WorldWideScience

Sample records for mice overexpressing mutant

  1. Transgenic mice display hair loss and regrowth overexpressing mutant Hr gene.

    Science.gov (United States)

    Zhu, Kuicheng; Xu, Cunshuan; Zhang, Jintao; Chen, Yingying; Liu, Mengduan

    2017-10-30

    Mutations in the hairless (Hr) gene in both mice and humans have been implicated in the development of congenital atrichia, but the role of Hr in skin and hair follicle (HF) biology remains unknown. Here, we established transgenic mice (TG) overexpressing mutant Hr to investigate its specific role in the development of HF. Three transgenic lines were successfully constructed, and two of them (TG3 and TG8) displayed a pattern of hair loss and regrowth with alternation in the expression of HR protein. The mutant Hr gene inhibited the expression of the endogenous gene in transgenic individuals, which led to the development of alopecia. Interestingly, the hair regrew with the increase in the endogenous expression levels resulting from decreased mutant Hr expression. The findings of our study indicate that the changes in the expression of Hr result in hair loss or regrowth.

  2. Overexpression of survival motor neuron improves neuromuscular function and motor neuron survival in mutant SOD1 mice.

    Science.gov (United States)

    Turner, Bradley J; Alfazema, Neza; Sheean, Rebecca K; Sleigh, James N; Davies, Kay E; Horne, Malcolm K; Talbot, Kevin

    2014-04-01

    Spinal muscular atrophy results from diminished levels of survival motor neuron (SMN) protein in spinal motor neurons. Low levels of SMN also occur in models of amyotrophic lateral sclerosis (ALS) caused by mutant superoxide dismutase 1 (SOD1) and genetic reduction of SMN levels exacerbates the phenotype of transgenic SOD1(G93A) mice. Here, we demonstrate that SMN protein is significantly reduced in the spinal cords of patients with sporadic ALS. To test the potential of SMN as a modifier of ALS, we overexpressed SMN in 2 different strains of SOD1(G93A) mice. Neuronal overexpression of SMN significantly preserved locomotor function, rescued motor neurons, and attenuated astrogliosis in spinal cords of SOD1(G93A) mice. Despite this, survival was not prolonged, most likely resulting from SMN mislocalization and depletion of gems in motor neurons of symptomatic mice. Our results reveal that SMN upregulation slows locomotor deficit onset and motor neuron loss in this mouse model of ALS. However, disruption of SMN nuclear complexes by high levels of mutant SOD1, even in the presence of SMN overexpression, might limit its survival promoting effects in this specific mouse model. Studies in emerging mouse models of ALS are therefore warranted to further explore the potential of SMN as a modifier of ALS. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Characterization of amyloid beta peptides from brain extracts of transgenic mice overexpressing the London mutant of human amyloid precursor protein.

    Science.gov (United States)

    Pype, Stefan; Moechars, Dieder; Dillen, Lieve; Mercken, Marc

    2003-02-01

    Alzheimer's disease (AD) is marked by the presence of neurofibrillary tangles and amyloid plaques in the brain of patients. To study plaque formation, we report on further quantitative and qualitative analysis of human and mouse amyloid beta peptides (Abeta) from brain extracts of transgenic mice overexpressing the London mutant of human amyloid precursor protein (APP). Using enzyme-linked immunosorbant assays (ELISAs) specific for either human or rodent Abeta, we found that the peptides from both species aggregated to form plaques. The ratios of deposited Abeta1-42/1-40 were in the order of 2-3 for human and 8-9 for mouse peptides, indicating preferential deposition of Abeta42. We also determined the identity and relative levels of other Abeta variants present in protein extracts from soluble and insoluble brain fractions. This was done by combined immunoprecipitation and mass spectrometry (IP/MS). The most prominent peptides truncated either at the carboxyl- or the amino-terminus were Abeta1-38 and Abeta11-42, respectively, and the latter was strongly enriched in the extracts of deposited peptides. Taken together, our data indicate that plaques of APP-London transgenic mice consist of aggregates of multiple human and mouse Abeta variants, and the human variants that we identified were previously detected in brain extracts of AD patients.

  4. Over-Expression of Porcine Myostatin Missense Mutant Leads to A Gender Difference in Skeletal Muscle Growth between Transgenic Male and Female Mice.

    Science.gov (United States)

    Ma, Dezun; Gao, Pengfei; Qian, Lili; Wang, Qingqing; Cai, Chunbo; Jiang, Shengwang; Xiao, Gaojun; Cui, Wentao

    2015-08-24

    Myostatin, a transforming growth factor-β family member, is a negative regulator of skeletal muscle development and growth. Piedmontese cattle breeds have a missense mutation, which results in a cysteine to tyrosine substitution in the mature myostatin protein (C313Y). This loss-of-function mutation in myostatin results in a double-muscled phenotype in cattle. Myostatin propeptide is an inhibitor of myostatin activity and is considered a potential agent to stimulate muscle growth in livestock. In this study, we generated transgenic mice overexpressing porcine myostatin missense mutant (pmMS), C313Y, and wild-type porcine myostatin propeptide (ppMS), respectively, to examine their effects on muscle growth in mice. Enhanced muscle growth was observed in both pmMS and ppMS transgenic female mice and also in ppMS transgenic male mice. However, there was no enhanced muscle growth observed in pmMS transgenic male mice. To explore why there is such a big difference in muscle growth between pmMS and ppMS transgenic male mice, the expression level of androgen receptor (AR) mutant AR45 was measured by Western blot. Results indicated that AR45 expression significantly increased in pmMS transgenic male mice while it decreased dramatically in ppMS transgenic male mice. Our data demonstrate that both pmMS and ppMS act as myostatin inhibitors in the regulation of muscle growth, but the effect of pmMS in male mice is reversed by an increased AR45 expression. These results provide useful insight and basic theory to future studies on improving pork quality by genetically manipulating myostatin expression or by regulating myostatin activity.

  5. Overexpression of SOS genes in ciprofloxacin resistant Escherichia coli mutants.

    Science.gov (United States)

    Pourahmad Jaktaji, Razieh; Pasand, Shirin

    2016-01-15

    Fluoroquinolones are important antibiotics for the treatment of urinary tract infections caused by Escherichia coli. Mutational studies have shown that ciprofloxacin, a member of fluoroquinolones induces SOS response and mutagenesis in pathogenic bacteria which in turn develop antibiotic resistance. However, inhibition of SOS response can increase recombination activity which in turn leads to genetic variation. The aim of this study was to measure 5 SOS genes expressions in nine E. coli mutants with different MICs for ciprofloxacin following exposure to ciprofloxacin. Gene expression was assessed by quantitative real time PCR. Gene alteration assessment was conducted by PCR amplification and DNA sequencing. Results showed that the expression of recA was increased in 5 mutants. This overexpression is not related to gene alteration, and enhances the expression of polB and umuCD genes encoding nonmutagenic and mutagenic polymerases, respectively. The direct relationship between the level of SOS expression and the level of resistance to ciprofloxacin was also indicated. It was concluded that novel therapeutic strategy that inhibits RecA activity would enhance the efficiency of common antibiotics against pathogenic bacteria. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Genes and Alcohol Consumption: Studies with Mutant Mice

    Science.gov (United States)

    Mayfield, Jody; Arends, Michael A.; Harris, R. Adron; Blednov, Yuri A.

    2017-01-01

    In this chapter, we review the effects of global null mutant and overexpressing transgenic mouse lines on voluntary self-administration of alcohol. We examine approximately 200 publications pertaining to the effects of 155 mouse genes on alcohol consumption in different drinking models. The targeted genes vary in function and include neurotransmitter, ion channel, neuroimmune, and neuropeptide signaling systems. The alcohol self-administration models include operant conditioning, two- and four-bottle choice continuous and intermittent access, drinking in the dark limited access, chronic intermittent ethanol, and scheduled high alcohol consumption tests. Comparisons of different drinking models using the same mutant mice are potentially the most informative, and we will highlight those examples. More mutants have been tested for continuous two-bottle choice consumption than any other test; of the 137 mouse genes examined using this model, 97 (72%) altered drinking in at least one sex. Overall, the effects of genetic manipulations on alcohol drinking often depend on the sex of the mice, alcohol concentration and time of access, genetic background, as well as the drinking test. PMID:27055617

  7. Mapping pathological phenotypes in Reelin mutant mice

    Directory of Open Access Journals (Sweden)

    Caterina eMichetti

    2014-09-01

    Full Text Available Autism Spectrum Disorders (ASD are neurodevelopmental disorders with multifactorial origin characterized by social communication and behavioural perseveration deficits. Several studies showed an association between the reelin gene mutation and increased risk of ASD and a reduced reelin expression in some brain regions of ASD subjects, suggesting a role for reelin deficiency in ASD etiology. Reelin is a large extracellular matrix glycoprotein playing important roles during development of the central nervous system. To deeply investigate the role of reelin dysfunction as vulnerability factor in ASD, we investigated the behavioural, neurochemical and brain morphological features of reeler male mice. We recently reported a genotype-dependent deviation in ultrasonic vocal repertoire and a general delay in motor development in reeler pups. We now report that adult male heterozygous reeler mice did not show social behaviour and communication deficits during male-female social interactions. Wildtype and heterozygous mice also showed a typical light/dark locomotor activity profile, with a peak during the central interval of the dark phase. However, when faced with a mild stressful stimulus (a saline injection only heterozygous mice showed an over response to stress. At the end of the behavioural studies, we conducted high performance liquid chromatography and magnetic resonance imaging and spectroscopy to investigate whether reelin mutation influences brain monoamine and metabolites levels in regions involved in ASD. Low levels of dopamine in cortex and high levels of glutamate and taurine in hippocampus were detected in heterozygous mice, in line with clinical data collected on ASD children. Altogether, our data detected subtle but relevant neurochemical abnormalities in reeler mice supporting this mutant line, particularly male subjects, as a valid experimental model to estimate the contribution played by reelin deficiency in the global ASD

  8. Transgenic overexpression of p23 induces spontaneous hydronephrosis in mice

    Science.gov (United States)

    Lee, Jaehoon; Kim, Hye Jin; Moon, Jung Ah; Sung, Young Hoon; Baek, In-Jeoung; Roh, Jae-il; Ha, Na Young; Kim, Seung-Yeon; Bahk, Young Yil; Lee, Jong Eun; Yoo, Tae Hyun; Lee, Han-Woong

    2011-01-01

    p23 is a cochaperone of heat shock protein 90 and also interacts functionally with numerous steroid receptors and kinases. However, the in vivo roles of p23 remain unclear. To explore its in vivo function, we generated the transgenic (TG) mice ubiquitously overexpressing p23. The p23 TG mice spontaneously developed kidney abnormalities closely resembling human hydronephrosis. Consistently, kidney functions deteriorate significantly in the p23 TG mice compared to their wild-type (WT) littermates. Furthermore, the expression of target genes for aryl hydrocarbon receptor (AhR), such as cytochrome P450, family 1, subfamily A, polypeptide 1 (Cyp1A1) and cytochrome P450, family 1, subfamily B, polypeptide 1 (Cyp1B1), were induced in the kidneys of the p23 TG mice. These results indicate that the overexpression of p23 contributes to the development of hydronephrosis through the upregulation of the AhR pathway in vivo. PMID:21323770

  9. Hepatic steatosis in transgenic mice overexpressing human histone deacetylase 1

    International Nuclear Information System (INIS)

    Wang, Ai-Guo; Seo, Sang-Beom; Moon, Hyung-Bae; Shin, Hye-Jun; Kim, Dong Hoon; Kim, Jin-Man; Lee, Tae-Hoon; Kwon, Ho Jeong; Yu, Dae-Yeul; Lee, Dong-Seok

    2005-01-01

    It is generally thought that histone deacetylases (HDACs) play important roles in the transcriptional regulation of genes. However, little information is available concerning the specific functions of individual HDACs in disease states. In this study, two transgenic mice lines were established which harbored the human HDAC1 gene. Overexpressed HDAC1 was detected in the nuclei of transgenic liver cells, and HDAC1 enzymatic activity was significantly higher in the transgenic mice than in control littermates. The HDAC1 transgenic mice exhibited a high incidence of hepatic steatosis and nuclear pleomorphism. Molecular studies showed that HDAC1 may contribute to nuclear pleomorphism through the p53/p21 signaling pathway

  10. Striatal dopamine transmission is subtly modified in human A53Tα-synuclein overexpressing mice.

    Directory of Open Access Journals (Sweden)

    Nicola J Platt

    Full Text Available Mutations in, or elevated dosage of, SNCA, the gene for α-synuclein (α-syn, cause familial Parkinson's disease (PD. Mouse lines overexpressing the mutant human A53Tα-syn may represent a model of early PD. They display progressive motor deficits, abnormal cellular accumulation of α-syn, and deficits in dopamine-dependent corticostriatal plasticity, which, in the absence of overt nigrostriatal degeneration, suggest there are age-related deficits in striatal dopamine (DA signalling. In addition A53Tα-syn overexpression in cultured rodent neurons has been reported to inhibit transmitter release. Therefore here we have characterized for the first time DA release in the striatum of mice overexpressing human A53Tα-syn, and explored whether A53Tα-syn overexpression causes deficits in the release of DA. We used fast-scan cyclic voltammetry to detect DA release at carbon-fibre microelectrodes in acute striatal slices from two different lines of A53Tα-syn-overexpressing mice, at up to 24 months. In A53Tα-syn overexpressors, mean DA release evoked by a single stimulus pulse was not different from wild-types, in either dorsal striatum or nucleus accumbens. However the frequency responsiveness of DA release was slightly modified in A53Tα-syn overexpressors, and in particular showed slight deficiency when the confounding effects of striatal ACh acting at presynaptic nicotinic receptors (nAChRs were antagonized. The re-release of DA was unmodified after single-pulse stimuli, but after prolonged stimulation trains, A53Tα-syn overexpressors showed enhanced recovery of DA release at old age, in keeping with elevated striatal DA content. In summary, A53Tα-syn overexpression in mice causes subtle changes in the regulation of DA release in the striatum. While modest, these modifications may indicate or contribute to striatal dysfunction.

  11. Brain phenotype of transgenic mice overexpressing cystathionine β-synthase.

    Directory of Open Access Journals (Sweden)

    Vinciane Régnier

    Full Text Available The cystathionine β-synthase (CBS gene, located on human chromosome 21q22.3, is a good candidate for playing a role in the Down Syndrome (DS cognitive profile: it is overexpressed in the brain of individuals with DS, and it encodes a key enzyme of sulfur-containing amino acid (SAA metabolism, a pathway important for several brain physiological processes.Here, we have studied the neural consequences of CBS overexpression in a transgenic mouse line (60.4P102D1 expressing the human CBS gene under the control of its endogenous regulatory regions. These mice displayed a ∼2-fold increase in total CBS proteins in different brain areas and a ∼1.3-fold increase in CBS activity in the cerebellum and the hippocampus. No major disturbance of SAA metabolism was observed, and the transgenic mice showed normal behavior in the rotarod and passive avoidance tests. However, we found that hippocampal synaptic plasticity is facilitated in the 60.4P102D1 line.We demonstrate that CBS overexpression has functional consequences on hippocampal neuronal networks. These results shed new light on the function of the CBS gene, and raise the interesting possibility that CBS overexpression might have an advantageous effect on some cognitive functions in DS.

  12. Brain phenotype of transgenic mice overexpressing cystathionine β-synthase.

    Science.gov (United States)

    Régnier, Vinciane; Billard, Jean-Marie; Gupta, Sapna; Potier, Brigitte; Woerner, Stéphanie; Paly, Evelyne; Ledru, Aurélie; David, Sabrina; Luilier, Sabrina; Bizot, Jean-Charles; Vacano, Guido; Kraus, Jan P; Patterson, David; Kruger, Warren D; Delabar, Jean M; London, Jaqueline

    2012-01-01

    The cystathionine β-synthase (CBS) gene, located on human chromosome 21q22.3, is a good candidate for playing a role in the Down Syndrome (DS) cognitive profile: it is overexpressed in the brain of individuals with DS, and it encodes a key enzyme of sulfur-containing amino acid (SAA) metabolism, a pathway important for several brain physiological processes. Here, we have studied the neural consequences of CBS overexpression in a transgenic mouse line (60.4P102D1) expressing the human CBS gene under the control of its endogenous regulatory regions. These mice displayed a ∼2-fold increase in total CBS proteins in different brain areas and a ∼1.3-fold increase in CBS activity in the cerebellum and the hippocampus. No major disturbance of SAA metabolism was observed, and the transgenic mice showed normal behavior in the rotarod and passive avoidance tests. However, we found that hippocampal synaptic plasticity is facilitated in the 60.4P102D1 line. We demonstrate that CBS overexpression has functional consequences on hippocampal neuronal networks. These results shed new light on the function of the CBS gene, and raise the interesting possibility that CBS overexpression might have an advantageous effect on some cognitive functions in DS.

  13. Isolated cytochrome c oxidase deficiency in G93A SOD1 mice overexpressing CCS protein.

    Science.gov (United States)

    Son, Marjatta; Leary, Scot C; Romain, Nadine; Pierrel, Fabien; Winge, Dennis R; Haller, Ronald G; Elliott, Jeffrey L

    2008-05-02

    G93A SOD1 transgenic mice overexpressing CCS protein develop an accelerated disease course that is associated with enhanced mitochondrial pathology and increased mitochondrial localization of mutant SOD1. Because these results suggest an effect of mutant SOD1 on mitochondrial function, we assessed the enzymatic activities of mitochondrial respiratory chain complexes in the spinal cords of CCS/G93A SOD1 and control mice. CCS/G93A SOD1 mouse spinal cord demonstrates a 55% loss of complex IV (cytochrome c oxidase) activity compared with spinal cord from age-matched non-transgenic or G93A SOD1 mice. In contrast, CCS/G93A SOD1 spinal cord shows no reduction in the activities of complex I, II, or III. Blue native gel analysis further demonstrates a marked reduction in the levels of complex IV but not of complex I, II, III, or V in spinal cords of CCS/G93A SOD1 mice compared with non-transgenic, G93A SOD1, or CCS/WT SOD1 controls. With SDS-PAGE analysis, spinal cords from CCS/G93A SOD1 mice showed significant decreases in the levels of two structural subunits of cytochrome c oxidase, COX1 and COX5b, relative to controls. In contrast, CCS/G93A SOD1 mouse spinal cord showed no reduction in levels of selected subunits from complexes I, II, III, or V. Heme A analyses of spinal cord further support the existence of cytochrome c oxidase deficiency in CCS/G93A SOD1 mice. Collectively, these results establish that CCS/G93A SOD1 mice manifest an isolated complex IV deficiency which may underlie a substantial part of mutant SOD1-induced mitochondrial cytopathy.

  14. Tubular overexpression of gremlin induces renal damage susceptibility in mice.

    Directory of Open Access Journals (Sweden)

    Alejandra Droguett

    Full Text Available A growing number of patients are recognized worldwide to have chronic kidney disease. Glomerular and interstitial fibrosis are hallmarks of renal progression. However, fibrosis of the kidney remains an unresolved challenge, and its molecular mechanisms are still not fully understood. Gremlin is an embryogenic gene that has been shown to play a key role in nephrogenesis, and its expression is generally low in the normal adult kidney. However, gremlin expression is elevated in many human renal diseases, including diabetic nephropathy, pauci-immune glomerulonephritis and chronic allograft nephropathy. Several studies have proposed that gremlin may be involved in renal damage by acting as a downstream mediator of TGF-β. To examine the in vivo role of gremlin in kidney pathophysiology, we generated seven viable transgenic mouse lines expressing human gremlin (GREM1 specifically in renal proximal tubular epithelial cells under the control of an androgen-regulated promoter. These lines demonstrated 1.2- to 200-fold increased GREM1 expression. GREM1 transgenic mice presented a normal phenotype and were without proteinuria and renal function involvement. In response to the acute renal damage cause by folic acid nephrotoxicity, tubule-specific GREM1 transgenic mice developed increased proteinuria after 7 and 14 days compared with wild-type treated mice. At 14 days tubular lesions, such as dilatation, epithelium flattening and hyaline casts, with interstitial cell infiltration and mild fibrosis were significantly more prominent in transgenic mice than wild-type mice. Tubular GREM1 overexpression was correlated with the renal upregulation of profibrotic factors, such as TGF-β and αSMA, and with increased numbers of monocytes/macrophages and lymphocytes compared to wild-type mice. Taken together, our results suggest that GREM1-overexpressing mice have an increased susceptibility to renal damage, supporting the involvement of gremlin in renal damage

  15. Mammary gland tumor formation in transgenic mice overexpressing stromelysin-1

    Energy Technology Data Exchange (ETDEWEB)

    Sympson, Carolyn J; Bissell, Mina J; Werb, Zena

    1995-06-01

    An intact basement membrane (BM) is essential for the proper function, differentiation and morphology of many epithelial cells. The disruption or loss of this BM occurs during normal development as well as in the disease state. To examine the importance of BM during mammary gland development in vivo, we generated transgenic mice that inappropriately express autoactivating isoforms of the matrix metalloproteinase stromelysin-1. The mammary glands from these mice are both functionally and morphologically altered throughout development. We have now documented a dramatic incidence of breast tumors in several independent lines of these mice. These data suggest that overexpression of stromelysin-1 and disruption of the BM may be a key step in the multi-step process of breast cancer.

  16. Overexpression of CCS in G93A-SOD1 mice leads to accelerated neurological deficits with severe mitochondrial pathology.

    Science.gov (United States)

    Son, Marjatta; Puttaparthi, Krishna; Kawamata, Hibiki; Rajendran, Bhagya; Boyer, Philip J; Manfredi, Giovanni; Elliott, Jeffrey L

    2007-04-03

    Cu, Zn superoxide dismutase (SOD1) has been detected within spinal cord mitochondria of mutant SOD1 transgenic mice, a model of familial ALS. The copper chaperone for SOD1 (CCS) provides SOD1 with copper, facilitates the conversion of immature apo-SOD1 to a mature holoform, and influences in yeast the cytosolic/mitochondrial partitioning of SOD1. To determine how CCS affects G93A-SOD1-induced disease, we generated transgenic mice overexpressing CCS and crossed them to G93A-SOD1 or wild-type SOD1 transgenic mice. Both CCS transgenic mice and CCS/wild-type-SOD1 dual transgenic mice are neurologically normal. In contrast, CCS/G93A-SOD1 dual transgenic mice develop accelerated neurological deficits, with a mean survival of 36 days, compared with 242 days for G93A-SOD1 mice. Immuno-EM and subcellular fractionation studies on the spinal cord show that G93A-SOD1 is enriched within mitochondria in the presence of CCS overexpression. Our results indicate that CCS overexpression in G93A-SOD1 mice produces severe mitochondrial pathology and accelerates disease course.

  17. Impaired baroreflex function in mice overexpressing alpha-synuclein

    Directory of Open Access Journals (Sweden)

    Sheila eFleming

    2013-07-01

    Full Text Available Cardiovascular autonomic dysfunction, such as orthostatic hypotension consequent to baroreflex failure and cardiac sympathetic denervation, is frequently observed in the synucleinopathy Parkinson’s disease (PD. In the present study, the baroreceptor reflex was assessed in mice overexpressing human wildtype alpha-synuclein (Thy1-aSyn, a genetic mouse model of synucleinopathy. The beat-to-beat change in heart rate, computed from R-R interval, in relation to blood pressure was measured in anesthetized and conscious mice equipped with arterial blood pressure telemetry transducers during transient bouts of hypertension and hypotension. Compared to wildtype, tachycardia following nitroprusside-induced hypotension was significantly reduced in Thy1-aSyn mice. Thy1-aSyn mice also showed an abnormal cardiovascular response (i.e., diminished tachycardia to muscarinic blockade with atropine. We conclude that Thy1-aSyn mice have impaired basal and dynamic range of sympathetic and parasympathetic-mediated changes in heart rate and will be a useful model for long-term study of cardiovascular autonomic dysfunction associated with PD.

  18. Differential gene expression in ADAM10 and mutant ADAM10 transgenic mice

    Directory of Open Access Journals (Sweden)

    Postina Rolf

    2009-02-01

    Full Text Available Abstract Background In a transgenic mouse model of Alzheimer disease (AD, cleavage of the amyloid precursor protein (APP by the α-secretase ADAM10 prevented amyloid plaque formation, and alleviated cognitive deficits. Furthermore, ADAM10 overexpression increased the cortical synaptogenesis. These results suggest that upregulation of ADAM10 in the brain has beneficial effects on AD pathology. Results To assess the influence of ADAM10 on the gene expression profile in the brain, we performed a microarray analysis using RNA isolated from brains of five months old mice overexpressing either the α-secretase ADAM10, or a dominant-negative mutant (dn of this enzyme. As compared to non-transgenic wild-type mice, in ADAM10 transgenic mice 355 genes, and in dnADAM10 mice 143 genes were found to be differentially expressed. A higher number of genes was differentially regulated in double-transgenic mouse strains additionally expressing the human APP[V717I] mutant. Overexpression of proteolytically active ADAM10 affected several physiological pathways, such as cell communication, nervous system development, neuron projection as well as synaptic transmission. Although ADAM10 has been implicated in Notch and β-catenin signaling, no significant changes in the respective target genes were observed in adult ADAM10 transgenic mice. Real-time RT-PCR confirmed a downregulation of genes coding for the inflammation-associated proteins S100a8 and S100a9 induced by moderate ADAM10 overexpression. Overexpression of the dominant-negative form dnADAM10 led to a significant increase in the expression of the fatty acid-binding protein Fabp7, which also has been found in higher amounts in brains of Down syndrome patients. Conclusion In general, there was only a moderate alteration of gene expression in ADAM10 overexpressing mice. Genes coding for pro-inflammatory or pro-apoptotic proteins were not over-represented among differentially regulated genes. Even a decrease of

  19. Comparison between medium-chain acyl-CoA dehydrogenase mutant proteins overexpressed in bacterial and mammalian cells

    DEFF Research Database (Denmark)

    Jensen, T G; Bross, P; Andresen, B S

    1995-01-01

    ." Upon expression in E. coli, these mutant proteins produce activity levels in the range of the wild-type enzyme only if the chaperonins GroESL are co-overproduced. When overexpressed in COS cells, the pure folding mutants display enzyme activities comparable to the wild-type enzyme. The results suggest...

  20. Masking responses to light in period mutant mice.

    Science.gov (United States)

    Pendergast, Julie S; Yamazaki, Shin

    2011-10-01

    Masking is an acute effect of an external signal on an overt rhythm and is distinct from the process of entrainment. In the current study, we investigated the phase dependence and molecular mechanisms regulating masking effects of light pulses on spontaneous locomotor activity in mice. The circadian genes, Period1 (Per1) and Per2, are necessary components of the timekeeping machinery and entrainment by light appears to involve the induction of the expression of Per1 and Per2 mRNAs in the suprachiasmatic nuclei (SCN). We assessed the roles of the Per genes in regulating masking by assessing the effects of light pulses on nocturnal locomotor activity in C57BL/6J Per mutant mice. We found that Per1(-/-) and Per2(-/-) mice had robust negative masking responses to light. In addition, the locomotor activity of Per1(-/-)/Per2(-/-) mice appeared to be rhythmic in the light-dark (LD) cycle, and the phase of activity onset was advanced (but varied among individual mice) relative to lights off. This rhythm persisted for 1 to 2 days in constant darkness in some Per1(-/-)/Per2(-/-) mice. Furthermore, Per1(-/-)/Per2(-/-) mice exhibited robust negative masking responses to light. Negative masking was phase dependent in wild-type mice such that maximal suppression was induced by light pulses at zeitgeber time 14 (ZT14) and gradually weaker suppression occurred during light pulses at ZT16 and ZT18. By measuring the phase shifts induced by the masking protocol (light pulses were administered to mice maintained in the LD cycle), we found that the phase responsiveness of Per mutant mice was altered compared to wild-types. Together, our data suggest that negative masking responses to light are robust in Per mutant mice and that the Per1(-/-)/Per2(-/-) SCN may be a light-driven, weak/damping oscillator.

  1. ADAM12 overexpression does not improve outcome in mice with laminin alpha2-deficient muscular dystrophy

    DEFF Research Database (Denmark)

    Guo, Ling T; Shelton, G Diane; Wewer, Ulla M

    2005-01-01

    We have recently shown that overexpression of ADAM12 results in increased muscle regeneration and significantly reduced pathology in mdx, dystrophin deficient mice. In the present study, we tested the effect of overexpressing ADAM12 in dy(W) laminin-deficient mice. dy mice have a very severe...... clinical phenotype and would be expected to benefit greatly from enhanced regeneration. We found that dy(W) mice overexpressing ADAM12 indeed have increased muscle regeneration, as evidenced by increased numbers of muscle fibers expressing fetal myosin. However, overexpression of ADAM12 had no significant...

  2. Transgenic mice expressing mutant Pinin exhibit muscular dystrophy, nebulin deficiency and elevated expression of slow-type muscle fiber genes

    International Nuclear Information System (INIS)

    Wu, Hsu-Pin; Hsu, Shu-Yuan; Wu, Wen-Ai; Hu, Ji-Wei; Ouyang, Pin

    2014-01-01

    Highlights: •Pnn CCD domain functions as a dominant negative mutant regulating Pnn expression and function. •Pnn CCD mutant Tg mice have a muscle wasting phenotype during development and show dystrophic histological features. •Pnn mutant muscles are susceptible to slow fiber type gene transition and NEB reduction. •The Tg mouse generated by overexpression of the Pnn CCD domain displays many characteristics resembling NEB +/− mice. -- Abstract: Pinin (Pnn) is a nuclear speckle-associated SR-like protein. The N-terminal region of the Pnn protein sequence is highly conserved from mammals to insects, but the C-terminal RS domain-containing region is absent in lower species. The N-terminal coiled-coil domain (CCD) is, therefore, of interest not only from a functional point of view, but also from an evolutionarily standpoint. To explore the biological role of the Pnn CCD in a physiological context, we generated transgenic mice overexpressing Pnn mutant in skeletal muscle. We found that overexpression of the CCD reduces endogenous Pnn expression in cultured cell lines as well as in transgenic skeletal muscle fibers. Pnn mutant mice exhibited reduced body mass and impaired muscle function during development. Mutant skeletal muscles show dystrophic histological features with muscle fibers heavily loaded with centrally located myonuclei. Expression profiling and pathway analysis identified over-representation of genes in gene categories associated with muscle contraction, specifically those related to slow type fiber. In addition nebulin (NEB) expression level is repressed in Pnn mutant skeletal muscle. We conclude that Pnn downregulation in skeletal muscle causes a muscular dystrophic phenotype associated with NEB deficiency and the CCD domain is incapable of replacing full length Pnn in terms of functional capacity

  3. Transgenic mice expressing mutant Pinin exhibit muscular dystrophy, nebulin deficiency and elevated expression of slow-type muscle fiber genes

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hsu-Pin; Hsu, Shu-Yuan [Department of Anatomy, Chang Gung University Medical College, Taiwan (China); Wu, Wen-Ai; Hu, Ji-Wei [Transgenic Mouse Core Laboratory, Chang Gung University, Taiwan (China); Ouyang, Pin, E-mail: ouyang@mail.cgu.edu.tw [Department of Anatomy, Chang Gung University Medical College, Taiwan (China); Transgenic Mouse Core Laboratory, Chang Gung University, Taiwan (China); Molecular Medicine Research Center, Chang Gung University, Taiwan (China)

    2014-01-03

    Highlights: •Pnn CCD domain functions as a dominant negative mutant regulating Pnn expression and function. •Pnn CCD mutant Tg mice have a muscle wasting phenotype during development and show dystrophic histological features. •Pnn mutant muscles are susceptible to slow fiber type gene transition and NEB reduction. •The Tg mouse generated by overexpression of the Pnn CCD domain displays many characteristics resembling NEB{sup +/−} mice. -- Abstract: Pinin (Pnn) is a nuclear speckle-associated SR-like protein. The N-terminal region of the Pnn protein sequence is highly conserved from mammals to insects, but the C-terminal RS domain-containing region is absent in lower species. The N-terminal coiled-coil domain (CCD) is, therefore, of interest not only from a functional point of view, but also from an evolutionarily standpoint. To explore the biological role of the Pnn CCD in a physiological context, we generated transgenic mice overexpressing Pnn mutant in skeletal muscle. We found that overexpression of the CCD reduces endogenous Pnn expression in cultured cell lines as well as in transgenic skeletal muscle fibers. Pnn mutant mice exhibited reduced body mass and impaired muscle function during development. Mutant skeletal muscles show dystrophic histological features with muscle fibers heavily loaded with centrally located myonuclei. Expression profiling and pathway analysis identified over-representation of genes in gene categories associated with muscle contraction, specifically those related to slow type fiber. In addition nebulin (NEB) expression level is repressed in Pnn mutant skeletal muscle. We conclude that Pnn downregulation in skeletal muscle causes a muscular dystrophic phenotype associated with NEB deficiency and the CCD domain is incapable of replacing full length Pnn in terms of functional capacity.

  4. Mild overexpression of Mecp2 in mice causes a higher susceptibility toward seizures.

    Science.gov (United States)

    Bodda, Chiranjeevi; Tantra, Martesa; Mollajew, Rustam; Arunachalam, Jayamuruga P; Laccone, Franco A; Can, Karolina; Rosenberger, Albert; Mironov, Sergej L; Ehrenreich, Hannelore; Mannan, Ashraf U

    2013-07-01

    An intriguing finding about the gene encoding methyl-CpG binding protein 2 (MeCP2) is that the loss-of-function mutations cause Rett syndrome and duplication (gain-of-function) of MECP2 leads to another neurological disorder termed MECP2 duplication syndrome. To ensure proper neurodevelopment, a precise regulation of MeCP2 expression is critical, and any gain or loss of MeCP2 over a narrow threshold level may lead to postnatal neurological impairment. To evaluate MeCP2 dosage effects, we generated Mecp2(WT_EGFP) transgenic (TG) mouse in which MeCP2 (endogenous plus TG) is mildly overexpressed (approximately 1.5×). The TG MeCP2(WT_EGFP) fusion protein is functionally active, as cross breeding of these mice with Mecp2 knockout mice led to alleviation of major phenotypes in the null mutant mice, including premature lethality. To characterize the Mecp2(WT_EGFP) mouse model, we performed an extensive battery of behavioral tests, which revealed that these mice manifest increased aggressiveness and higher pentylenetetrazole (PTZ)-induced seizure propensity. Evaluation of neuronal parameters revealed a reduction in the number of tertiary branching sites and increased spine density in Mecp2(WT_EGFP) transgenic (TG) neurons. Treatment of TG neurons with epileptogenic compound-PTZ led to a marked increase in amplitude and frequency of calcium spikes. Based on our ex vivo and in vivo data, we conclude that epileptic seizures are manifested as the first symptom when MeCP2 is mildly overexpressed in mice. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  5. Laminin alpha2 deficiency and muscular dystrophy; genotype-phenotype correlation in mutant mice

    DEFF Research Database (Denmark)

    Guo, L T; Zhang, X U; Kuang, W

    2003-01-01

    2, lacking domain VI. Interestingly, all mutants lack laminin alpha2 in peripheral nerve. We have demonstrated previously, that overexpression of the human laminin alpha2 in skeletal muscle in dy(2J)/dy(2J) and dy(W)/dy(W) mice under the control of a striated muscle-specific creatine kinase promoter......Deficiency of laminin alpha2 is the cause of one of the most severe muscular dystrophies in humans and other species. It is not yet clear how particular mutations in the laminin alpha2 chain gene affect protein expression, and how abnormal levels or structure of the protein affect disease. Animal...

  6. Enamel protein regulation and dental and periodontal physiopathology in MSX2 mutant mice.

    Science.gov (United States)

    Molla, Muriel; Descroix, Vianney; Aïoub, Muhanad; Simon, Stéphane; Castañeda, Beatriz; Hotton, Dominique; Bolaños, Alba; Simon, Yohann; Lezot, Frédéric; Goubin, Gérard; Berdal, Ariane

    2010-11-01

    Signaling pathways that underlie postnatal dental and periodontal physiopathology are less studied than those of early tooth development. Members of the muscle segment homeobox gene (Msx) family encode homeoproteins that show functional redundancy during development and are known to be involved in epithelial-mesenchymal interactions that lead to crown morphogenesis and ameloblast cell differentiation. This study analyzed the MSX2 protein during mouse postnatal growth as well as in the adult. The analysis focused on enamel and periodontal defects and enamel proteins in Msx2-null mutant mice. In the epithelial lifecycle, the levels of MSX2 expression and enamel protein secretion were inversely related. Msx2+/- mice showed increased amelogenin expression, enamel thickness, and rod size. Msx2-/- mice displayed compound phenotypic characteristics of enamel defects, related to both enamel-specific gene mutations (amelogenin and enamelin) in isolated amelogenesis imperfecta, and cell-cell junction elements (laminin 5 and cytokeratin 5) in other syndromes. These effects were also related to ameloblast disappearance, which differed between incisors and molars. In Msx2-/- roots, Malassez cells formed giant islands that overexpressed amelogenin and ameloblastin that grew over months. Aberrant expression of enamel proteins is proposed to underlie the regional osteopetrosis and hyperproduction of cellular cementum. These enamel and periodontal phenotypes of Msx2 mutants constitute the first case report of structural and signaling defects associated with enamel protein overexpression in a postnatal context.

  7. Radiation carcinogenesis in radiosensitive mutant Scid mice

    International Nuclear Information System (INIS)

    Ogiu, Toshiaki; Ishii-Ohba, Hiroko; Kobayashi, Shigeru; Nishimura, Mayumi; Shimada, Yoshiya; Tsuji, Hideo; Watanabe, Fumiaki; Suzuki, Fumio; Sado, Toshihiko

    2000-01-01

    The Scid mice were established as a severe combined immunodeficient mouse strain lacking both T- and B-cell functions. Scid (homozygote), its parent strain C.B-17 (wild-type) and their hybrid F1 (heterozygote) were used for analysis of the relationship between sensitivity to acute effects of ionizing radiation and radiation-tumor development. Acute effects were studied using γ-rays and LD 50(30) was found to be 4.05 Gy in Scid, 6.5 Gy in F1 and 7.2 Gy in C.B-17. When bone marrow cells were irradiated with X-rays in vitro, survival curves of C.B-17 and F1 cells showed a region of shoulder with D 0 =0.68 and 0.67 Gy, respectively, while those of Scid were of no shoulder with D 0 =0.46 Gy. Scid mice died due to tumors (most were thymic lymphoma, T/L) 20-40 weeks after irradiation with 1-3 Gy γ-rays but C.B-17 and F1 survived longer. Bone marrow transplantation was found effective to prevent the radiation T/L. FACS analysis for surface antigens of those T/L cells suggested the change of Ras oncogenes. The change of Notch 1 gene was suggested by Southern hybridization and thus a possible role of defective DNA-PK in mice alone (not in rats and humans) was suggested as well. (K.H.)

  8. Abnormal grooming activity in Dab1(scm) (scrambler) mutant mice.

    Science.gov (United States)

    Strazielle, C; Lefevre, A; Jacquelin, C; Lalonde, R

    2012-07-15

    Dab1(scm) mutant mice, characterized by cell ectopias and degeneration in cerebellum, hippocampus, and neocortex, were compared to non-ataxic controls for different facets of grooming caused by brief water immersions, as well as some non-grooming behaviors. Dab1(scm) mutants were strongly affected in their quantitative functional parameters, exhibiting higher starting latencies before grooming relative to non-ataxic littermates of the A/A strain, fewer grooming bouts, and grooming components of shorter duration, with an unequal regional distribution targeting almost totally the rostral part (head washing and forelimb licking) of the animal. Only bouts of a single grooming element were preserved. The cephalocaudal order of grooming elements appeared less disorganized, mutant and control mice initiating the grooming with head washing and forelimb licking prior to licking posterior parts. However, mutants differed from controls in that all their bouts were incomplete but uninterrupted, although intergroup difference for percentage of the incorrect transitions was not significant. In contrast to grooming, Dab1(scm) mice ambulated for a longer time. During walking episodes, they exhibited more body scratching than controls, possibly to compensate for the lack of licking different body parts. In conjunction with studies with other ataxic mice, these results indicate that the cerebellar cortex affects grooming activity and is consequently involved in executing various components, but not in its sequential organization, which requires other brain regions such as cerebral cortices or basal ganglia. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. No evidence for cardiac dysfunction in Kif6 mutant mice.

    Directory of Open Access Journals (Sweden)

    Abdul Hameed

    Full Text Available A KIF6 variant in man has been reported to be associated with adverse cardiovascular outcomes after myocardial infarction. No clear biological or physiological data exist for Kif6. We sought to investigate the impact of a deleterious KIF6 mutation on cardiac function in mice. Kif6 mutant mice were generated and verified. Cardiac function was assessed by serial echocardiography at baseline, after ageing and after exercise. Lipid levels were also measured. No discernable adverse lipid or cardiac phenotype was detected in Kif6 mutant mice. These data suggest that dysfunction of Kif6 is linked to other more complex biological/biochemical parameters or is unlikely to be of material consequence in cardiac function.

  10. Overexpression of hepatocyte growth factor in SBMA model mice has an additive effect on combination therapy with castration

    International Nuclear Information System (INIS)

    Ding, Ying; Adachi, Hiroaki; Katsuno, Masahisa; Huang, Zhe; Jiang, Yue-Mei; Kondo, Naohide; Iida, Madoka; Tohnai, Genki; Nakatsuji, Hideaki; Funakoshi, Hiroshi; Nakamura, Toshikazu; Sobue, Gen

    2015-01-01

    Spinal and bulbar muscular atrophy (SBMA) is an inherited motor neuron disease caused by the expansion of a polyglutamine (polyQ)-encoding tract within the androgen receptor (AR) gene. The pathologic features of SBMA are motor neuron loss in the spinal cord and brainstem and diffuse nuclear accumulation and nuclear inclusions of mutant AR in residual motor neurons and certain visceral organs. Hepatocyte growth factor (HGF) is a polypeptide growth factor which has neuroprotective properties. To investigate whether HGF overexpression can affect disease progression in a mouse model of SBMA, we crossed SBMA transgenic model mice expressing an AR gene with an expanded CAG repeat with mice overexpressing HGF. Here, we report that high expression of HGF induces Akt phosphorylation and modestly ameliorated motor symptoms in an SBMA transgenic mouse model treated with or without castration. These findings suggest that HGF overexpression can provide a potential therapeutic avenue as a combination therapy with disease-modifying therapies in SBMA. - Highlights: • HGF overexpression ameliorates the motor phenotypes of the SBMA mouse model. • HGF overexpression induces Akt phosphorylation in the SBMA mouse model. • This is the first report of combination therapy in a mouse model of polyQ diseases.

  11. Overexpression of hepatocyte growth factor in SBMA model mice has an additive effect on combination therapy with castration

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Ying [Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550 (Japan); Adachi, Hiroaki, E-mail: hadachi-ns@umin.org [Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550 (Japan); Department of Neurology, University of Occupational and Environmental Health School of Medicine, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555 (Japan); Katsuno, Masahisa [Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550 (Japan); Huang, Zhe [Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550 (Japan); Department of Neurology, University of Occupational and Environmental Health School of Medicine, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555 (Japan); Jiang, Yue-Mei; Kondo, Naohide; Iida, Madoka; Tohnai, Genki; Nakatsuji, Hideaki [Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550 (Japan); Funakoshi, Hiroshi [Center for Advanced Research and Education, Asahikawa Medical University, 1-1-1- Higashinijo Midorigaoka, Asahikawa 078-8510 (Japan); Nakamura, Toshikazu [Neurogen Inc., 1-1-52-201 Nakahozumi, Ibaraki 567-0034 (Japan); Sobue, Gen, E-mail: sobueg@med.nagoya-u.ac.jp [Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550 (Japan); Research Division of Dementia and Neurodegenerative Disease, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550 (Japan)

    2015-12-25

    Spinal and bulbar muscular atrophy (SBMA) is an inherited motor neuron disease caused by the expansion of a polyglutamine (polyQ)-encoding tract within the androgen receptor (AR) gene. The pathologic features of SBMA are motor neuron loss in the spinal cord and brainstem and diffuse nuclear accumulation and nuclear inclusions of mutant AR in residual motor neurons and certain visceral organs. Hepatocyte growth factor (HGF) is a polypeptide growth factor which has neuroprotective properties. To investigate whether HGF overexpression can affect disease progression in a mouse model of SBMA, we crossed SBMA transgenic model mice expressing an AR gene with an expanded CAG repeat with mice overexpressing HGF. Here, we report that high expression of HGF induces Akt phosphorylation and modestly ameliorated motor symptoms in an SBMA transgenic mouse model treated with or without castration. These findings suggest that HGF overexpression can provide a potential therapeutic avenue as a combination therapy with disease-modifying therapies in SBMA. - Highlights: • HGF overexpression ameliorates the motor phenotypes of the SBMA mouse model. • HGF overexpression induces Akt phosphorylation in the SBMA mouse model. • This is the first report of combination therapy in a mouse model of polyQ diseases.

  12. Overexpression of mutant ataxin-3 in mouse cerebellum induces ataxia and cerebellar neuropathology.

    Science.gov (United States)

    Nóbrega, Clévio; Nascimento-Ferreira, Isabel; Onofre, Isabel; Albuquerque, David; Conceição, Mariana; Déglon, Nicole; de Almeida, Luís Pereira

    2013-08-01

    Machado-Joseph disease (MJD), also known as spinocerebellar ataxia type 3 (SCA3), is a fatal, dominant neurodegenerative disorder caused by the polyglutamine-expanded protein ataxin-3. Clinical manifestations include cerebellar ataxia and pyramidal signs culminating in severe neuronal degeneration. Currently, there is no therapy able to modify disease progression. In the present study, we aimed at investigating one of the most severely affected brain regions in the disorder--the cerebellum--and the behavioral defects associated with the neuropathology in this region. For this purpose, we injected lentiviral vectors encoding full-length human mutant ataxin-3 in the mouse cerebellum of 3-week-old C57/BL6 mice. We show that circumscribed expression of human mutant ataxin-3 in the cerebellum mediates within a short time frame--6 weeks, the development of a behavioral phenotype including reduced motor coordination, wide-based ataxic gait, and hyperactivity. Furthermore, the expression of mutant ataxin-3 resulted in the accumulation of intranuclear inclusions, neuropathological abnormalities, and neuronal death. These data show that lentiviral-based expression of mutant ataxin-3 in the mouse cerebellum induces localized neuropathology, which is sufficient to generate a behavioral ataxic phenotype. Moreover, this approach provides a physiologically relevant, cost-effective and time-effective animal model to gain further insights into the pathogenesis of MJD and for the evaluation of experimental therapeutics of MJD.

  13. Accelerated enamel mineralization in Dspp mutant mice

    Science.gov (United States)

    Verdelis, Kostas; Szabo-Rogers, Heather L.; Xu, Yang; Chong, Rong; Kang, Ryan; Cusack, Brian J.; Jani, Priyam; Boskey, Adele L.; Qin, Chunlin; Beniash, Elia

    2016-01-01

    Dentin sialophosphoprotein (DSPP) is one of the major non-collagenous proteins present in dentin, cementum and alveolar bone; it is also transiently expressed by ameloblasts. In humans many mutations have been found in DSPP and are associated with two autosomal-dominant genetic diseases — dentinogenesis imperfecta II (DGI-II) and dentin dysplasia (DD). Both disorders result in the development of hypomineralized and mechanically compromised teeth. The erupted mature molars of Dspp–/– mice have a severe hypomineralized dentin phenotype. Since dentin and enamel formations are interdependent, we decided to investigate the process of enamel onset mineralization in young Dspp–/– animals. We focused our analysis on the constantly erupting mouse incisor, to capture all of the stages of odontogenesis in one tooth, and the unerupted first molars. Using high-resolution microCT, we revealed that the onset of enamel matrix deposition occurs closer to the cervical loop and both secretion and maturation of enamel are accelerated in Dspp–/– incisors compared to the Dspp+/– control. Importantly, these differences did not translate into major phenotypic differences in mature enamel in terms of the structural organization, mineral density or hardness. The only observable difference was the reduction in thickness of the outer enamel layer, while the total enamel thickness remained unchanged. We also observed a compromised dentin-enamel junction, leading to delamination between the dentin and enamel layers. The odontoblast processes were widened and lacked branching near the DEJ. Finally, for the first time we demonstrate expression of Dspp mRNA in secretory ameloblasts. In summary, our data show that DSPP is important for normal mineralization of both dentin and enamel. PMID:26780724

  14. Enhancing cellulase production by overexpression of xylanase regulator protein gene, xlnR, in Talaromyces cellulolyticus cellulase hyperproducing mutant strain.

    Science.gov (United States)

    Okuda, Naoyuki; Fujii, Tatsuya; Inoue, Hiroyuki; Ishikawa, Kazuhiko; Hoshino, Tamotsu

    2016-10-01

    We obtained strains with the xylanase regulator gene, xlnR, overexpressed (HXlnR) and disrupted (DXlnR) derived from Talaromyces cellulolyticus strain C-1, which is a cellulase hyperproducing mutant. Filter paper degrading enzyme activity and cellobiohydrolase I gene expression was the highest in HXlnR, followed by C-1 and DXlnR. These results indicate that the enhancement of cellulase productivity was succeeded by xlnR overexpression.

  15. Masking Responses to Light in Period Mutant Mice

    Science.gov (United States)

    Pendergast, Julie S.; Yamazaki, Shin

    2013-01-01

    Masking is an acute effect of an external signal on an overt rhythm and is distinct from the process of entrainment. In the current study, we investigated the phase dependence and molecular mechanisms regulating masking effects of light pulses on spontaneous locomotor activity in mice. The circadian genes, Period1 (Per1) and Per2, are necessary components of the timekeeping machinery and entrainment by light appears to involve the induction of the expression of Per1 and Per2 mRNAs in the suprachiasmatic nuclei (SCN). We assessed the roles of the Per genes in regulating masking by assessing the effects of light pulses on nocturnal locomotor activity in C57BL/6J Per mutant mice. We found that Per1−/− and Per2−/− mice had robust negative masking responses to light. In addition, the locomotor activity of Per1−/−/Per2−/− mice appeared to be rhythmic in the light-dark (LD) cycle, and the phase of activity onset was advanced (but varied among individual mice) relative to lights off. This rhythm persisted for 1 to 2 days in constant darkness in some Per1−/−/Per2−/− mice. Furthermore, Per1−/−/Per2−/− mice exhibited robust negative masking responses to light. Negative masking was phase dependent in wild-type mice such that maximal suppression was induced by light pulses at zeitgeber time 14 (ZT14) and gradually weaker suppression occurred during light pulses at ZT16 and ZT18. By measuring the phase shifts induced by the masking protocol (light pulses were administered to mice maintained in the LD cycle), we found that the phase responsiveness of Per mutant mice was altered compared to wild-types. Together, our data suggest that negative masking responses to light are robust in Per mutant mice and that the Per1−/−/Per2−/− SCN may be a light-driven, weak/damping oscillator. PMID:21793695

  16. Overexpression of Shox2 Leads to Congenital Dysplasia of the Temporomandibular Joint in Mice

    Directory of Open Access Journals (Sweden)

    Xihai Li

    2014-07-01

    Full Text Available Our previous study reported that inactivation of Shox2 led to dysplasia and ankylosis of the temporomandibular joint (TMJ, and that replacing Shox2 with human Shox partially rescued the phenotype with a prematurely worn out articular disc. However, the mechanisms of Shox2 activity in TMJ development remain to be elucidated. In this study, we investigated the molecular and cellular basis for the congenital dysplasia of TMJ in Wnt1-Cre; pMes-stop Shox2 mice. We found that condyle and glenoid fossa dysplasia occurs primarily in the second week after the birth. The dysplastic TMJ of Wnt1-Cre; pMes-stop Shox2 mice exhibits a loss of Collagen type I, Collagen type II, Ihh and Gli2. In situ zymography and immunohistochemistry further demonstrate an up-regulation of matrix metalloproteinases (MMPs, MMP9 and MMP13, accompanied by a significantly increased cell apoptosis. In addition, the cell proliferation and expressions of Sox9, Runx2 and Ihh are no different in the embryonic TMJ between the wild type and mutant mice. Our results show that overexpression of Shox2 leads to the loss of extracellular matrix and the increase of cell apoptosis in TMJ dysplasia by up-regulating MMPs and down-regulating the Ihh signaling pathway.

  17. Sensorimotor learning in Dab1(scm) (scrambler) mutant mice.

    Science.gov (United States)

    Lalonde, R; Strazielle, C

    2011-04-15

    Homozygous Dab1(scm) mouse mutants with cell ectopias in cerebellar cortex and neocortex were compared with non-ataxic controls on two tests of motor coordination: rotorod and grid climbing. Even at the minimal speed of 4 rpm and unlike controls, none of the Dab1(scm) mutants reached criterion on the constant speed rotorod. In contrast, Dab1(scm) mutants improved their performances on the vertical grid over the course of the same number of trials. Thus, despite massive cerebellar degeneration, sensorimotor learning for equilibrium is still possible, indicating the potential usefulness of the grid-climbing test in determining residual functions in mice with massive cerebellar damage. Copyright © 2010. Published by Elsevier B.V.

  18. Absence of Nrf2 or its selective overexpression in neurons and muscle does not affect survival in ALS-linked mutant hSOD1 mouse models.

    Directory of Open Access Journals (Sweden)

    Marcelo R Vargas

    Full Text Available The nuclear factor erythroid 2-related factor 2 (Nrf2 governs the expression of antioxidant and phase II detoxifying enzymes. Nrf2 activation can prevent or reduce cellular damage associated with several types of injury in many different tissues and organs. Dominant mutations in Cu/Zn-superoxide dismutase (SOD1 cause familial forms of amyotrophic lateral sclerosis (ALS, a fatal disorder characterized by the progressive loss of motor neurons and subsequent muscular atrophy. We have previously shown that Nrf2 activation in astrocytes delays neurodegeneration in ALS mouse models. To further investigate the role of Nrf2 in ALS we determined the effect of absence of Nrf2 or its restricted overexpression in neurons or type II skeletal muscle fibers on symptoms onset and survival in mutant hSOD1 expressing mice. We did not observe any detrimental effect associated with the lack of Nrf2 in two different mutant hSOD1 animal models of ALS. However, restricted Nrf2 overexpression in neurons or type II skeletal muscle fibers delayed disease onset but failed to extend survival in hSOD1(G93A mice. These results highlight the concept that not only the pharmacological target but also the cell type targeted may be relevant when considering a Nrf2-mediated therapeutic approach for ALS.

  19. Redox susceptibility of SOD1 mutants is associated with the differential response to CCS over-expression in vivo.

    Science.gov (United States)

    Son, Marjatta; Fu, Qiao; Puttaparthi, Krishna; Matthews, Christina M; Elliott, Jeffrey L

    2009-04-01

    Over-expression of CCS in G93A SOD1 mice accelerates neurological disease and enhances mitochondrial pathology. We studied the effect of CCS over-expression in transgenic mice expressing G37R, G86R or L126Z SOD1 mutations in order to understand factors which influence mitochondrial dysfunction. Over-expression of CCS markedly decreased survival and produced mitochondrial vacuolation in G37R SOD1 mice but not in G86R or L126Z SOD1 mice. Moreover, CCS/G37R SOD1 spinal cord showed specific reductions in mitochondrial complex IV subunits consistent with an isolated COX deficiency, while no such reductions were detected in CCS/G86R or CCS/L126Z SOD1 mice. CCS over-expression increased the ratio of reduced to oxidized SOD1 monomers in the spinal cords of G37R SOD1 as well as G93A SOD1 mice, but did not influence the redox state of G86R or L126Z SOD1 monomers. The effects of CCS on disease are SOD1 mutation dependent and correlate with SOD1 redox susceptibility.

  20. Amyloid β Is Not the Major Factor Accounting for Impaired Adult Hippocampal Neurogenesis in Mice Overexpressing Amyloid Precursor Protein

    Directory of Open Access Journals (Sweden)

    Hongyu Pan

    2016-10-01

    Full Text Available Adult hippocampal neurogenesis was impaired in several Alzheimer's disease models overexpressing mutant human amyloid precursor protein (hAPP. However, the effects of wild-type hAPP on adult neurogenesis and whether the impaired adult hippocampal neurogenesis was caused by amyloid β (Aβ or APP remained unclear. Here, we found that neurogenesis was impaired in the dentate gyrus (DG of adult mice overexpressing wild-type hAPP (hAPP-I5 compared with controls. However, the adult hippocampal neurogenesis was more severely impaired in hAPP-I5 than that in hAPP-J20 mice, which express similar levels of hAPP mRNA but much higher levels of Aβ. Furthermore, reducing Aβ levels did not affect the number of doublecortin-positive cells in the DG of hAPP-J20 mice. Our results suggested that hAPP was more likely an important factor inhibiting adult neurogenesis, and Aβ was not the major factor affecting neurogenesis in the adult hippocampus of hAPP mice.

  1. Working Memory Deficits, Increased Anxiety-Like Traits, and Seizure Susceptibility in BDNF Overexpressing Mice

    Science.gov (United States)

    Papaleo, Francesco; Silverman, Jill L.; Aney, Jordan; Tian, Qingjun; Barkan, Charlotte L.; Chadman, Kathryn K.; Crawley, Jacqueline N.

    2011-01-01

    BDNF regulates components of cognitive processes and has been implicated in psychiatric disorders. Here we report that genetic overexpression of the BDNF mature isoform (BDNF-tg) in female mice impaired working memory functions while sparing components of fear conditioning. BDNF-tg mice also displayed reduced breeding efficiency, higher…

  2. Metabolic Compensation of Fitness Costs Is a General Outcome for Antibiotic-Resistant Pseudomonas aeruginosa Mutants Overexpressing Efflux Pumps.

    Science.gov (United States)

    Olivares Pacheco, Jorge; Alvarez-Ortega, Carolina; Alcalde Rico, Manuel; Martínez, José Luis

    2017-07-25

    It is generally assumed that the acquisition of antibiotic resistance is associated with a fitness cost. We have shown that overexpression of the MexEF-OprN efflux pump does not decrease the fitness of a resistant Pseudomonas aeruginosa strain compared to its wild-type counterpart. This lack of fitness cost was associated with a metabolic rewiring that includes increased expression of the anaerobic nitrate respiratory chain when cells are growing under fully aerobic conditions. It was not clear whether this metabolic compensation was exclusive to strains overexpressing MexEF-OprN or if it extended to other resistant strains that overexpress similar systems. To answer this question, we studied a set of P. aeruginosa mutants that independently overexpress the MexAB-OprM, MexCD-OprJ, or MexXY efflux pumps. We observed increased expression of the anaerobic nitrate respiratory chain in all cases, with a concomitant increase in NO 3 consumption and NO production. These efflux pumps are proton/substrate antiporters, and their overexpression may lead to intracellular H + accumulation, which may in turn offset the pH homeostasis. Indeed, all studied mutants showed a decrease in intracellular pH under anaerobic conditions. The fastest way to eliminate the excess of protons is by increasing oxygen consumption, a feature also displayed by all analyzed mutants. Taken together, our results support metabolic rewiring as a general mechanism to avoid the fitness costs derived from overexpression of P. aeruginosa multidrug efflux pumps. The development of drugs that block this metabolic "reaccommodation" might help in reducing the persistence and spread of antibiotic resistance elements among bacterial populations. IMPORTANCE It is widely accepted that the acquisition of resistance confers a fitness cost in such a way that in the absence of antibiotics, resistant populations will be outcompeted by susceptible ones. Based on this assumption, antibiotic cycling regimes have been

  3. Hepatic NPC1L1 overexpression ameliorates glucose metabolism in diabetic mice via suppression of gluconeogenesis.

    Science.gov (United States)

    Kurano, Makoto; Hara, Masumi; Satoh, Hiroaki; Tsukamoto, Kazuhisa

    2015-05-01

    Inhibition of intestinal NPC1L1 by ezetimibe has been demonstrated to improve glucose metabolism in rodent models; however, the role of hepatic NPC1L1 in glucose metabolism has not been elucidated. In this study, we analyzed the effects of hepatic NPC1L1 on glucose metabolism. We overexpressed NPC1L1 in the livers of lean wild type mice, diet-induced obesity mice and db/db mice with adenoviral gene transfer. We found that in all three mouse models, hepatic NPC1L1 overexpression lowered fasting blood glucose levels as well as blood glucose levels on ad libitum; in db/db mice, hepatic NPC1L1 overexpression improved blood glucose levels to almost the same as those found in lean wild type mice. A pyruvate tolerance test revealed that gluconeogenesis was suppressed by hepatic NPC1L1 overexpression. Further analyses revealed that hepatic NPC1L1 overexpression decreased the expression of FoxO1, resulting in the reduced expression of G6Pase and PEPCK, key enzymes in gluconeogenesis. These results indicate that hepatic NPC1L1 might have distinct properties of suppressing gluconeogenesis via inhibition of FoxO1 pathways. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. BDNF Overexpression Exhibited Bilateral Effect on Neural Behavior in SCT Mice Associated with AKT Signal Pathway.

    Science.gov (United States)

    Chen, Mei-Rong; Dai, Ping; Wang, Shu-Fen; Song, Shu-Hua; Wang, Hang-Ping; Zhao, Ya; Wang, Ting-Hua; Liu, Jia

    2016-10-01

    Spinal cord injury (SCI), a severe health problem in worldwide, was commonly associated with functional disability and reduced quality of life. As the expression of brain-derived neurotrophic factor (BDNF) was substantial event in injured spinal cord, we hypothesized whether BDNF-overexpression could be in favor of the recovery of both sensory function and hindlimb function after SCI. By using BDNF-overexpression transgene mice [CMV-BDNF 26 (CB26) mice] we assessed the role of BDNF on the recovery of neurological behavior in spinal cord transection (SCT) model. BMS score and tail-flick test was performed to evaluate locomotor function and sensory function, respectively. Immunohistochemistry was employed to detect the location and the expression of BDNF, NeuN, 5-HT, GAP-43, GFAP as well as CGRP, and the level of p-AKT and AKT were examined through western blot analysis. BDNF overexpressing resulted in significant locomotor functional recovery from 21 to 28 days after SCT, compared with wild type (WT)+SCT group. Meanwhile, the NeuN, 5-HT and GAP-43 positive cells were markedly increased in ventral horn in BDNF overexpression animals, compared with WT mice with SCT. Moreover, the crucial molecular signal, p-AKT/AKT has been largely up-regulated, which is consistent with the improvement of locomotor function. However, in this study, thermal hyperpathia encountered in sham (CB26) group and WT+SCT mice and further aggravated in CB26 mice after SCT. Also, following SCT, the significant augment of positive-GFAP astrocytes and CGRP fibers were found in WT+SCT mice, and further increase was seen in BDNF over-expression transgene mice. BDNF-overexpression may not only facilitate the recovery of locomotor function via AKT pathway, but also contributed simultaneously to thermal hyperalgesia after SCT.

  5. Overexpression of Indian hedgehog partially rescues short stature homeobox 2-overexpression-associated congenital dysplasia of the temporomandibular joint in mice

    Science.gov (United States)

    LI, XIHAI; LIANG, WENNA; YE, HONGZHI; WENG, XIAPING; LIU, FAYUAN; LIN, PINGDONG; LIU, XIANXIANG

    2015-01-01

    The role of short stature homeobox 2 (shox2) in the development and homeostasis of the temporomandibular joint (TMJ) has been well documented. Shox2 is known to be expressed in the progenitor cells and perichondrium of the developing condyle. A previous study by our group reported that overexpression of shox2 leads to congenital dysplasia of the TMJ via downregulation of the Indian hedgehog (Ihh) signaling pathway, which is essential for embryonic disc primordium formation and mandibular condylar growth. To determine whether overexpression of Ihh may rescue the overexpression of shox2 leading to congenital dysplasia of the TMJ, a mouse model in which Ihh and shox2 were overexpressed (Wnt1-Cre; pMes-stop shox2; pMes-stop Ihh mice) was utilized to assess the consequences of this overexpression on TMJ development during post-natal life. The results showed that the developmental process and expression levels of runt-related transcription factor 2 and sex determining region Y-box 9 in the TMJ of the Wnt1-Cre; pMes-stop shox2; pMes-stop Ihh mice were similar to those in wild-type mice. Overexpression of Ihh rescued shox2 overexpression-associated reduction of extracellular matrix components. However, overexpression of Ihh did not inhibit the shox2 overexpression-associated increase of matrix metalloproteinases (MMPs) MMP9, MMP13 and apoptosis in the TMJ. These combinatory cellular and molecular defects appeared to account for the observed congenital dysplasia of TMJ, suggesting that overexpression of Ihh partially rescued shox2 overexpression-associated congenital dysplasia of the TMJ in mice. PMID:26096903

  6. Alterations in Adiposity and Glucose Homeostasis in Adult Gasp-1 Overexpressing Mice

    Directory of Open Access Journals (Sweden)

    Luce Périè

    2017-12-01

    Full Text Available Background/Aims: Myostatin is known as a powerful negative regulator of muscle growth playing a key role in skeletal muscle homeostasis. Recent studies revealed that myostatin-deficient mice lead to an increase of insulin sensitivity, a decrease of adiposity and a resistance to obesity, showing that myostatin can also impact on metabolism. Thus, myostatin appeared as a potential therapeutic target to treat insulin resistance. Methods: We generated transgenic mice overexpressing Gasp-1, a myostatin inhibitor. Results: Surprisingly, we found that these mice gained weight with age due to an increase in fat mass associated with ectopic fat accumulation. In addition, these mice developed an adipocyte hypertrophy, hyperglycemia, hyperinsulinemia, muscle and hepatic insulin resistance. Understanding the molecular networks controlling this insulin resistance responsiveness in overexpressing Gasp-1 mice is essential. Molecular analyses revealed a deregulation of adipokines and muscle cytokines expression, but also an increase in plasma myostatin levels. The increase in myostatin bioactivity by a positive feedback mechanism in the Tg(Gasp-1 transgenic mice could lead to this combination of phenotypes. Conclusion: Altogether, these data suggested that overexpressing Gasp-1 mice develop most of the symptoms associated with metabolic syndrome and could be a relevant model for the study of obesity or type 2 diabetes.

  7. Netrin-1 overexpression promotes white matter repairing and remodeling after focal cerebral ischemia in mice

    OpenAIRE

    He, Xiaosong; Li, Yaning; Lu, Haiyan; Zhang, Zhijun; Wang, Yongting; Yang, Guo-Yuan

    2013-01-01

    Damage of oligodendrocytes after ischemia has negative impact on white matter integrity and neuronal function. In this work, we explore whether Netrin-1 (NT-1) overexpression facilitates white matter repairing and remodeling. Adult CD-1 mice received stereotactic injection of adeno-associated virus carrying NT-1 gene (AAV-NT-1). One week after gene transfer, mice underwent 60 minutes of middle cerebral artery occlusion. The effect of NT-1 on neural function was evaluated by neurobehavioral te...

  8. Overexpression of RBBP6, alone or combined with mutant TP53, is predictive of poor prognosis in colon cancer.

    Directory of Open Access Journals (Sweden)

    Jian Chen

    Full Text Available Retinoblastoma binding protein 6 (RBBP6 plays an important role in chaperone-mediated ubiquitination and interacts with TP53 in carcinogenesis. However, the clinicopathologic significance of RBBP6 expression in colon cancer is unknown; in particular, the prognostic value of RBBP6 combined with TP53 expression has not been explored. Therefore, quantitative real-time PCR and western blot analyses were performed to detect RBBP6 expression in colon cancer tissues. RBBP6 and TP53 expression were assessed by immunohistochemistry in a tissue microarray format, in which the primary colon cancer tissue was paired with noncancerous tissue. Tissue specimens were obtained from 203 patients. We found that RBBP6 was overexpressed in colon tumorous tissues and was significantly associated with clinical stage, depth of tumor invasion, lymph node metastasis (LNM, distant metastasis, and histologic grade. Further studies revealed that a corresponding correlation between RBBP6 overexpression and mutant TP53 was evident in colon cancer (r = 0.450; P<0.001. RBBP6 expression was an independent prognostic factor for overall survival (OS and disease free survival (DFS. Interestingly, patients with tumors that had both RBBP6 overexpression and mutant TP53 protein accumulation relapsed and died within a significantly short period after surgery (P<0.001. Multivariate analysis showed that patients with LNM and patients with both RBBP6- and TP53-positive tumors had extremely poor OS (HR 6.75; 95% CI 2.63-17.35; P<0.001 and DFS (HR 8.08; 95% CI 2.80-23.30; P<0.001. These clinical findings indicate that the assessment of both RBBP6 and mutant TP53 expression will be helpful in predicting colon cancer prognosis.

  9. Overexpression of Indian hedgehog partially rescues short stature homeobox 2-overexpression-associated congenital dysplasia of the temporomandibular joint in mice.

    Science.gov (United States)

    Li, Xihai; Liang, Wenna; Ye, Hongzhi; Weng, Xiaping; Liu, Fayuan; Lin, Pingdong; Liu, Xianxiang

    2015-09-01

    The role of short stature homeobox 2 (shox2) in the development and homeostasis of the temporomandibular joint (TMJ) has been well documented. Shox2 is known to be expressed in the progenitor cells and perichondrium of the developing condyle. A previous study by our group reported that overexpression of shox2 leads to congenital dysplasia of the TMJ via downregulation of the Indian hedgehog (Ihh) signaling pathway, which is essential for embryonic disc primordium formation and mandibular condylar growth. To determine whether overexpression of Ihh may rescue the overexpression of shox2 leading to congenital dysplasia of the TMJ, a mouse model in which Ihh and shox2 were overexpressed (Wnt1-Cre; pMes-stop shox2; pMes-stop Ihh mice) was utilized to assess the consequences of this overexpression on TMJ development during post-natal life. The results showed that the developmental process and expression levels of runt-related transcription factor 2 and sex determining region Y-box 9 in the TMJ of the Wnt1-Cre; pMes-stop shox2; pMes-stop Ihh mice were similar to those in wild‑type mice. Overexpression of Ihh rescued shox2 overexpression-associated reduction of extracellular matrix components. However, overexpression of Ihh did not inhibit the shox2 overexpression-associated increase of matrix metalloproteinases (MMPs) MMP9, MMP13 and apoptosis in the TMJ. These combinatory cellular and molecular defects appeared to account for the observed congenital dysplasia of TMJ, suggesting that overexpression of Ihh partially rescued shox2 overexpression‑associated congenital dysplasia of the TMJ in mice.

  10. Small heterodimer partner overexpression partially protects against liver tumor development in farnesoid X receptor knockout mice

    International Nuclear Information System (INIS)

    Li, Guodong; Kong, Bo; Zhu, Yan; Zhan, Le; Williams, Jessica A.; Tawfik, Ossama; Kassel, Karen M.; Luyendyk, James P.; Wang, Li; Guo, Grace L.

    2013-01-01

    Farnesoid X receptor (FXR, Nr1h4) and small heterodimer partner (SHP, Nr0b2) are nuclear receptors that are critical to liver homeostasis. Induction of SHP serves as a major mechanism of FXR in suppressing gene expression. Both FXR −/− and SHP −/− mice develop spontaneous hepatocellular carcinoma (HCC). SHP is one of the most strongly induced genes by FXR in the liver and is a tumor suppressor, therefore, we hypothesized that deficiency of SHP contributes to HCC development in the livers of FXR −/− mice and therefore, increased SHP expression in FXR −/− mice reduces liver tumorigenesis. To test this hypothesis, we generated FXR −/− mice with overexpression of SHP in hepatocytes (FXR −/− /SHP Tg ) and determined the contribution of SHP in HCC development in FXR −/− mice. Hepatocyte-specific SHP overexpression did not affect liver tumor incidence or size in FXR −/− mice. However, SHP overexpression led to a lower grade of dysplasia, reduced indicator cell proliferation and increased apoptosis. All tumor-bearing mice had increased serum bile acid levels and IL-6 levels, which was associated with activation of hepatic STAT3. In conclusion, SHP partially protects FXR −/− mice from HCC formation by reducing tumor malignancy. However, disrupted bile acid homeostasis by FXR deficiency leads to inflammation and injury, which ultimately results in uncontrolled cell proliferation and tumorigenesis in the liver. - Highlights: • SHP does not prevent HCC incidence nor size in FXR KO mice but reduces malignancy. • Increased SHP promotes apoptosis. • Bile acids and inflammation maybe critical for HCC formation with FXR deficiency

  11. The pathogenicity of thymidine kinase-deficient mutants of herpes simplex virus in mice.

    Science.gov (United States)

    Field, H J; Wildy, P

    1978-10-01

    The pathogenicity for mice of two mutants of herpes simplex virus (type 1 and type 2), which fail to induce thymidine kinase, were compared with their respective parent strains. The mutants were much less virulent than the parents following either intracerebral or peripheral inoculation. The replication of the virus at the site of inoculation and its progression into the nervous system were studied. Following a very large inoculum in the ear, the type 1 mutant was found to establish a latent infection in the cervical dorsal root ganglia. Mice inoculated intracerebrally with small doses of the mutant viruses were solidly immune to challenge with lethal doses of the parent strain.

  12. Transgenic Mice Overexpressing Vitamin D Receptor (VDR) Show Anti-Inflammatory Effects in Lung Tissues.

    Science.gov (United States)

    Ishii, Masaki; Yamaguchi, Yasuhiro; Isumi, Kyoko; Ogawa, Sumito; Akishita, Masahiro

    2017-12-01

    Vitamin D insufficiency is increasingly recognized as a prevalent problem worldwide, especially in patients with a chronic lung disease. Chronic obstructive pulmonary disease (COPD) is a type of chronic inflammatory lung disease. Previous clinical studies have shown that COPD leads to low vitamin D levels, which further increase the severity of COPD. Vitamin D homeostasis represents one of the most important factors that potentially determine the severity of COPD. Nonetheless, the mechanisms underlying the anti-inflammatory effects of vitamin D receptor (VDR) in lung tissues are still unclear. To investigate the anti-inflammatory effects of VDR, we generated transgenic mice that show lung-specific VDR overexpression under the control of the surfactant protein C promoter (TG mice). The TG mice were used to study the expression patterns of proinflammatory cytokines using real-time polymerase chain reaction and immunohistochemistry. The TG mice had lower levels of T helper 1 (Th1)-related cytokines than wild-type (WT) mice did. No significant differences in the expression of Th2 cytokines were observed between TG and WT mice. This study is the first to achieve lung-specific overexpression of VDR in TG mice: an interesting animal model useful for studying the relation between airway cell inflammation and vitamin D signaling. VDR expression is an important factor that influences anti-inflammatory responses in lung tissues. Our results show the crucial role of VDR in anti-inflammatory effects in lungs; these data are potentially useful for the treatment or prevention of COPD.

  13. Bone Mass and Strength are Significantly Improved in Mice Overexpressing Human WNT16 in Osteocytes.

    Science.gov (United States)

    Alam, Imranul; Reilly, Austin M; Alkhouli, Mohammed; Gerard-O'Riley, Rita L; Kasipathi, Charishma; Oakes, Dana K; Wright, Weston B; Acton, Dena; McQueen, Amie K; Patel, Bhavmik; Lim, Kyung-Eun; Robling, Alexander G; Econs, Michael J

    2017-04-01

    Recently, we demonstrated that osteoblast-specific overexpression of human WNT16 increased both cortical and trabecular bone mass and structure in mice. To further identify the cell-specific role of Wnt16 in bone homeostasis, we created transgenic (TG) mice overexpressing human WNT16 in osteocytes using Dmp1 promoter (Dmp1-hWNT16 TG) on C57BL/6 (B6) background. We analyzed bone phenotypes and serum bone biomarkers, performed gene expression analysis and measured dynamic bone histomorphometry in Dmp1-hWNT16 TG and wild-type (WT) mice. Compared to WT mice, Dmp1-hWNT16 TG mice exhibited significantly higher whole-body, spine and femoral aBMD, BMC and trabecular (BV/TV, Tb.N, and Tb.Th) and cortical (bone area and thickness) parameters in both male and female at 12 weeks of age. Femur stiffness and ultimate force were also significantly improved in the Dmp1-hWNT16 TG female mice, compared to sex-matched WT littermates. In addition, female Dmp1-hWNT16 TG mice displayed significantly higher MS/BS, MAR and BFR/BS compared to the WT mice. Gene expression analysis demonstrated significantly higher mRNA level of Alp in both male and female Dmp1-hWNT16 TG mice and significantly higher levels of Osteocalcin, Opg and Rankl in the male Dmp1-hWNT16 TG mice in bone tissue compared to sex-matched WT mice. These results indicate that WNT16 plays a critical role for acquisition of both cortical and trabecular bone mass and strength. Strategies designed to use WNT16 as a target for therapeutic interventions will be valuable to treat osteoporosis and other low bone mass conditions.

  14. Preservation of endothelium-dependent relaxation in atherosclerotic mice with endothelium-restricted endothelin-1 overexpression.

    Science.gov (United States)

    Mian, Muhammad Oneeb Rehman; Idris-Khodja, Noureddine; Li, Melissa W; Leibowitz, Avshalom; Paradis, Pierre; Rautureau, Yohann; Schiffrin, Ernesto L

    2013-10-01

    In human atherosclerosis, which is associated with elevated plasma and coronary endothelin (ET)-1 levels, ETA receptor antagonists improve coronary endothelial function. Mice overexpressing ET-1 specifically in the endothelium (eET-1) crossed with atherosclerosis-prone apolipoprotein E knockout mice (Apoe(-/-)) exhibit exaggerated high-fat diet (HFD)-induced atherosclerosis. Since endothelial dysfunction often precedes atherosclerosis development, we hypothesized that mice overexpressing endothelial ET-1 on a genetic background deficient in apolipoprotein E (eET-1/Apoe(-/-)) would have severe endothelial dysfunction. To test this hypothesis, we investigated endothelium-dependent relaxation (EDR) to acetylcholine in eET-1/Apoe(-/-) mice. EDR in mesenteric resistance arteries from 8- and 16-week-old mice fed a normal diet or HFD was improved in eET-1/Apoe(-/-) compared with Apoe(-/-) mice. Nitric oxide synthase (NOS) inhibition abolished EDR in Apoe(-/-). EDR in eET-1/Apoe(-/-) mice was resistant to NOS inhibition irrespective of age or diet. Inhibition of cyclooxygenase, the cytochrome P450 pathway, and endothelium-dependent hyperpolarization (EDH) resulted in little or no inhibition of EDR in eET-1/Apoe(-/-) compared with wild-type (WT) mice. In eET-1/Apoe(-/-) mice, blocking of EDH or soluble guanylate cyclase (sGC), in addition to NOS inhibition, decreased EDR by 36 and 30%, respectively. The activation of 4-aminopyridine-sensitive voltage-dependent potassium channels (Kv) during EDR was increased in eET-1/Apoe(-/-) compared with WT mice. We conclude that increasing eET-1 in mice that develop atherosclerosis results in decreased mutual dependence of endothelial signaling pathways responsible for EDR, and that NOS-independent activation of sGC and increased activation of Kv are responsible for enhanced EDR in this model of atherosclerosis associated with elevated endothelial and circulating ET-1.

  15. GH and IGF1: roles in energy metabolism of long-living GH mutant mice.

    Science.gov (United States)

    Brown-Borg, Holly M; Bartke, Andrzej

    2012-06-01

    Of the multiple theories to explain exceptional longevity, the most robust of these has centered on the reduction of three anabolic protein hormones, growth hormone (GH), insulin-like growth factor, and insulin. GH mutant mice live 50% longer and exhibit significant differences in several aspects of energy metabolism as compared with wild-type mice. Mitochondrial metabolism is upregulated in the absence of GH, whereas in GH transgenic mice and dwarf mice treated with GH, multiple aspects of these pathways are suppressed. Core body temperature is markedly lower in dwarf mice, yet whole-body metabolism, as measured by indirect calorimetry, is surprisingly higher in Ames dwarf and Ghr-/- mice compared with normal controls. Elevated adiponectin, a key antiinflammatory cytokine, is also very likely to contribute to longevity in these mice. Thus, several important components related to energy metabolism are altered in GH mutant mice, and these differences are likely critical in aging processes and life-span extension.

  16. GH and IGF1: Roles in Energy Metabolism of Long-Living GH Mutant Mice

    OpenAIRE

    Brown-Borg, Holly M.; Bartke, Andrzej

    2012-01-01

    Of the multiple theories to explain exceptional longevity, the most robust of these has centered on the reduction of three anabolic protein hormones, growth hormone (GH), insulin-like growth factor, and insulin. GH mutant mice live 50% longer and exhibit significant differences in several aspects of energy metabolism as compared with wild-type mice. Mitochondrial metabolism is upregulated in the absence of GH, whereas in GH transgenic mice and dwarf mice treated with GH, multiple aspects of t...

  17. APP/SOD1 overexpressing mice present reduced neuropathic pain sensitivity.

    Science.gov (United States)

    Kotulska, Katarzyna; Larysz-Brysz, Magdalena; LePecheur, Marie; Marcol, Wiesław; Olakowska, Edyta; Lewin-Kowalik, Joanna; London, Jacqueline

    2011-07-15

    There are controversies regarding pain expression in mentally disabled people, including Down syndrome patients. The aim of this study was to examine neuropathic pain-related behavior and peripheral nerve regeneration in mouse model of Down syndrome. Sciatic nerves of double transgenic mice, overexpressing both amyloid precursor protein (APP) and Cu/Zn superoxide dismutase (SOD1) genes, and FVB/N wild type mice were transected and immediately resutured. Evaluation of autotomy and functional recovery was carried out during 4-week follow-up. We found markedly less severe autotomy in transgenic animals, although the onset of autotomy was significantly delayed in control mice. Interestingly, neuroma formation at the injury site was significantly more prominent in transgenic animals. Sciatic function index outcome was better in transgenic mice than in wild-type group. Histological evaluation revealed no statistically significant differences in the number of GAP-43-positive growth cones and macrophages in the distal stump of the transected nerve between groups. However, in transgenic animals, the regenerating axons were arranged more chaotically. The number of Schwann cells in the distal stump of the transected nerves was significantly lower in transgenic mice. The number of surviving motoneurons was markedly decreased in transgenic group. We measured also the atrophy of denervated muscles and found it decreased in APP/SOD1 overexpressing mice. Taken together, in this model of Down syndrome, we observed increased neuroma formation and decreased autotomy after peripheral nerve injury. Our findings suggest that APP/SOD1 overexpressing mice are less sensitive for neuropathic pain associated with neuroma. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Immunohistochemical studies of lens crystallins in the dysgenetic lens (dyl) mutant mice

    NARCIS (Netherlands)

    Brahma, S.K.; Sanyal, S.

    1984-01-01

    The lens in the dyl mutant mice shows a persistent lens-ectodermal connection as well as degeneration and extrusion of lens materials after the initial differentiation of the fibres. Immunohistochemical investigation of the ontogeny of the lens crystallins in this developing mutant lens has been

  19. Effect of bcl-2 overexpression in mice on ovotoxicity caused by 4-vinylcyclohexene

    International Nuclear Information System (INIS)

    Flaws, Jodi A.; Marion, Samuel L.; Miller, Kimberly P.; Christian, Patricia J.; Babus, Janice K.; Hoyer, Patricia B.

    2006-01-01

    The occupational chemical 4-vinylcyclohexene (VCH) destroys small preantral ovarian follicles in mice following repeated daily dosing. The cell survival gene bcl-2 is thought to protect against follicular death during embryogenesis because primordial follicle numbers in newborn bcl-2 overexpressing (OE) mice are greater than in wild-type (WT) controls. Thus, this study was designed to determine if overexpression of bcl-2 protects against VCH-induced follicle loss during embryonic development. Pregnant bcl-2 OE or WT mice were dosed (p.o.) daily with VCH (500 mg/kg) or sesame oil (vehicle control) on days 8-18 of pregnancy. Ovaries were collected from moms and female pups on pup postnatal day (PND) 8. Nonpregnant OE and WT females were also treated with VCH (500 mg/kg p.o.) or vehicle and evaluated in the same manner. As previously reported, ovaries from PND8 OE female pups contained 50% more primordial follicles than WT pups (P < 0.05). Unlike WT pups, relative to vehicle controls, in utero exposure to VCH resulted in a reduction in primordial (25% of control), primary (38% of control), and secondary (33% of control) follicles in ovaries of OE pups (P < 0.05). VCH had no significant effect on follicle numbers in OE or WT moms. Conversely, in nonpregnant adults, VCH did not affect WT mice but caused loss of primordial (55% of control), primary (51% of control), and secondary (69% of control) follicles in OE mice (P < 0.05). These results demonstrate that bcl-2 overexpression does not protect against, but instead increases susceptibility to VCH-induced follicle loss in transplacentally exposed or in nonpregnant mice

  20. FHL1 reduces dystrophy in transgenic mice overexpressing FSHD muscular dystrophy region gene 1 (FRG1.

    Directory of Open Access Journals (Sweden)

    Sandra J Feeney

    Full Text Available Facioscapulohumeral muscular dystrophy (FSHD is an autosomal-dominant disease with no effective treatment. The genetic cause of FSHD is complex and the primary pathogenic insult underlying the muscle disease is unknown. Several disease candidate genes have been proposed including DUX4 and FRG1. Expression analysis studies of FSHD report the deregulation of genes which mediate myoblast differentiation and fusion. Transgenic mice overexpressing FRG1 recapitulate the FSHD muscular dystrophy phenotype. Our current study selectively examines how increased expression of FRG1 may contribute to myoblast differentiation defects. We generated stable C2C12 cell lines overexpressing FRG1, which exhibited a myoblast fusion defect upon differentiation. To determine if myoblast fusion defects contribute to the FRG1 mouse dystrophic phenotype, this strain was crossed with skeletal muscle specific FHL1-transgenic mice. We previously reported that FHL1 promotes myoblast fusion in vitro and FHL1-transgenic mice develop skeletal muscle hypertrophy. In the current study, FRG1 mice overexpressing FHL1 showed an improvement in the dystrophic phenotype, including a reduced spinal kyphosis, increased muscle mass and myofiber size, and decreased muscle fibrosis. FHL1 expression in FRG1 mice, did not alter satellite cell number or activation, but enhanced myoblast fusion. Primary myoblasts isolated from FRG1 mice showed a myoblast fusion defect that was rescued by FHL1 expression. Therefore, increased FRG1 expression may contribute to a muscular dystrophy phenotype resembling FSHD by impairing myoblast fusion, a defect that can be rescued by enhanced myoblast fusion via expression of FHL1.

  1. Nras Overexpression Results in Granulocytosis, T-Cell Expansion and Early Lethality in Mice

    DEFF Research Database (Denmark)

    Lassen, Louise Berkhoudt; Gonzalez, Borja Ballarin; Schmitz, Alexander

    2012-01-01

    NRAS is a proto-oncogene involved in numerous myeloid malignancies. Here, we report on a mouse line bearing a single retroviral long terminal repeat inserted into Nras. This genetic modification resulted in an increased level of wild type Nras mRNA giving the possibility of studying the function ...... the increment in immature myeloid cells detected in these mice. The short latency period indicates that Nras overexpression alone is sufficient to cause dose-dependent granulocytosis and T-cell expansion....

  2. Compensation of the AKT signaling by ERK signaling in transgenic mice hearts overexpressing TRIM72

    International Nuclear Information System (INIS)

    Ham, Young-Mi; Mahoney, Sarah Jane

    2013-01-01

    The AKT and ERK signaling pathways are known to be involved in cell hypertrophy, proliferation, survival and differentiation. Although there is evidence for crosstalk between these two signaling pathways in cellulo, there is less evidence for cross talk in vivo. Here, we show that crosstalk between AKT and ERK signaling in the hearts of TRIM72-overexpressing transgenic mice (TRIM72-Tg) with alpha-MHC promoter regulates and maintains their heart size. TRIM72, a heart- and skeletal muscle-specific protein, downregulates AKT-mTOR signaling via IRS-1 degradation and reduces the size of rat cardiomyocytes and the size of postnatal TRIM72-Tg hearts. TRIM72 expression was upregulated by hypertrophic inducers in cardiomyocytes, while IRS-1 was downregulated by IGF-1. TRIM72 specifically regulated IGF-1-dependent AKT-mTOR signaling, resulting in a reduction of the size of cardiomyocytes. Postnatal TRIM72-Tg hearts were smaller than control-treated hearts with inhibition of AKT-mTOR signaling. However, adult TRIM72-Tg hearts were larger than of control despite the suppression of AKT-mTOR signaling. Activation of ERK, PKC-α, and JNK were observed to be elevated in adult TRIM72-Tg, and these signals were mediated by ET-1 via the ET receptors A and B. Altogether, these results suggest that AKT signaling regulates cardiac hypertrophy in physiological conditions, and ERK signaling compensates for the absence of AKT signaling during TRIM72 overexpression, leading to pathological hypertrophy. -- Highlights: • TRIM72 inhibits AKT signaling through ubiquitination of IRS-1 in cardiac cells. • TRIM72 regulates the size of cardiac cells. • TRIM72 regulates size of postnatal TRIM72-overexpressing transgenic mice hearts. • Adult TRIM72-overexpressing transgenic mice hearts showed cardiac dysfunction. • Adult TRIM72 transgenic mice hearts showed higher expression of endothelin receptors

  3. Salivary Gland Derived BDNF Overexpression in Mice Exerts an Anxiolytic Effect

    OpenAIRE

    Saruta, Juri; To, Masahiro; Sugimoto, Masahiro; Yamamoto, Yuko; Shimizu, Tomoko; Nakagawa, Yusuke; Inoue, Hiroko; Saito, Ichiro; Tsukinoki, Keiichi

    2017-01-01

    Brain-derived neurotrophic factor (BDNF) is abundant in the hippocampus and plays critical roles in memory and synapse formation, as well as exerting antidepressant-like effects in psychiatric disorders. We previously reported that BDNF is expressed in salivary glands and affects blood BDNF content. However, the function of salivary BDNF remains unclear. The aim of this study was to generate transgenic mice overexpressing BDNF in the salivary glands. Hence, we used the Lama construct (hemaggl...

  4. Compensation of the AKT signaling by ERK signaling in transgenic mice hearts overexpressing TRIM72

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Young-Mi, E-mail: youngmi_ham@hms.harvard.edu [College of Life Science and Biotechnology, Korea University, Seoul (Korea, Republic of); Department of Cell Biology, Harvard Medical School, Boston, MA 02115 (United States); Mahoney, Sarah Jane [Department of Cell Biology, Harvard Medical School, Boston, MA 02115 (United States)

    2013-06-10

    The AKT and ERK signaling pathways are known to be involved in cell hypertrophy, proliferation, survival and differentiation. Although there is evidence for crosstalk between these two signaling pathways in cellulo, there is less evidence for cross talk in vivo. Here, we show that crosstalk between AKT and ERK signaling in the hearts of TRIM72-overexpressing transgenic mice (TRIM72-Tg) with alpha-MHC promoter regulates and maintains their heart size. TRIM72, a heart- and skeletal muscle-specific protein, downregulates AKT-mTOR signaling via IRS-1 degradation and reduces the size of rat cardiomyocytes and the size of postnatal TRIM72-Tg hearts. TRIM72 expression was upregulated by hypertrophic inducers in cardiomyocytes, while IRS-1 was downregulated by IGF-1. TRIM72 specifically regulated IGF-1-dependent AKT-mTOR signaling, resulting in a reduction of the size of cardiomyocytes. Postnatal TRIM72-Tg hearts were smaller than control-treated hearts with inhibition of AKT-mTOR signaling. However, adult TRIM72-Tg hearts were larger than of control despite the suppression of AKT-mTOR signaling. Activation of ERK, PKC-α, and JNK were observed to be elevated in adult TRIM72-Tg, and these signals were mediated by ET-1 via the ET receptors A and B. Altogether, these results suggest that AKT signaling regulates cardiac hypertrophy in physiological conditions, and ERK signaling compensates for the absence of AKT signaling during TRIM72 overexpression, leading to pathological hypertrophy. -- Highlights: • TRIM72 inhibits AKT signaling through ubiquitination of IRS-1 in cardiac cells. • TRIM72 regulates the size of cardiac cells. • TRIM72 regulates size of postnatal TRIM72-overexpressing transgenic mice hearts. • Adult TRIM72-overexpressing transgenic mice hearts showed cardiac dysfunction. • Adult TRIM72 transgenic mice hearts showed higher expression of endothelin receptors.

  5. APP overexpression prevents neuropathic pain and motoneuron death after peripheral nerve injury in mice.

    Science.gov (United States)

    Kotulska, Katarzyna; Larysz-Brysz, Magdalena; LePecheur, Marie; Marcol, Wiesław; Lewin-Kowalik, Joanna; Paly, Evelyn; London, Jacqueline

    2010-03-16

    Despite general capacity of peripheral nervous system to regenerate, peripheral nerve injury is often followed by incomplete recovery of function and sometimes burdened by neuropathic pain. Amyloid precursor protein (APP) was suggested to play a role in neuronal growth, however, its role in peripheral nerve repair was not studied. The aim of this study was to examine the role of APP overexpression in peripheral nerve regeneration and neuropathic pain-related behavior in mice. Sciatic nerves of APP overexpressing and FVB/N wild-type mice were transected and immediately resutured. Evaluation of motor and sensory function and autotomy was carried out during 4-week follow up. We found no autotomy behavior as well as less significant atrophy of denervated muscles in APP overexpressing animals when compared to wild-type ones. Sciatic nerve function index outcome did not differ between groups. Histological evaluation revealed that the intensity of regeneration features, including GAP-43-positive growth cones and Schwann cells number in the distal stump of the transected nerve, was also similar in both groups. However, the regenerating fibers were organized more chaotically in wild-type mice and neuromas were much more often seen in this group. The number of macrophages infiltrating the injury site was significantly higher in control group. The number of surviving motoneurons was higher in transgenic mice than in control animals. Taken together, our findings suggest that APP overexpression is beneficial for nerve regeneration processes due to better organization of regenerating fibers, increased survival of motoneurons after autotomy and prevention of neuropathic pain. Copyright 2009 Elsevier Inc. All rights reserved.

  6. Morphogenetic roles of perlecan in the tooth enamel organ: an analysis of overexpression using transgenic mice.

    Science.gov (United States)

    Ida-Yonemochi, Hiroko; Satokata, Ichiro; Ohshima, Hayato; Sato, Toshiya; Yokoyama, Minesuke; Yamada, Yoshihiko; Saku, Takashi

    2011-09-01

    Perlecan, a heparan sulfate proteoglycan, is enriched in the intercellular space of the enamel organ. To understand the role of perlecan in tooth morphogenesis, we used a keratin 5 promoter to generate transgenic (Tg) mice that over-express perlecan in epithelial cells, and examined their tooth germs at tissue and cellular levels. Immunohistochemistry showed that perlecan was more strongly expressed in the enamel organ cells of Tg mice than in wild-type mice. Histopathology showed wider intercellular spaces in the stellate reticulum of the Tg molars and loss of cellular polarity in the enamel organ, especially in its cervical region. Hertwig's epithelial root sheath (HERS) cells in Tg mice were irregularly aligned due to excessive deposits of perlecan along the inner, as well as on the outer sides of the HERS. Tg molars had dull-ended crowns and outward-curved tooth roots and their enamel was poorly crystallized, resulting in pronounced attrition of molar cusp areas. In Tg mice, expression of integrin β1 mRNA was remarkably higher at E18, while expression of bFGF, TGF-β1, DSPP and Shh was more elevated at P1. The overexpression of perlecan in the enamel organ resulted in irregular morphology of teeth, suggesting that the expression of perlecan regulates growth factor signaling in a stage-dependent manner during each step of the interaction between ameloblast-lineage cells and mesenchymal cells. Copyright © 2011 International Society of Matrix Biology. All rights reserved.

  7. Cardiac overexpression of Mammalian enabled (Mena) exacerbates heart failure in mice.

    Science.gov (United States)

    Belmonte, Stephen L; Ram, Rashmi; Mickelsen, Deanne M; Gertler, Frank B; Blaxall, Burns C

    2013-09-15

    Mammalian enabled (Mena) is a key regulator of cytoskeletal actin dynamics, which has been implicated in heart failure (HF). We have previously demonstrated that cardiac Mena deletion produced cardiac dysfunction with conduction abnormalities and hypertrophy. Moreover, elevated Mena expression correlates with HF in human and animal models, yet the precise role of Mena in cardiac pathophysiology is unclear. In these studies, we evaluated mice with cardiac myocyte-specific Mena overexpression (TTA/TgTetMena) comparable to that observed in cardiac pathology. We found that the hearts of TTA/TgTetMena mice were functionally and morphologically comparable to wild-type littermates, except for mildly increased heart mass in the transgenic mice. Interestingly, TTA/TgTetMena mice were particularly susceptible to cardiac injury, as these animals experienced pronounced decreases in ejection fraction and fractional shortening as well as heart dilatation and hypertrophy after transverse aortic constriction (TAC). By "turning off" Mena overexpression in TTA/TgTetMena mice either immediately prior to or immediately after TAC surgery, we discovered that normalizing Mena levels eliminated cardiac hypertrophy in TTA/TgTetMena animals but did not preclude post-TAC cardiac functional deterioration. These findings indicate that hearts with increased levels of Mena fare worse when subjected to cardiac injury and suggest that Mena contributes to HF pathophysiology.

  8. Overexpression of human SOD1 improves survival of mice susceptible to endotoxic shock

    Directory of Open Access Journals (Sweden)

    Charchaflieh J

    2012-07-01

    Full Text Available Jean Charchaflieh,1,2 Georges I Labaze,1 Pulsar Li,1 Holly Van Remmen,3 Haekyung Lee,1 Helen Stutz,1 Arlan Richardson,3 Asher Emanuel,1 Ming Zhang1,41Department of Anesthesiology, State University of New York (SUNY Downstate Medical Center, New York, NY, USA; 2Department of Anesthesiology, Yale University School of Medicine, New Haven, CT, USA; 3Barshop Center for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; 4Department of Cell Biology, State University of New York (SUNY Downstate Medical Center, New York, NY, USABackground: Protective effects of the antioxidant enzyme Cu-Zn superoxide dismutase (SOD1 against endotoxic shock have not been demonstrated in animal models. We used a murine model to investigate whether overexpression of SOD1 protects against endotoxic shock, and whether the genetic background of SOD1 affects its effective protective effects and susceptibility to endotoxic shock.Methods: Transgenic (tg mice overexpressing human SOD1 and control mice were divided into four groups based on their genetic background: (1 tg mice with mixed genetic background (tg-JAX; (2 wild-type (WT littermates of tg-JAX strain (WT-JAX; (3 tg mice with C57BL/6J background (tg-TX; (4 WT littermates of tg-TX strain (WT-TX. Activity of SOD1 in the intestine, heart, and liver of tg and control mice was confirmed using a polyacrylamide activity gel. Endotoxic shock was induced by intraperitoneal injection of lipopolysaccharide. Survival rates over 120 hours (mean, 95% confidence interval were analyzed using Kaplan–Meier survival curves.Results: Human SOD1 enzymatic activities were significantly higher in the intestine, heart, and liver of both tg strains (tg-JAX and tg-TX compared with their WT littermates (WT-JAX and WT-TX, respectively. Interestingly, the endogenous SOD1 activities in tg-JAX mice were decreased compared with their WT littermates (WT-JAX, but such aberrant changes were not

  9. Over-expression of p53 mutants in LNCaP cells alters tumor growth and angiogenesis in vivo

    International Nuclear Information System (INIS)

    Perryman, L.A.; Blair, J.M.; Kingsley, E.A.; Szymanska, B.; Ow, K.T.; Wen, V.W.; MacKenzie, K.L.; Vermeulen, P.B.; Jackson, P.; Russell, P.J.

    2006-01-01

    This study has investigated the impact of three specific dominant-negative p53 mutants (F134L, M237L, and R273H) on tumorigenesis by LNCaP prostate cancer cells. Mutant p53 proteins were associated with an increased subcutaneous 'take rate' in NOD-SCID mice, and increased production of PSA. Tumors expressing F134L and R273H grew slower than controls, and were associated with decreased necrosis and apoptosis, but not hypoxia. Interestingly, hypoxia levels were increased in tumors expressing M237L. There was less proliferation in F134L-bearing tumors compared to control, but this was not statistically significant. Angiogenesis was decreased in tumors expressing F134L and R273H compared with M237L, or controls. Conditioned medium from F134L tumors inhibited growth of normal human umbilical-vein endothelial cells but not telomerase-immortalized bone marrow endothelial cells. F134L tumor supernatants showed lower levels of VEGF and endostatin compared with supernatants from tumors expressing other mutants. Our results support the possibility that decreased angiogenesis might account for reduced growth rate of tumor cells expressing the F134L p53 mutation

  10. Atypical scrapie prions from sheep and lack of disease in transgenic mice overexpressing human prion protein.

    Science.gov (United States)

    Wadsworth, Jonathan D F; Joiner, Susan; Linehan, Jacqueline M; Balkema-Buschmann, Anne; Spiropoulos, John; Simmons, Marion M; Griffiths, Peter C; Groschup, Martin H; Hope, James; Brandner, Sebastian; Asante, Emmanuel A; Collinge, John

    2013-11-01

    Public and animal health controls to limit human exposure to animal prions are focused on bovine spongiform encephalopathy (BSE), but other prion strains in ruminants may also have zoonotic potential. One example is atypical/Nor98 scrapie, which evaded statutory diagnostic methods worldwide until the early 2000s. To investigate whether sheep infected with scrapie prions could be another source of infection, we inoculated transgenic mice that overexpressed human prion protein with brain tissue from sheep with natural field cases of classical and atypical scrapie, sheep with experimental BSE, and cattle with BSE. We found that these mice were susceptible to BSE prions, but disease did not develop after prolonged postinoculation periods when mice were inoculated with classical or atypical scrapie prions. These data are consistent with the conclusion that prion disease is less likely to develop in humans after exposure to naturally occurring prions of sheep than after exposure to epizootic BSE prions of ruminants.

  11. Characterisation of the nociceptive phenotype of suppressible galanin overexpressing transgenic mice

    Directory of Open Access Journals (Sweden)

    Wynick David

    2010-10-01

    Full Text Available Abstract The neuropeptide galanin is widely expressed in both the central and peripheral nervous systems and is involved in many diverse biological functions. There is a substantial data set that demonstrates galanin is upregulated after injury in the DRG, spinal cord and in many brain regions where it plays a predominantly antinociceptive role in addition to being neuroprotective and pro-regenerative. To further characterise the role of galanin following nerve injury, a novel transgenic line was created using the binary transgenic tet-off system, to overexpress galanin in galaninergic tissue in a suppressible manner. The double transgenic mice express significantly more galanin in the DRG one week after sciatic nerve section (axotomy compared to WT mice and this overexpression is suppressible upon administration of doxycycline. Phenotypic analysis revealed markedly attenuated allodynia when galanin is overexpressed and an increase in allodynia following galanin suppression. This novel transgenic line demonstrates that whether galanin expression is increased at the time of nerve injury or only after allodynia is established, the neuropeptide is able to reduce neuropathic pain behaviour. These new findings imply that administration of a galanin agonist to patients with established allodynia would be an effective treatment for neuropathic pain.

  12. Oncolytic adenovirus targeting cyclin E overexpression repressed tumor growth in syngeneic immunocompetent mice

    International Nuclear Information System (INIS)

    Cheng, Pei-Hsin; Rao, Xiao-Mei; Wechman, Stephen L.; Li, Xiao-Feng; McMasters, Kelly M.; Zhou, Heshan Sam

    2015-01-01

    Clinical trials have indicated that preclinical results obtained with human tumor xenografts in mouse models may overstate the potential of adenovirus (Ad)-mediated oncolytic therapies. We have previously demonstrated that the replication of human Ads depends on cyclin E dysregulation or overexpression in cancer cells. ED-1 cell derived from mouse lung adenocarcinomas triggered by transgenic overexpression of human cyclin E may be applied to investigate the antitumor efficacy of oncolytic Ads. Ad-cycE was used to target cyclin E overexpression in ED-1 cells and repress tumor growth in a syngeneic mouse model for investigation of oncolytic virotherapies. Murine ED-1 cells were permissive for human Ad replication and Ad-cycE repressed ED-1 tumor growth in immunocompetent FVB mice. ED-1 cells destroyed by oncolytic Ads in tumors were encircled in capsule-like structures, while cells outside the capsules were not infected and survived the treatment. Ad-cycE can target cyclin E overexpression in cancer cells and repress tumor growth in syngeneic mouse models. The capsule structures formed after Ad intratumoral injection may prevent viral particles from spreading to the entire tumor. The online version of this article (doi:10.1186/s12885-015-1731-x) contains supplementary material, which is available to authorized users

  13. Overexpression of catalase in mice reduces age-related oxidative stress and maintains sperm production.

    Science.gov (United States)

    Selvaratnam, Johanna; Robaire, Bernard

    2016-11-01

    Advanced paternal age is associated with increased complications in pregnancy and genetic diseases in offspring. Oxidative stress is a major contributor to the damage accumulated in sperm during aging. Complex networks of antioxidants regulate reactive oxygen species (ROS) in the testis. While mounting evident shows that redox dysfunction compromises the quality of developing male germ cells, the mechanisms by which aging causes this remain unclear. Furthermore, therapies to successfully alleviate aging-associated loss in germ cell quality are limited. The antioxidant catalase (CAT) has been used in aging-associated pathologies to alleviate oxidative stress. We used mice overexpressing CAT (MCAT) to determine whether CAT overexpression alleviates the redox dysfunction observed with aging. We found that MCAT mice did not exhibit the age-dependent loss of spermatozoa, nor did they show aging associated loss in testicular germ and Sertoli cells seen in wild type (WT). Low overall ROS and reduced peroxynitrite levels were detected in spermatocytes from aged MCAT mice, following exposure to the pro-oxidant tert-butyl hydroperoxide. Germ cells from young MCATs showed elevated levels of DNA-damage repair markers, γ-H2AX and 53BP1, but this response was lost with aging. Finally, we found oxidative stress induced 8-oxodG lesions to increase in sperm with aging; these lesions were significantly reduced in aged MCAT and these mice showed no decrease in the age-dependent number of pups per litter. Thus we conclude that aged MCAT mice generate sperm at the same rate as young mice; these sperm are protected from oxidative stress associated damage. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. The Arabidopsis mutant iop1 exhibits induced over-expression of the plant defensin gene PDF1.2 and enhanced pathogen resistance

    NARCIS (Netherlands)

    Penninckx, I.A.M.A.; Eggermont, K.; Schenk, P.M.; Ackerveken, van den G.; Cammue, B.P.A.; Thomma, B.P.H.J.

    2003-01-01

    Jasmonate and ethylene are concomitantly involved in the induction of the Arabidopsis plant defensin gene PDF1.2. To define genes in the signal transduction pathway leading to the induction of PDF1.2, we screened for mutants with induced over-expression of a β-glucuronidase reporter, under the

  15. Proteostasis and ageing: insights from long-lived mutant mice.

    Science.gov (United States)

    Sands, William A; Page, Melissa M; Selman, Colin

    2017-10-15

    The global increase in life expectancy is creating significant medical, social and economic challenges to current and future generations. Consequently, there is a need to identify the fundamental mechanisms underlying the ageing process. This knowledge should help develop realistic interventions capable of combatting age-related disease, and thus improving late-life health and vitality. While several mechanisms have been proposed as conserved lifespan determinants, the loss of proteostasis - where proteostasis is defined here as the maintenance of the proteome - appears highly relevant to both ageing and disease. Several studies have shown that multiple proteostatic mechanisms, including the endoplasmic reticulum (ER)-induced unfolded protein response (UPR), the ubiquitin-proteasome system (UPS) and autophagy, appear indispensable for longevity in many long-lived invertebrate mutants. Similarly, interspecific comparisons suggest that proteostasis may be an important lifespan determinant in vertebrates. Over the last 20 years a number of long-lived mouse mutants have been described, many of which carry single-gene mutations within the growth-hormone, insulin/IGF-1 or mTOR signalling pathways. However, we still do not know how these mutations act mechanistically to increase lifespan and healthspan, and accordingly whether mechanistic commonality occurs between different mutants. Recent evidence supports the premise that the successful maintenance of the proteome during ageing may be linked to the increased lifespan and healthspan of long-lived mouse mutants. © 2017 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.

  16. Neuronal erythropoietin overexpression protects mice against age-related hearing loss (presbycusis).

    Science.gov (United States)

    Monge Naldi, Arianne; Belfrage, Celina; Jain, Neha; Wei, Eric T; Canto Martorell, Belén; Gassmann, Max; Vogel, Johannes

    2015-12-01

    So far, typical causes of presbycusis such as degeneration of hair cells and/or primary auditory (spiral ganglion) neurons cannot be treated. Because erythropoietin's (Epo) neuroprotective potential has been shown previously, we determined hearing thresholds of juvenile and aged mice overexpressing Epo in neuronal tissues. Behavioral audiometry revealed in contrast to 5 months of age, that 11-month-old Epo-transgenic mice had up to 35 dB lower hearing thresholds between 1.4 and 32 kHz, and at the highest frequencies (50-80 kHz), thresholds could be obtained in aged Epo-transgenic only but not anymore in old C57BL6 control mice. Click-evoked auditory brainstem response showed similar results. Numbers of spiral ganglion neurons in aged C57BL6 but not Epo-transgenic mice were dramatically reduced mainly in the basal turn, the location of high frequencies. In addition, there was a tendency to better preservation of inner and outer hair cells in Epo-transgenic mice. Hence, Epo's known neuroprotective action effectively suppresses the loss of spiral ganglion cells and probably also hair cells and, thus, development of presbycusis in mice. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. A mutation in the dynein heavy chain gene compensates for energy deficit of mutant SOD1 mice and increases potentially neuroprotective IGF-1

    Directory of Open Access Journals (Sweden)

    Larmet Yves

    2011-04-01

    Full Text Available Abstract Background Amyotrophic lateral sclerosis (ALS is a fatal neurodegenerative disease characterized by a progressive loss of motor neurons. ALS patients, as well as animal models such as mice overexpressing mutant SOD1s, are characterized by increased energy expenditure. In mice, this hypermetabolism leads to energy deficit and precipitates motor neuron degeneration. Recent studies have shown that mutations in the gene encoding the dynein heavy chain protein are able to extend lifespan of mutant SOD1 mice. It remains unknown whether the protection offered by these dynein mutations relies on a compensation of energy metabolism defects. Results SOD1(G93A mice were crossbred with mice harboring the dynein mutant Cramping allele (Cra/+ mice. Dynein mutation increased adipose stores in compound transgenic mice through increasing carbohydrate oxidation and sparing lipids. Metabolic changes that occurred in double transgenic mice were accompanied by the normalization of the expression of key mRNAs in the white adipose tissue and liver. Furthermore, Dynein Cra mutation rescued decreased post-prandial plasma triglycerides and decreased non esterified fatty acids upon fasting. In SOD1(G93A mice, the dynein Cra mutation led to increased expression of IGF-1 in the liver, increased systemic IGF-1 and, most importantly, to increased spinal IGF-1 levels that are potentially neuroprotective. Conclusions These findings suggest that the protection against SOD1(G93A offered by the Cramping mutation in the dynein gene is, at least partially, mediated by a reversal in energy deficit and increased IGF-1 availability to motor neurons.

  18. Dissociation of hepatic steatosis and insulin resistance in mice overexpressing DGAT in the liver.

    Science.gov (United States)

    Monetti, Mara; Levin, Malin C; Watt, Matthew J; Sajan, Mini P; Marmor, Stephen; Hubbard, Brian K; Stevens, Robert D; Bain, James R; Newgard, Christopher B; Farese, Robert V; Hevener, Andrea L; Farese, Robert V

    2007-07-01

    Hepatic steatosis, the accumulation of lipids in the liver, is widely believed to result in insulin resistance. To test the causal relationship between hepatic steatosis and insulin resistance, we generated mice that overexpress acyl-CoA:diacylglycerol acyltransferase 2 (DGAT2), which catalyzes the final step of triacylglycerol (TG) biosynthesis, in the liver (Liv-DGAT2 mice). Liv-DGAT2 mice developed hepatic steatosis, with increased amounts of TG, diacylglycerol, ceramides, and unsaturated long-chain fatty acyl-CoAs in the liver. However, they had no abnormalities in plasma glucose and insulin levels, glucose and insulin tolerance, rates of glucose infusion and hepatic glucose production during hyperinsulinemic-euglycemic clamp studies, or activities of insulin-stimulated signaling proteins in the liver. DGAT1 overexpression in the liver also failed to induce glucose or insulin intolerance. Our results indicate that DGAT-mediated lipid accumulation in the liver is insufficient to cause insulin resistance and show that hepatic steatosis can occur independently of insulin resistance.

  19. Neuronal erythropoietin overexpression is protective against kanamycin-induced hearing loss in mice.

    Science.gov (United States)

    Bächinger, David; Horvath, Lukas; Eckhard, Andreas; Goosmann, Madeline M; Honegger, Tim; Gassmann, Max; Vogel, Johannes; Naldi, Arianne Monge

    2018-07-01

    Aminoglycosides have detrimental effects on the hair cells of the inner ear, yet these agents indisputably are one of the cornerstones in antibiotic therapy. Hence, there is a demand for strategies to prevent aminoglycoside-induced ototoxicity, which are not available today. In vitro data suggests that the pleiotropic growth factor erythropoietin (EPO) is neuroprotective against aminoglycoside-induced hair cell loss. Here, we use a mouse model with EPO-overexpression in neuronal tissue to evaluate whether EPO could also in vivo protect from aminoglycoside-induced hearing loss. Auditory brainstem response (ABR) thresholds were measured in 12-weeks-old mice before and after treatment with kanamycin for 15 days, which resulted in both C57BL/6 and EPO-transgenic animals in a high-frequency hearing loss. However, ABR threshold shifts in EPO-transgenic mice were significantly lower than in C57BL/6 mice (mean difference in ABR threshold shift 13.6 dB at 32 kHz, 95% CI 3.8-23.4 dB, p = 0.003). Correspondingly, quantification of hair cells and spiral ganglion neurons by immunofluorescence revealed that EPO-transgenic mice had a significantly lower hair cell and spiral ganglion neuron loss than C57BL/6 mice. In conclusion, neuronal overexpression of EPO is protective against aminoglycoside-induce hearing loss, which is in accordance with its known neuroprotective effects in other organs, such as the eye or the brain. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Trichostatin A suppresses lung adenocarcinoma development in Grg1 overexpressing transgenic mice

    International Nuclear Information System (INIS)

    Liu, Ju; Li, Yan; Dong, Fengyun; Li, Liqun; Masuda, Takahiro; Allen, Thaddeus D.; Lobe, Corrinne G.

    2015-01-01

    Trichostatin A (TSA) is a histone deacetylase inhibitor and a potential therapeutic for various malignancies. The in vivo effect of TSA, however, has not been investigated in a transgenic lung cancer model. Previously, we generated transgenic mice with overexpression of Groucho-related-gene 1 (Grg1) and these mice all developed mucinous lung adenocarcinoma. Grg1 is a transcriptional co-repressor protein, the function of which is thought to depend on HDAC activity. However, functions outside the nucleus have also been proposed. We tested the supposition that Grg1-induced tumorigenesis is HDAC-dependent by assaying the therapeutic effect of TSA in the Grg1 transgenic mouse model. We found that TSA significantly inhibited lung tumorigenesis in Grg1 transgenic mice (p < 0.01). TSA did not affect overall Grg1 protein levels, but instead reduced ErbB1 and ErbB2 expression, which are upregulated by Grg1 in the absence of TSA. We confirmed this effect in A549 cells. Furthermore, lapatinib, an inhibitor of both ErbB1 and ErbB2, effectively masked the effect of TSA on the inhibition of A549 cell proliferation and migration, suggesting TSA does work, at least in part, by downregulating ErbB receptors. We additionally found that TSA reduced the expression of VEGF and VEGFR2, but not basic FGF and FGFR1. Our findings indicate that TSA effectively inhibits Grg1-induced lung tumorigenesis through the down-regulation of ErbB1 and ErbB2, as well as reduced VEGF signaling. This suggests TSA and other HDAC inhibitors could have therapeutic value in the treatment of lung cancers with Grg1 overexpression. - Highlights: • TSA suppresses lung tumorigenesis in Grg1 overexpressing transgenic mice. • TSA does not affect overall Grg1 protein levels in the mice and in A549 cells. • TSA reduces ErbB1 and ErbB2 expression in the mice and in A549 cells. • Lapatinib masks TSA-induced inhibition of A549 cell proliferation and migration. • TSA inhibits VEGF signaling, but not basic FGF

  1. Trichostatin A suppresses lung adenocarcinoma development in Grg1 overexpressing transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ju, E-mail: ju.liu@sdu.edu.cn [Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan (China); Molecular and Cellular Biology Division, Sunnybrook Health Science Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada); Li, Yan [Children' s Health Care Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan, Shandong 250014 (China); Dong, Fengyun; Li, Liqun [Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan (China); Masuda, Takahiro; Allen, Thaddeus D. [Molecular and Cellular Biology Division, Sunnybrook Health Science Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada); Lobe, Corrinne G. [Molecular and Cellular Biology Division, Sunnybrook Health Science Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada); Miami Mice Research Corp., MaRS Centre, Heritage Bldg., 101 College Street, Toronto, Ontario M5G 1L7 (Canada)

    2015-08-07

    Trichostatin A (TSA) is a histone deacetylase inhibitor and a potential therapeutic for various malignancies. The in vivo effect of TSA, however, has not been investigated in a transgenic lung cancer model. Previously, we generated transgenic mice with overexpression of Groucho-related-gene 1 (Grg1) and these mice all developed mucinous lung adenocarcinoma. Grg1 is a transcriptional co-repressor protein, the function of which is thought to depend on HDAC activity. However, functions outside the nucleus have also been proposed. We tested the supposition that Grg1-induced tumorigenesis is HDAC-dependent by assaying the therapeutic effect of TSA in the Grg1 transgenic mouse model. We found that TSA significantly inhibited lung tumorigenesis in Grg1 transgenic mice (p < 0.01). TSA did not affect overall Grg1 protein levels, but instead reduced ErbB1 and ErbB2 expression, which are upregulated by Grg1 in the absence of TSA. We confirmed this effect in A549 cells. Furthermore, lapatinib, an inhibitor of both ErbB1 and ErbB2, effectively masked the effect of TSA on the inhibition of A549 cell proliferation and migration, suggesting TSA does work, at least in part, by downregulating ErbB receptors. We additionally found that TSA reduced the expression of VEGF and VEGFR2, but not basic FGF and FGFR1. Our findings indicate that TSA effectively inhibits Grg1-induced lung tumorigenesis through the down-regulation of ErbB1 and ErbB2, as well as reduced VEGF signaling. This suggests TSA and other HDAC inhibitors could have therapeutic value in the treatment of lung cancers with Grg1 overexpression. - Highlights: • TSA suppresses lung tumorigenesis in Grg1 overexpressing transgenic mice. • TSA does not affect overall Grg1 protein levels in the mice and in A549 cells. • TSA reduces ErbB1 and ErbB2 expression in the mice and in A549 cells. • Lapatinib masks TSA-induced inhibition of A549 cell proliferation and migration. • TSA inhibits VEGF signaling, but not basic FGF

  2. Calreticulin mutants in mice induce an MPL-dependent thrombocytosis with frequent progression to myelofibrosis.

    Science.gov (United States)

    Marty, Caroline; Pecquet, Christian; Nivarthi, Harini; El-Khoury, Mira; Chachoua, Ilyas; Tulliez, Micheline; Villeval, Jean-Luc; Raslova, Hana; Kralovics, Robert; Constantinescu, Stefan N; Plo, Isabelle; Vainchenker, William

    2016-03-10

    Frameshift mutations in the calreticulin (CALR) gene are seen in about 30% of essential thrombocythemia and myelofibrosis patients. To address the contribution of the CALR mutants to the pathogenesis of myeloproliferative neoplasms, we engrafted lethally irradiated recipient mice with bone marrow cells transduced with retroviruses expressing these mutants. In contrast to wild-type CALR, CALRdel52 (type I) and, to a lesser extent, CALRins5 (type II) induced thrombocytosis due to a megakaryocyte (MK) hyperplasia. Disease was transplantable into secondary recipients. After 6 months, CALRdel52-, in contrast to rare CALRins5-, transduced mice developed a myelofibrosis associated with a splenomegaly and a marked osteosclerosis. Monitoring of virus-transduced populations indicated that CALRdel52 leads to expansion at earlier stages of hematopoiesis than CALRins5. However, both mutants still specifically amplified the MK lineage and platelet production. Moreover, a mutant deleted of the entire exon 9 (CALRdelex9) did not induce a disease, suggesting that the oncogenic property of CALR mutants was related to the new C-terminus peptide. To understand how the CALR mutants target the MK lineage, we used a cell-line model and demonstrated that the CALR mutants, but not CALRdelex9, specifically activate the thrombopoietin (TPO) receptor (MPL) to induce constitutive activation of Janus kinase 2 and signal transducer and activator of transcription 5/3/1. We confirmed in c-mpl- and tpo-deficient mice that expression of Mpl, but not of Tpo, was essential for the CALR mutants to induce thrombocytosis in vivo, although Tpo contributes to disease penetrance. Thus, CALR mutants are sufficient to induce thrombocytosis through MPL activation. © 2016 by The American Society of Hematology.

  3. Enhanced hippocampal long-term potentiation and fear memory in Btbd9 mutant mice.

    Directory of Open Access Journals (Sweden)

    Mark P DeAndrade

    Full Text Available Polymorphisms in BTBD9 have recently been associated with higher risk of restless legs syndrome (RLS, a neurological disorder characterized by uncomfortable sensations in the legs at rest that are relieved by movement. The BTBD9 protein contains a BTB/POZ domain and a BACK domain, but its function is unknown. To elucidate its function and potential role in the pathophysiology of RLS, we generated a line of mutant Btbd9 mice derived from a commercial gene-trap embryonic stem cell clone. Btbd9 is the mouse homolog of the human BTBD9. Proteins that contain a BTB/POZ domain have been reported to be associated with synaptic transmission and plasticity. We found that Btbd9 is naturally expressed in the hippocampus of our mutant mice, a region critical for learning and memory. As electrophysiological characteristics of CA3-CA1 synapses of the hippocampus are well characterized, we performed electrophysiological recordings in this region. The mutant mice showed normal input-output relationship, a significant impairment in pre-synaptic activity, and an enhanced long-term potentiation. We further performed an analysis of fear memory and found the mutant mice had an enhanced cued and contextual fear memory. To elucidate a possible molecular basis for these enhancements, we analyzed proteins that have been associated with synaptic plasticity. We found an elevated level of dynamin 1, an enzyme associated with endocytosis, in the mutant mice. These results suggest the first identified function of Btbd9 as being involved in regulating synaptic plasticity and memory. Recent studies have suggested that enhanced synaptic plasticity, analogous to what we have observed, in other regions of the brain could enhance sensory perception similar to what is seen in RLS patients. Further analyses of the mutant mice will help shine light on the function of BTBD9 and its role in RLS.

  4. Enhanced hippocampal long-term potentiation and fear memory in Btbd9 mutant mice.

    Science.gov (United States)

    DeAndrade, Mark P; Zhang, Li; Doroodchi, Atbin; Yokoi, Fumiaki; Cheetham, Chad C; Chen, Huan-Xin; Roper, Steven N; Sweatt, J David; Li, Yuqing

    2012-01-01

    Polymorphisms in BTBD9 have recently been associated with higher risk of restless legs syndrome (RLS), a neurological disorder characterized by uncomfortable sensations in the legs at rest that are relieved by movement. The BTBD9 protein contains a BTB/POZ domain and a BACK domain, but its function is unknown. To elucidate its function and potential role in the pathophysiology of RLS, we generated a line of mutant Btbd9 mice derived from a commercial gene-trap embryonic stem cell clone. Btbd9 is the mouse homolog of the human BTBD9. Proteins that contain a BTB/POZ domain have been reported to be associated with synaptic transmission and plasticity. We found that Btbd9 is naturally expressed in the hippocampus of our mutant mice, a region critical for learning and memory. As electrophysiological characteristics of CA3-CA1 synapses of the hippocampus are well characterized, we performed electrophysiological recordings in this region. The mutant mice showed normal input-output relationship, a significant impairment in pre-synaptic activity, and an enhanced long-term potentiation. We further performed an analysis of fear memory and found the mutant mice had an enhanced cued and contextual fear memory. To elucidate a possible molecular basis for these enhancements, we analyzed proteins that have been associated with synaptic plasticity. We found an elevated level of dynamin 1, an enzyme associated with endocytosis, in the mutant mice. These results suggest the first identified function of Btbd9 as being involved in regulating synaptic plasticity and memory. Recent studies have suggested that enhanced synaptic plasticity, analogous to what we have observed, in other regions of the brain could enhance sensory perception similar to what is seen in RLS patients. Further analyses of the mutant mice will help shine light on the function of BTBD9 and its role in RLS.

  5. Increased Melanoma Growth and Metastasis Spreading in Mice Overexpressing Placenta Growth Factor

    Science.gov (United States)

    Marcellini, Marcella; De Luca, Naomi; Riccioni, Teresa; Ciucci, Alessandro; Orecchia, Angela; Lacal, Pedro Miguel; Ruffini, Federica; Pesce, Maurizio; Cianfarani, Francesca; Zambruno, Giovanna; Orlandi, Augusto; Failla, Cristina Maria

    2006-01-01

    Placenta growth factor (PlGF), a member of the vascular endothelial growth factor family, plays an important role in adult pathological angiogenesis. To further investigate PlGF functions in tumor growth and metastasis formation, we used transgenic mice overexpressing PlGF in the skin under the control of the keratin 14 promoter. These animals showed a hypervascularized phenotype of the skin and increased levels of circulating PlGF with respect to their wild-type littermates. Transgenic mice and controls were inoculated intradermally with B16-BL6 melanoma cells. The tumor growth rate was fivefold increased in transgenic animals compared to wild-type mice, in the presence of a similar percentage of tumor necrotic tissue. Tumor vessel area was increased in transgenic mice as compared to controls. Augmented mobilization of endothelial and hematopoietic stem cells from the bone marrow was observed in transgenic animals, possibly contributing to tumor vascularization. The number and size of pulmonary metastases were significantly higher in transgenic mice compared to wild-type littermates. Finally, PlGF promoted tumor cell invasion of the extracellular matrix and increased the activity of selected matrix metalloproteinases. These findings indicate that PlGF, in addition to enhancing tumor angiogenesis and favoring tumor growth, may directly influence melanoma dissemination. PMID:16877362

  6. Human HMGA2 protein overexpressed in mice induces precursor T-cell lymphoblastic leukemia

    International Nuclear Information System (INIS)

    Efanov, A; Zanesi, N; Coppola, V; Nuovo, G; Bolon, B; Wernicle-Jameson, D; Lagana, A; Hansjuerg, A; Pichiorri, F; Croce, C M

    2014-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) is a neoplasia of thymocytes characterized by the rapid accumulation of the precursors of T lymphocytes. HMGA2 (high-mobility group AT-hook 2) gene expression is extremely low in normal adult tissues, but it is overexpressed in many tumors. To identify the biological function of HMGA2, we generated transgenic mice carrying the human HMGA2 gene under control of the V H promoter/Eμ enhancer. Approximately 90% of Eμ-HMGA2 transgenic mice became visibly sick between 4 and 8 months due to the onset and progression of a T-ALL-like disease. Characteristic features included severe alopecia (30% of mice); enlarged lymph nodes and spleen; and profound immunological abnormalities (altered cytokine levels, hypoimmunoglobulinemia) leading to reduced immune responsiveness. Immunophenotyping showed accumulation of CD5+CD4+, CD5+CD8+ or CD5+CD8+CD4+ T-cell populations in the spleens and bone marrow of sick animals. These findings show that HMGA2-driven leukemia in mice closely resembles spontaneous human T-ALL, indicating that HMGA2 transgenic mice should serve as an important model for investigating basic mechanisms and potential new therapies of relevance to human T-ALL

  7. Metallothionein-I overexpression decreases brain pathology in transgenic mice with astrocyte-targeted expression of interleukin-6

    DEFF Research Database (Denmark)

    Molinero, Amalia; Penkowa, Milena; Hernández, Joaquín

    2003-01-01

    in this report support the idea that the upregulation of MT-I observed in GFAP-IL6 mice is an important mechanism for coping with brain damage. Thus, GFAP-IL6 mice that were crossed with TgMTI transgenic mice (GFAP-IL6xTgMTI) and overexpressed MT-I in the brain showed a decreased upregulation of cytokines...... such as IL-6 and a diminished recruitment and activation of macrophages and T cells throughout the CNS but mainly in the cerebellum. The GFAP-IL6 mice showed clear evidence of increased oxidative stress, which was significantly decreased by MT-I overexpression. Interestingly, MT-I overexpression increased...

  8. Transgenic overexpression of ADAM12 suppresses muscle regeneration and aggravates dystrophy in aged mdx mice

    DEFF Research Database (Denmark)

    Jørgensen, Louise Helskov; Jensen, Charlotte Harken; Wewer, Ulla M

    2007-01-01

    mice (ADAM12(+)) after a knife cut lesion and observed that the regeneration process was significantly impaired. ADAM12 seemed to inhibit the satellite cell response and delay myoblast differentiation. These results discourage long-term therapeutic use of ADAM12. They also point to impaired...... effect of ADAM12 was suggested to be mediated via a membrane-stabilizing up-regulation of utrophin, alpha7B integrin, and dystroglycans. Ectopic ADAM12 expression in normal mouse skeletal muscle also improved regeneration after freeze injury, presumably by the same mechanism. Hence, it was suggested...... overexpressing ADAM12 (ADAM12(+)/mdx mice), even though their utrophin levels were mildly elevated compared with age-matched controls. Thus, membrane stabilization was not sufficient to provide protection during prolonged disease. Consequently, we reinvestigated skeletal muscle regeneration in ADAM12 transgenic...

  9. Reversing hypomyelination in BACE1-null mice with Akt-DD overexpression.

    Science.gov (United States)

    Hu, Xiangyou; Schlanger, Rita; He, Wanxia; Macklin, Wendy B; Yan, Riqiang

    2013-05-01

    β-Site amyloid precursor protein convertase enzyme 1 (BACE1), a type I transmembrane aspartyl protease required to cleave amyloid precursor protein for releasing a toxic amyloid peptide, also cleaves type I and type III neuregulin-1 (Nrg-1). BACE1 deficiency in mice causes hypomyelination during development and impairs remyelination if injured. In BACE1-null mice, the abolished cleavage of neuregulin-1 by BACE1 is speculated to cause reduced myelin sheath thickness in both the central nervous system and peripheral nervous system because reduced cleavage of Nrg-1 correlates with reduced Akt phosphorylation, a downstream signaling molecule of the Nrg-1/ErbB pathway. Here we tested specifically whether increasing Akt activity alone in oligodendrocytes would be sufficient to reverse the hypomyelination phenotype in BACE1-null mice. BACE1-null mice were bred with transgenic mice expressing constitutively active Akt (Akt-DD; mutations with D(308)T and D(473)S) in oligodendrocytes. Relative to littermate BACE1-null controls, BACE1(-/-)/Akt-DD mice exhibited enhanced expression of myelin basic protein and promoter of proteolipid protein. The elevated expression of myelin proteins correlated with a thicker myelin sheath in optic nerves; comparison of quantified g ratios with statistic significance was used to confirm this reversion. However, it appeared that myelin sheath thickness in the sciatic nerves was not increased in BACE1(-/-)/Akt-DD mice, as the g ratio was not significantly different from the control. Hence, increased Akt activity in BACE1-null myelinating cells only compensates for the loss of BACE1 activity in the central nervous system, which is consistent with the observation that overexpression of Akt-DD in Schwann cells did not induce hypermyelination. Our results suggest that signaling activity other than Akt may also contribute to proper myelination in peripheral nerves.

  10. Endothelin-1 overexpression exacerbates atherosclerosis and induces aortic aneurysms in apolipoprotein E knockout mice.

    Science.gov (United States)

    Li, Melissa W; Mian, Muhammad Oneeb Rehman; Barhoumi, Tlili; Rehman, Asia; Mann, Koren; Paradis, Pierre; Schiffrin, Ernesto L

    2013-10-01

    Endothelin (ET)-1 plays a role in vascular reactive oxygen species production and inflammation. ET-1 has been implicated in human atherosclerosis and abdominal aortic aneurysm (AAA) development. ET-1 overexpression exacerbates high-fat diet-induced atherosclerosis in apolipoprotein E(-/-) (Apoe(-/-)) mice. ET-1-induced reactive oxygen species and inflammation may contribute to atherosclerosis progression and AAA development. Eight-week-old male wild-type mice, transgenic mice overexpressing ET-1 selectively in endothelium (eET-1), Apoe(-/-) mice, and eET-1/Apoe(-/-) mice were fed high-fat diet for 8 weeks. eET-1/Apoe(-/-) had a 45% reduction in plasma high-density lipoprotein (P<0.05) and presented ≥ 2-fold more aortic atherosclerotic lesions compared with Apoe(-/-) (P<0.01). AAAs were detected only in eET-1/Apoe(-/-) (8/21; P<0.05). Reactive oxygen species production was increased ≥ 2-fold in perivascular fat, media, or atherosclerotic lesions in the ascending aorta and AAAs of eET-1/Apoe(-/-) compared with Apoe(-/-) (P<0.05). Monocyte/macrophage infiltration was enhanced ≥ 2.5-fold in perivascular fat of ascending aorta and AAAs in eET-1/Apoe(-/-) compared with Apoe(-/-) (P<0.05). CD4(+) T cells were detected almost exclusively in perivascular fat (3/6) and atherosclerotic lesions (5/6) in ascending aorta of eET-1/Apoe(-/-) (P<0.05). The percentage of spleen proinflammatory Ly-6C(hi) monocytes was enhanced 26% by ET-1 overexpression in Apoe(-/-) (P<0.05), and matrix metalloproteinase-2 was increased 2-fold in plaques of eET-1/Apoe(-/-) (P<0.05) compared with Apoe(-/-). ET-1 plays a role in progression of atherosclerosis and AAA formation by decreasing high-density lipoprotein, and increasing oxidative stress, inflammatory cell infiltration, and matrix metalloproteinase-2 in perivascular fat, vascular wall, and atherosclerotic lesions.

  11. Progranulin overexpression in sensory neurons attenuates neuropathic pain in mice: Role of autophagy.

    Science.gov (United States)

    Altmann, Christine; Hardt, Stefanie; Fischer, Caroline; Heidler, Juliana; Lim, Hee-Young; Häussler, Annett; Albuquerque, Boris; Zimmer, Béla; Möser, Christine; Behrends, Christian; Koentgen, Frank; Wittig, Ilka; Schmidt, Mirko H H; Clement, Albrecht M; Deller, Thomas; Tegeder, Irmgard

    2016-12-01

    Peripheral or central nerve injury is a frequent cause of chronic pain and the mechanisms are not fully understood. Using newly generated transgenic mice we show that progranulin overexpression in sensory neurons attenuates neuropathic pain after sciatic nerve injury and accelerates nerve healing. A yeast-2-hybrid screen revealed putative interactions of progranulin with autophagy-related proteins, ATG12 and ATG4b. This was supported by colocalization and proteomic studies showing regulations of ATG13 and ATG4b and other members of the autophagy network, lysosomal proteins and proteins involved in endocytosis. The association of progranulin with the autophagic pathway was functionally confirmed in primary sensory neurons. Autophagy and survival were impaired in progranulin-deficient neurons and improved in progranulin overexpressing neurons. Nerve injury in vivo caused an accumulation of LC3b-EGFP positive bodies in neurons of the dorsal root ganglia and nerves suggesting an impairment of autophagic flux. Overexpression of progranulin in these neurons was associated with a reduction of the stress marker ATF3, fewer protein aggregates in the injured nerve and enhanced stump healing. At the behavioral level, further inhibition of the autophagic flux by hydroxychloroquine intensified cold and heat nociception after sciatic nerve injury and offset the pain protection provided by progranulin. We infer that progranulin may assist in removal of protein waste and thereby helps to resolve neuropathic pain after nerve injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Widespread over-expression of the X chromosome in sterile F₁hybrid mice.

    Directory of Open Access Journals (Sweden)

    Jeffrey M Good

    2010-09-01

    Full Text Available The X chromosome often plays a central role in hybrid male sterility between species, but it is unclear if this reflects underlying regulatory incompatibilities. Here we combine phenotypic data with genome-wide expression data to directly associate aberrant expression patterns with hybrid male sterility between two species of mice. We used a reciprocal cross in which F₁ males are sterile in one direction and fertile in the other direction, allowing us to associate expression differences with sterility rather than with other hybrid phenotypes. We found evidence of extensive over-expression of the X chromosome during spermatogenesis in sterile but not in fertile F₁ hybrid males. Over-expression was most pronounced in genes that are normally expressed after meiosis, consistent with an X chromosome-wide disruption of expression during the later stages of spermatogenesis. This pattern was not a simple consequence of faster evolutionary divergence on the X chromosome, because X-linked expression was highly conserved between the two species. Thus, transcriptional regulation of the X chromosome during spermatogenesis appears particularly sensitive to evolutionary divergence between species. Overall, these data provide evidence for an underlying regulatory basis to reproductive isolation in house mice and underscore the importance of transcriptional regulation of the X chromosome to the evolution of hybrid male sterility.

  13. A time-course study of long term over-expression of ARR19 in mice

    Science.gov (United States)

    Qamar, Imteyaz; Ahmad, Mohammad Faiz; Narayanasamy, Arul

    2015-01-01

    A leucine-rich protein, ARR19 (androgen receptor corepressor-19 kDa), is highly expressed in male reproductive organs and moderately in others. Previously, we have reported that ARR19 is differentially expressed in adult Leydig cells during the testis development and inhibits steroidogenesis by reducing the expression of steroidogenic enzymes. Whereas in prostate, ARR19 represses the transcriptional activity of AR (androgen receptor), it is important for male sexual differentiation and maturation in prostate and epididymis, through the recruitment of HDAC4. In this study we show that long term adenovirus mediated overexpression of ARR19 in mice testis has the potential of inhibiting the differentiation of testicular and prostatic cells by reducing the size of testis and prostate but has no effect on the growth of seminal vesicles. Further, it reduces the level of progesterone and testosterone by reducing the steroidogenic enzymes such as 3HSD, P450c17 and StAR. This is the first study reporting a time-course analysis of the implications of long term overexpression of ARR19 in mice testis and its effect on other organs such as prostate and seminal vesicles. Taken together, these results suggest that ARR19 may play an important role in the differentiation of male reproductive organs such as testis and prostate. PMID:26260329

  14. Widespread Over-Expression of the X Chromosome in Sterile F1 Hybrid Mice

    Science.gov (United States)

    Good, Jeffrey M.; Giger, Thomas; Dean, Matthew D.; Nachman, Michael W.

    2010-01-01

    The X chromosome often plays a central role in hybrid male sterility between species, but it is unclear if this reflects underlying regulatory incompatibilities. Here we combine phenotypic data with genome-wide expression data to directly associate aberrant expression patterns with hybrid male sterility between two species of mice. We used a reciprocal cross in which F1 males are sterile in one direction and fertile in the other direction, allowing us to associate expression differences with sterility rather than with other hybrid phenotypes. We found evidence of extensive over-expression of the X chromosome during spermatogenesis in sterile but not in fertile F1 hybrid males. Over-expression was most pronounced in genes that are normally expressed after meiosis, consistent with an X chromosome-wide disruption of expression during the later stages of spermatogenesis. This pattern was not a simple consequence of faster evolutionary divergence on the X chromosome, because X-linked expression was highly conserved between the two species. Thus, transcriptional regulation of the X chromosome during spermatogenesis appears particularly sensitive to evolutionary divergence between species. Overall, these data provide evidence for an underlying regulatory basis to reproductive isolation in house mice and underscore the importance of transcriptional regulation of the X chromosome to the evolution of hybrid male sterility. PMID:20941395

  15. Widespread over-expression of the X chromosome in sterile F₁hybrid mice.

    Science.gov (United States)

    Good, Jeffrey M; Giger, Thomas; Dean, Matthew D; Nachman, Michael W

    2010-09-30

    The X chromosome often plays a central role in hybrid male sterility between species, but it is unclear if this reflects underlying regulatory incompatibilities. Here we combine phenotypic data with genome-wide expression data to directly associate aberrant expression patterns with hybrid male sterility between two species of mice. We used a reciprocal cross in which F₁ males are sterile in one direction and fertile in the other direction, allowing us to associate expression differences with sterility rather than with other hybrid phenotypes. We found evidence of extensive over-expression of the X chromosome during spermatogenesis in sterile but not in fertile F₁ hybrid males. Over-expression was most pronounced in genes that are normally expressed after meiosis, consistent with an X chromosome-wide disruption of expression during the later stages of spermatogenesis. This pattern was not a simple consequence of faster evolutionary divergence on the X chromosome, because X-linked expression was highly conserved between the two species. Thus, transcriptional regulation of the X chromosome during spermatogenesis appears particularly sensitive to evolutionary divergence between species. Overall, these data provide evidence for an underlying regulatory basis to reproductive isolation in house mice and underscore the importance of transcriptional regulation of the X chromosome to the evolution of hybrid male sterility.

  16. Increased heart rate variability in mice overexpressing the Cu/Zn superoxide dismutase.

    Science.gov (United States)

    Thireau, Jérôme; Poisson, Denise; Zhang, Bei Li; Gillet, Ludovic; Le Pécheur, Marie; Andres, Christian; London, Jacqueline; Babuty, Dominique

    2008-08-15

    Cu/Zn superoxide dismutase (SOD1) is implicated in various pathological conditions including Down's syndrome, neurodegenerative diseases, and afflictions of the autonomic nervous system (ANS). To assess the SOD1 contribution to ANS dysfunction, especially its influence on cardiac regulation, we studied the heart rate variability (HRV) and cardiac arrhythmias in conscious 12-month-old male and female transgenic mice for the human SOD1 gene (TghSOD1). TghSOD1 mice presented heart rate reduction as compared with control FVB/N individuals. All HRV parameters reflecting parasympathetic activity were increased in TghSOD1. Pharmacological studies confirmed that the parasympathetic tone was exacerbated and the sympathetic pathway was functional in TghSOD1 mice. A high frequency of atrioventricular block and premature ventricular contractions was observed in TghSOD1. By biochemical assays we found that SOD1 activities were multiplied by 9 and 4 respectively in the heart and brainstem of transgenic mice. A twofold decrease in cholinesterase activity was observed in the heart but not in the brainstem. We demonstrate that SOD1 overexpression induces an ANS dysfunction by an exacerbated vagal tone that may be related to impaired cardiac activity of the cholinesterases and may explain the high occurrence of arrhythmias.

  17. CRF receptor antagonist astressin-B reverses and prevents alopecia in CRF over-expressing mice.

    Directory of Open Access Journals (Sweden)

    Lixin Wang

    2011-02-01

    Full Text Available Corticotropin-releasing factor (CRF signaling pathways are involved in the stress response, and there is growing evidence supporting hair growth inhibition of murine hair follicle in vivo upon stress exposure. We investigated whether the blockade of CRF receptors influences the development of hair loss in CRF over-expressing (OE-mice that display phenotypes of Cushing's syndrome and chronic stress, including alopecia. The non-selective CRF receptors antagonist, astressin-B (5 µg/mouse injected peripherally once a day for 5 days in 4-9 months old CRF-OE alopecic mice induced pigmentation and hair re-growth that was largely retained for over 4 months. In young CRF-OE mice, astressin-B prevented the development of alopecia that occurred in saline-treated mice. Histological examination indicated that alopecic CRF-OE mice had hair follicle atrophy and that astressin-B revived the hair follicle from the telogen to anagen phase. However, astressin-B did not show any effect on the elevated plasma corticosterone levels and the increased weights of adrenal glands and visceral fat in CRF-OE mice. The selective CRF₂ receptor antagonist, astressin₂-B had moderate effect on pigmentation, but not on hair re-growth. The commercial drug for alopecia, minoxidil only showed partial effect on hair re-growth. These data support the existence of a key molecular switching mechanism triggered by blocking peripheral CRF receptors with an antagonist to reset hair growth in a mouse model of alopecia associated with chronic stress.

  18. Overexpression of BID in thyroids of transgenic mice increases sensitivity to iodine-induced autoimmune thyroiditis

    Science.gov (United States)

    2014-01-01

    Background BID functions as a bridge molecule between death-receptor and mitochondrial related apoptotic pathways to amplify apoptotic signaling. Our previous studies have demonstrated a substantial increase in BID expression in primary normal thyroid epithelia cells treated with inflammatory cytokines, including the combination of IFNγ and IL-1β or IFNγ and TNFα. The aim of this study was to determine whether an increase in BID expression in thyroid can induce autoimmune thyroiditis. Methods A transgenic mouse line that expresses human BID in thyroid cells was established by fusing a mouse thyroglobulin (Tg) promoter upstream of human BID (Tg-BID). We tested whether the increased expression of pro-apoptotic BID in thyroid would induce autoimmune thyroiditis, both in the presence and absence of 0.3% iodine water. Results Our data show that Tg-BID mice in a CBA/J (H-2 k) background do not spontaneously develop autoimmune thyroiditis for over a year. However, upon ingestion of iodine in the drinking water, autoimmune thyroiditis does develop in Tg-BID transgenic mice, as shown by a significant increase in anti-Tg antibody and mononuclear cell infiltration in the thyroid glands in 30% of mice tested. Serum T4 levels, however, were similar between iodine-treated Tg-BID transgenic mice and the wild type mice. Conclusions Our data demonstrate that increased thyroid expression of BID facilitates the development of autoimmune thyroiditis induced by iodine uptake. However, the overexpression of BID itself is not sufficient to initiate thyroiditis in CBA/J (H-2 k) mice. PMID:24957380

  19. Mutant Mice Lacking the p53 C-Terminal Domain Model Telomere Syndromes

    NARCIS (Netherlands)

    Simeonova, I.; Jaber, S.; Draskovic, I.; Bardot, B.; Fang, M.; Bouarich-Bourimi, R.; Lejour, V.; Charbonnier, L.; Soudais, C.; Bourdon, J.C.; Huerre, M.; Londono-Vallejo, A.; Toledo, F.

    2013-01-01

    Mutations in p53, although frequent in human cancers, have not been implicated in telomere-related syndromes. Here, we show that homozygous mutant mice expressing p53(Delta31), a p53 lacking the C-terminal domain, exhibit increased p53 activity and suffer from aplastic anemia and pulmonary fibrosis,

  20. Trace elements monitored with neutron activation analysis durig neurodegeneration in brains of mutant mice

    Czech Academy of Sciences Publication Activity Database

    Kranda, Karel; Kučera, Jan; Bäurle, J.

    2006-01-01

    Roč. 269, č. 3 (2006), s. 555-559 ISSN 0236-5731 Institutional research plan: CEZ:AV0Z10480505 Keywords : trace elements * neutron activation analysis * brain neurodegeneration * mutant mice Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 0.509, year: 2006

  1. Overexpression of PTPN2 in Visceral Adipose Tissue Ameliorated Atherosclerosis via T Cells Polarization Shift in Diabetic Apoe-/- Mice

    Directory of Open Access Journals (Sweden)

    Ya Li

    2018-03-01

    Full Text Available Background/Aims: Dysregulated inflammation in adipose tissue, marked by increased pro-inflammatory T-cell accumulation and reduced regulatory T cells (Treg, contributes to diabetes-associated insulin resistance and atherosclerosis. However, the molecular mechanisms underlying T-cell-mediated inflammation in adipose tissue remain largely unknown. Methods: Sixty apolipoprotein E (ApoE-/- mice were randomly divided into chow and diabetes groups. Diabetes was induced by a high-fat and high-sugar diet combined with low-dose streptozotocin. Then we transferred a recombinant adenovirus carrying the protein tyrosine phosphatase non-receptor type 2 (PTPN2 gene into epididymal white adipose tissue (EWAT of ApoE-/- mice. After transfection, all mice were euthanized to evaluate the effects of PTPN2 on T cells polarization and atherosclerosis. Results: PTPN2 was downregulated in EWAT of diabetic ApoE-/- mice. PTPN2 overexpression in EWAT reversed the high Th1/Treg and Th17/Treg ratios in EWAT of diabetic mice. In addition, PTPN2 overexpression in EWAT could significantly reduce macrophages infiltration, the ratio of M1/M2 macrophages and the expression of pro-inflammatory cytokines in EWAT, improving insulin resistance. In aortic root lesions, the vulnerability index were significantly decreased by overexpression of PTPN2 in EWAT. Conclusion: These data suggested that PTPN2 overexpression in EWAT would inhibit systemic inflammation and increase the plaque stability via T cells polarization shift in diabetic mice.

  2. Glyoxalase 1 overexpression does not affect atherosclerotic lesion size and severity in ApoE-/- mice with or without diabetes

    DEFF Research Database (Denmark)

    Hanssen, Nordin M J; Brouwers, Olaf; Gijbels, Marion J

    2014-01-01

    are higher in rupture-prone plaques. We here investigated whether overexpression of human GLO1 in ApoE(-/-) mice could reduce the development of atherosclerosis. METHODS AND RESULTS: We crossed C57BL/6 ApoE(-/-) mice with C57BL/6 GLO1 overexpressing mice (huGLO1(+/-)) to generate ApoE(-/-) (n = 16) and Apo......E(-/-) huGLO1(+/-) (n = 20) mice. To induce diabetes, we injected a subset with streptozotocin (STZ) to generate diabetic ApoE(-/-) (n = 8) and ApoE(-/-) huGLO1(+/-) (n = 13) mice. All mice were fed chow and sacrificed at 25 weeks of age. The GLO1 activity was three-fold increased in huGLO1(+/-) aorta......, but aortic root lesion size and phenotype did not differ between mice with and without huGLO1(+/-) overexpression. We detected no differences in gene expression in aortic arches, in AGE levels and cytokines, in circulating cells, and endothelial function between ApoE(-/-) mice with and without huGLO1...

  3. Absence-like and tonic seizures in aspartoacylase/attractin double-mutant mice.

    Science.gov (United States)

    Gohma, Hiroshi; Kuramoto, Takashi; Matalon, Reuben; Surendran, Sankar; Tyring, Stephen; Kitada, Kazuhiro; Sasa, Masashi; Serikawa, Tadao

    2007-04-01

    The Spontaneously Epileptic Rat (SER), a double-mutant for tremor and zitter mutations, shows spontaneous occurrences of absence-like and tonic seizures. Several lines of evidence suggest that the combined effect of Aspa and Atrn mutations is the most likely cause of the epileptic phenotype of the SER. To address this issue, we produced a new double-mutant mouse line carrying both homozygous Aspa-knockout and Atrn(mg-3J) mutant alleles. The Aspa/Atrn double-mutant mice exhibited absence-like and tonic seizures that were characterized by the appearance of 5-7 Hz spike-wave-like complexes and low voltage fast waves on EEGs. These results demonstrate directly that the simultaneous loss of the Aspa and Atrn gene functions causes epileptic seizures in the mouse and suggest that both Aspa and Atrn deficiencies might be responsible for epileptic seizures in the SER.

  4. Bmi1 overexpression in the cerebellar granule cell lineage of mice affects cell proliferation and survival without initiating medulloblastoma formation

    Directory of Open Access Journals (Sweden)

    Hourinaz Behesti

    2013-01-01

    BMI1 is a potent inducer of neural stem cell self-renewal and neural progenitor cell proliferation during development and in adult tissue homeostasis. It is overexpressed in numerous human cancers – including medulloblastomas, in which its functional role is unclear. We generated transgenic mouse lines with targeted overexpression of Bmi1 in the cerebellar granule cell lineage, a cell type that has been shown to act as a cell of origin for medulloblastomas. Overexpression of Bmi1 in granule cell progenitors (GCPs led to a decrease in cerebellar size due to decreased GCP proliferation and repression of the expression of cyclin genes, whereas Bmi1 overexpression in postmitotic granule cells improved cell survival in response to stress by altering the expression of genes in the mitochondrial cell death pathway and of Myc and Lef-1. Although no medulloblastomas developed in ageing cohorts of transgenic mice, crosses with Trp53−/− mice resulted in a low incidence of medulloblastoma formation. Furthermore, analysis of a large collection of primary human medulloblastomas revealed that tumours with a BMI1high TP53low molecular profile are significantly enriched in Group 4 human medulloblastomas. Our data suggest that different levels and timing of Bmi1 overexpression yield distinct cellular outcomes within the same cellular lineage. Importantly, Bmi1 overexpression at the GCP stage does not induce tumour formation, suggesting that BMI1 overexpression in GCP-derived human medulloblastomas probably occurs during later stages of oncogenesis and might serve to enhance tumour cell survival.

  5. Characteristics of gait ataxia in δ2 glutamate receptor mutant mice, ho15J.

    Directory of Open Access Journals (Sweden)

    Eri Takeuchi

    Full Text Available The cerebellum plays a fundamental, but as yet poorly understood, role in the control of locomotion. Recently, mice with gene mutations or knockouts have been used to investigate various aspects of cerebellar function with regard to locomotion. Although many of the mutant mice exhibit severe gait ataxia, kinematic analyses of limb movements have been performed in only a few cases. Here, we investigated locomotion in ho15J mice that have a mutation of the δ2 glutamate receptor. The cerebellum of ho15J mice shows a severe reduction in the number of parallel fiber-Purkinje synapses compared with wild-type mice. Analysis of hindlimb kinematics during treadmill locomotion showed abnormal hindlimb movements characterized by excessive toe elevation during the swing phase, and by severe hyperflexion of the ankles in ho15J mice. The great trochanter heights in ho15J mice were lower than in wild-type mice throughout the step cycle. However, there were no significant differences in various temporal parameters between ho15J and wild-type mice. We suggest that dysfunction of the cerebellar neuronal circuits underlies the observed characteristic kinematic abnormality of hindlimb movements during locomotion of ho15J mice.

  6. AAV-mediated pancreatic overexpression of Igf1 counteracts progression to autoimmune diabetes in mice.

    Science.gov (United States)

    Mallol, Cristina; Casana, Estefania; Jimenez, Veronica; Casellas, Alba; Haurigot, Virginia; Jambrina, Claudia; Sacristan, Victor; Morró, Meritxell; Agudo, Judith; Vilà, Laia; Bosch, Fatima

    2017-07-01

    Type 1 diabetes is characterized by autoimmune destruction of β-cells leading to severe insulin deficiency. Although many improvements have been made in recent years, exogenous insulin therapy is still imperfect; new therapeutic approaches, focusing on preserving/expanding β-cell mass and/or blocking the autoimmune process that destroys islets, should be developed. The main objective of this work was to test in non-obese diabetic (NOD) mice, which spontaneously develop autoimmune diabetes, the effects of local expression of Insulin-like growth factor 1 (IGF1), a potent mitogenic and pro-survival factor for β-cells with immunomodulatory properties. Transgenic NOD mice overexpressing IGF1 specifically in β-cells (NOD-IGF1) were generated and phenotyped. In addition, miRT-containing, IGF1-encoding adeno-associated viruses (AAV) of serotype 8 (AAV8-IGF1-dmiRT) were produced and administered to 4- or 11-week-old non-transgenic NOD females through intraductal delivery. Several histological, immunological, and metabolic parameters were measured to monitor disease over a period of 28-30 weeks. In transgenic mice, local IGF1 expression led to long-term suppression of diabetes onset and robust protection of β-cell mass from the autoimmune insult. AAV-mediated pancreatic-specific overexpression of IGF1 in adult animals also dramatically reduced diabetes incidence, both when vectors were delivered before pathology onset or once insulitis was established. Transgenic NOD-IGF1 and AAV8-IGF1-dmiRT-treated NOD animals had much less islet infiltration than controls, preserved β-cell mass, and normal insulinemia. Transgenic and AAV-treated islets showed less expression of antigen-presenting molecules, inflammatory cytokines, and chemokines important for tissue-specific homing of effector T cells, suggesting IGF1 modulated islet autoimmunity in NOD mice. Local expression of Igf1 by AAV-mediated gene transfer counteracts progression to diabetes in NOD mice. This study suggests a

  7. Chronic wasting disease prions are not transmissible to transgenic mice overexpressing human prion protein.

    Science.gov (United States)

    Sandberg, Malin K; Al-Doujaily, Huda; Sigurdson, Christina J; Glatzel, Markus; O'Malley, Catherine; Powell, Caroline; Asante, Emmanuel A; Linehan, Jacqueline M; Brandner, Sebastian; Wadsworth, Jonathan D F; Collinge, John

    2010-10-01

    Chronic wasting disease (CWD) is a prion disease that affects free-ranging and captive cervids, including mule deer, white-tailed deer, Rocky Mountain elk and moose. CWD-infected cervids have been reported in 14 USA states, two Canadian provinces and in South Korea. The possibility of a zoonotic transmission of CWD prions via diet is of particular concern in North America where hunting of cervids is a popular sport. To investigate the potential public health risks posed by CWD prions, we have investigated whether intracerebral inoculation of brain and spinal cord from CWD-infected mule deer transmits prion infection to transgenic mice overexpressing human prion protein with methionine or valine at polymorphic residue 129. These transgenic mice have been utilized in extensive transmission studies of human and animal prion disease and are susceptible to BSE and vCJD prions, allowing comparison with CWD. Here, we show that these mice proved entirely resistant to infection with mule deer CWD prions arguing that the transmission barrier associated with this prion strain/host combination is greater than that observed with classical BSE prions. However, it is possible that CWD may be caused by multiple prion strains. Further studies will be required to evaluate the transmission properties of distinct cervid prion strains as they are characterized.

  8. Overexpression of a transcription factor LYL1 induces T- and B-cell lymphoma in mice.

    Science.gov (United States)

    Zhong, Y; Jiang, L; Hiai, H; Toyokuni, S; Yamada, Y

    2007-10-18

    LYL1, a member of the class II basic helix-loop-helix transcription factors, is aberrantly expressed in a fraction of human T-cell acute lymphoblastic leukemia. Here, we generated transgenic mice ubiquitously overexpressing LYL1 using a construct expressing full-length cDNA driven by a human elongation factor 1alpha promoter. Four independent lines exhibiting high LYL1 expression were established. Of these transgenic mice, 96% displayed loss of hair with a short kinked tail. Furthermore, 30% of them developed malignant lymphoma, with an average latent period of 352 days. In these mice, histological examination revealed tumor cell infiltration in multiple organs and immunohistochemical analysis showed that the infiltrated tumor cells were either CD3 or CD45R/B220-positive; fluorescence-activated cell sorter analysis indicated that each tumor consisted either of mainly CD4, CD8 double-positive T cells or mature B cells; the clonality of LYL1-induced lymphoma was confirmed by T-cell receptor rearrangement and immunoglobulin heavy-chain gene rearrangement analyses. Mammalian two-hybrid analysis and luciferase assay suggested that excess LYL1 blocked the dimerization of E2A and thus inhibited the regulatory activity of E2A on the CD4 promoter. Reverse transcription-polymerase chain reaction results showed that the expression of certain E2A/HEB target genes was downregulated. Taken together, our results provide direct evidence that aberrant expression of LYL1 plays a role in lymphomagenesis.

  9. Distinct neurobehavioural effects of cannabidiol in transmembrane domain neuregulin 1 mutant mice.

    Directory of Open Access Journals (Sweden)

    Leonora E Long

    Full Text Available The cannabis constituent cannabidiol (CBD possesses anxiolytic and antipsychotic properties. We have previously shown that transmembrane domain neuregulin 1 mutant (Nrg1 TM HET mice display altered neurobehavioural responses to the main psychoactive constituent of cannabis, Δ(9-tetrahydrocannabinol. Here we investigated whether Nrg1 TM HET mice respond differently to CBD and whether CBD reverses schizophrenia-related phenotypes expressed by these mice. Adult male Nrg1 TM HET and wild type-like littermates (WT received vehicle or CBD (1, 50 or 100 mg/kg i.p. for 21 days. During treatment and 48 h after withdrawal we measured behaviour, whole blood CBD concentrations and autoradiographic receptor binding. Nrg1 HET mice displayed locomotor hyperactivity, PPI deficits and reduced 5-HT(2A receptor binding density in the substantia nigra, but these phenotypes were not reversed by CBD. However, long-term CBD (50 and 100 mg/kg selectively enhanced social interaction in Nrg1 TM HET mice. Furthermore, acute CBD (100 mg/kg selectively increased PPI in Nrg1 TM HET mice, although tolerance to this effect was manifest upon repeated CBD administration. Long-term CBD (50 mg/kg also selectively increased GABA(A receptor binding in the granular retrosplenial cortex in Nrg1 TM HET mice and reduced 5-HT(2A binding in the substantia nigra in WT mice. Nrg1 appears necessary for CBD-induced anxiolysis since only WT mice developed decreased anxiety-related behaviour with repeated CBD treatment. Altered pharmacokinetics in mutant mice could not explain our findings since no genotype differences existed in CBD blood concentrations. Here we demonstrate that Nrg1 modulates acute and long-term neurobehavioural effects of CBD, which does not reverse the schizophrenia-relevant phenotypes.

  10. Macrophage overexpression of matrix metalloproteinase-9 in aged mice improves diastolic physiology and cardiac wound healing after myocardial infarction.

    Science.gov (United States)

    Meschiari, Cesar A; Jung, Mira; Iyer, Rugmani Padmanabhan; Yabluchanskiy, Andriy; Toba, Hiroe; Garrett, Michael R; Lindsey, Merry L

    2018-02-01

    Matrix metalloproteinase (MMP)-9 increases in the myocardium with advanced age and after myocardial infarction (MI). Because young transgenic (TG) mice overexpressing human MMP-9 only in macrophages show better outcomes post-MI, whereas aged TG mice show a worse aging phenotype, we wanted to evaluate the effect of aging superimposed on MI to see if the detrimental effect of aging counteracted the benefits of macrophage MMP-9 overexpression. We used 17- to 28-mo-old male and female C57BL/6J wild-type (WT) and TG mice ( n = 10-21 mice/group) to evaluate the effects of aging superimposed on MI. Despite similar infarct areas and mortality rates at day 7 post-MI, aging TG mice showed improved diastolic properties and remodeling index compared with WT mice (both P wound healing through direct and indirect mechanisms to improve diastolic physiology and remodeling. NEW & NOTEWORTHY Aging mice with macrophage overexpression of matrix metalloproteinase-9 have increased macrophage numbers 7 days after myocardial infarction, resulting in improved diastolic physiology and left ventricular remodeling through effects on cardiac wound healing.

  11. Mutant mice: experimental organisms as materialised models in biomedicine.

    Science.gov (United States)

    Huber, Lara; Keuck, Lara K

    2013-09-01

    Animal models have received particular attention as key examples of material models. In this paper, we argue that the specificities of establishing animal models-acknowledging their status as living beings and as epistemological tools-necessitate a more complex account of animal models as materialised models. This becomes particularly evident in animal-based models of diseases that only occur in humans: in these cases, the representational relation between animal model and human patient needs to be generated and validated. The first part of this paper presents an account of how disease-specific animal models are established by drawing on the example of transgenic mice models for Alzheimer's disease. We will introduce an account of validation that involves a three-fold process including (1) from human being to experimental organism; (2) from experimental organism to animal model; and (3) from animal model to human patient. This process draws upon clinical relevance as much as scientific practices and results in disease-specific, yet incomplete, animal models. The second part of this paper argues that the incompleteness of models can be described in terms of multi-level abstractions. We qualify this notion by pointing to different experimental techniques and targets of modelling, which give rise to a plurality of models for a specific disease. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Astroglial c-Myc overexpression predisposes mice to primary malignant gliomas

    DEFF Research Database (Denmark)

    Jensen, Niels Aagaard; Pedersen, Karen-Marie; Lihme, Frederikke

    2003-01-01

    Malignant astrocytomas are common human primary brain tumors that result from neoplastic transformation of astroglia or their progenitors. Here we show that deregulation of the c-Myc pathway in developing astroglia predisposes mice to malignant astrocytomas within 2-3 weeks of age. The genetically...... engineered murine (GEM) gliomas harbor a molecular signature resembling that of human primary glioblastoma multiforme, including up-regulation of epidermal growth factor receptor and Mdm2. The GEM gliomas seem to originate in an abnormal population of glial fibrillary acidic protein-expressing cells...... the neoplastic process, presumably by inducing the sustained growth of early astroglial cells. This is in contrast to most other transgenic studies in which c-Myc overexpression requires co-operating transgenes for rapid tumor induction....

  13. Metabolomic Analysis of the Skeletal Muscle of Mice Overexpressing PGC-1α.

    Directory of Open Access Journals (Sweden)

    Yukino Hatazawa

    Full Text Available Peroxisome proliferator-activated receptor (PPAR γ coactivator 1α (PGC-1α is a coactivator of various nuclear receptors and other transcription factors whose expression increases in the skeletal muscle during exercise. We have previously made transgenic mice overexpressing PGC-1α in the skeletal muscle (PGC-1α-Tg mice. PGC-1α upregulates the expression of genes associated with red fibers, mitochondrial function, fatty acid oxidation, and branched chain amino acid (BCAA degradation. However, global analyses of the actual metabolic products have not been investigated. In this study, we conducted metabolomic analysis of the skeletal muscle in PGC-1α-Tg mice by capillary electrophoresis with electrospray ionization time-of-flight mass spectrometry. Principal component analysis and hierarchical cluster analysis showed clearly distinguishable changes in the metabolites between PGC-1α-Tg and wild-type control mice. Changes were observed in metabolite levels of various metabolic pathways such as the TCA cycle, pentose phosphate pathway, nucleotide synthesis, purine nucleotide cycle, and amino acid metabolism, including BCAA and β-alanine. Namely, metabolic products of the TCA cycle increased in PGC-1α-Tg mice, with increased levels of citrate (2.3-fold, succinate (2.2-fold, fumarate (2.8-fold, and malate (2.3-fold observed. Metabolic products associated with the pentose phosphate pathway and nucleotide biosynthesis also increased in PGC-1α-Tg mice. Meanwhile, BCAA levels decreased (Val, 0.7-fold; Leu, 0.8-fold; and Ile, 0.7-fold, and Glu (3.1-fold and Asp (2.2-fold levels increased. Levels of β-alanine and related metabolites were markedly decreased in PGC-1α-Tg mice. Coordinated regulation of the TCA cycle and amino acid metabolism, including BCAA, suggests that PGC-1α plays important roles in energy metabolism. Moreover, our metabolomics data showing the activation of the purine nucleotide pathway, malate-aspartate shuttle, as well as

  14. Altered metabolism of growth hormone receptor mutant mice: a combined NMR metabonomics and microarray study.

    Directory of Open Access Journals (Sweden)

    Horst Joachim Schirra

    Full Text Available BACKGROUND: Growth hormone is an important regulator of post-natal growth and metabolism. We have investigated the metabolic consequences of altered growth hormone signalling in mutant mice that have truncations at position 569 and 391 of the intracellular domain of the growth hormone receptor, and thus exhibit either low (around 30% maximum or no growth hormone-dependent STAT5 signalling respectively. These mutations result in altered liver metabolism, obesity and insulin resistance. METHODOLOGY/PRINCIPAL FINDINGS: The analysis of metabolic changes was performed using microarray analysis of liver tissue and NMR metabonomics of urine and liver tissue. Data were analyzed using multivariate statistics and Gene Ontology tools. The metabolic profiles characteristic for each of the two mutant groups and wild-type mice were identified with NMR metabonomics. We found decreased urinary levels of taurine, citrate and 2-oxoglutarate, and increased levels of trimethylamine, creatine and creatinine when compared to wild-type mice. These results indicate significant changes in lipid and choline metabolism, and were coupled with increased fat deposition, leading to obesity. The microarray analysis identified changes in expression of metabolic enzymes correlating with alterations in metabolite concentration both in urine and liver. Similarity of mutant 569 to the wild-type was seen in young mice, but the pattern of metabolites shifted to that of the 391 mutant as the 569 mice became obese after six months age. CONCLUSIONS/SIGNIFICANCE: The metabonomic observations were consistent with the parallel analysis of gene expression and pathway mapping using microarray data, identifying metabolites and gene transcripts involved in hepatic metabolism, especially for taurine, choline and creatinine metabolism. The systems biology approach applied in this study provides a coherent picture of metabolic changes resulting from impaired STAT5 signalling by the growth hormone

  15. Abnormalities in brain structure and behavior in GSK-3alpha mutant mice

    Directory of Open Access Journals (Sweden)

    Kaidanovich-Beilin Oksana

    2009-11-01

    Full Text Available Abstract Background Glycogen synthase kinase-3 (GSK-3 is a widely expressed and highly conserved serine/threonine protein kinase encoded by two genes that generate two related proteins: GSK-3α and GSK-3β. Mice lacking a functional GSK-3α gene were engineered in our laboratory; they are viable and display insulin sensitivity. In this study, we have characterized brain functions of GSK-3α KO mice by using a well-established battery of behavioral tests together with neurochemical and neuroanatomical analysis. Results Similar to the previously described behaviours of GSK-3β+/-mice, GSK-3α mutants display decreased exploratory activity, decreased immobility time and reduced aggressive behavior. However, genetic inactivation of the GSK-3α gene was associated with: decreased locomotion and impaired motor coordination, increased grooming activity, loss of social motivation and novelty; enhanced sensorimotor gating and impaired associated memory and coordination. GSK-3α KO mice exhibited a deficit in fear conditioning, however memory formation as assessed by a passive avoidance test was normal, suggesting that the animals are sensitized for active avoidance of a highly aversive stimulus in the fear-conditioning paradigm. Changes in cerebellar structure and function were observed in mutant mice along with a significant decrease of the number and size of Purkinje cells. Conclusion Taken together, these data support a role for the GSK-3α gene in CNS functioning and possible involvement in the development of psychiatric disorders.

  16. Motor hypertonia and lack of locomotor coordination in mutant mice lacking DSCAM.

    Science.gov (United States)

    Lemieux, Maxime; Laflamme, Olivier D; Thiry, Louise; Boulanger-Piette, Antoine; Frenette, Jérôme; Bretzner, Frédéric

    2016-03-01

    Down syndrome cell adherence molecule (DSCAM) contributes to the normal establishment and maintenance of neural circuits. Whereas there is abundant literature regarding the role of DSCAM in the neural patterning of the mammalian retina, less is known about motor circuits. Recently, DSCAM mutation has been shown to impair bilateral motor coordination during respiration, thus causing death at birth. DSCAM mutants that survive through adulthood display a lack of locomotor endurance and coordination in the rotarod test, thus suggesting that the DSCAM mutation impairs motor control. We investigated the motor and locomotor functions of DSCAM(2J) mutant mice through a combination of anatomical, kinematic, force, and electromyographic recordings. With respect to wild-type mice, DSCAM(2J) mice displayed a longer swing phase with a limb hyperflexion at the expense of a shorter stance phase during locomotion. Furthermore, electromyographic activity in the flexor and extensor muscles was increased and coactivated over 20% of the step cycle over a wide range of walking speeds. In contrast to wild-type mice, which used lateral walk and trot at walking speed, DSCAM(2J) mice used preferentially less coordinated gaits, such as out-of-phase walk and pace. The neuromuscular junction and the contractile properties of muscles, as well as their muscle spindles, were normal, and no signs of motor rigidity or spasticity were observed during passive limb movements. Our study demonstrates that the DSCAM mutation induces dystonic hypertonia and a disruption of locomotor gaits. Copyright © 2016 the American Physiological Society.

  17. Cp/Heph mutant mice have iron-induced neurodegeneration diminished by deferiprone

    Science.gov (United States)

    Zhao, Liangliang; Hadziahmetovic, Majda; Wang, Chenguang; Xu, Xueying; Song, Ying; Jinnah, H.A.; Wodzinska, Jolanta; Iacovelli, Jared; Wolkow, Natalie; Krajacic, Predrag; Weissberger, Alyssa Cwanger; Connelly, John; Spino, Michael; Lee, Michael K.; Connor, James; Giasson, Benoit; Harris, Z. Leah; Dunaief, Joshua L.

    2016-01-01

    Brain iron accumulates in several neurodegenerative diseases and can cause oxidative damage, but mechanisms of brain iron homeostasis are incompletely understood. Patients with mutations in the cellular iron-exporting ferroxidase ceruloplasmin (Cp) have brain iron accumulation causing neurodegeneration. Here, we assessed the brains of mice with combined mutation of Cp and its homolog hephaestin. Compared to single mutants, brain iron accumulation was accelerated in double mutants in the cerebellum, substantia nigra, and hippocampus. Iron accumulated within glia, while neurons were iron deficient. There was loss of both neurons and glia. Mice developed ataxia and tremor, and most died by 9 months. Treatment with the oral iron chelator deferiprone diminished brain iron levels, protected against neuron loss, and extended lifespan. Ferroxidases play important, partially overlapping roles in brain iron homeostasis by facilitating iron export from glia, making iron available to neurons. PMID:26303407

  18. Impaired insulin secretion and glucose intolerance in synaptotagmin-7 null mutant mice

    DEFF Research Database (Denmark)

    Gustavsson, Natalia; Lao, Ye; Maximov, Anton

    2008-01-01

    and insulin release. Here, we show that synaptotagmin-7 is required for the maintenance of systemic glucose tolerance and glucose-stimulated insulin secretion. Mutant mice have normal insulin sensitivity, insulin production, islet architecture and ultrastructural organization, and metabolic and calcium...... secretion in pancreatic beta-cells. Of these other synaptotagmins, synaptotagmin-7 is one of the most abundant and is present in pancreatic beta-cells. To determine whether synaptotagmin-7 regulates Ca(2+)-dependent insulin secretion, we analyzed synaptotagmin-7 null mutant mice for glucose tolerance...... responses but exhibit impaired glucose-induced insulin secretion, indicating a calcium-sensing defect during insulin-containing secretory granule exocytosis. Taken together, our findings show that synaptotagmin-7 functions as a positive regulator of insulin secretion and may serve as a calcium sensor...

  19. Expanding the body mass range: associations between BMR and tissue morphology in wild type and mutant dwarf mice (David mice).

    Science.gov (United States)

    Meyer, Carola W; Neubronner, Juliane; Rozman, Jan; Stumm, Gabi; Osanger, Andreas; Stoeger, Claudia; Augustin, Martin; Grosse, Johannes; Klingenspor, Martin; Heldmaier, Gerhard

    2007-02-01

    We sought to identify associations of basal metabolic rate (BMR) with morphological traits in laboratory mice. In order to expand the body mass (BM) range at the intra-strain level, and to minimize relevant genetic variation, we used male and female wild type mice (C3HeB/FeJ) and previously unpublished ENU-induced dwarf mutant littermates (David mice), covering a body mass range from 13.5 g through 32.3 g. BMR was measured at 30 degrees C, mice were killed by means of CO(2 )overdose, and body composition (fat mass and lean mass) was subsequently analyzed by dual X-ray absorptiometry (DEXA), after which mice were dissected into 12 (males) and 10 (females) components, respectively. Across the 44 individuals, 43% of the variation in the basal rates of metabolism was associated with BM. The latter explained 47% to 98% of the variability in morphology of the different tissues. Our results demonstrate that sex is a major determinant of body composition and BMR in mice: when adjusted for BM, females contained many larger organs, more fat mass, and less lean mass compared to males. This could be associated with a higher mass adjusted BMR in females. Once the dominant effects of sex and BM on BMR and tissue mass were removed, and after accounting for multiple comparisons, no further significant association between individual variation in BMR and tissue mass emerged.

  20. Oxidized SOD1 alters proteasome activities in vitro and in the cortex of SOD1 overexpressing mice.

    Science.gov (United States)

    Le Pecheur, Marie; Bourdon, Emmanuel; Paly, Evelyne; Farout, Luc; Friguet, Bertrand; London, Jacqueline

    2005-07-04

    Premature ageing, one of the characteristics of Down syndrome (DS), may involve oxidative stress and impairment of proteasome activity. Transgenic mice overexpressing the human copper/zinc superoxide dismutase (SOD1) gene are one of the first murine models for DS and it has been shown that SOD1 overexpression might be either deleterious or beneficial. Here, we show a reduction in proteasome activities in the cortex of SOD1 transgenic mice and an associated increase in the content of oxidized SOD1 protein. As we demonstrate that in vitro oxidized SOD can inhibit purified proteasome peptidase activities, modified SOD1 might be partially responsible for proteasome inhibition shown in SOD1 transgenic mice.

  1. Progression of Hepatic Adenoma to Carcinoma in Ogg1 Mutant Mice Induced by Phenobarbital

    Directory of Open Access Journals (Sweden)

    Anna Kakehashi

    2017-01-01

    Full Text Available The carcinogenic potential of phenobarbital (PB was assessed in a mouse line carrying a mutant Mmh allele of the Mmh/Ogg1 gene encoding the enzyme oxoguanine DNA glycosylase (Ogg1 responsible for the repair of 8-hydroxy-2′-deoxyguanosine (8-OHdG. Mmh homozygous mutant (Ogg1−/− and wild-type (Ogg1+/+ male and female, 10-week-old, mice were treated with 500 ppm PB in diet for 78 weeks. Hepatocellular carcinomas (HCCs were found in PB-treated Ogg1−/− mice, while Ogg1+/+ animals developed only hepatocellular adenomas (HCAs at the same rate. This was coordinated with PB-induced significant elevation of 8-OHdG formation in DNA and cell proliferation in adjacent liver of Ogg1−/− mice. Proteome analysis predicted activation of transcriptional factor Nrf2 in the livers and HCAs of PB-administered Ogg1+/+ mice; however, its activation was insufficient or absent in the livers and HCCs of Ogg1−/− mice, respectively. Significant elevation of phase I and II metabolizing enzymes was demonstrated in both Ogg1−/− and Ogg1+/+ animals. Treatment of Ogg1−/− mice with PB resulted in significant elevation of cell proliferation in the liver. These results indicate that PB induced progression from HCA to HCC in Ogg1−/− mice, due to persistent accumulation of DNA oxidative base modifications and suppression of Nrf2-mediated oxidative stress response, resulting in significant elevation of cell proliferation.

  2. Neurobehavioral performances and brain regional metabolism in Dab1(scm) (scrambler) mutant mice.

    Science.gov (United States)

    Jacquelin, C; Lalonde, R; Jantzen-Ossola, C; Strazielle, C

    2013-09-01

    As disabled-1 (DAB1) protein acts downstream in the reelin signaling pathway modulating neuronal migration, glutamate neurotransmission, and cytoskeletal function, the disabled-1 gene mutation (scrambler or Dab1(scm) mutation) results in ataxic mice displaying dramatic neuroanatomical defects similar to those observed in the reeler gene (Reln) mutation. By comparison to non-ataxic controls, Dab1(scm) mutants showed severe motor coordination impairments on stationary beam, coat-hanger, and rotorod tests but were more active in the open-field. Dab1(scm) mutants were also less anxious in the elevated plus-maze but with higher latencies in the emergence test. In mutants versus controls, changes in regional brain metabolism as measured by cytochrome oxidase (COX) activity occurred mainly in structures intimately connected with the cerebellum, in basal ganglia, in limbic regions, particularly hippocampus, as well as in visual and parietal sensory cortices. Although behavioral results characterized a major cerebellar disorder in the Dab1(scm) mutants, motor activity impairments in the open-field were associated with COX activity changes in efferent basal ganglia structures such as the substantia nigra, pars reticulata. Metabolic changes in this structure were also associated with the anxiety changes observed in the elevated plus-maze and emergence test. These results indicate a crucial participation of the basal ganglia in the functional phenotype of ataxic Dab1(scm) mutants. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Conserved role of unc-79 in ethanol responses in lightweight mutant mice.

    Directory of Open Access Journals (Sweden)

    David J Speca

    2010-08-01

    Full Text Available The mechanisms by which ethanol and inhaled anesthetics influence the nervous system are poorly understood. Here we describe the positional cloning and characterization of a new mouse mutation isolated in an N-ethyl-N-nitrosourea (ENU forward mutagenesis screen for animals with enhanced locomotor activity. This allele, Lightweight (Lwt, disrupts the homolog of the Caenorhabditis elegans (C. elegans unc-79 gene. While Lwt/Lwt homozygotes are perinatal lethal, Lightweight heterozygotes are dramatically hypersensitive to acute ethanol exposure. Experiments in C. elegans demonstrate a conserved hypersensitivity to ethanol in unc-79 mutants and extend this observation to the related unc-80 mutant and nca-1;nca-2 double mutants. Lightweight heterozygotes also exhibit an altered response to the anesthetic isoflurane, reminiscent of unc-79 invertebrate mutant phenotypes. Consistent with our initial mapping results, Lightweight heterozygotes are mildly hyperactive when exposed to a novel environment and are smaller than wild-type animals. In addition, Lightweight heterozygotes exhibit increased food consumption yet have a leaner body composition. Interestingly, Lightweight heterozygotes voluntarily consume more ethanol than wild-type littermates. The acute hypersensitivity to and increased voluntary consumption of ethanol observed in Lightweight heterozygous mice in combination with the observed hypersensitivity to ethanol in C. elegans unc-79, unc-80, and nca-1;nca-2 double mutants suggests a novel conserved pathway that might influence alcohol-related behaviors in humans.

  4. ATP Synthase β-Chain Overexpression in SR-BI Knockout Mice Increases HDL Uptake and Reduces Plasma HDL Level

    Directory of Open Access Journals (Sweden)

    Kexiu Song

    2014-01-01

    Full Text Available HDL cholesterol is known to be inversely correlated with cardiovascular disease due to its diverse antiatherogenic functions. SR-BI mediates the selective uptake of HDL-C. SR-BI knockout diminishes but does not completely block the transport of HDL; other receptors may be involved. Ectopic ATP synthase β-chain in hepatocytes has been previously characterized as an apoA-I receptor, triggering HDL internalization. This study was undertaken to identify the overexpression of ectopic ATP synthase β-chain on DIL-HDL uptake in primary hepatocytes in vitro and on plasma HDL levels in SR-BI knockout mice. Human ATP synthase β-chain cDNA was delivered to the mouse liver by adenovirus and GFP adenovirus as control. The adenovirus-mediated overexpression of β-chain was identified at both mRNA and protein levels on mice liver and validated by its increasing of DiL-HDL uptake in primary hepatocytes. In response to hepatic overexpression of β-chain, plasma HDL-C levels and cholesterol were reduced in SR-BI knockout mice, compared with the control. The present data suggest that ATP synthase β-chain can serve as the endocytic receptor of HDL, and its overexpression can reduce plasma HDL-C.

  5. Dearth and Delayed Maturation of Testicular Germ Cells in Fanconi Anemia E Mutant Male Mice.

    Directory of Open Access Journals (Sweden)

    Chun Fu

    Full Text Available After using a self-inactivating lentivirus for non-targeted insertional mutagenesis in mice, we identified a transgenic family with a recessive mutation that resulted in reduced fertility in homozygous transgenic mice. The lentiviral integration site was amplified by inverse PCR. Sequencing revealed that integration had occurred in intron 8 of the mouse Fance gene, which encodes the Fanconi anemia E (Fance protein. Fanconi anemia (FA proteins play pivotal roles in cellular responses to DNA damage and Fance acts as a molecular bridge between the FA core complex and Fancd2. To investigate the reduced fertility in the mutant males, we analyzed postnatal development of testicular germ cells. At one week after birth, most tubules in the mutant testes contained few or no germ cells. Over the next 2-3 weeks, germ cells accumulated in a limited number of tubules, so that some tubules contained germ cells around the full periphery of the tubule. Once sufficient numbers of germ cells had accumulated, they began to undergo the later stages of spermatogenesis. Immunoassays revealed that the Fancd2 protein accumulated around the periphery of the nucleus in normal developing spermatocytes, but we did not detect a similar localization of Fancd2 in the Fance mutant testes. Our assays indicate that although Fance mutant males are germ cell deficient at birth, the extant germ cells can proliferate and, if they reach a threshold density, can differentiate into mature sperm. Analogous to previous studies of FA genes in mice, our results show that the Fance protein plays an important, but not absolutely essential, role in the initial developmental expansion of the male germ line.

  6. Neuron-specific caveolin-1 overexpression improves motor function and preserves memory in mice subjected to brain trauma.

    Science.gov (United States)

    Egawa, Junji; Schilling, Jan M; Cui, Weihua; Posadas, Edmund; Sawada, Atsushi; Alas, Basheer; Zemljic-Harpf, Alice E; Fannon-Pavlich, McKenzie J; Mandyam, Chitra D; Roth, David M; Patel, Hemal H; Patel, Piyush M; Head, Brian P

    2017-08-01

    Studies in vitro and in vivo demonstrate that membrane/lipid rafts and caveolin (Cav) organize progrowth receptors, and, when overexpressed specifically in neurons, Cav-1 augments neuronal signaling and growth and improves cognitive function in adult and aged mice; however, whether neuronal Cav-1 overexpression can preserve motor and cognitive function in the brain trauma setting is unknown. Here, we generated a neuron-targeted Cav-1-overexpressing transgenic (Tg) mouse [synapsin-driven Cav-1 (SynCav1 Tg)] and subjected it to a controlled cortical impact model of brain trauma and measured biochemical, anatomic, and behavioral changes. SynCav1 Tg mice exhibited increased hippocampal expression of Cav-1 and membrane/lipid raft localization of postsynaptic density protein 95, NMDA receptor, and tropomyosin receptor kinase B. When subjected to a controlled cortical impact, SynCav1 Tg mice demonstrated preserved hippocampus-dependent fear learning and memory, improved motor function recovery, and decreased brain lesion volume compared with wild-type controls. Neuron-targeted overexpression of Cav-1 in the adult brain prevents hippocampus-dependent learning and memory deficits, restores motor function after brain trauma, and decreases brain lesion size induced by trauma. Our findings demonstrate that neuron-targeted Cav-1 can be used as a novel therapeutic strategy to restore brain function and prevent trauma-associated maladaptive plasticity.-Egawa, J., Schilling, J. M., Cui, W., Posadas, E., Sawada, A., Alas, B., Zemljic-Harpf, A. E., Fannon-Pavlich, M. J., Mandyam, C. D., Roth, D. M., Patel, H. H., Patel, P. M., Head, B. P. Neuron-specific caveolin-1 overexpression improves motor function and preserves memory in mice subjected to brain trauma. © FASEB.

  7. Impact of Non-Invasively Induced Motor Deficits on Tibial Cortical Properties in Mutant Lurcher Mice.

    Directory of Open Access Journals (Sweden)

    Alena Jindrová

    Full Text Available It has been shown that Lurcher mutant mice have significantly altered motor abilities, regarding their motor coordination and muscular strength because of olivorecebellar degeneration. We assessed the response of the cross-sectional geometry and lacuno-canalicular network properties of the tibial mid-diaphyseal cortical bone to motor differences between Lurcher and wild-type (WT male mice from the B6CBA strain. The first data set used in the cross-sectional geometry analysis consists of 16 mice of 4 months of age and 32 mice of 9 months of age. The second data set used in the lacunar-canalicular network analysis consists of 10 mice of 4 months of age. We compared two cross-sectional geometry and four lacunar-canalicular properties by I-region using the maximum and minimum second moment of area and anatomical orientation as well as H-regions using histological differences within a cross section. We identified inconsistent differences in the studied cross-sectional geometry properties between Lurcher and WT mice. The biggest significant difference between Lurcher and WT mice is found in the number of canaliculi, whereas in the other studied properties are only limited. Lurcher mice exhibit an increased number of canaliculi (p < 0.01 in all studied regions compared with the WT controls. The number of canaliculi is also negatively correlated with the distance from the centroid in the Lurcher and positively correlated in the WT mice. When the Lurcher and WT sample is pooled, the number of canaliculi and lacunar volume is increased in the posterior Imax region, and in addition, midcortical H-region exhibit lower number of canaliculi, lacuna to lacuna distance and increased lacunar volume. Our results indicate, that the importance of precise sample selection within cross sections in future studies is highlighted because of the histological heterogeneity of lacunar-canalicular network properties within the I-region and H-region in the mouse cortical

  8. Characterisation of prostate cancer lesions in heterozygous Men1 mutant mice

    International Nuclear Information System (INIS)

    Seigne, Christelle; Fontanière, Sandra; Carreira, Christine; Lu, Jieli; Tong, Wei-Ming; Fontanière, Bernard; Wang, Zhao-Qi; Zhang, Chang Xian; Frappart, Lucien

    2010-01-01

    Mutations of the MEN1 gene predispose to multiple endocrine neoplasia type 1 (MEN1) syndrome. Our group and others have shown that Men1 disruption in mice recapitulates MEN1 pathology. Intriguingly, rare lesions in hormone-dependent tissues, such as prostate and mammary glands, were also observed in the Men1 mutant mice. To study the occurrence of prostate lesions, we followed a male mouse cohort of 47 Men1 +/- mice and 23 age-matched control littermates, starting at 18 months of age, and analysed the prostate glands from the cohort. Six Men1 +/- mice (12.8%) developed prostate cancer, including two adenocarcinomas and four in situ carcinomas, while none of the control mice developed cancerous lesions. The expression of menin encoded by the Men1 gene was found to be drastically reduced in all carcinomas, and partial LOH of the wild-type Men1 allele was detected in three of the five analysed lesions. Using immunostaining for the androgen receptor and p63, a basal epithelial cell marker, we demonstrated that the menin-negative prostate cancer cells did not display p63 expression and that the androgen receptor was expressed but more heterogeneous in these lesions. Furthermore, our data showed that the expression of the cyclin-dependent kinase inhibitor CDKN1B (p27), a Men1 target gene known to be inactivated during prostate cell tumorigenesis, was notably decreased in the prostate cancers that developed in the mutant mice. Our work suggests the possible involvement of Men1 inactivation in the tumorigenesis of the prostate gland

  9. Overexpression of IGF-I in skeletal muscle of transgenic mice does not prevent unloading-induced atrophy

    Science.gov (United States)

    Criswell, D. S.; Booth, F. W.; DeMayo, F.; Schwartz, R. J.; Gordon, S. E.; Fiorotto, M. L.

    1998-01-01

    This study examined the association between local insulin-like growth factor I (IGF-I) overexpression and atrophy in skeletal muscle. We hypothesized that endogenous skeletal muscle IGF-I mRNA expression would decrease with hindlimb unloading (HU) in mice, and that transgenic mice overexpressing human IGF-I (hIGF-I) specifically in skeletal muscle would exhibit less atrophy after HU. Male transgenic mice and nontransgenic mice from the parent strain (FVB) were divided into four groups (n = 10/group): 1) transgenic, weight-bearing (IGF-I/WB); 2) transgenic, hindlimb unloaded (IGF-I/HU); 3) nontransgenic, weight-bearing (FVB/WB); and 4) nontransgenic, hindlimb unloaded (FVB/HU). HU groups were hindlimb unloaded for 14 days. Body mass was reduced (P < 0.05) after HU in both IGF-I (-9%) and FVB mice (-13%). Contrary to our hypothesis, we found that the relative abundance of mRNA for the endogenous rodent IGF-I (rIGF-I) was unaltered by HU in the gastrocnemius (GAST) muscle of wild-type FVB mice. High-level expression of hIGF-I peptide and mRNA was confirmed in the GAST and tibialis anterior (TA) muscles of the transgenic mice. Nevertheless, masses of the GAST and TA muscles were reduced (P < 0.05) in both FVB/HU and IGF-I/HU groups compared with FVB/WB and IGF-I/WB groups, respectively, and the percent atrophy in mass of these muscles did not differ between FVB and IGF-I mice. Therefore, skeletal muscle atrophy may not be associated with a reduction of endogenous rIGF-I mRNA level in 14-day HU mice. We conclude that high local expression of hIGF-I mRNA and peptide in skeletal muscle alone cannot attenuate unloading-induced atrophy of fast-twitch muscle in mice.

  10. Disturbed α-Cell Function in Mice with β-Cell Specific Overexpression of Human Islet Amyloid Polypeptide

    Directory of Open Access Journals (Sweden)

    Bo Ahrén

    2008-01-01

    Full Text Available Exogenous administration of islet amyloid polypeptide (IAPP has been shown to inhibit both insulin and glucagon secretion. This study examined α-cell function in mice with β-cell specific overexpression of human IAPP (hIAPP after an oral protein gavage (75 mg whey protein/mouse. Baseline glucagon levels were higher in transgenic mice (41±4.0 pg/mL, n=6 than in wildtype animals (19±5.1 pg/mL, n=5, P=.015. In contrast, the glucagon response to protein was impaired in transgenic animals (21±2.7 pg/mL in transgenic mice versus 38±5.7 pg/mL in wildtype mice at 15 minutes; P=.027. Baseline insulin levels did not differ between the groups, while the insulin response, as the glucagon response, was impaired after protein challenge (P=.018. Glucose levels were not different between the groups and did not change significantly after protein gavage. Acetaminophen was given through gavage to the animals (2 mg/mouse to estimate gastric emptying. The plasma acetaminophen profile was similar in the two groups of mice. We conclude that disturbances in glucagon secretion exist in mice with β-cell specific overexpression of human IAPP, which are not secondary to changes in gastric emptying. The reduced glucagon response to protein challenge may reflect a direct inhibitory influence of hIAPP on glucagon secretion.

  11. Comprehensive behavioral analysis of ENU-induced Disc1-Q31L and -L100P mutant mice

    Directory of Open Access Journals (Sweden)

    Shoji Hirotaka

    2012-02-01

    Full Text Available Abstract Background Disrupted-in-Schizophrenia 1 (DISC1 is considered to be a candidate susceptibility gene for psychiatric disorders, including schizophrenia, bipolar disorder, and major depression. A recent study reported that N-ethyl-N-nitrosourea (ENU-induced mutations in exon 2 of the mouse Disc1 gene, which resulted in the amino acid exchange of Q31L and L100P, caused an increase in depression-like behavior in 31 L mutant mice and schizophrenia-like behavior in 100P mutant mice; thus, these are potential animal models of psychiatric disorders. However, remaining heterozygous mutations that possibly occur in flanking genes other than Disc1 itself might induce behavioral abnormalities in the mutant mice. Here, to confirm the effects of Disc1-Q31L and Disc1-L100P mutations on behavioral phenotypes and to investigate the behaviors of the mutant mice in more detail, the mutant lines were backcrossed to C57BL/6JJcl through an additional two generations and the behaviors were analyzed using a comprehensive behavioral test battery. Results Contrary to expectations, 31 L mutant mice showed no significant behavioral differences when compared with wild-type control mice in any of the behavioral tests, including the Porsolt forced swim and tail suspension tests, commonly used tests for depression-like behavior. Also, 100P mutant mice exhibited no differences in almost all of the behavioral tests, including the prepulse inhibition test for measuring sensorimotor gating, which is known to be impaired in schizophrenia patients; however, 100P mutant mice showed higher locomotor activity compared with wild-type control mice in the light/dark transition test. Conclusions Although these results are partially consistent with the previous study in that there was hyperactivity in 100P mutant mice, the vast majority of the results are inconsistent with those of the previous study; this discrepancy may be explained by differences in the genetic background of the

  12. Neurologic function during developmental and adult stages in Dab1(scm) (scrambler) mutant mice.

    Science.gov (United States)

    Jacquelin, C; Strazielle, C; Lalonde, R

    2012-01-01

    Homozygous Dab1(scm) mouse mutants with cell ectopias in cerebellar cortex, hippocampus, and neocortex were compared to non-ataxic controls on the SHIRPA primary screening battery on postnatal days 8, 15, and 22, as well as in the adult period. Dab1(scm) mutants were distinguished from non-ataxic controls as early as postnatal day 8 based on body tremor, gait anomalies, and body weight. On postnatal day 15, motor coordination deficits were evident on horizontal bar and inclined or vertical grid tests in association with a weaker grip strength. Likewise, mutants were distinguished from controls on drop righting and hindpaw clasping tests. Further differences were detected on postnatal day 22 in the form of fewer visual placing, touch escape, trunk curl, freezing, and vocalization responses, as well as squares traversed in the open-field. Evaluation at the adult age demonstrated similar impairments, indicative of permanent motor alterations. Neuronal metabolic activity was estimated by cytochrome oxidase histochemistry on cerebellar sections. Cerebellar cortical layers and efferent deep nuclei of Dab1(scm) mice appeared hypometabolic relative to non-ataxic mice despite normal metabolism in both regular and ectopic Purkinje cells. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Bacteriophage-resistant mutants in Yersinia pestis: identification of phage receptors and attenuation for mice.

    Directory of Open Access Journals (Sweden)

    Andrey A Filippov

    Full Text Available BACKGROUND: Bacteriophages specific for Yersinia pestis are routinely used for plague diagnostics and could be an alternative to antibiotics in case of drug-resistant plague. A major concern of bacteriophage therapy is the emergence of phage-resistant mutants. The use of phage cocktails can overcome this problem but only if the phages exploit different receptors. Some phage-resistant mutants lose virulence and therefore should not complicate bacteriophage therapy. METHODOLOGY/PRINCIPAL FINDINGS: The purpose of this work was to identify Y. pestis phage receptors using site-directed mutagenesis and trans-complementation and to determine potential attenuation of phage-resistant mutants for mice. Six receptors for eight phages were found in different parts of the lipopolysaccharide (LPS inner and outer core. The receptor for R phage was localized beyond the LPS core. Most spontaneous and defined phage-resistant mutants of Y. pestis were attenuated, showing increase in LD₅₀ and time to death. The loss of different LPS core biosynthesis enzymes resulted in the reduction of Y. pestis virulence and there was a correlation between the degree of core truncation and the impact on virulence. The yrbH and waaA mutants completely lost their virulence. CONCLUSIONS/SIGNIFICANCE: We identified Y. pestis receptors for eight bacteriophages. Nine phages together use at least seven different Y. pestis receptors that makes some of them promising for formulation of plague therapeutic cocktails. Most phage-resistant Y. pestis mutants become attenuated and thus should not pose a serious problem for bacteriophage therapy of plague. LPS is a critical virulence factor of Y. pestis.

  14. Hepatic Cholesterol-25-Hydroxylase Overexpression Improves Systemic Insulin Sensitivity in Mice

    Directory of Open Access Journals (Sweden)

    Britta Noebauer

    2017-01-01

    Full Text Available Obesity is a major risk factor for several diseases including diabetes, heart disease, and some forms of cancer and due to its rapidly increasing prevalence it has become one of the biggest problems medicine is facing today. All the more surprising, a substantial percentage of obese patients are metabolically healthy when classified based on insulin resistance and systemic inflammation. Oxysterols are naturally occurring molecules that play important role in various metabolic and inflammatory processes and their levels are elevated in patients suffering from obesity and diabetes. 25-Hydroxycholesterol (25-OHC is produced in cells from cholesterol by the enzyme cholesterol 25-hydroxylase (Ch25h and is involved in lipid metabolism, inflammatory processes, and cell proliferation. Here, we investigated the role of hepatic Ch25h in the transition from metabolically healthy obesity to insulin resistance and diabetes. Using several different experimental approaches, we demonstrated the significance of Ch25h on the border of “healthy” and “diseased” states of obesity. Adenovirus-mediated Ch25h overexpression in mice improved glucose tolerance and insulin sensitivity and lowered HOMA-IR. Our data suggest that low hepatic Ch25h levels could be considered a risk marker for unhealthy obesity.

  15. Anti-H-Y responses of H-2b mutant mice.

    Science.gov (United States)

    Simpson, E; Gordon, R D; Chandler, P R; Bailey, D

    1978-10-01

    Two strains of H-2b mutant mice, H-2ba and H-2bf, in which the mutational event took place at H-2K, make anti-H-Y cytotoxic T cell responses which are H-2-restricted, Db-associated and indistinguishable in target cell specificity from those of H-2b mice. Thus, alteration of the H-2K molecule affects neither the Ir gene controlling the response, nor the associative antigen. On the other hand, one H-2Db mutant strain, H-2bo, although it makes a good anti-H-Y cytotoxic response, shows target cell specificity restricted to its own Dbo antigen(s), and neither H-2b, H-2ba or H-2bf anti-H-Y cytotoxic cells kill H-2bo male target cells. Thus, the alteration of the H-2Db molecule does not affect the Ir gene of H-2b mice, but it does alter the H-2Db-associative antigen.

  16. Serum cholinesterases are differentially regulated in normal and dystrophin-deficient mutant mice

    Directory of Open Access Journals (Sweden)

    Andrea R. Durrant

    2012-06-01

    Full Text Available The cholinesterases, acetylcholinesterase and butyrylcholinesterase (pseudocholinesterase, are abundant in the nervous system and in other tissues. The role of acetylcholinesterase in terminating transmitter action in the peripheral and central nervous system is well understood. However, both knowledge of the function(s of the cholinesterases in serum, and of their metabolic and endocrine regulation under normal and pathological conditions, is limited. This study investigates acetylcholinesterase and butyrylcholinesterase in sera of dystrophin-deficient mdx mutant mice, an animal model for the human Duchenne muscular dystrophy and in control healthy mice. The data show systematic and differential variations in the concentrations of both enzymes in the sera, and specific changes dictated by alteration of hormonal balance in both healthy and dystrophic mice. While acetylcholinesterase in mdx-sera is elevated, butyrylcholinesterase is markedly diminished, resulting in an overall cholinesterase decrease compared to sera of healthy controls. The androgen testosterone (T is a negative modulator of butyrylcholinesterase, but not of acetylcholinesterase, in male mouse sera. T-removal elevated both butyrylcholinesterase activity and the butyrylcholinesterase/acetylcholinesterase ratio in mdx male sera to values resembling those in healthy control male mice. Mechanisms of regulation of the circulating cholinesterases and their impairment in the dystrophic mice are suggested, and clinical implications for diagnosis and treatment are considered.

  17. Mutation-related differences in exploratory, spatial and depressive-like behavior in pcd and Lurcher cerebellar mutant mice

    Directory of Open Access Journals (Sweden)

    Jan eTuma

    2015-05-01

    Full Text Available The cerebellum is not only essential for motor coordination but is also involved in cognitive and affective processes. These functions of the cerebellum and mechanisms of their disorders in cerebellar injury are not completely understood. There is a wide spectrum of cerebellar mutant mice which are used as models of hereditary cerebellar degenerations. Nevertheless, they differ in pathogenesis of manifestation of the particular mutation and also in the strain background. The aim of this work was to compare spatial navigation, learning and memory in pcd and Lurcher mice, two of the most frequently used cerebellar mutants. The mice were tested in the open field for exploration behavior, in the Morris water maze with visible as well as reversal hidden platform tasks and in the forced swimming test for motivation assessment. Lurcher mice showed different space exploration activity in the open field and a lower tendency to depressive-like behavior in the forced swimming test compared with pcd mice. Severe deficit of spatial navigation was shown in both cerebellar mutants. However, the overall performance of Lurcher mice was better than that of pcd mutants. Lurcher mice showed the ability of visual guidance despite difficulties with the direct swim towards a goal. In the probe trial test, Lurcher mice preferred the visible platform rather than the more recent localization of the hidden goal.

  18. Over-expression of TSPO in the hippocampal CA1 area alleviates cognitive dysfunction caused by lipopolysaccharide in mice.

    Science.gov (United States)

    Zhang, Hui; Ma, Li; Yin, Yan-Ling; Dong, Lian-Qiang; Cheng, Gang-Ge; Ma, Ya-Qun; Li, Yun-Feng; Xu, Bai-Nan

    2016-09-01

    The translocator protein 18kDa (TSPO) is closely related to regulation of immune/inflammatory response. However, the putative role and signaling mechanisms of TSPO in regulation of neuroinflammation remain unclear. GV287 lentiviral vectors mediating TSPO over-expression were injected into bilateral hippocampal CA1 areas to test whether TSPO over-expression was neuroprotective in lipopolysaccharide (LPS)-induced mice model. Finasteride, a blocker of allopregnanolone production, was used to test whether the protective effects were related to steroideogenesis. The results demonstrated that TSPO over-expression increased progesterone and allopregnanolone synthesis. TSPO over-expression in CA1 area improved LPS-induced cognitive deficiency in mice and this cognitive improvement was reversed by finasteride administration. These data suggest that up-regulation of TSPO level during neuroinflammation may be an adaptive response mechanism, a way to provide more neurosteroids. We confer that TSPO could be an attractive drug target for controlling neuroinflammation in the future. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Tau passive immunotherapy in mutant P301L mice: antibody affinity versus specificity.

    Directory of Open Access Journals (Sweden)

    Cristina d'Abramo

    Full Text Available The use of antibodies to treat neurodegenerative diseases has undergone rapid development in the past decade. To date, immunotherapeutic approaches to Alzheimer's disease have mostly targeted amyloid beta as it is a secreted protein that can be found in plasma and CSF and is consequently accessible to circulating antibodies. Few recent publications have suggested the utility of treatment of tau pathology with monoclonal antibodies to tau. Our laboratory has begun a systematic study of different classes of tau monoclonal antibodies using mutant P301L mice. Three or seven months old mutant tau mice were inoculated weekly with tau monoclonal antibodies at a dose of 10 mg/Kg, until seven or ten months of age were reached respectively. Our data strongly support the notion that in P301L animals treated with MC1, a conformational monoclonal antibody specific for PHF-tau, the rate of development of tau pathology is effectively reduced, while injecting DA31, a high affinity tau sequence antibody, does not exert such benefit. MC1 appears superior to DA31 in overall effects, suggesting that specificity is more important than affinity in therapeutic applications. Unfortunately the survival rate of the P301L treated mice was not improved when immunizing either with MC1 or PHF1, a high affinity phospho-tau antibody previously reported to be efficacious in reducing pathological tau. These data demonstrate that passive immunotherapy in mutant tau models may be efficacious in reducing the development of tau pathology, but a great deal of work remains to be done to carefully select the tau epitopes to target.

  20. Transgenic Mice Over-Expressing RBP4 Have RBP4-Dependent and Light-Independent Retinal Degeneration.

    Science.gov (United States)

    Du, Mei; Phelps, Eric; Balangue, Michael J; Dockins, Aaron; Moiseyev, Gennadiy; Shin, Younghwa; Kane, Shelley; Otalora, Laura; Ma, Jian-Xing; Farjo, Rafal; Farjo, Krysten M

    2017-08-01

    Transgenic mice overexpressing serum retinol-binding protein (RBP4-Tg) develop progressive retinal degeneration, characterized by microglia activation, yet the precise mechanisms underlying retinal degeneration are unclear. Previous studies showed RBP4-Tg mice have normal ocular retinoid levels, suggesting that degeneration is independent of the retinoid visual cycle or light exposure. The present study addresses whether retinal degeneration is light-dependent and RBP4-dependent by testing the effects of dark-rearing and pharmacological lowering of serum RBP4 levels, respectively. RBP4-Tg mice reared on normal mouse chow in normal cyclic light conditions were directly compared to RBP4-Tg mice exposed to chow supplemented with the RBP4-lowering compound A1120 or dark-rearing conditions. Quantitative retinal histological analysis was conducted to assess retinal degeneration, and electroretinography (ERG) and optokinetic tracking (OKT) tests were performed to assess retinal and visual function. Ocular retinoids and bis-retinoid A2E were quantified. Dark-rearing RBP4-Tg mice effectively reduced ocular bis-retinoid A2E levels, but had no significant effect on retinal degeneration or dysfunction in RBP4-Tg mice, demonstrating that retinal degeneration is light-independent. A1120 treatment lowered serum RBP4 levels similar to wild-type mice, and prevented structural retinal degeneration. However, A1120 treatment did not prevent retinal dysfunction in RBP4-Tg mice. Moreover, RBP4-Tg mice on A1120 diet had significant worsening of OKT response and loss of cone photoreceptors compared to RBP4-Tg mice on normal chow. This may be related to the very significant reduction in retinyl ester levels in the retina of mice on A1120-supplemented diet. Retinal degeneration in RBP4-Tg mice is RBP4-dependent and light-independent.

  1. Lithium improves hippocampal neurogenesis, neuropathology and cognitive functions in APP mutant mice.

    Directory of Open Access Journals (Sweden)

    Anna Fiorentini

    Full Text Available BACKGROUND: Alzheimer's disease (AD is a neurodegenerative disorder characterized by progressive deterioration of cognitive functions, extracellular β-amyloid (Aβ plaques and intracellular neurofibrillary tangles within neocortex and hippocampus. Adult hippocampal neurogenesis plays an important role in learning and memory processes and its abnormal regulation might account for cognitive impairments associated with AD. METHODOLOGY/PRINCIPAL FINDINGS: The double transgenic (Tg CRND8 mice (overexpressing the Swedish and Indiana mutations in the human amyloid precursor protein, aged 2 and 6 months, were used to examine in vivo the effects of 5 weeks lithium treatment. BrdU labelling showed a decreased neurogenesis in the subgranular zone of Tg mice compared to non-Tg mice. The decrease of hippocampal neurogenesis was accompanied by behavioural deficits and worsened with age and pathology severity. The differentiation into neurons and maturation of the proliferating cells were also markedly impaired in the Tg mice. Lithium treatment to 2-month-old Tg mice significantly stimulated the proliferation and neuron fate specification of newborn cells and fully counteracted the transgene-induced impairments of cognitive functions. The drug, by the inhibition of GSK-3β and subsequent activation of Wnt/ß-catenin signalling promoted hippocampal neurogenesis. Finally, the data show that the lithium's ability to stimulate neurogenesis and cognitive functions was lost in the aged Tg mice, thus indicating that the lithium-induced facilitation of neurogenesis and cognitive functions declines as brain Aβ deposition and pathology increases. CONCLUSIONS: Lithium, when given on time, stimulates neurogenesis and counteracts AD-like pathology.

  2. Over-expression of two different forms of the alpha-secretase ADAM10 affects learning and memory in mice.

    Science.gov (United States)

    Schmitt, Ulrich; Hiemke, Christoph; Fahrenholz, Falk; Schroeder, Anja

    2006-12-15

    Members of the ADAM family (adisintegrin and metalloprotease) are the main candidates for physiologically relevant alpha-secretases. The alpha-secretase cleaves in the non-amyloidogenic pathway the amyloid precursor protein within the region of the Abeta peptides preventing their aggregation in the brain. The increase of alpha-secretase activity in the brain provides a plausible strategy to prevent Abeta formation. Concerning this possibility two transgenic mouse lines (FVB/N) have been created: mice over-expressing the bovine form of the alpha-secretase (ADAM10) and mice over-expressing an inactive form of the alpha-secretase (ADAM10-E348A-HA; ADAM10-dn). For behavioral examination a F1 generation of transgenic mice (C57Bl/6 x FVB/N (tg)) was generated and compared to wild type F1 generation (C57Bl/6 x FVB/N). Behavior was characterized in the following tasks: standard open field, enriched open field, elevated plus-maze, and the Morris water maze hidden platform task. Concerning basal activity, exploration, and anxiety, transgenic mice behaved similar to controls. With respect to learning and memory both transgenic lines showed a significant deficit compared to controls. ADAM10 mice however, showed thigmotaxis with passive floating behavior in the Morris water maze indicating differences in motivation, whereas, ADAM10-dn mice displayed an inconspicuous but limited goal-directed search pattern. Thus variation of the enzymatic activity of alpha-secretase ADAM10 alters learning and memory differentially. Nevertheless, it could be concluded that both, ADAM10 and ADAM10-dn mice are suitable control mice for the assessment of alpha-secretase-related effects in animal models of Alzheimer's disease.

  3. Over-expression of X-linked inhibitor of apoptosis protein slows presbycusis in C57BL/6J mice.

    Science.gov (United States)

    Wang, Jian; Menchenton, Trevor; Yin, Shankai; Yu, Zhiping; Bance, Manohar; Morris, David P; Moore, Craig S; Korneluk, Robert G; Robertson, George S

    2010-07-01

    Apoptosis of cochlear cells plays a significant role in age-related hearing loss or presbycusis. In this study, we evaluated whether over-expression of the anti-apoptotic protein known as X-linked Inhibitor of Apoptosis Protein (XIAP) slows the development of presbycusis. We compared the age-related hearing loss between transgenic (TG) mice that over-express human XIAP tagged with 6-Myc (Myc-XIAP) on a pure C57BL/6J genetic background with wild-type (WT) littermates by measuring auditory brainstem responses. The result showed that TG mice developed hearing loss considerably more slowly than WT littermates, primarily within the high-frequency range. The average total hair cell loss was significantly less in TG mice than WT littermates. Although levels of Myc-XIAP in the ear remained constant at 2 and 14 months, there was a marked increase in the amount of endogenous XIAP from 2 to 14 months in the cochlea, but not in the brain, in both genotypes. These results suggest that XIAP over-expression reduces age-related hearing loss and hair cell death in the cochlea. Copyright 2008 Elsevier Inc. All rights reserved.

  4. Ectopic Mineralization and Conductive Hearing Loss in Enpp1asj Mutant Mice, a New Model for Otitis Media and Tympanosclerosis.

    Science.gov (United States)

    Tian, Cong; Harris, Belinda S; Johnson, Kenneth R

    2016-01-01

    Otitis media (OM), inflammation of the middle ear, is a common cause of hearing loss in children and in patients with many different syndromic diseases. Studies of the human population and mouse models have revealed that OM is a multifactorial disease with many environmental and genetic contributing factors. Here, we report on otitis media-related hearing loss in asj (ages with stiffened joints) mutant mice, which bear a point mutation in the Enpp1 gene. Auditory-evoked brainstem response (ABR) measurements revealed that around 90% of the mutant mice (Enpp1asj/asj) tested had moderate to severe hearing impairment in at least one ear. The ABR thresholds were variable and generally elevated with age. We found otitis media with effusion (OME) in all of the hearing-impaired Enpp1asj/asj mice by anatomic and histological examinations. The volume and inflammatory cell content of the effusion varied among the asj mutant mice, but all mutants exhibited a thickened middle ear epithelium with fibrous polyps and more mucin-secreting goblet cells than controls. Other abnormalities observed in the Enpp1 mutant mice include over-ossification at the round window ridge, thickened and over-calcified stapedial artery, fusion of malleus and incus, and white patches on the inside of tympanic membrane, some of which are typical symptoms of tympanosclerosis. An excessive yellow discharge was detected in the outer ear canal of older asj mutant mice, with 100% penetrance by 5 months of age, and contributes to the progressive nature of the hearing loss. This is the first report of hearing loss and ear pathology associated with an Enpp1 mutation in mice. The Enpp1asj mutant mouse provides a new animal model for studying tympanosclerotic otitis and otitis media with effusion, and also provides a specific model for the hearing loss recently reported to be associated with human ENPP1 mutations causing generalized arterial calcification of infancy and hypophosphatemic rickets.

  5. Comparison of expression of key sporulation, solventogenic and acetogenic genes in C. beijerinckii NRRL B-598 and its mutant strain overexpressing spo0A.

    Science.gov (United States)

    Kolek, J; Diallo, M; Vasylkivska, M; Branska, B; Sedlar, K; López-Contreras, A M; Patakova, P

    2017-11-01

    The production of acetone, butanol and ethanol by fermentation of renewable biomass has potential to become a valuable industrial process. Mechanisms of solvent production and sporulation involve some common regulators in some ABE-producing clostridia, although details of the links between the pathways are not clear. In this study, we compare a wild-type (WT) Clostridium beijerinckii NRRL B-598 with its mutant strain OESpo0A, in which the gene encoding Spo0A, an important regulator of both sporulation and solventogenesis, is overexpressed in terms of solvent and acid production. We also compare morphologies during growth on two different media: TYA broth, where the WT culture sporulates, and RCM, where the WT culture does not. In addition, RT-qPCR-based analysis of expression profiles of spo0A, spoIIE, sigG, spoVD, ald and buk1 genes involved in sporulation or solvent production in these strains, were compared. The OESpo0A mutant did not produce spores and butanol titre was lower compared to the WT, but increased amounts of butyric acid and ethanol were produced. The gene spo0A had high levels of expression in the WT under non-sporulating culture conditions while other selected genes for sporulation factors were downregulated significantly. Similar observations were obtained for OESpo0A where spo0A overexpression and downregulation of other sporulation genes were demonstrated. Higher expression of spo0A led to higher expression of buk1 and ald, which could confirm the role of spo0A in activation of the solventogenic pathway, although solvent production was not affected significantly in the WT and was weakened in the OESpo0A mutant.

  6. Stable Skin-specific Overexpression of Human CTLA4-Ig in Transgenic Mice through Seven Generations

    Institute of Scientific and Technical Information of China (English)

    Yong WANG; Yong NI; Hong WEI; Feng-Chao WANG; Liang-Peng GE; Xiang GAO

    2006-01-01

    Skin graft rejection is a typical cellular immune response, mainly mediated by T cells. Cytotoxic T lymphocyte associated antigen 4-immunoglobin (CTLA4-Ig) extends graft survival by blocking the T cell co-stimulation pathway and inhibiting T cell activation. To investigate the efficacy of CTLA4-Ig in prolonging skin graft survival, human CTLA4-Ig (hCTLA4-Ig) was engineered to overexpress in mouse skin by transgenesis using the K14 promoter. Reverse transcription-polymerase chain reaction (RT-PCR) and Western blot assay indicated that the expression of CTLA4-Ig remained skin-specific and relatively constant compared to the internal control protein, AKT, through seven generations. The presence and concentration of the hCTLA4-Ig protein in transgenic mouse sera was determined by enzyme-linked immunosorbent assay (ELISA), and the results indicated that the serum CTLA4-Ig concentration also remained constant through generations. Survival of transgenic mouse skins grafted onto rat wounds was remarkably prolonged compared to that of wild-type skins from the same mouse strain, and remained comparable among all seven generations. This suggested that the bioactive hCTLA4-Ig protein was stably expressed in transgenical mice through at least seven generations, which was consistent with the stable skin-specific CTLA4-Ig expression.The results demonstrated that the transgenic expression of hCTLA4-Ig in skin driven by the K14 promoter remained constant through generations, and a transgenic line can be established to provide transgenic skin with extended survival reproducibly.

  7. Effects of striatal ΔFosB overexpression and ketamine on social defeat stress-induced anhedonia in mice.

    Science.gov (United States)

    Donahue, Rachel J; Muschamp, John W; Russo, Scott J; Nestler, Eric J; Carlezon, William A

    2014-10-01

    Chronic social defeat stress (CSDS) produces persistent behavioral adaptations in mice. In many behavioral assays, it can be difficult to determine if these adaptations reflect core signs of depression. We designed studies to characterize the effects of CSDS on sensitivity to reward because anhedonia (reduced sensitivity to reward) is a defining characteristic of depressive disorders in humans. We also examined the effects of striatal ΔFosB overexpression and the N-methyl-D-aspartate receptor antagonist ketamine, both of which promote resilience, on CSDS-induced alterations in reward function and social interaction. Intracranial self-stimulation (ICSS) was used to quantify CSDS-induced changes in reward function. Mice were implanted with lateral hypothalamic electrodes, and ICSS thresholds were measured after each of 10 daily CSDS sessions and during a 5-day recovery period. We also examined if acute intraperitoneal administration of ketamine (2.5-20 mg/kg) reverses CSDS-induced effects on reward or, in separate mice, social interaction. ICSS thresholds were increased by CSDS, indicating decreases in the rewarding impact of lateral hypothalamic stimulation (anhedonia). This effect was attenuated in mice overexpressing ∆FosB in striatum, consistent with pro-resilient actions of this transcription factor. High, but not low, doses of ketamine administered after completion of the CSDS regimen attenuated social avoidance in defeated mice, although this effect was transient. Ketamine did not block CSDS-induced anhedonia in the ICSS test. This study found that CSDS triggers persistent anhedonia and confirms that ΔFosB overexpression produces stress resilience. The findings of this study also indicate that acute administration of ketamine fails to attenuate CSDS-induced anhedonia despite reducing other depression-related behavioral abnormalities. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  8. A53T-alpha-synuclein overexpression impairs dopamine signaling and striatal synaptic plasticity in old mice.

    Directory of Open Access Journals (Sweden)

    Alexander Kurz

    2010-07-01

    Full Text Available Parkinson's disease (PD, the second most frequent neurodegenerative disorder at old age, can be caused by elevated expression or the A53T missense mutation of the presynaptic protein alpha-synuclein (SNCA. PD is characterized pathologically by the preferential vulnerability of the dopaminergic nigrostriatal projection neurons.Here, we used two mouse lines overexpressing human A53T-SNCA and studied striatal dysfunction in the absence of neurodegeneration to understand early disease mechanisms. To characterize the progression, we employed young adult as well as old mice. Analysis of striatal neurotransmitter content demonstrated that dopamine (DA levels correlated directly with the level of expression of SNCA, an observation also made in SNCA-deficient (knockout, KO mice. However, the elevated DA levels in the striatum of old A53T-SNCA overexpressing mice may not be transmitted appropriately, in view of three observations. First, a transcriptional downregulation of the extraneural DA degradation enzyme catechol-ortho-methytransferase (COMT was found. Second, an upregulation of DA receptors was detected by immunoblots and autoradiography. Third, extensive transcriptome studies via microarrays and quantitative real-time RT-PCR (qPCR of altered transcript levels of the DA-inducible genes Atf2, Cb1, Freq, Homer1 and Pde7b indicated a progressive and genotype-dependent reduction in the postsynaptic DA response. As a functional consequence, long term depression (LTD was absent in corticostriatal slices from old transgenic mice.Taken together, the dysfunctional neurotransmission and impaired synaptic plasticity seen in the A53T-SNCA overexpressing mice reflect early changes within the basal ganglia prior to frank neurodegeneration. As a model of preclinical stages of PD, such insights may help to develop neuroprotective therapeutic approaches.

  9. Drastic anthocyanin increase in response to PAP1 overexpression in fls1 knockout mutant confers enhanced osmotic stress tolerance in Arabidopsis thaliana.

    Science.gov (United States)

    Lee, Won Je; Jeong, Chan Young; Kwon, Jaeyoung; Van Kien, Vu; Lee, Dongho; Hong, Suk-Whan; Lee, Hojoung

    2016-11-01

    KEY MESSAGE : pap1 - D/fls1ko double mutant plants that produce substantial amounts of anthocyanin show tolerance to abiotic stress. Anthocyanins are flavonoids that are abundant in various plants and have beneficial effects on both plants and humans. Many genes in flavonoid biosynthetic pathways have been identified, including those in the MYB-bHLH-WD40 (MBW) complex. The MYB gene Production of Anthocyanin Pigment 1 (PAP1) plays a particularly important role in anthocyanin accumulation. PAP1 expression in many plant systems strongly increases anthocyanin levels, resulting in a dark purple color in many plant organs. In this study, we generated double mutant plants that harbor fls1ko in the pap1-D background (i.e., pap1-D/fls1ko plants), to examine whether anthocyanins can be further enhanced by blocking flavonol biosynthesis under PAP1 overexpression. We also wanted to examine whether the increased anthocyanin levels contribute to defense against osmotic stresses. The pap1-D/fls1ko mutants accumulated higher anthocyanin levels than pap1-D plants in both control and sucrose-treated conditions. However, flavonoid biosynthesis genes were slightly down-regulated in the pap1-D/fls1ko seedlings as compared to their expression in pap1-D seedlings. We also report the performance of pap1-D/fls1ko seedlings in response to plant osmotic stresses.

  10. Partial suppression of the respiratory defect of qrs1/her2 glutamyl-tRNA amidotransferase mutants by overexpression of the mitochondrial pentatricopeptide Msc6p.

    Science.gov (United States)

    Moda, Bruno S; Ferreira-Júnior, José Ribamar; Barros, Mario H

    2016-08-01

    Recently, a large body of evidences indicates the existence in the mitochondrial matrix of foci that contain different proteins involved in mitochondrial RNA metabolism. Some of these proteins have a pentatricopeptide repeat motif that constitutes their RNA-binding structures. Here we report that MSC6, a mitochondrial pentatricopeptide protein of unknown function, is a multi copy suppressor of mutations in QRS1/HER2 a component of the trimeric complex that catalyzes the transamidation of glutamyl-tRNAQ to glutaminyl-tRNAQ. This is an essential step in mitochondrial translation because of the lack of a specific mitochondrial aminoacyl glutaminyl-tRNA synthetase. MSC6 over-expression did not abolish translation of an aberrant variant form of Cox2p detected in QRS1/HER2 mutants, arguing against a suppression mechanism that bypasses Qrs1p function. A slight decrement of the mitochondrial translation capacity as well as diminished growth on respiratory carbon sources media for respiratory activity was observed in the msc6 null mutant. Additionally, the msc6 null mutant did not display any impairment in RNA transcription, processing or turnover. We concluded that Msc6p is a mitochondrial matrix protein and further studies are required to indicate the specific function of Msc6p in mitochondrial translation.

  11. Mutant Brucella abortus membrane fusogenic protein induces protection against challenge infection in mice.

    Science.gov (United States)

    de Souza Filho, Job Alves; de Paulo Martins, Vicente; Campos, Priscila Carneiro; Alves-Silva, Juliana; Santos, Nathalia V; de Oliveira, Fernanda Souza; Menezes, Gustavo B; Azevedo, Vasco; Cravero, Silvio Lorenzo; Oliveira, Sergio Costa

    2015-04-01

    Brucella species can cause brucellosis, a zoonotic disease that causes serious livestock economic losses and represents a public health threat. The mechanism of virulence of Brucella spp. is not yet fully understood. Therefore, it is crucial to identify new molecules that serve as virulence factors to better understand this host-pathogen interplay. Here, we evaluated the role of the Brucella membrane fusogenic protein (Mfp) and outer membrane protein 19 (Omp19) in bacterial pathogenesis. In this study, we showed that B. abortus Δmfp::kan and Δomp19::kan deletion mutant strains have reduced persistence in vivo in C57BL/6 and interferon regulatory factor 1 (IRF-1) knockout (KO) mice. Additionally, 24 h after macrophage infection with a Δmfp::kan or Δomp19::kan strain expressing green fluorescent protein (GFP) approximately 80% or 65% of Brucella-containing vacuoles (BCVs) retained the late endosomal/lysosomal marker LAMP-1, respectively, whereas around 60% of BCVs containing wild-type S2308 were found in LAMP-1-negative compartments. B. abortus Δomp19::kan was attenuated in vivo but had a residual virulence in C57BL/6 and IRF-1 KO mice, whereas the Δmfp::kan strain had a lower virulence in these same mouse models. Furthermore, Δmfp::kan and Δomp19::kan strains were used as live vaccines. Challenge experiments revealed that in C57BL/6 and IRF-1 KO mice, the Δmfp::kan strain induced greater protection than the vaccine RB51 and protection similar that of vaccine S19. However, a Δomp19::kan strain induced protection similar to that of RB51. Thus, these results demonstrate that Brucella Mfp and Omp19 are critical for full bacterial virulence and that the Δmfp::kan mutant may serve as a potential vaccine candidate in future studies. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. Global Overexpression of ET-1 Decreases Blood Pressure - A Systematic Review and Meta-Analysis of ET-1 Transgenic Mice.

    Science.gov (United States)

    Lu, Yong Ping; Tsuprykov, Oleg; Vignon-Zellweger, Nicolas; Heiden, Susi; Hocher, Berthold

    2016-01-01

    ET-1 has independent effects on blood pressure regulation in vivo, it is involved in tubular water and salt excretion, promotes constriction of smooth muscle cells, modulates sympathetic nerve activity, and activates the liberation of nitric oxide. To determine the net effect of these partially counteracting mechanisms on blood pressure, a systematic meta-analysis was performed. Based on the principles of Cochrane systematic reviews, we searched in major literature databases - MEDLINE (PubMed), Embase, Google Scholar, and the China Biological Medicine Database (CBM-disc) - for articles relevant to the topic of the blood pressure phenotype of endothelin-1 transgenic (ET-1+/+) mice from January 1, 1988 to March 31, 2016. Review Manager Version 5.0 (Rev-Man 5.0) software was applied for statistical analysis. In total thirteen studies reported blood pressure data. The meta-analysis of blood pressure data showed that homozygous ET-1 transgenic mice (ET-1+/+ mice) had a significantly lower blood pressure as compared to WT mice (mean difference: -2.57 mmHg, 95% CI: -4.98∼ -0.16, P = 0.04), with minimal heterogeneity (P = 0.86). A subgroup analysis of mice older than 6 months revealed that the blood pressure difference between ET-1+/+ mice and WT mice was even more pronounced (mean difference: -6.19 mmHg, 95% CI: -10.76∼ -1.62, P = 0.008), with minimal heterogeneity (P = 0.91). This meta-analysis provides robust evidence that global ET-1 overexpression in mice lowers blood pressure in an age-dependent manner. Older ET-1+/+ mice have a somewhat more pronounced reduction of blood pressure. © 2016 The Author(s) Published by S. Karger AG, Basel.

  13. Mutant Mice Lacking the p53 C-Terminal Domain Model Telomere Syndromes

    Directory of Open Access Journals (Sweden)

    Iva Simeonova

    2013-06-01

    Full Text Available Mutations in p53, although frequent in human cancers, have not been implicated in telomere-related syndromes. Here, we show that homozygous mutant mice expressing p53Δ31, a p53 lacking the C-terminal domain, exhibit increased p53 activity and suffer from aplastic anemia and pulmonary fibrosis, hallmarks of syndromes caused by short telomeres. Indeed, p53Δ31/Δ31 mice had short telomeres and other phenotypic traits associated with the telomere disease dyskeratosis congenita and its severe variant the Hoyeraal-Hreidarsson syndrome. Heterozygous p53+/Δ31 mice were only mildly affected, but decreased levels of Mdm4, a negative regulator of p53, led to a dramatic aggravation of their symptoms. Importantly, several genes involved in telomere metabolism were downregulated in p53Δ31/Δ31 cells, including Dyskerin, Rtel1, and Tinf2, which are mutated in dyskeratosis congenita, and Terf1, which is implicated in aplastic anemia. Together, these data reveal that a truncating mutation can activate p53 and that p53 plays a major role in the regulation of telomere metabolism.

  14. mPeriod2 Brdm1 and other single Period mutant mice have normal food anticipatory activity.

    Science.gov (United States)

    Pendergast, Julie S; Wendroth, Robert H; Stenner, Rio C; Keil, Charles D; Yamazaki, Shin

    2017-11-14

    Animals anticipate the timing of food availability via the food-entrainable oscillator (FEO). The anatomical location and timekeeping mechanism of the FEO are unknown. Several studies showed the circadian gene, Period 2, is critical for FEO timekeeping. However, other studies concluded that canonical circadian genes are not essential for FEO timekeeping. In this study, we re-examined the effects of the Per2 Brdm1 mutation on food entrainment using methods that have revealed robust food anticipatory activity in other mutant lines. We examined food anticipatory activity, which is the output of the FEO, in single Period mutant mice. Single Per1, Per2, and Per3 mutant mice had robust food anticipatory activity during restricted feeding. In addition, we found that two different lines of Per2 mutant mice (ldc and Brdm1) anticipated restricted food availability. To determine if FEO timekeeping persisted in the absence of the food cue, we assessed activity during fasting. Food anticipatory (wheel-running) activity in all Period mutant mice was also robust during food deprivation. Together, our studies demonstrate that the Period genes are not necessary for the expression of food anticipatory activity.

  15. TRIP-Br2 promotes oncogenesis in nude mice and is frequently overexpressed in multiple human tumors.

    Science.gov (United States)

    Cheong, Jit Kong; Gunaratnam, Lakshman; Zang, Zhi Jiang; Yang, Christopher M; Sun, Xiaoming; Nasr, Susan L; Sim, Khe Guan; Peh, Bee Keow; Rashid, Suhaimi Bin Abdul; Bonventre, Joseph V; Salto-Tellez, Manuel; Hsu, Stephen I

    2009-01-20

    Members of the TRIP-Br/SERTAD family of mammalian transcriptional coregulators have recently been implicated in E2F-mediated cell cycle progression and tumorigenesis. We, herein, focus on the detailed functional characterization of the least understood member of the TRIP-Br/SERTAD protein family, TRIP-Br2 (SERTAD2). Oncogenic potential of TRIP-Br2 was demonstrated by (1) inoculation of NIH3T3 fibroblasts, which were engineered to stably overexpress ectopic TRIP-Br2, into athymic nude mice for tumor induction and (2) comprehensive immunohistochemical high-throughput screening of TRIP-Br2 protein expression in multiple human tumor cell lines and human tumor tissue microarrays (TMAs). Clinicopathologic analysis was conducted to assess the potential of TRIP-Br2 as a novel prognostic marker of human cancer. RNA interference of TRIP-Br2 expression in HCT-116 colorectal carcinoma cells was performed to determine the potential of TRIP-Br2 as a novel chemotherapeutic drug target. Overexpression of TRIP-Br2 is sufficient to transform murine fibroblasts and promotes tumorigenesis in nude mice. The transformed phenotype is characterized by deregulation of the E2F/DP-transcriptional pathway through upregulation of the key E2F-responsive genes CYCLIN E, CYCLIN A2, CDC6 and DHFR. TRIP-Br2 is frequently overexpressed in both cancer cell lines and multiple human tumors. Clinicopathologic correlation indicates that overexpression of TRIP-Br2 in hepatocellular carcinoma is associated with a worse clinical outcome by Kaplan-Meier survival analysis. Small interfering RNA-mediated (siRNA) knockdown of TRIP-Br2 was sufficient to inhibit cell-autonomous growth of HCT-116 cells in vitro. This study identifies TRIP-Br2 as a bona-fide protooncogene and supports the potential for TRIP-Br2 as a novel prognostic marker and a chemotherapeutic drug target in human cancer.

  16. Cognition, learning behaviour and hippocampal synaptic plasticity are not disrupted in mice over-expressing the cholesterol transporter ABCG1

    Directory of Open Access Journals (Sweden)

    Eadie Brennan D

    2009-02-01

    Full Text Available Abstract Background Cognitive deficits are a hallmark feature of both Down Syndrome (DS and Alzheimer's Disease (AD. Extra copies of the genes on chromosome 21 may also play an important role in the accelerated onset of AD in DS individuals. Growing evidence suggests an important function for cholesterol in the pathogenesis of AD, particularly in APP metabolism and production of Aβ peptides. The ATP-Binding Cassette-G1 (ABCG1 transporter is located on chromosome 21, and participates in the maintenance of tissue cholesterol homeostasis. Results To assess the role of ABCG1 in DS-related cognition, we evaluated the cognitive performance of mice selectively over-expressing the ABCG1 gene from its endogenous regulatory signals. Both wild-type and ABCG1 transgenic mice performed equivalently on several behavioral tests, including measures of anxiety, as well as on reference and working memory tasks. No deficits in hippocampal CA1 synaptic plasticity as determined with electrophysiological studies were apparent in mice over-expressing ABCG1. Conclusion These findings indicate that although ABCG1 may play a role in maintaining cellular or tissue cholesterol homeostasis, it is unlikely that excess ABCG1 expression contributes to the cognitive deficits in DS individuals.

  17. Analysis of pools of targeted Salmonella deletion mutants identifies novel genes affecting fitness during competitive infection in mice.

    Directory of Open Access Journals (Sweden)

    Carlos A Santiviago

    2009-07-01

    Full Text Available Pools of mutants of minimal complexity but maximal coverage of genes of interest facilitate screening for genes under selection in a particular environment. We constructed individual deletion mutants in 1,023 Salmonella enterica serovar Typhimurium genes, including almost all genes found in Salmonella but not in related genera. All mutations were confirmed simultaneously using a novel amplification strategy to produce labeled RNA from a T7 RNA polymerase promoter, introduced during the construction of each mutant, followed by hybridization of this labeled RNA to a Typhimurium genome tiling array. To demonstrate the ability to identify fitness phenotypes using our pool of mutants, the pool was subjected to selection by intraperitoneal injection into BALB/c mice and subsequent recovery from spleens. Changes in the representation of each mutant were monitored using T7 transcripts hybridized to a novel inexpensive minimal microarray. Among the top 120 statistically significant spleen colonization phenotypes, more than 40 were mutations in genes with no previously known role in this model. Fifteen phenotypes were tested using individual mutants in competitive assays of intraperitoneal infection in mice and eleven were confirmed, including the first two examples of attenuation for sRNA mutants in Salmonella. We refer to the method as Array-based analysis of cistrons under selection (ABACUS.

  18. Overexpression of TIMP-1 under the MMP-9 promoter interferes with wound healing in transgenic mice

    OpenAIRE

    Salonurmi, T.; Parikka, M.; Kontusaari, S.; Pirila, E.; Munaut, Carine; Salo, T.; Tryggvason, K.

    2004-01-01

    We have generated transgenic mice harboring the murine matrix metalloproteinase 9 (MMP-9) promoter cloned in front of human TIMP-1 cDNA. The transgenic mice were viable and fertile and exhibited normal growth and general development. During wound healing the mice were shown to express human TIMP-1 in keratinocytes that normally express MMP-9. However, the healing of skin wounds was significantly retarded with slow migration of keratinocytes over the wound in transgenic mice. In situ zymograph...

  19. Deficient plasticity in the primary visual cortex of alpha-calcium/calmodulin-dependent protein kinase II mutant mice.

    Science.gov (United States)

    Gordon, J A; Cioffi, D; Silva, A J; Stryker, M P

    1996-09-01

    The recent characterization of plasticity in the mouse visual cortex permits the use of mutant mice to investigate the cellular mechanisms underlying activity-dependent development. As calcium-dependent signaling pathways have been implicated in neuronal plasticity, we examined visual cortical plasticity in mice lacking the alpha-isoform of calcium/calmodulin-dependent protein kinase II (alpha CaMKII). In wild-type mice, brief occlusion of vision in one eye during a critical period reduces responses in the visual cortex. In half of the alpha CaMKII-deficient mice, visual cortical responses developed normally, but visual cortical plasticity was greatly diminished. After intensive training, spatial learning in the Morris water maze was severely impaired in a similar fraction of mutant animals. These data indicate that loss of alpha CaMKII results in a severe but variable defect in neuronal plasticity.

  20. Hyperlipidemia and cutaneous abnormalities in transgenic mice overexpressing human apolipoprotein C1

    NARCIS (Netherlands)

    Jong, M. C.; Gijbels, M. J.; Dahlmans, V. E.; Gorp, P. J.; Koopman, S. J.; Ponec, M.; Hofker, M. H.; Havekes, L. M.

    1998-01-01

    Transgenic mice were generated with different levels of human apolipoprotein C1 (APOC1) expression in liver and skin. At 2 mo of age, serum levels of cholesterol, triglycerides (TG), and FFA were strongly elevated in APOC1 transgenic mice compared with wild-type mice. These elevated levels of serum

  1. Primary coenzyme Q deficiency in Pdss2 mutant mice causes isolated renal disease.

    Directory of Open Access Journals (Sweden)

    Min Peng

    2008-04-01

    Full Text Available Coenzyme Q (CoQ is an essential electron carrier in the respiratory chain whose deficiency has been implicated in a wide variety of human mitochondrial disease manifestations. Its multi-step biosynthesis involves production of polyisoprenoid diphosphate in a reaction that requires the enzymes be encoded by PDSS1 and PDSS2. Homozygous mutations in either of these genes, in humans, lead to severe neuromuscular disease, with nephrotic syndrome seen in PDSS2 deficiency. We now show that a presumed autoimmune kidney disease in mice with the missense Pdss2(kd/kd genotype can be attributed to a mitochondrial CoQ biosynthetic defect. Levels of CoQ9 and CoQ10 in kidney homogenates from B6.Pdss2(kd/kd mutants were significantly lower than those in B6 control mice. Disease manifestations originate specifically in glomerular podocytes, as renal disease is seen in Podocin/cre,Pdss2(loxP/loxP knockout mice but not in conditional knockouts targeted to renal tubular epithelium, monocytes, or hepatocytes. Liver-conditional B6.Alb/cre,Pdss2(loxP/loxP knockout mice have no overt disease despite demonstration that their livers have undetectable CoQ9 levels, impaired respiratory capacity, and significantly altered intermediary metabolism as evidenced by transcriptional profiling and amino acid quantitation. These data suggest that disease manifestations of CoQ deficiency relate to tissue-specific respiratory capacity thresholds, with glomerular podocytes displaying the greatest sensitivity to Pdss2 impairment.

  2. A Mycobacterium leprae Hsp65 mutant as a candidate for mitigating lupus aggravation in mice.

    Directory of Open Access Journals (Sweden)

    Eliana B Marengo

    Full Text Available Hsp60 is an abundant and highly conserved family of intracellular molecules. Increased levels of this family of proteins have been observed in the extracellular compartment in chronic inflammation. Administration of M. leprae Hsp65 [WT] in [NZBxNZW]F(1 mice accelerates the Systemic Lupus Erythematosus [SLE] progression whereas the point mutated K(409A Hsp65 protein delays the disease. Here, the biological effects of M. leprae Hsp65 Leader pep and K(409A pep synthetic peptides, which cover residues 352-371, are presented. Peptides had immunomodulatory effects similar to that observed with their respective proteins on survival and the combined administration of K(409A+Leader pep or K(409A pep+WT showed that the mutant forms were able to inhibit the deleterious effect of WT on mortality, indicating the neutralizing potential of the mutant molecules in SLE progression. Molecular modeling showed that replacing Lysine by Alanine affects the electrostatic potential of the 352-371 region. The number of interactions observed for WT is much higher than for Hsp65 K(409A and mouse Hsp60. The immunomodulatory effects of the point-mutated protein and peptide occurred regardless of the catalytic activity. These findings may be related to the lack of effect on survival when F(1 mice were inoculated with Hsp60 or K(409A pep. Our findings indicate the use of point-mutated Hsp65 molecules, such as the K(409A protein and its corresponding peptide, that may minimize or delay the onset of SLE, representing a new approach to the treatment of autoimmune diseases.

  3. RNAi-mediated Gene Silencing of Mutant Myotilin Improves Myopathy in LGMD1A Mice

    Directory of Open Access Journals (Sweden)

    Jian Liu

    2014-01-01

    Full Text Available Recent progress suggests gene therapy may one day be an option for treating some forms of limb girdle muscular dystrophy (LGMD. Nevertheless, approaches targeting LGMD have so far focused on gene replacement strategies for recessive forms of the disease. In contrast, no attempts have been made to develop molecular therapies for any of the eight dominantly inherited forms of LGMD. Importantly, the emergence of RNA interference (RNAi therapeutics in the last decade provided new tools to combat dominantly inherited LGMDs with molecular therapy. In this study, we describe the first RNAi-based, preclinical gene therapy approach for silencing a gene associated with dominant LGMD. To do this, we developed adeno-associated viral vectors (AAV6 carrying designed therapeutic microRNAs targeting mutant myotilin (MYOT, which is the underlying cause of LGMD type 1A (LGMD1A. Our best MYOT-targeted microRNA vector (called miMYOT significantly reduced mutant myotilin mRNA and soluble protein expression in muscles of LGMD1A mice (the TgT57I model both 3 and 9 months after delivery, demonstrating short- and long-term silencing effects. This MYOT gene silencing subsequently decreased deposition of MYOT-seeded intramuscular protein aggregates, which is the hallmark feature of LGMD1A. Histological improvements were accompanied by significant functional correction, as miMYOT-treated animals showed increased muscle weight and improved specific force in the gastrocnemius, which is one of the most severely affected muscles in TgT57I mice and patients with dominant myotilin mutations. These promising results in a preclinical model of LGMD1A support the further development of RNAi-based molecular therapy as a prospective treatment for LGMD1A. Furthermore, this study sets a foundation that may be refined and adapted to treat other dominant LGMD and related disorders.

  4. Electrical remodeling of cardiac myocytes from mice with heart failure due to the overexpression of tumor necrosis factor-alpha.

    Science.gov (United States)

    Petkova-Kirova, Polina S; Gursoy, Erdal; Mehdi, Haider; McTiernan, Charles F; London, Barry; Salama, Guy

    2006-05-01

    Mice that overexpress the inflammatory cytokine tumor necrosis factor-alpha in the heart (TNF mice) develop heart failure characterized by atrial and ventricular dilatation, decreased ejection fraction, atrial and ventricular arrhythmias, and increased mortality (males > females). Abnormalities in Ca2+ handling, prolonged action potential duration (APD), calcium alternans, and reentrant atrial and ventricular arrhythmias were previously observed with the use of optical mapping of perfused hearts from TNF mice. We therefore tested whether altered voltage-gated outward K+ and/or inward Ca2+ currents contribute to the altered action potential characteristics and the increased vulnerability to arrhythmias. Whole cell voltage-clamp recordings of K+ currents from left ventricular myocytes of TNF mice revealed an approximately 50% decrease in the rapidly activating, rapidly inactivating transient outward K+ current Ito and in the rapidly activating, slowly inactivating delayed rectifier current IK,slow1, an approximately 25% decrease in the rapidly activating, slowly inactivating delayed rectifier current IK,slow2, and no significant change in the steady-state current Iss compared with controls. Peak amplitudes and inactivation kinetics of the L-type Ca2+ current ICa,L were not altered. Western blot analyses revealed a reduction in the proteins underlying Kv4.2, Kv4.3, and Kv1.5. Thus decreased K+ channel expression is largely responsible for the prolonged APD in the TNF mice and may, along with abnormalities in Ca2+ handling, contribute to arrhythmias.

  5. TREM2 Overexpression has No Improvement on Neuropathology and Cognitive Impairment in Aging APPswe/PS1dE9 Mice.

    Science.gov (United States)

    Jiang, Teng; Wan, Yu; Zhang, Ying-Dong; Zhou, Jun-Shan; Gao, Qing; Zhu, Xi-Chen; Shi, Jian-Quan; Lu, Huan; Tan, Lan; Yu, Jin-Tai

    2017-03-01

    Previously, we showed that overexpression of triggering receptor expressed on myeloid cells 2 (TREM2), a microglia-specific immune receptor, in the brain of a middle-aged (7 months old) APPswe/PS1dE9 mice could ameliorate Alzheimer's disease (AD)-related neuropathology by enhancement of microglial amyloid-β (Aβ) phagocytosis. Since AD is an age-related neurodegenerative disorder, it is critical to assess the efficacy of TREM2 overexpression in aging animals with an advanced disease stage. In vivo, we employed a lentiviral strategy to overexpress TREM2 in the brain of aging (18 months old) APPswe/PS1dE9 mice, and observed its efficacy on AD-related neuropathology and cognitive functions. Afterwards, we directly isolated microglia from middle-aged and aging APPswe/PS1dE9 mice and determined effects of TREM2 overexpression on microglial Aβ phagocytosis and Aβ-binding receptors expression in vitro. In aging APPswe/PS1dE9 mice, TREM2 overexpression has no beneficial effect on AD-related neuropathology and spatial cognitive functions. Of note, in vitro experiments showed a significant reduction of Aβ phagocytosis in microglia from aging APPswe/PS1dE9 mice, possibly attributing to the declined expression of Aβ-binding receptors. Meanwhile, this phagocytic deficit in microglia from aging APPswe/PS1dE9 mice cannot be rescued by TREM2 overexpression. Taken together, our study shows that TREM2 overexpression fails to provide neuroprotection in aging APPswe/PS1dE9 mice, possibly attributing to deficits in microglial Aβ phagocytosis at the late-stage of disease progression. These findings indicate that TREM2-mediated protection in AD is at least partially dependent on the reservation of microglial phagocytic functions, emphasizing the importance of early therapeutic interventions for this devastating disease.

  6. Behavioural inflexibility in a comorbid rat model of striatal ischemic injury and mutant hAPP overexpression.

    Science.gov (United States)

    Levit, Alexander; Regis, Aaron M; Garabon, Jessica R; Oh, Seung-Hun; Desai, Sagar J; Rajakumar, Nagalingam; Hachinski, Vladimir; Agca, Yuksel; Agca, Cansu; Whitehead, Shawn N; Allman, Brian L

    2017-08-30

    Alzheimer disease (AD) and stroke coexist and interact; yet how they interact is not sufficiently understood. Both AD and basal ganglia stroke can impair behavioural flexibility, which can be reliably modeled in rats using an established operant based set-shifting test. Transgenic Fischer 344-APP21 rats (TgF344) overexpress pathogenic human amyloid precursor protein (hAPP) but do not spontaneously develop overt pathology, hence TgF344 rats can be used to model the effect of vascular injury in the prodromal stages of Alzheimer disease. We demonstrate that the injection of endothelin-1 (ET1) into the dorsal striatum of TgF344 rats (Tg-ET1) produced an exacerbation of behavioural inflexibility with a behavioural phenotype that was distinct from saline-injected wildtype & TgF344 rats as well as ET1-injected wildtype rats (Wt-ET1). In addition to profiling the types of errors made, interpolative modeling using logistic exposure-response regression provided an informative analysis of the timing and efficiency of behavioural flexibility. During set-shifting, Tg-ET1 committed fewer perseverative errors than Wt-ET1. However, Tg-ET1 committed significantly more regressive errors and had a less efficient strategy change than all other groups. Thus, behavioural flexibility was more vulnerable to striatal ischemic injury in TgF344 rats. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Erythropoietin over-expression protects against diet-induced obesity in mice through increased fat oxidation in muscles

    DEFF Research Database (Denmark)

    Hojman, Pernille; Brolin, Camilla; Gissel, Hanne

    2009-01-01

    patients. Thus we applied the EPO over-expression model to investigate the metabolic effect of EPO in vivo.At 12 weeks, EPO expression resulted in a 23% weight reduction (Pobese mice; thus the mice weighed 21.9+/-0.8 g (control, normal diet,) 21.9+/-1.4 g (EPO, normal diet), 35.......3+/-3.3 g (control, high-fat diet) and 28.8+/-2.6 g (EPO, high-fat diet). Correspondingly, DXA scanning revealed that this was due to a 28% reduction in adipose tissue mass.The decrease in adipose tissue mass was accompanied by a complete normalisation of fasting insulin levels and glucose tolerance......-physiological levels has substantial metabolic effects including protection against diet-induced obesity and normalisation of glucose sensitivity associated with a shift to increased fat metabolism in the muscles....

  8. Sevoflurane Inhalation Accelerates the Long-Term Memory Consolidation via Small GTPase Overexpression in the Hippocampus of Mice in Adolescence.

    Science.gov (United States)

    Nakamura, Emi; Kinoshita, Hiroyuki; Feng, Guo-Gang; Hayashi, Hisaki; Satomoto, Maiko; Sato, Motohiko; Fujiwara, Yoshihiro

    2016-01-01

    Sevoflurane exposure impairs the long-term memory in neonates. Whether the exposure to animals in adolescence affects the memory, however, has been unclear. A small hydrolase enzyme of guanosine triphosphate (GTPase) rac1 plays a role in the F-actin dynamics related to the synaptic plasticity, as well as superoxide production via reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation. The current study was designed to examine whether sevoflurane exposure to mice in early adolescence modifies the long-term learning ability concomitantly with the changes in F-actin constitution as well as superoxide production in the hippocampus according to the levels of rac1 protein expression. Four-week-old mice were subjected to the evaluation of long-term learning ability for three days. On day one, each mouse was allowed to enter a dark chamber for five min to acclimatization. On day two, the procedure was repeated with the addition of an electric shock as soon as a mouse entered the dark chamber. All mice subsequently inhaled 2 L/min air with (Sevoflurane group) and without (Control group) 2.5% sevoflurane for three hours. On day three, each mouse was placed on the platform and retention time, which is the latency to enter the dark chamber, was examined. The brain removed after the behavior test, was used for analyses of immunofluorescence, Western immunoblotting and intracellular levels of superoxide. Sevoflurane exposure significantly prolonged retention time, indicating the enhanced long-term memory. Sevoflurane inhalation augmented F-actin constitution coexisting with the rac1 protein overexpression in the hippocampus whereas it did not alter the levels of superoxide. Sevoflurane exposure to 4-week-old mice accelerates the long-term memory concomitantly with the enhanced F-actin constitution coexisting with the small GTPase rac1 overexpression in the hippocampus. These results suggest that sevoflurane inhalation may amplify long-term memory

  9. Overexpression of thioredoxin in islets transduced by a lentiviral vector prolongs graft survival in autoimmune diabetic NOD mice

    Directory of Open Access Journals (Sweden)

    Sytwu Huey-Kang

    2009-08-01

    Full Text Available Abstract Pancreatic islet transplantation is considered an appropriate treatment to achieve insulin independence in type I diabetic patients. However, islet isolation and transplantation-induced oxidative stress and autoimmune-mediated destruction are still the major obstacles to the long-term survival of graft islets in this potential therapy. To protect islet grafts from inflammatory damage and prolong their survival, we transduced islets with an antioxidative gene thioredoxin (TRX using a lentiviral vector before transplantation. We hypothesized that the overexpression of TRX in islets would prolong islet graft survival when transplanted into diabetic non-obese diabetic (NOD mice. Methods Islets were isolated from NOD mice and transduced with lentivirus carrying TRX (Lt-TRX or enhanced green fluorescence protein (Lt-eGFP, respectively. Transduced islets were transplanted under the left kidney capsule of female diabetic NOD mice, and blood glucose concentration was monitored daily after transplantation. The histology of the islet graft was assessed at the end of the study. The protective effect of TRX on islets was investigated. Results The lentiviral vector effectively transduced islets without altering the glucose-stimulating insulin-secretory function of islets. Overexpression of TRX in islets reduced hydrogen peroxide-induced cytotoxicity in vitro. After transplantation into diabetic NOD mice, euglycemia was maintained for significantly longer in Lt-TRX-transduced islets than in Lt-eGFP-transduced islets; the mean graft survival was 18 vs. 6.5 days (n = 9 and 10, respectively, p Conclusion We successfully transduced the TRX gene into islets and demonstrated that these genetically modified grafts are resistant to inflammatory insult and survived longer in diabetic recipients. Our results further support the concept that the reactive oxygen species (ROS scavenger and antiapoptotic functions of TRX are critical to islet survival after

  10. Mutant Huntingtin Gene-Dose Impacts on Aggregate Deposition, DARPP32 Expression and Neuroinflammation in HdhQ150 Mice

    Science.gov (United States)

    Young, Douglas; Mayer, Franziska; Vidotto, Nella; Schweizer, Tatjana; Berth, Ramon; Abramowski, Dorothee; Shimshek, Derya R.; van der Putten, P. Herman; Schmid, Peter

    2013-01-01

    Huntington's disease (HD) is an autosomal dominant, progressive and fatal neurological disorder caused by an expansion of CAG repeats in exon-1 of the huntingtin gene. The encoded poly-glutamine stretch renders mutant huntingtin prone to aggregation. HdhQ150 mice genocopy a pathogenic repeat (∼150 CAGs) in the endogenous mouse huntingtin gene and model predominantly pre-manifest HD. Treating early is likely important to prevent or delay HD, and HdhQ150 mice may be useful to assess therapeutic strategies targeting pre-manifest HD. This requires appropriate markers and here we demonstrate, that pre-symptomatic HdhQ150 mice show several dramatic mutant huntingtin gene-dose dependent pathological changes including: (i) an increase of neuronal intra-nuclear inclusions (NIIs) in brain, (ii) an increase of extra-nuclear aggregates in dentate gyrus, (iii) a decrease of DARPP32 protein and (iv) an increase in glial markers of neuroinflammation, which curiously did not correlate with local neuronal mutant huntingtin inclusion-burden. HdhQ150 mice developed NIIs also in all retinal neuron cell-types, demonstrating that retinal NIIs are not specific to human exon-1 R6 HD mouse models. Taken together, the striking and robust mutant huntingtin gene-dose related changes in aggregate-load, DARPP32 levels and glial activation markers should greatly facilitate future testing of therapeutic strategies in the HdhQ150 HD mouse model. PMID:24086450

  11. [Accumulation of the bvg- Bordetella pertussis a virulent mutants in the process of experimental whooping cough in mice].

    Science.gov (United States)

    Medkova, A Iu; Siniashina, L N; Rumiantseva, Iu P; Voronina, O L; Kunda, M S; Karataev, G I

    2013-01-01

    The duration of the persistence and dynamics of accumulation of insertion bvg- Bordetella pertussis mutants were studied in lungs of laboratory mice after intranasal and intravenous challenge by virulent bacteria of the causative agent of whooping cough. The capability of the virulent B. pertussis bacteria to long-term persistence in the body of mice was tested. Using the real-time PCR approximately hundred genome equivalents of the B. pertussis DNA were detected in lungs of mice in two months after infection regardless of the way of challenge. Using the bacterial test bacteria were identified during only four weeks after challenge. Bvg- B. pertussis avirulent mutants were accumulated for the infection time. The percentage of the avirulent bacteria in the B. pertussis population reached 50% in 7-9 weeks after challenge. The obtained results show that the laboratory mice can be used for study of the B. pertussis insertion mutant formation dynamics in vivo and confirm the hypothesis about insertional bvg- B. pertussis virulent mutants accumulation during development of pertussis infection in human.

  12. Enhanced Stress Response in 5-HT1AR Overexpressing Mice: Altered HPA Function and Hippocampal Long-Term Potentiation.

    Science.gov (United States)

    Pilar-Cuéllar, Fuencisla; Vidal, Rebeca; Díaz, Álvaro; Garro-Martínez, Emilio; Linge, Raquel; Castro, Elena; Haberzettl, Robert; Fink, Heidrun; Bert, Bettina; Brosda, Jan; Romero, Beatriz; Crespo-Facorro, Benedicto; Pazos, Ángel

    2017-11-15

    Postsynaptic 5-HT 1A receptors (5-HT 1A R) play an important role in anxiety and stress, although their contribution is still controversial. Previous studies report that mice overexpressing postsynaptic 5-HT 1A Rs show no changes in basal anxiety, though the influence of stress conditions has not been addressed yet. In this study, we used this animal model to evaluate the role of 5-HT 1A Rs in anxiety response after pre-exposure to an acute stressor. Under basal conditions, 5-HT 1A R overexpressing animals presented high corticosterone levels and a lower mineralocorticoid/glucocorticoid receptor ratio. After pre-exposure to a single stressor, they showed a high anxiety-like response, associated with a blunted increase in corticosterone levels and higher c-Fos activation in the prefrontal cortex. Moreover, these mice also presented a lack of downregulation of hippocampal long-term potentiation after stress exposure. Therefore, higher postsynaptic 5-HT 1A R activation might predispose to a high anxious phenotype and an impaired stress coping behavior.

  13. Persistent Coxiella burnetii infection in mice overexpressing IL-10: an efficient model for chronic Q fever pathogenesis.

    Directory of Open Access Journals (Sweden)

    Soraya Meghari

    2008-02-01

    Full Text Available Interleukin (IL-10 increases host susceptibility to microorganisms and is involved in intracellular persistence of bacterial pathogens. IL-10 is associated with chronic Q fever, an infectious disease due to the intracellular bacterium Coxiella burnetii. Nevertheless, accurate animal models of chronic C. burnetii infection are lacking. Transgenic mice constitutively expressing IL-10 in macrophages were infected with C. burnetti by intraperitoneal and intratracheal routes and infection was analyzed through real-time PCR and antibody production. Transgenic mice exhibited sustained tissue infection and strong antibody response in contrast to wild-type mice; thus, bacterial persistence was IL-10-dependent as in chronic Q fever. The number of granulomas was low in spleen and liver of transgenic mice infected through the intraperitoneal route, as in patients with chronic Q fever. Macrophages from transgenic mice were unable to kill C. burnetii. C. burnetii-stimulated macrophages were characterized by non-microbicidal transcriptional program consisting of increased expression of arginase-1, mannose receptor, and Ym1/2, in contrast to wild-type macrophages in which expression of inducible NO synthase and inflammatory cytokines was increased. In vivo results emphasized macrophage data. In spleen and liver of transgenic mice infected with C. burnetii by the intraperitoneal route, the expression of arginase-1 was increased while microbicidal pathway consisting of IL-12p40, IL-23p19, and inducible NO synthase was depressed. The overexpression of IL-10 in macrophages prevents anti-infectious competence of host, including the ability to mount granulomatous response and microbicidal pathway in tissues. To our knowledge, this is the first efficient model for chronic Q fever pathogenesis.

  14. Alzheimer’s Disease Mutant Mice Exhibit Reduced Brain Tissue Stiffness Compared to Wild-type Mice in both Normoxia and following Intermittent Hypoxia Mimicking Sleep Apnea

    Directory of Open Access Journals (Sweden)

    Maria José Menal

    2018-01-01

    Full Text Available BackgroundEvidence from patients and animal models suggests that obstructive sleep apnea (OSA may increase the risk of Alzheimer’s disease (AD and that AD is associated with reduced brain tissue stiffness.AimTo investigate whether intermittent hypoxia (IH alters brain cortex tissue stiffness in AD mutant mice exposed to IH mimicking OSA.MethodsSix-eight month old (B6C3-Tg(APPswe,PSEN1dE985Dbo/J AD mutant mice and wild-type (WT littermates were subjected to IH (21% O2 40 s to 5% O2 20 s; 6 h/day or normoxia for 8 weeks. After euthanasia, the stiffness (E of 200-μm brain cortex slices was measured by atomic force microscopy.ResultsTwo-way ANOVA indicated significant cortical softening and weight increase in AD mice compared to WT littermates, but no significant effects of IH on cortical stiffness and weight were detected. In addition, reduced myelin was apparent in AD (vs. WT, but no significant differences emerged in the cortex extracellular matrix components laminin and glycosaminoglycans when comparing baseline AD and WT mice.ConclusionAD mutant mice exhibit reduced brain tissue stiffness following both normoxia and IH mimicking sleep apnea, and such differences are commensurate with increased edema and demyelination in AD.

  15. Interferon β induces clearance of mutant ataxin 7 and improves locomotion in SCA7 knock-in mice.

    Science.gov (United States)

    Chort, Alice; Alves, Sandro; Marinello, Martina; Dufresnois, Béatrice; Dornbierer, Jean-Gabriel; Tesson, Christelle; Latouche, Morwena; Baker, Darren P; Barkats, Martine; El Hachimi, Khalid H; Ruberg, Merle; Janer, Alexandre; Stevanin, Giovanni; Brice, Alexis; Sittler, Annie

    2013-06-01

    We showed previously, in a cell model of spinocerebellar ataxia 7, that interferon beta induces the expression of PML protein and the formation of PML protein nuclear bodies that degrade mutant ataxin 7, suggesting that the cytokine, used to treat multiple sclerosis, might have therapeutic value in spinocerebellar ataxia 7. We now show that interferon beta also induces PML-dependent clearance of ataxin 7 in a preclinical model, SCA7(266Q/5Q) knock-in mice, and improves motor function. Interestingly, the presence of mutant ataxin 7 in the mice induces itself the expression of endogenous interferon beta and its receptor. Immunohistological studies in brains from two patients with spinocerebellar ataxia 7 confirmed that these modifications are also caused by the disease in humans. Interferon beta, administered intraperitoneally three times a week in the knock-in mice, was internalized with its receptor in Purkinje and other cells and translocated to the nucleus. The treatment induced PML protein expression and the formation of PML protein nuclear bodies and decreased mutant ataxin 7 in neuronal intranuclear inclusions, the hallmark of the disease. No reactive gliosis or other signs of toxicity were observed in the brain or internal organs. The performance of the SCA7(266Q/5Q) knock-in mice was significantly improved on two behavioural tests sensitive to cerebellar function: the Locotronic® Test of locomotor function and the Beam Walking Test of balance, motor coordination and fine movements, which are affected in patients with spinocerebellar ataxia 7. In addition to motor dysfunction, SCA7(266Q/5Q) mice present abnormalities in the retina as in patients: ataxin 7-positive neuronal intranuclear inclusions that were reduced by interferon beta treatment. Finally, since neuronal death does not occur in the cerebellum of SCA7(266Q/5Q) mice, we showed in primary cell cultures expressing mutant ataxin 7 that interferon beta treatment improves Purkinje cell survival.

  16. Ultrasonic vocalizations of adult male Foxp2-mutant mice: behavioral contexts of arousal and emotion.

    Science.gov (United States)

    Gaub, S; Fisher, S E; Ehret, G

    2016-02-01

    Adult mouse ultrasonic vocalizations (USVs) occur in multiple behavioral and stimulus contexts associated with various levels of arousal, emotion and social interaction. Here, in three experiments of increasing stimulus intensity (water; female urine; male interacting with adult female), we tested the hypothesis that USVs of adult males express the strength of arousal and emotion via different USV parameters (18 parameters analyzed). Furthermore, we analyzed two mouse lines with heterozygous Foxp2 mutations (R552H missense, S321X nonsense), known to produce severe speech and language disorders in humans. These experiments allowed us to test whether intact Foxp2 function is necessary for developing full adult USV repertoires, and whether mutations of this gene influence instinctive vocal expressions based on arousal and emotion. The results suggest that USV calling rate characterizes the arousal level, while sound pressure and spectrotemporal call complexity (overtones/harmonics, type of frequency jumps) may provide indices of levels of positive emotion. The presence of Foxp2 mutations did not qualitatively affect the USVs; all USV types that were found in wild-type animals also occurred in heterozygous mutants. However, mice with Foxp2 mutations displayed quantitative differences in USVs as compared to wild-types, and these changes were context dependent. Compared to wild-type animals, heterozygous mutants emitted mainly longer and louder USVs at higher minimum frequencies with a higher occurrence rate of overtones/harmonics and complex frequency jump types. We discuss possible hypotheses about Foxp2 influence on emotional vocal expressions, which can be investigated in future experiments using selective knockdown of Foxp2 in specific brain circuits. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  17. Erythropoietin over-expression protects against diet-induced obesity in mice through increased fat oxidation in muscles.

    Directory of Open Access Journals (Sweden)

    Pernille Hojman

    Full Text Available Erythropoietin can be over-expressed in skeletal muscles by gene electrotransfer, resulting in 100-fold increase in serum EPO and significant increases in haemoglobin levels. Earlier studies have suggested that EPO improves several metabolic parameters when administered to chronically ill kidney patients. Thus we applied the EPO over-expression model to investigate the metabolic effect of EPO in vivo.At 12 weeks, EPO expression resulted in a 23% weight reduction (P<0.01 in EPO transfected obese mice; thus the mice weighed 21.9+/-0.8 g (control, normal diet, 21.9+/-1.4 g (EPO, normal diet, 35.3+/-3.3 g (control, high-fat diet and 28.8+/-2.6 g (EPO, high-fat diet. Correspondingly, DXA scanning revealed that this was due to a 28% reduction in adipose tissue mass.The decrease in adipose tissue mass was accompanied by a complete normalisation of fasting insulin levels and glucose tolerance in the high-fat fed mice. EPO expression also induced a 14% increase in muscle volume and a 25% increase in vascularisation of the EPO transfected muscle. Muscle force and stamina were not affected by EPO expression. PCR array analysis revealed that genes involved in lipid metabolism, thermogenesis and inflammation were increased in muscles in response to EPO expression, while genes involved in glucose metabolism were down-regulated. In addition, muscular fat oxidation was increased 1.8-fold in both the EPO transfected and contralateral muscles.In conclusion, we have shown that EPO when expressed in supra-physiological levels has substantial metabolic effects including protection against diet-induced obesity and normalisation of glucose sensitivity associated with a shift to increased fat metabolism in the muscles.

  18. The Endocannabinoid System across Postnatal Development in Transmembrane Domain Neuregulin 1 Mutant Mice

    Directory of Open Access Journals (Sweden)

    Rose Chesworth

    2018-02-01

    Full Text Available The use of cannabis is a well-established component risk factor for schizophrenia, particularly in adolescent individuals with genetic predisposition for the disorder. Alterations to the endocannabinoid system have been found in the prefrontal cortex of patients with schizophrenia. Thus, we assessed whether molecular alterations exist in the endocannabinoid signalling pathway during brain development in a mouse model for the schizophrenia risk gene neuregulin 1 (Nrg1. We analysed transcripts encoding key molecules of the endocannabinoid system in heterozygous transmembrane domain Nrg1 mutant mice (Nrg1 TM HET, which is known to have increased sensitivity to cannabis exposure. Tissue from the prelimbic cortex and hippocampus of male and female Nrg1 TM HET mice and wild type-like littermates was collected at postnatal days (PNDs 7, 10, 14, 21, 28, 35, 49, and 161. Quantitative polymerase chain reaction was conducted to assess mRNA levels of cannabinoid receptor 1 (CB1R and enzymes for the synthesis and breakdown of the endocannabinoid 2-arachidonoylglycerol [i.e., diacylglycerol lipase alpha (DAGLα, monoglyceride lipase (MGLL, and α/β-hydrolase domain-containing 6 (ABHD6]. No sex differences were found for any transcripts in either brain region; thus, male and female data were pooled. Hippocampal and cortical mRNA expression of DAGLα, MGLL, and ABHD6 increased until PND 21–35 and then decreased and stabilised for the rest of postnatal development. Hippocampal CB1R mRNA expression increased until PND 21 and decreased after this age. Expression levels of these endocannabinoid markers did not differ in Nrg1 TM HET compared to control mice at any time point. Here, we demonstrate dynamic changes in the developmental trajectory of several key endocannabinoid system transcripts in the mouse brain, which may correspond with periods of endocannabinoid system maturation. Nrg1 TM HET mutation did not alter the developmental trajectory of the

  19. No dramatic age-related loss of hair cells and spiral ganglion neurons in Bcl-2 over-expression mice or Bax null mice

    Directory of Open Access Journals (Sweden)

    Ohlemiller Kevin K

    2010-07-01

    Full Text Available Abstract Age-related decline of neuronal function is associated with age-related structural changes. In the central nervous system, age-related decline of cognitive performance is thought to be caused by synaptic loss instead of neuronal loss. However, in the cochlea, age-related loss of hair cells and spiral ganglion neurons (SGNs is consistently observed in a variety of species, including humans. Since age-related loss of these cells is a major contributing factor to presbycusis, it is important to study possible molecular mechanisms underlying this age-related cell death. Previous studies suggested that apoptotic pathways were involved in age-related loss of hair cells and SGNs. In the present study, we examined the role of Bcl-2 gene in age-related hearing loss. In one transgenic mouse line over-expressing human Bcl-2, there were no significant differences between transgenic mice and wild type littermate controls in their hearing thresholds during aging. Histological analysis of the hair cells and SGNs showed no significant conservation of these cells in transgenic animals compared to the wild type controls during aging. These data suggest that Bcl-2 overexpression has no significant effect on age-related loss of hair cells and SGNs. We also found no delay of age-related hearing loss in mice lacking Bax gene. These findings suggest that age-related hearing loss is not through an apoptotic pathway involving key members of Bcl-2 family.

  20. Biodistribution patterns of native and mutant 99mTc-labelled annexin V in mice

    International Nuclear Information System (INIS)

    Mariani, G.; Erba, P.; Pellegrino, D.; Volterrani, D.; Lazzeri, E.; Freer, G.; Bevilacqua, G.; Blankenberg, F.G.; Tait, J.F.; Strauss, H.W.

    2003-01-01

    Full text: Annexin is a 36 kD protein with high binding affinity to phosphatidylserine (PS), a phospholipid exposed on the membrane surface of cells upon activation of the enzyme caspase, the first step of apoptosis. Radiolabeled annexin V could thus be used for imaging apoptosis in-vivo. When the 319 amino acid protein is made by recombinant techniques and expressed as the human material, it can be radiolabeled with 99mTc after derivatization with a bifunctional agent such as HYNIC. Alternatively, the amino acid structure of the protein can be modified by producing annexin V mutants with an endogenous chelation site for 99mTc, the NH2 residue Ala-Gly-Gly-Cys-Gly-His-Met. Mutant annexin has similar affinity for membrane-bound PS as unmodified annexin. This study was performed to compare the biodistribution of 99mTc-labeled HYNIC annexin (HyA) to mutant annexin (MuA). 99mTc-labeling efficiency of the two annexin preparations was >99% by gel chromatography on Sephadex G10 columns. Groups of adult male mice (n 10, body weight 18-25 grams) were injected iv with either HyA or MuA (1-3 MBq, 3-9 μg/animal). Animals were sacrificed one hour later and dissected for organ biodistribution. Similar biodistribution was performed after pretreatment with cyclophosphamide (150 mg/kg ip 6-15 hr prior to the study). The results of the biodistribution study showed significantly reduced (p<0.05 to p<0.01) uptake of MuA versus HyA in the kidneys (Δ- 81.4%), spleen (Δ- 58.2%), liver (Δ- 56.2%), and bone marrow (Δ- 33.7%), while it was increased in lymph nodes (Δ+ 131%, p<0.001). Pretreatment with the pro-apoptotic agent cyclophosphamide induced significantly increased uptake of MuA (p<0.05) versus baseline in the heart (Δ+ 34.7%), spleen (Δ+ 30.1%) and bowel (Δ+ 44.5%), while uptake of HyA was increased only in the spleen (Δ+ 44.1%). The marked reduction in the renal, splenic, liver, and bone marrow localization of MuA compared to HyA in control animals outlines a pattern of

  1. TRIP-Br2 promotes oncogenesis in nude mice and is frequently overexpressed in multiple human tumors

    Directory of Open Access Journals (Sweden)

    Peh Bee

    2009-01-01

    Full Text Available Abstract Background Members of the TRIP-Br/SERTAD family of mammalian transcriptional coregulators have recently been implicated in E2F-mediated cell cycle progression and tumorigenesis. We, herein, focus on the detailed functional characterization of the least understood member of the TRIP-Br/SERTAD protein family, TRIP-Br2 (SERTAD2. Methods Oncogenic potential of TRIP-Br2 was demonstrated by (1 inoculation of NIH3T3 fibroblasts, which were engineered to stably overexpress ectopic TRIP-Br2, into athymic nude mice for tumor induction and (2 comprehensive immunohistochemical high-throughput screening of TRIP-Br2 protein expression in multiple human tumor cell lines and human tumor tissue microarrays (TMAs. Clinicopathologic analysis was conducted to assess the potential of TRIP-Br2 as a novel prognostic marker of human cancer. RNA interference of TRIP-Br2 expression in HCT-116 colorectal carcinoma cells was performed to determine the potential of TRIP-Br2 as a novel chemotherapeutic drug target. Results Overexpression of TRIP-Br2 is sufficient to transform murine fibroblasts and promotes tumorigenesis in nude mice. The transformed phenotype is characterized by deregulation of the E2F/DP-transcriptional pathway through upregulation of the key E2F-responsive genes CYCLIN E, CYCLIN A2, CDC6 and DHFR. TRIP-Br2 is frequently overexpressed in both cancer cell lines and multiple human tumors. Clinicopathologic correlation indicates that overexpression of TRIP-Br2 in hepatocellular carcinoma is associated with a worse clinical outcome by Kaplan-Meier survival analysis. Small interfering RNA-mediated (siRNA knockdown of TRIP-Br2 was sufficient to inhibit cell-autonomous growth of HCT-116 cells in vitro. Conclusion This study identifies TRIP-Br2 as a bona-fide protooncogene and supports the potential for TRIP-Br2 as a novel prognostic marker and a chemotherapeutic drug target in human cancer.

  2. Modulating Wnt Signaling Rescues Palate Morphogenesis in Pax9 Mutant Mice.

    Science.gov (United States)

    Li, C; Lan, Y; Krumlauf, R; Jiang, R

    2017-10-01

    Cleft palate is a common birth defect caused by disruption of palatogenesis during embryonic development. Although mutations disrupting components of the Wnt signaling pathway have been associated with cleft lip and palate in humans and mice, the mechanisms involving canonical Wnt signaling and its regulation in secondary palate development are not well understood. Here, we report that canonical Wnt signaling plays an important role in Pax9-mediated regulation of secondary palate development. We found that cleft palate pathogenesis in Pax9-deficient embryos is accompanied by significantly reduced expression of Axin2, an endogenous target of canonical Wnt signaling, in the developing palatal mesenchyme, particularly in the posterior regions of the palatal shelves. We found that expression of Dkk2, encoding a secreted Wnt antagonist, is significantly increased whereas the levels of active β-catenin protein, the essential transcriptional coactivator of canonical Wnt signaling, is significantly decreased in the posterior regions of the palatal shelves in embryonic day 13.5 Pax9-deficent embryos in comparison with control littermates. We show that small molecule-mediated inhibition of Dickkopf (DKK) activity in utero during palatal shelf morphogenesis partly rescued secondary palate development in Pax9-deficient embryos. Moreover, we found that genetic inactivation of Wise, which is expressed in the developing palatal shelves and encodes another secreted antagonist of canonical Wnt signaling, also rescued palate morphogenesis in Pax9-deficient mice. Furthermore, whereas Pax9 del/del embryos exhibit defects in palatal shelf elevation/reorientation and significant reduction in accumulation of hyaluronic acid-a high molecular extracellular matrix glycosaminoglycan implicated in playing an important role in palatal shelf elevation-80% of Pax9 del/del ;Wise -/- double-mutant mouse embryos exhibit rescued palatal shelf elevation/reorientation, accompanied by restored

  3. miR-155 Controls Lymphoproliferation in LAT Mutant Mice by Restraining T-Cell Apoptosis via SHIP-1/mTOR and PAK1/FOXO3/BIM Pathways.

    Directory of Open Access Journals (Sweden)

    Alexandre K Rouquette-Jazdanian

    Full Text Available Linker for Activation of T cells (LAT is an adapter protein that is essential for T cell function. Knock-in mice with a LAT mutation impairing calcium flux develop a fatal CD4+ lymphoproliferative disease. miR-155 is a microRNA that is correlated with hyperproliferation in a number of cancers including lymphomas and leukemias and is overexpressed in mutant LAT T cells. To test whether miR-155 was merely indicative of T cell activation or whether it contributes to lymphoproliferative disease in mutant LAT mice, we interbred LAT mutant and miR-155-deficient mice. miR-155 deficiency markedly inhibited lymphoproliferative disease by stimulating BIM-dependent CD4+ T cell apoptosis, even though ERK activation and T cell proliferation were increased in double mutant CD4+ T cells. Bim/Bcl2l11 expression is activated by the forkhead transcription factor FOXO3. Using miR-155-deficient, LAT mutant T cells as a discovery tool, we found two connected pathways that impact the nuclear translocation and activation of FOXO3 in T cells. One pathway is mediated by the inositide phosphatase SHIP-1 and the serine/threonine kinases AKT and PDK1. The other pathway involves PAK1 and JNK kinase activation. We define crosstalk between the two pathways via the kinase mTOR, which stabilizes PAK1. This study establishes a role for PAK1 in T cell apoptosis, which contrasts to its previously identified role in T cell proliferation. Furthermore, miR-155 regulates the delicate balance between PAK1-mediated proliferation and apoptosis in T cells impacting lymphoid organ size and function.

  4. Toll-like receptor 4 mutant and null mice retain morphine-induced tolerance, hyperalgesia, and physical dependence.

    Directory of Open Access Journals (Sweden)

    Theresa Alexandra Mattioli

    Full Text Available The innate immune system modulates opioid-induced effects within the central nervous system and one target that has received considerable attention is the toll-like receptor 4 (TLR4. Here, we examined the contribution of TLR4 in the development of morphine tolerance, hyperalgesia, and physical dependence in two inbred mouse strains: C3H/HeJ mice which have a dominant negative point mutation in the Tlr4 gene rendering the receptor non-functional, and B10ScNJ mice which are TLR4 null mutants. We found that neither acute antinociceptive response to a single dose of morphine, nor the development of analgesic tolerance to repeated morphine treatment, was affected by TLR4 genotype. Likewise, opioid induced hyperalgesia and opioid physical dependence (assessed by naloxone precipitated withdrawal were not altered in TLR4 mutant or null mice. We also examined the behavioural consequence of two stereoisomers of naloxone: (- naloxone, an opioid receptor antagonist, and (+ naloxone, a purported antagonist of TLR4. Both stereoisomers of naloxone suppressed opioid induced hyperalgesia in wild-type control, TLR4 mutant, and TLR4 null mice. Collectively, our data suggest that TLR4 is not required for opioid-induced analgesic tolerance, hyperalgesia, or physical dependence.

  5. Kaiso overexpression promotes intestinal inflammation and potentiates intestinal tumorigenesis in Apc(Min/+) mice.

    Science.gov (United States)

    Pierre, Christina C; Longo, Joseph; Mavor, Meaghan; Milosavljevic, Snezana B; Chaudhary, Roopali; Gilbreath, Ebony; Yates, Clayton; Daniel, Juliet M

    2015-09-01

    Constitutive Wnt/β-catenin signaling is a key contributor to colorectal cancer (CRC). Although inactivation of the tumor suppressor adenomatous polyposis coli (APC) is recognized as an early event in CRC development, it is the accumulation of multiple subsequent oncogenic insults facilitates malignant transformation. One potential contributor to colorectal carcinogenesis is the POZ-ZF transcription factor Kaiso, whose depletion extends lifespan and delays polyp onset in the widely used Apc(Min/+) mouse model of intestinal cancer. These findings suggested that Kaiso potentiates intestinal tumorigenesis, but this was paradoxical as Kaiso was previously implicated as a negative regulator of Wnt/β-catenin signaling. To resolve Kaiso's role in intestinal tumorigenesis and canonical Wnt signaling, we generated a transgenic mouse model (Kaiso(Tg/+)) expressing an intestinal-specific myc-tagged Kaiso transgene. We then mated Kaiso(Tg/+) and Apc(Min/+) mice to generate Kaiso(Tg/+):Apc(Min/+) mice for further characterization. Kaiso(Tg/+):Apc(Min/+) mice exhibited reduced lifespan and increased polyp multiplicity compared to Apc(Min/+) mice. Consistent with this murine phenotype, we found increased Kaiso expression in human CRC tissue, supporting a role for Kaiso in human CRC. Interestingly, Wnt target gene expression was increased in Kaiso(Tg/+):Apc(Min/+) mice, suggesting that Kaiso's function as a negative regulator of canonical Wnt signaling, as seen in Xenopus, is not maintained in this context. Notably, Kaiso(Tg/+):Apc(Min/+) mice exhibited increased inflammation and activation of NFκB signaling compared to their Apc(Min/+) counterparts. This phenotype was consistent with our previous report that Kaiso(Tg/+) mice exhibit chronic intestinal inflammation. Together our findings highlight a role for Kaiso in promoting Wnt signaling, inflammation and tumorigenesis in the mammalian intestine. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. ERK Regulates Renal Cell Proliferation and Renal Cyst Expansion in inv Mutant Mice

    International Nuclear Information System (INIS)

    Okumura, Yasuko; Sugiyama, Noriyuki; Tanimura, Susumu; Nishida, Masashi; Hamaoka, Kenji; Kohno, Michiaki; Yokoyama, Takahiko

    2009-01-01

    Nephronophthisis (NPHP) is the most frequent genetic cause of end-stage kidney disease in children and young adults. Inv mice are a model for human nephronophthisis type 2 (NPHP2) and characterized by multiple renal cysts and situs inversus. Renal epithelial cells in inv cystic kidneys show increased cell proliferation. We studied the ERK pathway to understand the mechanisms that induce cell proliferation and renal cyst progression in inv kidneys. We studied the effects of ERK suppression by administering PD184352, an oral mitogen-activated protein kinase kinase (MEK) inhibitor on renal cyst expansion, extracellular signal-regulated protein kinase (ERK) activity, bromo-deoxyuridine (BrdU) incorporation and expression of cell-cycle regulators in invΔC kidneys. Phosphorylated ERK (p-ERK) level increased along with renal cyst enlargement. Cell-cycle regulators showed a high level of expression in invΔC kidneys. PD184352 successfully decreased p-ERK level and inhibited renal cyst enlargement. The inhibitor also decreased expression of cell-cycle regulators and BrdU incorporation in renal epithelial cells. The present results showed that ERK regulated renal cell proliferation and cyst expansion in inv mutants

  7. MASTR: A Technique for Mosaic Mutant Analysis with Spatial and Temporal Control of Recombination Using Conditional Floxed Alleles in Mice

    Directory of Open Access Journals (Sweden)

    Zhimin Lao

    2012-08-01

    Full Text Available Mosaic mutant analysis, the study of cellular defects in scattered mutant cells in a wild-type environment, is a powerful approach for identifying critical functions of genes and has been applied extensively to invertebrate model organisms. A highly versatile technique has been developed in mouse: MASTR (mosaic mutant analysis with spatial and temporal control of recombination, which utilizes the increasing number of floxed alleles and simultaneously combines conditional gene mutagenesis and cell marking for fate analysis. A targeted allele (R26MASTR was engineered; the allele expresses a GFPcre fusion protein following FLP-mediated recombination, which serves the dual function of deleting floxed alleles and marking mutant cells with GFP. Within 24 hr of tamoxifen administration to R26MASTR mice carrying an inducible FlpoER transgene and a floxed allele, nearly all GFP-expressing cells have a mutant allele. The fate of single cells lacking FGF8 or SHH signaling in the developing hindbrain was analyzed using MASTR, and it was revealed that there is only a short time window when neural progenitors require FGFR1 for viability and that granule cell precursors differentiate rapidly when SMO is lost. MASTR is a powerful tool that provides cell-type-specific (spatial and temporal marking of mosaic mutant cells and is broadly applicable to developmental, cancer, and adult stem cell studies.

  8. Are Sema5a mutant mice a good model of autism? A behavioral analysis of sensory systems, emotionality and cognition

    Science.gov (United States)

    Gunn, Rhian K.; Huentelman, Matthew J.; Brown, Richard E.

    2011-01-01

    Semaphorin 5A (Sema5A) expression is reduced in the brain of individuals with autism, thus mice with reduced Sema5A levels may serve as a model of this neurodevelopmental disorder. We tested male and female Sema5a knockout mice (B6.129P2SEMA5A/J) and C57BL/6J controls for emotionality, visual ability, prepulse inhibition, motor learning and cognition. Overall, there were only two genotype differences in emotionality: Sema5a mutant mice had more stretch-attend postures in the elevated plus-maze and more defecations in the open field. All mice could see, but Sema5a mice had better visual ability than C57BL/6J mice. There were no genotype differences in sensory-motor gating. Sema5a mice showed higher levels of activity in the elevated plus-maze and light/dark transition box, and there were sex by genotype differences in the Rotarod, suggesting a sex difference in balance and coordination differentially affected by Sema5a. There were no genotype effects on cognition: Sema5a mice did not differ from C57BL/6J in the Morris water maze, set-shifting or cued and contextual fear conditioning. In the social recognition test, all mice preferred social stimuli, but there was no preference for social novelty, thus the Sema5A mice do not have a deficit in social behavior. Overall, there were a number of sex differences, with females showing greater activity and males performing better in tests of spatial learning and memory, but no deficits in the behavior of Sema5A mice. We conclude that the Sema5a mice do not meet the behavioral criteria for a mouse model of autism. PMID:21777623

  9. Anxiolytic-like effects after vector-mediated overexpression of neuropeptide Y in the amygdala and hippocampus of mice

    DEFF Research Database (Denmark)

    Christiansen, Søren Hofman Oliveira; Olesen, Mikkel Vestergaard; Gøtzsche, Casper René

    2014-01-01

    , injections of rAAV-NPY caused significant anxiolytic-like effect in the open field, elevated plus maze, and light-dark transition tests. In the hippocampus, rAAV-NPY treatment was associated with anxiolytic-like effect only in the elevated plus maze. No additive effect was observed after combined r....... Using a recombinant adeno-associated viral (rAAV) vector, we addressed this idea by testing effects on anxiolytic- and depression-like behaviours in adult mice after overexpression of NPY transgene in the amygdala and/or hippocampus, two brain regions implicated in emotional behaviours. In the amygdala......AAV-NPY injection into both the amygdala and hippocampus where anxiolytic-like effect was found in the elevated plus maze and light-dark transition tests. Antidepressant-like effects were not detected in any of the rAAV-NPY injected groups. Immobility was even increased in the tail suspension and forced swim tests...

  10. Increased infectivity of anchorless mouse scrapie prions in transgenic mice overexpressing human prion protein.

    Science.gov (United States)

    Race, Brent; Phillips, Katie; Meade-White, Kimberly; Striebel, James; Chesebro, Bruce

    2015-06-01

    Prion protein (PrP) is found in all mammals, mostly as a glycoprotein anchored to the plasma membrane by a C-terminal glycosylphosphatidylinositol (GPI) linkage. Following prion infection, host protease-sensitive prion protein (PrPsen or PrPC) is converted into an abnormal, disease-associated, protease-resistant form (PrPres). Biochemical characteristics, such as the PrP amino acid sequence, and posttranslational modifications, such as glycosylation and GPI anchoring, can affect the transmissibility of prions as well as the biochemical properties of the PrPres generated. Previous in vivo studies on the effects of GPI anchoring on prion infectivity have not examined cross-species transmission. In this study, we tested the effect of lack of GPI anchoring on a species barrier model using mice expressing human PrP. In this model, anchorless 22L prions derived from tg44 mice were more infectious than 22L prions derived from C57BL/10 mice when tested in tg66 transgenic mice, which expressed wild-type anchored human PrP at 8- to 16-fold above normal. Thus, the lack of the GPI anchor on the PrPres from tg44 mice appeared to reduce the effect of the mouse-human PrP species barrier. In contrast, neither source of prions induced disease in tgRM transgenic mice, which expressed human PrP at 2- to 4-fold above normal. Prion protein (PrP) is found in all mammals, usually attached to cells by an anchor molecule called GPI. Following prion infection, PrP is converted into a disease-associated form (PrPres). While most prion diseases are species specific, this finding is not consistent, and species barriers differ in strength. The amino acid sequence of PrP varies among species, and this variability affects prion species barriers. However, other PrP modifications, including glycosylation and GPI anchoring, may also influence cross-species infectivity. We studied the effect of PrP GPI anchoring using a mouse-to-human species barrier model. Experiments showed that prions produced by

  11. Metformin normalizes the structural changes in glycogen preceding prediabetes in mice overexpressing neuropeptide Y in noradrenergic neurons.

    Science.gov (United States)

    Ailanen, Liisa; Bezborodkina, Natalia N; Virtanen, Laura; Ruohonen, Suvi T; Malova, Anastasia V; Okovityi, Sergey V; Chistyakova, Elizaveta Y; Savontaus, Eriika

    2018-04-01

    Hepatic insulin resistance and increased gluconeogenesis are known therapeutic targets of metformin, but the role of hepatic glycogen in the pathogenesis of diabetes is less clear. Mouse model of neuropeptide Y (NPY) overexpression in noradrenergic neurons (OE-NPY D βH ) with a phenotype of late onset obesity, hepatosteatosis, and prediabetes was used to study early changes in glycogen structure and metabolism preceding prediabetes. Furthermore, the effect of the anti-hyperglycemic agent, metformin (300 mg/kg/day/4 weeks in drinking water), was assessed on changes in glycogen metabolism, body weight, fat mass, and glucose tolerance. Glycogen structure was characterized by cytofluorometric analysis in isolated hepatocytes and mRNA expression of key enzymes by qPCR. OE-NPY D βH mice displayed decreased labile glycogen fraction relative to stabile fraction (the intermediate form of glycogen) suggesting enhanced glycogen cycling. This was supported by decreased filling of glucose residues in the 10th outer tier of the glycogen molecule, which suggests accelerated glycogen phosphorylation. Metformin reduced fat mass gain in both genotypes, but glucose tolerance was improved mostly in wild-type mice. However, metformin inhibited glycogen accumulation and normalized the ratio between glycogen structures in OE-NPY D βH mice indicating decreased glycogen synthesis. Furthermore, the presence of glucose residues in the 11th tier together with decreased glycogen phosphorylase expression suggested inhibition of glycogen degradation. In conclusion, structural changes in glycogen of OE-NPY D βH mice point to increased glycogen metabolism, which may predispose them to prediabetes. Metformin treatment normalizes these changes and suppresses both glycogen synthesis and phosphorylation, which may contribute to its preventive effect on the onset of diabetes.

  12. Hyperactivity and learning deficits in transgenic mice bearing a human mutant thyroid hormone beta1 receptor gene.

    Science.gov (United States)

    McDonald, M P; Wong, R; Goldstein, G; Weintraub, B; Cheng, S Y; Crawley, J N

    1998-01-01

    Resistance to thyroid hormone (RTH) is a human syndrome mapped to the thyroid receptor beta (TRbeta) gene on chromosome 3, representing a mutation of the ligand-binding domain of the TRbeta gene. The syndrome is characterized by reduced tissue responsiveness to thyroid hormone and elevated serum levels of thyroid hormones. A common behavioral phenotype associated with RTH is attention deficit hyperactivity disorder (ADHD). To test the hypothesis that RTH produces attention deficits and/or hyperactivity, transgenic mice expressing a mutant TRbeta gene were generated. The present experiment tested RTH transgenic mice from the PV kindred on behavioral tasks relevant to the primary features of ADHD: hyperactivity, sustained attention (vigilance), learning, and impulsivity. Male transgenic mice showed elevated locomotor activity in an open field compared to male wild-type littermate controls. Both male and female transgenic mice exhibited impaired learning of an autoshaping task, compared to wild-type controls. On a vigilance task in an operant chamber, there were no differences between transgenics and controls on the proportion of hits, response latency, or duration of stimulus tolerated. On an operant go/no-go task measuring sustained attention and impulsivity, there were no differences between controls and transgenics. These results indicate that transgenic mice bearing a mutant human TRbeta gene demonstrate several behavioral characteristics of ADHD and may serve a valuable heuristic role in elucidating possible candidate genes in converging pathways for other causes of ADHD.

  13. Hyperactivity and Learning Deficits in Transgenic Mice Bearing a Human Mutant Thyroid Hormone β1 Receptor Gene

    Science.gov (United States)

    McDonald, Michael P.; Wong, Rosemary; Goldstein, Gregory; Weintraub, Bruce; Cheng, Sheue-yann; Crawley, Jacqueline N.

    1998-01-01

    Resistance to thyroid hormone (RTH) is a human syndrome mapped to the thyroid receptor β (TRβ) gene on chromosome 3, representing a mutation of the ligandbinding domain of the TRβ gene. The syndrome is characterized by reduced tissue responsiveness to thyroid hormone and elevated serum levels of thyroid hormones. A common behavioral phenotype associated with RTH is attention deficit hyperactivity disorder (ADHD). To test the hypothesis that RTH produces attention deficits and/or hyperactivity, transgenic mice expressing a mutant TRβ gene were generated. The present experiment tested RTH transgenic mice from the PV kindred on behavioral tasks relevant to the primary features of ADHD: hyperactivity, sustained attention (vigilance), learning, and impulsivity. Male transgenic mice showed elevated locomotor activity in an open field compared to male wild-type littermate controls. Both male and female transgenic mice exhibited impaired learning of an autoshaping task, compared to wild-type controls. On a vigilance task in an operant chamber, there were no differences between transgenics and controls on the proportion of hits, response latency, or duration of stimulus tolerated. On an operant go/no-go task measuring sustained attention and impulsivity, there were no differences between controls and transgenics. These results indicate that transgenic mice bearing a mutant human TRβ gene demonstrate several behavioral characteristics of ADHD and may serve a valuable heuristic role in elucidating possible candidate genes in converging pathways for other causes of ADHD. PMID:10454355

  14. Ectopic norrin induces growth of ocular capillaries and restores normal retinal angiogenesis in Norrie disease mutant mice.

    Science.gov (United States)

    Ohlmann, Andreas; Scholz, Michael; Goldwich, Andreas; Chauhan, Bharesh K; Hudl, Kristiane; Ohlmann, Anne V; Zrenner, Eberhart; Berger, Wolfgang; Cvekl, Ales; Seeliger, Mathias W; Tamm, Ernst R

    2005-02-16

    Norrie disease is an X-linked retinal dysplasia that presents with congenital blindness, sensorineural deafness, and mental retardation. Norrin, the protein product of the Norrie disease gene (NDP), is a secreted protein of unknown biochemical function. Norrie disease (Ndp(y/-)) mutant mice that are deficient in norrin develop blindness, show a distinct failure in retinal angiogenesis, and completely lack the deep capillary layers of the retina. We show here that the transgenic expression of ectopic norrin under control of a lens-specific promoter restores the formation of a normal retinal vascular network in Ndp(y/-) mutant mice. The improvement in structure correlates with restoration of neuronal function in the retina. In addition, lenses of transgenic mice with ectopic expression of norrin show significantly more capillaries in the hyaloid vasculature that surrounds the lens during development. In vitro, lenses of transgenic mice in coculture with microvascular endothelial cells induce proliferation of the cells. Transgenic mice with ectopic expression of norrin show more bromodeoxyuridine-labeled retinal progenitor cells at embryonic day 14.5 and thicker retinas at postnatal life than wild-type littermates, indicating a putative direct neurotrophic effect of norrin. These data provide direct evidence that norrin induces growth of ocular capillaries and that pharmacologic modulation of norrin might be used for treatment of the vascular abnormalities associated with Norrie disease or other vascular disorders of the retina.

  15. Development of an in vivo model of Chlamydia abortus chronic infection in mice overexpressing IL-10.

    Science.gov (United States)

    Del Río, Laura; Murcia, Antonio; Buendía, Antonio J; Álvarez, Daniel; Ortega, Nieves; Navarro, José A; Salinas, Jesús; Caro, María Rosa

    2018-01-01

    Chlamydia abortus, like other members of the family Chlamydiaceae, have a unique intracellular developmental cycle that is characterized by its chronic nature. Infection of a flock can remain undetected for months, until abortion occurs the following reproductive season but, to date, neither the location nor the mechanisms that maintain this latent phase are fully understood. Studies have shown that IL-10 produced as a response to certain micro-organisms sustains the intracellular survival of pathogens and increases host susceptibility to chlamydial infections. In order to induce a sustained infection C. abortus, transgenic mice that constitutively express IL-10 were infected and the immunological mechanisms that maintain infection in these mice were compared with the mechanisms of a resistant wild-type mouse strain. Viable bacteria could be detected in different tissues of transgenic mice up to 28 days after infection, as analysed by bacterial isolation and immunohistochemistry. Chronic infection in these mice was associated with an impaired recruitment of macrophages, decreased iNOS activity at the site of infection and a more diffuse distribution of inflammatory cells in the liver. This murine model can be of great help for understanding the immunological and bacterial mechanisms that lead to chronic chlamydial infections. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Protection from obesity and insulin resistance in mice overexpressing human apolipoprotein C1

    NARCIS (Netherlands)

    Jong, M. C.; Voshol, P. J.; Muurling, M.; Dahlmans, V. E.; Romijn, J. A.; Pijl, H.; Havekes, L. M.

    2001-01-01

    Apolipoprotein (APO) C1 is a 6.6-kDa protein present in plasma and associated with lipoproteins. Using hyperinsulinemic-euglycemic clamp tests, we previously found that in APOC1 transgenic mice, the whole-body insulin-mediated glucose uptake is increased concomitant with a decreased fatty acid

  17. Radio-sensitivity of the cells from amyotrophic lateral sclerosis model mice transfected with human mutant SOD1

    International Nuclear Information System (INIS)

    Wate, Reika; Ito, Hidefumi; Kusaka, Hirofumi; Takahashi, Sentaro; Kubota, Yoshihisa; Suetomi, Katsutoshi; Sato, Hiroshi; Okayasu, Ryuichi

    2005-01-01

    In order to clarify the possible involvement of oxidative damage induced by ionizing radiation in the onset and/or progression of familial amyotrophic lateral sclerosis (ALS), we studied radio-sensitivity in primary cells derived from ALS model mice expressing human mutant Cu/Zn superoxide dismutase (SOD1). The primary mouse cells expressed both mouse and the mutant human SOD1. The cell survival of the transgenic mice (with mutant SOD1), determined by counting cell numbers at a scheduled time after X-irradiation, is very similar to that of cells from wild type animals. The induction and repair of DNA damage in the transgenic cells, measured by single cell gel electrophoresis and pulsed field gel electrophoresis, are also similar to those of wild type cells. These results indicate that the human mutant SOD1 gene does not seem to contribute to the alteration of radio-sensitivity, at least in the fibroblastic cells used here. Although it is necessary to consider the difference in cell types between fibroblastic and neuronal cells, the present results may suggest that ionizing radiation is not primarily responsible for the onset of familial ALS with the SOD1 mutation, and that the excess risks are probably not a concern for radiation diagnosis and therapy in familial ALS patients. (author)

  18. Skeletal muscle-specific overexpression of IGFBP-2 promotes a slower muscle phenotype in healthy but not dystrophic mdx mice and does not affect the dystrophic pathology.

    Science.gov (United States)

    Swiderski, Kristy; Martins, Karen Janet Bernice; Chee, Annabel; Trieu, Jennifer; Naim, Timur; Gehrig, Stefan Martin; Baum, Dale Michael; Brenmoehl, Julia; Chau, Luong; Koopman, René; Gregorevic, Paul; Metzger, Friedrich; Hoeflich, Andreas; Lynch, Gordon Stuart

    The insulin-like growth factor binding proteins (IGFBPs) are thought to modulate cell size and homeostasis via IGF-I-dependent and -independent pathways. There is a considerable dearth of information regarding the function of IGFBPs in skeletal muscle, particularly their role in the pathophysiology of Duchenne muscular dystrophy (DMD). In this study we tested the hypothesis that intramuscular IGFBP-2 overexpression would ameliorate the pathology in mdx dystrophic mice. 4week old male C57Bl/10 and mdx mice received a single intramuscular injection of AAV6-empty or AAV6-IGFBP-2 vector into the tibialis anterior muscle. At 8weeks post-injection the effect of IGFBP-2 overexpression on the structure and function of the injected muscle was assessed. AAV6-mediated IGFBP-2 overexpression in the tibialis anterior (TA) muscles of 4-week-old C57BL/10 and mdx mice reduced the mass of injected muscle after 8weeks, inducing a slower muscle phenotype in C57BL/10 but not mdx mice. Analysis of inflammatory and fibrotic gene expression revealed no changes between control and IGFBP-2 injected muscles in dystrophic (mdx) mice. Together these results indicate that the IGFBP-2-induced promotion of a slower muscle phenotype is impaired in muscles of dystrophin-deficient mdx mice, which contributes to the inability of IGFBP-2 to ameliorate the dystrophic pathology. The findings implicate the dystrophin-glycoprotein complex (DGC) in the signaling required for this adaptation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Conditioned taste aversion memory and c-Fos induction are disrupted in RIIbeta-protein kinase A mutant mice.

    Science.gov (United States)

    Koh, Ming Teng; Clarke, Sharon N D A; Spray, Kristina J; Thiele, Todd E; Bernstein, Ilene L

    2003-07-14

    The cAMP-dependent protein kinase (PKA) signaling pathway has been implicated in many forms of learning. The present studies examined conditioned taste aversion (CTA) learning, an amygdala-dependent task, in mice with a targeted disruption of a gene for a specific regulatory subunit of PKA (RIIbeta), which is selectively expressed in amygdala. Null mutant (RIIbeta(-/-)) mice and littermate controls (RIIbeta(+/+)) were tested for protein synthesis-independent short-term memory (STM) and protein synthesis-dependent long-term memory (LTM) for CTAs. The ability of the unconditioned stimulus (US) drug, LiCl, to induce c-Fos in regions thought to be important in this learning was also determined. RIIbeta(-/-) mice showed significant impairment in CTA memory when tested 24h after training (LTM). In contrast, STM was normal. With regard to the c-Fos response to LiCl, the US drug, significant elevations were evident in brainstem (nucleus of the solitary tract) and pontine (parabrachial nucleus) regions, in mutants as well as wild-type controls. However, in amygdala, elevations were seen in controls but were absent in the mutants. These findings suggest that disruption of PKA signaling interferes with LTM consolidation of CTA and that a possible mediator of this effect is interference with c-Fos expression in amygdala which may be necessary for CTA memory.

  20. Elevated Fibroblast Growth Factor Signaling Is Critical for the Pathogenesis of the Dwarfism in Evc2/Limbin Mutant Mice.

    Science.gov (United States)

    Zhang, Honghao; Kamiya, Nobuhiro; Tsuji, Takehito; Takeda, Haruko; Scott, Greg; Rajderkar, Sudha; Ray, Manas K; Mochida, Yoshiyuki; Allen, Benjamin; Lefebvre, Veronique; Hung, Irene H; Ornitz, David M; Kunieda, Tetsuo; Mishina, Yuji

    2016-12-01

    Ellis-van Creveld (EvC) syndrome is a skeletal dysplasia, characterized by short limbs, postaxial polydactyly, and dental abnormalities. EvC syndrome is also categorized as a ciliopathy because of ciliary localization of proteins encoded by the two causative genes, EVC and EVC2 (aka LIMBIN). While recent studies demonstrated important roles for EVC/EVC2 in Hedgehog signaling, there is still little known about the pathophysiological mechanisms underlying the skeletal dysplasia features of EvC patients, and in particular why limb development is affected, but not other aspects of organogenesis that also require Hedgehog signaling. In this report, we comprehensively analyze limb skeletogenesis in Evc2 mutant mice and in cell and tissue cultures derived from these mice. Both in vivo and in vitro data demonstrate elevated Fibroblast Growth Factor (FGF) signaling in Evc2 mutant growth plates, in addition to compromised but not abrogated Hedgehog-PTHrP feedback loop. Elevation of FGF signaling, mainly due to increased Fgf18 expression upon inactivation of Evc2 in the perichondrium, critically contributes to the pathogenesis of limb dwarfism. The limb dwarfism phenotype is partially rescued by inactivation of one allele of Fgf18 in the Evc2 mutant mice. Taken together, our data uncover a novel pathogenic mechanism to understand limb dwarfism in patients with Ellis-van Creveld syndrome.

  1. Elevated Fibroblast Growth Factor Signaling Is Critical for the Pathogenesis of the Dwarfism in Evc2/Limbin Mutant Mice.

    Directory of Open Access Journals (Sweden)

    Honghao Zhang

    2016-12-01

    Full Text Available Ellis-van Creveld (EvC syndrome is a skeletal dysplasia, characterized by short limbs, postaxial polydactyly, and dental abnormalities. EvC syndrome is also categorized as a ciliopathy because of ciliary localization of proteins encoded by the two causative genes, EVC and EVC2 (aka LIMBIN. While recent studies demonstrated important roles for EVC/EVC2 in Hedgehog signaling, there is still little known about the pathophysiological mechanisms underlying the skeletal dysplasia features of EvC patients, and in particular why limb development is affected, but not other aspects of organogenesis that also require Hedgehog signaling. In this report, we comprehensively analyze limb skeletogenesis in Evc2 mutant mice and in cell and tissue cultures derived from these mice. Both in vivo and in vitro data demonstrate elevated Fibroblast Growth Factor (FGF signaling in Evc2 mutant growth plates, in addition to compromised but not abrogated Hedgehog-PTHrP feedback loop. Elevation of FGF signaling, mainly due to increased Fgf18 expression upon inactivation of Evc2 in the perichondrium, critically contributes to the pathogenesis of limb dwarfism. The limb dwarfism phenotype is partially rescued by inactivation of one allele of Fgf18 in the Evc2 mutant mice. Taken together, our data uncover a novel pathogenic mechanism to understand limb dwarfism in patients with Ellis-van Creveld syndrome.

  2. Elevated Fibroblast Growth Factor Signaling Is Critical for the Pathogenesis of the Dwarfism in Evc2/Limbin Mutant Mice

    Science.gov (United States)

    Zhang, Honghao; Kamiya, Nobuhiro; Tsuji, Takehito; Takeda, Haruko; Scott, Greg; Ray, Manas K.; Mochida, Yoshiyuki; Lefebvre, Veronique; Hung, Irene H.; Kunieda, Tetsuo; Mishina, Yuji

    2016-01-01

    Ellis-van Creveld (EvC) syndrome is a skeletal dysplasia, characterized by short limbs, postaxial polydactyly, and dental abnormalities. EvC syndrome is also categorized as a ciliopathy because of ciliary localization of proteins encoded by the two causative genes, EVC and EVC2 (aka LIMBIN). While recent studies demonstrated important roles for EVC/EVC2 in Hedgehog signaling, there is still little known about the pathophysiological mechanisms underlying the skeletal dysplasia features of EvC patients, and in particular why limb development is affected, but not other aspects of organogenesis that also require Hedgehog signaling. In this report, we comprehensively analyze limb skeletogenesis in Evc2 mutant mice and in cell and tissue cultures derived from these mice. Both in vivo and in vitro data demonstrate elevated Fibroblast Growth Factor (FGF) signaling in Evc2 mutant growth plates, in addition to compromised but not abrogated Hedgehog-PTHrP feedback loop. Elevation of FGF signaling, mainly due to increased Fgf18 expression upon inactivation of Evc2 in the perichondrium, critically contributes to the pathogenesis of limb dwarfism. The limb dwarfism phenotype is partially rescued by inactivation of one allele of Fgf18 in the Evc2 mutant mice. Taken together, our data uncover a novel pathogenic mechanism to understand limb dwarfism in patients with Ellis-van Creveld syndrome. PMID:28027321

  3. Transplantation of germ cells from glial cell line-derived neurotrophic factor-overexpressing mice to host testes depleted of endogenous spermatogenesis by fractionated irradiation

    NARCIS (Netherlands)

    Creemers, L. B.; Meng, X.; den Ouden, K.; van Pelt, A. M. M.; Izadyar, F.; Santoro, M.; Sariola, H.; de rooij, D. G.

    2002-01-01

    With a novel method of eliminating spermatogenesis in host animals, male germ cells isolated from mice with targeted overexpression of glial cell line-derived neurotrophic factor (GDNF) were transplanted to evaluate their ability to reproduce the phenotype previously found in the transgenic animals.

  4. Epidermal dysplasia and abnormal hair follicles in transgenic mice overexpressing homeobox gene MSX-2.

    Science.gov (United States)

    Jiang, T X; Liu, Y H; Widelitz, R B; Kundu, R K; Maxson, R E; Chuong, C M

    1999-08-01

    The homeobox gene Msx-2 is expressed specifically in sites of skin appendage formation. To explore its part in skin morphogenesis, we produced transgenic mice expressing Msx-2 under the control of the cytomegalovirus promoter. The skin of these transgenic mice was flaky, exhibiting desquamation and shorter hairs. Histologic analysis showed thickened epidermis with hyperproliferation, which was restricted to the basal layer. Hyperkeratosis was also evident. A wide zone of suprabasal cells were misaligned and coexpressed keratins 14 and 10. There was reduced expression of integrin beta 1 and DCC in the basal layer. Hair follicles were misaligned with a shrunken matrix region. The dermis showed increased cellularity and empty vacuoles. We suggest that Msx-2 is involved in the growth control of skin and skin appendages.

  5. Heart-specific overexpression of (pro)renin receptor induces atrial fibrillation in mice.

    Science.gov (United States)

    Lian, Hong; Wang, Xiaojian; Wang, Juan; Liu, Ning; Zhang, Li; Lu, Yingdong; Yang, Yanmin; Zhang, Lianfeng

    2015-04-01

    Atrial fibrillation (AF) is the most common cardiac arrhythmia, causing substantial cardiovascular morbidity and mortality. The renin-angiotensin system (RAS) has been shown to be involved in the pathophysiology of AF. The (pro)renin receptor [(p)RR] is the last identified member of RAS. However, the role of (p)RR in AF is still unknown. Circulating levels of (p)RR were determined using an immunosorbent assay in 22 patients with AF (paroxysmal or persistent) and 22 healthy individuals. The plasma levels of (p)RR increased 3.6-fold in AF patients (Patrial flutter since 2 months, then spontaneously converted to atrial fibrillation by 10 months. The atria of the transgenic mice demonstrated significant dilation and fibrosis, and exhibited a high incidence of sudden death. Additionally, the genes of SERCA and HCN4, which are involved in the electrophysiology of AF, were significantly down-regulated and up-regulated respectively in transgenic mice atria. The phosphorylation of Erk1/2 significantly increased in the atria of the transgenic mice, and the activated Erk1/2 was found predominantly in cardiac fibroblasts, suggesting that the transgenic (p)RR gene may induce atrial fibrillation by activation of Erk1/2 in the cardiac fibroblasts of the atria. (p)RR promotes atrial structural and electrical remodeling in vivo, which indicates that (p)RR plays an important role in the pathological development of AF. Copyright © 2015. Published by Elsevier Ireland Ltd.

  6. Reduction of age-associated pathology in old mice by overexpression of catalase in mitochondria.

    Science.gov (United States)

    Treuting, Piper M; Linford, Nancy J; Knoblaugh, Sue E; Emond, M J; Morton, John F; Martin, George M; Rabinovitch, Peter S; Ladiges, Warren C

    2008-08-01

    We describe the effects of mitochondrially targeted catalase (MCAT) expression on end-of-life pathology in mice using detailed semiquantitative histopathological evaluation. We previously reported that the median and maximum life spans of MCAT mice were extended relative to those of wild-type littermates. We now report that MCAT expression is associated with reduced malignant nonhematopoietic tumor burden, reduced cardiac lesions, and a trend toward reduced systemic inflammation, with no effect on hematopoietic neoplasia or glomerulonephropathy. Combined disease burden and comorbidity are also reduced, and MCAT expression is not associated with any detrimental clinical effects. The results suggest that oxidative damage is involved in aging of C57BL/6J mice via modulation of a subset of age-associated lesions. Antioxidant interventions targeting mitochondria may therefore be a viable strategy for prevention or postponement of some age-associated diseases. The variability of the MCAT effect across tissues, however, illustrates the importance of developing semiquantitative histopathology for assessment of comorbidity in life-span studies.

  7. Searching for biomarkers of CDKL5 disorder: early-onset visual impairment in CDKL5 mutant mice.

    Science.gov (United States)

    Mazziotti, Raffaele; Lupori, Leonardo; Sagona, Giulia; Gennaro, Mariangela; Della Sala, Grazia; Putignano, Elena; Pizzorusso, Tommaso

    2017-06-15

    CDKL5 disorder is a neurodevelopmental disorder still without a cure. Murine models of CDKL5 disorder have been recently generated raising the possibility of preclinical testing of treatments. However, unbiased, quantitative biomarkers of high translational value to monitor brain function are still missing. Moreover, the analysis of treatment is hindered by the challenge of repeatedly and non-invasively testing neuronal function. We analyzed the development of visual responses in a mouse model of CDKL5 disorder to introduce visually evoked responses as a quantitative method to assess cortical circuit function. Cortical visual responses were assessed in CDKL5 null male mice, heterozygous females, and their respective control wild-type littermates by repeated transcranial optical imaging from P27 until P32. No difference between wild-type and mutant mice was present at P25-P26 whereas defective responses appeared from P27-P28 both in heterozygous and homozygous CDKL5 mutant mice. These results were confirmed by visually evoked potentials (VEPs) recorded from the visual cortex of a different cohort. The previously imaged mice were also analyzed at P60-80 using VEPs, revealing a persistent reduction of response amplitude, reduced visual acuity and defective contrast function. The level of adult impairment was significantly correlated with the reduction in visual responses observed during development. Support vector machine showed that multi-dimensional visual assessment can be used to automatically classify mutant and wt mice with high reliability. Thus, monitoring visual responses represents a promising biomarker for preclinical and clinical studies on CDKL5 disorder. © The Author 2017. Published by Oxford University Press.

  8. Triggered Firing and Atrial Fibrillation in Transgenic Mice With Selective Atrial Fibrosis Induced by Overexpression of TGF-β1

    Science.gov (United States)

    Choi, Eue-Keun; Chang, Po-Cheng; Lee, Young-Soo; Lin, Shien-Fong; Zhu, Wuqiang; Maruyama, Mitsunori; Fishbein, Michael C.; Chen, Zhenhui; der Lohe, Michael Rubart-von; Field, Loren J.; Chen, Peng-Sheng

    2013-01-01

    Background Calcium transient triggered firing (CTTF) is induced by large intracellular calcium (Cai) transient and short action potential duration (APD). We hypothesized that CTTF underlies the mechanisms of early afterdepolarization (EAD) and spontaneous recurrent atrial fibrillation (AF) in transgenic (Tx) mice with overexpression of transforming growth factor β1 (TGF-β1). Methods and Results MHC-TGFcys33ser Tx mice develop atrial fibrosis because of elevated levels of TGF-β1. We studied membrane potential and Cai transients of isolated superfused atria from Tx and wild-type (Wt) littermates. Short APD and persistently elevated Cai transients promoted spontaneous repetitive EADs, triggered activity and spontaneous AF after cessation of burst pacing in Tx but not Wt atria (39% vs. 0%, P=0.008). We were able to map optically 4 episodes of spontaneous AF re-initiation. All first and second beats of spontaneous AF originated from the right atrium (4/4, 100%), which is more severely fibrotic than the left atrium. Ryanodine and thapsigargin inhibited spontaneous re-initiation of AF in all 7 Tx atria tested. Western blotting showed no significant changes of calsequestrin or sarco/endoplasmic reticulum Ca2+-ATPase 2a. Conclusions Spontaneous AF may occur in the Tx atrium because of CTTF, characterized by APD shortening, prolonged Cai transient, EAD and triggered activity. Inhibition of Ca2+ release from the sarcoplasmic reticulum suppressed spontaneous AF. Our results indicate that CTTF is an important arrhythmogenic mechanism in TGF-β1 Tx atria. PMID:22447020

  9. Intraperitoneal implant of recombinant encapsulated cells overexpressing alpha-L-iduronidase partially corrects visceral pathology in mucopolysaccharidosis type I mice.

    Science.gov (United States)

    Baldo, Guilherme; Mayer, Fabiana Quoos; Martinelli, Barbara; Meyer, Fabiola Schons; Burin, Maira; Meurer, Luise; Tavares, Angela Maria Vicente; Giugliani, Roberto; Matte, Ursula

    2012-08-01

    Mucopolysaccharidosis type I (MPS I) is characterized by deficiency of the enzyme alpha-L-iduronidase (IDUA) and storage of glycosaminoglycans (GAG) in several tissues. Current available treatments present limitations, thus the search for new therapies. Encapsulation of recombinant cells within polymeric structures combines gene and cell therapy and is a promising approach for treating MPS I. We produced alginate microcapsules containing baby hamster kidney (BHK) cells overexpressing IDUA and implanted these capsules in the peritoneum of MPS I mice. An increase in serum and tissue IDUA activity was observed at early time-points, as well as a reduction in GAG storage; however, correction in the long term was only partially achieved, with a drop in the IDUA activity being observed a few weeks after the implant. Analysis of the capsules obtained from the peritoneum revealed inflammation and a pericapsular fibrotic process, which could be responsible for the reduction in IDUA levels observed in the long term. In addition, treated mice developed antibodies against the enzyme. The results suggest that the encapsulation process is effective in the short term but improvements must be achieved in order to reduce the immune response and reach a stable correction.

  10. Diabetes and exocrine pancreatic insufficiency in E2F1/E2F2 double-mutant mice.

    Science.gov (United States)

    Iglesias, Ainhoa; Murga, Matilde; Laresgoiti, Usua; Skoudy, Anouchka; Bernales, Irantzu; Fullaondo, Asier; Moreno, Bernardino; Lloreta, José; Field, Seth J; Real, Francisco X; Zubiaga, Ana M

    2004-05-01

    E2F transcription factors are thought to be key regulators of cell growth control. Here we use mutant mouse strains to investigate the function of E2F1 and E2F2 in vivo. E2F1/E2F2 compound-mutant mice develop nonautoimmune insulin-deficient diabetes and exocrine pancreatic dysfunction characterized by endocrine and exocrine cell dysplasia, a reduction in the number and size of acini and islets, and their replacement by ductal structures and adipose tissue. Mutant pancreatic cells exhibit increased rates of DNA replication but also of apoptosis, resulting in severe pancreatic atrophy. The expression of genes involved in DNA replication and cell cycle control was upregulated in the E2F1/E2F2 compound-mutant pancreas, suggesting that their expression is repressed by E2F1/E2F2 activities and that the inappropriate cell cycle found in the mutant pancreas is likely the result of the deregulated expression of these genes. Interestingly, the expression of ductal cell and adipocyte differentiation marker genes was also upregulated, whereas expression of pancreatic cell marker genes were downregulated. These results suggest that E2F1/E2F2 activity negatively controls growth of mature pancreatic cells and is necessary for the maintenance of differentiated pancreatic phenotypes in the adult.

  11. Kharon1 null mutants of Leishmania mexicana are avirulent in mice and exhibit a cytokinesis defect within macrophages.

    Directory of Open Access Journals (Sweden)

    Khoa D Tran

    Full Text Available In a variety of eukaryotes, flagella play important roles both in motility and as sensory organelles that monitor the extracellular environment. In the parasitic protozoan Leishmania mexicana, one glucose transporter isoform, LmxGT1, is targeted selectively to the flagellar membrane where it appears to play a role in glucose sensing. Trafficking of LmxGT1 to the flagellar membrane is dependent upon interaction with the KHARON1 protein that is located at the base of the flagellar axoneme. Remarkably, while Δkharon1 null mutants are viable as insect stage promastigotes, they are unable to survive as amastigotes inside host macrophages. Although Δkharon1 promastigotes enter macrophages and transform into amastigotes, these intracellular parasites are unable to execute cytokinesis and form multinucleate cells before dying. Notably, extracellular axenic amastigotes of Δkharon1 mutants replicate and divide normally, indicating a defect in the mutants that is only exhibited in the intra-macrophage environment. Although the flagella of Δkharon1 amastigotes adhere to the phagolysomal membrane of host macrophages, the morphology of the mutant flagella is often distorted. Additionally, these null mutants are completely avirulent following injection into BALB/c mice, underscoring the critical role of the KHARON1 protein for viability of intracellular amastigotes and disease in the animal model of leishmaniasis.

  12. Pectate lyase affects pathogenicity in natural isolates of Colletotrichum coccodes and in pelA gene-disrupted and gene-overexpressing mutant lines.

    Science.gov (United States)

    Ben-Daniel, Bat-Hen; Bar-Zvi, Dudy; Tsror Lahkim, Leah

    2012-02-01

    Colletotrichum coccodes (Wallr.) S. Hughes, the causal agent of black dot on potato and anthracnose on tomato, reduces yield and crop quality. We explored the role of secreted pectate lyase (PL), a cell wall-degrading enzyme, in the aggressiveness of C. coccodes. In vitro-cultivated highly aggressive isolates secreted immunologically detectable PL levels 6 h after transfer to secondary medium versus 12 h for mildly aggressive isolates, suggesting that secreted PL is a virulence factor. The gene encoding PL, CcpelA, was cloned and used for the genetic manipulation of highly (US-41 and Si-72) and mildly (Si-60) aggressive isolates. CcpelA gene-disrupted mutants showed reduced aggressiveness towards tomato fruits and impaired PL secretion and extracellular activity. Conversely, overexpression of CcpelA in the Si-60 isolate increased its aggressiveness and PL secretion. Comparison of CcpelA cloned from isolates US-41 and Si-60 revealed that both encode identical proteins, but differ in their promoters. Bioinformatics analysis for cis-acting elements suggested that the promoters of the US-41 and Si-60 isolates contain one and no AreA-binding site (GATA box), respectively. AreA has been suggested to be involved in fungal aggressiveness; therefore, CcpelA may be a key virulence factor in C. coccodes pathogenicity, and the differences in isolate aggressiveness might result from promoter activity. Quantitative reverse transcriptase-polymerase chain reaction analyses confirmed the higher level of CcpelA transcript in isolate US-41 versus Si-60. © 2011 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2011 BSPP AND BLACKWELL PUBLISHING LTD.

  13. Overexpression of eIF-5A2 in mice causes accelerated organismal aging by increasing chromosome instability

    Directory of Open Access Journals (Sweden)

    Chen Leilei

    2011-05-01

    Full Text Available Abstract Background Amplification of 3q26 is one of the most frequent genetic alterations in many human malignancies. Recently, we isolated a novel oncogene eIF-5A2 within the 3q26 region. Functional study has demonstrated the oncogenic role of eIF-5A2 in the initiation and progression of human cancers. In the present study, we aim to investigate the physiological and pathological effect of eIF-5A2 in an eIF-5A2 transgenic mouse model. Methods An eIF-5A2 transgenic mouse model was generated using human eIF-5A2 cDNA. The eIF-5A2 transgenic mice were characterized by histological and immunohistochemistry analyses. The aging phenotypes were further characterized by wound healing, bone X-ray imaging and calcification analysis. Mouse embryo fibroblasts (MEF were isolated to further investigate molecular mechanism of eIF-5A2 in aging. Results Instead of resulting in spontaneous tumor formation, overexpression of eIF-5A2 accelerated the aging process in adult transgenic mice. This included decreased growth rate and body weight, shortened life span, kyphosis, osteoporosis, delay of wound healing and ossification. Investigation of the correlation between cellular senescence and aging showed that cellular senescence is not required for the aging phenotypes in eIF-5A2 mice. Interestingly, we found that activation of eIF-5A2 repressed p19 level and therefore destabilized p53 in transgenic mouse embryo fibroblast (MEF cells. This subsequently allowed for the accumulation of chromosomal instability, such as errors in cell dividing during metaphase and anaphase. Additionally, a significantly increase in number of aneuploidy cells (p Conclusion These observations suggest that eIF-5A2 mouse models could accelerate organismal aging by increasing chromosome instability.

  14. Overexpression of GDNF in the uninjured DRG exerts analgesic effects on neuropathic pain following segmental spinal nerve ligation in mice.

    Science.gov (United States)

    Takasu, Kumiko; Sakai, Atsushi; Hanawa, Hideki; Shimada, Takashi; Suzuki, Hidenori

    2011-11-01

    Glial cell line-derived neurotrophic factor (GDNF), a survival-promoting factor for a subset of nociceptive small-diameter neurons, has been shown to exert analgesic effects on neuropathic pain. However, its detailed mechanisms of action are still unknown. In the present study, we investigated the site-specific analgesic effects of GDNF in the neuropathic pain state using lentiviral vector-mediated GDNF overexpression in mice with left fifth lumbar (L5) spinal nerve ligation (SNL) as a neuropathic pain model. A lentiviral vector expressing both GDNF and enhanced green fluorescent protein (EGFP) was constructed and injected into the left dorsal spinal cord, uninjured fourth lumbar (L4) dorsal root ganglion (DRG), injured L5 DRG, or plantar skin of mice. In SNL mice, injection of the GDNF-EGFP-expressing lentivirus into the dorsal spinal cord or uninjured L4 DRG partially but significantly reduced the mechanical allodynia in association with an increase in GDNF protein expression in each virus injection site, whereas injection into the injured L5 DRG or plantar skin had no effects. These results suggest that GDNF exerts its analgesic effects in the neuropathic pain state by acting on the central terminals of uninjured DRG neurons and/or on the spinal cells targeted by the uninjured DRG neurons. This article shows that GDNF exerts its analgesic effects on neuropathic pain by acting on the central terminals of uninjured DRG neurons and/or on the spinal cells targeted by these neurons. Therefore, research focusing on these GDNF-dependent neurons in the uninjured DRG would provide a new strategy for treating neuropathic pain. Copyright © 2011 American Pain Society. Published by Elsevier Inc. All rights reserved.

  15. Dopaminergic neuronal loss, reduced neurite complexity and autophagic abnormalities in transgenic mice expressing G2019S mutant LRRK2.

    Directory of Open Access Journals (Sweden)

    David Ramonet

    2011-04-01

    Full Text Available Mutations in the leucine-rich repeat kinase 2 (LRRK2 gene cause late-onset, autosomal dominant familial Parkinson's disease (PD and also contribute to idiopathic PD. LRRK2 mutations represent the most common cause of PD with clinical and neurochemical features that are largely indistinguishable from idiopathic disease. Currently, transgenic mice expressing wild-type or disease-causing mutants of LRRK2 have failed to produce overt neurodegeneration, although abnormalities in nigrostriatal dopaminergic neurotransmission have been observed. Here, we describe the development and characterization of transgenic mice expressing human LRRK2 bearing the familial PD mutations, R1441C and G2019S. Our study demonstrates that expression of G2019S mutant LRRK2 induces the degeneration of nigrostriatal pathway dopaminergic neurons in an age-dependent manner. In addition, we observe autophagic and mitochondrial abnormalities in the brains of aged G2019S LRRK2 mice and markedly reduced neurite complexity of cultured dopaminergic neurons. These new LRRK2 transgenic mice will provide important tools for understanding the mechanism(s through which familial mutations precipitate neuronal degeneration and PD.

  16. Transgenic mice overexpressing glia maturation factor-β, an oxidative stress inducible gene, show premature aging due to Zmpste24 down-regulation.

    Science.gov (United States)

    Imai, Rika; Asai, Kanae; Hanai, Jun-ichi; Takenaka, Masaru

    2015-07-01

    Glia Maturation Factor-β (GMF), a brain specific protein, is induced by proteinuria in renal tubules. Ectopic GMF overexpression causes apoptosisin vitro via cellular vulnerability to oxidative stress. In order to examine the roles of GMF in non-brain tissue, we constructed transgenic mice overexpressing GMF (GMF-TG). The GMF-TG mice exhibited appearance phenotypes associated with premature aging. The GMF-TG mice also demonstrated short lifespans and reduced hair regrowth, suggesting an accelerated aging process. The production of an abnormal lamin A, a nuclear envelope protein, plays a causal role in both normal aging and accelerated aging diseases, known as laminopathies. Importantly, we identified the abnormal lamin A (prelamin A), accompanied by a down-regulation of a lamin A processing enzyme (Zmpste24) in the kidney of the GMF-TG mice. The GMF-TG mice showed accelerated aging in the kidney, compared with wild-type mice, showing increased TGF-β1, CTGF gene and serum creatinine. The gene expression of p21/waf1 was increased at an earlier stage of life, at 10 weeks, which was in turn down-regulated at a later stage, at 60 weeks. In conclusion, we propose that GMF-TG mice might be a novel mouse model of accelerated aging, due to the abnormal lamin A.

  17. A cerebellar learning model of vestibulo-ocular reflex adaptation in wild-type and mutant mice.

    Science.gov (United States)

    Clopath, Claudia; Badura, Aleksandra; De Zeeuw, Chris I; Brunel, Nicolas

    2014-05-21

    Mechanisms of cerebellar motor learning are still poorly understood. The standard Marr-Albus-Ito theory posits that learning involves plasticity at the parallel fiber to Purkinje cell synapses under control of the climbing fiber input, which provides an error signal as in classical supervised learning paradigms. However, a growing body of evidence challenges this theory, in that additional sites of plasticity appear to contribute to motor adaptation. Here, we consider phase-reversal training of the vestibulo-ocular reflex (VOR), a simple form of motor learning for which a large body of experimental data is available in wild-type and mutant mice, in which the excitability of granule cells or inhibition of Purkinje cells was affected in a cell-specific fashion. We present novel electrophysiological recordings of Purkinje cell activity measured in naive wild-type mice subjected to this VOR adaptation task. We then introduce a minimal model that consists of learning at the parallel fibers to Purkinje cells with the help of the climbing fibers. Although the minimal model reproduces the behavior of the wild-type animals and is analytically tractable, it fails at reproducing the behavior of mutant mice and the electrophysiology data. Therefore, we build a detailed model involving plasticity at the parallel fibers to Purkinje cells' synapse guided by climbing fibers, feedforward inhibition of Purkinje cells, and plasticity at the mossy fiber to vestibular nuclei neuron synapse. The detailed model reproduces both the behavioral and electrophysiological data of both the wild-type and mutant mice and allows for experimentally testable predictions. Copyright © 2014 the authors 0270-6474/14/347203-13$15.00/0.

  18. Impaired embryonic development in mice overexpressing the RNA-binding protein TIAR.

    Directory of Open Access Journals (Sweden)

    Yacine Kharraz

    Full Text Available BACKGROUND: TIA-1-related (TIAR protein is a shuttling RNA-binding protein involved in several steps of RNA metabolism. While in the nucleus TIAR participates to alternative splicing events, in the cytoplasm TIAR acts as a translational repressor on specific transcripts such as those containing AU-Rich Elements (AREs. Due to its ability to assemble abortive pre-initiation complexes coalescing into cytoplasmic granules called stress granules, TIAR is also involved in the general translational arrest observed in cells exposed to environmental stress. However, the in vivo role of this protein has not been studied so far mainly due to severe embryonic lethality upon tiar invalidation. METHODOLOGY/PRINCIPAL FINDINGS: To examine potential TIAR tissue-specificity in various cellular contexts, either embryonic or adult, we constructed a TIAR transgenic allele (loxPGFPloxPTIAR allowing the conditional expression of TIAR protein upon Cre recombinase activity. Here, we report the role of TIAR during mouse embryogenesis. We observed that early TIAR overexpression led to low transgene transmission associated with embryonic lethality starting at early post-implantation stages. Interestingly, while pre-implantation steps evolved correctly in utero, in vitro cultured embryos were very sensitive to culture medium. Control and transgenic embryos developed equally well in the G2 medium, whereas culture in M16 medium led to the phosphorylation of eIF2alpha that accumulated in cytoplasmic granules precluding transgenic blastocyst hatching. Our results thus reveal a differential TIAR-mediated embryonic response following artificial or natural growth environment. CONCLUSIONS/SIGNIFICANCE: This study reports the importance of the tightly balanced expression of the RNA-binding protein TIAR for normal embryonic development, thereby emphasizing the role of post-transcriptional regulations in early embryonic programming.

  19. Fanconi anemia group A and C double-mutant mice: functional evidence for a multi-protein Fanconi anemia complex.

    Science.gov (United States)

    Noll, Meenakshi; Battaile, Kevin P; Bateman, Raynard; Lax, Timothy P; Rathbun, Keany; Reifsteck, Carol; Bagby, Grover; Finegold, Milton; Olson, Susan; Grompe, Markus

    2002-07-01

    Fanconi anemia (FA) is a genetically heterogeneous disorder associated with defects in at least eight genes. The biochemical function(s) of the FA proteins are unknown, but together they define the FA pathway, which is involved in cellular responses to DNA damage and in other cellular processes. It is currently unknown whether all FA proteins are involved in controlling a single function or whether some of the FA proteins have additional roles. The aim of this study was 1) to determine whether the FA group A and group C genes have identical or partially distinct functions, and 2) to have a better model for human FA. We generated mice with a targeted mutation in fanca and crossed them with fancc disrupted animals. Several phenotypes including sensitivity to DNA cross linkers and ionizing radiation, hematopoietic colony growth, and germ cell loss were analyzed in fanca-/-, fancc-/-, fanca/fancc double -/-, and controls. Fibroblast cells and hematopoietic precursors from fanca/fancc double-mutant mice were not more sensitive to MMC than those of either single mutant. fanca/fancc double mutants had no evidence for an additive phenotype at the cellular or organismal level. These results support a model where both FANCA and FANCC are part of a multi-protein nuclear FA complex with identical function in cellular responses to DNA damage and germ cell survival.

  20. Neuropeptide Y Y1 receptor hippocampal overexpression via viral vectors is associated with modest anxiolytic-like and proconvulsant effects in mice

    DEFF Research Database (Denmark)

    Olesen, Mikkel V; Christiansen, Søren Hofman Oliveira; Gøtzsche, Casper René

    2012-01-01

    overexpression was found to be associated with modest anxiolytic-like effect in the open field and elevated plus maze tests, but no effect was seen on depression-like behavior using the tail suspension and forced swim tests. However, the rAAV-Y1 vector modestly aggravated kainate-induced seizures. These data...... in the hippocampus of adult mice and tested the animals in anxiety- and depression-like behavior. Hippocampal Y1 receptors have been suggested to mediate seizure-promoting effect, so the effects of rAAV-induced Y1 receptor overexpression were also tested in kainate-induced seizures. Y1 receptor transgene...

  1. Cardiac-specific inducible overexpression of human plasma membrane Ca2+ ATPase 4b is cardioprotective and improves survival in mice following ischemic injury.

    Science.gov (United States)

    Sadi, Al Muktafi; Afroze, Talat; Siraj, M Ahsan; Momen, Abdul; White-Dzuro, Colin; Zarrin-Khat, Dorrin; Handa, Shivalika; Ban, Kiwon; Kabir, M Golam; Trivieri, Maria G; Gros, Robert; Backx, Peter; Husain, Mansoor

    2018-03-30

    Background: Heart failure (HF) is associated with reduced expression of plasma membrane Ca 2+ -ATPase 4 (PMCA4). Cardiac-specific overexpression of human PMCA4b in mice inhibited nNOS activity and reduced cardiac hypertrophy by inhibiting calcineurin. Here we examine temporally regulated cardiac-specific overexpression of hPMCA4b in mouse models of myocardial ischemia reperfusion injury (IRI) ex vivo , and HF following experimental myocardial infarction (MI) in vivo Methods and results: Doxycycline-regulated cardiomyocyte-specific overexpression and activity of hPMCA4b produced adaptive changes in expression levels of Ca 2+ -regulatory genes, and induced hypertrophy without significant differences in Ca 2+ transients or diastolic Ca 2+ concentrations. Total cardiac NOS and nNOS-specific activities were reduced in mice with cardiac overexpression of hPMCA4b while nNOS, eNOS and iNOS protein levels did not differ. hMPCA4b-overexpressing mice also exhibited elevated systolic blood pressure vs. controls, with increased contractility and lusitropy in vivo In isolated hearts undergoing IRI, hPMCA4b overexpression was cardioprotective. NO donor-treated hearts overexpressing hPMCA4b showed reduced LVDP and larger infarct size versus vehicle-treated hearts undergoing IRI, demonstrating that the cardioprotective benefits of hPMCA4b-repressed nNOS are lost by restoring NO availability. Finally, both pre-existing and post-MI induction of hPMCA4b overexpression reduced infarct expansion and improved survival from HF. Conclusions: Cardiac PMCA4b regulates nNOS activity, cardiac mass and contractility, such that PMCA4b overexpression preserves cardiac function following IRI, heightens cardiac performance and limits infarct progression, cardiac hypertrophy and HF, even when induced late post-MI. These data identify PMCA4b as a novel therapeutic target for IRI and HF. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  2. Early thymic T cell development in young transgenic mice overexpressing human Cu/Zn superoxide dismutase, a model of Down syndrome.

    Science.gov (United States)

    Laurent, Julien; Paly, Evelyne; Marche, Patrice N; London, Jacqueline

    2006-06-01

    Previous studies have shown that transgenic mice overexpressing Cu/Zn superoxide dismutase, a model of Down syndrome, exhibit premature thymic involution. We have performed a flow cytometry analysis of the developing thymus in these homozygous transgenic mice (hSOD1/hSOD1: Tg-SOD). Longitudinal follow-up analysis from day 3 to day 280 showed an early thymic development in Tg-SOD mice compared with controls. This early thymic development was associated with an increased migration of mature T cells to peripheral lymphoid organs. BrdU labeling showed no difference between Tg-SOD and control mice, confirming that the greater number of peripheral T cells in Tg-SOD mice was not due to extensive proliferation of these cells but rather to a greater pool of emigrant T cells in Tg-SOD.

  3. Immunoproteasome overexpression underlies the pathogenesis of thyroid oncocytes and primary hypothyroidism: studies in humans and mice.

    Directory of Open Access Journals (Sweden)

    Hiroaki J Kimura

    2009-11-01

    Full Text Available Oncocytes of the thyroid gland (Hürthle cells are found in tumors and autoimmune diseases. They have a unique appearance characterized by abundant granular eosinophilic cytoplasm and hyperchromatic nucleus. Their pathogenesis has remained, thus far, unknown.Using transgenic mice chronically expressing IFNgamma in thyroid gland, we showed changes in the thyroid follicular epithelium reminiscent of the human oncocyte. Transcriptome analysis comparing transgenic to wild type thyrocytes revealed increased levels of immunoproteasome subunits like LMP2 in transgenics, suggesting an important role of the immunoproteasome in oncocyte pathogenesis. Pharmacologic blockade of the proteasome, in fact, ameliorated the oncocytic phenotype. Genetic deletion of LMP2 subunit prevented the development of the oncocytic phenotype and primary hypothyroidism. LMP2 was also found expressed in oncocytes from patients with Hashimoto thyroiditis and Hürthle cell tumors.In summary, we report that oncocytes are the result of an increased immunoproteasome expression secondary to a chronic inflammatory milieu, and suggest LMP2 as a novel therapeutic target for the treatment of oncocytic lesions and autoimmune hypothyroidism.

  4. Astrocyte-Specific Overexpression of Insulin-Like Growth Factor-1 Protects Hippocampal Neurons and Reduces Behavioral Deficits following Traumatic Brain Injury in Mice.

    Directory of Open Access Journals (Sweden)

    Sindhu K Madathil

    Full Text Available Traumatic brain injury (TBI survivors often suffer from long-lasting cognitive impairment that stems from hippocampal injury. Systemic administration of insulin-like growth factor-1 (IGF-1, a polypeptide growth factor known to play vital roles in neuronal survival, has been shown to attenuate posttraumatic cognitive and motor dysfunction. However, its neuroprotective effects in TBI have not been examined. To this end, moderate or severe contusion brain injury was induced in mice with conditional (postnatal overexpression of IGF-1 using the controlled cortical impact (CCI injury model. CCI brain injury produces robust reactive astrocytosis in regions of neuronal damage such as the hippocampus. We exploited this regional astrocytosis by linking expression of hIGF-1 to the astrocyte-specific glial fibrillary acidic protein (GFAP promoter, effectively targeting IGF-1 delivery to vulnerable neurons. Following brain injury, IGF-1Tg mice exhibited a progressive increase in hippocampal IGF-1 levels which was coupled with enhanced hippocampal reactive astrocytosis and significantly greater GFAP levels relative to WT mice. IGF-1 overexpression stimulated Akt phosphorylation and reduced acute (1 and 3d hippocampal neurodegeneration, culminating in greater neuron survival at 10d after CCI injury. Hippocampal neuroprotection achieved by IGF-1 overexpression was accompanied by improved motor and cognitive function in brain-injured mice. These data provide strong support for the therapeutic efficacy of increased brain levels of IGF-1 in the setting of TBI.

  5. Astrocyte-Specific Overexpression of Insulin-Like Growth Factor-1 Protects Hippocampal Neurons and Reduces Behavioral Deficits following Traumatic Brain Injury in Mice

    Science.gov (United States)

    Madathil, Sindhu K.; Carlson, Shaun W.; Brelsfoard, Jennifer M.; Ye, Ping; D’Ercole, A. Joseph; Saatman, Kathryn E.

    2013-01-01

    Traumatic brain injury (TBI) survivors often suffer from long-lasting cognitive impairment that stems from hippocampal injury. Systemic administration of insulin-like growth factor-1 (IGF-1), a polypeptide growth factor known to play vital roles in neuronal survival, has been shown to attenuate posttraumatic cognitive and motor dysfunction. However, its neuroprotective effects in TBI have not been examined. To this end, moderate or severe contusion brain injury was induced in mice with conditional (postnatal) overexpression of IGF-1 using the controlled cortical impact (CCI) injury model. CCI brain injury produces robust reactive astrocytosis in regions of neuronal damage such as the hippocampus. We exploited this regional astrocytosis by linking expression of hIGF-1 to the astrocyte-specific glial fibrillary acidic protein (GFAP) promoter, effectively targeting IGF-1 delivery to vulnerable neurons. Following brain injury, IGF-1Tg mice exhibited a progressive increase in hippocampal IGF-1 levels which was coupled with enhanced hippocampal reactive astrocytosis and significantly greater GFAP levels relative to WT mice. IGF-1 overexpression stimulated Akt phosphorylation and reduced acute (1 and 3d) hippocampal neurodegeneration, culminating in greater neuron survival at 10d after CCI injury. Hippocampal neuroprotection achieved by IGF-1 overexpression was accompanied by improved motor and cognitive function in brain-injured mice. These data provide strong support for the therapeutic efficacy of increased brain levels of IGF-1 in the setting of TBI. PMID:23826235

  6. Reactive oxygen species and fatigue-induced prolonged low-frequency force depression in skeletal muscle fibres of rats, mice and SOD2 overexpressing mice.

    Science.gov (United States)

    Bruton, Joseph D; Place, Nicolas; Yamada, Takashi; Silva, José P; Andrade, Francisco H; Dahlstedt, Anders J; Zhang, Shi-Jin; Katz, Abram; Larsson, Nils-Göran; Westerblad, Håkan

    2008-01-01

    Skeletal muscle often shows a delayed force recovery after fatiguing stimulation, especially at low stimulation frequencies. In this study we focus on the role of reactive oxygen species (ROS) in this fatigue-induced prolonged low-frequency force depression. Intact, single muscle fibres were dissected from flexor digitorum brevis (FDB) muscles of rats and wild-type and superoxide dismutase 2 (SOD2) overexpressing mice. Force and myoplasmic free [Ca(2+)] ([Ca(2+)](i)) were measured. Fibres were stimulated at different frequencies before and 30 min after fatigue induced by repeated tetani. The results show a marked force decrease at low stimulation frequencies 30 min after fatiguing stimulation in all fibres. This decrease was associated with reduced tetanic [Ca(2+)](i) in wild-type mouse fibres, whereas rat fibres and mouse SOD2 overexpressing fibres instead displayed a decreased myofibrillar Ca(2+) sensitivity. The SOD activity was approximately 50% lower in wild-type mouse than in rat FDB muscles. Myoplasmic ROS increased during repeated tetanic stimulation in rat fibres but not in wild-type mouse fibres. The decreased Ca(2+) sensitivity in rat fibres could be partially reversed by application of the reducing agent dithiothreitol, whereas the decrease in tetanic [Ca(2+)](i) in wild-type mouse fibres was not affected by dithiothreitol or the antioxidant N-acetylcysteine. In conclusion, we describe two different causes of fatigue-induced prolonged low-frequency force depression, which correlate to differences in SOD activity and ROS metabolism. These findings may have clinical implications since ROS-mediated impairments in myofibrillar function can be counteracted by reductants and antioxidants, whereas changes in SR Ca(2+) handling appear more resistant to interventions.

  7. Overexpression of copper/zinc-superoxide dismutase in transgenic mice markedly impairs regeneration and increases development of neuropathic pain after sciatic nerve injury.

    Science.gov (United States)

    Kotulska, Katarzyna; LePecheur, Marie; Marcol, Wiesław; Lewin-Kowalik, Joanna; Larysz-Brysz, Magdalena; Paly, Evelyn; Matuszek, Iwona; London, Jacqueline

    2006-10-01

    Despite the general capacity of peripheral nervous system to regenerate, peripheral nerve injury is often followed by incomplete recovery of function, sometimes with the burden of neuropathic pain. The mechanisms of both regeneration and nociception have not been clarified, but it is known that inflammatory reactions are involved. Cu/Zn-superoxide dismutase (SOD1) is an important scavenger protein that acts against oxidative stress. It has been shown to play an important role in apoptosis and inflammation. The aim of this study was to examine the role of SOD1 overexpression in peripheral nerve regeneration and neuropathic pain-related behavior in mice. Sciatic nerves of SOD1-overexpressing and FVB/N wild type-mice were transected and immediately resutured. Evaluation of motor and sensory function and autotomy was carried out during 4 weeks of followup. We found markedly worse sciatic function index outcome as well as more significant atrophy of denervated muscles in SOD1-overexpressing animals compared with wild type. Autotomy was markedly worse in SOD1 transgenic mice than in wild-type animals. Histological evaluation revealed that the intensity of regeneration features, including numbers of GAP-43-positive growth cones, Schwann cells, and macrophages in the distal stump of the transected nerve, was also decreased in transgenic mice. Neuroma formation at the injury site was significantly more prominent in this group. Taken together, our findings suggest that SOD1 overexpression is deleterious for nerve regeneration processes and aggravates neuropathic pain-like state in mice. This can be at least partially ascribed to disturbed inflammatory reactions at the injury site. Copyright 2006 Wiley-Liss, Inc.

  8. Abnormal iron metabolism and oxidative stress in mice expressing a mutant form of the ferritin light polypeptide gene

    Science.gov (United States)

    Barbeito, Ana G.; Garringer, Holly J.; Baraibar, Martin A.; Gao, Xiaoying; Arredondo, Miguel; Núñez, Marco T.; Smith, Mark A.; Ghetti, Bernardino; Vidal, Ruben

    2009-01-01

    Insertional mutations in exon 4 of the ferritin light chain (FTL) gene are associated with hereditary ferritinopathy (HF) or neuroferritinopathy, an autosomal dominant neurodegenerative disease characterized by progressive impairment of motor and cognitive functions. To determine the pathogenic mechanisms by which mutations in FTL lead to neurodegeneration, we investigated iron metabolism and markers of oxidative stress in the brain of transgenic (Tg) mice that express the mutant human FTL498-499InsTC cDNA. Compared with wild-type mice, brain extracts from Tg (FTL-Tg) mice showed an increase in the cytoplasmic levels of both FTL and ferritin heavy chain polypeptides, a decrease in the protein and mRNA levels of transferrin receptor-1, and a significant increase in iron levels. Transgenic mice also showed the presence of markers for lipid peroxidation, protein carbonyls, and nitrone–protein adducts in the brain. However, gene expression analysis of iron management proteins in the liver of Tg mice indicates that the FTL-Tg mouse liver is iron deficient. Our data suggest that disruption of iron metabolism in the brain has a primary role in the process of neurodegeneration in HF and that the pathogenesis of HF is likely to result from a combination of reduction in iron storage function and enhanced toxicity associated with iron-induced ferritin aggregates in the brain. PMID:19519778

  9. Altered depression-related behavior and neurochemical changes in serotonergic neurons in mutant R406W human tau transgenic mice.

    Science.gov (United States)

    Egashira, Nobuaki; Iwasaki, Katsunori; Takashima, Akihiko; Watanabe, Takuya; Kawabe, Hideyuki; Matsuda, Tomomi; Mishima, Kenichi; Chidori, Shozo; Nishimura, Ryoji; Fujiwara, Michihiro

    2005-10-12

    Mutant R406W human tau was originally identified in frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17) and causes a hereditary tauopathy that clinically resembles Alzheimer's disease (AD). In the current study, we examined the performance of R406W transgenic (Tg) mice in the forced swimming test, a test with high predictivity of antidepressant efficacy in human depression, and found an enhancement of the immobility time. In contrast, the motor function and anxiety-related emotional response of R406W Tg mice were normal. Furthermore, a selective serotonin reuptake inhibitor (SSRI), fluvoxamine (100 mg/kg, p.o.), significantly reduced this enhancement of the immobility time, whereas a noradrenaline reuptake inhibitor, desipramine, had no effect. In an in vivo microdialysis study, R406W Tg mice exhibited a significantly decreased extracellular 5-hydroxyindoleacetic acid (5-HIAA) level in the frontal cortex and also exhibited a tendency toward a decreased extracellular 5-hydroxytryptamine (5-HT) level. Moreover, fluvoxamine, which reduced the enhancement of the immobility time, significantly increased the extracellular 5-HT level in R406W Tg mice. These results suggest that R406W Tg mice exhibit changes in depression-related behavior involving serotonergic neurons and provide an animal model for investigating AD with depression.

  10. Targeted overexpression of endothelial nitric oxide synthase in endothelial cells improves cerebrovascular reactivity in Ins2Akita-type-1 diabetic mice.

    Science.gov (United States)

    Chandra, Saurav B; Mohan, Sumathy; Ford, Bridget M; Huang, Lei; Janardhanan, Preethi; Deo, Kaiwalya S; Cong, Linlin; Muir, Eric R; Duong, Timothy Q

    2016-06-01

    Reduced bioavailability of nitric oxide due to impaired endothelial nitric oxide synthase (eNOS) activity is a leading cause of endothelial dysfunction in diabetes. Enhancing eNOS activity in diabetes is a potential therapeutic target. This study investigated basal cerebral blood flow and cerebrovascular reactivity in wild-type mice, diabetic mice (Ins2(Akita+/-)), nondiabetic eNOS-overexpressing mice (TgeNOS), and the cross of two transgenic mice (TgeNOS-Ins2(Akita+/-)) at six months of age. The cross was aimed at improving eNOS expression in diabetic mice. The major findings were: (i) Body weights of Ins2(Akita+/-) and TgeNOS-Ins2(Akita+/-) were significantly different from wild-type and TgeNOS mice. Blood pressure of TgeNOS mice was lower than wild-type. (ii) Basal cerebral blood flow of the TgeNOS group was significantly higher than cerebral blood flow of the other three groups. (iii) The cerebrovascular reactivity in the Ins2(Akita+/-) mice was significantly lower compared with wild-type, whereas that in the TgeNOS-Ins2(Akita+/-) was significantly higher compared with the Ins2(Akita+/-) and TgeNOS groups. Overexpression of eNOS rescued cerebrovascular dysfunction in diabetic animals, resulting in improved cerebrovascular reactivity. These results underscore the possible role of eNOS in vascular dysfunction in the brain of diabetic mice and support the notion that enhancing eNOS activity in diabetes is a potential therapeutic target. © The Author(s) 2015.

  11. Tet1 overexpression leads to anxiety-like behavior and enhanced fear memories via the activation of calcium-dependent cascade through Egr1 expression in mice.

    Science.gov (United States)

    Kwon, Wookbong; Kim, Hyeng-Soo; Jeong, Jain; Sung, Yonghun; Choi, Minjee; Park, Song; Lee, Jinhee; Jang, Soyoung; Kim, Sung Hyun; Lee, Sanggyu; Kim, Myoung Ok; Ryoo, Zae Young

    2018-01-01

    Ten-eleven translocation methylcytosine dioxygenase 1 ( Tet1 ) initiates DNA demethylation by converting 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC) at CpG-rich regions of genes, which have key roles in adult neurogenesis and memory. In addition, the overexpression of Tet1 with 5-hmC alteration in patients with psychosis has also been reported, for instance in schizophrenia and bipolar disorders. The mechanism underlying Tet1 overexpression in the brain; however, is still elusive. In the present study, we found that Tet1-transgenic (Tet1-TG) mice displayed abnormal behaviors involving elevated anxiety and enhanced fear memories. We confirmed that Tet1 overexpression affected adult neurogenesis with oligodendrocyte differentiation in the hippocampal dentate gyrus of Tet1-TG mice. In addition, Tet1 overexpression induced the elevated expression of immediate early genes, such as Egr1 , c-fos , Arc , and Bdnf , followed by the activation of intracellular calcium signals ( i.e. , CamKII, ERK, and CREB) in prefrontal and hippocampal neurons. The expression of GABA receptor subunits ( Gabra2 and Gabra4 ) fluctuated in the prefrontal cortex and hippocampus. We evaluated the effects of Tet1 overexpression on intracellular calcium-dependent cascades by activating the Egr1 promoter in vitro Tet1 enhanced Egr1 expression, which may have led to alterations in Gabra2 and Gabra4 expression in neurons. Taken together, we suggest that the Tet1 overexpression in our Tet1-TG mice can be applied as an effective model for studying various stress-related diseases that show hyperactivation of intracellular calcium-dependent cascades in the brain.-Kwon, W., Kim, H.-S., Jeong, J., Sung, Y., Choi, M., Park, S., Lee, J., Jang, S., Kim, S. H., Lee, S., Kim, M. O., Ryoo, Z. Y. Tet1 overexpression leads to anxiety-like behavior and enhanced fear memories via the activation of calcium-dependent cascade through Egr1 expression in mice. © FASEB.

  12. Overexpression of Adenylyl Cyclase Encoded by the Mycobacterium tuberculosis Rv2212 Gene Confers Improved Fitness, Accelerated Recovery from Dormancy and Enhanced Virulence in Mice

    Directory of Open Access Journals (Sweden)

    Margarita O. Shleeva

    2017-08-01

    Full Text Available Earlier we demonstrated that the adenylyl cyclase (AC encoded by the MSMEG_4279 gene plays a key role in the resuscitation and growth of dormant Mycobacterium smegmatis and that overexpression of this gene leads to an increase in intracellular cAMP concentration and prevents the transition of M. smegmatis from active growth to dormancy in an extended stationary phase accompanied by medium acidification. We surmised that the homologous Rv2212 gene of M. tuberculosis (Mtb, the main cAMP producer, plays similar physiological roles by supporting, under these conditions, the active state and reactivation of dormant bacteria. To test this hypothesis, we established Mtb strain overexpressing Rv2212 and compared its in vitro and in vivo growth characteristics with a control strain. In vitro, the AC-overexpressing pMindRv2212 strain demonstrated faster growth in a liquid medium, prolonged capacity to form CFUs and a significant delay or even prevention of transition toward dormancy. AC-overexpressing cells exhibited easier recovery from dormancy. In vivo, AC-overexpressing bacteria demonstrated significantly higher growth rates (virulence in the lungs and spleens of infected mice compared to the control strain, and, unlike the latter, killed mice in the TB-resistant strain before month 8 of infection. Even in the absence of selecting hygromycin B, all pMindRv2212 CFUs retained the Rv2212 insert during in vivo growth, strongly suggesting that AC overexpression is beneficial for bacteria. Taken together, our results indicate that cAMP supports the maintenance of Mtb cells vitality under unfavorable conditions in vitro and their virulence in vivo.

  13. Nuclear Expression of a Mitochondrial DNA Gene: Mitochondrial Targeting of Allotopically Expressed Mutant ATP6 in Transgenic Mice

    Directory of Open Access Journals (Sweden)

    David A. Dunn

    2012-01-01

    Full Text Available Nuclear encoding of mitochondrial DNA transgenes followed by mitochondrial targeting of the expressed proteins (allotopic expression; AE represents a potentially powerful strategy for creating animal models of mtDNA disease. Mice were created that allotopically express either a mutant (A6M or wildtype (A6W mt-Atp6 transgene. Compared to non-transgenic controls, A6M mice displayed neuromuscular and motor deficiencies (wire hang, pole, and balance beam analyses; P0.05. This study illustrates a mouse model capable of circumventing in vivo mitochondrial mutations. Moreover, it provides evidence supporting AE as a tool for mtDNA disease research with implications in development of DNA-based therapeutics.

  14. Alterations in gene expression in mutant amyloid precursor protein transgenic mice lacking Niemann-Pick type C1 protein.

    Directory of Open Access Journals (Sweden)

    Mahua Maulik

    Full Text Available Niemann-Pick type C (NPC disease, a rare autosomal recessive disorder caused mostly by mutation in NPC1 gene, is pathologically characterized by the accumulation of free cholesterol in brain and other tissues. This is accompanied by gliosis and loss of neurons in selected brain regions, including the cerebellum. Recent studies have shown that NPC disease exhibits intriguing parallels with Alzheimer's disease, including the presence of neurofibrillary tangles and increased levels of amyloid precursor protein (APP-derived β-amyloid (Aβ peptides in vulnerable brain neurons. To evaluate the role of Aβ in NPC disease, we determined the gene expression profile in selected brain regions of our recently developed bigenic ANPC mice, generated by crossing APP transgenic (Tg mice with heterozygous Npc1-deficient mice. The ANPC mice exhibited exacerbated neuronal and glial pathology compared to other genotypes [i.e., APP-Tg, double heterozygous (Dhet, Npc1-null and wild-type mice]. Analysis of expression profiles of 86 selected genes using real-time RT-PCR arrays showed a wide-spectrum of alterations in the four genotypes compared to wild-type controls. The changes observed in APP-Tg and Dhet mice are limited to only few genes involved mostly in the regulation of cholesterol metabolism, whereas Npc1-null and ANPC mice showed alterations in the expression profiles of a number of genes regulating cholesterol homeostasis, APP metabolism, vesicular trafficking and cell death mechanism in both hippocampus and cerebellum compared to wild-type mice. Intriguingly, ANPC and Npc1-null mice, with some exceptions, exhibited similar changes, although more genes were differentially expressed in the affected cerebellum than the relatively spared hippocampus. The altered gene profiles were found to match with the corresponding protein levels. These results suggest that lack of Npc1 protein can alter the expression profile of selected transcripts as well as proteins, and

  15. ß-cell specific overexpression of suppressor of cytokine signalling-3 does not protect against multiple low dose streptozotocin induced type 1 diabetes in mice

    DEFF Research Database (Denmark)

    Börjesson, A; Rønn, S G; Karlsen, A E

    2011-01-01

    We investigated the impact of ß-cell specific overexpression of suppressor of cytokine signalling-3 (SOCS-3) on the development of multiple low dose streptozotocin (MLDSTZ) induced Type 1 diabetes and the possible mechanisms involved. MLDSTZ treatment was administered to RIP-SOCS-3 transgenic......RNA in islet cells and secretion of IL-1Ra into culture medium. MLDSTZ treatment caused gradual hyperglycemia both in the wt mice and in the transgenic mice with the latter tending to be more sensitive. In vitro experiments on wt and transgenic islets did not reveal any differences in sensitivity to damaging...

  16. Data file of a deep proteome analysis of the prefrontal cortex in aged mice with progranulin deficiency or neuronal overexpression of progranulin.

    Science.gov (United States)

    Heidler, Juliana; Hardt, Stefanie; Wittig, Ilka; Tegeder, Irmgard

    2016-12-01

    Progranulin deficiency is associated with neurodegeneration in humans and in mice. The mechanisms likely involve progranulin-promoted removal of protein waste via autophagy. We performed a deep proteomic screen of the pre-frontal cortex in aged (13-15 months) female progranulin-deficient mice (GRN -/- ) and mice with inducible neuron-specific overexpression of progranulin (SLICK-GRN-OE) versus the respective control mice. Proteins were extracted and analyzed per liquid chromatography/mass spectrometry (LC/MS) on a Thermo Scientific™ Q Exactive Plus equipped with an ultra-high performance liquid chromatography unit and a Nanospray Flex Ion-Source. Full Scan MS-data were acquired using Xcalibur and raw files were analyzed using the proteomics software Max Quant. The mouse reference proteome set from uniprot (June 2015) was used to identify peptides and proteins. The DiB data file is a reduced MaxQuant output and includes peptide and protein identification, accession numbers, protein and gene names, sequence coverage and label free quantification (LFQ) values of each sample. Differences in protein expression in genotypes are presented in "Progranulin overexpression in sensory neurons attenuates neuropathic pain in mice: Role of autophagy" (C. Altmann, S. Hardt, C. Fischer, J. Heidler, H.Y. Lim, A. Haussler, B. Albuquerque, B. Zimmer, C. Moser, C. Behrends, F. Koentgen, I. Wittig, M.H. Schmidt, A.M. Clement, T. Deller, I. Tegeder, 2016) [1].

  17. Data file of a deep proteome analysis of the prefrontal cortex in aged mice with progranulin deficiency or neuronal overexpression of progranulin

    Directory of Open Access Journals (Sweden)

    Juliana Heidler

    2016-12-01

    Full Text Available Progranulin deficiency is associated with neurodegeneration in humans and in mice. The mechanisms likely involve progranulin-promoted removal of protein waste via autophagy. We performed a deep proteomic screen of the pre-frontal cortex in aged (13–15 months female progranulin-deficient mice (GRN−/− and mice with inducible neuron-specific overexpression of progranulin (SLICK-GRN-OE versus the respective control mice. Proteins were extracted and analyzed per liquid chromatography/mass spectrometry (LC/MS on a Thermo Scientific™ Q Exactive Plus equipped with an ultra-high performance liquid chromatography unit and a Nanospray Flex Ion-Source. Full Scan MS-data were acquired using Xcalibur and raw files were analyzed using the proteomics software Max Quant. The mouse reference proteome set from uniprot (June 2015 was used to identify peptides and proteins. The DiB data file is a reduced MaxQuant output and includes peptide and protein identification, accession numbers, protein and gene names, sequence coverage and label free quantification (LFQ values of each sample. Differences in protein expression in genotypes are presented in "Progranulin overexpression in sensory neurons attenuates neuropathic pain in mice: Role of autophagy" (C. Altmann, S. Hardt, C. Fischer, J. Heidler, H.Y. Lim, A. Haussler, B. Albuquerque, B. Zimmer, C. Moser, C. Behrends, F. Koentgen, I. Wittig, M.H. Schmidt, A.M. Clement, T. Deller, I. Tegeder, 2016 [1].

  18. Alternating hemiplegia of childhood-related neural and behavioural phenotypes in Na+,K+-ATPase α3 missense mutant mice.

    Directory of Open Access Journals (Sweden)

    Greer S Kirshenbaum

    Full Text Available Missense mutations in ATP1A3 encoding Na(+,K(+-ATPase α3 have been identified as the primary cause of alternating hemiplegia of childhood (AHC, a motor disorder with onset typically before the age of 6 months. Affected children tend to be of short stature and can also have epilepsy, ataxia and learning disability. The Na(+,K(+-ATPase has a well-known role in maintaining electrochemical gradients across cell membranes, but our understanding of how the mutations cause AHC is limited. Myshkin mutant mice carry an amino acid change (I810N that affects the same position in Na(+,K(+-ATPase α3 as I810S found in AHC. Using molecular modelling, we show that the Myshkin and AHC mutations display similarly severe structural impacts on Na(+,K(+-ATPase α3, including upon the K(+ pore and predicted K(+ binding sites. Behavioural analysis of Myshkin mice revealed phenotypic abnormalities similar to symptoms of AHC, including motor dysfunction and cognitive impairment. 2-DG imaging of Myshkin mice identified compromised thalamocortical functioning that includes a deficit in frontal cortex functioning (hypofrontality, directly mirroring that reported in AHC, along with reduced thalamocortical functional connectivity. Our results thus provide validation for missense mutations in Na(+,K(+-ATPase α3 as a cause of AHC, and highlight Myshkin mice as a starting point for the exploration of disease mechanisms and novel treatments in AHC.

  19. Paternal Aging Affects Behavior in Pax6 Mutant Mice: A Gene/Environment Interaction in Understanding Neurodevelopmental Disorders.

    Science.gov (United States)

    Yoshizaki, Kaichi; Furuse, Tamio; Kimura, Ryuichi; Tucci, Valter; Kaneda, Hideki; Wakana, Shigeharu; Osumi, Noriko

    2016-01-01

    Neurodevelopmental disorders such as autism spectrum disorder (ASD) and attention deficit and hyperactivity disorder (ADHD) have increased over the last few decades. These neurodevelopmental disorders are characterized by a complex etiology, which involves multiple genes and gene-environmental interactions. Various genes that control specific properties of neural development exert pivotal roles in the occurrence and severity of phenotypes associated with neurodevelopmental disorders. Moreover, paternal aging has been reported as one of the factors that contribute to the risk of ASD and ADHD. Here we report, for the first time, that paternal aging has profound effects on the onset of behavioral abnormalities in mice carrying a mutation of Pax6, a gene with neurodevelopmental regulatory functions. We adopted an in vitro fertilization approach to restrict the influence of additional factors. Comprehensive behavioral analyses were performed in Sey/+ mice (i.e., Pax6 mutant heterozygotes) born from in vitro fertilization of sperm taken from young or aged Sey/+ fathers. No body weight changes were found in the four groups, i.e., Sey/+ and wild type (WT) mice born to young or aged father. However, we found important differences in maternal separation-induced ultrasonic vocalizations of Sey/+ mice born from young father and in the level of hyperactivity of Sey/+ mice born from aged fathers in the open-field test, respectively, compared to WT littermates. Phenotypes of anxiety were observed in both genotypes born from aged fathers compared with those born from young fathers. No significant difference was found in social behavior and sensorimotor gating among the four groups. These results indicate that mice with a single genetic risk factor can develop different phenotypes depending on the paternal age. Our study advocates for serious considerations on the role of paternal aging in breeding strategies for animal studies.

  20. Paternal Aging Affects Behavior in Pax6 Mutant Mice: A Gene/Environment Interaction in Understanding Neurodevelopmental Disorders.

    Directory of Open Access Journals (Sweden)

    Kaichi Yoshizaki

    Full Text Available Neurodevelopmental disorders such as autism spectrum disorder (ASD and attention deficit and hyperactivity disorder (ADHD have increased over the last few decades. These neurodevelopmental disorders are characterized by a complex etiology, which involves multiple genes and gene-environmental interactions. Various genes that control specific properties of neural development exert pivotal roles in the occurrence and severity of phenotypes associated with neurodevelopmental disorders. Moreover, paternal aging has been reported as one of the factors that contribute to the risk of ASD and ADHD. Here we report, for the first time, that paternal aging has profound effects on the onset of behavioral abnormalities in mice carrying a mutation of Pax6, a gene with neurodevelopmental regulatory functions. We adopted an in vitro fertilization approach to restrict the influence of additional factors. Comprehensive behavioral analyses were performed in Sey/+ mice (i.e., Pax6 mutant heterozygotes born from in vitro fertilization of sperm taken from young or aged Sey/+ fathers. No body weight changes were found in the four groups, i.e., Sey/+ and wild type (WT mice born to young or aged father. However, we found important differences in maternal separation-induced ultrasonic vocalizations of Sey/+ mice born from young father and in the level of hyperactivity of Sey/+ mice born from aged fathers in the open-field test, respectively, compared to WT littermates. Phenotypes of anxiety were observed in both genotypes born from aged fathers compared with those born from young fathers. No significant difference was found in social behavior and sensorimotor gating among the four groups. These results indicate that mice with a single genetic risk factor can develop different phenotypes depending on the paternal age. Our study advocates for serious considerations on the role of paternal aging in breeding strategies for animal studies.

  1. Epididymis response partly compensates for spermatozoa oxidative defects in snGPx4 and GPx5 double mutant mice.

    Directory of Open Access Journals (Sweden)

    Anaïs Noblanc

    Full Text Available We report here that spermatozoa of mice lacking both the sperm nucleus glutathione peroxidase 4 (snGPx4 and the epididymal glutathione peroxidase 5 (GPx5 activities display sperm nucleus structural abnormalities including delayed and defective nuclear compaction, nuclear instability and DNA damage. We show that to counteract the GPx activity losses, the epididymis of the double KO animals mounted an antioxydant response resulting in a strong increase in the global H(2O(2-scavenger activity especially in the cauda epididymis. Quantitative RT-PCR data show that together with the up-regulation of epididymal scavengers (of the thioredoxin/peroxiredoxin system as well as glutathione-S-transferases the epididymis of double mutant animals increased the expression of several disulfide isomerases in an attempt to recover normal disulfide-bridging activity. Despite these compensatory mechanisms cauda-stored spermatozoa of double mutant animals show high levels of DNA oxidation, increased fragmentation and greater susceptibility to nuclear decondensation. Nevertheless, the enzymatic epididymal salvage response is sufficient to maintain full fertility of double KO males whatever their age, crossed with young WT female mice.

  2. Nootropic nefiracetam inhibits proconvulsant action of peripheral-type benzodiazepines in epileptic mutant EL mice.

    Science.gov (United States)

    Nakamoto, Yurie; Shiotani, Tadashi; Watabe, Shigeo; Nabeshima, Toshitaka; Yoshii, Mitsunobu

    2004-10-01

    Piracetam and structurally related nootropics are known to potentiate the anticonvulsant effects of antiepileptic drugs. It remains to be seen, however, whether these nootropics inhibit proconvulsant actions of many toxic agents including Ro 5-4864, a specific agonist for peripheral-type benzodiazepine receptors (PBR). The present study was designed to address this issue using EL mice, an animal model of epilepsy. In behavioral pharmacological experiments, EL mice were highly susceptible to convulsions induced by Ro 5-4864 (i.p.) in comparison with nonepileptic DDY mice. Nefiracetam administered orally to EL mice inhibited spontaneous seizures. In DDY mice, convulsions induced by Ro 5-4864 were prevented by nefiracetam when administered by i.v. injection. Aniracetam (i.v.) was partially effective, but piracetam and oxiracetam were ineffective as anticonvulsants. Binding assay for brain tissues revealed a higher density of mitochondrial PBR in EL mice compared with DDY mice. Binding of the PBR ligands Ro 5-4864 to either EL or DDY mouse brain was inhibited by micromolar concentrations of these nootropic agents in the sequence of nefiracetam > aniracetam > oxiracetam, piracetam. This rank order is identical to potency as anticonvulsants. These data suggest that nefiracetam may prevent toxic effects of PBR agonists through interacting with PBR.

  3. Effects of metallothionein on zinc metabolism in lethal-milk mutant mice

    International Nuclear Information System (INIS)

    Grider, A. Jr.

    1986-01-01

    The lethal-milk mice (C57BL/6J-Im) exhibit various pleiotropic effects, including a congenital otolith defect, production of zinc-deficient milk, and clinical signs of a systemic Zn deficiency by one year of age. The clinical signs include alopecia, dermatitis, and skin lesions. The systemic zinc deficiency may be due to increased levels of metallothionein (MT) in the intestine and/or liver of Im mice. The untreated Im mice contain twice as much intestinal MT as do C57BL/6J-(+/sup im//+ /sup Im/) (B6) controls. This was determined by a sulfhydryl assay, by the 109 Cd-saturation/hemolysate method, and by the 65 Zn-binding assay. Various concentrations of Cd or Zn were added to the drinking water three days before assaying for MT. Compared to B6 mice, the Im mice exhibited more MT in their liver by the 65 Zn-MT binding assay (3-fold) and by the 109 Cd-saturation/hemolysate method (18-fold). The effects of the two zinc treatments did not differ significantly between Im and B6 mice. The retention and excretion of 65 Zn (administered intraperitoneally) were determined over a 14-day period, but the results did not different between the Im and B6 mice. The increased concentrations of MT within the Im mice was not significantly different for the intestine and liver. Based on these data and other studies, the Im mice may exhibit alterations in zinc homeostasis due to some deregulation of MT metabolism, including the inner ear of the fetus, the lactating mammary gland, and the intestine and liver of adults by one year of age

  4. Effects of metallothionein on zinc metabolism in lethal-milk mutant mice

    Energy Technology Data Exchange (ETDEWEB)

    Grider, A. Jr.

    1986-01-01

    The lethal-milk mice (C57BL/6J-Im) exhibit various pleiotropic effects, including a congenital otolith defect, production of zinc-deficient milk, and clinical signs of a systemic Zn deficiency by one year of age. The clinical signs include alopecia, dermatitis, and skin lesions. The systemic zinc deficiency may be due to increased levels of metallothionein (MT) in the intestine and/or liver of Im mice. The untreated Im mice contain twice as much intestinal MT as do C57BL/6J-(+/sup im//+ /sup Im/) (B6) controls. This was determined by a sulfhydryl assay, by the /sup 109/Cd-saturation/hemolysate method, and by the /sup 65/Zn-binding assay. Various concentrations of Cd or Zn were added to the drinking water three days before assaying for MT. Compared to B6 mice, the Im mice exhibited more MT in their liver by the /sup 65/Zn-MT binding assay (3-fold) and by the /sup 109/Cd-saturation/hemolysate method (18-fold). The effects of the two zinc treatments did not differ significantly between Im and B6 mice. The retention and excretion of /sup 65/Zn (administered intraperitoneally) were determined over a 14-day period, but the results did not different between the Im and B6 mice. The increased concentrations of MT within the Im mice was not significantly different for the intestine and liver. Based on these data and other studies, the Im mice may exhibit alterations in zinc homeostasis due to some deregulation of MT metabolism, including the inner ear of the fetus, the lactating mammary gland, and the intestine and liver of adults by one year of age.

  5. Cox4i2, Ifit2, and Prdm11 Mutant Mice

    DEFF Research Database (Denmark)

    Horsch, Marion; Aguilar-Pimentel, Juan Antonio; Bönisch, Clemens

    2015-01-01

    We established a selection strategy to identify new models for an altered airway inflammatory response from a large compendium of mutant mouse lines that were systemically phenotyped in the German Mouse Clinic (GMC). As selection criteria we included published gene functional data, as well as imm...

  6. Growth Hormone-Releaser Diet Attenuates Cognitive Dysfunction in Klotho Mutant Mice via Insulin-Like Growth Factor-1 Receptor Activation in a Genetic Aging Model

    Directory of Open Access Journals (Sweden)

    Seok Joo Park

    2014-09-01

    Full Text Available BackgroundIt has been recognized that a defect in klotho gene expression accelerates the degeneration of multiple age-sensitive traits. Accumulating evidence indicates that aging is associated with declines in cognitive function and the activity of growth hormone (GH/insulin-like growth factor-1 (IGF-1.MethodsIn this study, we examined whether a GH-releaser diet could be effective in protecting against cognitive impairment in klotho mutant mice.ResultsThe GH-releaser diet significantly induced the expression of IGF-1 and IGF-1 receptors in the hippocampus of klotho mutant mice. Klotho mutant mice showed significant memory impairments as compared with wild-type mice. In addition, the klotho mutation significantly decreased the expression of cell survival/antiapoptotic factors, including phospho-Akt (p-Akt/phospho-glycogen synthase kinase3β (p-GSK3β, phospho-extracellular signal-related kinase (p-ERK, and Bcl-2, but significantly increased those of cell death/proapoptotic factors, such as phospho-c-jun N-terminal kinase (p-JNK, Bax, and cleaved caspase-3 in the hippocampus. Treatment with GH-releaser diet significantly attenuated both decreases in the expression of cell survival/antiapoptotic factors and increases in the expression of cell death/proapoptotic factors in the hippocampus of klotho mutant mice. In addition, klotho mutation-induced oxidative stress was significantly attenuated by the GH-releaser diet. Consequently, a GH-releaser diet significantly improved memory function in the klotho mutant mice. GH-releaser diet-mediated actions were significantly reversed by JB-1, an IGF-1 receptor antagonist.ConclusionThe results suggest that a GH-releaser diet attenuates oxidative stress, proapoptotic changes and consequent dysfunction in klotho mutant mice by promoting IGF-1 expression and IGF-1 receptor activation.

  7. A novel p53 mutational hotspot in skin tumors from UV-irradiated Xpc mutant mice alters transactivation functions.

    Science.gov (United States)

    Inga, Alberto; Nahari, Dorit; Velasco-Miguel, Susana; Friedberg, Errol C; Resnick, Michael A

    2002-08-22

    A mutation in codon 122 of the mouse p53 gene resulting in a T to L amino acid substitution (T122-->L) is frequently associated with skin cancer in UV-irradiated mice that are both homozygous mutant for the nucleotide excision repair (NER) gene Xpc (Xpc(-/-)) and hemizygous mutant for the p53 gene. We investigated the functional consequences of the mouse T122-->L mutation when expressed either in mammalian cells or in the yeast Saccharomyces cerevisiae. Similar to a non-functional allele, high expression of the T122-->L allele in p53(-/-) mouse embryo fibroblasts and human Saos-2 cells failed to suppress growth. However, the T122-->L mutant p53 showed wild-type transactivation levels with Bax and MDM2 promoters when expressed in either cell type and retained transactivation of the p21 and the c-Fos promoters in one cell line. Using a recently developed rheostatable p53 induction system in yeast we assessed the T122-->L transactivation capacity at low levels of protein expression using 12 different p53 response elements (REs). Compared to wild-type p53 the T122-->L protein manifested an unusual transactivation pattern comprising reduced and enhanced activity with specific REs. The high incidence of the T122-->L mutant allele in the Xpc(-/-) background suggests that both genetic and epigenetic conditions may facilitate the emergence of particular functional p53 mutations. Furthermore, the approach that we have taken also provides for the dissection of functions that may be retained in many p53 tumor alleles.

  8. Fat-Specific DsbA-L Overexpression Promotes Adiponectin Multimerization and Protects Mice From Diet-Induced Obesity and Insulin Resistance

    Science.gov (United States)

    Liu, Meilian; Xiang, Ruihua; Wilk, Sarah Ann; Zhang, Ning; Sloane, Lauren B.; Azarnoush, Kian; Zhou, Lijun; Chen, Hongzhi; Xiang, Guangda; Walter, Christi A.; Austad, Steven N.; Musi, Nicolas; DeFronzo, Ralph A.; Asmis, Reto; Scherer, Philipp E.; Dong, Lily Q.; Liu, Feng

    2012-01-01

    The antidiabetic and antiatherosclerotic effects of adiponectin make it a desirable drug target for the treatment of metabolic and cardiovascular diseases. However, the adiponectin-based drug development approach turns out to be difficult due to extremely high serum levels of this adipokine. On the other hand, a significant correlation between adiponectin multimerization and its insulin-sensitizing effects has been demonstrated, suggesting a promising alternative therapeutic strategy. Here we show that transgenic mice overexpressing disulfide bond A oxidoreductase-like protein in fat (fDsbA-L) exhibited increased levels of total and the high-molecular-weight form of adiponectin compared with wild-type (WT) littermates. The fDsbA-L mice also displayed resistance to diet-induced obesity, insulin resistance, and hepatic steatosis compared with WT control mice. The protective effects of DsbA-L overexpression on diet-induced insulin resistance, but not increased body weight and fat cell size, were significantly decreased in adiponectin-deficient fDsbA-L mice (fDsbA-L/Ad−/−). In addition, the fDsbA-L/Ad−/− mice displayed greater activity and energy expenditure compared with adiponectin knockout mice under a high-fat diet. Taken together, our results demonstrate that DsbA-L protects mice from diet-induced obesity and insulin resistance through adiponectin-dependent and independent mechanisms. In addition, upregulation of DsbA-L could be an effective therapeutic approach for the treatment of obesity and its associated metabolic disorders. PMID:22807031

  9. Resistance to organophosphorus agent toxicity in transgenic mice expressing the G117H mutant of human butyrylcholinesterase

    International Nuclear Information System (INIS)

    Wang Yuxia; Ticu Boeck, Andreea; Duysen, Ellen G.; Van Keuren, Margaret; Saunders, Thomas L.; Lockridge, Oksana

    2004-01-01

    Organophosphorus toxicants (OP) include chemical nerve agents and pesticides. The goal of this work was to find out whether an animal could be made resistant to OP toxicity by genetic engineering. The human butyrylcholinesterase (BChE) mutant G117H was chosen for study because it has the unusual ability to hydrolyze OP as well as acetylcholine, and it is resistant to inhibition by OP. Human G117H BChE, under the control of the ROSA26 promoter, was expressed in all tissues of transgenic mice. A stable transgenic mouse line expressed 0.5 μg/ml of human G117H BChE in plasma as well as 2 μg/ml of wild-type mouse BChE. Intestine, kidneys, stomach, lungs, heart, spleen, liver, brain, and muscle expressed 0.6-0.15 μg/g of G117H BChE. Transgenic mice were normal in behavior and fertility. The LD50 dose of echothiophate for wild-type mice was 0.1 mg/kg sc. This dose caused severe cholinergic signs of toxicity and lethality in wild-type mice, but caused no deaths and only mild toxicity in transgenic animals. The mechanism of protection was investigated by measuring acetylcholinesterase (AChE) and BChE activity. It was found that AChE and endogenous BChE were inhibited to the same extent in echothiophate-treated wild type and transgenic mice. This led to the hypothesis that protection against echothiophate toxicity was not explained by hydrolysis of echothiophate. In conclusion, the transgenic G117H BChE mouse demonstrates the factors required to achieve protection from OP toxicity in a vertebrate animal

  10. Deoxynybomycins inhibit mutant DNA gyrase and rescue mice infected with fluoroquinolone-resistant bacteria.

    Science.gov (United States)

    Parkinson, Elizabeth I; Bair, Joseph S; Nakamura, Bradley A; Lee, Hyang Y; Kuttab, Hani I; Southgate, Emma H; Lezmi, Stéphane; Lau, Gee W; Hergenrother, Paul J

    2015-04-24

    Fluoroquinolones are one of the most commonly prescribed classes of antibiotics, but fluoroquinolone resistance (FQR) is widespread and increasing. Deoxynybomycin (DNM) is a natural-product antibiotic with an unusual mechanism of action, inhibiting the mutant DNA gyrase that confers FQR. Unfortunately, isolation of DNM is difficult and DNM is insoluble in aqueous solutions, making it a poor candidate for development. Here we describe a facile chemical route to produce DNM and its derivatives. These compounds possess excellent activity against FQR methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococci clinical isolates and inhibit mutant DNA gyrase in-vitro. Bacteria that develop resistance to DNM are re-sensitized to fluoroquinolones, suggesting that resistance that emerges to DNM would be treatable. Using a DNM derivative, the first in-vivo efficacy of the nybomycin class is demonstrated in a mouse infection model. Overall, the data presented suggest the promise of DNM derivatives for the treatment of FQR infections.

  11. CYP 2E1 mutant mice are resistant to DDC-induced enhancement of MPTP toxicity.

    Science.gov (United States)

    Viaggi, C; Vaglini, F; Pardini, C; Sgadò, P; Caramelli, A; Corsini, G U

    2007-01-01

    In order to reach a deeper insight into the mechanism of diethyldithiocarbamate (DDC)-induced enhancement of MPTP toxicity in mice, we showed that CYP450 (2E1) inhibitors, such as diallyl sulfide (DAS) or phenylethylisothiocyanate (PIC), also potentiate the selective DA neuron degeneration in C57/bl mice. Furthermore we showed that CYP 2E1 is present in the brain and in the basal ganglia of mice (Vaglini et al., 2004). However, because DAS and PIC are not selective CYP 2E1 inhibitors and in order to provide direct evidence for CYP 2E1 involvement in the enhancement of MPTP toxicity, CYP 2E1 knockout mice (GONZ) and wild type animals (SVI) of the same genetic background were treated with MPTP or the combined DDC + MPTP treatment. In CYP 2E1 knockout mice, DDC pretreatment completely fails to enhance MPTP toxicity, although enhancement of MPTP toxicity was regularly present in the SVI control animals. The immunohistochemical study confirms our results and suggests that CYP 2E1 may have a detoxifying role.

  12. EBI2 overexpression in mice leads to B1 B cell expansion and chronic lymphocytic leukemia-(CLL)-like B cell malignancies

    DEFF Research Database (Denmark)

    Niss Arfelt, Kristine; Barington, Line; Benned-Jensen, Tau

    2017-01-01

    -targeted expression of human EBI2 in mice reduces germinal center-dependent immune responses, reduces total IgM and IgG levels, and leads to increased proliferation and upregulation of cellular oncogenes. Furthermore, hEBI2 overexpression leads to an abnormally expanded CD5+ B1a B cell subset present as early as 4......Human and mouse chronic lymphocytic leukemia (CLL) develop from CD5+ B cells that in mice and macaques are known to define the distinct B1a B cell lineage. B1a cells are characterized by lack of germinal center development and the B1a cell population is increased in mice with reduced germinal...... cells towards the extrafollicular area, whereas downregulation is essential for germinal center formation. We therefore speculated whether increased expression of EBI2 would lead to an expanded B1 cell subset and, ultimately, progression to chronic lymphocytic leukemia. Here we demonstrate that B cell...

  13. Vascular endothelial overexpression of human CYP2J2 (Tie2-CYP2J2 Tr) modulates cardiac oxylipin profiles and enhances coronary reactive hyperemia in mice

    Science.gov (United States)

    Hanif, Ahmad; Edin, Matthew L.; Zeldin, Darryl C.; Morisseau, Christophe; Falck, John R.

    2017-01-01

    Arachidonic acid is metabolized to epoxyeicosatrienoic acids (EETs) by cytochrome (CYP) P450 epoxygenases, and to ω-terminal hydroxyeicosatetraenoic acids (HETEs) by ω-hydroxylases. EETs and HETEs often have opposite biologic effects; EETs are vasodilatory and protect against ischemia/reperfusion injury, while ω-terminal HETEs are vasoconstrictive and cause vascular dysfunction. Other oxylipins, such as epoxyoctadecaenoic acids (EpOMEs), hydroxyoctadecadienoic acids (HODEs), and prostanoids also have varied vascular effects. Post-ischemic vasodilation in the heart, known as coronary reactive hyperemia (CRH), protects against potential damage to the heart muscle caused by ischemia. The relationship among CRH response to ischemia, in mice with altered levels of CYP2J epoxygenases has not yet been investigated. Therefore, we evaluated the effect of endothelial overexpression of the human cytochrome P450 epoxygenase CYP2J2 in mice (Tie2-CYP2J2 Tr) on oxylipin profiles and CRH. Additionally, we evaluated the effect of pharmacologic inhibition of CYP-epoxygenases and inhibition of ω-hydroxylases on CRH. We hypothesized that CRH would be enhanced in isolated mouse hearts with vascular endothelial overexpression of human CYP2J2 through modulation of oxylipin profiles. Similarly, we expected that inhibition of CYP-epoxygenases would reduce CRH, whereas inhibition of ω-hydroxylases would enhance CRH. Compared to WT mice, Tie2-CYP2J2 Tr mice had enhanced CRH, including repayment volume, repayment duration, and repayment/debt ratio (P iso-PGF2α (P < 0.05). Inhibition of CYP epoxygenases with MS-PPOH attenuated CRH (P < 0.05). Ischemia caused a decrease in mid-chain HETEs (5-, 11-, 12-, 15-HETEs P < 0.05) and HODEs (P < 0.05). These data demonstrate that vascular endothelial overexpression of CYP2J2, through changing the oxylipin profiles, enhances CRH. Inhibition of CYP epoxygenases decreases CRH, whereas inhibition of ω-hydroxylases enhances CRH. PMID:28328948

  14. The effect of constitutive over-expression of insulin-like growth factor 1 on the cognitive function in aged mice.

    Science.gov (United States)

    Hu, Ankang; Yuan, Honghua; Wu, Lianlian; Chen, Renjin; Chen, Quangang; Zhang, Tengye; Wang, Zhenzhen; Liu, Peng; Zhu, Xiaorong

    2016-01-15

    The neurotrophic factor insulin-like growth factor (IGF)-1 promotes neurogenesis in the mammalian brain and provides protection against brain injury. However, studies regarding the effects of IGF-1 on cognitive function in aged mice remain limited. We investigated the effects of overexpression of IGF-1 specifically in neural stem cells of the hippocampal dentate gyrus on the recognitive function in 18-month-old transgenic mice. Immunohistocytochemistry and Nissl staining revealed the increased population of BrdU-positive cells as well as the upregulated expression of Nestin and neuronal nuclei (NeuN), respective markers for neural progenitors and neurons, in the hippocampus of the aged IGF-1 transgenic mice versus the wild-type, suggesting that IGF-1 overexpression promotes neurogenesis. In addition, the IGF-1 receptor (IGF-1R), the phosphorylation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and extracellular signal-regulated kinase (ERK) were enhanced in the transgenic mice than in the wild-type. Transgenic mice also showed superior performance in the Morris water maze and step-down memory tests to their wild-type counterparts. Moreover, the learning and memory abilities of transgenic mice were significantly undermined with the blockage of CaMKII and ERK signaling pathway. Accordingly, our findings indicated that IGF-1 may mitigate the aged-associated cognitive decline via promoting neurogenesis in the hippocampus and activating CaMKII and ERK signaling by binding with IGF-1R. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Differential tumor biology effects of double-initiation in a mouse skin chemical carcinogenesis model comparing wild type versus protein kinase Cepsilon overexpression mice.

    Science.gov (United States)

    Li, Yafan; Wheeler, Deric L; Ananthaswamy, Honnavara N; Verma, Ajit K; Oberley, Terry D

    2007-12-01

    Our previous studies showed that protein kinase Cepsilon (PKCepsilon) verexpression in mouse skin resulted in metastatic squamous cell carcinoma (SCC) elicited by single 7,12-dimethylbenz(a)anthracene (DMBA)-initiation and 12-O-tetradecanoylphorbol-13-acetate (TPA)-promotion in the absence of preceding papilloma formation as is typically observed in wild type mice. The present study demonstrates that double-DMBA initiation modulates tumor incidence, multiplicity, and latency period in both wild type and PKCepsilon overexpression transgenic (PKCepsilon-Tg) mice. After 17 weeks (wks) of tumor promotion, a reduction in papilloma multiplicity was observed in double- versus single-DMBA initiated wild type mice. Papilloma multiplicity was inversely correlated with cell death indices of interfollicular keratinocytes, indicating decreased papilloma formation was caused by increased cell death and suggesting the origin of papillomas is in interfollicular epidermis. Double-initiated PKCepsilon-Tg mice had accelerated carcinoma formation and cancer incidence in comparison to single-initiated PKCepsilon-Tg mice. Morphologic analysis of mouse skin following double initiation and tumor promotion showed a similar if not identical series of events to those previously observed following single initiation and tumor promotion: putative preneoplastic cells were observed arising from hyperplastic hair follicles (HFs) with subsequent cancer cell infiltration into the dermis. Single-initiated PKCepsilon-Tg mice exhibited increased mitosis in epidermal cells of HFs during tumor promotion.

  16. Early and rapid development of insulin resistance, islet dysfunction and glucose intolerance after high-fat feeding in mice overexpressing phosphodiesterase 3B

    DEFF Research Database (Denmark)

    Walz, Helena A; Härndahl, Linda; Wierup, Nils

    2006-01-01

    Inadequate islet adaptation to insulin resistance leads to glucose intolerance and type 2 diabetes. Here we investigate whether beta-cell cAMP is crucial for islet adaptation and prevention of glucose intolerance in mice. Mice with a beta-cell-specific, 2-fold overexpression of the c......AMP-degrading enzyme phosphodiesterase 3B (RIP-PDE3B/2 mice) were metabolically challenged with a high-fat diet. We found that RIP-PDE3B/2 mice early and rapidly develop glucose intolerance and insulin resistance, as compared with wild-type littermates, after 2 months of high-fat feeding. This was evident from...... did not reveal reduced insulin sensitivity in these tissues. Significant steatosis was noted in livers from high-fat-fed wild-type and RIP-PDE3B/2 mice and liver triacyl-glycerol content was 3-fold higher than in wild-type mice fed a control diet. Histochemical analysis revealed severe islet...

  17. Increased Rrm2 gene dosage reduces fragile site breakage and prolongs survival of ATR mutant mice

    DEFF Research Database (Denmark)

    Lopez-Contreras, Andres J; Specks, Julia; Barlow, Jacqueline H

    2015-01-01

    In Saccharomyces cerevisiae, absence of the checkpoint kinase Mec1 (ATR) is viable upon mutations that increase the activity of the ribonucleotide reductase (RNR) complex. Whether this pathway is conserved in mammals remains unknown. Here we show that cells from mice carrying extra alleles of the...

  18. Effects of Pharmacologic and Genetic Inhibition of Alk on Cognitive Impairments in NF1 Mutant Mice

    Science.gov (United States)

    2016-08-01

    Rogers funded training. Charity Miltenberger, 2015: Role mentor undergraduate student of Concordia University for research as part of Murdock Trust...Cincinnati Children’s Hospital . The complicated breeding scheme combined with the delayed shipment of the mice has prolonged this project and as a result

  19. Mammary Gland Tumor Development in Transgenic Mice Overexpressing Different Isoforms of the CDP/Cux Transcription Factor

    National Research Council Canada - National Science Library

    Cadieux, Chantal

    2008-01-01

    Short CUX1 isoforms were found to be overexpressed in breast cancer cell lines, in human breast tumors and in uterine leiomyomas, suggesting that these proteins play a key role in tumor development and progression...

  20. Mammary Gland Tumor Development in Transgenic Mice Overexpressing Different Isoforms of the CDP/Cux Transcription Factor

    National Research Council Canada - National Science Library

    Cadieux, Chantal

    2007-01-01

    Short CDP/Cux isoforms were found to be overexpressed in breast cancer cell lines, in human breast tumors and in uterine leiomyomas, suggesting that these proteins play a key role in tumor development and progression...

  1. PAC1- and VPAC2 receptors in light regulated behavior and physiology: Studies in single and double mutant mice.

    Directory of Open Access Journals (Sweden)

    Jens Hannibal

    Full Text Available The two sister peptides, pituitary adenylate cyclase activating polypeptide (PACAP and vasoactive intestinal polypeptide (VIP and their receptors, the PAC1 -and the VPAC2 receptors, are involved in regulation of the circadian timing system. PACAP as a neurotransmitter in the retinohypothalamic tract (RHT and VIP as a neurotransmitter, involved in synchronization of SCN neurons. Behavior and physiology in VPAC2 deficient mice are strongly regulated by light most likely as a result of masking. Consequently, we used VPAC2 and PAC1/VPAC2 double mutant mice in comparison with PAC1 receptor deficient mice to further elucidate the role of PACAP in the light mediated regulation of behavior and physiology of the circadian system. We compared circadian rhythms in mice equipped with running wheels or implanted radio-transmitter measuring core body temperature kept in a full photoperiod ((FPP(12:12 h light dark-cycles (LD and skeleton photo periods (SPP at high and low light intensity. Furthermore, we examined the expression of PAC1- and VPAC2 receptors in the SCN of the different genotypes in combination with visualization of PACAP and VIP and determined whether compensatory changes in peptide and/or receptor expression in the reciprocal knockouts (KO (PAC1 and VPAC2 had occurred. Our data demonstrate that in although being closely related at both ligand and receptor structure/sequence, PACAP/PAC1 receptor signaling are independent of VIP/VPAC2 receptor signaling and vice versa. Furthermore, lack of either of the receptors does not result in compensatory changes at neither the physiological or anatomical level. PACAP/PAC1 signaling is important for light regulated behavior, VIP/VPAC2signaling for stable clock function and both signaling pathways may play a role in shaping diurnality versus nocturnality.

  2. ER stress inhibitor attenuates hearing loss and hair cell death in Cdh23erl/erl mutant mice.

    Science.gov (United States)

    Hu, Juan; Li, Bo; Apisa, Luke; Yu, Heping; Entenman, Shami; Xu, Min; Stepanyan, Ruben; Guan, Bo-Jhih; Müller, Ulrich; Hatzoglou, Maria; Zheng, Qing Yin

    2016-11-24

    Hearing loss is one of the most common sensory impairments in humans. Mouse mutant models helped us to better understand the mechanisms of hearing loss. Recently, we have discovered that the erlong (erl) mutation of the cadherin23 (Cdh23) gene leads to hearing loss due to hair cell apoptosis. In this study, we aimed to reveal the molecular pathways upstream to apoptosis in hair cells to exploit more effective therapeutics than an anti-apoptosis strategy. Our results suggest that endoplasmic reticulum (ER) stress is the earliest molecular event leading to the apoptosis of hair cells and hearing loss in erl mice. We also report that the ER stress inhibitor, Salubrinal (Sal), could delay the progression of hearing loss and preserve hair cells. Our results provide evidence that therapies targeting signaling pathways in ER stress development prevent hair cell apoptosis at an early stage and lead to better outcomes than those targeting downstream factors, such as tip-link degeneration and apoptosis.

  3. PrkC-mediated phosphorylation of overexpressed YvcK protein regulates PBP1 protein localization in Bacillus subtilis mreB mutant cells.

    Science.gov (United States)

    Foulquier, Elodie; Pompeo, Frédérique; Freton, Céline; Cordier, Baptiste; Grangeasse, Christophe; Galinier, Anne

    2014-08-22

    The YvcK protein has been shown to be necessary for growth under gluconeogenic conditions in Bacillus subtilis. Amazingly, its overproduction rescues growth and morphology defects of the actin-like protein MreB deletion mutant by restoration of PBP1 localization. In this work, we observed that YvcK was phosphorylated at Thr-304 by the protein kinase PrkC and that phosphorylated YvcK was dephosphorylated by the cognate phosphatase PrpC. We show that neither substitution of this threonine with a constitutively phosphorylated mimicking glutamic acid residue or a phosphorylation-dead mimicking alanine residue nor deletion of prkC or prpC altered the ability of B. subtilis to grow under gluconeogenic conditions. However, we observed that a prpC mutant and a yvcK mutant were more sensitive to bacitracin compared with the WT strain. In addition, the bacitracin sensitivity of strains in which YvcK Thr-304 was replaced with either an alanine or a glutamic acid residue was also affected. We also analyzed rescue of the mreB mutant strain by overproduction of YvcK in which the phosphorylation site was substituted. We show that YvcK T304A overproduction did not rescue the mreB mutant aberrant morphology due to PBP1 mislocalization. The same observation was made in an mreB prkC double mutant overproducing YvcK. Altogether, these data show that YvcK may have two distinct functions: 1) in carbon source utilization independent of its phosphorylation level and 2) in cell wall biosynthesis and morphogenesis through its phosphorylation state. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Immunization with mutant HPV16 E7 protein inhibits the growth of TC-1 cells in tumor-bearing mice.

    Science.gov (United States)

    Li, Yan-Li; Ma, Zhong-Liang; Zhao, Yue; Zhang, Jing

    2015-04-01

    Two human papillomavirus (HPV) 16 oncogenic proteins, E6 and E7, are co-expressed in the majority of HPV16-induced cervical cancer cells. Thus, the E6 and E7 proteins are good targets for developing therapeutic vaccines for cervical cancer. In the present study, immunization with the mutant non-transforming HPV16 E7 (mE7) protein was demonstrated to inhibit the growth of TC-1 cells in the TC-1 mouse model. The HPV16 mE7 gene was amplified by splicing overlap extension polymerase chain reaction using pET-28a(+)-E7 as a template, and the gene was cloned into pET-28a(+) to form pET-28a(+)-mE7. Compared with the E7 protein, mE7 lacks amino acid residues 94-98, and at residue 24, there is a Cys to Gly substitution. pET-28a(+)-mE7 was then introduced into Escherichia coli Rosetta. The expression of mE7 was induced by isopropyl β-D-1-thiogalactopyranoside. The mE7 protein was purified using Ni-NTA agarose and detected by SDS-PAGE and western blot analysis. In the tumor prevention model, no tumor was detected in the mice vaccinated with the mE7 protein. After 40 days, the tumor-free mice and control mice were challenged with 2×10 5 TC-1 cells. All control mice developed tumors six days later, but mE7 immunized mice were tumor free until 90 days. In the tumor therapy model, the TC-1 cells were initially injected subcutaneously, and the mice were subsequently vaccinated. Vaccination against the mE7 protein may significantly inhibit TC-1 cell growth compared to the control. These results demonstrated that immunization with the HPV16 mE7 protein elicited a long-term protective immunity against TC-1 tumor growth and generated a significant inhibition of TC-1 growth in a TC-1 mouse model.

  5. Sex-dependent novelty response in neurexin-1α mutant mice.

    Directory of Open Access Journals (Sweden)

    Marijke C Laarakker

    Full Text Available Neurexin-1 alpha (NRXN1α belongs to the family of cell adhesion molecules (CAMs, which are involved in the formation of neuronal networks and synapses. NRXN1α gene mutations have been identified in neuropsychiatric diseases including Schizophrenia (SCZ and Autism Spectrum Disorder (ASD. In order to get a better understanding of the pleiotropic behavioral manifestations caused by NRXN1α gene mutations, we performed a behavioral study of Nrxn1α heterozygous knock-out (+/- mice and observed increased responsiveness to novelty and accelerated habituation to novel environments compared to wild type (+/+ litter-mates. However, this effect was mainly observed in male mice, strongly suggesting that gender-specific mechanisms play an important role in Nrxn1α-induced phenotypes.

  6. Evaluation of radioprotective action of a mutant (E-25) form of Chlorella vulgaris in mice

    International Nuclear Information System (INIS)

    Sarma, L.; Tiku, A.B.; Kesavan, P.C.; Ogaki, M.

    1993-01-01

    The possible role of orally fed Chlorella vulgaris (E-25) in modulating the gamma-ray induced chromosomal damage in whole-body irradiated mice was evaluated using a micronucleus test. Different doses of E-25 were administered either chronically (once, twice or thrice a day for 28 days) or as single acute doses before/after irradiation. A significant radioprotective effect was observed in both acute and chronic pretreatments, but only at doses above 400 mg/kg body weight. However, in mice that received E-25 (500 mg/kg) three times a day for 28 days, there was no protective effect, and a significant loss in their body weight was observed. Interestingly, E-25 afforded significant radioprotection even when it was administered within 0.4 hr after irradiation. (author)

  7. Catalase overexpression prevents nuclear factor erythroid 2-related factor 2 stimulation of renal angiotensinogen gene expression, hypertension, and kidney injury in diabetic mice.

    Science.gov (United States)

    Abdo, Shaaban; Shi, Yixuan; Otoukesh, Abouzar; Ghosh, Anindya; Lo, Chao-Sheng; Chenier, Isabelle; Filep, Janos G; Ingelfinger, Julie R; Zhang, Shao Ling; Chan, John S D

    2014-10-01

    This study investigated the impact of catalase (Cat) overexpression in renal proximal tubule cells (RPTCs) on nuclear factor erythroid 2-related factor 2 (Nrf2) stimulation of angiotensinogen (Agt) gene expression and the development of hypertension and renal injury in diabetic Akita transgenic mice. Additionally, adult male mice were treated with the Nrf2 activator oltipraz with or without the inhibitor trigonelline. Rat RPTCs, stably transfected with plasmid containing either rat Agt or Nrf2 gene promoter, were also studied. Cat overexpression normalized systolic BP, attenuated renal injury, and inhibited RPTC Nrf2, Agt, and heme oxygenase-1 (HO-1) gene expression in Akita Cat transgenic mice compared with Akita mice. In vitro, high glucose level, hydrogen peroxide, and oltipraz stimulated Nrf2 and Agt gene expression; these changes were blocked by trigonelline, small interfering RNAs of Nrf2, antioxidants, or pharmacological inhibitors of nuclear factor-κB and p38 mitogen-activated protein kinase. The deletion of Nrf2-responsive elements in the rat Agt gene promoter abolished the stimulatory effect of oltipraz. Oltipraz administration also augmented Agt, HO-1, and Nrf2 gene expression in mouse RPTCs and was reversed by trigonelline. These data identify a novel mechanism, Nrf2-mediated stimulation of intrarenal Agt gene expression and activation of the renin-angiotensin system, by which hyperglycemia induces hypertension and renal injury in diabetic mice. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  8. Dynamics of competitive population abundance of Lactobacillus plantarum ivi gene mutants in faecel samples after passage through the gastrointestinal tract of mice

    NARCIS (Netherlands)

    Bron, P.A.; Meijer, M.; Bongers, R.S.; Vos, de W.M.; Kleerebezem, M.

    2007-01-01

    This study aims to evaluate the impact of mutation of previously identified in vivo-induced (ivi) genes on the persistence and survival of Lactobacillus plantarum WCFS1 in the gastrointestinal (GI) tract of mice. Methods and Results:¿ Nine Lact. plantarum ivi gene replacement mutants were

  9. Sequential super-stereotypy of an instinctive fixed action pattern in hyper-dopaminergic mutant mice: a model of obsessive compulsive disorder and Tourette's

    Directory of Open Access Journals (Sweden)

    Houchard Kimberly R

    2005-02-01

    Full Text Available Abstract Background Excessive sequential stereotypy of behavioral patterns (sequential super-stereotypy in Tourette's syndrome and obsessive compulsive disorder (OCD is thought to involve dysfunction in nigrostriatal dopamine systems. In sequential super-stereotypy, patients become trapped in overly rigid sequential patterns of action, language, or thought. Some instinctive behavioral patterns of animals, such as the syntactic grooming chain pattern of rodents, have sufficiently complex and stereotyped serial structure to detect potential production of overly-rigid sequential patterns. A syntactic grooming chain is a fixed action pattern that serially links up to 25 grooming movements into 4 predictable phases that follow 1 syntactic rule. New mutant mouse models allow gene-based manipulation of brain function relevant to sequential patterns, but no current animal model of spontaneous OCD-like behaviors has so far been reported to exhibit sequential super-stereotypy in the sense of a whole complex serial pattern that becomes stronger and excessively rigid. Here we used a hyper-dopaminergic mutant mouse to examine whether an OCD-like behavioral sequence in animals shows sequential super-stereotypy. Knockdown mutation of the dopamine transporter gene (DAT causes extracellular dopamine levels in the neostriatum of these adult mutant mice to rise to 170% of wild-type control levels. Results We found that the serial pattern of this instinctive behavioral sequence becomes strengthened as an entire entity in hyper-dopaminergic mutants, and more resistant to interruption. Hyper-dopaminergic mutant mice have stronger and more rigid syntactic grooming chain patterns than wild-type control mice. Mutants showed sequential super-stereotypy in the sense of having more stereotyped and predictable syntactic grooming sequences, and were also more likely to resist disruption of the pattern en route, by returning after a disruption to complete the pattern from the

  10. High amplitude phase resetting in rev-erbalpha/per1 double mutant mice.

    Directory of Open Access Journals (Sweden)

    Corinne Jud

    Full Text Available Over time, organisms developed various strategies to adapt to their environment. Circadian clocks are thought to have evolved to adjust to the predictable rhythms of the light-dark cycle caused by the rotation of the Earth around its own axis. The rhythms these clocks generate persist even in the absence of environmental cues with a period of about 24 hours. To tick in time, they continuously synchronize themselves to the prevailing photoperiod by appropriate phase shifts. In this study, we disrupted two molecular components of the mammalian circadian oscillator, Rev-Erbalpha and Period1 (Per1. We found that mice lacking these genes displayed robust circadian rhythms with significantly shorter periods under constant darkness conditions. Strikingly, they showed high amplitude resetting in response to a brief light pulse at the end of their subjective night phase, which is rare in mammals. Surprisingly, Cry1, a clock component not inducible by light in mammals, became slightly inducible in these mice. Taken together, Rev-Erbalpha and Per1 may be part of a mechanism preventing drastic phase shifts in mammals.

  11. EGFR gene overexpression retained in an invasive xenograft model by solid orthotopic transplantation of human glioblastoma multiforme into nude mice.

    Science.gov (United States)

    Yi, Diao; Hua, Tian Xin; Lin, Huang Yan

    2011-03-01

    Orthotopic xenograft animal model from human glioblastoma multiforme (GBM) cell lines often do not recapitulate an extremely important aspect of invasive growth and epidermal growth factor receptor (EGFR) gene overexpression of human GBM. We developed an orthotopic xenograft model by solid transplantation of human GBM into the brain of nude mouse. The orthotopic xenografts sharing the same histopathological features with their original human GBMs were highly invasive and retained the overexpression of EGFR gene. The murine orthotopic GBM models constitute a valuable in vivo system for preclinical studies to test novel therapies for human GBM.

  12. Thioredoxin-1 overexpression in transgenic mice attenuates streptozotocin-induced diabetic osteopenia: a novel role of oxidative stress and therapeutic implications.

    Science.gov (United States)

    Hamada, Yasuhiro; Fujii, Hideki; Kitazawa, Riko; Yodoi, Junji; Kitazawa, Sohei; Fukagawa, Masafumi

    2009-05-01

    Diabetes mellitus is associated with increased risk of osteopenia and bone fracture. However, the mechanisms accounting for diabetic bone disorder are unclear. We have previously reported that streptozotocin-induced diabetic mice develop low turnover osteopenia associated with increased oxidative stress in the diabetic condition. To determine the role of oxidative stress in the development of diabetic osteopenia, we presently investigated the effect of overexpression of thioredoxin-1 (TRX), a major intracellular antioxidant, on the development of diabetic osteopenia, using TRX transgenic mice (TRX-Tg). TRX-Tg are C57BL/6 mice that carry the human TRX transgene under the control of beta-actin promoter. Eight-week-old male TRX-Tg mice and wild type (WT) littermates were intraperitoneally injected with either streptozotocin or vehicle. Mice were grouped as 1) non-diabetic WT, 2) non-diabetic TRX-Tg, 3) diabetic WT, and 4) diabetic TRX-Tg. After 12 weeks of streptozotocin treatment, oxidative stress on the whole body and bone was evaluated, and the physical properties of the femora, and histomorphometry parameters of the tibiae were assessed. TRX overexpression did not affect either body weight or hemoglobin A1c levels. There were no significant differences in renal function and in serum levels of calcium, phosphate, and intact parathyroid hormone among the four groups. On the other hand, urinary excretion of 8-hydroxydeoxyguanosine (8-OHdG), a marker of oxidative DNA damage, was significantly elevated in diabetic WT and attenuated in diabetic TRX-Tg. Immunohistochemical staining for 8-OHdG revealed marked intensity in the bone tissue of diabetic WT compared with non-diabetic WT, while staining was attenuated in diabetic TRX-Tg. TRX overexpression partially restored reduced bone mineral density and prevented the suppression of bone formation observed in diabetic WT. Increased oxidative stress in diabetic condition contributes to the development of diabetic osteopenia

  13. Endocannabinoid system and drug addiction: new insights from mutant mice approaches.

    Science.gov (United States)

    Maldonado, Rafael; Robledo, Patricia; Berrendero, Fernando

    2013-08-01

    The involvement of the endocannabinoid system in drug addiction was initially studied by the use of compounds with different affinities for each cannabinoid receptor or for the proteins involved in endocannabinoids inactivation. The generation of genetically modified mice with selective mutations in these endocannabinoid system components has now provided important advances in establishing their specific contribution to drug addiction. These genetic tools have identified the particular interest of CB1 cannabinoid receptor and endogenous anandamide as potential targets for drug addiction treatment. Novel genetic tools will allow determining if the modulation of CB2 cannabinoid receptor activity and 2-arachidonoylglycerol tone can also have an important therapeutic relevance for drug addiction. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Fetal loss in homozygous mutant Norrie disease mice: a new role of Norrin in reproduction.

    Science.gov (United States)

    Luhmann, Ulrich F O; Meunier, Dominique; Shi, Wei; Lüttges, Angela; Pfarrer, Christiane; Fundele, Reinald; Berger, Wolfgang

    2005-08-01

    Mutations in the Norrie disease pseudoglioma gene (NDP) are known to cause X-linked recessive Norrie disease. In addition, NDP mutations have been found in other vasoproliferative retinopathies such as familial exudative vitreoretinopathy, retinopathy of prematurity, and Coats disease, suggesting a role for Norrin in vascular development. Here we report that female mice homozygous for the Norrie disease pseudoglioma homolog (Ndph) knockout allele exhibit almost complete infertility, while heterozygous females and hemizygous males are fertile. Histological examinations and RNA in situ hybridization analyses revealed defects in vascular development and decidualization in pregnant Ndph-/- females from embryonic day 7 (E7) onwards, resulting in embryonic loss. Using RT-PCR analyses we also demonstrate, for the first time, the expression of Ndph in mouse uteri and deciduae as well as the expression of NDP in human placenta. Taken together, these data provide strong evidence for Norrin playing an important role in female reproductive tissues. Copyright 2005 Wiley-Liss, Inc

  15. Identification of a Glycogen Synthase Kinase-3[beta] Inhibitor that Attenuates Hyperactivity in CLOCK Mutant Mice

    Energy Technology Data Exchange (ETDEWEB)

    Kozikowski, Alan P.; Gunosewoyo, Hendra; Guo, Songpo; Gaisina, Irina N.; Walter, Richard L.; Ketcherside, Ariel; McClung, Colleen A.; Mesecar, Andrew D.; Caldarone, Barbara (Psychogenics); (Purdue); (UIC); (UTSMC)

    2012-05-02

    Bipolar disorder is characterized by a cycle of mania and depression, which affects approximately 5 million people in the United States. Current treatment regimes include the so-called 'mood-stabilizing drugs', such as lithium and valproate that are relatively dated drugs with various known side effects. Glycogen synthase kinase-3{beta} (GSK-3{beta}) plays a central role in regulating circadian rhythms, and lithium is known to be a direct inhibitor of GSK-3{beta}. We designed a series of second generation benzofuran-3-yl-(indol-3-yl)maleimides containing a piperidine ring that possess IC{sub 50} values in the range of 4 to 680 nM against human GSK-3{beta}. One of these compounds exhibits reasonable kinase selectivity and promising preliminary absorption, distribution, metabolism, and excretion (ADME) data. The administration of this compound at doses of 10 to 25 mg kg{sup -1} resulted in the attenuation of hyperactivity in amphetamine/chlordiazepoxide-induced manic-like mice together with enhancement of prepulse inhibition, similar to the effects found for valproate (400 mg kg{sup -1}) and the antipsychotic haloperidol (1 mg kg{sup -1}). We also tested this compound in mice carrying a mutation in the central transcriptional activator of molecular rhythms, the CLOCK gene, and found that the same compound attenuates locomotor hyperactivity in response to novelty. This study further demonstrates the use of inhibitors of GSK-3{beta} in the treatment of manic episodes of bipolar/mood disorders, thus further validating GSK-3{beta} as a relevant therapeutic target in the identification of new therapies for bipolar patients.

  16. Diet-induced obesity increases the frequency of Pig-a mutant erythrocytes in male C57BL/6J mice.

    Science.gov (United States)

    Wickliffe, Jeffrey K; Dertinger, Stephen D; Torous, Dorothea K; Avlasevich, Svetlana L; Simon-Friedt, Bridget R; Wilson, Mark J

    2016-12-01

    Obesity increases the risk of a number of chronic diseases in humans including several cancers. Biological mechanisms responsible for such increased risks are not well understood at present. Increases in systemic inflammation and oxidative stress, endogenous production of mutagenic metabolites, altered signaling in proliferative pathways, and increased sensitivity to exogenous mutagens and carcinogens are some of the potential contributing factors. We hypothesize that obesity creates an endogenously mutagenic environment in addition to increasing the sensitivity to environmental mutagens. To test this hypothesis, we examined two in vivo genotoxicity endpoints. Pig-a mutant frequencies and micronucleus frequencies were determined in blood cells in two independent experiments in 30-week old male mice reared on either a high-fat diet (60% calories from fat) that exhibit an obese phenotype or a normal-fat diet (10% calories from fat) that do not exhibit an obese phenotype. Mice were assayed again at 52 weeks of age in one of the experiments. N-ethyl-N-nitrosourea (ENU) was used as a positive mutation control in one experiment. ENU induced a robust Pig-a mutant and micronucleus response in both phenotypes. Obese, otherwise untreated mice, did not differ from non-obese mice with respect to Pig-a mutant frequencies in reticulocytes or micronucleus frequencies. However, such mice, had significantly higher and sustained Pig-a mutant frequencies (increased 2.5-3.7-fold, p obese mice (based on measurements collected at 30 weeks or 30 and 52 weeks of age). This suggests that obesity, in the absence of exposure to an exogenous mutagen, is itself mutagenic. Environ. Mol. Mutagen. 57:668-677, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Vesicular Trafficking Defects, Developmental Abnormalities, and Alterations in the Cellular Death Process Occur in Cell Lines that Over-Express Dictyostelium GTPase, Rab2, and Rab2 Mutants

    Directory of Open Access Journals (Sweden)

    Katherine Maringer

    2014-08-01

    Full Text Available Small molecular weight GTPase Rab2 has been shown to be a resident of pre-Golgi intermediates and required for protein transport from the ER to the Golgi complex, however, the function of Rab2 in Dictyostelium has yet to be fully characterized. Using cell lines that over-express DdRab2, as well as cell lines over-expressing constitutively active (CA, and dominant negative (DN forms of the GTPase, we report a functional role in vesicular transport specifically phagocytosis, and endocytosis. Furthermore, Rab2 like other GTPases cycles between an active GTP-bound and an inactive GDP-bound state. We found that this GTP/GDP cycle for DdRab2 is crucial for normal Dictyostelium development and cell–cell adhesion. Similar to Rab5 and Rab7 in C. elegans, we found that DdRab2 plays a role in programmed cell death, possibly in the phagocytic removal of apoptotic corpses.

  18. Intermediate rough Brucella abortus S19Δper mutant is DIVA enable, safe to pregnant guinea pigs and confers protection to mice.

    Science.gov (United States)

    Lalsiamthara, Jonathan; Gogia, Neha; Goswami, Tapas K; Singh, R K; Chaudhuri, Pallab

    2015-05-21

    Brucella abortus S19 is a smooth strain used as live vaccine against bovine brucellosis. Smooth lipopolysaccharide (LPS) is responsible for its residual virulence and serological interference. Rough mutants defective of LPS are more attenuated but confers lower level of protection. We describe a modified B. abortus S19 strain, named as S19Δper, which exhibits intermediate rough phenotype with residual O-polysaccharide (OPS). Deletion of perosamine synthetase gene resulted in substantial attenuation of S19Δper mutant without affecting immunogenic properties. It mounted strong immune response in Swiss albino mice and conferred protection similar to S19 vaccine. Immunized mice produced higher levels of IFN-γ, IgG2a and thus has immune response inclined towards Th1 cell mediated immunity. Sera from immunized animals did not show agglutination reaction with RBPT antigen and thus could serve as DIVA (Differentiating Infected from Vaccinated Animals) vaccine. S19Δper mutant displayed more susceptibility to serum complement mediated killing and sensitivity to polymyxin B. Pregnant guinea pigs injected with S19Δper mutant completed full term of pregnancy and did not cause abortion, still birth or birth of weak offspring. S19Δper mutant with intermediate rough phenotype displayed remarkable resemblance to S19 vaccine strain with improved properties of safety, immunogenicity and DIVA capability for control of bovine brucellosis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Small-molecule Wnt agonists correct cleft palates in Pax9 mutant mice in utero.

    Science.gov (United States)

    Jia, Shihai; Zhou, Jing; Fanelli, Christopher; Wee, Yinshen; Bonds, John; Schneider, Pascal; Mues, Gabriele; D'Souza, Rena N

    2017-10-15

    Clefts of the palate and/or lip are among the most common human craniofacial malformations and involve multiple genetic and environmental factors. Defects can only be corrected surgically and require complex life-long treatments. Our studies utilized the well-characterized Pax9 -/- mouse model with a consistent cleft palate phenotype to test small-molecule Wnt agonist therapies. We show that the absence of Pax9 alters the expression of Wnt pathway genes including Dkk1 and Dkk2 , proven antagonists of Wnt signaling. The functional interactions between Pax9 and Dkk1 are shown by the genetic rescue of secondary palate clefts in Pax9 -/- Dkk1 f/+ ;Wnt1Cre embryos. The controlled intravenous delivery of small-molecule Wnt agonists (Dkk inhibitors) into pregnant Pax9 +/- mice restored Wnt signaling and led to the growth and fusion of palatal shelves, as marked by an increase in cell proliferation and osteogenesis in utero , while other organ defects were not corrected. This work underscores the importance of Pax9-dependent Wnt signaling in palatogenesis and suggests that this functional upstream molecular relationship can be exploited for the development of therapies for human cleft palates that arise from single-gene disorders. © 2017. Published by The Company of Biologists Ltd.

  20. Serotonin hyperinnervation and upregulated 5-HT2A receptor expression and motor-stimulating function in nigrostriatal dopamine-deficient Pitx3 mutant mice.

    Science.gov (United States)

    Li, Li; Qiu, Guozhen; Ding, Shengyuan; Zhou, Fu-Ming

    2013-01-23

    The striatum receives serotonin (5-hydroxytryptamine, 5-HT) innervation and expresses 5-HT2A receptors (5-HT2ARs) and other 5-HT receptors, raising the possibility that the striatal 5-HT system may undergo adaptive changes after chronic severe dopamine (DA) loss and contribute to the function and dysfunction of the striatum. Here we show that in transcription factor Pitx3 gene mutant mice with a selective, severe DA loss in the dorsal striatum mimicking the DA denervation in late Parkinson's disease (PD), both the 5-HT innervation and the 5-HT2AR mRNA expression were increased in the dorsal striatum. Functionally, while having no detectable motor effect in wild type mice, the 5-HT2R agonist 2,5-dimethoxy-4-iodoamphetamine increased both the baseline and l-dopa-induced normal ambulatory and dyskinetic movements in Pitx3 mutant mice, whereas the selective 5-HT2AR blocker volinanserin had the opposite effects. These results demonstrate that Pitx3 mutant mice are a convenient and valid mouse model to study the compensatory 5-HT upregulation following the loss of the nigrostriatal DA projection and that the upregulated 5-HT2AR function in the DA deficient dorsal striatum may enhance both normal and dyskinetic movements. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Transcriptome profiling in engrailed-2 mutant mice reveals common molecular pathways associated with autism spectrum disorders.

    Science.gov (United States)

    Sgadò, Paola; Provenzano, Giovanni; Dassi, Erik; Adami, Valentina; Zunino, Giulia; Genovesi, Sacha; Casarosa, Simona; Bozzi, Yuri

    2013-12-19

    Transcriptome analysis has been used in autism spectrum disorder (ASD) to unravel common pathogenic pathways based on the assumption that distinct rare genetic variants or epigenetic modifications affect common biological pathways. To unravel recurrent ASD-related neuropathological mechanisms, we took advantage of the En2-/- mouse model and performed transcriptome profiling on cerebellar and hippocampal adult tissues. Cerebellar and hippocampal tissue samples from three En2-/- and wild type (WT) littermate mice were assessed for differential gene expression using microarray hybridization followed by RankProd analysis. To identify functional categories overrepresented in the differentially expressed genes, we used integrated gene-network analysis, gene ontology enrichment and mouse phenotype ontology analysis. Furthermore, we performed direct enrichment analysis of ASD-associated genes from the SFARI repository in our differentially expressed genes. Given the limited number of animals used in the study, we used permissive criteria and identified 842 differentially expressed genes in En2-/- cerebellum and 862 in the En2-/- hippocampus. Our functional analysis revealed that the molecular signature of En2-/- cerebellum and hippocampus shares convergent pathological pathways with ASD, including abnormal synaptic transmission, altered developmental processes and increased immune response. Furthermore, when directly compared to the repository of the SFARI database, our differentially expressed genes in the hippocampus showed enrichment of ASD-associated genes significantly higher than previously reported. qPCR was performed for representative genes to confirm relative transcript levels compared to those detected in microarrays. Despite the limited number of animals used in the study, our bioinformatic analysis indicates the En2-/- mouse is a valuable tool for investigating molecular alterations related to ASD.

  2. Overexpression of Heparin-Binding Epidermal Growth Factor-Like Growth Factor Mediates Liver Fibrosis in Transgenic Mice.

    Science.gov (United States)

    Guo, Yongze; Ding, Qian; Chen, Lei; Ji, Chenguang; Hao, Huiyao; Wang, Jia; Qi, Wei; Xie, Xiaoli; Ma, Junji; Li, Aidi; Jiang, Xiaoyu; Li, Xiaotian; Jiang, Huiqing

    2017-08-01

    The role of heparin-binding epidermal growth factor-like growth factor (HB-EGF) in liver fibrosis is not clear and is sometimes even contradictory. To clarify this role, a HB-EGF transgenic (Tg) mouse model was, for the first time, used to evaluate the functions of HB-EGF in liver fibrosis. For the in vivo study, carbon tetrachloride injection and bile duct ligation treatment were used to induce liver fibrosis in HB-EGF Tg mice and wild-type (WT) mice, respectively. Primary hepatic satellite cells (HSCs) were isolated from HB-EGF Tg and WT mice for the in vitro study. Compared with the WT mice, HB-EGF Tg mice were shown to develop more severe liver fibrosis when treated with carbon tetrachloride or bile duct ligation, with increased matrix metalloproteinases 13 activity and enhanced expression of fibrogenic genes including α-smooth muscle actin and collagen I. HB-EGF gene transfer led to an increase in proliferation and a decrease in apoptosis in primary HSCs. The ERK signaling pathway was more highly activated in primary HSCs from HB-EGF Tg mice than in those from WT mice. Our investigation confirmed the profibrotic effect of HB-EGF on the liver using a Tg mouse model. This result may contribute to the elucidation of HB-EGF as a therapeutic target in liver fibrosis. Copyright © 2017 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.

  3. Cloning, overexpression, crystallization and preliminary X-ray crystallographic analysis of a slow-processing mutant of penicillin G acylase from Kluyvera citrophila

    International Nuclear Information System (INIS)

    Varshney, Nishant Kumar; Ramasamy, Sureshkumar; Brannigan, James A.; Wilkinson, Anthony J.; Suresh, C. G.

    2013-01-01

    The pac gene encoding penicillin G acylase from K. citrophila was cloned and a slow-processing site-directed mutant was prepared, expressed, purified and crystallized. Triclinic and monoclinic crystal forms were obtained which diffracted to 2.5 and 3.5 Å resolution, respectively. Kluyvera citrophila penicillin G acylase (KcPGA) has recently attracted increased attention relative to the well studied and commonly used Escherichia coli PGA (EcPGA) because KcPGA is more resilient to harsh conditions and is easier to immobilize for the industrial hydrolysis of natural penicillins to generate the 6-aminopenicillin (6-APA) nucleus, which is the starting material for semi-synthetic antibiotic production. Like other penicillin acylases, KcPGA is synthesized as a single-chain inactive pro-PGA, which upon autocatalytic processing becomes an active heterodimer of α and β chains. Here, the cloning of the pac gene encoding KcPGA and the preparation of a slow-processing mutant precursor are reported. The purification, crystallization and preliminary X-ray analysis of crystals of this precursor protein are described. The protein crystallized in two different space groups, P1, with unit-cell parameters a = 54.0, b = 124.6, c = 135.1 Å, α = 104.1, β = 101.4, γ = 96.5°, and C2, with unit-cell parameters a = 265.1, b = 54.0, c = 249.2 Å, β = 104.4°, using the sitting-drop vapour-diffusion method. Diffraction data were collected at 100 K and the phases were determined using the molecular-replacement method. The initial maps revealed electron density for the spacer peptide

  4. Phenotype of transgenic mice carrying a very low copy number of the mutant human G93A superoxide dismutase-1 gene associated with amyotrophic lateral sclerosis.

    Directory of Open Access Journals (Sweden)

    Jeffrey S Deitch

    Full Text Available Amyotrophic lateral sclerosis (ALS is a progressive neurodegenerative disease of the motor neuron. While most cases of ALS are sporadic, 10% are familial (FALS with 20% of FALS caused by a mutation in the gene that codes for the enzyme Cu/Zn superoxide dismutase (SOD1. There is variability in sporadic ALS as well as FALS where even within the same family some siblings with the same mutation do not manifest disease. A transgenic (Tg mouse model of FALS containing 25 copies of the mutant human SOD1 gene demonstrates motor neuron pathology and progressive weakness similar to ALS patients, leading to death at approximately 130 days. The onset of symptoms and survival of these transgenic mice are directly related to the number of copies of the mutant gene. We report the phenotype of a very low expressing (VLE G93A SOD1 Tg carrying only 4 copies of the mutant G93ASOD1 gene. While weakness can start at 9 months, only 74% of mice 18 months or older demonstrate disease. The VLE mice show decreased motor neurons compared to wild-type mice as well as increased cytoplasmic translocation of TDP-43. In contrast to the standard G93A SOD1 Tg mouse which always develops motor weakness leading to death, not all VLE animals manifested clinical disease or shortened life span. In fact, approximately 20% of mice older than 24 months had no motor symptoms and only 18% of VLE mice older than 22 months reached end stage. Given the variable penetrance of clinical phenotype, prolonged survival, and protracted loss of motor neurons the VLE mouse provides a new tool that closely mimics human ALS. This tool will allow the study of pathologic events over time as well as the study of genetic and environmental modifiers that may not be causative, but can exacerbate or accelerate motor neuron disease.

  5. Resistance to the Beneficial Metabolic Effects and Hepatic Antioxidant Defense Actions of Fibroblast Growth Factor 21 Treatment in Growth Hormone-Overexpressing Transgenic Mice

    Directory of Open Access Journals (Sweden)

    Ravneet K. Boparai

    2015-01-01

    Full Text Available Fibroblast growth factor 21 (FGF21 modulates a diverse range of biological functions, including glucose and lipid metabolism, adaptive starvation response, and energy homeostasis, but with limited mechanistic insight. FGF21 treatment has been shown to inhibit hepatic growth hormone (GH intracellular signaling. To evaluate GH axis involvement in FGF21 actions, transgenic mice overexpressing bovine GH were used. Expectedly, in response to FGF21 treatment control littermates showed metabolic improvements whereas GH transgenic mice resisted most of the beneficial effects of FGF21, except an attenuation of the innate hyperinsulinemia. Since FGF21 is believed to exert its effects mostly at the transcriptional level, we analyzed and observed significant upregulation in expression of various genes involved in carbohydrate and lipid metabolism, energy homeostasis, and antioxidant defense in FGF21-treated controls, but not in GH transgenics. The resistance of GH transgenic mice to FGF21-induced changes underlines the necessity of normal GH signaling for the beneficial effects of FGF21.

  6. EBI2 overexpression in mice leads to B1 B-cell expansion and chronic lymphocytic leukemia-like B-cell malignancies.

    Science.gov (United States)

    Niss Arfelt, Kristine; Barington, Line; Benned-Jensen, Tau; Kubale, Valentina; Kovalchuk, Alexander L; Daugvilaite, Viktorija; Christensen, Jan Pravsgaard; Thomsen, Allan Randrup; Egerod, Kristoffer L; Bassi, Maria R; Spiess, Katja; Schwartz, Thue W; Wang, Hongsheng; Morse, Herbert C; Holst, Peter J; Rosenkilde, Mette M

    2017-02-16

    Human and mouse chronic lymphocytic leukemia (CLL) develops from CD5 + B cells that in mice and macaques are known to define the distinct B1a B-cell lineage. B1a cells are characterized by lack of germinal center (GC) development, and the B1a cell population is increased in mice with reduced GC formation. As a major mediator of follicular B-cell migration, the G protein-coupled receptor Epstein-Barr virus-induced gene 2 ( EBI2 or GPR183 ) directs B-cell migration in the lymphoid follicles in response to its endogenous ligands, oxysterols. Thus, upregulation of EBI2 drives the B cells toward the extrafollicular area, whereas downregulation is essential for GC formation. We therefore speculated whether increased expression of EBI2 would lead to an expanded B1 cell subset and, ultimately, progression to CLL. Here, we demonstrate that B-cell-targeted expression of human EBI2 (hEBI2) in mice reduces GC-dependent immune responses, reduces total immunoglobulin M (IgM) and IgG levels, and leads to increased proliferation and upregulation of cellular oncogenes. Furthermore, hEBI2 overexpression leads to an abnormally expanded CD5 + B1a B-cell subset (present as early as 4 days after birth), late-onset lymphoid cancer development, and premature death. These findings are highly similar to those observed in CLL patients and identify EBI2 as a promoter of B-cell malignancies.

  7. Over-expressing the soluble gp130-Fc does not ameliorate methionine and choline deficient diet-induced non alcoholic steatohepatitis in mice.

    Directory of Open Access Journals (Sweden)

    Helene L Kammoun

    Full Text Available Non-alcoholic steatohepatitis (NASH is a liver disease with the potential to lead to cirrhosis and hepatocellular carcinoma. Interleukin-6 (IL-6 has been implicated in the pathogenesis of NASH, with the so-called IL-6 'trans-signaling' cascade being responsible for the pro-inflammatory actions of this cytokine. We aimed to block IL-6 'trans-signaling', using a transgenic mouse that overexpresses human soluble glycoprotein130 (sgp130Fc Tg mice fed a commonly used dietary model of inducing NASH (methionine and choline deficient-diet; MCD diet and hypothesized that markers of NASH would be ameliorated in such mice. Sgp130Fc Tg and littermate control mice were fed a MCD or control diet for 4 weeks. The MCD diet induced many hallmarks of NASH including hepatomegaly, steatosis, and liver inflammation. However, in contrast with other mouse models and, indeed, human NASH, the MCD diet model did not increase the mRNA or protein expression of IL-6. Not surprisingly, therefore, markers of MCD diet-induced NASH were unaffected by sgp130Fc transgenic expression. While the MCD diet model induces many pathophysiological markers of NASH, it does not induce increased IL-6 expression in the liver, a key hallmark of human NASH. We, therefore, caution the use of the MCD diet as a viable mouse model of NASH.

  8. Attenuated bioluminescent Brucella melitensis mutants GR019 (virB4), GR024 (galE), and GR026 (BMEI1090-BMEI1091) confer protection in mice.

    Science.gov (United States)

    Rajashekara, Gireesh; Glover, David A; Banai, Menachem; O'Callaghan, David; Splitter, Gary A

    2006-05-01

    In vivo bioluminescence imaging is a persuasive approach to investigate a number of issues in microbial pathogenesis. Previously, we have applied bioluminescence imaging to gain greater insight into Brucella melitensis pathogenesis. Endowing Brucella with bioluminescence allowed direct visualization of bacterial dissemination, pattern of tissue localization, and the contribution of Brucella genes to virulence. In this report, we describe the pathogenicity of three attenuated bioluminescent B. melitensis mutants, GR019 (virB4), GR024 (galE), and GR026 (BMEI1090-BMEI1091), and the dynamics of bioluminescent virulent bacterial infection following vaccination with these mutants. The virB4, galE, and BMEI1090-BMEI1091 mutants were attenuated in interferon regulatory factor 1-deficient (IRF-1(-/-)) mice; however, only the GR019 (virB4) mutant was attenuated in cultured macrophages. Therefore, in vivo imaging provides a comprehensive approach to identify virulence genes that are relevant to in vivo pathogenesis. Our results provide greater insights into the role of galE in virulence and also suggest that BMEI1090 and downstream genes constitute a novel set of genes involved in Brucella virulence. Survival of the vaccine strain in the host for a critical period is important for effective Brucella vaccines. The galE mutant induced no changes in liver and spleen but localized chronically in the tail and protected IRF-1(-/-) and wild-type mice from virulent challenge, implying that this mutant may serve as a potential vaccine candidate in future studies and that the direct visualization of Brucella may provide insight into selection of improved vaccine candidates.

  9. Transient elevation of element contents as a result of neuronal death in mutant-mice cerebellum studied by neutron activation analysis

    International Nuclear Information System (INIS)

    Kranda, K.; Kucera, J.; Baeurle, J.

    2006-01-01

    Accumulation of some metals, in particular iron or manganese, has long been considered to trigger or accentuate neurodegenerative processes in humans. The two most frequently cited examples are Parkinson's and Alzheimer diseases, where excitotoxic processes lead to neuronal death. However, these neuropathies are somewhat unsuitable for investigating the time course of the metal accumulation because the applied analytical methods such as neutron activation analysis (NAA) are invasive. Hence, only one measurement can be made after the patient's death. Animal models of Parkinson's type neurodegeneration, such as mice mutants, are more suitable as a larger number of animals can be investigated at various postnatal ages. In this study we used one type of mice mutants weaver, where primary neurodegeneration is principally confined to the cerebellum and centred in time around the postnatal age of six days. Elemental composition of brain segments with dry mass as low as 0.5 mg, which were isolated from weaver and wild type (normal) mice were investigated using a combination of INAA and RNAA. Elevated concentration of the following elements Fe, Zn, Cu, K, Na, Rb, and Br that were observed in the weaver's cerebella closely followed the time course of neurodegeneration documented for this type of mutant. The transient elevation of these elements never preceded the onset of neurodegeneration but closely mirrored its time course reaching its peak on the sixth day. The concentration of these elements in the weaver's cerebella declined afterwards to converge on the elemental time course observed in the wild type mice. In conclusion, metal and other elemental elevation observed in the cerebella of these mutants are an expression of neurodegenerative processes rather than its precondition. (author)

  10. MsrA Overexpression Targeted to the Mitochondria, but Not Cytosol, Preserves Insulin Sensitivity in Diet-Induced Obese Mice.

    Directory of Open Access Journals (Sweden)

    JennaLynn Hunnicut

    Full Text Available There is growing evidence that oxidative stress plays an integral role in the processes by which obesity causes type 2 diabetes. We previously identified that mice lacking the protein oxidation repair enzyme methionine sulfoxide reductase A (MsrA are particularly prone to obesity-induced insulin resistance suggesting an unrecognized role for this protein in metabolic regulation. The goals of this study were to test whether increasing the expression of MsrA in mice can protect against obesity-induced metabolic dysfunction and to elucidate the potential underlying mechanisms. Mice with increased levels of MsrA in the mitochondria (TgMito MsrA or in the cytosol (TgCyto MsrA were fed a high fat/high sugar diet and parameters of glucose homeostasis were monitored. Mitochondrial content, markers of mitochondrial proteostasis and mitochondrial energy utilization were assessed. TgMito MsrA, but not TgCyto MsrA, mice remain insulin sensitive after high fat feeding, though these mice are not protected from obesity. This metabolically healthy obese phenotype of TgMito MsrA mice is not associated with changes in mitochondrial number or biogenesis or with a reduction of proteostatic stress in the mitochondria. However, our data suggest that increased mitochondrial MsrA can alter metabolic homeostasis under diet-induced obesity by activating AMPK signaling, thereby defining a potential mechanism by which this genetic alteration can prevent insulin resistance without affecting obesity. Our data suggest that identification of targets that maintain and regulate the integrity of the mitochondrial proteome, particular against oxidative damage, may play essential roles in the protection against metabolic disease.

  11. Brucella abortus 2308ΔNodVΔNodW double-mutant is highly attenuated and confers protection against wild-type challenge in BALB/c mice.

    Science.gov (United States)

    Li, Zhiqiang; Wang, Shuli; Zhang, Jinliang; Yang, Guangli; Yuan, Baodong; Huang, Jie; Han, Jincheng; Xi, Li; Xiao, Yanren; Chen, Chuangfu; Zhang, Hui

    2017-05-01

    Brucellosis is an important zoonotic disease of worldwide distribution, which causes animal and human disease. However, the current Brucella abortus (B. abortus) vaccines (S19 and RB51) have several drawbacks, including residual virulence for animals and humans. Moreover, S19 cannot allow serological differentiation between infected and vaccinated animals. We constructed double deletion (ΔNodVΔNodW) mutant from virulent B. abortus 2308 (S2308) by deleting the genes encoding two-component regulatory system (TCS) in chromosome II in S2308.2308ΔNodVΔNodW was significantly reduced survival in murine macrophages (RAW 264.7) and BALB/c mice. Moreover, the inoculated mice showed no splenomegaly. The mutant induced high protective immunity in BALB/c mice against challenge with S2308, and elicited an anti-Brucella-specific immunoglobulin G (IgG) response and induced the secretion of gamma interferon (IFN-γ) and interleukin-4 (IL-4). Moreover, NODV and NODW antigens would allow the serological differentiation between infected and vaccinated animals. These results suggest that 2308ΔNodVΔNodW mutant is a potential live attenuated vaccine candidate and can be used effectively against bovine brucellosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Hypolipidemic effects of starch and γ-oryzanol from wx/ae double-mutant rice on BALB/c.KOR-Apoe(shl) mice.

    Science.gov (United States)

    Nakaya, Makoto; Shojo, Aiko; Hirai, Hiroaki; Matsumoto, Kenji; Kitamura, Shinichi

    2013-01-01

    waxy/amylose-extender (wx/ae) double-mutant japonica rice (Oryza sativa L.) produces resistant starch (RS) and a large amount of γ-oryzanol. Our previous study has shown the hypolipidemic effect of wx/ae brown rice on mice. To identify the functional constituents of the hypolipidemic activity in wx/ae rice, we prepared pure wx/ae starch and γ-oryzanol from wx/ae rice and investigated their effect on the lipid metabolism in BALB/c.KOR/Stm Slc-Apoe(shl) mice. The mice were fed for 3 weeks a diet containing non-mutant rice starch, non-mutant rice starch plus γ-oryzanol, wx/ae starch, or wx/ae starch plus γ-oryzanol. γ-Oryzanol by itself had no effect on the lipid metabolism, and wx/ae starch prevented an accumulation of triacylglycerol (TAG) in the liver. Interestingly, the combination of wx/ae starch plus γ-oryzanol not only prevented a TAG accumulation in the liver, but also partially suppressed the rise in plasma TAG concentration, indicating that wx/ae starch and γ-oryzanol could have a synergistic effect on the lipid metabolism.

  13. Erythropoietin over-expression protects against diet-induced obesity in mice through increased fat oxidation in muscles.

    Science.gov (United States)

    Hojman, Pernille; Brolin, Camilla; Gissel, Hanne; Brandt, Claus; Zerahn, Bo; Pedersen, Bente Klarlund; Gehl, Julie

    2009-06-12

    Erythropoietin can be over-expressed in skeletal muscles by gene electrotransfer, resulting in 100-fold increase in serum EPO and significant increases in haemoglobin levels. Earlier studies have suggested that EPO improves several metabolic parameters when administered to chronically ill kidney patients. Thus we applied the EPO over-expression model to investigate the metabolic effect of EPO in vivo.At 12 weeks, EPO expression resulted in a 23% weight reduction (Pincrease in muscle volume and a 25% increase in vascularisation of the EPO transfected muscle. Muscle force and stamina were not affected by EPO expression. PCR array analysis revealed that genes involved in lipid metabolism, thermogenesis and inflammation were increased in muscles in response to EPO expression, while genes involved in glucose metabolism were down-regulated. In addition, muscular fat oxidation was increased 1.8-fold in both the EPO transfected and contralateral muscles.In conclusion, we have shown that EPO when expressed in supra-physiological levels has substantial metabolic effects including protection against diet-induced obesity and normalisation of glucose sensitivity associated with a shift to increased fat metabolism in the muscles.

  14. Three Herpes Simplex Virus Type 1 Latency-Associated Transcript Mutants with Distinct and Asymmetric Effects on Virulence in Mice Compared with Rabbits

    Science.gov (United States)

    Perng, Guey-Chuen; Esmaili, Daniel; Slanina, Susan M.; Yukht, Ada; Ghiasi, Homayon; Osorio, Nelson; Mott, Kevin R.; Maguen, Barak; Jin, Ling; Nesburn, Anthony B.; Wechsler, Steven L.

    2001-01-01

    Herpes simplex virus type 1 latency-associated transcript (LAT)-null mutants have decreased reactivation but normal virulence in rabbits and mice. We report here on dLAT1.5, a mutant with LAT nucleotides 76 to 1667 deleted. Following ocular infection of rabbits, dLAT1.5 reactivated at a lower rate than its wild-type parent McKrae (6.1 versus 11.8%; P = 0.0025 [chi-square test]). Reactivation was restored in the marker-rescued virus dLAT1.5R (12.6%; P = 0.53 versus wild type), confirming the importance of the deleted region in spontaneous reactivation. Compared with wild-type or marker-rescued virus, dLAT1.5 had similar or slightly reduced virulence in rabbits (based on survival following ocular infection). In contrast, in mice, dLAT1.5 had increased virulence (P Wechsler, J. Virol. 73:920–929, 1999), had decreased virulence in mice (P = 0.03). In addition, we also found that dLAT371, a LAT mutant that we previously reported to have wild-type virulence in rabbits (G. C. Perng, S. M. Slanina, H. Ghiasi, A. B. Nesburn, and S. L. Wechsler, J. Virol. 70:2014–2018, 1996), had decreased virulence in mice (P < 0.05). Thus, these three mutants, each of which encodes a different LAT RNA, have different virulence phenotypes. dLAT1.5 had wild-type virulence in rabbits but increased virulence in mice. In contrast, LAT2.9A had increased virulence in rabbits but decreased virulence in mice, and dLAT371 had wild-type virulence in rabbits but decreased virulence in mice. Taken together, these results suggest that (i) the 5′ end of LAT and/or a gene that overlaps part of this region is involved in viral virulence, (ii) this virulence appears to have species-specific effects, and (iii) regulation of this virulence may be complex. PMID:11533165

  15. Dominant Drop mutants are gain-of-function alleles of the muscle segment homeobox gene (msh) whose overexpression leads to the arrest of eye development.

    Science.gov (United States)

    Mozer, B A

    2001-05-15

    Dominant Drop (Dr) mutations are nearly eyeless and have additional recessive phenotypes including lethality and patterning defects in eye and sensory bristles due to cis-regulatory lesions in the cell cycle regulator string (stg). Genetic analysis demonstrates that the dominant small eye phenotype is the result of separate gain-of-function mutations in the closely linked muscle segment homeobox (msh) gene, encoding a homeodomain transcription factor required for patterning of muscle and nervous system. Reversion of the Dr(Mio) allele was coincident with the generation of lethal loss-of-function mutations in msh in cis, suggesting that the dominant eye phenotype is the result of ectopic expression. Molecular genetic analysis revealed that two dominant Dr alleles contain lesions upstream of the msh transcription start site. In the Dr(Mio) mutant, a 3S18 retrotransposon insertion is the target of second-site mutations (P-element insertions or deletions) which suppress the dominant eye phenotype following reversion. The pattern of 3S18 expression and the absence of msh in eye imaginal discs suggest that transcriptional activation of the msh promoter accounts for ectopic expression. Dr dominant mutations arrest eye development by blocking the progression of the morphogenetic furrow leading to photoreceptor cell loss via apoptosis. Gal4-mediated ubiquitous expression of msh in third-instar larvae was sufficient to arrest the morphogenetic furrow in the eye imaginal disc and resulted in lethality prior to eclosion. Dominant mutations in the human msx2 gene, one of the vertebrate homologs of msh, are associated with craniosynostosis, a disease affecting cranial development. The Dr mutations are the first example of gain-of-function mutations in the msh/msx gene family identified in a genetically tractible model organism and may serve as a useful tool to identify additional genes that regulate this class of homeodomain proteins. Copyright 2001 Academic Press.

  16. Rational design of a live attenuated dengue vaccine: 2'-o-methyltransferase mutants are highly attenuated and immunogenic in mice and macaques.

    Directory of Open Access Journals (Sweden)

    Roland Züst

    Full Text Available Dengue virus is transmitted by Aedes mosquitoes and infects at least 100 million people every year. Progressive urbanization in Asia and South-Central America and the geographic expansion of Aedes mosquito habitats have accelerated the global spread of dengue, resulting in a continuously increasing number of cases. A cost-effective, safe vaccine conferring protection with ideally a single injection could stop dengue transmission. Current vaccine candidates require several booster injections or do not provide protection against all four serotypes. Here we demonstrate that dengue virus mutants lacking 2'-O-methyltransferase activity are highly sensitive to type I IFN inhibition. The mutant viruses are attenuated in mice and rhesus monkeys and elicit a strong adaptive immune response. Monkeys immunized with a single dose of 2'-O-methyltransferase mutant virus showed 100% sero-conversion even when a dose as low as 1,000 plaque forming units was administrated. Animals were fully protected against a homologous challenge. Furthermore, mosquitoes feeding on blood containing the mutant virus were not infected, whereas those feeding on blood containing wild-type virus were infected and thus able to transmit it. These results show the potential of 2'-O-methyltransferase mutant virus as a safe, rationally designed dengue vaccine that restrains itself due to the increased susceptibility to the host's innate immune response.

  17. Over-expression of Follistatin-like 3 attenuates fat accumulation and improves insulin sensitivity in mice

    DEFF Research Database (Denmark)

    Brandt, Claus; Hansen, Rasmus Hvass; Hansen, Jakob Bondo

    2015-01-01

    -fat feeding. Body weight, food intake, fat accumulation by MR scanning, and glucose, insulin and glucagon tolerance were evaluated, as was the response in body weight and metabolic parameters to 24h fasting. Effects of fstl3 on pancreatic insulin and glucagon content, and pancreatic islet morphology were......OBJECTIVE: Follistatin-like 3 (fstl3), a natural inhibitor of members of the TGF-β family, increases during resistance training in human plasma. Fstl3 primarily binds myostatin and activin A, and thereby inhibits their functions. We hypothesize that blocking myostatin and activin A signalling....../glucagon ratio. Accordingly, fstl3 transfection improved counter-regulation to 24h fasting. CONCLUSION: Fstl3 over-expression regulates insulin and glucagon sensitivities through increased muscular insulin action, as well as increased hepatic glucagon sensitivity and pancreatic glucagon content....

  18. Phenotypic characterization of skeletal abnormalities of osteopotentia mutant mice by micro-CT: a descriptive approach with emphasis on reconstruction techniques

    Energy Technology Data Exchange (ETDEWEB)

    Roemer, Frank W. [Department of Radiology, Klinikum Augsburg, Augsburg (Germany); Boston University School of Medicine, Quantitative Imaging Center, Boston, MA (United States); University of California, San Francisco, Osteoporosis and Arthritis Research Group, San Francisco, CA (United States); Boston University Medical Center, Department of Radiology, Boston, MA (United States); Mohr, Andreas [University of California, San Francisco, Osteoporosis and Arthritis Research Group, San Francisco, CA (United States); Sligo General Hospital, Department of Radiology, Sligo (Ireland); Guermazi, Ali [Boston University School of Medicine, Quantitative Imaging Center, Boston, MA (United States); University of California, San Francisco, Osteoporosis and Arthritis Research Group, San Francisco, CA (United States); Jiang, Yebin [University of California, San Francisco, Osteoporosis and Arthritis Research Group, San Francisco, CA (United States); University of Michigan Medical School, Osteoporosis and Arthritis Laboratory, Musculoskeletal Division, Department of Radiology, Ann Arbor, MI (United States); Schlechtweg, Philipp [University of Erlangen, Department of Radiology, Erlangen (Germany); Genant, Harry K. [University of California, San Francisco, Osteoporosis and Arthritis Research Group, San Francisco, CA (United States); CCBR-SYNARC, Inc., San Francisco, CA (United States); Sohaskey, Michael L. [University of California, Berkeley, Department of Molecular and Cell Biology and Center for Integrative Genomics, Berkeley, CA (United States)

    2011-08-15

    The novel protein osteopotentia (Opt) has recently been described as an essential regulator of postnatal osteoblast maturation and might possibly be responsible for some of the rarer types of osteogenesis imperfecta. Our aim was the evaluation of micro CT for the qualitative morphological assessment of skeletal abnormalities of Osteopotentia-mutant mice in comparison to radiography and histology. Four homozygous mice with insertional mutations in the Opt gene and three wild-type controls were examined ex vivo using radiography and micro-CT. Two of the homozygous animals were evaluated histologically (trichrome reagent). For the micro-CT evaluation three-dimensional (3D) surface reconstructions and two-dimensional (2D) multiplanar reformations (MPRs) were applied. The Opt-homozygous mice exhibited severe growth. The radiographic examinations showed osteopenia and fractures with hypertrophic callus formation and pseudarthroses of the forelimbs and ribs. Micro-CT confirmed these findings and was able to demonstrate additional fractures especially at smaller bones such as the metacarpals and phalanges. Additional characterization and superior delineation of cortices and fracture fragments was achieved by 2D MPRs. Histological correlation verified several of these imaging findings. Micro-CT is able to screen Opt-mutant mice for osseous pathologies and furthermore characterize these anomalies. The modality seems superior to conventional radiography, but is not able to demonstrate cellular pathology. However, histology is destructive and more time- and material-consuming than micro-CT. Additional information may be gathered by 2D MPRs. (orig.)

  19. Phenotypic characterization of skeletal abnormalities of osteopotentia mutant mice by micro-CT: a descriptive approach with emphasis on reconstruction techniques

    International Nuclear Information System (INIS)

    Roemer, Frank W.; Mohr, Andreas; Guermazi, Ali; Jiang, Yebin; Schlechtweg, Philipp; Genant, Harry K.; Sohaskey, Michael L.

    2011-01-01

    The novel protein osteopotentia (Opt) has recently been described as an essential regulator of postnatal osteoblast maturation and might possibly be responsible for some of the rarer types of osteogenesis imperfecta. Our aim was the evaluation of micro CT for the qualitative morphological assessment of skeletal abnormalities of Osteopotentia-mutant mice in comparison to radiography and histology. Four homozygous mice with insertional mutations in the Opt gene and three wild-type controls were examined ex vivo using radiography and micro-CT. Two of the homozygous animals were evaluated histologically (trichrome reagent). For the micro-CT evaluation three-dimensional (3D) surface reconstructions and two-dimensional (2D) multiplanar reformations (MPRs) were applied. The Opt-homozygous mice exhibited severe growth. The radiographic examinations showed osteopenia and fractures with hypertrophic callus formation and pseudarthroses of the forelimbs and ribs. Micro-CT confirmed these findings and was able to demonstrate additional fractures especially at smaller bones such as the metacarpals and phalanges. Additional characterization and superior delineation of cortices and fracture fragments was achieved by 2D MPRs. Histological correlation verified several of these imaging findings. Micro-CT is able to screen Opt-mutant mice for osseous pathologies and furthermore characterize these anomalies. The modality seems superior to conventional radiography, but is not able to demonstrate cellular pathology. However, histology is destructive and more time- and material-consuming than micro-CT. Additional information may be gathered by 2D MPRs. (orig.)

  20. Mitochondrial catalase overexpressed transgenic mice are protected against lung fibrosis in part via preventing alveolar epithelial cell mitochondrial DNA damage.

    Science.gov (United States)

    Kim, Seok-Jo; Cheresh, Paul; Jablonski, Renea P; Morales-Nebreda, Luisa; Cheng, Yuan; Hogan, Erin; Yeldandi, Anjana; Chi, Monica; Piseaux, Raul; Ridge, Karen; Michael Hart, C; Chandel, Navdeep; Scott Budinger, G R; Kamp, David W

    2016-12-01

    Alveolar epithelial cell (AEC) injury and mitochondrial dysfunction are important in the development of lung fibrosis. Our group has shown that in the asbestos exposed lung, the generation of mitochondrial reactive oxygen species (ROS) in AEC mediate mitochondrial DNA (mtDNA) damage and apoptosis which are necessary for lung fibrosis. These data suggest that mitochondrial-targeted antioxidants should ameliorate asbestos-induced lung. To determine whether transgenic mice that express mitochondrial-targeted catalase (MCAT) have reduced lung fibrosis following exposure to asbestos or bleomycin and, if so, whether this occurs in association with reduced AEC mtDNA damage and apoptosis. Crocidolite asbestos (100µg/50µL), TiO 2 (negative control), bleomycin (0.025 units/50µL), or PBS was instilled intratracheally in 8-10 week-old wild-type (WT - C57Bl/6J) or MCAT mice. The lungs were harvested at 21d. Lung fibrosis was quantified by collagen levels (Sircol) and lung fibrosis scores. AEC apoptosis was assessed by cleaved caspase-3 (CC-3)/Surfactant protein C (SFTPC) immunohistochemistry (IHC) and semi-quantitative analysis. AEC (primary AT2 cells from WT and MCAT mice and MLE-12 cells) mtDNA damage was assessed by a quantitative PCR-based assay, apoptosis was assessed by DNA fragmentation, and ROS production was assessed by a Mito-Sox assay. Compared to WT, crocidolite-exposed MCAT mice exhibit reduced pulmonary fibrosis as measured by lung collagen levels and lung fibrosis score. The protective effects in MCAT mice were accompanied by reduced AEC mtDNA damage and apoptosis. Similar findings were noted following bleomycin exposure. Euk-134, a mitochondrial SOD/catalase mimetic, attenuated MLE-12 cell DNA damage and apoptosis. Finally, compared to WT, asbestos-induced MCAT AT2 cell ROS production was reduced. Our finding that MCAT mice have reduced pulmonary fibrosis, AEC mtDNA damage and apoptosis following exposure to asbestos or bleomycin suggests an important role

  1. Striatal Transcriptome and Interactome Analysis of Shank3-overexpressing Mice Reveals the Connectivity between Shank3 and mTORC1 Signaling

    Directory of Open Access Journals (Sweden)

    Yeunkum Lee

    2017-06-01

    Full Text Available Mania causes symptoms of hyperactivity, impulsivity, elevated mood, reduced anxiety and decreased need for sleep, which suggests that the dysfunction of the striatum, a critical component of the brain motor and reward system, can be causally associated with mania. However, detailed molecular pathophysiology underlying the striatal dysfunction in mania remains largely unknown. In this study, we aimed to identify the molecular pathways showing alterations in the striatum of SH3 and multiple ankyrin repeat domains 3 (Shank3-overexpressing transgenic (TG mice that display manic-like behaviors. The results of transcriptome analysis suggested that mammalian target of rapamycin complex 1 (mTORC1 signaling may be the primary molecular signature altered in the Shank3 TG striatum. Indeed, we found that striatal mTORC1 activity, as measured by mTOR S2448 phosphorylation, was significantly decreased in the Shank3 TG mice compared to wild-type (WT mice. To elucidate the potential underlying mechanism, we re-analyzed previously reported protein interactomes, and detected a high connectivity between Shank3 and several upstream regulators of mTORC1, such as tuberous sclerosis 1 (TSC1, TSC2 and Ras homolog enriched in striatum (Rhes, via 94 common interactors that we denominated “Shank3-mTORC1 interactome”. We noticed that, among the 94 common interactors, 11 proteins were related to actin filaments, the level of which was increased in the dorsal striatum of Shank3 TG mice. Furthermore, we could co-immunoprecipitate Shank3, Rhes and Wiskott-Aldrich syndrome protein family verprolin-homologous protein 1 (WAVE1 proteins from the striatal lysate of Shank3 TG mice. By comparing with the gene sets of psychiatric disorders, we also observed that the 94 proteins of Shank3-mTORC1 interactome were significantly associated with bipolar disorder (BD. Altogether, our results suggest a protein interaction-mediated connectivity between Shank3 and certain upstream

  2. Mice overexpressing both non-mutated human SOD1 and mutated SOD1G93A genes: a competent experimental model for studying iron metabolism in amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Anna eGajowiak

    2016-01-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a progressive neurodegenerative disease characterized by degeneration and loss of motor neurons in the spinal cord, brainstem and motor cortex. Up to 10% of ALS cases are inherited (familial, fALS and associated with mutations, frequently in the superoxide dismutase 1 (SOD1 gene. Rodent transgenic models of ALS are often used to elucidate a complex pathogenesis of this disease. Of importance, both ALS patients and animals carrying mutated human SOD1 gene show symptoms of oxidative stress and iron metabolism misregulation. The aim of our study was to characterize changes in iron metabolism in one of the most commonly used models of ALS – transgenic mice overexpressing human mutated SOD1G93A gene. We analyzed the expression of iron-related genes in asymptomatic, 2-month old and symptomatic, 4-month old SOD1G93A mice. In parallel, respective age-matched mice overexpressing human non-mutated SOD1 transgene and control mice were analyzed. We demonstrate that the overexpression of both SOD1 and SOD1G93A genes account for a substantial increase in SOD1 protein levels and activity in selected tissues and that not all the changes in iron metabolism genes expression are specific for the overexpression of the mutated form of SOD1.

  3. Electrocardiographic Characterization of Cardiac Hypertrophy in Mice that Overexpress the ErbB2 Receptor Tyrosine Kinase

    DEFF Research Database (Denmark)

    Sysa-Shah, Polina; Sørensen, Lars L; Abraham, M Roselle

    2015-01-01

    , the ECG recordings of ErbB2(tg) mice were characterized by higher P- and R-wave amplitudes, broader QRS complexes, inverted T waves, and ST interval depression. Pearson's correlation matrix analysis of combined WT and ErbB2(tg) data revealed significant correlation between heart weight and the ECG...... parameters of QT interval (corrected for heart rate), QRS interval, ST height, R amplitude, P amplitude, and PR interval. In addition, the left ventricular posterior wall thickness as determined by echocardiography correlated with ECG-determined ST height, R amplitude, QRS interval; echocardiographic left...... ventricular mass correlated with ECG-determined ST height and PR interval. In summary, we have determined phenotypic ECG criteria to differentiate ErbB2(tg) from WT genotypes in 98.8% of mice. This inexpensive and time-efficient ECG-based phenotypic method might be applied to differentiate between genotypes...

  4. Early and progressive microstructural brain changes in mice overexpressing human alpha-Synuclein detected by diffusion kurtosis imaging

    Czech Academy of Sciences Publication Activity Database

    Khairnar, A.; Rudá-Kučerová, J.; Szabó, N.; Dražanová, Eva; Arab, A.; Hutter-Paier, B.; Neddens, J.; Latta, P.; Starčuk jr., Zenon; Rektorová, I.

    2017-01-01

    Roč. 61, MAR (2017), s. 197-208 ISSN 0889-1591 R&D Projects: GA MŠk(CZ) LO1212; GA MŠk(CZ) LM2015062; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : MRI * diffusion kurtosis imaging * substantia nigra * sriatum * thalamus * TNWT-61 * parkinson's disease * transgenic mice * animal model Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: 1.7 Other natural sciences Impact factor: 5.964, year: 2016

  5. Hippocampal changes produced by overexpression of the human CHRNA5/A3/B4 gene cluster may underlie cognitive deficits rescued by nicotine in transgenic mice.

    Science.gov (United States)

    Molas, Susanna; Gener, Thomas; Güell, Jofre; Martín, Mairena; Ballesteros-Yáñez, Inmaculada; Sanchez-Vives, Maria V; Dierssen, Mara

    2014-11-11

    Addiction involves long-lasting maladaptive changes including development of disruptive drug-stimuli associations. Nicotine-induced neuroplasticity underlies the development of tobacco addiction but also, in regions such as the hippocampus, the ability of this drug to enhance cognitive capabilities. Here, we propose that the genetic locus of susceptibility to nicotine addiction, the CHRNA5/A3/B4 gene cluster, encoding the α5, α3 and β4 subunits of the nicotinic acetylcholine receptors (nAChRs), may influence nicotine-induced neuroadaptations. We have used transgenic mice overexpressing the human cluster (TgCHRNA5/A3/B4) to investigate hippocampal structure and function in genetically susceptible individuals. TgCHRNA5/A3/B4 mice presented a marked reduction in the dendrite complexity of CA1 hippocampal pyramidal neurons along with an increased dendritic spine density. In addition, TgCHRNA5/A3/B4 exhibited increased VGLUT1/VGAT ratio in the CA1 region, suggesting an excitatory/inhibitory imbalance. These hippocampal alterations were accompanied by a significant impairment in short-term novelty recognition memory. Interestingly, chronic infusion of nicotine (3.25 mg/kg/d for 7 d) was able to rescue the reduced dendritic complexity, the excitatory/inhibitory imbalance and the cognitive impairment in TgCHRNA5/A3/B4. Our results suggest that chronic nicotine treatment may represent a compensatory strategy in individuals with altered expression of the CHRNA5/A3/B4 region.

  6. AAV-Mediated Administration of Myostatin Pro-Peptide Mutant in Adult Ldlr Null Mice Reduces Diet-Induced Hepatosteatosis and Arteriosclerosis

    Science.gov (United States)

    Guo, Wen; Wong, Siu; Bhasin, Shalender

    2013-01-01

    Genetic disruption of myostatin or its related signaling is known to cause strong protection against diet-induced metabolic disorders. The translational value of these prior findings, however, is dependent on whether such metabolically favorable phenotype can be reproduced when myostatin blockade begins at an adult age. Here, we reported that AAV-mediated delivery of a myostatin pro-peptide D76A mutant in adult mice attenuates the development of hepatic steatosis and arteriosclerosis, two common diet-induced metabolic diseases. A single dose of AAV-D76A in adult Ldlr null mice resulted in sustained expression of myostatin pro-peptide in the liver. Compared to vehicle-treated mice, D76A-treated mice gained similar amount of lean and fat mass when fed a high fat diet. However, D76A-treated mice displayed significantly reduced aortic lesions and liver fat, in association with a reduction in hepatic expression of lipogenic genes and improvement in liver insulin sensitivity. This suggests that muscle and fat may not be the primary targets of treatment under our experimental condition. In support to this argument, we show that myostatin directly up-regulated lipogenic genes and increased fat accumulation in cultured liver cells. We also show that both myostatin and its receptor were abundantly expressed in mouse aorta. Cultured aortic endothelial cells responded to myostatin with a reduction in eNOS phosphorylation and an increase in ICAM-1 and VCAM-1 expression. Conclusions: AAV-mediated expression of myostatin pro-peptide D76A mutant in adult Ldlr null mice sustained metabolic protection without remarkable impacts on body lean and fat mass. Further investigations are needed to determine whether direct impact of myostatin on liver and aortic endothelium may contribute to the related metabolic phenotypes. PMID:23936482

  7. GFP-Mutant Human Tau Transgenic Mice Develop Tauopathy Following CNS Injections of Alzheimer's Brain-Derived Pathological Tau or Synthetic Mutant Human Tau Fibrils.

    Science.gov (United States)

    Gibbons, Garrett S; Banks, Rachel A; Kim, Bumjin; Xu, Hong; Changolkar, Lakshmi; Leight, Susan N; Riddle, Dawn M; Li, Chi; Gathagan, Ronald J; Brown, Hannah J; Zhang, Bin; Trojanowski, John Q; Lee, Virginia M-Y

    2017-11-22

    Neurodegenerative proteinopathies characterized by intracellular aggregates of tau proteins, termed tauopathies, include Alzheimer's disease (AD), frontotemporal lobar degeneration (FTLD) with tau pathology (FTLD-tau), and related disorders. Pathological tau proteins derived from human AD brains (AD-tau) act as proteopathic seeds that initiate the templated aggregation of soluble tau upon intracerebral injection into tau transgenic (Tg) and wild-type mice, thereby modeling human tau pathology. In this study, we found that aged Tg mice of both sexes expressing human tau proteins harboring a pathogenic P301L MAPT mutation labeled with green fluorescent protein (T40PL-GFP Tg mouse line) exhibited hyperphosphorylated tau mislocalized to the somatodentritic domain of neurons, but these mice did not develop de novo insoluble tau aggregates, which are characteristic of human AD and related tauopathies. However, intracerebral injections of either T40PL preformed fibrils (PFFs) or AD-tau seeds into T40PL-GFP mice induced abundant intraneuronal pathological inclusions of hyperphosphorylated T40PL-GFP. These injections of pathological tau resulted in the propagation of tau pathology from the injection site to neuroanatomically connected brain regions, and these tau inclusions consisted of both T40PL-GFP and WT endogenous mouse tau. Primary neurons cultured from the brains of neonatal T40PL-GFP mice provided an informative in vitro model for examining the uptake and localization of tau PFFs. These findings demonstrate the seeded aggregation of T40PL-GFP in vivo by synthetic PFFs and human AD-tau and the utility of this system to study the neuropathological spread of tau aggregates. SIGNIFICANCE STATEMENT The stereotypical spread of pathological tau protein aggregates have recently been attributed to the transmission of proteopathic seeds. Despite the extensive use of transgenic mouse models to investigate the propagation of tau pathology in vivo , details of the aggregation

  8. Overexpression of ubiquitous 6-phosphofructo-2-kinase in the liver of transgenic mice results in weight gain

    International Nuclear Information System (INIS)

    Duran, Joan; Navarro-Sabate, Aurea; Pujol, Anna; Perales, Jose C.; Manzano, Anna; Obach, Merce; Gomez, Marta; Bartrons, Ramon

    2008-01-01

    Fructose 2,6-bisphosphate (Fru-2,6-P 2 ) is an important metabolite that controls glycolytic and gluconeogenic pathways in several cell types. Its synthesis and degradation are catalyzed by the bifunctional enzyme 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase (PFK-2). Four genes, designated Pfkfb1-4, codify the different PFK-2 isozymes. The Pfkfb3 gene product, ubiquitous PFK-2 (uPFK-2), has the highest kinase/bisphosphatase activity ratio and is associated with proliferation and tumor metabolism. A transgenic mouse model that overexpresses uPFK-2 under the control of the phosphoenolpyruvate carboxykinase promoter was designed to promote sustained and elevated Fru-2,6-P 2 levels in the liver. Our results demonstrate that in diet-induced obesity, high Fru-2,6-P 2 levels in transgenic livers caused changes in hepatic gene expression profiles for key gluconeogenic and lipogenic enzymes, as well as an accumulation of lipids in periportal cells, and weight gain

  9. Msh2 acts in medium-spiny striatal neurons as an enhancer of CAG instability and mutant huntingtin phenotypes in Huntington's disease knock-in mice.

    Directory of Open Access Journals (Sweden)

    Marina Kovalenko

    Full Text Available The CAG trinucleotide repeat mutation in the Huntington's disease gene (HTT exhibits age-dependent tissue-specific expansion that correlates with disease onset in patients, implicating somatic expansion as a disease modifier and potential therapeutic target. Somatic HTT CAG expansion is critically dependent on proteins in the mismatch repair (MMR pathway. To gain further insight into mechanisms of somatic expansion and the relationship of somatic expansion to the disease process in selectively vulnerable MSNs we have crossed HTT CAG knock-in mice (HdhQ111 with mice carrying a conditional (floxed Msh2 allele and D9-Cre transgenic mice, in which Cre recombinase is expressed specifically in MSNs within the striatum. Deletion of Msh2 in MSNs eliminated Msh2 protein in those neurons. We demonstrate that MSN-specific deletion of Msh2 was sufficient to eliminate the vast majority of striatal HTT CAG expansions in HdhQ111 mice. Furthermore, MSN-specific deletion of Msh2 modified two mutant huntingtin phenotypes: the early nuclear localization of diffusely immunostaining mutant huntingtin was slowed; and the later development of intranuclear huntingtin inclusions was dramatically inhibited. Therefore, Msh2 acts within MSNs as a genetic enhancer both of somatic HTT CAG expansions and of HTT CAG-dependent phenotypes in mice. These data suggest that the selective vulnerability of MSNs may be at least in part contributed by the propensity for somatic expansion in these neurons, and imply that intervening in the expansion process is likely to have therapeutic benefit.

  10. The subcutaneous inoculation of pH 6 antigen mutants of Yersinia pestis does not affect virulence and immune response in mice.

    Science.gov (United States)

    Anisimov, Andrey P; Bakhteeva, Irina V; Panfertsev, Evgeniy A; Svetoch, Tat'yana E; Kravchenko, Tat'yana B; Platonov, Mikhail E; Titareva, Galina M; Kombarova, Tat'yana I; Ivanov, Sergey A; Rakin, Alexander V; Amoako, Kingsley K; Dentovskaya, Svetlana V

    2009-01-01

    Two isogenic sets of Yersinia pestis strains were generated, composed of wild-type strains 231 and I-1996, their non-polar pH 6(-) mutants with deletions in the psaA gene that codes for its structural subunit or the whole operon, as well as strains with restored ability for temperature- and pH-dependent synthesis of adhesion pili or constitutive production of pH 6 antigen. The mutants were generated by site-directed mutagenesis of the psa operon and subsequent complementation in trans. It was shown that the loss of synthesis or constitutive production of pH 6 antigen did not influence Y. pestis virulence or the average survival time of subcutaneously inoculated BALB/c naïve mice or animals immunized with this antigen.

  11. PTK2B/Pyk2 overexpression improves a mouse model of Alzheimer's disease

    KAUST Repository

    Giralt, Albert

    2018-05-24

    Pyk2 is a Ca2+-activated non-receptor tyrosine kinase enriched in forebrain neurons and involved in synaptic regulation. Human genetic studies associated PTK2B, the gene coding Pyk2, with risk for Alzheimer\\'s disease (AD). We previously showed that Pyk2 is important for hippocampal function, plasticity, and spine structure. However, its potential role in AD is unknown. To address this question we used human brain samples and 5XFAD mice, an amyloid mouse model of AD expressing mutated human amyloid precursor protein and presenilin1. In the hippocampus of 5XFAD mice and in human AD patients\\' cortex and hippocampus, Pyk2 total levels were normal. However, Pyk2 Tyr-402 phosphorylation levels, reflecting its autophosphorylation-dependent activity, were reduced in 5XFAD mice at 8 months of age but at 3 months. We crossed these mice with Pyk2−/− mice to generate 5XFAD animals devoid of Pyk2. At 8 months the phenotype of 5XFAD x Pyk2−/− double mutant mice was not different from that of 5XFAD. In contrast, overexpression of Pyk2 in the hippocampus of 5XFAD mice, using adeno-associated virus, rescued autophosphorylated Pyk2 levels and improved synaptic markers and performance in several behavioral tasks. Both Pyk2−/− and 5XFAD mice showed an increase of potentially neurotoxic Src cleavage product, which was rescued by Pyk2 overexpression. Manipulating Pyk2 levels had only minor effects on Aβ plaques, which were slightly decreased in hippocampus CA3 region of double mutant mice and increased following overexpression. Our results show that Pyk2 is not essential for the pathogenic effect of human amyloidogenic mutations in the 5XFAD mouse model. However, the slight decrease in plaque number observed in these mice in the absence of Pyk2 and their increase following Pyk2 overexpression suggest a contribution of this kinase in plaque formation. Importantly, a decreased function of Pyk2 was observed in 5XFAD mice, indicated by its decreased

  12. PTK2B/Pyk2 overexpression improves a mouse model of Alzheimer's disease

    KAUST Repository

    Giralt, Albert; de Pins, Benoî t; Cifuentes-Dí az, Carmen; Ló pez-Molina, Laura; Farah, Amel Thamila; Tible, Marion; Deramecourt, Vincent; Arold, Stefan T.; Giné s, Silvia; Hugon, Jacques; Girault, Jean-Antoine

    2018-01-01

    Pyk2 is a Ca2+-activated non-receptor tyrosine kinase enriched in forebrain neurons and involved in synaptic regulation. Human genetic studies associated PTK2B, the gene coding Pyk2, with risk for Alzheimer's disease (AD). We previously showed that Pyk2 is important for hippocampal function, plasticity, and spine structure. However, its potential role in AD is unknown. To address this question we used human brain samples and 5XFAD mice, an amyloid mouse model of AD expressing mutated human amyloid precursor protein and presenilin1. In the hippocampus of 5XFAD mice and in human AD patients' cortex and hippocampus, Pyk2 total levels were normal. However, Pyk2 Tyr-402 phosphorylation levels, reflecting its autophosphorylation-dependent activity, were reduced in 5XFAD mice at 8 months of age but at 3 months. We crossed these mice with Pyk2−/− mice to generate 5XFAD animals devoid of Pyk2. At 8 months the phenotype of 5XFAD x Pyk2−/− double mutant mice was not different from that of 5XFAD. In contrast, overexpression of Pyk2 in the hippocampus of 5XFAD mice, using adeno-associated virus, rescued autophosphorylated Pyk2 levels and improved synaptic markers and performance in several behavioral tasks. Both Pyk2−/− and 5XFAD mice showed an increase of potentially neurotoxic Src cleavage product, which was rescued by Pyk2 overexpression. Manipulating Pyk2 levels had only minor effects on Aβ plaques, which were slightly decreased in hippocampus CA3 region of double mutant mice and increased following overexpression. Our results show that Pyk2 is not essential for the pathogenic effect of human amyloidogenic mutations in the 5XFAD mouse model. However, the slight decrease in plaque number observed in these mice in the absence of Pyk2 and their increase following Pyk2 overexpression suggest a contribution of this kinase in plaque formation. Importantly, a decreased function of Pyk2 was observed in 5XFAD mice, indicated by its decreased autophosphorylation

  13. Compensation for PKMζ in long-term potentiation and spatial long-term memory in mutant mice.

    Science.gov (United States)

    Tsokas, Panayiotis; Hsieh, Changchi; Yao, Yudong; Lesburguères, Edith; Wallace, Emma Jane Claire; Tcherepanov, Andrew; Jothianandan, Desingarao; Hartley, Benjamin Rush; Pan, Ling; Rivard, Bruno; Farese, Robert V; Sajan, Mini P; Bergold, Peter John; Hernández, Alejandro Iván; Cottrell, James E; Shouval, Harel Z; Fenton, André Antonio; Sacktor, Todd Charlton

    2016-05-17

    PKMζ is a persistently active PKC isoform proposed to maintain late-LTP and long-term memory. But late-LTP and memory are maintained without PKMζ in PKMζ-null mice. Two hypotheses can account for these findings. First, PKMζ is unimportant for LTP or memory. Second, PKMζ is essential for late-LTP and long-term memory in wild-type mice, and PKMζ-null mice recruit compensatory mechanisms. We find that whereas PKMζ persistently increases in LTP maintenance in wild-type mice, PKCι/λ, a gene-product closely related to PKMζ, persistently increases in LTP maintenance in PKMζ-null mice. Using a pharmacogenetic approach, we find PKMζ-antisense in hippocampus blocks late-LTP and spatial long-term memory in wild-type mice, but not in PKMζ-null mice without the target mRNA. Conversely, a PKCι/λ-antagonist disrupts late-LTP and spatial memory in PKMζ-null mice but not in wild-type mice. Thus, whereas PKMζ is essential for wild-type LTP and long-term memory, persistent PKCι/λ activation compensates for PKMζ loss in PKMζ-null mice.

  14. Subthreshold membrane potential oscillations in inferior olive neurons are dynamically regulated by P/Q- and T-type calcium channels: a study in mutant mice.

    Science.gov (United States)

    Choi, Soonwook; Yu, Eunah; Kim, Daesoo; Urbano, Francisco J; Makarenko, Vladimir; Shin, Hee-Sup; Llinás, Rodolfo R

    2010-08-15

    The role of P/Q- and T-type calcium channels in the rhythmic oscillatory behaviour of inferior olive (IO) neurons was investigated in mutant mice. Mice lacking either the CaV2.1 gene of the pore-forming alpha1A subunit for P/Q-type calcium channel, or the CaV3.1 gene of the pore-forming alpha1G subunit for T-type calcium channel were used. In vitro intracellular recording from IO neurons reveals that the amplitude and frequency of sinusoidal subthreshold oscillations (SSTOs) were reduced in the CaV2.1-/- mice. In the CaV3.1-/- mice, IO neurons also showed altered patterns of SSTOs and the probability of SSTO generation was significantly lower (15%, 5 of 34 neurons) than that of wild-type (78%, 31 of 40 neurons) or CaV2.1-/- mice (73%, 22 of 30 neurons). In addition, the low-threshold calcium spike and the sustained endogenous oscillation following rebound potentials were absent in IO neurons from CaV3.1-/- mice. Moreover, the phase-reset dynamics of oscillatory properties of single neurons and neuronal clusters in IO were remarkably altered in both CaV2.1-/- and CaV3.1-/- mice. These results suggest that both alpha1A P/Q- and alpha1G T-type calcium channels are required for the dynamic control of neuronal oscillations in the IO. These findings were supported by results from a mathematical IO neuronal model that incorporated T and P/Q channel kinetics.

  15. Iron metabolism mutant hbd mice have a deletion in Sec15l1, which has homology to a yeast gene for vesicle docking.

    Science.gov (United States)

    White, Robert A; Boydston, Leigh A; Brookshier, Terri R; McNulty, Steven G; Nsumu, Ndona N; Brewer, Brandon P; Blackmore, Krista

    2005-12-01

    Defects in iron absorption and utilization lead to iron deficiency and anemia. While iron transport by transferrin receptor-mediated endocytosis is well understood, it is not completely clear how iron is transported from the endosome to the mitochondria where heme is synthesized. We undertook a positional cloning project to identify the causative mutation for the hemoglobin-deficit (hbd) mouse mutant, which suffers from a microcytic, hypochromic anemia apparently due to defective iron transport in the endocytosis cycle. As shown by previous studies, reticulocyte iron accumulation in homozygous hbd/hbd mice is deficient despite normal binding of transferrin to its receptor and normal transferrin uptake in the cell. We have identified a strong candidate gene for hbd, Sec15l1, a homologue to yeast SEC15, which encodes a key protein in vesicle docking. The hbd mice have an exon deletion in Sec15l1, which is the first known mutation of a SEC gene homologue in mammals.

  16. Gene Overexpression: Uses, Mechanisms, and Interpretation

    Science.gov (United States)

    2012-01-01

    The classical genetic approach for exploring biological pathways typically begins by identifying mutations that cause a phenotype of interest. Overexpression or misexpression of a wild-type gene product, however, can also cause mutant phenotypes, providing geneticists with an alternative yet powerful tool to identify pathway components that might remain undetected using traditional loss-of-function analysis. This review describes the history of overexpression, the mechanisms that are responsible for overexpression phenotypes, tests that begin to distinguish between those mechanisms, the varied ways in which overexpression is used, the methods and reagents available in several organisms, and the relevance of overexpression to human disease. PMID:22419077

  17. ABCG2-overexpressing S1-M1-80 cell xenografts in nude mice keep original biochemistry and cell biological properties.

    Science.gov (United States)

    Wang, Fang; Liang, Yong-Ju; Wu, Xing-Ping; Su, Xiao-Dong; Fu, Li-Wu

    2012-03-01

    S1-M1-80 cells, derived from human colon carcinoma S1 cells, are mitoxantrone-selected ABCG2-overexpressing cells and are widely used in in vitro studies of multidrug resistance(MDR). In this study, S1-M1-80 cell xenografts were established to investigate whether the MDR phenotype and cell biological properties were maintained in vivo. Our results showed that the proliferation, cell cycle, and ABCG2 expression level in S1-M1-80 cells were similar to those in cells isolated from S1-M1-80 cell xenografts (named xS1-M1-80 cells). Consistently, xS1-M1-80 cells exhibited high levels of resistance to ABCG2 substrates such as mitoxantrone and topotecan, but remained sensitive to the non-ABCG2 substrate cisplatin. Furthermore, the specific ABCG2 inhibitor Ko143 potently sensitized xS1-M1-80 cells to mitoxantrone and topotecan. These results suggest that S1-M1-80 cell xenografts in nude mice retain their original cytological characteristics at 9 weeks. Thus, this model could serve as a good system for further investigation of ABCG2-mediated MDR.

  18. Inactivation of JAK2/STAT3 Signaling Axis and Downregulation of M1 mAChR Cause Cognitive Impairment in klotho Mutant Mice, a Genetic Model of Aging

    Science.gov (United States)

    Park, Seok-Joo; Shin, Eun-Joo; Min, Sun Seek; An, Jihua; Li, Zhengyi; Hee Chung, Yoon; Hoon Jeong, Ji; Bach, Jae-Hyung; Nah, Seung-Yeol; Kim, Won-Ki; Jang, Choon-Gon; Kim, Yong-Sun; Nabeshima, Yo-ichi; Nabeshima, Toshitaka; Kim, Hyoung-Chun

    2013-01-01

    We previously reported cognitive dysfunction in klotho mutant mice. In the present study, we further examined novel mechanisms involved in cognitive impairment in these mice. Significantly decreased janus kinase 2 (JAK2) and signal transducer and activator of transcription3 (STAT3) phosphorylation were observed in the hippocampus of klotho mutant mice. A selective decrease in protein expression and binding density of the M1 muscarinic cholinergic receptor (M1 mAChR) was observed in these mice. Cholinergic parameters (ie, acetylcholine (ACh), choline acetyltransferase (ChAT), and acetylcholinesterase (AChE)) and NMDAR-dependent long-term potentiation (LTP) were significantly impaired in klotho mutant mice. McN-A-343 (McN), an M1 mAChR agonist, significantly attenuated these impairments. AG490 (AG), a JAK2 inhibitor, counteracted the attenuating effects of McN, although AG did not significantly alter the McN-induced effect on AChE. Furthermore, AG significantly inhibited the attenuating effects of McN on decreased NMDAR-dependent LTP, protein kinase C βII, p-ERK, p-CREB, BDNF, and p-JAK2/p-STAT3-expression in klotho mutant mice. In addition, k252a, a BDNF receptor tyrosine kinase B (TrkB) inhibitor, significantly counteracted McN effects on decreased ChAT, ACh, and M1 mAChR and p-JAK2/p-STAT3 expression. McN-induced effects on cognitive impairment in klotho mutant mice were consistently counteracted by either AG or k252a. Our results suggest that inactivation of the JAK2/STAT3 signaling axis and M1 mAChR downregulation play a critical role in cognitive impairment observed in klotho mutant mice. PMID:23389690

  19. Alterations in grooming activity and syntax in heterozygous SERT and BDNF knockout mice: the utility of behavior-recognition tools to characterize mutant mouse phenotypes.

    Science.gov (United States)

    Kyzar, Evan J; Pham, Mimi; Roth, Andrew; Cachat, Jonathan; Green, Jeremy; Gaikwad, Siddharth; Kalueff, Allan V

    2012-12-01

    Serotonin transporter (SERT) and brain-derived neurotrophic factor (BDNF) are key modulators of molecular signaling, cognition and behavior. Although SERT and BDNF mutant mouse phenotypes have been extensively characterized, little is known about their self-grooming behavior. Grooming represents an important behavioral domain sensitive to environmental stimuli and is increasingly used as a model for repetitive behavioral syndromes, such as autism and attention deficit/hyperactivity disorder. The present study used heterozygous ((+/-)) SERT and BDNF male mutant mice on a C57BL/6J background and assessed their spontaneous self-grooming behavior applying both manual and automated techniques. Overall, SERT(+/-) mice displayed a general increase in grooming behavior, as indicated by more grooming bouts and more transitions between specific grooming stages. SERT(+/-) mice also aborted more grooming bouts, but showed generally unaltered activity levels in the observation chamber. In contrast, BDNF(+/-) mice displayed a global reduction in grooming activity, with fewer bouts and transitions between specific grooming stages, altered grooming syntax, as well as hypolocomotion and increased turning behavior. Finally, grooming data collected by manual and automated methods (HomeCageScan) significantly correlated in our experiments, confirming the utility of automated high-throughput quantification of grooming behaviors in various genetic mouse models with increased or decreased grooming phenotypes. Taken together, these findings indicate that mouse self-grooming behavior is a reliable behavioral biomarker of genetic deficits in SERT and BDNF pathways, and can be reliably measured using automated behavior-recognition technology. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Twinkle overexpression prevents cardiac rupture after myocardial infarction by alleviating impaired mitochondrial biogenesis.

    Science.gov (United States)

    Inoue, Takahiro; Ikeda, Masataka; Ide, Tomomi; Fujino, Takeo; Matsuo, Yuka; Arai, Shinobu; Saku, Keita; Sunagawa, Kenji

    2016-09-01

    Cardiac rupture is a fatal complication after myocardial infarction (MI). However, the detailed mechanism underlying cardiac rupture after MI remains to be fully elucidated. In this study, we investigated the role of mitochondrial DNA (mtDNA) and mitochondria in the pathophysiology of cardiac rupture by analyzing Twinkle helicase overexpression mice (TW mice). Twinkle overexpression increased mtDNA copy number approximately twofold and ameliorated ischemic cardiomyopathy at day 28 after MI. Notably, Twinkle overexpression markedly prevented cardiac rupture and improved post-MI survival, accompanied by the suppression of MMP-2 and MMP-9 in the MI border area at day 5 after MI when cardiac rupture frequently occurs. Additionally, these cardioprotective effects of Twinkle overexpression were abolished in transgenic mice overexpressing mutant Twinkle with an in-frame duplication of amino acids 353-365, which resulted in no increases in mtDNA copy number. Furthermore, although apoptosis and oxidative stress were induced and mitochondria were damaged in the border area, these injuries were improved in TW mice. Further analysis revealed that mitochondrial biogenesis, including mtDNA copy number, transcription, and translation, was severely impaired in the border area at day 5 In contrast, Twinkle overexpression maintained mtDNA copy number and restored the impaired transcription and translation of mtDNA in the border area. These results demonstrated that Twinkle overexpression alleviated impaired mitochondrial biogenesis in the border area through maintained mtDNA copy number and thereby prevented cardiac rupture accompanied by the reduction of apoptosis and oxidative stress, and suppression of MMP activity. Copyright © 2016 the American Physiological Society.

  1. Differential interaction of Apolipoprotein-E isoforms with insulin receptors modulates brain insulin signaling in mutant human amyloid precursor protein transgenic mice.

    Science.gov (United States)

    Chan, Elizabeth S; Chen, Christopher; Cole, Gregory M; Wong, Boon-Seng

    2015-09-08

    It is unclear how human apolipoprotein E4 (ApoE4) increases the risk for Alzheimer's disease (AD). Although Aβ levels can lead to insulin signaling impairment, these experiments were done in the absence of human ApoE. To examine ApoE role, we crossed the human ApoE-targeted replacement mice with mutant human amyloid precursor protein (APP) mice. In 26 week old mice with lower Aβ levels, the expression and phosphorylation of insulin signaling proteins remained comparable among APP, ApoE3xAPP and ApoE4xAPP mouse brains. When the mice aged to 78 weeks, these proteins were markedly reduced in APP and ApoE4xAPP mouse brains. While Aβ can bind to insulin receptor, how ApoE isoforms modulate this interaction remains unknown. Here, we showed that ApoE3 had greater association with insulin receptor as compared to ApoE4, regardless of Aβ42 concentration. In contrast, ApoE4 bound more Aβ42 with increasing peptide levels. Using primary hippocampal neurons, we showed that ApoE3 and ApoE4 neurons are equally sensitive to physiological levels of insulin. However, in the presence of Aβ42, insulin failed to elicit a downstream response only in ApoE4 hippocampal neurons. Taken together, our data show that ApoE genotypes can modulate this Aβ-mediated insulin signaling impairment.

  2. Antifibrotic effects of curcumin are associated with overexpression of cathepsins K and L in bleomycin treated mice and human fibroblasts

    Directory of Open Access Journals (Sweden)

    Zhang Dongwei

    2011-11-01

    Full Text Available Abstract Background Lung fibrosis is characterized by fibroblast proliferation and the deposition of collagens. Curcumin, a polyphenol antioxidant from the spice tumeric, has been shown to effectively counteract fibroblast proliferation and reducing inflammation and fibrotic progression in animal models of bleomycin-induced lung injury. However, there is little mechanistic insight in the biological activity of curcumin. Here, we study the effects of curcumin on the expression and activity of cathepsins which have been implicated in the development of fibrotic lung diseases. Methods We investigated the effects of curcumin administration to bleomycin stimulated C57BL/6 mice and human fetal lung fibroblasts (HFL-1 on the expression of cathepsins K and L which have been implicated in matrix degradation, TGF-β1 modulation, and apoptosis. Lung tissues were evaluated for their contents of cathepsins K and L, collagen, and TGF-β1. HFL-1 cells were used to investigate the effects of curcumin and cathepsin inhibition on cell proliferation, migration, apoptosis, and the expression of cathepsins K and L and TGF-β1. Results Collagen deposition in lungs was decreased by 17-28% after curcumin treatment which was accompanied by increased expression levels of cathepsins L (25%-39% and K (41%-76% and a 30% decrease in TGF-β1 expression. Moreover, Tunel staining of lung tissue revealed a 33-41% increase in apoptotic cells after curcumin treatment. These in vivo data correlated well with data obtained from the human fibroblast line, HFL-1. Here, cathepsin K and L expression increased 190% and 240%, respectively, in the presence of curcumin and the expression of TGF-β1 decreased by 34%. Furthermore, curcumin significantly decreased cell proliferation and migration and increased the expression of surrogate markers of apoptosis. In contrast, these curcumin effects were partly reversed by a potent cathepsin inhibitor. Conclusion This study demonstrates that

  3. Chronic exposure of mutant DISC1 mice to lead produces sex-dependent abnormalities consistent with schizophrenia and related mental disorders: a gene-environment interaction study.

    Science.gov (United States)

    Abazyan, Bagrat; Dziedzic, Jenifer; Hua, Kegang; Abazyan, Sofya; Yang, Chunxia; Mori, Susumu; Pletnikov, Mikhail V; Guilarte, Tomas R

    2014-05-01

    The glutamatergic hypothesis of schizophrenia suggests that hypoactivity of the N-methyl-D-aspartate receptor (NMDAR) is an important factor in the pathophysiology of schizophrenia and related mental disorders. The environmental neurotoxicant, lead (Pb(2+)), is a potent and selective antagonist of the NMDAR. Recent human studies have suggested an association between prenatal Pb(2+) exposure and the increased likelihood of schizophrenia later in life, possibly via interacting with genetic risk factors. In order to test this hypothesis, we examined the neurobehavioral consequences of interaction between Pb(2+) exposure and mutant disrupted in schizophrenia 1 (mDISC1), a risk factor for major psychiatric disorders. Mutant DISC1 and control mice born by the same dams were raised and maintained on a regular diet or a diet containing moderate levels of Pb(2+). Chronic, lifelong exposure of mDISC1 mice to Pb(2+) was not associated with gross developmental abnormalities but produced sex-dependent hyperactivity, exaggerated responses to the NMDAR antagonist, MK-801, mildly impaired prepulse inhibition of the acoustic startle, and enlarged lateral ventricles. Together, these findings support the hypothesis that environmental toxins could contribute to the pathogenesis of mental disease in susceptible individuals.

  4. Variations of L- and D-amino acid levels in the brain of wild-type and mutant mice lacking D-amino acid oxidase activity.

    Science.gov (United States)

    Du, Siqi; Wang, Yadi; Weatherly, Choyce A; Holden, Kylie; Armstrong, Daniel W

    2018-05-01

    D-amino acids are now recognized to be widely present in organisms and play essential roles in biological processes. Some D-amino acids are metabolized by D-amino acid oxidase (DAO), while D-Asp and D-Glu are metabolized by D-aspartate oxidase (DDO). In this study, levels of 22 amino acids and the enantiomeric compositions of the 19 chiral proteogenic entities have been determined in the whole brain of wild-type ddY mice (ddY/DAO +/+ ), mutant mice lacking DAO activity (ddY/DAO -/- ), and the heterozygous mice (ddY/DAO +/- ) using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). No significant differences were observed for L-amino acid levels among the three strains except for L-Trp which was markedly elevated in the DAO +/- and DAO -/- mice. The question arises as to whether this is an unknown effect of DAO inactivity. The three highest levels of L-amino acids were L-Glu, L-Asp, and L-Gln in all the three strains. The lowest L-amino acid level was L-Cys in ddY/DAO +/- and ddY/DAO -/- mice, while L-Trp showed the lowest level in ddY/DAO +/+ mice. The highest concentration of D-amino acid was found to be D-Ser, which also had the highest % D value (~ 25%). D-Glu had the lowest % D value (~ 0.01%) in all the three strains. Significant differences of D-Leu, D-Ala, D-Ser, D-Arg, and D-Ile were observed in ddY/DAO +/- and ddY/DAO -/- mice compared to ddY/DAO +/+ mice. This work provides the most complete baseline analysis of L- and D-amino acids in the brains of ddY/DAO +/+ , ddY/DAO +/- , and ddY/DAO -/- mice yet reported. It also provides the most effective and efficient analytical approach for measuring these analytes in biological samples. This study provides fundamental information on the role of DAO in the brain and may be relevant for future development involving novel drugs for DAO regulation.

  5. Over-expression of Stat5b confers protection against diabetes in the non-obese diabetic (NOD) mice via up-regulation of CD4+CD25+ regulatory T cells

    International Nuclear Information System (INIS)

    Jin, Yulan; Purohit, Sharad; Chen, Xueqin; Yi, Bing; She, Jin-Xiong

    2012-01-01

    Highlights: ► This is the first study to provide direct evidence of the role of Stat5b in NOD mice. ► Over-expression of wild type Stat5b transgene protects NOD mice against diabetes. ► This protection may be mediated by the up-regulation of CD4 + CD25 + Tregs. -- Abstract: The signal transducers and activators of transcription (STAT) family of proteins play a critical role in cytokine signaling required for fine tuning of immune regulation. Previous reports showed that a mutation (L327M) in the Stat5b protein leads to aberrant cytokine signaling in the NOD mice. To further elaborate the role of Stat5b in diabetes, we established a NOD transgenic mouse that over-expresses the wild type Stat5b gene. The incidences of spontaneous diabetes as well as cyclophosphamide-induced diabetes were significantly reduced and delayed in the Stat5b transgenic NOD mice compared to their littermate controls. The total cell numbers of CD4 + T cells and especially CD8 + T cells in the spleen and pancreatic lymph node were increased in the Stat5b transgenic NOD mice. Consistent with these findings, CD4 + and CD8 + T cells from the Stat5b transgenic NOD mice showed a higher proliferation capacity and up-regulation of multiple cytokines including IL-2, IFN-γ, TNF-α and IL-10 as well as anti-apoptotic gene Bcl-xl. Furthermore, the number and proportion of CD4 + CD25 + regulatory T cells were significantly increased in transgenic mice although in vitro suppression ability of the regulatory T-cells was not affected by the transgene. Our results suggest that Stat5b confers protection against diabetes in the NOD mice by regulating the numbers and function of multiple immune cell types, especially by up-regulating CD4 + CD25 + regulatory T cells.

  6. Ontogeny of SERT Expression and Antidepressant-like Response to Escitalopram in Wild-Type and SERT Mutant Mice.

    Science.gov (United States)

    Mitchell, Nathan C; Gould, Georgianna G; Koek, Wouter; Daws, Lynette C

    2016-08-01

    Depression is a disabling affective disorder for which the majority of patients are not effectively treated. This problem is exacerbated in children and adolescents for whom only two antidepressants are approved, both of which are selective serotonin reuptake inhibitor (SSRIs). Unfortunately SSRIs are often less effective in juveniles than in adults; however, the mechanism(s) underlying age-dependent responses to SSRIs is unknown. To this end, we compared the antidepressant-like response to the SSRI escitalopram using the tail suspension test and saturation binding of [(3)H]citalopram to the serotonin transporter (SERT), the primary target of SSRIs, in juvenile [postnatal day (P)21], adolescent (P28), and adult (P90) wild-type (SERT+/+) mice. In addition, to model individuals carrying low-expressing SERT variants, we studied mice with reduced SERT expression (SERT+/-) or lacking SERT (SERT-/-). Maximal antidepressant-like effects were less in P21 mice relative to P90 mice. This was especially apparent in SERT+/- mice. However, the potency for escitalopram to produce antidepressant-like effects in SERT+/+ and SERT+/- mice was greater in P21 and P28 mice than in adults. SERT expression increased with age in terminal regions and decreased with age in cell body regions. Binding affinity values did not change as a function of age or genotype. As expected, in SERT-/- mice escitalopram produced no behavioral effects, and there was no specific [(3)H]citalopram binding. These data reveal age- and genotype-dependent shifts in the dose-response for escitalopram to produce antidepressant-like effects, which vary with SERT expression, and may contribute to the limited therapeutic response to SSRIs in juveniles and adolescents. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  7. Cell type-specific deficiency of c-kit gene expression in mutant mice of mi/mi genotype.

    Science.gov (United States)

    Isozaki, K.; Tsujimura, T.; Nomura, S.; Morii, E.; Koshimizu, U.; Nishimune, Y.; Kitamura, Y.

    1994-01-01

    The mi locus of mice encodes a novel member of the basic-helix-loop-helix-leucine zipper protein family of transcription factors (hereafter called mi factor). In addition to microphthalmus, osteopetrosis, and lack of melanocytes, mice of mi/mi genotype are deficient in mast cells. Since the c-kit receptor tyrosine kinase plays an important role in the development of mast cells, and since the c-kit expression by cultured mast cells from mi/mi mice is deficient in both mRNA and protein levels, the mast cell deficiency of mi/mi mice has been attributed at least in part to the deficient expression of c-kit. However, it remained to be examined whether the c-kit expression was also deficient in tissues of mi/mi mice. In the present study, we examined the c-kit expression by mi/mi skin mast cells using in situ hybridization and immunohistochemistry. Moreover, we examined the c-kit expression by various cells other than mast cells in tissues of mi/mi mice. We found that the c-kit expression was deficient in mast cells but not in erythroid precursors, testicular germ cells, and neurons of mi/mi mice. This suggested that the regulation of the c-kit transcription by the mi factor was dependent on cell types. Mice of mi/mi genotype appeared to be a useful model to analyze the function of transcription factors in the whole-animal level. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:7524330

  8. Liver tumor formation by a mutant retinoblastoma protein in the transgenic mice is caused by an upregulation of c-Myc target genes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bo; Hikosaka, Keisuke; Sultana, Nishat; Sharkar, Mohammad Tofael Kabir [Department of Biochemistry, Hamamatsu University School of Medicine, 1-20-1 Handa-yama, Higashi-ku, Hamamatsu 431-3192 (Japan); Noritake, Hidenao [Department of Biochemistry, Hamamatsu University School of Medicine, 1-20-1 Handa-yama, Higashi-ku, Hamamatsu 431-3192 (Japan); Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handa-yama, Higashi-ku, Hamamatsu 431-3192 (Japan); Kimura, Wataru; Wu, Yi-Xin [Department of Biochemistry, Hamamatsu University School of Medicine, 1-20-1 Handa-yama, Higashi-ku, Hamamatsu 431-3192 (Japan); Kobayashi, Yoshimasa [Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handa-yama, Higashi-ku, Hamamatsu 431-3192 (Japan); Uezato, Tadayoshi [Department of Biochemistry, Hamamatsu University School of Medicine, 1-20-1 Handa-yama, Higashi-ku, Hamamatsu 431-3192 (Japan); Miura, Naoyuki, E-mail: nmiura@hama-med.ac.jp [Department of Biochemistry, Hamamatsu University School of Medicine, 1-20-1 Handa-yama, Higashi-ku, Hamamatsu 431-3192 (Japan)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Fifty percent of the mutant Rb transgenic mice produced liver tumors. Black-Right-Pointing-Pointer In the tumor, Foxm1, Skp2, Bmi1 and AP-1 mRNAs were up-regulated. Black-Right-Pointing-Pointer No increase in expression of the Myc-target genes was observed in the non-tumorous liver. Black-Right-Pointing-Pointer Tumor formation depends on up-regulation of the Myc-target genes. -- Abstract: The retinoblastoma (Rb) tumor suppressor encodes a nuclear phosphoprotein that regulates cellular proliferation, apoptosis and differentiation. In order to adapt itself to these biological functions, Rb is subjected to modification cycle, phosphorylation and dephosphorylation. To directly determine the effect of phosphorylation-resistant Rb on liver development and function, we generated transgenic mice expressing phosphorylation-resistant human mutant Rb (mt-Rb) under the control of the rat hepatocyte nuclear factor-1 gene promoter/enhancer. Expression of mt-Rb in the liver resulted in macroscopic neoplastic nodules (adenomas) with {approx}50% incidence within 15 months old. Interestingly, quantitative reverse transcriptase-PCR analysis showed that c-Myc was up-regulated in the liver of mt-Rb transgenic mice irrespective of having tumor tissues or no tumor. In tumor tissues, several c-Myc target genes, Foxm1, c-Jun, c-Fos, Bmi1 and Skp2, were also up-regulated dramatically. We determined whether mt-Rb activated the Myc promoter in the HTP9 cells and demonstrated that mt-Rb acted as an inhibitor of wild-type Rb-induced repression on the Myc promoter. Our results suggest that continued upregulation of c-Myc target genes promotes the liver tumor formation after about 1 year of age.

  9. CD8 Knockout Mice Are Protected from Challenge by Vaccination with WR201, a Live Attenuated Mutant of Brucella melitensis

    Directory of Open Access Journals (Sweden)

    Samuel L. Yingst

    2013-01-01

    Full Text Available CD8+ T cells have been reported to play an important role in defense against B. abortus infection in mouse models. In the present report, we use CD8 knockout mice to further elucidate the role of these cells in protection from B. melitensis infection. Mice were immunized orally by administration of B. melitensis WR201, a purine auxotrophic attenuated vaccine strain, then challenged intranasally with B. melitensis 16M. In some experiments, persistence of WR201 in the spleens of CD8 knockout mice was slightly longer than that in the spleens of normal mice. However, development of anti-LPS serum antibody, antigen-induced production of γ-interferon (IFN-γ by immune splenic lymphocytes, protection against intranasal challenge, and recovery of nonimmunized animals from intranasal challenge were similar between normal and knockout animals. Further, primary Brucella infection was not exacerbated in perforin knockout and Fas-deficient mice and these animals’ anti-Brucella immune responses were indistinguishable from those of normal mice. These results indicate that CD8+ T cells do not play an essential role as either cytotoxic cells or IFN-γ producers, yet they do participate in a specific immune response to immunization and challenge in this murine model of B. melitensis infection.

  10. Incomplete development of the spleen and the deformity in the chimeras between asplenic mutant (Dominant hemimelia) and normal mice.

    Science.gov (United States)

    Suto, J; Wakayama, T; Imamura, K; Goto, S; Fukuta, K

    1995-08-01

    The semidominant gene Dh (Dominant hemimelia) induces skeletal and visceral abnormalities of various degrees and failure of the spleen in mice. The homozygous individual (Dh/Dh) seems to be lethal. The present experiment was designed to investigate the ability Dh cells to form a spleen and the genesis of the hind limb malformations by Dh/Dh and Dh/+ cells in chimeric mice. The Dh/Dh and Dh/+ embryos were produced in the F2 progeny of a cross between inbred strains of Dh/+ and DDD mice. They were aggregated with C3H/He or C57BL/6 embryos to make chimeras. Identification of Dh/Dh or Dh/+ embryos was carried out by Pep-3, and chimerism was analyzed by Gpi-1. Of 25 chimeras carrying the Dh gene, four mice formed a small spleen, two mice had a vestigial spleen, and the others no spleen. The tissues of the incompletely developed spleens were normal histologically and Dh cells were involved in the tissues of the spleen. In the chimeric mice, hindlimb malformation by the Dh gene was reduced in severity and the lethality of the homozygote (Dh/Dh) was rescued.

  11. Erythroblast differentiation at spleen in Q137E mutant ribosomal protein S19 gene knock-in C57BL/6J mice.

    Science.gov (United States)

    Yamanegi, Koji; Yamada, Naoko; Nakasho, Keiji; Nishiura, Hiroshi

    2018-01-01

    We recently found that erythroblast-like cells derived from human leukaemia K562 cells express C5a receptor (C5aR) and produce its antagonistic and agonistic ligand ribosomal protein S19 (RP S19) polymer, which is cross-linked between K122 and Q137 by tissue transglutaminases. RP S19 polymer binds to the reciprocal C5aRs on erythroblast-like cells and macrophage-like cells derived from human monocytic THP-1 cells and promotes differentiation into reticulocyte-like cells through enucleation in vitro. To examine the roles of RP S19 polymer in mouse erythropoiesis, we prepared Q137E mutant RP S19 gene knock-in C57BL/6J mice. In contrast to wild-type mice, erythroblast numbers at the preliminary stage (CD71 high /TER119 low ) in spleen based on transferrin receptor (CD71) and glycophorin A (TER119) values and erythrocyte numbers in orbital artery bloods were not largely changed in knock-in mice. Conversely, erythroblast numbers at the early stage (CD71 high /TER119 high ) were significantly decreased in spleen by knock-in mice. The reduction of early erythroblast numbers in spleen was enhanced by the phenylhydrazine-induced pernicious anemia model knock-in mice and was rescued by a functional analogue of RP S19 dimer S-tagged C5a/RP S19. These data indicated that RP S19 polymer plays the roles in the early erythroblast differentiation of C57BL/6J mouse spleen. Copyright © 2017 Elsevier GmbH. All rights reserved.

  12. Infusion of Trx-1-overexpressing hucMSC prolongs the survival of acutely irradiated NOD/SCID mice by decreasing excessive inflammatory injury.

    Science.gov (United States)

    Hu, JiangWei; Yang, ZaiLiang; Wang, Jun; Tang, YongYong; Liu, Hao; Zhang, Bin; Chen, Hu

    2013-01-01

    A protective reagent for ARI should have the ability to repair injured tissue caused by radiation and prevent continuous damage from secondary risk factors. Trx-1 was explored as a candidate therapy for ARI, as it scavenges reactive oxygen species, regulates cell growth and differentiation, participates in immune reactions, and inhibits apoptosis by acting inside and/or outside cells. Trx-1 can also decrease excessive inflammation in ARI by regulating the creation of inflamed media, by inhibiting the activation of complement, and by reducing the chemotaxis, adhesion, and migration of inflammatory cells. As effectively and stably expressing exogenous genes in the long term and regulating immune inflammation and tissue repair, MSC are a good choice for Trx-1 gene therapy. In this study, Trx-1-overexpressing hucMSC-Trx-1 were obtained by adenoviral vector-mediated infection. We first measured the redox capacity of hucMSC-Trx-1 with an antioxidant capacity (T-AOC) assay, a hydrogen peroxide (H2O2) content determination assay in vivo, a H2O2-induced oxidation hemolysis assay, and a lipid peroxidation assay in vitro. Then, we measured survival time, the protection of the hematopoietic system, and the regulation of inflammation in important organs in three treatment groups of NOD/SCID mice (treated with hucMSC-Trx-1, with hucMSC, and with saline) that were exposed to 4.5 Gy (60)Co-γ-ray radiation. The hucMSC-Trx-1 group achieved superior antioxidation results, protecting bone marrow hematopoietic stem cells (Lin(-)CD117(+): hucMSC-Trx-1 vs. hucMSC, PTrx-1 vs. NS, PTrx-1 vs. hucMSC or NS, PTrx-1 vs. NS, PTrx-1 vs. hucMSC, PTrx-1 vs. NS, PTrx-1 vs. hucMSC, PTrx-1 vs. hucMSC or NS, PTrx-1 combines the merits of gene and cell therapy as a multifunctional radioprotector for ARI.

  13. Ex-vivo assessment and non-invasive in vivo imaging of internal hemorrhages in Aga2/+ mutant mice

    Energy Technology Data Exchange (ETDEWEB)

    Ermolayev, Vladimir [Institute for Biological and Medical Imaging, Helmholtz Zentrum München, Building 56, Ingolstädter Landstraße 1, D-85764 Neuherberg (Germany); Cohrs, Christian M. [Institute for Experimental Genetics, Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764 Neuherberg (Germany); Mohajerani, Pouyan; Ale, Angelique [Institute for Biological and Medical Imaging, Helmholtz Zentrum München, Building 56, Ingolstädter Landstraße 1, D-85764 Neuherberg (Germany); Hrabé de Angelis, Martin [Institute for Experimental Genetics, Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764 Neuherberg (Germany); Ntziachristos, Vasilis, E-mail: v.ntziachristos@tum.de [Institute for Biological and Medical Imaging, Helmholtz Zentrum München, Building 56, Ingolstädter Landstraße 1, D-85764 Neuherberg (Germany)

    2013-03-08

    Highlights: ► Aga2/+ mice, model for Osteogenesis imperfecta, have type I collagen mutation. ► Aga2/+ mice display both moderate and severe phenotypes lethal 6–11th postnatal. ► Internal hemorrhages studied in Aga2/+ vs. control mice at 6 and 9 days postnatal. ► Anatomical and functional findings in-vivo contrasted to the ex-vivo appearance. -- Abstract: Mutations in type I collagen genes (COL1A1/2) typically lead to Osteogenesis imperfecta, the most common heritable cause of skeletal fractures and bone deformation in humans. Heterozygous Col1a1{sup Aga2/+}, animals with a dominant mutation in the terminal C-propeptide domain of type I collagen develop typical skeletal hallmarks and internal hemorrhages starting from 6 day after birth. The disease progression for Aga2/+ mice, however, is not uniform differing between severe phenotype lethal at the 6–11th day of life, and moderate-to-severe one with survival to adulthood. Herein we investigated whether a new modality that combines X-ray computer tomography with fluorescence tomography in one hybrid system can be employed to study internal bleedings in relation to bone fractures and obtain insights into disease progression. The disease phenotype was characterized on Aga2/+ vs. wild type mice between 6 and 9 days postnatal. Anatomical and functional findings obtained in-vivo were contrasted to the ex-vivo appearance of the same tissues under cryo-slicing.

  14. Ex-vivo assessment and non-invasive in vivo imaging of internal hemorrhages in Aga2/+ mutant mice

    International Nuclear Information System (INIS)

    Ermolayev, Vladimir; Cohrs, Christian M.; Mohajerani, Pouyan; Ale, Angelique; Hrabé de Angelis, Martin; Ntziachristos, Vasilis

    2013-01-01

    Highlights: ► Aga2/+ mice, model for Osteogenesis imperfecta, have type I collagen mutation. ► Aga2/+ mice display both moderate and severe phenotypes lethal 6–11th postnatal. ► Internal hemorrhages studied in Aga2/+ vs. control mice at 6 and 9 days postnatal. ► Anatomical and functional findings in-vivo contrasted to the ex-vivo appearance. -- Abstract: Mutations in type I collagen genes (COL1A1/2) typically lead to Osteogenesis imperfecta, the most common heritable cause of skeletal fractures and bone deformation in humans. Heterozygous Col1a1 Aga2/+ , animals with a dominant mutation in the terminal C-propeptide domain of type I collagen develop typical skeletal hallmarks and internal hemorrhages starting from 6 day after birth. The disease progression for Aga2/+ mice, however, is not uniform differing between severe phenotype lethal at the 6–11th day of life, and moderate-to-severe one with survival to adulthood. Herein we investigated whether a new modality that combines X-ray computer tomography with fluorescence tomography in one hybrid system can be employed to study internal bleedings in relation to bone fractures and obtain insights into disease progression. The disease phenotype was characterized on Aga2/+ vs. wild type mice between 6 and 9 days postnatal. Anatomical and functional findings obtained in-vivo were contrasted to the ex-vivo appearance of the same tissues under cryo-slicing

  15. Mutations in the Schmallenberg Virus Gc Glycoprotein Facilitate Cellular Protein Synthesis Shutoff and Restore Pathogenicity of NSs Deletion Mutants in Mice.

    Science.gov (United States)

    Varela, Mariana; Pinto, Rute Maria; Caporale, Marco; Piras, Ilaria M; Taggart, Aislynn; Seehusen, Frauke; Hahn, Kerstin; Janowicz, Anna; de Souza, William Marciel; Baumgärtner, Wolfgang; Shi, Xiaohong; Palmarini, Massimo

    2016-06-01

    Serial passage of viruses in cell culture has been traditionally used to attenuate virulence and identify determinants of viral pathogenesis. In a previous study, we found that a strain of Schmallenberg virus (SBV) serially passaged in tissue culture (termed SBVp32) unexpectedly displayed increased pathogenicity in suckling mice compared to wild-type SBV. In this study, we mapped the determinants of SBVp32 virulence to the viral genome M segment. SBVp32 virulence is associated with the capacity of this virus to reach high titers in the brains of experimentally infected suckling mice. We also found that the Gc glycoprotein, encoded by the M segment of SBVp32, facilitates host cell protein shutoff in vitro Interestingly, while the M segment of SBVp32 is a virulence factor, we found that the S segment of the same virus confers by itself an attenuated phenotype to wild-type SBV, as it has lost the ability to block the innate immune system of the host. Single mutations present in the Gc glycoprotein of SBVp32 are sufficient to compensate for both the attenuated phenotype of the SBVp32 S segment and the attenuated phenotype of NSs deletion mutants. Our data also indicate that the SBVp32 M segment does not act as an interferon (IFN) antagonist. Therefore, SBV mutants can retain pathogenicity even when they are unable to fully control the production of IFN by infected cells. Overall, this study suggests that the viral glycoprotein of orthobunyaviruses can compensate, at least in part, for the function of NSs. In addition, we also provide evidence that the induction of total cellular protein shutoff by SBV is determined by multiple viral proteins, while the ability to control the production of IFN maps to the NSs protein. The identification of viral determinants of pathogenesis is key to the development of prophylactic and intervention measures. In this study, we found that the bunyavirus Gc glycoprotein is a virulence factor. Importantly, we show that mutations in the Gc

  16. Booster vaccination with safe, modified, live-attenuated mutants of Brucella abortus strain RB51 vaccine confers protective immunity against virulent strains of B. abortus and Brucella canis in BALB/c mice.

    Science.gov (United States)

    Truong, Quang Lam; Cho, Youngjae; Kim, Kiju; Park, Bo-Kyoung; Hahn, Tae-Wook

    2015-11-01

    Brucella abortus attenuated strain RB51 vaccine (RB51) is widely used in prevention of bovine brucellosis. Although vaccination with this strain has been shown to be effective in conferring protection against bovine brucellosis, RB51 has several drawbacks, including residual virulence for animals and humans. Therefore, a safe and efficacious vaccine is needed to overcome these disadvantages. In this study, we constructed several gene deletion mutants (ΔcydC, ΔcydD and ΔpurD single mutants, and ΔcydCΔcydD and ΔcydCΔpurD double mutants) of RB51 with the aim of increasing the safety of the possible use of these mutants as vaccine candidates. The RB51ΔcydC, RB51ΔcydD, RB51ΔpurD, RB51ΔcydCΔcydD and RB51ΔcydCΔpurD mutants exhibited significant attenuation of virulence when assayed in murine macrophages in vitro or in BALB/c mice. A single intraperitoneal immunization with RB51ΔcydC, RB51ΔcydD, RB51ΔcydCΔcydD or RB51ΔcydCΔpurD mutants was rapidly cleared from mice within 3 weeks, whereas the RB51ΔpurD mutant and RB51 were detectable in spleens until 4 and 7 weeks, respectively. Vaccination with a single dose of RB51 mutants induced lower protective immunity in mice than did parental RB51. However, a booster dose of these mutants provided significant levels of protection in mice against challenge with either the virulent homologous B. abortus strain 2308 or the heterologous Brucella canis strain 26. In addition, these mutants were found to induce a mixed but T-helper-1-biased humoral and cellular immune response in immunized mice. These data suggest that immunization with a booster dose of attenuated RB51 mutants provides an attractive strategy to protect against either bovine or canine brucellosis.

  17. Neuroligin 2 R215H Mutant Mice Manifest Anxiety, Increased Prepulse Inhibition, and Impaired Spatial Learning and Memory

    Directory of Open Access Journals (Sweden)

    Chia-Hsiang Chen

    2017-11-01

    Full Text Available Neuroligin 2 (NLGN2 is a postsynaptic adhesion protein that plays an essential role in synaptogenesis and function of inhibitory neuron. We previously identified a missense mutation R215H of the NLGN2 in a patient with schizophrenia. This missense mutation was shown to be pathogenic in several cell-based assays. The objective of this study was to better understand the behavioral consequences of this mutation in vivo. We generated a line of transgenic mice carrying this mutation using a recombinant-based method. The mice were subjected to a battery of behavioral tests including open field locomotor activity assay, prepulse inhibition (PPI assay, accelerated rotarod test, novel location and novel recognition tests, elevated plus-maze (EPM test, and Morris water maze test. The transgenic animals were viable and fertile, but the Nlgn2 R215H knock-in (KI homozygous mice showed growth retardation, anxiety-like behavior, increased PPI, and impaired spatial learning and memory. There was no significant interaction between sex and genotype in most behavioral tests; however, we observed a significant interaction between sex and genotype in EPM test in this study. Also, we found that the Nlgn2 R215H homozygous KI mice did not express the NLGN2 protein, resembling Nlgn2 knockout mice. Our results demonstrate that Nlgn2 R215H KI homozygous mice manifest several behavioral abnormalities similar to those found in psychiatric patients carrying NLGN2 mutations, indicating that dysfunction of NLGN2 contributes to the pathogenesis of certain psychiatric symptoms commonly present in various mental disorders, not limited to schizophrenia.

  18. Peripheral motor axons of SOD1(G127X) mutant mice are susceptible to activity-dependent degeneration

    DEFF Research Database (Denmark)

    Alvarez Herrero, Susana; Calin, A; Graffmo, K S

    2013-01-01

    -onset, fast-progression SOD1(G127X) mouse model of amyotrophic lateral sclerosis to long-lasting, high-frequency repetitive activity. Tibial nerves were stimulated at ankle in 7 to 8-month-old SOD1(G127X) mice when they were clinically indistinguishable from wild-type (WT) mice. The evoked compound muscle......-concentrations. It is possible that in SOD1(G127X) there is inadequate energy-dependent Na(+)/K(+) pumping, which may lead to a lethal Na(+) overload....

  19. Herpes Simplex Virus 1 Mutant with Point Mutations in UL39 Is Impaired for Acute Viral Replication in Mice, Establishment of Latency, and Explant-Induced Reactivation.

    Science.gov (United States)

    Mostafa, Heba H; Thompson, Thornton W; Konen, Adam J; Haenchen, Steve D; Hilliard, Joshua G; Macdonald, Stuart J; Morrison, Lynda A; Davido, David J

    2018-04-01

    In the process of generating herpes simplex virus 1 (HSV-1) mutations in the viral regulatory gene encoding infected cell protein 0 (ICP0), we isolated a viral mutant, termed KOS-NA, that was severely impaired for acute replication in the eyes and trigeminal ganglia (TG) of mice, defective in establishing a latent infection, and reactivated poorly from explanted TG. To identify the secondary mutation(s) responsible for the impaired phenotypes of this mutant, we sequenced the KOS-NA genome and noted that it contained two nonsynonymous mutations in UL39 , which encodes the large subunit of ribonucleotide reductase, ICP6. These mutations resulted in lysine-to-proline (residue 393) and arginine-to-histidine (residue 950) substitutions in ICP6. To determine whether alteration of these amino acids was responsible for the KOS-NA phenotypes in vivo , we recombined the wild-type UL39 gene into the KOS-NA genome and rescued its acute replication phenotypes in mice. To further establish the role of UL39 in KOS-NA's decreased pathogenicity, the UL39 mutations were recombined into HSV-1 (generating UL39 mut ), and this mutant virus showed reduced ocular and TG replication in mice comparable to that of KOS-NA. Interestingly, ICP6 protein levels were reduced in KOS-NA-infected cells relative to the wild-type protein. Moreover, we observed that KOS-NA does not counteract caspase 8-induced apoptosis, unlike wild-type strain KOS. Based on alignment studies with other HSV-1 ICP6 homologs, our data suggest that amino acid 950 of ICP6 likely plays an important role in ICP6 accumulation and inhibition of apoptosis, consequently impairing HSV-1 pathogenesis in a mouse model of HSV-1 infection. IMPORTANCE HSV-1 is a major human pathogen that infects ∼80% of the human population and can be life threatening to infected neonates or immunocompromised individuals. Effective therapies for treatment of recurrent HSV-1 infections are limited, which emphasizes a critical need to understand in

  20. Action potential generation in the small intestine of W mutant mice that lack interstitial cells of Cajal

    DEFF Research Database (Denmark)

    Malysz, J; Thuneberg, L; Mikkelsen, Hanne Birte

    1996-01-01

    significantly changed. Neither FLC nor MLC were part of a network nor did they form specialized junctions with neighboring cells as ICC do. Hence no cell type had replaced ICC at their normal morphological position associated with Auerbach's plexus. ICC were present in W/Wv mice at the deep muscular plexus...

  1. Corticotropin-releasing factor overexpression in mice abrogates sex differences in body weight, visceral fat, and food intake response to a fast and alters levels of feeding regulatory hormones.

    Science.gov (United States)

    Wang, Lixin; Goebel-Stengel, Miriam; Yuan, Pu-Qing; Stengel, Andreas; Taché, Yvette

    2017-01-01

    Corticotropin-releasing factor overexpressing (CRF-OE) male mice showed an inhibited feeding response to a fast, and lower plasma acyl ghrelin and Fos expression in the arcuate nucleus compared to wild-type (WT) mice. We investigated whether hormones and hypothalamic feeding signals are impaired in CRF-OE mice and the influence of sex. Male and female CRF-OE mice and WT littermates (4-6 months old) fed ad libitum or overnight fasted were assessed for body, adrenal glands and perigonadal fat weights, food intake, plasma hormones, blood glucose, and mRNA hypothalamic signals. Under fed conditions, compared to WT, CRF-OE mice have increased adrenal glands and perigonadal fat weight, plasma corticosterone, leptin and insulin, and hypothalamic leptin receptor and decreased plasma acyl ghrelin. Compared to male, female WT mice have lower body and perigonadal fat and plasma leptin but higher adrenal glands weights. CRF-OE mice lost these sex differences except for the adrenals. Male CRF-OE and WT mice did not differ in hypothalamic expression of neuropeptide Y (NPY) and proopiomelanocortin (POMC), while female CRF-OE compared to female WT and male CRF-OE had higher NPY mRNA levels. After fasting, female WT mice lost more body weight and ate more food than male WT, while CRF-OE mice had reduced body weight loss and inhibited food intake without sex difference. In male WT mice, fasting reduced plasma insulin and leptin and increased acyl ghrelin and corticosterone while female WT showed only a rise in corticosterone. In CRF-OE mice, fasting reduced insulin while leptin, acyl ghrelin and corticosterone were unchanged with no sex difference. Fasting blood glucose was higher in CRF-OE with female > male. In WT mice, fasting increased hypothalamic NPY expression in both sexes and decreased POMC only in males, while in CRF-OE mice, NPY did not change, and POMC decreased in males and increased in females. These data indicate that CRF-OE mice have abnormal basal and fasting

  2. ATM loss leads to synthetic lethality in BRCA1 BRCT mutant mice associated with exacerbated defects in homology-directed repair.

    Science.gov (United States)

    Chen, Chun-Chin; Kass, Elizabeth M; Yen, Wei-Feng; Ludwig, Thomas; Moynahan, Mary Ellen; Chaudhuri, Jayanta; Jasin, Maria

    2017-07-18

    BRCA1 is essential for homology-directed repair (HDR) of DNA double-strand breaks in part through antagonism of the nonhomologous end-joining factor 53BP1. The ATM kinase is involved in various aspects of DNA damage signaling and repair, but how ATM participates in HDR and genetically interacts with BRCA1 in this process is unclear. To investigate this question, we used the Brca1 S1598F mouse model carrying a mutation in the BRCA1 C-terminal domain of BRCA1. Whereas ATM loss leads to a mild HDR defect in adult somatic cells, we find that ATM inhibition leads to severely reduced HDR in Brca1 S1598F cells. Consistent with a critical role for ATM in HDR in this background, loss of ATM leads to synthetic lethality of Brca1 S1598F mice. Whereas both ATM and BRCA1 promote end resection, which can be regulated by 53BP1, 53bp1 deletion does not rescue the HDR defects of Atm mutant cells, in contrast to Brca1 mutant cells. These results demonstrate that ATM has a role in HDR independent of the BRCA1-53BP1 antagonism and that its HDR function can become critical in certain contexts.

  3. Phenotypic effects of repeated psychosocial stress during adolescence in mice mutant for the schizophrenia risk gene neuregulin-1: a putative model of gene × environment interaction.

    Science.gov (United States)

    Desbonnet, Lieve; O'Tuathaigh, Colm; Clarke, Gerard; O'Leary, Claire; Petit, Emilie; Clarke, Niamh; Tighe, Orna; Lai, Donna; Harvey, Richard; Cryan, John F; Dinan, Timothy G; Waddington, John L

    2012-05-01

    There is a paucity of animal models by which the contributions of environmental and genetic factors to the pathobiology of psychosis can be investigated. This study examined the individual and combined effects of chronic social stress during adolescence and deletion of the schizophrenia risk gene neuregulin-1 (NRG1) on adult mouse phenotype. Mice were exposed to repeated social defeat stress during adolescence and assessed for exploratory behaviour, working memory, sucrose preference, social behaviour and prepulse inhibition in adulthood. Thereafter, in vitro cytokine responses to mitogen stimulation and corticosterone inhibition were assayed in spleen cells, with measurement of cytokine and brain-derived neurotrophic factor (BDNF) mRNA in frontal cortex, hippocampus and striatum. NRG1 mutants exhibited hyperactivity, decreased anxiety, impaired sensorimotor gating and reduced preference for social novelty. The effects of stress on exploratory/anxiety-related parameters, spatial working memory, sucrose preference and basal cytokine levels were modified by NRG1 deletion. Stress also exerted varied effect on spleen cytokine response to concanavalin A and brain cytokine and BDNF mRNA expression in NRG1 mutants. The experience of psychosocial stress during adolescence may trigger further pathobiological features that contribute to the development of schizophrenia, particularly in those with underlying NRG1 gene abnormalities. This model elaborates the importance of gene × environment interactions in the etiology of schizophrenia. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. DNA adducts, mutant frequencies and mutation spectra in λlacZ transgenic mice treated with N-nitrosodimethylamine

    NARCIS (Netherlands)

    Souliotis, V.L.; Delft, J.H.M. van; Steenwinkel, M.-J.S.T.; Baan, R.A.; Kyrtopoulos, S.A.

    1998-01-01

    Groups of λlacZ transgenic mice were treated i.p. with N-nitrosodimethylamine (NDMA) as single doses of 5 mg/kg or 10 mg/kg or as 10 daily doses of 1 mg/kg and changes in DNA N7- or O6-methylguanine or the repair enzyme O6-alkylguanine-DNA alkyltransferase (AGT) were followed for up to 14 days in

  5. Na(v)1.8 channelopathy in mutant mice deficient for myelin protein zero is detrimental to motor axons

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Alvarez Herrero, Susana; Pinchenko, Volodymyr

    2011-01-01

    Myelin protein zero mutations were found to produce Charcot-Marie-Tooth disease phenotypes with various degrees of myelin impairment and axonal loss, ranging from the mild 'demyelinating' adult form to severe and early onset forms. Protein zero deficient homozygous mice ( ) show a severe and prog......Myelin protein zero mutations were found to produce Charcot-Marie-Tooth disease phenotypes with various degrees of myelin impairment and axonal loss, ranging from the mild 'demyelinating' adult form to severe and early onset forms. Protein zero deficient homozygous mice ( ) show a severe...... and progressive dysmyelinating neuropathy from birth with compromised myelin compaction, hypomyelination and distal axonal degeneration. A previous study using immunofluorescence showed that motor nerves deficient of myelin protein zero upregulate the Na(V)1.8 voltage gated sodium channel isoform, which...... is normally present only in restricted populations of sensory axons. The aim of this study was to investigate the function of motor axons in protein zero-deficient mice with particular emphasis on ectopic Na(V)1.8 voltage gated sodium channel. We combined 'threshold tracking' excitability studies...

  6. Infusion of Trx-1-overexpressing hucMSC prolongs the survival of acutely irradiated NOD/SCID mice by decreasing excessive inflammatory injury.

    Directory of Open Access Journals (Sweden)

    JiangWei Hu

    Full Text Available A protective reagent for ARI should have the ability to repair injured tissue caused by radiation and prevent continuous damage from secondary risk factors. Trx-1 was explored as a candidate therapy for ARI, as it scavenges reactive oxygen species, regulates cell growth and differentiation, participates in immune reactions, and inhibits apoptosis by acting inside and/or outside cells. Trx-1 can also decrease excessive inflammation in ARI by regulating the creation of inflamed media, by inhibiting the activation of complement, and by reducing the chemotaxis, adhesion, and migration of inflammatory cells. As effectively and stably expressing exogenous genes in the long term and regulating immune inflammation and tissue repair, MSC are a good choice for Trx-1 gene therapy. In this study, Trx-1-overexpressing hucMSC-Trx-1 were obtained by adenoviral vector-mediated infection. We first measured the redox capacity of hucMSC-Trx-1 with an antioxidant capacity (T-AOC assay, a hydrogen peroxide (H2O2 content determination assay in vivo, a H2O2-induced oxidation hemolysis assay, and a lipid peroxidation assay in vitro. Then, we measured survival time, the protection of the hematopoietic system, and the regulation of inflammation in important organs in three treatment groups of NOD/SCID mice (treated with hucMSC-Trx-1, with hucMSC, and with saline that were exposed to 4.5 Gy (60Co-γ-ray radiation. The hucMSC-Trx-1 group achieved superior antioxidation results, protecting bone marrow hematopoietic stem cells (Lin(-CD117(+: hucMSC-Trx-1 vs. hucMSC, P<0.05; hucMSC-Trx-1 vs. NS, P<0.01, promoting the formation of red blood cells and hemoglobin (hucMSC-Trx-1 vs. hucMSC or NS, P<0.05, reducing inflammation and damage in important organs (Bone marrow and lung: hucMSC-Trx-1 vs. NS, P<0.01; hucMSC-Trx-1 vs. hucMSC, P<0.05. Liver and intestine: hucMSC-Trx-1 vs. NS, P<0.05; hucMSC-Trx-1 vs. hucMSC, P<0.05, and prolonging survival (hucMSC-Trx-1 vs. hucMSC or NS, P<0

  7. Neuronal death and synapse elimination in the olivocerebellar system. II. Cell counts in the inferior olive of adult x-irradiated rats and weaver and reeler mutant mice

    International Nuclear Information System (INIS)

    Shojaeian, H.; Delhaye-Bouchaud, N.; Mariani, J.

    1985-01-01

    Cell death in the developing rat inferior olive precedes the regression of the polyneuronal innervation of Purkinje cells by olivary axons (i.e., climbing fibers), suggesting that the involution of the redundant olivocerebellar contacts is caused by a withdrawal of supernumerary axonal collaterals rather than by degeneration of the parent cell. However, a subsequent apparent increase of the olivary population occurs, which could eventually mask a residual presynaptic cell death taking place at the same time. Therefore, cell counts were performed in the inferior olive of adult rodents in which the multiple innervation of Purkinje cells by olivary axons is maintained, with the idea that if cell death plays a role in the regression of supernumerary climbing fibers, the number of olivary cells should be higher in these animals than in their controls. The results show that the size of the cell population in the inferior olive of weaver and reeler mutant mice and rats degranulated by early postnatal x-irradiation does not differ significantly from that of their controls. Similarly, the distribution of the cells in the four main olivary subnuclei is not modified in weaver mice and x-irradiated rats. The present data further support the assumption that the regression of the polyneuronal innervation of Purkinje cells occurs independently of cell death in the presynaptic population

  8. A broad phenotypic screen identifies novel phenotypes driven by a single mutant allele in Huntington's disease CAG knock-in mice.

    Directory of Open Access Journals (Sweden)

    Sabine M Hölter

    Full Text Available Huntington's disease (HD is an autosomal dominant neurodegenerative disorder caused by the expansion of a CAG trinucleotide repeat in the HTT gene encoding huntingtin. The disease has an insidious course, typically progressing over 10-15 years until death. Currently there is no effective disease-modifying therapy. To better understand the HD pathogenic process we have developed genetic HTT CAG knock-in mouse models that accurately recapitulate the HD mutation in man. Here, we describe results of a broad, standardized phenotypic screen in 10-46 week old heterozygous HdhQ111 knock-in mice, probing a wide range of physiological systems. The results of this screen revealed a number of behavioral abnormalities in HdhQ111/+ mice that include hypoactivity, decreased anxiety, motor learning and coordination deficits, and impaired olfactory discrimination. The screen also provided evidence supporting subtle cardiovascular, lung, and plasma metabolite alterations. Importantly, our results reveal that a single mutant HTT allele in the mouse is sufficient to elicit multiple phenotypic abnormalities, consistent with a dominant disease process in patients. These data provide a starting point for further investigation of several organ systems in HD, for the dissection of underlying pathogenic mechanisms and for the identification of reliable phenotypic endpoints for therapeutic testing.

  9. DNMT3AR882H mutant and Tet2 inactivation cooperate in the deregulation of DNA methylation control to induce lymphoid malignancies in mice

    DEFF Research Database (Denmark)

    Scourzic, L; Couronné, L; Pedersen, Marianne Terndrup

    2016-01-01

    malignancies with one mouse developing an AITL-like disease, two mice presenting acute myeloid leukemia (AML)-like and two others T-cell acute lymphoblastic leukemia (T-ALL)-like diseases within 6 months following transplantation. Serial transplantations of DNMT3A(R882H) Tet2(-/-) progenitors led...... to a differentiation bias toward the T-cell compartment, eventually leading to AITL-like disease in 9/12 serially transplanted recipients. Expression profiling suggested that DNMT3A(R882H) Tet2(-/-) T-ALLs resemble those of NOTCH1 mutant. Methylation analysis of DNMT3A(R882H) Tet2(-/-) T-ALLs showed a global increase...... in DNA methylation affecting tumor suppressor genes and local hypomethylation affecting genes involved in the Notch pathway. Our data confirm the transformation potential of DNMT3A(R882H) Tet2(-/-) progenitors and represent the first cooperative model in mice involving Tet2 inactivation driving lymphoid...

  10. Wild-Type, but Not Mutant N296H, Human Tau Restores Aβ-Mediated Inhibition of LTP in Tau−/− mice

    Directory of Open Access Journals (Sweden)

    Mariana Vargas-Caballero

    2017-04-01

    Full Text Available Microtubule associated protein tau (MAPT is involved in the pathogenesis of Alzheimer's disease and many forms of frontotemporal dementia (FTD. We recently reported that Aβ-mediated inhibition of hippocampal long-term potentiation (LTP in mice requires tau. Here, we asked whether expression of human MAPT can restore Aβ-mediated inhibition on a mouse Tau−/− background and whether human tau with an FTD-causing mutation (N296H can interfere with Aβ-mediated inhibition of LTP. We used transgenic mouse lines each expressing the full human MAPT locus using bacterial artificial chromosome technology. These lines expressed all six human tau protein isoforms on a Tau−/− background. We found that the human wild-type MAPT H1 locus was able to restore Aβ42-mediated impairment of LTP. In contrast, Aβ42 did not reduce LTP in slices in two independently generated transgenic lines expressing tau protein with the mutation N296H associated with frontotemporal dementia (FTD. Basal phosphorylation of tau measured as the ratio of AT8/Tau5 immunoreactivity was significantly reduced in N296H mutant hippocampal slices. Our data show that human MAPT is able to restore Aβ42-mediated inhibition of LTP in Tau−/− mice. These results provide further evidence that tau protein is central to Aβ-induced LTP impairment and provide a valuable tool for further analysis of the links between Aβ, human tau and impairment of synaptic function.

  11. Intramuscular Immunization of Mice with a Live-Attenuated Triple Mutant of Yersinia pestis CO92 Induces Robust Humoral and Cell-Mediated Immunity To Completely Protect Animals against Pneumonic Plague.

    Science.gov (United States)

    Tiner, Bethany L; Sha, Jian; Ponnusamy, Duraisamy; Baze, Wallace B; Fitts, Eric C; Popov, Vsevolod L; van Lier, Christina J; Erova, Tatiana E; Chopra, Ashok K

    2015-12-01

    Earlier, we showed that the Δlpp ΔmsbB Δail triple mutant of Yersinia pestis CO92 with deleted genes encoding Braun lipoprotein (Lpp), an acyltransferase (MsbB), and the attachment invasion locus (Ail), respectively, was avirulent in a mouse model of pneumonic plague. In this study, we further evaluated the immunogenic potential of the Δlpp ΔmsbB Δail triple mutant and its derivative by different routes of vaccination. Mice were immunized via the subcutaneous (s.c.) or the intramuscular (i.m.) route with two doses (2 × 10(6) CFU/dose) of the above-mentioned triple mutant with 100% survivability of the animals. Upon subsequent pneumonic challenge with 70 to 92 50% lethal doses (LD(50)) of wild-type (WT) strain CO92, all of the mice survived when immunization occurred by the i.m. route. Since Ail has virulence and immunogenic potential, a mutated version of Ail devoid of its virulence properties was created, and the genetically modified ail replaced the native ail gene on the chromosome of the Δlpp ΔmsbB double mutant, creating a Δlpp ΔmsbB::ailL2 vaccine strain. This newly generated mutant was attenuated similarly to the Δlpp ΔmsbB Δail triple mutant when administered by the i.m. route and provided 100% protection to animals against subsequent pneumonic challenge. Not only were the two above-mentioned mutants cleared rapidly from the initial i.m. site of injection in animals with no histopathological lesions, the immunized mice did not exhibit any disease symptoms during immunization or after subsequent exposure to WT CO92. These two mutants triggered balanced Th1- and Th2-based antibody responses and cell-mediated immunity. A substantial increase in interleukin-17 (IL-17) from the T cells of vaccinated mice, a cytokine of the Th17 cells, further augmented their vaccine potential. Thus, the Δlpp ΔmsbB Δail and Δlpp ΔmsbB::ailL2 mutants represent excellent vaccine candidates for plague, with the latter mutant still retaining Ail immunogenicity but

  12. Over-expression of Stat5b confers protection against diabetes in the non-obese diabetic (NOD) mice via up-regulation of CD4{sup +}CD25{sup +} regulatory T cells

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Yulan; Purohit, Sharad [Center for Biotechnology and Genomic Medicine, Georgia Health Sciences University, GA (United States); Department of Pathology, Medical College of Georgia, Georgia Health Sciences University, GA (United States); Chen, Xueqin; Yi, Bing [Center for Biotechnology and Genomic Medicine, Georgia Health Sciences University, GA (United States); She, Jin-Xiong, E-mail: jshe@georgiahealth.edu [Center for Biotechnology and Genomic Medicine, Georgia Health Sciences University, GA (United States); Department of Pathology, Medical College of Georgia, Georgia Health Sciences University, GA (United States)

    2012-08-10

    Highlights: Black-Right-Pointing-Pointer This is the first study to provide direct evidence of the role of Stat5b in NOD mice. Black-Right-Pointing-Pointer Over-expression of wild type Stat5b transgene protects NOD mice against diabetes. Black-Right-Pointing-Pointer This protection may be mediated by the up-regulation of CD4{sup +}CD25{sup +} Tregs. -- Abstract: The signal transducers and activators of transcription (STAT) family of proteins play a critical role in cytokine signaling required for fine tuning of immune regulation. Previous reports showed that a mutation (L327M) in the Stat5b protein leads to aberrant cytokine signaling in the NOD mice. To further elaborate the role of Stat5b in diabetes, we established a NOD transgenic mouse that over-expresses the wild type Stat5b gene. The incidences of spontaneous diabetes as well as cyclophosphamide-induced diabetes were significantly reduced and delayed in the Stat5b transgenic NOD mice compared to their littermate controls. The total cell numbers of CD4{sup +} T cells and especially CD8{sup +} T cells in the spleen and pancreatic lymph node were increased in the Stat5b transgenic NOD mice. Consistent with these findings, CD4{sup +} and CD8{sup +} T cells from the Stat5b transgenic NOD mice showed a higher proliferation capacity and up-regulation of multiple cytokines including IL-2, IFN-{gamma}, TNF-{alpha} and IL-10 as well as anti-apoptotic gene Bcl-xl. Furthermore, the number and proportion of CD4{sup +}CD25{sup +} regulatory T cells were significantly increased in transgenic mice although in vitro suppression ability of the regulatory T-cells was not affected by the transgene. Our results suggest that Stat5b confers protection against diabetes in the NOD mice by regulating the numbers and function of multiple immune cell types, especially by up-regulating CD4{sup +}CD25{sup +} regulatory T cells.

  13. Calcilytic Ameliorates Abnormalities of Mutant Calcium-Sensing Receptor (CaSR) Knock-In Mice Mimicking Autosomal Dominant Hypocalcemia (ADH).

    Science.gov (United States)

    Dong, Bingzi; Endo, Itsuro; Ohnishi, Yukiyo; Kondo, Takeshi; Hasegawa, Tomoka; Amizuka, Norio; Kiyonari, Hiroshi; Shioi, Go; Abe, Masahiro; Fukumoto, Seiji; Matsumoto, Toshio

    2015-11-01

    Activating mutations of calcium-sensing receptor (CaSR) cause autosomal dominant hypocalcemia (ADH). ADH patients develop hypocalcemia, hyperphosphatemia, and hypercalciuria, similar to the clinical features of hypoparathyroidism. The current treatment of ADH is similar to the other forms of hypoparathyroidism, using active vitamin D3 or parathyroid hormone (PTH). However, these treatments aggravate hypercalciuria and renal calcification. Thus, new therapeutic strategies for ADH are needed. Calcilytics are allosteric antagonists of CaSR, and may be effective for the treatment of ADH caused by activating mutations of CaSR. In order to examine the effect of calcilytic JTT-305/MK-5442 on CaSR harboring activating mutations in the extracellular and transmembrane domains in vitro, we first transfected a mutated CaSR gene into HEK cells. JTT-305/MK-5442 suppressed the hypersensitivity to extracellular Ca(2+) of HEK cells transfected with the CaSR gene with activating mutations in the extracellular and transmembrane domains. We then selected two activating mutations locating in the extracellular (C129S) and transmembrane (A843E) domains, and generated two strains of CaSR knock-in mice to build an ADH mouse model. Both mutant mice mimicked almost all the clinical features of human ADH. JTT-305/MK-5442 treatment in vivo increased urinary cAMP excretion, improved serum and urinary calcium and phosphate levels by stimulating endogenous PTH secretion, and prevented renal calcification. In contrast, PTH(1-34) treatment normalized serum calcium and phosphate but could not reduce hypercalciuria or renal calcification. CaSR knock-in mice exhibited low bone turnover due to the deficiency of PTH, and JTT-305/MK-5442 as well as PTH(1-34) increased bone turnover and bone mineral density (BMD) in these mice. These results demonstrate that calcilytics can reverse almost all the phenotypes of ADH including hypercalciuria and renal calcification, and suggest that calcilytics can become a

  14. Phenotypic effects of maternal immune activation and early postnatal milieu in mice mutant for the schizophrenia risk gene neuregulin-1.

    Science.gov (United States)

    O'Leary, C; Desbonnet, L; Clarke, N; Petit, E; Tighe, O; Lai, D; Harvey, R; Waddington, J L; O'Tuathaigh, C

    2014-09-26

    Risk of schizophrenia is likely to involve gene × environment (G × E) interactions. Neuregulin 1 (NRG1) is a schizophrenia risk gene, hence any interaction with environmental adversity, such as maternal infection, may provide further insights into the basis of the disease. This study examined the individual and combined effects of prenatal immune activation with polyriboinosinic-polyribocytidilic acid (Poly I:C) and disruption of the schizophrenia risk gene NRG1 on the expression of behavioral phenotypes related to schizophrenia. NRG1 heterozygous (NRG1 HET) mutant breeding pairs were time-mated. Pregnant dams received a single injection (5mg/kg i.p.) of Poly I:C or vehicle on gestation day 9 (GD9). Offspring were then cross-fostered to vehicle-treated or Poly I:C-treated dams. Expression of schizophrenia-related behavioral endophenotypes was assessed at adolescence and in adulthood. Combining NRG1 disruption and prenatal environmental insult (Poly I:C) caused developmental stage-specific deficits in social behavior, spatial working memory and prepulse inhibition (PPI). However, combining Poly I:C and cross-fostering produced a number of behavioral deficits in the open field, social behavior and PPI. This became more complex by combining NRG1 deletion with both Poly I:C exposure and cross-fostering, which had a robust effect on PPI. These findings suggest that concepts of G × E interaction in risk of schizophrenia should be elaborated to multiple interactions that involve individual genes interacting with diverse biological and psychosocial environmental factors over early life, to differentially influence particular domains of psychopathology, sometimes over specific stages of development. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Sorafenib promotes graft-versus-leukemia activity in mice and humans through IL-15 production in FLT3-ITD-mutant leukemia cells.

    Science.gov (United States)

    Mathew, Nimitha R; Baumgartner, Francis; Braun, Lukas; O'Sullivan, David; Thomas, Simone; Waterhouse, Miguel; Müller, Tony A; Hanke, Kathrin; Taromi, Sanaz; Apostolova, Petya; Illert, Anna L; Melchinger, Wolfgang; Duquesne, Sandra; Schmitt-Graeff, Annette; Osswald, Lena; Yan, Kai-Li; Weber, Arnim; Tugues, Sonia; Spath, Sabine; Pfeifer, Dietmar; Follo, Marie; Claus, Rainer; Lübbert, Michael; Rummelt, Christoph; Bertz, Hartmut; Wäsch, Ralph; Haag, Johanna; Schmidts, Andrea; Schultheiss, Michael; Bettinger, Dominik; Thimme, Robert; Ullrich, Evelyn; Tanriver, Yakup; Vuong, Giang Lam; Arnold, Renate; Hemmati, Philipp; Wolf, Dominik; Ditschkowski, Markus; Jilg, Cordula; Wilhelm, Konrad; Leiber, Christian; Gerull, Sabine; Halter, Jörg; Lengerke, Claudia; Pabst, Thomas; Schroeder, Thomas; Kobbe, Guido; Rösler, Wolf; Doostkam, Soroush; Meckel, Stephan; Stabla, Kathleen; Metzelder, Stephan K; Halbach, Sebastian; Brummer, Tilman; Hu, Zehan; Dengjel, Joern; Hackanson, Björn; Schmid, Christoph; Holtick, Udo; Scheid, Christof; Spyridonidis, Alexandros; Stölzel, Friedrich; Ordemann, Rainer; Müller, Lutz P; Sicre-de-Fontbrune, Flore; Ihorst, Gabriele; Kuball, Jürgen; Ehlert, Jan E; Feger, Daniel; Wagner, Eva-Maria; Cahn, Jean-Yves; Schnell, Jacqueline; Kuchenbauer, Florian; Bunjes, Donald; Chakraverty, Ronjon; Richardson, Simon; Gill, Saar; Kröger, Nicolaus; Ayuk, Francis; Vago, Luca; Ciceri, Fabio; Müller, Antonia M; Kondo, Takeshi; Teshima, Takanori; Klaeger, Susan; Kuster, Bernhard; Kim, Dennis Dong Hwan; Weisdorf, Daniel; van der Velden, Walter; Dörfel, Daniela; Bethge, Wolfgang; Hilgendorf, Inken; Hochhaus, Andreas; Andrieux, Geoffroy; Börries, Melanie; Busch, Hauke; Magenau, John; Reddy, Pavan; Labopin, Myriam; Antin, Joseph H; Henden, Andrea S; Hill, Geoffrey R; Kennedy, Glen A; Bar, Merav; Sarma, Anita; McLornan, Donal; Mufti, Ghulam; Oran, Betul; Rezvani, Katayoun; Shah, Omid; Negrin, Robert S; Nagler, Arnon; Prinz, Marco; Burchert, Andreas; Neubauer, Andreas; Beelen, Dietrich; Mackensen, Andreas; von Bubnoff, Nikolas; Herr, Wolfgang; Becher, Burkhard; Socié, Gerard; Caligiuri, Michael A; Ruggiero, Eliana; Bonini, Chiara; Häcker, Georg; Duyster, Justus; Finke, Jürgen; Pearce, Erika; Blazar, Bruce R; Zeiser, Robert

    2018-03-01

    Individuals with acute myeloid leukemia (AML) harboring an internal tandem duplication (ITD) in the gene encoding Fms-related tyrosine kinase 3 (FLT3) who relapse after allogeneic hematopoietic cell transplantation (allo-HCT) have a 1-year survival rate below 20%. We observed that sorafenib, a multitargeted tyrosine kinase inhibitor, increased IL-15 production by FLT3-ITD + leukemia cells. This synergized with the allogeneic CD8 + T cell response, leading to long-term survival in six mouse models of FLT3-ITD + AML. Sorafenib-related IL-15 production caused an increase in CD8 + CD107a + IFN-γ + T cells with features of longevity (high levels of Bcl-2 and reduced PD-1 levels), which eradicated leukemia in secondary recipients. Mechanistically, sorafenib reduced expression of the transcription factor ATF4, thereby blocking negative regulation of interferon regulatory factor 7 (IRF7) activation, which enhanced IL-15 transcription. Both IRF7 knockdown and ATF4 overexpression in leukemia cells antagonized sorafenib-induced IL-15 production in vitro. Human FLT3-ITD + AML cells obtained from sorafenib responders following sorafenib therapy showed increased levels of IL-15, phosphorylated IRF7, and a transcriptionally active IRF7 chromatin state. The mitochondrial spare respiratory capacity and glycolytic capacity of CD8 + T cells increased upon sorafenib treatment in sorafenib responders but not in nonresponders. Our findings indicate that the synergism of T cells and sorafenib is mediated via reduced ATF4 expression, causing activation of the IRF7-IL-15 axis in leukemia cells and thereby leading to metabolic reprogramming of leukemia-reactive T cells in humans. Therefore, sorafenib treatment has the potential to contribute to an immune-mediated cure of FLT3-ITD-mutant AML relapse, an otherwise fatal complication after allo-HCT.

  16. Mice lacking Ras-GRF1 show contextual fear conditioning but not spatial memory impairments: convergent evidence from two independently generated mouse mutant lines

    Directory of Open Access Journals (Sweden)

    Raffaele ed'Isa

    2011-12-01

    Full Text Available Ras-GRF1 is a neuronal specific guanine exchange factor that, once activated by both ionotropic and metabotropic neurotransmitter receptors, can stimulate Ras proteins, leading to long-term phosphorylation of downstream signaling. The two available reports on the behavior of two independently generated Ras-GRF1 deficient mouse lines provide contrasting evidence on the role of Ras-GRF1 in spatial memory and contextual fear conditioning. These discrepancies may be due to the distinct alterations introduced in the mouse genome by gene targeting in the two lines that could differentially affect expression of nearby genes located in the imprinted region containing the Ras-grf1 locus. In order to determine the real contribution of Ras-GRF1 to spatial memory we compared in Morris Water Maze learning the Brambilla’s mice with a third mouse line (GENA53 in which a nonsense mutation was introduced in the Ras-GRF1 coding region without additional changes in the genome and we found that memory in this task is normal. Also, we measured both contextual and cued fear conditioning, which were previously reported to be affected in the Brambilla’s mice, and we confirmed that contextual learning but not cued conditioning is impaired in both mouse lines. In addition, we also tested both lines for the first time in conditioned place aversion in the Intellicage, an ecological and remotely controlled behavioral test, and we observed normal learning. Finally, based on previous reports of other mutant lines suggesting that Ras-GRF1 may control body weight, we also measured this non-cognitive phenotype and we confirmed that both Ras-GRF1 deficient mutants are smaller than their control littermates. In conclusion, we demonstrate that Ras-GRF1 has no unique role in spatial memory while its function in contextual fear conditioning is likely to be due not only to its involvement in amygdalar functions but possibly to some distinct hippocampal connections specific to

  17. Mice Overexpressing Type 1 Adenylyl Cyclase Show Enhanced Spatial Memory Flexibility in the Absence of Intact Synaptic Long-Term Depression

    Science.gov (United States)

    Zhang, Ming; Wang, Hongbing

    2013-01-01

    There is significant interest in understanding the contribution of intracellular signaling and synaptic substrates to memory flexibility, which involves new learning and suppression of obsolete memory. Here, we report that enhancement of Ca[superscript 2+]-stimulated cAMP signaling by overexpressing type 1 adenylyl cyclase (AC1) facilitated…

  18. Msh homeobox 1 (Msx1)- and Msx2-overexpressing bone marrow-derived mesenchymal stem cells resemble blastema cells and enhance regeneration in mice.

    Science.gov (United States)

    Taghiyar, Leila; Hesaraki, Mahdi; Sayahpour, Forough Azam; Satarian, Leila; Hosseini, Samaneh; Aghdami, Naser; Baghaban Eslaminejad, Mohamadreza

    2017-06-23

    Amputation of the proximal region in mammals is not followed by regeneration because blastema cells (BCs) and expression of regenerative genes, such as Msh homeobox ( Msx ) genes, are absent in this animal group. The lack of BCs and positional information in other cells is therefore the main obstacle to therapeutic approaches for limb regeneration. Hence, this study aimed to create blastema-like cells (BlCs) by overexpressing Msx1 and Msx2 genes in mouse bone marrow-derived mesenchymal stem cells (mBMSCs) to regenerate a proximally amputated digit tip. We transduced mBMSCs with Msx1 and Msx2 genes and compared osteogenic activity and expression levels of several Msx -regulated genes ( Bmp4 , Fgf8 , and keratin 14 ( K14 )) in BlC groups, including MSX1, MSX2, and MSX1/2 (in a 1:1 ratio) with those in mBMSCs and BCs in vitro and in vivo following injection into the amputation site. We found that Msx gene overexpression increased expression of specific blastemal markers and enhanced the proliferation rate and osteogenesis of BlCs compared with mBMSCs and BCs via activation of Fgf8 and Bmp4 Histological analyses indicated full regrowth of digit tips in the Msx -overexpressing groups, particularly in MSX1/2, through endochondral ossification 6 weeks post-injection. In contrast, mBMSCs and BCs formed abnormal bone and nail. Full digit tip was regenerated only in the MSX1/2 group and was related to boosted Bmp4, Fgf8 , and K14 gene expression and to limb-patterning properties resulting from Msx1 and Msx2 overexpression. We propose that Msx -transduced cells that can regenerate epithelial and mesenchymal tissues may potentially be utilized in limb regeneration. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Metallothionein-I overexpression alters brain inflammation and stimulates brain repair in transgenic mice with astrocyte-targeted interleukin-6 expression

    DEFF Research Database (Denmark)

    Penkowa, Milena; Camats, Jordi; Giralt, Mercedes

    2003-01-01

    injury, such as a cryolesion, demonstrate a neuroprotective role of IL-6. Thus, the GFAP-IL-6 mice showed faster tissue repair and decreased oxidative stress and apoptosis compared with control litter-mate mice. The neuroprotective factors metallothionein-I+II (MT-I+II) were upregulated by the cryolesion...... the inflammatory response, decreased oxidative stress and apoptosis significantly, and increased brain tissue repair in comparison with either GFAP-IL-6 or control litter-mate mice. Overall, the results demonstrate that brain MT-I+II proteins are fundamental neuroprotective factors....

  20. Reduced Self-Diploidization and Improved Survival of Semi-cloned Mice Produced from Androgenetic Haploid Embryonic Stem Cells through Overexpression of Dnmt3b

    Directory of Open Access Journals (Sweden)

    Wenteng He

    2018-02-01

    Full Text Available Summary: Androgenetic haploid embryonic stem cells (AG-haESCs hold great promise for exploring gene functions and generating gene-edited semi-cloned (SC mice. However, the high incidence of self-diploidization and low efficiency of SC mouse production are major obstacles preventing widespread use of these cells. Moreover, although SC mice generation could be greatly improved by knocking out the differentially methylated regions of two imprinted genes, 50% of the SC mice did not survive into adulthood. Here, we found that the genome-wide DNA methylation level in AG-haESCs is extremely low. Subsequently, downregulation of both de novo methyltransferase Dnmt3b and other methylation-related genes was determined to be responsible for DNA hypomethylation. We further demonstrated that ectopic expression of Dnmt3b in AG-haESCs could effectively improve DNA methylation level, and the high incidence of self-diploidization could be markedly rescued. More importantly, the developmental potential of SC embryos was improved, and most SC mice could survive into adulthood. : Ectopic expression of Dnmt3b could rescue DNA methylation level in repetitive sequences of hypomethylated AG-haESCs, suppress high incidence of self-diploidization, and promote developmental potential of SC embryos, and most SC mice could survive into adulthood. Keywords: androgenetic haploid embryonic stem cells, self-diploidization, semi-cloned mice, DNA methylation, Dnmt3b

  1. L-type calcium channel CaV 1.2 in transgenic mice overexpressing human AbetaPP751 with the London (V717I) and Swedish (K670M/N671L) mutations.

    Science.gov (United States)

    Willis, Michael; Kaufmann, Walter A; Wietzorrek, Georg; Hutter-Paier, Birgit; Moosmang, Sven; Humpel, Christian; Hofmann, Franz; Windisch, Manfred; Knaus, Hans-Günther; Marksteiner, Josef

    2010-01-01

    Cumulative evidence indicates that amyloid-beta peptides exert some of their neurodegenerative effects through modulation of L-type voltage gated calcium channels, which play key roles in a diverse range of CNS functions. In this study we examined the expression of CaV1.2 L-type voltage gated calcium channels in transgenic mice overexpressing human AbetaPP751 with the London (V717I) and Swedish (K670M/N671L) mutations by immunohistochemistry in light and electron microscopy. In hippocampal layers of wild type and transgenic mice, CaV1.2 channels were predominantly localized to somato-dendritic domains of neurons, and to astrocytic profiles with an age-dependent increase in labeling density. In transgenic animals, CaV1.2-like immunoreactive clusters were found in neuronal profiles in association with amyloid-beta plaques. Both the number and density of these clusters depended upon age of animals and number of plaques. The most striking difference between wild type and transgenic mice was the age-dependent expression of CaV1.2 channels in reactive astrocytes. At the age of 6 month, CaV1.2 channels were rarely detected in reactive astrocytes of transgenic mice, but an incremental number of CaV1.2 expressing reactive astrocytes was found with increasing age of animals and number of amyloid-beta plaques. This study demonstrates that CaV1.2 channels are highly expressed in reactive astrocytes of 12-months of age transgenic mice, which might be a consequence of the increasing amyloid burden. Further studies should clarify which functional implications are associated with the higher availability of CaV1.2 channels in late stage Alzheimer's disease.

  2. Reanalysis of parabiosis of obesity mutants in the age of leptin.

    Science.gov (United States)

    Zeng, Wenwen; Lu, Yi-Hsueh; Lee, Jonah; Friedman, Jeffrey M

    2015-07-21

    In this study we set out to explain the differing effects of parabiosis with genetically diabetic (db) mice versus administration of recombinant leptin. Parabiosis of db mutant, which overexpress leptin, to wildtype (WT) or genetically obese (ob) mice has been reported to cause death by starvation, whereas leptin infusions do not produce lethality at any dose or mode of delivery tested. Leptin is not posttranslationally modified other than a single disulphide bond, raising the possibility that it might require additional factor(s) to exert the maximal appetite-suppressing effect. We reconfirmed the lethal effect of parabiosis of db mutant on WT mice and further showed that this lethality could not be rescued by administration of ghrelin or growth hormone. We then initiated a biochemical fractionation of a high-molecular-weight leptin complex from human plasma and identified clusterin as a major component of this leptin-containing complex. However, in contrast to previous reports, we failed to observe a leptin-potentiating effect of either exogenous or endogenous clusterin, and parabiosis of db clusterin(-/-) double-mutant to WT mice still caused lethality. Intriguingly, in parabiotic pairs of two WT mice, leptin infusion into one of the mice led to an enhanced starvation response during calorie restriction as evidenced by increased plasma ghrelin and growth-hormone levels. Moreover, leptin treatment resulted in death of the parabiotic pairs. These data suggest that the appetite suppression in WT mice after parabiosis to db mutants is the result of induced hyperleptinemia combined with the stress or other aspect(s) of the parabiosis procedure.

  3. Brucella abortus mutants lacking ATP-binding cassette transporter proteins are highly attenuated in virulence and confer protective immunity against virulent B. abortus challenge in BALB/c mice.

    Science.gov (United States)

    Truong, Quang Lam; Cho, Youngjae; Park, Soyeon; Park, Bo-Kyoung; Hahn, Tae-Wook

    2016-06-01

    Brucella abortus RB51 is an attenuated vaccine strain that has been most frequently used for bovine brucellosis. Although it is known to provide good protection in cattle, it still has some drawbacks including resistance to rifampicin, residual virulence and pathogenicity in humans. Thus, there has been a continuous interest on new safe and effective bovine vaccine candidates. In the present study, we have constructed unmarked mutants by deleting singly cydD and cydC genes, which encode ATP-binding cassette transporter proteins, from the chromosome of the virulent Brucella abortus isolate from Korean cow (referred to as IVK15). Both IVK15ΔcydD and ΔcydC mutants showed increased sensitivity to metal ions, hydrogen peroxide and acidic pH, which are mimic to intracellular environment during host infection. Additionally, the mutants exhibited a significant growth defect in RAW264.7 cells and greatly attenuated in mice. Vaccination of mice with either IVK15ΔcydC or IVK15ΔcydD mutant could elicit an anti-Brucella specific immunoglobulin G (IgG) and IgG subclass responses as well as enhance the secretion of interferon-gamma, and provided better protection against challenge with B. abortus strain 2308 than with the commercial B. abortus strain RB51 vaccine. Collectively, these results suggest that both IVK15ΔcydC and IVK15ΔcydD mutants could be an attenuated vaccine candidate against B. abortus. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Localization and expression of substance P in transgenic mice overexpressing human APP751 with the London (V717I) and Swedish (K670M/N671L) mutations.

    Science.gov (United States)

    Willis, Michael; Hutter-Paier, Birgit; Wietzorrek, Georg; Windisch, Manfred; Humpel, Christian; Knaus, Hans Günther; Marksteiner, Josef

    2007-04-27

    Substance P-like immunoreactivity (-LI) is found in neuritic plaques, and is reduced in patients suffering from Alzheimer disease (AD). In this study, we examined the distribution and expression of substance P in transgenic mice overexpressing human amyloid precursor protein (hAPP) APP751 with the London (V717I) and Swedish (K670M/N671L) mutations. Immunohistochemistry was performed to localize substance P- and glial fibrillary acidic protein-LI by confocal microscopy. In hAPP transgenic mice, the number of beta-amyloid plaques significantly increased from 6 to 12 months. About 5% of beta-amyloid plaques were substance P-immunoreactive. In transgenic mice, the morphology of substance P-immunoreactive structures changed by consisting of swollen and dystrophic neurites mostly associated with beta-amyloid plaques. The overall localization and the relative substance P densities were not different between wild type and transgenic mice at 6 and 12 months. At month 12, a dramatic change in the distribution pattern of substance P-LI was observed as it was now expressed in a high number of reactive astrocytes. This expression of substance P in astrocytes was mainly found in the hippocampal formation and thalamic nuclei with a preferential association with beta-amyloid plaques, whereas in cortical regions only faintly substance P-immunoreactive astrocytes were observed. This study indicates that substance P undergoes complex changes in this animal Alzheimer disease model. Future experiments including substance P antagonists are necessary to further explore the interaction between beta-amyloid deposits and substance P.

  5. Oral administration of Aloe vera gel powder prevents UVB-induced decrease in skin elasticity via suppression of overexpression of MMPs in hairless mice.

    Science.gov (United States)

    Saito, Marie; Tanaka, Miyuki; Misawa, Eriko; Yao, Ruiquing; Nabeshima, Kazumi; Yamauchi, Kouji; Abe, Fumiaki; Yamamoto, Yuki; Furukawa, Fukumi

    2016-07-01

    This study reports the effects of oral Aloe vera gel powder (AVGP) containing Aloe sterols on skin elasticity and the extracellular matrix in ultraviolet B (UVB)-irradiated hairless mice. Ten-week-old hairless mice were fed diets containing 0.3% AVGP for 8 weeks and irradiated UVB for 6 weeks. Mice treated with AVGP showed significant prevention of the UVB-induced decrease in skin elasticity. To investigate the mechanism underlying this suppression of skin elasticity loss, we measured the expression of matrix metalloproteinase (MMP)-2, -9, and -13. AVGP prevented both the UVB-induced increases in MMPs expressions. Moreover, we investigated hyaluronic acid (HA) content of mice dorsal skin and gene expression of HA synthase-2 (Has2). In the results, AVGP oral administration prevented UVB-induced decreasing in skin HA content and Has2 expression and attenuates the UVB-induced decrease in serum adiponectin, which promotes Has2 expression. These results suggested that AVGP has the ability to prevent the skin photoaging.

  6. High-fat feeding in cardiomyocyte-restricted PPARdelta knockout mice leads to cardiac overexpression of lipid metabolic genes but fails to rescue cardiac phenotypes.

    Science.gov (United States)

    Li, Yuquan; Cheng, Lihong; Qin, Qianhong; Liu, Jian; Lo, Woo-kuen; Brako, Lowrence A; Yang, Qinglin

    2009-10-01

    Peroxisome proliferator-activated receptor delta (PPARdelta) is an essential determinant of basal myocardial fatty acid oxidation (FAO) and bioenergetics. We wished to determine whether increased lipid loading affects the PPARdelta deficient heart in transcriptional regulation of FAO and in the development of cardiac pathology. Cardiomyocyte-restricted PPARdelta knockout (CR-PPARdelta(-/-)) and control (alpha-MyHC-Cre) mice were subjected to 48 h of fasting and to a long-term maintenance on a (28 weeks) high-fat diet (HFD). The expression of key FAO proteins in heart was examined. Serum lipid profiles, cardiac pathology, and changes of various transduction signaling pathways were also examined. Mice subjected to fasting exhibited upregulated transcript expression of FAO genes in the CR-PPARdelta(-/-) hearts. Moreover, long-term HFD in CR-PPARdelta(-/-) mice induced a strikingly greater transcriptional response. After HFD, genes encoding key FAO enzymes were expressed remarkably more in CR-PPARdelta(-/-) hearts than in those of control mice. Despite the marked rise of FAO gene expression, corresponding protein expression remained low in the CR-PPARdelta(-/-) heart, accompanied by abnormalities in sarcomere structures and mitochondria that were similar to those of CR-PPARdelta(-/-) hearts with regular chow feeding. The CR-PPARdelta(-/-) mice displayed increased expression of PPARgamma co-activator-1alpha (PGC-1alpha) and PPARalpha in the heart with deactivated Akt and p42/44 MAPK signaling in response to HFD. We conclude that PPARdelta is an essential determinant of myocardial FAO. Increased lipid intake activates cardiac expression of FAO genes via PPARalpha/PGC-1alpha pathway, albeit it is not sufficient to improve cardiac pathology due to PPARdelta deficiency.

  7. Plaque deposition dependent decrease in 5-HT2A serotonin receptor in AbetaPPswe/PS1dE9 amyloid overexpressing mice

    DEFF Research Database (Denmark)

    Holm, Peter; Ettrup, Anders; Klein, Anders B

    2010-01-01

    -HT2A receptor regulation in double transgenic AbetaPPswe/PS1dE9 mice which display excess production of Abeta and age-dependent increase in amyloid plaques. Three different age-groups, 4-month-old, 8- month-old, and 11-month-old were included in the study. [3H]-MDL100907, [3H]-escitalopram, and [11C...

  8. Overexpression of Notch ligand Delta-like-1 by dendritic cells enhances their immunoregulatory capacity and exerts antiallergic effects on Th2-mediated allergic asthma in mice.

    Science.gov (United States)

    Lee, Chen-Chen; Lin, Chu-Lun; Leu, Sy-Jye; Lee, Yueh-Lun

    2018-02-01

    Dendritic cells (DCs) are professional antigen-presenting cells, and Notch ligand Delta-like-1 (DLL1) on DCs was implicated in type 1T helper (Th1) differentiation. In this study, we produced genetically engineered bone marrow-derived DCs that expressed DLL1 (DLL1-DCs) by adenoviral transduction. DLL1-DCs exerted a fully mature phenotype, and had positive effects on expression levels of interleukin (IL)-12 and costimulatory molecules. Coculture of allogeneic T cells with ovalbumin (OVA)-pulsed DLL1-DCs enhanced T cell proliferative responses and promoted Th1 cell differentiation. Furthermore, adoptive transfer of OVA-stimulated DLL1-DCs into asthmatic mice alleviated the cardinal features of allergic asthma, including immunoglobulin E (IgE) production, airway hyperresponsiveness (AHR), airway inflammation, and production of Th2-type cytokines. Notably, enhanced levels of the Th1-biased IgG 2a response and interferon (IFN)-γ production were observed in these mice. Taken together, these data indicate that DLL1-DCs promoted Th1 cell development to alter the Th1/Th2 ratio and ameliorate Th2-mediated allergic asthma in mice. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Human hepatic lipase overexpression in mice induces hepatic steatosis and obesity through promoting hepatic lipogenesis and white adipose tissue lipolysis and fatty acid uptake.

    Science.gov (United States)

    Cedó, Lídia; Santos, David; Roglans, Núria; Julve, Josep; Pallarès, Victor; Rivas-Urbina, Andrea; Llorente-Cortes, Vicenta; Laguna, Joan Carles; Blanco-Vaca, Francisco; Escolà-Gil, Joan Carles

    2017-01-01

    Human hepatic lipase (hHL) is mainly localized on the hepatocyte cell surface where it hydrolyzes lipids from remnant lipoproteins and high density lipoproteins and promotes their hepatic selective uptake. Furthermore, hepatic lipase (HL) is closely associated with obesity in multiple studies. Therefore, HL may play a key role on lipid homeostasis in liver and white adipose tissue (WAT). In the present study, we aimed to evaluate the effects of hHL expression on hepatic and white adipose triglyceride metabolism in vivo. Experiments were carried out in hHL transgenic and wild-type mice fed a Western-type diet. Triglyceride metabolism studies included β-oxidation and de novo lipogenesis in liver and WAT, hepatic triglyceride secretion, and adipose lipoprotein lipase (LPL)-mediated free fatty acid (FFA) lipolysis and influx. The expression of hHL promoted hepatic triglyceride accumulation and de novo lipogenesis without affecting triglyceride secretion, and this was associated with an upregulation of Srebf1 as well as the main genes controlling the synthesis of fatty acids. Transgenic mice also exhibited more adiposity and an increased LPL-mediated FFA influx into the WAT without affecting glucose tolerance. Our results demonstrate that hHL promoted hepatic steatosis in mice mainly by upregulating de novo lipogenesis. HL also upregulated WAT LPL and promoted triglyceride-rich lipoprotein hydrolysis and adipose FFA uptake. These data support the important role of hHL in regulating hepatic lipid homeostasis and confirm the broad cardiometabolic role of HL.

  10. Cardiac extrinsic apoptotic pathway is silent in young but activated in elder mice overexpressing bovine GH: interplay with the intrinsic pathway.

    Science.gov (United States)

    Bogazzi, Fausto; Russo, Dania; Raggi, Francesco; Bohlooly-Y, Mohammad; Tornell, Jan; Sardella, Chiara; Lombardi, Martina; Urbani, Claudio; Manetti, Luca; Brogioni, Sandra; Martino, Enio

    2011-08-01

    Apoptosis may occur through the mitochondrial (intrinsic) pathway and activation of death receptors (extrinsic pathway). Young acromegalic mice have reduced cardiac apoptosis whereas elder animals have increased cardiac apoptosis. Multiple intrinsic apoptotic pathways have been shown to be modulated by GH and other stimuli in the heart of acromegalic mice. However, the role of the extrinsic apoptotic pathways in acromegalic hearts is currently unknown. In young (3-month-old) acromegalic mice, expression of proteins of the extrinsic apoptotic pathway did not differ from that of wild-type animals, suggesting that this mechanism did not participate in the lower cardiac apoptosis levels observed at this age. On the contrary, the extrinsic pathway was active in elder (9-month-old) animals (as shown by increased expression of TRAIL, FADD, TRADD and increased activation of death inducing signaling complex) leading to increased levels of active caspase 8. It is worth noting that changes of some pro-apoptotic proteins were induced by GH, which seemed to have, in this context, pro-apoptotic effects. The extrinsic pathway influenced the intrinsic pathway by modulating t-Bid, the cellular levels of which were reduced in young and increased in elder animals. However, in young animals this effect was due to reduced levels of Bid regulated by the extrinsic pathway, whereas in elder animals the increased levels of t-Bid were due to the increased levels of active caspase 8. In conclusion, the extrinsic pathway participates in the cardiac pro-apoptotic phenotype of elder acromegalic animals either directly, enhancing caspase 8 levels or indirectly, increasing t-Bid levels and conveying death signals to the intrinsic pathway.

  11. Human hepatic lipase overexpression in mice induces hepatic steatosis and obesity through promoting hepatic lipogenesis and white adipose tissue lipolysis and fatty acid uptake.

    Directory of Open Access Journals (Sweden)

    Lídia Cedó

    Full Text Available Human hepatic lipase (hHL is mainly localized on the hepatocyte cell surface where it hydrolyzes lipids from remnant lipoproteins and high density lipoproteins and promotes their hepatic selective uptake. Furthermore, hepatic lipase (HL is closely associated with obesity in multiple studies. Therefore, HL may play a key role on lipid homeostasis in liver and white adipose tissue (WAT. In the present study, we aimed to evaluate the effects of hHL expression on hepatic and white adipose triglyceride metabolism in vivo. Experiments were carried out in hHL transgenic and wild-type mice fed a Western-type diet. Triglyceride metabolism studies included β-oxidation and de novo lipogenesis in liver and WAT, hepatic triglyceride secretion, and adipose lipoprotein lipase (LPL-mediated free fatty acid (FFA lipolysis and influx. The expression of hHL promoted hepatic triglyceride accumulation and de novo lipogenesis without affecting triglyceride secretion, and this was associated with an upregulation of Srebf1 as well as the main genes controlling the synthesis of fatty acids. Transgenic mice also exhibited more adiposity and an increased LPL-mediated FFA influx into the WAT without affecting glucose tolerance. Our results demonstrate that hHL promoted hepatic steatosis in mice mainly by upregulating de novo lipogenesis. HL also upregulated WAT LPL and promoted triglyceride-rich lipoprotein hydrolysis and adipose FFA uptake. These data support the important role of hHL in regulating hepatic lipid homeostasis and confirm the broad cardiometabolic role of HL.

  12. A Conditioned Medium of Umbilical Cord Mesenchymal Stem Cells Overexpressing Wnt7a Promotes Wound Repair and Regeneration of Hair Follicles in Mice

    Directory of Open Access Journals (Sweden)

    Liang Dong

    2017-01-01

    Full Text Available Mesenchymal stem cells (MSCs can affect the microenvironment of a wound and thereby accelerate wound healing. Wnt proteins act as key mediators of skin development and participate in the formation of skin appendages such as hair. The mechanisms of action of MSCs and Wnt proteins on skin wounds are largely unknown. Here, we prepared a Wnt7a-containing conditioned medium (Wnt-CM from the supernatant of cultured human umbilical cord-MSCs (UC-MSCs overexpressing Wnt7a in order to examine the effects of this CM on cutaneous healing. Our results revealed that Wnt-CM can accelerate wound closure and induce regeneration of hair follicles. Meanwhile, Wnt-CM enhanced expression of extracellular matrix (ECM components and cell migration of fibroblasts but inhibited the migratory ability and expression of K6 and K16 in keratinocytes by enhancing expression of c-Myc. However, we found that the CM of fibroblasts treated with Wnt-CM (HFWnt-CM-CM can also promote wound repair and keratinocyte migration; but there was no increase in the number of hair follicles of regeneration. These data indicate that Wnt7a and UC-MSCs have synergistic effects: they can accelerate wound repair and induce hair regeneration via cellular communication in the wound microenvironment. Thus, this study opens up new avenues of research on the mechanisms underlying wound repair.

  13. Expression of truncated PITX3 in the developing lens leads to microphthalmia and aphakia in mice.

    Directory of Open Access Journals (Sweden)

    Kenta Wada

    Full Text Available Microphthalmia is a severe ocular disorder, and this condition is typically caused by mutations in transcription factors that are involved in eye development. Mice carrying mutations in these transcription factors would be useful tools for defining the mechanisms underlying developmental eye disorders. We discovered a new spontaneous recessive microphthalmos mouse mutant in the Japanese wild-derived inbred strain KOR1/Stm. The homozygous mutant mice were histologically characterized as microphthalmic by the absence of crystallin in the lens, a condition referred to as aphakia. By positional cloning, we identified the nonsense mutation c.444C>A outside the genomic region that encodes the homeodomain of the paired-like homeodomain transcription factor 3 gene (Pitx3 as the mutation responsible for the microphthalmia and aphakia. We examined Pitx3 mRNA expression of mutant mice during embryonic stages using RT-PCR and found that the expression levels are higher than in wild-type mice. Pitx3 over-expression in the lens during developmental stages was also confirmed at the protein level in the microphthalmos mutants via immunohistochemical analyses. Although lens fiber differentiation was not observed in the mutants, strong PITX3 protein signals were observed in the lens vesicles of the mutant lens. Thus, we speculated that abnormal PITX3, which lacks the C-terminus (including the OAR domain as a result of the nonsense mutation, is expressed in mutant lenses. We showed that the expression of the downstream genes Foxe3, Prox1, and Mip was altered because of the Pitx3 mutation, with large reductions in the lens vesicles in the mutants. Similar profiles were observed by immunohistochemical analysis of these proteins. The expression profiles of crystallins were also altered in the mutants. Therefore, we speculated that the microphthalmos/aphakia in this mutant is caused by the expression of truncated PITX3, resulting in the abnormal expression of

  14. Alisertib added to rituximab and vincristine is synthetic lethal and potentially curative in mice with aggressive DLBCL co-overexpressing MYC and BCL2.

    Directory of Open Access Journals (Sweden)

    Daruka Mahadevan

    Full Text Available Pearson correlation coefficient for expression analysis of the Lymphoma/Leukemia Molecular Profiling Project (LLMPP demonstrated Aurora A and B are highly correlated with MYC in DLBCL and mantle cell lymphoma (MCL, while both Auroras correlate with BCL2 only in DLBCL. Auroras are up-regulated by MYC dysregulation with associated aneuploidy and resistance to microtubule targeted agents such as vincristine. Myc and Bcl2 are differentially expressed in U-2932, TMD-8, OCI-Ly10 and Granta-519, but only U-2932 cells over-express mutated p53. Alisertib [MLN8237 or M], a highly selective small molecule inhibitor of Aurora A kinase, was synergistic with vincristine [VCR] and rituximab [R] for inhibition of cell proliferation, abrogation of cell cycle checkpoints and enhanced apoptosis versus single agent or doublet therapy. A DLBCL (U-2932 mouse model showed tumor growth inhibition (TGI of ∼ 10-20% (p = 0.001 for M, VCR and M-VCR respectively, while R alone showed ∼ 50% TGI (p = 0.001. M-R and VCR-R led to tumor regression [TR], but relapsed 10 days after discontinuing therapy. In contrast, M-VCR-R demonstrated TR with no relapse >40 days after stopping therapy with a Kaplan-Meier survival of 100%. Genes that are modulated by M-VCR-R (CENP-C, Auroras play a role in centromere-kinetochore function in an attempt to maintain mitosis in the presence of synthetic lethality. Together, our data suggest that the interaction between alisertib plus VCR plus rituximab is synergistic and synthetic lethal in Myc and Bcl-2 co-expressing DLBCL. Alisertib plus vincristine plus rituximab [M-VCR-R] may represent a new strategy for DLBCL therapy.

  15. Alisertib added to rituximab and vincristine is synthetic lethal and potentially curative in mice with aggressive DLBCL co-overexpressing MYC and BCL2.

    Science.gov (United States)

    Mahadevan, Daruka; Morales, Carla; Cooke, Laurence S; Manziello, Ann; Mount, David W; Persky, Daniel O; Fisher, Richard I; Miller, Thomas P; Qi, Wenqing

    2014-01-01

    Pearson correlation coefficient for expression analysis of the Lymphoma/Leukemia Molecular Profiling Project (LLMPP) demonstrated Aurora A and B are highly correlated with MYC in DLBCL and mantle cell lymphoma (MCL), while both Auroras correlate with BCL2 only in DLBCL. Auroras are up-regulated by MYC dysregulation with associated aneuploidy and resistance to microtubule targeted agents such as vincristine. Myc and Bcl2 are differentially expressed in U-2932, TMD-8, OCI-Ly10 and Granta-519, but only U-2932 cells over-express mutated p53. Alisertib [MLN8237 or M], a highly selective small molecule inhibitor of Aurora A kinase, was synergistic with vincristine [VCR] and rituximab [R] for inhibition of cell proliferation, abrogation of cell cycle checkpoints and enhanced apoptosis versus single agent or doublet therapy. A DLBCL (U-2932) mouse model showed tumor growth inhibition (TGI) of ∼ 10-20% (p = 0.001) for M, VCR and M-VCR respectively, while R alone showed ∼ 50% TGI (p = 0.001). M-R and VCR-R led to tumor regression [TR], but relapsed 10 days after discontinuing therapy. In contrast, M-VCR-R demonstrated TR with no relapse >40 days after stopping therapy with a Kaplan-Meier survival of 100%. Genes that are modulated by M-VCR-R (CENP-C, Auroras) play a role in centromere-kinetochore function in an attempt to maintain mitosis in the presence of synthetic lethality. Together, our data suggest that the interaction between alisertib plus VCR plus rituximab is synergistic and synthetic lethal in Myc and Bcl-2 co-expressing DLBCL. Alisertib plus vincristine plus rituximab [M-VCR-R] may represent a new strategy for DLBCL therapy.

  16. RiceFOX: a database of Arabidopsis mutant lines overexpressing rice full-length cDNA that contains a wide range of trait information to facilitate analysis of gene function.

    Science.gov (United States)

    Sakurai, Tetsuya; Kondou, Youichi; Akiyama, Kenji; Kurotani, Atsushi; Higuchi, Mieko; Ichikawa, Takanari; Kuroda, Hirofumi; Kusano, Miyako; Mori, Masaki; Saitou, Tsutomu; Sakakibara, Hitoshi; Sugano, Shoji; Suzuki, Makoto; Takahashi, Hideki; Takahashi, Shinya; Takatsuji, Hiroshi; Yokotani, Naoki; Yoshizumi, Takeshi; Saito, Kazuki; Shinozaki, Kazuo; Oda, Kenji; Hirochika, Hirohiko; Matsui, Minami

    2011-02-01

    Identification of gene function is important not only for basic research but also for applied science, especially with regard to improvements in crop production. For rapid and efficient elucidation of useful traits, we developed a system named FOX hunting (Full-length cDNA Over-eXpressor gene hunting) using full-length cDNAs (fl-cDNAs). A heterologous expression approach provides a solution for the high-throughput characterization of gene functions in agricultural plant species. Since fl-cDNAs contain all the information of functional mRNAs and proteins, we introduced rice fl-cDNAs into Arabidopsis plants for systematic gain-of-function mutation. We generated >30,000 independent Arabidopsis transgenic lines expressing rice fl-cDNAs (rice FOX Arabidopsis mutant lines). These rice FOX Arabidopsis lines were screened systematically for various criteria such as morphology, photosynthesis, UV resistance, element composition, plant hormone profile, metabolite profile/fingerprinting, bacterial resistance, and heat and salt tolerance. The information obtained from these screenings was compiled into a database named 'RiceFOX'. This database contains around 18,000 records of rice FOX Arabidopsis lines and allows users to search against all the observed results, ranging from morphological to invisible traits. The number of searchable items is approximately 100; moreover, the rice FOX Arabidopsis lines can be searched by rice and Arabidopsis gene/protein identifiers, sequence similarity to the introduced rice fl-cDNA and traits. The RiceFOX database is available at http://ricefox.psc.riken.jp/.

  17. A Novel mouse model of enhanced proteostasis: Full-length human heat shock factor 1 transgenic mice

    International Nuclear Information System (INIS)

    Pierce, Anson; Wei, Rochelle; Halade, Dipti; Yoo, Si-Eun; Ran, Qitao; Richardson, Arlan

    2010-01-01

    Research highlights: → Development of mouse overexpressing native human HSF1 in all tissues including CNS. → HSF1 overexpression enhances heat shock response at whole-animal and cellular level. → HSF1 overexpression protects from polyglutamine toxicity and favors aggresomes. → HSF1 overexpression enhances proteostasis at the whole-animal and cellular level. -- Abstract: The heat shock response (HSR) is controlled by the master transcriptional regulator heat shock factor 1 (HSF1). HSF1 maintains proteostasis and resistance to stress through production of heat shock proteins (HSPs). No transgenic model exists that overexpresses HSF1 in tissues of the central nervous system (CNS). We generated a transgenic mouse overexpressing full-length non-mutant HSF1 and observed a 2-4-fold increase in HSF1 mRNA and protein expression in all tissues studied of HSF1 transgenic (HSF1 +/0 ) mice compared to wild type (WT) littermates, including several regions of the CNS. Basal expression of HSP70 and 90 showed only mild tissue-specific changes; however, in response to forced exercise, the skeletal muscle HSR was more elevated in HSF1 +/0 mice compared to WT littermates and in fibroblasts following heat shock, as indicated by levels of inducible HSP70 mRNA and protein. HSF1 +/0 cells elicited a significantly more robust HSR in response to expression of the 82 repeat polyglutamine-YFP fusion construct (Q82YFP) and maintained proteasome-dependent processing of Q82YFP compared to WT fibroblasts. Overexpression of HSF1 was associated with fewer, but larger Q82YFP aggregates resembling aggresomes in HSF1 +/0 cells, and increased viability. Therefore, our data demonstrate that tissues and cells from mice overexpressing full-length non-mutant HSF1 exhibit enhanced proteostasis.

  18. Social approach behaviors are similar on conventional versus reverse lighting cycles, and in replications across cohorts, in BTBR T+ tf/J, C57BL/6J, and vasopressin receptor 1B mutant mice

    Directory of Open Access Journals (Sweden)

    Mu Yang

    2007-11-01

    Full Text Available Mice are a nocturnal species, whose social behaviors occur primarily during the dark phase of the circadian cycle. However, laboratory rodents are frequently tested during their light phase, for practical reasons. We investigated the question of whether light phase testing presents a methodological pitfall for investigating mouse social approach behaviors. Three lines of mice were systematically compared. One cohort of each line was raised in a conventional lighting schedule and tested during the light phase, under white light illumination; another cohort was raised in a reverse lighting schedule and tested during their dark phase, under dim red light. Male C57BL/6J (B6 displayed high levels of sociability in our three-chambered automated social approach task when tested in either phase. BTBR T+ tf/J (BTBR displayed low levels of sociability in either phase. Five cohorts of vasopressin receptor subtype 1b (Avpr1b null mutants, heterozygotes, and wildtype littermate controls were tested in the same social approach paradigm: three in the dark phase and two in the light phase. All three genotypes displayed normal sociability in four out of the five replications. In the juvenile play test, testing phase had no effect on play soliciting behaviors in Avpr1b mice, but had modest effects on nose sniff and huddling. Taken together, these findings indicate that testing phase is not a crucial factor for studying some forms of social approach in juvenile and adult mice.

  19. Parvalbumin overexpression alters immune-mediated increases in intracellular calcium, and delays disease onset in a transgenic model of familial amyotrophic lateral sclerosis

    Science.gov (United States)

    Beers, D. R.; Ho, B. K.; Siklos, L.; Alexianu, M. E.; Mosier, D. R.; Mohamed, A. H.; Otsuka, Y.; Kozovska, M. E.; McAlhany, R. E.; Smith, R. G.; hide

    2001-01-01

    Intracellular calcium is increased in vulnerable spinal motoneurons in immune-mediated as well as transgenic models of amyotrophic lateral sclerosis (ALS). To determine whether intracellular calcium levels are influenced by the calcium-binding protein parvalbumin, we developed transgenic mice overexpressing parvalbumin in spinal motoneurons. ALS immunoglobulins increased intracellular calcium and spontaneous transmitter release at motoneuron terminals in control animals, but not in parvalbumin overexpressing transgenic mice. Parvalbumin transgenic mice interbred with mutant SOD1 (mSOD1) transgenic mice, an animal model of familial ALS, had significantly reduced motoneuron loss, and had delayed disease onset (17%) and prolonged survival (11%) when compared with mice with only the mSOD1 transgene. These results affirm the importance of the calcium binding protein parvalbumin in altering calcium homeostasis in motoneurons. The increased motoneuron parvalbumin can significantly attenuate the immune-mediated increases in calcium and to a lesser extent compensate for the mSOD1-mediated 'toxic-gain-of-function' in transgenic mice.

  20. Overexpression of Interleukin-4 in the Thyroid of Transgenic Mice Upregulates the Expression of Duox1 and the Anion Transporter Pendrin

    Science.gov (United States)

    Achouri, Younes; Hahn, Stephan; Many, Marie-Christine; Craps, Julie; Refetoff, Samuel; Liao, Xiao-Hui; Dumont, Jacques E.; Van Sande, Jacqueline; Corvilain, Bernard; Miot, Françoise; De Deken, Xavier

    2016-01-01

    Background: The dual oxidases (Duox) are involved in hydrogen peroxide generation, which is essential for thyroid hormone synthesis, and therefore they are markers of thyroid function. During inflammation, cytokines upregulate DUOX gene expression in the airway and the intestine, suggesting a role for these proteins in innate immunity. It was previously demonstrated that interleukin-4 (IL-4) upregulates DUOX gene expression in thyrocytes. Although the role of IL-4 in autoimmune thyroid diseases has been studied extensively, the effects of IL-4 on thyroid physiology remain largely unknown. Therefore, a new animal model was generated to study the impact of IL-4 on thyroid function. Methods: Transgenic (Thyr-IL-4) mice with thyroid-targeted expression of murine IL-4 were generated. Transgene expression was verified at the mRNA and protein level in thyroid tissues and primary cultures. The phenotype of the Thyr-IL-4 animals was characterized by measuring serum thyroxine (T4) and thyrotropin levels and performing thyroid morphometric analysis, immunohistochemistry, whole transcriptome sequencing, quantitative reverse transcription polymerase chain reaction, and ex vivo thyroid function assays. Results: Thyrocytes from two Thyr-IL-4 mouse lines (#30 and #52) expressed IL-4, which was secreted into the extracellular space. Although 10-month-old transgenic animals had T4 and thyrotropin serum levels in the normal range, they had altered thyroid follicular structure with enlarged follicles composed of elongated thyrocytes containing numerous endocytic vesicles. These follicles were positive for T4 staining the colloid, indicating their capacity to produce thyroid hormones. RNA profiling of Thyr-IL-4 thyroid samples revealed modulation of multiple genes involved in inflammation, while no major leukocyte infiltration could be detected. Upregulated expression of Duox1, Duoxa1, and the pendrin anion exchanger gene (Slc26a4) was detected. In contrast, the iodide symporter gene

  1. Impaired long-term memory retention and working memory in sdy mutant mice with a deletion in Dtnbp1, a susceptibility gene for schizophrenia

    Directory of Open Access Journals (Sweden)

    Takao Keizo

    2008-10-01

    Full Text Available Abstract Background Schizophrenia is a complex genetic disorder caused by multiple genetic and environmental factors. The dystrobrevin-binding protein 1 (DTNBP1: dysbindin-1 gene is a major susceptibility gene for schizophrenia. Genetic variations in DTNBP1 are associated with cognitive functions, general cognitive ability and memory function, and clinical features of patients with schizophrenia including negative symptoms and cognitive decline. Since reduced expression of dysbindin-1 has been observed in postmortem brains of patients with schizophrenia, the sandy (sdy mouse, which has a deletion in the Dtnbp1 gene and expresses no dysbindin-1 protein, could be an animal model of schizophrenia. To address this issue, we have carried out a comprehensive behavioral analysis of the sdy mouse in this study. Results In a rotarod test, sdy mice did not exhibit motor learning whilst the wild type mice did. In a Barnes circular maze test both sdy mice and wild type mice learned to selectively locate the escape hole during the course of the training period and in the probe trial conducted 24 hours after last training. However, sdy mice did not locate the correct hole in the retention probe tests 7 days after the last training trial, whereas wild type mice did, indicating impaired long-term memory retention. A T-maze forced alternation task, a task of working memory, revealed no effect of training in sdy mice despite the obvious effect of training in wild type mice, suggesting a working memory deficit. Conclusion Sdy mouse showed impaired long-term memory retention and working memory. Since genetic variation in DTNBP1 is associated with both schizophrenia and memory function, and memory function is compromised in patients with schizophrenia, the sdy mouse may represent a useful animal model to investigate the mechanisms of memory dysfunction in the disorder.

  2. Effect of CCS on the accumulation of FALS SOD1 mutant-containing aggregates and on mitochondrial translocation of SOD1 mutants: implication of a free radical hypothesis.

    Science.gov (United States)

    Kim, Ha Kun; Chung, Youn Wook; Chock, P Boon; Yim, Moon B

    2011-05-15

    Missense mutations of SOD1 are linked to familial amyotrophic lateral sclerosis (FALS) through a yet-to-be identified toxic-gain-of-function. One of the proposed mechanisms involves enhanced aggregate formation. However, a recent study showed that dual transgenic mice overexpressing both G93A and CCS copper chaperone (G93A/CCS) exhibit no SOD1-positive aggregates yet show accelerated FALS symptoms with enhanced mitochondrial pathology compared to G93A mice. Using a dicistronic mRNA to simultaneously generate hSOD1 mutants, G93A, A4V and G85R, and hCCS in AAV293 cells, we revealed: (i) CCS is degraded primarily via a macroautophagy pathway. It forms a stable heterodimer with inactive G85R, and via its novel copper chaperone-independent molecular chaperone activity facilitates G85R degradation via a macroautophagy-mediated pathway. For active G93A and A4V, CCS catalyzes their maturation to form active and soluble homodimers. (ii) CCS reduces, under non-oxidative conditions, yet facilitates in the presence of H(2)O(2), mitochondrial translocation of inactive SOD1 mutants. These results, together with previous reports showing FALS SOD1 mutants enhanced free radical-generating activity, provide a mechanistic explanation for the observations with G93A/CCS dual transgenic mice and suggest that free radical generation by FALS SOD1, enhanced by CCS, may, in part, be responsible for the FALS SOD1 mutant-linked aggregation, mitochondrial translocation, and degradation. Published by Elsevier Inc.

  3. Construct and face validity of a new model for the three-hit theory of depression using PACAP mutant mice on CD1 background.

    Science.gov (United States)

    Farkas, József; Kovács, László Á; Gáspár, László; Nafz, Anna; Gaszner, Tamás; Ujvári, Balázs; Kormos, Viktória; Csernus, Valér; Hashimoto, Hitoshi; Reglődi, Dóra; Gaszner, Balázs

    2017-06-23

    Major depression is a common cause of chronic disability. Despite decades of efforts, no equivocally accepted animal model is available for studying depression. We tested the validity of a new model based on the three-hit concept of vulnerability and resilience. Genetic predisposition (hit 1, mutation of pituitary adenylate cyclase-activating polypeptide, PACAP gene), early-life adversity (hit 2, 180-min maternal deprivation, MD180) and chronic variable mild stress (hit 3, CVMS) were combined. Physical, endocrinological, behavioral and functional morphological tools were used to validate the model. Body- and adrenal weight changes as well as corticosterone titers proved that CVMS was effective. Forced swim test indicated increased depression in CVMS PACAP heterozygous (Hz) mice with MD180 history, accompanied by elevated anxiety level in marble burying test. Corticotropin-releasing factor neurons in the oval division of the bed nucleus of the stria terminalis showed increased FosB expression, which was refractive to CVMS exposure in wild-type and Hz mice. Urocortin1 neurons became over-active in CMVS-exposed PACAP knock out (KO) mice with MD180 history, suggesting the contribution of centrally projecting Edinger-Westphal nucleus to the reduced depression and anxiety level of stressed KO mice. Serotoninergic neurons of the dorsal raphe nucleus lost their adaptation ability to CVMS in MD180 mice. In conclusion, the construct and face validity criteria suggest that MD180 PACAP HZ mice on CD1 background upon CVMS may be used as a reliable model for the three-hit theory. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. The effect of human factor H on immunogenicity of meningococcal native outer membrane vesicle vaccines with over-expressed factor H binding protein.

    Directory of Open Access Journals (Sweden)

    Peter T Beernink

    Full Text Available The binding of human complement inhibitors to vaccine antigens in vivo could diminish their immunogenicity. A meningococcal ligand for the complement down-regulator, factor H (fH, is fH-binding protein (fHbp, which is specific for human fH. Vaccines containing recombinant fHbp or native outer membrane vesicles (NOMV from mutant strains with over-expressed fHbp are in clinical development. In a previous study in transgenic mice, the presence of human fH impaired the immunogenicity of a recombinant fHbp vaccine. In the present study, we prepared two NOMV vaccines from mutant group B strains with over-expressed wild-type fHbp or an R41S mutant fHbp with no detectable fH binding. In wild-type mice in which mouse fH did not bind to fHbp in either vaccine, the NOMV vaccine with wild-type fHbp elicited 2-fold higher serum IgG anti-fHbp titers (P = 0.001 and 4-fold higher complement-mediated bactericidal titers against a PorA-heterologous strain than the NOMV with the mutant fHbp (P = 0.003. By adsorption, the bactericidal antibodies were shown to be directed at fHbp. In transgenic mice in which human fH bound to the wild-type fHbp but not to the R41S fHbp, the NOMV vaccine with the mutant fHbp elicited 5-fold higher serum IgG anti-fHbp titers (P = 0.002, and 19-fold higher bactericidal titers than the NOMV vaccine with wild-type fHbp (P = 0.001. Thus, in mice that differed only by the presence of human fH, the respective results with the two vaccines were opposite. The enhanced bactericidal activity elicited by the mutant fHbp vaccine in the presence of human fH far outweighed the loss of immunogenicity of the mutant protein in wild-type animals. Engineering fHbp not to bind to its cognate complement inhibitor, therefore, may increase vaccine immunogenicity in humans.

  5. The In Vivo Granulopoietic Response to Dexamethasone Injection Is Abolished in Perforin-Deficient Mutant Mice and Corrected by Lymphocyte Transfer from Nonsensitized Wild-Type Donors

    Directory of Open Access Journals (Sweden)

    Pedro Xavier-Elsas

    2015-01-01

    Full Text Available Exogenously administered glucocorticoids enhance eosinophil and neutrophil granulocyte production from murine bone-marrow. A hematological response dependent on endogenous glucocorticoids underlies bone-marrow eosinophilia induced by trauma or allergic sensitization/challenge. We detected a defect in granulopoiesis in nonsensitized, perforin-deficient mice. In steady-state conditions, perforin- (Pfp- deficient mice showed significantly decreased bone-marrow and blood eosinophil and neutrophil counts, and colony formation in response to GM-CSF, relative to wild-type controls of comparable age and/or weight. By contrast, peripheral blood or spleen total cell and lymphocyte numbers were not affected by perforin deficiency. Dexamethasone enhanced colony formation by GM-CSF-stimulated progenitors from wild-type controls, but not Pfp mice. Dexamethasone injection increased bone-marrow eosinophil and neutrophil counts in wild-type controls, but not Pfp mice. Because perforin is expressed in effector lymphocytes, we examined whether this defect would be corrected by transferring wild-type lymphocytes into perforin-deficient recipients. Short-term reconstitution of the response to dexamethasone was separately achieved for eosinophils and neutrophils by transfer of distinct populations of splenic lymphocytes from nonsensitized wild-type donors. Transfer of the same amount of splenic lymphocytes from perforin-deficient donors was ineffective. This demonstrates that the perforin-dependent, granulopoietic response to dexamethasone can be restored by transfer of innate lymphocyte subpopulations.

  6. Mast cell-deficient Kit(W-sh) "Sash" mutant mice display aberrant myelopoiesis leading to the accumulation of splenocytes that act as myeloid-derived suppressor cells.

    Science.gov (United States)

    Michel, Anastasija; Schüler, Andrea; Friedrich, Pamela; Döner, Fatma; Bopp, Tobias; Radsak, Markus; Hoffmann, Markus; Relle, Manfred; Distler, Ute; Kuharev, Jörg; Tenzer, Stefan; Feyerabend, Thorsten B; Rodewald, Hans-Reimer; Schild, Hansjörg; Schmitt, Edgar; Becker, Marc; Stassen, Michael

    2013-06-01

    Mast cell-deficient Kit(W-sh) "sash" mice are widely used to investigate mast cell functions. However, mutations of c-Kit also affect additional cells of hematopoietic and nonimmune origin. In this study, we demonstrate that Kit(W-sh) causes aberrant extramedullary myelopoiesis characterized by the expansion of immature lineage-negative cells, common myeloid progenitors, and granulocyte/macrophage progenitors in the spleen. A consistent feature shared by these cell types is the reduced expression of c-Kit. Populations expressing intermediate and high levels of Ly6G, a component of the myeloid differentiation Ag Gr-1, are also highly expanded in the spleen of sash mice. These cells are able to suppress T cell responses in vitro and phenotypically and functionally resemble myeloid-derived suppressor cells (MDSC). MDSC typically accumulate in tumor-bearing hosts and are able to dampen immune responses. Consequently, transfer of MDSC from naive sash mice into line 1 alveolar cell carcinoma tumor-bearing wild-type littermates leads to enhanced tumor progression. However, although it can also be observed in sash mice, accelerated growth of transplanted line 1 alveolar cell carcinoma tumors is a mast cell-independent phenomenon. Thus, the Kit(W-sh) mutation broadly affects key steps in myelopoiesis that may have an impact on mast cell research.

  7. Fusion genetic analysis of jasmonate-signalling mutants in Arabidopsis

    DEFF Research Database (Denmark)

    Jensen, Anders Bøgh; Raventos, D.; Mundy, John Williams

    2002-01-01

    as two recessive mutants, designated joe1 and 2, that overexpress the reporter. Genetic analysis indicated that reporter overexpression in the joe mutants requires COI. joe1 responded to MeJA with increased anthocyanin accumulation, while joe2 responded with decreased root growth inhibition. In addition...... activity was also induced by the protein kinase inhibitor staurosporine and antagonized by the protein phosphatase inhibitor okadaic acid. FLUC bio-imaging, RNA gel-blot analysis and progeny analyses identified three recessive mutants that underexpress the FLUC reporter, designated jue1, 2 and 3, as well...

  8. Amyotrophic lateral sclerosis mutant vesicle-associated membrane protein-associated protein-B transgenic mice develop TAR-DNA-binding protein-43 pathology.

    LENUS (Irish Health Repository)

    Tudor, E L

    2010-05-19

    Cytoplasmic ubiquitin-positive inclusions containing TAR-DNA-binding protein-43 (TDP-43) within motor neurons are the hallmark pathology of sporadic amyotrophic lateral sclerosis (ALS). TDP-43 is a nuclear protein and the mechanisms by which it becomes mislocalized and aggregated in ALS are not properly understood. A mutation in the vesicle-associated membrane protein-associated protein-B (VAPB) involving a proline to serine substitution at position 56 (VAPBP56S) is the cause of familial ALS type-8. To gain insight into the molecular mechanisms by which VAPBP56S induces disease, we created transgenic mice that express either wild-type VAPB (VAPBwt) or VAPBP56S in the nervous system. Analyses of both sets of mice revealed no overt motor phenotype nor alterations in survival. However, VAPBP56S but not VAPBwt transgenic mice develop cytoplasmic TDP-43 accumulations within spinal cord motor neurons that were first detected at 18 months of age. Our results suggest a link between abnormal VAPBP56S function and TDP-43 mislocalization.

  9. Microclones derived from the mouse chromosome 7 D-E bands map within the proximal region of the c14CoS deletion in albino mutant mice

    International Nuclear Information System (INIS)

    Toenjes, R.R.W.; Weith, A.; Rinchik, E.M.; Winking, H.; Carnwath, J.W.; Kaliner, B.; Paul, D.

    1991-01-01

    A group of radiation-induced perinatal-lethal deletions that include the albino (c) locus on mouse chromosome 7 causes failure of expression of various hepatocyte-specific genes when homozygous. The transcription of such genes could be controlled in trans by a regulatory gene(s) located within the proximal region of the C14CoS deletion. To identify this potential regulatory gene, a microclone library was established from microdissected D and E bands of chromosome 7. Three nonoverlapping microclones (E305, E336B, and E453B) hybridizing with wildtype but not with C14CoS/C14CoS DNA were isolated. E336B represents a single-copy DNA fragment, whereas E305 and E453B hybridized with 3 and 10 EcoRI DNA restriction fragments, respectively. All fragments map exclusively within the deletion. The microclones hybridized to DNA of viable C6H/C14CoS deletion heterozygotes but not to DNA of homozygotes for the lethal mutation c10R75M, which belongs to the same complementation group as c14CoS. DNA of viable homozygous mutant C62DSD, which carries a deletion breakpoint proximal to that of c6H, hybridized only with E453B. This microclone identified 6 EcoRI restriction fragments in C62DSD/C62DSD DNA. The results demonstrate that of the isolated microclones, E453B identifies a locus (D7RT453B) that maps closest to the hsdr-1 (hepatocyte-specific developmental regulation) locus, which maps between the proximal breakpoints of deletions c10R75M and c62DSD

  10. Gene expression in skin tumors induced in hairless mice by chronic exposure to ultraviolet B irradiation

    International Nuclear Information System (INIS)

    Sato, Hiromi; Tanaka, Misao; Kobayashi, Shizuko; Suzuki, Junko S.; Ogiso, Manabu; Tohyama, Chiharu

    1997-01-01

    We investigated the expressions of c-Ha-ras, c-jun, c-fos, c-myc genes and p53 protein in the development of skin tumours induced by chronic exposure to UVB without a photosensitizer using hairless mice. When mice were exposed to UVB at a dose of 2 kJ/m 2 three times a week, increased c-Ha-ras and c-myc transcripts were detected after only 5 weeks of exposure, while no tumour appeared on the exposed skin. The increase in gene expression continued until 25 weeks, when tumours, identified pathologically as mainly squamous cell carcinomas (SCC), developed in the dorsal skin. In these SCC, overexpression of c-fos mRNA was also observed along with the increases in c-Ha-ras and c-myc. A single dose of UVB (2 kJ/m 2 ) applied to the backs of hairless mice transiently induced overexpression of the early event genes c-fos, c-jun and c-myc, but not c-Ha-ras, in the exposed area of skin. Accumulation of p53 protein was determined by Western blotting analysis of immunohistochemistry using monoclonal antibodies PAb 240 or 246, which recognize mutant or wide type, respectively. In the SCC, a mutant p53 protein accumulated in the cytoplasm and nucleus. After single-dose irradiation, the increased wild-type p53 protein was observed in the nuclei of epidermal cells. The present results suggest that overexpression of the c-fos, c-myc and c-Ha-ras genes, and the mutational changes in p53 protein might be associated with skin photocarcinogenesis. Moreover, overexpression of the c-Ha-ras and c-myc genes might be an early event in the development of UVB-induced skin tumors in mice. (author)

  11. Mutant power: using mutant allele collections for yeast functional genomics.

    Science.gov (United States)

    Norman, Kaitlyn L; Kumar, Anuj

    2016-03-01

    The budding yeast has long served as a model eukaryote for the functional genomic analysis of highly conserved signaling pathways, cellular processes and mechanisms underlying human disease. The collection of reagents available for genomics in yeast is extensive, encompassing a growing diversity of mutant collections beyond gene deletion sets in the standard wild-type S288C genetic background. We review here three main types of mutant allele collections: transposon mutagen collections, essential gene collections and overexpression libraries. Each collection provides unique and identifiable alleles that can be utilized in genome-wide, high-throughput studies. These genomic reagents are particularly informative in identifying synthetic phenotypes and functions associated with essential genes, including those modeled most effectively in complex genetic backgrounds. Several examples of genomic studies in filamentous/pseudohyphal backgrounds are provided here to illustrate this point. Additionally, the limitations of each approach are examined. Collectively, these mutant allele collections in Saccharomyces cerevisiae and the related pathogenic yeast Candida albicans promise insights toward an advanced understanding of eukaryotic molecular and cellular biology. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. Neuroglobin Overexpression Inhibits AMPK Signaling and Promotes Cell Anabolism.

    Science.gov (United States)

    Cai, Bin; Li, Wenjun; Mao, XiaoOu; Winters, Ali; Ryou, Myoung-Gwi; Liu, Ran; Greenberg, David A; Wang, Ning; Jin, Kunlin; Yang, Shao-Hua

    2016-03-01

    Neuroglobin (Ngb) is a recently discovered globin with preferential localization to neurons. Growing evidence indicates that Ngb has distinct physiological functions separate from the oxygen storage and transport roles of other globins, such as hemoglobin and myoglobin. We found increased ATP production and decreased glycolysis in Ngb-overexpressing immortalized murine hippocampal cell line (HT-22), in parallel with inhibition of AMP-activated protein kinase (AMPK) signaling and activation of acetyl-CoA carboxylase (ACC). In addition, lipid and glycogen content was increased in Ngb-overexpressing HT-22 cells. AMPK signaling was also inhibited in the brain and heart from Ngb-overexpressing transgenic mice. Although Ngb overexpression did not change glycogen content in whole brain, glycogen synthase was activated in cortical neurons of Ngb-overexpressing mouse brain and Ngb overexpression primary neurons. Moreover, lipid and glycogen content was increased in hearts derived from Ngb-overexpressing mice. These findings suggest that Ngb functions as a metabolic regulator and enhances cellular anabolism through the inhibition of AMPK signaling.

  13. Quantitative nature of overexpression experiments

    Science.gov (United States)

    Moriya, Hisao

    2015-01-01

    Overexpression experiments are sometimes considered as qualitative experiments designed to identify novel proteins and study their function. However, in order to draw conclusions regarding protein overexpression through association analyses using large-scale biological data sets, we need to recognize the quantitative nature of overexpression experiments. Here I discuss the quantitative features of two different types of overexpression experiment: absolute and relative. I also introduce the four primary mechanisms involved in growth defects caused by protein overexpression: resource overload, stoichiometric imbalance, promiscuous interactions, and pathway modulation associated with the degree of overexpression. PMID:26543202

  14. Targeted overexpression of amelotin disrupts the microstructure of dental enamel.

    Science.gov (United States)

    Lacruz, Rodrigo S; Nakayama, Yohei; Holcroft, James; Nguyen, Van; Somogyi-Ganss, Eszter; Snead, Malcolm L; White, Shane N; Paine, Michael L; Ganss, Bernhard

    2012-01-01

    We have previously identified amelotin (AMTN) as a novel protein expressed predominantly during the late stages of dental enamel formation, but its role during amelogenesis remains to be determined. In this study we generated transgenic mice that produce AMTN under the amelogenin (Amel) gene promoter to study the effect of AMTN overexpression on enamel formation in vivo. The specific overexpression of AMTN in secretory stage ameloblasts was confirmed by Western blot and immunohistochemistry. The gross histological appearance of ameloblasts or supporting cellular structures as well as the expression of the enamel proteins amelogenin (AMEL) and ameloblastin (AMBN) was not altered by AMTN overexpression, suggesting that protein production, processing and secretion occurred normally in transgenic mice. The expression of Odontogenic, Ameloblast-Associated (ODAM) was slightly increased in secretory stage ameloblasts of transgenic animals. The enamel in AMTN-overexpressing mice was much thinner and displayed a highly irregular surface structure compared to wild type littermates. Teeth of transgenic animals underwent rapid attrition due to the brittleness of the enamel layer. The microstructure of enamel, normally a highly ordered arrangement of hydroxyapatite crystals, was completely disorganized. Tomes' process, the hallmark of secretory stage ameloblasts, did not form in transgenic mice. Collectively our data demonstrate that the overexpression of amelotin has a profound effect on enamel structure by disrupting the formation of Tomes' process and the orderly growth of enamel prisms.

  15. Targeted overexpression of amelotin disrupts the microstructure of dental enamel.

    Directory of Open Access Journals (Sweden)

    Rodrigo S Lacruz

    Full Text Available We have previously identified amelotin (AMTN as a novel protein expressed predominantly during the late stages of dental enamel formation, but its role during amelogenesis remains to be determined. In this study we generated transgenic mice that produce AMTN under the amelogenin (Amel gene promoter to study the effect of AMTN overexpression on enamel formation in vivo. The specific overexpression of AMTN in secretory stage ameloblasts was confirmed by Western blot and immunohistochemistry. The gross histological appearance of ameloblasts or supporting cellular structures as well as the expression of the enamel proteins amelogenin (AMEL and ameloblastin (AMBN was not altered by AMTN overexpression, suggesting that protein production, processing and secretion occurred normally in transgenic mice. The expression of Odontogenic, Ameloblast-Associated (ODAM was slightly increased in secretory stage ameloblasts of transgenic animals. The enamel in AMTN-overexpressing mice was much thinner and displayed a highly irregular surface structure compared to wild type littermates. Teeth of transgenic animals underwent rapid attrition due to the brittleness of the enamel layer. The microstructure of enamel, normally a highly ordered arrangement of hydroxyapatite crystals, was completely disorganized. Tomes' process, the hallmark of secretory stage ameloblasts, did not form in transgenic mice. Collectively our data demonstrate that the overexpression of amelotin has a profound effect on enamel structure by disrupting the formation of Tomes' process and the orderly growth of enamel prisms.

  16. Overexpression of galectin-7 in mouse epidermis leads to loss of cell junctions and defective skin repair.

    Directory of Open Access Journals (Sweden)

    Gaëlle Gendronneau

    Full Text Available The proteins of the galectin family are implicated in many cellular processes, including cell interactions, polarity, intracellular trafficking, and signal transduction. In human and mouse, galectin-7 is almost exclusively expressed in stratified epithelia, notably in the epidermis. Galectin-7 expression is also altered in several human tumors of epithelial origin. This study aimed at dissecting the consequences of galectin-7 overexpression on epidermis structure and functions in vivo.We established transgenic mice specifically overexpressing galectin-7 in the basal epidermal keratinocytes and analyzed the consequences on untreated skin and after UVB irradiation or mechanical injury.The intercellular cohesion of the epidermis is impaired in transgenic animals, with gaps developing between adjacent keratinocytes, associated with loss of adherens junctions. The epidermal architecture is aberrant with perturbations in the multilayered cellular organisation of the tissue, and structural defects in the basement membrane. These transgenic animals displayed a reduced re-epithelialisation potential following superficial wound, due to a defective collective migration of keratinocytes. Finally, a single mild dose of UVB induced an abnormal apoptotic response in the transgenic epidermis.These results indicate that an excess of galectin-7 leads to a destabilisation of adherens junctions associated with defects in epidermal repair. As this phenotype shares similarities with that of galectin-7 null mutant mice, we conclude that a critical level of this protein is required for maintaining proper epidermal homeostasis. This study brings new insight into the mode of action of galectins in normal and pathological situations.

  17. Dimethylarginine Dimethylaminohydrolase Overexpression enhances Insulin Sensitivity

    Science.gov (United States)

    Sydow, Karsten; Mondon, Carl E.; Schrader, Joerg; Konishi, Hakuoh; Cooke, John P.

    2011-01-01

    Objective Previous studies suggest that nitric oxide (NO) may modulate insulin-induced uptake of glucose in insulin-sensitive tissues. Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of NO synthase (NOS). We hypothesized that a reduction in endogenous ADMA would increase NO synthesis and thereby enhance insulin sensitivity. Methods and Results To test this hypothesis we employed a transgenic mouse in which we overexpressed human dimethylarginine dimethylaminohydrolase (DDAH-I). The DDAH-I mice had lower plasma ADMA at all ages (22–70 weeks) by comparison to wild-type (WT) littermates. With a glucose challenge, WT mice showed a prompt increase in ADMA, whereas DDAH-I mice had a blunted response. Furthermore, DDAH-I mice had a blunted increase in plasma insulin and glucose levels after glucose challenge, with a 50% reduction in the insulin resistence index, consistent with enhanced sensitivity to insulin. In liver, we observed an increased Akt phosphorylation in the DDAH-I mice after i.p. glucose challenge. Incubation of skeletal muscle from WT mice ex vivo with ADMA (2μM) markedly suppressed insulin-induced glycogen synthesis in fast-twitch but not slow-twitch muscle. Conclusions These findings suggest that the endogenous NOS inhibitor ADMA reduces insulin sensitivity, consistent with previous observations that NO plays a role in insulin sensitivity. PMID:18239148

  18. Vapb/Amyotrophic lateral sclerosis 8 knock-in mice display slowly progressive motor behavior defects accompanying ER stress and autophagic response.

    Science.gov (United States)

    Larroquette, Frédérique; Seto, Lesley; Gaub, Perrine L; Kamal, Brishna; Wallis, Deeann; Larivière, Roxanne; Vallée, Joanne; Robitaille, Richard; Tsuda, Hiroshi

    2015-11-15

    Missense mutations (P56S) in Vapb are associated with autosomal dominant motor neuron diseases: amyotrophic lateral sclerosis and lower motor neuron disease. Although transgenic mice overexpressing the mutant vesicle-associated membrane protein-associated protein B (VAPB) protein with neuron-specific promoters have provided some insight into the toxic properties of the mutant proteins, their role in pathogenesis remains unclear. To identify pathological defects in animals expressing the P56S mutant VAPB protein at physiological levels in the appropriate tissues, we have generated Vapb knock-in mice replacing wild-type Vapb gene with P56S mutant Vapb gene and analyzed the resulting pathological phenotypes. Heterozygous P56S Vapb knock-in mice show mild age-dependent defects in motor behaviors as characteristic features of the disease. The homozygous P56S Vapb knock-in mice show more severe defects compared with heterozygous mice reflecting the dominant and dose-dependent effects of P56S mutation. Significantly, the knock-in mice demonstrate accumulation of P56S VAPB protein and ubiquitinated proteins in cytoplasmic inclusions, selectively in motor neurons. The mutant mice demonstrate induction of ER stress and autophagic response in motor neurons before obvious onset of behavioral defects, suggesting that these cellular biological defects might contribute to the initiation of the disease. The P56S Vapb knock-in mice could be a valuable tool to gain a better understanding of the mechanisms by which the disease arises. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Vesicular Axonal Transport is Modified In Vivo by Tau Deletion or Overexpression in Drosophila

    Directory of Open Access Journals (Sweden)

    Yasmina Talmat-Amar

    2018-03-01

    Full Text Available Structural microtubule associated protein Tau is found in high amount in axons and is involved in several neurodegenerative diseases. Although many studies have highlighted the toxicity of an excess of Tau in neurons, the in vivo understanding of the endogenous role of Tau in axon morphology and physiology is poor. Indeed, knock-out mice display no strong cytoskeleton or axonal transport phenotype, probably because of some important functional redundancy with other microtubule-associated proteins (MAPs. Here, we took advantage of the model organism Drosophila, which genome contains only one homologue of the Tau/MAP2/MAP4 family to decipher (endogenous Tau functions. We found that Tau depletion leads to a decrease in microtubule number and microtubule density within axons, while Tau excess leads to the opposite phenotypes. Analysis of vesicular transport in tau mutants showed altered mobility of vesicles, but no change in the total amount of putatively mobile vesicles, whereas both aspects were affected when Tau was overexpressed. In conclusion, we show that loss of Tau in tau mutants not only leads to a decrease in axonal microtubule density, but also impairs axonal vesicular transport, albeit to a lesser extent compared to the effects of an excess of Tau.

  20. Functional PAK-2 knockout and replacement with a caspase cleavage-deficient mutant in mice reveals differential requirements of full-length PAK-2 and caspase-activated PAK-2p34.

    Science.gov (United States)

    Marlin, Jerry W; Chang, Yu-Wen E; Ober, Margaret; Handy, Amy; Xu, Wenhao; Jakobi, Rolf

    2011-06-01

    p21-Activated protein kinase 2 (PAK-2) has both anti- and pro-apoptotic functions depending on its mechanism of activation. Activation of full-length PAK-2 by the monomeric GTPases Cdc42 or Rac stimulates cell survival, whereas caspase activation of PAK-2 to the PAK-2p34 fragment is involved in the apoptotic response. In this study we use functional knockout of PAK-2 and gene replacement with the caspase cleavage-deficient PAK-2D212N mutant to differentiate the biological functions of full-length PAK-2 and caspase-activated PAK-2p34. Knockout of PAK-2 results in embryonic lethality at early stages before organ development, whereas replacement with the caspase cleavage-deficient PAK-2D212N results in viable and healthy mice, indicating that early embryonic lethality is caused by deficiency of full-length PAK-2 rather than lack of caspase activation to the PAK-2p34 fragment. However, deficiency of caspase activation of PAK-2 decreased spontaneous cell death of primary mouse embryonic fibroblasts and increased cell growth at high cell density. In contrast, stress-induced cell death by treatment with the anti-cancer drug cisplatin was not reduced by deficiency of caspase activation of PAK-2, but switched from an apoptotic to a nonapoptotic, caspase-independent mechanism. Homozygous PAK-2D212N primary mouse embryonic fibroblasts that lack the ability to generate the proapoptotic PAK-2p34 show less activation of the effector caspase 3, 6, and 7, indicating that caspase activation of PAK-2 amplifies the apoptotic response through a positive feedback loop resulting in more activation of effector caspases.

  1. Interleukin-6 overexpression induces pulmonary hypertension.

    Science.gov (United States)

    Steiner, M Kathryn; Syrkina, Olga L; Kolliputi, Narasaish; Mark, Eugene J; Hales, Charles A; Waxman, Aaron B

    2009-01-30

    Inflammatory cytokine interleukin (IL)-6 is elevated in the serum and lungs of patients with pulmonary artery hypertension (PAH). Several animal models of PAH cite the potential role of inflammatory mediators. We investigated role of IL-6 in the pathogenesis of pulmonary vascular disease. Indices of pulmonary vascular remodeling were measured in lung-specific IL-6-overexpressing transgenic mice (Tg(+)) and compared to wild-type (Tg(-)) controls in both normoxic and chronic hypoxic conditions. The Tg(+) mice exhibited elevated right ventricular systolic pressures and right ventricular hypertrophy with corresponding pulmonary vasculopathic changes, all of which were exacerbated by chronic hypoxia. IL-6 overexpression increased muscularization of the proximal arterial tree, and hypoxia enhanced this effect. It also reproduced the muscularization and proliferative arteriopathy seen in the distal arteriolar vessels of PAH patients. The latter was characterized by the formation of occlusive neointimal angioproliferative lesions that worsened with hypoxia and were composed of endothelial cells and T-lymphocytes. IL-6-induced arteriopathic changes were accompanied by activation of proangiogenic factor, vascular endothelial growth factor, the proproliferative kinase extracellular signal-regulated kinase, proproliferative transcription factors c-MYC and MAX, and the antiapoptotic proteins survivin and Bcl-2 and downregulation of the growth inhibitor transforming growth factor-beta and proapoptotic kinases JNK and p38. These findings suggest that IL-6 promotes the development and progression of pulmonary vascular remodeling and PAH through proproliferative antiapoptotic mechanisms.

  2. Heme oxygenase-1 prevents cardiac dysfunction in streptozotocin-diabetic mice by reducing inflammation, oxidative stress, apoptosis and enhancing autophagy.

    Directory of Open Access Journals (Sweden)

    Yanli Zhao

    Full Text Available Heme oxygenase-1 (HO-1 has been implicated in cardiac dysfunction, oxidative stress, inflammation, apoptosis and autophagy associated with heart failure, and atherosclerosis, in addition to its recognized role in metabolic syndrome and diabetes. Numerous studies have presented contradictory findings about the role of HO-1 in diabetic cardiomyopathy (DCM. In this study, we explored the role of HO-1 in myocardial dysfunction, myofibril structure, oxidative stress, inflammation, apoptosis and autophagy using a streptozotocin (STZ-induced diabetes model in mice systemically overexpressing HO-1 (Tg-HO-1 or mutant HO-1 (Tg-mutHO-1. The diabetic mouse model was induced by multiple peritoneal injections of STZ. Two months after injection, left ventricular (LV function was measured by echocardiography. In addition, molecular biomarkers related to oxidative stress, inflammation, apoptosis and autophagy were evaluated using classical molecular biological/biochemical techniques. Mice with DCM exhibited severe LV dysfunction, myofibril structure disarray, aberrant cardiac oxidative stress, inflammation, apoptosis, autophagy and increased levels of HO-1. In addition, we determined that systemic overexpression of HO-1 ameliorated left ventricular dysfunction, myofibril structure disarray, oxidative stress, inflammation, apoptosis and autophagy in DCM mice. Furthermore, serine/threonine-specific protein kinase (Akt and AMP-activated protein kinase (AMPK phosphorylation is normally inhibited in DCM, but overexpression of the HO-1 gene restored the phosphorylation of these kinases to normal levels. In contrast, the functions of HO-1 in DCM were significantly reversed by overexpression of mutant HO-1. This study underlines the unique roles of HO-1, including the inhibition of oxidative stress, inflammation and apoptosis and the enhancement of autophagy, in the pathogenesis of DCM.

  3. Chronic Proliferative Dermatitis in Mice: NFκB Activation Autoinflammatory Disease

    Directory of Open Access Journals (Sweden)

    Yanhua Liang

    2011-01-01

    Full Text Available Autoinflammatory diseases are a heterogeneous group of congenital diseases characterized by the presence of recurrent inflammation, in the absence of infectious agents, detectable autoantibodies or antigen-specific autoreactive T-cells. SHARPIN deficient mice presents multiorgan chronic inflammation without known autoantibodies or autoreactive T-cells, designated Sharpincpdm. Histological studies demonstrated epidermal hyperproliferation, Th-2 inflammation, and keratinocyte apoptosis in this mutant. The mutant mice have decreased behavioral mobility, slower growth, and loss of body weight. Epidermal thickness and mitotic epidermal cells increase along with disease development. K5/K14 expression is distributed through all layers of epidermis, along with K6 expression in interfollicular epidermis, suggesting epidermal hyperproliferation. K1/K10 is only detectable in outer layers of spinosum epidermis, reflecting accelerated keratinocyte migration. Alpha smooth muscle actin is overexpressed in skin blood vessels, which may release the elevated white blood cells to dermis. CD3+CD45+ cells and granulocytes, especially eosinophils and mast cells, aggregate in the mutant skin. TUNEL assay, together with Annexin-V/propidium iodide FACS analysis, confirmed the increase of apoptotic keratinocytes in skin. These data validate and provide new lines of evidence of the proliferation-inflammation-apoptosis triad in Sharpincpdm mice, an NFκB activation autoinflammatory disease.

  4. Overexpression of cellular glutathione peroxidase rescues homocyst(e)ine-induced endothelial dysfunction

    Science.gov (United States)

    Weiss, Norbert; Zhang, Ying-Yi; Heydrick, Stanley; Bierl, Charlene; Loscalzo, Joseph

    2001-01-01

    Homocyst(e)ine (Hcy) inhibits the expression of the antioxidant enzyme cellular glutathione peroxidase (GPx-1) in vitro and in vivo, which can lead to an increase in reactive oxygen species that inactivate NO and promote endothelial dysfunction. In this study, we tested the hypothesis that overexpression of GPx-1 can restore the normal endothelial phenotype in hyperhomocyst(e)inemic states. Heterozygous cystathionine β-synthase-deficient (CBS(−/+)) mice and their wild-type littermates (CBS(+/+)) were crossbred with mice that overexpress GPx-1 [GPx-1(tg+) mice]. GPx-1 activity was 28% lower in CBS(−/+)/GPx-1(tg−) compared with CBS(+/+)/GPx-1(tg−) mice (P < 0.05), and CBS(−/+) and CBS(+/+) mice overexpressing GPx-1 had 1.5-fold higher GPx-1 activity compared with GPx-1 nontransgenic mice (P < 0.05). Mesenteric arterioles of CBS(−/+)/GPx-1(tg−) mice showed vasoconstriction to superfusion with β-methacholine and bradykinin (P < 0.001 vs. all other groups), whereas nonhyperhomocyst(e)inemic mice [CBS(+/+)/GPx-1(tg−) and CBS(+/+)/GPx-1(tg+) mice] demonstrated dose-dependent vasodilation in response to both agonists. Overexpression of GPx-1 in hyperhomocyst(e)inemic mice restored the normal endothelium-dependent vasodilator response. Bovine aortic endothelial cells (BAEC) were transiently transfected with GPx-1 and incubated with dl-homocysteine (HcyH) or l-cysteine. HcyH incubation decreased GPx-1 activity in sham-transfected BAEC (P < 0.005) but not in GPx-1-transfected cells. Nitric oxide release from BAEC was significantly decreased by HcyH but not cysteine, and GPx-1 overexpression attenuated this decrease. These findings demonstrate that overexpression of GPx-1 can compensate for the adverse effects of Hcy on endothelial function and suggest that the adverse vascular effects of Hcy are at least partly mediated by oxidative inactivation of NO. PMID:11606774

  5. Promising rice mutants

    International Nuclear Information System (INIS)

    Hakim, L.; Azam, M.A.; Miah, A.J.; Mansur, M.A.; Akanda, H.R.

    1988-01-01

    Two induced mutants namely, Mut NS 1 (tall) and Mut NS 5 (semi-dwarf) derived from rice variety Nizersail were evaluated for various agronomic characters at four locations in Bangladesh. Both the mutants matured about three weeks earlier and yielded significantly higher than the parent variety Nizersail. (author). 3 tabs., 9 refs

  6. Mutant heterosis in rice

    International Nuclear Information System (INIS)

    1987-01-01

    In the variety TKM6 a high yielding semidwarf mutant has been induced. This TKM6 mutant was used in test crosses with a number of other varieties and mutants to examine the extent of heterosis of dwarfs in rice and to select superior crosses. An excerpt of the published data is given. It appears from the backcross of the mutant with its original variety, that an increase in number of productive tillers occurs in the hybrid, leading to a striking grain yield increase, while the semi-dwarf culm length (the main mutant character) reverts to the normal phenotype. In the cross with IR8 on the other hand, there is only a minimal increase in tiller number but a substantial increase in TGW leading to more than 30% yield increase over the better parent

  7. Intact interval timing in circadian CLOCK mutants.

    Science.gov (United States)

    Cordes, Sara; Gallistel, C R

    2008-08-28

    While progress has been made in determining the molecular basis for the circadian clock, the mechanism by which mammalian brains time intervals measured in seconds to minutes remains a mystery. An obvious question is whether the interval-timing mechanism shares molecular machinery with the circadian timing mechanism. In the current study, we trained circadian CLOCK +/- and -/- mutant male mice in a peak-interval procedure with 10 and 20-s criteria. The mutant mice were more active than their wild-type littermates, but there were no reliable deficits in the accuracy or precision of their timing as compared with wild-type littermates. This suggests that expression of the CLOCK protein is not necessary for normal interval timing.

  8. Overexpression of Brucella putative glycosyltransferase WbkA in B. abortus RB51 leads to production of exopolysaccharide

    Directory of Open Access Journals (Sweden)

    Neha eDabral

    2015-06-01

    Full Text Available Brucella spp. are Gram-negative, facultative intracellular bacteria that cause brucellosis in mammals. Brucella strains containing the O-polysaccharide in their cell wall structure exhibit a smooth phenotype whereas the strains devoid of the polysaccharide show rough phenotype. B. abortus strain RB51 is a stable rough attenuated mutant which is used as a licensed live vaccine for bovine brucellosis. Previous studies have shown that the wboA gene, which encodes a glycosyltransferase required for the synthesis of O-polysaccharide, is disrupted in B. abortus RB51 by an IS711 element. Although complementation of strain RB51 with a functional wboA gene results in O-polysaccharide synthesis in the cytoplasm, it does not result in smooth phenotype. The aim of this study was to determine if overexpression of Brucella WbkA or WbkE, two additional putative glycosyltransferases essential for O-polysaccharide synthesis, in strain RB51 would result in the O-polysaccharide synthesis and smooth phenotype. Our results demonstrate that overexpression of wbkA or wbkE gene in RB51 does not result in O-polysaccharide expression as shown by Western blotting with specific antibodies. However, wbkA, but not wbkE, overexpression leads to the development of a clumping phenotype and the production of exopolysaccharide(s containing mannose, galactose, N-acetylglucosamine and N-acetylgalactosamine. Moreover, we found that the clumping recombinant strain displays increased adhesion to polystyrene plates. The recombinant strain was similar to strain RB51 in its attenuation characteristic and in its ability to induce protective immunity against virulent B. abortus challenge in mice.

  9. Overexpression of Brucella putative glycosyltransferase WbkA in B. abortus RB51 leads to production of exopolysaccharide.

    Science.gov (United States)

    Dabral, Neha; Jain-Gupta, Neeta; Seleem, Mohamed N; Sriranganathan, Nammalwar; Vemulapalli, Ramesh

    2015-01-01

    Brucella spp. are Gram-negative, facultative intracellular bacteria that cause brucellosis in mammals. Brucella strains containing the O-polysaccharide in their cell wall structure exhibit a smooth phenotype whereas the strains devoid of the polysaccharide show rough phenotype. B. abortus strain RB51 is a stable rough attenuated mutant which is used as a licensed live vaccine for bovine brucellosis. Previous studies have shown that the wboA gene, which encodes a glycosyltransferase required for the synthesis of O-polysaccharide, is disrupted in B. abortus RB51 by an IS711 element. Although complementation of strain RB51 with a functional wboA gene results in O-polysaccharide synthesis in the cytoplasm, it does not result in smooth phenotype. The aim of this study was to determine if overexpression of Brucella WbkA or WbkE, two additional putative glycosyltransferases essential for O-polysaccharide synthesis, in strain RB51 would result in the O-polysaccharide synthesis and smooth phenotype. Our results demonstrate that overexpression of wbkA or wbkE gene in RB51 does not result in O-polysaccharide expression as shown by Western blotting with specific antibodies. However, wbkA, but not wbkE, overexpression leads to the development of a clumping phenotype and the production of exopolysaccharide(s) containing mannose, galactose, N-acetylglucosamine, and N-acetylgalactosamine. Moreover, we found that the clumping recombinant strain displays increased adhesion to polystyrene plates. The recombinant strain was similar to strain RB51 in its attenuation characteristic and in its ability to induce protective immunity against virulent B. abortus challenge in mice.

  10. Chromogranin B and Secretogranin II in transgenic mice overexpressing human APP751 with the London (V717I) and Swedish (K670M/N671L) mutations and in Alzheimer patients.

    Science.gov (United States)

    Willis, Michael; Prokesch, Manuela; Hutter-Paier, Birgit; Windisch, Manfred; Stridsberg, Mats; Mahata, Sushil K; Kirchmair, Rudolf; Wietzorrek, Georg; Knaus, Hans-Günther; Jellinger, Kurt; Humpel, Christian; Marksteiner, Josef

    2008-03-01

    Chromogranin B and secretogranin II are major soluble constituents of large dense core vesicles of presynaptic structures and have been found in neuritic plaques of Alzheimer patients. We examined the distribution and expression of these peptides in both transgenic mice over expressing human amyloid-beta protein precursor APP751 with the London (V717I) and Swedish (K670M/N671L) mutations and in human post-mortem brain. In transgenic mice, the number of amyloid-beta plaques and chromogranin immunopositive plaques increased from 6 to 12 months. About 60% of amyloid-beta plaques were associated with chromogranin B and about 40% with secretogranin II. Chromogranin immunoreactivity appeared mainly as swollen dystrophic neurites. Neither synaptophysin- nor glial fibrillary acidic protein- immunoreactivity was expressed in chromogranin immunoreactive structures at any timepoint. Density of chromogranin peptides in hippocampal structures did not change in transgenic animals at any timepoint, even though animals had a poorer performance in the Morris water maze task. In conclusion, our findings in transgenic animals partly resembled findings in Alzheimer patients. Chromogranin peptides were associated with amyloid-beta plaques, but were not reduced in specific brain areas as previously reported by our group. Therefore specific changes of chromogranin peptides observed in Alzheimer patients can be related to amyloid-beta pathology only.

  11. Upregulation of triglyceride synthesis in skeletal muscle overexpressing DGAT1

    OpenAIRE

    Yang, Feifei; Wei, Zhuying; Ding, Xiangbin; Liu, Xinfeng; Ge, Xiuguo; Song, Guimin; Li, Guangpeng; Guo, Hong

    2013-01-01

    The gene encoding diacylglycerol acyltransferase (DGAT1) is a functional and positional candidate gene for milk and intramuscular fat content. A bovine DGAT1 overexpression vector was constructed containing mouse MCK promoter and bovine DGAT1 cDNA. MCK-DGAT1 transgene in FVB mice was researched in present study. The transgene DGAT1 had a high level of expression in contrast to the endogenous DGAT1 in posterior tibial muscle of the transgenic mice, but a low expression level in the cardiac mus...

  12. Functional verification of a porcine myostatin propeptide mutant.

    Science.gov (United States)

    Ma, Dezun; Jiang, Shengwang; Gao, Pengfei; Qian, Lili; Wang, Qingqing; Cai, Chunbo; Xiao, Gaojun; Yang, Jinzeng; Cui, Wentao

    2015-10-01

    Myostatin is a member of TGF-β superfamily that acts as a key negative regulator in development and growth of embryonic and postnatal muscles. In this study, the inhibitory activities of recombinant porcine myostatin propeptide and its mutated form (at the cleavage site of metalloproteinases of BMP-1/TLD family) against murine myostatin was evaluated in vivo by intraperitoneal injection into mice. Results showed that both wild type and mutated form of porcine propeptide significantly inhibited myostatin activity in vivo. The average body weight of mice receiving wild type propeptide or its mutated form increased by 12.5 % and 24.14%, respectively, compared to mice injected with PBS, implying that the in vivo efficacy of porcine propeptide mutant is greater than its wild type propeptide. Transgenic mice expressing porcine myostatin propeptide mutant were generated to further verify the results obtained from mice injected with recombinant porcine propeptide mutant. Compared with wild type (non-transgenic) mice, relative weight of gastrocnemius, rectusfemoris, and tibialis anterior increased by 22.14 %, 34.13 %, 25.37%, respectively, in transgenic male mice, and by 19.90 %, 42.47 %, 45.61%, respectively, in transgenic female mice. Our data also demonstrated that the mechanism by which muscle growth enhancement is achieved by these propeptides is due to an increase in fiber sizes, not by an increase in number of fiber cells.

  13. Organotypic vibrosections from whole brain adult Alzheimer mice (overexpressing amyloid-precursor-protein with the Swedish-Dutch-Iowa mutations as a model to study clearance of beta-amyloid plaques

    Directory of Open Access Journals (Sweden)

    Christian eHumpel

    2015-04-01

    Full Text Available Alzheimer´s disease is a severe neurodegenerative disorder of the brain, pathologically characterized by extracellular beta-amyloid plaques, intraneuronal Tau inclusions, inflammation, reactive glial cells, vascular pathology and neuronal cell death. The degradation and clearance of beta-amyloid plaques is an interesting therapeutic approach, and the proteases neprilysin (NEP, insulysin and matrix metalloproteinases (MMP are of particular interest. The aim of this project was to establish and characterize a simple in vitro model to study the degrading effects of these proteases. Organoytpic brain vibrosections (120 µm thick were sectioned from adult (9 month old wildtype and transgenic mice (expressing amyloid precursor protein (APP harboring the Swedish K670N/M671L, Dutch E693Q, and Iowa D694N mutations; APP_SDI and cultured for 2 weeks. Plaques were stained by immunohistochemistry for beta-amyloid and Thioflavin S. Our data show that plaques were evident in 2 week old cultures from 9 month old transgenic mice. These plaques were surrounded by reactive GFAP+ astroglia and Iba1+ microglia. Incubation of fresh slices for 2 weeks with 1-0.1-0.01 µg/ml of NEP, insulysin, MMP-2 or MMP-9 showed that NEP, insulysin and MMP-9 markedly degradeded beta-amyloid plaques but only at the highest concentration. Our data provide for the first time a potent and powerful living brain vibrosection model containing a high number of plaques, which allows to rapidly and simply study the degradation and clearance of beta-amyloid plaques in vitro.

  14. Overexpression of NRPS4 leads to increased surface hydrophobicity in fusarium graminearum

    DEFF Research Database (Denmark)

    Hansen, Frederik Teilfeldt; Droce, Aida; Sørensen, Jens Laurids

    2012-01-01

    ). Most of these are unknown as F. graminearum contains 19 NRPS encoding genes, but only three have been assigned products. For the first time, we use deletion and overexpression mutants to investigate the functions and product of NRPS4 in F. graminearum. Deletion of NRPS4 homologues in Alternaria...... brassicicola and Cochloibolus heterostrophus has been shown to result in mutants unable to repel water. In a time study of surface hydrophobicity we observed that water droplets could penetrate 7 d old colonies of the NRPS4 deletion mutants. Loss in ability to repel water was first observed on 13 d old...

  15. Enhanced Androgen Signaling With Androgen Receptor Overexpression in the Osteoblast Lineage Controls Skeletal Turnover, Matrix Quality and Bone Architecture

    National Research Council Canada - National Science Library

    Wiren, Kristine M; Jepsen, Karl

    2006-01-01

    .... We genetically engineered transgenic mice in which androgen receptor (AR) overexpression is skeletally targeted in two separate models to better understand the role of androgen signaling directly in bone...

  16. Effects of HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG) on NEU/HER2 overexpressing mammary tumours in MMTV-NEU-NT mice monitored by Magnetic Resonance Spectroscopy.

    Science.gov (United States)

    Rodrigues, Loreta M; Chung, Yuen-Li; Al Saffar, Nada M S; Sharp, Swee Y; Jackson, Laura E; Banerji, Udai; Stubbs, Marion; Leach, Martin O; Griffiths, John R; Workman, Paul

    2012-05-23

    The importance of ERBB2/NEU/HER2 in the response of breast tumours to the heat shock protein 90 (HSP90) inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG; tanespimycin) has been demonstrated in the clinic. ERBB2 is an oncoprotein client that is highly dependent on HSP90. This and other oncogenic client proteins (e.g. B-RAF, C-RAF, ALK and CDK4) are depleted by 17-AAG in both animal tumours and patients. Here we investigate by Magnetic Resonance Spectroscopy (MRS) the metabolic response of 17-AAG in spontaneous, NEU/HER2 driven mammary tumours in transgenic MMTV-NEU-NT mice and in cells isolated and cultured from these tumours. Mammary tumours were monitored by 31P MRS in vivo and in tumour extracts, comparing control and 17-AAG treated mice. A cell line derived from NEU/HER2 mammary tumours was also cultured and the effect of 17-AAG was measured by 31P MRS in cell extracts. Molecular biomarkers were assessed by immunoblotting in extracts from cells and tumours. For comparison of tumour volume, metabolite concentrations and Western blot band intensities, two-tailed unpaired t-tests were used. The NEU/HER2 mammary tumours were very sensitive to 17-AAG and responded in a dose-dependent manner to 3 daily doses of 20, 40 and 80mg/kg of 17-AAG, all of which caused significant regression. At the higher doses, 31P MRS of tumour extracts showed significant decreases in phosphocholine (PC) and phosphoethanolamine (PE) whereas no significant changes were seen at the 20mg/kg dose. Extracts of isolated cells cultured from the mammary carcinomas showed a significant decrease in viable cell number and total PME after 17-AAG treatment. Western blots confirmed the expected action of 17-AAG in inducing HSP72 and significantly depleting HSP90 client proteins, including NEU/HER2 both in tumours and in isolated cells. The data demonstrate the high degree of sensitivity of this clinically relevant NEU/HER2-driven tumour model to HSP90 inhibition by 17-AAG, consistent with the

  17. Human liver cell trafficking mutants: characterization and whole exome sequencing.

    Directory of Open Access Journals (Sweden)

    Fei Yuan

    Full Text Available The HuH7 liver cell mutant Trf1 is defective in membrane trafficking and is complemented by the casein kinase 2α subunit CK2α''. Here we identify characteristic morphologies, trafficking and mutational changes in six additional HuH7 mutants Trf2-Trf7. Trf1 cells were previously shown to be severely defective in gap junction functions. Using a Lucifer yellow transfer assay, remarkable attenuation of gap junction communication was revealed in each of the mutants Trf2-Trf7. Electron microscopy and light microscopy of thiamine pyrophosphatase showed that several mutants exhibited fragmented Golgi apparatus cisternae compared to parental HuH7 cells. Intracellular trafficking was investigated using assays of transferrin endocytosis and recycling and VSV G secretion. Surface binding of transferrin was reduced in all six Trf2-Trf7 mutants, which generally correlated with the degree of reduced expression of the transferrin receptor at the cell surface. The mutants displayed the same transferrin influx rates as HuH7, and for efflux rate, only Trf6 differed, having a slower transferrin efflux rate than HuH7. The kinetics of VSV G transport along the exocytic pathway were altered in Trf2 and Trf5 mutants. Genetic changes unique to particular Trf mutants were identified by exome sequencing, and one was investigated in depth. The novel mutation Ile34Phe in the GTPase RAB22A was identified in Trf4. RNA interference knockdown of RAB22A or overexpression of RAB22AI34F in HuH7 cells caused phenotypic changes characteristic of the Trf4 mutant. In addition, the Ile34Phe mutation reduced both guanine nucleotide binding and hydrolysis activities of RAB22A. Thus, the RAB22A Ile34Phe mutation appears to contribute to the Trf4 mutant phenotype.

  18. Overexpression of Pax6 results in microphthalmia, retinal dysplasia and defective retinal ganglion cell axon guidance

    Directory of Open Access Journals (Sweden)

    Jeffery Glen

    2008-05-01

    Full Text Available Abstract Background The transcription factor Pax6 is expressed by many cell types in the developing eye. Eyes do not form in homozygous loss-of-function mouse mutants (Pax6Sey/Sey and are abnormally small in Pax6Sey/+ mutants. Eyes are also abnormally small in PAX77 mice expressing multiple copies of human PAX6 in addition to endogenous Pax6; protein sequences are identical in the two species. The developmental events that lead to microphthalmia in PAX77 mice are not well-characterised, so it is not clear whether over- and under-expression of Pax6/PAX6 cause microphthalmia through similar mechanisms. Here, we examined the consequences of over-expression for the eye and its axonal connections. Results Eyes form in PAX77+/+ embryos but subsequently degenerate. At E12.5, we found no abnormalities in ocular morphology, retinal cell cycle parameters and the incidence of retinal cell death. From E14.5 on, we observed malformations of the optic disc. From E16.5 into postnatal life there is progressively more severe retinal dysplasia and microphthalmia. Analyses of patterns of gene expression indicated that PAX77+/+ retinae produce a normal range of cell types, including retinal ganglion cells (RGCs. At E14.5 and E16.5, quantitative RT-PCR with probes for a range of molecules associated with retinal development showed only one significant change: a slight reduction in levels of mRNA encoding the secreted morphogen Shh at E16.5. At E16.5, tract-tracing with carbocyanine dyes in PAX77+/+ embryos revealed errors in intraretinal navigation by RGC axons, a decrease in the number of RGC axons reaching the thalamus and an increase in the proportion of ipsilateral projections among those RGC axons that do reach the thalamus. A survey of embryos with different Pax6/PAX6 gene dosage (Pax6Sey/+, Pax6+/+, PAX77+ and PAX77+/+ showed that (1 the total number of RGC axons projected by the retina and (2 the proportions that are sorted into the ipsilateral and

  19. A high-fat jelly diet restores bioenergetic balance and extends lifespan in the presence of motor dysfunction and lumbar spinal cord motor neuron loss in TDP-43A315T mutant C57BL6/J mice

    Directory of Open Access Journals (Sweden)

    Karen S. Coughlan

    2016-09-01

    Full Text Available Transgenic transactivation response DNA-binding protein 43 (TDP-43 mice expressing the A315T mutation under control of the murine prion promoter progressively develop motor function deficits and are considered a new model for the study of amyotrophic lateral sclerosis (ALS; however, premature sudden death resulting from intestinal obstruction halts disease phenotype progression in 100% of C57BL6/J congenic TDP-43A315T mice. Similar to our recent results in SOD1G93A mice, TDP-43A315T mice fed a standard pellet diet showed increased 5′ adenosine monophosphate-activated protein kinase (AMPK activation at postnatal day (P80, indicating elevated energetic stress during disease progression. We therefore investigated the effects of a high-fat jelly diet on bioenergetic status and lifespan in TDP-43A315T mice. In contrast to standard pellet-fed mice, mice fed high-fat jelly showed no difference in AMPK activation up to P120 and decreased phosphorylation of acetly-CoA carboxylase (ACC at early-stage time points. Exposure to a high-fat jelly diet prevented sudden death and extended survival, allowing development of a motor neuron disease phenotype with significantly decreased body weight from P80 onward that was characterised by deficits in Rotarod abilities and stride length measurements. Development of this phenotype was associated with a significant motor neuron loss as assessed by Nissl staining in the lumbar spinal cord. Our work suggests that a high-fat jelly diet improves the pre-clinical utility of the TDP-43A315T model by extending lifespan and allowing the motor neuron disease phenotype to progress, and indicates the potential benefit of this diet in TDP-43-associated ALS.

  20. Vascular defects in gain-of-function fps/fes transgenic mice correlate with PDGF- and VEGF-induced activation of mutant Fps/Fes kinase in endothelial cells.

    Science.gov (United States)

    Sangrar, W; Mewburn, J D; Vincent, S G; Fisher, J T; Greer, P A

    2004-05-01

    Fps/Fes is a cytoplasmic tyrosine kinase that is abundantly expressed in the myeloid, endothelial, epithelial, neuronal and platelet lineages. Genetic manipulation in mice has uncovered potential roles for this kinase in hematopoiesis, innate immunity, inflammation and angiogenesis. We have utilized a genetic approach to explore the role of Fps/Fes in angiogenesis. A hypervascular line of mice generated by expression of a 'gain-of-function' human fps/fes transgene (fps(MF)) encoding a myristoylated variant of Fps (MFps) was used in these studies. The hypervascular phenotype of this line was extensively characterized by intravital microscopy and biochemical approaches. fps(MF) mice exhibited 1.6-1.7-fold increases in vascularity which was attributable to increases in the number of secondary vessels. Vessels were larger, exhibited varicosities and disorganized patterning, and were found to have defects in histamine-induced permeability. Biochemical characterization of endothelial cell (EC) lines derived from fps(MF) mice revealed that MFps was hypersensitive to activation by vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF). MFps mediates enhanced sensitization to VEGF and PDGF signaling in ECs. We propose that this hypersensitization contributes to excessive angiogenic signaling and that this underlies the observed hypervascular phenotype of fps(MF) mice. These phenotypes recapitulate important aspects of the vascular defects observed in both VEGF and angiopoietin-1 transgenic mice. The fps/fes proto-oncogene product therefore represents a novel player in the regulation of angiogenesis, and the fps(MF) line of mice constitutes a unique new murine model for the study of this process.

  1. Physiological Expression of AMPKγ2RG Mutation Causes Wolff-Parkinson-White Syndrome and Induces Kidney Injury in Mice.

    Science.gov (United States)

    Yang, Xiaodong; Mudgett, John; Bou-About, Ghina; Champy, Marie-France; Jacobs, Hugues; Monassier, Laurent; Pavlovic, Guillaume; Sorg, Tania; Herault, Yann; Petit-Demoulière, Benoit; Lu, Ku; Feng, Wen; Wang, Hongwu; Ma, Li-Jun; Askew, Roger; Erion, Mark D; Kelley, David E; Myers, Robert W; Li, Cai; Guan, Hong-Ping

    2016-11-04

    Mutations of the AMP-activated kinase gamma 2 subunit (AMPKγ2), N488I (AMPKγ2 NI ) and R531G (AMPKγ2 RG ), are associated with Wolff-Parkinson-White (WPW) syndrome, a cardiac disorder characterized by ventricular pre-excitation in humans. Cardiac-specific transgenic overexpression of human AMPKγ2 NI or AMPKγ2 RG leads to constitutive AMPK activation and the WPW phenotype in mice. However, overexpression of these mutant proteins also caused profound, non-physiological increase in cardiac glycogen, which might abnormally alter the true phenotype. To investigate whether physiological levels of AMPKγ2 NI or AMPKγ2 RG mutation cause WPW syndrome and metabolic changes in other organs, we generated two knock-in mouse lines on the C57BL/6N background harboring mutations of human AMPKγ2 NI and AMPKγ2 RG , respectively. Similar to the reported phenotypes of mice overexpressing AMPKγ2 NI or AMPKγ2 RG in the heart, both lines developed WPW syndrome and cardiac hypertrophy; however, these effects were independent of cardiac glycogen accumulation. Compared with AMPKγ2 WT mice, AMPKγ2 NI and AMPKγ2 RG mice exhibited reduced body weight, fat mass, and liver steatosis when fed with a high fat diet (HFD). Surprisingly, AMPKγ2 RG but not AMPKγ2 NI mice fed with an HFD exhibited severe kidney injury characterized by glycogen accumulation, inflammation, apoptosis, cyst formation, and impaired renal function. These results demonstrate that expression of AMPKγ2 NI and AMPKγ2 RG mutations at physiological levels can induce beneficial metabolic effects but that this is accompanied by WPW syndrome. Our data also reveal an unexpected effect of AMPKγ2 RG in the kidney, linking lifelong constitutive activation of AMPK to a potential risk for kidney dysfunction in the context of an HFD. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Physiological Expression of AMPKγ2RG Mutation Causes Wolff-Parkinson-White Syndrome and Induces Kidney Injury in Mice*

    Science.gov (United States)

    Yang, Xiaodong; Mudgett, John; Bou-About, Ghina; Champy, Marie-France; Jacobs, Hugues; Monassier, Laurent; Pavlovic, Guillaume; Sorg, Tania; Herault, Yann; Petit-Demoulière, Benoit; Lu, Ku; Feng, Wen; Wang, Hongwu; Ma, Li-Jun; Askew, Roger; Erion, Mark D.; Kelley, David E.; Myers, Robert W.; Li, Cai

    2016-01-01

    Mutations of the AMP-activated kinase gamma 2 subunit (AMPKγ2), N488I (AMPKγ2NI) and R531G (AMPKγ2RG), are associated with Wolff-Parkinson-White (WPW) syndrome, a cardiac disorder characterized by ventricular pre-excitation in humans. Cardiac-specific transgenic overexpression of human AMPKγ2NI or AMPKγ2RG leads to constitutive AMPK activation and the WPW phenotype in mice. However, overexpression of these mutant proteins also caused profound, non-physiological increase in cardiac glycogen, which might abnormally alter the true phenotype. To investigate whether physiological levels of AMPKγ2NI or AMPKγ2RG mutation cause WPW syndrome and metabolic changes in other organs, we generated two knock-in mouse lines on the C57BL/6N background harboring mutations of human AMPKγ2NI and AMPKγ2RG, respectively. Similar to the reported phenotypes of mice overexpressing AMPKγ2NI or AMPKγ2RG in the heart, both lines developed WPW syndrome and cardiac hypertrophy; however, these effects were independent of cardiac glycogen accumulation. Compared with AMPKγ2WT mice, AMPKγ2NI and AMPKγ2RG mice exhibited reduced body weight, fat mass, and liver steatosis when fed with a high fat diet (HFD). Surprisingly, AMPKγ2RG but not AMPKγ2NI mice fed with an HFD exhibited severe kidney injury characterized by glycogen accumulation, inflammation, apoptosis, cyst formation, and impaired renal function. These results demonstrate that expression of AMPKγ2NI and AMPKγ2RG mutations at physiological levels can induce beneficial metabolic effects but that this is accompanied by WPW syndrome. Our data also reveal an unexpected effect of AMPKγ2RG in the kidney, linking lifelong constitutive activation of AMPK to a potential risk for kidney dysfunction in the context of an HFD. PMID:27621313

  3. Productive mutants of niger

    International Nuclear Information System (INIS)

    Misra, R.C.

    2001-01-01

    Seeds of six niger (Guizotia abyssinica Cass.) varieties ('GA-10', 'ONS-8', 'IGP-72', 'N-71', 'NB-9' and 'UN-4') were treated with 0.5, 0.75 and 1% ethyl methanesulphonate. After four generations of selection, 29 mutant lines were developed and those were evaluated from 1990-92 during Kharif (July to October) and Rabi (December to March) seasons. Average plant characteristics and yield data of four high yielding mutants along with 'IGP-76' (National Check), GA-10 (Zonal Check) and 'Semiliguda Local' (Local Check) are presented

  4. Overexpression of Catalase Diminishes Oxidative Cysteine Modifications of Cardiac Proteins.

    Directory of Open Access Journals (Sweden)

    Chunxiang Yao

    Full Text Available Reactive protein cysteine thiolates are instrumental in redox regulation. Oxidants, such as hydrogen peroxide (H2O2, react with thiolates to form oxidative post-translational modifications, enabling physiological redox signaling. Cardiac disease and aging are associated with oxidative stress which can impair redox signaling by altering essential cysteine thiolates. We previously found that cardiac-specific overexpression of catalase (Cat, an enzyme that detoxifies excess H2O2, protected from oxidative stress and delayed cardiac aging in mice. Using redox proteomics and systems biology, we sought to identify the cysteines that could play a key role in cardiac disease and aging. With a 'Tandem Mass Tag' (TMT labeling strategy and mass spectrometry, we investigated differential reversible cysteine oxidation in the cardiac proteome of wild type and Cat transgenic (Tg mice. Reversible cysteine oxidation was measured as thiol occupancy, the ratio of total available versus reversibly oxidized cysteine thiols. Catalase overexpression globally decreased thiol occupancy by ≥1.3 fold in 82 proteins, including numerous mitochondrial and contractile proteins. Systems biology analysis assigned the majority of proteins with differentially modified thiols in Cat Tg mice to pathways of aging and cardiac disease, including cellular stress response, proteostasis, and apoptosis. In addition, Cat Tg mice exhibited diminished protein glutathione adducts and decreased H2O2 production from mitochondrial complex I and II, suggesting improved function of cardiac mitochondria. In conclusion, our data suggest that catalase may alleviate cardiac disease and aging by moderating global protein cysteine thiol oxidation.

  5. CD147 overexpression promotes tumorigenicity in Chinese hamster ovary cells.

    Science.gov (United States)

    Yong, Yu-Le; Liao, Cheng-Gong; Wei, Ding; Chen, Zhi-Nan; Bian, Huijie

    2016-04-01

    CD147 overexpresses in many epithelium-originated tumors and plays an important role in tumor migration and invasion. Most studies aim at the role of CD147 in tumor progression using tumor cell models. However, the influence of abnormal overexpression of CD147 on neoplastic transformation of normal cells is unknown. Here, the role of CD147 in malignant phenotype transformation in CHO cells was investigated. Three CHO cell lines that stably overexpressed CD147 (CHO-CD147), EGFP-CD147 (CHO-EGFP-CD147), and EGFP (CHO-EGFP) were generated by transfection of plasmids containing human CD147, EGFP-human CD147, and EGFP genes into CHO cells. Cell migration and invasion were detected by wound healing and transwell matrix penetration assay. Trypan blue exclusion, MTT, cell cycle analysis, and BrdU cell proliferation assay were used to detect cell viability and cell proliferation. Annexin V-FITC analysis was performed to detect apoptosis. We found that CD147 overexpression promoted the migration and invasion of CHO cells. CD147 accelerated the G1 to S phase transition and enhanced the CHO cell proliferation. Overexpression of CD147 inhibited both early- and late-stages of apoptosis of CHO-CD147 cells, which is caused by serum deprivation. CHO-EGFP-CD147 cells showed an increased anchorage-independent growth compared with CHO-EGFP cells as detected by soft-agar colony formation assay. The tumors formed by CHO-CD147 cells in nude mice were larger and coupled with higher expression of proliferating cell nuclear antigen and Ki-67 than that of CHO cells. In conclusion, human CD147 overexpression induces malignant phenotype in CHO cells. © 2015 International Federation for Cell Biology.

  6. Overexpression of Candida albicans Secreted Aspartyl Proteinases 2 or 5 is not sufficient for exacerbation of immunopathology in a murine model of vaginitis.

    Science.gov (United States)

    Willems, Hubertine M E; Bruner, Winter S; Barker, Katherine S; Liu, Junyan; Palmer, Glen E; Peters, Brian M

    2017-07-31

    The secreted aspartyl protineases of C. albicans have long been implicated in virulence at the mucosal surface, including contribution to colonization and immunopathogenesis during vulvovaginal candidiasis. In an effort to disentangle hypha-associated virulence factor regulation from morphological transition, the purpose of this study was to determine if overexpression of SAP2 or SAP5 in a efg1 Δ/Δ/ cph1 Δ/Δ mutant could restore capacity to cause immunopathology during murine vaginitis to this avirulent hypofilamentous strain. Two similar, yet distinct, genetic approaches were used to construct expression vectors to achieve SAP overexpression and both genetic and functional assays confirmed elevated SAP activity in transformed strains. Similar to previous findings, intravaginal challenge of C57Bl/6 mice with hypha-defective strains attained high levels of mucosal colonization but failed to induce robust vaginal immunopathology (neutrophil recruitment, IL-1β secretion, lactate dehydrogenase release) as compared to the hypha-competent control. Moreover, constitutive expression of SAP2 or SAP5 in two distinct sets of such strains did not elicit immunopathological markers above that observed during challenge with isogenic empty-vector controls. Therefore, these results suggest that physiological contribution of SAPs to vaginal immunopathology require hypha formation, other hypha-associated factors, or genetic interaction with EFG1 and/or CPH1 to cause symptomatic infection. Additionally, the outlined expression strategy and strain sets will be useful for decoupling other downstream morphogenetic factors from hyphal growth. Copyright © 2017 American Society for Microbiology.

  7. Indy mutants: live long and prosper

    Directory of Open Access Journals (Sweden)

    Stewart eFrankel

    2012-02-01

    Full Text Available Indy encodes the fly homologue of a mammalian transporter of di and tricarboxylatecomponents of the Krebs cycle. Reduced expression of fly Indy or two of the C. elegansIndy homologs leads to an increase in life span. Fly and worm tissues that play key roles inintermediary metabolism are also the places where Indy genes are expressed. One of themouse homologs of Indy (mIndy is mainly expressed in the liver. It has been hypothesizedthat decreased INDY activity creates a state similar to caloric restriction (CR. Thishypothesis is supported by the physiological similarities between Indy mutant flies on highcalorie food and control flies on CR, such as increased physical activity and decreases inweight, egg production, triglyceride levels, starvation resistance, and insulin signaling. Inaddition, Indy mutant flies undergo changes in mitochondrial biogenesis also observed inCR animals. Recent findings with mIndy knockout mice support and extend the findingsfrom flies. mIndy-/- mice display an increase in hepatic mitochondrial biogenesis, lipidoxidation and decreased hepatic lipogenesis. When mIndy-/- mice are fed high calorie foodthey are protected from adiposity and insulin resistance. These findings point to INDY as apotential drug target for the treatment of metabolic syndrome, type 2 diabetes and obesity.

  8. Genetic interactions between neurofibromin and endothelin receptor B in mice.

    Directory of Open Access Journals (Sweden)

    Mugdha Deo

    Full Text Available When mutations in two differe