electrophoresis (CE) using acetonitrile stacking and micellar electrokinetic chromatography (MEKC) mode, thereby achieving large-volume injection of the diluted LPME extractant and the online concentration. In this report, the methodology was extended to the analysis of highly substituted hydrophobic chlorophenols in wines using diethyl carbonate as the extractant. Additionally, the mechanism of acetonitrile stacking was studied. The results indicated that the combination of LPME and MEKC exhibited good analytical performance: with ∼40-fold concentration by LPME, a 20-cm (33% of the total length) sample plug injection of an eight-fold dilution of diethyl carbonate with the organic solvent-saline solution produced enrichments higher by a factor of 260-791. Limits of qualification ranged from 5.5 to 16.0ng/mL. Acceptable reproducibilities of lower than 1.8% for migration time and 8.6% for peak areas were obtained. A dual stacking mechanism of acetonitrile stacking was revealed, involving transient isotachophoresis plus pH-junction stacking. The latter was associated with a pH shift induced by the presence of acetonitrile. The pseudo-stationary phase (Brij-35) played an important role in reducing the CE running time by weakening the isotachophoretic migration of the analyte ions following Cl(-) ions. The combination of acetonitrile stacking and nonionic micelle-based MEKC appears to be a perfect match for introducing water-immiscible LPME extractants into an aqueous CE system and can thus significantly expand the application of LPME-CE in green analytical chemistry. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Micellar solubilization of ibuprofen: influence of surfactant head groups on the extent of solubilization Solubilização micelar do ibuprofeno: influência do grupo polar dos tensoativos no grau de solubilização

    Directory of Open Access Journals (Sweden)

    Carlota O. Rangel-Yagui

    2005-06-01

    Full Text Available An important property of micelles with particular significance in pharmacy is their ability to increase the solubility of poorly soluble drugs in water, thus increasing their bioavailability. In this work, the solubilization of ibuprofen (IBU was studied in micellar solutions of three surfactants possessing the same hydrocarbon tail but different hydrophilic head groups, namely sodium dodecyl sulphate (SDS, dodecyltrimethylammonium bromide (DTAB, and n-dodecyl octa(ethylene oxide (C12EO8. The results showed that, irrespective of the surfactant type, the solubility of IBU increased linearly with increasing surfactant concentration, as a consequence of the association between the drug and the micelles. The 80 mM DTAB and the 80 mM C12EO8 micellar solutions resulted in a 16-fold increase in solubility of IBU when compared to the buffer solution, whereas the 80 mM SDS micellar solution resulted in a 5.5-fold increase in IBU solubility. The highest value of molar solubilization capacity (chi was obtained with DTAB, chi = 0.97, followed by C12EO8 ,chi = 0.72, and finally SDS, chi = 0.23. However, due to the stronger tendency of the nonionic surfactant in forming micelles in solution, at the same surfactant concentration, we obtained the same solubility of IBU in both DTAB and C12EO8.Uma propriedade importante das micelas, do ponto de vista farmacêutico, refere-se ao potencial destas em solubilizar fármacos pouco solúveis em água, aumentando sua biodisponibilidade. No presente trabalho, estudou-se a solubilização de ibuprofeno (IBU em soluções micelares constituídas de três tensoativos apresentando a mesma cauda apolar, porém diferentes grupos hidrofílicos. Os tensoativos estudados foram dodecil sulfato de sódio (SDS, brometo de dodeciltrimetilamônio (DTAB e óxido de n-dodecil octaetileno (C12EO8. De acordo com os resultados obtidos, a solubilidade do IBU aumentou linearmente com o aumento da concentração de todos os tensoativos

  13. Microhardness of bulk-fill composite materials

    OpenAIRE

    Kelić, Katarina; Matić, Sanja; Marović, Danijela; Klarić, Eva; Tarle, Zrinka

    2016-01-01

    The aim of the study was to determine microhardness of high- and low-viscosity bulk-fill composite resins and compare it with conventional composite materials. Four materials of high-viscosity were tested, including three bulk-fills: QuiXfi l (QF), x-tra fil (XTF) and Tetric EvoCeram Bulk Fill (TEBCF), while nanohybrid composite GrandioSO (GSO) served as control. The other four were low-viscosity composites, three bulk-fill materials: Smart Dentin Replacement (SDR), Venus Bulk Fill (VBF) and ...

  14. Handling of bulk solids theory and practice

    CERN Document Server

    Shamlou, P A

    1990-01-01

    Handling of Bulk Solids provides a comprehensive discussion of the field of solids flow and handling in the process industries. Presentation of the subject follows classical lines of separate discussions for each topic, so each chapter is self-contained and can be read on its own. Topics discussed include bulk solids flow and handling properties; pressure profiles in bulk solids storage vessels; the design of storage silos for reliable discharge of bulk materials; gravity flow of particulate materials from storage vessels; pneumatic transportation of bulk solids; and the hazards of solid-mater

  15. Structural study of concentrated micelle-solutions of sodium octanoate by light scattering

    International Nuclear Information System (INIS)

    Hayoun, Marc

    1982-05-01

    Structural investigation of sodium octanoate (CH 3 -(CH 2 ) 6 -COONa) by light scattering has been made to study properties of concentrated aqueous micelle-solutions. From static light scattering data, the micellar weight and shape have been determined. The monomer aggregation number and the apparent micellar charge have been confirmed. Quasi-elastic light scattering, has been used to measure the effective diffusion coefficient as a function of the volume fraction. Extrapolation to the c.m.c. give the hydrodynamic radius of the micelles. At low micelle-concentration, strong exchange reaction between monomers and micelles affects the Brownian motion and resulting is an increase in the diffusion coefficient. The experimental data show a strong hydrodynamic contribution to S(q) (factor structure) and D(q) (effective diffusion coefficient) arising from hard spheres interactions with a large repulsive potential. (author) [fr

  16. Separation of mercury(II), methylmercury and phenylmercury by micellar high-performance liquid chromatography on short columns

    International Nuclear Information System (INIS)

    Hutta, M.; Megova, S.; Halko, R.

    1998-01-01

    Three environmentally and agrochemically important mercury species: methylmercury, phenylmercury and mercury(II) are separated within 4 minutes as bromocomplexes by micellar liquid chromatography using very short reversed-phase (RP) C18 columns (up to 30 mm). The micellar mobile phase containing 0.05M cetyltrimethylammonium bromide (CTMA + Br - ), 1% (v/v) 2-propanol, 0.001M cyclohexylenediaminetetraacetic acid (DCTA) and sulfuric acid (pH 2) showed good selectivity in mixed reversed-phase and anion-exchange mode. The above mentioned separation order in which organomercurials are eluted far behind the void volume of the column, but before the mercury(II) peak is advantageous in all instances where mercury(II) is present in real samples in great excess. Environmental and agrochemical samples contain humic material which does not interfere in this particular system. The low cost photometric detection at 500 nm after post-column derivatization by CTMA + Br - micellized dithizone is almost free from interferences and enables detection limits at the 1-3 ng level (e.g., 0.1 ppm Hg) for 20 μl samples. (author)

  17. Determination of adulteration of malachite green in green pea and some prepared foodstuffs by micellar liquid chromatography.

    Science.gov (United States)

    Ashok, Vipin; Agrawal, Nitasha; Durgbanshi, Abhilasha; Esteve-Romero, Josep; Bose, Devasish

    2014-01-01

    A simple, fast, and robust micellar LC method was developed for the separation and identification of the nonpermitted color malachite green in green pea and some ready-to-eat foodstuffs. Malachite green (4-[(4-dimethylaminophenyl) phenyl-methyl]-N,N-dimethylaniline) is a hazardous dye that is used to treat fungal and protozoan infections in fish and is a common adulterant (coloring agent) in green pea and other green vegetables because of its green color. In the present work, malachite green was determined in various foodstuffs using a direct injection technique on an RP C18 column with isocratic elution. The optimum mobile phase consisted of 0.15 M sodium dodecyl sulfate (SDS), 6% pentanol buffered at pH 5. Detection was carried out at 620 nm. Malachite green was eluted in 9.2 min without any interference caused by endogenous compounds. Linearities (r > 0.9999), intraday and interday precision (RSD less than 1.00%) in micellar media, and robustness were studied for method validation. LOD and LOQ were 0.10 and 0.25 ppm, respectively. The simplicity of the developed method makes it useful for routine analysis in the area of food QC.

  18. Simultaneous Determination of Tizanidine, Nimesulide, Aceclofenac and Paracetamol in Tablets and Biological Fluids Using Micellar Liquid Chromatography.

    Science.gov (United States)

    Belal, Fathalla; Omar, Mahmoud A; Derayea, Sayed; Hammad, Mohamed A; Zayed, Sahar; Saleh, Safaa F

    2018-03-01

    A simple, sensitive and rapid micellar liquid chromatographic method was developed and validated for simultaneous determination of four drugs, namely, paracetamol (PAR), tizanidine (TZD), aceclofenac (ACF) and nimesulide (NMD). Good chromatographic separation was achieved using Cyano column and micellar mobile phase consisting of 120 mM sodium dodecyl sulfate, 25 mM phosphate buffer and 10% (V/V) butanol. The pH was adjusted to three using phosphoric acid. The total retention time was below 10 min. The analysis was performed at a flow rate of 1 mL/min and a column temperature of 40°C with direct UV detection at 230 nm. Diclofenac sodium was used as the internal standard. The proposed method was validated according to the ICH guidelines and was successfully applied to the analysis of these drugs in their tablet dosage forms with high accuracy. Limits of detection were found to be 0.03, 0.07, 0.033 and 0.11 μg/mL for PAR, ACF, TZD and NMD, respectively. The high sensitivity of developed method permitted its application to the in-vitro determination of the cited drugs in spiked human plasma and urine samples, and the obtained results were satisfactory. However, PAR could not be determined in spiked human urine because its peak overlapped with that of the urine peak.

  19. Mechanisms of the anomalous Pockels effect in bulk water

    Science.gov (United States)

    Yukita, Shunpei; Suzuki, Yuto; Shiokawa, Naoyuki; Kobayashi, Takayoshi; Tokunaga, Eiji

    2018-04-01

    The "anomalous" Pockels effect is a phenomenon that a light beam passing between two electrodes in an aqueous electrolyte solution is deflected by an AC voltage applied between the electrodes: the deflection angle is proportional to the voltage such that the incident beam alternately changes its direction. This phenomenon, the Pockels effect in bulk water, apparently contradicts what is believed in nonlinear optics, i.e., macroscopic inversion symmetry should be broken for the second-order nonlinear optical effect to occur such as the first-order electro-optic effect, i.e., the Pockels effect. To clarify the underlying mechanism, the dependence of the effect on the electrode material is investigated to find that the Pockels coefficient with Pt electrodes is two orders of magnitude smaller than with indium tin oxide (ITO) electrodes. It is experimentally confirmed that the Pockels effect of interfacial water in the electric double layer (EDL) on these electrodes shows an electrode dependence similar to the effect in bulk water while the effects depend on the frequency of the AC voltage such that the interfacial signal decreases with frequency but the bulk signal increases with frequency up to 221 Hz. These experimental results lead to a conclusion that the beam deflection is caused by the refractive index gradient in the bulk water region, which is formed transiently by the Pockels effect of interfacial water in the EDL when an AC electric field is applied. The refractive index gradient is caused by the diffuse layer spreading into the bulk region to work as a breaking factor of inversion symmetry of bulk water due to its charge-biased ionic distribution. This mechanism does not contradict the principle of nonlinear optics.

  20. Bulk handling benefits from ICT

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-11-15

    The efficiency and accuracy of bulk handling is being improved by the range of management information systems and services available today. As part of the program to extend Richards Bay Coal Terminal, Siemens is installing a manufacturing execution system which coordinates and monitors all movements of raw materials. The article also reports recent developments by AXSMarine, SunGuard Energy, Fuelworx and Railworx in providing integrated tools for tracking, managing and optimising solid/liquid fuels and rail car maintenance activities. QMASTOR Ltd. has secured a contract with Anglo Coal Australia to provide its Pit to Port.net{reg_sign} and iFuse{reg_sign} software systems across all their Australians sites, to include pit-to-product stockpile management. 2 figs.

  1. Bulk analysis using nuclear techniques

    International Nuclear Information System (INIS)

    Borsaru, M.; Holmes, R.J.; Mathew, P.J.

    1983-01-01

    Bulk analysis techniques developed for the mining industry are reviewed. Using penetrating neutron and #betta#-radiations, measurements are obtained directly from a large volume of sample (3-30 kg) #betta#-techniques were used to determine the grade of iron ore and to detect shale on conveyor belts. Thermal neutron irradiation was developed for the simultaneous determination of iron and aluminium in iron ore on a conveyor belt. Thermal-neutron activation analysis includes the determination of alumina in bauxite, and manganese and alumina in manganese ore. Fast neutron activation analysis is used to determine silicon in iron ores, and alumina and silica in bauxite. Fast and thermal neutron activation has been used to determine the soil in shredded sugar cane. (U.K.)

  2. Protein, casein and micellar salts in milk: Current content and historical perspectives

    NARCIS (Netherlands)

    Bijl, E.; Valenberg, van H.J.F.; Huppertz, T.; Hooijdonk, van A.C.M.

    2013-01-01

    The protein and fat content of Dutch bulk milk has been monitored since the 1950s and has increased considerably, by 11 and 20%, respectively, whereas milk yield has more than doubled. The change in protein and fat content of milk is advantageous for the dairy industry, as these are the 2 most

  3. Covalent and non-covalent curcumin loading in acid-responsive polymeric micellar nanocarriers

    Science.gov (United States)

    Gao, Min; Chen, Chao; Fan, Aiping; Zhang, Ju; Kong, Deling; Wang, Zheng; Zhao, Yanjun

    2015-07-01

    Poor aqueous solubility, potential degradation, rapid metabolism and elimination lead to low bioavailability of pleiotropic impotent curcumin. Herein, we report two types of acid-responsive polymeric micelles where curcumin was encapsulated via both covalent and non-covalent modes for enhanced loading capacity and on-demand release. Biodegradable methoxy poly(ethylene glycol)-poly(lactic acid) copolymer (mPEG-PLA) was conjugated with curcumin via a hydrazone linker, generating two conjugates differing in architecture (single-tail versus double-tail) and free curcumin was encapsulated therein. The two micelles exhibited similar hydrodynamic size at 95 ± 3 nm (single-tail) and 96 ± 3 nm (double-tail), but their loading capacities differed significantly at 15.0 ± 0.5% (w/w) (single-tail) and 4.8 ± 0.5% (w/w) (double-tail). Under acidic sink conditions (pH 5.0 and 6.0), curcumin displayed a faster release from the single-tail nanocarrier, which was correlated to a low IC50 of 14.7 ± 1.6 (μg mL-1) compared to the value of double-tail micelle (24.9 ± 1.3 μg mL-1) in HeLa cells. The confocal imaging and flow cytometry analysis demonstrated a superior capability of single-tail micelle for intracellular curcumin delivery, which was a consequence of the higher loading capacity and lower degree of mPEG surface coverage. In conclusion, the dual loading mode is an effective means to increase the drug content in the micellar nanocarriers whose delivery efficiency is highly dependent on its polymer-drug conjugate architecture. This strategy offers an alternative nanoplatform for intracellularly delivering impotent hydrophobic agents (i.e. curcumin) in an efficient stimuli-triggered way, which is valuable for the enhancement of curcumin’s efficacy in managing a diverse range of disorders.

  4. Covalent and non-covalent curcumin loading in acid-responsive polymeric micellar nanocarriers

    International Nuclear Information System (INIS)

    Gao, Min; Chen, Chao; Fan, Aiping; Wang, Zheng; Zhao, Yanjun; Zhang, Ju; Kong, Deling

    2015-01-01

    Poor aqueous solubility, potential degradation, rapid metabolism and elimination lead to low bioavailability of pleiotropic impotent curcumin. Herein, we report two types of acid-responsive polymeric micelles where curcumin was encapsulated via both covalent and non-covalent modes for enhanced loading capacity and on-demand release. Biodegradable methoxy poly(ethylene glycol)-poly(lactic acid) copolymer (mPEG-PLA) was conjugated with curcumin via a hydrazone linker, generating two conjugates differing in architecture (single-tail versus double-tail) and free curcumin was encapsulated therein. The two micelles exhibited similar hydrodynamic size at 95 ± 3 nm (single-tail) and 96 ± 3 nm (double-tail), but their loading capacities differed significantly at 15.0 ± 0.5% (w/w) (single-tail) and 4.8 ± 0.5% (w/w) (double-tail). Under acidic sink conditions (pH 5.0 and 6.0), curcumin displayed a faster release from the single-tail nanocarrier, which was correlated to a low IC_5_0 of 14.7 ± 1.6 (μg mL"−"1) compared to the value of double-tail micelle (24.9 ± 1.3 μg mL"−"1) in HeLa cells. The confocal imaging and flow cytometry analysis demonstrated a superior capability of single-tail micelle for intracellular curcumin delivery, which was a consequence of the higher loading capacity and lower degree of mPEG surface coverage. In conclusion, the dual loading mode is an effective means to increase the drug content in the micellar nanocarriers whose delivery efficiency is highly dependent on its polymer–drug conjugate architecture. This strategy offers an alternative nanoplatform for intracellularly delivering impotent hydrophobic agents (i.e. curcumin) in an efficient stimuli-triggered way, which is valuable for the enhancement of curcumin’s efficacy in managing a diverse range of disorders. (paper)

  5. Effect of micellar environment on Marcus correlation curves for photoinduced bimolecular electron transfer reactions

    Science.gov (United States)

    Kumbhakar, Manoj; Nath, Sukhendu; Mukherjee, Tulsi; Pal, Haridas

    2005-07-01

    Photoinduced electron transfer (ET) between coumarin dyes and aromatic amine has been investigated in two cationic micelles, namely, cetyltrimethyl ammonium bromide (CTAB) and dodecyltrimethyl ammonium bromide (DTAB), and the results have been compared with those observed earlier in sodium dodecyl sulphate (SDS) and triton-X-100 (TX-100) micelles for similar donor-acceptor pairs. Due to a reasonably high effective concentration of the amines in the micellar Stern layer, the steady-state fluorescence results show significant static quenching. In the time-resolved (TR) measurements with subnanosecond time resolution, contribution from static quenching is avoided. Correlations of the dynamic quenching constants (kqTR), as estimated from the TR measurements, show the typical bell-shaped curves with the free-energy changes (ΔG0) of the ET reactions, as predicted by the Marcus outersphere ET theory. Comparing present results with those obtained earlier for similar coumarin-amine systems in SDS and TX-100 micelles, it is seen that the inversion in the present micelles occurs at an exergonicity (-ΔG0>˜1.2-1.3eV) much higher than that observed in SDS and TX-100 micelles (-ΔG0>˜0.7eV), which has been rationalized based on the relative propensities of the ET and solvation rates in different micelles. In CTAB and DTAB micelles, the kqTR values are lower than the solvation rates, which result in the full contribution of the solvent reorganization energy (λs) towards the activation barrier for the ET reaction. Contrary to this, in SDS and TX-100 micelles, kqTR values are either higher or comparable with the solvation rates, causing only a partial contribution of λs in these cases. Thus, Marcus inversion in present cationic micelles is inferred to be the true inversion, whereas that in the anionic SDS and neutral TX-100 micelles are understood to be the apparent inversion, as envisaged from two-dimensional ET theory.

  6. Structural study of the AOT reverse micellar system. Influence of attractive interactions induced by the solubilisation of native and modified proteins

    International Nuclear Information System (INIS)

    Cassin, Guillaume

    1994-01-01

    This research thesis reports the study of the influence of intra-micellar attractions on the thermodynamic behaviour of reverse micellar systems, as well as of the effects induced by the solubilisation of natives or modified proteins. The author proposes a model to explain the decrease of attractions between droplets when the volume fraction occupied by reverse micelles increases. This model which highlights the importance of depletion forces between reverse micelles, allows the building up of a theoretical relationship between the bonding parameter and the volume fraction of reverse micelles. In order to understand the appearance of an attractive term related to the solubilisation of native cytochrome-c in these systems, this protein has been chemically modified. The author highlights the role of the charge born by a micellar probe on the thermodynamic behaviour of micro-emulsions. Then, the author applies the model of dimerizing adhesive spheres to reverse micellar systems containing native cytochrome-c. He shows that theoretical predictions of this model are in agreement with obtained experimental results [fr

  7. Computer Color Matching and Levelness of PEG-Based Reverse Micellar Decamethyl cyclopentasiloxane (D5 Solvent-Assisted Reactive Dyeing on Cotton Fiber

    Directory of Open Access Journals (Sweden)

    Alan Y. L. Tang

    2017-07-01

    Full Text Available The color matching and levelness of cotton fabrics dyed with reactive dye, in a non-aqueous environmentally-friendly medium of decamethylcyclopentasiloxane (D5, was investigated using the non-ionic surfactant reverse-micellar approach comprised of poly(ethylene glycol-based surfactant. The calibration dyeing databases for both conventional water-based dyeing and D5-assisted reverse micellar dyeing were established, along with the dyeing of standard samples with predetermined concentrations. Computer color matching (CCM was conducted by using different color difference formulae for both dyeing methods. Experimental results reveal that the measured concentrations were nearly the same as the expected concentrations for both methods. This indicates that the D5-assisted non-ionic reverse micellar dyeing approach can achieve color matching as good as the conventional dyeing system. The levelness of the dyed samples was measured according to the relative unlevelness indices (RUI, and the results reveal that the samples dyed by the D5 reverse micellar dyeing system can achieve good to excellent levelness comparable to that of the conventional dyeing system.

  8. Coupling brane fields to bulk supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Parameswaran, Susha L. [Uppsala Univ. (Sweden). Theoretical Physics; Schmidt, Jonas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2010-12-15

    In this note we present a simple, general prescription for coupling brane localized fields to bulk supergravity. We illustrate the procedure by considering 6D N=2 bulk supergravity on a 2D orbifold, with brane fields localized at the fixed points. The resulting action enjoys the full 6D N=2 symmetries in the bulk, and those of 4D N=1 supergravity at the brane positions. (orig.)

  9. Longitudinal and bulk viscosities of expanded rubidium

    International Nuclear Information System (INIS)

    Zaheri, Ali Hossein Mohammad; Srivastava, Sunita; Tankeshwar, K

    2003-01-01

    First three non-vanishing sum rules for the bulk and longitudinal stress auto-correlation functions have been evaluated for liquid Rb at six thermodynamic states along the liquid-vapour coexistence curve. The Mori memory function formalism and the frequency sum rules have been used to calculate bulk and longitudinal viscosities. The results thus obtained for the ratio of bulk viscosity to shear viscosity have been compared with experimental and other theoretical predictions wherever available. The values of the bulk viscosity have been found to be more than the corresponding values of the shear viscosity for all six thermodynamic states investigated here

  10. Bulk viscous matter-dominated Universes: asymptotic properties

    Energy Technology Data Exchange (ETDEWEB)

    Avelino, Arturo [Departamento de Física, Campus León, Universidad de Guanajuato, León, Guanajuato (Mexico); García-Salcedo, Ricardo [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada - Legaria del IPN, México D.F. (Mexico); Gonzalez, Tame [Departamento de Ingeniería Civil, División de Ingeniería, Universidad de Guanajuato, Guanajuato (Mexico); Nucamendi, Ulises [Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C-3, Ciudad Universitaria, CP. 58040 Morelia, Michoacán (Mexico); Quiros, Israel, E-mail: avelino@fisica.ugto.mx, E-mail: rigarcias@ipn.mx, E-mail: tamegc72@gmail.com, E-mail: ulises@ifm.umich.mx, E-mail: iquiros6403@gmail.com [Departamento de Matemáticas, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Corregidora 500 S.R., Universidad de Guadalajara, 44420 Guadalajara, Jalisco (Mexico)

    2013-08-01

    By means of a combined use of the type Ia supernovae and H(z) data tests, together with the study of the asymptotic properties in the equivalent phase space — through the use of the dynamical systems tools — we demonstrate that the bulk viscous matter-dominated scenario is not a good model to explain the accepted cosmological paradigm, at least, under the parametrization of bulk viscosity considered in this paper. The main objection against such scenarios is the absence of conventional radiation and matter-dominated critical points in the phase space of the model. This entails that radiation and matter dominance are not generic solutions of the cosmological equations, so that these stages can be implemented only by means of unique and very specific initial conditions, i. e., of very unstable particular solutions. Such a behavior is in marked contradiction with the accepted cosmological paradigm which requires of an earlier stage dominated by relativistic species, followed by a period of conventional non-relativistic matter domination, during which the cosmic structure we see was formed. Also, we found that the bulk viscosity is positive just until very late times in the cosmic evolution, around z < 1. For earlier epochs it is negative, been in tension with the local second law of thermodynamics.

  11. Nanopatterned Bulk Metallic Glass Biosensors.

    Science.gov (United States)

    Kinser, Emily R; Padmanabhan, Jagannath; Yu, Roy; Corona, Sydney L; Li, Jinyang; Vaddiraju, Sagar; Legassey, Allen; Loye, Ayomiposi; Balestrini, Jenna; Solly, Dawson A; Schroers, Jan; Taylor, André D; Papadimitrakopoulos, Fotios; Herzog, Raimund I; Kyriakides, Themis R

    2017-12-22

    Nanopatterning as a surface area enhancement method has the potential to increase signal and sensitivity of biosensors. Platinum-based bulk metallic glass (Pt-BMG) is a biocompatible material with electrical properties conducive for biosensor electrode applications, which can be processed in air at comparably low temperatures to produce nonrandom topography at the nanoscale. Work presented here employs nanopatterned Pt-BMG electrodes functionalized with glucose oxidase enzyme to explore the impact of nonrandom and highly reproducible nanoscale surface area enhancement on glucose biosensor performance. Electrochemical measurements including cyclic voltammetry (CV) and amperometric voltammetry (AV) were completed to compare the performance of 200 nm Pt-BMG electrodes vs Flat Pt-BMG control electrodes. Glucose dosing response was studied in a range of 2 mM to 10 mM. Effective current density dynamic range for the 200 nm Pt-BMG was 10-12 times greater than that of the Flat BMG control. Nanopatterned electrode sensitivity was measured to be 3.28 μA/cm 2 /mM, which was also an order of magnitude greater than the flat electrode. These results suggest that nonrandom nanotopography is a scalable and customizable engineering tool which can be integrated with Pt-BMGs to produce biocompatible biosensors with enhanced signal and sensitivity.

  12. Aspects of silicon bulk lifetimes

    Science.gov (United States)

    Landsberg, P. T.

    1985-01-01

    The best lifetimes attained for bulk crytalline silicon as a function of doping concentrations are analyzed. It is assumed that the dopants which set the Fermi level do not contribute to the recombination traffic which is due to the unknown defect. This defect is assumed to have two charge states: neutral and negative, the neutral defect concentration is frozen-in at some temperature T sub f. The higher doping concentrations should include the band-band Auger effect by using a generalization of the Shockley-Read-Hall (SRH) mechanism. The generalization of the SRH mechanism is discussed. This formulation gives a straightforward procedure for incorporating both band-band and band-trap Auger effects in the SRH procedure. Two related questions arise in this context: (1) it may sometimes be useful to write the steady-state occupation probability of the traps implied by SRH procedure in a form which approximates to the Fermi-Dirac distribution; and (2) the effect on the SRH mechanism of spreading N sub t levels at one energy uniformly over a range of energies is discussed.

  13. Proteins in solution: Fractal surfaces in solutions

    Directory of Open Access Journals (Sweden)

    R. Tscheliessnig

    2016-02-01

    Full Text Available The concept of the surface of a protein in solution, as well of the interface between protein and 'bulk solution', is introduced. The experimental technique of small angle X-ray and neutron scattering is introduced and described briefly. Molecular dynamics simulation, as an appropriate computational tool for studying the hydration shell of proteins, is also discussed. The concept of protein surfaces with fractal dimensions is elaborated. We finish by exposing an experimental (using small angle X-ray scattering and a computer simulation case study, which are meant as demonstrations of the possibilities we have at hand for investigating the delicate interfaces that connect (and divide protein molecules and the neighboring electrolyte solution.

  14. Solvation dynamics in triton-X-100 and triton-X-165 micelles: Effect of micellar size and hydration

    Science.gov (United States)

    Kumbhakar, Manoj; Nath, Sukhendu; Mukherjee, Tulsi; Pal, Haridas

    2004-09-01

    Dynamic Stokes' shift measurements using coumarin 153 as the fluorescence probe have been carried out to study solvation dynamics in two nonionic micelles, viz., triton-X-100 (TX-100) and triton-X-165 (TX-165). In both the micelles, the solvent relaxation dynamics is biexponential in nature. While the fast solvation time τs1 is seen to be almost similar for both the micelles, the slow solvation time τs2 is found to be appreciably smaller in TX-165 than in TX-100 micelle. Dynamic light scattering measurements indicate that the TX-165 micelles are substantially smaller in size than that of TX-100. Assuming similar core size for both the micelles, as expected from the similar chemical structures of the nonpolar ends for both the surfactants, the Palisade layer is also indicated to be substantially thinner for TX-165 micelles than that of TX-100. The aggregation number of TX-165 micelles is also found to be substantially smaller than that of TX-100 micelles. Fluorescence spectral studies of C153 dye in the two micelles indicate that the Palisade layer of TX-165 micelles is more polar than that of TX-100 micelles. Fluorescence anisotropy measurements indicate that the microviscosity in the Palisade layer of TX-165 micelles is also lower than that of TX-100 micelles. Based on these results it is inferred that the structure of the Palisade layer of TX-165 micelles is quite loose and have higher degree hydration in comparison to that of TX-100 micelles. Due to these structural differences in the Palisade layers of TX-165 and TX-100 micelles the solvation dynamics is faster in the former micelles than in the latter. It has been further inferred that in the present systems the collective response of the water molecules at somewhat away from the probes is responsible for the faster component of the solvation time, which does not reflect much of the structural changes of the micellar Palisade layer. On the contrary, the slower solvation time component, which is mainly due to

  15. Electrochemical oxidation of methanol on Pt3Co bulk alloy

    Directory of Open Access Journals (Sweden)

    S. LJ. GOJKOVIC

    2003-11-01

    Full Text Available The electrochemical oxidation of methanol was investigated on a Pt3Co bulk alloy in acid solutions. Kinetic parameters such as transfer coefficient, reaction orders with respect to methanol and H+ ions and energy of activation were determined. It was found that the rate of methanol oxidation is significantly diminished by rotation of the electrode. This effect was attributed to the diffusion of formaldehyde and formic acid from the electrode surface. Stirring of the electrolyte also influenced the kinetic parameters of the reaction. It was speculated that the predominant reaction pathway and rate determining step are different in the quiescent and in the stirred electrolyte. Cobalt did not show a promoting effect on the rate of methanol oxidation on the Pt3Co bulk alloy with respect to a pure Pt surface.

  16. Pyrene As a New Detector for Determining the Composition of Silver Nanoparticle Dispersions in Aqueous Solutions

    Science.gov (United States)

    Romanovskaya, G. I.; Kazakova, S. Yu.; Koroleva, M. V.; Zuev, B. K.

    2018-03-01

    It is proposed that the fluorescence of monomeric molecules of pyrene in solid matrices or in concentrated micellar solutions be used as a detector for determining the compositional homogeneity of silver nanoparticle (NP) dispersions in aqueous solutions synthesized in different ways. It is found that the morphology of silver NPs affects the change in the fluorescence intensity of monomeric molecules of pyrene in a certain (violet or blue) region of the pyrene optical spectrum. The observed phenomenon is attributed to the resonance of electronic transitions in the monomeric molecules of pyrene in regions with plasmon oscillations in silver nanoparticles. A new way of obtaining fluorescent silver NPs is found.

  17. Direct determination of bulk etching rate for LR-115-II solid state ...

    Indian Academy of Sciences (India)

    The thickness of the removed layer of the LR-115-II solid state nuclear track detector during etching is measured directly with a rather precise instrument. Dependence of bulk etching rate on temperature of the etching solution is investigated. It has been found that the bulk etching rate is 3.2 m/h at 60°C in 2.5 N NaOH of ...

  18. 27 CFR 20.191 - Bulk articles.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Bulk articles. 20.191... Users of Specially Denatured Spirits Operations by Users § 20.191 Bulk articles. Users who convey articles in containers exceeding one gallon may provide the recipient with a photocopy of subpart G of this...

  19. On the bulk viscosity of relativistic matter

    International Nuclear Information System (INIS)

    Canuto, V.; Hsieh, S.-H.

    1978-01-01

    An expression for the bulk viscosity coefficient in terms of the trace of the hydrodynamic energy-stress tensor is derived from the Kubo formula. This, along with a field-theoretic model of an interacting system of scalar particles, suggests that at high temperatures the bulk viscosity tends to zero, contrary to the often quoted resuls of Iso, Mori and Namiki. (author)

  20. Bulk-viscosity-driven asymmetric inflationary universe

    International Nuclear Information System (INIS)

    Waga, I.; Lima, J.A.S.; Portugal, R.

    1987-01-01

    A primordial net bosinic charge is introduced in the context of the bulk-viscosity-driven inflationary models. The analysis is carried through a macroscopic point of view in the framework of the causal thermodynamic theory. The conditions for having exponetial and generalized inflation are obtained. A phenomenological expression for the bulk viscosity coefficient is also derived. (author) [pt

  1. The effect of caffeine on the reactions of the excited singlet state of pyrene in micellar sodium lauryl sulfate

    Science.gov (United States)

    Hashimoto, Shuichi; Thomas, J. Kerry

    1984-08-01

    The effect of caffeine on a few photo-induced reactions of pyrene in micellar sodium lauryl sulfate (NaLS) has been studied. In these systems caffeine complexes with the pyrene (K asso = 85 ± 10 M -1 and also with the other reactants, e.g. Cu 2+ or TI +. The efficiencies of reactions which involve contact, i.e. pyrene excimer formation, and quenching by TI + ions to give the triplet state of pyrene, are significantly reduced in the presence of caffeine, due to geometric inhibitions formed by the complexation processes. The kinetics of photo-induced electron transfer, e.g. between excited pyrene and Cu 2+, are not affected. However, the subsequent reactions of the products are modified and the yield of ionic products is markedly increased.

  2. Determination of water-soluble vitamins in multivitamin dietary supplements and in artichokes by micellar electrokinetic chromatography.

    Science.gov (United States)

    Serni, Enrico; Audino, Valeria; Del Carlo, Sara; Manera, Clementina; Saccomanni, Giuseppe; Macchia, Marco

    2013-01-01

    Several procedures of extraction with solvents for the simultaneous determination of vitamin C and some vitamins belonging to the B group (thiamine, riboflavine, nicotinic acid and nicotinamide) in multivitamin preparations and in artichokes (Cynara cardunculus subsp. scolymus [L.] Hegi) were developed. Different experimental conditions were used, in terms of heat treatment, composition and pH of the extraction mixture, with particular attention to high-temperature steps; purification of the extracts with solid phase extraction and stabilisation through lyophilisation were discussed. Analyses of the extracts were conducted by capillary electrophoresis in micellar electrokinetic chromatography modality. Borate buffer at pH 8.2 was used, and sodium dodecyl sulphate was added to the background electrolyte as surfactant. A range of linearity was determined and calibration curves were plotted for all the analytes.

  3. Formation of highly structured cubic micellar lipid nanoparticles of soy phosphatidylcholine and glycerol dioleate and their degradation by triacylglycerol lipase.

    Science.gov (United States)

    Wadsäter, Maria; Barauskas, Justas; Nylander, Tommy; Tiberg, Fredrik

    2014-05-28

    Lipid nanoparticles of reversed internal phase structures, such as cubic micellar (I2) structure show good drug loading ability of peptides and proteins as well as some small molecules. Due to their controllable small size and inner morphology, such nanoparticles are suitable for drug delivery using several different administration routes, including intravenous, intramuscular, and subcutaneous injection. A very interesting system in this regard, is the two component soy phosphatidylcholine (SPC)/glycerol dioleate (GDO) system, which depending on the ratio of the lipid components form a range of reversed liquid crystalline phases. For a 50/50 (w/w) ratio in excess water, these lipids have been shown to form a reversed cubic micellar (I2) phase of the Fd3m structure. Here, we demonstrate that this SPC/GDO phase, in the presence of small quantities (5-10 wt %) of Polysorbate 80 (P80), can be dispersed into nanoparticles, still with well-defined Fd3m structure. The resulting nanoparticle dispersion has a narrow size distribution and exhibit good long-term stability. In pharmaceutical applications, biodegradation pathways of the drug delivery vehicles and their components are important considerations. In the second part of the study we show how the structure of the particles evolves during exposure to a triacylglycerol lipase (TGL) under physiological-like temperature and pH. TGL catalyzes the lipolytic degradation of acylglycerides, such as GDO, to monoglycerides, glycerol, and free fatty acids. During the degradation, the interior phase of the particles is shown to undergo continuous phase transitions from the reversed I2 structure to structures of less negative curvature (2D hexagonal, bicontinuous cubic, and sponge), ultimately resulting in the formation of multilamellar vesicles.

  4. Sequential optimization of methotrexate encapsulation in micellar nano-networks of polyethyleneimine ionomer containing redox-sensitive cross-links.

    Science.gov (United States)

    Abolmaali, Samira Sadat; Tamaddon, Ali; Yousefi, Gholamhossein; Javidnia, Katayoun; Dinarvand, Rasoul

    2014-01-01

    A functional polycation nanonetwork was developed for delivery of water soluble chemotherapeutic agents. The complexes of polyethyleneimine grafted methoxy polyethylene glycol (PEI-g-mPEG) and Zn(2+) were utilized as the micellar template for cross-linking with dithiodipropionic acid, followed by an acidic pH dialysis to remove the metal ion from the micellar template. The synthesis method was optimized according to pH, the molar ratio of Zn(2+), and the cross-link ratio. The atomic force microscopy showed soft, discrete, and uniform nano-networks. They were sensitive to the simulated reductive environment as determined by Ellman's assay. They showed few positive ζ potential and an average hydrodynamic diameter of 162±10 nm, which decreased to 49±11 nm upon dehydration. The ionic character of the nano-networks allowed the achievement of a higher-loading capacity of methotrexate (MTX), approximately 57% weight per weight, depending on the cross-link and the drug feed ratios. The nano-networks actively loaded with MTX presented some suitable properties, such as the hydrodynamic size of 117±16 nm, polydispersity index of 0.22, and a prolonged swelling-controlled release profile over 24 hours that boosted following reductive activation of the nanonetwork biodegradation. Unlike the PEI ionomer, the nano-networks provided an acceptable cytotoxicity profile. The drug-loaded nano-networks exhibited more specific cytotoxicity against human hepatocellular carcinoma cells if compared to free MTX at concentrations above 1 μM. The enhanced antitumor activity in vitro might be attributed to endocytic entry of MTX-loaded nano-networks that was found in the epifluorescence microscopy experiment for the fluorophore-labeled nano-networks.

  5. Spin-cast bulk heterojunction solar cells: A dynamical investigation

    KAUST Repository

    Chou, Kang Wei

    2013-02-22

    Spin-coating is extensively used in the lab-based manufacture of organic solar cells, including most of the record-setting solution-processed cells. We report the first direct observation of photoactive layer formation as it occurs during spin-coating. The study provides new insight into mechanisms and kinetics of bulk heterojunction formation, which may be crucial for its successful transfer to scalable printing processes. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Spin-cast bulk heterojunction solar cells: A dynamical investigation

    KAUST Repository

    Chou, Kang Wei; Yan, Buyi; Li, Ruipeng; Li, Erqiang; Zhao, Kui; Anjum, Dalaver H.; Alvarez, Steven; Gassaway, Robert; Biocca, Alan K.; Thoroddsen, Sigurdur T; Hexemer, Alexander; Amassian, Aram

    2013-01-01

    Spin-coating is extensively used in the lab-based manufacture of organic solar cells, including most of the record-setting solution-processed cells. We report the first direct observation of photoactive layer formation as it occurs during spin-coating. The study provides new insight into mechanisms and kinetics of bulk heterojunction formation, which may be crucial for its successful transfer to scalable printing processes. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Bulk viscosity in holographic Lifshitz hydrodynamics

    International Nuclear Information System (INIS)

    Hoyos, Carlos; Kim, Bom Soo; Oz, Yaron

    2014-01-01

    We compute the bulk viscosity in holographic models dual to theories with Lifshitz scaling and/or hyperscaling violation, using a generalization of the bulk viscosity formula derived in arXiv:1103.1657 from the null focusing equation. We find that only a class of models with massive vector fields are truly Lifshitz scale invariant, and have a vanishing bulk viscosity. For other holographic models with scalars and/or massless vector fields we find a universal formula in terms of the dynamical exponent and the hyperscaling violation exponent

  8. Integration of vanadium-mixed addenda Dawson heteropolytungstate within poly(3,4-ethylenedioxythiophene) and poly(2,2'-bithiophene) films by electrodeposition from the nonionic micellar aqueous medium

    Energy Technology Data Exchange (ETDEWEB)

    Goral, Monika [Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw (Poland); Jouini, Mohamed, E-mail: jouini@univ-paris-diderot.f [Laboratory Interfaces, Traitements, Organisation et DYnamique des Systemes (ITODYS) UMR 7086, Universite Paris Diderot Paris 7 Batiment Lavoisier, 15 Rue Jean Antoine de Baif, 75205 Paris Cedex 13 (France); Perruchot, Christian [Laboratory Interfaces, Traitements, Organisation et DYnamique des Systemes (ITODYS) UMR 7086, Universite Paris Diderot Paris 7 Batiment Lavoisier, 15 Rue Jean Antoine de Baif, 75205 Paris Cedex 13 (France); Miecznikowski, Krzysztof; Rutkowska, Iwona A. [Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw (Poland); Kulesza, Pawel J., E-mail: pkulesza@chem.uw.edu.p [Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw (Poland)

    2011-04-01

    A comparative study describing immobilization of the Dawson type mixed addenda heteropolyanion, [P{sub 2}W{sub 17}VO{sub 62}]{sup 8-} into conducting polymer films of poly(3,4-ethylenedioxythiophene), PEDOT, and poly(2,2'-bithiophene), PBT, is reported. Electrosynthesis of these hybrid films was performed using a micellar aqueous solution of the nonionic surfactant, polyethylene glycol tert-octylphenyl ether (Triton X-100). Deposited composite films were characterised electrochemically and, on the whole, they exhibited fast electron transfer (ET) properties and relatively high stability towards continuous potential cycling in acidic media. In particular, PEDOT composite showed relatively faster ET properties in comparison to PBT composite. Their permeability was investigated in the presence of cationic and anionic redox probes. Our results implied good mediating capabilities of the [P{sub 2}W{sub 17}V{sup 4+}O{sub 62}]{sup 8-} anion (within the [P{sub 2}W{sub 17}V{sup 4+}O{sub 62}]{sup 8-}-PEDOT hybrid film) towards the iron (III) reduction. The specific electrocatalytic (reductive) capabilities of hybrid films were also studied by probing the reduction of bromate. The films were further characterised by X-ray photoelectron spectroscopy to establish their interfacial elemental composition. Moreover, their surface morphology was imaged by atomic force microscopy and scanning electron microscopy. Results have shown that physicochemical properties of the investigated hybrid films were affected by polymer hydrophobicity.

  9. Micellar aggregates of amylose-block-polystyrene rod-coil block copolymers in water and THF

    NARCIS (Netherlands)

    Loos, Katja; Böker, Alexander; Zettl, Heiko; Zhang, Mingfu; Krausch, Georg; Müller, Axel H.E.; Boker, A.; Zhang, A.F.

    2005-01-01

    Amylose-block-polystyrenes with various block copolymer compositions were investigated in water and in THF solution. Fluorescence correlation spectroscopy, dynamic light, scattering (DLS), and asymmetric flow field-flow fractionation with multiangle light scattering detection indicate the presence

  10. Design of solar drying-plant for bulk material drying

    Directory of Open Access Journals (Sweden)

    Peter Horbaj

    2008-11-01

    Full Text Available A generally well-known high energy requirement for technological processes of drying and the fact that the world’s supplyof the conventional energy sources has considerably decreased are the decisive factors forcing us to look for some new, if possible,renewable energy sources for this process by emphasising their environmental reliability. One of the possibilities how to replace, atleast partly, the conventional energy sources – heat in a drying process is solar energy.Air-drying of bulk materials usually has a series of disadvantages such as time expenditure, drying defects in the bulk materialand inadequate final moisture content. A method that obviates or reduces the disadvantages of air-drying and, at the same time, reducesthe costs of kiln drying, is drying with solar heat. Solar energy can replace a large part of this depletable energy since solar energy cansupply heat at the temperatures most often used to dry bulk material. Solar drying-plant offer an attractive solution.

  11. Elution of monomer from different bulk fill dental composite resins.

    Science.gov (United States)

    Cebe, Mehmet Ata; Cebe, Fatma; Cengiz, Mehmet Fatih; Cetin, Ali Rıza; Arpag, Osman Fatih; Ozturk, Bora

    2015-07-01

    The purpose of this study was to evaluate the elution of Bis-GMA, TEGDMA, HEMA, and Bis-EMA monomers from six bulk fill composite resins over four different time periods, using HPLC. Six different composite resin materials were used in the present study: Tetric Evo Ceram Bulk Fill (Ivoclar Vivadent, Amherst, NY), X-tra Fill (VOCO, Cuxhaven, Germany), Sonic Fill (Kerr, Orange, CA, USA), Filtek Bulk Fill (3M ESPE Dental Product, St. Paul, MN), SDR (Dentsply, Konstanz, Germany), EQUIA (GC America INC, Alsip, IL). The samples (4mm thickness, 5mm diameter) were prepared and polymerized for 20s with a light emitted diode unit. After fabrication, each sample was immediately immersed in 75wt% ethanol/water solution used as extraction fluid and stored in the amber colored bottles at room temperature. Ethanol/water samples were taken (0.5mL) at predefined time intervals:10m (T1), 1h (T2), 24h (T3) and 30 days (T4). These samples were analyzed by HPLC. The obtained data were analyzed with one-way ANOVA and Tukey HSD at significance level of pcomposites (pcomposite resins in all time periods and the amount of eluted monomers was increased with time. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  12. Determination of lysergic acid diethylamide (LSD) in mouse blood by capillary electrophoresis/ fluorescence spectroscopy with sweeping techniques in micellar electrokinetic chromatography.

    Science.gov (United States)

    Fang, Ching; Liu, Ju-Tsung; Chou, Shiu-Huey; Lin, Cheng-Huang

    2003-03-01

    The separation and on-line concentration of lysergic acid diethylamide (LSD) in mouse blood was achieved by means of capillary electrophoresis/fluorescence spectroscopy using sodium dodecyl sulfate (SDS) as the surfactant. Techniques involving on-line sample concentration, including sweeping micellar electrokinetic chromatography (sweeping-MEKC) and cation-selective exhaustive injection-sweep-micellar electrokinetic chromatography (CSEI-sweep-MEKC) were applied; the optimum on-line concentration and separation conditions were determined. In the analysis of an actual sample, LSD was found in a blood sample from a test mouse (0.1 mg LSD fed to a 20 g mouse; approximately 1/10 to the value of LD(50)). As a result, 120 and 30 ng/mL of LSD was detected at 20 and 60 min, respectively, after ingestion of the doses.

  13. Micellar modified spectrophotometric determination of nitrobenzenes based upon reduction with tin(II), diazotisation and coupling with the Bratton-Marshall reagent.

    Science.gov (United States)

    Escrig-Tena, I; Alvarez Rodríguez, L; Esteve-Romero, J; García-Alvarez-Coque, M C

    1998-09-01

    Nitrobenzenes, such as the antibiotic chloramphenicol, the vasodilator nicardipine, and the herbicides dinitramin, dinobuton, fenitrothion, methylparathion, oxyfluorfen, parathion, pendimethalin, quintozene, and trifluralin, were determined by using a spectrophotometric method in the visible region (540 nm). The method was based on the reduction of the nitrobenzenes to arylamines with tin(II) chloride, diazotisation of the arylamines and coupling of the diazonium ions with the Bratton-Marshall reagent. The two latter reactions were performed in a micellar medium of sodium dodecyl sulphate. The linear calibration range was 2x10(-6) to 7x10(-5) M (r>0.999), with limits of detection in the 10(-7) M level, which is 2-6 fold lower with respect to the corresponding spectrophotometric procedure in non-micellar medium. The procedure was applied to the analysis of the compounds in commercial preparations (pharmaceuticals and herbicide formulations) and in water samples, with good recoveries.

  14. Bulk Leisure--Problem or Blessing?

    Science.gov (United States)

    Beland, Robert M.

    1983-01-01

    With an increasing number of the nation's work force experiencing "bulk leisure" time because of new work scheduling procedures, parks and recreation offices are encouraged to examine their program scheduling and content. (JM)

  15. Technical specifications for the bulk shielding reactor

    International Nuclear Information System (INIS)

    1986-05-01

    This report provides information concerning the technical specifications for the Bulk Shielding Reactor. Areas covered include: safety limits and limiting safety settings; limiting conditions for operation; surveillance requirements; design features; administrative controls; and monitoring of airborne effluents. 10 refs

  16. Micellar and analytical implications of a new potentiometric PVC sensor based on neutral ion-pair complexes of dodecylmethylimidazolium bromide-sodium dodecylsulfate.

    Science.gov (United States)

    Sanan, Reshu; Mahajan, Rakesh Kumar

    2013-03-15

    With an aim to characterize the micellar aggregates of imidazolium based ionic liquids, a new potentiometric PVC sensor based on neutral ion-pair complexes of dodecylmethylimidazolium bromide-sodium dodecylsulfate (C12MeIm(+)DS(-)) has been developed. The electrode exhibited a linear response for the concentration range of 7.9×10(-5)-9.8×10(-3) M with a super-Nernstian slope of 92.94 mV/decade, a response time of 5 s and critical micellar concentration (cmc) of 10.09 mM for C12MeImBr. The performance of the electrode in investigating the cmc of C12MeImBr in the presence of two drugs [promazine hydrochloride (PMZ) and promethazine hydrochloride (PMT)] and three triblock copolymers (P123, L64 and F68) has been found to be satisfactory on comparison with conductivity measurements. Various micellar parameters have been evaluated for the binary mixtures of C12MeImBr with drugs and triblock copolymers using Clint's, Rubingh's, and Motomura's approach. Thus the electrode offers a simple, straightforward and relatively fast technique for the characterization of micellar aggregates of C12MeImBr, complementing existing conventional techniques. Further, the analytical importance of proposed C12MeIm(+)-ISE as end point indicator in potentiometric titrations and for direct determination of cationic surfactants [cetylpyridinium chloride (CPC), tetradecyltrimethylammonium bromide (TTAB), benzalkonium chloride (BC)] in some commercial products was judged by comparing statistically with classical two-phase titration methods. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Force measurements for levitated bulk superconductors

    International Nuclear Information System (INIS)

    Tachi, Y.; Sawa, K.; Iwasa, Y.; Nagashima, K.; Otani, T.; Miyamoto, T.; Tomita, M.; Murakami, M.

    2000-01-01

    We have developed a force measurement system which enables us to directly measure the levitation force of levitated bulk superconductors. Experimental data of the levitation forces were compared with the results of numerical simulation based on the levitation model that we deduced in our previous paper. They were in fairly good agreement, which confirms that our levitation model can be applied to the force analyses for levitated bulk superconductors. (author)

  18. Force measurements for levitated bulk superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Tachi, Y. [Department of Electrical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama (Japan); ISTEC, Superconductivity Research Laboratory, 1-16-25 Shibaura, Minato-ku, Tokyo (Japan). E-mail: tachi at istec.or.jp; Uemura, N. [Department of Electrical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama (Japan); ISTEC, Superconductivity Research Laboratory, 1-16-25 Shibaura, Minato-ku, Tokyo (Japan); Sawa, K. [Department of Electrical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama (Japan); Iwasa, Y. [Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA (United States); Nagashima, K. [Railway Technical Research Institute, Hikari-cho, Kokubunji-shi, Tokyo (Japan); Otani, T.; Miyamoto, T.; Tomita, M.; Murakami, M. [ISTEC, Superconductivity Research Laboratory, 1-16-25 Shibaura, Minato-ku, Tokyo (Japan)

    2000-06-01

    We have developed a force measurement system which enables us to directly measure the levitation force of levitated bulk superconductors. Experimental data of the levitation forces were compared with the results of numerical simulation based on the levitation model that we deduced in our previous paper. They were in fairly good agreement, which confirms that our levitation model can be applied to the force analyses for levitated bulk superconductors. (author)

  19. ANALISIS KESELAMATAN TERMOHIDROLIK BULK SHIELDING REAKTOR KARTINI

    Directory of Open Access Journals (Sweden)

    Azizul Khakim

    2015-10-01

    Full Text Available ABSTRAK ANALISIS KESELAMATAN TERMOHIDROLIK BULK SHIELDING REAKTOR KARTINI. Bulk shielding merupakan fasilitas yang terintegrasi dengan reaktor Kartini yang berfungsi sebagai penyimpanan sementara bahan bakar bekas. Fasilitas ini merupakan fasilitas yang termasuk dalam struktur, sistem dan komponen (SSK yang penting bagi keselamatan. Salah satu fungsi keselamatan dari sistem penanganan dan penyimpanan bahan bakar adalah mencegah kecelakaan kekritisan yang tak terkendali dan membatasi naiknya temperatur bahan bakar. Analisis keselamatan paling kurang harus mencakup analisis keselamatan dari sisi neutronik dan termo hidrolik Bulk shielding. Analisis termo hidrolik ditujukan untuk memastikan perpindahan panas dan proses pendinginan bahan bakar bekas berjalan baik dan tidak terjadi akumulasi panas yang mengancam integritas bahan bakar. Code tervalidasi PARET/ANL digunakan untuk analisis pendinginan dengan mode konveksi alam. Hasil perhitungan menunjukkan bahwa mode pendinginan konvekasi alam cukup memadai dalam mendinginkan panas sisa tanpa mengakibatkan kenaikan temperatur bahan bakar yang signifikan. Kata kunci: Bulk shielding, bahan bakar bekas, konveksi alam, PARET.   ABSTRACT THERMAL HYDRAULIC SAFETY ANALYSIS OF BULK SHIELDING KARTINI REACTOR. Bulk shielding is an integrated facility to Kartini reactor which is used for temporary spent fuels storage. The facility is one of the structures, systems and components (SSCs important to safety. Among the safety functions of fuel handling and storage are to prevent any uncontrolable criticality accidents and to limit the fuel temperature increase. Safety analyses should, at least, cover neutronic and thermal hydraulic calculations of the bulk shielding. Thermal hydraulic analyses were intended to ensure that heat removal and the process of the spent fuels cooling takes place adequately and no heat accumulation that challenges the fuel integrity. Validated code, PARET/ANL was used for analysing the

  20. Technical note: Development and validation of a new method for the quantification of soluble and micellar calcium, magnesium, and potassium in milk.

    Science.gov (United States)

    Franzoi, M; Niero, G; Penasa, M; Cassandro, M; De Marchi, M

    2018-03-01

    Milk mineral content is a key trait for its role in dairy processes such as cheese-making, its use as source of minerals for newborns, and for all traits involving salt-protein interactions. This study investigated a new method for measuring mineral partition between soluble and micellar fractions in bovine milk after rennet coagulation. A new whey dilution step was added to correct the quantification bias due to whey trapped in curd and excluded volume. Moreover, the proposed method allowed the quantification of the diffusible volume after milk coagulation. Milk mineral content and concentration in whey, and diluted whey were quantified by acid digestion and inductively coupled plasma optical emission spectrometry. The repeatability of the method for micellar Ca, Mg, and K was between 2.07 and 8.96%, whereas reproducibility ranged from 4.01 to 9.44%. Recovery of total milk minerals over 3 spiking levels ranged from 92 to 97%. The proposed method provided an accurate estimation of micellar and soluble minerals in milk, and curd diffusible volume. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. The Oral Bioavailability of Trans-Resveratrol from a Grapevine-Shoot Extract in Healthy Humans is Significantly Increased by Micellar Solubilization.

    Science.gov (United States)

    Calvo-Castro, Laura A; Schiborr, Christina; David, Franziska; Ehrt, Heidi; Voggel, Jenny; Sus, Nadine; Behnam, Dariush; Bosy-Westphal, Anja; Frank, Jan

    2018-05-01

    Grapevine-shoot extract Vineatrol30 contains abundant resveratrol monomers and oligomers with health-promoting potential. However, the oral bioavailability of these compounds in humans is low (˂1-2%). The aim of this study was to improve the oral bioavailability of resveratrol from vineatrol by micellar solubilization. Twelve healthy volunteers (six women, six men) randomly ingested a single dose of 500 mg vineatrol (30 mg trans-resveratrol, 75 mg trans-ε-viniferin) as native powder or liquid micelles. Plasma and urine were collected at baseline and over 24 h after intake. Resveratrol and viniferin were analyzed by HPLC. The area under the plasma concentration-time curve (AUC) and mean maximum plasma trans-resveratrol concentrations were 5.0-fold and 10.6-fold higher, respectively, after micellar supplementation relative to the native powder. However, no detectable amounts of trans-ε-viniferin were found in either plasma or urine. The transepithelial permeability of trans-resveratrol and trans-ε-viniferin across differentiated Caco-2 monolayers was consistent to the absorbed fractions in vivo. The oral bioavailability of trans-resveratrol from the grapevine-shoot extract Vineatrol30 was significantly increased using a liquid micellar formulation, without any treatment-related adverse effects, making it a suitable system for improved supplementation of trans-resveratrol. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Optical characteristics of novel bulk and nanoengineered laser host materials

    Science.gov (United States)

    Prasad, Narasimha S.; Sova, Stacey; Kelly, Lisa; Bevan, Talon; Arnold, Bradley; Cooper, Christopher; Choa, Fow-Sen; Singh, N. B.

    2018-02-01

    The hexagonal apatite single crystals have been investigated for their applications as laser host materials. Czochralksi and flux growth methods have been utilized to obtain single crystals. For low temperature processing (useful properties as laser hosts and bone materials. Calcium lanthanum silicate (Nd-doped) and lanthanum aluminate material systems were studied in detail. Nanoengineered calcium and lanthanum based silicates were synthesized by a solution method and their optical and morphological characteristics were compared with Czochralski grown bulk hydroxyapatite single crystals. Materials were evaluated by absorbance, fluorescence and Raman characteristics. Neodymium, iron and chromium doped crystals grown by a solution method showed weak but similar optical properties to that of Czochralski grown single crystals.

  3. Phase space analysis for anisotropic universe with nonlinear bulk viscosity

    Science.gov (United States)

    Sharif, M.; Mumtaz, Saadia

    2018-06-01

    In this paper, we discuss phase space analysis of locally rotationally symmetric Bianchi type I universe model by taking a noninteracting mixture of dust like and viscous radiation like fluid whose viscous pressure satisfies a nonlinear version of the Israel-Stewart transport equation. An autonomous system of equations is established by defining normalized dimensionless variables. In order to investigate stability of the system, we evaluate corresponding critical points for different values of the parameters. We also compute power-law scale factor whose behavior indicates different phases of the universe model. It is found that our analysis does not provide a complete immune from fine-tuning because the exponentially expanding solution occurs only for a particular range of parameters. We conclude that stable solutions exist in the presence of nonlinear model for bulk viscosity with different choices of the constant parameter m for anisotropic universe.

  4. On-surface synthesis on a bulk insulator surface

    Science.gov (United States)

    Richter, Antje; Floris, Andrea; Bechstein, Ralf; Kantorovich, Lev; Kühnle, Angelika

    2018-04-01

    On-surface synthesis has rapidly emerged as a most promising approach to prepare functional molecular structures directly on a support surface. Compared to solution synthesis, performing chemical reactions on a surface offers several exciting new options: due to the absence of a solvent, reactions can be envisioned that are otherwise not feasible due to the insolubility of the reaction product. Perhaps even more important, the confinement to a two-dimensional surface might enable reaction pathways that are not accessible otherwise. Consequently, on-surface synthesis has attracted great attention in the last decade, with an impressive number of classical reactions transferred to a surface as well as new reactions demonstrated that have no classical analogue. So far, the majority of the work has been carried out on conducting surfaces. However, when aiming for electronic decoupling of the resulting structures, e.g. for the use in future molecular electronic devices, non-conducting surfaces are highly desired. Here, we review the current status of on-surface reactions demonstrated on the (10.4) surface of the bulk insulator calcite. Besides thermally induced C-C coupling of halogen-substituted aryls, photochemically induced [2  +  2] cycloaddition has been proven possible on this surface. Moreover, experimental evidence exists for coupling of terminal alkynes as well as diacetylene polymerization. While imaging of the resulting structures with dynamic atomic force microscopy provides a direct means of reaction verification, the detailed reaction pathway often remains unclear. Especially in cases where the presence of metal atoms is known to catalyze the corresponding solution chemistry reaction (e.g. in the case of the Ullmann reaction), disclosing the precise reaction pathway is of importance to understand and generalize on-surface reactivity on a bulk insulator surface. To this end, density-functional theory calculations have proven to provide atomic

  5. Electrochemical corrosion behavior of carbon steel with bulk coating holidays

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    With epoxy coal tar as the coating material, the electrochemical corrosion behavior of Q235 with different kinds of bulk coating holidays has been investigated with EIS (Electrochemical Impedance Spectroscopy) in a 3.5vol% NaCl aqueous solution.The area ratio of bulk coating holiday to total coating area of steel is 4.91%. The experimental results showed that at free corrosionpotential, the corrosion of carbon steel with disbonded coating holiday is heavier than that with broken holiday and disbonded & broken holiday with time; Moreover, the effectiveness of Cathodic Protection (CP) of carbon steel with broken holiday is better than that with disbonded holiday and disbonded & broken holiday on CP potential -850 mV (vs CSE). Further analysis indicated that the two main reasons for corrosion are electrolyte solution slowly penetrating the coating, and crevice corrosion at steel/coating interface near holidays. The ratio of impedance amplitude (Z) of different frequency to minimum frequency is defined as K value. The change rate of K with frequency is related to the type of coating holiday.

  6. αvβ3 integrin-targeted micellar mertansine prodrug effectively inhibits triple-negative breast cancer in vivo

    Directory of Open Access Journals (Sweden)

    Zhong P

    2017-10-01

    Full Text Available Ping Zhong,1,2 Xiaolei Gu,1,2 Ru Cheng,1,2 Chao Deng,1,2 Fenghua Meng,1,2 Zhiyuan Zhong1,2 1Biomedical Polymers Laboratory, 2Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China Abstract: Antibody-mertansine (DM1 conjugates (AMCs are among the very few active targeting therapeutics that are approved or clinically investigated for treating various cancers including metastatic breast cancer. However, none of the AMCs are effective for the treatment of triple-negative breast cancers (TNBCs. Here, we show that cRGD-decorated, redox-activatable micellar mertansine prodrug (cRGD-MMP can effectively target and deliver DM1 to αvβ3 integrin overexpressing MDA-MB-231 TNBC xenografts in nude mice, resulting in potent tumor growth inhibition. 3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assays showed that cRGD-MMP had obvious targetability to MDA-MB-231 cells with a low half-maximal inhibitory concentration (IC50 of 0.18 µM, which was close to that of free DM1 and 2.2-fold lower than that of micellar mertansine prodrug (MMP; nontargeting control. The confocal microscopy studies demonstrated that cRGD-MMP mediated a clearly more efficient cellular uptake and intracellular release of doxorubicin (used as a fluorescent anticancer drug model in MDA-MB-231 cells. Notably, cRGD-MMP loaded with 1,1'-dioctadecyltetramethyl indotricarbocyanine iodide (DiR; a hydrophobic near-infrared dye was shown to quickly accumulate in the MDA-MB-231 tumor with strong DiR fluorescence from 2 to 24 h post injection. MMP loaded with DiR could also accumulate in the tumor, although significantly less than cRGD-MMP. The biodistribution studies revealed a high DM1 accumulation of 8.1%ID/g in the tumor for cRGD-MMP at 12 h post injection. The therapeutic results demonstrated that cRGD-MMP effectively suppressed MDA-MB-231 tumor growth at

  7. Sequential optimization of methotrexate encapsulation in micellar nano-networks of polyethyleneimine ionomer containing redox-sensitive cross-links

    Directory of Open Access Journals (Sweden)

    Abolmaali SS

    2014-06-01

    Full Text Available Samira Sadat Abolmaali,1 Ali Tamaddon,1,2 Gholamhossein Yousefi,1,2 Katayoun Javidnia,3 Rasoul Dinarvand41Department of Pharmaceutics, Shiraz School of Pharmacy, 2Center for Nanotechnology in Drug Delivery, 3Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; 4Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, IranAbstract: A functional polycation nanonetwork was developed for delivery of water soluble chemotherapeutic agents. The complexes of polyethyleneimine grafted methoxy polyethylene glycol (PEI-g-mPEG and Zn2+ were utilized as the micellar template for cross-linking with dithiodipropionic acid, followed by an acidic pH dialysis to remove the metal ion from the micellar template. The synthesis method was optimized according to pH, the molar ratio of Zn2+, and the cross-link ratio. The atomic force microscopy showed soft, discrete, and uniform nano-networks. They were sensitive to the simulated reductive environment as determined by Ellman's assay. They showed few positive ζ potential and an average hydrodynamic diameter of 162±10 nm, which decreased to 49±11 nm upon dehydration. The ionic character of the nano-networks allowed the achievement of a higher-loading capacity of methotrexate (MTX, approximately 57% weight per weight, depending on the cross-link and the drug feed ratios. The nano-networks actively loaded with MTX presented some suitable properties, such as the hydrodynamic size of 117±16 nm, polydispersity index of 0.22, and a prolonged swelling-controlled release profile over 24 hours that boosted following reductive activation of the nanonetwork biodegradation. Unlike the PEI ionomer, the nano-networks provided an acceptable cytotoxicity profile. The drug-loaded nano-networks exhibited more specific cytotoxicity against human hepatocellular carcinoma cells if compared to free MTX at concentrations above 1 µM. The

  8. Dissolution and solubility behavior of fenofibrate in sodium lauryl sulfate solutions.

    Science.gov (United States)

    Granero, Gladys E; Ramachandran, Chandrasekharan; Amidon, Gordon L

    2005-10-01

    The solubility of fenofibrate in pH 6.8 McIlvaine buffers containing varying concentrations of sodium lauryl sulfate was determined. The dissolution behavior of fenofibrate was also examined in the same solutions with rotating disk experiments. It was observed that the enhancement in intrinsic dissolution rate was approximately 500-fold and the enhancement in solubility was approximately 2000-fold in a pH 6.8 buffer containing 2% (w/v) sodium lauryl sulfate compared to that in buffer alone. The micellar solubilization equilibrium coefficient (k*) was estimated from the solubility data and found to be 30884+/-213 L/mol. The diffusivity for the free solute, 7.15x10(-6) cm2/s, was calculated using Schroeder's additive molal volume estimates and Hayduk-Laurie correlation. The diffusivity of the drug-loaded micelle, estimated from the experimental solubility and dissolution data and the calculated value for free solute diffusivity, was 0.86x10(-6) cm2/s. Thus, the much lower enhancement in dissolution of fenofibrate compared to its enhancement in solubility in surfactant solutions appears to be consistent with the contribution to the total transport due to enhanced micellar solubilization as well as a large decrease (approximately 8-fold) in the diffusivity of the drug-loaded micelle.

  9. Micellar Self-Assembly of Block Copolymers for Fabrication of Nanostructured Membranes

    KAUST Repository

    Marques, Debora S.

    2013-01-01

    of immersion in a non-solvent bath. These mechanisms are driven thermodynamically but are limited by kinetic factors. It is shown in this work how the ordering of the assembly of micelles is improved by the solution parameters such as solvent quality

  10. Development of superconductor bulk for superconductor bearing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chan Joong; Jun, Byung Hyuk; Park, Soon Dong (and others)

    2008-08-15

    Current carrying capacity is one of the most important issues in the consideration of superconductor bulk materials for engineering applications. There are numerous applications of Y-Ba-Cu-O (YBCO) bulk superconductors e.g. magnetic levitation train, flywheel energy storage system, levitation transportation, lunar telescope, centrifugal device, magnetic shielding materials, bulk magnets etc. Accordingly, to obtain YBCO materials in the form of large, single crystals without weak-link problem is necessary. A top seeded melt growth (TSMG) process was used to fabricate single crystal YBCO bulk superconductors. The seeded and infiltration growth (IG) technique was also very promising method for the synthesis of large, single-grain YBCO bulk superconductors with good superconducting properties. 5 wt.% Ag doped Y211 green compacts were sintered at 900 .deg. C {approx} 1200 .deg.C and then a single crystal YBCO was fabricated by an infiltration method. A refinement and uniform distribution of the Y211 particles in the Y123 matrix were achieved by sintering the Ag-doped samples. This enhancement of the critical current density was ascribable to a fine dispersion of the Y211 particles, a low porosity and the presence of Ag particles. In addition, we have designed and manufactured large YBCO single domain with levitation force of 10-13 kg/cm{sup 2} using TSMG processing technique.

  11. Module 13: Bulk Packaging Shipments by Highway

    International Nuclear Information System (INIS)

    Przybylski, J.L.

    1994-07-01

    The Hazardous Materials Modular Training Program provides participating United States Department of Energy (DOE) sites with a basic, yet comprehensive, hazardous materials transportation training program for use onsite. This program may be used to assist individual program entities to satisfy the general awareness, safety training, and function specific training requirements addressed in Code of Federal Regulation (CFR), Title 49, Part 172, Subpart H -- ''Training.'' Module 13 -- Bulk Packaging Shipments by Highway is a supplement to the Basic Hazardous Materials Workshop. Module 13 -- Bulk Packaging Shipments by Highway focuses on bulk shipments of hazardous materials by highway mode, which have additional or unique requirements beyond those addressed in the ten module core program. Attendance in this course of instruction should be limited to those individuals with work experience in transporting hazardous materials utilizing bulk packagings and who have completed the Basic Hazardous Materials Workshop or an equivalent. Participants will become familiar with the rules and regulations governing the transportation by highway of hazardous materials in bulk packagings and will demonstrate the application of these requirements through work projects and examination

  12. Pressurized liquid extracts from Spirulina platensis microalga. Determination of their antioxidant activity and preliminary analysis by micellar electrokinetic chromatography.

    Science.gov (United States)

    Herrero, Miguel; Ibáñez, Elena; Cifuentes, Alejandro; Señoráns, Javier

    2004-08-27

    In this work, different extracts from the microalga Spirulina platensis are obtained using pressurized liquid extraction (PLE) and four different solvents (hexane, light petroleum, ethanol and water). Different extraction temperatures (115 and 170 degrees C) were tested using extraction times ranging from 9 to 15 min. The antioxidant activity of the different extracts is determined by means of an in vitro assay using a free radical method. Moreover, a new and fast method is developed using micellar electrokinetic chromatography with diode array detection (MEKC-DAD) to provide a preliminary analysis on the composition of the extracts. This combined application (i.e., in vitro assays plus MEKC-DAD) allowed the fast characterization of the extracts based on their antioxidant activity and the UV-vis spectra of the different compounds found in the extracts. To our knowledge, this work shows for the first time the great possibilities of the combined use of PLE-in vitro assay-MEKC-DAD to investigate natural sources of antioxidants.

  13. Lecithin organogel: A unique micellar system for the delivery of bioactive agents in the treatment of skin aging

    Directory of Open Access Journals (Sweden)

    Sushil Raut

    2012-02-01

    Full Text Available Skin aging is an unavoidable aspect of human life. Premature skin aging can result from poor care, environmental pollutants, and ultraviolet radiation exposure. Wrinkles, lines, spots, uneven skin tone, and pigmentation are often indicators of skin aging. One cannot avoid aging but cosmetics and pharmaceutical approaches can minimize and delay the damage. Topical applications of biocompatible and biodegradable vehicles have been explored for delivering anti-aging compounds. Lecithin organogel (LO is an effective vehicle for topical delivery of many bioactive agents used in aging treatment. Lecithin is cell component isolated from soya beans or eggs and purified to show excellent gelation in non-polar solvents when combined with water. LO can form a heat-stable, resistant to microbial growth, visco-elastic, optically transparent, and non-birefringent micellar system. It serves as an organic medium to enhance dermal permeation of poorly permeable drugs by effectively partitioning into the skin. Its ability to dissolve in hydrophilic as well as in lipophilic drugs makes it a dynamic vehicle, which can be explored as a carrier for anti-aging agents.

  14. Deciphering the fluorescence resonance energy transfer from denatured transport protein to anthracene 1,5 disulphonate in reverse micellar environment

    Science.gov (United States)

    Singharoy, Dipti; Bhattacharya, Subhash Chandra

    2017-12-01

    Constrained environmental effect inside AOT reverse micellar media has been employed in this work to collect the information about energy transfer efficacy between sodium salt of anthracene 1,5 disulphonate (1,5-AS) with model transport proteins, bovine serum albumin (BSA), and human serum albumin (HSA). Steady state, time-resolved fluorescence and circular dichroism techniques have been used for this purpose and corresponding Fӧrster-type resonance energy transfer (FRET) from tryptophan residues to 1,5-AS indicates that 1,5-AS binds in the vicinity of the tryptophan residue (BSA and HSA) with equal strength. Indication of protein damage from fluorescence data and its confirmation has been measured from CD measurement. Molecular modeling study hereby plays a crucial role to predict the minimum energy docked conformation of the probe inside the protein environment. From the docked conformation the distance between 1,5-AS and tryptophan moiety of BSA/HSA has successfully explained the FRET possibility between them. A comparative modeling study between BSA and HSA with 1,5-AS assigning their binding site within specific amino acids plays a crucial role in support of the FRET study.

  15. Capillaries modified by noncovalent anionic polymer adsorption for capillary zone electrophoresis, micellar electrokinetic capillary chromatography and capillary electrophoresis mass spectrometry

    DEFF Research Database (Denmark)

    Bendahl, L; Hansen, S H; Gammelgaard, Bente

    2001-01-01

    A simple coating procedure for generation of a high and pH-independent electroosmotic flow in capillary zone electrophoresis (CZE) and micellar electrokinetic capillary chromatography (MEKC) is described. The bilayer coating was formed by noncovalent adsorption of the ionic polymers Polybrene...... capillaries was (4.9+/-0.1) x 10(-4) cm2V(-1)s(-1) in a pH-range of 2-10 (ionic strength = 30 mM). When alkaline compounds were used as test substances intracapillary and intercapillary migration time variations (n = 6) were less than 1% relative standard deviation (RSD) and 2% RSD, respectively in the entire...... pH range. The coating was fairly stable in the presence of sodium dodecyl sulfate, and this made it possible to perform fast MEKC separations at low pH. When neutral compounds were used as test substances, the intracapillary migration time variations (n = 6) were less than 2% RSD in a pH range of 2...

  16. Effect of low concentration sodium dodecyl sulfate on the electromigration of palonosetron hydrochloride stereoisomers in micellar electrokinetic chromatography.

    Science.gov (United States)

    Hu, Shao-Qiang; Wang, Gui-Xia; Guo, Wen-Bo; Guo, Xu-Ming; Zhao, Min

    2014-05-16

    The effect of low concentrations of sodium dodecyl sulfate (SDS) on the separation of palonosetron hydrochloride (PALO) stereoisomers by micellar electrokinetic chromatography (MEKC) has been investigated. It was found that the addition of SDS prolongs the migration time and the migration order of four stereoisomers changes regularly with the SDS concentration. Good separations for all the four stereoisomers were achieved at appropriate SDS concentration. The effect of SDS on the electromigration (mobilities) of PALO stereoisomers has been studied, in order to explain its effect on the separation by MEKC. It was found that low concentrations of SDS added into the separation media forms negatively charged complexes with PALO stereoisomers and hence reverses their electromigration direction. Furthermore, the migration order between two enantiomeric pairs is also reversed because the enantiomeric pair with a bigger positive mobility than that of another pair turns to have a bigger negative mobility when bound with SDS. Based on these results, the effect of SDS on the MEKC separation of PALO stereoisomers was elucidated reasonably. The performance of the developed chiral MEKC method was validated by the analysis of a real sample. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Sensitive determination of pyrrolizidine alkaloids in Tussilago farfara L. by field-amplified, sample-stacking, sweeping micellar electrokinetic chromatography.

    Science.gov (United States)

    Cao, Kun; Xu, Yi; Mu, Xiuni; Zhang, Qing; Wang, Renjie; Lv, Junjiang

    2016-11-01

    Pyrrolizidine alkaloids are the toxic components in Tussilago farfara L. Due to the lack of standard substances for quantitative analysis and traces of pyrrolizidine alkaloids in total alkaloids, the full quality control of Tussilago farfara L has been limited. In this study, we aimed to solve the difficulty of determination of pyrrolizidine alkaloids and identify more components in the total alkaloids. An on-line preconcentration method has been applied to improve determining sensitivity of pyrrolizidine alkaloids in Tussilago farfara L. in which included field-amplified sample stacking and sweeping in micellar electrokinetic capillary chromatography. The main parameters that affected separation and stacking efficiency were investigated in details. Under the optimal conditions, the sensitivity enhancement factors obtained by the developed method for the analytes were from 15- to 12-fold, the limits of detection of senkirkine and senecionine were 2∼5 μg/L. Senkirkine and senecionine have been detected in alkaloids (c) of Tussilago farfara L, along ferulic acid methyl ester and methyl caffeate. The developed method was also applied to the analysis of acid extraction (a) of Tussilago farfara L, and senkirkine could be detected directly. The results indicated that the developed method is feasible for the analysis of pyrrolizidine alkaloids in Tussilago farfara L with good recoveries. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Synthesis and evaluation of poly(styrene-co-maleic acid) micellar nanocarriers for the delivery of tanespimycin

    Science.gov (United States)

    Larson, Nate; Greish, Khaled; Bauer, Hillevi; Maeda, Hiroshi; Ghandehari, Hamidreza

    2011-01-01

    Polymeric micelles carrying the heat shock protein 90 inhibitor tanespimycin (17-N-Allylamino-17-demethoxygeldanamycin) were synthesized using poly(styrene-co-maleic acid) (SMA) copolymers and evaluated in vitro and in vivo. SMA-tanespimycin micelles were prepared with a loading efficiency of 93%. The micelles incorporated 25.6% tanespimycin by weight, exhibited a mean diameter of 74 ± 7 nm by dynamic light scattering and a zeta potential of -35 ± 3 mV. Tanespimycin was released from the micelles in a controlled manner in vitro, with 62% released in 24 hours from a pH 7.4 buffer containing bovine serum albumin. The micellar drug delivery systems for tanespimycin showed potent activity against DU145 human prostate cancer cells, with an IC50 of 230 nM. They further exhibited potent anti-cancer activity in vivo in nu/nu mice bearing subcutaneous DU145 human prostate cancer tumor xenografts, with significantly higher anticancer efficacy as measured by tumor regression when compared to free tanespimycin at an equivalent single dose of 10 mg/kg. These data suggest further investigation of SMA-tanespimycin as a promising agent in the treatment of prostate cancer. PMID:21856392

  19. Bulk-memory processor for data acquisition

    International Nuclear Information System (INIS)

    Nelson, R.O.; McMillan, D.E.; Sunier, J.W.; Meier, M.; Poore, R.V.

    1981-01-01

    To meet the diverse needs and data rate requirements at the Van de Graaff and Weapons Neutron Research (WNR) facilities, a bulk memory system has been implemented which includes a fast and flexible processor. This bulk memory processor (BMP) utilizes bit slice and microcode techniques and features a 24 bit wide internal architecture allowing direct addressing of up to 16 megawords of memory and histogramming up to 16 million counts per channel without overflow. The BMP is interfaced to the MOSTEK MK 8000 bulk memory system and to the standard MODCOMP computer I/O bus. Coding for the BMP both at the microcode level and with macro instructions is supported. The generalized data acquisition system has been extended to support the BMP in a manner transparent to the user

  20. Micro benchtop optics by bulk silicon micromachining

    Science.gov (United States)

    Lee, Abraham P.; Pocha, Michael D.; McConaghy, Charles F.; Deri, Robert J.

    2000-01-01

    Micromachining of bulk silicon utilizing the parallel etching characteristics of bulk silicon and integrating the parallel etch planes of silicon with silicon wafer bonding and impurity doping, enables the fabrication of on-chip optics with in situ aligned etched grooves for optical fibers, micro-lenses, photodiodes, and laser diodes. Other optical components that can be microfabricated and integrated include semi-transparent beam splitters, micro-optical scanners, pinholes, optical gratings, micro-optical filters, etc. Micromachining of bulk silicon utilizing the parallel etching characteristics thereof can be utilized to develop miniaturization of bio-instrumentation such as wavelength monitoring by fluorescence spectrometers, and other miniaturized optical systems such as Fabry-Perot interferometry for filtering of wavelengths, tunable cavity lasers, micro-holography modules, and wavelength splitters for optical communication systems.

  1. Holographic bulk reconstruction with α' corrections

    Science.gov (United States)

    Roy, Shubho R.; Sarkar, Debajyoti

    2017-10-01

    We outline a holographic recipe to reconstruct α' corrections to anti-de Sitter (AdS) (quantum) gravity from an underlying CFT in the strictly planar limit (N →∞ ). Assuming that the boundary CFT can be solved in principle to all orders of the 't Hooft coupling λ , for scalar primary operators, the λ-1 expansion of the conformal dimensions can be mapped to higher curvature corrections of the dual bulk scalar field action. Furthermore, for the metric perturbations in the bulk, the AdS /CFT operator-field isomorphism forces these corrections to be of the Lovelock type. We demonstrate this by reconstructing the coefficient of the leading Lovelock correction, also known as the Gauss-Bonnet term in a bulk AdS gravity action using the expression of stress-tensor two-point function up to subleading order in λ-1.

  2. Development of Efficient and Stable Inverted Bulk Heterojunction (BHJ) Solar Cells Using Different Metal Oxide Interfaces

    OpenAIRE

    Ivan Litzov; Christoph J. Brabec

    2013-01-01

    Solution-processed inverted bulk heterojunction (BHJ) solar cells have gained much more attention during the last decade, because of their significantly better environmental stability compared to the normal architecture BHJ solar cells. Transparent metal oxides (MeO x ) play an important role as the dominant class for solution-processed interface materials in this development, due to their excellent optical transparency, their relatively high electrical conductivity and their tunable work fun...

  3. Micellar Self-Assembly of Block Copolymers for Fabrication of Nanostructured Membranes

    KAUST Repository

    Marques, Debora S.

    2013-11-01

    This research work examines the process of block copolymer membrane fabrication by self-assembly combined by non-solvent induced phase separation. Self-assembly takes place from the preparation of the primordial solution until the moment of immersion in a non-solvent bath. These mechanisms are driven thermodynamically but are limited by kinetic factors. It is shown in this work how the ordering of the assembly of micelles is improved by the solution parameters such as solvent quality and concentration of block copolymer. Order transitions are detected, yielding changes in the morphology. The evaporation of the solvents after casting is demonstrated to be essential to reach optimum membrane structure. The non-solvent bath stops the phase separation at an optimum evaporation time.

  4. The state equation of aggregation behaviours for Poly(oxyethylene)-Poly(oxypropylene)-Poly(oxyethylene) tri-block copolymers in aqueous solution

    Science.gov (United States)

    Gao, Xuechao; Ji, Guozhao; Peng, Tiefeng

    2018-03-01

    In this work, the aggregation equation is developed to describe the aggregation number of copolymer molecules and micellar diameters from experimental data. Based on the regression parameters in the aggregation equation, it is concluded that the PO parts are beneficial to enlarge the micellar size and the EO parts suppress the formation of the micelles. By fitting the parameters with the EO and PO number, the aggregation equation was proposed to predict the aggregation behaviours of tri-block copolymers having EO units between 26 and 212, and with PO number between 30 and 70. By applying the equation to aqueous solution with salt additives, it can be extended to evaluate the impacts of the additives on the micelle formation.

  5. Self-assembling of poly(ε-caprolactone)-b-poly(ethylene oxide) diblock copolymers in aqueous solution and at the silica-water interface

    International Nuclear Information System (INIS)

    Leyh, B.; Vangeyte, P.; Heinrich, M.; Auvray, L.; De Clercq, C.; Jerome, R.

    2004-01-01

    Small-angle neutron scattering is used to investigate the self-assembling behaviour of poly(ε-caprolactone)-b-poly(ethylene oxide) diblock copolymers with various block lengths (i) in aqueous solution, (ii) in aqueous solution with the addition of sodium dodecyl sulphate (SDS) and (iii) at the silica-water interface. Micelles are observed under our experimental conditions due to the very small critical micellar concentration of these copolymers (0.01 g/l). The poly(ε-caprolactone) core is surrounded by a poly(ethylene oxide) corona. The micellar form factors have been measured at low copolymer concentrations (0.2 wt%) under selected contrast matching conditions. The data have been fitted to various analytical models to extract the micellar core and corona sizes. SDS is shown to induce partial micelle disruption together with an increase of the poly(ethylene oxide) corona extension from 25% (without SDS) to 70% (with SDS) of a completely extended PEO 114 chain. Our data at the silica-water interface are compatible with the adsorption of micelles

  6. Big bang nucleosynthesis constraints on bulk neutrinos

    International Nuclear Information System (INIS)

    Goh, H.S.; Mohapatra, R.N.

    2002-01-01

    We examine the constraints imposed by the requirement of successful nucleosynthesis on models with one large extra hidden space dimension and a single bulk neutrino residing in this dimension. We solve the Boltzmann kinetic equation for the thermal distribution of the Kaluza-Klein modes and evaluate their contribution to the energy density at the big bang nucleosynthesis epoch to constrain the size of the extra dimension R -1 ≡μ and the parameter sin 2 2θ which characterizes the mixing between the active and bulk neutrinos

  7. Synthesis of Bulk Superconducting Magnesium Diboride

    Directory of Open Access Journals (Sweden)

    Margie Olbinado

    2002-06-01

    Full Text Available Bulk polycrystalline superconducting magnesium diboride, MgB2, samples were successfully prepared via a one-step sintering program at 750°C, in pre Argon with a pressure of 1atm. Both electrical resistivity and magnetic susceptibility measurements confirmed the superconductivity of the material at 39K, with a transition width of 5K. The polycrystalline nature, granular morphology, and composition of the sintered bulk material were confirmed using X-ray diffractometry (XRD, scanning electron microscopy (SEM, and energy dispersive X-ray analysis (EDX.

  8. Radiation-hardened bulk CMOS technology

    International Nuclear Information System (INIS)

    Dawes, W.R. Jr.; Habing, D.H.

    1979-01-01

    The evolutionary development of a radiation-hardened bulk CMOS technology is reviewed. The metal gate hardened CMOS status is summarized, including both radiation and reliability data. The development of a radiation-hardened bulk silicon gate process which was successfully implemented to a commercial microprocessor family and applied to a new, radiation-hardened, LSI standard cell family is also discussed. The cell family is reviewed and preliminary characterization data is presented. Finally, a brief comparison of the various radiation-hardened technologies with regard to performance, reliability, and availability is made

  9. Ions, solutes and solvents, oh my!

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, Daniel David [Iowa State Univ., Ames, IA (United States)

    2009-08-01

    Modern methods in ab initio quantum mechanics have become efficient and accurate enough to study many gas-phase systems. However, chemists often work in the solution phase. The presence of solvent molecules has been shown to affect reaction mechanisms1, lower reaction energy barriers2, participate in energy transfer with the solute3 and change the physical properties of the solute4. These effects would be overlooked in simple gas phase calculations. Careful study of specific solvents and solutes must be done in order to fully understand the chemistry of the solution phase. Water is a key solvent in chemical and biological applications. The properties of an individual water molecule (a monomer) and the behavior of thousands of molecules (bulk solution) are well known for many solvents. Much is also understood about aqueous microsolvation (small clusters containing ten water molecules or fewer) and the solvation characteristics when bulk water is chosen to solvate a solute. However, much less is known about how these properties behave as the cluster size transitions from the microsolvated cluster size to the bulk. This thesis will focus on species solvated with water clusters that are large enough to exhibit the properties of the bulk but small enough to consist of fewer than one hundred solvent molecules. New methods to study such systems will also be presented.

  10. Micellization and microstructural studies between amphiphilic drug ibuprofen with non-ionic surfactant in aqueous urea solution

    International Nuclear Information System (INIS)

    Rub, Malik Abdul; Azum, Naved; Kumar, Dileep; Asiri, Abdullah M.; Marwani, Hadi M.

    2014-01-01

    Highlights: • Micellization behavior of (ibuprofen + non-ionic surfactant) mixtures has been investigated. • Ion–dipole type of interaction between ibuprofen drug and non-ionic surfactant. • The negative β values propose attractive interactions between the components. • Stern–Volmer binding constants (K sv ) and dielectric constant of mixed systems have also been evaluated. • The results have applicability in drug delivery. - Abstract: Herein, we have accounted for the interaction between a non-steroidal anti-inflammatory drug ibuprofen (IBF) and non-ionic surfactant polyethoxyglycol t-octylphenyl ether (TX-100 (4-(1,1,3,3-tetramethylbutyl)phenyl-polyethylene glycol) and TX-114 ((1,1,3,3-tetramethylbutyl)phenyl-polyethylene glycol)), in aqueous urea solutions using tensiometric and fluorimetric techniques at T = 298.15 K. Surface tension measurements were carried out to evaluate the critical micelle concentrations (cmc) of the drug and surfactant as well as their mixtures of varying compositions. An increase in the surface charge of the micelles was observed with the addition of urea followed by halt of micelles formation. Various physicochemical parameters, such as, cmc values of the mixture, micellar mass fraction (X 1 Rub ) of surfactants (TX-100/TX-114), interaction parameters (β) at the monolayer air–water interface and in bulk solutions, different thermodynamic parameters and activity coefficients (f 1 m ,f 2 m ) for the non-ionic surfactant and drug in the mixed micelles, were determined by using the approach of Clint, of Rubingh, and of Rosen. All results identified synergism and attractive interactions in the mixed systems of (drug–surfactant) mixtures and showed effective involvement of the non-ionic surfactant (TX-100/TX-114) component in the mixture. Micelle aggregation numbers (N agg ), evaluated by using steady-state fluorescence quenching studies, suggest that the contribution of non-ionic surfactant was always more than that of

  11. Phase separation in solution of worm-like micelles: a dilute ? spin-vector model

    Science.gov (United States)

    Panizza, Pascal; Cristobal, Galder; Curély, Jacques

    1998-12-01

    We show how the dilute 0953-8984/10/50/006/img2 spin vector model introduced originally by Wheeler and co-workers for describing the polymerization phenomenon in solutions of liquid sulphur and of living polymers may be conveniently adapted for studying phase separation in systems containing long flexible micelles. We draw an isomorphism between the coupling constant appearing in the exchange Hamiltonian and the surfactant energies in the micellar problem. We solve this problem within the mean-field approximation and compare the main results we have obtained with respect to polymer theory and previous theories of phase separation in micellar solutions. We show that the attractive interaction term 0953-8984/10/50/006/img3 between monomers renormalizes the aggregation energy and subsequently the corresponding size distribution. Under these conditions, we observe that the general aspect of the phase diagram in the 0953-8984/10/50/006/img4 plane (where 0953-8984/10/50/006/img5 is the surfactant concentration) is different from previous results. The spinodal line shows a re-entrant behaviour and, at low concentrations, we point out the possibility of specific nucleation phenomena related to the existence of a metastable transition line between a region composed of spherical micelles and another one corresponding to a dilute solution of long flexible micelles.

  12. 46 CFR 148.04-23 - Unslaked lime in bulk.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Unslaked lime in bulk. 148.04-23 Section 148.04-23... HAZARDOUS MATERIALS IN BULK Special Additional Requirements for Certain Material § 148.04-23 Unslaked lime in bulk. (a) Unslaked lime in bulk must be transported in unmanned, all steel, double-hulled barges...

  13. 33 CFR 127.313 - Bulk storage.

    Science.gov (United States)

    2010-07-01

    ...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Operations § 127.313 Bulk storage. (a) The operator...: (1) LNG. (2) LPG. (3) Vessel fuel. (4) Oily waste from vessels. (5) Solvents, lubricants, paints, and...

  14. Bulk amorphous Mg-based alloys

    DEFF Research Database (Denmark)

    Pryds, Nini

    2004-01-01

    are discussed in this paper. On the basis of these measurements phase diagrams of the different systems were constructed. Finally, it is demonstrated that when pressing the bulk amorphous alloy onto a metallic dies at temperatures within the supercooled liquid region, the alloy faithfully replicates the surface...

  15. Longitudinal bulk a coustic mass sensor

    DEFF Research Database (Denmark)

    Hales, Jan Harry; Teva, Jordi; Boisen, Anja

    2009-01-01

    Design, fabrication and characterization, in terms of mass sensitivity, is presented for a polycrystalline silicon longitudinal bulk acoustic cantilever. The device is operated in air at 51 MHz, resulting in a mass sensitivity of 100 HZ/fg (1 fg = 10{su−15 g). The initial characterization is cond...

  16. Bulk viscosity in 2SC quark matter

    International Nuclear Information System (INIS)

    Alford, Mark G; Schmitt, Andreas

    2007-01-01

    The bulk viscosity of three-flavour colour-superconducting quark matter originating from the nonleptonic process u + s ↔ u + d is computed. It is assumed that up and down quarks form Cooper pairs while the strange quark remains unpaired (2SC phase). A general derivation of the rate of strangeness production is presented, involving contributions from a multitude of different subprocesses, including subprocesses that involve different numbers of gapped quarks as well as creation and annihilation of particles in the condensate. The rate is then used to compute the bulk viscosity as a function of the temperature, for an external oscillation frequency typical of a compact star r-mode. We find that, for temperatures far below the critical temperature T c for 2SC pairing, the bulk viscosity of colour-superconducting quark matter is suppressed relative to that of unpaired quark matter, but for T ∼> T c /30 the colour-superconducting quark matter has a higher bulk viscosity. This is potentially relevant for the suppression of r-mode instabilities early in the life of a compact star

  17. THE OPTIMIZATION OF PLUSH YARNS BULKING PROCESS

    Directory of Open Access Journals (Sweden)

    VINEREANU Adam

    2014-05-01

    Full Text Available This paper presents the experiments that were conducted on the installation of continuous bulking and thermofixing “SUPERBA” type TVP-2S for optimization of the plush yarns bulking process. There were considered plush yarns Nm 6.5/2, made of the fibrous blend of 50% indigenous wool sort 41 and 50% PES. In the first stage, it performs a thermal treatment with a turboprevaporizer at a temperature lower than thermofixing temperature, at atmospheric pressure, such that the plush yarns - deposed in a freely state on a belt conveyor - are uniformly bulking and contracting. It was followed the mathematical modeling procedure, working with a factorial program, rotatable central composite type, and two independent variables. After analyzing the parameters that have a direct influence on the bulking degree, there were selected the pre-vaporization temperature (coded x1,oC and the velocity of belt inside pre-vaporizer (coded x 2, m/min. As for the dependent variable, it was chosen the plush yarn diameter (coded y, mm. There were found the coordinates of the optimal point, and then this pair of values was verified in practice. These coordinates are: x1optim= 90oC and x 2optim= 6.5 m/min. The conclusion is that the goal was accomplished: it was obtained a good cover degree f or double-plush carpets by reducing the number of tufts per unit surface.

  18. Characteristics of bulk liquid undercooling and crystallization ...

    Indian Academy of Sciences (India)

    Characteristics of bulk liquid undercooling and crystallization behaviors ... cooling rate is fixed, the change of undercooling depends on the melt processing tem- ... solidification and a deep knowledge of undercooling of ... evolution, to obtain the information for the nucleation and ..... When cooling rate is fixed, the change.

  19. A stereoscopic look into the bulk

    Energy Technology Data Exchange (ETDEWEB)

    Czech, Bartłomiej; Lamprou, Lampros; McCandlish, Samuel; Mosk, Benjamin [Stanford Institute for Theoretical Physics, Department of Physics, Stanford University,Stanford, CA 94305 (United States); Sully, James [Theory Group, SLAC National Accelerator LaboratoryMenlo Park, CA 94025 (United States)

    2016-07-26

    We present the foundation for a holographic dictionary with depth perception. The dictionary consists of natural CFT operators whose duals are simple, diffeomorphism-invariant bulk operators. The CFT operators of interest are the “OPE blocks,” contributions to the OPE from a single conformal family. In holographic theories, we show that the OPE blocks are dual at leading order in 1/N to integrals of effective bulk fields along geodesics or homogeneous minimal surfaces in anti-de Sitter space. One widely studied example of an OPE block is the modular Hamiltonian, which is dual to the fluctuation in the area of a minimal surface. Thus, our operators pave the way for generalizing the Ryu-Takayanagi relation to other bulk fields. Although the OPE blocks are non-local operators in the CFT, they admit a simple geometric description as fields in kinematic space — the space of pairs of CFT points. We develop the tools for constructing local bulk operators in terms of these non-local objects. The OPE blocks also allow for conceptually clean and technically simple derivations of many results known in the literature, including linearized Einstein’s equations and the relation between conformal blocks and geodesic Witten diagrams.

  20. Bulk viscous cosmology in early Universe

    Indian Academy of Sciences (India)

    The effect of bulk viscosity on the early evolution of Universe for a spatially homogeneous and isotropic Robertson-Walker model is considered. Einstein's field equations are solved by using `gamma-law' equation of state = ( - 1)ρ, where the adiabatic parameter gamma () depends on the scale factor of the model.

  1. Failure by fracture in bulk metal forming

    DEFF Research Database (Denmark)

    Silva, C.M.A.; Alves, Luis M.; Nielsen, Chris Valentin

    2015-01-01

    This paper revisits formability in bulk metal forming in the light of fundamental concepts of plasticity,ductile damage and crack opening modes. It proposes a new test to appraise the accuracy, reliability and validity of fracture loci associated with crack opening by tension and out-of-plane shear...

  2. Hexaferrite multiferroics: from bulk to thick films

    Science.gov (United States)

    Koutzarova, T.; Ghelev, Ch; Peneva, P.; Georgieva, B.; Kolev, S.; Vertruyen, B.; Closset, R.

    2018-03-01

    We report studies of the structural and microstructural properties of Sr3Co2Fe24O41 in bulk form and as thick films. The precursor powders for the bulk form were prepared following the sol-gel auto-combustion method. The prepared pellets were synthesized at 1200 °C to produce Sr3Co2Fe24O41. The XRD spectra of the bulks showed the characteristic peaks corresponding to the Z-type hexaferrite structure as a main phase and second phases of CoFe2O4 and Sr3Fe2O7-x. The microstructure analysis of the cross-section of the bulk pellets revealed a hexagonal sheet structure. Large areas were observed of packages of hexagonal sheets where the separate hexagonal particles were ordered along the c axis. Sr3Co2Fe24O41 thick films were deposited from a suspension containing the Sr3Co2Fe24O41 powder. The microstructural analysis of the thick films showed that the particles had the perfect hexagonal shape typical for hexaferrites.

  3. Dynamic analysis of bulk-fill composites: Effect of food-simulating liquids.

    Science.gov (United States)

    Eweis, Ahmed Hesham; Yap, Adrian U-Jin; Yahya, Noor Azlin

    2017-10-01

    This study investigated the effect of food simulating liquids on visco-elastic properties of bulk-fill restoratives using dynamic mechanical analysis. One conventional composite (Filtek Z350 [FZ]), two bulk-fill composites (Filtek Bulk-fill [FB] and Tetric N Ceram [TN]) and a bulk-fill giomer (Beautifil-Bulk Restorative [BB]) were evaluated. Specimens (12 × 2 × 2mm) were fabricated using customized stainless steel molds. The specimens were light-cured, removed from their molds, finished, measured and randomly divided into six groups. The groups (n = 10) were conditioned in the following mediums for 7 days at 37°C: air (control), artificial saliva (SAGF), distilled water, 0.02N citric acid, heptane, 50% ethanol-water solution. Specimens were assessed using dynamic mechanical testing in flexural three-point bending mode and their respective mediums at 37°C and a frequency range of 0.1-10Hz. The distance between the supports were fixed at 10mm and an axial load of 5N was employed. Data for elastic modulus, viscous modulus and loss tangent were subjected to ANOVA/Tukey's tests at significance level p food-simulating liquids on the visco-elastic properties of bulk-fill composites was material and medium dependent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Unlocking Chain Exchange in Highly Amphiphilic Block Polymer Micellar Systems: Influence of Agitation.

    Science.gov (United States)

    Murphy, Ryan P; Kelley, Elizabeth G; Rogers, Simon A; Sullivan, Millicent O; Epps, Thomas H

    2014-11-18

    Chain exchange between block polymer micelles in highly selective solvents, such as water, is well-known to be arrested under quiescent conditions, yet this work demonstrates that simple agitation methods can induce rapid chain exchange in these solvents. Aqueous solutions containing either pure poly(butadiene- b -ethylene oxide) or pure poly(butadiene- b -ethylene oxide- d 4 ) micelles were combined and then subjected to agitation by vortex mixing, concentric cylinder Couette flow, or nitrogen gas sparging. Subsequently, the extent of chain exchange between micelles was quantified using small angle neutron scattering. Rapid vortex mixing induced chain exchange within minutes, as evidenced by a monotonic decrease in scattered intensity, whereas Couette flow and sparging did not lead to measurable chain exchange over the examined time scale of hours. The linear kinetics with respect to agitation time suggested a surface-limited exchange process at the air-water interface. These findings demonstrate the strong influence of processing conditions on block polymer solution assemblies.

  5. Integration of bulk piezoelectric materials into microsystems

    Science.gov (United States)

    Aktakka, Ethem Erkan

    Bulk piezoelectric ceramics, compared to deposited piezoelectric thin-films, provide greater electromechanical coupling and charge capacity, which are highly desirable in many MEMS applications. In this thesis, a technology platform is developed for wafer-level integration of bulk piezoelectric substrates on silicon, with a final film thickness of 5-100microm. The characterized processes include reliable low-temperature (200°C) AuIn diffusion bonding and parylene bonding of bulk-PZT on silicon, wafer-level lapping of bulk-PZT with high-uniformity (+/-0.5microm), and low-damage micro-machining of PZT films via dicing-saw patterning, laser ablation, and wet-etching. Preservation of ferroelectric and piezoelectric properties is confirmed with hysteresis and piezo-response measurements. The introduced technology offers higher material quality and unique advantages in fabrication flexibility over existing piezoelectric film deposition methods. In order to confirm the preserved bulk properties in the final film, diaphragm and cantilever beam actuators operating in the transverse-mode are designed, fabricated and tested. The diaphragm structure and electrode shapes/sizes are optimized for maximum deflection through finite-element simulations. During tests of fabricated devices, greater than 12microm PP displacement is obtained by actuation of a 1mm2 diaphragm at 111kHz with integration of a 50-80% efficient power management IC, which incorporates a supply-independent bias circuitry, an active diode for low-dropout rectification, a bias-flip system for higher efficiency, and a trickle battery charger. The overall system does not require a pre-charged battery, and has power consumption of <1microW in active-mode (measured) and <5pA in sleep-mode (simulated). Under lg vibration at 155Hz, a 70mF ultra-capacitor is charged from OV to 1.85V in 50 minutes.

  6. Solubilization of Hydrophobic Dyes in Surfactant Solutions

    Directory of Open Access Journals (Sweden)

    Ali Reza Tehrani-Bagha

    2013-02-01

    Full Text Available In this paper, the use of surfactants for solubilization of hydrophobic organic dyes (mainly solvent and disperse dyes has been reviewed. The effect of parameters such as the chemical structures of the surfactant and the dye, addition of salt and of polyelectrolytes, pH, and temperature on dye solubilization has been discussed. Surfactant self-assemble into micelles in aqueous solution and below the concentration where this occurs—the critical micelle concentration (CMC—there is no solubilization. Above the CMC, the amount of solubilized dye increases linearly with the increase in surfactant concentration. It is demonstrated that different surfactants work best for different dyes. In general, nonionic surfactants have higher solubilization power than anionic and cationic surfactants. It is likely that the reason for the good performance of nonionic surfactants is that they allow dyes to be accommodated not only in the inner, hydrocarbon part of the micelle but also in the headgroup shell. It is demonstrated that the location of a dye in a surfactant micelle can be assessed from the absorption spectrum of the dye-containing micellar solution.

  7. Purity Evaluation of Bulk Single Wall Carbon Nanotube Materials

    International Nuclear Information System (INIS)

    Dettlaff-Weglikowska, U.; Hornbostel, B.; Cech, J.; Roth, S.; Wang, J.; Liang, J.

    2005-01-01

    We report on our experience using a preliminary protocol for quality control of bulk single wall carbon nanotube (SWNT) materials produced by the electric arc-discharge and laser ablation method. The first step in the characterization of the bulk material is mechanical homogenization. Quantitative evaluation of purity has been performed using a previously reported procedure based on solution phase near-infrared spectroscopy. Our results confirm that this method is reliable in determining the nanotube content in the arc-discharge sample containing carbonaceous impurities (amorphous carbon and graphitic particles). However, the application of this method to laser ablation samples gives a relative purity value over 100 %. The possible reason for that might be different extinction coefficient meaning different oscillator strength of the laser ablation tubes. At the present time, a 100 % pure reference sample of laser ablation SWNT is not available, so we chose to adopt the sample showing the highest purity as a new reference sample for a quantitative purity evaluation of laser ablation materials. The graphitic part of the carbonaceous impurities has been estimated using X-ray diffraction of 1:1 mixture of nanotube material and C60 as an internal reference. To evaluate the metallic impurities in the as prepared and homogenized carbon nanotube soot inductive coupled plasma (ICP) has been used

  8. Structural and Mechanical Hysteresis at the Order-Order Transition of Block Copolymer Micellar Crystals

    Directory of Open Access Journals (Sweden)

    Theresa A. LaFollette

    2011-01-01

    Full Text Available Concentrated solutions of a water-soluble block copolymer (PEO20-(PPO70-(PEO20 show a thermoreversible transition from a liquid to a gel. Over a range of concentration there also exists an order-order transition (OOT between cubically-packed spherical micelles and hexagonally-packed cylindrical micelles. This OOT displays a hysteresis between the heating and cooling transitions that is observed at both the macroscale through rheology and nanoscale through small angle neutron scattering (SANS. The hysteresis is caused by the persistence of the cubically-packed spherical micelle phase into the hexagonally-packed cylindrical micelle phase likely due to the hindered realignment of the spherical micelles into cylindrical micelles and then packing of the cylindrical micelles into a hexagonally-packed cylindrical micelle phase. This type of hysteresis must be fully characterized, and possibly avoided, for these block copolymer systems to be used as templates in nanocomposites.

  9. Poly(ester amide-Poly(ethylene oxide Graft Copolymers: Towards Micellar Drug Delivery Vehicles

    Directory of Open Access Journals (Sweden)

    Gregory J. Zilinskas

    2012-01-01

    Full Text Available Micelles formed from amphiphilic copolymers are promising materials for the delivery of drug molecules, potentially leading to enhanced biological properties and efficacy. In this work, new poly(ester amide-poly(ethylene oxide (PEA-PEO graft copolymers were synthesized and their assembly into micelles in aqueous solution was investigated. It was possible to tune the sizes of the micelles by varying the PEO content of the polymers and the method of micelle preparation. Under optimized conditions, it was possible to obtain micelles with diameters less than 100 nm as measured by dynamic light scattering and transmission electron microscopy. These micelles were demonstrated to encapsulate and release a model drug, Nile Red, and were nontoxic to HeLa cells as measured by an MTT assay. Overall, the properties of these micelles suggest that they are promising new materials for drug delivery systems.

  10. Removal by irradiation of alcohols in micellar systems; Remocion por irradiacion de alcoholes en sistemas micelares

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, A.J. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Mijata, T.; Arai, H. [JAERI, Takasaki, Gunma (Japan)

    2003-07-01

    Mixtures of ortho-chloro phenol and butanol of 40 mg L{sup -1} in aqueous solution in presence of the surfactant dodecyl sulfate of sodium (1 to 9 m mol L{sup -1}) were irradiated at 2 and 5 kGy of gamma radiation. The quantitative analysis of the irradiated and not irradiated samples carries out by gas chromatography. It was determined that the surfactant exercises a protection effect in the radiolytic removal of the studied alcohols. In general terms this it increases in function of the concentration of the surfactant. However, competition reactions exist among the substrate and some reactive species produced by the radiolysis of the water that in some moment exercise a positive catalytic effect in the removal of the substrate. (Author)

  11. Ring opening metathesis polymerization-derived block copolymers bearing chelating ligands: synthesis, metal immobilization and use in hydroformylation under micellar conditions

    Directory of Open Access Journals (Sweden)

    Gajanan M. Pawar

    2010-03-01

    Full Text Available Norborn-5-ene-(N,N-dipyrid-2-ylcarbamide (M1 was copolymerized with exo,exo-[2-(3-ethoxycarbonyl-7-oxabicyclo[2.2.1]hept-5-en-2-carbonyloxyethyl]trimethylammonium iodide (M2 using the Schrock catalyst Mo(N-2,6-Me2-C6H3(CHCMe2Ph(OCMe(CF322 [Mo] to yield poly(M1-b-M2. In water, poly(M1-b-M2 forms micelles with a critical micelle-forming concentration (cmc of 2.8 × 10−6 mol L−1; Reaction of poly(M1-b-M2 with [Rh(CODCl]2 (COD = cycloocta-1,5-diene yields the Rh(I-loaded block copolymer poly(M1-b-M2-Rh containing 18 mg of Rh(I/g of block copolymer with a cmc of 2.2 × 10−6 mol L−1. The Rh-loaded polymer was used for the hydroformylation of 1-octene under micellar conditions. The data obtained were compared to those obtained with a monomeric analogue, i.e. CH3CON(Py2RhCl(COD (C1, Py = 2-pyridyl. Using the polymer-supported catalyst under micellar conditions, a significant increase in selectivity, i.e. an increase in the n:iso ratio was accomplished, which could be further enhanced by the addition of excess ligand, e.g., triphenylphosphite. Special features of the micellar catalytic set up are discussed.

  12. Application of Fluorescence Emission for Characterization of Albendazole and Ricobendazole Micellar Systems: Elucidation of the Molecular Mechanism of Drug Solubilization Process.

    Science.gov (United States)

    Priotti, Josefina; Leonardi, Darío; Pico, Guillermo; Lamas, María C

    2018-04-01

    Albendazole (ABZ) and ricobendazole (RBZ) are referred to as class II compounds in the Biopharmaceutical Classification System. These drugs exhibit poor solubility, which profoundly affects their oral bioavailability. Micellar systems are excellent pharmaceutical tools to enhance solubilization and absorption of poorly soluble compounds. Polysorbate 80 (P80), poloxamer 407 (P407), sodium cholate (Na-C), and sodium deoxycholate (Na-DC) have been selected as surfactants to study the solubilization process of these drugs. Fluorescence emission was applied in order to obtain surfactant/fluorophore (S/F) ratio, critical micellar concentration, protection efficiency of micelles, and thermodynamic parameters. Systems were characterized by their size and zeta potential. A blue shift from 350 to 345 nm was observed when ABZ was included in P80, Na-DC, and Na-C micelles, while RBZ showed a slight change in the fluorescence band. P80 showed a significant solubilization capacity: S/F values were 688 for ABZ at pH 4 and 656 for RBZ at pH 6. Additionally, P80 micellar systems presented the smallest size (10 nm) and their size was not affected by pH change. S/F ratio for bile salts was tenfold higher than for the other surfactants. Quenching plots were linear and their constant values (2.17/M for ABZ and 2.29/M for RBZ) decreased with the addition of the surfactants, indicating a protective effect of the micelles. Na-DC showed better protective efficacy for ABZ and RBZ than the other surfactants (constant values 0.54 and 1.57/M, respectively), showing the drug inclusion into the micelles. Entropic parameters were negative in agreement with micelle formation.

  13. Use of micellar casein concentrate for Greek-style yogurt manufacturing: effects on processing and product properties.

    Science.gov (United States)

    Bong, D D; Moraru, C I

    2014-03-01

    The objective of this work was to develop and optimize an alternative make process for Greek-style yogurt (GSY), in which the desired level of protein was reached by fortification with micellar casein concentrate (MCC) obtained from milk by microfiltration. Two MCC preparations with 58 and 88% total protein (MCC-58 and MCC-88) were used to fortify yogurt milk to 9.80% (wt/wt) protein. Strained GSY of similar protein content was used as the control. Yogurt milk bases were inoculated with 0.02% (wt/wt) or 0.04% (wt/wt) direct vat set starter culture and fermented until pH 4.5. The acidification rate was faster for the MCC-fortified GSY than for the control, regardless of the inoculation level, which was attributed to the higher nonprotein nitrogen content in the MCC-fortified milk. Steady shear rate rheological analysis indicated a shear-thinning behavior for all GSY samples, which fitted well with the power law model. Dynamic rheological analysis at 5°C showed a weak frequency dependency of the elastic modulus (G') and viscous modulus (G") for all GSY samples, with G' > G", indicating a weak gel structure. Differences in the magnitude of viscoelastic parameters between the 2 types of GSY were found, with G' of MCC-fortified GSY yogurt. Differences were also noticed in water-holding capacity, which was lower for the MCC-fortified GSY compared with the control, attributed to lower serum protein content in the former. Despite some differences in the physicochemical characteristics of the final product compared with GSY manufactured by straining, the alternative process developed here is a feasible alternative to the traditional GSY make process, with environmental and possibly financial benefits to the dairy industry. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Colloidal chirality in wormlike micellar systems exclusively originated from achiral species: Role of secondary assembly and stimulus responsivity.

    Science.gov (United States)

    Zhao, Wenrong; Hao, Jingcheng

    2016-09-15

    Colloidal chirality in wormlike micellar systems exclusively originated from achiral species and discussion of the role of secondary assembly of fiber-like aggregates in chirality generation were presented in this paper. Herein, formation of colloidal wormlike micelles for the first time incorporated chirality and redox-responsiveness into one design via noncovalent interaction. A dual-stimuli-responsive gel of wormlike micelles which were designed by employing a dual-responsive cationic surfactant (FTMA) and a strong gelator (AzoNa4) and regulated by redox reaction and host-guest inclusion is presented. Both the redox and host-guest interaction play an important role in regulating the viscosity and supramolecular chirality of gels of the wormlike micelles. The supramolecular chirality and viscosity of the wormlike micelle gels were switched reversibly by exerting chemical redox onto the ferrocenyl groups. For the amphiphile FTMA containing redox-active ferrocenyl group, reversible control of the oxidation state of ferrocenyl groups leads to the charge and hydrophobicity changes of FTMA, therefore change its self-assembly behavior. Of equal interest, β-CD successfully detached the wormlike micelles via the recognition-inclusion behavior with FTMA and invalidate the H-bond and hydrophobic interaction between FTMA and AzoH4. This designed system provides a new strategy to tune the supramolecular chirality of colloidal aggregates and explore the specific packing mode detail within the micelles or the secondary assembly of the inter-micelles. We anticipate this dual-responsive H-bond-directed chiral gel switch could propose a new strategy when researchers designing new, multi-responsive functional gel materials. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Versatility of non-native forms of human cytochrome c: pH and micellar concentration dependence.

    Science.gov (United States)

    Simon, Matthieu; Metzinger-Le Meuth, Valérie; Chevance, Soizic; Delalande, Olivier; Bondon, Arnaud

    2013-01-01

    In addition to its electron transfer activity, cytochrome c is now known to trigger apoptosis via peroxidase activity. This new function is related to a structural modification of the cytochrome upon association with anionic lipids, particularly cardiolipin present in the mitochondrial membrane. However, the exact nature of the non-native state induced by this interaction remains an active subject of debate. In this work, using human cytochromes c (native and two single-histidine mutants and the corresponding double mutant) and micelles as a hydrophobic medium, we succeeded, through UV-visible spectroscopy, circular dichroism spectroscopy and NMR spectroscopy, in fully characterizing the nature of the sixth ligand replacing the native methionine. Furthermore, careful pH titrations permitted the identification of the amino acids involved in the iron binding over a range of pH values. Replacement of the methionine by lysine was only observed at pH above 8.5, whereas histidine binding is dependent on both pH and micelle concentration. The pH variation range for histidine protonation is relatively narrow and is consistent with the mitochondrial intermembrane pH changes occurring during apoptosis. These results allow us to rule out lysine as the sixth ligand at pH values close to neutrality and reinforce the role of histidines (preferentially His33 vs. His26) as the main candidate to replace methionine in the non-native cytochrome c. Finally, on the basis of these results and molecular dynamics simulations, we propose a 3D model for non-native cytochrome c in a micellar environment.

  16. Micellar HPLC and derivative spectrophotometric methods for the simultaneous determination of fluconazole and tinidazole in pharmaceuticals and biological fluids.

    Science.gov (United States)

    Belal, F; Sharaf El-Din, M K; Eid, M I; El-Gamal, R M

    2014-04-01

    Micellar high-performance liquid chromatography (HPLC) and first-derivative ultraviolet spectrophotometry were used to simultaneously determine fluconazole (FLZ) and tinidazole (TNZ) in combined pharmaceutical dosage forms. The derivative procedure is based on the linear relationship between the drug concentration and the first derivative amplitudes at 220 and 288 nm for FLZ and TNZ, respectively. The calibration graphs were linear in the range of 1.5-9.0 µg/mL for FLZ and 10.0-60.0 µg/mL for TNZ. Furthermore, an HPLC procedure with ultraviolet detection at 210 nm was developed. For the HPLC procedure, good chromatographic separation was achieved using an ODS C18 column (250 × 4.6 mm i.d.). The mobile phase containing 0.15M sodium dodecyl sulphate, 0.3% triethylamine and 12% n-propanol in 0.02M orthophosphoric acid at pH 5.5 was pumped at a flow rate of 1 mL/min. Indapamide was used as an internal standard. The method showed good linearity over the concentration ranges of 1.5-30.0 and 10.0-200.0 µg/mL, with limits of detection of 0.36 and 2.70 µg/mL and limits of quantification of 1.1 and 8.2 µg/mL for FLZ and TNZ, respectively. The suggested methods were successfully applied for the simultaneous analysis of the drugs in their laboratory prepared mixture, co-formulated tablet and single dosage forms. Moreover the second method was also extended to the determination of the drugs in biological fluids.

  17. Study to determine the technical and economic feasibility of reclaiming chemicals used in micellar polymer and low tension surfactant flooding. Final report. [Ultrafiltration membranes and reverse osmosis membranes

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, R.H.; Himmelblau, A.; Donnelly, R.G.

    1978-02-01

    Energy Resources Company has developed a technology for use with enhanced oil recovery to achieve emulsion breaking and surfactant recovery. By using ultrafiltration membranes, the Energy Resources Company process can dewater an oil-in-water type emulsion expected from enhanced oil recovery projects to the point where the emulsion can be inverted and treated using conventional emulsion-treating equipment. By using a tight ultrafiltration membrane or a reverse osmosis membrane, the Energy Resources Company process is capable of recovering chemicals such as surfactants used in micellar polymer flooding.

  18. Liquid-liquid extraction and separation of VIII group elements, especially ruthenium, by synergic combinations or aromatic polyimines and micellar cationic exchangers

    International Nuclear Information System (INIS)

    Vitart, X.

    1991-01-01

    This thesis aims to characterize and to quantify the chemical equilibria involved in d-elements liquid-liquid extraction systems, especially elements belonging to the VIII group (Fe, Ni, Co, Ru, Rh, Pd, Pt). These systems are composed of synergic combination of aromatic polyimines and micellar cationic exchangers. Substitutions are first performed in aqueous acidic media by aromatic polyimines; then extractions are operated using micellic canionic exchangers. Chemical equilibria, selectivity effects, especially those due to ion-pair formations, kinetics, extractant behaviour are analysed and quantified [fr

  19. Plugging solution

    Energy Technology Data Exchange (ETDEWEB)

    Sharipov, A U; Yangirov, I Z

    1982-01-01

    A clay-powder, cement, and water-base plugging solution is proposed having reduced solution viscosity characteristics while maintaining tensile strength in cement stone. This solution utilizes silver graphite and its ingredients, by mass weight, are as follows: cement 51.2-54.3%; claypowder 6.06-9.1%; silver graphite 0.24-0.33%; with water making up the remainder.

  20. Fluctuation effects in bulk polymer phase behavior

    International Nuclear Information System (INIS)

    Bates, F.S.; Rosedale, J.H.; Stepanek, P.; Lodge, T.P.; Wiltzius, P.; Hjelm R, Jr.; Fredrickson, G.H.

    1990-01-01

    Bulk polymer-polymer, and block copolymer, phase behaviors have traditionally been interpreted using mean-field theories. Recent small-angle neutron scattering (SANS) studies of critical phenomena in model binary polymer mixtures confirm that non-mean-field behavior is restricted to a narrow range of temperatures near the critical point, in close agreement with the Ginzburg criterion. In contrast, strong derivations from mean-field behavior are evident in SANS and rheological measurements on model block copolymers more than 50C above the order-disorder transition (ODT), which can be attributed to sizeable composition fluctuations. Such fluctuation effects undermine the mean-field assumption, conventionally applied to bulk polymers, and result in qualitative changes in phase behavior, such as the elimination of a thermodynamic stability limit in these materials. The influence of fluctuation effects on block copolymer and binary mixture phase behavior is compared and contrasted in this presentation

  1. Nuclear Matter Bulk Parameter Scales and Correlations

    International Nuclear Information System (INIS)

    Santos, B. M.; Delfino, A.; Dutra, M.; Lourenço, O.

    2015-01-01

    We study the arising of correlations among some isovector bulk parameters in nonrelativistic and relativistic hadronic mean-field models. For the former, we investigate correlations in the nonrelativistic (NR) limit of relativistic point-coupling models. We provide analytical correlations, for the NR limit model, between the symmetry energy and its derivatives, namely, the symmetry energy slope, curvature, skewness and fourth order derivative, discussing the conditions in which they are linear ones. We also show that some correlations presented in the NR limit model are reproduced for relativistic models presenting cubic and quartic self-interactions in its scalar field. As a direct application of such linear correlations, we remark its association with possible crossing points in the density dependence of the linearly correlated bulk parameter. (author)

  2. Structural determinants in the bulk heterojunction.

    Science.gov (United States)

    Acocella, Angela; Höfinger, Siegfried; Haunschmid, Ernst; Pop, Sergiu C; Narumi, Tetsu; Yasuoka, Kenji; Yasui, Masato; Zerbetto, Francesco

    2018-02-21

    Photovoltaics is one of the key areas in renewable energy research with remarkable progress made every year. Here we consider the case of a photoactive material and study its structural composition and the resulting consequences for the fundamental processes driving solar energy conversion. A multiscale approach is used to characterize essential molecular properties of the light-absorbing layer. A selection of bulk-representative pairs of donor/acceptor molecules is extracted from the molecular dynamics simulation of the bulk heterojunction and analyzed at increasing levels of detail. Significantly increased ground state energies together with an array of additional structural characteristics are identified that all point towards an auxiliary role of the material's structural organization in mediating charge-transfer and -separation. Mechanistic studies of the type presented here can provide important insights into fundamental principles governing solar energy conversion in next-generation photovoltaic devices.

  3. Nonlinear AC susceptibility, surface and bulk shielding

    Science.gov (United States)

    van der Beek, C. J.; Indenbom, M. V.; D'Anna, G.; Benoit, W.

    1996-02-01

    We calculate the nonlinear AC response of a thin superconducting strip in perpendicular field, shielded by an edge current due to the geometrical barrier. A comparison with the results for infinite samples in parallel field, screened by a surface barrier, and with those for screening by a bulk current in the critical state, shows that the AC response due to a barrier has general features that are independent of geometry, and that are significantly different from those for screening by a bulk current in the critical state. By consequence, the nonlinear (global) AC susceptibility can be used to determine the origin of magnetic irreversibility. A comparison with experiments on a Bi 2Sr 2CaCu 2O 8+δ crystal shows that in this material, the low-frequency AC screening at high temperature is mainly due to the screening by an edge current, and that this is the unique source of the nonlinear magnetic response at temperatures above 40 K.

  4. Multilayer Integrated Film Bulk Acoustic Resonators

    CERN Document Server

    Zhang, Yafei

    2013-01-01

    Multilayer Integrated Film Bulk Acoustic Resonators mainly introduces the theory, design, fabrication technology and application of a recently developed new type of device, multilayer integrated film bulk acoustic resonators, at the micro and nano scale involving microelectronic devices, integrated circuits, optical devices, sensors and actuators, acoustic resonators, micro-nano manufacturing, multilayer integration, device theory and design principles, etc. These devices can work at very high frequencies by using the newly developed theory, design, and fabrication technology of nano and micro devices. Readers in fields of IC, electronic devices, sensors, materials, and films etc. will benefit from this book by learning the detailed fundamentals and potential applications of these advanced devices. Prof. Yafei Zhang is the director of the Ministry of Education’s Key Laboratory for Thin Films and Microfabrication Technology, PRC; Dr. Da Chen was a PhD student in Prof. Yafei Zhang’s research group.

  5. Internal shear cracking in bulk metal forming

    DEFF Research Database (Denmark)

    Christiansen, Peter; Nielsen, Chris Valentin; Bay, Niels Oluf

    2017-01-01

    This paper presents an uncoupled ductile damage criterion for modelling the opening and propagation of internal shear cracks in bulk metal forming. The criterion is built upon the original work on the motion of a hole subjected to shear with superimposed tensile stress triaxiality and its overall...... performance is evaluated by means of side-pressing formability tests in Aluminium AA2007-T6 subjected to different levels of pre-strain. Results show that the new proposed criterionis able to combine simplicity with efficiency for predicting the onset of fracture and the crack propagation path for the entire...... cracking to internal cracks formed undert hree-dimensional states of stress that are typical of bulk metal forming....

  6. Induction detection of concealed bulk banknotes

    International Nuclear Information System (INIS)

    Fuller, Christopher; Chen, Antao

    2011-01-01

    Bulk cash smuggling is a serious issue that has grown in volume in recent years. By building on the magnetic characteristics of paper currency, induction sensing is found to be capable of quickly detecting large masses of banknotes. The results show that this method is effective in detecting bulk cash through concealing materials such as plastics, cardboards, fabrics and aluminum foil. The significant difference in the observed phase between the received signals caused by conducting materials and ferrite compounds, found in banknotes, provides a good indication that this process can overcome the interference by metal objects in a real sensing application. This identification strategy has the potential to not only detect the presence of banknotes, but also the number, while still eliminating false positives caused by metal objects

  7. Induction detection of concealed bulk banknotes

    Science.gov (United States)

    Fuller, Christopher; Chen, Antao

    2012-06-01

    The smuggling of bulk cash across borders is a serious issue that has increased in recent years. In an effort to curb the illegal transport of large numbers of paper bills, a detection scheme has been developed, based on the magnetic characteristics of bank notes. The results show that volumes of paper currency can be detected through common concealing materials such as plastics, cardboard, and fabrics making it a possible potential addition to border security methods. The detection scheme holds the potential of also reducing or eliminating false positives caused by metallic materials found in the vicinity, by observing the stark difference in received signals caused by metal and currency. The detection scheme holds the potential to detect for both the presence and number of concealed bulk notes, while maintaining the ability to reduce false positives caused by metal objects.

  8. Raman characterization of bulk ferromagnetic nanostructured graphite

    International Nuclear Information System (INIS)

    Pardo, Helena; Divine Khan, Ngwashi; Faccio, Ricardo; Araújo-Moreira, F.M.; Fernández-Werner, Luciana

    2012-01-01

    Raman spectroscopy was used to characterize bulk ferromagnetic graphite samples prepared by controlled oxidation of commercial pristine graphite powder. The G:D band intensity ratio, the shape and position of the 2D band and the presence of a band around 2950 cm -1 showed a high degree of disorder in the modified graphite sample, with a significant presence of exposed edges of graphitic planes as well as a high degree of attached hydrogen atoms.

  9. Depositing bulk or micro-scale electrodes

    Science.gov (United States)

    Shah, Kedar G.; Pannu, Satinderpall S.; Tolosa, Vanessa; Tooker, Angela C.; Sheth, Heeral J.; Felix, Sarah H.; Delima, Terri L.

    2016-11-01

    Thicker electrodes are provided on microelectronic device using thermo-compression bonding. A thin-film electrical conducting layer forms electrical conduits and bulk depositing provides an electrode layer on the thin-film electrical conducting layer. An insulating polymer layer encapsulates the electrically thin-film electrical conducting layer and the electrode layer. Some of the insulating layer is removed to expose the electrode layer.

  10. Theory of thermal expansivity and bulk modulus

    International Nuclear Information System (INIS)

    Kumar, Munish

    2005-01-01

    The expression for thermal expansivity and bulk modulus, claimed by Shanker et al. to be new [Physica B 233 (1977) 78; 245 (1998) 190; J. Phys. Chem. Solids 59 (1998) 197] are compared with the theory of high pressure-high temperature reported by Kumar and coworkers. It is concluded that the Shanker formulation and the relations based on this are equal to the approach of Kumar et al. up to second order

  11. A bulk viscosity driven inflationary model

    International Nuclear Information System (INIS)

    Waga, I.; Falcao, R.C.; Chanda, R.

    1985-01-01

    Bulk viscosity associated with the production of heavy particles during the GUT phase transition can lead to exponential or 'generalized' inflation. The condition of inflation proposed is independent of the details of the phase transition and remains unaltered in presence of a cosmological constant. Such mechanism avoids the extreme supercooling and reheating needed in the usual inflationary models. The standard baryongenesis mechanism can be maintained. (Author) [pt

  12. Evidence for Bulk Ripplocations in Layered Solids

    Science.gov (United States)

    Gruber, Jacob; Lang, Andrew C.; Griggs, Justin; Taheri, Mitra L.; Tucker, Garritt J.; Barsoum, Michel W.

    2016-09-01

    Plastically anisotropic/layered solids are ubiquitous in nature and understanding how they deform is crucial in geology, nuclear engineering, microelectronics, among other fields. Recently, a new defect termed a ripplocation-best described as an atomic scale ripple-was proposed to explain deformation in two-dimensional solids. Herein, we leverage atomistic simulations of graphite to extend the ripplocation idea to bulk layered solids, and confirm that it is essentially a buckling phenomenon. In contrast to dislocations, bulk ripplocations have no Burgers vector and no polarity. In graphite, ripplocations are attracted to other ripplocations, both within the same, and on adjacent layers, the latter resulting in kink boundaries. Furthermore, we present transmission electron microscopy evidence consistent with the existence of bulk ripplocations in Ti3SiC2. Ripplocations are a topological imperative, as they allow atomic layers to glide relative to each other without breaking the in-plane bonds. A more complete understanding of their mechanics and behavior is critically important, and could profoundly influence our current understanding of how graphite, layered silicates, the MAX phases, and many other plastically anisotropic/layered solids, deform and accommodate strain.

  13. Accelerating universes driven by bulk particles

    International Nuclear Information System (INIS)

    Brito, F.A.; Cruz, F.F.; Oliveira, J.F.N.

    2005-01-01

    We consider our universe as a 3d domain wall embedded in a 5d dimensional Minkowski space-time. We address the problem of inflation and late time acceleration driven by bulk particles colliding with the 3d domain wall. The expansion of our universe is mainly related to these bulk particles. Since our universe tends to be permeated by a large number of isolated structures, as temperature diminishes with the expansion, we model our universe with a 3d domain wall with increasing internal structures. These structures could be unstable 2d domain walls evolving to fermi-balls which are candidates to cold dark matter. The momentum transfer of bulk particles colliding with the 3d domain wall is related to the reflection coefficient. We show a nontrivial dependence of the reflection coefficient with the number of internal dark matter structures inside the 3d domain wall. As the population of such structures increases the velocity of the domain wall expansion also increases. The expansion is exponential at early times and polynomial at late times. We connect this picture with string/M-theory by considering BPS 3d domain walls with structures which can appear through the bosonic sector of a five-dimensional supergravity theory

  14. Technique of Critical Current Density Measurement of Bulk Superconductor with Linear Extrapolation Method

    International Nuclear Information System (INIS)

    Adi, Wisnu Ari; Sukirman, Engkir; Winatapura, Didin S.

    2000-01-01

    Technique of critical current density measurement (Jc) of HTc bulk ceramic superconductor has been performed by using linear extrapolation with four-point probes method. The measurement of critical current density HTc bulk ceramic superconductor usually causes damage in contact resistance. In order to decrease this damage factor, we introduce extrapolation method. The extrapolating data show that the critical current density Jc for YBCO (123) and BSCCO (2212) at 77 K are 10,85(6) Amp.cm - 2 and 14,46(6) Amp.cm - 2, respectively. This technique is easier, simpler, and the use of the current flow is low, so it will not damage the contact resistance of the sample. We expect that the method can give a better solution for bulk superconductor application. Key words. : superconductor, critical temperature, and critical current density

  15. Charge based DC compact modeling of bulk FinFET transistor

    Science.gov (United States)

    Cerdeira, A.; Garduño, I.; Tinoco, J.; Ritzenthaler, R.; Franco, J.; Togo, M.; Chiarella, T.; Claeys, C.

    2013-09-01

    Multiple-gate MOSFETs became an industrial reality in the last years. Due to a pragmatic trade-off between CMOS process baselines compatibility, improved performance compared to planar bulk architecture, and cost, bulk FinFETs emerged as the technological solution to provide downscaling for the 14/22 nm technological nodes. In this work, a charge based DC compact model based on the SDDG Model is demonstrated for this new generation of FinFET transistors and describes continuously the transistor characteristics in all operating regions. Validating the model against two bulk FinFET baselines (NMOS, PMOS, various gate lengths and EOT), an excellent agreement is found for transfer and output characteristics (linear and saturation regimes), transconductance/output conductance, and gm/IDS characteristics. Temperature dependence is also taken into account and validated (T range from 25 °C up to 175 °C).

  16. Spectrophotometric determination of metal complexes of 1-nitroso-2-naphthol in micellar medium

    International Nuclear Information System (INIS)

    Shar, G.A.; Bhanger, M.I.

    2002-01-01

    Spectrophotometric determination of iron(III), nickel(II) and cobalt(II) is carried out with 1-nitroso-2-naphthol as complexing reagent in aqueous phase using non-ionic surfactant Tween 40. This replaces a tedious and time consuming solvent extraction method, because these solvents are costly and also toxic. Beer's law was obeyed, for Fe(III), Ni(II) and Co(II) over the range 0.5 - 4.0, 0.5 - 4.0 and 0.12 - 3.0 micro g ml/sup -1/ with detection limit (2 sigma ) of 3.3, 5.8 and 3.1 ng ml/sup -1/ respectively. The lambda /sub max/ molar absorption, molar absorptivity and Sandell's sensitivity of Fe(III), Ni(II) and Co(II) were (lambda /sub max/ 446 nm), (lambda/sub max/ 483.5 nm) and (lambda/sub max/ 444.5 nm); sigma/sub max/ x 10/sp 4/ mol/sp -1/ cm/sup -1/) is 1.69, 1.0 and 1.86, 3.3, 5.8 and 3.1 ng cm/sup -2/, respectively. The pH at which the complex is formed for Fe(III), Ni(II) and Co(II) is 1, 8 and 5 respectively. The critical micelle concentration (cmc) of 1-nitroso-2-naphthol is 5% solution. The present method is compared with that of atomic absorption spectroscopy and no significant difference is noted between the two methods at 95% confidence level. The method has been applied to the determination of iron(III), nickel(II) and cobalt(II) in pharmaceutical and industrial wastewater samples. (author)

  17. Sodium Flux Growth of Bulk Gallium Nitride

    Science.gov (United States)

    Von Dollen, Paul Martin

    This dissertation focused on development of a novel apparatus and techniques for crystal growth of bulk gallium nitride (GaN) using the sodium flux method. Though several methods exist to produce bulk GaN, none have been commercialized on an industrial scale. The sodium flux method offers potentially lower cost production due to relatively mild process conditions while maintaining high crystal quality. But the current equipment and methods for sodium flux growth of bulk GaN are generally not amenable to large-scale crystal growth or in situ investigation of growth processes, which has hampered progress. A key task was to prevent sodium loss or migration from the sodium-gallium growth melt while permitting N2 gas to access the growing crystal, which was accomplished by implementing a reflux condensing stem along with a reusable sealed capsule. The reflux condensing stem also enabled direct monitoring and control of the melt temperature, which has not been previously reported for the sodium flux method. Molybdenum-based materials were identified from a corrosion study as candidates for direct containment of the corrosive sodium-gallium melt. Successful introduction of these materials allowed implementation of a crucible-free containment system, which improved process control and can potentially reduce crystal impurity levels. Using the new growth system, the (0001) Ga face (+c plane) growth rate was >50 mum/hr, which is the highest bulk GaN growth rate reported for the sodium flux method. Omega X-ray rocking curve (?-XRC) measurements indicated the presence of multiple grains, though full width at half maximum (FWHM) values for individual peaks were 1020 atoms/cm3, possibly due to reactor cleaning and handling procedures. This dissertation also introduced an in situ technique to correlate changes in N2 pressure with dissolution of nitrogen and precipitation of GaN from the sodium-gallium melt. Different stages of N2 pressure decay were identified and linked to

  18. Mechanism of the extraction of nitric acid and water by organic solutions of tertiary alkyl-amines; Mecanisme d'extraction de l'acide nitrique et de l'eau par les solutions organiques d'alcoylamines tertiaires

    Energy Technology Data Exchange (ETDEWEB)

    Gourisse, D

    1966-06-01

    The micellar aggregation of tri-alkyl-ammonium nitrates in low polarity organic solvents has been verified by viscosity, conductivity and sedimentation velocity measurements. The aggregation depends upon the polarity of solvent, the length of the alkyl radicals and the organic concentration of the various constituents (tri-alkyl-ammonium nitrate, tri-alkyl-amine, nitric acid, water). The amine salification law has been established and the excess nitric acid and water solubilities in the organic solutions have been measured. Nitric acid and water are slightly more soluble in micellar organic solutions than in molecular organic solutions. A description of excess nitric acid containing tri-alkyl-ammonium nitrate solutions is proposed. (author) [French] Mecanisme d'extraction de l'acide nitrique et de l'eau par les solutions organiques d'alcoylamines tertiaires. L'agregation micellaire des nitrates de trialcoylammonium dans les solvants peu polaires a ete verifiee par viscosimetrie, conductimetrie et ultracentrifugation des solutions organiques. L'agregation depend de la polarite du solvant, de la longueur des radicaux alcoyle, et des concentrations des differents constituants de la solution organique (nitrate de trialcoylammonium, alcoylamine tertiaire, acide nitrique, eau). La loi de salification de l'amine a ete determinee et les solubilites de l'acide nitrique en exces et de l'eau dans les solutions organiques ont ete mesurees. L'acide nitrique et l'eau sont legerement plus solubles dans les organiques micellaires que dans les solutions organiques moleculaires. Une description des solutions de nitrate de trialcoylammonium contenant de l'acide nitrique en exces est proposee. (auteur)

  19. Micellar effect on the sensitivity of spectrophotometric Mo(VI) determination based on the formation of gallic acid complex providing evidence for the polyoxoanion structure of molybdate ions

    International Nuclear Information System (INIS)

    Tascioglu, Senay; Sendil, Olcay; Beyreli, Sivekar

    2007-01-01

    In this study effects of anionic (sodium dodecyl sulfate, SDS), cationic (cetyltrimethylammonium bromide, CTAB) and nonionic (Triton X-100, TX100) micelles on the sensitivity of spectrophotometric molybdenum(VI) (Mo) determination based on the formation of a binary complex with gallic acid (GA) were investigated. Micellar CTAB was found to enhance the formation of Mo-GA complex. SDS micelles exerted an inhibitory effect while TX100 micelles had no effect on the complex formation. By the optimization of experimental conditions, the determination limit of the method suggested in the literature was lowered from 5.2 x 10 -5 to 4.6 x 10 -6 and to 5.7 x 10 -7 M, in the absence and presence of CTAB, respectively. The mechanism of the effect of CTAB was investigated by spectrophotometric titrations and it was concluded that CTAB did not form a ternary complex with Mo and GA. The stoichiometry of the complex, deduced from the results of spectrophotometric titrations, provided evidence for the formation of para-Mo 7 O 4 6- polyanions at pH 4.5, indicating to the formation of a charge transfer complex between these ions and GA in micellar medium

  20. Semi-empirical spectrophotometric (SESp) method for the indirect determination of the ratio of cationic micellar binding constants of counterions X⁻ and Br⁻(K(X)/K(Br)).

    Science.gov (United States)

    Khan, Mohammad Niyaz; Yusof, Nor Saadah Mohd; Razak, Norazizah Abdul

    2013-01-01

    The semi-empirical spectrophotometric (SESp) method, for the indirect determination of ion exchange constants (K(X)(Br)) of ion exchange processes occurring between counterions (X⁻ and Br⁻) at the cationic micellar surface, is described in this article. The method uses an anionic spectrophotometric probe molecule, N-(2-methoxyphenyl)phthalamate ion (1⁻), which measures the effects of varying concentrations of inert inorganic or organic salt (Na(v)X, v = 1, 2) on absorbance, (A(ob)) at 310 nm, of samples containing constant concentrations of 1⁻, NaOH and cationic micelles. The observed data fit satisfactorily to an empirical equation which gives the values of two empirical constants. These empirical constants lead to the determination of K(X)(Br) (= K(X)/K(Br) with K(X) and K(Br) representing cationic micellar binding constants of counterions X and Br⁻). This method gives values of K(X)(Br) for both moderately hydrophobic and hydrophilic X⁻. The values of K(X)(Br), obtained by using this method, are comparable with the corresponding values of K(X)(Br), obtained by the use of semi-empirical kinetic (SEK) method, for different moderately hydrophobic X. The values of K(X)(Br) for X = Cl⁻ and 2,6-Cl₂C6H₃CO₂⁻, obtained by the use of SESp and SEK methods, are similar to those obtained by the use of other different conventional methods.

  1. Micellar effect on metal-ligand complexes of Co(II, Ni(II, Cu(II and Zn(II with citric acid

    Directory of Open Access Journals (Sweden)

    Nageswara Rao Gollapalli

    2009-12-01

    Full Text Available Chemical speciation of citric acid complexes of Co(II, Ni(II, Cu(II and Zn(II was investigated pH-metrically in 0.0-2.5% anionic, cationic and neutral micellar media. The primary alkalimetric data were pruned with SCPHD program. The existence of different binary species was established from modeling studies using the computer program MINIQUAD75. Alkalimetric titrations were carried out in different relative concentrations (M:L:X = 1:2:5, 1:3:5, 1:5:3 of metal (M to citric acid. The selection of best chemical models was based on statistical parameters and residual analysis. The species detected were MLH, ML2, ML2H and ML2H2. The trend in variation of stability constants with change in mole fraction of the medium is explained on the basis of electrostatic and non-electrostatic forces. Distributions of the species with pH at different compositions of micellar media are also presented.

  2. Impact of Surface Active Ionic Liquids on the Cloud Points of Nonionic Surfactants and the Formation of Aqueous Micellar Two-Phase Systems.

    Science.gov (United States)

    Vicente, Filipa A; Cardoso, Inês S; Sintra, Tânia E; Lemus, Jesus; Marques, Eduardo F; Ventura, Sónia P M; Coutinho, João A P

    2017-09-21

    Aqueous micellar two-phase systems (AMTPS) hold a large potential for cloud point extraction of biomolecules but are yet poorly studied and characterized, with few phase diagrams reported for these systems, hence limiting their use in extraction processes. This work reports a systematic investigation of the effect of different surface-active ionic liquids (SAILs)-covering a wide range of molecular properties-upon the clouding behavior of three nonionic Tergitol surfactants. Two different effects of the SAILs on the cloud points and mixed micelle size have been observed: ILs with a more hydrophilic character and lower critical packing parameter (CPP formation of smaller micelles and concomitantly increase the cloud points; in contrast, ILs with a more hydrophobic character and higher CPP (CPP ≥ 1) induce significant micellar growth and a decrease in the cloud points. The latter effect is particularly interesting and unusual for it was accepted that cloud point reduction is only induced by inorganic salts. The effects of nonionic surfactant concentration, SAIL concentration, pH, and micelle ζ potential are also studied and rationalized.

  3. Selective micellar electrokinetic chromatographic method for simultaneous determination of some pharmaceutical binary mixtures containing non-steroidal anti-inflammatory drugs

    Directory of Open Access Journals (Sweden)

    Michael E. El-Kommos

    2013-02-01

    Full Text Available A simple and selective micellar electrokinetic chromatographic (MEKC method has been developed for the analysis of five pharmaceutical binary mixtures containing three non-steroidal anti-inflammatory drugs (NSAIDs. The investigated mixtures were Ibuprofen (IP–Paracetamol (PC, Ibuprofen (IP–Chlorzoxazone (CZ, Ibuprofen (IP–Methocarbamol (MC, Ketoprofen (KP–Chlorzoxazone (CZ and Diclofenac sodium (DS–Lidocaine hydrochloride (LC. The separation was run for all mixtures using borate buffer (20 mM, pH 9 containing 15% (v/v methanol and 100 mM sodium dodecyl sulphate (SDS at 15 kV and the components were detected at 214 nm. Different factors affecting the electrophoretic mobility of the seven investigated drugs were studied and optimized. The method was validated according to international conference of harmonization (ICH guidelines and United States pharmacopoeia (USP. The method was applied to the analysis of five pharmaceutical binary mixtures in their dosage forms. The results were compared with other reported high performance liquid chromatographic methods and no significant differences were observed. Keywords: Capillary electrophoresis, Micellar electrokinetic chromatographic method, Non-steroidal anti-inflammatory drugs, Pharmaceutical binary mixtures, Pharmaceutical analysis

  4. A review on development of analytical methods to determine monitorable drugs in serum and urine by micellar liquid chromatography using direct injection.

    Science.gov (United States)

    Esteve-Romero, Josep; Albiol-Chiva, Jaume; Peris-Vicente, Juan

    2016-07-05

    Therapeutic drug monitoring is a common practice in clinical studies. It requires the quantification of drugs in biological fluids. Micellar liquid chromatography (MLC), a well-established branch of Reverse Phase-High Performance Liquid Chromatography (RP-HPLC), has been proven by many researchers as a useful tool for the analysis of these matrices. This review presents several analytical methods, taken from the literature, devoted to the determination of several monitorable drugs in serum and urine by micellar liquid chromatography. The studied groups are: anticonvulsants, antiarrhythmics, tricyclic antidepressants, selective serotonin reuptake inhibitors, analgesics and bronchodilators. We detail the optimization strategy of the sample preparation and the main chromatographic conditions, such as the type of column, mobile phase composition (surfactant, organic solvent and pH), and detection. The finally selected experimental parameters, the validation, and some applications have also been described. In addition, their performances and advantages have been discussed. The main ones were the possibility of direct injection, and the efficient chromatographic elution, in spite of the complexity of the biological fluids. For each substance, the measured concentrations were accurate and precise at their respective therapeutic range. It was found that the MLC-procedures are fast, simple, inexpensive, ecofriendly, safe, selective, enough sensitive and reliable. Therefore, they represent an excellent alternative for the determination of drugs in serum and urine for monitoring purposes. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Toxic Effects of Nickel Oxide Bulk and Nanoparticles on the Aquatic Plant Lemna gibba L.

    Directory of Open Access Journals (Sweden)

    Abdallah Oukarroum

    2015-01-01

    Full Text Available The aquatic plant Lemna gibba L. was used to investigate and compare the toxicity induced by 30 nm nickel oxide nanoparticles (NiO-NPs and nickel(II oxide as bulk (NiO-Bulk. Plants were exposed during 24 h to 0–1000 mg/L of NiO-NPs or NiO-Bulk. Analysis of physicochemical characteristics of nanoparticles in solution indicated agglomerations of NiO-NPs in culture medium and a wide size distribution was observed. Both NiO-NPs and NiO-Bulk caused a strong increase in reactive oxygen species (ROS formation, especially at high concentration (1000 mg/L. These results showed a strong evidence of a cellular oxidative stress induction caused by the exposure to NiO. Under this condition, NiO-NPs and NiO-Bulk induced a strong inhibitory effect on the PSII quantum yield, indicating an alteration of the photosynthetic electron transport performance. Under the experimental conditions used, it is clear that the observed toxicity impact was mainly due to NiO particles effect. Therefore, results of this study permitted determining the use of ROS production as an early biomarker of NiO exposure on the aquatic plant model L. gibba used in toxicity testing.

  6. A new approach to the problem of bulk-mediated surface diffusion.

    Science.gov (United States)

    Berezhkovskii, Alexander M; Dagdug, Leonardo; Bezrukov, Sergey M

    2015-08-28

    This paper is devoted to bulk-mediated surface diffusion of a particle which can diffuse both on a flat surface and in the bulk layer above the surface. It is assumed that the particle is on the surface initially (at t = 0) and at time t, while in between it may escape from the surface and come back any number of times. We propose a new approach to the problem, which reduces its solution to that of a two-state problem of the particle transitions between the surface and the bulk layer, focusing on the cumulative residence times spent by the particle in the two states. These times are random variables, the sum of which is equal to the total observation time t. The advantage of the proposed approach is that it allows for a simple exact analytical solution for the double Laplace transform of the conditional probability density of the cumulative residence time spent on the surface by the particle observed for time t. This solution is used to find the Laplace transform of the particle mean square displacement and to analyze the peculiarities of its time behavior over the entire range of time. We also establish a relation between the double Laplace transform of the conditional probability density and the Fourier-Laplace transform of the particle propagator over the surface. The proposed approach treats the cases of both finite and infinite bulk layer thicknesses (where bulk-mediated surface diffusion is normal and anomalous at asymptotically long times, respectively) on equal footing.

  7. Transfer points of belt conveyors operating with unfavorable bulk

    Energy Technology Data Exchange (ETDEWEB)

    Goehring, H [Technische Universitaet, Dresden (German Democratic Republic)

    1989-06-01

    Describes design of belt conveyor chutes that transfer bulk of surface mines from one conveyor to another. Conveyor belt velocity is a significant parameter. Unfavorable chute design may lead to bulk flow congestion, bulk velocity losses etc. The bulk flow process is analyzed, bulk flow velocities, belt inclinations and bulk feeding from 2 conveyors into one chute are taken into account. Conventional chutes have parabolic belt impact walls. An improved version with divided impact walls is proposed that maintains a relatively high bulk velocity, reduces friction at chute walls and decreases wear and dirt build-up. Design of the improved chute is explained. It is built to adapt to existing structures without major modifications. The angle between 2 belt conveyors can be up to 90 degrees, the best bulk transfer is noted at conveyor angles below 60 degrees. Various graphs and schemes are provided. 6 refs.

  8. Nanodrug-enhanced radiofrequency tumor ablation: effect of micellar or liposomal carrier on drug delivery and treatment efficacy.

    Directory of Open Access Journals (Sweden)

    Marwan Moussa

    Full Text Available To determine the effect of different drug-loaded nanocarriers (micelles and liposomes on delivery and treatment efficacy for radiofrequency ablation (RFA combined with nanodrugs.Fischer 344 rats were used (n = 196. First, single subcutaneous R3230 tumors or normal liver underwent RFA followed by immediate administration of i.v. fluorescent beads (20, 100, and 500 nm, with fluorescent intensity measured at 4-24 hr. Next, to study carrier type on drug efficiency, RFA was combined with micellar (20 nm or liposomal (100 nm preparations of doxorubicin (Dox; targeting HIF-1α or quercetin (Qu; targeting HSP70. Animals received RFA alone, RFA with Lipo-Dox or Mic-Dox (1 mg i.v., 15 min post-RFA, and RFA with Lipo-Qu or Mic-Qu given 24 hr pre- or 15 min post-RFA (0.3 mg i.v.. Tumor coagulation and HIF-1α or HSP70 expression were assessed 24 hr post-RFA. Third, the effect of RFA combined with i.v. Lipo-Dox, Mic-Dox, Lipo-Qu, or Mic-Qu (15 min post-RFA compared to RFA alone on tumor growth and animal endpoint survival was evaluated. Finally, drug uptake was compared between RFA/Lipo-Dox and RFA/Mic-Dox at 4-72 hr.Smaller 20 nm beads had greater deposition and deeper tissue penetration in both tumor (100 nm/500 nm and liver (100 nm (p<0.05. Mic-Dox and Mic-Qu suppressed periablational HIF-1α or HSP70 rim thickness more than liposomal preparations (p<0.05. RFA/Mic-Dox had greater early (4 hr intratumoral doxorubicin, but RFA/Lipo-Dox had progressively higher intratumoral doxorubicin at 24-72 hr post-RFA (p<0.04. No difference in tumor growth and survival was seen between RFA/Lipo-Qu and RFA/Mic-Qu. Yet, RFA/Lipo-Dox led to greater animal endpoint survival compared to RFA/Mic-Dox (p<0.03.With RF ablation, smaller particle micelles have superior penetration and more effective local molecular modulation. However, larger long-circulating liposomal carriers can result in greater intratumoral drug accumulation over time and reduced tumor growth. Accordingly

  9. An in vivo mechanism for the reduced peripheral neurotoxicity of NK105: a paclitaxel-incorporating polymeric micellar nanoparticle formulation

    Directory of Open Access Journals (Sweden)

    Nakamura I

    2017-02-01

    Full Text Available Iwao Nakamura, Eiji Ichimura, Rika Goda, Hitomi Hayashi, Hiroko Mashiba, Daichi Nagai, Hirofumi Yokoyama, Takeshi Onda, Akira Masuda Nanomedicine Group, Pharmaceutical Research Laboratories, Nippon Kayaku Co., Ltd., Tokyo, Japan Abstract: In our previous rodent studies, the paclitaxel (PTX-incorporating polymeric micellar nanoparticle formulation NK105 had showed significantly stronger antitumor effects and reduced peripheral neurotoxicity than PTX dissolved in Cremophor® EL and ethanol (PTX/CRE. Thus, to elucidate the mechanisms underlying reduced peripheral neurotoxicity due to NK105, we performed pharmacokinetic analyses of NK105 and PTX/CRE in rats. Among neural tissues, the highest PTX concentrations were found in the dorsal root ganglion (DRG. Moreover, exposure of DRG to PTX (Cmax_PTX and AUC0-inf._PTX in the NK105 group was almost half that in the PTX/CRE group, whereas exposure of sciatic and sural nerves was greater in the NK105 group than in the PTX/CRE group. In histopathological analyses, damage to DRG and both peripheral nerves was less in the NK105 group than in the PTX/CRE group. The consistency of these pharmacokinetic and histopathological data suggests that high levels of PTX in the DRG play an important role in the induction of peripheral neurotoxicity, and reduced distribution of PTX to the DRG of NK105-treated rats limits the ensuing peripheral neurotoxicity. In further analyses of PTX distribution to the DRG, Evans blue (Eb was injected with BODIPY®-labeled NK105 into rats, and Eb fluorescence was observed only in the DRG. Following injection, most Eb dye bound to albumin particles of ~8 nm and had penetrated the DRG. In contrast, BODIPY®–NK105 particles of ~90 nm were not found in the DRG, suggesting differential penetration based on particle size. Because PTX also circulates as PTX–albumin particles of ~8 nm following injection of PTX/CRE, reduced peripheral neurotoxicity of NK105 may reflect exclusion from the

  10. Treatment of aqueous outflows by complexation in micellar media and precipitation with a sol-gel process

    International Nuclear Information System (INIS)

    Lavaud, Cyril

    2013-01-01

    Being able to deal with aqueous outflows from treatment sites in the Hague is a major environmental issue. These outflows are contaminated with organic substances and elements with residual radioactivity. This work deals with the development and optimization of the process of de-polluting, and we aim at removing all pollution from the outflow, and produce a final waste compatible with traditional conditioning matrices in the nuclear area. The separation process consists of two steps: dissolving the pollution in the surfactants micelles, and precipitating a mineral phase via sol-gel transition. Within this thesis, only pollution originating from radionuclides is studied. During the first step, our strategy is to use complexing molecules able to interact with ions and to form mainly solvable complexes at the core of surfactant micelles. Thereafter, the second step consisted to add silica precursor which, after hydrolyse and polycondensation, makes it possible to aggregate those micelles that contain complexes together, and to form a silica phase which precipitates in an in-situ fashion. The goal to de-pollute the outflow was achieved, and the final waste thus produced is a silica powder that contains the micelles and the pollution which, after calcination, is compatible with conditioning matrices such as glass or concrete. A reference system for which the separation process is optimal was defined throughout various studies. This system contains a non-ionic surfactant (P123), an ion that surrogates radionuclides (neodymium), a complexing agent (HDEHP) and a silica precursor (TEOS). Hence, this system was further studied in order to broaden the application scope of the separation process, as well as to understand the mechanisms involved, during the complexation of the ions and the micellar solubilization and during the formation of the silica powder. This study was performed using diffusion, imaging and spectrometry techniques.To conclude, the alternative de

  11. Interpolymer complexation: comparisons of bulk and interfacial structures.

    Science.gov (United States)

    Cattoz, Beatrice; de Vos, Wiebe M; Cosgrove, Terence; Crossman, Martin; Espidel, Youssef; Prescott, Stuart W

    2015-04-14

    The interactions between the strong polyelectrolyte sodium poly(styrenesulfonate), NaPSS, and the neutral polymer poly(vinylpyrrolidone), PVP, were investigated in bulk and at the silica/solution interface using a combination of diffusion nuclear magnetic resonance spectroscopy (NMR), small-angle neutron scattering (SANS), solvent relaxation NMR, and ellipsometry. We show for the first time that complex formation occurs between NaPSS and PVP in solution; the complexes formed were shown not to be influenced by pH variation, whereas increasing the ionic strength increases the complexation of NaPSS but does not influence the PVP directly. The complexes formed contained a large proportion of NaPSS. Study of these interactions at the silica interface demonstrated that complexes also form at the nanoparticle interface where PVP is added in the system prior to NaPSS. For a constant PVP concentration and varying NaPSS concentration, the system remains stable until NaPSS is added in excess, which leads to depletion flocculation. Surface complex formation using the layer-by-layer technique was also reported at a planar silica interface.

  12. Brane Lorentz symmetry from Lorentz breaking in the bulk

    Energy Technology Data Exchange (ETDEWEB)

    Bertolami, O [Departamento de Fisica, Instituto Superior Tecnico, Avenida Rovisco Pais 1, 1049-001 Lisbon (Portugal); Carvalho, C [Departamento de Fisica, Instituto Superior Tecnico, Avenida Rovisco Pais 1, 1049-001 Lisbon (Portugal)

    2007-05-15

    We propose the mechanism of spontaneous symmetry breaking of a bulk vector field as a way to generate the selection of bulk dimensions invisible to the standard model confined to the brane. By assigning a nonvanishing vacuum value to the vector field, a direction is singled out in the bulk vacuum, thus breaking the bulk Lorentz symmetry. We present the condition for induced Lorentz symmetry on the brane, as phenomenologically required.

  13. Coassembly of poly(ethylene oxide)-block-poly(methacrylic acid) and N-dodecylpyridinium chloride in aqueous solutions leading to ordered micellar assemblies within copolymer aggregates

    Czech Academy of Sciences Publication Activity Database

    Uchman, M.; Štěpánek, M.; Prevost, S.; Angelov, Borislav; Bednár, J.; Appavou, M.-S.; Gradzielski, M.; Procházka, K.

    2012-01-01

    Roč. 45, č. 16 (2012), s. 6471-6480 ISSN 0024-9297 R&D Projects: GA ČR GAP208/10/0353; GA ČR GCP205/11/J043 Institutional research plan: CEZ:AV0Z40500505 Keywords : CryoTEM electron microscopy * SAXS * soft matter Subject RIV: CD - Macromolecular Chemistry Impact factor: 5.521, year: 2012

  14. Posterior bulk-filled resin composite restorations.

    DEFF Research Database (Denmark)

    van Dijken, Jan WV; Pallesen, Ulla

    2016-01-01

    up to 4mm as needed to fill the cavity 2mm short of the occlusal cavosurface. The occlusal part was completed with the nano-hybrid resin composite (Ceram X mono+). In the other cavity, the resin composite-only (Ceram X mono+) was placed in 2mm increments. The restorations were evaluated using...... Class II, 4 SDR-CeramX mono+ and 6 CeramXmono+-only restorations. The main reasons for failurewere tooth fracture (6) and secondary caries (4). The annual failure rate (AFR) for all restorations (Class I and II) was for the bulk-filled-1.1% and for the resin composite-only restorations 1...

  15. Characterization and bulk properties of oxides

    International Nuclear Information System (INIS)

    Sonder, E.; Connolly, T.F.

    1979-06-01

    The bulk properties of oxides are divided into two classes, intrinsic properties which depend solely on the identity of the material, and extrinsic ones, which differ for different samples of the same compound. Sources of tabulated numerical values of intrinsic properties are given and modern developments in information storage and retrieval are discussed. Extrinsic properties are shown to depend on defects and trace impurities in the samples. Techniques of trace impurity analysis are discussed and realistic limits of detection and accuracies are given for routine analyses

  16. High-temperature bulk acoustic wave sensors

    International Nuclear Information System (INIS)

    Fritze, Holger

    2011-01-01

    Piezoelectric crystals like langasite (La 3 Ga 5 SiO 14 , LGS) and gallium orthophosphate (GaPO 4 ) exhibit piezoelectrically excited bulk acoustic waves at temperatures of up to at least 1450 °C and 900 °C, respectively. Consequently, resonant sensors based on those materials enable new sensing approaches. Thereby, resonant high-temperature microbalances are of particular interest. They correlate very small mass changes during film deposition onto resonators or gas composition-dependent stoichiometry changes of thin films already deposited onto the resonators with the resonance frequency shift of such devices. Consequently, the objective of the work is to review the high-temperature properties, the operation limits and the measurement principles of such resonators. The electromechanical properties of high-temperature bulk acoustic wave resonators such as mechanical stiffness, piezoelectric and dielectric constant, effective viscosity and electrical conductivity are described using a one-dimensional physical model and determined accurately up to temperatures as close as possible to their ultimate limit. Insights from defect chemical models are correlated with the electromechanical properties of the resonators. Thereby, crucial properties for stable operation as a sensor under harsh conditions are identified to be the formation of oxygen vacancies and the bulk conductivity. Operation limits concerning temperature, oxygen partial pressure and water vapor pressure are given. Further, application-relevant aspects such as temperature coefficients, temperature compensation and mass sensitivity are evaluated. In addition, approximations are introduced which make the exact model handy for routine data evaluation. An equivalent electrical circuit for high-temperature resonator devices is derived based on the one-dimensional physical model. Low- and high-temperature approximations are introduced. Thereby, the structure of the equivalent circuit corresponds to the

  17. High-temperature bulk acoustic wave sensors

    Science.gov (United States)

    Fritze, Holger

    2011-01-01

    Piezoelectric crystals like langasite (La3Ga5SiO14, LGS) and gallium orthophosphate (GaPO4) exhibit piezoelectrically excited bulk acoustic waves at temperatures of up to at least 1450 °C and 900 °C, respectively. Consequently, resonant sensors based on those materials enable new sensing approaches. Thereby, resonant high-temperature microbalances are of particular interest. They correlate very small mass changes during film deposition onto resonators or gas composition-dependent stoichiometry changes of thin films already deposited onto the resonators with the resonance frequency shift of such devices. Consequently, the objective of the work is to review the high-temperature properties, the operation limits and the measurement principles of such resonators. The electromechanical properties of high-temperature bulk acoustic wave resonators such as mechanical stiffness, piezoelectric and dielectric constant, effective viscosity and electrical conductivity are described using a one-dimensional physical model and determined accurately up to temperatures as close as possible to their ultimate limit. Insights from defect chemical models are correlated with the electromechanical properties of the resonators. Thereby, crucial properties for stable operation as a sensor under harsh conditions are identified to be the formation of oxygen vacancies and the bulk conductivity. Operation limits concerning temperature, oxygen partial pressure and water vapor pressure are given. Further, application-relevant aspects such as temperature coefficients, temperature compensation and mass sensitivity are evaluated. In addition, approximations are introduced which make the exact model handy for routine data evaluation. An equivalent electrical circuit for high-temperature resonator devices is derived based on the one-dimensional physical model. Low- and high-temperature approximations are introduced. Thereby, the structure of the equivalent circuit corresponds to the Butterworth

  18. Improving the bulk data transfer experience

    Energy Technology Data Exchange (ETDEWEB)

    Guok, Chin; Guok, Chin; Lee, Jason R.; Berket, Karlo

    2008-05-07

    Scientific computations and collaborations increasingly rely on the network to provide high-speed data transfer, dissemination of results, access to instruments, support for computational steering, etc. The Energy Sciences Network is establishing a science data network to provide user driven bandwidth allocation. In a shared network environment, some reservations may not be granted due to the lack of available bandwidth on any single path. In many cases, the available bandwidth across multiple paths would be sufficient to grant the reservation. In this paper we investigate how to utilize the available bandwidth across multiple paths in the case of bulk data transfer.

  19. Forming of bulk metallic glass microcomponents

    DEFF Research Database (Denmark)

    Wert, John A.; Thomsen, Christian; Jensen, Rune Debel

    2009-01-01

    The present article considers forward extrusion, closed-die forging and backward extrusion processes for fabrication of individual microcomponents from two bulk metallic glass (BMG) compositions: Mg60Cu30Y10 and Zr44Cu40Ag8Al8. Two types of tooling were used in the present work: relatively massive...... die sets characteristic of cold forming operations for crystalline metals and lightweight die sets adapted to the special characteristics of BMGs. In addition to demonstrating that microcomponents of several geometries can be readily fabricated from BMGs, rheological properties are combined...

  20. Thulium-based bulk metallic glass

    International Nuclear Information System (INIS)

    Yu, H. B.; Yu, P.; Wang, W. H.; Bai, H. Y.

    2008-01-01

    We report the formation and properties of a thulium-based bulk metallic glass (BMG). Compared with other known rare-earth (RE) based BMGs, Tm-based BMGs show features of excellent glass formation ability, considerable higher elastic modulus, smaller Poisson's ratio, high mechanical strength, and intrinsic brittleness. The reasons for the different properties between the Tm-based and other RE-based BMGs are discussed. It is expected that the Tm-based glasses with the unique properties are appropriate candidates for studying some important issues in BMGs