WorldWideScience

Sample records for mice lacking key

  1. Reduced alcohol consumption in mice lacking preprodynorphin.

    Science.gov (United States)

    Blednov, Yuri A; Walker, Danielle; Martinez, Marni; Harris, R Adron

    2006-10-01

    Many studies suggest a role for endogenous opioid peptides and their receptors in regulation of ethanol intake. It is commonly accepted that the kappa-opioid receptors and their endogenous ligands, dynorphins, produce a dysphoric state and therefore may be responsible for avoidance of alcohol. We used mutant mice lacking preprodynorphin in a variety of behavioral tests of alcohol actions. Null mutant female, but not male, mice showed significantly lower preference for alcohol and consumed lower amounts of alcohol in a two-bottle choice test as compared with wild-type littermates. In the same test, knockout mice of both sexes showed a strong reduction of preference for saccharin compared to control mice. In contrast, under conditions of limited (4 h) access (light phase of the light/dark cycle), null mutant mice did not show any differences in consumption of saccharin, but they showed significantly reduced intake of sucrose. To determine the possible cause for reduction of ethanol preference and intake, we studied other ethanol-related behaviors in mice lacking the preprodynorphin gene. There were no differences between null mutant and wild-type mice in ethanol-induced loss of righting reflex, acute ethanol withdrawal, ethanol-induced conditioned place preference, or conditioned taste aversion to ethanol. These results indicate that deletion of preprodynorphin leads to substantial reduction of alcohol intake in female mice, and suggest that this is caused by decreased orosensory reward of alcohol (sweet taste and/or palatability).

  2. Mice lacking major brain gangliosides develop parkinsonism.

    Science.gov (United States)

    Wu, Gusheng; Lu, Zi-Hua; Kulkarni, Neil; Amin, Ruchi; Ledeen, Robert W

    2011-09-01

    Parkinson's disease (PD) is the second most prevalent late-onset neurodegenerative disorder that affects nearly 1% of the global population aged 65 and older. Whereas palliative treatments are in use, the goal of blocking progression of motor and cognitive disability remains unfulfilled. A better understanding of the basic pathophysiological mechanisms underlying PD would help to advance that goal. The present study provides evidence that brain ganglioside abnormality, in particular GM1, may be involved. This is based on use of the genetically altered mice with disrupted gene Galgt1 for GM2/GD2 synthase which depletes GM2/GD2 and all the gangliotetraose gangliosides that constitute the major molecular species of brain. These knockout mice show overt motor disability on aging and clear indications of motor impairment with appropriate testing at an earlier age. This disability was rectified by L-dopa administration. These mice show other characteristic symptoms of PD, including depletion of striatal dopamine (DA), loss of DA neurons of the substantia nigra pars compacta, and aggregation of alpha synuclein. These manifestations of parkinsonism were largely attenuated by administration of LIGA-20, a membrane permeable analog of GM1 that penetrates the blood brain barrier and enters living neurons. These results suggest that perturbation of intracellular mechanisms mediated by intracellular GM1 may be a contributing factor to PD.

  3. Kidney failure in mice lacking the tetraspanin CD151

    NARCIS (Netherlands)

    Sachs, Norman; Kreft, Maaike; van den Bergh Weerman, Marius A.; Beynon, Andy J.; Peters, Theo A.; Weening, Jan J.; Sonnenberg, Arnoud

    2006-01-01

    The tetraspanin CD151 is a cell-surface molecule known for its strong lateral interaction with the laminin-binding integrin alpha3beta1. Patients with a nonsense mutation in CD151 display end-stage kidney failure associated with regional skin blistering and sensorineural deafness, and mice lacking

  4. Kidney failure in mice lacking the tetraspanin CD151.

    NARCIS (Netherlands)

    Sachs, N.; Kreft, M.; Bergh Weerman, M. van der; Beynon, A.J.; Peters, T.A.; Weening, J.J.; Sonnenberg, A.

    2006-01-01

    The tetraspanin CD151 is a cell-surface molecule known for its strong lateral interaction with the laminin-binding integrin alpha3beta1. Patients with a nonsense mutation in CD151 display end-stage kidney failure associated with regional skin blistering and sensorineural deafness, and mice lacking

  5. Motor hypertonia and lack of locomotor coordination in mutant mice lacking DSCAM.

    Science.gov (United States)

    Lemieux, Maxime; Laflamme, Olivier D; Thiry, Louise; Boulanger-Piette, Antoine; Frenette, Jérôme; Bretzner, Frédéric

    2016-03-01

    Down syndrome cell adherence molecule (DSCAM) contributes to the normal establishment and maintenance of neural circuits. Whereas there is abundant literature regarding the role of DSCAM in the neural patterning of the mammalian retina, less is known about motor circuits. Recently, DSCAM mutation has been shown to impair bilateral motor coordination during respiration, thus causing death at birth. DSCAM mutants that survive through adulthood display a lack of locomotor endurance and coordination in the rotarod test, thus suggesting that the DSCAM mutation impairs motor control. We investigated the motor and locomotor functions of DSCAM(2J) mutant mice through a combination of anatomical, kinematic, force, and electromyographic recordings. With respect to wild-type mice, DSCAM(2J) mice displayed a longer swing phase with a limb hyperflexion at the expense of a shorter stance phase during locomotion. Furthermore, electromyographic activity in the flexor and extensor muscles was increased and coactivated over 20% of the step cycle over a wide range of walking speeds. In contrast to wild-type mice, which used lateral walk and trot at walking speed, DSCAM(2J) mice used preferentially less coordinated gaits, such as out-of-phase walk and pace. The neuromuscular junction and the contractile properties of muscles, as well as their muscle spindles, were normal, and no signs of motor rigidity or spasticity were observed during passive limb movements. Our study demonstrates that the DSCAM mutation induces dystonic hypertonia and a disruption of locomotor gaits. Copyright © 2016 the American Physiological Society.

  6. Impaired intestinal proglucagon processing in mice lacking prohormone convertase 1

    DEFF Research Database (Denmark)

    Ugleholdt, Randi; Zhu, Xiaorong; Deacon, Carolyn F

    2003-01-01

    proglucagon processing showed marked defects. Tissue proglucagon levels in null mice were elevated, and proglucagon processing to glicentin, oxyntomodulin, and glucagon-like peptide-1 and -2 (GLP-1 and GLP-2) was markedly decreased, indicating that PC1 is essential for the processing of all the intestinal...... proglucagon cleavage sites. This includes the monobasic site R(77) and, thereby, production of mature, biologically active GLP-1. We also found elevated glucagon levels, suggesting that factors other than PC1 that are capable of processing to mature glucagon are present in the secretory granules of the L cell......The neuroendocrine prohormone convertases 1 and 2 (PC1 and PC2) are expressed in endocrine intestinal L cells and pancreatic A cells, respectively, and colocalize with proglucagon in secretory granules. Mice lacking PC2 have multiple endocrinopathies and cannot process proglucagon to mature...

  7. Multiple sleep alterations in mice lacking cannabinoid type 1 receptors.

    Directory of Open Access Journals (Sweden)

    Alessandro Silvani

    Full Text Available Cannabinoid type 1 (CB1 receptors are highly expressed in the brain and play a role in behavior control. Endogenous cannabinoid signaling is modulated by high-fat diet (HFD. We investigated the consequences of congenital lack of CB1 receptors on sleep in mice fed standard diet (SD and HFD. CB1 cannabinoid receptor knock-out (KO and wild-type (WT mice were fed SD or HFD for 4 months (n = 9-10 per group. Mice were instrumented with electroencephalographic (EEG and electromyographic electrodes. Recordings were performed during baseline (48 hours, sleep deprivation (gentle handling, 6 hours, sleep recovery (18 hours, and after cage switch (insomnia model paradigm, 6 hours. We found multiple significant effects of genotype on sleep. In particular, KO spent more time awake and less time in non-rapid-eye-movement sleep (NREMS and rapid-eye-movement sleep (REMS than WT during the dark (active period but not during the light (rest period, enhancing the day-night variation of wake-sleep amounts. KO had slower EEG theta rhythm during REMS. REMS homeostasis after sleep deprivation was less effective in KO than in WT. Finally, KO habituated more rapidly to the arousing effect of the cage-switch test than WT. We did not find any significant effects of diet or of diet x genotype interaction on sleep. The occurrence of multiple sleep alterations in KO indicates important roles of CB1 cannabinoid receptors in limiting arousal during the active period of the day, in sleep regulation, and in sleep EEG in mice.

  8. Lethal Cardiomyopathy in Mice Lacking Transferrin Receptor in the Heart

    Directory of Open Access Journals (Sweden)

    Wenjing Xu

    2015-10-01

    Full Text Available Both iron overload and iron deficiency have been associated with cardiomyopathy and heart failure, but cardiac iron utilization is incompletely understood. We hypothesized that the transferrin receptor (Tfr1 might play a role in cardiac iron uptake and used gene targeting to examine the role of Tfr1 in vivo. Surprisingly, we found that decreased iron, due to inactivation of Tfr1, was associated with severe cardiac consequences. Mice lacking Tfr1 in the heart died in the second week of life and had cardiomegaly, poor cardiac function, failure of mitochondrial respiration, and ineffective mitophagy. The phenotype could only be rescued by aggressive iron therapy, but it was ameliorated by administration of nicotinamide riboside, an NAD precursor. Our findings underscore the importance of both Tfr1 and iron in the heart, and may inform therapy for patients with heart failure.

  9. Impaired cutaneous wound healing in mice lacking tetranectin

    DEFF Research Database (Denmark)

    Iba, Kousuke; Hatakeyama, Naoko; Kojima, Takashi

    2009-01-01

    disruption of the tetranectin gene to elucidate the biological function of tetranectin. In this study, we showed that wound healing was markedly delayed in tetranectin-null mice compared with wild-type mice. A single full-thickness incision was made in the dorsal skin. By 14 days after the incision......, the wounds fully healed in all wild-type mice based on the macroscopic closure; in contrast, the progress of wound healing in the tetranectin null mice appeared to be impaired. In histological analysis, wounds of wild-type mice showed complete reepithelialization and healed by 14 days after the incision....... However, those of tetranectin-null mice never showed complete reepithelialization at 14 days. At 21 days after the injury, the wound healed and was covered with an epidermis. These results supported the fact that tetranectin may play a role in the wound healing process....

  10. Mice lacking neuropeptide Y show increased sensitivity to cocaine

    DEFF Research Database (Denmark)

    Sørensen, Gunnar; Woldbye, David Paul Drucker

    2012-01-01

    There is increasing data implicating neuropeptide Y (NPY) in the neurobiology of addiction. This study explored the possible role of NPY in cocaine-induced behavior using NPY knockout mice. The transgenic mice showed a hypersensitive response to cocaine in three animal models of cocaine addiction...

  11. Abnormal Cardiac Autonomic Regulation in Mice Lacking ASIC3

    Directory of Open Access Journals (Sweden)

    Ching-Feng Cheng

    2014-01-01

    Full Text Available Integration of sympathetic and parasympathetic outflow is essential in maintaining normal cardiac autonomic function. Recent studies demonstrate that acid-sensing ion channel 3 (ASIC3 is a sensitive acid sensor for cardiac ischemia and prolonged mild acidification can open ASIC3 and evoke a sustained inward current that fires action potentials in cardiac sensory neurons. However, the physiological role of ASIC3 in cardiac autonomic regulation is not known. In this study, we elucidate the role of ASIC3 in cardiac autonomic function using Asic3−/− mice. Asic3−/− mice showed normal baseline heart rate and lower blood pressure as compared with their wild-type littermates. Heart rate variability analyses revealed imbalanced autonomic regulation, with decreased sympathetic function. Furthermore, Asic3−/− mice demonstrated a blunted response to isoproterenol-induced cardiac tachycardia and prolonged duration to recover to baseline heart rate. Moreover, quantitative RT-PCR analysis of gene expression in sensory ganglia and heart revealed that no gene compensation for muscarinic acetylcholines receptors and beta-adrenalin receptors were found in Asic3−/− mice. In summary, we unraveled an important role of ASIC3 in regulating cardiac autonomic function, whereby loss of ASIC3 alters the normal physiological response to ischemic stimuli, which reveals new implications for therapy in autonomic nervous system-related cardiovascular diseases.

  12. Mice lacking cyclin-dependent kinase-like 5 manifest autistic and ADHD-like behaviors.

    Science.gov (United States)

    Jhang, Cian-Ling; Huang, Tzyy-Nan; Hsueh, Yi-Ping; Liao, Wenlin

    2017-10-15

    Neurodevelopmental disorders frequently share common clinical features and appear high rate of comorbidity, such as those present in patients with attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorders (ASD). While characterizing behavioral phenotypes in the mouse model of cyclin-dependent kinase-like 5 (CDKL5) disorder, a neurodevelopmental disorder caused by mutations in the X-linked gene encoding CDKL5, we found that these mice manifested behavioral phenotypes mimicking multiple key features of ASD, such as impaired social interaction and communication, as well as increased stereotypic digging behaviors. These mice also displayed hyper-locomotion, increased aggressiveness and impulsivity, plus deficits in motor and associative learning, resembling primary symptoms of ADHD. Through brain region-specific biochemical analysis, we uncovered that loss of CDKL5 disrupts dopamine synthesis and the expression of social communication-related key genes, such as forkhead-box P2 and mu-opioid receptor, in the corticostriatal circuit. Together, our findings support that CDKL5 plays a role in the comorbid features of autism and ADHD, and mice lacking CDKL5 may serve as an animal model to study the molecular and circuit mechanisms underlying autism-ADHD comorbidity. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Increased brain damage after ischaemic stroke in mice lacking the chemokine receptor CCR5

    Science.gov (United States)

    Sorce, S; Bonnefont, J; Julien, S; Marq-Lin, N; Rodriguez, I; Dubois-Dauphin, M; Krause, KH

    2010-01-01

    Background and purpose: The chemokine receptor CCR5 is well known for its function in immune cells; however, it is also expressed in the brain, where its specific role remains to be elucidated. Because genetic factors may influence the risk of developing cerebral ischaemia or affect its clinical outcome, we have analysed the role of CCR5 in experimental stroke. Experimental approach: Permanent cerebral ischaemia was performed by occlusion of the middle cerebral artery in wild-type and CCR5-deficient mice. Locomotor behaviour, infarct size and histochemical alterations were analysed at different time points after occlusion. Key results: The cerebral vasculature was comparable in wild-type and CCR5-deficient mice. However, the size of the infarct and the motor deficits after occlusion were markedly increased in CCR5-deficient mice as compared with wild type. No differences between wild-type and CCR5-deficient mice were elicited by occlusion with respect to the morphology and abundance of astrocytes and microglia. Seven days after occlusion the majority of CCR5-deficient mice displayed neutrophil invasion in the infarct region, which was not observed in wild type. As compared with wild type, the infarct regions of CCR5-deficient mice were characterized by increased neuronal death. Conclusions and implications: Lack of CCR5 increased the severity of brain injury following occlusion of the middle cerebral artery. This is of particular interest with respect to the relatively frequent occurrence of CCR5 deficiency in the human population (1–2% of the Caucasian population) and the advent of CCR5 inhibitors as novel drugs. PMID:20423342

  14. Generation of mice lacking DUF1220 protein domains

    DEFF Research Database (Denmark)

    Keeney, J G; O'Bleness, M S; Anderson, N

    2015-01-01

    associations, a function for these domains has not been described. As a first step in addressing this question, we have developed the first transgenic model of DUF1220 function by removing the single DUF1220 domain (the ancestral form) encoded in the mouse genome. In a hypothesis generating exercise...... function, and potentially suggests a role in developmental metabolism. Finally, the substantially reduced fecundity we observe associated with KO mice argues that the ancestral DUF1220 domain provides an important biological functionthat is critical to survivability and reproductive success....

  15. Mice lacking the p43 mitochondrial T3 receptor become glucose intolerant and insulin resistant during aging.

    Directory of Open Access Journals (Sweden)

    Christelle Bertrand

    Full Text Available Thyroid hormones (TH play an important regulatory role in energy expenditure regulation and are key regulators of mitochondrial activity. We have previously identified a mitochondrial triiodothyronine (T3 receptor (p43 which acts as a mitochondrial transcription factor of the organelle genome, which leads in vitro and in vivo, to a stimulation of mitochondrial biogenesis. Recently, we generated mice carrying a specific p43 invalidation. At 2 months of age, we reported that p43 depletion in mice induced a major defect in insulin secretion both in vivo and in isolated pancreatic islets, and a loss of glucose-stimulated insulin secretion. The present study was designed to determine whether p43 invalidation influences life expectancy and modulates blood glucose and insulin levels as well as glucose tolerance or insulin sensitivity during aging. We report that from 4 months old onwards, mice lacking p43 are leaner than wild-type mice. p43-/- mice also have a moderate reduction of life expectancy compared to wild type. We found no difference in blood glucose levels, excepted at 24 months old where p43-/- mice showed a strong hyperglycemia in fasting conditions compared to controls animals. However, the loss of glucose-stimulated insulin secretion was maintained whatever the age of mice lacking p43. If up to 12 months old, glucose tolerance remained unchanged, beyond this age p43-/- mice became increasingly glucose intolerant. In addition, if up to 12 months old p43 deficient animals were more sensitive to insulin, after this age we observed a loss of this capacity, culminating in 24 months old mice with a decreased sensitivity to the hormone. In conclusion, we demonstrated that during aging the depletion of the mitochondrial T3 receptor p43 in mice progressively induced an increased glycemia in the fasted state, glucose intolerance and an insulin-resistance several features of type-2 diabetes.

  16. Hematopoietic Kit Deficiency, rather than Lack of Mast Cells, Protects Mice from Obesity and Insulin Resistance.

    Science.gov (United States)

    Gutierrez, Dario A; Muralidhar, Sathya; Feyerabend, Thorsten B; Herzig, Stephan; Rodewald, Hans-Reimer

    2015-05-05

    Obesity, insulin resistance, and related pathologies are associated with immune-mediated chronic inflammation. Kit mutant mice are protected from diet-induced obesity and associated co-morbidities, and this phenotype has previously been attributed to their lack of mast cells. We performed a comprehensive metabolic analysis of Kit-dependent Kit(W/Wv) and Kit-independent Cpa3(Cre/+) mast-cell-deficient mouse strains, employing diet-induced or genetic (Lep(Ob/Ob) background) models of obesity. Our results show that mast cell deficiency, in the absence of Kit mutations, plays no role in the regulation of weight gain or insulin resistance. Moreover, we provide evidence that the metabolic phenotype observed in Kit mutant mice, while independent of mast cells, is immune regulated. Our data underscore the value of definitive mast cell deficiency models to conclusively test the involvement of this enigmatic cell in immune-mediated pathologies and identify Kit as a key hematopoietic factor in the pathogenesis of metabolic syndrome. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Lacking Ketohexokinase-A Exacerbates Renal Injury in Streptozotocin-induced Diabetic Mice.

    Science.gov (United States)

    Doke, Tomohito; Ishimoto, Takuji; Hayasaki, Takahiro; Ikeda, Satsuki; Hasebe, Masako; Hirayama, Akiyoshi; Soga, Tomoyoshi; Kato, Noritoshi; Kosugi, Tomoki; Tsuboi, Naotake; Lanaspa, Miguel A; Johnson, Richard J; Kadomatsu, Kenji; Maruyama, Shoichi

    2018-03-28

    Ketohexokinase (KHK), a primary enzyme in fructose metabolism, has two isoforms, namely, KHK-A and KHK-C. Previously, we reported that renal injury was reduced in streptozotocin-induced diabetic mice which lacked both isoforms. Although both isoforms express in kidney, it has not been elucidated whether each isoform plays distinct roles in the development of diabetic kidney disease (DKD). The aim of the study is to elucidate the role of KHK-A for DKD progression. Diabetes was induced by five consecutive daily intraperitoneal injections of streptozotocin (50 mg/kg) in C57BL/6 J wild-type mice, mice lacking KHK-A alone (KHK-A KO), and mice lacking both KHK-A and KHK-C (KHK-A/C KO). At 35 weeks, renal injury, inflammation, hypoxia, and oxidative stress were examined. Metabolomic analysis including polyol pathway, fructose metabolism, glycolysis, TCA (tricarboxylic acid) cycle, and NAD (nicotinamide adenine dinucleotide) metabolism in kidney and urine was done. Diabetic KHK-A KO mice developed severe renal injury compared to diabetic wild-type mice, and this was associated with further increases of intrarenal fructose, dihydroxyacetone phosphate (DHAP), TCA cycle intermediates levels, and severe inflammation. In contrast, renal injury was prevented in diabetic KHK-A/C KO mice compared to both wild-type and KHK-A KO diabetic mice. Further, diabetic KHK-A KO mice contained decreased renal NAD + level with the increase of renal hypoxia-inducible factor 1-alpha expression despite having increased renal nicotinamide (NAM) level. These results suggest that KHK-C might play a deleterious role in DKD progression through endogenous fructose metabolism, and that KHK-A plays a unique protective role against the development of DKD. Copyright © 2018. Published by Elsevier Inc.

  18. Mutant Mice Lacking the p53 C-Terminal Domain Model Telomere Syndromes

    NARCIS (Netherlands)

    Simeonova, I.; Jaber, S.; Draskovic, I.; Bardot, B.; Fang, M.; Bouarich-Bourimi, R.; Lejour, V.; Charbonnier, L.; Soudais, C.; Bourdon, J.C.; Huerre, M.; Londono-Vallejo, A.; Toledo, F.

    2013-01-01

    Mutations in p53, although frequent in human cancers, have not been implicated in telomere-related syndromes. Here, we show that homozygous mutant mice expressing p53(Delta31), a p53 lacking the C-terminal domain, exhibit increased p53 activity and suffer from aplastic anemia and pulmonary fibrosis,

  19. Increased consumption of ethanol and sugar water in mice lacking the dopamine D2 long receptor.

    Science.gov (United States)

    Bulwa, Zachary B; Sharlin, Jordan A; Clark, Peter J; Bhattacharya, Tushar K; Kilby, Chessa N; Wang, Yanyan; Rhodes, Justin S

    2011-11-01

    Individual differences in dopamine D2 receptor (D2R) expression in the brain are thought to influence motivation and reinforcement for ethanol and other rewards. D2R exists in two isoforms, D2 long (D2LR) and D2 short (D2SR), produced by alternative splicing of the same gene. The relative contributions of D2LR versus D2SR to ethanol and sugar water drinking are not known. Genetic engineering was used to produce a line of knockout (KO) mice that lack D2LR and consequently have increased expression of D2SR. KO and wild-type (WT) mice of both sexes were tested for intake of 20% ethanol, 10% sugar water and plain tap water using established drinking-in-the-dark procedures. Mice were also tested for effects of the D2 antagonist eticlopride on intake of ethanol to determine whether KO responses were caused by lack of D2LR or overrepresentation of D2SR. Locomotor activity on running wheels and in cages without wheels was also measured for comparison. D2L KO mice drank significantly more ethanol than WT in both sexes. KO mice drank more sugar water than WT in females but not in males. Eticlopride dose dependently decreased ethanol intake in all groups except male KO. KO mice were less physically active than WT in cages with or without running wheels. Results suggest that overrepresentation of D2SR contributes to increased intake of ethanol in the KO mice. Decreasing wheel running and general levels of physical activity in the KO mice rules out the possibility that higher intake results from higher motor activity. Results extend the literature implicating altered expression of D2R in risk for addiction by delineating the contribution of individual D2R isoforms. These findings suggest that D2LR and D2SR play differential roles in consumption of alcohol and sugar rewards. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Mice lacking inositol 1,4,5-trisphosphate receptors exhibit dry eye.

    Directory of Open Access Journals (Sweden)

    Takaaki Inaba

    Full Text Available Tear secretion is important as it supplies water to the ocular surface and keeps eyes moist. Both the parasympathetic and sympathetic pathways contribute to tear secretion. Although intracellular Ca2+ elevation in the acinar cells of lacrimal glands is a crucial event for tear secretion in both the pathways, the Ca2+ channel, which is responsible for the Ca2+ elevation in the sympathetic pathway, has not been sufficiently analyzed. In this study, we examined tear secretion in mice lacking the inositol 1,4,5-trisphosphate receptor (IP3R types 2 and 3 (Itpr2-/-;Itpr3-/-double-knockout mice. We found that tear secretion in both the parasympathetic and sympathetic pathways was abolished in Itpr2-/-;Itpr3-/- mice. Intracellular Ca2+ elevation in lacrimal acinar cells after acetylcholine and epinephrine stimulation was abolished in Itpr2-/-;Itpr3-/- mice. Consequently, Itpr2-/-;Itpr3-/- mice exhibited keratoconjunctival alteration and corneal epithelial barrier disruption. Inflammatory cell infiltration into the lacrimal glands and elevation of serum autoantibodies, a representative marker for Sjögren's syndrome (SS in humans, were also detected in older Itpr2-/-;Itpr3-/- mice. These results suggested that IP3Rs are essential for tear secretion in both parasympathetic and sympathetic pathways and that Itpr2-/-;Itpr3-/- mice could be a new dry eye mouse model with symptoms that mimic those of SS.

  1. Lack of the Lysosomal Membrane Protein, GLMP, in Mice Results in Metabolic Dysregulation in Liver.

    Directory of Open Access Journals (Sweden)

    Xiang Yi Kong

    Full Text Available Ablation of glycosylated lysosomal membrane protein (GLMP, formerly known as NCU-G1 has been shown to cause chronic liver injury which progresses into liver fibrosis in mice. Both lysosomal dysfunction and chronic liver injury can cause metabolic dysregulation. Glmp gt/gt mice (formerly known as Ncu-g1gt/gt mice were studied between 3 weeks and 9 months of age. Body weight gain and feed efficiency of Glmp gt/gt mice were comparable to wild type siblings, only at the age of 9 months the Glmp gt/gt siblings had significantly reduced body weight. Reduced size of epididymal fat pads was accompanied by hepatosplenomegaly in Glmp gt/gt mice. Blood analysis revealed reduced levels of blood glucose, circulating triacylglycerol and non-esterified fatty acids in Glmp gt/gt mice. Increased flux of glucose, increased de novo lipogenesis and lipid accumulation were detected in Glmp gt/gt primary hepatocytes, as well as elevated triacylglycerol levels in Glmp gt/gt liver homogenates, compared to hepatocytes and liver from wild type mice. Gene expression analysis showed an increased expression of genes involved in fatty acid uptake and lipogenesis in Glmp gt/gt liver compared to wild type. Our findings are in agreement with the metabolic alterations observed in other mouse models lacking lysosomal proteins, and with alterations characteristic for advanced chronic liver injury.

  2. Attenuated traumatic axonal injury and improved functional outcome after traumatic brain injury in mice lacking Sarm1.

    Science.gov (United States)

    Henninger, Nils; Bouley, James; Sikoglu, Elif M; An, Jiyan; Moore, Constance M; King, Jean A; Bowser, Robert; Freeman, Marc R; Brown, Robert H

    2016-04-01

    Axonal degeneration is a critical, early event in many acute and chronic neurological disorders. It has been consistently observed after traumatic brain injury, but whether axon degeneration is a driver of traumatic brain injury remains unclear. Molecular pathways underlying the pathology of traumatic brain injury have not been defined, and there is no efficacious treatment for traumatic brain injury. Here we show that mice lacking the mouse Toll receptor adaptor Sarm1 (sterile α/Armadillo/Toll-Interleukin receptor homology domain protein) gene, a key mediator of Wallerian degeneration, demonstrate multiple improved traumatic brain injury-associated phenotypes after injury in a closed-head mild traumatic brain injury model. Sarm1(-/-) mice developed fewer β-amyloid precursor protein aggregates in axons of the corpus callosum after traumatic brain injury as compared to Sarm1(+/+) mice. Furthermore, mice lacking Sarm1 had reduced plasma concentrations of the phophorylated axonal neurofilament subunit H, indicating that axonal integrity is maintained after traumatic brain injury. Strikingly, whereas wild-type mice exibited a number of behavioural deficits after traumatic brain injury, we observed a strong, early preservation of neurological function in Sarm1(-/-) animals. Finally, using in vivo proton magnetic resonance spectroscopy we found tissue signatures consistent with substantially preserved neuronal energy metabolism in Sarm1(-/-) mice compared to controls immediately following traumatic brain injury. Our results indicate that the SARM1-mediated prodegenerative pathway promotes pathogenesis in traumatic brain injury and suggest that anti-SARM1 therapeutics are a viable approach for preserving neurological function after traumatic brain injury. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Myocardial mitochondrial and contractile function are preserved in mice lacking adiponectin.

    Directory of Open Access Journals (Sweden)

    Martin Braun

    Full Text Available Adiponectin deficiency leads to increased myocardial infarct size following ischemia reperfusion and to exaggerated cardiac hypertrophy following pressure overload, entities that are causally linked to mitochondrial dysfunction. In skeletal muscle, lack of adiponectin results in impaired mitochondrial function. Thus, it was our objective to investigate whether adiponectin deficiency impairs mitochondrial energetics in the heart. At 8 weeks of age, heart weight-to-body weight ratios were not different between adiponectin knockout (ADQ-/- mice and wildtypes (WT. In isolated working hearts, cardiac output, aortic developed pressure and cardiac power were preserved in ADQ-/- mice. Rates of fatty acid oxidation, glucose oxidation and glycolysis were unchanged between groups. While myocardial oxygen consumption was slightly reduced (-24% in ADQ-/- mice in isolated working hearts, rates of maximal ADP-stimulated mitochondrial oxygen consumption and ATP synthesis in saponin-permeabilized cardiac fibers were preserved in ADQ-/- mice with glutamate, pyruvate or palmitoyl-carnitine as a substrate. In addition, enzymatic activity of respiratory complexes I and II was unchanged between groups. Phosphorylation of AMP-activated protein kinase and SIRT1 activity were not decreased, expression and acetylation of PGC-1α were unchanged, and mitochondrial content of OXPHOS subunits was not decreased in ADQ-/- mice. Finally, increasing energy demands due to prolonged subcutaneous infusion of isoproterenol did not differentially affect cardiac contractility or mitochondrial function in ADQ-/- mice compared to WT. Thus, mitochondrial and contractile function are preserved in hearts of mice lacking adiponectin, suggesting that adiponectin may be expendable in the regulation of mitochondrial energetics and contractile function in the heart under non-pathological conditions.

  4. Remodeling of the Cervix and Parturition in Mice Lacking the Progesterone Receptor B Isoform1

    Science.gov (United States)

    Yellon, Steven M.; Oshiro, Bryan T.; Chhaya, Tejas Y.; Lechuga, Thomas J.; Dias, Rejane M.; Burns, Alexandra E.; Force, Lindsey; Apostolakis, Ede M.

    2011-01-01

    Withdrawal of progestational support for pregnancy is part of the final common pathways for parturition, but the role of nuclear progesterone receptor (PGR) isoforms in this process is not known. To determine if the PGR-B isoform participates in cervical remodeling at term, cervices were obtained from mice lacking PGR-B (PGR-BKO) and from wild-type (WT) controls before or after birth. PGR-BKO mice gave birth to viable pups at the same time as WT controls during the early morning of Day 19 postbreeding. Morphological analyses indicated that by the day before birth, cervices from PGR-BKO and WT mice had increased in size, with fewer cell nuclei/area as well as diminished collagen content and structure, as evidenced by optical density of picrosirius red-stained sections, compared to cervices from nonpregnant mice. Moreover, increased numbers of resident macrophages, but not neutrophils, were found in the prepartum cervix of PGR-BKO compared to nonpregnant mice, parallel to findings in WT mice. These results suggest that PGR-B does not contribute to the growth or degradation of the extracellular matrix or proinflammatory processes associated with recruitment of macrophages in the cervix leading up to birth. Rather, other receptors may contribute to the progesterone-dependent mechanism that promotes remodeling of the cervix during pregnancy and in the proinflammatory process associated with ripening before parturition. PMID:21613631

  5. Mice lacking prostaglandin E receptor subtype 4 manifest disrupted lipid metabolism attributable to impaired triglyceride clearance.

    Science.gov (United States)

    Cai, Yin; Ying, Fan; Song, Erfei; Wang, Yu; Xu, Aimin; Vanhoutte, Paul M; Tang, Eva Hoi-Ching

    2015-12-01

    Upon high-fat feeding, prostaglandin E receptor subtype 4 (EP4)-knockout mice gain less body weight than their EP4(+/+) littermates. We investigated the cause of the lean phenotype. The mice showed a 68.8% reduction in weight gain with diminished fat mass that was not attributable to reduced food intake, fat malabsorption, or increased energy expenditure. Plasma triglycerides in the mice were elevated by 244.9%. The increase in plasma triglycerides was independent of changes in hepatic very low density lipoprotein (VLDL)-triglyceride production or intestinal chylomicron-triglyceride synthesis. However, VLDL-triglyceride clearance was drastically impaired in the EP4-knockout mice. The absence of EP4 in mice compromised the activation of lipoprotein lipase (LPL), the key enzyme responsible for trafficking of plasma triglycerides into peripheral tissues. Deficiency in EP4 reduced hepatic mRNA expression of the transcriptional factor cAMP response element binding protein H (by 36.8%) and LPL activators, including apolipoprotein (Apo)a5 (by 40.2%) and Apoc2 (by 61.3%). In summary, the lean phenotype of EP4-deficient mice resulted from reduction in adipose tissue and accretion of other peripheral organs caused by impaired triglyceride clearance. The findings identify a new metabolic dimension in the physiologic role played by endogenous EP4. © FASEB.

  6. Regulation of ENaC in mice lacking renal insulin receptors in the collecting duct

    Science.gov (United States)

    Pavlov, Tengis S.; Ilatovskaya, Daria V.; Levchenko, Vladislav; Li, Lijun; Ecelbarger, Carolyn M.; Staruschenko, Alexander

    2013-01-01

    The epithelial sodium channel (ENaC) is one of the central effectors involved in regulation of salt and water homeostasis in the kidney. To study mechanisms of ENaC regulation, we generated knockout mice lacking the insulin receptor (InsR KO) specifically in the collecting duct principal cells. Single-channel analysis in freshly isolated split-open tubules demonstrated that the InsR-KO mice have significantly lower ENaC activity compared to their wild-type (C57BL/6J) littermates when animals were fed either normal or sodium-deficient diets. Immunohistochemical and Western blot assays demonstrated no significant changes in expression of ENaC subunits in InsR-KO mice compared to wild-type littermates. Insulin treatment caused greater ENaC activity in split-open tubules isolated from wild-type mice but did not have this effect in the InsR-KO mice. Thus, these results suggest that insulin increases ENaC activity via its own receptor affecting the channel open probability. To further determine the mechanism of the action of insulin on ENaC, we used mouse mpkCCDc14 principal cells. Insulin significantly augmented amiloride-sensitive transepithelial flux in these cells. Pretreatment of the mpkCCDc14 cells with phosphatidylinositol 3-kinase (LY294002; 10 μM) or mTOR (PP242; 100 nM) inhibitors precluded this effect. This study provides new information about the importance of insulin receptors expressed in collecting duct principal cells for ENaC activity.—Pavlov, T. S., Ilatovskaya, D. V., Levchenko, V., Li, L., Ecelbarger, C. M., Staruschenko, A. Regulation of ENaC in mice lacking renal insulin receptors in the collecting duct. PMID:23558339

  7. Lack of Melanopsin Is Associated with Extreme Weight Loss in Mice upon Dietary Challenge.

    Directory of Open Access Journals (Sweden)

    Didem Göz Aytürk

    Full Text Available Metabolic disorders have been established as major risk factors for ocular complications and poor vision. However, little is known about the inverse possibility that ocular disease may cause metabolic dysfunction. To test this hypothesis, we assessed the metabolic consequences of a robust dietary challenge in several mouse models suffering from retinal mutations. To this end, mice null for melanopsin (Opn4-/-, the photopigment of intrinsically photosensitive retinal ganglion cells (ipRGCs, were subjected to five weeks of a ketogenic diet. These mice lost significantly more weight than wild-type controls or mice lacking rod and cone photoreceptors (Pde6brd1/rd1. Although ipRGCs are critical for proper circadian entrainment, and circadian misalignment has been implicated in metabolic pathology, we observed no differences in entrainment between Opn4-/- and control mice. Additionally, we observed no differences in any tested metabolic parameter between these mouse strains. Further studies are required to establish the mechanism giving rise to this dramatic phenotype observed in melanopsin-null mice. We conclude that the causality between ocular disease and metabolic disorders merits further investigation due to the popularity of diets that rely on the induction of a ketogenic state. Our study is a first step toward understanding retinal pathology as a potential cause of metabolic dysfunction.

  8. A high-fat diet induces bone loss in mice lacking the Alox5 gene.

    Science.gov (United States)

    Le, Phuong; Kawai, Masanobu; Bornstein, Sheila; DeMambro, Victoria E; Horowitz, Mark C; Rosen, Clifford J

    2012-01-01

    5-Lipoxygenase catalyzes leukotriene generation from arachidonic acid. The gene that encodes 5-lipoxygenase, Alox5, has been identified in genome-wide association and mouse Quantitative Trait Locus studies as a candidate gene for obesity and low bone mass. Thus, we tested the hypothesis that Alox5(-/-) mice would exhibit metabolic and skeletal changes when challenged by a high-fat diet (HFD). On a regular diet, Alox5(-/-) mice did not differ in total body weight, percent fat mass, or bone mineral density compared with wild-type (WT) controls (P < 0.05). However, when placed on a HFD, Alox5(-/-) gained more fat mass and lost greater areal bone mass vs. WT (P < 0.05). Microarchitectural analyses revealed that on a HFD, WT showed increases in cortical area (P < 0.01) and trabecular thickness (P < 0.01), whereas Alox5(-/-) showed no change in cortical parameters but a decrease in trabecular number (P < 0.05) and bone volume fraction compared with WT controls (P < 0.05). By histomorphometry, a HFD did not change bone formation rates of either strain but produced an increase in osteoclast number per bone perimeter in Alox5(-/-) mice (P < 0.03). In vitro, osteoclastogenesis of marrow stromal cells was enhanced in mutant but not WT mice fed a HFD. Gene expression for Rankl, Pparg, and Cox-2 was greater in the femur of Alox5(-/-) than WT mice on a HFD (P < 0.01), but these increases were suppressed in the Alox5(-/-) mice after 8 wk of treatment with celecoxib, a cyclooxygenase-2 inhibitor. In sum, there is a strong gene by environmental interaction for bone mass when mice lacking the Alox5 gene are fed a HFD.

  9. Ethanol-related behaviors in mice lacking the sigma-1 receptor.

    Science.gov (United States)

    Valenza, Marta; DiLeo, Alyssa; Steardo, Luca; Cottone, Pietro; Sabino, Valentina

    2016-01-15

    The Sigma-1 receptor (Sig-1R) is a chaperone protein that has been implicated in drug abuse and addiction. Multiple studies have characterized the role the Sig-1R plays in psychostimulant addiction; however, fewer studies have specifically investigated its role in alcohol addiction. We have previously shown that antagonism of the Sig-1R reduces excessive drinking and motivation to drink, whereas agonism induces binge-like drinking in rodents. The objectives of these studies were to investigate the impact of Sig-1R gene deletion in C57Bl/6J mice on ethanol drinking and other ethanol-related behaviors. We used an extensive panel of behavioral tests to examine ethanol actions in male, adult mice lacking Oprs1, the gene encoding the Sig-1R. To compare ethanol drinking behavior, Sig-1 knockout (KO) and wild type (WT) mice were subject to a two-bottle choice, continuous access paradigm with different concentrations of ethanol (3-20% v/v) vs. water. Consumption of sweet and bitter solutions was also assessed in Sig-1R KO and WT mice. Finally, motor stimulant sensitivity, taste aversion and ataxic effects of ethanol were assessed. Sig-1R KO mice displayed higher ethanol intake compared to WT mice; the two genotypes did not differ in their sweet or bitter taste perception. Sig-1R KO mice showed lower sensitivity to ethanol stimulant effects, but greater sensitivity to its taste aversive effects. Ethanol-induced sedation was instead unaltered in the mutants. Our results prove that the deletion of the Sig-1R increases ethanol consumption, likely by decreasing its rewarding effects, and therefore indicating that the Sig-1R is involved in modulation of the reinforcing effects of alcohol. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Abnormal motor phenotype at adult stages in mice lacking type 2 deiodinase.

    Science.gov (United States)

    Bárez-López, Soledad; Bosch-García, Daniel; Gómez-Andrés, David; Pulido-Valdeolivas, Irene; Montero-Pedrazuela, Ana; Obregon, Maria Jesus; Guadaño-Ferraz, Ana

    2014-01-01

    Thyroid hormones have a key role in both the developing and adult central nervous system and skeletal muscle. The thyroid gland produces mainly thyroxine (T4) but the intracellular concentrations of 3,5,3'-triiodothyronine (T3; the transcriptionally active hormone) in the central nervous system and skeletal muscle are modulated by the activity of type 2 deiodinase (D2). To date no neurological syndrome has been associated with mutations in the DIO2 gene and previous studies in young and juvenile D2-knockout mice (D2KO) did not find gross neurological alterations, possibly due to compensatory mechanisms. This study aims to analyze the motor phenotype of 3-and-6-month-old D2KO mice to evaluate the role of D2 on the motor system at adult stages in which compensatory mechanisms could have failed. Motor abilities were explored by validated tests. In the footprint test, D2KO showed an altered global gait pattern (mice walked slower, with shorter strides and with a hindlimb wider base of support than wild-type mice). No differences were detected in the balance beam test. However, a reduced latency to fall was found in the rotarod, coat-hanger and four limb hanging wire tests indicating impairment on coordination and prehensile reflex and a reduction of muscle strength. In histological analyses of cerebellum and skeletal muscle, D2KO mice did not present gross structural abnormalities. Thyroid hormones levels and deiodinases activities were also determined. In D2KO mice, despite euthyroid T3 and high T4 plasma levels, T3 levels were significantly reduced in cerebral cortex (48% reduction) and skeletal muscle (33% reduction), but not in the cerebellum where other deiodinase (type 1) is expressed. The motor alterations observed in D2KO mice indicate an important role for D2 in T3 availability to maintain motor function and muscle strength. Our results suggest a possible implication of D2 in motor disorders.

  11. Mice lacking ANGPTL8 (Betatrophin) manifest disrupted triglyceride metabolism without impaired glucose homeostasis.

    Science.gov (United States)

    Wang, Yan; Quagliarini, Fabiana; Gusarova, Viktoria; Gromada, Jesper; Valenzuela, David M; Cohen, Jonathan C; Hobbs, Helen H

    2013-10-01

    Angiopoietin-like protein (ANGPTL)8 (alternatively called TD26, RIFL, Lipasin, and Betatrophin) is a newly recognized ANGPTL family member that has been implicated in both triglyceride (TG) and glucose metabolism. Hepatic overexpression of ANGPTL8 causes hypertriglyceridemia and increased insulin secretion. Here we examined the effects of inactivating Angptl8 on TG and glucose metabolism in mice. Angptl8 knockout (Angptl8(-/-)) mice gained weight more slowly than wild-type littermates due to a selective reduction in adipose tissue accretion. Plasma levels of TGs of the Angptl8(-/-) mice were similar to wild-type animals in the fasted state but paradoxically decreased after refeeding. The lower TG levels were associated with both a reduction in very low density lipoprotein secretion and an increase in lipoprotein lipase (LPL) activity. Despite the increase in LPL activity, the uptake of very low density lipoprotein-TG is markedly reduced in adipose tissue but preserved in hearts of fed Angptl8(-/-) mice. Taken together, these data indicate that ANGPTL8 plays a key role in the metabolic transition between fasting and refeeding; it is required to direct fatty acids to adipose tissue for storage in the fed state. Finally, glucose and insulin tolerance testing revealed no alterations in glucose homeostasis in mice fed either a chow or high fat diet. Thus, although absence of ANGPTL8 profoundly disrupts TG metabolism, we found no evidence that it is required for maintenance of glucose homeostasis.

  12. Increased anxiety and fear memory in adult mice lacking type 2 deiodinase.

    Science.gov (United States)

    Bárez-López, Soledad; Montero-Pedrazuela, Ana; Bosch-García, Daniel; Venero, César; Guadaño-Ferraz, Ana

    2017-10-01

    A euthyroid state in the brain is crucial for its adequate development and function. Impairments in thyroid hormones (THs; T3 or 3,5,3'-triiodothyronine and T4 or thyroxine) levels and availability in brain can lead to neurological alterations and to psychiatric disorders, particularly mood disorders. The thyroid gland synthetizes mainly T4, which is secreted to circulating blood, however, most actions of THs are mediated by T3, the transcriptionally active form. In the brain, intracellular concentrations of T3 are modulated by the activity of type 2 (D2) and type 3 (D3) deiodinases. In the present work, we evaluated learning and memory capabilities and anxiety-like behavior at adult stages in mice lacking D2 (D2KO) and we analyzed the impact of D2-deficiency on TH content and on the expression of T3-dependent genes in the amygdala and the hippocampus. We found that D2KO mice do not present impairments in spatial learning and memory, but they display emotional alterations with increased anxiety-like behavior as well as enhanced auditory-cued fear memory and spontaneous recovery of fear memory following extinction. D2KO mice also presented reduced T3 content in the hippocampus and decreased expression of the T3-dependent gene Dio3 in the amygdala suggesting a hypothyroid status in this structure. We propose that the emotional dysfunctions found in D2KO mice can arise from the reduced T3 content in their brain, which consequently leads to alterations in gene expression with functional consequences. We found a downregulation in the gene encoding for the calcium-binding protein calretinin (Calb2) in the amygdala of D2KO mice that could affect the GABAergic transmission. The current findings in D2KO mice can provide insight into emotional disorders present in humans with DIO2 polymorphisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Entrainment and phase-shifting by centrifugation abolished in mice lacking functional vestibular input

    Science.gov (United States)

    Fuller, Charles; Ringgold, Kristyn

    The circadian pacemaker can be phase shifted and entrained by appropriately timed locomotor activity, however the mechanism(s) involved remain poorly understood. Recent work in our lab has suggested the involvement of the vestibular otolith organs in activity-induced changes within the circadian timing system (CTS). For example, we have shown that changes in circa-dian period and phase in response to locomotion (wheel running) require functional macular gravity receptors. We believe the neurovestibular system is responsible for the transduction of gravitoinertial input associated with the types of locomotor activity that are known to af-fect the pacemaker. This study investigated the hypothesis that daily, timed gravitoinertial stimuli, as applied by centrifugation. would induce entrainment of circadian rhythms in only those animals with functional afferent vestibular input. To test this hypothesis, , chemically labyrinthectomized (Labx) mice, mice lacking macular vestibular input (head tilt or hets) and wildtype (WT) littermates were implanted i.p. with biotelemetry and individually housed in a 4-meter diameter centrifuge in constant darkness (DD). After 2 weeks in DD, the mice were exposed daily to 2G via centrifugation from 1000-1200 for 9 weeks. Only WT mice showed entrainment to the daily 2G pulse. The 2G pulse was then re-set to occur at 1200-1400 for 4 weeks. Only WT mice demonstrated a phase shift in response to the re-setting of the 2G pulse and subsequent re-entrainment to the new centrifugation schedule. These results provide further evidence that gravitoinertial stimuli require a functional vestibular system to both en-train and phase shift the CTS. Entrainment among only WT mice supports the role of macular gravity receptive cells in modulation of the CTS while also providing a functional mechanism by which gravitoinertial stimuli, including locomotor activity, may affect the pacemaker.

  14. Mice lacking hippocampal left-right asymmetry show non-spatial learning deficits.

    Science.gov (United States)

    Shimbo, Akihiro; Kosaki, Yutaka; Ito, Isao; Watanabe, Shigeru

    2018-01-15

    Left-right asymmetry is known to exist at several anatomical levels in the brain and recent studies have provided further evidence to show that it also exists at a molecular level in the hippocampal CA3-CA1 circuit. The distribution of N-methyl-d-aspartate (NMDA) receptor NR2B subunits in the apical and basal synapses of CA1 pyramidal neurons is asymmetrical if the input arrives from the left or right CA3 pyramidal neurons. In the present study, we examined the role of hippocampal asymmetry in cognitive function using β2-microglobulin knock-out (β2m KO) mice, which lack hippocampal asymmetry. We tested β2m KO mice in a series of spatial and non-spatial learning tasks and compared the performances of β2m KO and C57BL6/J wild-type (WT) mice. The β2m KO mice appeared normal in both spatial reference memory and spatial working memory tasks but they took more time than WT mice in learning the two non-spatial learning tasks (i.e., a differential reinforcement of lower rates of behavior (DRL) task and a straight runway task). The β2m KO mice also showed less precision in their response timing in the DRL task and showed weaker spontaneous recovery during extinction in the straight runway task. These results indicate that hippocampal asymmetry is important for certain characteristics of non-spatial learning. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Nicotine anxiogenic and rewarding effects are decreased in mice lacking beta-endorphin.

    Science.gov (United States)

    Trigo, José M; Zimmer, Andreas; Maldonado, Rafael

    2009-06-01

    The endogenous opioid system plays an important role in the behavioral effects of nicotine. Thus, micro-opioid receptor and the endogenous opioids derived from proenkephalin are involved in the central effects of nicotine. However, the role played by the different endogenous opioid peptides in the acute and chronic effects of nicotine remains to be fully established. Mice lacking beta-endorphin were acutely injected with nicotine at different doses to evaluate locomotor, anxiogenic and antinociceptive responses. The rewarding properties of nicotine were evaluated by using the conditioned place-preference paradigm. Mice chronically treated with nicotine were acutely injected with mecamylamine to study the behavioral expression of nicotine withdrawal. Mice lacking beta-endorphin exhibited a spontaneous hypoalgesia and hyperlocomotion and a reduction on the anxiogenic and rewarding effects induced by nicotine. Nicotine induced similar antinociception and hypolocomotion in both genotypes and no differences were found in the development of physical dependence. The dissociation between nicotine rewarding properties and physical dependence suggests a differential implication of beta-endorphin in these addictive related responses.

  16. Nicotine anxiogenic and rewarding effects are decreased in mice lacking β-endorphin

    Science.gov (United States)

    Trigo, José M.; Zimmer, Andreas; Maldonado, Rafael

    2009-01-01

    The endogenous opioid system plays an important role in the behavioral effects of nicotine. Thus, μ-opioid receptor and the endogenous opioids derived from proenkephalin are involved in the central effects of nicotine. However, the role played by the different endogenous opioid peptides in the acute and chronic effects of nicotine remains to be fully established. Mice lacking β-endorphin were acutely injected with nicotine at different doses to evaluate locomotor, anxiogenic and antinociceptive responses. The rewarding properties of nicotine were evaluated by using the conditioned place-preference paradigm. Mice chronically treated with nicotine were acutely injected with mecamylamine to study the behavioral expression of nicotine withdrawal. Mice lacking β-endorphin exhibited a spontaneous hypoalgesia and hyperlocomotion and a reduction on the anxiogenic and rewarding effects induced by nicotine. Nicotine induced similar antinociception and hypolocomotion in both genotypes and no differences were found in the development of physical dependence. The dissociation between nicotine rewarding properties and physical dependence suggests a differential implication of β-endorphin in these addictive related responses. PMID:19376143

  17. Impaired Glucose Metabolism in Mice Lacking the Tas1r3 Taste Receptor Gene.

    Science.gov (United States)

    Murovets, Vladimir O; Bachmanov, Alexander A; Zolotarev, Vasiliy A

    2015-01-01

    The G-protein-coupled sweet taste receptor dimer T1R2/T1R3 is expressed in taste bud cells in the oral cavity. In recent years, its involvement in membrane glucose sensing was discovered in endocrine cells regulating glucose homeostasis. We investigated importance of extraorally expressed T1R3 taste receptor protein in age-dependent control of blood glucose homeostasis in vivo, using nonfasted mice with a targeted mutation of the Tas1r3 gene that encodes the T1R3 protein. Glucose and insulin tolerance tests, as well as behavioral tests measuring taste responses to sucrose solutions, were performed with C57BL/6ByJ (Tas1r3+/+) inbred mice bearing the wild-type allele and C57BL/6J-Tas1r3tm1Rfm mice lacking the entire Tas1r3 coding region and devoid of the T1R3 protein (Tas1r3-/-). Compared with Tas1r3+/+ mice, Tas1r3-/- mice lacked attraction to sucrose in brief-access licking tests, had diminished taste preferences for sucrose solutions in the two-bottle tests, and had reduced insulin sensitivity and tolerance to glucose administered intraperitoneally or intragastrically, which suggests that these effects are due to absence of T1R3. Impairment of glucose clearance in Tas1r3-/- mice was exacerbated with age after intraperitoneal but not intragastric administration of glucose, pointing to a compensatory role of extraoral T1R3-dependent mechanisms in offsetting age-dependent decline in regulation of glucose homeostasis. Incretin effects were similar in Tas1r3+/+ and Tas1r3-/- mice, which suggests that control of blood glucose clearance is associated with effects of extraoral T1R3 in tissues other than the gastrointestinal tract. Collectively, the obtained data demonstrate that the T1R3 receptor protein plays an important role in control of glucose homeostasis not only by regulating sugar intake but also via its extraoral function, probably in the pancreas and brain.

  18. Impaired Glucose Metabolism in Mice Lacking the Tas1r3 Taste Receptor Gene.

    Directory of Open Access Journals (Sweden)

    Vladimir O Murovets

    Full Text Available The G-protein-coupled sweet taste receptor dimer T1R2/T1R3 is expressed in taste bud cells in the oral cavity. In recent years, its involvement in membrane glucose sensing was discovered in endocrine cells regulating glucose homeostasis. We investigated importance of extraorally expressed T1R3 taste receptor protein in age-dependent control of blood glucose homeostasis in vivo, using nonfasted mice with a targeted mutation of the Tas1r3 gene that encodes the T1R3 protein. Glucose and insulin tolerance tests, as well as behavioral tests measuring taste responses to sucrose solutions, were performed with C57BL/6ByJ (Tas1r3+/+ inbred mice bearing the wild-type allele and C57BL/6J-Tas1r3tm1Rfm mice lacking the entire Tas1r3 coding region and devoid of the T1R3 protein (Tas1r3-/-. Compared with Tas1r3+/+ mice, Tas1r3-/- mice lacked attraction to sucrose in brief-access licking tests, had diminished taste preferences for sucrose solutions in the two-bottle tests, and had reduced insulin sensitivity and tolerance to glucose administered intraperitoneally or intragastrically, which suggests that these effects are due to absence of T1R3. Impairment of glucose clearance in Tas1r3-/- mice was exacerbated with age after intraperitoneal but not intragastric administration of glucose, pointing to a compensatory role of extraoral T1R3-dependent mechanisms in offsetting age-dependent decline in regulation of glucose homeostasis. Incretin effects were similar in Tas1r3+/+ and Tas1r3-/- mice, which suggests that control of blood glucose clearance is associated with effects of extraoral T1R3 in tissues other than the gastrointestinal tract. Collectively, the obtained data demonstrate that the T1R3 receptor protein plays an important role in control of glucose homeostasis not only by regulating sugar intake but also via its extraoral function, probably in the pancreas and brain.

  19. Mice lacking liver-specific β-catenin develop steatohepatitis and fibrosis after iron overload.

    Science.gov (United States)

    Preziosi, Morgan E; Singh, Sucha; Valore, Erika V; Jung, Grace; Popovic, Branimir; Poddar, Minakshi; Nagarajan, Shanmugam; Ganz, Tomas; Monga, Satdarshan P

    2017-08-01

    Iron overload disorders such as hereditary hemochromatosis and iron loading anemias are a common cause of morbidity from liver diseases and increase risk of hepatic fibrosis and hepatocellular carcinoma (HCC). Treatment options for iron-induced damage are limited, partly because there is lack of animal models of human disease. Therefore, we investigated the effect of iron overload in liver-specific β-catenin knockout mice (KO), which are susceptible to injury, fibrosis and tumorigenesis following chemical carcinogen exposure. Iron overload diet was administered to KO and littermate control (CON) mice for various times. To ameliorate an oxidant-mediated component of tissue injury, N-Acetyl-L-(+)-cysteine (NAC) was added to drinking water of mice on iron overload diet. KO on iron diet (KO +Fe) exhibited remarkable inflammation, followed by steatosis, oxidative stress, fibrosis, regenerating nodules and occurrence of occasional HCC. Increased injury in KO +Fe was associated with activated protein kinase B (AKT), ERK, and NF-κB, along with reappearance of β-catenin and target gene Cyp2e1, which promoted lipid peroxidation and hepatic damage. Addition of NAC to drinking water protected KO +Fe from hepatic steatosis, injury and fibrosis, and prevented activation of AKT, ERK, NF-κB and reappearance of β-catenin. The absence of hepatic β-catenin predisposes mice to hepatic injury and fibrosis following iron overload, which was reminiscent of hemochromatosis and associated with enhanced steatohepatitis and fibrosis. Disease progression was notably alleviated by antioxidant therapy, which supports its chemopreventive role in the management of chronic iron overload disorders. Lack of animal models for iron overload disorders makes it hard to study the disease process for improving therapies. Feeding high iron diet to mice that lack the β-catenin gene in liver cells led to increased inflammation followed by fat accumulation, cell death and wound healing that mimicked

  20. Lack of mitochondrial trifunctional protein in mice causes neonatal hypoglycemia and sudden death

    OpenAIRE

    Ibdah, Jamal A.; Paul, Hyacinth; Zhao, Yiwen; Binford, Scott; Salleng, Ken; Cline, Mark; Matern, Dietrich; Bennett, Michael J.; Rinaldo, Piero; Strauss, Arnold W.

    2001-01-01

    Mitochondrial trifunctional protein (MTP) is a hetero-octamer of four α and four β subunits that catalyzes the final three steps of mitochondrial long chain fatty acid β-oxidation. Human MTP deficiency causes Reye-like syndrome, cardiomyopathy, or sudden unexpected death. We used gene targeting to generate an MTP α subunit null allele and to produce mice that lack MTP α and β subunits. The Mtpa–/– fetuses accumulate long chain fatty acid metabolites and have low birth weight compared with the...

  1. Sociability Deficits and Altered Amygdala Circuits in Mice Lacking Pcdh10, an Autism Associated Gene.

    Science.gov (United States)

    Schoch, Hannah; Kreibich, Arati S; Ferri, Sarah L; White, Rachel S; Bohorquez, Dominique; Banerjee, Anamika; Port, Russell G; Dow, Holly C; Cordero, Lucero; Pallathra, Ashley A; Kim, Hyong; Li, Hongzhe; Bilker, Warren B; Hirano, Shinji; Schultz, Robert T; Borgmann-Winter, Karin; Hahn, Chang-Gyu; Feldmeyer, Dirk; Carlson, Gregory C; Abel, Ted; Brodkin, Edward S

    2017-02-01

    Behavioral symptoms in individuals with autism spectrum disorder (ASD) have been attributed to abnormal neuronal connectivity, but the molecular bases of these behavioral and brain phenotypes are largely unknown. Human genetic studies have implicated PCDH10, a member of the δ2 subfamily of nonclustered protocadherin genes, in ASD. PCDH10 expression is enriched in the basolateral amygdala, a brain region implicated in the social deficits of ASD. Previous reports indicate that Pcdh10 plays a role in axon outgrowth and glutamatergic synapse elimination, but its roles in social behaviors and amygdala neuronal connectivity are unknown. We hypothesized that haploinsufficiency of Pcdh10 would reduce social approach behavior and alter the structure and function of amygdala circuits. Mice lacking one copy of Pcdh10 (Pcdh10 +/- ) and wild-type littermates were assessed for social approach and other behaviors. The lateral/basolateral amygdala was assessed for dendritic spine number and morphology, and amygdala circuit function was studied using voltage-sensitive dye imaging. Expression of Pcdh10 and N-methyl-D-aspartate receptor (NMDAR) subunits was assessed in postsynaptic density fractions of the amygdala. Male Pcdh10 +/- mice have reduced social approach behavior, as well as impaired gamma synchronization, abnormal spine morphology, and reduced levels of NMDAR subunits in the amygdala. Social approach deficits in Pcdh10 +/- male mice were rescued with acute treatment with the NMDAR partial agonist d-cycloserine. Our studies reveal that male Pcdh10 +/- mice have synaptic and behavioral deficits, and establish Pcdh10 +/- mice as a novel genetic model for investigating neural circuitry and behavioral changes relevant to ASD. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  2. Lack of bcr and abr promotes hypoxia-induced pulmonary hypertension in mice.

    Directory of Open Access Journals (Sweden)

    Min Yu

    Full Text Available Bcr and Abr are GTPase activating proteins that specifically downregulate activity of the small GTPase Rac in restricted cell types in vivo. Rac1 is expressed in smooth muscle cells, a critical cell type involved in the pathogenesis of pulmonary hypertension. The molecular mechanisms that underlie hypoxia-associated pulmonary hypertension are not well-defined.Bcr and abr null mutant mice were compared to wild type controls for the development of pulmonary hypertension after exposure to hypoxia. Also, pulmonary arterial smooth muscle cells from those mice were cultured in hypoxia and examined for proliferation, p38 activation and IL-6 production. Mice lacking Bcr or Abr exposed to hypoxia developed increased right ventricular pressure, hypertrophy and pulmonary vascular remodeling. Perivascular leukocyte infiltration in the lungs was increased, and under hypoxia bcr-/- and abr-/- macrophages generated more reactive oxygen species. Consistent with a contribution of inflammation and oxidative stress in pulmonary hypertension-associated vascular damage, Bcr and Abr-deficient animals showed elevated endothelial leakage after hypoxia exposure. Hypoxia-treated pulmonary arterial smooth muscle cells from Bcr- or Abr-deficient mice also proliferated faster than those of wild type mice. Moreover, activated Rac1, phosphorylated p38 and interleukin 6 were increased in these cells in the absence of Bcr or Abr. Inhibition of Rac1 activation with Z62954982, a novel Rac inhibitor, decreased proliferation, p38 phosphorylation and IL-6 levels in pulmonary arterial smooth muscle cells exposed to hypoxia.Bcr and Abr play a critical role in down-regulating hypoxia-induced pulmonary hypertension by deactivating Rac1 and, through this, reducing both oxidative stress generated by leukocytes as well as p38 phosphorylation, IL-6 production and proliferation of pulmonary arterial smooth muscle cells.

  3. Spdef null mice lack conjunctival goblet cells and provide a model of dry eye.

    Science.gov (United States)

    Marko, Christina K; Menon, Balaraj B; Chen, Gang; Whitsett, Jeffrey A; Clevers, Hans; Gipson, Ilene K

    2013-07-01

    Goblet cell numbers decrease within the conjunctival epithelium in drying and cicatrizing ocular surface diseases. Factors regulating goblet cell differentiation in conjunctival epithelium are unknown. Recent data indicate that the transcription factor SAM-pointed domain epithelial-specific transcription factor (Spdef) is essential for goblet cell differentiation in tracheobronchial and gastrointestinal epithelium of mice. Using Spdef(-/-) mice, we determined that Spdef is required for conjunctival goblet cell differentiation and that Spdef(-/-) mice, which lack conjunctival goblet cells, have significantly increased corneal surface fluorescein staining and tear volume, a phenotype consistent with dry eye. Microarray analysis of conjunctival epithelium in Spdef(-/-) mice revealed down-regulation of goblet cell-specific genes (Muc5ac, Tff1, Gcnt3). Up-regulated genes included epithelial cell differentiation/keratinization genes (Sprr2h, Tgm1) and proinflammatory genes (Il1-α, Il-1β, Tnf-α), all of which are up-regulated in dry eye. Interestingly, four Wnt pathway genes were down-regulated. SPDEF expression was significantly decreased in the conjunctival epithelium of Sjögren syndrome patients with dry eye and decreased goblet cell mucin expression. These data demonstrate that Spdef is required for conjunctival goblet cell differentiation and down-regulation of SPDEF may play a role in human dry eye with goblet cell loss. Spdef(-/-) mice have an ocular surface phenotype similar to that in moderate dry eye, providing a new, more convenient model for the disease. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  4. Mice lacking glutamate carboxypeptidase II develop normally, but are less susceptible to traumatic brain injury.

    Science.gov (United States)

    Gao, Yang; Xu, Siyi; Cui, Zhenwen; Zhang, Mingkun; Lin, Yingying; Cai, Lei; Wang, Zhugang; Luo, Xingguang; Zheng, Yan; Wang, Yong; Luo, Qizhong; Jiang, Jiyao; Neale, Joseph H; Zhong, Chunlong

    2015-07-01

    Glutamate carboxypeptidase II (GCPII) is a transmembrane zinc metallopeptidase found mainly in the nervous system, prostate and small intestine. In the nervous system, glia-bound GCPII mediates the hydrolysis of the neurotransmitter N-acetylaspartylglutamate (NAAG) into glutamate and N-acetylaspartate. Inhibition of GCPII has been shown to attenuate excitotoxicity associated with enhanced glutamate transmission under pathological conditions. However, different strains of mice lacking the GCPII gene are reported to exhibit striking phenotypic differences. In this study, a GCPII gene knockout (KO) strategy involved removing exons 3-5 of GCPII. This generated a new GCPII KO mice line with no overt differences in standard neurological behavior compared to their wild-type (WT) littermates. However, GCPII KO mice were significantly less susceptible to moderate traumatic brain injury (TBI). GCPII gene KO significantly lessened neuronal degeneration and astrocyte damage in the CA2 and CA3 regions of the hippocampus 24 h after moderate TBI. In addition, GCPII gene KO reduced TBI-induced deficits in long-term spatial learning/memory tested in the Morris water maze and motor balance tested via beam walking. Knockout of the GCPII gene is not embryonic lethal and affords histopathological protection with improved long-term behavioral outcomes after TBI, a result that further validates GCPII as a target for drug development consistent with results from studies using GCPII peptidase inhibitors. © 2015 International Society for Neurochemistry.

  5. Mutant Mice Lacking the p53 C-Terminal Domain Model Telomere Syndromes

    Directory of Open Access Journals (Sweden)

    Iva Simeonova

    2013-06-01

    Full Text Available Mutations in p53, although frequent in human cancers, have not been implicated in telomere-related syndromes. Here, we show that homozygous mutant mice expressing p53Δ31, a p53 lacking the C-terminal domain, exhibit increased p53 activity and suffer from aplastic anemia and pulmonary fibrosis, hallmarks of syndromes caused by short telomeres. Indeed, p53Δ31/Δ31 mice had short telomeres and other phenotypic traits associated with the telomere disease dyskeratosis congenita and its severe variant the Hoyeraal-Hreidarsson syndrome. Heterozygous p53+/Δ31 mice were only mildly affected, but decreased levels of Mdm4, a negative regulator of p53, led to a dramatic aggravation of their symptoms. Importantly, several genes involved in telomere metabolism were downregulated in p53Δ31/Δ31 cells, including Dyskerin, Rtel1, and Tinf2, which are mutated in dyskeratosis congenita, and Terf1, which is implicated in aplastic anemia. Together, these data reveal that a truncating mutation can activate p53 and that p53 plays a major role in the regulation of telomere metabolism.

  6. Abnormal motor phenotype at adult stages in mice lacking type 2 deiodinase.

    Directory of Open Access Journals (Sweden)

    Soledad Bárez-López

    Full Text Available BACKGROUND: Thyroid hormones have a key role in both the developing and adult central nervous system and skeletal muscle. The thyroid gland produces mainly thyroxine (T4 but the intracellular concentrations of 3,5,3'-triiodothyronine (T3; the transcriptionally active hormone in the central nervous system and skeletal muscle are modulated by the activity of type 2 deiodinase (D2. To date no neurological syndrome has been associated with mutations in the DIO2 gene and previous studies in young and juvenile D2-knockout mice (D2KO did not find gross neurological alterations, possibly due to compensatory mechanisms. AIM: This study aims to analyze the motor phenotype of 3-and-6-month-old D2KO mice to evaluate the role of D2 on the motor system at adult stages in which compensatory mechanisms could have failed. RESULTS: Motor abilities were explored by validated tests. In the footprint test, D2KO showed an altered global gait pattern (mice walked slower, with shorter strides and with a hindlimb wider base of support than wild-type mice. No differences were detected in the balance beam test. However, a reduced latency to fall was found in the rotarod, coat-hanger and four limb hanging wire tests indicating impairment on coordination and prehensile reflex and a reduction of muscle strength. In histological analyses of cerebellum and skeletal muscle, D2KO mice did not present gross structural abnormalities. Thyroid hormones levels and deiodinases activities were also determined. In D2KO mice, despite euthyroid T3 and high T4 plasma levels, T3 levels were significantly reduced in cerebral cortex (48% reduction and skeletal muscle (33% reduction, but not in the cerebellum where other deiodinase (type 1 is expressed. CONCLUSIONS: The motor alterations observed in D2KO mice indicate an important role for D2 in T3 availability to maintain motor function and muscle strength. Our results suggest a possible implication of D2 in motor disorders.

  7. Lack of liver glycogen causes hepatic insulin resistance and steatosis in mice.

    Science.gov (United States)

    Irimia, Jose M; Meyer, Catalina M; Segvich, Dyann M; Surendran, Sneha; DePaoli-Roach, Anna A; Morral, Nuria; Roach, Peter J

    2017-06-23

    Disruption of the Gys2 gene encoding the liver isoform of glycogen synthase generates a mouse strain (LGSKO) that almost completely lacks hepatic glycogen, has impaired glucose disposal, and is pre-disposed to entering the fasted state. This study investigated how the lack of liver glycogen increases fat accumulation and the development of liver insulin resistance. Insulin signaling in LGSKO mice was reduced in liver, but not muscle, suggesting an organ-specific defect. Phosphorylation of components of the hepatic insulin-signaling pathway, namely IRS1, Akt, and GSK3, was decreased in LGSKO mice. Moreover, insulin stimulation of their phosphorylation was significantly suppressed, both temporally and in an insulin dose response. Phosphorylation of the insulin-regulated transcription factor FoxO1 was somewhat reduced and insulin treatment did not elicit normal translocation of FoxO1 out of the nucleus. Fat overaccumulated in LGSKO livers, showing an aberrant distribution in the acinus, an increase not explained by a reduction in hepatic triglyceride export. Rather, when administered orally to fasted mice, glucose was directed toward hepatic lipogenesis as judged by the activity, protein levels, and expression of several fatty acid synthesis genes, namely, acetyl-CoA carboxylase, fatty acid synthase, SREBP1c, chREBP, glucokinase, and pyruvate kinase. Furthermore, using cultured primary hepatocytes, we found that lipogenesis was increased by 40% in LGSKO cells compared with controls. Of note, the hepatic insulin resistance was not associated with increased levels of pro-inflammatory markers. Our results suggest that loss of liver glycogen synthesis diverts glucose toward fat synthesis, correlating with impaired hepatic insulin signaling and glucose disposal. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Selective reward deficit in mice lacking beta-endorphin and enkephalin.

    Science.gov (United States)

    Hayward, Michael D; Pintar, John E; Low, Malcolm J

    2002-09-15

    It has been impossible to unequivocally identify which endogenous opioids modulate the incentive value of rewarding stimuli because these peptides are not highly selective for any single opioid receptor subtype. Here, we present evidence based on the measurement of instrumental behavior of beta-endorphin and enkephalin knock-out mice that both opioid peptides play a positive role. A progressive ratio schedule was used to measure how hard an animal would work for food reinforcers. The loss of either opioid reduced responding under this schedule, regardless of the palatability of the three different formulas of reinforcers used. The phenotype of mice lacking both endogenous opioids was nearly identical to the phenotype of mice mutant for either individual opioid. Responses were tested in nondeprived and deprived feeding states but were reduced in beta-endorphin- and enkephalin-deficient mice only when they were maintained under nondeprived conditions. Other operant manipulations ruled out variables that might contribute nonspecifically to this result such as differences in acquisition, early satiation, motor performance deficit, and reduced resistance to extinction. In contrast to the effects on instrumental performance, the loss of either or both endogenous opioids did not influence preference for water flavored with sucrose or saccharin in a two-bottle free-choice drinking paradigm. We conclude that both beta-endorphin and enkephalin positively contribute to the incentive-motivation to acquire food reinforcers. Because the attenuation of operant responding was observed only during a nondeprived motivational state, the hedonics of feeding are likely altered rather than energy homeostasis.

  9. Analgesic tone conferred by constitutively active mu opioid receptors in mice lacking β-arrestin 2

    Directory of Open Access Journals (Sweden)

    Hales Tim G

    2011-04-01

    Full Text Available Abstract Hedonic reward, dependence and addiction are unwanted effects of opioid analgesics, linked to the phasic cycle of μ opioid receptor activation, tolerance and withdrawal. In vitro studies of recombinant G protein coupled receptors (GPCRs over expressed in cell lines reveal an alternative tonic signaling mechanism that is independent of agonist. Such studies demonstrate that constitutive GPCR signaling can be inhibited by inverse agonists but not by neutral antagonists. However, ligand-independent activity has been difficult to examine in vivo, at the systems level, due to relatively low levels of constitutive activity of most GPCRs including μ receptors, often necessitating mutagenesis or pharmacological manipulation to enhance basal signaling. We previously demonstrated that the absence of β-arrestin 2 (β-arr2 augments the constitutive coupling of μ receptors to voltage-activated Ca2+ channels in primary afferent dorsal root ganglion neurons from β-arr2-/- mice. We used this in vitro approach to characterize neutral competitive antagonists and inverse agonists of the constitutively active wild type μ receptors in neurons. We administered these agents to β-arr2-/- mice to explore the role of constitutive μ receptor activity in nociception and hedonic tone. This study demonstrates that the induction of constitutive μ receptor activity in vivo in β-arr2-/- mice prolongs tail withdrawal from noxious heat, a phenomenon that was reversed by inverse agonists, but not by antagonists that lack negative efficacy. By contrast, the aversive effects of inverse agonists were similar in β-arr2-/- and β-arr2+/+ mice, suggesting that hedonic tone was unaffected.

  10. ENU mutagenesis reveals a novel phenotype of reduced limb strength in mice lacking fibrillin 2.

    Directory of Open Access Journals (Sweden)

    Gaynor Miller

    2010-02-01

    Full Text Available Fibrillins 1 (FBN1 and 2 (FBN2 are components of microfibrils, microfilaments that are present in many connective tissues, either alone or in association with elastin. Marfan's syndrome and congenital contractural arachnodactyly (CCA result from dominant mutations in the genes FBN1 and FBN2 respectively. Patients with both conditions often present with specific muscle atrophy or weakness, yet this has not been reported in the mouse models. In the case of Fbn1, this is due to perinatal lethality of the homozygous null mice making measurements of strength difficult. In the case of Fbn2, four different mutant alleles have been described in the mouse and in all cases syndactyly was reported as the defining phenotypic feature of homozygotes.As part of a large-scale N-ethyl-N-nitrosourea (ENU mutagenesis screen, we identified a mouse mutant, Mariusz, which exhibited muscle weakness along with hindlimb syndactyly. We identified an amber nonsense mutation in Fbn2 in this mouse mutant. Examination of a previously characterised Fbn2-null mutant, Fbn2(fp, identified a similar muscle weakness phenotype. The two Fbn2 mutant alleles complement each other confirming that the weakness is the result of a lack of Fbn2 activity. Skeletal muscle from mutants proved to be abnormal with higher than average numbers of fibres with centrally placed nuclei, an indicator that there are some regenerating muscle fibres. Physiological tests indicated that the mutant muscle produces significantly less maximal force, possibly as a result of the muscles being relatively smaller in Mariusz mice.These findings indicate that Fbn2 is involved in integrity of structures required for strength in limb movement. As human patients with mutations in the fibrillin genes FBN1 and FBN2 often present with muscle weakness and atrophy as a symptom, Fbn2-null mice will be a useful model for examining this aspect of the disease process further.

  11. Fetal growth retardation and lack of hypotaurine in ezrin knockout mice.

    Directory of Open Access Journals (Sweden)

    Tomohiro Nishimura

    Full Text Available Ezrin is a membrane-associated cytoplasmic protein that serves to link cell-membrane proteins with the actin-based cytoskeleton, and also plays a role in regulation of the functional activities of some transmembrane proteins. It is expressed in placental trophoblasts. We hypothesized that placental ezrin is involved in the supply of nutrients from mother to fetus, thereby influencing fetal growth. The aim of this study was firstly to clarify the effect of ezrin on fetal growth and secondly to determine whether knockout of ezrin is associated with decreased concentrations of serum and placental nutrients. Ezrin knockout mice (Ez(-/- were confirmed to exhibit fetal growth retardation. Metabolome analysis of fetal serum and placental extract of ezrin knockout mice by means of capillary electrophoresis-time-of-flight mass spectrometry revealed a markedly decreased concentration of hypotaurine, a precursor of taurine. However, placental levels of cysteine and cysteine sulfinic acid (precursors of hypotaurine and taurine were not affected. Lack of hypotaurine in Ez(-/- mice was confirmed by liquid chromatography with tandem mass spectrometry. Administration of hypotaurine to heterogenous dams significantly decreased the placenta-to-maternal plasma ratio of hypotaurine in wild-type fetuses but only slightly decreased it in ezrin knockout fetuses, indicating that the uptake of hypotaurine from mother to placenta is saturable and that disruption of ezrin impairs the uptake of hypotaurine by placental trophoblasts. These results indicate that ezrin is required for uptake of hypotaurine from maternal serum by placental trophoblasts, and plays an important role in fetal growth.

  12. Differentially expressed genes in embryonic cardiac tissues of mice lacking Folr1 gene activity

    Directory of Open Access Journals (Sweden)

    Schwartz Robert J

    2007-11-01

    Full Text Available Abstract Background Heart anomalies are the most frequently observed among all human congenital defects. As with the situation for neural tube defects (NTDs, it has been demonstrated that women who use multivitamins containing folic acid peri-conceptionally have a reduced risk for delivering offspring with conotruncal heart defects 123. Cellular folate transport is mediated by a receptor or binding protein and by an anionic transporter protein system. Defective function of the Folr1 (also known as Folbp1; homologue of human FRα gene in mice results in inadequate transport, accumulation, or metabolism of folate during cardiovascular morphogenesis. Results We have observed cardiovascular abnormalities including outflow tract and aortic arch arterial defects in genetically compromised Folr1 knockout mice. In order to investigate the molecular mechanisms underlying the failure to complete development of outflow tract and aortic arch arteries in the Folr1 knockout mouse model, we examined tissue-specific gene expression difference between Folr1 nullizygous embryos and morphologically normal heterozygous embryos during early cardiac development (14-somite stage, heart tube looping (28-somite stage, and outflow track septation (38-somite stage. Microarray analysis was performed as a primary screening, followed by investigation using quantitative real-time PCR assays. Gene ontology analysis highlighted the following ontology groups: cell migration, cell motility and localization of cells, structural constituent of cytoskeleton, cell-cell adhesion, oxidoreductase, protein folding and mRNA processing. This study provided preliminary data and suggested potential candidate genes for further description and investigation. Conclusion The results suggested that Folr1 gene ablation and abnormal folate homeostasis altered gene expression in developing heart and conotruncal tissues. These changes affected normal cytoskeleton structures, cell migration and

  13. Early signs of pathological cognitive aging in mice lacking high-affinity nicotinic receptors.

    Directory of Open Access Journals (Sweden)

    Eleni eKonsolaki

    2016-04-01

    Full Text Available In order to address pathological cognitive decline effectively, it is critical to adopt early preventive measures in individuals considered at risk. It is therefore essential to develop approaches that identify such individuals before the onset of irreversible dementia. Α deficient cholinergic system has been consistently implicated as one of the main factors associated with a heightened vulnerability to the aging process. In the present study we used mice lacking high affinity nicotinic receptors (β2-/-, which have been proposed as an animal model of accelerated/premature cognitive aging. Our aim was to identify behavioural signs that could serve as indicators or predictors of impending cognitive decline. We used test batteries in order to assess cognitive functions and additional tasks to investigate spontaneous behaviours, such as species-specific activities and exploration/locomotion in a novel environment. Our data confirm and extend the hypothesis that β2-/- animals exhibit age-related cognitive impairments, manifested in both spatial learning and recognition memory tasks. In addition, we reveal deficits in spontaneous behaviour and habituation processes earlier in life. To our knowledge, this is the first study to perform an extensive behavioural examination of an animal model of premature cognitive aging, and our results suggest that β2-nAChR dependent cognitive deterioration progressively evolves from initial subtle behavioural changes to global dementia due to the combined effect of the neuropathology and aging.

  14. Qualified nurses' rate new nursing graduates as lacking skills in key clinical areas.

    Science.gov (United States)

    Missen, Karen; McKenna, Lisa; Beauchamp, Alison; Larkins, Jo-Ann

    2016-08-01

    The aim of this study was to explore perceptions of qualified nurses on the abilities of newly registered nursing graduates to perform a variety of clinical skills. Evidence from the literature suggests that undergraduate nursing programmes do not adequately prepare nursing students to be practice-ready on completion of their nursing courses. A descriptive quantitative design was used. Participants were recruited through the Australian Nursing and Midwifery Federation, Victorian branch. A brief explanation of the study and a link to the survey were promoted in their monthly e-newsletter. A total of 245 qualified nurses in the state of Victoria, Australia participated in this study. A survey tool of 51 clinical skills and open-ended questions was used, whereby participants were asked to rate new nursing graduates' abilities using a 5-point Likert scale. Overall participants rated new nursing graduates' abilities for undertaking clinical skills as good or very good in 35·3% of skills, 33·3% were rated as adequate and 31·4% rated as being performed poorly or very poorly. Of concern, essential clinical skills, such as critical thinking and problem solving, working independently and assessment procedures, were found to be poorly executed and affecting new registered nurses graduates' competence. The findings from this study can further serve as a reference for nursing education providers to enhance nursing curricula and work collaboratively with healthcare settings in preparing nurses to be competent, safe practitioners on completion of their studies. Identifying key areas in which new nursing graduates are not yet competent means that educational providers and educators from healthcare settings can focus on these skills in better preparing our nurses to be work ready. © 2016 John Wiley & Sons Ltd.

  15. Mice lacking Brinp2 or Brinp3, or both, exhibit behaviours consistent with neurodevelopmental disorders

    Directory of Open Access Journals (Sweden)

    Susie Ruth Berkowicz

    2016-10-01

    Full Text Available Background: Brinps 1 – 3, and Astrotactins (Astn 1 and 2, are members of the Membrane Attack Complex / Perforin (MACPF superfamily that are predominantly expressed in the mammalian brain during development. Genetic variation at the human BRINP2/ASTN1 and BRINP1/ASTN2 loci has been implicated in neurodevelopmental disorders. We, and others, have previously shown that Brinp1-/- mice exhibit behaviour reminiscent of autism spectrum disorder (ASD and attention deficit hyperactivity disorder (ADHD.Method: We created Brinp2-/- mice and Brinp3-/- mice via the Cre-mediated LoxP system to investigate the effect of gene deletion on anatomy and behaviour. Additionally, Brinp2-/-Brinp3-/- double knock-out mice were generated by interbreeding Brinp2-/- and Brinp3-/- mice. Genomic validation was carried out for each knock-out line, followed by histological, weight and behavioural examination. Brinp1-/-Brinp2-/-Brinp3-/- triple knock-out mice were also generated by crossing Brinp2/3 double knock-out mice with previously generated Brinp1-/- mice, and examined by weight and histological analysis.Results: Brinp2-/- and Brinp3-/- mice differ in their behaviour: Brinp2-/- mice are hyperactive, whereas Brinp3-/- mice exhibit marked changes in anxiety-response on the elevated plus maze. Brinp3-/- mice also show evidence of altered sociability. Both Brinp2-/- and Brinp3-/- mice have normal short-term memory, olfactory responses, pre-pulse inhibition and motor learning. The double knock-out mice show behaviours of Brinp2-/- and Brinp3-/- mice, without evidence of new or exacerbated phenotypes. Conclusion: Brinp3 is important in moderation of anxiety, with potential relevance to anxiety disorders. Brinp2 dysfunction resulting in hyperactivity may be relevant to the association of ADHD with chromosome locus 1q25.2. Brinp2-/- and Brinp3-/- genes do not compensate in the mammalian brain and likely have distinct molecular or cell-type specific functions.

  16. Central diabetes insipidus associated with impaired renal aquaporin-1 expression in mice lacking liver X receptor β.

    Science.gov (United States)

    Gabbi, Chiara; Kong, Xiaomu; Suzuki, Hitoshi; Kim, Hyun-Jin; Gao, Min; Jia, Xiao; Ohnishi, Hideo; Ueta, Yoichi; Warner, Margaret; Guan, Youfei; Gustafsson, Jan-Åke

    2012-02-21

    The present study demonstrates a key role for the oxysterol receptor liver X receptor β (LXRβ) in the etiology of diabetes insipidus (DI). Given free access to water, LXRβ(-/-) but not LXRα(-/-) mice exhibited polyuria (abnormal daily excretion of highly diluted urine) and polydipsia (increased water intake), both features of diabetes insipidus. LXRβ(-/-) mice responded to 24-h dehydration with a decreased urine volume and increased urine osmolality. To determine whether the DI was of central or nephrogenic origin, we examined the responsiveness of the kidney to arginine vasopressin (AVP). An i.p. injection of AVP to LXRβ(-/-) mice revealed a partial kidney response: There was no effect on urine volume, but there was a significant increase of urine osmolality, suggesting that DI may be caused by a defect in central production of AVP. In the brain of WT mice LXRβ was expressed in the nuclei of magnocellular neurons in the supraoptic and paraventricular nuclei of the hypothalamus. In LXRβ(-/-) mice the expression of AVP was markedly decreased in the magnocellular neurons as well as in urine collected over a 24-h period. The persistent high urine volume after AVP administration was traced to a reduction in aquaporin-1 expression in the kidney of LXRβ(-/-) mice. The LXR agonist (GW3965) in WT mice elicited an increase in urine osmolality, suggesting that LXRβ is a key receptor in controlling water balance with targets in both the brain and kidney, and it could be a therapeutic target in disorders of water balance.

  17. Mice lacking caspase-2 are protected from behavioral changes, but not pathology, in the YAC128 model of Huntington disease

    Directory of Open Access Journals (Sweden)

    Bissada Nagat

    2011-08-01

    Full Text Available Abstract Background Huntington Disease (HD is a neurodegenerative disorder in which caspase activation and cleavage of substrates, including the huntingtin protein, has been invoked as a pathological mechanism. Specific changes in caspase-2 (casp2 activity have been suggested to contribute to the pathogenesis of HD, however unique casp2 cleavage substrates have remained elusive. We thus utilized mice completely lacking casp2 (casp2-/- to examine the role played by casp2 in the progression of HD. This 'substrate agnostic' approach allows us to query the effect of casp2 on HD progression without pre-defining proteolytic substrates of interest. Results YAC128 HD model mice lacking casp2 show protection from well-validated motor and cognitive features of HD, including performance on rotarod, swimming T-maze, pre-pulse inhibition, spontaneous alternation and locomotor tasks. However, the specific pathological features of the YAC128 mice including striatal volume loss and testicular degeneration are unaltered in mice lacking casp2. The application of high-resolution magnetic resonance imaging (MRI techniques validates specific neuropathology in the YAC128 mice that is not altered by ablation of casp2. Conclusions The rescue of behavioral phenotypes in the absence of pathological improvement suggests that different pathways may be operative in the dysfunction of neural circuitry in HD leading to behavioral changes compared to the processes leading to cell death and volume loss. Inhibition of caspase-2 activity may be associated with symptomatic improvement in HD.

  18. Evaluating mice lacking serum carboxylesterase as a behavioral model for nerve agent intoxication.

    Science.gov (United States)

    Dunn, Emily N; Ferrara-Bowens, Teresa M; Chachich, Mark E; Honnold, Cary L; Rothwell, Cristin C; Hoard-Fruchey, Heidi M; Lesyna, Catherine A; Johnson, Erik A; Cerasoli, Douglas M; McDonough, John H; Cadieux, C Linn

    2018-06-07

    Mice and other rodents are typically utilized for chemical warfare nerve agent research. Rodents have large amounts of carboxylesterase in their blood, while humans do not. Carboxylesterase nonspecifically binds to and detoxifies nerve agent. The presence of this natural bioscavenger makes mice and other rodents poor models for studies identifying therapeutics to treat humans exposed to nerve agents. To obviate this problem, a serum carboxylesterase knockout (Es1 KO) mouse was created. In this study, Es1 KO and wild type (WT) mice were assessed for differences in gene expression, nerve agent (soman; GD) median lethal dose (MLD) values, and behavior prior to and following nerve agent exposure. No expression differences were detected between Es1 KO and WT mice in more than 34 000 mouse genes tested. There was a significant difference between Es1 KO and WT mice in MLD values, as the MLD for GD-exposed WT mice was significantly higher than the MLD for GD-exposed Es1 KO mice. Behavioral assessments of Es1 KO and WT mice included an open field test, a zero maze, a Barnes maze, and a sucrose preference test (SPT). While sex differences were observed in various measures of these tests, overall, Es1 KO mice behaved similarly to WT mice. The two genotypes also showed virtually identical neuropathological changes following GD exposure. Es1 KO mice appear to have an enhanced susceptibility to GD toxicity while retaining all other behavioral and physiological responses to this nerve agent, making the Es1 KO mouse a more human-like model for nerve agent research.

  19. Lack of caching of direct-seeded Douglas fir seeds by deer mice

    International Nuclear Information System (INIS)

    Sullivan, T.P.

    1978-01-01

    Seed caching by deer mice was investigated by radiotagging seeds in forest and clear-cut areas in coastal British Columbia. Deer mice tend to cache very few Douglas fir seeds in the fall when the seed is uniformly distributed and is at densities comparable with those used in direct-seeding programs. (author)

  20. Mice Lacking EGR1 Have Impaired Clock Gene (BMAL1) Oscillation, Locomotor Activity, and Body Temperature.

    Science.gov (United States)

    Riedel, Casper Schwartz; Georg, Birgitte; Jørgensen, Henrik L; Hannibal, Jens; Fahrenkrug, Jan

    2018-01-01

    Early growth response transcription factor 1 (EGR1) is expressed in the suprachiasmatic nucleus (SCN) after light stimulation. We used EGR1-deficient mice to address the role of EGR1 in the clock function and light-induced resetting of the clock. The diurnal rhythms of expression of the clock genes BMAL1 and PER1 in the SCN were evaluated by semi-quantitative in situ hybridization. We found no difference in the expression of PER1 mRNA between wildtype and EGR1-deficient mice; however, the daily rhythm of BMAL1 mRNA was completely abolished in the EGR1-deficient mice. In addition, we evaluated the circadian running wheel activity, telemetric locomotor activity, and core body temperature of the mice. Loss of EGR1 neither altered light-induced phase shifts at subjective night nor affected negative masking. Overall, circadian light entrainment was found in EGR1-deficient mice but they displayed a reduced locomotor activity and an altered temperature regulation compared to wild type mice. When placed in running wheels, a subpopulation of EGR1-deficient mice displayed a more disrupted activity rhythm with no measurable endogenous period length (tau). In conclusion, the present study provides the first evidence that the circadian clock in the SCN is disturbed in mice deficient of EGR1.

  1. Characterization of spontaneous air space enlargement in mice lacking microfibrillar-associated protein 4

    DEFF Research Database (Denmark)

    Holm, Anne Trommelholt; Wulf-Johansson, Helle; Hvidsten, Svend

    2015-01-01

    to characterize the pulmonary function changes and emphysematous changes that occur in Mfap4-deficient (Mfap4(-/-)) mice. Significant changes included increases in total lung capacity and compliance, which were evident in Mfap4(-/-) mice at 6 and 8 mo but not at 3 mo of age. Using in vivo breath-hold gated...... were both significantly decreased in Mfap4(-/-) mice by 25 and 15%, respectively. The data did not support an essential role of MFAP4 in pulmonary elastic fiber organization or content but indicated increased turnover in young Mfap4(-/-) mice. However, Mfap4(-/-) mice developed a spontaneous loss...... of lung function, which was evident at 6 mo of age, and moderate air space enlargement, with emphysema-like changes....

  2. Lack of skeletal muscle IL-6 influences hepatic glucose metabolism in mice during prolonged exercise

    DEFF Research Database (Denmark)

    Bertholdt, Lærke; Gudiksen, Anders; Schwartz, Camilla Lindgren

    2017-01-01

    The liver is essential in maintaining and regulating glucose homeostasis during prolonged exercise. IL-6 has been shown to be secreted from skeletal muscle during exercise and has been suggested to signal to the liver. Therefore, the aim of this study was to investigate the role of skeletal muscle...... IL-6 on hepatic glucose regulation and substrate choice during prolonged exercise. Skeletal muscle-specific IL-6 knockout (IL-6 MKO) mice (age, 12-14 wk) and littermate lox/lox (Control) mice were either rested (Rest) or completed a single bout of exercise for 10, 60, or 120 min, and the liver....... Furthermore, IL-6 MKO mice had higher hepatic pyruvate dehydrogenase (PDH)Ser232 and PDHSer300 phosphorylation than control mice at rest. In conclusion, hepatic gluconeogenic capacity in mice is increased during prolonged exercise independent of muscle IL-6. Furthermore, Skeletal muscle IL-6 influences...

  3. Impairment of social behavior and communication in mice lacking the Uba6-dependent ubiquitin activation system.

    Science.gov (United States)

    Lee, Ji Yeon; Kwak, Minseok; Lee, Peter C W

    2015-03-15

    The Uba6-Use1 ubiquitin enzyme cascade is a poorly understood arm of the ubiquitin-proteasome system required for mouse development. Recently, we reported that Uba6 brain-specific knockout (termed NKO) mice display abnormal social behavior and neuronal development due to a decreased spine density and accumulation of Ube3a and Shank3. To better characterize a potential role for NKO mice in autism spectrum disorders (ASDs), we performed a comprehensive behavioral characterization of the social behavior and communication of NKO mice. Our behavioral results confirmed that NKO mice display social impairments, as indicated by fewer vocalizations and decreased social interaction. We conclude that UBA6 NKO mice represent a novel ASD mouse model of anti-social and less verbal behavioral symptoms. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Lack of tau proteins rescues neuronal cell death and decreases amyloidogenic processing of APP in APP/PS1 mice.

    Science.gov (United States)

    Leroy, Karelle; Ando, Kunie; Laporte, Vincent; Dedecker, Robert; Suain, Valérie; Authelet, Michèle; Héraud, Céline; Pierrot, Nathalie; Yilmaz, Zehra; Octave, Jean-Noël; Brion, Jean-Pierre

    2012-12-01

    Lack of tau expression has been reported to protect against excitotoxicity and to prevent memory deficits in mice expressing mutant amyloid precursor protein (APP) identified in familial Alzheimer disease. In APP mice, mutant presenilin 1 (PS1) enhances generation of Aβ42 and inhibits cell survival pathways. It is unknown whether the deficient phenotype induced by concomitant expression of mutant PS1 is rescued by absence of tau. In this study, we have analyzed the effect of tau deletion in mice expressing mutant APP and PS1. Although APP/PS1/tau(+/+) mice had a reduced survival, developed spatial memory deficits at 6 months and motor impairments at 12 months, these deficits were rescued in APP/PS1/tau(-/-) mice. Neuronal loss and synaptic loss in APP/PS1/tau(+/+) mice were rescued in the APP/PS1/tau(-/-) mice. The amyloid plaque burden was decreased by roughly 50% in the cortex and the spinal cord of the APP/PS1/tau(-/-) mice. The levels of soluble and insoluble Aβ40 and Aβ42, and the Aβ42/Aβ40 ratio were reduced in APP/PS1/tau(-/-) mice. Levels of phosphorylated APP, of β-C-terminal fragments (CTFs), and of β-secretase 1 (BACE1) were also reduced, suggesting that β-secretase cleavage of APP was reduced in APP/PS1/tau(-/-) mice. Our results indicate that tau deletion had a protective effect against amyloid induced toxicity even in the presence of mutant PS1 and reduced the production of Aβ. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  5. Lack of phosphatidylethanolamine N-methyltransferase in mice does not promote fatty acid oxidation in skeletal muscle.

    Science.gov (United States)

    Tasseva, Guergana; van der Veen, Jelske N; Lingrell, Susanne; Jacobs, René L; Vance, Dennis E; Vance, Jean E

    2016-02-01

    Phosphatidylethanolamine N-methyltransferase (PEMT) converts phosphatidylethanolamine (PE) to phosphatidylcholine (PC) in the liver. Mice lacking PEMT are protected from high-fat diet-induced obesity and insulin resistance, and exhibit increased whole-body energy expenditure and oxygen consumption. Since skeletal muscle is a major site of fatty acid oxidation and energy utilization, we determined if rates of fatty acid oxidation/oxygen consumption in muscle are higher in Pemt(-/-) mice than in Pemt(+/+) mice. Although PEMT is abundant in the liver, PEMT protein and activity were undetectable in four types of skeletal muscle. Moreover, amounts of PC and PE in the skeletal muscle were not altered by PEMT deficiency. Thus, we concluded that any influence of PEMT deficiency on skeletal muscle would be an indirect consequence of lack of PEMT in liver. Neither the in vivo rate of fatty acid uptake by muscle nor the rate of fatty acid oxidation in muscle explants and cultured myocytes depended upon Pemt genotype. Nor did PEMT deficiency increase oxygen consumption or respiratory function in skeletal muscle mitochondria. Thus, the increased whole body oxygen consumption in Pemt(-/-) mice, and resistance of these mice to diet-induced weight gain, are not primarily due to increased capacity of skeletal muscle for utilization of fatty acids as an energy source. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  6. Behavioural endophenotypes in mice lacking the auxiliary GABAB receptor subunit KCTD16.

    Science.gov (United States)

    Cathomas, Flurin; Sigrist, Hannes; Schmid, Luca; Seifritz, Erich; Gassmann, Martin; Bettler, Bernhard; Pryce, Christopher R

    2017-01-15

    Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the brain and is implicated in the pathophysiology of a number of neuropsychiatric disorders. The GABA B receptors are G-protein coupled receptors consisting of principle subunits and auxiliary potassium channel tetramerization domain (KCTD) subunits. The KCTD subunits 8, 12, 12b and 16 are cytosolic proteins that determine the kinetics of the GABA B receptor response. Previously, we demonstrated that Kctd12 null mutant mice (Kctd12 -/- ) exhibit increased auditory fear learning and that Kctd12 +/- mice show altered circadian activity, as well as increased intrinsic excitability in hippocampal pyramidal neurons. KCTD16 has been demonstrated to influence neuronal excitability by regulating GABA B receptor-mediated gating of postsynaptic ion channels. In the present study we investigated for behavioural endophenotypes in Kctd16 -/- and Kctd16 +/- mice. Compared with wild-type (WT) littermates, auditory and contextual fear conditioning were normal in both Kctd16 -/- and Kctd16 +/- mice. When fear memory was tested on the following day, Kctd16 -/- mice exhibited less extinction of auditory fear memory relative to WT and Kctd16 +/- mice, as well as more contextual fear memory relative to WT and, in particular, Kctd16 +/- mice. Relative to WT, both Kctd16 +/- and Kctd16 -/- mice exhibited normal circadian activity. This study adds to the evidence that auxillary KCTD subunits of GABA B receptors contribute to the regulation of behaviours that could constitute endophenotypes for hyper-reactivity to aversive stimuli in neuropsychiatric disorders. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Spdef Null Mice Lack Conjunctival Goblet Cells and Provide a Model of Dry Eye

    OpenAIRE

    Marko, Christina K.; Menon, Balaraj B.; Chen, Gang; Whitsett, Jeffrey A.; Clevers, Hans; Gipson, Ilene K.

    2013-01-01

    Goblet cell numbers decrease within the conjunctival epithelium in drying and cicatrizing ocular surface diseases. Factors regulating goblet cell differentiation in conjunctival epithelium are unknown. Recent data indicate that the transcription factor SAM-pointed domain epithelial-specific transcription factor (Spdef) is essential for goblet cell differentiation in tracheobronchial and gastrointestinal epithelium of mice. Using Spdef−/− mice, we determined that Spdef is required for conjunct...

  8. Time-place learning and memory persist in mice lacking functional Per1 and Per2 clock genes.

    Science.gov (United States)

    Mulder, C; Van Der Zee, E A; Hut, R A; Gerkema, M P

    2013-12-01

    With time-place learning, animals link a stimulus with the location and the time of day. This ability may optimize resource localization and predator avoidance in daily changing environments. Time-place learning is a suitable task to study the interaction of the circadian system and memory. Previously, we showed that time-place learning in mice depends on the circadian system and Cry1 and/or Cry2 clock genes. We questioned whether time-place learning is Cry specific or also depends on other core molecular clock genes. Here, we show that Per1/Per2 double mutant mice, despite their arrhythmic phenotype, acquire time-place learning similar to wild-type mice. As well as an established role in circadian rhythms, Per genes have also been implicated in the formation and storage of memory. We found no deficiencies in short-term spatial working memory in Per mutant mice compared to wild-type mice. Moreover, both Per mutant and wild-type mice showed similar long-term memory for contextual features of a paradigm (a mild foot shock), measured in trained mice after a 2-month nontesting interval. In contrast, time-place associations were lost in both wild-type and mutant mice after these 2 months, suggesting a lack of maintained long-term memory storage for this type of information. Taken together, Cry-dependent time-place learning does not require Per genes, and Per mutant mice showed no PER-specific short-term or long-term memory deficiencies. These results limit the functional role of Per clock genes in the circadian regulation of time-place learning and memory.

  9. Aberrant Bone Density in Aging Mice Lacking the Adenosine Transporter ENT1

    Science.gov (United States)

    Hinton, David J.; McGee-Lawrence, Meghan E.; Lee, Moonnoh R.; Kwong, Hoi K.; Westendorf, Jennifer J.; Choi, Doo-Sup

    2014-01-01

    Adenosine is known to regulate bone production and resorption in humans and mice. Type 1 equilibrative nucleoside transporter (ENT1) is responsible for the majority of adenosine transport across the plasma membrane and is ubiquitously expressed in both humans and mice. However, the contribution of ENT1-mediated adenosine levels has not been studied in bone remodeling. With the recent identification of the importance of adenosine signaling in bone homeostasis, it is essential to understand the role of ENT1 to develop novel therapeutic compounds for bone disorders. Here we examined the effect of ENT1 deletion on bone density using X-ray, dual energy X-ray absorptiometry and micro-computerized tomography analysis. Our results show that bone density and bone mineral density is reduced in the lower thoracic and lumbar spine as well as the femur of old ENT1 null mice (>7 months) compared to wild-type littermates. Furthermore, we found increased mRNA expression of tartrate-resistant acid phosphatase (TRAP), an osteoclast marker, in isolated long bones from 10 month old ENT1 null mice compared to wild-type mice. In addition, aged ENT1 null mice displayed severe deficit in motor coordination and locomotor activity, which might be attributed to dysregulated bone density. Overall, our study suggests that ENT1-regulated adenosine signaling plays an essential role in lumbar spine and femur bone density. PMID:24586402

  10. Aberrant bone density in aging mice lacking the adenosine transporter ENT1.

    Directory of Open Access Journals (Sweden)

    David J Hinton

    Full Text Available Adenosine is known to regulate bone production and resorption in humans and mice. Type 1 equilibrative nucleoside transporter (ENT1 is responsible for the majority of adenosine transport across the plasma membrane and is ubiquitously expressed in both humans and mice. However, the contribution of ENT1-mediated adenosine levels has not been studied in bone remodeling. With the recent identification of the importance of adenosine signaling in bone homeostasis, it is essential to understand the role of ENT1 to develop novel therapeutic compounds for bone disorders. Here we examined the effect of ENT1 deletion on bone density using X-ray, dual energy X-ray absorptiometry and micro-computerized tomography analysis. Our results show that bone density and bone mineral density is reduced in the lower thoracic and lumbar spine as well as the femur of old ENT1 null mice (>7 months compared to wild-type littermates. Furthermore, we found increased mRNA expression of tartrate-resistant acid phosphatase (TRAP, an osteoclast marker, in isolated long bones from 10 month old ENT1 null mice compared to wild-type mice. In addition, aged ENT1 null mice displayed severe deficit in motor coordination and locomotor activity, which might be attributed to dysregulated bone density. Overall, our study suggests that ENT1-regulated adenosine signaling plays an essential role in lumbar spine and femur bone density.

  11. Minor cell-death defects but reduced tumor latency in mice lacking the BH3-only proteins Bad and Bmf.

    Science.gov (United States)

    Baumgartner, F; Woess, C; Pedit, V; Tzankov, A; Labi, V; Villunger, A

    2013-01-31

    Proapoptotic Bcl-2 family members of the Bcl-2 homology (BH)3-only subgroup are critical for the establishment and maintenance of tissue homeostasis and can mediate apoptotic cell death in response to developmental cues or exogenously induced forms of cell stress. On the basis of the biochemical experiments as well as genetic studies in mice, the BH3-only proteins Bad and Bmf have been implicated in different proapoptotic events such as those triggered by glucose- or trophic factor-deprivation, glucocorticoids, or histone deacetylase inhibition, as well as suppression of B-cell lymphomagenesis upon aberrant expression of c-Myc. To address possible redundancies in cell death regulation and tumor suppression, we generated compound mutant mice lacking both genes. Our studies revealed lack of redundancy in most paradigms of lymphocyte apoptosis tested in tissue culture. Only spontaneous cell death of thymocytes kept in low glucose or that of pre-B cells deprived of cytokines was significantly delayed when both genes were lacking. Of note, despite these minor apoptosis defects we observed compromised lymphocyte homeostasis in vivo that affected mainly the B-cell lineage. Long-term follow-up revealed significantly reduced latency to spontaneous tumor formation in aged mice when both genes were lacking. Together our study suggests that Bad and Bmf co-regulate lymphocyte homeostasis and limit spontaneous transformation by mechanisms that may not exclusively be linked to the induction of lymphocyte apoptosis.

  12. Developmental alterations in motor coordination and medium spiny neuron markers in mice lacking pgc-1α.

    Directory of Open Access Journals (Sweden)

    Elizabeth K Lucas

    Full Text Available Accumulating evidence implicates the transcriptional coactivator peroxisome proliferator activated receptor γ coactivator 1α (PGC-1α in the pathophysiology of Huntington Disease (HD. Adult PGC-1α (-/- mice exhibit striatal neurodegeneration, and reductions in the expression of PGC-1α have been observed in striatum and muscle of HD patients as well as in animal models of the disease. However, it is unknown whether decreased expression of PGC-1α alone is sufficient to lead to the motor phenotype and striatal pathology characteristic of HD. For the first time, we show that young PGC-1α (-/- mice exhibit severe rotarod deficits, decreased rearing behavior, and increased occurrence of tremor in addition to the previously described hindlimb clasping. Motor impairment and striatal vacuolation are apparent in PGC-1α (-/- mice by four weeks of age and do not improve or decline by twelve weeks of age. The behavioral and pathological phenotype of PGC-1α (-/- mice can be completely recapitulated by conditional nervous system deletion of PGC-1α, indicating that peripheral effects are not responsible for the observed abnormalities. Evaluation of the transcriptional profile of PGC-1α (-/- striatal neuron populations and comparison to striatal neuron profiles of R6/2 HD mice revealed that PGC-1α deficiency alone is not sufficient to cause the transcriptional changes observed in this HD mouse model. In contrast to R6/2 HD mice, PGC-1α (-/- mice show increases in the expression of medium spiny neuron (MSN markers with age, suggesting that the observed behavioral and structural abnormalities are not primarily due to MSN loss, the defining pathological feature of HD. These results indicate that PGC-1α is required for the proper development of motor circuitry and transcriptional homeostasis in MSNs and that developmental disruption of PGC-1α leads to long-term alterations in motor functioning.

  13. Mice lacking mPGES-1 are resistant to lithium-induced polyuria.

    Science.gov (United States)

    Jia, Zhanjun; Wang, Haiping; Yang, Tianxin

    2009-12-01

    Cyclooxygenase-2 activity is required for the development of lithium-induced polyuria. However, the involvement of a specific, terminal prostaglandin (PG) isomerase has not been evaluated. The present study was undertaken to assess lithium-induced polyuria in mice deficient in microsomal prostaglandin E synthase-1 (mPGES-1). A 2-wk administration of LiCl (4 mmol.kg(-1).day(-1) ip) in mPGES-1 +/+ mice led to a marked polyuria with hyposmotic urine. This was associated with elevated renal mPGES-1 protein expression and increased urine PGE(2) excretion. In contrast, mPGES-1 -/- mice were largely resistant to lithium-induced polyuria and a urine concentrating defect, accompanied by nearly complete blockade of high urine PGE(2) and cAMP output. Immunoblotting, immunohistochemistry, and quantitative (q) RT-PCR consistently detected a significant decrease in aquaporin-2 (AQP2) protein expression in both the renal cortex and medulla of lithium-treated +/+ mice. This decrease was significantly attenuated in the -/- mice. qRT-PCR detected similar patterns of changes in AQP2 mRNA in the medulla but not in the cortex. Similarly, the total protein abundance of the Na-K-2Cl cotransporter (NKCC2) in the medulla but not in the cortex of the +/+ mice was significantly reduced by lithium treatment. In contrast, the dowregulation of renal medullary NKCC2 expression was significantly attenuated in the -/- mice. We conclude that mPGES-1-derived PGE(2) mediates lithium-induced polyuria likely via inhibition of AQP2 and NKCC2 expression.

  14. Environmental Enrichment Ameliorates Behavioral Impairments Modeling Schizophrenia in Mice Lacking Metabotropic Glutamate Receptor 5.

    Science.gov (United States)

    Burrows, Emma L; McOmish, Caitlin E; Buret, Laetitia S; Van den Buuse, Maarten; Hannan, Anthony J

    2015-07-01

    Schizophrenia arises from a complex interplay between genetic and environmental factors. Abnormalities in glutamatergic signaling have been proposed to underlie the emergence of symptoms, in light of various lines of evidence, including the psychotomimetic effects of NMDA receptor antagonists. Metabotropic glutamate receptor 5 (mGlu5) has also been implicated in the disorder, and has been shown to physically interact with NMDA receptors. To clarify the role of mGlu5-dependent behavioral expression by environmental factors, we assessed mGlu5 knockout (KO) mice after exposure to environmental enrichment (EE) or reared under standard conditions. The mGlu5 KO mice showed reduced prepulse inhibition (PPI), long-term memory deficits, and spontaneous locomotor hyperactivity, which were all attenuated by EE. Examining the cellular impact of genetic and environmental manipulation, we show that EE significantly increased pyramidal cell dendritic branching and BDNF protein levels in the hippocampus of wild-type mice; however, mGlu5 KO mice were resistant to these alterations, suggesting that mGlu5 is critical to these responses. A selective effect of EE on the behavioral response to the NMDA receptor antagonist MK-801 in mGlu5 KO mice was seen. MK-801-induced hyperlocomotion was further potentiated in enriched mGlu5 KO mice and treatment with MK-801 reinstated PPI disruption in EE mGlu5 KO mice only, a response that is absent under standard housing conditions. Together, these results demonstrate an important role for mGlu5 in environmental modulation of schizophrenia-related behavioral impairments. Furthermore, this role of the mGlu5 receptor is mediated by interaction with NMDA receptor function, which may inform development of novel therapeutics.

  15. Mice lacking melanin-concentrating hormone receptor 1 demonstrate increased heart rate associated with altered autonomic activity.

    Science.gov (United States)

    Astrand, Annika; Bohlooly-Y, Mohammad; Larsdotter, Sara; Mahlapuu, Margit; Andersén, Harriet; Tornell, Jan; Ohlsson, Claes; Snaith, Mike; Morgan, David G A

    2004-10-01

    Melanin-concentrating hormone (MCH) plays an important role in energy balance. The current studies were carried out on a new line of mice lacking the rodent MCH receptor (MCHR1(-/-) mice). These mice confirmed the previously reported lean phenotype characterized by increased energy expenditure and modestly increased caloric intake. Because MCH is expressed in the lateral hypothalamic area, which also has an important role in the regulation of the autonomic nervous system, heart rate and blood pressure were measured by a telemetric method to investigate whether the increased energy expenditure in these mice might be due to altered autonomic nervous system activity. Male MCHR1(-/-) mice demonstrated a significantly increased heart rate [24-h period: wild type 495 +/- 4 vs. MCHR1(-/-) 561 +/- 8 beats/min (P dark phase: wild type 506 +/- 8 vs. MCHR1(-/-) 582 +/- 9 beats/min (P light phase: wild type 484 +/- 13 vs. MCHR1(-/-) 539 +/- 9 beats/min (P vs. MCHR1(-/-) 113 +/- 0.4 mmHg (P > 0.05)]. Locomotor activity and core body temperature were higher in the MCHR1(-/-) mice during the dark phase only and thus temporally dissociated from heart rate differences. On fasting, wild-type animals rapidly downregulated body temperature and heart rate. MCHR1(-/-) mice displayed a distinct delay in the onset of this downregulation. To investigate the mechanism underlying these differences, autonomic blockade experiments were carried out. Administration of the adrenergic antagonist metoprolol completely reversed the tachycardia seen in MCHR1(-/-) mice, suggesting an increased sympathetic tone.

  16. Atypical scrapie prions from sheep and lack of disease in transgenic mice overexpressing human prion protein.

    Science.gov (United States)

    Wadsworth, Jonathan D F; Joiner, Susan; Linehan, Jacqueline M; Balkema-Buschmann, Anne; Spiropoulos, John; Simmons, Marion M; Griffiths, Peter C; Groschup, Martin H; Hope, James; Brandner, Sebastian; Asante, Emmanuel A; Collinge, John

    2013-11-01

    Public and animal health controls to limit human exposure to animal prions are focused on bovine spongiform encephalopathy (BSE), but other prion strains in ruminants may also have zoonotic potential. One example is atypical/Nor98 scrapie, which evaded statutory diagnostic methods worldwide until the early 2000s. To investigate whether sheep infected with scrapie prions could be another source of infection, we inoculated transgenic mice that overexpressed human prion protein with brain tissue from sheep with natural field cases of classical and atypical scrapie, sheep with experimental BSE, and cattle with BSE. We found that these mice were susceptible to BSE prions, but disease did not develop after prolonged postinoculation periods when mice were inoculated with classical or atypical scrapie prions. These data are consistent with the conclusion that prion disease is less likely to develop in humans after exposure to naturally occurring prions of sheep than after exposure to epizootic BSE prions of ruminants.

  17. Defective thrombus formation in mice lacking endogenous factor VII activating protease (FSAP).

    Science.gov (United States)

    Subramaniam, Saravanan; Thielmann, Ina; Morowski, Martina; Pragst, Ingo; Sandset, Per Morten; Nieswandt, Bernhard; Etscheid, Michael; Kanse, Sandip M

    2015-04-01

    Factor VII (FVII) activating protease (FSAP) is a circulating protease with a putative function in blood coagulation and fibrinolysis. Genetic epidemiological studies have implied a role for FSAP in carotid stenosis, stroke and thrombosis. To date, no in vivo evidence is available to support these claims. We have, for the first time, used FSAP-/- mice to define its role in thrombosis and haemostasis in vivo and to characterise the molecular mechanisms involved. FeCl3-induced arterial thrombosis in carotid and mesenteric artery revealed that the occlusion time was significantly increased in FSAP-/- mice (pendogenous FSAP impaired the formation of stable, occlusive thrombi in mice. The underlying in vivo effect of FSAP is more likely to be related to the modulation of TFPI rather than FVIIa.

  18. Testicular development in mice lacking receptors for follicle stimulating hormone and androgen.

    Directory of Open Access Journals (Sweden)

    Peter J O'Shaughnessy

    Full Text Available Post-natal testicular development is dependent on gonadotrophin and androgen stimulation. Follicle stimulating hormone (FSH acts through receptors (FSHR on the Sertoli cell to stimulate spermatogenesis while androgens promote testis growth through receptors (AR on the Sertoli cells, Leydig cells and peritubular myoid cells. In this study we have examined the effects on testis development of ablating FSHRs (FSHRKO mice and/or ARs ubiquitously (ARKO mice or specifically on the Sertoli cells (SCARKO mice. Cell numbers were measured using stereological methods. In ARKO mice Sertoli cell numbers were reduced at all ages from birth until adulthood. FSHR ablation also caused small reductions in Sertoli cell numbers up to day 20 with more marked effects seen in the adult. Germ cell numbers were unaffected by FSHR and/or AR ablation at birth. By day 20 ubiquitous AR or FSHR ablation caused a marked reduction in germ cell numbers with a synergistic effect of losing both receptors (germ cell numbers in FSHRKO.ARKO mice were 3% of control. Germ cell numbers in SCARKO mice were less affected. By adulthood, in contrast, clear synergistic control of germ cell numbers had become established between the actions of FSH and androgen through the Sertoli cells. Leydig cell numbers were normal on day 1 and day 5 in all groups. By day 20 and in adult animals total AR or FSHR ablation significantly reduced Leydig cell numbers but Sertoli cell specific AR ablation had no effect. Results show that, prior to puberty, development of most testicular parameters is more dependent on FSH action than androgen action mediated through the Sertoli cells although androgen action through other cells types is crucial. Post-pubertally, germ cell numbers and spermatogenesis are dependent on FSH and androgen action through the Sertoli cells.

  19. Mice lacking the synaptic adhesion molecule Neph2/Kirrel3 display moderate hyperactivity and defective novel object preference

    Directory of Open Access Journals (Sweden)

    Su Yeon eChoi

    2015-07-01

    Full Text Available Synaptic adhesion molecules regulate diverse aspects of neuronal synapse development, including synapse specificity, formation, and maturation. Neph2, also known as Kirrel3, is an immunoglobulin superfamily adhesion molecule implicated in intellectual disability, neurocognitive delay associated with Jacobsen syndrome, and autism spectrum disorders. We here report mice lacking Neph2 (Neph2–/– mice display moderate hyperactivity in a familiar but not novel environment and novel object recognition deficit with normal performances in Morris water maze spatial learning and memory, contextual fear conditioning and extinction, and pattern separation tests. These mice show normal levels of anxiety-like behaviors, social interaction, and repetitive behaviors. At the synapse level, Neph2–/– dentate gyrus granule cells exhibit unaltered dendritic spine density and spontaneous excitatory synaptic transmission. These results suggest that Neph2 is important for normal locomotor activity and object recognition memory.

  20. Post-exposure vaccination with MP-12 lacking NSs protects mice against lethal Rift Valley fever virus challenge.

    Science.gov (United States)

    Gowen, Brian B; Bailey, Kevin W; Scharton, Dionna; Vest, Zachery; Westover, Jonna B; Skirpstunas, Ramona; Ikegami, Tetsuro

    2013-05-01

    Rift Valley fever virus (RVFV) causes severe disease in humans and livestock. There are currently no approved antivirals or vaccines for the treatment or prevention of RVF disease in humans. A major virulence factor of RVFV is the NSs protein, which inhibits host transcription including the interferon (IFN)-β gene and promotes the degradation of dsRNA-dependent protein kinase, PKR. We analyzed the efficacy of the live-attenuated MP-12 vaccine strain and MP-12 variants that lack the NSs protein as post-exposure vaccinations. Although parental MP-12 failed to elicit a protective effect in mice challenged with wild-type (wt) RVFV by the intranasal route, significant protection was demonstrated by vaccination with MP-12 strains lacking NSs when they were administered at 20-30 min post-exposure. Viremia and virus replication in liver, spleen and brain were also inhibited by post-exposure vaccination with MP-12 lacking NSs. The protective effect was mostly lost when vaccination was delayed 6 or 24 h after intranasal RVFV challenge. When mice were challenged subcutaneously, efficacy of MP-12 lacking NSs was diminished, most likely due to more rapid dissemination of wt RVFV. Our findings suggest that post-exposure vaccination with MP-12 lacking NSs may be developed as a novel post-exposure treatment to prevent RVF. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Dwarfism and early death in mice lacking C-type natriuretic peptide

    Science.gov (United States)

    Chusho, Hideki; Tamura, Naohisa; Ogawa, Yoshihiro; Yasoda, Akihiro; Suda, Michio; Miyazawa, Takashi; Nakamura, Kenji; Nakao, Kazuki; Kurihara, Tatsuya; Komatsu, Yasato; Itoh, Hiroshi; Tanaka, Kiyoshi; Saito, Yoshihiko; Katsuki, Motoya; Nakao, Kazuwa

    2001-01-01

    Longitudinal bone growth is determined by endochondral ossification that occurs as chondrocytes in the cartilaginous growth plate undergo proliferation, hypertrophy, cell death, and osteoblastic replacement. The natriuretic peptide family consists of three structurally related endogenous ligands, atrial, brain, and C-type natriuretic peptides (ANP, BNP, and CNP), and is thought to be involved in a variety of homeostatic processes. To investigate the physiological significance of CNP in vivo, we generated mice with targeted disruption of CNP (Nppc−/− mice). The Nppc−/− mice show severe dwarfism as a result of impaired endochondral ossification. They are all viable perinatally, but less than half can survive during postnatal development. The skeletal phenotypes are histologically similar to those seen in patients with achondroplasia, the most common genetic form of human dwarfism. Targeted expression of CNP in the growth plate chondrocytes can rescue the skeletal defect of Nppc−/− mice and allow their prolonged survival. This study demonstrates that CNP acts locally as a positive regulator of endochondral ossification in vivo and suggests its pathophysiological and therapeutic implication in some forms of skeletal dysplasia. PMID:11259675

  2. Base excision repair deficient mice lacking the Aag alkyladenine DNA glycosylase.

    NARCIS (Netherlands)

    B.P. Engelward (Bevin); G. Weeda (Geert); M.D. Wyatt; J.L.M. Broekhof (Jose'); J. de Wit (Jan); I. Donker (Ingrid); J.M. Allan (James); B. Gold (Bert); J.H.J. Hoeijmakers (Jan); L.D. Samson (Leona)

    1997-01-01

    textabstract3-methyladenine (3MeA) DNA glycosylases remove 3MeAs from alkylated DNA to initiate the base excision repair pathway. Here we report the generation of mice deficient in the 3MeA DNA glycosylase encoded by the Aag (Mpg) gene. Alkyladenine DNA glycosylase turns out to be the major DNA

  3. Lack of genotoxic potential of pesticides, spinosad, imidacloprid and neem oil in mice (Mus musculus).

    Science.gov (United States)

    Saxena, Ankita; Kesari, V P

    2016-03-01

    Pesticides, spinosad, imidacloprid and neem oil are widely used both in residential and agricultural environments because of its broad spectrum insecticidal activity and effectiveness. The present study was undertaken to estimate genotoxicity of formulations of some pesticides in mice. Three pesticides of diverse group studied were spinosad (45% w/v), imidacloprid (17.8%, w/v) and neem oil. Animals were exposed 37, 4.5 and 50 mg kg⁻¹ b.wt. for spinosad, imidacloprid and neem oil, respectively, through oral gavage for 5 consecutive days. A vehicle control group and one positive control (cyclophosphamide; 20 mg kg⁻¹ b. wt.) were also selected. The results showed that cyclophosphamide produced 1.12% micronuclei in mice, as against 0.18 in vehicle control, 0.30 in spinosad, 0.28 in imidacloprid and 0.22% in neem oil, respectively. The gross percentage of chromosomal aberration in mice were 28.5% in cyclophosphamide against 6.5% in vehicle control, 8.0% in spinosad, 9.5% in imidacloprid and 7.0% in neem oil, respectively. The overall findings of the present study revealed that all the three pesticide formulations, imidacloprid, spinosad and neem oil at tested dose did not show any genotoxic effect in mice.

  4. Multiple alterations of platelet functions dominated by increased secretion in mice lacking Cdc42 in platelets

    DEFF Research Database (Denmark)

    Pleines, Irina; Eckly, Anita; Elvers, Margitta

    2010-01-01

    formation and exocytosis in various cell types, but its exact function in platelets is not established. Here, we show that the megakaryocyte/platelet-specific loss of Cdc42 leads to mild thrombocytopenia and a small increase in platelet size in mice. Unexpectedly, Cdc42-deficient platelets were able to form...

  5. Mice lacking desmocollin 1 show epidermal fragility accompanied by barrier defects and abnormal differentiation

    DEFF Research Database (Denmark)

    Chidgey, M; Brakebusch, C; Gustafsson, E

    2001-01-01

    epidermis because environmental insults are more stringent and wound healing is less rapid than in neonatal mice. This dermatitis is accompanied by localized hair loss associated with formation of utriculi and dermal cysts, denoting hair follicle degeneration. Possible resemblance of the lesions to human...

  6. Communication impairments in mice lacking Shank1: reduced levels of ultrasonic vocalizations and scent marking behavior.

    Directory of Open Access Journals (Sweden)

    Markus Wöhr

    Full Text Available Autism is a neurodevelopmental disorder with a strong genetic component. Core symptoms are abnormal reciprocal social interactions, qualitative impairments in communication, and repetitive and stereotyped patterns of behavior with restricted interests. Candidate genes for autism include the SHANK gene family, as mutations in SHANK2 and SHANK3 have been detected in several autistic individuals. SHANK genes code for a family of scaffolding proteins located in the postsynaptic density of excitatory synapses. To test the hypothesis that a mutation in SHANK1 contributes to the symptoms of autism, we evaluated Shank1(-/- null mutant mice for behavioral phenotypes with relevance to autism, focusing on social communication. Ultrasonic vocalizations and the deposition of scent marks appear to be two major modes of mouse communication. Our findings revealed evidence for low levels of ultrasonic vocalizations and scent marks in Shank1(-/- mice as compared to wildtype Shank1(+/+ littermate controls. Shank1(-/- pups emitted fewer vocalizations than Shank1(+/+ pups when isolated from mother and littermates. In adulthood, genotype affected scent marking behavior in the presence of female urinary pheromones. Adult Shank1(-/- males deposited fewer scent marks in proximity to female urine than Shank1(+/+ males. Call emission in response to female urinary pheromones also differed between genotypes. Shank1(+/+ mice changed their calling pattern dependent on previous female interactions, while Shank1(-/- mice were unaffected, indicating a failure of Shank1(-/- males to learn from a social experience. The reduced levels of ultrasonic vocalizations and scent marking behavior in Shank1(-/- mice are consistent with a phenotype relevant to social communication deficits in autism.

  7. Communication Impairments in Mice Lacking Shank1: Reduced Levels of Ultrasonic Vocalizations and Scent Marking Behavior

    Science.gov (United States)

    Wöhr, Markus; Roullet, Florence I.; Hung, Albert Y.; Sheng, Morgan; Crawley, Jacqueline N.

    2011-01-01

    Autism is a neurodevelopmental disorder with a strong genetic component. Core symptoms are abnormal reciprocal social interactions, qualitative impairments in communication, and repetitive and stereotyped patterns of behavior with restricted interests. Candidate genes for autism include the SHANK gene family, as mutations in SHANK2 and SHANK3 have been detected in several autistic individuals. SHANK genes code for a family of scaffolding proteins located in the postsynaptic density of excitatory synapses. To test the hypothesis that a mutation in SHANK1 contributes to the symptoms of autism, we evaluated Shank1 −/− null mutant mice for behavioral phenotypes with relevance to autism, focusing on social communication. Ultrasonic vocalizations and the deposition of scent marks appear to be two major modes of mouse communication. Our findings revealed evidence for low levels of ultrasonic vocalizations and scent marks in Shank1 −/− mice as compared to wildtype Shank1 +/+ littermate controls. Shank1 −/− pups emitted fewer vocalizations than Shank1+/+ pups when isolated from mother and littermates. In adulthood, genotype affected scent marking behavior in the presence of female urinary pheromones. Adult Shank1 −/− males deposited fewer scent marks in proximity to female urine than Shank1+/+ males. Call emission in response to female urinary pheromones also differed between genotypes. Shank1+/+ mice changed their calling pattern dependent on previous female interactions, while Shank1 −/− mice were unaffected, indicating a failure of Shank1 −/− males to learn from a social experience. The reduced levels of ultrasonic vocalizations and scent marking behavior in Shank1 −/− mice are consistent with a phenotype relevant to social communication deficits in autism. PMID:21695253

  8. Mice lacking the kf-1 gene exhibit increased anxiety- but not despair-like behavior

    Directory of Open Access Journals (Sweden)

    Atsushi Tsujimura

    2008-09-01

    Full Text Available KF-1 was originally identified as a protein encoded by human gene with increased expression in the cerebral cortex of a patient with Alzheimer’s disease. In mouse brain, kf-1 mRNA is detected predominantly in the hippocampus and cerebellum, and kf-1 gene expression is elevated also in the frontal cortex of rats after chronic antidepressant treatments. KF-1 mediates E2-dependent ubiquitination and may modulate cellular protein levels as an E3 ubiquitin ligase, though its target proteins are not yet identified. To elucidate the role of kf-1 in the central nervous system, we generated kf-1 knockout mice by gene targeting, using Cre-lox recombination. The resulting kf-1−/− mice were normal and healthy in appearance. Behavioral analyses revealed that kf-1−/− mice showed significantly increased anxiety-like behavior compared with kf-1+/+ littermates in the light/dark transition and elevated plus maze tests; however, no significant differences were observed in exploratory locomotion using the open field test or in behavioral despair using the forced swim and tail suspension tests. These observations suggest that KF-1 suppresses selectively anxiety under physiological conditions probably through modulating protein levels of its unknown target(s. Interestingly, kf-1−/− mice exhibited significantly increased prepulse inhibition, which is usually reduced in human schizophrenic patients. Thus, the kf-1−/− mice provide a novel animal model for elucidating molecular mechanisms of psychiatric diseases such as anxiety/depression, and may be useful for screening novel anxiolytic/antidepressant compounds.

  9. Lack of adrenomedullin results in microbiota changes and aggravates azoxymethane and dextran sulfate sodium-induced colitis in mice

    Directory of Open Access Journals (Sweden)

    Sonia Martinez-Herrero

    2016-11-01

    Full Text Available The link between intestinal inflammation, microbiota, and colorectal cancer (CRC is intriguing and the potential underlying mechanisms remain unknown. Here we evaluate the influence of adrenomedullin (AM in microbiota composition and its impact on colitis with an inducible knockout (KO mouse model for AM. Microbiota composition was analyzed in KO and wild type (WT mice by pyrosequencing. Colitis was induced in mice by administration of azoxymethane (AOM followed by dextran sulfate sodium (DSS in the drinking water. Colitis was evaluated using a clinical symptoms index, histopathological analyses, and qRT-PCR. Abrogation of the adm gene in the whole body was confirmed by PCR and qRT-PCR. KO mice exhibit significant changes in colonic microbiota: higher proportion of δ-Proteobacteria class; of Coriobacteriales order; and of other families and genera was observed in KO feces. Meanwhile these mice had a lower proportion of beneficial bacteria, such as Lactobacillus gasseri and Bifidobacterium choerinum. TLR4 gene expression was higher (p<0.05 in KO animals. AM deficient mice treated with DSS exhibited a significantly worse colitis with profound weight loss, severe diarrhea, rectal bleeding, colonic inflammation, edema, infiltration, crypt destruction, and higher levels of pro-inflammatory cytokines. No changes were observed in the expression levels of adhesion molecules. In conclusion, we have shown that lack of AM leads to changes in gut microbiota population and in a worsening of colitis conditions, suggesting that endogenous AM is a protective mediator in this pathology.

  10. Control of blood pressure, appetite, and glucose by leptin in mice lacking leptin receptors in proopiomelanocortin neurons.

    Science.gov (United States)

    do Carmo, Jussara M; da Silva, Alexandre A; Cai, Zhengwei; Lin, Shuying; Dubinion, John H; Hall, John E

    2011-05-01

    Although the central nervous system melanocortin system is an important regulator of energy balance, the role of proopiomelanocortin (POMC) neurons in mediating the chronic effects of leptin on appetite, blood pressure, and glucose regulation is unknown. Using Cre/loxP technology we tested whether leptin receptor deletion in POMC neurons (LepR(flox/flox)/POMC-Cre mice) attenuates the chronic effects of leptin to increase mean arterial pressure (MAP), enhance glucose use and oxygen consumption, and reduce appetite. LepR(flox/flox)/POMC-Cre, wild-type, LepR(flox/flox), and POMC-Cre mice were instrumented for MAP and heart rate measurement by telemetry and venous catheters for infusions. LepR(flox/flox)/POMC-Cre mice were heavier, hyperglycemic, hyperinsulinemic, and hyperleptinemic compared with wild-type, LepR(flox/flox), and POMC-Cre mice. Despite exhibiting features of metabolic syndrome, LepR(flox/flox)/POMC-Cre mice had normal MAP and heart rate compared with LepR(flox/flox) but lower MAP and heart rate compared with wild-type mice. After a 5-day control period, leptin was infused (2 μg/kg per minute, IV) for 7 days. In control mice, leptin increased MAP by ≈5 mm Hg despite decreasing food intake by ≈35%. In contrast, leptin infusion in LepR(flox/flox)/POMC-Cre mice reduced MAP by ≈3 mm Hg and food intake by ≈28%. Leptin significantly decreased insulin and glucose levels in control mice but not in LepR(flox/flox)/POMC-Cre mice. Leptin increased oxygen consumption in LepR(flox/flox)/POMC-Cre and wild-type mice. Activation of POMC neurons is necessary for the chronic effects of leptin to raise MAP and reduce insulin and glucose levels, whereas leptin receptors in other areas of the brain other than POMC neurons appear to play a key role in mediating the chronic effects of leptin on appetite and oxygen consumption.

  11. Enhanced leptin sensitivity and improved glucose homeostasis in mice lacking suppressor of cytokine signaling-3 in POMC-expressing cells.

    Science.gov (United States)

    Kievit, Paul; Howard, Jane K; Badman, Michael K; Balthasar, Nina; Coppari, Roberto; Mori, Hiroyuki; Lee, Charlotte E; Elmquist, Joel K; Yoshimura, Akihiko; Flier, Jeffrey S

    2006-08-01

    Suppressor of cytokine signaling-3 (Socs-3) negatively regulates the action of various cytokines, as well as the metabolic hormones leptin and insulin. Mice with haploinsufficiency of Socs-3, or those with neuronal deletion of Socs-3, are lean and more leptin and insulin sensitive. To examine the role of Socs-3 within specific neurons critical to energy balance, we created mice with selective deletion of Socs-3 within pro-opiomelanocortin (POMC)-expressing cells. These mice had enhanced leptin sensitivity, measured by weight loss and food intake after leptin infusion. On chow diet, glucose homeostasis was improved despite normal weight gain. On a high-fat diet, the rate of weight gain was reduced, due to increased energy expenditure rather than decreased food intake; glucose homeostasis and insulin sensitivity were substantially improved. These studies demonstrate that Socs-3 within POMC neurons regulates leptin sensitivity and glucose homeostasis, and plays a key role in linking high-fat diet to disordered metabolism.

  12. Obesity resistance and multiple mechanisms of triglyceride synthesis in mice lacking Dgat.

    Science.gov (United States)

    Smith, S J; Cases, S; Jensen, D R; Chen, H C; Sande, E; Tow, B; Sanan, D A; Raber, J; Eckel, R H; Farese, R V

    2000-05-01

    Triglycerides (or triacylglycerols) represent the major form of stored energy in eukaryotes. Triglyceride synthesis has been assumed to occur primarily through acyl CoA:diacylglycerol transferase (Dgat), a microsomal enzyme that catalyses the final and only committed step in the glycerol phosphate pathway. Therefore, Dgat has been considered necessary for adipose tissue formation and essential for survival. Here we show that Dgat-deficient (Dgat-/-) mice are viable and can still synthesize triglycerides. Moreover, these mice are lean and resistant to diet-induced obesity. The obesity resistance involves increased energy expenditure and increased activity. Dgat deficiency also alters triglyceride metabolism in other tissues, including the mammary gland, where lactation is defective in Dgat-/- females. Our findings indicate that multiple mechanisms exist for triglyceride synthesis and suggest that the selective inhibition of Dgat-mediated triglyceride synthesis may be useful for treating obesity.

  13. Lack of carcinogenicity of tragacanth gum in B6C3F1 mice.

    Science.gov (United States)

    Hagiwara, A; Boonyaphiphat, P; Kawabe, M; Naito, H; Shirai, T; Ito, N

    1992-08-01

    Tragacanth gum was administered at dietary levels of 0 (control), 1.25 and 5.0% to groups of 50 male and 50 female B6C3F1 mice for 96 wk after which all animals were maintained on a basal diet without tragacanth gum for a further 10 wk. Mean body weights of females in the 5.0% and 1.25% groups were lower than those of the controls after 11 and 16 wk, respectively. However, there were no treatment-related clinical signs or adverse effects on survival rate, urinalysis, haematology, blood biochemistry and organ weight. While detailed histopathology revealed the development of squamous cell hyperplasias, papillomas and one carcinoma in the forestomach, there was no significant treatment-related increase in the incidence of any preneoplastic or neoplastic lesion. Thus, under the experimental conditions used, tragacanth gum was not carcinogenic in B6C3F1 mice of either sex.

  14. The transient outward current in mice lacking the potassium channel gene Kv1.4

    Science.gov (United States)

    London, Barry; Wang, Dao W; Hill, Joseph A; Bennett, Paul B

    1998-01-01

    The transient outward current (Ito) plays a prominent role in the repolarization phase of the cardiac action potential. Several K+ channel genes, including Kv1.4, are expressed in the heart, produce rapidly inactivating currents when heterologously expressed, and may be the molecular basis of Ito.We engineered mice homozygous for a targeted disruption of the K+ channel gene Kv1.4 and compared Ito in wild-type (Kv1.4+/+), heterozygous (Kv1.4+/-) and homozygous ‘knockout’ (Kv1.4−/−) mice. Kv1.4 RNA was truncated in Kv1.4−/− mice and protein expression was absent.Adult myocytes isolated from Kv1.4+/+, Kv1.4+/− and Kv1.4−/− mice had large rapidly inactivating outward currents. The peak current densities at 60 mV (normalized by cellular capacitance, in pA pF−1; means ± s.e.m.) were 53.8 ± 5.3, 45.3 ± 2.2 and 44.4 ± 2.8 in cells from Kv1.4+/+, Kv1.4+/− and Kv1.4−/− mice, respectively (P mice.The voltage dependence and time course of inactivation were not changed by targeted disruption of Kv1.4. The mean best-fitting V½ (membrane potential at 50 % inactivation) values for myocytes from Kv1.4 +/+, Kv1.4+/− and Kv1.4−/− mice were -53.5 ± 3.7, -51.1 ± 2.6 and -54.2 ± 2.4 mV, respectively. The slope factors (k) were -10.1 ± 1.4, -8.8 ± 1.4 and -9.5 ± 1.2 mV, respectively. The fast time constants for development of inactivation at -30 mV were 27.8 ± 2.2, 26.2 ± 5.1 and 19.6 ± 2.1 ms in Kv1.4+/+, Kv1.4+/− and Kv1.4−/− myocytes, respectively. At +30 mV, they were 35.5 ± 2.6, 30.0 ± 2.1 and 28.7 ± 1.6 ms, respectively. The time constants for the rapid phase of recovery from inactivation at -80 mV were 32.5 ± 8.2, 23.3 ± 1.8 and 39.0 ± 3.7 ms, respectively.Nearly the entire inactivating component as well as more than 60 % of the steady-state outward current was eliminated by 1 mm 4-aminopyridine in Kv1.4+/+, Kv1.4+/− and Kv1.4−/− myocytes.Western blot analysis of heart membrane extracts showed no significant

  15. Autism-like socio-communicative deficits and stereotypies in mice lacking heparan sulfate.

    Science.gov (United States)

    Irie, Fumitoshi; Badie-Mahdavi, Hedieh; Yamaguchi, Yu

    2012-03-27

    Heparan sulfate regulates diverse cell-surface signaling events, and its roles in the development of the nervous system recently have been increasingly uncovered by studies using genetic models carrying mutations of genes encoding enzymes for its synthesis. On the other hand, the role of heparan sulfate in the physiological function of the adult brain has been poorly characterized, despite several pieces of evidence suggesting its role in the regulation of synaptic function. To address this issue, we eliminated heparan sulfate from postnatal neurons by conditionally inactivating Ext1, the gene encoding an enzyme essential for heparan sulfate synthesis. Resultant conditional mutant mice show no detectable morphological defects in the cytoarchitecture of the brain. Remarkably, these mutant mice recapitulate almost the full range of autistic symptoms, including impairments in social interaction, expression of stereotyped, repetitive behavior, and impairments in ultrasonic vocalization, as well as some associated features. Mapping of neuronal activation by c-Fos immunohistochemistry demonstrates that neuronal activation in response to social stimulation is attenuated in the amygdala in these mice. Electrophysiology in amygdala pyramidal neurons shows an attenuation of excitatory synaptic transmission, presumably because of the reduction in the level of synaptically localized AMPA-type glutamate receptors. Our results demonstrate that heparan sulfate is critical for normal functioning of glutamatergic synapses and that its deficiency mediates socio-communicative deficits and stereotypies characteristic for autism.

  16. Mice lacking cystathionine beta synthase have lung fibrosis and air space enlargement.

    Science.gov (United States)

    Hamelet, Julien; Maurin, Nicole; Fulchiron, Romain; Delabar, Jean-Maurice; Janel, Nathalie

    2007-10-01

    Cystathionine beta synthase (CBS) is a crucial regulator of plasma concentrations of homocysteine. Severe hyperhomocysteinemia due to CBS deficiency confers diverse clinical manifestations, notably pulmonary thrombotic disease. However, the association between hyperhomocysteinemia and chronic obstructive pulmonary disease is not well understood. To investigate the role of hyperhomocysteinemia in lung injury and pulmonary fibrosis, we analyzed the lung of CBS-deficient mice, a murine model of severe hyperhomocysteinemia. The degree of lung injury was assessed by histologic examination. Analysis of profibrogenic factors was performed by real-time quantitative reverse transcription-polymerase chain reaction. CBS-deficient mice develop fibrosis and air space enlargement in the lung, concomitant with an enhanced expression of heme oxygenase-1, pro(alpha)1 collagen type I, transforming growth factor-beta1 and alpha-smooth muscle actin. However, lung fibrosis was found in the absence of increased inflammatory cell infiltrates as determined by histology, without changes in gene expression of proinflammatory cytokines TNFalpha and interleukin 6. The increased expression of alpha-smooth muscle actin and transforming growth factor-beta1 emphasizes the role of myofibroblasts differentiation in case of lung fibrosis due to CBS deficiency in mice.

  17. Mice Lacking Pannexin 1 Release ATP and Respond Normally to All Taste Qualities.

    Science.gov (United States)

    Vandenbeuch, Aurelie; Anderson, Catherine B; Kinnamon, Sue C

    2015-09-01

    Adenosine triphosphate (ATP) is required for the transmission of all taste qualities from taste cells to afferent nerve fibers. ATP is released from Type II taste cells by a nonvesicular mechanism and activates purinergic receptors containing P2X2 and P2X3 on nerve fibers. Several ATP release channels are expressed in taste cells including CALHM1, Pannexin 1, Connexin 30, and Connexin 43, but whether all are involved in ATP release is not clear. We have used a global Pannexin 1 knock out (Panx1 KO) mouse in a series of in vitro and in vivo experiments. Our results confirm that Panx1 channels are absent in taste buds of the knockout mice and that other known ATP release channels are not upregulated. Using a luciferin/luciferase assay, we show that circumvallate taste buds from Panx1 KO mice normally release ATP upon taste stimulation compared with wild type (WT) mice. Gustatory nerve recordings in response to various tastants applied to the tongue and brief-access behavioral testing with SC45647 also show no difference between Panx1 KO and WT. These results confirm that Panx1 is not required for the taste evoked release of ATP or for neural and behavioral responses to taste stimuli. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Alterations in gene expression in mutant amyloid precursor protein transgenic mice lacking Niemann-Pick type C1 protein.

    Directory of Open Access Journals (Sweden)

    Mahua Maulik

    Full Text Available Niemann-Pick type C (NPC disease, a rare autosomal recessive disorder caused mostly by mutation in NPC1 gene, is pathologically characterized by the accumulation of free cholesterol in brain and other tissues. This is accompanied by gliosis and loss of neurons in selected brain regions, including the cerebellum. Recent studies have shown that NPC disease exhibits intriguing parallels with Alzheimer's disease, including the presence of neurofibrillary tangles and increased levels of amyloid precursor protein (APP-derived β-amyloid (Aβ peptides in vulnerable brain neurons. To evaluate the role of Aβ in NPC disease, we determined the gene expression profile in selected brain regions of our recently developed bigenic ANPC mice, generated by crossing APP transgenic (Tg mice with heterozygous Npc1-deficient mice. The ANPC mice exhibited exacerbated neuronal and glial pathology compared to other genotypes [i.e., APP-Tg, double heterozygous (Dhet, Npc1-null and wild-type mice]. Analysis of expression profiles of 86 selected genes using real-time RT-PCR arrays showed a wide-spectrum of alterations in the four genotypes compared to wild-type controls. The changes observed in APP-Tg and Dhet mice are limited to only few genes involved mostly in the regulation of cholesterol metabolism, whereas Npc1-null and ANPC mice showed alterations in the expression profiles of a number of genes regulating cholesterol homeostasis, APP metabolism, vesicular trafficking and cell death mechanism in both hippocampus and cerebellum compared to wild-type mice. Intriguingly, ANPC and Npc1-null mice, with some exceptions, exhibited similar changes, although more genes were differentially expressed in the affected cerebellum than the relatively spared hippocampus. The altered gene profiles were found to match with the corresponding protein levels. These results suggest that lack of Npc1 protein can alter the expression profile of selected transcripts as well as proteins, and

  19. Impaired neuronal maturation of hippocampal neural progenitor cells in mice lacking CRAF.

    Science.gov (United States)

    Pfeiffer, Verena; Götz, Rudolf; Camarero, Guadelupe; Heinsen, Helmut; Blum, Robert; Rapp, Ulf Rüdiger

    2018-01-01

    RAF kinases are major constituents of the mitogen activated signaling pathway, regulating cell proliferation, differentiation and cell survival of many cell types, including neurons. In mammals, the family of RAF proteins consists of three members, ARAF, BRAF, and CRAF. Ablation of CRAF kinase in inbred mouse strains causes major developmental defects during fetal growth and embryonic or perinatal lethality. Heterozygous germline mutations in CRAF result in Noonan syndrome, which is characterized by neurocognitive impairment that may involve hippocampal physiology. The role of CRAF signaling during hippocampal development and generation of new postnatal hippocampal granule neurons has not been examined and may provide novel insight into the cause of hippocampal dysfunction in Noonan syndrome. In this study, by crossing CRAF-deficiency to CD-1 outbred mice, a CRAF mouse model was established which enabled us to investigate the interplay of neural progenitor proliferation and postmitotic differentiation during adult neurogenesis in the hippocampus. Albeit the general morphology of the hippocampus was unchanged, CRAF-deficient mice displayed smaller granule cell layer (GCL) volume at postnatal day 30 (P30). In CRAF-deficient mice a substantial number of abnormal, chromophilic, fast dividing cells were found in the subgranular zone (SGZ) and hilus of the dentate gyrus (DG), indicating that CRAF signaling contributes to hippocampal neural progenitor proliferation. CRAF-deficient neural progenitor cells showed an increased cell death rate and reduced neuronal maturation. These results indicate that CRAF function affects postmitotic neural cell differentiation and points to a critical role of CRAF-dependent growth factor signaling pathway in the postmitotic development of adult-born neurons.

  20. Pancreatic ductal adenocarcinoma mice lacking mucin 1 have a profound defect in tumor growth and metastasis.

    Science.gov (United States)

    Besmer, Dahlia M; Curry, Jennifer M; Roy, Lopamudra D; Tinder, Teresa L; Sahraei, Mahnaz; Schettini, Jorge; Hwang, Sun-Il; Lee, Yong Y; Gendler, Sandra J; Mukherjee, Pinku

    2011-07-01

    MUC1 is overexpressed and aberrantly glycosylated in more than 60% of pancreatic ductal adenocarcinomas. The functional role of MUC1 in pancreatic cancer has yet to be fully elucidated due to a dearth of appropriate models. In this study, we have generated mouse models that spontaneously develop pancreatic ductal adenocarcinoma (KC), which are either Muc1-null (KCKO) or express human MUC1 (KCM). We show that KCKO mice have significantly slower tumor progression and rates of secondary metastasis, compared with both KC and KCM. Cell lines derived from KCKO tumors have significantly less tumorigenic capacity compared with cells from KCM tumors. Therefore, mice with KCKO tumors had a significant survival benefit compared with mice with KCM tumors. In vitro, KCKO cells have reduced proliferation and invasion and failed to respond to epidermal growth factor, platelet-derived growth factor, or matrix metalloproteinase 9. Further, significantly less KCKO cells entered the G(2)-M phase of the cell cycle compared with the KCM cells. Proteomics and Western blotting analysis revealed a complete loss of cdc-25c expression, phosphorylation of mitogen-activated protein kinase (MAPK), as well as a significant decrease in nestin and tubulin-α2 chain expression in KCKO cells. Treatment with a MEK1/2 inhibitor, U0126, abrogated the enhanced proliferation of the KCM cells but had minimal effect on KCKO cells, suggesting that MUC1 is necessary for MAPK activity and oncogenic signaling. This is the first study to utilize a Muc1-null PDA mouse to fully elucidate the oncogenic role of MUC1, both in vivo and in vitro. ©2011 AACR

  1. Generation of mice lacking DUF1220 protein domains: effects on fecundity and hyperactivity

    Science.gov (United States)

    Keeney, JG; O’Bleness, MS; Anderson, N; Davis, JM; Arevalo, N; Busquet, N; Chick, W; Rozman, J; Hölter, SM; Garrett, L; Horsch, M; Beckers, J; Wurst, W; Klingenspor, M; Restrepo, D

    2014-01-01

    Sequences encoding DUF1220 protein domains show the most extreme human lineage-specific copy number increase of any coding region in the genome and have been linked to human brain evolution. In addition, DUF1220 copy number (dosage) has been implicated in influencing brain size within the human species, both in normal populations and in individuals associated with brain size pathologies (1q21-associated microcephaly and macrocephaly). More recently, increasing dosage of a subtype of DUF1220 has been linked with increasing severity of the primary symptoms of autism. Despite these intriguing associations, a function for these domains has not been described. As a first step in addressing this question we have developed the first transgenic model of DUF1220 function by removing the single DUF1220 domain (the ancestral form) encoded in the mouse genome. In a hypothesis generating exercise, these mice were evaluated by 197 different phenotype measurements. While resulting DUF1220-minus (KO) mice show no obvious anatomical peculiarities, they exhibit a significantly reduced fecundity (χ2= 19.1, df = 2, p = 7.0 × 10−5). Further extensive phenotypic analyses suggest hyperactivity (p < 0.05) of DUF1220 mice and changes in gene expression levels of brain associated with distinct neurological functions and disease. Other changes that met statistical significance include an increase in plasma glucose concentration (as measured by Area Under the Curve, AUC 0-30 and AUC 30-120) in male mutants, fasting glucose levels, reduce sodium levels in male mutants, increased levels of the liver functional indicator ALAT/GPT in males, levels of alkaline phosphatase (also an indicator of liver function), mean R and SR amplitude by electrocardiography, elevated IgG3 levels, a reduced ratio of CD4:CD8 cells, and a reduced frequency of T cells; though it should be noted that many of these differences are quite small and require further examination. The linking of DUF1220 loss to a

  2. Generation of mice lacking DUF1220 protein domains: effects on fecundity and hyperactivity.

    Science.gov (United States)

    Keeney, J G; O'Bleness, M S; Anderson, N; Davis, J M; Arevalo, N; Busquet, N; Chick, W; Rozman, J; Hölter, S M; Garrett, L; Horsch, M; Beckers, J; Wurst, W; Klingenspor, M; Restrepo, D; de Angelis, M Hrabě; Sikela, J M

    2015-02-01

    Sequences encoding DUF1220 protein domains show the most extreme human lineage-specific copy number increase of any coding region in the genome and have been linked to human brain evolution. In addition, DUF1220 copy number (dosage) has been implicated in influencing brain size within the human species, both in normal populations and in individuals associated with brain size pathologies (1q21-associated microcephaly and macrocephaly). More recently, increasing dosage of a subtype of DUF1220 has been linked with increasing severity of the primary symptoms of autism. Despite these intriguing associations, a function for these domains has not been described. As a first step in addressing this question, we have developed the first transgenic model of DUF1220 function by removing the single DUF1220 domain (the ancestral form) encoded in the mouse genome. In a hypothesis generating exercise, these mice were evaluated by 197 different phenotype measurements. While resulting DUF1220-minus (KO) mice show no obvious anatomical peculiarities, they exhibit a significantly reduced fecundity (χ(2) = 19.1, df = 2, p = 7.0 × 10(-5)). Further extensive phenotypic analyses suggest hyperactivity (p < 0.05) of DUF1220 mice and changes in gene expression levels of brain associated with distinct neurological functions and disease. Other changes that met statistical significance include an increase in plasma glucose concentration (as measured by area under the curve, AUC 0-30 and AUC 30-120) in male mutants, fasting glucose levels, reduce sodium levels in male mutants, increased levels of the liver functional indicator ALAT/GPT in males, levels of alkaline phosphatase (also an indicator of liver function), mean R and SR amplitude by electrocardiography, elevated IgG3 levels, a reduced ratio of CD4:CD8 cells, and a reduced frequency of T cells; though it should be noted that many of these differences are quite small and require further examination. The linking of DUF1220 loss to a

  3. Lack of tryptophan hydroxylase-1 in mice results in gait abnormalities.

    Science.gov (United States)

    Suidan, Georgette L; Duerschmied, Daniel; Dillon, Gregory M; Vanderhorst, Veronique; Hampton, Thomas G; Wong, Siu Ling; Voorhees, Jaymie R; Wagner, Denisa D

    2013-01-01

    The role of peripheral serotonin in nervous system development is poorly understood. Tryptophan hydroxylase-1 (TPH1) is expressed by non-neuronal cells including enterochromaffin cells of the gut, mast cells and the pineal gland and is the rate-limiting enzyme involved in the biosynthesis of peripheral serotonin. Serotonin released into circulation is taken up by platelets via the serotonin transporter and stored in dense granules. It has been previously reported that mouse embryos removed from Tph1-deficient mothers present abnormal nervous system morphology. The goal of this study was to assess whether Tph1-deficiency results in behavioral abnormalities. We did not find any differences between Tph1-deficient and wild-type mice in general motor behavior as tested by rotarod, grip-strength test, open field and beam walk. However, here we report that Tph1 (-/-) mice display altered gait dynamics and deficits in rearing behavior compared to wild-type (WT) suggesting that tryptophan hydroxylase-1 expression has an impact on the nervous system.

  4. Mice lacking natural killer T cells are more susceptible to metabolic alterations following high fat diet feeding.

    Directory of Open Access Journals (Sweden)

    Brittany V Martin-Murphy

    Full Text Available Current estimates suggest that over one-third of the adult population has metabolic syndrome and three-fourths of the obese population has non-alcoholic fatty liver disease (NAFLD. Inflammation in metabolic tissues has emerged as a universal feature of obesity and its co-morbidities, including NAFLD. Natural Killer T (NKT cells are a subset of innate immune cells that abundantly reside within the liver and are readily activated by lipid antigens. There is general consensus that NKT cells are pivotal regulators of inflammation; however, disagreement exists as to whether NKT cells exert pathogenic or suppressive functions in obesity. Here we demonstrate that CD1d(-/- mice, which lack NKT cells, were more susceptible to weight gain and fatty liver following high fat diet (HFD feeding. Compared with their WT counterparts, CD1d(-/- mice displayed increased adiposity and greater induction of inflammatory genes in the liver suggestive of the precursors of NAFLD. Calorimetry studies revealed a significant increase in food intake and trends toward decreased metabolic rate and activity in CD1d(-/- mice compared with WT mice. Based on these findings, our results suggest that NKT cells play a regulatory role that helps to prevent diet-induced obesity and metabolic dysfunction and may play an important role in mechanisms governing cross-talk between metabolism and the immune system to regulate energy balance and liver health.

  5. DNA vaccination with a plasmid encoding LACK-TSA fusion against Leishmania major infection in BALB/c mice.

    Science.gov (United States)

    Maspi, N; Ghaffarifar, F; Sharifi, Z; Dalimi, A; Khademi, S Z

    2017-12-01

    Vaccination would be the most important strategy for the prevention and elimination of leishmaniasis. The aim of the present study was to compare the immune responses induced following DNA vaccination with LACK (Leishmania analogue of the receptor kinase C), TSA (Thiol-specific-antioxidant) genes alone or LACK-TSA fusion against cutaneous leishmaniasis (CL). Cellular and humoral immune responses were evaluated before and after challenge with Leishmania major (L. major). In addition, the mean lesion size was also measured from 3th week post-infection. All immunized mice showed a partial immunity characterized by higher interferon (IFN)-γ and Immunoglobulin G (IgG2a) levels compared to control groups (pTSA fusion. Mean lesion sizes reduced significantly in all immunized mice compared with control groups at 7th week post-infection (pTSA and TSA groups than LACK group after challenge (pTSA antigens against CL. Furthermore, this study demonstrated that a bivalent vaccine can induce stronger immune responses and protection against infectious challenge with L. major.

  6. Ketamine Does Not Produce Relief of Neuropathic Pain in Mice Lacking the β-Common Receptor (CD131)

    Science.gov (United States)

    Swartjes, Maarten; Niesters, Marieke; Heij, Lara; Dunne, Ann; Aarts, Leon; Hand, Carla Cerami; Kim, Hyung-Suk; Brines, Michael; Cerami, Anthony; Dahan, Albert

    2013-01-01

    Neuropathic pain (NP) is a debilitating condition associated with traumatic, metabolic, autoimmune and neurological etiologies. Although the triggers for NP are diverse, there are common underlying pathways, including activation of immune cells in the spinal cord and up-regulation of the N-methyl-D-aspartate receptor (NMDAR). Ketamine, a well-known NDMAR antagonist, reduces neuropathic pain in a sustained manner. Recent study has shown that the novel 11-amino acid peptide erythropoietin derivative ARA290 produces a similar, long-lasting relief of NP. Here, we show that both drugs also have similar effects on the expression of mRNA of the NMDAR, as well as that of microglia, astrocytes and chemokine (C-C motif) ligand 2, all-important contributors to the development of NP. Although the effects of ketamine and ARA 290 on NP and its molecular mediators suggest a common mechanism of action, ARA 290 has no affinity for the NMDAR and acts specifically via the innate repair receptor (IRR) involved in tissue protection. We speculated therefore, that the IRR might be critically involved in the action of ketamine on neuropathic pain. To evaluate this, we studied the effects of ketamine and ARA 290 on acute pain, side effects, and allodynia following a spared nerve injury model in mice lacking the β-common receptor (βcR), a structural component of the IRR. Ketamine (50 mg/kg) and ARA 290 (30 µg/kg) produced divergent effects on acute pain: ketamine produced profound antinociception accompanied with psychomotor side effects, but ARA290 did not, in both normal and knock out mice. In contrast, while both drugs were antiallodynic in WT mice, they had no effect on NP in mice lacking the βcR. Together, these results show that an intact IRR is required for the effective treatment of NP with either ketamine or ARA 290, but is not involved in ketamine’s analgesic and side effects. PMID:23936499

  7. Prolongation of chemically-induced methemoglobinemia in mice lacking α-synuclein: A novel pharmacologic and toxicologic phenotype

    Directory of Open Access Journals (Sweden)

    Yien-Ming Kuo

    2015-01-01

    Full Text Available The protein α-synuclein is considered central to the pathogenesis of Parkinson disease (PD on genetic and histopathological grounds. It is widely expressed in fetal life and continues to be highly expressed in adult neural tissues, red blood cells and platelets, while the remainder of adult tissues are reported to have little or no expression. Despite cellular and molecular evidence for a role in neuronal function including synaptic vesicle trafficking, neurotransmitter release, mitochondrial function, lipid metabolism, neurogenesis, neuroprotection, and neuromelanin biosynthesis, mice ablated for the gene encoding α-synuclein (Snca have little or no neurological phenotype. Thus, nearly 20 years of intensive study have yet to reveal conclusively what the normal function of this highly abundant protein is in the nervous system. Interestingly, α-synuclein has also been shown to have enzymatic activity as a ferrireductase capable of reducing Fe+3 to Fe+2. Given its abundant expression in red blood cells, we set out to explore the role of α-synuclein in converting chemically-induced Fe+3 methemoglobin to normal Fe+2 hemoglobin. Initial in vivo experiments with the potent methemoglobin inducer, para-aminopropiophenone and its active metabolite, 4-hydroxy para-aminopropiophenone, demonstrated significantly greater and more prolonged methemoglobinemia in Snca−/− mice compared to Snca+/+ mice. In vitro experiments with red blood cells, however, and in vivo experiments in genetically engineered mouse strains that differ in their α-synuclein expression in various tissues, including the nervous system, red blood cells and liver, revealed that contrary to the initial hypothesis, a lack of expression of α-synuclein in red blood cells did not correlate with higher levels or more prolonged duration of methemoglobinemia. Instead, the greater sensitivity to chemically induced methemoglobinemia correlated with the absence of hepatic

  8. Minor abnormalities of testis development in mice lacking the gene encoding the MAPK signalling component, MAP3K1.

    Directory of Open Access Journals (Sweden)

    Nick Warr

    2011-05-01

    Full Text Available In mammals, the Y chromosome is a dominant male determinant, causing the bipotential gonad to develop as a testis. Recently, cases of familial and spontaneous 46,XY disorders of sex development (DSD have been attributed to mutations in the human gene encoding mitogen-activated protein kinase kinase kinase 1, MAP3K1, a component of the mitogen-activated protein kinase (MAPK signal transduction pathway. In individuals harbouring heterozygous mutations in MAP3K1, dysregulation of MAPK signalling was observed in lymphoblastoid cell lines, suggesting a causal role for these mutations in disrupting XY sexual development. Mice lacking the cognate gene, Map3k1, are viable and exhibit the eyes open at birth (EOB phenotype on a mixed genetic background, but on the C57BL/6J genetic background most mice die at around 14.5 dpc due to a failure of erythropoiesis in the fetal liver. However, no systematic examination of sexual development in Map3k1-deficient mice has been described, an omission that is especially relevant in the case of C57BL/6J, a genetic background that is sensitized to disruptions to testis determination. Here, we report that on a mixed genetic background mice lacking Map3k1 are fertile and exhibit no overt abnormalities of testis development. On C57BL/6J, significant non-viability is observed with very few animals surviving to adulthood. However, an examination of development in Map3k1-deficient XY embryos on this genetic background revealed no significant defects in testis determination, although minor abnormalities were observed, including an increase in gonadal length. Based on these observations, we conclude that MAP3K1 is not required for mouse testis determination. We discuss the significance of these data for the functional interpretation of sex-reversing MAP3K1 mutations in humans.

  9. Gene expression profiling of gastric mucosa in mice lacking CCK and gastrin receptors

    DEFF Research Database (Denmark)

    Zhao, Chun-Mei; Kodama, Yosuke; Flatberg, Arnar

    2014-01-01

    normalized, which was associated with an up-regulated pituitary adenylate cyclase-activating polypeptide (PACAP) type 1 receptor (PAC1). The basal part of the gastric mucosa expressed parathyroid hormone-like hormone (PTHLH) in a subpopulation of likely ECL cells (and possibly other cells) and vitamin D3 1α...... suggest a possible link between gastric PTHLH and vitamin D and bone metabolism.......The stomach produces acid, which may play an important role in the regulation of bone homeostasis. The aim of this study was to reveal signaling pathways in the gastric mucosa that involve the acid secretion and possibly the bone metabolism in CCK1 and/or CCK2 receptor knockout (KO) mice. Gastric...

  10. Aggressive Behavior and Altered Amounts of Brain Serotonin and Norepinephrine in Mice Lacking MAOA

    Science.gov (United States)

    Cases, Olivier; Grimsby, Joseph; Gaspar, Patricia; Chen, Kevin; Pournin, Sandrine; Müller, Ulrike; Aguet, Michel; Babinet, Charles; Shih, Jean Chen; De Maeyer, Edward

    2010-01-01

    Deficiency in monoamine oxidase A (MAOA), an enzyme that degrades serotonin and norepinephrine, has recently been shown to be associated with aggressive behavior in men of a Dutch family. A line of transgenic mice was isolated in which transgene integration caused a deletion in the gene encoding MAOA, providing an animal model of MAOA deficiency. In pup brains, serotonin concentrations were increased up to ninefold, and serotonin-like immunoreactivity was present in catecholaminergic neurons. In pup and adult brains, norepinephrine concentrations were increased up to twofold, and cytoarchitectural changes were observed in the somatosensory cortex. Pup behavioral alterations, including trembling, difficulty in righting, and fearfulness were reversed by the serotonin synthesis inhibitor parachlorophenylalanine. Adults manifested a distinct behavioral syndrome, including enhanced aggression in males. PMID:7792602

  11. Milk Lacking α-Casein Leads to Permanent Reduction in Body Size in Mice

    Science.gov (United States)

    Kolb, Andreas F.; Huber, Reinhard C.; Lillico, Simon G.; Carlisle, Ailsa; Robinson, Claire J.; Neil, Claire; Petrie, Linda; Sorensen, Dorte B.; Olsson, I. Anna S.; Whitelaw, C. Bruce A.

    2011-01-01

    The major physiological function of milk is the transport of amino acids, carbohydrates, lipids and minerals to mammalian offspring. Caseins, the major milk proteins, are secreted in the form of a micelle consisting of protein and calcium-phosphate. We have analysed the role of the milk protein α-casein by inactivating the corresponding gene in mice. Absence of α-casein protein significantly curtails secretion of other milk proteins and calcium-phosphate, suggesting a role for α-casein in the establishment of casein micelles. In contrast, secretion of albumin, which is not synthesized in the mammary epithelium, into milk is not reduced. The absence of α-casein also significantly inhibits transcription of the other casein genes. α-Casein deficiency severely delays pup growth during lactation and results in a life-long body size reduction compared to control animals, but has only transient effects on physical and behavioural development of the pups. The data support a critical role for α-casein in casein micelle assembly. The results also confirm lactation as a critical window of metabolic programming and suggest milk protein concentration as a decisive factor in determining adult body weight. PMID:21789179

  12. Milk lacking α-casein leads to permanent reduction in body size in mice.

    Directory of Open Access Journals (Sweden)

    Andreas F Kolb

    Full Text Available The major physiological function of milk is the transport of amino acids, carbohydrates, lipids and minerals to mammalian offspring. Caseins, the major milk proteins, are secreted in the form of a micelle consisting of protein and calcium-phosphate.We have analysed the role of the milk protein α-casein by inactivating the corresponding gene in mice. Absence of α-casein protein significantly curtails secretion of other milk proteins and calcium-phosphate, suggesting a role for α-casein in the establishment of casein micelles. In contrast, secretion of albumin, which is not synthesized in the mammary epithelium, into milk is not reduced. The absence of α-casein also significantly inhibits transcription of the other casein genes. α-Casein deficiency severely delays pup growth during lactation and results in a life-long body size reduction compared to control animals, but has only transient effects on physical and behavioural development of the pups. The data support a critical role for α-casein in casein micelle assembly. The results also confirm lactation as a critical window of metabolic programming and suggest milk protein concentration as a decisive factor in determining adult body weight.

  13. Epithelial cell stretching and luminal acidification lead to a retarded development of stria vascularis and deafness in mice lacking pendrin.

    Directory of Open Access Journals (Sweden)

    Hyoung-Mi Kim

    2011-03-01

    Full Text Available Loss-of-function mutations of SLC26A4/pendrin are among the most prevalent causes of deafness. Deafness and vestibular dysfunction in the corresponding mouse model, Slc26a4(-/-, are associated with an enlargement and acidification of the membranous labyrinth. Here we relate the onset of expression of the HCO(3 (- transporter pendrin to the luminal pH and to enlargement-associated epithelial cell stretching. We determined expression with immunocytochemistry, cell stretching by digital morphometry and pH with double-barreled ion-selective electrodes. Pendrin was first expressed in the endolymphatic sac at embryonic day (E 11.5, in the cochlear hook-region at E13.5, in the utricle and saccule at E14.5, in ampullae at E16.5, and in the upper turn of the cochlea at E17.5. Epithelial cell stretching in Slc26a4(-/- mice began at E14.5. pH changes occurred first in the cochlea at E15.5 and in the endolymphatic sac at E17.5. At postnatal day 2, stria vascularis, outer sulcus and Reissner's membrane epithelial cells, and utricular and saccular transitional cells were stretched, whereas sensory cells in the cochlea, utricle and saccule did not differ between Slc26a4(+/- and Slc26a4(-/- mice. Structural development of stria vascularis, including vascularization, was retarded in Slc26a4(-/- mice. In conclusion, the data demonstrate that the enlargement and stretching of non-sensory epithelial cells precedes luminal acidification in the cochlea and the endolymphatic sac. Stretching and luminal acidification may alter cell-to-cell communication and lead to the observed retarded development of stria vascularis, which may be an important step on the path to deafness in Slc26a4(-/- mice, and possibly in humans, lacking functional pendrin expression.

  14. Female mice lacking cholecystokinin 1 receptors have compromised neurogenesis, and fewer dopaminergic cells in the olfactory bulb

    Directory of Open Access Journals (Sweden)

    Yi eSui

    2013-03-01

    Full Text Available Neurogenesis in the adult rodent brain is largely restricted to the subependymal zone (SVZ of the lateral ventricle and subgranular zone (SGZ of the dentate gyrus (DG. We examined whether cholecystokinin (CCK through actions mediated by CCK1 receptors (CCK1R is involved in regulating neurogenesis. Proliferating cells in the SVZ, measured by 5-bromo-2-deoxyuridine (BrdU injected 2 hours prior to death or by immunoreactivity against Ki67, were reduced by 37% and 42%, respectively, in female (but not male mice lacking CCK1Rs (CCK1R-/- compared to wild-type (WT. Generation of neuroblasts in the SVZ and rostral migratory stream was also affected, since the number of doublecortin (DCX-immunoreactive (ir neuroblasts in these regions decreased by 29%. In the SGZ of female CCK1R-/- mice, BrdU-positive (+ and Ki67-ir cells were reduced by 38% and 56%, respectively, while DCX-ir neuroblasts were down 80%. Subsequently, the effect of reduced SVZ/SGZ proliferation on the generation and survival of mature adult-born cells in female CCK1R-/- mice was examined. In the OB granule cell layer (GCL, the number of neuronal nuclei (NeuN-ir and calretinin-ir cells was stable compared to WT, and 42 days after BrdU injections, the number of BrdU+ cells co-expressing GABA- or NeuN-like immunoreactivity (LI was similar. Compared to WT, the granule cell layer of the DG in female CCK1R-/- mice had a similar number of calbindin-ir cells and BrdU+ cells co-expressing calbindin-LI 42 days after BrdU injections. However, the OB glomerular layer (GL of CCK1R-/- female mice had 11% fewer NeuN-ir cells, 23% less TH-ir cells, and a 38% and 29% reduction in BrdU+ cells that co-expressed TH-LI or GABA-LI, respectively. We conclude that CCK, via CCK1Rs, is involved in regulating the generation of proliferating cells and neuroblasts in the adult female mouse brain, and mechanisms are in place to maintain steady neuronal populations in the OB and DG when the rate of proliferation is

  15. Inhibition of Stat3 signaling ameliorates atrophy of the soleus muscles in mice lacking the vitamin D receptor.

    Science.gov (United States)

    Gopinath, Suchitra D

    2017-01-25

    Although skeletal muscle wasting has long been observed as a clinical outcome of impaired vitamin D signaling, precise molecular mechanisms that mediate the loss of muscle mass in the absence of vitamin D signaling are less clear. To determine the molecular consequences of vitamin D signaling, we analyzed the role of signal transducer and activator of transcription 3 (Stat3) signaling, a known contributor to various muscle wasting pathologies, in skeletal muscles. We isolated soleus (slow) and tibialis anterior (fast) muscles from mice lacking the vitamin D receptor (VDR -/- ) and used western blot analysis, quantitative RTPCR, and pharmacological intervention to analyze muscle atrophy in VDR -/- mice. We found that slow and fast subsets of muscles of the VDR -/- mice displayed elevated levels of phosphorylated Stat3 accompanied by an increase in Myostatin expression and signaling. Consequently, we observed reduced activity of mammalian target of rapamycin (mTOR) signaling components, ribosomal S6 kinase (p70S6K) and ribosomal S6 protein (rpS6), that regulate protein synthesis and cell size, respectively. Concomitantly, we observed an increase in atrophy regulators and a block in autophagic gene expression. An examination of the upstream regulation of Stat3 levels in VDR -/- muscles revealed an increase in IL-6 protein expression in the soleus, but not in the tibialis anterior muscles. To investigate the involvement of satellite cells (SCs) in atrophy in VDR -/- mice, we found that there was no significant deficit in SC numbers in VDR -/- muscles compared to the wild type. Unlike its expression within VDR -/- fibers, Myostatin levels in VDR -/- SCs from bulk muscles were similar to those of wild type. However, VDR -/- SCs induced to differentiate in culture displayed increased p-Stat3 signaling and Myostatin expression. Finally, VDR -/- mice injected with a Stat3 inhibitor displayed reduced Myostatin expression and function and restored active p70S6K and rpS6

  16. Low bone mass and changes in the osteocyte network in mice lacking autophagy in the osteoblast lineage.

    Science.gov (United States)

    Piemontese, Marilina; Onal, Melda; Xiong, Jinhu; Han, Li; Thostenson, Jeff D; Almeida, Maria; O'Brien, Charles A

    2016-04-11

    Autophagy maintains cell function and homeostasis by recycling intracellular components. This process is also required for morphological changes associated with maturation of some cell types. Osteoblasts are bone forming cells some of which become embedded in bone and differentiate into osteocytes. This transformation includes development of long cellular projections and a reduction in endoplasmic reticulum and mitochondria. We examined the role of autophagy in osteoblasts by deleting Atg7 using an Osterix1-Cre transgene, which causes recombination in osteoblast progenitors and their descendants. Mice lacking Atg7 in the entire osteoblast lineage had low bone mass and fractures associated with reduced numbers of osteoclasts and osteoblasts. Suppression of autophagy also reduced the amount of osteocyte cellular projections and led to retention of endoplasmic reticulum and mitochondria in osteocytes. These results demonstrate that autophagy in osteoblasts contributes to skeletal homeostasis and to the morphological changes associated with osteocyte formation.

  17. Lack of Pannexin 1 Alters Synaptic GluN2 Subunit Composition and Spatial Reversal Learning in Mice.

    Science.gov (United States)

    Gajardo, Ivana; Salazar, Claudia S; Lopez-Espíndola, Daniela; Estay, Carolina; Flores-Muñoz, Carolina; Elgueta, Claudio; Gonzalez-Jamett, Arlek M; Martínez, Agustín D; Muñoz, Pablo; Ardiles, Álvaro O

    2018-01-01

    Long-term potentiation (LTP) and long-term depression (LTD) are two forms of synaptic plasticity that have been considered as the cellular substrate of memory formation. Although LTP has received considerable more attention, recent evidences indicate that LTD plays also important roles in the acquisition and storage of novel information in the brain. Pannexin 1 (Panx1) is a membrane protein that forms non-selective channels which have been shown to modulate the induction of hippocampal synaptic plasticity. Animals lacking Panx1 or blockade of Pannexin 1 channels precludes the induction of LTD and facilitates LTP. To evaluate if the absence of Panx1 also affects the acquisition of rapidly changing information we trained Panx1 knockout (KO) mice and wild type (WT) littermates in a visual and hidden version of the Morris water maze (MWM). We found that KO mice find the hidden platform similarly although slightly quicker than WT animals, nonetheless, when the hidden platform was located in the opposite quadrant (OQ) to the previous learned location, KO mice spent significantly more time in the previous quadrant than in the new location indicating that the absence of Panx1 affects the reversion of a previously acquired spatial memory. Consistently, we observed changes in the content of synaptic proteins critical to LTD, such as GluN2 subunits of N-methyl-D-aspartate receptors (NMDARs), which changed their contribution to synaptic plasticity in conditions of Panx1 ablation. Our findings give further support to the role of Panx1 channels on the modulation of synaptic plasticity induction, learning and memory processes.

  18. Lack of Pannexin 1 Alters Synaptic GluN2 Subunit Composition and Spatial Reversal Learning in Mice

    Science.gov (United States)

    Gajardo, Ivana; Salazar, Claudia S.; Lopez-Espíndola, Daniela; Estay, Carolina; Flores-Muñoz, Carolina; Elgueta, Claudio; Gonzalez-Jamett, Arlek M.; Martínez, Agustín D.; Muñoz, Pablo; Ardiles, Álvaro O.

    2018-01-01

    Long-term potentiation (LTP) and long-term depression (LTD) are two forms of synaptic plasticity that have been considered as the cellular substrate of memory formation. Although LTP has received considerable more attention, recent evidences indicate that LTD plays also important roles in the acquisition and storage of novel information in the brain. Pannexin 1 (Panx1) is a membrane protein that forms non-selective channels which have been shown to modulate the induction of hippocampal synaptic plasticity. Animals lacking Panx1 or blockade of Pannexin 1 channels precludes the induction of LTD and facilitates LTP. To evaluate if the absence of Panx1 also affects the acquisition of rapidly changing information we trained Panx1 knockout (KO) mice and wild type (WT) littermates in a visual and hidden version of the Morris water maze (MWM). We found that KO mice find the hidden platform similarly although slightly quicker than WT animals, nonetheless, when the hidden platform was located in the opposite quadrant (OQ) to the previous learned location, KO mice spent significantly more time in the previous quadrant than in the new location indicating that the absence of Panx1 affects the reversion of a previously acquired spatial memory. Consistently, we observed changes in the content of synaptic proteins critical to LTD, such as GluN2 subunits of N-methyl-D-aspartate receptors (NMDARs), which changed their contribution to synaptic plasticity in conditions of Panx1 ablation. Our findings give further support to the role of Panx1 channels on the modulation of synaptic plasticity induction, learning and memory processes. PMID:29692709

  19. Lack of Pannexin 1 Alters Synaptic GluN2 Subunit Composition and Spatial Reversal Learning in Mice

    Directory of Open Access Journals (Sweden)

    Ivana Gajardo

    2018-04-01

    Full Text Available Long-term potentiation (LTP and long-term depression (LTD are two forms of synaptic plasticity that have been considered as the cellular substrate of memory formation. Although LTP has received considerable more attention, recent evidences indicate that LTD plays also important roles in the acquisition and storage of novel information in the brain. Pannexin 1 (Panx1 is a membrane protein that forms non-selective channels which have been shown to modulate the induction of hippocampal synaptic plasticity. Animals lacking Panx1 or blockade of Pannexin 1 channels precludes the induction of LTD and facilitates LTP. To evaluate if the absence of Panx1 also affects the acquisition of rapidly changing information we trained Panx1 knockout (KO mice and wild type (WT littermates in a visual and hidden version of the Morris water maze (MWM. We found that KO mice find the hidden platform similarly although slightly quicker than WT animals, nonetheless, when the hidden platform was located in the opposite quadrant (OQ to the previous learned location, KO mice spent significantly more time in the previous quadrant than in the new location indicating that the absence of Panx1 affects the reversion of a previously acquired spatial memory. Consistently, we observed changes in the content of synaptic proteins critical to LTD, such as GluN2 subunits of N-methyl-D-aspartate receptors (NMDARs, which changed their contribution to synaptic plasticity in conditions of Panx1 ablation. Our findings give further support to the role of Panx1 channels on the modulation of synaptic plasticity induction, learning and memory processes.

  20. Sympathetic activity induced by naloxone-precipitated morphine withdrawal is blocked in genetically engineered mice lacking functional CRF1 receptor

    International Nuclear Information System (INIS)

    García-Carmona, Juan-Antonio; Martínez-Laorden, Elena; Milanés, María-Victoria; Laorden, María-Luisa

    2015-01-01

    There is large body evidence indicating that stress can lead to cardiovascular disease. However, the exact brain areas and the mechanisms involved remain to be revealed. Here, we performed a series of experiments to characterize the role of CRF1 receptor (CRF1R) in the stress response induced by naloxone-precipitated morphine withdrawal. The experiments were performed in the hypothalamic paraventricular nucleus (PVN) ventrolateral medulla (VLM), brain regions involved in the regulation of cardiovascular activity, and in the right ventricle by using genetically engineered mice lacking functional CRF1R levels (KO). Mice were treated with increasing doses of morphine and withdrawal was precipitated by naloxone administration. Noradrenaline (NA) turnover, c-Fos, expression, PKA and TH phosphorylated at serine 40, was evaluated by high-performance liquid chromatography (HPLC), immunohistochemistry and immunoblotting. Morphine withdrawal induced an enhancement of NA turnover in PVN in parallel with an increase in TH neurons expressing c-Fos in VLM in wild-type mice. In addition we have demonstrated an increase in NA turnover, TH phosphorylated at serine 40 and PKA levels in heart. The main finding of the present study was that NA turnover, TH positive neurons that express c-Fos, TH phosphorylated at serine 40 and PKA expression observed during morphine withdrawal were significantly inhibited in CRF1R KO mice. Our results demonstrate that CRF/CRF1R activation may contribute to the adaptive changes induced by naloxone-precipitated withdrawal in the heart and in the brain areas which modulate the cardiac sympathetic function and suggest that CRF/CRF1R pathways could be contributing to cardiovascular disease associated to opioid addiction. - Highlights: • Naloxone-precipitated morphine withdrawal increases sympathetic activity in the PVN and heart. • Co-localization of TH phosphorylated at serine 40/c-Fos in the VLM after morphine withdrawal • Naloxone

  1. Sympathetic activity induced by naloxone-precipitated morphine withdrawal is blocked in genetically engineered mice lacking functional CRF1 receptor

    Energy Technology Data Exchange (ETDEWEB)

    García-Carmona, Juan-Antonio; Martínez-Laorden, Elena; Milanés, María-Victoria; Laorden, María-Luisa

    2015-02-15

    There is large body evidence indicating that stress can lead to cardiovascular disease. However, the exact brain areas and the mechanisms involved remain to be revealed. Here, we performed a series of experiments to characterize the role of CRF1 receptor (CRF1R) in the stress response induced by naloxone-precipitated morphine withdrawal. The experiments were performed in the hypothalamic paraventricular nucleus (PVN) ventrolateral medulla (VLM), brain regions involved in the regulation of cardiovascular activity, and in the right ventricle by using genetically engineered mice lacking functional CRF1R levels (KO). Mice were treated with increasing doses of morphine and withdrawal was precipitated by naloxone administration. Noradrenaline (NA) turnover, c-Fos, expression, PKA and TH phosphorylated at serine 40, was evaluated by high-performance liquid chromatography (HPLC), immunohistochemistry and immunoblotting. Morphine withdrawal induced an enhancement of NA turnover in PVN in parallel with an increase in TH neurons expressing c-Fos in VLM in wild-type mice. In addition we have demonstrated an increase in NA turnover, TH phosphorylated at serine 40 and PKA levels in heart. The main finding of the present study was that NA turnover, TH positive neurons that express c-Fos, TH phosphorylated at serine 40 and PKA expression observed during morphine withdrawal were significantly inhibited in CRF1R KO mice. Our results demonstrate that CRF/CRF1R activation may contribute to the adaptive changes induced by naloxone-precipitated withdrawal in the heart and in the brain areas which modulate the cardiac sympathetic function and suggest that CRF/CRF1R pathways could be contributing to cardiovascular disease associated to opioid addiction. - Highlights: • Naloxone-precipitated morphine withdrawal increases sympathetic activity in the PVN and heart. • Co-localization of TH phosphorylated at serine 40/c-Fos in the VLM after morphine withdrawal • Naloxone

  2. Conditioned place preference and locomotor activity in response to methylphenidate, amphetamine and cocaine in mice lacking dopamine D4 receptors

    Energy Technology Data Exchange (ETDEWEB)

    Thanos, P.K.; Thanos, P.K.; Bermeo, C.; Rubinstein, M.; Suchland, K.L.; Wang, G.-J.; Grandy, D.K.; Volkow, N.D.

    2010-05-01

    Methylphenidate (MP) and amphetamine (AMPH) are the most frequently prescribed medications for the treatment of attention-deficit/hyperactivity disorder (ADHD). Both drugs are believed to derive their therapeutic benefit by virtue of their dopamine (DA)-enhancing effects, yet an explanation for the observation that some patients with ADHD respond well to one medication but not to the other remains elusive. The dopaminergic effects of MP and AMPH are also thought to underlie their reinforcing properties and ultimately their abuse. Polymorphisms in the human gene that codes for the DA D4 receptor (D4R) have been repeatedly associated with ADHD and may correlate with the therapeutic as well as the reinforcing effects of responses to these psychostimulant medications. Conditioned place preference (CPP) for MP, AMPH and cocaine were evaluated in wild-type (WT) mice and their genetically engineered littermates, congenic on the C57Bl/6J background, that completely lack D4Rs (knockout or KO). In addition, the locomotor activity in these mice during the conditioning phase of CPP was tested in the CPP chambers. D4 receptor KO and WT mice showed CPP and increased locomotor activity in response to each of the three psychostimulants tested. D4R differentially modulates the CPP responses to MP, AMPH and cocaine. While the D4R genotype affected CPP responses to MP (high dose only) and AMPH (low dose only) it had no effects on cocaine. Inasmuch as CPP is considered an indicator of sensitivity to reinforcing responses to drugs these data suggest a significant but limited role of D4Rs in modulating conditioning responses to MP and AMPH. In the locomotor test, D4 receptor KO mice displayed attenuated increases in AMPH-induced locomotor activity whereas responses to cocaine and MP did not differ. These results suggest distinct mechanisms for D4 receptor modulation of the reinforcing (perhaps via attenuating dopaminergic signalling) and locomotor properties of these stimulant drugs

  3. The Biology of Autoimmune Response in the Scurfy Mice that Lack the CD4+Foxp3+ Regulatory T-Cells.

    Science.gov (United States)

    Ju, Shyr-Te; Sharma, Rahul; Gaskin, Felicia; Kung, John T; Fu, Shu Man

    2012-04-04

    Due to a mutation in the Foxp3 transcription factor, Scurfy mice lack regulatory T-cells that maintain self-tolerance of the immune system. They develop multi-organ inflammation (MOI) and die around four weeks old. The affected organs are skin, tail, lungs and liver. In humans, endocrine and gastrointestinal inflammation are also observed, hence the disease is termed IPEX (Immunodysregulation, Polyendocrinopathy, Enteropathy, X-linked) syndrome. The three week period of fatal MOI offers a useful autoimmune model in which the controls by genetics, T-cell subsets, cytokines, and effector mechanisms could be efficiently investigated. In this report, we will review published work, summarize our recent studies of Scurfy double mutants lacking specific autoimmune-related genes, discuss the cellular and cytokine controls by these genes on MOI, the organ-specificities of the MOI controlled by environments, and the effector mechanisms regulated by specific Th cytokines, including several newly identified control mechanisms for organ-specific autoimmune response.

  4. The effect of alcohol and hydrogen peroxide on liver hepcidin gene expression in mice lacking antioxidant enzymes, glutathione peroxidase-1 or catalase.

    Science.gov (United States)

    Harrison-Findik, Duygu Dee; Lu, Sizhao

    2015-05-06

    This study investigates the regulation of hepcidin, the key iron-regulatory molecule, by alcohol and hydrogen peroxide (H2O2) in glutathione peroxidase-1 (gpx-1(-/-)) and catalase (catalase(-/-)) knockout mice. For alcohol studies, 10% ethanol was administered in the drinking water for 7 days. Gpx-1(-/-) displayed significantly higher hepatic H2O2 levels than catalase(-/-) compared to wild-type mice, as measured by 2'-7'-dichlorodihydrofluorescein diacetate (DCFH-DA). The basal level of liver hepcidin expression was attenuated in gpx-1(-/-) mice. Alcohol increased H2O2 production in catalase(-/-) and wild-type, but not gpx-1(-/-), mice. Hepcidin expression was inhibited in alcohol-fed catalase(-/-) and wild-type mice. In contrast, alcohol elevated hepcidin expression in gpx-1(-/-) mice. Gpx-1(-/-) mice also displayed higher level of basal liver CHOP protein expression than catalase(-/-) mice. Alcohol induced CHOP and to a lesser extent GRP78/BiP expression, but not XBP1 splicing or binding of CREBH to hepcidin gene promoter, in gpx-1(-/-) mice. The up-regulation of hepatic ATF4 mRNA levels, which was observed in gpx-1(-/-) mice, was attenuated by alcohol. In conclusion, our findings strongly suggest that H2O2 inhibits hepcidin expression in vivo. Synergistic induction of CHOP by alcohol and H2O2, in the absence of gpx-1, stimulates liver hepcidin gene expression by ER stress independent of CREBH.

  5. Normal autophagic activity in macrophages from mice lacking Gαi3, AGS3, or RGS19.

    Directory of Open Access Journals (Sweden)

    Ali Vural

    Full Text Available In macrophages autophagy assists antigen presentation, affects cytokine release, and promotes intracellular pathogen elimination. In some cells autophagy is modulated by a signaling pathway that employs Gαi3, Activator of G-protein Signaling-3 (AGS3/GPSM1, and Regulator of G-protein Signaling 19 (RGS19. As macrophages express each of these proteins, we tested their importance in regulating macrophage autophagy. We assessed LC3 processing and the formation of LC3 puncta in bone marrow derived macrophages prepared from wild type, Gnai3(-/-, Gpsm1(-/-, or Rgs19(-/- mice following amino acid starvation or Nigericin treatment. In addition, we evaluated rapamycin-induced autophagic proteolysis rates by long-lived protein degradation assays and anti-autophagic action after rapamycin induction in wild type, Gnai3(-/-, and Gpsm1(-/- macrophages. In similar assays we compared macrophages treated or not with pertussis toxin, an inhibitor of GPCR (G-protein couple receptor triggered Gαi nucleotide exchange. Despite previous findings, the level of basal autophagy, autophagic induction, autophagic flux, autophagic degradation and the anti-autophagic action in macrophages that lacked Gαi3, AGS3, or RGS19; or had been treated with pertussis toxin, were similar to controls. These results indicate that while Gαi signaling may impact autophagy in some cell types it does not in macrophages.

  6. Genetic Dissection of a Key Reproductive Barrier Between Nascent Species of House Mice

    Science.gov (United States)

    White, Michael A.; Steffy, Brian; Wiltshire, Tim; Payseur, Bret A.

    2011-01-01

    Reproductive isolation between species is often caused by deleterious interactions among loci in hybrids. Finding the genes involved in these incompatibilities provides insight into the mechanisms of speciation. With recently diverged subspecies, house mice provide a powerful system for understanding the genetics of reproductive isolation early in the speciation process. Although previous studies have yielded important clues about the genetics of hybrid male sterility in house mice, they have been restricted to F1 sterility or incompatibilities involving the X chromosome. To provide a more complete characterization of this key reproductive barrier, we conducted an F2 intercross between wild-derived inbred strains from two subspecies of house mice, Mus musculus musculus and Mus musculus domesticus. We identified a suite of autosomal and X-linked QTL that underlie measures of hybrid male sterility, including testis weight, sperm density, and sperm morphology. In many cases, the autosomal loci were unique to a specific sterility trait and exhibited an effect only when homozygous, underscoring the importance of examining reproductive barriers beyond the F1 generation. We also found novel two-locus incompatibilities between the M. m. musculus X chromosome and M. m. domesticus autosomal alleles. Our results reveal a complex genetic architecture for hybrid male sterility and suggest a prominent role for reproductive barriers in advanced generations in maintaining subspecies integrity in house mice. PMID:21750261

  7. Genetic dissection of a key reproductive barrier between nascent species of house mice.

    Science.gov (United States)

    White, Michael A; Steffy, Brian; Wiltshire, Tim; Payseur, Bret A

    2011-09-01

    Reproductive isolation between species is often caused by deleterious interactions among loci in hybrids. Finding the genes involved in these incompatibilities provides insight into the mechanisms of speciation. With recently diverged subspecies, house mice provide a powerful system for understanding the genetics of reproductive isolation early in the speciation process. Although previous studies have yielded important clues about the genetics of hybrid male sterility in house mice, they have been restricted to F1 sterility or incompatibilities involving the X chromosome. To provide a more complete characterization of this key reproductive barrier, we conducted an F2 intercross between wild-derived inbred strains from two subspecies of house mice, Mus musculus musculus and Mus musculus domesticus. We identified a suite of autosomal and X-linked QTL that underlie measures of hybrid male sterility, including testis weight, sperm density, and sperm morphology. In many cases, the autosomal loci were unique to a specific sterility trait and exhibited an effect only when homozygous, underscoring the importance of examining reproductive barriers beyond the F1 generation. We also found novel two-locus incompatibilities between the M. m. musculus X chromosome and M. m. domesticus autosomal alleles. Our results reveal a complex genetic architecture for hybrid male sterility and suggest a prominent role for reproductive barriers in advanced generations in maintaining subspecies integrity in house mice.

  8. Analyzing the Effectiveness of the Self-organized Public-Key Management System on MANETs under the Lack of Cooperation and the Impersonation Attacks

    Science.gov (United States)

    da Silva, Eduardo; Dos Santos, Aldri Luiz; Lima, Michele N.; Albini, Luiz Carlos Pessoa

    Among the key management schemes for MANETs, the Self-Organized Public-Key Management System (PGP-Like) is the main chaining-based key management scheme. It is fully self-organized and does not require any certificate authority. Two kinds of misbehavior attacks are considered to be great threats to PGP-Like: lack of cooperation and impersonation attacks. This work quantifies the impact of such attacks on the PGP-Like. Simulation results show that PGP-Like was able to maintain its effectiveness when submitted to the lack of cooperation attack, contradicting previously theoretical results. It correctly works even in the presence of more than 60% of misbehaving nodes, although the convergence time is affected with only 20% of misbehaving nodes. On the other hand, PGP-Like is completely vulnerable to the impersonation attack. Its functionality is affected with just 5% of misbehaving nodes, confirming previously theoretical results.

  9. Normal hematopoiesis and lack of β-catenin activation in osteoblasts of patients and mice harboring Lrp5 gain of function mutations

    DEFF Research Database (Denmark)

    Galan-Diez, Marta; Isa, Adiba; Ponzetti, Marco

    2016-01-01

    of hematopoiesis and leukemogenic properties of β-catenin activation in osteoblasts, that lead to development of acute myeloid leukemia (AML). Using mice with gain-of-function (GOF) Lrp5 alleles (Lrp5(A214V)) that recapitulate the human high bone mass (HBM) phenotype, as well as patients with the T253I HBM Lrp5...... mutation, we show here that Lrp5 GOF mutations in both humans and mice do not activate β-catenin signaling in osteoblasts. Consistent with a lack of β-catenin activation in their osteoblasts, Lrp5(A214V) mice have normal trilinear hematopoiesis. In contrast to leukemic mice with constitutive activation...... of β-catenin in osteoblasts (Ctnnb1(CAosb)), accumulation of early myeloid progenitors, a characteristic of AML, myeloid-blasts in blood, and segmented neutrophils or dysplastic megakaryocytes in the bone marrow, are not observed in Lrp5(A214V) mice. Likewise, peripheral blood count analysis in HBM...

  10. Nonobese Diabetic (NOD Mice Lack a Protective B-Cell Response against the “Nonlethal” Plasmodium yoelii 17XNL Malaria Protozoan

    Directory of Open Access Journals (Sweden)

    Mirian Mendoza

    2016-01-01

    Full Text Available Background. Plasmodium yoelii 17XNL is a nonlethal malaria strain in mice of different genetic backgrounds including the C57BL/6 mice (I-Ab/I-Enull used in this study as a control strain. We have compared the trends of blood stage infection with the nonlethal murine strain of P. yoelii 17XNL malaria protozoan in immunocompetent Nonobese Diabetic (NOD mice prone to type 1 diabetes (T1D and C57BL/6 mice (control mice that are not prone to T1D and self-cure the P. yoelii 17XNL infection. Prediabetic NOD mice could not mount a protective antibody response to the P. yoelii 17XNL-infected red blood cells (iRBCs, and they all succumbed shortly after infection. Our data suggest that the lack of anti-P. yoelii 17XNL-iRBCs protective antibodies in NOD mice is a result of parasite-induced, Foxp3+ T regulatory (Treg cells able to suppress the parasite-specific antibody secretion. Conclusions. The NOD mouse model may help in identifying new mechanisms of B-cell evasion by malaria parasites. It may also serve as a more accurate tool for testing antimalaria therapeutics due to the lack of interference with a preexistent self-curing mechanism present in other mouse strains.

  11. Exocrine Gland-Secreting Peptide 1 Is a Key Chemosensory Signal Responsible for the Bruce Effect in Mice.

    Science.gov (United States)

    Hattori, Tatsuya; Osakada, Takuya; Masaoka, Takuto; Ooyama, Rumi; Horio, Nao; Mogi, Kazutaka; Nagasawa, Miho; Haga-Yamanaka, Sachiko; Touhara, Kazushige; Kikusui, Takefumi

    2017-10-23

    The Bruce effect refers to pregnancy termination in recently pregnant female rodents upon exposure to unfamiliar males [1]. This event occurs in specific combinations of laboratory mouse strains via the vomeronasal system [2, 3]; however, the responsible chemosensory signals have not been fully identified. Here we demonstrate that the male pheromone exocrine gland-secreting peptide 1 (ESP1) is one of the key factors that causes pregnancy block. Female mice exhibited high pregnancy failure rates upon encountering males that secreted different levels of ESP1 compared to the mated male. The effect was not observed in mice that lacked the ESP1 receptor, V2Rp5, which is expressed in vomeronasal sensory neurons. Prolactin surges in the blood after mating, which are essential for maintaining luteal function, were suppressed by ESP1 exposure, suggesting that a neuroendocrine mechanism underlies ESP1-mediated pregnancy failure. The single peptide pheromone ESP1 conveys not only maleness to promote female receptivity but also the males' characteristics to facilitate memorization of the mating partner. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Mice deficient in 11beta-hydroxysteroid dehydrogenase type 1 lack bone marrow adipocytes, but maintain normal bone formation

    DEFF Research Database (Denmark)

    Justesen, Jeannette; Mosekilde, Lis; Holmes, Megan

    2004-01-01

    Glucocorticoids (GCs) exert potent, but poorly characterized, effects on the skeleton. The cellular activity of GCs is regulated at a prereceptor level by 11beta-hydroxysteroid dehydrogenases (11betaHSDs). The type 1 isoform, which predominates in bone, functions as a reductase in intact cells...... and regenerates active cortisol (corticosterone) from circulating inert 11-keto forms. The aim of the present study was to investigate the role of this intracrine activation of GCs on normal bone physiology in vivo using mice deficient in 11betaHSD1 (HSD1(-/-)). The HSD1(-/-) mice exhibited no significant changes...... in cortical or trabecular bone mass compared with wild-type (Wt) mice. Aged HSD1(-/-) mice showed age-related bone loss similar to that observed in Wt mice. Histomorphometric analysis showed similar bone formation and bone resorption parameters in HSD1(-/-) and Wt mice. However, examination of bone marrow...

  13. The transcription factor NFATp plays a key role in susceptibility to TB in mice.

    Directory of Open Access Journals (Sweden)

    Laura E Via

    Full Text Available In T cells, the transcription factor nuclear factor of activated T cells p (NFATp is a key regulator of the cytokine genes tumor necrosis factor (TNF and interferon-γ (IFN-γ. Here, we show that NFATp-deficient (NFATp(-/- mice have a dramatic and highly significant increase in mortality after Mycobacterium tuberculosis (MTb infection as compared to mortality of control animals after MTb infection. Animals deficient in NFATp have significantly impaired levels of TNF and IFN-γ transcription and protein expression in naïve or total CD4(+ T cells, but display wild-type levels of TNF mRNA or protein from MTb-stimulated dendritic cells (DC. The rapid mortality and disease severity observed in MTb-infected NFATp(-/- mice is associated with dysregulated production of TNF and IFN-γ in the lungs, as well as with increased levels of TNF, in their serum. Furthermore, global blocking of TNF production by injection of a TNF neutralizaing agent at 6 weeks, but not 12 weeks, post-MTb-infection further decreased the survival rate of both wild-type and NFATp(-/- mice, indicating an early role for TNF derived from cells from the monocyte lineage in containment of infection. These results thus demonstrate that NFATp plays a critical role in immune containment of TB disease in vivo, through the NFATp-dependent expression of TNF and IFN-γ in T cells.

  14. Mice lacking the UbCKmit isoform of creatine kinase reveal slower spatial learning acquisition, diminished exploration and habituation, and reduced acoustic startle reflex responses.

    NARCIS (Netherlands)

    Streijger, F.; Jost, C.R.; Oerlemans, F.T.J.J.; Ellenbroek, B.A.; Cools, A.R.; Wieringa, B.; Zee, C.E.E.M. van der

    2004-01-01

    Brain-type creatine kinases B-CK (cytosolic) and UbCKmit (mitochondrial) are considered important for the maintenance and distribution of cellular energy in the central nervous system. Previously, we have demonstrated an abnormal behavioral phenotype in mice lacking the B-CK creatine kinase isoform,

  15. Normal viability and altered pharmacokinetics in mice lacking mdr1-type (drug-transporting) P-glycoproteins

    NARCIS (Netherlands)

    Schinkel, A. H.; Mayer, U.; Wagenaar, E.; Mol, C. A.; van Deemter, L.; Smit, J. J.; van der Valk, M. A.; Voordouw, A. C.; Spits, H.; van Tellingen, O.; Zijlmans, J. M.; Fibbe, W. E.; Borst, P.

    1997-01-01

    The mdr1-type P-glycoproteins (P-gps) confer multidrug resistance to cancer cells by active extrusion of a wide range of drugs from the cell. To study their physiological roles, we have generated mice genetically deficient in the mdr1b gene [mdr1b (-/-) mice] and in both the mdr1a and mdr1b genes

  16. Delayed contraction of the CD8+ T cell response toward lymphocytic choriomeningitis virus infection in mice lacking serglycin

    DEFF Research Database (Denmark)

    Grujic, Mirjana; Christensen, Jan P; Sørensen, Maria R

    2008-01-01

    (-/-)) mice with lymphocytic choriomeningitis virus (LCMV). Wt and SG(-/-) mice cleared 10(3) PFU of highly invasive LCMV with the same kinetics, and the CD8(+) T lymphocytes from wt and SG(-/-) animals did not differ in GrB, perforin, IFN-gamma, or TNF-alpha content. However, when a less invasive LCMV strain...

  17. Mice lacking collapsin response mediator protein 1 manifest hyperactivity, impaired learning and memory, and impaired prepulse inhibition

    Directory of Open Access Journals (Sweden)

    Naoya eYamashita

    2013-12-01

    Full Text Available Collapsin response mediator protein 1 (CRMP1 is one of the CRMP family members that are involved in various aspects of neuronal development such as axonal guidance and neuronal migration. Here we provide evidence that crmp1-/- mice exhibited behavioral abnormalities related to schizophrenia. The crmp1-/- mice exhibited hyperactivity and/or impaired emotional behavioral phenotype. These mice also exhibited impaired context-dependent memory and long-term memory retention. Furthermore, crmp1-/- mice exhibited decreased prepulse inhibition, and this phenotype was rescued by administration of chlorpromazine, a typical antipsychotic drug. In addition, in vivo microdialysis revealed that the methamphetamine-induced release of dopamine in prefrontal cortex was exaggerated in crmp1-/- mice, suggesting that enhanced mesocortical dopaminergic transmission contributes to their hyperactivity phenotype. These observations suggest that impairment of CRMP1 function may be involved in the pathogenesis of schizophrenia. We propose that crmp1-/- mouse may model endophenotypes present in this neuropsychiatric disorder.

  18. Antidepressive and BDNF effects of enriched environment treatment across ages in mice lacking BDNF expression through promoter IV

    Science.gov (United States)

    Jha, S; Dong, B E; Xue, Y; Delotterie, D F; Vail, M G; Sakata, K

    2016-01-01

    Reduced promoter IV-driven expression of brain-derived neurotrophic factor (BDNF) is implicated in stress and major depression. We previously reported that defective promoter IV (KIV) caused depression-like behavior in young adult mice, which was reversed more effectively by enriched environment treatment (EET) than antidepressants. The effects of promoter IV-BDNF deficiency and EET over the life stages remain unknown. Since early-life development (ED) involves dynamic epigenetic processes, we hypothesized that EET during ED would provide maximum antidepressive effects that would persist later in life due to enhanced, long-lasting BDNF induction. We tested this hypothesis by determining EET effects across three life stages: ED (0–2 months), young adult (2–4 months), and old adult (12–14 months). KIV mice at all life stages showed depression-like behavior in the open-field and tail-suspension tests compared with wild-type mice. Two months of EET reduced depression-like behavior in ED and young adult, but not old adult mice, with the largest effect in ED KIV mice. This effect lasted for 1 month after discontinuance of EET only in ED mice. BDNF protein induction by EET in the hippocampus and frontal cortex was also the largest in ED mice and persisted only in the hippocampus of ED KIV mice after discontinuance of EET. No gender-specific effects were observed. The results suggest that defective promoter IV causes depression-like behavior, regardless of age and gender, and that EET during ED is particularly beneficial to individuals with promoter IV-BDNF deficiency, while additional treatment may be needed for older adults. PMID:27648918

  19. Inositol- and folate-resistant neural tube defects in mice lacking the epithelial-specific factor Grhl-3.

    Science.gov (United States)

    Ting, Stephen B; Wilanowski, Tomasz; Auden, Alana; Hall, Mark; Voss, Anne K; Thomas, Tim; Parekh, Vishwas; Cunningham, John M; Jane, Stephen M

    2003-12-01

    The neural tube defects (NTDs) spina bifida and anencephaly are widely prevalent severe birth defects. The mouse mutant curly tail (ct/ct) has served as a model of NTDs for 50 years, even though the responsible genetic defect remained unrecognized. Here we show by gene targeting, mapping and genetic complementation studies that a mouse homolog of the Drosophila grainyhead (grh) gene, grainyhead-like-3 (Grhl3), is a compelling candidate for the gene underlying the curly tail phenotype. The NTDs in Grhl3-null mice are more severe than those in the curly tail strain, as the Grhl3 alleles in ct/ct mice are hypomorphic. Spina bifida in ct/ct mice is folate resistant, but its incidence can be markedly reduced by maternal inositol supplementation periconceptually. The NTDs in Grhl3-/- embryos are also folate resistant, but unlike those in ct/ct mice, they are resistant to inositol. These findings suggest that residual Grhl3 expression in ct/ct mice may be required for inositol rescue of folate-resistant NTDs.

  20. Skeletal development of mice lacking bone sialoprotein (BSP--impairment of long bone growth and progressive establishment of high trabecular bone mass.

    Directory of Open Access Journals (Sweden)

    Wafa Bouleftour

    Full Text Available Adult Ibsp-knockout mice (BSP-/- display shorter stature, lower bone turnover and higher trabecular bone mass than wild type, the latter resulting from impaired bone resorption. Unexpectedly, BSP knockout also affects reproductive behavior, as female mice do not construct a proper "nest" for their offsprings. Multiple crossing experiments nonetheless indicated that the shorter stature and lower weight of BSP-/- mice, since birth and throughout life, as well as their shorter femur and tibia bones are independent of the genotype of the mothers, and thus reflect genetic inheritance. In BSP-/- newborns, µCT analysis revealed a delay in membranous primary ossification, with wider cranial sutures, as well as thinner femoral cortical bone and lower tissue mineral density, reflected in lower expression of bone formation markers. However, trabecular bone volume and osteoclast parameters of long bones do not differ between genotypes. Three weeks after birth, osteoclast number and surface drop in the mutants, concomitant with trabecular bone accumulation. The growth plates present a thinner hypertrophic zone in newborns with lower whole bone expression of IGF-1 and higher IHH in 6 days old BSP-/- mice. At 3 weeks the proliferating zone is thinner and the hypertrophic zone thicker in BSP-/- than in BSP+/+ mice of either sex, maybe reflecting a combination of lower chondrocyte proliferation and impaired cartilage resorption. Six days old BSP-/- mice display lower osteoblast marker expression but higher MEPE and higher osteopontin(Opn/Runx2 ratio. Serum Opn is higher in mutants at day 6 and in adults. Thus, lack of BSP alters long bone growth and membranous/cortical primary bone formation and mineralization. Endochondral development is however normal in mutant mice and the accumulation of trabecular bone observed in adults develops progressively in the weeks following birth. Compensatory high Opn may allow normal endochondral development in BSP-/- mice

  1. Altered thalamocortical rhythmicity and connectivity in mice lacking CaV3.1 T-type Ca2+ channels in unconsciousness

    Science.gov (United States)

    Choi, Soonwook; Yu, Eunah; Lee, Seongwon; Llinás, Rodolfo R.

    2015-01-01

    In unconscious status (e.g., deep sleep and anesthetic unconsciousness) where cognitive functions are not generated there is still a significant level of brain activity present. Indeed, the electrophysiology of the unconscious brain is characterized by well-defined thalamocortical rhythmicity. Here we address the ionic basis for such thalamocortical rhythms during unconsciousness. In particular, we address the role of CaV3.1 T-type Ca2+ channels, which are richly expressed in thalamic neurons. Toward this aim, we examined the electrophysiological and behavioral phenotypes of mice lacking CaV3.1 channels (CaV3.1 knockout) during unconsciousness induced by ketamine or ethanol administration. Our findings indicate that CaV3.1 KO mice displayed attenuated low-frequency oscillations in thalamocortical loops, especially in the 1- to 4-Hz delta band, compared with control mice (CaV3.1 WT). Intriguingly, we also found that CaV3.1 KO mice exhibited augmented high-frequency oscillations during unconsciousness. In a behavioral measure of unconsciousness dynamics, CaV3.1 KO mice took longer to fall into the unconscious state than controls. In addition, such unconscious events had a shorter duration than those of control mice. The thalamocortical interaction level between mediodorsal thalamus and frontal cortex in CaV3.1 KO mice was significantly lower, especially for delta band oscillations, compared with that of CaV3.1 WT mice, during unconsciousness. These results suggest that the CaV3.1 channel is required for the generation of a given set of thalamocortical rhythms during unconsciousness. Further, that thalamocortical resonant neuronal activity supported by this channel is important for the control of vigilance states. PMID:26056284

  2. Mice Lacking the β2 Adrenergic Receptor Have a Unique Genetic Profile before and after Focal Brain Ischaemia

    Directory of Open Access Journals (Sweden)

    Robin E White

    2012-08-01

    Full Text Available The role of the β2AR (β2 adrenergic receptor after stroke is unclear as pharmacological manipulations of the β2AR have produced contradictory results. We previously showed that mice deficient in the β2AR (β2KO had smaller infarcts compared with WT (wild-type mice (FVB after MCAO (middle cerebral artery occlusion, a model of stroke. To elucidate mechanisms of this neuroprotection, we evaluated changes in gene expression using microarrays comparing differences before and after MCAO, and differences between genotypes. Genes associated with inflammation and cell deaths were enriched after MCAO in both genotypes, and we identified several genes not previously shown to increase following ischaemia (Ccl9, Gem and Prg4. In addition to networks that were similar between genotypes, one network with a central core of GPCR (G-protein-coupled receptor and including biological functions such as carbohydrate metabolism, small molecule biochemistry and inflammation was identified in FVB mice but not in β2KO mice. Analysis of differences between genotypes revealed 11 genes differentially expressed by genotype both before and after ischaemia. We demonstrate greater Glo1 protein levels and lower Pmaip/Noxa mRNA levels in β2KO mice in both sham and MCAO conditions. As both genes are implicated in NF-κB (nuclear factor κB signalling, we measured p65 activity and TNFα (tumour necrosis factor α levels 24 h after MCAO. MCAO-induced p65 activation and post-ischaemic TNFα production were both greater in FVB compared with β2KO mice. These results suggest that loss of β2AR signaling results in a neuroprotective phenotype in part due to decreased NF-κB signalling, decreased inflammation and decreased apoptotic signalling in the brain.

  3. IGF-II is up-regulated and myofibres are hypertrophied in regenerating soleus of mice lacking FGF6

    International Nuclear Information System (INIS)

    Armand, Anne-Sophie; Lecolle, Sylvie; Launay, Thierry; Pariset, Claude; Fiore, Frederic; Della Gaspera, Bruno; Birnbaum, Daniel; Chanoine, Christophe; Charbonnier, Frederic

    2004-01-01

    Important functions in myogenesis have been proposed for FGF6, a member of the fibroblast growth factor family accumulating almost exclusively in the myogenic lineage. However, the use of FGF6(-/-) mutant mice gave contradictory results and the role of FGF6 during myogenesis remains largely unclear. Using FGF6(-/-) mice, we first analysed the morphology of the regenerated soleus following cardiotoxin injection and showed hypertrophied myofibres in soleus of the mutant mice as compared to wild-type mice. Secondly, to examine the function of the IGF family in the hypertrophy process, we used semiquantitative and real-time RT-PCR assays and Western blots to monitor the expression of the insulin-like growth factors (IGF-I and IGF-II), their receptors [type I IGF receptor (IGF1R) and IGF-II receptor (IGF2R)], and of a binding protein IGFBP-5 in regenerating soleus muscles of FGF6(-/-) knockout mice vs. wild-type mice. In the mutant, both IGF-II and IGF2R, but not IGF-I and IGF1R, were strongly up-regulated, whereas IGFBP5 was down-regulated, strongly suggesting that, in the absence of FGF6, the mechanisms leading to myofibre hypertrophy were mediated specifically by an IGF-II/IGF2R signalling pathway distinct from the classic mechanism involving IGF-I and IGF1R previously described for skeletal muscle hypertrophy. The potential regulating role of IGFBP5 on IGF-II expression is also discussed. This report shows for the first time a specific role for FGF6 in the regulation of myofibre size during a process of in vivo myogenesis

  4. Depressed levels of prostaglandin F2α in mice lacking Akr1b7 increase basal adiposity and predispose to diet-induced obesity.

    Science.gov (United States)

    Volat, Fanny E; Pointud, Jean-Christophe; Pastel, Emilie; Morio, Béatrice; Sion, Benoit; Hamard, Ghislaine; Guichardant, Michel; Colas, Romain; Lefrançois-Martinez, Anne-Marie; Martinez, Antoine

    2012-11-01

    Negative regulators of white adipose tissue (WAT) expansion are poorly documented in vivo. Prostaglandin F(2α) (PGF(2α)) is a potent antiadipogenic factor in cultured preadipocytes, but evidence for its involvement in physiological context is lacking. We previously reported that Akr1b7, an aldo-keto reductase enriched in adipose stromal vascular fraction but absent from mature adipocytes, has antiadipogenic properties possibly supported by PGF(2α) synthase activity. To test whether lack of Akr1b7 could influence WAT homeostasis in vivo, we generated Akr1b7(-/-) mice in 129/Sv background. Akr1b7(-/-) mice displayed excessive basal adiposity resulting from adipocyte hyperplasia/hypertrophy and exhibited greater sensitivity to diet-induced obesity. Following adipose enlargement and irrespective of the diet, they developed liver steatosis and progressive insulin resistance. Akr1b7 loss was associated with decreased PGF(2α) WAT contents. Cloprostenol (PGF(2α) agonist) administration to Akr1b7(-/-) mice normalized WAT expansion by affecting both de novo adipocyte differentiation and size. Treatment of 3T3-L1 adipocytes and Akr1b7(-/-) mice with cloprostenol suggested that decreased adipocyte size resulted from inhibition of lipogenic gene expression. Hence, Akr1b7 is a major regulator of WAT development through at least two PGF(2α)-dependent mechanisms: inhibition of adipogenesis and lipogenesis. These findings provide molecular rationale to explore the status of aldo-keto reductases in dysregulations of adipose tissue homeostasis.

  5. Dwarfism in mice lacking collagen-binding integrins alpha 2 beta 1 and alpha 11 beta 1 is caused by severely diminished IGF-1 levels

    OpenAIRE

    Blumbach, Katrin; Niehoff, Anja; Belgardt, Bengt F.; Ehlen, Harald W.A.; Schmitz, Markus; Hallinger, Ralf; Schulz, Jan-Niklas; Brüning, Jens C.; Krieg, Thomas; Schubert, Markus; Gullberg, Donald; Eckes, Beate

    2012-01-01

    Mice with a combined deficiency in the α2β1 and α11β1 integrins lack the major receptors for collagen I. These mutants are born with inconspicuous differences in size but develop dwarfism within the first 4 weeks of life. Dwarfism correlates with shorter, less mineralized and functionally weaker bones that do not result from growth plate abnormalities or osteoblast dysfunction. Besides skeletal dwarfism, internal organs are correspondingly smaller, indicating proportional dwarfism and suggest...

  6. Mice Lacking the Alpha9 Subunit of the Nicotinic Acetylcholine Receptor Exhibit Deficits in Frequency Difference Limens and Sound Localization

    Directory of Open Access Journals (Sweden)

    Amanda Clause

    2017-06-01

    Full Text Available Sound processing in the cochlea is modulated by cholinergic efferent axons arising from medial olivocochlear neurons in the brainstem. These axons contact outer hair cells in the mature cochlea and inner hair cells during development and activate nicotinic acetylcholine receptors composed of α9 and α10 subunits. The α9 subunit is necessary for mediating the effects of acetylcholine on hair cells as genetic deletion of the α9 subunit results in functional cholinergic de-efferentation of the cochlea. Cholinergic modulation of spontaneous cochlear activity before hearing onset is important for the maturation of central auditory circuits. In α9KO mice, the developmental refinement of inhibitory afferents to the lateral superior olive is disturbed, resulting in decreased tonotopic organization of this sound localization nucleus. In this study, we used behavioral tests to investigate whether the circuit anomalies in α9KO mice correlate with sound localization or sound frequency processing. Using a conditioned lick suppression task to measure sound localization, we found that three out of four α9KO mice showed impaired minimum audible angles. Using a prepulse inhibition of the acoustic startle response paradigm, we found that the ability of α9KO mice to detect sound frequency changes was impaired, whereas their ability to detect sound intensity changes was not. These results demonstrate that cholinergic, nicotinic α9 subunit mediated transmission in the developing cochlear plays an important role in the maturation of hearing.

  7. Action potential generation in the small intestine of W mutant mice that lack interstitial cells of Cajal

    DEFF Research Database (Denmark)

    Malysz, J; Thuneberg, L; Mikkelsen, Hanne Birte

    1996-01-01

    significantly changed. Neither FLC nor MLC were part of a network nor did they form specialized junctions with neighboring cells as ICC do. Hence no cell type had replaced ICC at their normal morphological position associated with Auerbach's plexus. ICC were present in W/Wv mice at the deep muscular plexus...

  8. Mice lacking the transcriptional regulator Bhlhe40 have enhanced neuronal excitability and impaired synaptic plasticity in the hippocampus.

    Directory of Open Access Journals (Sweden)

    Kelly A Hamilton

    Full Text Available Bhlhe40 is a transcription factor that is highly expressed in the hippocampus; however, its role in neuronal function is not well understood. Here, we used Bhlhe40 null mice on a congenic C57Bl6/J background (Bhlhe40 KO to investigate the impact of Bhlhe40 on neuronal excitability and synaptic plasticity in the hippocampus. Bhlhe40 KO CA1 neurons had increased miniature excitatory post-synaptic current amplitude and decreased inhibitory post-synaptic current amplitude, indicating CA1 neuronal hyperexcitability. Increased CA1 neuronal excitability was not associated with increased seizure severity as Bhlhe40 KO relative to +/+ (WT control mice injected with the convulsant kainic acid. However, significant reductions in long term potentiation and long term depression at CA1 synapses were observed in Bhlhe40 KO mice, indicating impaired hippocampal synaptic plasticity. Behavioral testing for spatial learning and memory on the Morris Water Maze (MWM revealed that while Bhlhe40 KO mice performed similarly to WT controls initially, when the hidden platform was moved to the opposite quadrant Bhlhe40 KO mice showed impairments in relearning, consistent with decreased hippocampal synaptic plasticity. To investigate possible mechanisms for increased neuronal excitability and decreased synaptic plasticity, a whole genome mRNA expression profile of Bhlhe40 KO hippocampus was performed followed by a chromatin immunoprecipitation sequencing (ChIP-Seq screen of the validated candidate genes for Bhlhe40 protein-DNA interactions consistent with transcriptional regulation. Of the validated genes identified from mRNA expression analysis, insulin degrading enzyme (Ide had the most significantly altered expression in hippocampus and was significantly downregulated on the RNA and protein levels; although Bhlhe40 did not occupy the Ide gene by ChIP-Seq. Together, these findings support a role for Bhlhe40 in regulating neuronal excitability and synaptic plasticity in

  9. Environmental enrichment reduces innate anxiety with no effect on depression-like behaviour in mice lacking the serotonin transporter.

    Science.gov (United States)

    Rogers, Jake; Li, Shanshan; Lanfumey, Laurence; Hannan, Anthony J; Renoir, Thibault

    2017-08-14

    Along with being the main target of many antidepressant medications, the serotonin transporter (5-HTT) is known to be involved in the pathophysiology of depression and anxiety disorders. In line with this, mice with varying 5-HTT genotypes are invaluable tools to study depression- and anxiety-like behaviours as well as the mechanisms mediating potential therapeutics. There is clear evidence that both genetic and environmental factors play a role in the aetiology of psychiatric disorders. In that regard, housing paradigms which seek to enhance cognitive stimulation and physical activity have been shown to exert beneficial effects in animal models of neuropsychiatric disorders. In the present study, we examined the effects of environmental enrichment on affective-like behaviours and sensorimotor gating function of 5-HTT knock-out (KO) mice. Using the elevated-plus maze and the light-dark box, we found that environmental enrichment ameliorated the abnormal innate anxiety of 5-HTT KO mice on both tests. In contrast, environmental enrichment did not rescue the depression-like behaviour displayed by 5-HTT KO mice in the forced-swim test. Finally, measuring pre-pulse inhibition, we found no effect of genotype or treatment on sensorimotor gating. In conclusion, our data suggest that environmental enrichment specifically reduces innate anxiety of 5-HTT KO mice with no amelioration of the depression-like behaviour. This has implications for the current use of clinical interventions for patients with symptoms of both anxiety and depression. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Lack of the matricellular protein SPARC (secreted protein, acidic and rich in cysteine attenuates liver fibrogenesis in mice.

    Directory of Open Access Journals (Sweden)

    Catalina Atorrasagasti

    Full Text Available INTRODUCTION: Secreted Protein, Acidic and Rich in Cysteine (SPARC is a matricellular protein involved in many biological processes and found over-expressed in cirrhotic livers. By mean of a genetic approach we herein provide evidence from different in vivo liver disease models suggesting a profibrogenic role for SPARC. METHODS: Two in vivo models of liver fibrosis, based on TAA administration and bile duct ligation, were developed on SPARC wild-type (SPARC(+/+ and knock-out (SPARC(-/- mice. Hepatic SPARC expression was analyzed by qPCR. Fibrosis was assessed by Sirius Red staining, and the maturation state of collagen fibers was analyzed using polarized light. Necroinflammatory activity was evaluated by applying the Knodell score and liver inflammatory infiltration was characterized by immunohistochemistry. Hepatic stellate cell activation was assessed by α-SMA immunohistochemistry. In addition, pro-fibrogenic genes and inflammatory cytokines were measured by qPCR and/or ELISA. Liver gene expression profile was analyzed in SPARC(-/- and SPARC(+/+ mice using Affymetrix Mouse Gene ST 1.0 array. RESULTS: SPARC expression was found induced in fibrotic livers of mouse and human. SPARC(-/- mice showed a reduction in the degree of inflammation, mainly CD4+ cells, and fibrosis. Consistently, collagen deposits and mRNA expression levels were decreased in SPARC(-/- mice when compared to SPARC(+/+ mice; in addition, MMP-2 expression was increased in SPARC(-/- mice. A reduction in the number of activated myofibroblasts was observed. Moreover, TGF-β1 expression levels were down-regulated in the liver as well as in the serum of TAA-treated knock-out animals. Ingenuity Pathway Analysis (IPA analysis suggested several gene networks which might involve protective mechanisms of SPARC deficiency against liver fibrogenesis and a better established machinery to repair DNA and detoxify from external chemical stimuli. CONCLUSIONS: Overall our data suggest that

  11. Lack of effect on the chromosomal non-disjunction in aged female mice after low dose x-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Strausmanis, R; Hendrikson, I B; Holmberg, M; Roennbaeck, C [Research Inst. of National Defence, Sundbyberg (Sweden). Dept. 4

    1978-02-01

    Karyotypes were determined in 1064 embryos of aged C57/BL mothers. The virgin female mice were irradiated with 0, 4, 8 or 16 R of X-rays, respectively, and placed with young untreated males 5 days after irradiation. 10.5-days old embryos were recovered from the uterus. Aneuploid embryos classified as alive (heart beats observed at the dissection) were 1 monosomic in the control group (496 embryos) and 2 trisomics in the irradiated group (568 embryos). The number of aneuploid embryos classified as dead was 4 trisomic cases in the control group and 3 trisomics in the irradiated group. The data indicate that trisomic embryos are not uncommon in the mouse but are eliminated in post-implantation death. In contrast to the results of Yamamoto et al. the present data do not demonstrate an increased frequency of chromosome abnormalities in embryos of aged mice X-irradiated before mating as compared to non-irradiated ones.

  12. Lack of effect on the chromosomal non-disjunction in aged female mice after low dose x-irradiation

    International Nuclear Information System (INIS)

    Strausmanis, R.; Hendrikson, I.-B.; Holmberg, M.; Roennbaeck, C.

    1978-01-01

    Karyotypes were determined in 1064 embryos of aged C57/BL mothers. The virgin female mice were irradiated with 0, 4, 8 or 16 R of X-rays, respectively, and placed with young untreated males 5 days after irradiation. 10.5-days old embryos were recovered from the uterus. Aneuploid embryos classified as alive (heart beats observed at the dissection) were 1 monosomic in the control group (496 embryos) and 2 trisomics in the irradiated group (568 embryos). The number of aneuploid embryos classified as dead was 4 trisomic cases in the control group and 3 trisomics in the irradiated group. The data indicate that trisomic embryos are not uncommon in the mouse but are eliminated in post-implantation death. In contrast to the results of Yamamoto et al. the present data do not demonstrate an increased frequency of chromosome abnormalities in embryos of aged mice X-irradiated before mating as compared to non-irradiated ones

  13. Acute heat-evoked temperature sensation is impaired but not abolished in mice lacking TRPV1 and TRPV3 channels.

    Science.gov (United States)

    Marics, Irène; Malapert, Pascale; Reynders, Ana; Gaillard, Stéphane; Moqrich, Aziz

    2014-01-01

    The discovery of heat-sensitive Transient Receptor Potential Vanilloid ion channels (ThermoTRPVs) greatly advanced our molecular understanding of acute and injury-evoked heat temperature sensation. ThermoTRPV channels are activated by partially overlapping temperatures ranging from warm to supra-threshold noxious heat. TRPV1 is activated by noxious heat temperature whereas TRPV3 can be activated by warm as well as noxious heat temperatures. Loss-of-function studies in single TRPV1 and TRPV3 knock-out mice have shown that heat temperature sensation is not completely abolished suggesting functional redundancies among these two channels and highlighting the need of a detailed analysis of TRPV1::TRPV3 double knock-out mice (V1V3dKO) which is hampered by the close proximity of the loci expressing the two channels. Here we describe the generation of a novel mouse model in which trpv1 and trpv3 genes have been inactivated using bacterial artificial chromosome (BAC)-based homologous recombination in embryonic stem cells. In these mice, using classical thermosensory tests such hot plate, tail flick and the thermotaxis gradient paradigms, we confirm that TRPV1 is the master channel for sensing noxious heat temperatures and identify a cooperative role of TRPV1 and TRPV3 for sensing a well-defined window of acute moderate heat temperature. Using the dynamic hot plate assay, we unravel an intriguing and unexpected pronounced escape behavior in TRPV1 knock-out mice that was attenuated in the V1V3dKO. Together, and in agreement with the temperature activation overlap between TRPV1 and TRPV3 channels, our data provide in vivo evidence of a cooperative role between skin-derived TRPV3 and primary sensory neurons-enriched TRPV1 in modulation of moderate and noxious heat temperature sensation and suggest that other mechanisms are required for heat temperature sensation.

  14. Alterations in Brain Inflammation, Synaptic Proteins, and Adult Hippocampal Neurogenesis during Epileptogenesis in Mice Lacking Synapsin2.

    Directory of Open Access Journals (Sweden)

    Deepti Chugh

    Full Text Available Synapsins are pre-synaptic vesicle-associated proteins linked to the pathogenesis of epilepsy through genetic association studies in humans. Deletion of synapsins causes an excitatory/inhibitory imbalance, exemplified by the epileptic phenotype of synapsin knockout mice. These mice develop handling-induced tonic-clonic seizures starting at the age of about 3 months. Hence, they provide an opportunity to study epileptogenic alterations in a temporally controlled manner. Here, we evaluated brain inflammation, synaptic protein expression, and adult hippocampal neurogenesis in the epileptogenic (1 and 2 months of age and tonic-clonic (3.5-4 months phase of synapsin 2 knockout mice using immunohistochemical and biochemical assays. In the epileptogenic phase, region-specific microglial activation was evident, accompanied by an increase in the chemokine receptor CX3CR1, interleukin-6, and tumor necrosis factor-α, and a decrease in chemokine keratinocyte chemoattractant/ growth-related oncogene. Both post-synaptic density-95 and gephyrin, scaffolding proteins at excitatory and inhibitory synapses, respectively, showed a significant up-regulation primarily in the cortex. Furthermore, we observed an increase in the inhibitory adhesion molecules neuroligin-2 and neurofascin and potassium chloride co-transporter KCC2. Decreased expression of γ-aminobutyric acid receptor-δ subunit and cholecystokinin was also evident. Surprisingly, hippocampal neurogenesis was reduced in the epileptogenic phase. Taken together, we report molecular alterations in brain inflammation and excitatory/inhibitory balance that could serve as potential targets for therapeutics and diagnostic biomarkers. In addition, the regional differences in brain inflammation and synaptic protein expression indicate an epileptogenic zone from where the generalized seizures in synapsin 2 knockout mice may be initiated or spread.

  15. Expression of GAD67 and Dlx5 in the taste buds of mice genetically lacking Mash1.

    Science.gov (United States)

    Kito-Shingaki, Ayae; Seta, Yuji; Toyono, Takashi; Kataoka, Shinji; Kakinoki, Yasuaki; Yanagawa, Yuchio; Toyoshima, Kuniaki

    2014-06-01

    It has been reported that a subset of type III taste cells express glutamate decarboxylase (GAD)67, which is a molecule that synthesizes gamma-aminobutyric acid (GABA), and that Mash1 could be a potential regulator of the development of GABAnergic neurons via Dlx transcription factors in the central nervous system. In this study, we investigated the expression of GAD67 and Dlx in the embryonic taste buds of the soft palate and circumvallate papilla using Mash1 knockout (KO)/GAD67-GFP knock-in mice. In the wild-type animal, a subset of type III taste cells contained GAD67 in the taste buds of the soft palate and the developing circumvallate papilla, whereas GAD67-expressing taste bud cells were missing from Mash1 KO mice. A subset of type III cells expressed mRNA for Dlx5 in the wild-type animals, whereas Dlx5-expressing cells were not evident in the apical part of the circumvallate papilla and taste buds in the soft palate of Mash1 KO mice. Our results suggest that Mash1 is required for the expression of GAD67 and Dlx5 in taste bud cells. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Lack of significant metabolic abnormalities in mice with liver-specific disruption of 11β-hydroxysteroid dehydrogenase type 1.

    LENUS (Irish Health Repository)

    Lavery, Gareth G

    2012-07-01

    Glucocorticoids (GC) are implicated in the development of metabolic syndrome, and patients with GC excess share many clinical features, such as central obesity and glucose intolerance. In patients with obesity or type 2 diabetes, systemic GC concentrations seem to be invariably normal. Tissue GC concentrations determined by the hypothalamic-pituitary-adrenal (HPA) axis and local cortisol (corticosterone in mice) regeneration from cortisone (11-dehydrocorticosterone in mice) by the 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) enzyme, principally expressed in the liver. Transgenic mice have demonstrated the importance of 11β-HSD1 in mediating aspects of the metabolic syndrome, as well as HPA axis control. In order to address the primacy of hepatic 11β-HSD1 in regulating metabolism and the HPA axis, we have generated liver-specific 11β-HSD1 knockout (LKO) mice, assessed biomarkers of GC metabolism, and examined responses to high-fat feeding. LKO mice were able to regenerate cortisol from cortisone to 40% of control and had no discernible difference in a urinary metabolite marker of 11β-HSD1 activity. Although circulating corticosterone was unaltered, adrenal size was increased, indicative of chronic HPA stimulation. There was a mild improvement in glucose tolerance but with insulin sensitivity largely unaffected. Adiposity and body weight were unaffected as were aspects of hepatic lipid homeostasis, triglyceride accumulation, and serum lipids. Additionally, no changes in the expression of genes involved in glucose or lipid homeostasis were observed. Liver-specific deletion of 11β-HSD1 reduces corticosterone regeneration and may be important for setting aspects of HPA axis tone, without impacting upon urinary steroid metabolite profile. These discordant data have significant implications for the use of these biomarkers of 11β-HSD1 activity in clinical studies. The paucity of metabolic abnormalities in LKO points to important compensatory effects by HPA

  17. Mice lacking the conserved transcription factor Grainyhead-like 3 (Grhl3) display increased apposition of the frontal and parietal bones during embryonic development.

    Science.gov (United States)

    Goldie, Stephen J; Arhatari, Benedicta D; Anderson, Peter; Auden, Alana; Partridge, Darren D; Jane, Stephen M; Dworkin, Sebastian

    2016-10-18

    Increased apposition of the frontal and parietal bones of the skull during embryogenesis may be a risk factor for the subsequent development of premature skull fusion, or craniosynostosis. Human craniosynostosis is a prevalent, and often serious embryological and neonatal pathology. Other than known mutations in a small number of contributing genes, the aetiology of craniosynostosis is largely unknown. Therefore, the identification of novel genes which contribute to normal skull patterning, morphology and premature suture apposition is imperative, in order to fully understand the genetic regulation of cranial development. Using advanced imaging techniques and quantitative measurement, we show that genetic deletion of the highly-conserved transcription factor Grainyhead-like 3 (Grhl3) in mice (Grhl3 -/- ) leads to decreased skull size, aberrant skull morphology and premature apposition of the coronal sutures during embryogenesis. Furthermore, Grhl3 -/- mice also present with premature collagen deposition and osteoblast alignment at the sutures, and the physical interaction between the developing skull, and outermost covering of the brain (the dura mater), as well as the overlying dermis and subcutaneous tissue, appears compromised in embryos lacking Grhl3. Although Grhl3 -/- mice die at birth, we investigated skull morphology and size in adult animals lacking one Grhl3 allele (heterozygous; Grhl3 +/- ), which are viable and fertile. We found that these adult mice also present with a smaller cranial cavity, suggestive of post-natal haploinsufficiency in the context of cranial development. Our findings show that our Grhl3 mice present with increased apposition of the frontal and parietal bones, suggesting that Grhl3 may be involved in the developmental pathogenesis of craniosynostosis.

  18. Variations of L- and D-amino acid levels in the brain of wild-type and mutant mice lacking D-amino acid oxidase activity.

    Science.gov (United States)

    Du, Siqi; Wang, Yadi; Weatherly, Choyce A; Holden, Kylie; Armstrong, Daniel W

    2018-05-01

    D-amino acids are now recognized to be widely present in organisms and play essential roles in biological processes. Some D-amino acids are metabolized by D-amino acid oxidase (DAO), while D-Asp and D-Glu are metabolized by D-aspartate oxidase (DDO). In this study, levels of 22 amino acids and the enantiomeric compositions of the 19 chiral proteogenic entities have been determined in the whole brain of wild-type ddY mice (ddY/DAO +/+ ), mutant mice lacking DAO activity (ddY/DAO -/- ), and the heterozygous mice (ddY/DAO +/- ) using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). No significant differences were observed for L-amino acid levels among the three strains except for L-Trp which was markedly elevated in the DAO +/- and DAO -/- mice. The question arises as to whether this is an unknown effect of DAO inactivity. The three highest levels of L-amino acids were L-Glu, L-Asp, and L-Gln in all the three strains. The lowest L-amino acid level was L-Cys in ddY/DAO +/- and ddY/DAO -/- mice, while L-Trp showed the lowest level in ddY/DAO +/+ mice. The highest concentration of D-amino acid was found to be D-Ser, which also had the highest % D value (~ 25%). D-Glu had the lowest % D value (~ 0.01%) in all the three strains. Significant differences of D-Leu, D-Ala, D-Ser, D-Arg, and D-Ile were observed in ddY/DAO +/- and ddY/DAO -/- mice compared to ddY/DAO +/+ mice. This work provides the most complete baseline analysis of L- and D-amino acids in the brains of ddY/DAO +/+ , ddY/DAO +/- , and ddY/DAO -/- mice yet reported. It also provides the most effective and efficient analytical approach for measuring these analytes in biological samples. This study provides fundamental information on the role of DAO in the brain and may be relevant for future development involving novel drugs for DAO regulation.

  19. Pancreatic Ductal Adenocarcinoma (PDA) mice lacking Mucin 1 have a profound defect in tumor growth and metastasis

    Science.gov (United States)

    Besmer, Dahlia M.; Curry, Jennifer M.; Roy, Lopamudra D.; Tinder, Teresa L.; Sahraei, Mahnaz; Schettini, Jorge; Hwang, Sun-Il; Lee, Yong Y.; Gendler, Sandra J.; Mukherjee, Pinku

    2011-01-01

    MUC1 is over expressed and aberrantly glycosolated in >60% of pancreatic ductal adenocarcinomas. The functional role of MUC1 in pancreatic cancer has yet to be fully elucidated due to a dearth of appropriate models. In the present study, we have generated mouse models that spontaneously develop pancreatic ductal adenocarcinoma (KC), which are either Muc1-null (KCKO) or express human MUC1 (KCM). We show that KCKO mice have significantly slower tumor progression and rates of secondary metastasis, compared to both KC and KCM. Cell lines derived from KCKO tumors have significantly lower tumorigenic capacity compared to cells from KCM tumors. Therefore, mice with KCKO tumors had a significant survival benefit compared to mice with KCM tumors. In vitro, KCKO cells have reduced proliferation and invasion and failed to respond to epidermal growth factor (EGF), platelet-derived growth factor (PDGF), or matrix metalloproteinase-9 (MMP9). Further, significantly fewer KCKO cells entered the G2M phase of the cell cycle compared to the KCM cells. Proteomics and western blotting analysis revealed a complete loss of cdc-25c expression, phosphorylation of MAPK, as well as a significant decrease in Nestin and Tubulin α-2 chain expression in KCKO cells. Treatment with a MEK1/2 inhibitor, U0126, abrogated the enhanced proliferation of the KCM cells but had minimal effect on KCKO cells, suggesting that MUC1 is necessary for MAPK activity and oncogenic signaling. This is the first study to utilize a Muc1-null PDA mouse in order to fully elucidate the oncogenic role of MUC1, both in vivo and in vitro. PMID:21558393

  20. B-1a transitional cells are phenotypically distinct and are lacking in mice deficient in IκBNS

    Science.gov (United States)

    Pedersen, Gabriel K.; Àdori, Monika; Khoenkhoen, Sharesta; Dosenovic, Pia; Beutler, Bruce; Karlsson Hedestam, Gunilla B.

    2014-01-01

    B-1 cells mediate early protection against infection by responding to T cell-independent (TI) antigens found on the surface of various pathogens. Mice with impaired expression of the atypical IκB protein IκBNS have markedly reduced frequencies of B-1 cells. We used a mouse strain with dysfunctional IκBNS derived from an N-ethyl-N-nitrosourea (ENU) screen, named bumble, to investigate the point in the development of B-1 cells where IκBNS is required. The presence of wild-type (wt) peritoneal cells in mixed wt/bumble chimeras did not rescue the development of bumble B-1 cells, but wt peritoneal cells transferred to bumble mice restored natural IgM levels and response to TI antigens. The bumble and wt mice displayed similar levels of fetal liver B-1 progenitors and splenic neonatal transitional B (TrB) cells, both of which were previously shown to give rise to B-1 cells. Interestingly, we found that a subset of wt neonatal TrB cells expressed common B-1a markers (TrB-1a) and that this cell population was absent in the bumble neonatal spleen. Sorted TrB-1a (CD93+IgM+CD5+) cells exclusively generated B-1a cells when adoptively transferred, whereas sorted CD93+IgM+CD5− cells gave rise to B-2 cells and, to a lesser extent, B-1b and B-1a cells. This study identifies a phenotypically distinct splenic population of TrB-1a cells and establishes that the development of B-1a cells is blocked before this stage in the absence of IκBNS. PMID:25228759

  1. Dwarfism in Mice Lacking Collagen-binding Integrins α2β1 and α11β1 Is Caused by Severely Diminished IGF-1 Levels*

    Science.gov (United States)

    Blumbach, Katrin; Niehoff, Anja; Belgardt, Bengt F.; Ehlen, Harald W. A.; Schmitz, Markus; Hallinger, Ralf; Schulz, Jan-Niklas; Brüning, Jens C.; Krieg, Thomas; Schubert, Markus; Gullberg, Donald; Eckes, Beate

    2012-01-01

    Mice with a combined deficiency in the α2β1 and α11β1 integrins lack the major receptors for collagen I. These mutants are born with inconspicuous differences in size but develop dwarfism within the first 4 weeks of life. Dwarfism correlates with shorter, less mineralized and functionally weaker bones that do not result from growth plate abnormalities or osteoblast dysfunction. Besides skeletal dwarfism, internal organs are correspondingly smaller, indicating proportional dwarfism and suggesting a systemic cause for the overall size reduction. In accordance with a critical role of insulin-like growth factor (IGF)-1 in growth control and bone mineralization, circulating IGF-1 levels in the sera of mice lacking either α2β1 or α11β1 or both integrins were sharply reduced by 39%, 64%, or 81% of normal levels, respectively. Low hepatic IGF-1 production resulted from diminished growth hormone-releasing hormone expression in the hypothalamus and, subsequently, reduced growth hormone expression in the pituitary glands of these mice. These findings point out a novel role of collagen-binding integrin receptors in the control of growth hormone/IGF-1-dependent biological activities. Thus, coupling hormone secretion to extracellular matrix signaling via integrins represents a novel concept in the control of endocrine homeostasis. PMID:22210772

  2. Dwarfism in mice lacking collagen-binding integrins α2β1 and α11β1 is caused by severely diminished IGF-1 levels.

    Science.gov (United States)

    Blumbach, Katrin; Niehoff, Anja; Belgardt, Bengt F; Ehlen, Harald W A; Schmitz, Markus; Hallinger, Ralf; Schulz, Jan-Niklas; Brüning, Jens C; Krieg, Thomas; Schubert, Markus; Gullberg, Donald; Eckes, Beate

    2012-02-24

    Mice with a combined deficiency in the α2β1 and α11β1 integrins lack the major receptors for collagen I. These mutants are born with inconspicuous differences in size but develop dwarfism within the first 4 weeks of life. Dwarfism correlates with shorter, less mineralized and functionally weaker bones that do not result from growth plate abnormalities or osteoblast dysfunction. Besides skeletal dwarfism, internal organs are correspondingly smaller, indicating proportional dwarfism and suggesting a systemic cause for the overall size reduction. In accordance with a critical role of insulin-like growth factor (IGF)-1 in growth control and bone mineralization, circulating IGF-1 levels in the sera of mice lacking either α2β1 or α11β1 or both integrins were sharply reduced by 39%, 64%, or 81% of normal levels, respectively. Low hepatic IGF-1 production resulted from diminished growth hormone-releasing hormone expression in the hypothalamus and, subsequently, reduced growth hormone expression in the pituitary glands of these mice. These findings point out a novel role of collagen-binding integrin receptors in the control of growth hormone/IGF-1-dependent biological activities. Thus, coupling hormone secretion to extracellular matrix signaling via integrins represents a novel concept in the control of endocrine homeostasis.

  3. Characterization of NGF, trkANGFR, and p75NTR in Retina of Mice Lacking Reelin Glycoprotein

    Directory of Open Access Journals (Sweden)

    Bijorn Omar Balzamino

    2014-01-01

    Full Text Available Both Reelin and Nerve Growth Factor (NGF exert crucial roles in retinal development. Retinogenesis is severely impaired in E-reeler mice, a model of Reelin deficiency showing specific Green Fluorescent Protein expression in Rod Bipolar Cells (RBCs. Since no data are available on Reelin and NGF cross-talk, NGF and trkANGFR/ p75NTR expression was investigated in retinas from E-reeler versus control mice, by confocal microscopy, Western blotting, and real time PCR analysis. A scattered increase of NGF protein was observed in the Ganglion Cell Layer and more pronounced in the Inner Nuclear Layer (INL. A selective increase of p75NTR was detected in most of RBCs and in other cell subtypes of INL. On the contrary, a slight trend towards a decrease was detected for trkANGFR, albeit not significant. Confocal data were validated by Western blot and real time PCR. Finally, the decreased trkANGFR/ p75NTR ratio, representative of p75NTR increase, significantly correlated with E-reeler versus E-control. These data indicate that NGF-trkANGFR/ p75NTR is affected in E-reeler retina and that p75NTR might represent the main NGF receptor involved in the process. This first NGF-trkANGFR/ p75NTR characterization suggests that E-reeler might be suitable for exploring Reelin-NGF cross-talk, representing an additional information source in those pathologies characterized by retinal degeneration.

  4. The Lack of Cytotoxic Effect and Radioadaptive Response in Splenocytes of Mice Exposed to Low Level Internal β-Particle Irradiation through Tritiated Drinking Water in Vivo

    Directory of Open Access Journals (Sweden)

    Matthew Flegal

    2013-12-01

    Full Text Available Health effects of tritium, a β-emitter and a by-product of the nuclear industry, is a subject of significant controversy. This mouse in vivo study was undertaken to monitor biological effects of low level tritium exposure. Mice were exposed to tritiated drinking water (HTO at 10 KBq/L, 1 MBq/L and 20 MBq/L concentrations for one month. The treatment did not result in a significant increase of apoptosis in splenocytes. To examine if this low level tritium exposure alters radiosensitivity, the extracted splenocytes were challenged in vitro with 2 Gy γ-radiation, and apoptotic responses at 1 and 24 h were measured. No alterations in the radiosensitivity were detected in cells from mice exposed to tritium compared to sham-treated mice. In contrast, low dose γ-irradiation at 20 or 100 mGy, resulted in a significant increase in resistance to apoptotic cell death after 2 Gy irradiation; an indication of the radioadaptive response. Overall, our data suggest that low concentrations of tritium given to mice as HTO in drinking water do not exert cytotoxic effect in splenocytes, nor do they change cellular sensitivity to additional high dose γ-radiation. The latter may be considered as the lack of a radioadaptive response, typically observed after low dose γ-irradiation.

  5. IARC use of oxidative stress as key mode of action characteristic for facilitating cancer classification: Glyphosate case example illustrating a lack of robustness in interpretative implementation.

    Science.gov (United States)

    Bus, James S

    2017-06-01

    The International Agency for Research on Cancer (IARC) has formulated 10 key characteristics of human carcinogens to incorporate mechanistic data into cancer hazard classifications. The analysis used glyphosate as a case example to examine the robustness of IARC's determination of oxidative stress as "strong" evidence supporting a plausible cancer mechanism in humans. The IARC analysis primarily relied on 14 human/mammalian studies; 19 non-mammalian studies were uninformative of human cancer given the broad spectrum of test species and extensive use of formulations and aquatic testing. The mammalian studies had substantial experimental limitations for informing cancer mechanism including use of: single doses and time points; cytotoxic/toxic test doses; tissues not identified as potential cancer targets; glyphosate formulations or mixtures; technically limited oxidative stress biomarkers. The doses were many orders of magnitude higher than human exposures determined in human biomonitoring studies. The glyphosate case example reveals that the IARC evaluation fell substantially short of "strong" supporting evidence of oxidative stress as a plausible human cancer mechanism, and suggests that other IARC monographs relying on the 10 key characteristics approach should be similarly examined for a lack of robust data integration fundamental to reasonable mode of action evaluations. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Plasma biomarkers of liver injury and inflammation demonstrate a lack of apoptosis during obstructive cholestasis in mice

    Energy Technology Data Exchange (ETDEWEB)

    Woolbright, Benjamin L. [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Antoine, Daniel J.; Jenkins, Rosalind E. [MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool (United Kingdom); Bajt, Mary Lynn [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Park, B. Kevin [MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool (United Kingdom); Jaeschke, Hartmut, E-mail: hjaeschke@kumc.edu [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States)

    2013-12-15

    Cholestasis is a pathological common component of numerous liver diseases that results in hepatotoxicity, inflammation, and cirrhosis when untreated. While the predominant hypothesis in cholestatic liver injury remains hepatocyte apoptosis due to direct toxicity of hydrophobic bile acid exposure, recent work suggests that the injury occurs through inflammatory necrosis. In order to resolve this controversy, we used novel plasma biomarkers to assess the mechanisms of cell death during early cholestatic liver injury. C57Bl/6 mice underwent bile duct ligation (BDL) for 6–72 h, or sham operation. Another group of mice were given D-galactosamine and endotoxin as a positive control for apoptosis and inflammatory necrosis. Plasma levels of full length cytokeratin-18 (FL-K18), microRNA-122 (miR-122) and high mobility group box-1 protein (HMGB1) increased progressively after BDL with peak levels observed after 48 h. These results indicate extensive cell necrosis after BDL, which is supported by the time course of plasma alanine aminotransferase activities and histology. In contrast, plasma caspase-3 activity, cleaved caspase-3 protein and caspase-cleaved cytokeratin-18 fragments (cK18) were not elevated at any time during BDL suggesting the absence of apoptosis. In contrast, all plasma biomarkers of necrosis and apoptosis were elevated 6 h after Gal/End treatment. In addition, acetylated HMGB1, a marker for macrophage and monocyte activation, was increased as early as 12 h but mainly at 48–72 h. However, progressive neutrophil accumulation in the area of necrosis started at 6 h after BDL. In conclusion, these data indicate that early cholestatic liver injury in mice is an inflammatory event, and occurs through necrosis with little evidence for apoptosis. - Highlights: • The mechanism of cell death during cholestasis remains a controversial topic. • Plasma biomarkers offer new insight into cell death after bile duct ligation. • Cytokeratin-18, microRNA-122 and HMGB

  7. Plasma biomarkers of liver injury and inflammation demonstrate a lack of apoptosis during obstructive cholestasis in mice

    International Nuclear Information System (INIS)

    Woolbright, Benjamin L.; Antoine, Daniel J.; Jenkins, Rosalind E.; Bajt, Mary Lynn; Park, B. Kevin; Jaeschke, Hartmut

    2013-01-01

    Cholestasis is a pathological common component of numerous liver diseases that results in hepatotoxicity, inflammation, and cirrhosis when untreated. While the predominant hypothesis in cholestatic liver injury remains hepatocyte apoptosis due to direct toxicity of hydrophobic bile acid exposure, recent work suggests that the injury occurs through inflammatory necrosis. In order to resolve this controversy, we used novel plasma biomarkers to assess the mechanisms of cell death during early cholestatic liver injury. C57Bl/6 mice underwent bile duct ligation (BDL) for 6–72 h, or sham operation. Another group of mice were given D-galactosamine and endotoxin as a positive control for apoptosis and inflammatory necrosis. Plasma levels of full length cytokeratin-18 (FL-K18), microRNA-122 (miR-122) and high mobility group box-1 protein (HMGB1) increased progressively after BDL with peak levels observed after 48 h. These results indicate extensive cell necrosis after BDL, which is supported by the time course of plasma alanine aminotransferase activities and histology. In contrast, plasma caspase-3 activity, cleaved caspase-3 protein and caspase-cleaved cytokeratin-18 fragments (cK18) were not elevated at any time during BDL suggesting the absence of apoptosis. In contrast, all plasma biomarkers of necrosis and apoptosis were elevated 6 h after Gal/End treatment. In addition, acetylated HMGB1, a marker for macrophage and monocyte activation, was increased as early as 12 h but mainly at 48–72 h. However, progressive neutrophil accumulation in the area of necrosis started at 6 h after BDL. In conclusion, these data indicate that early cholestatic liver injury in mice is an inflammatory event, and occurs through necrosis with little evidence for apoptosis. - Highlights: • The mechanism of cell death during cholestasis remains a controversial topic. • Plasma biomarkers offer new insight into cell death after bile duct ligation. • Cytokeratin-18, microRNA-122 and HMGB

  8. Normal hematopoiesis and lack of β-catenin activation in osteoblasts of patients and mice harboring Lrp5 gain-of-function mutations.

    Science.gov (United States)

    Galán-Díez, Marta; Isa, Adiba; Ponzetti, Marco; Nielsen, Morten Frost; Kassem, Moustapha; Kousteni, Stavroula

    2016-03-01

    Osteoblasts are emerging regulators of myeloid malignancies since genetic alterations in them, such as constitutive activation of β-catenin, instigate their appearance. The LDL receptor-related protein 5 (LRP5), initially proposed to be a co-receptor for Wnt proteins, in fact favors bone formation by suppressing gut-serotonin synthesis. This function of Lrp5 occurring in the gut is independent of β-catenin activation in osteoblasts. However, it is unknown whether Lrp5 can act directly in osteoblast to influence other functions that require β-catenin signaling, particularly, the deregulation of hematopoiesis and leukemogenic properties of β-catenin activation in osteoblasts, that lead to development of acute myeloid leukemia (AML). Using mice with gain-of-function (GOF) Lrp5 alleles (Lrp5(A214V)) that recapitulate the human high bone mass (HBM) phenotype, as well as patients with the T253I HBM Lrp5 mutation, we show here that Lrp5 GOF mutations in both humans and mice do not activate β-catenin signaling in osteoblasts. Consistent with a lack of β-catenin activation in their osteoblasts, Lrp5(A214V) mice have normal trilinear hematopoiesis. In contrast to leukemic mice with constitutive activation of β-catenin in osteoblasts (Ctnnb1(CAosb)), accumulation of early myeloid progenitors, a characteristic of AML, myeloid-blasts in blood, and segmented neutrophils or dysplastic megakaryocytes in the bone marrow, are not observed in Lrp5(A214V) mice. Likewise, peripheral blood count analysis in HBM patients showed normal hematopoiesis, normal percentage of myeloid cells, and lack of anemia. We conclude that Lrp5 GOF mutations do not activate β-catenin signaling in osteoblasts. As a result, myeloid lineage differentiation is normal in HBM patients and mice. This article is part of a Special Issue entitled: Tumor Microenvironment Regulation of Cancer Cell Survival, Metastasis, Inflammation, and Immune Surveillance edited by Peter Ruvolo and Gregg L. Semenza. Published

  9. Altered Hematopoiesis in Mice Lacking DNA Polymerase μ Is Due to Inefficient Double-Strand Break Repair

    Science.gov (United States)

    Lucas, Daniel; Escudero, Beatriz; Ligos, José Manuel; Segovia, Jose Carlos; Estrada, Juan Camilo; Terrados, Gloria; Blanco, Luis; Samper, Enrique; Bernad, Antonio

    2009-01-01

    Polymerase mu (Polμ) is an error-prone, DNA-directed DNA polymerase that participates in non-homologous end-joining (NHEJ) repair. In vivo, Polμ deficiency results in impaired Vκ-Jκ recombination and altered somatic hypermutation and centroblast development. In Polμ−/− mice, hematopoietic development was defective in several peripheral and bone marrow (BM) cell populations, with about a 40% decrease in BM cell number that affected several hematopoietic lineages. Hematopoietic progenitors were reduced both in number and in expansion potential. The observed phenotype correlates with a reduced efficiency in DNA double-strand break (DSB) repair in hematopoietic tissue. Whole-body γ-irradiation revealed that Polμ also plays a role in DSB repair in non-hematopoietic tissues. Our results show that Polμ function is required for physiological hematopoietic development with an important role in maintaining early progenitor cell homeostasis and genetic stability in hematopoietic and non-hematopoietic tissues. PMID:19229323

  10. Niemann-Pick C1-deficient mice lacking sterol O-acyltransferase 2 have less hepatic cholesterol entrapment and improved liver function.

    Science.gov (United States)

    Lopez, Adam M; Jones, Ryan Dale; Repa, Joyce J; Turley, Stephen D

    2018-06-07

    Cholesteryl esters are generated at multiple sites in the body by sterol O-acyltransferase 1 (SOAT1) or sterol O-acyltransferase 2 (SOAT2) in various cell types, and lecithin cholesterol acyltransferase (LCAT) in plasma. Esterified cholesterol (EC) and triacylglycerol (TAG) contained in lipoproteins cleared from the circulation via receptor-mediated or bulk-phase endocytosis are hydrolyzed by lysosomal acid lipase (LAL) within the late endosomal/lysosomal (E/L) compartment. Then, through the successive actions of Niemann-Pick C2 (NPC2) and Niemann-Pick C1 (NPC1), unesterified cholesterol (UC) is exported from the E/L compartment to the cytosol. Mutations in either NPC1 or NPC2 lead to continuing entrapment of UC in all organs, resulting in multisystem disease which includes hepatic dysfunction and in some cases liver failure. These studies investigated primarily whether elimination of SOAT2 in NPC1-deficient mice impacted hepatic UC sequestration, inflammation, and transaminase activities. Measurements were made in 7 wk-old mice fed a low-cholesterol chow diet or one enriched with cholesterol starting 2 wk before study. In the chow-fed mice, NPC1:SOAT2 double knockouts, compared to their littermates lacking only NPC1, had 20% less liver mass, 28% lower hepatic UC concentrations, and plasma ALT and AST activities that were decreased by 48% and 36%, respectively. mRNA expression levels for several markers of inflammation were all significantly lower in the NPC1 mutants lacking SOAT2. The existence of a new class of potent and selective SOAT2 inhibitors provides an opportunity for exploring if suppression of this enzyme could potentially become an adjunctive therapy for liver disease in NPC1 deficiency.

  11. Gut microbiota is a key modulator of insulin resistance in TLR 2 knockout mice.

    Directory of Open Access Journals (Sweden)

    Andréa M Caricilli

    2011-12-01

    Full Text Available Environmental factors and host genetics interact to control the gut microbiota, which may have a role in the development of obesity and insulin resistance. TLR2-deficient mice, under germ-free conditions, are protected from diet-induced insulin resistance. It is possible that the presence of gut microbiota could reverse the phenotype of an animal, inducing insulin resistance in an animal genetically determined to have increased insulin sensitivity, such as the TLR2 KO mice. In the present study, we investigated the influence of gut microbiota on metabolic parameters, glucose tolerance, insulin sensitivity, and signaling of TLR2-deficient mice. We investigated the gut microbiota (by metagenomics, the metabolic characteristics, and insulin signaling in TLR2 knockout (KO mice in a non-germ free facility. Results showed that the loss of TLR2 in conventionalized mice results in a phenotype reminiscent of metabolic syndrome, characterized by differences in the gut microbiota, with a 3-fold increase in Firmicutes and a slight increase in Bacteroidetes compared with controls. These changes in gut microbiota were accompanied by an increase in LPS absorption, subclinical inflammation, insulin resistance, glucose intolerance, and later, obesity. In addition, this sequence of events was reproduced in WT mice by microbiota transplantation and was also reversed by antibiotics. At the molecular level the mechanism was unique, with activation of TLR4 associated with ER stress and JNK activation, but no activation of the IKKβ-IκB-NFκB pathway. Our data also showed that in TLR2 KO mice there was a reduction in regulatory T cell in visceral fat, suggesting that this modulation may also contribute to the insulin resistance of these animals. Our results emphasize the role of microbiota in the complex network of molecular and cellular interactions that link genotype to phenotype and have potential implications for common human disorders involving obesity, diabetes

  12. Proportionate Dwarfism in Mice Lacking Heterochromatin Protein 1 Binding Protein 3 (HP1BP3) Is Associated With Alterations in the Endocrine IGF-1 Pathway.

    Science.gov (United States)

    Garfinkel, Benjamin P; Arad, Shiri; Le, Phuong T; Bustin, Michael; Rosen, Clifford J; Gabet, Yankel; Orly, Joseph

    2015-12-01

    Heterochromatin protein 1 binding protein 3 (HP1BP3) is a recently described histone H1-related protein with roles in chromatin structure and transcriptional regulation. To explore the potential physiological role of HP1BP3, we have previously described an Hp1bp3(-/-) mouse model with reduced postnatal viability and growth. We now find that these mice are proportionate dwarfs, with reduction in body weight, body length, and organ weight. In addition to their small size, microcomputed tomography analysis showed that Hp1bp3(-/-) mice present a dramatic impairment of their bone development and structure. By 3 weeks of age, mice of both sexes have severely impaired cortical and trabecular bone, and these defects persist into adulthood and beyond. Primary cultures of both osteoblasts and osteoclasts from Hp1bp3(-/-) bone marrow and splenocytes, respectively, showed normal differentiation and function, strongly suggesting that the impaired bone accrual is due to noncell autonomous systemic cues in vivo. One major endocrine pathway regulating both body growth and bone acquisition is the IGF regulatory system, composed of IGF-1, the IGF receptors, and the IGF-binding proteins (IGFBPs). At 3 weeks of age, Hp1bp3(-/-) mice exhibited a 60% reduction in circulating IGF-1 and a 4-fold increase in the levels of IGFBP-1 and IGFBP-2. These alterations were reflected in similar changes in the hepatic transcripts of the Igf1, Igfbp1, and Igfbp2 genes. Collectively, these results suggest that HP1BP3 plays a key role in normal growth and bone development by regulating transcription of endocrine IGF-1 components.

  13. Severe Extracellular Matrix Abnormalities and Chondrodysplasia in Mice Lacking Collagen Prolyl 4-Hydroxylase Isoenzyme II in Combination with a Reduced Amount of Isoenzyme I.

    Science.gov (United States)

    Aro, Ellinoora; Salo, Antti M; Khatri, Richa; Finnilä, Mikko; Miinalainen, Ilkka; Sormunen, Raija; Pakkanen, Outi; Holster, Tiina; Soininen, Raija; Prein, Carina; Clausen-Schaumann, Hauke; Aszódi, Attila; Tuukkanen, Juha; Kivirikko, Kari I; Schipani, Ernestina; Myllyharju, Johanna

    2015-07-03

    Collagen prolyl 4-hydroxylases (C-P4H-I, C-P4H-II, and C-P4H-III) catalyze formation of 4-hydroxyproline residues required to form triple-helical collagen molecules. Vertebrate C-P4Hs are α2β2 tetramers differing in their catalytic α subunits. C-P4H-I is the major isoenzyme in most cells, and inactivation of its catalytic subunit (P4ha1(-/-)) leads to embryonic lethality in mouse, whereas P4ha1(+/-) mice have no abnormalities. To study the role of C-P4H-II, which predominates in chondrocytes, we generated P4ha2(-/-) mice. Surprisingly, they had no apparent phenotypic abnormalities. To assess possible functional complementarity, we established P4ha1(+/-);P4ha2(-/-) mice. They were smaller than their littermates, had moderate chondrodysplasia, and developed kyphosis. A transient inner cell death phenotype was detected in their developing growth plates. The columnar arrangement of proliferative chondrocytes was impaired, the amount of 4-hydroxyproline and the Tm of collagen II were reduced, and the extracellular matrix was softer in the growth plates of newborn P4ha1(+/-);P4ha2(-/-) mice. No signs of uncompensated ER stress were detected in the mutant growth plate chondrocytes. Some of these defects were also found in P4ha2(-/-) mice, although in a much milder form. Our data show that C-P4H-I can to a large extent compensate for the lack of C-P4H-II in proper endochondral bone development, but their combined partial and complete inactivation, respectively, leads to biomechanically impaired extracellular matrix, moderate chondrodysplasia, and kyphosis. Our mouse data suggest that inactivating mutations in human P4HA2 are not likely to lead to skeletal disorders, and a simultaneous decrease in P4HA1 function would most probably be required to generate such a disease phenotype. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. An overview of mice models: a key for understanding subtypes of mania

    Directory of Open Access Journals (Sweden)

    Jorge Mauricio Cuartas Arias

    2016-09-01

    Full Text Available Animal models have been broadly used in the study of pathophysiology and molecular and neurochemical pathways in neuropsychiatric diseases. Different approaches have used both consanguineous and non-consanguineous mice models to model behavioral patterns associated with the maniac spectrum. However, the disadvantages of validating clinical and experimental protocols have hindered the replication of these studies. In this article, the advantages and disadvantages of using consanguineous lines and non-consanguineous stocks in mice animal models for the study of mania and its subtypes are discussed. Additionally, new experimental alternatives to advance the pathogenesis and pharmacogenetics of mania using animal models are proposed and analyzed.

  15. Not So Giants: Mice Lacking Both Somatostatin and Cortistatin Have High GH Levels but Show No Changes in Growth Rate or IGF-1 Levels.

    Science.gov (United States)

    Pedraza-Arévalo, S; Córdoba-Chacón, J; Pozo-Salas, A I; L-López, F; de Lecea, L; Gahete, M D; Castaño, J P; Luque, R M

    2015-06-01

    Somatostatin (SST) and cortistatin (CORT) are two highly related neuropeptides involved in the regulation of various endocrine secretions. In particular, SST and CORT are two primary negative regulators of GH secretion. Consequently, single SST or CORT knockout mice exhibit elevated GH levels; however, this does not lead to increased IGF-1 levels or somatic growth. This apparent lack of correspondence has been suggested to result from compensatory mechanisms between both peptides. To test this hypothesis, in this study we explored, for the first time, the consequences of simultaneously deleting endogenous SST and CORT by generating a double SST/CORT knockout mouse model and exploring its endocrine and metabolic phenotype. Our results demonstrate that simultaneous deletion of SST and CORT induced a drastic elevation of endogenous GH levels, which, surprisingly, did not lead to changes in growth rate or IGF-1 levels, suggesting the existence of additional factors/systems that, in the absence of endogenous SST and CORT, could counteract GH actions. Notably, elevation in circulating GH levels were not accompanied by changes in pituitary GH expression or by alterations in the expression of its main regulators (GHRH and ghrelin) or their receptors (GHRH receptor, GHS receptor, or SST/CORT receptors) at the hypothalamic or pituitary level. However, although double-SST/CORT knockout male mice exhibited normal glucose and insulin levels, they had improved insulin sensitivity compared with the control mice. Therefore, these results suggest the existence of an intricate interplay among the known (SST/CORT), and likely unknown, inhibitory components of the GH/IGF-1 axis to regulate somatic growth and glucose/insulin homeostasis.

  16. Defective cancellous bone structure and abnormal response to PTH in cortical bone of mice lacking Cx43 cytoplasmic C-terminus domain

    Science.gov (United States)

    Pacheco-Costa, Rafael; Davis, Hannah M.; Sorenson, Chad; Hon, Mary C.; Hassan, Iraj; Reginato, Rejane D.; Allen, Matthew R.; Bellido, Teresita; Plotkin, Lilian I.

    2015-01-01

    Connexin43 (Cx43) forms gap junction channels and hemichannels that allow the communication among osteocytes, osteoblasts, and osteoclasts. Cx43 carboxy-terminal (CT) domain regulates channel opening and intracellular signaling by acting as a scaffold for structural and signaling proteins. To determine the role of Cx43 CT domain in bone, mice in which one allele of full length Cx43 was replaced by a mutant lacking the CT domain (Cx43ΔCT/fl) were studied. Cx43ΔCT/fl mice exhibit lower cancellous bone volume but higher cortical thickness than Cx43fl/fl controls, indicating that the CT domain is involved in normal cancellous bone gain but opposes cortical bone acquisition. Further, Cx43ΔCT is able to exert the functions of full length osteocytic Cx43 on cortical bone geometry and mechanical properties, demonstrating that domains other than the CT are responsible for Cx43 function in cortical bone. In addition, parathyroid hormone (PTH) failed to increase endocortical bone formation or energy to failure, a mechanical property that indicates resistance to fracture, in cortical bone in Cx43ΔCT mice with or without osteocytic full length Cx43. On the other hand, bone mass and bone formation markers were increased by the hormone in all mouse models, regardless of whether full length or Cx43ΔCT were or not expressed. We conclude that Cx43 CT domain is involved in proper bone acquisition; and that Cx43 expression in osteocytes is dispensable for some but not all PTH anabolic actions. PMID:26409319

  17. Premature Aging Phenotype in Mice Lacking High-Affinity Nicotinic Receptors: Region-Specific Changes in Layer V Pyramidal Cell Morphology.

    Science.gov (United States)

    Konsolaki, Eleni; Skaliora, Irini

    2015-08-01

    The mechanisms by which aging leads to alterations in brain structure and cognitive deficits are unclear. Α deficient cholinergic system has been implicated as one of the main factors that could confer a heightened vulnerability to the aging process, and mice lacking high-affinity nicotinic receptors (β2(-/-)) have been proposed as an animal model of accelerated cognitive aging. To date, however, age-related changes in neuronal microanatomy have not been studied in these mice. In the present study, we examine the neuronal structure of yellow fluorescent protein (YFP(+)) layer V neurons in 2 cytoarchitectonically distinct cortical regions in wild-type (WT) and β2(-/-) animals. We find that (1) substantial morphological differences exist between YFP(+) cells of the anterior cingulate cortex (ACC) and primary visual cortex (V1), in both genotypes; (2) in WT animals, ACC cells are more susceptible to aging compared with cells in V1; and (3) β2 deletion is associated with a regionally and temporally specific increase in vulnerability to aging. ACC cells exhibit a prematurely aged phenotype already at 4-6 months, whereas V1 cells are spared in adulthood but strongly affected in old animals. Collectively, our data reveal region-specific synergistic effects of aging and genotype and suggest distinct vulnerabilities in V1 and ACC neurons. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. A lack of immune system genes causes loss in high frequency hearing but does not disrupt cochlear synapse maturation in mice.

    Science.gov (United States)

    Calton, Melissa A; Lee, Dasom; Sundaresan, Srividya; Mendus, Diana; Leu, Rose; Wangsawihardja, Felix; Johnson, Kenneth R; Mustapha, Mirna

    2014-01-01

    Early cochlear development is marked by an exuberant outgrowth of neurites that innervate multiple targets. The establishment of mature cochlear neural circuits is, however, dependent on the pruning of inappropriate axons and synaptic connections. Such refinement also occurs in the central nervous system (CNS), and recently, genes ordinarily associated with immune and inflammatory processes have been shown to play roles in synaptic pruning in the brain. These molecules include the major histocompatibility complex class I (MHCI) genes, H2-K(b) and H2-D(b), and the complement cascade gene, C1qa. Since the mechanisms involved in synaptic refinement in the cochlea are not well understood, we investigated whether these immune system genes may be involved in this process and whether they are required for normal hearing function. Here we report that these genes are not necessary for normal synapse formation and refinement in the mouse cochlea. We further demonstrate that C1qa expression is not necessary for normal hearing in mice but the lack of expression of H2-K(b) and H2-D(b) causes hearing impairment. These data underscore the importance of the highly polymorphic family of MHCI genes in hearing in mice and also suggest that factors and mechanisms regulating synaptic refinement in the cochlea may be distinct from those in the CNS.

  19. Dietary antioxidants prevent age-related retinal pigment epithelium actin damage and blindness in mice lacking αvβ5 integrin

    Science.gov (United States)

    Yu, Chia-Chia; Nandrot, Emeline F.; Dun, Ying; Finnemann, Silvia C.

    2011-01-01

    In the aging human eye, oxidative damage and accumulation of pro-oxidant lysosomal lipofuscin cause functional decline of the retinal pigment epithelium (RPE), which contributes to age-related macular degeneration. In mice with an RPE-specific phagocytosis defect due to lack of αvβ5 integrin receptors, RPE accumulation of lipofuscin suggests that the age-related blindness we previously described in this model may also result from oxidative stress. Cellular and molecular targets of oxidative stress in the eye remain poorly understood. Here we identify actin among 4-hydroxynonenal (HNE) adducts formed specifically in β5−/− RPE but not neural retina with age. HNE modification directly correlated with loss of resistance of actin to detergent extraction, suggesting cytoskeletal damage in aging RPE. Dietary enrichment with natural antioxidants grapes or marigold extract containing macular pigments lutein/zeaxanthin was sufficient to prevent HNE-adduct formation, actin solubility, lipofuscin accumulation, and age-related cone and rod photoreceptor dysfunction in β5−/− mice. Acute generation of HNE-adducts directly destabilized actin but not tubulin cytoskeletal elements of RPE cells. These findings identify destabilization of the actin cytoskeleton as a consequence of physiological, sublethal oxidative burden of RPE cells in vivo that is associated with age-related blindness and that can be prevented by consuming an antioxidant-rich diet. PMID:22178979

  20. Key Inflammatory Processes in Human NASH Are Reflected in Ldlr-/-.Leiden Mice: A Translational Gene Profiling Study.

    Science.gov (United States)

    Morrison, Martine C; Kleemann, Robert; van Koppen, Arianne; Hanemaaijer, Roeland; Verschuren, Lars

    2018-01-01

    Introduction: It is generally accepted that metabolic inflammation in the liver is an important driver of disease progression in NASH and associated matrix remodeling/fibrosis. However, the exact molecular inflammatory mechanisms are poorly defined in human studies. Investigation of key pathogenic mechanisms requires the use of pre-clinical models, for instance for time-resolved studies. Such models must reflect molecular disease processes of importance in patients. Herein we characterized inflammation in NASH patients on the molecular level by transcriptomics and investigated whether key human disease pathways can be recapitulated experimentally in Ldlr -/- .Leiden mice, an established pre-clinical model of NASH. Methods: Human molecular inflammatory processes were defined using a publicly available NASH gene expression profiling dataset (GSE48452) allowing the comparison of biopsy-confirmed NASH patients with normal controls. Gene profiling data from high-fat diet (HFD)-fed Ldlr -/- .Leiden mice (GSE109345) were used for assessment of the translational value of these mice. Results: In human NASH livers, we observed regulation of 65 canonical pathways of which the majority was involved in inflammation (32%), lipid metabolism (16%), and extracellular matrix/remodeling (12%). A similar distribution of pathways across these categories, inflammation (36%), lipid metabolism (24%) and extracellular matrix/remodeling (8%) was observed in HFD-fed Ldlr -/- .Leiden mice. Detailed evaluation of these pathways revealed that a substantial proportion (11 out of 13) of human NASH inflammatory pathways was recapitulated in Ldlr -/- .Leiden mice. Furthermore, the activation state of identified master regulators of inflammation (i.e., specific transcription factors, cytokines, and growth factors) in human NASH was largely reflected in Ldlr -/- .Leiden mice, further substantiating its translational value. Conclusion: Human NASH is characterized by upregulation of specific

  1. Key Inflammatory Processes in Human NASH Are Reflected in Ldlr−/−.Leiden Mice: A Translational Gene Profiling Study

    Science.gov (United States)

    Morrison, Martine C.; Kleemann, Robert; van Koppen, Arianne; Hanemaaijer, Roeland; Verschuren, Lars

    2018-01-01

    Introduction: It is generally accepted that metabolic inflammation in the liver is an important driver of disease progression in NASH and associated matrix remodeling/fibrosis. However, the exact molecular inflammatory mechanisms are poorly defined in human studies. Investigation of key pathogenic mechanisms requires the use of pre-clinical models, for instance for time-resolved studies. Such models must reflect molecular disease processes of importance in patients. Herein we characterized inflammation in NASH patients on the molecular level by transcriptomics and investigated whether key human disease pathways can be recapitulated experimentally in Ldlr−/−.Leiden mice, an established pre-clinical model of NASH. Methods: Human molecular inflammatory processes were defined using a publicly available NASH gene expression profiling dataset (GSE48452) allowing the comparison of biopsy-confirmed NASH patients with normal controls. Gene profiling data from high-fat diet (HFD)-fed Ldlr−/−.Leiden mice (GSE109345) were used for assessment of the translational value of these mice. Results: In human NASH livers, we observed regulation of 65 canonical pathways of which the majority was involved in inflammation (32%), lipid metabolism (16%), and extracellular matrix/remodeling (12%). A similar distribution of pathways across these categories, inflammation (36%), lipid metabolism (24%) and extracellular matrix/remodeling (8%) was observed in HFD-fed Ldlr−/−.Leiden mice. Detailed evaluation of these pathways revealed that a substantial proportion (11 out of 13) of human NASH inflammatory pathways was recapitulated in Ldlr−/−.Leiden mice. Furthermore, the activation state of identified master regulators of inflammation (i.e., specific transcription factors, cytokines, and growth factors) in human NASH was largely reflected in Ldlr−/−.Leiden mice, further substantiating its translational value. Conclusion: Human NASH is characterized by upregulation of specific

  2. Study in Mice Links Key Signaling Molecule to Underlying Cause of Osteogenesis Imperfecta

    Science.gov (United States)

    ... Links Key Signaling Molecule to Underlying Cause of Osteogenesis Imperfecta By Kirstie Saltsman, Ph.D. | September 5, 2014 Vertebra from a mouse engineered to have osteogenesis imperfecta (upper panel). Following eight weeks of treatment with ...

  3. Hyperglycemia and xerostomia are key determinants of tooth decay in type 1 diabetic mice.

    Science.gov (United States)

    Yeh, Chih-Ko; Harris, Stephen E; Mohan, Sumathy; Horn, Diane; Fajardo, Roberto; Chun, Yong-Hee Patricia; Jorgensen, James; Macdougall, Mary; Abboud-Werner, Sherry

    2012-06-01

    Insulin-dependent type 1 diabetes mellitus (DM) and oral diseases are closely interrelated. Poor metabolic control in diabetics is associated with a high risk of gingivitis, periodontitis and tooth loss. Salivary flow declines in diabetics and patients suffer from xerostomia. Reduced saliva predisposes to enamel hypomineralization and caries formation; however, the mechanisms that initiate and lead to progression of tooth decay and periodontitis in type 1 DM have not been explored. To address this issue, we analyzed tooth morphology in Akita ⁻/⁻ mice that harbor a point mutation in the Ins2 insulin gene, which leads to progressive hyperglycemia. Mandibles from Akita ⁻/⁻ and wild-type littermates were analyzed by microCT, scanning EM and histology; teeth were examined for amelogenin (Amel) and ameloblastin (Ambn) expression. Mice were injected with pilocarpine to assess saliva production. As hyperglycemia may alter pulp repair, the effect of high glucose levels on the proliferation/differentiation of cultured MD10-F2 pulp cells was also analyzed. Results showed that Akita ⁻/⁻ mice at 6 weeks of age showed chalky white incisors that correlated with marked hyperglycemia and impaired saliva production. MicroCT of Akita ⁻/⁻ teeth revealed excessive enamel wearing and hypomineralization; immunostaining for Amel and Ambn was decreased. A striking feature was invasion of dentinal tubules with Streptococcus mitis and microabcesses that originated in the coronal pulp and progressed to pulp necrosis and periapical periodontitis. High levels of glucose also inhibited MD10-F2 cell proliferation and differentiation. Our findings provide the first evidence that hyperglycemia in combination with reduced saliva in a model of type1 DM leads to decreased enamel mineralization/matrix proteins and predisposes to excessive wearing and decay. Importantly, hyperglycemia adversely affects enamel matrix proteins and pulp repair. Early detection and treatment of hyperglycemia

  4. Novel Hg2+-Induced Nephropathy in Rats and Mice Lacking Mrp2: Evidence of Axial Heterogeneity in the Handling of Hg2+ Along the Proximal Tubule

    Science.gov (United States)

    Zalups, Rudolfs K.; Joshee, Lucy; Bridges, Christy C.

    2014-01-01

    The role of the multi-resistance protein 2 (Mrp2) in the nephropathy induced by inorganic mercuric mercury (Hg2+) was studied in rats (TR−) and mice (Mrp2−/−), which lack functional Mrp2, and control animals. Animals were exposed to nephrotoxic doses of HgCl2. Forty-eight or 24 hours after exposure, tissues were harvested and analyzed for Hg content and markers of injury. Histological analyses revealed that the proximal tubular segments affected pathologically by Hg2+ were significantly different between Mrp2-deficient animals and controls. In the absence of Mrp2, cellular injury localized almost exclusively in proximal tubular segments in the subcapsular (S1) to midcortical regions (early S2) of the kidney. In control animals, cellular death occurred mainly in the proximal tubular segments in the inner cortex (late S2) and outer stripe of the outer medulla (S3). These differences in renal pathology indicate that axial heterogeneity exists along the proximal tubule with respect to how mercuric ions are handled. Total renal and hepatic accumulation of mercury was also greater in animals lacking Mrp2 than in controls, indicating that Mrp2 normally plays a significant role in eliminating mercuric ions from within proximal tubular cells and hepatocytes. Analyses of plasma creatinine, BUN, and renal expression of Kim-1 and Ngal tend to support the severity of the nephropathies detected histologically. Collectively, our findings indicate that a fraction of mercuric ions is normally secreted by Mrp2 in early portions of proximal tubules into the lumen and then is absorbed downstream in straight portions, where mercuric species typically induce toxic effects. PMID:25145654

  5. Thioredoxin plays a key role in retinal neuropathy prior to endothelial damage in diabetic mice

    OpenAIRE

    Ren, Xiang; Li, Chen; Liu, Junli; Zhang, Chenghong; Fu, Yuzhen; Wang, Nina; Ma, Haiying; Lu, Heyuan; Kong, Hui; Kong, Li

    2017-01-01

    Diabetes is a chronic metabolic syndrome that results in changes in carbohydrate, lipid and protein metabolism. With diabetes for a long time, it increases the risk of diabetic retinopathy (DR) and long-term morbidity and mortality. Moreover, emerging evidence suggests that neuron damage occurs earlier than microvascular complications in DR patients, but the underlying mechanism is unclear. We investigated diabetes-induced retinal neuropathy and elucidated key molecular events to identify new...

  6. Gasdermin D plays a key role as a pyroptosis executor of non-alcoholic steatohepatitis in humans and mice.

    Science.gov (United States)

    Xu, Bing; Jiang, Mingzuo; Chu, Yi; Wang, Weijie; Chen, Di; Li, Xiaowei; Zhang, Zhao; Zhang, Di; Fan, Daiming; Nie, Yongzhan; Shao, Feng; Wu, Kaichun; Liang, Jie

    2017-12-20

    Gasdermin D (GSDMD)-executed programmed necrosis is involved in inflammation and controls interleukin (IL)-1β release. However, the role of GSDMD in non-alcoholic steatohepatitis (NASH) remains unclear. We investigated the role of GSDMD in the pathogenesis of steatohepatitis. Human liver tissues from patients with non-alcoholic fatty liver disease (NAFLD) and control individuals were obtained to evaluate GSDMD expression. Gsdmd knockout (Gsdmd -/- ) mice, obese db/db mice and their wild-type (WT) littermates were fed with methionine-choline deficient (MCD) or control diet to induce steatohepatitis. The Gsdmd -/- and WT mice were also used in a high-fat diet (HFD)-induced NAFLD model. In addition, Alb-Cre mice were administered an adeno-associated virus (AAV) vector that expressed the gasdermin-N domain (AAV9-FLEX-GSDMD-N) and were fed with either MCD or control diet for 10 days. GSDMD and its pyroptosis-inducing fragment GSDMD-N were upregulated in liver tissues of human NAFLD/NASH. Importantly, hepatic GSDMD-N protein levels were significantly higher in human NASH and correlated with the NAFLD activity score and fibrosis. GSDMD-N remained a potential biomarker for the diagnosis of NASH. MCD-fed Gsdmd -/- mice exhibit decreased severity of steatosis and inflammation compared with WT littermates. GSDMD was associated with the secretion of pro-inflammatory cytokines (IL-1β, TNF-α, and MCP-1 [CCL2]) and persistent activation of the NF-ĸB signaling pathway. Gsdmd -/- mice showed lower steatosis, mainly because of reduced expression of the lipogenic gene Srebp1c (Srebf1) and upregulated expression of lipolytic genes, including Pparα, Aco [Klk15], Lcad [Acadl], Cyp4a10 and Cyp4a14. Alb-Cre mice administered with AAV9-FLEX-GSDMD-N showed significantly aggravated steatohepatitis when fed with MCD diet. As an executor of pyroptosis, GSDMD plays a key role in the pathogenesis of steatohepatitis, by controlling cytokine secretion, NF-ĸB activation, and lipogenesis

  7. Male mice that lack the G-protein-coupled receptor GPR41 have low energy expenditure and increased body fat content.

    Science.gov (United States)

    Bellahcene, Mohamed; O'Dowd, Jacqueline F; Wargent, Ed T; Zaibi, Mohamed S; Hislop, David C; Ngala, Robert A; Smith, David M; Cawthorne, Michael A; Stocker, Claire J; Arch, Jonathan R S

    2013-05-28

    SCFA are produced in the gut by bacterial fermentation of undigested carbohydrates. Activation of the Gαi-protein-coupled receptor GPR41 by SCFA in β-cells and sympathetic ganglia inhibits insulin secretion and increases sympathetic outflow, respectively. A possible role in stimulating leptin secretion by adipocytes is disputed. In the present study, we investigated energy balance and glucose homoeostasis in GPR41 knockout mice fed on a standard low-fat or a high-fat diet. When fed on the low-fat diet, body fat mass was raised and glucose tolerance was impaired in male but not female knockout mice compared to wild-type mice. Soleus muscle and heart weights were reduced in the male mice, but total body lean mass was unchanged. When fed on the high-fat diet, body fat mass was raised in male but not female GPR41 knockout mice, but by no more in the males than when they were fed on the low-fat diet. Body lean mass and energy expenditure were reduced in male mice but not in female knockout mice. These results suggest that the absence of GPR41 increases body fat content in male mice. Gut-derived SCFA may raise energy expenditure and help to protect against obesity by activating GPR41.

  8. Deficient CD4+ T cell priming and regression of CD8+ T cell functionality in virus-infected mice lacking a normal B cell compartment

    DEFF Research Database (Denmark)

    Christensen, Jan Pravsgaard; Kauffmann, Susanne Ørding; Thomsen, Allan Randrup

    2003-01-01

    of virus-specific CD4(+) T cells was markedly impaired in B(-/-) mice infected with either virus strain. Thus, our results indicate that B cells play an important role in antiviral immunity not only as Ab producers, but also in promoting an optimal and sustained T cell response. The T cell defects......In this study, we investigate the state of T cell-mediated immunity in B cell-deficient (B(-/-)) mice infected with two strains of lymphocytic choriomeningitis virus known to differ markedly in their capacity to persist. In B(-/-) C57BL mice infected with the more persisting virus, virus......-specific CD8(+) T cells are initially generated that are qualitatively similar to those in wild-type mice. However, although cell numbers are well sustained over time, the capacity to produce cytokines is rapidly impaired. In similarly infected B(-/-) BALB/c mice, virus-specific CD8(+) T cells are completely...

  9. Deletion of the Thyroid Hormone-Activating Type 2 Deiodinase Rescues Cone Photoreceptor Degeneration but Not Deafness in Mice Lacking Type 3 Deiodinase.

    Science.gov (United States)

    Ng, Lily; Liu, Hong; St Germain, Donald L; Hernandez, Arturo; Forrest, Douglas

    2017-06-01

    Type 2 deiodinase amplifies and type 3 deiodinase depletes levels of the active form of thyroid hormone, triiodothyronine. Given the opposing activities of these enzymes, we tested the hypothesis that they counteract each other's developmental functions by investigating whether deletion of type 2 deiodinase (encoded by Dio2) modifies sensory phenotypes in type 3 deiodinase-deficient (Dio3-/-) mice. Dio3-/- mice display degeneration of retinal cones, the photoreceptors that mediate daylight and color vision. In Dio2-/- mice, cone function was largely normal but deletion of Dio2 in Dio3-/- mice markedly recovered cone numbers and electroretinogram responses, suggesting counterbalancing roles for both enzymes in cone survival. Both Dio3-/- and Dio2-/- strains exhibit deafness with cochlear abnormalities. In Dio3-/-;Dio2-/- mice, deafness was exacerbated rather than alleviated, suggesting unevenly balanced actions by these enzymes during auditory development. Dio3-/- mice also exhibit an atrophic thyroid gland, low thyroxine, and high triiodothyronine levels, but this phenotype was ameliorated in Dio3-/-;Dio2-/- mice, indicating counterbalancing roles for the enzymes in determining the thyroid hormone status. The results suggest that the composite action of these two enzymes is a critical determinant in visual and auditory development and in setting the systemic thyroid hormone status.

  10. Mice lacking NKT cells but with a complete complement of CD8+ T-cells are not protected against the metabolic abnormalities of diet-induced obesity.

    Directory of Open Access Journals (Sweden)

    Benjamin S Mantell

    Full Text Available The contribution of natural killer T (NKT cells to the pathogenesis of metabolic abnormalities of obesity is controversial. While the combined genetic deletion of NKT and CD8(+ T-cells improves glucose tolerance and reduces inflammation, interpretation of these data have been complicated by the recent observation that the deletion of CD8(+ T-cells alone reduces obesity-induced inflammation and metabolic dysregulation, leaving the issue of the metabolic effects of NKT cell depletion unresolved. To address this question, CD1d null mice (CD1d(-/-, which lack NKT cells but have a full complement of CD8(+ T-cells, and littermate wild type controls (WT on a pure C57BL/6J background were exposed to a high fat diet, and glucose intolerance, insulin resistance, dyslipidemia, inflammation, and obesity were assessed. Food intake (15.5±4.3 vs 15.3±1.8 kcal/mouse/day, weight gain (21.8±1.8 vs 22.8±1.4 g and fat mass (18.6±1.9 vs 19.5±2.1 g were similar in CD1d(-/- and WT, respectively. As would be expected from these data, metabolic rate (3.0±0.1 vs 2.9±0.2 ml O(2/g/h and activity (21.6±4.3 vs 18.5±2.6 beam breaks/min were unchanged by NKT cell depletion. Furthermore, the degree of insulin resistance, glucose intolerance, liver steatosis, and adipose and liver inflammatory marker expression (TNFα, IL-6, IL-10, IFN-γ, MCP-1, MIP1α induced by high fat feeding in CD1d(-/- were not different from WT. We conclude that deletion of NKT cells, in the absence of alterations in the CD8(+ T-cell population, is insufficient to protect against the development of the metabolic abnormalities of diet-induced obesity.

  11. An Examination of the Role of L-Glutamate and Inosine 5'-Monophosphate in Hedonic Taste-Guided Behavior by Mice Lacking the T1R1 + T1R3 Receptor.

    Science.gov (United States)

    Blonde, Ginger D; Spector, Alan C

    2017-06-01

    The heterodimeric T1R1 + T1R3 receptor is considered critical for normal signaling of L-glutamate and 5'-ribonucleotides in the oral cavity. However, some taste-guided responsiveness remains in mice lacking one subunit of the receptor, suggesting that other receptors are sufficient to support some behaviors. Here, mice lacking both receptor subunits (KO) and wild-type (WT, both n = 13) mice were tested in a battery of behavioral tests. Mice were trained and tested in gustometers with a concentration series of Maltrin-580, a maltodextrin, in a brief-access test (10-s trials) as a positive control. Similar tests followed with monosodium glutamate (MSG) with and without the ribonucleotide inosine 5'-monophosphate (IMP), but always in the presence of the epithelial sodium channel blocker amiloride (A). Brief-access tests were repeated following short-term (30-min) and long-term (48-h) exposures to MSG + A + IMP and were also conducted with sodium gluconate replacing MSG. Finally, progressive ratio tests were conducted with Maltrin-580 or MSG + A + IMP, to assess appetitive behavior while minimizing satiation. Overall, MSG generated little concentration-dependent responding in either food-restricted WT or KO mice, even in combination with IMP. However, KO mice licked less to the amino acid stimuli, a measure of consummatory behavior in the brief-access tests. In contrast, both groups initiated a similar number of trials and had a similar breakpoint in the progressive ratio task, both measures of appetitive (approach) behavior. Collectively, these results suggest that while the T1R1 + T1R3 receptor is necessary for consummatory responding to MSG (+IMP), other receptors are sufficient to maintain appetitive responding to this "umami" stimulus complex in food-restricted mice. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Selegiline Ameliorates Depression-Like Behavior in Mice Lacking the CD157/BST1 Gene, a Risk Factor for Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Satoka Kasai

    2017-05-01

    Full Text Available Parkinson’s disease (PD, a neurodegenerative disorder, is accompanied by various non-motor symptoms including depression and anxiety, which may precede the onset of motor symptoms. Selegiline is an irreversible monoamine oxidase-B (MAO-B inhibitor, and is widely used in the treatment of PD and major depression. However, there are few reports about the effects of selegiline on non-motor symptoms in PD. The aim of this study was to explore the antidepressant and anxiolytic effects of selegiline, using CD157/BST1 knockout (CD157 KO mouse, a PD-related genetic model displaying depression and anxiety, compared with other antiparkinsonian drugs and an antidepressant, and was to investigate the effects of selegiline on biochemical parameters in emotion-related brain regions. A single administration of selegiline (1–10 mg/kg dose-dependently reduced immobility time in the forced swimming test (FST in CD157 KO mice, but not C57BL/6N wild-type (WT mice. At 10 mg/kg, but not 3 mg/kg, selegiline significantly increased climbing time in CD157 KO mice. A single administration of the antiparkinsonian drugs pramipexole (a dopamine (DA D2/D3 receptor agonist or rasagiline (another MAO-B inhibitor, and repeated injections of a noradrenergic and specific serotonergic antidepressant (NaSSA, mirtazapine, also decreased immobility time, but did not increase climbing time, in CD157 KO mice. The antidepressant-like effects of 10 mg/kg selegiline were comparable to those of 10 mg/kg rasagiline, and tended to be stronger than those of 1 mg/kg rasagiline. After the FST, CD157 KO mice showed decreases in striatal and hippocampal serotonin (5-HT content, cortical norepinephrine (NE content, and plasma corticosterone concentration. A single administration of selegiline at 10 mg/kg returned striatal 5-HT, cortical NE, and plasma corticosterone levels to those observed in WT mice. In the open field test (OFT, repeated administration of mirtazapine had anxiolytic effects

  13. Facilitated stimulus-response associative learning and long-term memory in mice lacking the NTAN1 amidase of the N-end rule pathway.

    Science.gov (United States)

    Balogh, S A; McDowell, C S; Tae Kwon, Y; Denenberg, V H

    2001-02-23

    The N-end rule relates the in vivo half-life of a protein to the identity of its N-terminal residue. Inactivation of the NTAN1 gene encoding the asparagine-specific N-terminal amidase in mice results in impaired spatial memory [26]. The studies described here were designed to further characterize the effects upon learning and memory of inactivating the NTAN1 gene. NTAN1-deficient mice were found to be better than wild-type mice on black-white and horizontal-vertical discrimination learning. They were also better at 8-week Morris maze retention testing when a reversal trial was not included in the testing procedures. In all three tasks NTAN1-deficient mice appeared to use a strong win-stay strategy. It is concluded that inactivating the asparagine-specific branch of the N-end rule pathway in mice results in impaired spatial learning with concomitant compensatory restructuring of the nervous system in favor of non-spatial (stimulus-response) learning.

  14. Anxiety- and depression-like behavior in mice lacking the CD157/BST1 gene, a risk factor for Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Olga eLopatina

    2014-04-01

    Full Text Available CD157, known as bone marrow stromal cell antigen-1, is a glycosylphosphatidylinositol-anchored ADP-ribosyl cyclase that supports the survival and function of B-lymphocytes and hematopoietic or intestinal stem cells. Although CD157/Bst1 is a risk locus in Parkinson’s disease (PD, little is known about the function of CD157 in the nervous system and contribution to PD progression. Here, we show that no apparent motor dysfunction was observed in young knockout (CD157-/- male mice under less aging-related effects on behaviors. CD157-/- mice exhibited anxiety-related and depression-like behaviors compared with wild-type mice. These behaviors were rescued through treatment with anti-psychiatric drugs and oxytocin. CD157 was weakly expressed in the amygdala and c-Fos immunoreactivity was less evident in CD157-/- mice than in wild-type mice. These results demonstrate for the first time that CD157 plays a role as a neuro-regulator and suggest a potential role in pre-motor symptoms in PD.

  15. Lack of immunoglobulin M suppression by immunoglobulin G antibody in thymectomized, irradiated, and bone marrow-reconstituted mice infected with Toxoplasma gondii.

    Science.gov (United States)

    Aryanpour, J; Hafizi, A; Modabber, F

    1980-03-01

    Thymectomized, irradiated, bone marrow-reconstituted (T-deprived) mie infected with an avirulent strain of Toxoplasma gondii produced antibody titers comparable to those produced in intact syngeneic mice. Both immunoglobulin M (IgM) and IgG antibodies were produced in T-deprived animals; however, the IgM antibody remained constant in the presence of increasing amounts of IgG. In the intact animals, IgM became undetectable by day 50 postinfection as expected. Feedback inhibition of IgM by IgG seems to be dependent upon T-cells in Toxoplasma-infected mice.

  16. Upregulation of B7 molecules (CD80 and CD86) and exacerbated eosinophilic pulmonary inflammatory response in mice lacking the IFN-beta gene

    DEFF Research Database (Denmark)

    Matheu, Victor; Treschow, Alexandra; Navikas, Vaidrius

    2003-01-01

    . OBJECTIVE: We sought to define the differential role of endogenous IFN-beta in controlling the development of allergic inflammation. METHODS: We assessed whether deletion of the gene encoding IFN-beta (IFNB) with knockout mice participated in the development of allergic response in ovalbumin (OVA......BACKGROUND: IFN-beta has been shown to be effective as therapy for multiple sclerosis. Some reports attributed its beneficial effects to the capacity to induce a T(H)2 response. However, other studies have suggested that endogenous type I IFN might downregulate the allergic response in mice...

  17. Lack of genotoxic effect of food dyes amaranth, sunset yellow and tartrazine and their metabolites in the gut micronucleus assay in mice.

    Science.gov (United States)

    Poul, Martine; Jarry, Gérard; Elhkim, Mostafa Ould; Poul, Jean-Michel

    2009-02-01

    The food dyes amaranth, sunset yellow and tartrazine were administered twice, at 24h intervals, by oral gavage to mice and assessed in the in vivo gut micronucleus test for genotoxic effects (frequency of micronucleated cells) and toxicity (apoptotic and mitotic cells). The concentrations of each compound and their main metabolites (sulfanilic acid and naphthionic acid) were measured in faeces during a 24-h period after single oral administrations of the food dyes to mice. Parent dye compounds and their main aromatic amine metabolites were detected in significant amounts in the environment of colonic cells. Acute oral exposure to food dye additives amaranth, sunset yellow and tartrazine did not induce genotoxic effect in the micronucleus gut assay in mice at doses up to 2000 mg/kg b.w. Food dyes administration increased the mitotic cells at all dose levels when compared to controls. These results suggest that the transient DNA damages previously observed in the colon of mice treated by amaranth and tartrazine by the in vivo comet assay [Sasaki, Y.F., Kawaguchi, S., Kamaya, A., Ohshita, M., Kabasawa, K., Iwama, K., Taniguchi, K., Tsuda, S., 2002. The comet assay with 8 mouse organs: results with 39 currently used food additives. Mutat. Res. 519, 103-119] are unable to be fixed in stable genotoxic lesions and might be partly explained by local cytotoxicity of the dyes.

  18. The lack of therapeutic effects in mice of the combined gamma-irradiated Mycobacterium leprae and viable BCG against Mycobacterium leprae infection

    International Nuclear Information System (INIS)

    Saito, Hajime; Tomioka, Haruaki; Kitagawa, Toshiyuki

    1985-01-01

    Gamma-irradiated M. leprae in combination with BCG given once biweekly to mice from 2 weeks for up to 187 days after infection with M. leprae caused no significant growth inhibition of M. leprae, at the site of the infection. (author)

  19. Lack of parvalbumin in mice leads to behavioral deficits relevant to all human autism core symptoms and related neural morphofunctional abnormalities.

    Science.gov (United States)

    Wöhr, M; Orduz, D; Gregory, P; Moreno, H; Khan, U; Vörckel, K J; Wolfer, D P; Welzl, H; Gall, D; Schiffmann, S N; Schwaller, B

    2015-03-10

    Gene mutations and gene copy number variants are associated with autism spectrum disorders (ASDs). Affected gene products are often part of signaling networks implicated in synapse formation and/or function leading to alterations in the excitation/inhibition (E/I) balance. Although the network of parvalbumin (PV)-expressing interneurons has gained particular attention in ASD, little is known on PV's putative role with respect to ASD. Genetic mouse models represent powerful translational tools for studying the role of genetic and neurobiological factors underlying ASD. Here, we report that PV knockout mice (PV(-/-)) display behavioral phenotypes with relevance to all three core symptoms present in human ASD patients: abnormal reciprocal social interactions, impairments in communication and repetitive and stereotyped patterns of behavior. PV-depleted mice also showed several signs of ASD-associated comorbidities, such as reduced pain sensitivity and startle responses yet increased seizure susceptibility, whereas no evidence for behavioral phenotypes with relevance to anxiety, depression and schizophrenia was obtained. Reduced social interactions and communication were also observed in heterozygous (PV(+/-)) mice characterized by lower PV expression levels, indicating that merely a decrease in PV levels might be sufficient to elicit core ASD-like deficits. Structural magnetic resonance imaging measurements in PV(-/-) and PV(+/-) mice further revealed ASD-associated developmental neuroanatomical changes, including transient cortical hypertrophy and cerebellar hypoplasia. Electrophysiological experiments finally demonstrated that the E/I balance in these mice is altered by modification of both inhibitory and excitatory synaptic transmission. On the basis of the reported changes in PV expression patterns in several, mostly genetic rodent models of ASD, we propose that in these models downregulation of PV might represent one of the points of convergence, thus providing a

  20. Differing impact of the deletion of hemochromatosis-associated molecules HFE and transferrin receptor-2 on the iron phenotype of mice lacking bone morphogenetic protein 6 or hemojuvelin.

    Science.gov (United States)

    Latour, Chloé; Besson-Fournier, Céline; Meynard, Delphine; Silvestri, Laura; Gourbeyre, Ophélie; Aguilar-Martinez, Patricia; Schmidt, Paul J; Fleming, Mark D; Roth, Marie-Paule; Coppin, Hélène

    2016-01-01

    Hereditary hemochromatosis, which is characterized by inappropriately low levels of hepcidin, increased dietary iron uptake, and systemic iron accumulation, has been associated with mutations in the HFE, transferrin receptor-2 (TfR2), and hemojuvelin (HJV) genes. However, it is still not clear whether these molecules intersect in vivo with bone morphogenetic protein 6 (BMP6)/mothers against decapentaplegic (SMAD) homolog signaling, the main pathway up-regulating hepcidin expression in response to elevated hepatic iron. To answer this question, we produced double knockout mice for Bmp6 and β2-microglobulin (a surrogate for the loss of Hfe) and for Bmp6 and Tfr2, and we compared their phenotype (hepcidin expression, Bmp/Smad signaling, hepatic and extrahepatic tissue iron accumulation) with that of single Bmp6-deficient mice and that of mice deficient for Hjv, alone or in combination with Hfe or Tfr2. Whereas the phenotype of Hjv-deficient females was not affected by loss of Hfe or Tfr2, that of Bmp6-deficient females was considerably worsened, with decreased Smad5 phosphorylation, compared with single Bmp6-deficient mice, further repression of hepcidin gene expression, undetectable serum hepcidin, and massive iron accumulation not only in the liver but also in the pancreas, the heart, and the kidneys. These results show that (1) BMP6 does not require HJV to transduce signal to hepcidin in response to intracellular iron, even if the loss of HJV partly reduces this signal, (2) another BMP ligand can replace BMP6 and significantly induce hepcidin expression in response to extracellular iron, and (3) BMP6 alone is as efficient at inducing hepcidin as the other BMPs in association with the HJV/HFE/TfR2 complex; they provide an explanation for the compensatory effect of BMP6 treatment on the molecular defect underlying Hfe hemochromatosis in mice. © 2015 by the American Association for the Study of Liver Diseases.

  1. Forced expression of laminin β1 in podocytes prevents nephrotic syndrome in mice lacking laminin β2, a model for Pierson syndrome

    Science.gov (United States)

    Suh, Jung Hee; Jarad, George; VanDeVoorde, Rene G.; Miner, Jeffrey H.

    2011-01-01

    Pierson syndrome is a congenital nephrotic syndrome with ocular and neurological defects caused by mutations in LAMB2, the gene encoding the basement membrane protein laminin β2 (Lamβ2). It is the kidney glomerular basement membrane (GBM) that is defective in Pierson syndrome, as Lamβ2 is a component of laminin-521 (LM-521; α5β2γ1), the major laminin in the mature GBM. In both Pierson syndrome and the Lamb2−/− mouse model for this disease, laminin β1 (Lamβ1), a structurally similar homolog of Lamβ2, is marginally increased in the GBM, but it fails to fully compensate for the loss of Lamβ2, leading to the filtration barrier defects and nephrotic syndrome. Here we generated several lines of Lamβ1 transgenic mice and used them to show that podocyte-specific Lamβ1 expression in Lamb2−/− mice abrogates the development of nephrotic syndrome, correlating with a greatly extended lifespan. In addition, the more Lamβ1 was expressed, the less urinary albumin was excreted. Transgenic Lamβ1 expression increased the level of Lamα5 in the GBM of rescued mice, consistent with the desired increased deposition of laminin-511 (α5β1γ1) trimers. Ultrastructural analysis revealed occasional knob-like subepithelial GBM thickening but intact podocyte foot processes in aged rescued mice. These results suggest the possibility that up-regulation of LAMB1 in podocytes, should it become achievable, would likely lessen the severity of nephrotic syndrome in patients carrying LAMB2 mutations. PMID:21876163

  2. Forced expression of laminin beta1 in podocytes prevents nephrotic syndrome in mice lacking laminin beta2, a model for Pierson syndrome.

    Science.gov (United States)

    Suh, Jung Hee; Jarad, George; VanDeVoorde, Rene G; Miner, Jeffrey H

    2011-09-13

    Pierson syndrome is a congenital nephrotic syndrome with ocular and neurological defects caused by mutations in LAMB2, the gene encoding the basement membrane protein laminin β2 (Lamβ2). It is the kidney glomerular basement membrane (GBM) that is defective in Pierson syndrome, as Lamβ2 is a component of laminin-521 (LM-521; α5β2γ1), the major laminin in the mature GBM. In both Pierson syndrome and the Lamb2(-/-) mouse model for this disease, laminin β1 (Lamβ1), a structurally similar homolog of Lamβ2, is marginally increased in the GBM, but it fails to fully compensate for the loss of Lamβ2, leading to the filtration barrier defects and nephrotic syndrome. Here we generated several lines of Lamβ1 transgenic mice and used them to show that podocyte-specific Lamβ1 expression in Lamb2(-/-) mice abrogates the development of nephrotic syndrome, correlating with a greatly extended lifespan. In addition, the more Lamβ1 was expressed, the less urinary albumin was excreted. Transgenic Lamβ1 expression increased the level of Lamα5 in the GBM of rescued mice, consistent with the desired increased deposition of laminin-511 (α5β1γ1) trimers. Ultrastructural analysis revealed occasional knob-like subepithelial GBM thickening but intact podocyte foot processes in aged rescued mice. These results suggest the possibility that up-regulation of LAMB1 in podocytes, should it become achievable, would likely lessen the severity of nephrotic syndrome in patients carrying LAMB2 mutations.

  3. Proportionate Dwarfism in Mice Lacking Heterochromatin Protein 1 Binding Protein 3 (HP1BP3) Is Associated With Alterations in the Endocrine IGF-1 Pathway

    OpenAIRE

    Garfinkel, Benjamin P.; Arad, Shiri; Le, Phuong T.; Bustin, Michael; Rosen, Clifford J.; Gabet, Yankel; Orly, Joseph

    2015-01-01

    Heterochromatin protein 1 binding protein 3 (HP1BP3) is a recently described histone H1-related protein with roles in chromatin structure and transcriptional regulation. To explore the potential physiological role of HP1BP3, we have previously described an Hp1bp3?/? mouse model with reduced postnatal viability and growth. We now find that these mice are proportionate dwarfs, with reduction in body weight, body length, and organ weight. In addition to their small size, microcomputed tomography...

  4. Elevated sensitivity to diet-induced obesity and insulin resistance in mice lacking 4E-BP1 and 4E-BP2.

    Science.gov (United States)

    Le Bacquer, Olivier; Petroulakis, Emmanuel; Paglialunga, Sabina; Poulin, Francis; Richard, Denis; Cianflone, Katherine; Sonenberg, Nahum

    2007-02-01

    The most common pathology associated with obesity is insulin resistance, which results in the onset of type 2 diabetes mellitus. Several studies have implicated the mammalian target of rapamycin (mTOR) signaling pathway in obesity. Eukaryotic translation initiation factor 4E-binding (eIF4E-binding) proteins (4E-BPs), which repress translation by binding to eIF4E, are downstream effectors of mTOR. We report that the combined disruption of 4E-BP1 and 4E-BP2 in mice increased their sensitivity to diet-induced obesity. Increased adiposity was explained at least in part by accelerated adipogenesis driven by increased expression of CCAAT/enhancer-binding protein delta (C/EBPdelta), C/EBPalpha, and PPARgamma coupled with reduced energy expenditure, reduced lipolysis, and greater fatty acid reesterification in the adipose tissue of 4E-BP1 and 4E-BP2 double KO mice. Increased insulin resistance in 4E-BP1 and 4E-BP2 double KO mice was associated with increased ribosomal protein S6 kinase (S6K) activity and impairment of Akt signaling in muscle, liver, and adipose tissue. These data clearly demonstrate the role of 4E-BPs as a metabolic brake in the development of obesity and reinforce the idea that deregulated mTOR signaling is associated with the development of the metabolic syndrome.

  5. Low transformation growth factor-β1 production and collagen synthesis correlate with the lack of hepatic periportal fibrosis development in undernourished mice infected with Schistosoma mansoni

    Directory of Open Access Journals (Sweden)

    Andreia Ferreira Barros

    2014-04-01

    Full Text Available Undernourished mice infected (UI submitted to low and long-lasting infections by Schistosoma mansoni are unable to develop the hepatic periportal fibrosis that is equivalent to Symmers’ fibrosis in humans. In this report, the effects of the host’s nutritional status on parasite (worm load, egg viability and maturation and host (growth curves, biology, collagen synthesis and characteristics of the immunological response were studied and these are considered as interdependent factors influencing the amount and distribution of fibrous tissue in hepatic periovular granulomas and portal spaces. The nutritional status of the host influenced the low body weight and low parasite burden detected in UI mice as well as the number, viability and maturation of released eggs. The reduced oviposition and increased number of degenerated or dead eggs were associated with low protein synthesis detected in deficient hosts, which likely induced the observed decrease in transformation growth factor (TGF-β1 and liver collagen. Despite the reduced number of mature eggs in UI mice, the activation of TGF-β1 and hepatic stellate cells occurred regardless of the unviability of most miracidia, due to stimulation by fibrogenic proteins and eggshell glycoproteins. However, changes in the repair mechanisms influenced by the nutritional status in deficient animals may account for the decreased liver collagen detected in the present study.

  6. Cholesterol reduction and lack of genotoxic or toxic effects in mice after repeated 21-day oral intake of lemongrass (Cymbopogon citratus) essential oil.

    Science.gov (United States)

    Costa, Celso A R A; Bidinotto, Lucas T; Takahira, Regina K; Salvadori, Daisy M F; Barbisan, Luís F; Costa, Mirtes

    2011-09-01

    Cymbopogon citratus (lemongrass) is currently used in traditional folk medicine. Although this species presents widespread use, there are no scientific data on its efficacy or safety after repeated treatments. Therefore, this work investigated the toxicity and genotoxicity of this lemongrass's essential oil (EO) in male Swiss mice. The single LD(50) based on a 24h acute oral toxicity study was found to be around 3500 mg/kg. In a repeated-dose 21-day oral toxicity study, mice were randomly assigned to two control groups, saline- or Tween 80 0.01%-treated groups, or one of the three experimental groups receiving lemongrass EO (1, 10 or 100mg/kg). No significant changes in gross pathology, body weight, absolute or relative organ weights, histology (brain, heart, kidneys, liver, lungs, stomach, spleen and urinary bladder), urinalysis or clinical biochemistry were observed in EO-treated mice relative to the control groups. Additionally, blood cholesterol was reduced after EO-treatment at the highest dose tested. Similarly, data from the comet assay in peripheral blood cells showed no genotoxic effect from the EO. In conclusion, our findings verified the safety of lemongrass intake at the doses used in folk medicine and indicated the beneficial effect of reducing the blood cholesterol level. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Disruption of Nrf2, a key inducer of antioxidant defenses, attenuates ApoE-mediated atherosclerosis in mice.

    Directory of Open Access Journals (Sweden)

    Thomas E Sussan

    Full Text Available BACKGROUND: Oxidative stress and inflammation are two critical factors that drive the formation of plaques in atherosclerosis. Nrf2 is a redox-sensitive transcription factor that upregulates a battery of antioxidative genes and cytoprotective enzymes that constitute the cellular response to oxidative stress. Our previous studies have shown that disruption of Nrf2 in mice (Nrf2(-/- causes increased susceptibility to pulmonary emphysema, asthma and sepsis due to increased oxidative stress and inflammation. Here we have tested the hypothesis that disruption of Nrf2 in mice causes increased atherosclerosis. PRINCIPAL FINDINGS: To investigate the role of Nrf2 in the development of atherosclerosis, we crossed Nrf2(-/- mice with apoliporotein E-deficient (ApoE(-/- mice. ApoE(-/- and ApoE(-/-Nrf2(-/- mice were fed an atherogenic diet for 20 weeks, and plaque area was assessed in the aortas. Surprisingly, ApoE(-/-Nrf2(-/- mice exhibited significantly smaller plaque area than ApoE(-/- controls (11.5% vs 29.5%. This decrease in plaque area observed in ApoE(-/-Nrf2(-/- mice was associated with a significant decrease in uptake of modified low density lipoproteins (AcLDL by isolated macrophages from ApoE(-/-Nrf2(-/- mice. Furthermore, atherosclerotic plaques and isolated macrophages from ApoE(-/-Nrf2(-/- mice exhibited decreased expression of the scavenger receptor CD36. CONCLUSIONS: Nrf2 is pro-atherogenic in mice, despite its antioxidative function. The net pro-atherogenic effect of Nrf2 may be mediated via positive regulation of CD36. Our data demonstrates that the potential effects of Nrf2-targeted therapies on cardiovascular disease need to be investigated.

  8. Differentially regulated protein kinase A (PKA) activity in adipose tissue and liver is associated with resistance to diet-induced obesity and glucose intolerance in mice that lack PKA regulatory subunit type IIα.

    Science.gov (United States)

    London, Edra; Nesterova, Maria; Sinaii, Ninet; Szarek, Eva; Chanturiya, Tatyana; Mastroyannis, Spyridon A; Gavrilova, Oksana; Stratakis, Constantine A

    2014-09-01

    The cAMP-dependent protein kinase A (PKA) signaling system is widely expressed and has a central role in regulating cellular metabolism in all organ systems affected by obesity. PKA has four regulatory (RIα, RIIα, RIβ, RIIβ) and four catalytic (Cα, Cβ, Cγ, Prkx) subunit isoforms that have tissue-specific expression profiles. In mice, knockout (KO) of RIIβ, the primary PKA regulatory subunit in adipose tissue or knockout of the catalytic subunit Cβ resulted in a lean phenotype that resists diet-induced obesity and associated metabolic complications. Here we report that the disruption of the ubiquitously expressed PKA RIIα subunit in mice (RIIαKO) confers resistance to diet-induced obesity, glucose intolerance, and hepatic steatosis. After 2-week high-fat diet exposure, RIIαKO mice weighed less than wild-type littermates. Over time this effect was more pronounced in female mice that were also leaner than their wild-type counterparts, regardless of the diet. Decreased intake of a high-fat diet contributed to the attenuated weight gain in RIIαKO mice. Additionally, RIIα deficiency caused differential regulation of PKA in key metabolic organs: cAMP-stimulated PKA activity was decreased in liver and increased in gonadal adipose tissue. We conclude that RIIα represents a potential target for therapeutic interventions in obesity, glucose intolerance, and nonalcoholic fatty liver disease.

  9. Lack of macrophage migration inhibitory factor in mice does not affect hallmarks of the inflammatory/immune response during the first week after stroke

    Directory of Open Access Journals (Sweden)

    Deierborg Tomas

    2011-06-01

    Full Text Available Abstract Background Macrophage migration inhibitory factor (MIF has been proposed to play a detrimental role in stroke. We recently showed that MIF promotes neuronal death and aggravates neurological deficits during the first week after experimental stroke, in mice. Since MIF regulates tissue inflammation, we studied the putative role of MIF in post-stroke inflammation. Methods We subjected C57BL/6 mice, Mif-/- (MIF-KO or Mif+/+ (WT, to a transient occlusion of the right middle cerebral artery (tMCAo or sham-surgery. We studied MIF expression, GFAP expression and the number of CD74-positive cells in the ischemic brain hemisphere 7 days after tMCAo using primarily immunohistochemistry. We determined IFN-γ, IL-2, IL-4, IL-5, IL-10, IL-12, KC/CXCL-1 and TNF-α protein levels in the brain (48 h after surgery and serum (48 h and 7 days after surgery by a multiplex immunoassay. Results We observed that MIF accumulates in neurons and astrocytes of the peri-infarct region, as well as in microglia/macrophages of the infarct core up to 7 days after stroke. Among the inflammatory mediators analyzed, we found a significant increase in cerebral IL-12 and KC levels after tMCAo, in comparison to sham-surgery. Importantly, the deletion of Mif did not significantly affect the levels of the cytokines evaluated, in the brain or serum. Moreover, the spleen weight 48 h and 7 days subsequent to tMCAo was similar in WT and MIF-KO mice. Finally, the extent of GFAP immunoreactivity and the number of MIF receptor (CD74-positive cells within the ischemic brain hemisphere did not differ significantly between WT and MIF-KO mice subjected to tMCAo. Conclusions We conclude that MIF does not affect major components of the inflammatory/immune response during the first week after experimental stroke. Based on present and previous evidence, we propose that the deleterious MIF-mediated effects in stroke depend primarily on an intraneuronal and/or interneuronal action.

  10. Lack of immunoglobulin M suppression by immunoglobulin G antibody in thymectomized, irradiated, and bone marrow-reconstituted mice infected with Toxoplasma gondii.

    OpenAIRE

    Aryanpour, J; Hafizi, A; Modabber, F

    1980-01-01

    Thymectomized, irradiated, bone marrow-reconstituted (T-deprived) mie infected with an avirulent strain of Toxoplasma gondii produced antibody titers comparable to those produced in intact syngeneic mice. Both immunoglobulin M (IgM) and IgG antibodies were produced in T-deprived animals; however, the IgM antibody remained constant in the presence of increasing amounts of IgG. In the intact animals, IgM became undetectable by day 50 postinfection as expected. Feedback inhibition of IgM by IgG ...

  11. Mice lacking the p75 receptor fail to acquire a normal complement of taste buds and geniculate ganglion neurons by adulthood

    OpenAIRE

    Krimm, Robin F.

    2006-01-01

    Brain derived neurotrophic factor and neurotrophin-4 are required for normal taste bud development. Although these neurotrophins normally function via the tyrosine kinase receptor, trkB, they also bind to the pan-neurotrophin receptor, p75. The goal of the present study was to determine whether the p75 receptor is required for the development or maintenance of a full complement of adult taste buds. Mice with p75 null mutations lose 34% of their circumvallate taste buds, 36% of their fungiform...

  12. Generation of Novel Traj18-Deficient Mice Lacking Vα14 Natural Killer T Cells with an Undisturbed T Cell Receptor α-Chain Repertoire.

    Directory of Open Access Journals (Sweden)

    Nyambayar Dashtsoodol

    Full Text Available Invariant Vα14 natural killer T (NKT cells, characterized by the expression of a single invariant T cell receptor (TCR α chain encoded by rearranged Trav11 (Vα14-Traj18 (Jα18 gene segments in mice, and TRAV10 (Vα24-TRAJ18 (Jα18 in humans, mediate adjuvant effects to activate various effector cell types in both innate and adaptive immune systems that facilitates the potent antitumor effects. It was recently reported that the Jα18-deficient mouse described by our group in 1997 harbors perturbed TCRα repertoire, which raised concerns regarding the validity of some of the experimental conclusions that have been made using this mouse line. To resolve this concern, we generated a novel Traj18-deficient mouse line by specifically targeting the Traj18 gene segment using Cre-Lox approach. Here we showed the newly generated Traj18-deficient mouse has, apart from the absence of Traj18, an undisturbed TCRα chain repertoire by using next generation sequencing and by detecting normal generation of Vα19Jα33 expressing mucosal associated invariant T cells, whose development was abrogated in the originally described Jα18-KO mice. We also demonstrated here the definitive requirement for NKT cells in the protection against tumors and their potent adjuvant effects on antigen-specific CD8 T cells.

  13. Increased Energy Expenditure, Ucp1 Expression, and Resistance to Diet-induced Obesity in Mice Lacking Nuclear Factor-Erythroid-2-related Transcription Factor-2 (Nrf2).

    Science.gov (United States)

    Schneider, Kevin; Valdez, Joshua; Nguyen, Janice; Vawter, Marquis; Galke, Brandi; Kurtz, Theodore W; Chan, Jefferson Y

    2016-04-01

    The NRF2 (also known as NFE2L2) transcription factor is a critical regulator of genes involved in defense against oxidative stress. Previous studies suggest thatNrf2plays a role in adipogenesisin vitro, and deletion of theNrf2gene protects against diet-induced obesity in mice. Here, we demonstrate that resistance to diet-induced obesity inNrf2(-/-)mice is associated with a 20-30% increase in energy expenditure. Analysis of bioenergetics revealed thatNrf2(-/-)white adipose tissues exhibit greater oxygen consumption. White adipose tissue showed a >2-fold increase inUcp1gene expression. Oxygen consumption is also increased nearly 2.5-fold inNrf2-deficient fibroblasts. Oxidative stress induced by glucose oxidase resulted in increasedUcp1expression. Conversely, antioxidant chemicals (such asN-acetylcysteine and Mn(III)tetrakis(4-benzoic acid)porphyrin chloride) and SB203580 (a known suppressor ofUcp1expression) decreasedUcp1and oxygen consumption inNrf2-deficient fibroblasts. These findings suggest that increasing oxidative stress by limitingNrf2function in white adipocytes may be a novel means to modulate energy balance as a treatment of obesity and related clinical disorders. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Androgen Receptor (AR) Physiological Roles in Male and Female Reproductive Systems: Lessons Learned from AR-Knockout Mice Lacking AR in Selective Cells1

    Science.gov (United States)

    Chang, Chawnshang; Lee, Soo Ok; Wang, Ruey-Sheng; Yeh, Shuyuan; Chang, Ta-Min

    2013-01-01

    ABSTRACT Androgens/androgen receptor (AR) signaling is involved primarily in the development of male-specific phenotypes during embryogenesis, spermatogenesis, sexual behavior, and fertility during adult life. However, this signaling has also been shown to play an important role in development of female reproductive organs and their functions, such as ovarian folliculogenesis, embryonic implantation, and uterine and breast development. The establishment of the testicular feminization (Tfm) mouse model exploiting the X-linked Tfm mutation in mice has been a good in vivo tool for studying the human complete androgen insensitivity syndrome, but this mouse may not be the perfect in vivo model. Mouse models with various cell-specific AR knockout (ARKO) might allow us to study AR roles in individual types of cells in these male and female reproductive systems, although discrepancies are found in results between labs, probably due to using various Cre mice and/or knocking out AR in different AR domains. Nevertheless, no doubt exists that the continuous development of these ARKO mouse models and careful studies will provide information useful for understanding AR roles in reproductive systems of humans and may help us to develop more effective and more specific therapeutic approaches for reproductive system-related diseases. PMID:23782840

  15. Increased oxidative metabolism and neurotransmitter cycling in the brain of mice lacking the thyroid hormone transporter SLC16A2 (MCT8).

    Science.gov (United States)

    Rodrigues, Tiago B; Ceballos, Ainhoa; Grijota-Martínez, Carmen; Nuñez, Barbara; Refetoff, Samuel; Cerdán, Sebastian; Morte, Beatriz; Bernal, Juan

    2013-01-01

    Mutations of the monocarboxylate transporter 8 (MCT8) cause a severe X-linked intellectual deficit and neurological impairment. MCT8 is a specific thyroid hormone (T4 and T3) transporter and the patients also present unusual abnormalities in the serum profile of thyroid hormone concentrations due to altered secretion and metabolism of T4 and T3. Given the role of thyroid hormones in brain development, it is thought that the neurological impairment is due to restricted transport of thyroid hormones to the target neurons. In this work we have investigated cerebral metabolism in mice with Mct8 deficiency. Adult male mice were infused for 30 minutes with (1-(13)C) glucose and brain extracts prepared and analyzed by (13)C nuclear magnetic resonance spectroscopy. Genetic inactivation of Mct8 resulted in increased oxidative metabolism as reflected by increased glutamate C4 enrichment, and of glutamatergic and GABAergic neurotransmissions as observed by the increases in glutamine C4 and GABA C2 enrichments, respectively. These changes were distinct to those produced by hypothyroidism or hyperthyroidism. Similar increments in glutamate C4 enrichment and GABAergic neurotransmission were observed in the combined inactivation of Mct8 and D2, indicating that the increased neurotransmission and metabolic activity were not due to increased production of cerebral T3 by the D2-encoded type 2 deiodinase. In conclusion, Mct8 deficiency has important metabolic consequences in the brain that could not be correlated with deficiency or excess of thyroid hormone supply to the brain during adulthood.

  16. Comparative Assessment of Induced Immune Responses Following Intramuscular Immunization with Fusion and Cocktail of LeIF, LACK and TSA Genes Against Cutaneous Leishmaniasis in BALB/c Mice.

    Science.gov (United States)

    Maspi, Nahid; Ghaffarifar, Fatemeh; Sharifi, Zohreh; Dalimi, Abdolhossein; Dayer, Mohammad Saaid

    2018-02-01

    In the present study, we evaluated induced immune responses following DNA vaccine containing cocktail or fusion of LeIF, LACK and TSA genes or each gene alone. Mice were injected with 100 µg of each plasmid containing the gene of insert, plasmid DNA alone as the first control group or phosphate buffer saline as the second control group. Then, cellular and humoral responses, lesion size were measured for all groups. All vaccinated mice induced Th1 immune responses against Leishmania characterized by higher IFN-γ and IgG2a levels compared with control groups (p < 0.05). In addition, IFN-γ levels increased in groups immunized with fusion and cocktail vaccines in comparison with LACK (p < 0.001) and LeIF (p < 0.01) groups after challenge. In addition, fusion and cocktail groups produced higher IgG2a values than groups vaccinated with a gene alone (p < 0.05). Lesion progression delayed for all immunized groups compared with control groups from 5th week post-infection (p < 0.05). Mean lesion size decreased in immunized mice with fusion DNA than three groups vaccinated with one gene alone (p < 0.05). While, lesion size decreased significantly in cocktail recipient group than LeIF recipient group (p < 0.05). There was no difference in lesion size between fusion and cocktail groups. Overall, immunized mice with cocktail and fusion vaccines showed stronger Th1 response by production of higher IFN-γ and IgG2a and showed smaller mean lesion size. Therefore, use of multiple antigens can improve induced immune responses by DNA vaccination.

  17. Data describing lack of effects of 17α-ethinyl estradiol on mammary gland morphology in female mice exposed during pregnancy and lactation.

    Science.gov (United States)

    LaPlante, Charlotte D; Vandenberg, Laura N

    2017-10-01

    Ethinyl estradiol (EE) is a synthetic estrogen used in pharmaceutical contraceptives. In many studies evaluating estrogenic endocrine disruptors, EE is used as a positive control for estrogenicity. However, the effects of EE often differ from the effects of other xenoestrogens, suggesting that these other compounds might act via distinct mechanisms. Reported here are data describing the effect of low doses of EE during pregnancy and lactation on the morphology of the lactating mammary gland in CD-1 mice. The data suggest that these low doses have few if any discernable effects on mammary gland morphology. Alterations to cell proliferation and the expression of estrogen receptor (ER)α were also not observed. These companion data were collected from the same females analyzed for effects of EE on maternal behavior and brain recently published in Reproductive Toxicology (Catanese & Vandenberg, 2017).

  18. Data describing lack of effects of 17α-ethinyl estradiol on mammary gland morphology in female mice exposed during pregnancy and lactation

    Directory of Open Access Journals (Sweden)

    Charlotte D. LaPlante

    2017-10-01

    Full Text Available Ethinyl estradiol (EE is a synthetic estrogen used in pharmaceutical contraceptives. In many studies evaluating estrogenic endocrine disruptors, EE is used as a positive control for estrogenicity. However, the effects of EE often differ from the effects of other xenoestrogens, suggesting that these other compounds might act via distinct mechanisms. Reported here are data describing the effect of low doses of EE during pregnancy and lactation on the morphology of the lactating mammary gland in CD-1 mice. The data suggest that these low doses have few if any discernable effects on mammary gland morphology. Alterations to cell proliferation and the expression of estrogen receptor (ERα were also not observed. These companion data were collected from the same females analyzed for effects of EE on maternal behavior and brain recently published in Reproductive Toxicology (Catanese & Vandenberg, 2017.

  19. Increased oxidative metabolism and neurotransmitter cycling in the brain of mice lacking the thyroid hormone transporter SLC16A2 (MCT8.

    Directory of Open Access Journals (Sweden)

    Tiago B Rodrigues

    Full Text Available Mutations of the monocarboxylate transporter 8 (MCT8 cause a severe X-linked intellectual deficit and neurological impairment. MCT8 is a specific thyroid hormone (T4 and T3 transporter and the patients also present unusual abnormalities in the serum profile of thyroid hormone concentrations due to altered secretion and metabolism of T4 and T3. Given the role of thyroid hormones in brain development, it is thought that the neurological impairment is due to restricted transport of thyroid hormones to the target neurons. In this work we have investigated cerebral metabolism in mice with Mct8 deficiency. Adult male mice were infused for 30 minutes with (1-(13C glucose and brain extracts prepared and analyzed by (13C nuclear magnetic resonance spectroscopy. Genetic inactivation of Mct8 resulted in increased oxidative metabolism as reflected by increased glutamate C4 enrichment, and of glutamatergic and GABAergic neurotransmissions as observed by the increases in glutamine C4 and GABA C2 enrichments, respectively. These changes were distinct to those produced by hypothyroidism or hyperthyroidism. Similar increments in glutamate C4 enrichment and GABAergic neurotransmission were observed in the combined inactivation of Mct8 and D2, indicating that the increased neurotransmission and metabolic activity were not due to increased production of cerebral T3 by the D2-encoded type 2 deiodinase. In conclusion, Mct8 deficiency has important metabolic consequences in the brain that could not be correlated with deficiency or excess of thyroid hormone supply to the brain during adulthood.

  20. Lack of TNF-alpha receptor type 2 protects motor neurons in a cellular model of amyotrophic lateral sclerosis and in mutant SOD1 mice but does not affect disease progression.

    Science.gov (United States)

    Tortarolo, Massimo; Vallarola, Antonio; Lidonnici, Dario; Battaglia, Elisa; Gensano, Francesco; Spaltro, Gabriella; Fiordaliso, Fabio; Corbelli, Alessandro; Garetto, Stefano; Martini, Elisa; Pasetto, Laura; Kallikourdis, Marinos; Bonetto, Valentina; Bendotti, Caterina

    2015-10-01

    Changes in the homeostasis of tumor necrosis factor α (TNFα) have been demonstrated in patients and experimental models of amyotrophic lateral sclerosis (ALS). However, the contribution of TNFα to the development of ALS is still debated. TNFα is expressed by glia and neurons and acts through the membrane receptors TNFR1 and TNFR2, which may have opposite effects in neurodegeneration. We investigated the role of TNFα and its receptors in the selective motor neuron death in ALS in vitro and in vivo. TNFR2 expressed by astrocytes and neurons, but not TNFR1, was implicated in motor neuron loss in primary SOD1-G93A co-cultures. Deleting TNFR2 from SOD1-G93A mice, there was partial but significant protection of spinal motor neurons, sciatic nerves, and tibialis muscles. However, no improvement of motor impairment or survival was observed. Since the sciatic nerves of SOD1-G93A/TNFR2-/- mice showed high phospho-TAR DNA-binding protein 43 (TDP-43) accumulation and low levels of acetyl-tubulin, two indices of axonal dysfunction, the lack of symptom improvement in these mice might be due to impaired function of rescued motor neurons. These results indicate the interaction between TNFR2 and membrane-bound TNFα as an innovative pathway involved in motor neuron death. Nevertheless, its inhibition is not sufficient to stop disease progression in ALS mice, underlining the complexity of this pathology. We show evidence of the involvement of neuronal and astroglial TNFR2 in the motor neuron degeneration in ALS. Both concur to cause motor neuron death in primary astrocyte/spinal neuron co-cultures. TNFR2 deletion partially protects motor neurons and sciatic nerves in SOD1-G93A mice but does not improve their symptoms and survival. However, TNFR2 could be a new target for multi-intervention therapies. © 2015 International Society for Neurochemistry.

  1. Mice lacking Ras-GRF1 show contextual fear conditioning but not spatial memory impairments: convergent evidence from two independently generated mouse mutant lines

    Directory of Open Access Journals (Sweden)

    Raffaele ed'Isa

    2011-12-01

    Full Text Available Ras-GRF1 is a neuronal specific guanine exchange factor that, once activated by both ionotropic and metabotropic neurotransmitter receptors, can stimulate Ras proteins, leading to long-term phosphorylation of downstream signaling. The two available reports on the behavior of two independently generated Ras-GRF1 deficient mouse lines provide contrasting evidence on the role of Ras-GRF1 in spatial memory and contextual fear conditioning. These discrepancies may be due to the distinct alterations introduced in the mouse genome by gene targeting in the two lines that could differentially affect expression of nearby genes located in the imprinted region containing the Ras-grf1 locus. In order to determine the real contribution of Ras-GRF1 to spatial memory we compared in Morris Water Maze learning the Brambilla’s mice with a third mouse line (GENA53 in which a nonsense mutation was introduced in the Ras-GRF1 coding region without additional changes in the genome and we found that memory in this task is normal. Also, we measured both contextual and cued fear conditioning, which were previously reported to be affected in the Brambilla’s mice, and we confirmed that contextual learning but not cued conditioning is impaired in both mouse lines. In addition, we also tested both lines for the first time in conditioned place aversion in the Intellicage, an ecological and remotely controlled behavioral test, and we observed normal learning. Finally, based on previous reports of other mutant lines suggesting that Ras-GRF1 may control body weight, we also measured this non-cognitive phenotype and we confirmed that both Ras-GRF1 deficient mutants are smaller than their control littermates. In conclusion, we demonstrate that Ras-GRF1 has no unique role in spatial memory while its function in contextual fear conditioning is likely to be due not only to its involvement in amygdalar functions but possibly to some distinct hippocampal connections specific to

  2. Progressive hearing loss and gradual deterioration of sensory hair bundles in the ears of mice lacking the actin-binding protein Eps8L2.

    Science.gov (United States)

    Furness, David N; Johnson, Stuart L; Manor, Uri; Rüttiger, Lukas; Tocchetti, Arianna; Offenhauser, Nina; Olt, Jennifer; Goodyear, Richard J; Vijayakumar, Sarath; Dai, Yuhai; Hackney, Carole M; Franz, Christoph; Di Fiore, Pier Paolo; Masetto, Sergio; Jones, Sherri M; Knipper, Marlies; Holley, Matthew C; Richardson, Guy P; Kachar, Bechara; Marcotti, Walter

    2013-08-20

    Mechanotransduction in the mammalian auditory system depends on mechanosensitive channels in the hair bundles that project from the apical surface of the sensory hair cells. Individual stereocilia within each bundle contain a core of tightly packed actin filaments, whose length is dynamically regulated during development and in the adult. We show that the actin-binding protein epidermal growth factor receptor pathway substrate 8 (Eps8)L2, a member of the Eps8-like protein family, is a newly identified hair bundle protein that is localized at the tips of stereocilia of both cochlear and vestibular hair cells. It has a spatiotemporal expression pattern that complements that of Eps8. In the cochlea, whereas Eps8 is essential for the initial elongation of stereocilia, Eps8L2 is required for their maintenance in adult hair cells. In the absence of both proteins, the ordered staircase structure of the hair bundle in the cochlea decays. In contrast to the early profound hearing loss associated with an absence of Eps8, Eps8L2 null-mutant mice exhibit a late-onset, progressive hearing loss that is directly linked to a gradual deterioration in hair bundle morphology. We conclude that Eps8L2 is required for the long-term maintenance of the staircase structure and mechanosensory function of auditory hair bundles. It complements the developmental role of Eps8 and is a candidate gene for progressive age-related hearing loss.

  3. Lipoprotein lipase in hypothalamus is a key regulator of body weight gain and glucose homeostasis in mice.

    Science.gov (United States)

    Laperrousaz, Elise; Moullé, Valentine S; Denis, Raphaël G; Kassis, Nadim; Berland, Chloé; Colsch, Benoit; Fioramonti, Xavier; Philippe, Erwann; Lacombe, Amélie; Vanacker, Charlotte; Butin, Noémie; Bruce, Kimberley D; Wang, Hong; Wang, Yongping; Gao, Yuanqing; Garcia-Caceres, Cristina; Prévot, Vincent; Tschöp, Matthias H; Eckel, Robert H; Le Stunff, Hervé; Luquet, Serge; Magnan, Christophe; Cruciani-Guglielmacci, Céline

    2017-07-01

    Regulation of energy balance involves the participation of many factors, including nutrients, among which are circulating lipids, acting as peripheral signals informing the central nervous system of the energy status of the organism. It has been shown that neuronal lipoprotein lipase (LPL) participates in the control of energy balance by hydrolysing lipid particles enriched in triacylglycerols. Here, we tested the hypothesis that LPL in the mediobasal hypothalamus (MBH), a well-known nucleus implicated in the regulation of metabolic homeostasis, could also contribute to the regulation of body weight and glucose homeostasis. We injected an adeno-associated virus (AAV) expressing Cre-green fluorescent protein into the MBH of Lpl-floxed mice (and wild-type mice) to specifically decrease LPL activity in the MBH. In parallel, we injected an AAV overexpressing Lpl into the MBH of wild-type mice. We then studied energy homeostasis and hypothalamic ceramide content. The partial deletion of Lpl in the MBH in mice led to an increase in body weight compared with controls (37.72 ± 0.7 g vs 28.46 ± 0.12, p < 0.001) associated with a decrease in locomotor activity. These mice developed hyperinsulinaemia and glucose intolerance. This phenotype also displayed reduced expression of Cers1 in the hypothalamus as well as decreased concentration of several C18 species of ceramides and a 3-fold decrease in total ceramide intensity. Conversely, overexpression of Lpl specifically in the MBH induced a decrease in body weight. Our study shows that LPL in the MBH is an important regulator of body weight and glucose homeostasis.

  4. Lack of WDR36 leads to preimplantation embryonic lethality in mice and delays the formation of small subunit ribosomal RNA in human cells in vitro.

    Science.gov (United States)

    Gallenberger, Martin; Meinel, Dominik M; Kroeber, Markus; Wegner, Michael; Milkereit, Philipp; Bösl, Michael R; Tamm, Ernst R

    2011-02-01

    Mutations in WD repeat domain 36 gene (WDR36) play a causative role in some forms of primary open-angle glaucoma, a leading cause of blindness worldwide. WDR36 is characterized by the presence of multiple WD40 repeats and shows homology to Utp21, an essential protein component of the yeast small subunit (SSU) processome required for maturation of 18S rRNA. To clarify the functional role of WDR36 in the mammalian organism, we generated and investigated mutant mice with a targeted deletion of Wdr36. In parallel experiments, we used RNA interference to deplete WDR36 mRNA in mouse embryos and cultured human trabecular meshwork (HTM-N) cells. Deletion of Wdr36 in the mouse caused preimplantation embryonic lethality, and essentially similar effects were observed when WDR36 mRNA was depleted in mouse embryos by RNA interference. Depletion of WDR36 mRNA in HTM-N cells caused apoptotic cell death and upregulation of mRNA for BAX, TP53 and CDKN1A. By immunocytochemistry, staining for WDR36 was observed in the nucleolus of cells, which co-localized with that of nucleolar proteins such as nucleophosmin and PWP2. In addition, recombinant and epitope-tagged WDR36 localized to the nucleolus of HTM-N cells. By northern blot analysis, a substantial decrease in 21S rRNA, the precursor of 18S rRNA, was observed following knockdown of WDR36. In addition, metabolic-labeling experiments consistently showed a delay of 18S rRNA maturation in WDR36-depleted cells. Our results provide evidence that WDR36 is an essential protein in mammalian cells which is involved in the nucleolar processing of SSU 18S rRNA.

  5. Dengue envelope-based 'four-in-one' virus-like particles produced using Pichia pastoris induce enhancement-lacking, domain III-directed tetravalent neutralising antibodies in mice.

    Science.gov (United States)

    Rajpoot, Ravi Kant; Shukla, Rahul; Arora, Upasana; Swaminathan, Sathyamangalam; Khanna, Navin

    2018-06-05

    Dengue is a significant public health problem worldwide, caused by four antigenically distinct mosquito-borne dengue virus (DENV) serotypes. Antibodies to any given DENV serotype which can afford protection against that serotype tend to enhance infection by other DENV serotypes, by a phenomenon termed antibody-dependent enhancement (ADE). Antibodies to the viral pre-membrane (prM) protein have been implicated in ADE. We show that co-expression of the envelope protein of all four DENV serotypes, in the yeast Pichia pastoris, leads to their co-assembly, in the absence of prM, into tetravalent mosaic VLPs (T-mVLPs), which retain the serotype-specific antigenic integrity and immunogenicity of all four types of their monomeric precursors. Following a three-dose immunisation schedule, the T-mVLPs elicited EDIII-directed antibodies in mice which could neutralise all four DENV serotypes. Importantly, anti-T-mVLP antibodies did not augment sub-lethal DENV-2 infection of dengue-sensitive AG129 mice, based on multiple parameters. The 'four-in-one' tetravalent T-mVLPs possess multiple desirable features which may potentially contribute to safety (non-viral, prM-lacking and ADE potential-lacking), immunogenicity (induction of virus-neutralising antibodies), and low cost (single tetravalent immunogen produced using P. pastoris, an expression system known for its high productivity using simple inexpensive media). These results strongly warrant further exploration of this vaccine candidate.

  6. Antibody response against Betaferon® in immune tolerant mice: involvement of marginal zone B-cells and CD4+ T-cells and apparent lack of immunological memory.

    Science.gov (United States)

    Sauerborn, Melody; van Beers, Miranda M C; Jiskoot, Wim; Kijanka, Grzegorz M; Boon, Louis; Schellekens, Huub; Brinks, Vera

    2013-01-01

    The immunological processes underlying immunogenicity of recombinant human therapeutics are poorly understood. Using an immune tolerant mouse model we previously demonstrated that aggregates are a major trigger of the antidrug antibody (ADA) response against recombinant human interferon beta (rhIFNβ) products including Betaferon®, and that immunological memory seems to be lacking after a rechallenge with non-aggregated rhIFNβ. The apparent absence of immunological memory indicates a CD4+ T-cell independent (Tind) immune response underlying ADA formation against Betaferon®. This hypothesis was tested. Using the immune tolerant mouse model we first validated that rechallenge with highly aggregated rhIFNβ (Betaferon®) does not lead to a subsequent fast increase in ADA titers, suggesting a lack of immunological memory. Next we assessed whether Betaferon® could act as Tind antigen by inactivation of marginal zone (MZ) B-cells during treatment. MZ B-cells are major effector cells involved in a Tind immune response. In a following experiment we depleted the mice from CD4+ T-cells to test their involvement in the ADA response against Betaferon®. Inactivation of MZ B-cells at the start of Betaferon® treatment drastically lowered ADA levels, suggesting a Tind immune response. However, persistent depletion of CD4+ T-cells before and during Betaferon® treatment abolished the ADA response in almost all mice. The immune response against rhIFNβ in immune tolerant mice is neither a T-cell independent nor a classical T-cell dependent immune response. Further studies are needed to confirm absence of immunological memory (cells).

  7. Acute Systemic Infection with Dengue Virus Leads to Vascular Leakage and Death through Tumor Necrosis Factor-α and Tie2/Angiopoietin Signaling in Mice Lacking Type I and II Interferon Receptors.

    Science.gov (United States)

    Phanthanawiboon, Supranee; Limkittikul, Kriengsak; Sakai, Yusuke; Takakura, Nobuyuki; Saijo, Masayuki; Kurosu, Takeshi

    2016-01-01

    Severe dengue is caused by host responses to viral infection, but the pathogenesis remains unknown. This is, in part, due to the lack of suitable animal models. Here, we report a non-mouse-adapted low-passage DENV-3 clinical isolate, DV3P12/08, derived from recently infected patients. DV3P12/08 caused a lethal systemic infection in type I and II IFN receptor KO mice (IFN-α/β/γR KO mice), which have the C57/BL6 background. Infection with DV3P12/08 induced a cytokine storm, resulting in severe vascular leakage (mainly in the liver, kidney and intestine) and organ damage, leading to extensive hemorrhage and rapid death. DV3P12/08 infection triggered the release of large amounts of TNF-α, IL-6, and MCP-1. Treatment with a neutralizing anti-TNF-α antibody (Ab) extended survival and reduced liver damage without affecting virus production. Anti-IL-6 neutralizing Ab partly prolonged mouse survival. The anti-TNF-α Ab suppressed IL-6, MCP-1, and IFN-γ levels, suggesting that the severe response to infection was triggered by TNF-α. High levels of TNF-α mRNA were expressed in the liver and kidneys, but not in the small intestine, of infected mice. Conversely, high levels of IL-6 mRNA were expressed in the intestine. Importantly, treatment with Angiopoietin-1, which is known to stabilize blood vessels, prolonged the survival of DV3P12/08-infected mice. Taken together, the results suggest that an increased level of TNF-α together with concomitant upregulation of Tie2/Angiopoietin signaling have critical roles in severe dengue infection.

  8. Mutation of the key residue for extraribosomal function of ribosomal protein S19 cause increased grooming behaviors in mice.

    Science.gov (United States)

    Chen, Jun; Kaitsuka, Taku; Fujino, Rika; Araki, Kimi; Tomizawa, Kazuhito; Yamamoto, Tetsuro

    2016-08-26

    Ribosomal protein S19 (RP S19) possesses ribosomal function as RP S19 monomer and extraribosomal function as cross-linked RP S19 oligomers which function as a ligand of the complement 5a (C5a) receptor (CD88). We have generated a Gln137Glu-RP S19 knock-in (KI) mouse, which is shown to possess the weakened extraribosomal function of RP S19. Because whether the extraribosomal function of RP S19 has a role in brain function had been unclear, we performed behavioral analysis on these mice and demonstrated that KI mice displayed an increased grooming behavior during open-field test and elevated plus maze test and an enhanced freezing behavior in contextual fear conditioning test. These results suggest an involvement of RP S19 oligomers in some anxiety-like behavior, especially grooming behavior. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Key Inflammatory Processes in Human NASH Are Reflected in Ldlr−/−.Leiden Mice: A Translational Gene Profiling Study

    NARCIS (Netherlands)

    Morrison, M.C.; Kleemann, R.; Koppen, A. van; Hanemaaijer, R.; Verschuren, L.

    2018-01-01

    Introduction: It is generally accepted that metabolic inflammation in the liver is an important driver of disease progression in NASH and associated matrix remodeling/fibrosis. However, the exact molecular inflammatory mechanisms are poorly defined in human studies. Investigation of key pathogenic

  10. Oxidative stress and hepatic stellate cell activation are key events in arsenic induced liver fibrosis in mice

    International Nuclear Information System (INIS)

    Ghatak, Subhadip; Biswas, Ayan; Dhali, Gopal Krishna; Chowdhury, Abhijit; Boyer, James L.; Santra, Amal

    2011-01-01

    Arsenic is an environmental toxicant and carcinogen. Exposure to arsenic is associated with development of liver fibrosis and portal hypertension through ill defined mechanisms. We evaluated hepatic fibrogenesis after long term arsenic exposure in a murine model. BALB/c mice were exposed to arsenic by daily gavages of 6 μg/gm body weight for 1 year and were evaluated for markers of hepatic oxidative stress and fibrosis, as well as pro-inflammatory, pro-apoptotic and pro-fibrogenic factors at 9 and 12 months. Hepatic NADPH oxidase activity progressively increased in arsenic exposure with concomitant development of hepatic oxidative stress. Hepatic steatosis with occasional collection of mononuclear inflammatory cells and mild portal fibrosis were the predominant liver lesion observed after 9 months of arsenic exposure, while at 12 months, the changes included mild hepatic steatosis, inflammation, necrosis and significant fibrosis in periportal areas. The pathologic changes in the liver were associated with markers of hepatic stellate cells (HSCs) activation, matrix reorganization and fibrosis including α-smooth muscle actin, transforming growth factor-β1, PDGF-Rβ, pro-inflammatory cytokines and enhanced expression of tissue inhibitor of metalloproteinase-1 and pro(α) collagen type I. Moreover, pro-apoptotic protein Bax was dominantly expressed and Bcl-2 was down-regulated along with increased number of TUNEL positive hepatocytes in liver of arsenic exposed mice. Furthermore, HSCs activation due to increased hepatic oxidative stress observed after in vivo arsenic exposure was recapitulated in co-culture model of isolated HSCs and hepatocytes exposed to arsenic. These findings have implications not only for the understanding of the pathology of arsenic related liver fibrosis but also for the design of preventive strategies in chronic arsenicosis.

  11. Phenobarbital and propiconazole toxicogenomic profiles in mice show major similarities consistent with the key role that constitutive androstane receptor (CAR) activation plays in their mode of action

    Science.gov (United States)

    Currie, Richard A.; Peffer, Richard C.; Goetz, Amber K.; Omiecinski, Curtis J.; Goodman, Jay I.

    2014-01-01

    Toxicogenomics (TGx) is employed frequently to investigate underlying molecular mechanisms of the compound of interest and, thus, has become an aid to mode of action determination. However, the results and interpretation of a TGx dataset are influenced by the experimental design and methods of analysis employed. This article describes an evaluation and reanalysis, by two independent laboratories, of previously published TGx mouse liver microarray data for a triazole fungicide, propiconazole (PPZ), and the anticonvulsant drug phenobarbital (PB). Propiconazole produced an increase incidence of liver tumors in male CD-1 mice only at a dose that exceeded the maximum tolerated dose (2500 ppm). Firstly, we illustrate how experimental design differences between two in vivo studies with PPZ and PB may impact the comparisons of TGx results. Secondly, we demonstrate that different researchers using different pathway analysis tools can come to different conclusions on specific mechanistic pathways, even when using the same datasets. Finally, despite these differences the results across three different analyses also show a striking degree of similarity observed for PPZ and PB treated livers when the expression data are viewed as major signaling pathways and cell processes affected. Additional studies described here show that the postulated key event of hepatocellular proliferation was observed in CD-1 mice for both PPZ and PB, and that PPZ is also a potent activator of the mouse CAR nuclear receptor. Thus, with regard to the events which are hallmarks of CAR-induced effects that are key events in the mode of action (MOA) of mouse liver carcinogenesis with PB, PPZ-induced tumors can be viewed as being promoted by a similar PB-like CAR-dependent MOA. PMID:24675475

  12. Phenobarbital and propiconazole toxicogenomic profiles in mice show major similarities consistent with the key role that constitutive androstane receptor (CAR) activation plays in their mode of action

    International Nuclear Information System (INIS)

    Currie, Richard A.; Peffer, Richard C.; Goetz, Amber K.; Omiecinski, Curtis J.; Goodman, Jay I.

    2014-01-01

    Toxicogenomics (TGx) is employed frequently to investigate underlying molecular mechanisms of the compound of interest and, thus, has become an aid to mode of action determination. However, the results and interpretation of a TGx dataset are influenced by the experimental design and methods of analysis employed. This article describes an evaluation and reanalysis, by two independent laboratories, of previously published TGx mouse liver microarray data for a triazole fungicide, propiconazole (PPZ), and the anticonvulsant drug phenobarbital (PB). Propiconazole produced an increase incidence of liver tumors in male CD-1 mice only at a dose that exceeded the maximum tolerated dose (2500 ppm). Firstly, we illustrate how experimental design differences between two in vivo studies with PPZ and PB may impact the comparisons of TGx results. Secondly, we demonstrate that different researchers using different pathway analysis tools can come to different conclusions on specific mechanistic pathways, even when using the same datasets. Finally, despite these differences the results across three different analyses also show a striking degree of similarity observed for PPZ and PB treated livers when the expression data are viewed as major signaling pathways and cell processes affected. Additional studies described here show that the postulated key event of hepatocellular proliferation was observed in CD-1 mice for both PPZ and PB, and that PPZ is also a potent activator of the mouse CAR nuclear receptor. Thus, with regard to the events which are hallmarks of CAR-induced effects that are key events in the mode of action (MOA) of mouse liver carcinogenesis with PB, PPZ-induced tumors can be viewed as being promoted by a similar PB-like CAR-dependent MOA

  13. Dually supplied T-junctions in arteriolo-arteriolar anastomosis in mice: key to local hemodynamic homeostasis in normal and ischemic states?

    Science.gov (United States)

    Toriumi, Haruki; Tatarishvili, Jemal; Tomita, Minoru; Tomita, Yutaka; Unekawa, Miyuki; Suzuki, Norihiro

    2009-10-01

    The functional role of arteriolo-arteriolar anastomosis (AAA) between the middle cerebral artery (MCA) and anterior cerebral artery in local hemodynamics is unknown, and was investigated here. Blood flow in AAAs was examined using fluorescein isothiocyanate-labeled red blood cells (RBCs) as a flow indicator in 16 anesthetized C57BL/6J mice before and after MCA occlusion up to 7 experimental days. We observed paradoxical flow in AAAs; labeled RBCs entered from both the MCA and anterior cerebral artery sides and the opposing flows met at a branching T-junction, where the flows combined and passed into a penetrating arteriole. The dually fed T-junction was not fixed in position, but functionally jumped to adjacent T-junctions in response to changing hemodynamic conditions. On MCA occlusion, RBC flow from the MCA side immediately stopped. After a period of "hesitation," blood started to move retrogradely in one of the MCA branches toward the MCA stem. The retrograde blood flow was statistically significantly (P<0.05), serving to feed blood to other MCA branches after a lag period. In capillaries, MCA occlusion induced immediate RBC disappearance in the ischemic core and to a lesser extent in the marginal zone near AAAs. At day 3 after ischemia, we recognized the beginning of remodeling with angiogenesis centering on AAAs. AAAs appear to play a key role in local hemodynamic homeostasis, both in the normal state and in the development of collateral channels and revascularization during ischemia.

  14. Aggravated restenosis and atherogenesis in ApoCIII transgenic mice but lack of protection in ApoCIII knockouts: the effect of authentic triglyceride-rich lipoproteins with and without ApoCIII.

    Science.gov (United States)

    Li, Haibo; Han, Yingchun; Qi, Rong; Wang, Yuhui; Zhang, Xiaohong; Yu, Maomao; Tang, Yin; Wang, Mengyu; Shu, Ya-Nan; Huang, Wei; Liu, Xinfeng; Rodrigues, Brian; Han, Mei; Liu, George

    2015-09-01

    Previously, our group and others have demonstrated a causative relationship between severe hypertriglyceridaemia and atherogenesis in mice. Furthermore, clinical investigations have shown high levels of plasma Apolipoprotein C-III (ApoCIII) associated with hypertriglyceridaemia and even cardiovascular disease. However, it remains unclear whether ApoCIII affects restenosis in vivo, and whether such an effect is mediated by ApoCIII alone, or in combination with hypertriglyceridaemia. We sought to investigate ApoCIII in restenosis and clarify how smooth muscle cells (SMCs) respond to authentic triglyceride-rich lipoproteins (TRLs) with or without ApoCIII (TRLs ± ApoCIII). ApoCIII transgenic (ApoCIIItg) and knockout (ApoCIII-/-) mice underwent endothelial denudation to model restenosis. Here, ApoCIIItg mice displayed severe hypertriglyceridaemia and increased neointimal formation compared with wild-type (WT) or ApoCIII-/- mice. Furthermore, increased proliferating cell nuclear antigen (PCNA)-positive cells, Mac-3, and vascular cell adhesion protein-1 (VCAM-1) expression, and 4-hydroxynonenal (4HNE) production were found in lesion sites. ApoCIIItg and ApoCIII-/- mice were then crossed to low-density lipoprotein receptor-deficient (Ldlr-/-) mice and fed an atherogenic diet. ApoCIIItg/Ldlr-/- mice had significantly increased atherosclerotic lesions. However, there was no statistical difference in restenosis between ApoCIII-/- and WT mice, and in atherosclerosis between ApoCIII/Ldlr double knockout and Ldlr-/- mice. SMCs were then incubated in vitro with authentic TRLs ± ApoCIII isolated from extreme hypertriglyceridaemia glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1-deficient (GPIHBP1-/-) mice crossed with ApoCIIItg or ApoCIII-/- mice. It was shown that TRLs + ApoCIII promoted SMC proliferation, VCAM-1 expression, and reactive oxygen species (ROS) production, and activated the Akt pathway. Scavenging ROS significantly reduced SMC

  15. Mice Lacking Free Fatty Acid Receptor 1 (GPR40/FFAR1) are Protected Against Conjugated Linoleic Acid-Induced Fatty Liver but Develop Inflammation and Insulin Resistance in the Brain.

    Science.gov (United States)

    Sartorius, Tina; Drescher, Andrea; Panse, Madhura; Lastovicka, Petr; Peter, Andreas; Weigert, Cora; Kostenis, Evi; Ullrich, Susanne; Häring, Hans-Ulrich

    2015-01-01

    Conjugated linoleic acids (CLAs) affect body fat distribution, induce insulin resistance and stimulate insulin secretion. The latter effect is mediated through the free fatty acid receptor-1 (GPR40/FFAR1). This study examines whether GPR40/FFAR1 interacts with tissue specific metabolic changes induced by CLAs. After chronic application of CLAs C57BL/6J wild type (WT) and GPR40/FFAR1 (Ffar1(-/-)) knockout mice developed insulin resistance. Although CLAs accumulated in liver up to 46-fold genotype-independently, hepatic triglycerides augmented only in WT mice. This triglyceride deposition was not associated with increased inflammation. In contrast, in brain of CLA fed Ffar1(-/-) mice mRNA levels of TNF-α were 2-fold higher than in brain of WT mice although CLAs accumulated genotype-independently in brain up to 4-fold. Concomitantly, Ffar1(-/-) mice did not respond to intracerebroventricular (i.c.v.) insulin injection with an increase in cortical activity while WT mice reacted as assessed by radiotelemetric electrocorticography (ECoG) measurements. In vitro incubation of primary murine astrocytes confirmed that CLAs stimulate neuronal inflammation independent of GPR40/FFAR1. This study discloses that GPR40/FFAR1 indirectly modulates organ-specific effects of CLAs: the expression of functional GPR40/FFAR1 counteracts CLA-induced inflammation and insulin resistance in the brain, but favors the development of fatty liver. © 2015 S. Karger AG, Basel.

  16. Humanized mice recapitulate key features of HIV-1 infection: a novel concept using long-acting anti-retroviral drugs for treating HIV-1.

    Directory of Open Access Journals (Sweden)

    Marc Nischang

    Full Text Available BACKGROUND: Humanized mice generate a lymphoid system of human origin subsequent to transplantation of human CD34+ cells and thus are highly susceptible to HIV infection. Here we examined the efficacy of antiretroviral treatment (ART when added to food pellets, and of long-acting (LA antiretroviral compounds, either as monotherapy or in combination. These studies shall be inspiring for establishing a gold standard of ART, which is easy to administer and well supported by the mice, and for subsequent studies such as latency. Furthermore, they should disclose whether viral breakthrough and emergence of resistance occurs similar as in HIV-infected patients when ART is insufficient. METHODS/PRINCIPAL FINDINGS: NOD/shi-scid/γ(cnull (NOG mice were used in all experimentations. We first performed pharmacokinetic studies of the drugs used, either added to food pellets (AZT, TDF, 3TC, RTV or in a LA formulation that permitted once weekly subcutaneous administration (TMC278: non-nucleoside reverse transcriptase inhibitor, TMC181: protease inhibitor. A combination of 3TC, TDF and TMC278-LA or 3TC, TDF, TMC278-LA and TMC181-LA suppressed the viral load to undetectable levels in 15/19 (79% and 14/14 (100% mice, respectively. In successfully treated mice, subsequent monotherapy with TMC278-LA resulted in viral breakthrough; in contrast, the two LA compounds together prevented viral breakthrough. Resistance mutations matched the mutations most commonly observed in HIV patients failing therapy. Importantly, viral rebound after interruption of ART, presence of HIV DNA in successfully treated mice and in vitro reactivation of early HIV transcripts point to an existing latent HIV reservoir. CONCLUSIONS/SIGNIFICANCE: This report is a unique description of multiple aspects of HIV infection in humanized mice that comprised efficacy testing of various treatment regimens, including LA compounds, resistance mutation analysis as well as viral rebound after treatment

  17. Increased insulin sensitivity and changes in the expression profile of key insulin regulatory genes and beta cell transcription factors in diabetic KKAy-mice after feeding with a soy bean protein rich diet high in isoflavone content.

    Science.gov (United States)

    Nordentoft, I; Jeppesen, P B; Hong, J; Abudula, R; Hermansen, K

    2008-06-25

    High content isoflavone soy protein (SBP) (Abalon) has been found in animal studies to possess beneficial effects on a number of the characteristic features of the insulin resistance syndrome. The aim of this study was to investigate whether SBP exerts beneficial effects on metabolism in the diabetic KKAy-mouse. Furthermore, we investigated the long-term in vivo effect of SBP on the expression profile in islets of key insulin regulatory genes. Twenty KKAy-mice, aged 5 weeks, were divided into 2 groups and treated for 9 weeks with either (A) standard chow diet (control) or (B) chow + 50% SBP. Twenty normal C57BL-mice fed with standard chow diet served as nondiabetic controls (C). Blood samples were collected and analyzed before and after intervention. Gene expression was determined in islets by quantitative real-time RT-PCR and Affymetrix microarray. It was demonstrated that long-term treatment with SBP improves glucose homeostasis, increases insulin sensitivity, and lowers plasma triglycerides in diabetic KKAy-mice. SBP reduces fasting plasma glucose, insulin, triglycerides, and total cholesterol. Furthermore, SBP markedly changes the gene expression profile of key insulin regulatory genes GLUT2, GLUT3, Ins1, Ins2, IGF1, Beta2/Neurod1, cholecystokinin, and LDLr, and proliferative genes in islets isolated from KKAy-mice. After 9 weeks of treatment with SBP, plasma glucose and insulin homeostasis was normalized compared to start levels. The results indicate that SBP improves glucose and insulin sensitivity and up-regulates the expression of key insulin regulatory genes.

  18. The parietal epithelial cell: a key player in the pathogenesis of focal segmental glomerulosclerosis in Thy-1.1 transgenic mice.

    NARCIS (Netherlands)

    Smeets, B.; Loeke, N. te; Dijkman, H.B.P.M.; Steenbergen, M.; Lensen, J.F.M.; Begieneman, M.P.; Kuppevelt, A.H.M.S.M. van; Wetzels, J.F.M.; Steenbergen, E.

    2004-01-01

    Focal segmental glomerulosclerosis (FSGS) is a hallmark of progressive renal disease. Podocyte injury and loss have been proposed as the critical events that lead to FSGS. In the present study, the authors have examined the development of FSGS in Thy-1.1 transgenic (tg) mice, with emphasis on the

  19. Energy brands lack vitality

    International Nuclear Information System (INIS)

    Godri, S.; Wilders, E.

    2004-01-01

    The three Dutch energy companies (Nuon, Essent and Eneco Energie) have relatively little brand strength. The brands are not perceived to be sufficiently different from one another and are not valued by consumers. With liberalisation imminent, this is hardly a strong starting point. How can you win over consumers if it is not clear what is on offer? In the business market, decision-makers are better placed to distinguish between brands. However, the brands lack vitality in this sector of the market too. The only consolation is that the situation is by no means exclusive to the Netherlands [nl

  20. Brucella abortus mutants lacking ATP-binding cassette transporter proteins are highly attenuated in virulence and confer protective immunity against virulent B. abortus challenge in BALB/c mice.

    Science.gov (United States)

    Truong, Quang Lam; Cho, Youngjae; Park, Soyeon; Park, Bo-Kyoung; Hahn, Tae-Wook

    2016-06-01

    Brucella abortus RB51 is an attenuated vaccine strain that has been most frequently used for bovine brucellosis. Although it is known to provide good protection in cattle, it still has some drawbacks including resistance to rifampicin, residual virulence and pathogenicity in humans. Thus, there has been a continuous interest on new safe and effective bovine vaccine candidates. In the present study, we have constructed unmarked mutants by deleting singly cydD and cydC genes, which encode ATP-binding cassette transporter proteins, from the chromosome of the virulent Brucella abortus isolate from Korean cow (referred to as IVK15). Both IVK15ΔcydD and ΔcydC mutants showed increased sensitivity to metal ions, hydrogen peroxide and acidic pH, which are mimic to intracellular environment during host infection. Additionally, the mutants exhibited a significant growth defect in RAW264.7 cells and greatly attenuated in mice. Vaccination of mice with either IVK15ΔcydC or IVK15ΔcydD mutant could elicit an anti-Brucella specific immunoglobulin G (IgG) and IgG subclass responses as well as enhance the secretion of interferon-gamma, and provided better protection against challenge with B. abortus strain 2308 than with the commercial B. abortus strain RB51 vaccine. Collectively, these results suggest that both IVK15ΔcydC and IVK15ΔcydD mutants could be an attenuated vaccine candidate against B. abortus. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Key Brainstem Structures Activated during Hypoxic Exposure in One-day-old Mice Highlight Characteristics for Modeling Breathing Network in Premature Infants

    Science.gov (United States)

    Joubert, Fanny; Loiseau, Camille; Perrin-Terrin, Anne-Sophie; Cayetanot, Florence; Frugière, Alain; Voituron, Nicolas; Bodineau, Laurence

    2016-01-01

    We mapped and characterized changes in the activity of brainstem cell groups under hypoxia in one-day-old newborn mice, an animal model in which the central nervous system at birth is particularly immature. The classical biphasic respiratory response characterized by transient hyperventilation, followed by severe ventilation decline, was associated with increased c-FOS immunoreactivity in brainstem cell groups: the nucleus of the solitary tract, ventral reticular nucleus of the medulla, retrotrapezoid/parafacial region, parapyramidal group, raphe magnus nucleus, lateral, and medial parabrachial nucleus, and dorsal subcoeruleus nucleus. In contrast, the hypoglossal nucleus displayed decreased c-FOS immunoreactivity. There were fewer or no activated catecholaminergic cells activated in the medulla oblongata, whereas ~45% of the c-FOS-positive cells in the dorsal subcoeruleus were co-labeled. Approximately 30% of the c-FOS-positive cells in the parapyramidal group were serotoninergic, whereas only a small portion were labeled for serotonin in the raphe magnus nucleus. None of the c-FOS-positive cells in the retrotrapezoid/parafacial region were co-labeled for PHOX2B. Thus, the hypoxia-activated brainstem neuronal network of one-day-old mice is characterized by (i) the activation of catecholaminergic cells of the dorsal subcoeruleus nucleus, a structure implicated in the strong depressive pontine influence previously reported in the fetus but not in newborns, (ii) the weak activation of catecholaminergic cells of the ventral reticular nucleus of the medulla, an area involved in hypoxic hyperventilation, and (iii) the absence of PHOX2B-positive cells activated in the retrotrapezoid/parafacial region. Based on these results, one-day-old mice could highlight characteristics for modeling the breathing network of premature infants. PMID:28018238

  2. Key brainstem structures activated during hypoxic exposure in one-day-old mice highlight characteristics for modelling breathing network in premature infants

    Directory of Open Access Journals (Sweden)

    Fanny JOUBERT

    2016-12-01

    Full Text Available We mapped and characterized changes in the activity of brainstem cell groups under hypoxia in one-day-old newborn mice, an animal model in which the central nervous system at birth is particularly immature. The classical biphasic respiratory response characterized by transient hyperventilation, followed by severe ventilation decline, was associated with increased c-FOS immunoreactivity in brainstem cell groups: the nucleus of the solitary tract, ventral reticular nucleus of the medulla, retrotrapezoid/parafacial region, parapyramidal group, raphe magnus nucleus, lateral and medial parabrachial nucleus, and dorsal subcoeruleus nucleus. In contrast, the hypoglossal nucleus displayed decreased c-FOS immunoreactivity. There were fewer or no activated catecholaminergic cells activated in the medulla oblongata, whereas approximately 45% of the c-FOS-positive cells in the dorsal subcoeruleus were co-labelled. Approximately 30% of the c-FOS-positive cells in the parapyramidal group were serotoninergic, whereas only a small portion were labelled for serotonin in the raphe magnus nucleus. None of the c-FOS-positive cells in the retrotrapezoid/parafacial region were co-labelled for PHOX2B. Thus, the hypoxia-activated brainstem neuronal network of one-day-old mice is characterized by i the activation of catecholaminergic cells of the dorsal subcoeruleus nucleus, a structure implicated in the strong depressive pontine influence previously reported in the fetus but not in newborns, ii the weak activation of catecholaminergic cells of the ventral reticular nucleus of the medulla, an area involved in hypoxic hyperventilation, and iii the absence of PHOX2B-positive cells activated in the retrotrapezoid/parafacial region. Based on these results, one-day-old mice could highlight characteristics for modelling the breathing network of premature infants.

  3. The parietal epithelial cell: a key player in the pathogenesis of focal segmental glomerulosclerosis in Thy-1.1 transgenic mice.

    Science.gov (United States)

    Smeets, Bart; Te Loeke, Nathalie A J M; Dijkman, Henry B P M; Steenbergen, Mark L M; Lensen, Joost F M; Begieneman, Mark P V; van Kuppevelt, Toin H; Wetzels, Jack F M; Steenbergen, Eric J

    2004-04-01

    Focal segmental glomerulosclerosis (FSGS) is a hallmark of progressive renal disease. Podocyte injury and loss have been proposed as the critical events that lead to FSGS. In the present study, the authors have examined the development of FSGS in Thy-1.1 transgenic (tg) mice, with emphasis on the podocyte and parietal epithelial cell (PEC). Thy-1.1 tg mice express the Thy-1.1 antigen on podocytes. Injection of anti-Thy-1.1 mAb induces an acute albuminuria and development of FSGS lesions that resemble human collapsing FSGS. The authors studied FSGS lesions at days 1, 3, 6, 7, 10, 14, and 21, in relation to changes in the expression of specific markers for normal podocytes (WT-1, synaptopodin, ASD33, and the Thy-1.1 antigen), for mouse PEC (CD10), for activated podocytes (desmin), for macrophages (CD68), and for proliferation (Ki-67). The composition of the extracellular matrix (ECM) that forms tuft adhesions or scars was studied using mAb against collagen IV alpha2 and alpha4 chains and antibodies directed against different heparan sulfate species. The first change observed was severe PEC injury at day 1, which increased in time, and resulted in denuded segments of Bowman's capsule at days 6 and 7. Podocytes showed foot process effacement and microvillous transformation. There was no evidence of podocyte loss or denudation of the GBM. Podocytes became hypertrophic at day 3, with decreased expression of ASD33 and synaptopodin and normal expression of WT-1 and Thy-1.1. Podocyte bridges were formed by attachment of hypertrophic podocytes to PEC and podocyte apposition against denuded segments of Bowman's capsule. At day 6, there was a marked proliferation of epithelial cells in Bowman's space. These proliferating cells were negative for desmin and all podocyte markers, but stained for CD10, and thus appeared to be PEC. The staining properties of the early adhesions were identical to that of Bowman's capsule, suggesting that the ECM in the adhesions was produced by PEC

  4. Epigallocatechin-3-gallate enhances key enzymatic activities of hepatic thioredoxin and glutathione systems in selenium-optimal mice but activates hepatic Nrf2 responses in selenium-deficient mice

    Directory of Open Access Journals (Sweden)

    Ruixia Dong

    2016-12-01

    Full Text Available Selenium participates in the antioxidant defense mainly through a class of selenoproteins, including thioredoxin reductase. Epigallocatechin-3-gallate (EGCG is the most abundant and biologically active catechin in green tea. Depending upon the dose and biological systems, EGCG may function either as an antioxidant or as an inducer of antioxidant defense via its pro-oxidant action or other unidentified mechanisms. By manipulating the selenium status, the present study investigated the interactions of EGCG with antioxidant defense systems including the thioredoxin system comprising of thioredoxin and thioredoxin reductase, the glutathione system comprising of glutathione and glutathione reductase coupled with glutaredoxin, and the Nrf2 system. In selenium-optimal mice, EGCG increased hepatic activities of thioredoxin reductase, glutathione reductase and glutaredoxin. These effects of EGCG appeared to be not due to overt pro-oxidant action because melatonin, a powerful antioxidant, did not influence the increase. However, in selenium-deficient mice, with low basal levels of thioredoxin reductase 1, the same dose of EGCG did not elevate the above-mentioned enzymes; intriguingly EGCG in turn activated hepatic Nrf2 response, leading to increased heme oxygenase 1 and NAD(PH:quinone oxidoreductase 1 protein levels and thioredoxin activity. Overall, the present work reveals that EGCG is a robust inducer of the Nrf2 system only in selenium-deficient conditions. Under normal physiological conditions, in selenium-optimal mice, thioredoxin and glutathione systems serve as the first line defense systems against the stress induced by high doses of EGCG, sparing the activation of the Nrf2 system.

  5. Atherogenicity of amino acids in the lipid-laden macrophage model system in vitro and in atherosclerotic mice: a key role for triglyceride metabolism.

    Science.gov (United States)

    Rom, Oren; Grajeda-Iglesias, Claudia; Najjar, Mahmoud; Abu-Saleh, Niroz; Volkova, Nina; Dar, Dalit Esther; Hayek, Tony; Aviram, Michael

    2017-07-01

    Atherosclerosis-related research has focused mainly on the effects of lipids on macrophage foam cell formation and atherogenesis, whereas the role of amino acids (AAs) was understudied. The current study aimed to identify anti- or pro-atherogenic AA in the macrophage model system and to elucidate the underlying metabolic and molecular mechanisms. J774A.1 cultured macrophages were treated with increasing concentrations of each 1 of the 20 AAs. Macrophage atherogenicity was assessed in terms of cellular toxicity, generation of reactive oxygen species (ROS) and cellular cholesterol or triglyceride content. At nontoxic concentrations (up to 1 mM), modest effects on ROS generation or cholesterol content were noted, but six specific AAs significantly affected macrophage triglyceride content. Glycine, cysteine, alanine and leucine significantly decreased macrophage triglyceride content (by 24%-38%), through attenuated uptake of triglyceride-rich very low-density lipoprotein (VLDL) by macrophages. In contrast, glutamate and glutamine caused a marked triglyceride accumulation in macrophages (by 107% and 129%, respectively), via a diacylglycerol acyltransferase-1 (DGAT1)-dependent increase in triglyceride biosynthesis rate with a concurrent maturation of the sterol regulatory element-binding protein-1 (SREBP1). Supplementation of apolipoprotein E-deficient (apoE -/- ) mice with glycine for 40 days significantly decreased the triglyceride levels in serum and in peritoneal macrophages (MPMs) isolated from the mice (by 19%). In contrast, glutamine supplementation significantly increased MPM ROS generation and the accumulation of cholesterol and that of triglycerides (by 48%), via enhanced uptake of LDL and VLDL. Altogether, the present findings reveal some novel roles for specific AA in macrophage atherogenicity, mainly through modulation of cellular triglyceride metabolism. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Lack of Exposure in a First-in-Man Study Due to Aldehyde Oxidase Metabolism: Investigated by Use of 14C-microdose, Humanized Mice, Monkey Pharmacokinetics, and In Vitro Methods.

    Science.gov (United States)

    Jensen, Klaus Gjervig; Jacobsen, Anne-Marie; Bundgaard, Christoffer; Nilausen, Dorrit Østergaard; Thale, Zia; Chandrasena, Gamini; Jørgensen, Martin

    2017-01-01

    Inclusion of a microdose of 14 C-labeled drug in the first-in-man study of new investigational drugs and subsequent analysis by accelerator mass spectrometry has become an integrated part of drug development at Lundbeck. It has been found to be highly informative with regard to investigations of the routes and rates of excretion of the drug and the human metabolite profiles according to metabolites in safety testing guidance and also when additional metabolism-related issues needed to be addressed. In the first-in-man study with the NCE Lu AF09535, contrary to anticipated, surprisingly low exposure was observed when measuring the parent compound using conventional bioanalysis. Parallel accelerator mass spectrometry analysis revealed that the low exposure was almost exclusively attributable to extensive metabolism. The metabolism observed in humans was mediated via a human specific metabolic pathway, whereas an equivalent extent of metabolism was not observed in preclinical species. In vitro, incubation studies in human liver cytosol revealed involvement of aldehyde oxidase (AO) in the biotransformation of Lu AF09535. In vivo, substantially lower plasma exposure of Lu AF09535 was observed in chimeric mice with humanized livers compared with control animals. In addition, Lu AF09535 exhibited very low oral bioavailability in monkeys despite relatively low clearance after intravenous administration in contrast to the pharmacokinetics in rats and dogs, both showing low clearance and high bioavailability. The in vitro and in vivo methods applied were proved useful for identifying and evaluating AO-dependent metabolism. Different strategies to integrate these methods for prediction of in vivo human clearance of AO substrates were evaluated. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  7. Modified Protein Improves Vitiligo Symptoms in Mice

    Science.gov (United States)

    ... Vitiligo Symptoms in Mice Spotlight on Research Modified Protein Improves Vitiligo Symptoms in Mice By Colleen Labbe, ... D., Ph.D., Rush University. Altering a key protein involved in the development of vitiligo may protect ...

  8. Lack of Glycogenin Causes Glycogen Accumulation and Muscle Function Impairment.

    Science.gov (United States)

    Testoni, Giorgia; Duran, Jordi; García-Rocha, Mar; Vilaplana, Francisco; Serrano, Antonio L; Sebastián, David; López-Soldado, Iliana; Sullivan, Mitchell A; Slebe, Felipe; Vilaseca, Marta; Muñoz-Cánoves, Pura; Guinovart, Joan J

    2017-07-05

    Glycogenin is considered essential for glycogen synthesis, as it acts as a primer for the initiation of the polysaccharide chain. Against expectations, glycogenin-deficient mice (Gyg KO) accumulate high amounts of glycogen in striated muscle. Furthermore, this glycogen contains no covalently bound protein, thereby demonstrating that a protein primer is not strictly necessary for the synthesis of the polysaccharide in vivo. Strikingly, in spite of the higher glycogen content, Gyg KO mice showed lower resting energy expenditure and less resistance than control animals when subjected to endurance exercise. These observations can be attributed to a switch of oxidative myofibers toward glycolytic metabolism. Mice overexpressing glycogen synthase in the muscle showed similar alterations, thus indicating that this switch is caused by the excess of glycogen. These results may explain the muscular defects of GSD XV patients, who lack glycogenin-1 and show high glycogen accumulation in muscle. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Key issues

    International Nuclear Information System (INIS)

    Cook, N.G.W.

    1980-01-01

    Successful modeling of the thermo-mechanical and hydrochemical behavior of radioactive waste repositories in hard rock is possible in principle. Because such predictions lie outside the realm of experience, their adequacy depends entirely upon a thorough understanding of three fundamental questions: an understanding of the chemical and physical processess that determine the behavior of rock and all its complexities; accurate and realistic numerical models of the geologic media within which a repository may be built; and sufficient in-situ data covering the entire geologic region affected by, or effecting the behavior of a repository. At present sufficient is known to be able to identify most of those areas which require further attention. These areas extend all the way from a complete understanding of the chemical and physical processes determining the behavior of rock through to the exploration mapping and testing that must be done during the development of any potential repository. Many of the techniques, laboratory equipment, field instrumentation, and numerical methods needed to accomplish this do not exist at present. Therefore it is necessary to accept that a major investment in scientific research is required to generate this information over the next few years. The spectrum of scientific and engineering activities is wide extending from laboratory measurements through the development of numerical models to the measurement of data in-situ, but there is every prospect that sufficient can be done to resolve these key issues. However, to do so requires overt recognition of the many gaps which exist in our knowledge and abilities today, and of the need to bridge these gaps and of the significant costs involved in doing so

  10. Cloning Mice.

    Science.gov (United States)

    Ogura, Atsuo

    2017-08-01

    Viable and fertile mice can be generated by somatic nuclear transfer into enucleated oocytes, presumably because the transplanted somatic cell genome becomes reprogrammed by factors in the oocyte. The first somatic cloned offspring of mice were obtained by directly injecting donor nuclei into recipient enucleated oocytes. When this method is used (the so-called Honolulu method of somatic cell nuclear transfer [SCNT]), the donor nuclei readily and completely condense within the enucleated metaphase II-arrested oocytes, which contain high levels of M-phase-promoting factor (MPF). It is believed that the condensation of the donor chromosomes promotes complete reprogramming of the donor genome within the mouse oocytes. Another key to the success of mouse cloning is the use of blunt micropipettes attached to a piezo impact-driving micromanipulation device. This system saves a significant amount of time during the micromanipulation of oocytes and thus minimizes the loss of oocyte viability in vitro. For example, a group of 20 oocytes can be enucleated within 10 min by an experienced operator. This protocol is composed of seven parts: (1) preparing micropipettes, (2) setting up the enucleation and injection micropipettes, (3) collecting and enucleating oocytes, (4) preparing nucleus donor cells, (5) injecting donor nuclei, (6) activating embryos and culturing, and (7) transferring cloned embryos. © 2017 Cold Spring Harbor Laboratory Press.

  11. Editor's Highlight: Complete Attenuation of Mouse Lung Cell Proliferation and Tumorigenicity in CYP2F2 Knockout and CYP2F1 Humanized Mice Exposed to Inhaled Styrene for up to 2 Years Supports a Lack of Human Relevance.

    Science.gov (United States)

    Cruzan, George; Bus, James S; Banton, Marcy I; Sarang, Satinder S; Waites, Robbie; Layko, Debra B; Raymond, James; Dodd, Darol; Andersen, Melvin E

    2017-10-01

    Styrene is a mouse-specific lung carcinogen, and short-term mode of action studies have demonstrated that cytotoxicity and/or cell proliferation, and genomic changes are dependent on CYP2F2 metabolism. The current study examined histopathology, cell proliferation, and genomic changes in CD-1, C57BL/6 (WT), CYP2F2(-/-) (KO), and CYP2F2(-/-) (CYP2F1, 2B6, 2A13-transgene) (TG; humanized) mice following exposure for up to 104 weeks to 0- or 120-ppm styrene vapor. Five mice per treatment group were sacrificed at 1, 26, 52, and 78 weeks. Additional 50 mice per treatment group were followed until death or 104 weeks of exposure. Cytotoxicity was present in the terminal bronchioles of some CD-1 and WT mice exposed to styrene, but not in KO or TG mice. Hyperplasia in the terminal bronchioles was present in CD-1 and WT mice exposed to styrene, but not in KO or TG mice. Increased cell proliferation, measured by KI-67 staining, occurred in CD-1 and WT mice exposed to styrene for 1 week, but not after 26, 52, or 78 weeks, nor in KO or TG mice. Styrene increased the incidence of bronchioloalveolar adenomas and carcinomas in CD-1 mice. No increase in lung tumors was found in WT despite clear evidence of lung toxicity, or, KO or TG mice. The absence of preneoplastic lesions and tumorigenicity in KO and TG mice indicates that mouse-specific CYP2F2 metabolism is responsible for both the short-term and chronic toxicity and tumorigenicity of styrene, and activation of styrene by CYP2F2 is a rodent MOA that is neither quantitatively or qualitatively relevant to humans. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Lack of RNase L attenuates macrophage functions.

    Directory of Open Access Journals (Sweden)

    Xin Yi

    Full Text Available Macrophages are one of the major cell types in innate immunity against microbial infection. It is believed that the expression of proinflammatory genes such as tumor necrosis factor-α (TNF-α, interleukin (IL-1β, IL-6, and cyclooxygenase-2 (Cox-2 by macrophages is also crucial for activation of both innate and adaptive immunities. RNase L is an interferon (IFN inducible enzyme which is highly expressed in macrophages. It has been demonstrated that RNase L regulates the expression of certain inflammatory genes. However, its role in macrophage function is largely unknown.Bone marrow-derived macrophages (BMMs were generated from RNase L(+/+and (-/- mice. The migration of BMMs was analyzed by using Transwell migration assays. Endocytosis and phagocytosis of macrophages were assessed by using fluorescein isothiocyanate (FITC-Dextran 40,000 and FITC-E. coli bacteria, respectively. The expression of inflammatory genes was determined by Western Blot and ELISA. The promoter activity of Cox-2 was measured by luciferase reporter assays.Lack of RNase L significantly decreased the migration of BMMs induced by M-CSF, but at a less extent by GM-CSF and chemokine C-C motif ligand-2 (CCL2. Interestingly, RNase L deficient BMMs showed a significant reduction of endocytic activity to FITC-Dextran 40,000, but no any obvious effect on their phagocytic activity to FITC-bacteria under the same condition. RNase L impacts the expression of certain genes related to cell migration and inflammation such as transforming growth factor (TGF-β, IL-1β, IL-10, CCL2 and Cox-2. Furthermore, the functional analysis of the Cox-2 promoter revealed that RNase L regulated the expression of Cox-2 in macrophages at its transcriptional level. Taken together, our findings provide direct evidence showing that RNase L contributes to innate immunity through regulating macrophage functions.

  13. Lack of Neuronal IFN-β-IFNAR Causes Lewy Body- and Parkinson's Disease-like Dementia

    DEFF Research Database (Denmark)

    Ejlerskov, Patrick; Hultberg, Jeanette Göransdotter; Wang, JunYang

    2015-01-01

    -causing mutant proteins. Mice lacking Ifnb function exhibited motor and cognitive learning impairments with accompanying α-synuclein-containing Lewy bodies in the brain, as well as a reduction in dopaminergic neurons and defective dopamine signaling in the nigrostriatal region. Lack of IFN-β signaling caused...

  14. Peripheral nervous system insulin resistance in ob/ob mice

    Science.gov (United States)

    2013-01-01

    Background A reduction in peripheral nervous system (PNS) insulin signaling is a proposed mechanism that may contribute to sensory neuron dysfunction and diabetic neuropathy. Neuronal insulin resistance is associated with several neurological disorders and recent evidence has indicated that dorsal root ganglion (DRG) neurons in primary culture display altered insulin signaling, yet in vivo results are lacking. Here, experiments were performed to test the hypothesis that the PNS of insulin-resistant mice displays altered insulin signal transduction in vivo. For these studies, nondiabetic control and type 2 diabetic ob/ob mice were challenged with an intrathecal injection of insulin or insulin-like growth factor 1 (IGF-1) and downstream signaling was evaluated in the DRG and sciatic nerve using Western blot analysis. Results The results indicate that insulin signaling abnormalities documented in other “insulin sensitive” tissues (i.e. muscle, fat, liver) of ob/ob mice are also present in the PNS. A robust increase in Akt activation was observed with insulin and IGF-1 stimulation in nondiabetic mice in both the sciatic nerve and DRG; however this response was blunted in both tissues from ob/ob mice. The results also suggest that upregulated JNK activation and reduced insulin receptor expression could be contributory mechanisms of PNS insulin resistance within sensory neurons. Conclusions These findings contribute to the growing body of evidence that alterations in insulin signaling occur in the PNS and may be a key factor in the pathogenesis of diabetic neuropathy. PMID:24252636

  15. Activation of inflammatory signaling by lipopolysaccharide produces a prolonged increase of voluntary alcohol intake in mice

    Science.gov (United States)

    Blednov, Y.A.; Benavidez, J.M.; Geil, C.; Perra, S.; Morikawa, H.; Harris, R.A.

    2011-01-01

    Previous studies showed that mice with genetic predisposition for high alcohol consumption as well as human alcoholics show changes in brain expression of genes related to immune signaling. In addition, mutant mice lacking genes related to immune function show decreased alcohol consumption (Blednov et al., in press), suggesting that immune signaling promotes alcohol consumption. To test the possibility that activation of immune signaling will increase alcohol consumption, we treated mice with lipopolysaccaride (LPS; 1 mg/kg, i.p.) and tested alcohol consumption in the continuous two-bottle choice test. To take advantage of the long-lasting activation of brain immune signaling by LPS, we measured drinking beginning one week or one month after LPS treatment and continued the studies for several months. LPS produced persistent increases in alcohol consumption in C57/Bl6 J (B6) inbred mice, FVBxB6F1 and B6xNZBF1 hybrid mice, but not in FVB inbred mice. To determine if this effect of LPS is mediated through binding to TLR4, we tested mice lacking CD14, a key component of TLR4 signaling. These null mutants showed no increase of alcohol intake after treatment with LPS. LPS treatment decreased ethanol-conditioned taste aversion but did not alter ethanol-conditioned place preference (B6xNZBF1 mice). Electro-physiological studies of dopamine neurons in the ventral tegmental area showed that pretreatment of mice with LPS decreased the neuronal firing rate. These results suggest that activation of immune signaling promotes alcohol consumption and alters certain aspects of alcohol reward/aversion. PMID:21266194

  16. Lack of centrioles and primary cilia in STIL(-/-) mouse embryos.

    Science.gov (United States)

    David, Ahuvit; Liu, Fengying; Tibelius, Alexandra; Vulprecht, Julia; Wald, Diana; Rothermel, Ulrike; Ohana, Reut; Seitel, Alexander; Metzger, Jasmin; Ashery-Padan, Ruth; Meinzer, Hans-Peter; Gröne, Hermann-Josef; Izraeli, Shai; Krämer, Alwin

    2014-01-01

    Although most animal cells contain centrosomes, consisting of a pair of centrioles, their precise contribution to cell division and embryonic development is unclear. Genetic ablation of STIL, an essential component of the centriole replication machinery in mammalian cells, causes embryonic lethality in mice around mid gestation associated with defective Hedgehog signaling. Here, we describe, by focused ion beam scanning electron microscopy, that STIL(-/-) mouse embryos do not contain centrioles or primary cilia, suggesting that these organelles are not essential for mammalian development until mid gestation. We further show that the lack of primary cilia explains the absence of Hedgehog signaling in STIL(-/-) cells. Exogenous re-expression of STIL or STIL microcephaly mutants compatible with human survival, induced non-templated, de novo generation of centrioles in STIL(-/-) cells. Thus, while the abscence of centrioles is compatible with mammalian gastrulation, lack of centrioles and primary cilia impairs Hedgehog signaling and further embryonic development.

  17. Targeted Deletion of Kynurenine 3-Monooxygenase in Mice

    Science.gov (United States)

    Giorgini, Flaviano; Huang, Shao-Yi; Sathyasaikumar, Korrapati V.; Notarangelo, Francesca M.; Thomas, Marian A. R.; Tararina, Margarita; Wu, Hui-Qiu; Schwarcz, Robert; Muchowski, Paul J.

    2013-01-01

    Kynurenine 3-monooxygenase (KMO), a pivotal enzyme in the kynurenine pathway (KP) of tryptophan degradation, has been suggested to play a major role in physiological and pathological events involving bioactive KP metabolites. To explore this role in greater detail, we generated mice with a targeted genetic disruption of Kmo and present here the first biochemical and neurochemical characterization of these mutant animals. Kmo−/− mice lacked KMO activity but showed no obvious abnormalities in the activity of four additional KP enzymes tested. As expected, Kmo−/− mice showed substantial reductions in the levels of its enzymatic product, 3-hydroxykynurenine, in liver, brain, and plasma. Compared with wild-type animals, the levels of the downstream metabolite quinolinic acid were also greatly decreased in liver and plasma of the mutant mice but surprisingly were only slightly reduced (by ∼20%) in the brain. The levels of three other KP metabolites: kynurenine, kynurenic acid, and anthranilic acid, were substantially, but differentially, elevated in the liver, brain, and plasma of Kmo−/− mice, whereas the liver and brain content of the major end product of the enzymatic cascade, NAD+, did not differ between Kmo−/− and wild-type animals. When assessed by in vivo microdialysis, extracellular kynurenic acid levels were found to be significantly elevated in the brains of Kmo−/− mice. Taken together, these results provide further evidence that KMO plays a key regulatory role in the KP and indicate that Kmo−/− mice will be useful for studying tissue-specific functions of individual KP metabolites in health and disease. PMID:24189070

  18. DEFENSE PRODUCTION ACT: Agencies Lack Policies and Guidance for Use of Key Authorities

    Science.gov (United States)

    2008-06-01

    and its allies $67.10 Titanium Metal Matrix Composites for Aircraft Supplies material properties that enable aircraft designers to engineer...Flexible Aerogel Material Supplier Initiative Provides nanoporous solids with up to 99 percent open porosity often called “frozen smoke” $14.62...lightweight explosive detector device $1.06 Continuous Filament Boron Fiber Production Provides boron fiber needed for aircraft structure reinforcement and

  19. Development of mice without Cip/Kip CDK inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Tateishi, Yuki; Matsumoto, Akinobu; Kanie, Tomoharu [Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582 (Japan); CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Hara, Eiji [Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Nakayama, Keiko [Department of Developmental Genetics, Center for Translational and Advanced Animal Research, Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575 (Japan); Nakayama, Keiichi I., E-mail: nakayak1@bioreg.kyushu-u.ac.jp [Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582 (Japan); CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan)

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer Mice lacking Cip/Kip CKIs (p21, p27, and p57) survive until embryonic day 13.5. Black-Right-Pointing-Pointer Proliferation of MEFs lacking all three Cip/Kip CKIs appears unexpectedly normal. Black-Right-Pointing-Pointer CDK2 kinase activity of the triple mutant MEFs is increased in G0 phase. -- Abstract: Timely exit of cells from the cell cycle is essential for proper cell differentiation during embryogenesis. Cyclin-dependent kinase (CDK) inhibitors (CKIs) of the Cip/Kip family (p21, p27, and p57) are negative regulators of cell cycle progression and are thought to be essential for development. However, the extent of functional redundancy among Cip/Kip family members has remained largely unknown. We have now generated mice that lack all three Cip/Kip CKIs (TKO mice) and compared them with those lacking each possible pair of these proteins (DKO mice). We found that the TKO embryos develop normally until midgestation but die around embryonic day (E) 13.5, slightly earlier than p27/p57 DKO embryos. The TKO embryos manifested morphological abnormalities as well as increased rates of cell proliferation and apoptosis in the placenta and lens that were essentially indistinguishable from those of p27/p57 DKO mice. Unexpectedly, the proliferation rate and cell cycle profile of mouse embryonic fibroblasts (MEFs) lacking all three Cip/Kip CKIs did not differ substantially from those of control MEFs. The abundance and kinase activity of CDK2 were markedly increased, whereas CDK4 activity and cyclin D1 abundance were decreased, in both p27/p57 DKO and TKO MEFs during progression from G{sub 0} to S phase compared with those in control MEFs. The extents of the increase in CDK2 activity and the decrease in CDK4 activity and cyclin D1 abundance were greater in TKO MEFs than in p27/p57 DKO MEFs. These results suggest that p27 and p57 play an essential role in mouse development after midgestation, and that p21 plays only an auxiliary role in

  20. Cardiomyocyte specific deletion of Crif1 causes mitochondrial cardiomyopathy in mice.

    Directory of Open Access Journals (Sweden)

    Juhee Shin

    Full Text Available Mitochondria are key organelles dedicated to energy production. Crif1, which interacts with the large subunit of the mitochondrial ribosome, is indispensable for the mitochondrial translation and membrane insertion of respiratory subunits. To explore the physiological function of Crif1 in the heart, Crif1(f/f mice were crossed with Myh6-cre/Esr1 transgenic mice, which harbor cardiomyocyte-specific Cre activity in a tamoxifen-dependent manner. The tamoxifen injections were given at six weeks postnatal, and the mutant mice survived only five months due to hypertrophic heart failure. In the mutant cardiac muscles, mitochondrial mass dramatically increased, while the inner structure was altered with lack of cristae. Mutant cardiac muscles showed decreased rates of oxygen consumption and ATP production, suggesting that Crif1 plays a critical role in the maintenance of both mitochondrial structure and respiration in cardiac muscles.

  1. Therapeutic cloning in individual parkinsonian mice

    Science.gov (United States)

    Tabar, Viviane; Tomishima, Mark; Panagiotakos, Georgia; Wakayama, Sayaka; Menon, Jayanthi; Chan, Bill; Mizutani, Eiji; Al-Shamy, George; Ohta, Hiroshi; Wakayama, Teruhiko; Studer, Lorenz

    2009-01-01

    Cell transplantation with embryonic stem (ES) cell progeny requires immunological compatibility with host tissue. ‘Therapeutic cloning’ is a strategy to overcome this limitation by generating nuclear transfer (nt)ES cells that are genetically matched to an individual. Here we establish the feasibility of treating individual mice via therapeutic cloning. Derivation of 187 ntES cell lines from 24 parkinsonian mice, dopaminergic differentiation, and transplantation into individually matched host mice showed therapeutic efficacy and lack of immunological response. PMID:18376409

  2. Deletion of Lkb1 in Pro-Opiomelanocortin Neurons Impairs Peripheral Glucose Homeostasis in Mice

    Science.gov (United States)

    Claret, Marc; Smith, Mark A.; Knauf, Claude; Al-Qassab, Hind; Woods, Angela; Heslegrave, Amanda; Piipari, Kaisa; Emmanuel, Julian J.; Colom, André; Valet, Philippe; Cani, Patrice D.; Begum, Ghazala; White, Anne; Mucket, Phillip; Peters, Marco; Mizuno, Keiko; Batterham, Rachel L.; Giese, K. Peter; Ashworth, Alan; Burcelin, Remy; Ashford, Michael L.; Carling, David; Withers, Dominic J.

    2011-01-01

    OBJECTIVE AMP-activated protein kinase (AMPK) signaling acts as a sensor of nutrients and hormones in the hypothalamus, thereby regulating whole-body energy homeostasis. Deletion of Ampkα2 in pro-opiomelanocortin (POMC) neurons causes obesity and defective neuronal glucose sensing. LKB1, the Peutz-Jeghers syndrome gene product, and Ca2+-calmodulin–dependent protein kinase kinase β (CaMKKβ) are key upstream activators of AMPK. This study aimed to determine their role in POMC neurons upon energy and glucose homeostasis regulation. RESEARCH DESIGN AND METHODS Mice lacking either Camkkβ or Lkb1 in POMC neurons were generated, and physiological, electrophysiological, and molecular biology studies were performed. RESULTS Deletion of Camkkβ in POMC neurons does not alter energy homeostasis or glucose metabolism. In contrast, female mice lacking Lkb1 in POMC neurons (PomcLkb1KO) display glucose intolerance, insulin resistance, impaired suppression of hepatic glucose production, and altered expression of hepatic metabolic genes. The underlying cellular defect in PomcLkb1KO mice involves a reduction in melanocortin tone caused by decreased α-melanocyte–stimulating hormone secretion. However, Lkb1-deficient POMC neurons showed normal glucose sensing, and body weight was unchanged in PomcLkb1KO mice. CONCLUSIONS Our findings demonstrate that LKB1 in hypothalamic POMC neurons plays a key role in the central regulation of peripheral glucose metabolism but not body-weight control. This phenotype contrasts with that seen in mice lacking AMPK in POMC neurons with defects in body-weight regulation but not glucose homeostasis, which suggests that LKB1 plays additional functions distinct from activating AMPK in POMC neurons. PMID:21266325

  3. Deletion of Lkb1 in pro-opiomelanocortin neurons impairs peripheral glucose homeostasis in mice.

    Science.gov (United States)

    Claret, Marc; Smith, Mark A; Knauf, Claude; Al-Qassab, Hind; Woods, Angela; Heslegrave, Amanda; Piipari, Kaisa; Emmanuel, Julian J; Colom, André; Valet, Philippe; Cani, Patrice D; Begum, Ghazala; White, Anne; Mucket, Phillip; Peters, Marco; Mizuno, Keiko; Batterham, Rachel L; Giese, K Peter; Ashworth, Alan; Burcelin, Remy; Ashford, Michael L; Carling, David; Withers, Dominic J

    2011-03-01

    AMP-activated protein kinase (AMPK) signaling acts as a sensor of nutrients and hormones in the hypothalamus, thereby regulating whole-body energy homeostasis. Deletion of Ampkα2 in pro-opiomelanocortin (POMC) neurons causes obesity and defective neuronal glucose sensing. LKB1, the Peutz-Jeghers syndrome gene product, and Ca(2+)-calmodulin-dependent protein kinase kinase β (CaMKKβ) are key upstream activators of AMPK. This study aimed to determine their role in POMC neurons upon energy and glucose homeostasis regulation. Mice lacking either Camkkβ or Lkb1 in POMC neurons were generated, and physiological, electrophysiological, and molecular biology studies were performed. Deletion of Camkkβ in POMC neurons does not alter energy homeostasis or glucose metabolism. In contrast, female mice lacking Lkb1 in POMC neurons (PomcLkb1KO) display glucose intolerance, insulin resistance, impaired suppression of hepatic glucose production, and altered expression of hepatic metabolic genes. The underlying cellular defect in PomcLkb1KO mice involves a reduction in melanocortin tone caused by decreased α-melanocyte-stimulating hormone secretion. However, Lkb1-deficient POMC neurons showed normal glucose sensing, and body weight was unchanged in PomcLkb1KO mice. Our findings demonstrate that LKB1 in hypothalamic POMC neurons plays a key role in the central regulation of peripheral glucose metabolism but not body-weight control. This phenotype contrasts with that seen in mice lacking AMPK in POMC neurons with defects in body-weight regulation but not glucose homeostasis, which suggests that LKB1 plays additional functions distinct from activating AMPK in POMC neurons.

  4. Targeted deletion of kynurenine 3-monooxygenase in mice: a new tool for studying kynurenine pathway metabolism in periphery and brain.

    Science.gov (United States)

    Giorgini, Flaviano; Huang, Shao-Yi; Sathyasaikumar, Korrapati V; Notarangelo, Francesca M; Thomas, Marian A R; Tararina, Margarita; Wu, Hui-Qiu; Schwarcz, Robert; Muchowski, Paul J

    2013-12-20

    Kynurenine 3-monooxygenase (KMO), a pivotal enzyme in the kynurenine pathway (KP) of tryptophan degradation, has been suggested to play a major role in physiological and pathological events involving bioactive KP metabolites. To explore this role in greater detail, we generated mice with a targeted genetic disruption of Kmo and present here the first biochemical and neurochemical characterization of these mutant animals. Kmo(-/-) mice lacked KMO activity but showed no obvious abnormalities in the activity of four additional KP enzymes tested. As expected, Kmo(-/-) mice showed substantial reductions in the levels of its enzymatic product, 3-hydroxykynurenine, in liver, brain, and plasma. Compared with wild-type animals, the levels of the downstream metabolite quinolinic acid were also greatly decreased in liver and plasma of the mutant mice but surprisingly were only slightly reduced (by ∼20%) in the brain. The levels of three other KP metabolites: kynurenine, kynurenic acid, and anthranilic acid, were substantially, but differentially, elevated in the liver, brain, and plasma of Kmo(-/-) mice, whereas the liver and brain content of the major end product of the enzymatic cascade, NAD(+), did not differ between Kmo(-/-) and wild-type animals. When assessed by in vivo microdialysis, extracellular kynurenic acid levels were found to be significantly elevated in the brains of Kmo(-/-) mice. Taken together, these results provide further evidence that KMO plays a key regulatory role in the KP and indicate that Kmo(-/-) mice will be useful for studying tissue-specific functions of individual KP metabolites in health and disease.

  5. Quantum key management

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Richard John; Thrasher, James Thomas; Nordholt, Jane Elizabeth

    2016-11-29

    Innovations for quantum key management harness quantum communications to form a cryptography system within a public key infrastructure framework. In example implementations, the quantum key management innovations combine quantum key distribution and a quantum identification protocol with a Merkle signature scheme (using Winternitz one-time digital signatures or other one-time digital signatures, and Merkle hash trees) to constitute a cryptography system. More generally, the quantum key management innovations combine quantum key distribution and a quantum identification protocol with a hash-based signature scheme. This provides a secure way to identify, authenticate, verify, and exchange secret cryptographic keys. Features of the quantum key management innovations further include secure enrollment of users with a registration authority, as well as credential checking and revocation with a certificate authority, where the registration authority and/or certificate authority can be part of the same system as a trusted authority for quantum key distribution.

  6. Group key management

    Energy Technology Data Exchange (ETDEWEB)

    Dunigan, T.; Cao, C.

    1997-08-01

    This report describes an architecture and implementation for doing group key management over a data communications network. The architecture describes a protocol for establishing a shared encryption key among an authenticated and authorized collection of network entities. Group access requires one or more authorization certificates. The implementation includes a simple public key and certificate infrastructure. Multicast is used for some of the key management messages. An application programming interface multiplexes key management and user application messages. An implementation using the new IP security protocols is postulated. The architecture is compared with other group key management proposals, and the performance and the limitations of the implementation are described.

  7. Modular Connector Keying Concept

    Science.gov (United States)

    Ishman, Scott; Dukes, Scott; Warnica, Gary; Conrad, Guy; Senigla, Steven

    2013-01-01

    For panel-mount-type connectors, keying is usually "built-in" to the connector body, necessitating different part numbers for each key arrangement. This is costly for jobs that require small quantities. This invention was driven to provide a cost savings and to reduce documentation of individual parts. The keys are removable and configurable in up to 16 combinations. Since the key parts are separate from the connector body, a common design can be used for the plug, receptacle, and key parts. The keying can then be set at the next higher assembly.

  8. Biometry, the safe key

    Directory of Open Access Journals (Sweden)

    María Fraile-Hurtado

    2010-12-01

    Full Text Available Biometry is the next step in authentication, why do not we take this stepforward in our communication security systems? Keys are the main disadvantage in the cryptography, what if we were our own key?

  9. Financial Key Ratios

    OpenAIRE

    Tănase Alin-Eliodor

    2014-01-01

    This article focuses on computing techniques starting from trial balance data regarding financial key ratios. There are presented activity, liquidity, solvency and profitability financial key ratios. It is presented a computing methodology in three steps based on a trial balance.

  10. Public Key Cryptography.

    Science.gov (United States)

    Tapson, Frank

    1996-01-01

    Describes public key cryptography, also known as RSA, which is a system using two keys, one used to put a message into cipher and another used to decipher the message. Presents examples using small prime numbers. (MKR)

  11. Key Management Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides a secure environment to research and develop advanced electronic key management and networked key distribution technologies for the Navy and DoD....

  12. Public Key Infrastructure Study

    National Research Council Canada - National Science Library

    Berkovits, Shimshon

    1994-01-01

    The National Institute of Standards and Technology (NIST) has tasked The MITRE Corporation to study the alternatives for automated management of public keys and of the associated public key certificates for the Federal Government...

  13. Targeted deletion of Nrf2 reduces urethane-induced lung tumor development in mice.

    Directory of Open Access Journals (Sweden)

    Alison K Bauer

    Full Text Available Nrf2 is a key transcription factor that regulates cellular redox and defense responses. However, permanent Nrf2 activation in human lung carcinomas promotes pulmonary malignancy and chemoresistance. We tested the hypothesis that Nrf2 has cell survival properties and lack of Nrf2 suppresses chemically-induced pulmonary neoplasia by treating Nrf2(+/+ and Nrf2(-/- mice with urethane. Airway inflammation and injury were assessed by bronchoalveolar lavage analyses and histopathology, and lung tumors were analyzed by gross and histologic analysis. We used transcriptomics to assess Nrf2-dependent changes in pulmonary gene transcripts at multiple stages of neoplasia. Lung hyperpermeability, cell death and apoptosis, and inflammatory cell infiltration were significantly higher in Nrf2(-/- mice compared to Nrf2(+/+ mice 9 and 11 wk after urethane. Significantly fewer lung adenomas were found in Nrf2(-/- mice than in Nrf2(+/+ mice at 12 and 22 wk. Nrf2 modulated expression of genes involved cell-cell signaling, glutathione metabolism and oxidative stress response, and immune responses during early stage neoplasia. In lung tumors, Nrf2-altered genes had roles in transcriptional regulation of cell cycle and proliferation, carcinogenesis, organismal injury and abnormalities, xenobiotic metabolism, and cell-cell signaling genes. Collectively, Nrf2 deficiency decreased susceptibility to urethane-induced lung tumorigenesis in mice. Cell survival properties of Nrf2 were supported, at least in part, by reduced early death of initiated cells and heightened advantage for tumor cell expansion in Nrf2(+/+ mice relative to Nrf2(-/- mice. Our results were consistent with the concept that Nrf2 over-activation is an adaptive response of cancer conferring resistance to anti-cancer drugs and promoting malignancy.

  14. A Phenomenological Study on Lack of Motivation

    Science.gov (United States)

    Educational Research and Reviews, 2013

    2013-01-01

    The aim of this research is to point out the underlying reasons about the lack of motivation at academic activities concerning Attribution Theory. Attribution Theory trys to understand how the people answer "why" question and how they do casual explanations. This research is a qualitative based research. It used the phenomenological…

  15. The Key Lake project

    International Nuclear Information System (INIS)

    1991-01-01

    Key Lake is located in the Athabasca sand stone basin, 640 kilometers north of Saskatoon, Saskatchewan, Canada. The three sources of ore at Key Lake contain 70 100 tonnes of uranium. Features of the Key Lake Project were described under the key headings: work force, mining, mill process, tailings storage, permanent camp, environmental features, worker health and safety, and economic benefits. Appendices covering the historical background, construction projects, comparisons of western world mines, mining statistics, Northern Saskatchewan surface lease, and Key Lake development and regulatory agencies were included

  16. LOCKS AND KEYS SERVICE

    CERN Multimedia

    Locks and Keys Service

    2002-01-01

    The Locks and Keys service (ST/FM) will move from building 55 to building 570 from the 2nd August to the 9th August 2002 included. During this period the service will be closed. Only in case of extreme urgency please call the 164550. Starting from Monday, 12th August, the Locks and Keys Service will continue to follow the activities related to office keys (keys and locks) and will provide the keys for furniture. The service is open from 8h30 to 12h00 and from 13h00 to 17h30. We remind you that your divisional correspondents can help you in the execution of the procedures. We thank you for your comprehension and we remain at your service to help you in solving all the matters related to keys for offices and furniture. Locks and Keys Service - ST Division - FM Group

  17. Perturbed desmosomal cadherin expression in grainy head-like 1-null mice.

    Science.gov (United States)

    Wilanowski, Tomasz; Caddy, Jacinta; Ting, Stephen B; Hislop, Nikki R; Cerruti, Loretta; Auden, Alana; Zhao, Lin-Lin; Asquith, Stephen; Ellis, Sarah; Sinclair, Rodney; Cunningham, John M; Jane, Stephen M

    2008-03-19

    In Drosophila, the grainy head (grh) gene plays a range of key developmental roles through the regulation of members of the cadherin gene family. We now report that mice lacking the grh homologue grainy head-like 1 (Grhl1) exhibit hair and skin phenotypes consistent with a reduction in expression of the genes encoding the desmosomal cadherin, desmoglein 1 (Dsg1). Grhl1-null mice show an initial delay in coat growth, and older mice exhibit hair loss as a result of poor anchoring of the hair shaft in the follicle. The mice also develop palmoplantar keratoderma, analogous to humans with DSG1 mutations. Sequence analysis, DNA binding, and chromatin immunoprecipitation experiments demonstrate that the human and mouse Dsg1 promoters are direct targets of GRHL1. Ultrastructural analysis reveals reduced numbers of abnormal desmosomes in the interfollicular epidermis. These findings establish GRHL1 as an important regulator of the Dsg1 genes in the context of hair anchorage and epidermal differentiation, and suggest that cadherin family genes are key targets of the grainy head-like genes across 700 million years of evolution.

  18. Conceptualising the lack of health insurance coverage.

    Science.gov (United States)

    Davis, J B

    2000-01-01

    This paper examines the lack of health insurance coverage in the US as a public policy issue. It first compares the problem of health insurance coverage to the problem of unemployment to show that in terms of the numbers of individuals affected lack of health insurance is a problem comparable in importance to the problem of unemployment. Secondly, the paper discusses the methodology involved in measuring health insurance coverage, and argues that the current method of estimation of the uninsured underestimates the extent that individuals go without health insurance. Third, the paper briefly introduces Amartya Sen's functioning and capabilities framework to suggest a way of representing the extent to which individuals are uninsured. Fourth, the paper sketches a means of operationalizing the Sen representation of the uninsured in terms of the disability-adjusted life year (DALY) measure.

  19. Laura: Soybean variety lacking Kunitz trypsin inhibitor

    Directory of Open Access Journals (Sweden)

    Srebrić Mirjana

    2010-01-01

    Full Text Available Grain of conventional soybean varieties requires heat processing to break down trypsin inhibitor's activity before using as food or animal feed. At the same time, protein denaturation and other qualitative changes occur in soybean grain, especially if the temperature of heating is not controlled. Two types of trypsin inhibitor were found in soybean grain the Kunitz trypsin inhibitor and the Bowman-Birk inhibitor. Mature grain of soybean Laura is lacking Kunitz trypsin inhibitor. Grain yield of variety Laura is equal to high yielding varieties from the maturity group I, where it belongs. Lacking of Kunitz-trypsin inhibitor makes soybean grain suitable for direct feeding in adult non ruminant animals without previous thermal processing. Grain of variety Laura can be processed for a shorter period of time than conventional soybeans. This way we save energy, and preserve valuable nutritional composition of soybean grain, which is of interest in industrial processing.

  20. Tetranectin Knockout Mice Develop Features of Parkinson Disease

    Directory of Open Access Journals (Sweden)

    Er-song Wang

    2014-07-01

    Full Text Available Background/Aims: Aggregation of insoluble α-synuclein to form Lewy bodies (LBs may contribute to the selective loss of midbrain dopaminergic neurons in Parkinson disease (PD. Lack of robust animal models has impeded elucidation of the molecular mechanisms of LB formation and other critical aspects of PD pathogenesis. Methods: We established a mouse model with targeted deletion of the plasminogen-binding protein tetranectin (TN gene (TN-/- and measured the behavioral and histopathological features of PD. Results: Aged (15-to 20-month-old TN-/- mice displayed motor deficits resembling PD symptoms, including limb rigidity and both slower ambulation (bradykinesia and reduced rearing activity in the open field. In addition, these mice exhibited more numerous α-synuclein-positive LB-like inclusions within the substantia nigra pars compacta (SNc and reduced numbers of SNc dopaminergic neurons than age-matched wild type (WT mice. These pathological changes were also accompanied by loss of dopamine terminals in the dorsal striatum. Conclusion: The TN-/- mouse exhibits several key features of PD and so may be a valuable model for studying LB formation and testing candidate neuroprotective therapies for PD and other synucleinopathies.

  1. Quantum dense key distribution

    International Nuclear Information System (INIS)

    Degiovanni, I.P.; Ruo Berchera, I.; Castelletto, S.; Rastello, M.L.; Bovino, F.A.; Colla, A.M.; Castagnoli, G.

    2004-01-01

    This paper proposes a protocol for quantum dense key distribution. This protocol embeds the benefits of a quantum dense coding and a quantum key distribution and is able to generate shared secret keys four times more efficiently than the Bennet-Brassard 1984 protocol. We hereinafter prove the security of this scheme against individual eavesdropping attacks, and we present preliminary experimental results, showing its feasibility

  2. Lack of a Functioning P2X7 Receptor Leads to Increased Susceptibility to Toxoplasmic Ileitis.

    Directory of Open Access Journals (Sweden)

    Catherine M Miller

    Full Text Available Oral infection of C57BL/6J mice with the protozoan parasite Toxoplasma gondii leads to a lethal inflammatory ileitis.Mice lacking the purinergic receptor P2X7R are acutely susceptible to toxoplasmic ileitis, losing significantly more weight than C57BL/6J mice and exhibiting much greater intestinal inflammatory pathology in response to infection with only 10 cysts of T. gondii. This susceptibility is not dependent on the ability of P2X7R-deficient mice to control the parasite, which they accomplish just as efficiently as C57BL/6J mice. Rather, susceptibility is associated with elevated ileal concentrations of pro-inflammatory cytokines, reactive nitrogen intermediates and altered regulation of elements of NFκB activation in P2X7R-deficient mice.Our data support the thesis that P2X7R, a well-documented activator of pro-inflammatory cytokine production, also plays an important role in the regulation of intestinal inflammation.

  3. Lack of caspase-3 attenuates immobilization-induced muscle atrophy and loss of tension generation along with mitigation of apoptosis and inflammation

    Science.gov (United States)

    Zhu, Shimei; Nagashima, Michio; Khan, Mahammad A.S; Yasuhara, Shingo; Kaneki, Masao; Jeevendra Martyn, J. A.

    2012-01-01

    Introduction Immobilization by casting induces disuse muscle atrophy (DMA). Methods Using wild type (WT) and caspase-3 knockout (KO) mice, we evaluated the effect of caspase-3 on muscle mass, apoptosis and inflammation during DMA. Results Caspase-3 deficiency significantly attenuated muscle mass decrease [gastrocnemius: 28 ± 1% in KO vs. 41 ± 3% in WT; soleus: 47 ± 2% in KO vs. 56 ± 2% in WT; (P immobilized versus contralateral hindlimb. Lack of caspase-3 decreased immobilization-induced increased apoptotic myonuclei (3.2-fold) and macrophage infiltration (2.2-fold) in soleus muscle and attenuated increased monocyte chemoattractant protein-1 mRNA expression (2-fold in KO vs. 18-fold in WT) in gastrocnemius. Conclusion Caspase-3 plays a key role in DMA and associated decreased tension, presumably by acting on the apoptosis and inflammation pathways. PMID:23401051

  4. Accidents in radiotherapy: Lack of quality assurance?

    International Nuclear Information System (INIS)

    Novotny, J.

    1997-01-01

    About 150 radiological accidents, involving more than 3000 patients with adverse effects, 15 patient's fatalities and about 5000 staff and public exposures have been collected and analysed. Out of 67 analysed accidents in external beam therapy 22% has been caused by wrong calculation of the exposure time or monitor units, 13% by inadequate review of patient's chart, 12% by mistakes in the anatomical area to be treated. The remaining 35% can be attributed to 17 different causes. The most common mistakes in brachytherapy were wrong activities of sources used for treatment (20%), inadequate procedures for placement of sources applicators (14%), mistakes in calculating the treatment time (12%), etc. The direct and contributing causes of radiological accidents have been deduced from each event, when it was possible and categorized into 9 categories: mistakes in procedures (30%), professional mistakes (17%), communication mistakes (15%), lack of training (8.5%), interpretation mistakes (7%), lack of supervision (6%), mistakes in judgement (6%), hardware failures (5%), software and other mistakes (5.5%). Three types of direct and contributing causes responsible for almost 62% of all accidents are directly connected to the quality assurance of treatment. The lessons learnt from the accidents are related to frequencies of direct and contributing factors and show that most of the accident are caused by lack, non-application of quality assurance (QA) procedures or by underestimating of QA procedures. The international system for collection of accidents and dissemination of lessons learnt from the different accidents, proposed by IAEA, can contribute to better practice in many radiotherapy departments. Most of the accidents could have been avoided, had a comprehensive QA programme been established and properly applied in all radiotherapy departments, whatever the size. (author)

  5. Why does Colombia lack agricultural commodity futures?

    Directory of Open Access Journals (Sweden)

    Pablo Moreno-Alemay

    2015-11-01

    Full Text Available This article explores the reasons why futures contracts are not traded as an alternative to price hedging for agricultural goods in Colombia. Based on surveys, interviews and statistical analysis, this study identified that conceptual gaps in contract negotiation, lack of consensus in the agricultural sector regarding the use of financial mechanisms and the sector’s infrequent contact with Colombia’s financial institutions, are the main reasons why a futures contracts market has not emerged.

  6. Key improvements to XTR

    NARCIS (Netherlands)

    Lenstra, A.K.; Verheul, E.R.; Okamoto, T.

    2000-01-01

    This paper describes improved methods for XTR key representation and parameter generation (cf. [4]). If the field characteristic is properly chosen, the size of the XTR public key for signature applications can be reduced by a factor of three at the cost of a small one time computation for the

  7. Lack of consensus in social systems

    Science.gov (United States)

    Benczik, I. J.; Benczik, S. Z.; Schmittmann, B.; Zia, R. K. P.

    2008-05-01

    We propose an exactly solvable model for the dynamics of voters in a two-party system. The opinion formation process is modeled on a random network of agents. The dynamical nature of interpersonal relations is also reflected in the model, as the connections in the network evolve with the dynamics of the voters. In the infinite time limit, an exact solution predicts the emergence of consensus, for arbitrary initial conditions. However, before consensus is reached, two different metastable states can persist for exponentially long times. One state reflects a perfect balancing of opinions, the other reflects a completely static situation. An estimate of the associated lifetimes suggests that lack of consensus is typical for large systems.

  8. The Pentapeptide RM-131 Promotes Food Intake and Adiposity in Wildtype Mice but Not in Mice Lacking the Ghrelin Receptor

    DEFF Research Database (Denmark)

    Fischer, Katrin; Finan, Brian; Clemmensen, Christoffer

    2014-01-01

    The gastrointestinal peptide hormone ghrelin is the endogenous ligand of the growth hormone secretagogue receptor (a.k.a. ghrelin receptor, GHR). Currently, ghrelin is the only circulating peripheral hormone with the ability to promote a positive energy balance by stimulating food intake while...... decreasing energy expenditure and body fat utilization, as defined in rodents. Based on these and additional, beneficial effects on metabolism, the endogenous ghrelin system is considered an attractive target to treat diverse pathological conditions including those associated with eating/wasting disorders...... and cachexia. As the pharmacological potential of ghrelin is hampered by its relatively short half-life, ghrelin analogs with enhanced pharmacokinetics offer the potential to sustainably improve metabolism. One of these ghrelin analogs is the pentapeptide RM-131, which promotes food intake and adiposity...

  9. A homolog of Drosophila grainy head is essential for epidermal integrity in mice.

    Science.gov (United States)

    Ting, Stephen B; Caddy, Jacinta; Hislop, Nikki; Wilanowski, Tomasz; Auden, Alana; Zhao, Lin-Lin; Ellis, Sarah; Kaur, Pritinder; Uchida, Yoshikazu; Holleran, Walter M; Elias, Peter M; Cunningham, John M; Jane, Stephen M

    2005-04-15

    The Drosophila cuticle is essential for maintaining the surface barrier defenses of the fly. Integral to cuticle resilience is the transcription factor grainy head, which regulates production of the enzyme required for covalent cross-linking of the cuticular structural components. We report that formation and maintenance of the epidermal barrier in mice are dependent on a mammalian homolog of grainy head, Grainy head-like 3. Mice lacking this factor display defective skin barrier function and deficient wound repair, accompanied by reduced expression of transglutaminase 1, the key enzyme involved in cross-linking the structural components of the superficial epidermis. These findings suggest that the functional mechanisms involving protein cross-linking that maintain the epidermal barrier and induce tissue repair are conserved across 700 million years of evolution.

  10. Key Facts about Tularemia

    Science.gov (United States)

    ... Submit What's this? Submit Button Key Facts About Tularemia Recommend on Facebook Tweet Share Compartir This fact ... and Prevention (CDC) Tularemia Web site . What is Tularemia? Tularemia is a potentially serious illness that occurs ...

  11. Key technologies book

    International Nuclear Information System (INIS)

    1997-01-01

    In this book can be found all the useful information on the French industry key technologies of the years 2000-2005. 136 technologies at the junction of the science advances and of the markets expectations are divided into 9 sectors. Among them, only 4 are interesting here: the environment, the transports, the materials and the energy. In 1995, the secretary's office of State for industry has published a first synthesis book on these key technologies. This 1997 new key technologies book extends and completes the initial study. For each key technology, an encyclopedic sheet is given. Each sheet combines thus some exact and practical information on: advance state of the technology, market characteristics, development forecasts, occupation and involved sectors, technology acquisition cost, research programs but also contacts of the main concerned efficiency poles. (O.M.)

  12. The Key Lake project

    International Nuclear Information System (INIS)

    Glattes, G.

    1985-01-01

    Aspects of project financing for the share of the Canadian subsidiary of Uranerzbergbau-GmbH, Bonn, in the uranium mining and milling facility at Key Lake, Saskatchewan, by a Canadian bank syndicate. (orig.) [de

  13. Linkage disequilibrium in wild mice.

    Directory of Open Access Journals (Sweden)

    Cathy C Laurie

    2007-08-01

    Full Text Available Crosses between laboratory strains of mice provide a powerful way of detecting quantitative trait loci for complex traits related to human disease. Hundreds of these loci have been detected, but only a small number of the underlying causative genes have been identified. The main difficulty is the extensive linkage disequilibrium (LD in intercross progeny and the slow process of fine-scale mapping by traditional methods. Recently, new approaches have been introduced, such as association studies with inbred lines and multigenerational crosses. These approaches are very useful for interval reduction, but generally do not provide single-gene resolution because of strong LD extending over one to several megabases. Here, we investigate the genetic structure of a natural population of mice in Arizona to determine its suitability for fine-scale LD mapping and association studies. There are three main findings: (1 Arizona mice have a high level of genetic variation, which includes a large fraction of the sequence variation present in classical strains of laboratory mice; (2 they show clear evidence of local inbreeding but appear to lack stable population structure across the study area; and (3 LD decays with distance at a rate similar to human populations, which is considerably more rapid than in laboratory populations of mice. Strong associations in Arizona mice are limited primarily to markers less than 100 kb apart, which provides the possibility of fine-scale association mapping at the level of one or a few genes. Although other considerations, such as sample size requirements and marker discovery, are serious issues in the implementation of association studies, the genetic variation and LD results indicate that wild mice could provide a useful tool for identifying genes that cause variation in complex traits.

  14. Mice lacking the PACAP type I receptor have impaired photic entrainment and negative masking

    DEFF Research Database (Denmark)

    Hannibal, J.; Brabet, P.; Fahrenkrug, J.

    2008-01-01

    The retinohypothalamic tract (RHT) is a retinofugal neuronal pathway which, in mammals, mediates nonimage-forming vision to various areas in the brain involved in circadian timing, masking behavior, and regulation of the pupillary light reflex. The RHT costores the two neurotransmitters glutamate...... intensities. Our findings substantiate a role for PACAP/PAC1 receptor signaling in nonimage-forming vision and indicate that the system is particularly important at lower light intensities Udgivelsesdato: 2008/12...

  15. Mice lacking pituitary tumor transforming gene show elevated exposure of DGalNAc carbohydrate determinants

    Directory of Open Access Journals (Sweden)

    Lutsyk A. D.

    2012-04-01

    Full Text Available Aim. To investigate the influence of pituitary tumor transforming gene (pttg-1 knockout on glycome of parenchimal organs by means of lectin histochemistry. Methods. DGalNAc, DGlcNAc, NeuNAc carbohydrate determinants were labelled with soybean agglutinin (SBA and wheat germ agglutinin (WGA, conjugated to peroxidase, with subsequent visualization of the lectin-binding sites with diaminobenzidine. The testes and kidneys of murine strain BL6/C57 with the pttg-1 gene knockout (PTTG-KO were compared to the wild type (PTTG-WT animals, both groups 1 month of age. Results. Knockout of the pttg-1 gene was accompanied by enhanced exposure of the DGalNAc sugar residues within the Golgi complex of secondary spermatocytes, in a brush border of renal tubules and on the lumenal surface of collecting ducts. Conclusions. This study suggests that knockout of the pttg-1 gene may lead to the changes in carbohydrate processing in mammalian organism.

  16. Antipsychotic-induced catalepsy is attenuated in mice lacking the M4 muscarinic acetylcholine receptor

    DEFF Research Database (Denmark)

    Fink-Jensen, Anders; Schmidt, Lene S; Dencker, Ditte

    2011-01-01

    of the striatum, suggesting a role for muscarinic M4 receptors in the motor side effects of antipsychotics, and in the alleviation of these side effects by anticholinergics. Here we investigated the potential role of the muscarinic M4 receptor in catalepsy induced by antipsychotics (haloperidol and risperidone...

  17. Lack of protection against ebola virus from chloroquine in mice and hamsters.

    Science.gov (United States)

    Falzarano, Darryl; Safronetz, David; Prescott, Joseph; Marzi, Andrea; Feldmann, Friederike; Feldmann, Heinz

    2015-06-01

    The antimalarial drug chloroquine has been suggested as a treatment for Ebola virus infection. Chloroquine inhibited virus replication in vitro, but only at cytotoxic concentrations. In mouse and hamster models, treatment did not improve survival. Chloroquine is not a promising treatment for Ebola. Efforts should be directed toward other drug classes.

  18. Lack of myeloid Fatp1 increases atherosclerotic lesion size in Ldlr-/- mice

    Science.gov (United States)

    Altered metabolism is an important regulator of macrophage (MF) phenotype, which contributes to inflammatory diseases such as atherosclerosis. Broadly, pro-inflammatory, classically-activated MFs (CAM) are glycolytic while alternatively-activated MFs (AAM) oxidize fatty acids, although there is prof...

  19. Spdef null mice lack conjunctival goblet cells and provide a model of dry eye

    NARCIS (Netherlands)

    Marko, C.K.; Menon, B.B.; Chen, G.; Whitsett, J.A.; Clevers, H.; Gipson, I.K.

    2013-01-01

    Goblet cell numbers decrease within the conjunctival epithelium in drying and cicatrizing ocular surface diseases. Factors regulating goblet cell differentiation in conjunctival epithelium are unknown. Recent data indicate that the transcription factor SAM-pointed domain epithelial-specific

  20. Characteristics of Adolescents Lacking Provider-Recommended Human Papillomavirus Vaccination.

    Science.gov (United States)

    Krakow, Melinda; Beavis, Anna; Cosides, Olivia; Rositch, Anne F

    2017-05-01

    To characterize subgroups of teens in the United States for whom provider recommendation is less likely to impact human papillomavirus (HPV) vaccine initiation. We analyzed provider-verified vaccination data from the Centers for Disease Control and Prevention's 2014 National Immunization Survey-Teen. Poisson regression models identified characteristics associated with the lack of HPV vaccine initiation among teens who received a provider recommendation (n = 12,742). Top qualitative reasons for nonvaccination among teens who received a provider recommendation were summarized (n = 1,688). Among teens with provider recommendations, males, younger teens, and white teens were less likely to initiate vaccination, compared to peers. Believing the vaccine was unnecessary, concerns about safety and lack of vaccine knowledge were common reasons parents did not initiate the vaccine, despite receiving provider recommendations. These key subgroups and barriers to HPV vaccination should be targeted with interventions that complement provider recommendation to achieve broad vaccine uptake in the United States. Published by Elsevier Inc.

  1. Female Nur77-deficient mice show increased susceptibility to diet-induced obesity.

    Directory of Open Access Journals (Sweden)

    Sonia Perez-Sieira

    Full Text Available Adipose tissue is essential in the regulation of body weight. The key process in fat catabolism and the provision of energy substrate during times of nutrient deprivation or enhanced energy demand is the hydrolysis of triglycerides and the release of fatty acids and glycerol. Nur77 is a member of the NR4A subfamily of nuclear receptors that plays an important metabolic role, modulating hepatic glucose metabolism and lipolysis in muscle. However, its endogenous role on white adipose tissue, as well as the gender dependency of these mechanisms, remains largely unknown. Male and female wild type and Nur77 deficient mice were fed with a high fat diet (45% calories from fat for 4 months. Mice were analyzed in vivo with the indirect calorimetry system, and tissues were analyzed by real-time PCR and Western blot analysis. Female, but not male Nur77 deficient mice, gained more weight and fat mass when compared to wild type mice fed with high fat diet, which can be explained by decreased energy expenditure. The lack of Nur77 also led to a decreased pHSL/HSL ratio in white adipose tissue and increased expression of CIDEA in brown adipose tissue of female Nur77 deficient mice. Overall, these findings suggest that Nur77 is an important physiological modulator of lipid metabolism in adipose tissue and that there are gender differences in the sensitivity to deletion of the Nur77 signaling. The decreased energy expenditure and the actions of Nur77 on liver, muscle, brown and white adipose tissue contribute to the increased susceptibility to diet-induced obesity in females lacking Nur77.

  2. Dietary restriction ameliorates haematopoietic ageing independent of telomerase, whilst lack of telomerase and short telomeres exacerbates the ageing phenotype.

    Science.gov (United States)

    Al-Ajmi, Nouf; Saretzki, Gabriele; Miles, Colin; Spyridopoulos, Ioakim

    2014-10-01

    Ageing is associated with an overall decline in the functional capacity of tissues and stem cells, including haematopoietic stem and progenitor cells (HSPCs), as well as telomere dysfunction. Dietary restriction (DR) is a recognised anti-ageing intervention that extends lifespan and improves health in several organisms. To investigate the role of telomeres and telomerase in haematopoietic ageing, we compared the HSPC profile and clonogenic capacity of bone marrow cells from wild type with telomerase-deficient mice and the effect of DR on these parameters. Compared with young mice, aged wild type mice demonstrated a significant accumulation of HSPCs (1.3% vs 0.2%, P=0.002) and elevated numbers of granulocyte/macrophage colony forming units (CFU-GM, 26.4 vs 17.3, P=0.0037) consistent with myeloid "skewing" of haematopoiesis. DR was able to restrict the increase in HSPC number as well as the myeloid "skewing" in aged wild type mice. In order to analyse the influence of short telomeres on the ageing phenotype we examined mice lacking the RNA template for telomerase, TERC(-/-). Telomere shortening resulted in a similar bone marrow phenotype to that seen in aged mice, with significantly increased HSPC numbers and an increased formation of all myeloid colony types but at a younger age than wild type mice. However, an additional increase in erythroid colonies (BFU-E) was also evident. Mice lacking telomerase reverse transcriptase without shortened telomeres, TERT(-/-), also presented with augmented haematopoietic ageing which was ameliorated by DR, demonstrating that the effect of DR was not dependent on the presence of telomerase in HSPCs. We conclude that whilst shortened telomeres mimic some aspects of haematopoietic ageing, both shortened telomeres and the lack of telomerase produce specific phenotypes, some of which can be prevented by dietary restriction. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Comparison is key.

    Science.gov (United States)

    Stone, Mark H; Stenner, A Jackson

    2014-01-01

    Several concepts from Georg Rasch's last papers are discussed. The key one is comparison because Rasch considered the method of comparison fundamental to science. From the role of comparison stems scientific inference made operational by a properly developed frame of reference producing specific objectivity. The exact specifications Rasch outlined for making comparisons are explicated from quotes, and the role of causality derived from making comparisons is also examined. Understanding causality has implications for what can and cannot be produced via Rasch measurement. His simple examples were instructive, but the implications are far reaching upon first establishing the key role of comparison.

  4. Key World Energy Statistics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The IEA produced its first handy, pocket-sized summary of key energy data in 1997. This new edition responds to the enormously positive reaction to the book since then. Key World Energy Statistics produced by the IEA contains timely, clearly-presented data on supply, transformation and consumption of all major energy sources. The interested businessman, journalist or student will have at his or her fingertips the annual Canadian production of coal, the electricity consumption in Thailand, the price of diesel oil in Spain and thousands of other useful energy facts. It exists in different formats to suit our readers' requirements.

  5. Lack of spacing effects during piano learning.

    Directory of Open Access Journals (Sweden)

    Melody Wiseheart

    Full Text Available Spacing effects during retention of verbal information are easily obtained, and the effect size is large. Relatively little evidence exists on whether motor skill retention benefits from distributed practice, with even less evidence on complex motor skills. We taught a 17-note musical sequence on a piano to individuals without prior formal training. There were five lags between learning episodes: 0-, 1-, 5-, 10-, and 15-min. After a 5-min retention interval, participants' performance was measured using three criteria: accuracy of note playing, consistency in pressure applied to the keys, and consistency in timing. No spacing effect was found, suggesting that the effect may not always be demonstrable for complex motor skills or non-verbal abilities (timing and motor skills. Additionally, we taught short phrases from five songs, using the same set of lags and retention interval, and did not find any spacing effect for accuracy of song reproduction. Our findings indicate that although the spacing effect is one of the most robust phenomena in the memory literature (as demonstrated by verbal learning studies, the effect may vary when considered in the novel realm of complex motor skills such as piano performance.

  6. Lack of spacing effects during piano learning.

    Science.gov (United States)

    Wiseheart, Melody; D'Souza, Annalise A; Chae, Jacey

    2017-01-01

    Spacing effects during retention of verbal information are easily obtained, and the effect size is large. Relatively little evidence exists on whether motor skill retention benefits from distributed practice, with even less evidence on complex motor skills. We taught a 17-note musical sequence on a piano to individuals without prior formal training. There were five lags between learning episodes: 0-, 1-, 5-, 10-, and 15-min. After a 5-min retention interval, participants' performance was measured using three criteria: accuracy of note playing, consistency in pressure applied to the keys, and consistency in timing. No spacing effect was found, suggesting that the effect may not always be demonstrable for complex motor skills or non-verbal abilities (timing and motor skills). Additionally, we taught short phrases from five songs, using the same set of lags and retention interval, and did not find any spacing effect for accuracy of song reproduction. Our findings indicate that although the spacing effect is one of the most robust phenomena in the memory literature (as demonstrated by verbal learning studies), the effect may vary when considered in the novel realm of complex motor skills such as piano performance.

  7. New function for an old enzyme: NEP deficient mice develop late-onset obesity.

    Directory of Open Access Journals (Sweden)

    Matthias Becker

    Full Text Available BACKGROUND: According to the World Health Organization (WHO there is a pandemic of obesity with approximately 300 million people being obese. Typically, human obesity has a polygenetic causation. Neutral endopeptidase (NEP, also known as neprilysin, is considered to be one of the key enzymes in the metabolism of many active peptide hormones. METHODOLOGY/PRINCIPAL FINDINGS: An incidental observation in NEP-deficient mice was a late-onset excessive gain in body weight exclusively from a ubiquitous accumulation of fat tissue. In accord with polygenetic human obesity, mice were characterized by deregulation of lipid metabolism, higher blood glucose levels, with impaired glucose tolerance. The key role of NEP in determining body mass was confirmed by the use of the NEP inhibitor candoxatril in wild-type mice that increased body weight due to increased food intake. This is a peripheral and not a central NEP action on the switch for appetite control, since candoxatril cannot cross the blood-brain barrier. Furthermore, we demonstrated that inhibition of NEP in mice with cachexia delayed rapid body weight loss. Thus, lack in NEP activity, genetically or pharmacologically, leads to a gain in body fat. CONCLUSIONS/SIGNIFICANCE: In the present study, we have identified NEP to be a crucial player in the development of obesity. NEP-deficient mice start to become obese under a normocaloric diet in an age of 6-7 months and thus are an ideal model for the typical human late-onset obesity. Therefore, the described obesity model is an ideal tool for research on development, molecular mechanisms, diagnosis, and therapy of the pandemic obesity.

  8. A new model of Hantaan virus persistence in mice: the balance between HTNV infection and CD8+ T-cell responses

    International Nuclear Information System (INIS)

    Araki, Koichi; Yoshimatsu, Kumiko; Lee, Byoung-Hee; Kariwa, Hiroaki; Takashima, Ikuo; Arikawa, Jiro

    2004-01-01

    We established a viral persistence model that involves the adoptive transfer of spleen cells from immunocompetent mice (H-2 d ) into Hantaan virus (HTNV)-infected severe combined immunodeficient (SCID, H-2 d ) mice. The infection is maintained despite the presence of neutralizing antibodies, without apparent signs of disease, and there is a correlation between HTNV persistence and the lack of HTNV-specific CD8 + T cells. In addition, disseminated HTNV infection before the initiation of immune responses appears to be important for virus persistence. The suppression of HTNV-specific CD8 + T cells in the present model appears to occur at the periphery. The present study also demonstrates that CD8 + T cells contribute to the clearance of HTNV. Thus, it seems that HTNV-specific CD8 + T cells play a key role in HTNV persistence in mice. This model of viral persistence is useful for studies of immune responses and immunocytotherapy against viral infection

  9. Keyed shear joints

    DEFF Research Database (Denmark)

    Hansen, Klaus

    This report gives a summary of the present information on the behaviour of vertical keyed shear joints in large panel structures. An attemp is made to outline the implications which this information might have on the analysis and design of a complete wall. The publications also gives a short...

  10. Cryptographic Key Management System

    Energy Technology Data Exchange (ETDEWEB)

    No, author

    2014-02-21

    This report summarizes the outcome of U.S. Department of Energy (DOE) contract DE-OE0000543, requesting the design of a Cryptographic Key Management System (CKMS) for the secure management of cryptographic keys for the energy sector infrastructure. Prime contractor Sypris Electronics, in collaboration with Oak Ridge National Laboratories (ORNL), Electric Power Research Institute (EPRI), Valicore Technologies, and Purdue University's Center for Education and Research in Information Assurance and Security (CERIAS) and Smart Meter Integration Laboratory (SMIL), has designed, developed and evaluated the CKMS solution. We provide an overview of the project in Section 3, review the core contributions of all contractors in Section 4, and discuss bene ts to the DOE in Section 5. In Section 6 we describe the technical construction of the CKMS solution, and review its key contributions in Section 6.9. Section 7 describes the evaluation and demonstration of the CKMS solution in different environments. We summarize the key project objectives in Section 8, list publications resulting from the project in Section 9, and conclude with a discussion on commercialization in Section 10 and future work in Section 11.

  11. Turn key contracts

    International Nuclear Information System (INIS)

    Feretic, D.

    1975-01-01

    The aim of this summary is to point out some specific areas which have to be covered in a turn-key contract and which are of primarily interest to the buyer of a nuclear plant. It will be assumed that the buyer is utility company in a developing country and a plant supplier a company in an industrial country. (orig./FW) [de

  12. Key numbers: Energy

    International Nuclear Information System (INIS)

    1994-01-01

    The key numbers of energy give statistical data related to production, consumption, and to foreign trade of each energy in the World and in France. A chapter is dedicated to environment and brings quantitative elements on pollutant emissions connected to energy uses

  13. Key performance indicators

    NARCIS (Netherlands)

    Zwetsloot, G.I.J.M.

    2014-01-01

    This paper addresses how organisations can use OSH performance indicators. This is an important way to mainstream OSH into business management. Key performance indicators (KPIs) should provide objective data on the OSH situation. It is often said that ‘what gets measured gets managed’. Without

  14. Locks and Keys Service

    CERN Multimedia

    Claude Ducastel

    The GS-LS-SEM section is pleased to inform you that as from Monday 30 November 2009, the opening hours of the Locks and Keys service will be the following: 08h30 - 12h30 / 13h30 - 16:30, Mondays to Fridays. GS-SEM-LS 73333

  15. Lack of efficacy of ergocalciferol repletion

    Directory of Open Access Journals (Sweden)

    Thomas Wasser

    2012-04-01

    Full Text Available Introduction: Vitamin D has become an area of intensive scrutiny, both in medical and lay literature. However, there are limited data to suggest proper repletion regimens for those patients who have hypovitaminosis D. Consequently, various methods are used in clinical practice. The aim of this study was to assess the efficacy of various treatment strategies for hypovitaminosis D in an ambulatory internal medicine practice. Methods: A retrospective chart review between October 2005 and June 2010 of a suburban internal medicine practice was performed via query of the electronic medical record (Centricity, General Electric Healthcare, UK. Patients with a 25-hydroxyvitamin D concentration less than 32 mg/dl were identified and treated. Treatment success was defined as 25-hydroxyvitamin D concentrations greater than 32 mg/dl. Statistical analysis to assess changes in vitamin D level controlling for season, comorbidities, and demographics were used. Results: A total of 607 treatment episodes were identified, with 395 excluded due to lack of follow-up vitamin D level within 16 weeks, no treatment documented, topical treatment, doxercalciferol treatment, or non-compliance. Of the remaining patients, there were 212 treatment instances on 178 patients. Ergocalciferol 50,000 international units (IU was used most frequently (71.4% of the time.. A higher initial vitamin D level was positively associated with treatment success (adjusted odds ratio = 1.11, p=0.002. Increased doses of ergocalciferol increased the likelihood of treatment success (p=0.0011. Seasonal variation was related to posttreatment 25-hydroxyvitamin D concentration as was body mass index (BMI (p=0.003 and p=0.044. Conclusion: Pretreatment levels of 25-hydroxyvitamin D, BMI, season, and vitamin D dose are predictors of successful hypovitaminosis D treatment. Our data suggest that patients with initial 25-hydroxyvitamin D concentrations of <20 should be treated with a higher total dose of

  16. Semantic Keys and Reading

    Directory of Open Access Journals (Sweden)

    Zev bar-Lev

    2016-12-01

    Full Text Available Semantic Keys are elements (word-parts of written language that give an iconic, general representation of the whole word’s meaning. In written Sino-Japanese the “radical” or semantic components play this role. For example, the character meaning ‘woman, female’ is the Semantic Key of the character for Ma ‘Mama’ (alongside the phonetic component Ma, which means ‘horse’ as a separate character. The theory of semantic Keys in both graphic and phonemic aspects is called qTheory or nanosemantics. The most innovative aspect of the present article is the hypothesis that, in languages using alphabetic writing systems, the role of Semantic Key is played by consonants, more specifically the first consonant. Thus, L meaning ‘LIFT’ is the Semantic Key of English Lift, Ladle, Lofty, aLps, eLevator, oLympus; Spanish Leva, Lecantarse, aLto, Lengua; Arabic aLLah, and Hebrew① ªeL-ºaL ‘upto-above’ (the Israeli airline, Polish Lot ‘flight’ (the Polish airline; Hebrew ªeL, ªeLohim ‘God’, and haLLeluyah ‘praise-ye God’ (using Parallels, ‘Lift up God’. Evidence for the universality of the theory is shown by many examples drawn from various languages, including Indo-European Semitic, Chinese and Japanese. The theory reveals hundreds of relationships within and between languages, related and unrelated, that have been “Hiding in Plain Sight”, to mention just one example: the Parallel between Spanish Pan ‘bread’ and Mandarin Fan ‘rice’.

  17. Does Skeletal Muscle Mass Influence Breast Cancer? Evaluating Mammary Tumorigenesis and Progression Genetically Hyper-Muscular Mice

    National Research Council Canada - National Science Library

    Zimmers, Teresa

    2006-01-01

    .... Mice lacking the skeletal muscle-specific muscle growth inhibitor myostatin and mice expressing a dominant negative form of the myostatin receptor, Activin Receptor Type IIB, display heightened muscle mass...

  18. Ghrelin knockout mice show decreased voluntary alcohol consumption and reduced ethanol-induced conditioned place preference.

    Science.gov (United States)

    Bahi, Amine; Tolle, Virginie; Fehrentz, Jean-Alain; Brunel, Luc; Martinez, Jean; Tomasetto, Catherine-Laure; Karam, Sherif M

    2013-05-01

    Recent work suggests that stomach-derived hormone ghrelin receptor (GHS-R1A) antagonism may reduce motivational aspects of ethanol intake. In the current study we hypothesized that the endogenous GHS-R1A agonist ghrelin modulates alcohol reward mechanisms. For this purpose ethanol-induced conditioned place preference (CPP), ethanol-induced locomotor stimulation and voluntary ethanol consumption in a two-bottle choice drinking paradigm were examined under conditions where ghrelin and its receptor were blocked, either using ghrelin knockout (KO) mice or the specific ghrelin receptor (GHS-R1A) antagonist "JMV2959". We showed that ghrelin KO mice displayed lower ethanol-induced CPP than their wild-type (WT) littermates. Consistently, when injected during CPP-acquisition, JMV2959 reduced CPP-expression in C57BL/6 mice. In addition, ethanol-induced locomotor stimulation was lower in ghrelin KO mice. Moreover, GHS-R1A blockade, using JMV2959, reduced alcohol-stimulated locomotion only in WT but not in ghrelin KO mice. When alcohol consumption and preference were assessed using the two-bottle choice test, both genetic deletion of ghrelin and pharmacological antagonism of the GHS-R1A (JMV2959) reduced voluntary alcohol consumption and preference. Finally, JMV2959-induced reduction of alcohol intake was only observed in WT but not in ghrelin KO mice. Taken together, these results suggest that ghrelin neurotransmission is necessary for the stimulatory effect of ethanol to occur, whereas lack of ghrelin leads to changes that reduce the voluntary intake as well as conditioned reward by ethanol. Our findings reveal a major, novel role for ghrelin in mediating ethanol behavior, and add to growing evidence that ghrelin is a key mediator of the effects of multiple abused drugs. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Ancel Keys: a tribute

    Directory of Open Access Journals (Sweden)

    VanItallie Theodore B

    2005-02-01

    Full Text Available Abstract Ancel Keys, Ph.D., who died in November, 2004, at the age of 100, was among the first scientists to recognize that human atherosclerosis is not an inevitable consequence of aging, and that a high-fat diet can be a major risk factor for coronary heart disease. During World War II, he and a group of talented co-workers at the University of Minnesota conducted a large-scale study of experimentally-induced human starvation. The data generated by this study – which was immediately recognized to be a classic – continue to be of inestimable value to nutrition scientists. In his later years, Keys spent more time at his home in Naples, Italy, where he had the opportunity to continue his personal study of the beneficial effects on health and longevity of a Mediterranean diet.

  20. Physician Appraisals: Key Challenges

    Directory of Open Access Journals (Sweden)

    Klich Jacek

    2017-06-01

    Full Text Available The main purpose of the article is to identify key criteria being used for physician appraisals and to find how communication skills of physicians are valued in those appraisals. ScienceDirect and EBSCOhost databases were used for this search. The results show that a physician appraisal is underestimated both theoretically and empirically. The particular gap exists with respect to the communication skills of physicians, which are rarely present in medical training syllabi and physician assessments. The article contributes to the theoretical discourse on physician appraisals and points out at the inconsistency between the high status of physicians as a key hospital resource on the one hand and, on the other hand, at inadequate and poorly researched assessment of their performance with a special emphasis on communication skills. The article may inspire health managers to develop and implement up-to-date assessment forms for physicians and good managerial practices in this respect in hospitals and other health care units.

  1. NAGRADATA. Code key. Geology

    International Nuclear Information System (INIS)

    Mueller, W.H.; Schneider, B.; Staeuble, J.

    1984-01-01

    This reference manual provides users of the NAGRADATA system with comprehensive keys to the coding/decoding of geological and technical information to be stored in or retreaved from the databank. Emphasis has been placed on input data coding. When data is retreaved the translation into plain language of stored coded information is done automatically by computer. Three keys each, list the complete set of currently defined codes for the NAGRADATA system, namely codes with appropriate definitions, arranged: 1. according to subject matter (thematically) 2. the codes listed alphabetically and 3. the definitions listed alphabetically. Additional explanation is provided for the proper application of the codes and the logic behind the creation of new codes to be used within the NAGRADATA system. NAGRADATA makes use of codes instead of plain language for data storage; this offers the following advantages: speed of data processing, mainly data retrieval, economies of storage memory requirements, the standardisation of terminology. The nature of this thesaurian type 'key to codes' makes it impossible to either establish a final form or to cover the entire spectrum of requirements. Therefore, this first issue of codes to NAGRADATA must be considered to represent the current state of progress of a living system and future editions will be issued in a loose leave ringbook system which can be updated by an organised (updating) service. (author)

  2. Lack of the purinergic receptor P2X7 results in resistance to contact hypersensitivity

    Science.gov (United States)

    Weber, Felix C.; Esser, Philipp R.; Müller, Tobias; Ganesan, Jayanthi; Pellegatti, Patrizia; Simon, Markus M.; Zeiser, Robert; Idzko, Marco; Jakob, Thilo

    2010-01-01

    Sensitization to contact allergens requires activation of the innate immune system by endogenous danger signals. However, the mechanisms through which contact allergens activate innate signaling pathways are incompletely understood. In this study, we demonstrate that mice lacking the adenosine triphosphate (ATP) receptor P2X7 are resistant to contact hypersensitivity (CHS). P2X7-deficient dendritic cells fail to induce sensitization to contact allergens and do not release IL-1β in response to lipopolysaccharide (LPS) and ATP. These defects are restored by pretreatment with LPS and alum in an NLRP3- and ASC-dependent manner. Whereas pretreatment of wild-type mice with P2X7 antagonists, the ATP-degrading enzyme apyrase or IL-1 receptor antagonist, prevents CHS, IL-1β injection restores CHS in P2X7-deficient mice. Thus, P2X7 is a crucial receptor for extracellular ATP released in skin in response to contact allergens. The lack of P2X7 triggering prevents IL-1β release, which is an essential step in the sensitization process. Interference with P2X7 signaling may be a promising strategy for the prevention of allergic contact dermatitis. PMID:21059855

  3. Manet key management via Mobile Ficlke Key protocol (MFK ...

    African Journals Online (AJOL)

    Manet key management via Mobile Ficlke Key protocol (MFK) ... Journal of Fundamental and Applied Sciences. Journal Home · ABOUT THIS JOURNAL ... No Abstract. Keywords: MANET; key management scheme; simulation environment ...

  4. [Anatomy and histology characteristics of lymph node in nude mice].

    Science.gov (United States)

    Sun, R; Gao, B; Guo, C B

    2017-10-18

    To compare the differences of anatomical and histological characteristics of lymph nodes between BALB/c nude mice and BALB/c mice. Firstly, twenty BALB/c nude mice and twenty BALB/c mice were dissected by using a surgical microscope. Secondly, the differences of T cells and B cells at the lymph node were compared by the expressions of CD 3 and CD 20 immunohistochemistry dyes. There were, on average, 23 nodes per mouse contained within the large lymph node assembly in the BALB/c nude mouse. The anatomical features of the lymph node distribution in the nude mice were mainly found in the neck with relatively higher density. There were two lymph nodes both in the submandible lymph nodes group and in the superficial cervical lymph nodes group (the constituent ratios were 95% and 90%, respectively) in the BALB/c nude mice, but there were four lymph nodes (the constituent ratios were 95% and 90%, respectively) in the BALB/c mice. There were significant difference between the BALB/c nude mice and the BALB/c mice. Mostly there were two lymph nodes of deep cervical lymph nodes both in the BALB/c nude mice and the BALB/c mice (the constituent ratios were 95% and 100%, respectively). There were no significant difference between the BALB/c nude mice and the BALB/c mice. We confirmed that the number of CD 3 -positive T lymphocytes in lymph nodes of the nude mice decreased greatly as compared with the BALB/c mice. Expressions of CD3 in T cells were 95% and 100% in the BALB/c nude mice and in the BALB/c mice, respectively. There were significant differences between the BALB/c nude mice and the BALB/c mice. Expressions of CD20 in B cells were 95% and 100% in the BALB/c nude mice and in the BALB/c mice, respectively. There was no significant difference between the BALB/c nude mice and BALB/c mice. The anatomical pictures of lymph node distribution in the nude mouse will be benefit to those who are interested. The anatomical features of the lymph node local higher density in neck of

  5. Double gene deletion reveals the lack of cooperation between PPARα and PPARβ in skeletal muscle

    International Nuclear Information System (INIS)

    Bedu, E.; Desplanches, D.; Pequignot, J.; Bordier, B.; Desvergne, B.

    2007-01-01

    The peroxisome proliferator-activated receptors (PPARs) are involved in the regulation of most of the pathways linked to lipid metabolism. PPARα and PPARβ isotypes are known to regulate muscle fatty acid oxidation and a reciprocal compensation of their function has been proposed. Herein, we investigated muscle contractile and metabolic phenotypes in PPARα-/-, PPARβ-/-, and double PPARα-/- β-/- mice. Heart and soleus muscle analyses show that the deletion of PPARα induces a decrease of the HAD activity (β-oxidation) while soleus contractile phenotype remains unchanged. A PPARβ deletion alone has no effect. However, these mild phenotypes are not due to a reciprocal compensation of PPARβ and PPARα functions since double gene deletion PPARα-PPARβ mostly reproduces the null PPARα-mediated reduced β-oxidation, in addition to a shift from fast to slow fibers. In conclusion, PPARβ is not required for maintaining skeletal muscle metabolic activity and does not compensate the lack of PPARα in PPARα null mice

  6. Migration Of Ancylostoma caninum Larvae Into Lungs Of Mice Fed ...

    African Journals Online (AJOL)

    Two randomly selected groups of Swiss Albino Wistar mice were therefore infected with 1000 infective larvae of Ancylostoma caninum/mouse. Test mice received 250mg Allium sativum/kg body weight daily ... KEY WORDS: Allium sativum, lungs, Ancylostoma caninum. Global Journal of Pure and Applied Sciences Vol.11(2) ...

  7. Altered Sleep Homeostasis in Rev-erbα Knockout Mice.

    Science.gov (United States)

    Mang, Géraldine M; La Spada, Francesco; Emmenegger, Yann; Chappuis, Sylvie; Ripperger, Jürgen A; Albrecht, Urs; Franken, Paul

    2016-03-01

    The nuclear receptor REV-ERBα is a potent, constitutive transcriptional repressor critical for the regulation of key circadian and metabolic genes. Recently, REV-ERBα's involvement in learning, neurogenesis, mood, and dopamine turnover was demonstrated suggesting a specific role in central nervous system functioning. We have previously shown that the brain expression of several core clock genes, including Rev-erbα, is modulated by sleep loss. We here test the consequences of a loss of REV-ERBα on the homeostatic regulation of sleep. EEG/EMG signals were recorded in Rev-erbα knockout (KO) mice and their wild type (WT) littermates during baseline, sleep deprivation, and recovery. Cortical gene expression measurements after sleep deprivation were contrasted to baseline. Although baseline sleep/wake duration was remarkably similar, KO mice showed an advance of the sleep/wake distribution relative to the light-dark cycle. After sleep onset in baseline and after sleep deprivation, both EEG delta power (1-4 Hz) and sleep consolidation were reduced in KO mice indicating a slower increase of homeostatic sleep need during wakefulness. This slower increase might relate to the smaller increase in theta and gamma power observed in the waking EEG prior to sleep onset under both conditions. Indeed, the increased theta activity during wakefulness predicted delta power in subsequent NREM sleep. Lack of Rev-erbα increased Bmal1, Npas2, Clock, and Fabp7 expression, confirming the direct regulation of these genes by REV-ERBα also in the brain. Our results add further proof to the notion that clock genes are involved in sleep homeostasis. Because accumulating evidence directly links REV-ERBα to dopamine signaling the altered homeostatic regulation of sleep reported here are discussed in that context. © 2016 Associated Professional Sleep Societies, LLC.

  8. Key aspects congenital infection

    Directory of Open Access Journals (Sweden)

    Yu. V. Lobzin

    2014-01-01

    Full Text Available The key questions to solve the problem of congenital infection in the Russian Federation are: using in national practice over world accepted terminology adapted to the recommendations of the World Health Organization; representation of the modern concepts of an infectious process in the classification of congenital infections; scientific development and introducing in clinical practice the «standard case definitions», applied to different congenital infections; optimization of protocols and clinical guidelines for diagnosis, treatment and prevention of congenital infections; improvement a knowledge in the infectious disease for all  pecialists involved in the risk assessment of congenital infections, manage pregnancy and children. Based on our experience and analysis of publications, the authors suggest possible solutions.

  9. Key figures. Year 2006

    International Nuclear Information System (INIS)

    2006-01-01

    This document summarizes in a series of tables the key data of the petroleum industry and of the other energies for the year 2006. Data of the two previous years are given for comparison: 1 - petroleum, France: exploration, reserves, production, transports (tankers, pipelines, crude and refined products), storage capacities, status of resources and uses, foreign trade (imports, prices, exports), refining (capacities, facilities), evolution of supplies, automotive fuels consumption; 2 - energies, France: production, consumption and trade data for coal, natural gas, electricity; total production and consumption of primary energy; consumption per sector of use; 3 - petroleum, world: crude production and reserves per geographical area, OPEC production, imports/exports and refining/consumption per geographical area, international quotation for crudes and refined products; 4 - energies, world: reserves, production and consumption data for coal, natural gas and electricity; uranium production and resources; total primary energy production and consumption per energy source and geographical area. (J.S.)

  10. Key figures. Year 2005

    International Nuclear Information System (INIS)

    2005-01-01

    This document summarizes in a series of tables the key data of the petroleum industry and of the other energies for the year 2005. Data of the two previous years are given for comparison: 1 - petroleum, France: exploration, reserves, production, transports (tankers, pipelines, crude and refined products), storage capacities, status of resources and uses, foreign trade (imports, prices, exports), refining (capacities, facilities), evolution of supplies, automotive fuels consumption; 2 - energies, France: production, consumption and trade data for coal, natural gas, electricity; total production and consumption of primary energy; consumption per sector of use; 3 - petroleum, world: crude production and reserves per geographical area, OPEC production, imports/exports and refining/consumption per geographical area, international quotation for crudes and refined products; 4 - energies, world: reserves, production and consumption data for coal, natural gas and electricity; uranium production and resources; total primary energy production and consumption per energy source and geographical area. (J.S.)

  11. Key Problems in Organizing and Structuring University Research in Vietnam: The Lack of an Effective Research "Behaviour Formalization" System

    Science.gov (United States)

    Nguyen, Huong Thi Lan; Meek, Vincent Lynn

    2016-01-01

    Structure and organization seems to be at the root of many of the questions raised about institutional behaviour; however, with respect to research on university capacity building, few studies have examined research organizational problems, particularly in developing countries. This study investigates academic reactions to the structure and…

  12. Defense Contract Management: DOD's Lack of Adherence to Key Contracting Principles on Iraq Oil Contract Put Government Interests at Risk

    National Research Council Canada - National Science Library

    Hutton, John P; Ahearn, Marie; Augustine, Penny B; Campbell, Greg; James, Jr., Arthur; Lesonsky, Eric; Lord, Stephen; McDonough-Hughes, Anne; McKelvey, Janet; Patton, Kenneth

    2007-01-01

    .... The contract was also used to ensure adequate fuel supplies inside Iraq. RIO I was a cost-plus-award-fee type contract that provided for payment of the contractor's costs, a fixed fee determined at inception of the contract, and a potential award fee...

  13. Bortezomib alters sour taste sensitivity in mice

    Directory of Open Access Journals (Sweden)

    Akihiro Ohishi

    Full Text Available Chemotherapy-induced taste disorder is one of the critical issues in cancer therapy. Bortezomib, a proteasome inhibitor, is a key agent in multiple myeloma therapy, but it induces a taste disorder. In this study, we investigated the characteristics of bortezomib-induced taste disorder and the underlying mechanism in mice. Among the five basic tastes, the sour taste sensitivity of mice was significantly increased by bortezomib administration. In bortezomib-administered mice, protein expression of PKD2L1 was increased. The increased sour taste sensitivity induced by bortezomib returned to the control level on cessation of its administration. These results suggest that an increase in protein expression of PKD2L1 enhances the sour taste sensitivity in bortezomib-administered mice, and this alteration is reversed on cessation of its administration. Keywords: Taste disorder, Bortezomib, Sour taste, Chemotherapy, Adverse effect

  14. Loss of CDKL5 in Glutamatergic Neurons Disrupts Hippocampal Microcircuitry and Leads to Memory Impairment in Mice.

    Science.gov (United States)

    Tang, Sheng; Wang, I-Ting Judy; Yue, Cuiyong; Takano, Hajime; Terzic, Barbara; Pance, Katarina; Lee, Jun Y; Cui, Yue; Coulter, Douglas A; Zhou, Zhaolan

    2017-08-02

    Cyclin-dependent kinase-like 5 (CDKL5) deficiency is a neurodevelopmental disorder characterized by epileptic seizures, severe intellectual disability, and autistic features. Mice lacking CDKL5 display multiple behavioral abnormalities reminiscent of the disorder, but the cellular origins of these phenotypes remain unclear. Here, we find that ablating CDKL5 expression specifically from forebrain glutamatergic neurons impairs hippocampal-dependent memory in male conditional knock-out mice. Hippocampal pyramidal neurons lacking CDKL5 show decreased dendritic complexity but a trend toward increased spine density. This morphological change is accompanied by an increase in the frequency of spontaneous miniature EPSCs and interestingly, miniature IPSCs. Using voltage-sensitive dye imaging to interrogate the evoked response of the CA1 microcircuit, we find that CA1 pyramidal neurons lacking CDKL5 show hyperexcitability in their dendritic domain that is constrained by elevated inhibition in a spatially and temporally distinct manner. These results suggest a novel role for CDKL5 in the regulation of synaptic function and uncover an intriguing microcircuit mechanism underlying impaired learning and memory. SIGNIFICANCE STATEMENT Cyclin-dependent kinase-like 5 (CDKL5) deficiency is a severe neurodevelopmental disorder caused by mutations in the CDKL5 gene. Although Cdkl5 constitutive knock-out mice have recapitulated key aspects of human symptomatology, the cellular origins of CDKL5 deficiency-related phenotypes are unknown. Here, using conditional knock-out mice, we show that hippocampal-dependent learning and memory deficits in CDKL5 deficiency have origins in glutamatergic neurons of the forebrain and that loss of CDKL5 results in the enhancement of synaptic transmission and disruptions in neural circuit dynamics in a spatially and temporally specific manner. Our findings demonstrate that CDKL5 is an important regulator of synaptic function in glutamatergic neurons and

  15. Uncoupling of interleukin-6 from its signalling pathway by dietary n-3-polyunsaturated fatty acid deprivation alters sickness behaviour in mice

    Science.gov (United States)

    Mingam, Rozenn; Moranis, Aurélie; Bluthé, Rose-Marie; De Smedt-Peyrusse, Véronique; Kelley, Keith W.; Guesnet, Philippe; Lavialle, Monique; Dantzer, Robert; Layé, Sophie

    2009-01-01

    Sickness behaviour is an adaptive behavioural response to the activation of the innate immune system. It is mediated by brain cytokine production and action, especially interleukin-6 (IL-6). Polyunsaturated fatty acids (PUFA) are essential fatty acids that are highly incorporated in brain cells membranes and display immunomodulating properties. We hypothesized that a decrease in n-3 PUFA brain level by dietary means impacts on lipopolysaccharide (LPS)-induced IL-6 production and sickness behaviour. Our results show that mice exposed throughout life to a diet containing n-3 PUFA (n-3/n-6 diet) display a decrease in social interaction that does not occur in mice submitted to a diet devoid of n-3 PUFA (n-6 diet). LPS induced high IL-6 plasma levels as well as expression of IL-6 mRNA in the hippocampus and cFos mRNA in the brainstem of mice fed either diet, indicating intact immune-to-brain communication. However, STAT3 and STAT1 activation, a hallmark of IL-6 signalling pathway, was lower in the hippocampus of LPS-treated n-6 mice as compared to n-3/n-6 mice. In addition, LPS did not reduce social interaction in IL-6 knock-out (IL-6 KO) mice and failed to induce STAT3 activation in the brain of IL-6 KO mice. Altogether, these findings point to alteration in brain STAT3 as a key mechanism for the lack of effect of LPS on social interaction in mice fed with the n-6 PUFA diet. The relative deficiency of Western diets in n-3 PUFA could impact on behavioural aspects of the host response to infection. PMID:18973601

  16. Smooth Phase Interpolated Keying

    Science.gov (United States)

    Borah, Deva K.

    2007-01-01

    Smooth phase interpolated keying (SPIK) is an improved method of computing smooth phase-modulation waveforms for radio communication systems that convey digital information. SPIK is applicable to a variety of phase-shift-keying (PSK) modulation schemes, including quaternary PSK (QPSK), octonary PSK (8PSK), and 16PSK. In comparison with a related prior method, SPIK offers advantages of better performance and less complexity of implementation. In a PSK scheme, the underlying information waveform that one seeks to convey consists of discrete rectangular steps, but the spectral width of such a waveform is excessive for practical radio communication. Therefore, the problem is to smooth the step phase waveform in such a manner as to maintain power and bandwidth efficiency without incurring an unacceptably large error rate and without introducing undesired variations in the amplitude of the affected radio signal. Although the ideal constellation of PSK phasor points does not cause amplitude variations, filtering of the modulation waveform (in which, typically, a rectangular pulse is converted to a square-root raised cosine pulse) causes amplitude fluctuations. If a power-efficient nonlinear amplifier is used in the radio communication system, the fluctuating-amplitude signal can undergo significant spectral regrowth, thus compromising the bandwidth efficiency of the system. In the related prior method, one seeks to solve the problem in a procedure that comprises two major steps: phase-value generation and phase interpolation. SPIK follows the two-step approach of the related prior method, but the details of the steps are different. In the phase-value-generation step, the phase values of symbols in the PSK constellation are determined by a phase function that is said to be maximally smooth and that is chosen to minimize the spectral spread of the modulated signal. In this step, the constellation is divided into two groups by assigning, to information symbols, phase values

  17. Lack of centrioles and primary cilia in STIL−/− mouse embryos

    Science.gov (United States)

    David, Ahuvit; Liu, Fengying; Tibelius, Alexandra; Vulprecht, Julia; Wald, Diana; Rothermel, Ulrike; Ohana, Reut; Seitel, Alexander; Metzger, Jasmin; Ashery-Padan, Ruth; Meinzer, Hans-Peter; Gröne, Hermann-Josef; Izraeli, Shai; Krämer, Alwin

    2014-01-01

    Although most animal cells contain centrosomes, consisting of a pair of centrioles, their precise contribution to cell division and embryonic development is unclear. Genetic ablation of STIL, an essential component of the centriole replication machinery in mammalian cells, causes embryonic lethality in mice around mid gestation associated with defective Hedgehog signaling. Here, we describe, by focused ion beam scanning electron microscopy, that STIL−/− mouse embryos do not contain centrioles or primary cilia, suggesting that these organelles are not essential for mammalian development until mid gestation. We further show that the lack of primary cilia explains the absence of Hedgehog signaling in STIL−/− cells. Exogenous re-expression of STIL or STIL microcephaly mutants compatible with human survival, induced non-templated, de novo generation of centrioles in STIL−/− cells. Thus, while the abscence of centrioles is compatible with mammalian gastrulation, lack of centrioles and primary cilia impairs Hedgehog signaling and further embryonic development. PMID:25486474

  18. Impaired social behavior in 5-HT3A receptor knockout mice

    Directory of Open Access Journals (Sweden)

    Laura A Smit-Rigter

    2010-11-01

    Full Text Available The 5-HT3 receptor is a ligand-gated ion channel expressed on interneurons throughout the brain. So far, analysis of the 5-HT3A knockout mouse revealed changes in nociceptive processing and a reduction in anxiety related behavior. Recently, it was shown that the 5-HT3 receptor is also expressed on Cajal-Retzius cells which play a key role in cortical development and that knockout mice lacking this receptor showed aberrant growth of the dendritic tree of cortical layer II/III pyramidal neurons. Other mouse models in which serotonergic signaling was disrupted during development showed similar morphological changes in the cortex, and in addition, also deficits in social behavior. Here, we subjected male and female 5-HT3A knockout mice and their non-transgenic littermates to several tests of social behavior. We found that 5-HT3A knockout mice display impaired social communication in the social transmission of food preference task. Interestingly, we showed that in the social interaction test only female 5-HT3A knockout mice spent less time in reciprocal social interaction starting after 5 minutes of testing. Moreover, we observed differences in preference for social novelty for male and female 5-HT3A knockout mice during the social approach test. However, no changes in olfaction, exploratory activity and anxiety were detected. These results indicate that the 5-HT3A knockout mouse displays impaired social behavior with specific changes in males and females, reminiscent to other mouse models in which serotonergic signaling is disturbed in the developing brain.

  19. Multiple non-cell-autonomous defects underlie neocortical callosal dysgenesis in Nfib-deficient mice

    Directory of Open Access Journals (Sweden)

    Sunn Nana

    2009-12-01

    Full Text Available Abstract Background Agenesis of the corpus callosum is associated with many human developmental syndromes. Key mechanisms regulating callosal formation include the guidance of axons arising from pioneering neurons in the cingulate cortex and the development of cortical midline glial populations, but their molecular regulation remains poorly characterised. Recent data have shown that mice lacking the transcription factor Nfib exhibit callosal agenesis, yet neocortical callosal neurons express only low levels of Nfib. Therefore, we investigate here how Nfib functions to regulate non-cell-autonomous mechanisms of callosal formation. Results Our investigations confirmed a reduction in glial cells at the midline in Nfib-/- mice. To determine how this occurs, we examined radial progenitors at the cortical midline and found that they were specified correctly in Nfib mutant mice, but did not differentiate into mature glia. Cellular proliferation and apoptosis occurred normally at the midline of Nfib mutant mice, indicating that the decrease in midline glia observed was due to deficits in differentiation rather than proliferation or apoptosis. Next we investigated the development of callosal pioneering axons in Nfib-/- mice. Using retrograde tracer labelling, we found that Nfib is expressed in cingulate neurons and hence may regulate their development. In Nfib-/- mice, neuropilin 1-positive axons fail to cross the midline and expression of neuropilin 1 is diminished. Tract tracing and immunohistochemistry further revealed that, in late gestation, a minor population of neocortical axons does cross the midline in Nfib mutants on a C57Bl/6J background, forming a rudimentary corpus callosum. Finally, the development of other forebrain commissures in Nfib-deficient mice is also aberrant. Conclusion The formation of the corpus callosum is severely delayed in the absence of Nfib, despite Nfib not being highly expressed in neocortical callosal neurons. Our

  20. URBAN POLITICS: KEY APPROACHES

    Directory of Open Access Journals (Sweden)

    Ledyaeva Ol'ga Mikhaylovna

    2012-10-01

    Full Text Available Several approaches that underlie urban politics are discussed in the paper. They include neo-liberalism, political economy discourse, elitist/pluralist debates, and postmodernism. The neoliberal approach focuses on the limited role of the state and individual responsibility. The legal framework protects both the rights and responsibilities of individuals and regulates the operation of the market. It is the market that fosters individual choices and provides goods and services by virtue of the processes which are flexible, efficient and transparent. The political economy approaches (regulation theory, public choice theory, neo-Marxism explain urban politics via the analysis of national and international economic processes and changes in contemporary capitalism. Changes in national and international economies determine what solutions are possible. The discourse has been influenced by the debate on globalization of capital and labour markets. Modern elitism and neopluralism are represented by theories of "growth machines" and "urban regimes". The former focuses on bargaining alliances between political and business leaders in order to manage the urban system and to promote its growth. The latter develops neopluralist explanations of power within local communities with an emphasis on the fragmented nature of the government where local authorities lack comprehensive governing powers. Postmodernism views the city as the site of the crisis of late capitalism which leads to segregation of neighbourhoods onto prosperous areas and ghettoes. In contrast to the modern city, the postmodern city is not defined by its industrial base; rather, it is determined by its consumerist environment of malls and museums, characterized by revivalist architecture. At the same time, the suburban shopping mall and a motorway network make nonsense of the idea of the city as a unique and well-defined space. These and other approaches encompass a wide spectrum of possibilities

  1. Effects of Social Defeat Stress on Sleep in Mice

    OpenAIRE

    Henderson, Fiona; Vialou, Vincent; El Mestikawy, Salah; Fabre, Véronique

    2017-01-01

    Stress plays a key role in the development of psychiatric disorders and has a negative impact on sleep integrity. In mice, chronic social defeat stress (CSDS) is an ethologically valid model of stress-related disorders but little is known about its effects on sleep regulation. Here, we investigated the immediate and long-term effects of 10 consecutive days of social defeat (SD) on vigilance states in C57Bl/6J male mice. Social behavior was assessed to identify susceptible mice, i.e., mice tha...

  2. Metabolism and disposition of ABT-894, a novel α4β2 neuronal acetylcholine receptor agonist, in mice and monkeys.

    Science.gov (United States)

    Liu, Hong; Fu, Wentao; Wetter, Jill; Xu, Hongyu; Guan, Zhiwen; Stuart, Patricia

    2014-06-01

    1.  Metabolism and disposition of ABT-894 was investigated in hepatocytes, in mice and monkeys receiving [(14)C]ABT-894. 2.  In hepatocytes, turnover rate of ABT-894 was slow in all species with more than 90% of parent remaining. M3 (carbamoyl glucuronide) and M6 (mono-oxidation) were detected across species. 3.  ABT-894 showed species-specific disposition profiles. ABT-894 was primarily eliminated by renal secretion in mice. Whereas, monkey mainly cleared ABT-894 metabolically. 4.  ABT-894 underwent two primary routes of metabolism in monkeys: N-carbamoyl glucuronidation to form M3 and oxidation product M1. M3 was the major metabolite in monkey excreta. M3 was observed in mice urine. Circulating levels of M3 in terms of M3/ABT-894 ratios were essentially absent in mice, but were high in monkeys. 5.  Understanding the species difference in the clearance mechanism is the key to the accurate projection of the human clearance and preclinical safety assessment. Lack of species difference in the metabolism of ABT-894 in hepatocytes certainly creates a challenge in predicting its metabolism and pharmacokinetics in human. Based on available metabolism and pharmacokinetic data of ABT-894 in human, monkey is the preferred species in predicting human clearance since it presents a similar clearance mechanism from that observed in human.

  3. Key to good fit: body measurement problems specific to key ...

    African Journals Online (AJOL)

    Key to good fit: body measurement problems specific to key dimensions. ... to explore and describe the problems that the South African Clothing Industry currently ... A postal survey was conducted among South African apparel and footwear ...

  4. Flow hydrodynamics near inlet key of Piano Key Weir (PKW)

    Indian Academy of Sciences (India)

    Department of Water Resources Development and Management, Indian Institute ... on the hydrodynamic performance near inlet key of Piano Key Weir (PKW). ... nature of flows is clearly understood with the help of advanced instrumentation.

  5. Occurrence of testicular microlithiasis in androgen insensitive hypogonadal mice

    Directory of Open Access Journals (Sweden)

    De Gendt Karl

    2009-08-01

    Full Text Available Abstract Background Testicular microliths are calcifications found within the seminiferous tubules. In humans, testicular microlithiasis (TM has an unknown etiology but may be significantly associated with testicular germ cell tumors. Factors inducing microlith development may also, therefore, act as susceptibility factors for malignant testicular conditions. Studies to identify the mechanisms of microlith development have been hampered by the lack of suitable animal models for TM. Methods This was an observational study of the testicular phenotype of different mouse models. The mouse models were: cryptorchid mice, mice lacking androgen receptors (ARs on the Sertoli cells (SCARKO, mice with a ubiquitous loss of androgen ARs (ARKO, hypogonadal (hpg mice which lack circulating gonadotrophins, and hpg mice crossed with SCARKO (hpg.SCARKO and ARKO (hpg.ARKO mice. Results Microscopic TM was seen in 94% of hpg.ARKO mice (n = 16 and the mean number of microliths per testis was 81 +/- 54. Occasional small microliths were seen in 36% (n = 11 of hpg testes (mean 2 +/- 0.5 per testis and 30% (n = 10 of hpg.SCARKO testes (mean 8 +/- 6 per testis. No microliths were seen in cryptorchid, ARKO or SCARKO mice. There was no significant effect of FSH or androgen on TM in hpg.ARKO mice. Conclusion We have identified a mouse model of TM and show that lack of endocrine stimulation is a cause of TM. Importantly, this model will provide a means with which to identify the mechanisms of TM development and the underlying changes in protein and gene expression.

  6. Key-space analysis of double random phase encryption technique

    Science.gov (United States)

    Monaghan, David S.; Gopinathan, Unnikrishnan; Naughton, Thomas J.; Sheridan, John T.

    2007-09-01

    We perform a numerical analysis on the double random phase encryption/decryption technique. The key-space of an encryption technique is the set of possible keys that can be used to encode data using that technique. In the case of a strong encryption scheme, many keys must be tried in any brute-force attack on that technique. Traditionally, designers of optical image encryption systems demonstrate only how a small number of arbitrary keys cannot decrypt a chosen encrypted image in their system. However, this type of demonstration does not discuss the properties of the key-space nor refute the feasibility of an efficient brute-force attack. To clarify these issues we present a key-space analysis of the technique. For a range of problem instances we plot the distribution of decryption errors in the key-space indicating the lack of feasibility of a simple brute-force attack.

  7. Metabolic characteristics of long-lived mice

    Directory of Open Access Journals (Sweden)

    Andrzej eBartke

    2012-12-01

    Full Text Available Genetic suppression of insulin/insulin-like growth factor signaling (IIS can extend longevity in worms, insects, and mammals. In laboratory mice, mutations with the greatest, most consistent, and best documented positive impact on lifespan are those that disrupt growth hormone (GH release or actions. These mutations lead to major alterations in IIS but also have a variety of effects that are not directly related to the actions of insulin or insulin-like growth factor (IGF-1. Long-lived GH-resistant GHRKO mice with targeted disruption of the GH receptor gene, as well as Ames dwarf (Prop1df and Snell dwarf (Pit1dw mice lacking GH (along with prolactin and TSH, are diminutive in size and have major alterations in body composition and metabolic parameters including increased subcutaneous adiposity, increased relative brain weight, small liver, hypoinsulinemia, mild hypoglycemia, increased adiponectin levels and insulin sensitivity, and reduced serum lipids. Body temperature is reduced in Ames, Snell, and female GHRKO mice. Indirect calorimetry revealed that both Ames dwarf and GHRKO mice utilize more oxygen per gram (g of body weight than sex- and age-matched normal animals from the same strain. They also have reduced respiratory quotient (RQ, implying greater reliance on fats, as opposed to carbohydrates, as an energy source. Differences in oxygen consumption (VO2 were seen in animals fed or fasted during the measurements as well as in animals that had been exposed to 30% calorie restriction or every-other-day feeding. However, at the thermoneutral temperature of 30°C, VO2 did not differ between GHRKO and normal mice. Thus, the increased metabolic rate of the GHRKO mice, at a standard animal room temperature of 23°C, is apparently related to increased energy demands for thermoregulation in these diminutive animals. We suspect that increased oxidative metabolism combined with enhanced fatty acid oxidation contribute to the extended longevity of

  8. Enhancement of immune response induced by DNA vaccine cocktail expressing complete LACK and TSA genes against Leishmania major.

    Science.gov (United States)

    Ghaffarifar, Fatemeh; Jorjani, Ogholniaz; Sharifi, Zohreh; Dalimi, Abdolhossein; Hassan, Zuhair M; Tabatabaie, Fatemeh; Khoshzaban, Fariba; Hezarjaribi, Hajar Ziaei

    2013-04-01

    Leishmaniasis is an important disease in humans. Leishmania homologue of receptor for Activated C Kinase (LACK) and thiol specific antioxidant (TSA) as immuno-dominant antigens of Leishmania major are considered the most promising molecules for a DNA vaccine. We constructed a DNA cocktail, containing plasmids encoding LACK and TSA genes of Leishmania major and evaluated the immune response and survival rate in BALB/c mice. IgG and Interferon gamma values were noticeably increased in the immunized group with DNA cocktail vaccine, which were significantly higher than those in the single-gene vaccinated and control groups (p 0.05). The immunized mice with the cocktail DNA vaccine presented a considerable reduction in diameter of lesion compared to other groups and a significant difference was observed (p < 0.05) in this regard. The survival time of the immunized mice with the cocktail DNA vaccine was significantly higher than that in the other groups (p < 0.05) after their being challenged with Leishmania major. The findings of this study indicated that the cocktail DNA vaccine increased the cellular response and survival rate and induced protection against infection with Leishmania in the mice. © 2012 The Authors © 2012 APMIS.

  9. Lack of Plasma Protein Hemopexin Results in Increased Duodenal Iron Uptake.

    Science.gov (United States)

    Fiorito, Veronica; Geninatti Crich, Simonetta; Silengo, Lorenzo; Aime, Silvio; Altruda, Fiorella; Tolosano, Emanuela

    2013-01-01

    The body concentration of iron is regulated by a fine equilibrium between absorption and losses of iron. Iron can be absorbed from diet as inorganic iron or as heme. Hemopexin is an acute phase protein that limits iron access to microorganisms. Moreover, it is the plasma protein with the highest binding affinity for heme and thus it mediates heme-iron recycling. Considering its involvement in iron homeostasis, it was postulated that hemopexin may play a role in the physiological absorption of inorganic iron. Hemopexin-null mice showed elevated iron deposits in enterocytes, associated with higher duodenal H-Ferritin levels and a significant increase in duodenal expression and activity of heme oxygenase. The expression of heme-iron and inorganic iron transporters was normal. The rate of iron absorption was assessed by measuring the amount of (57)Fe retained in tissues from hemopexin-null and wild-type animals after administration of an oral dose of (57)FeSO4 or of (57)Fe-labelled heme. Higher iron retention in the duodenum of hemopexin-null mice was observed as compared with normal mice. Conversely, iron transfer from enterocytes to liver and bone marrow was unaffected in hemopexin-null mice. The increased iron level in hemopexin-null duodenum can be accounted for by an increased iron uptake by enterocytes and storage in ferritins. These data indicate that the lack of hemopexin under physiological conditions leads to an enhanced duodenal iron uptake thus providing new insights to our understanding of body iron homeostasis.

  10. Lipid metabolism and body composition in Gclm(-/-) mice

    Energy Technology Data Exchange (ETDEWEB)

    Kendig, Eric L. [Department of Environmental Health, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH 45267 (United States); Center for Environmental Genetics, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH 45267 (United States); Chen, Ying [Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Denver, Aurora, CO 80045 (United States); Krishan, Mansi; Johansson, Elisabet; Schneider, Scott N. [Department of Environmental Health, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH 45267 (United States); Genter, Mary Beth; Nebert, Daniel W. [Department of Environmental Health, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH 45267 (United States); Center for Environmental Genetics, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH 45267 (United States); Shertzer, Howard G., E-mail: shertzhg@ucmail.uc.edu [Department of Environmental Health, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH 45267 (United States); Center for Environmental Genetics, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH 45267 (United States)

    2011-12-15

    In humans and experimental animals, high fat diets (HFD) are associated with risk factors for metabolic diseases, such as excessive weight gain and adiposity, insulin resistance and fatty liver. Mice lacking the glutamate-cysteine ligase modifier subunit gene (Gclm(-/-)) and deficient in glutathione (GSH), are resistant to HFD-mediated weight gain. Herein, we evaluated Gclm-associated regulation of energy metabolism, oxidative stress, and glucose and lipid homeostasis. C57BL/6J Gclm(-/-) mice and littermate wild-type (WT) controls received a normal diet or an HFD for 11 weeks. HFD-fed Gclm(-/-) mice did not display a decreased respiratory quotient, suggesting that they are unable to process lipid for metabolism. Although dietary energy consumption and intestinal lipid absorption were unchanged in Gclm(-/-) mice, feeding these mice an HFD did not produce excess body weight nor fat storage. Gclm(-/-) mice displayed higher basal metabolic rates resulting from higher activities of liver mitochondrial NADH-CoQ oxidoreductase, thus elevating respiration. Although Gclm(-/-) mice exhibited strong systemic and hepatic oxidative stress responses, HFD did not promote glucose intolerance or insulin resistance. Furthermore, HFD-fed Gclm(-/-) mice did not develop fatty liver, likely resulting from very low expression levels of genes encoding lipid metabolizing enzymes. We conclude that Gclm is involved in the regulation of basal metabolic rate and the metabolism of dietary lipid. Although Gclm(-/-) mice display a strong oxidative stress response, they are protected from HFD-induced excessive weight gain and adipose deposition, insulin resistance and steatosis. -- Highlights: Black-Right-Pointing-Pointer A high fat diet does not produce body weight and fat gain in Gclm(-/-) mice. Black-Right-Pointing-Pointer A high fat diet does not induce steatosis or insulin resistance in Gclm(-/-) mice. Black-Right-Pointing-Pointer Gclm(-/-) mice have high basal metabolism and mitochondrial

  11. 10 CFR 503.21 - Lack of alternate fuel supply.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Lack of alternate fuel supply. 503.21 Section 503.21 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS NEW FACILITIES Temporary Exemptions for New Facilities § 503.21 Lack of alternate fuel supply. (a) Eligibility. Section 211(a)(1) of the Act provides for...

  12. Multi-biometrics based cryptographic key regeneration scheme

    OpenAIRE

    Kanade , Sanjay Ganesh; Petrovska-Delacrétaz , Dijana; Dorizzi , Bernadette

    2009-01-01

    International audience; Biometrics lack revocability and privacy while cryptography cannot detect the user's identity. By obtaining cryptographic keys using biometrics, one can achieve the properties such as revocability, assurance about user's identity, and privacy. In this paper, we propose a multi-biometric based cryptographic key regeneration scheme. Since left and right irises of a person are uncorrelated, we treat them as two independent biometrics and combine in our system. We propose ...

  13. Fibrin accumulation secondary to loss of plasmin-mediated fibrinolysis drives inflammatory osteoporosis in mice.

    Science.gov (United States)

    Cole, Heather A; Ohba, Tetsuro; Nyman, Jeffry S; Hirotaka, Haro; Cates, Justin M M; Flick, Matthew J; Degen, Jay L; Schoenecker, Jonathan G

    2014-08-01

    Osteoporosis is a skeletal disorder characterized by low bone mass and increased bone fragility associated with aging, menopause, smoking, obesity, or diabetes. Persistent inflammation has been identified as an instigating factor in progressive bone loss. In addition to the role of fibrin in coagulation, inordinate fibrin deposition within a tissue matrix results in increased local inflammation. Given that fibrin accumulation is a hallmark of osteoporosis-related comorbidities, we undertook this study to test the hypothesis that persistent fibrin deposition causes inflammatory osteoporosis. Multiple imaging modalities, bone integrity metrics, and histologic analyses were employed to evaluate skeletal derangements in relation to fibrin deposition, circulating fibrinogen levels, and systemic markers of inflammation in mice that were plasminogen deficient and in plasminogen-deficient mice that were concomitantly either fibrinogen deficient or carrying a mutant form of fibrinogen lacking the αM β2 binding motif. Mice generated with a genetic deficit in the key fibrinolytic protease, plasmin, uniformly developed severe osteoporosis. Furthermore, the development of osteoporosis was fibrin(ogen) dependent, and the derangements in the bone remodeling unit were mechanistically tied to fibrin(ogen)-mediated activation of osteoclasts via activation of the leukocyte integrin receptor αM β2 on monocytes and secondary stimulation of osteoblasts by RANKL. Notably, the genetic elimination of fibrin(ogen) or the expression of a mutant form of fibrinogen retaining clotting function but lacking the αM β2 binding motif prevented the degenerative skeletal phenotypes, resulting in normal local and systemic cytokine levels. Taken together, these data reveal for the first time that fibrin promotes inflammation-driven systemic osteoporosis, which suggests a novel association between hemostasis, inflammation, and bone biology. Copyright © 2014 by the American College of Rheumatology.

  14. Scaffold proteins LACK and TRACK as potential drug targets in kinetoplastid parasites: Development of inhibitors

    Directory of Open Access Journals (Sweden)

    Nir Qvit

    2016-04-01

    Full Text Available Parasitic diseases cause ∼500,000 deaths annually and remain a major challenge for therapeutic development. Using a rational design based approach, we developed peptide inhibitors with anti-parasitic activity that were derived from the sequences of parasite scaffold proteins LACK (Leishmania's receptor for activated C-kinase and TRACK (Trypanosoma receptor for activated C-kinase. We hypothesized that sequences in LACK and TRACK that are conserved in the parasites, but not in the mammalian ortholog, RACK (Receptor for activated C-kinase, may be interaction sites for signaling proteins that are critical for the parasites' viability. One of these peptides exhibited leishmanicidal and trypanocidal activity in culture. Moreover, in infected mice, this peptide was also effective in reducing parasitemia and increasing survival without toxic effects. The identified peptide is a promising new anti-parasitic drug lead, as its unique features may limit toxicity and drug-resistance, thus overcoming central limitations of most anti-parasitic drugs. Keywords: Chagas disease, Leishmaniasis, Peptide, LACK, TRACK, Scaffold protein

  15. Identifying tier one key suppliers.

    Science.gov (United States)

    Wicks, Steve

    2013-01-01

    In today's global marketplace, businesses are becoming increasingly reliant on suppliers for the provision of key processes, activities, products and services in support of their strategic business goals. The result is that now, more than ever, the failure of a key supplier has potential to damage reputation, productivity, compliance and financial performance seriously. Yet despite this, there is no recognised standard or guidance for identifying a tier one key supplier base and, up to now, there has been little or no research on how to do so effectively. This paper outlines the key findings of a BCI-sponsored research project to investigate good practice in identifying tier one key suppliers, and suggests a scalable framework process model and risk matrix tool to help businesses effectively identify their tier one key supplier base.

  16. Mice genetically depleted of brain serotonin display social impairments, communication deficits and repetitive behaviors: possible relevance to autism.

    Directory of Open Access Journals (Sweden)

    Michael J Kane

    Full Text Available Autism is a complex neurodevelopmental disorder characterized by impaired reciprocal social interaction, communication deficits and repetitive behaviors. A very large number of genes have been linked to autism, many of which encode proteins involved in the development and function of synaptic circuitry. However, the manner in which these mutated genes might participate, either individually or together, to cause autism is not understood. One factor known to exert extremely broad influence on brain development and network formation, and which has been linked to autism, is the neurotransmitter serotonin. Unfortunately, very little is known about how alterations in serotonin neuronal function might contribute to autism. To test the hypothesis that serotonin dysfunction can contribute to the core symptoms of autism, we analyzed mice lacking brain serotonin (via a null mutation in the gene for tryptophan hydroxylase 2 (TPH2 for behaviors that are relevant to this disorder. Mice lacking brain serotonin (TPH2-/- showed substantial deficits in numerous validated tests of social interaction and communication. These mice also display highly repetitive and compulsive behaviors. Newborn TPH2-/- mutant mice show delays in the expression of key developmental milestones and their diminished preference for maternal scents over the scent of an unrelated female is a forerunner of more severe socialization deficits that emerge in weanlings and persist into adulthood. Taken together, these results indicate that a hypo-serotonin condition can lead to behavioral traits that are highly characteristic of autism. Our findings should stimulate new studies that focus on determining how brain hyposerotonemia during critical neurodevelopmental periods can alter the maturation of synaptic circuits known to be mis-wired in autism and how prevention of such deficits might prevent this disorder.

  17. Security for Key Management Interfaces

    OpenAIRE

    Kremer , Steve; Steel , Graham; Warinschi , Bogdan

    2011-01-01

    International audience; We propose a much-needed formal definition of security for cryptographic key management APIs. The advantages of our definition are that it is general, intuitive, and applicable to security proofs in both symbolic and computational models of cryptography. Our definition relies on an idealized API which allows only the most essential functions for generating, exporting and importing keys, and takes into account dynamic corruption of keys. Based on this we can define the ...

  18. Mechanical Forces Exacerbate Periodontal Defects in Bsp-null Mice

    Science.gov (United States)

    Soenjaya, Y.; Foster, B.L.; Nociti, F.H.; Ao, M.; Holdsworth, D.W.; Hunter, G.K.; Somerman, M.J.

    2015-01-01

    Bone sialoprotein (BSP) is an acidic phosphoprotein with collagen-binding, cell attachment, and hydroxyapatite-nucleating properties. BSP expression in mineralized tissues is upregulated at onset of mineralization. Bsp-null (Bsp-/-) mice exhibit reductions in bone mineral density, bone turnover, osteoclast activation, and impaired bone healing. Furthermore, Bsp-/- mice have marked periodontal tissue breakdown, with a lack of acellular cementum leading to periodontal ligament detachment, extensive alveolar bone and tooth root resorption, and incisor malocclusion. We hypothesized that altered mechanical stress from mastication contributes to periodontal destruction observed in Bsp-/- mice. This hypothesis was tested by comparing Bsp-/- and wild-type mice fed with standard hard pellet diet or soft powder diet. Dentoalveolar tissues were analyzed using histology and micro–computed tomography. By 8 wk of age, Bsp-/- mice exhibited molar and incisor malocclusion regardless of diet. Bsp-/- mice with hard pellet diet exhibited high incidence (30%) of severe incisor malocclusion, 10% lower body weight, 3% reduced femur length, and 30% elevated serum alkaline phosphatase activity compared to wild type. Soft powder diet reduced severe incisor malocclusion incidence to 3% in Bsp-/- mice, supporting the hypothesis that occlusal loading contributed to the malocclusion phenotype. Furthermore, Bsp-/- mice in the soft powder diet group featured normal body weight, long bone length, and serum alkaline phosphatase activity, suggesting that tooth dysfunction and malnutrition contribute to growth and skeletal defects reported in Bsp-/- mice. Bsp-/- incisors also erupt at a slower rate, which likely leads to the observed thickened dentin and enhanced mineralization of dentin and enamel toward the apical end. We propose that the decrease in eruption rate is due to a lack of acellular cementum and associated defective periodontal attachment. These data demonstrate the importance of BSP

  19. Pancreatic injury in hepatic alcohol dehydrogenase-deficient deer mice after subchronic exposure to ethanol

    International Nuclear Information System (INIS)

    Kaphalia, Bhupendra S.; Bhopale, Kamlesh K.; Kondraganti, Shakuntala; Wu Hai; Boor, Paul J.; Ansari, G.A. Shakeel

    2010-01-01

    Pancreatitis caused by activation of digestive zymogens in the exocrine pancreas is a serious chronic health problem in alcoholic patients. However, mechanism of alcoholic pancreatitis remains obscure due to lack of a suitable animal model. Earlier, we reported pancreatic injury and substantial increases in endogenous formation of fatty acid ethyl esters (FAEEs) in the pancreas of hepatic alcohol dehydrogenase (ADH)-deficient (ADH - ) deer mice fed 4% ethanol. To understand the mechanism of alcoholic pancreatitis, we evaluated dose-dependent metabolism of ethanol and related pancreatic injury in ADH - and hepatic ADH-normal (ADH + ) deer mice fed 1%, 2% or 3.5% ethanol via Lieber-DeCarli liquid diet daily for 2 months. Blood alcohol concentration (BAC) was remarkably increased and the concentration was ∼ 1.5-fold greater in ADH - vs. ADH + deer mice fed 3.5% ethanol. At the end of the experiment, remarkable increases in pancreatic FAEEs and significant pancreatic injury indicated by the presence of prominent perinuclear space, pyknotic nuclei, apoptotic bodies and dilation of glandular ER were found only in ADH - deer mice fed 3.5% ethanol. This pancreatic injury was further supported by increased plasma lipase and pancreatic cathepsin B (a lysosomal hydrolase capable of activating trypsinogen), trypsinogen activation peptide (by-product of trypsinogen activation process) and glucose-regulated protein 78 (endoplasmic reticulum stress marker). These findings suggest that ADH-deficiency and high alcohol levels in the body are the key factors in ethanol-induced pancreatic injury. Therefore, determining how this early stage of pancreatic injury advances to inflammation stage could be important for understanding the mechanism(s) of alcoholic pancreatitis.

  20. Of mice and men

    CERN Multimedia

    1973-01-01

    At the end of March , sixty mice were irradiated at the synchro-cyclotron in the course of an experimental programme studying radiation effects on mice and plants (Vicia faba bean roots) being carried out by the CERN Health Physics Group.

  1. Lack of consent for mediation between companies and its reasons

    OpenAIRE

    Karpińska-Królikowska, Iwona

    2011-01-01

    This article discusses commercial mediation, presenting its principles and procedure. It shows the reason why I became interested in the topic of companies’ lack of willingness to solve problems through mediation. It presents empirical statistics from mediation in commercial cases, including those on lack of consents or settlements. The figures are shown against the background of court statistics. On the basis of research conducted in the form of case studies, it presents...

  2. Mixed Methods Research: What Are the Key Issues to Consider?

    Science.gov (United States)

    Ghosh, Rajashi

    2016-01-01

    Mixed methods research (MMR) is increasingly becoming a popular methodological approach in several fields due to the promise it holds for comprehensive understanding of complex problems being researched. However, researchers interested in MMR often lack reference to a guide that can explain the key issues pertaining to the paradigm wars…

  3. Model plant Key Measurement Points

    International Nuclear Information System (INIS)

    Schneider, R.A.

    1984-01-01

    For IAEA safeguards a Key Measurement Point is defined as the location where nuclear material appears in such a form that it may be measured to determine material flow or inventory. This presentation describes in an introductory manner the key measurement points and associated measurements for the model plant used in this training course

  4. Breaking chaotic shift key communication via adaptive key identification

    International Nuclear Information System (INIS)

    Ren Haipeng; Han Chongzhao; Liu Ding

    2008-01-01

    This paper proposes an adaptive parameter identification method for breaking chaotic shift key communication from the transmitted signal in public channel. The sensitive dependence property of chaos on parameter mismatch is used for chaos adaptive synchronization and parameter identification. An index function about the synchronization error is defined and conjugate gradient method is used to minimize the index function and to search the transmitter's parameter (key). By using proposed method, secure key is recovered from transmitted signal generated by low dimensional chaos and hyper chaos switching communication. Multi-parameters can also be identified from the transmitted signal with noise

  5. The MICE Online Systems

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The Muon Ionization Cooling Experiment (MICE) is designed to test transverse cooling of a muon beam, demonstrating an important step along the path toward creating future high intensity muon beam facilities. Protons in the ISIS synchrotron impact a titanium target, producing pions which decay into muons that propagate through the beam line to the MICE cooling channel. Along the beam line, particle identification (PID) detectors, scintillating fiber tracking detectors, and beam diagnostic tools identify and measure individual muons moving through the cooling channel. The MICE Online Systems encompass all tools; including hardware, software, and documentation, within the MLCR (MICE Local Control Room) that allow the experiment to efficiently record high quality data. Controls and Monitoring (C&M), Data Acquisition (DAQ), Online Monitoring and Reconstruction, Data Transfer, and Networking all fall under the Online Systems umbrella. C&M controls all MICE systems including the target, conventional an...

  6. No dramatic age-related loss of hair cells and spiral ganglion neurons in Bcl-2 over-expression mice or Bax null mice

    Directory of Open Access Journals (Sweden)

    Ohlemiller Kevin K

    2010-07-01

    Full Text Available Abstract Age-related decline of neuronal function is associated with age-related structural changes. In the central nervous system, age-related decline of cognitive performance is thought to be caused by synaptic loss instead of neuronal loss. However, in the cochlea, age-related loss of hair cells and spiral ganglion neurons (SGNs is consistently observed in a variety of species, including humans. Since age-related loss of these cells is a major contributing factor to presbycusis, it is important to study possible molecular mechanisms underlying this age-related cell death. Previous studies suggested that apoptotic pathways were involved in age-related loss of hair cells and SGNs. In the present study, we examined the role of Bcl-2 gene in age-related hearing loss. In one transgenic mouse line over-expressing human Bcl-2, there were no significant differences between transgenic mice and wild type littermate controls in their hearing thresholds during aging. Histological analysis of the hair cells and SGNs showed no significant conservation of these cells in transgenic animals compared to the wild type controls during aging. These data suggest that Bcl-2 overexpression has no significant effect on age-related loss of hair cells and SGNs. We also found no delay of age-related hearing loss in mice lacking Bax gene. These findings suggest that age-related hearing loss is not through an apoptotic pathway involving key members of Bcl-2 family.

  7. A Distributed Shared Key Generation Procedure Using Fractional Keys

    National Research Council Canada - National Science Library

    Poovendran, Radha; Corson, M. S; Baras, J. S

    1998-01-01

    We present a new class of distributed key generation and recovery algorithms suitable for group communication systems where the group membership is either static or slowly time-varying, and must be tightly controlled...

  8. Differential gene expression in the murine gastric fundus lacking interstitial cells of Cajal

    Directory of Open Access Journals (Sweden)

    Ward Sean M

    2003-06-01

    Full Text Available Abstract Background The muscle layers of murine gastric fundus have no interstitial cells of Cajal at the level of the myenteric plexus and only possess intramuscular interstitial cells and this tissue does not generate electric slow waves. The absence of intramuscular interstitial cells in W/WV mutants provides a unique opportunity to study the molecular changes that are associated with the loss of these intercalating cells. Method The gene expression profile of the gastric fundus of wild type and W/WV mice was assayed by murine microarray analysis displaying a total of 8734 elements. Queried genes from the microarray analysis were confirmed by semi-quantitative reverse transcription-polymerase chain reaction. Results Twenty-one genes were differentially expressed in wild type and W/WV mice. Eleven transcripts had 2.0–2.5 fold higher mRNA expression in W/WV gastric fundus when compared to wild type tissues. Ten transcripts had 2.1–3.9 fold lower expression in W/WV mutants in comparison with wild type animals. None of these genes have ever been implicated in any bowel motility function. Conclusions These data provides evidence that several important genes have significantly changed in the murine fundus of W/WV mutants that lack intramuscular interstitial cells of Cajal and have reduced enteric motor neurotransmission.

  9. Lack of collagen VI promotes neurodegeneration by impairing autophagy and inducing apoptosis during aging.

    Science.gov (United States)

    Cescon, Matilde; Chen, Peiwen; Castagnaro, Silvia; Gregorio, Ilaria; Bonaldo, Paolo

    2016-05-01

    Collagen VI is an extracellular matrix (ECM) protein with a broad distribution in different tissues and mostly deposited at the close periphery of the cell surface. Previous studies revealed that collagen VI protects neurons from the toxicity of amyloid-βpeptides and from UV-induced damage. However, the physiological role of this protein in the central nervous system (CNS) remains unknown. Here, we established primary neural cultures from murine cortex and hippocampus, and carried out in vitro and in vivo studies in wild-type and collagen VI null (Col6a1-/-) mice. Col6a1-/- neural cultures displayed an increased incidence of spontaneous apoptosis and higher vulnerability to oxidative stress, accompanied by altered regulation of autophagy with increased p62 protein levels and decreased LC3 lipidation. Analysis of brain sections confirmed increased apoptosis and abnormal regulation of autophagy in the CNS of collagen VI-deficient animals. To investigate the in vivo physiological consequences of these CNS defects, we carried out functional studies and found that motor and memory task performances were impaired in aged Col6a1-/-mice. These findings indicate that lack of collagen VI leads to spontaneous apoptosis and defective autophagy in neural cells, and point at a protective role for this ECM protein in the CNS during physiological aging.

  10. Key parameters controlling radiology departments

    International Nuclear Information System (INIS)

    Busch, Hans-Peter

    2011-01-01

    For radiology departments and outstanding practises control and optimization of processes demand an efficient management based on key data. Systems of key data deliver indicators for control of medical quality, service quality and economics. For practices effectiveness (productivity), for hospitals effectiveness and efficiency are in the focus of economical optimization strategies. Task of daily key data is continuous monitoring of activities and workflow, task of weekly/monthly key data is control of data quality, process quality and achievement of objectives, task of yearly key data is determination of long term strategies (marketing) and comparison with competitors (benchmarking). Key parameters have to be defined clearly and have to be available directly. For generation, evaluation and control of key parameters suitable forms of organization and processes are necessary. Strategies for the future will be directed more to the total processes of treatment. To think in total processes and to steer and optimize with suitable parameters is the challenge for participants in the healthcare market of the future. (orig.)

  11. GH and IGF1: roles in energy metabolism of long-living GH mutant mice.

    Science.gov (United States)

    Brown-Borg, Holly M; Bartke, Andrzej

    2012-06-01

    Of the multiple theories to explain exceptional longevity, the most robust of these has centered on the reduction of three anabolic protein hormones, growth hormone (GH), insulin-like growth factor, and insulin. GH mutant mice live 50% longer and exhibit significant differences in several aspects of energy metabolism as compared with wild-type mice. Mitochondrial metabolism is upregulated in the absence of GH, whereas in GH transgenic mice and dwarf mice treated with GH, multiple aspects of these pathways are suppressed. Core body temperature is markedly lower in dwarf mice, yet whole-body metabolism, as measured by indirect calorimetry, is surprisingly higher in Ames dwarf and Ghr-/- mice compared with normal controls. Elevated adiponectin, a key antiinflammatory cytokine, is also very likely to contribute to longevity in these mice. Thus, several important components related to energy metabolism are altered in GH mutant mice, and these differences are likely critical in aging processes and life-span extension.

  12. Lack of CRH Affects the Behavior but Does Not Affect the Formation of Short-Term Memory.

    Science.gov (United States)

    Varejkova, Eva; Plananska, Eva; Myslivecek, Jaromir

    2018-01-01

    Corticotropin-releasing hormone (CRH) is involved in modification of synaptic transmission and affects spatial discrimination learning, i.e., affects the formation of memory in long-term aspect. Therefore, we have focused on CRH effect on short-term memory. We have used stress task avoidance (maze containing three zones: entrance, aversive, and neutral) and compared the behavior and short-term memory in wild-type mice and mice lacking CRH (CRH KO) experiencing one 120-min session of restraint stress. As control, non-stressed animals were used. As expected, the animals that experienced the stress situation tend to spend less time in the zone in which the restraint chamber was present. The animals spent more time in the neutral zone. There were significant differences in number of freezing bouts in the aversive and entrance zones in CRH KO animals. CRH KO control animals entered the neutral zone much more faster than WT control and spent more time immobile in the neutral zone than WT control. These data give evidence that lacking of CRH itself improves the ability of mice to escape away from potentially dangerous area (i.e., those in which the scent of stressed animal is present).

  13. BP180 dysfunction triggers spontaneous skin inflammation in mice.

    Science.gov (United States)

    Zhang, Yang; Hwang, Bin-Jin; Liu, Zhen; Li, Ning; Lough, Kendall; Williams, Scott E; Chen, Jinbo; Burette, Susan W; Diaz, Luis A; Su, Maureen A; Xiao, Shengxiang; Liu, Zhi

    2018-06-04

    BP180, also known as collagen XVII, is a hemidesmosomal component and plays a key role in maintaining skin dermal/epidermal adhesion. Dysfunction of BP180, either through genetic mutations in junctional epidermolysis bullosa (JEB) or autoantibody insult in bullous pemphigoid (BP), leads to subepidermal blistering accompanied by skin inflammation. However, whether BP180 is involved in skin inflammation remains unknown. To address this question, we generated a BP180-dysfunctional mouse strain and found that mice lacking functional BP180 (termed Δ NC16A ) developed spontaneous skin inflammatory disease, characterized by severe itch, defective skin barrier, infiltrating immune cells, elevated serum IgE levels, and increased expression of thymic stromal lymphopoietin (TSLP). Severe itch is independent of adaptive immunity and histamine, but dependent on increased expression of TSLP by keratinocytes. In addition, a high TSLP expression is detected in BP patients. Our data provide direct evidence showing that BP180 regulates skin inflammation independently of adaptive immunity, and BP180 dysfunction leads to a TSLP-mediated itch. The newly developed mouse strain could be a model for elucidation of disease mechanisms and development of novel therapeutic strategies for skin inflammation and BP180-related skin conditions.

  14. Key economic sectors and services

    NARCIS (Netherlands)

    Arent, Douglas J.; Tol, Richard S.J.; Faust, Eberhard; Hella, Joseph P.; Kumar, Surender; Strzepek, Kenneth M.; Tóth, Ferenc L.; Yan, Denghua; Abdulla, Amjad; Kheshgi, Haroon; Xu, He; Ngeh, Julius

    2015-01-01

    Introduction and Context This chapter discusses the implications of climate change on key economic sectors and services, for example, economic activity. Other chapters discuss impacts from a physical, chemical, biological, or social perspective. Economic impacts cannot be isolated; therefore, there

  15. Algorithms for Lightweight Key Exchange.

    Science.gov (United States)

    Alvarez, Rafael; Caballero-Gil, Cándido; Santonja, Juan; Zamora, Antonio

    2017-06-27

    Public-key cryptography is too slow for general purpose encryption, with most applications limiting its use as much as possible. Some secure protocols, especially those that enable forward secrecy, make a much heavier use of public-key cryptography, increasing the demand for lightweight cryptosystems that can be implemented in low powered or mobile devices. This performance requirements are even more significant in critical infrastructure and emergency scenarios where peer-to-peer networks are deployed for increased availability and resiliency. We benchmark several public-key key-exchange algorithms, determining those that are better for the requirements of critical infrastructure and emergency applications and propose a security framework based on these algorithms and study its application to decentralized node or sensor networks.

  16. Key Injury and Violence Data

    Science.gov (United States)

    ... Traumatic Brain Injury Violence Prevention Key Injury and Violence Data Recommend on Facebook Tweet Share Compartir Injuries ... of death among persons 1-44. Injury- and violence-related deaths are only part of the problem ...

  17. Pax4 acts as a key player in pancreas development and plasticity.

    Science.gov (United States)

    Napolitano, Tiziana; Avolio, Fabio; Courtney, Monica; Vieira, Andhira; Druelle, Noémie; Ben-Othman, Nouha; Hadzic, Biljana; Navarro, Sergi; Collombat, Patrick

    2015-08-01

    The embryonic development of the pancreas is orchestrated by a complex and coordinated transcription factor network. Neurogenin3 (Neurog3) initiates the endocrine program by activating the expression of additional transcription factors driving survival, proliferation, maturation and lineage allocation of endocrine precursors. Among the direct targets of Neurog3, Pax4 appears as one of the key regulators of β-cell specification. Indeed, mice lacking Pax4 die a few days postpartum, as they develop severe hyperglycemia due to the absence of mature pancreatic β-cells. Pax4 also directly regulates the expression of Arx, a gene that plays a crucial role in α-cell specification. Comparative analysis of Pax4 and Arx mutants, as well as Arx/Pax4 double mutants, showed that islet subtype destiny is mainly directed by cross-repression of the Pax4 and Arx factors. Importantly, the ectopic expression of Pax4 in α-cells was found sufficient to induce their neogenesis and conversion into β-like cells, not only during development but also in adult rodents. Therefore, differentiated endocrine α-cells can be considered as a putative source for insulin-producing β-like cells. These findings have clearly widened our understanding regarding pancreatic development, but they also open new research avenues in the context of diabetes research. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Lack of dust in quasar absorption line systems

    International Nuclear Information System (INIS)

    Jura, M.

    1977-01-01

    It is stated that the origin of absorption line systems in quasars is still uncertain. Most such systems apparently have atomic hydrogen column densities of the order of 10 19 /cm 2 , but at least two quasars, 1331 + 170 and PHL957, have such strong Lyman α absorption lines that atomic hydrogen column densities of the order of 10 21 /cm 2 are indicated. It should be possible to observe the dust produced 2,200 A extinction feature as it is red shifted into the visible, and to determine whether absorption line systems are produced in spiral galaxies where the dust content is similar to that in the interstellar medium. It has been argued that the emission line regions of quasars generally lack dust and that towards PHL957 the 2,200 A feature is absent. The present author argues that dust similar to that found in the interstellar medium is not found towards the quasars 1331 + 170 and PHL957. This could explain why H 2 is not found towards PHL957, and it indicates that the absorption line systems in quasars are not produced in spiral galaxies similar to our own. It seems from the analysis presented that the dust-to-gas ratio towards 1331 + 170 is at least a factor of 20 less than in the interstellar medium, and there is no reason to suppose that this lack of dust results from a lack of metals It is concluded that there seems to be a lack of normal dust towards PHL957 by at least a factor of two; and that the absorption region towards 1331 + 170 and probably the region towards PHL957 are lacking dust similar to that in our own galaxy. This can explain the lack of H 2 in these systems. (U.K.)

  19. Growth-hormone-induced signal transducer and activator of transcription 5 signaling causes gigantism, inflammation, and premature death but protects mice from aggressive liver cancer.

    Science.gov (United States)

    Friedbichler, Katrin; Themanns, Madeleine; Mueller, Kristina M; Schlederer, Michaela; Kornfeld, Jan-Wilhelm; Terracciano, Luigi M; Kozlov, Andrey V; Haindl, Susanne; Kenner, Lukas; Kolbe, Thomas; Mueller, Mathias; Snibson, Kenneth J; Heim, Markus H; Moriggl, Richard

    2012-03-01

    Persistently high levels of growth hormone (GH) can cause liver cancer. GH activates multiple signal-transduction pathways, among them janus kinase (JAK) 2-signal transducer and activator of transcription (STAT) 5 (signal transducer and activator of transcription 5). Both hyperactivation and deletion of STAT5 in hepatocytes have been implicated in the development of hepatocellular carcinoma (HCC); nevertheless, the role of STAT5 in the development of HCC as a result of high GH levels remains enigmatic. Thus, we crossed a mouse model of gigantism and inflammatory liver cancer caused by hyperactivated GH signaling (GH(tg) ) to mice with hepatic deletion of STAT5 (STAT5(Δhep) ). Unlike GH(tg) mice, GH(tg) STAT5(Δhep) animals did not display gigantism. Moreover, the premature mortality, which was associated with chronic inflammation, as well as the pathologic alterations of hepatocytes observed in GH(tg) mice, were not observed in GH(tg) animals lacking STAT5. Strikingly, loss of hepatic STAT5 proteins led to enhanced HCC development in GH(tg) mice. Despite reduced chronic inflammation, GH(tg) STAT5(Δhep) mice displayed earlier and more advanced HCC than GH(tg) animals. This may be attributed to the combination of increased peripheral lipolysis, hepatic lipid synthesis, loss of hepatoprotective mediators accompanied by aberrant activation of tumor-promoting c-JUN and STAT3 signaling cascades, and accumulation of DNA damage secondary to loss of cell-cycle control. Thus, HCC was never observed in STAT5(Δhep) mice. As a result of their hepatoprotective functions, STAT5 proteins prevent progressive fatty liver disease and the formation of aggressive HCC in the setting of hyperactivated GH signaling. At the same time, they play a key role in controlling systemic inflammation and regulating organ and body size. Copyright © 2011 American Association for the Study of Liver Diseases.

  20. Effect of lack of later support in the masseter muscle

    International Nuclear Information System (INIS)

    Fernandez Lopez, Otton

    2007-01-01

    One of the main complaints during dental consultation has been pain in the zone of the masseter muscle, especially a lack of rear support. None research has published that reveals what has been the relationship between the rear support and histological alterations in muscle mass. Both topics have treated to relate through a process of tooth wear in laboratory animals and produce a lack of rear support. Cuts of the masseter muscles and specimens were subjected to microscopic study of light and electronic. The conclusion has been that by removing the rear support are produced important changes to histological level. (author) [es

  1. [Lack of neonatologists: vocational crisis or mistaken policies?].

    Science.gov (United States)

    Justich, Pablo R

    2012-10-01

    In Argentina, the difficulty in covering neonatologist's positions represent an increasing problem. The absence of a coordinated and organized health system on one hand, and the lack of adaptation of the neonatologist's role to the current situation of the maternal and child care on the other, prevent the correct assistential coverage. The inadequate work conditions, the professional risks, the wide amount of time devoted to formation and studying, and the lack of knowledge of the professionals necessities and difficulties have a negative impact when it comes to incorporate new specialists. A global approach of the problem is essential to reach enduring answers.

  2. Desacyl Ghrelin Decreases Anxiety-like Behavior in Male Mice.

    Science.gov (United States)

    Mahbod, Parinaz; Smith, Eric P; Fitzgerald, Maureen E; Morano, Rachel L; Packard, Benjamin A; Ghosal, Sriparna; Scheimann, Jessie R; Perez-Tilve, Diego; Herman, James P; Tong, Jenny

    2018-01-01

    Ghrelin is a 28-amino acid polypeptide that regulates feeding, glucose metabolism, and emotionality (stress, anxiety, and depression). Plasma ghrelin circulates as desacyl ghrelin (DAG) or, in an acylated form, acyl ghrelin (AG), through the actions of ghrelin O-acyltransferase (GOAT), exhibiting low or high affinity, respectively, for the growth hormone secretagogue receptor (GHSR) 1a. We investigated the role of endogenous AG, DAG, and GHSR1a signaling on anxiety and stress responses using ghrelin knockout (Ghr KO), GOAT KO, and Ghsr stop-floxed (Ghsr null) mice. Behavioral and hormonal responses were tested in the elevated plus maze and light/dark (LD) box. Mice lacking both AG and DAG (Ghr KO) increased anxiety-like behaviors across tests, whereas anxiety reactions were attenuated in DAG-treated Ghr KO mice and in mice lacking AG (GOAT KO). Notably, loss of GHSR1a (Ghsr null) did not affect anxiety-like behavior in any test. Administration of AG and DAG to Ghr KO mice with lifelong ghrelin deficiency reduced anxiety-like behavior and decreased phospho-extracellular signal-regulated kinase phosphorylation in the Edinger-Westphal nucleus in wild-type mice, a site normally expressing GHSR1a and involved in stress- and anxiety-related behavior. Collectively, our data demonstrate distinct roles for endogenous AG and DAG in regulation of anxiety responses and suggest that the behavioral impact of ghrelin may be context dependent. Copyright © 2018 Endocrine Society.

  3. Two-year body composition analyses of long-lived GHR null mice.

    Science.gov (United States)

    Berryman, Darlene E; List, Edward O; Palmer, Amanda J; Chung, Min-Yu; Wright-Piekarski, Jacob; Lubbers, Ellen; O'Connor, Patrick; Okada, Shigeru; Kopchick, John J

    2010-01-01

    Growth hormone receptor gene-disrupted (GHR-/-) mice exhibit increased life span and adipose tissue mass. Although this obese phenotype has been reported extensively for young adult male GHR-/- mice, data for females and for other ages in either gender are lacking. Thus, the purpose of this study was to evaluate body composition longitudinally in both male and female GHR-/- mice. Results show that GHR-/- mice have a greater percent fat mass with no significant difference in absolute fat mass throughout life. Lean mass shows an opposite trend with percent lean mass not significantly different between genotypes but absolute mass reduced in GHR-/- mice. Differences in body composition are more pronounced in male than in female mice, and both genders of GHR-/- mice show specific enlargement of the subcutaneous adipose depot. Along with previously published data, these results suggest a consistent and intriguing protective effect of excess fat mass in the subcutaneous region.

  4. Secret key rates in quantum key distribution using Renyi entropies

    Energy Technology Data Exchange (ETDEWEB)

    Abruzzo, Silvestre; Kampermann, Hermann; Mertz, Markus; Bratzik, Sylvia; Bruss, Dagmar [Institut fuer Theoretische Physik III, Heinrich-Heine-Universitaet Duesseldorf (Germany)

    2010-07-01

    The secret key rate r of a quantum key distribution protocol depends on the involved number of signals and the accepted ''failure probability''. We reconsider a method to calculate r focusing on the analysis of the privacy amplification given by R. Renner and R. Koenig (2005). This approach involves an optimization problem with an objective function depending on the Renyi entropy of the density operator describing the classical outcomes and the eavesdropper system. This problem is analyzed for a generic class of QKD protocols and the current research status is presented.

  5. Three state quantum key distribution for small keys

    International Nuclear Information System (INIS)

    Batuwantudawe, J.; Boileau, J.-C.

    2005-01-01

    Full text: Quantum key distribution (QKD) protocols allow two parties, Alice and Bob, to establish secure keys. The most well-known protocol is BB84, using four distinct states. Recently, Phoenix et al. proposed a three state protocol. We explain the protocol and discuss its security proof. The three state protocol also has an interesting structure that allows for errors estimation from the inconclusive results (i.e.. where Alice and Bob choose different bases). This eliminates the need for sampling, potentially useful when qubits are limited. We discuss the effectiveness of this approach compared to BB84 for the case where a good error estimate is required. (author)

  6. Children's Lack of Playtime Seen as Troubling Health, School Issue

    Science.gov (United States)

    Jacobson, Linda

    2008-01-01

    Teachers and parents are frequently warned that students in the United States are lacking the academic skills they need for the 21st century. But a growing contingent of educators, psychologists, and other professionals are voicing worries that today's children are also growing up without the chance to play. Test preparation in kindergarten,…

  7. Lack of competition in Italian natural gas market

    International Nuclear Information System (INIS)

    Bozzetto, Fabrizio

    2007-01-01

    This article analyses the reasons for an evident lack of competition in the Italian natural gas market, after the 2003 full liberalisation of the market. In particular, analysis focuses on dynamics which probably marks mass market and small office segments [it

  8. Siim Nestor soovitab : lack of Eoins / Siim Nestor

    Index Scriptorium Estoniae

    Nestor, Siim, 1974-

    2008-01-01

    Väikefirma Seksound annab sel nädalavahetusel välja Viljandi indiebändi Lack of Eoins esikplaadi "Echo Group" (plaadiesitlused 11. dets. Tallinnas Von Krahlis ja 12. dets. Tartus Genialistide klubis, esinevad ka Ans. Andur ja Popidiot, plaate keerutavad Hannes Praks ja Taavi Laatsit)

  9. Lack of a safety culture destroyed the reactor

    International Nuclear Information System (INIS)

    Vuori, A.

    1996-01-01

    The importance of good safety culture in the operation of nuclear power plants is discussed. The modern safety culture emphasizes responsibility and preventive maintenance that can eliminate or minimize faults in advance. In the article the accident of Chernobyl is used as an example of the lack of safety culture. (1 fig.)

  10. Special Relativity in Week One: 4) Lack of Simultaneity

    Science.gov (United States)

    Huggins, Elisha

    2011-01-01

    This is our final article on teaching special relativity in the first week of an introductory physics course. One of the profound changes in our view of the world was Einstein's discovery of the lack of simultaneity. He illustrated this result with a thought experiment in which we observe a railroad car passing by us. We see the two ends of the…

  11. Lack of pre-antiretroviral care and competition from traditional ...

    African Journals Online (AJOL)

    Lack of family support tripled the risk of initiating ART very late (AOR 3.3, 95% CI: 1.6-6.6). Conclusion: Policy makers should prevent ARV stock-outs though effective ARV procurement and supply chain management. New HIV clients should seek pre-ARV care for routine monitoring and determination of ART eligibility.

  12. Changes in resting-state functional connectivity after stroke in a mouse brain lacking extracellular matrix components.

    Science.gov (United States)

    Quattromani, Miriana Jlenia; Hakon, Jakob; Rauch, Uwe; Bauer, Adam Q; Wieloch, Tadeusz

    2018-04-01

    In the brain, focal ischemia results in a local region of cell death and disruption of both local and remote functional neuronal networks. Tissue reorganization following stroke can be limited by factors such as extracellular matrix (ECM) molecules that prevent neuronal growth and synaptic plasticity. The brain's ECM plays a crucial role in network formation, development, and regeneration of the central nervous system. Further, the ECM is essential for proper white matter tract development and for the formation of structures called perineuronal nets (PNNs). PNNs mainly surround parvalbumin/GABA inhibitory interneurons, of importance for processing sensory information. Previous studies have shown that downregulating PNNs after stroke reduces the neurite-inhibitory environment, reactivates plasticity, and promotes functional recovery. Resting-state functional connectivity (RS-FC) within and across hemispheres has been shown to correlate with behavioral recovery after stroke. However, the relationship between PNNs and RS-FC has not been examined. Here we studied a quadruple knock-out mouse (Q4) that lacks four ECM components: brevican, neurocan, tenascin-C and tenascin-R. We applied functional connectivity optical intrinsic signal (fcOIS) imaging in Q4 mice and wild-type (129S1 mice) before and 14 days after photothrombotic stroke (PT) to understand how the lack of crucial ECM components affects neuronal networks and functional recovery after stroke. Limb-placement ability was evaluated at 2, 7 and 14 days of recovery through the paw-placement test. Q4 mice exhibited significantly impaired homotopic RS-FC compared to wild-type mice, especially in the sensory and parietal regions. Changes in RS-FC were significantly correlated with the number of interhemispheric callosal crossings in those same regions. PT caused unilateral damage to the sensorimotor cortex and deficits of tactile-proprioceptive placing ability in contralesional fore- and hindlimbs, but the two

  13. Decoy State Quantum Key Distribution

    Science.gov (United States)

    Lo, Hoi-Kwong

    2005-10-01

    Quantum key distribution (QKD) allows two parties to communicate in absolute security based on the fundamental laws of physics. Up till now, it is widely believed that unconditionally secure QKD based on standard Bennett-Brassard (BB84) protocol is limited in both key generation rate and distance because of imperfect devices. Here, we solve these two problems directly by presenting new protocols that are feasible with only current technology. Surprisingly, our new protocols can make fiber-based QKD unconditionally secure at distances over 100km (for some experiments, such as GYS) and increase the key generation rate from O(η2) in prior art to O(η) where η is the overall transmittance. Our method is to develop the decoy state idea (first proposed by W.-Y. Hwang in "Quantum Key Distribution with High Loss: Toward Global Secure Communication", Phys. Rev. Lett. 91, 057901 (2003)) and consider simple extensions of the BB84 protocol. This part of work is published in "Decoy State Quantum Key Distribution", . We present a general theory of the decoy state protocol and propose a decoy method based on only one signal state and two decoy states. We perform optimization on the choice of intensities of the signal state and the two decoy states. Our result shows that a decoy state protocol with only two types of decoy states--a vacuum and a weak decoy state--asymptotically approaches the theoretical limit of the most general type of decoy state protocols (with an infinite number of decoy states). We also present a one-decoy-state protocol as a special case of Vacuum+Weak decoy method. Moreover, we provide estimations on the effects of statistical fluctuations and suggest that, even for long distance (larger than 100km) QKD, our two-decoy-state protocol can be implemented with only a few hours of experimental data. In conclusion, decoy state quantum key distribution is highly practical. This part of work is published in "Practical Decoy State for Quantum Key Distribution

  14. [Quality management in emergency departments: Lack of uniform standards for fact-based controlling].

    Science.gov (United States)

    Ries, M; Christ, M

    2015-11-01

    The general high occupancy of emergency departments during the winter months of 2014/2015 outlined deficits in health politics. Whether on the regional, province, or federal level, verifiable and accepted figures to enable in depth analysis and fact-based controlling of emergency care systems are lacking. As the first step, reasons for the current situation are outlined in order to developed concrete recommendations for individual hospitals. This work is based on a selective literature search with focus on quality management, ratio driven management, and process management within emergency departments as well as personal experience with implementation of a key ratio system in a German maximum care hospital. The insufficient integration of emergencies into the DRG systematic, the role as gatekeeper between inpatient and outpatient care sector, the decentralized organization of emergency departments in many hospitals, and the inconsistent representation within the medical societies can be mentioned as reasons for the lack of key ratio systems. In addition to the important role within treatment procedures, emergency departments also have an immense economic importance. Consequently, the management of individual hospitals should promote implementation of key ratio systems to enable controlling of emergency care processes. Thereby the perspectives finance, employees, processes as well as partners and patients should be equally considered. Within the process perspective, milestones could be used to enable detailed controlling of treatment procedures. An implementation of key ratio systems without IT support is not feasible; thus, existing digital data should be used and future data analysis should already be considered during implementation of new IT systems.

  15. Lack of chemokine signaling through CXCR5 causes increased mortality, ventricular dilatation and deranged matrix during cardiac pressure overload.

    Directory of Open Access Journals (Sweden)

    Anne Waehre

    Full Text Available RATIONALE: Inflammatory mechanisms have been suggested to play a role in the development of heart failure (HF, but a role for chemokines is largely unknown. Based on their role in inflammation and matrix remodeling in other tissues, we hypothesized that CXCL13 and CXCR5 could be involved in cardiac remodeling during HF. OBJECTIVE: We sought to analyze the role of the chemokine CXCL13 and its receptor CXCR5 in cardiac pathophysiology leading to HF. METHODS AND RESULTS: Mice harboring a systemic knockout of the CXCR5 (CXCR5(-/- displayed increased mortality during a follow-up of 80 days after aortic banding (AB. Following three weeks of AB, CXCR5(-/- developed significant left ventricular (LV dilatation compared to wild type (WT mice. Microarray analysis revealed altered expression of several small leucine-rich proteoglycans (SLRPs that bind to collagen and modulate fibril assembly. Protein levels of fibromodulin, decorin and lumican (all SLRPs were significantly reduced in AB CXCR5(-/- compared to AB WT mice. Electron microscopy revealed loosely packed extracellular matrix with individual collagen fibers and small networks of proteoglycans in AB CXCR5(-/- mice. Addition of CXCL13 to cultured cardiac fibroblasts enhanced the expression of SLRPs. In patients with HF, we observed increased myocardial levels of CXCR5 and SLRPs, which was reversed following LV assist device treatment. CONCLUSIONS: Lack of CXCR5 leads to LV dilatation and increased mortality during pressure overload, possibly via lack of an increase in SLRPs. This study demonstrates a critical role of the chemokine CXCL13 and CXCR5 in survival and maintaining of cardiac structure upon pressure overload, by regulating proteoglycans essential for correct collagen assembly.

  16. Variant-specific immunity to Plasmodium berghei in pregnant mice

    DEFF Research Database (Denmark)

    Megnekou, Rosette; Hviid, Lars; Staalsoe, Trine

    2009-01-01

    for recrudescence-type IEs are related to the protection of pregnant mice from maternal anemia, low birth weight, and decreased litter size. We conclude that the model replicates many of the key parasitological and immunological features of PAM, although the P. berghei genome does not encode proteins homologous...... to the P. falciparum erythrocyte membrane protein 1 adhesins, which are of key importance in P. falciparum malaria. The study of P. berghei malaria in pregnant, immune mice can be used to gain significant new insights regarding malaria pathogenesis and immunity in general and regarding PAM in particular....

  17. Key distillation in quantum cryptography

    Science.gov (United States)

    Slutsky, Boris Aron

    1998-11-01

    Quantum cryptography is a technique which permits two parties to communicate over an open channel and establish a shared sequence of bits known only to themselves. This task, provably impossible in classical cryptography, is accomplished by encoding the data on quantum particles and harnessing their unique properties. It is believed that no eavesdropping attack consistent with the laws of quantum theory can compromise the secret data unknowingly to the legitimate users of the channel. Any attempt by a hostile actor to monitor the data carrying particles while in transit reveals itself through transmission errors it must inevitably introduce. Unfortunately, in practice a communication is not free of errors even when no eavesdropping is present. Key distillation is a technique that permits the parties to overcome this difficulty and establish a secret key despite channel defects, under the assumption that every particle is handled independently from other particles by the enemy. In the present work, key distillation is described and its various aspects are studied. A relationship is derived between the average error rate resulting from an eavesdropping attack and the amount of information obtained by the attacker. Formal definition is developed of the security of the final key. The net throughput of secret bits in a quantum cryptosystem employing key distillation is assessed. An overview of quantum cryptographic protocols and related information theoretical results is also given.

  18. Intermittent hypoxia induces hyperlipidemia in lean mice.

    Science.gov (United States)

    Li, Jianguo; Thorne, Laura N; Punjabi, Naresh M; Sun, Cheuk-Kwan; Schwartz, Alan R; Smith, Philip L; Marino, Rafael L; Rodriguez, Annabelle; Hubbard, Walter C; O'Donnell, Christopher P; Polotsky, Vsevolod Y

    2005-09-30

    Obstructive sleep apnea, a syndrome leading to recurrent intermittent hypoxia (IH), has been associated previously with hypercholesterolemia, independent of underlying obesity. We examined the effects of experimentally induced IH on serum lipid levels and pathways of lipid metabolism in the absence and presence of obesity. Lean C57BL/6J mice and leptin-deficient obese C57BL/6J-Lep(ob) mice were exposed to IH for five days to determine changes in serum lipid profile, liver lipid content, and expression of key hepatic genes of lipid metabolism. In lean mice, exposure to IH increased fasting serum levels of total cholesterol, high-density lipoprotein (HDL) cholesterol, phospholipids (PLs), and triglycerides (TGs), as well as liver TG content. These changes were not observed in obese mice, which had hyperlipidemia and fatty liver at baseline. In lean mice, IH increased sterol regulatory element binding protein 1 (SREBP-1) levels in the liver, increased mRNA and protein levels of stearoyl-coenzyme A desaturase 1 (SCD-1), an important gene of TG and PL biosynthesis controlled by SREBP-1, and increased monounsaturated fatty acid content in serum, which indicated augmented SCD-1 activity. In addition, in lean mice, IH decreased protein levels of scavenger receptor B1, regulating uptake of cholesterol esters and HDL by the liver. We conclude that exposure to IH for five days increases serum cholesterol and PL levels, upregulates pathways of TG and PL biosynthesis, and inhibits pathways of cholesterol uptake in the liver in the lean state but does not exacerbate the pre-existing hyperlipidemia and metabolic disturbances in leptin-deficient obesity.

  19. KeyPathwayMinerWeb

    DEFF Research Database (Denmark)

    List, Markus; Alcaraz, Nicolas; Dissing-Hansen, Martin

    2016-01-01

    , for instance), KeyPathwayMiner extracts connected sub-networks containing a high number of active or differentially regulated genes (proteins, metabolites) in the molecular profiles. The web interface at (http://keypathwayminer.compbio.sdu.dk) implements all core functionalities of the KeyPathwayMiner tool set......We present KeyPathwayMinerWeb, the first online platform for de novo pathway enrichment analysis directly in the browser. Given a biological interaction network (e.g. protein-protein interactions) and a series of molecular profiles derived from one or multiple OMICS studies (gene expression...... such as data integration, input of background knowledge, batch runs for parameter optimization and visualization of extracted pathways. In addition to an intuitive web interface, we also implemented a RESTful API that now enables other online developers to integrate network enrichment as a web service...

  20. A mouse model of alcoholic liver fibrosis-associated acute kidney injury identifies key molecular pathways

    International Nuclear Information System (INIS)

    Furuya, Shinji; Chappell, Grace A.; Iwata, Yasuhiro; Uehara, Takeki; Kato, Yuki; Kono, Hiroshi; Bataller, Ramon; Rusyn, Ivan

    2016-01-01

    Clinical data strongly indicate that acute kidney injury (AKI) is a critical complication in alcoholic hepatitis, an acute-on-chronic form of liver failure in patients with advanced alcoholic fibrosis. Development of targeted therapies for AKI in this setting is hampered by the lack of an animal model. To enable research into molecular drivers and novel therapies for fibrosis- and alcohol-associated AKI, we aimed to combine carbon tetrachloride (CCl 4 )-induced fibrosis with chronic intra-gastric alcohol feeding. Male C57BL/6J mice were administered a low dose of CCl 4 (0.2 ml/kg 2 × week/6 weeks) followed by alcohol intragastrically (up to 25 g/kg/day for 3 weeks) and with continued CCl 4 . We observed that combined treatment with CCl 4 and alcohol resulted in severe liver injury, more pronounced than using each treatment alone. Importantly, severe kidney injury was evident only in the combined treatment group. This mouse model reproduced distinct pathological features consistent with AKI in human alcoholic hepatitis. Transcriptomic analysis of kidneys revealed profound effects in the combined treatment group, with enrichment for damage-associated pathways, such as apoptosis, inflammation, immune-response and hypoxia. Interestingly, Havcr1 and Lcn2, biomarkers of AKI, were markedly up-regulated. Overall, this study established a novel mouse model of fibrosis- and alcohol-associated AKI and identified key mechanistic pathways. - Highlights: • Acute kidney injury (AKI) is a critical complication in alcoholic hepatitis • We developed a novel mouse model of fibrosis- and alcohol-associated AKI • This model reproduces key molecular and pathological features of human AKI • This animal model can help identify new targeted therapies for alcoholic hepatitis

  1. A mouse model of alcoholic liver fibrosis-associated acute kidney injury identifies key molecular pathways

    Energy Technology Data Exchange (ETDEWEB)

    Furuya, Shinji; Chappell, Grace A.; Iwata, Yasuhiro [Department of Veterinary Integrative Biosciences, Texas A& M University, College Station, TX (United States); Uehara, Takeki; Kato, Yuki [Laboratory of Veterinary Pathology, Osaka Prefecture University, Osaka (Japan); Kono, Hiroshi [First Department of Surgery, University of Yamanashi, Yamanashi (Japan); Bataller, Ramon [Division of Gastroenterology & Hepatology, Department of Medicine, University of North Carolina, Chapel Hill, NC (United States); Rusyn, Ivan, E-mail: irusyn@tamu.edu [Department of Veterinary Integrative Biosciences, Texas A& M University, College Station, TX (United States)

    2016-11-01

    Clinical data strongly indicate that acute kidney injury (AKI) is a critical complication in alcoholic hepatitis, an acute-on-chronic form of liver failure in patients with advanced alcoholic fibrosis. Development of targeted therapies for AKI in this setting is hampered by the lack of an animal model. To enable research into molecular drivers and novel therapies for fibrosis- and alcohol-associated AKI, we aimed to combine carbon tetrachloride (CCl{sub 4})-induced fibrosis with chronic intra-gastric alcohol feeding. Male C57BL/6J mice were administered a low dose of CCl{sub 4} (0.2 ml/kg 2 × week/6 weeks) followed by alcohol intragastrically (up to 25 g/kg/day for 3 weeks) and with continued CCl{sub 4}. We observed that combined treatment with CCl{sub 4} and alcohol resulted in severe liver injury, more pronounced than using each treatment alone. Importantly, severe kidney injury was evident only in the combined treatment group. This mouse model reproduced distinct pathological features consistent with AKI in human alcoholic hepatitis. Transcriptomic analysis of kidneys revealed profound effects in the combined treatment group, with enrichment for damage-associated pathways, such as apoptosis, inflammation, immune-response and hypoxia. Interestingly, Havcr1 and Lcn2, biomarkers of AKI, were markedly up-regulated. Overall, this study established a novel mouse model of fibrosis- and alcohol-associated AKI and identified key mechanistic pathways. - Highlights: • Acute kidney injury (AKI) is a critical complication in alcoholic hepatitis • We developed a novel mouse model of fibrosis- and alcohol-associated AKI • This model reproduces key molecular and pathological features of human AKI • This animal model can help identify new targeted therapies for alcoholic hepatitis.

  2. PERCEPTION OF SWEET TASTE IS IMPORTANT FOR VOLUNTARY ALCOHOL CONSUMPTION IN MICE

    OpenAIRE

    Blednov, Y.A.; Walker, D.; Martinez, M.; Levine, M.; Damak, S.; Margolskee, R.F.

    2007-01-01

    To directly evaluate the association between taste perception and alcohol intake, we used three different mutant mice, each lacking a gene expressed in taste buds and critical to taste transduction: α-gustducin (Gnat3), Tas1r3 or Trpm5. Null mutant mice lacking any of these three genes showed lower preference score for alcohol and consumed less alcohol in a two-bottle choice test, as compared with wild-type littermates. These null mice also showed lower preference score for saccharin solution...

  3. Key Lake spill. Final report

    International Nuclear Information System (INIS)

    1984-03-01

    On January 5, 1984 contaminated water overflowed a storage reservoir at the Key Lake uranium mill onto the ice on a neighboring lake, into a muskeg area and onto a road. Outflow continued for two days, partially undercutting a retaining dyke. This report concludes the spill was the result of poor operation by the Key Lake Mining Corp.. The environmental impact will be minimal after cleanup. Improvements can be made in the regulatory process, and it is necessary to prepare for possible future mishaps

  4. Key World Energy Statistics 2013

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-01

    The IEA produced its first handy, pocket-sized summary of key energy data in 1997 and every year since then it has been more and more successful. Key World Energy Statistics contains timely, clearly-presented data on supply, transformation and consumption of all major energy sources. The interested businessman, journalist or student will have at his or her fingertips the annual Canadian production of coal, the electricity consumption in Thailand, the price of diesel oil in Spain and thousands of other useful energy facts.

  5. Key China Energy Statistics 2012

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fridley, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lu, Hongyou [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fino-Chen, Cecilia [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-05-01

    The China Energy Group at Lawrence Berkeley National Laboratory (LBNL) was established in 1988. Over the years the Group has gained recognition as an authoritative source of China energy statistics through the publication of its China Energy Databook (CED). The Group has published seven editions to date of the CED (http://china.lbl.gov/research/chinaenergy-databook). This handbook summarizes key statistics from the CED and is expressly modeled on the International Energy Agency’s “Key World Energy Statistics” series of publications. The handbook contains timely, clearly-presented data on the supply, transformation, and consumption of all major energy sources.

  6. Key China Energy Statistics 2011

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fridley, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lu, Hongyou [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fino-Chen, Cecilia [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-01-15

    The China Energy Group at Lawrence Berkeley National Laboratory (LBNL) was established in 1988. Over the years the Group has gained recognition as an authoritative source of China energy statistics through the publication of its China Energy Databook (CED). In 2008 the Group published the Seventh Edition of the CED (http://china.lbl.gov/research/chinaenergy-databook). This handbook summarizes key statistics from the CED and is expressly modeled on the International Energy Agency’s “Key World Energy Statistics” series of publications. The handbook contains timely, clearly-presented data on the supply, transformation, and consumption of all major energy sources.

  7. Lack of Proinflammatory Cytokine Interleukin-6 or Tumor Necrosis Factor Receptor-1 Results in a Failure of the Innate Immune Response after Bacterial Meningitis

    Directory of Open Access Journals (Sweden)

    Lea-Jessica Albrecht

    2016-01-01

    Full Text Available The most frequent pathogen that causes bacterial meningitis is the Gram-positive bacterium Streptococcus pneumoniae. By entering the brain, host cells will be activated and proinflammatory cytokines like interleukin-6 (IL-6 and tumor necrosis factor-α (TNF-α are released. The goal of the current study was to examine the interaction between IL-6 and TNFR1 as receptor for TNF-α and the innate immune response in vivo in a model of Streptococcus pneumoniae-induced meningitis. For the experiments IL-6−/−, TNFR1−/−, and TNFR1-IL-6−/− KO mice were used. Our results revealed higher mortality rates and bacterial burden after infection in TNFR1−/−, IL-6−/−, and TNFR1-IL-6−/− mice and a decreased immune response including lower neutrophil infiltration in the meninges of TNFR1−/− and TNFR1-IL-6−/− mice in contrast to IL-6−/− and wild type mice. Furthermore, the increased mortality of TNFR1−/− and TNFR1-IL-6−/− mice correlated with decreased glial cell activation compared to IL-6−/− or wild type mice after pneumococcal meningitis. Altogether, the results show the importance of TNFR1 and IL-6 in the regulation of the innate immune response. The lack of TNFR1 and IL-6 results in higher mortality by weakened immune defence, whereas the lack of TNFR1 results in more severe impairment of the innate immune response than the lack of IL-6 alone.

  8. Defects in cardiac outflow tract formation and pro-B-lymphocyte expansion in mice lacking Sox-4

    NARCIS (Netherlands)

    Schilham, M. W.; Oosterwegel, M. A.; Moerer, P.; Ya, J.; de Boer, P. A.; van de Wetering, M.; Verbeek, S.; Lamers, W. H.; Kruisbeek, A. M.; Cumano, A.; Clevers, H.

    1996-01-01

    A striking example of the relationship between regulation of transcription and phenotype is the central role of the Y-chromosomal gene Sry in mammalian sex determination. Sry is the founding member of a large family of so-called Sox genes. During murine embryogenesis, the transcriptional activator

  9. Abnormal mitochondrial bioenergetics and heart rate dysfunction in mice lacking very-long-chain acyl-CoA dehydrogenase

    NARCIS (Netherlands)

    Exil, VJ; Gardner, CD; Rottman, JN; Sims, H; Bartelds, B; Khuchua, Z; Sindhal, R; Ni, GM; Strauss, AW

    Mitochondrial very-long-chain acyl-CoA dehydrogenase ( VLCAD) deficiency is associated with severe hypoglycemia, cardiac dysfunction, and sudden death in neonates and children. Sudden death is common, but the underlying mechanisms are not fully understood. We report on a mouse model of VLCAD

  10. Mice lacking lipid droplet-associated hydrolase, a gene linked to human prostate cancer, have normal cholesterol ester metabolism

    DEFF Research Database (Denmark)

    Kory, Nora; Grond, Susanne; Kamat, Siddhesh S

    2017-01-01

    Variations in the gene LDAH (C2ORF43), which encodes lipid droplet-associated hydrolase (LDAH), are among few loci associated with human prostate cancer. Homologs of LDAH have been identified as proteins of lipid droplets (LDs). LDs are cellular organelles that store neutral lipids...

  11. Suppression of tumor development and metastasis formation in mice lacking the S100A4(mts1) gene

    DEFF Research Database (Denmark)

    Grum-Schwensen, Birgitte; Klingelhofer, Jörg; Berg, Christian Hededam

    2005-01-01

    distribution of host-derived stroma cells. Coinjection of CSML100 cells with immortalized S100A4(+/+) fibroblasts partially restored the dynamics of tumor development and the ability to form metastasis. These fibroblasts were characterized by an enhanced motility and invasiveness in comparison with S100A4...

  12. Impaired mitotic progression and preimplantation lethality in mice lacking OMCG1, a new evolutionarily conserved nuclear protein

    DEFF Research Database (Denmark)

    Artus, Jérôme; Vandormael-Pournin, Sandrine; Frödin, Morten

    2005-01-01

    While highly conserved through evolution, the cell cycle has been extensively modified to adapt to new developmental programs. Recently, analyses of mouse mutants revealed that several important cell cycle regulators are either dispensable for development or have a tissue- or cell-type-specific f...

  13. Functionally enhanced brown adipose tissue in Ames dwarf mice.

    Science.gov (United States)

    Darcy, Justin; Bartke, Andrzej

    2017-01-02

    Reduced insulin-like growth factor 1/insulin signaling (IIS) has been linked to extended longevity in species ranging from yeast to mammals. In mammals, this is exemplified in Ames dwarf (Prop1 df/df ) mice, which have a 40%-60% increase in longevity (males and females, respectively) due to their recessive Prop1 loss-of-function mutation that results in lack of growth hormone (GH), thyroid-stimulating hormone and prolactin. Our laboratory has previously shown that Ames dwarf mice have functionally unique white adipose tissue (WAT) that improves, rather than impairs, insulin sensitivity. Because GH and thyroid hormone are integral to adipose tissue development and function, we hypothesized that brown adipose tissue (BAT) in Ames dwarf mice may also be functionally unique and/or enhanced. Here, we elaborate on our recent findings, which demonstrate that BAT is functionally enhanced in Ames dwarf mice, and suggest that BAT removal in these mice results in utilization of WAT depots as an energy source. We also discuss how our findings compare to those in other long-lived dwarf mice with altered IIS, which unlike Ames dwarf mice, are essentially euthyroid. Lastly, we provide some insights into the implications of these findings and discuss some of the necessary future work in this area.

  14. Economy may be harmed by lack of LLW disposal

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    A study released by Organizations United for Responsible Low-Level Radioactive Waste Solutions warns that the substantial benefits of using radioactive materials are threatened by the lack of a low-level waste (LLW) disposal facility. The main point of the study is the threat to the American economy posed by insufficient facilities for disposal of the 1.7 billion ft 3 of LLW produced by the use of radioactive materials every year only 34.8 percent of which comes from nuclear power plants. open-quotes Thirty years of experience have provided the technical knowledge to design waste disposal facilities that protect the public and environment. But an impending lack of adequate disposal facilities jeopardizes our continued use of radioactive materials,close quotes according to the study

  15. Lack of diversity in behavioral healthcare leadership reflected in services.

    Science.gov (United States)

    Rosenberg, Linda

    2008-04-01

    America's rapidly changing demographics present an enormous challenge for today's healthcare leaders to redesign the organization and delivery of care to accommodate people who now represent every language, culture and religious belief in the world. So will mental health and addictions services in this country be ready to address the unique needs of these multicultural patients? A survey of the present landscape in 2008 tells us that we have a long, long way to go. Not only are mental health and addictions fields lacking in cultural competency, but there is little diversity in our leadership ranks. Top administrators and executives in behavioral health today are overwhelmingly non-Hispanic whites. This lack of cultural diversity among our leaders will lead to an ever-widening gap in the current chasm of racial and ethnic disparities in healthcare.

  16. IL-4 deficiency is associated with mechanical hypersensitivity in mice.

    Directory of Open Access Journals (Sweden)

    Nurcan Üçeyler

    Full Text Available Interleukin-4 (IL-4 is an anti-inflammatory and analgesic cytokine that induces opioid receptor transcription. We investigated IL-4 knockout (ko mice to characterize their pain behavior before and after chronic constriction injury (CCI of the sciatic nerve as a model for neuropathic pain. We investigated opioid responsivity and measured cytokine and opioid receptor gene expression in the peripheral and central nervous system (PNS, CNS of IL-4 ko mice in comparison with wildtype (wt mice. Naïve IL-4 ko mice displayed tactile allodynia (wt: 0.45 g; ko: 0.18 g; p<0.001, while responses to heat and cold stimuli and to muscle pressure were not different. No compensatory changes in the gene expression of tumor necrosis factor-alpha (TNF, IL-1β, IL-10, and IL-13 were found in the PNS and CNS of naïve IL-4 ko mice. However, IL-1β gene expression was stronger in the sciatic nerve of IL-4 ko mice (p<0.001 28 days after CCI and only IL-4 ko mice had elevated IL-10 gene expression (p = 0.014. Remarkably, CCI induced TNF (p<0.01, IL-1β (p<0.05, IL-10 (p<0.05, and IL-13 (p<0.001 gene expression exclusively in the ipsilateral spinal cord of IL-4 ko mice. The compensatory overexpression of the anti-inflammatory and analgesic cytokines IL-10 and IL-13 in the spinal cord of IL-4 ko mice may explain the lack of genotype differences for pain behavior after CCI. Additionally, CCI induced gene expression of μ, κ, and δ opioid receptors in the contralateral cortex and thalamus of IL-4 ko mice, paralleled by fast onset of morphine analgesia, but not in wt mice. We conclude that a lack of IL-4 leads to mechanical sensitivity; the compensatory hyperexpression of analgesic cytokines and opioid receptors after CCI, in turn, protects IL-4 ko mice from enhanced pain behavior after nerve lesion.

  17. Grouted Connections with Shear Keys

    DEFF Research Database (Denmark)

    Pedersen, Ronnie; Jørgensen, M. B.; Damkilde, Lars

    2012-01-01

    This paper presents a finite element model in the software package ABAQUS in which a reliable analysis of grouted pile-to-sleeve connections with shear keys is the particular purpose. The model is calibrated to experimental results and a consistent set of input parameters is estimated so that dif...... that different structural problems can be reproduced successfully....

  18. Key to marine arthropod larvae

    Directory of Open Access Journals (Sweden)

    John A. Fornshell

    2012-03-01

    Full Text Available The scope of this key is restricted to the larvae of marine arthropods. The key is based solely on their morphology, patterns of body segmentation, numbers of appendages, and mode of locomotion. An effort has been made to treat all traditionally named larval forms, both planktonic and benthic. It is intended that this key be useful for a researcher working with archived museum specimens and therefore, does not include habitat information as a identifying trait, even though this information is usually available in the archived records. Within the phylum Arthropoda there are two sub-phyla and eleven classes having larval stages in the marineenvironment. Where feasible the original names of the various larval types have been used. Because this nomenclature is less commonly used today compared to the past, the more recent taxonomic affinities are included in parentheses after the original larval name. The key includes the following thirty-four larvae: Branchhiopoda nauplii; Cephalocarida nauplii; Mystacocarida nauplii; trilobite larva; protonymphon; hexapod larvae; Remipedia nauplii; nauplius - Y larvae; Cirripedia nauplii; Ascothoracida nauplii; Ostracoda nauplii; Euphausiacea nauplii; Penaeidea nauplii; Cyclopoida nauplii; Calanoida nauplii; Harpacticoida nauplii;Polyarthra nauplii; cypris larva; eryonecius larva; cypris-Y larva; elapthocaris larvae; mysis larvae; lucifer zoea; acetes zoea; acanthosoma larva; phyllosoma; antizoea larva; anomuran zoea; brachyuran zoea; calyptopis larvae; furcilia larva; crytopia larva; puerulus larva; alima larva.

  19. Symmetric Key Authentication Services Revisited

    NARCIS (Netherlands)

    Crispo, B.; Popescu, B.C.; Tanenbaum, A.S.

    2004-01-01

    Most of the symmetric key authentication schemes deployed today are based on principles introduced by Needham and Schroeder [15] more than twenty years ago. However, since then, the computing environment has evolved from a LAN-based client-server world to include new paradigms, including wide area

  20. Key World Energy Statistics 2012

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Key World Energy Statistics contains timely, clearly-presented data on supply, transformation and consumption of all major energy sources. The interested businessman, journalist or student will have at his or her fingertips the annual Canadian production of coal, the electricity consumption in Thailand, the price of diesel oil in Spain and thousands of other useful energy facts.

  1. [Key informers. When and How?].

    Science.gov (United States)

    Martín González, R

    2009-03-01

    When information obtained through duly designed and developed studies is not available, the solution to certain problems that affect the population or that respond to certain questions may be approached by using the information and experience provided by the so-called key informer. The key informer is defined as a person who is in contact with the community or with the problem to be studied, who is considered to have good knowledge of the situation and therefore who is considered an expert. The search for consensus is the basis to obtain information through the key informers. The techniques used have different characteristics based on whether the experts chosen meet together or not, whether they are guided or not, whether they interact with each other or not. These techniques include the survey, the Delphi technique, the nominal group technique, brainwriting, brainstorming, the Phillips 66 technique, the 6-3-5 technique, the community forum and the community impressions technique. Information provided by key informers through the search for consensus is relevant when this is not available or cannot be obtained by other methods. It has permitted the analysis of the existing neurological care model, elaboration of recommendations on visit times for the out-patient neurological care, and the elaboration of guidelines and recommendations for the management of prevalent neurological problems.

  2. The Key to School Security.

    Science.gov (United States)

    Hotle, Dan

    1993-01-01

    In addition to legislative accessibility requirements, other security issues facing school administrators who select a security system include the following: access control; user friendliness; durability or serviceability; life safety precautions; possibility of vandalism, theft, and tampering; and key control. Offers steps to take in considering…

  3. Law tightened to protect adults who lack capacity.

    Science.gov (United States)

    2009-05-21

    VULNERABLE OLDER people will be better protected from abuse and poor care after new legislation came into force last month. Under the Mental Capacity Act Deprivation of Liberty Safeguards, a care home or hospital wanting to deprive a person who lacks capacity of their liberty, for their own safety or wellbeing, must now apply for permission. A rigorous, standardised assessment and authorisation process must then be completed.

  4. Return voltage: reproductibility of lack in isolated plastics

    International Nuclear Information System (INIS)

    Frutos, F.; Acedo, M.; Jimenez, A.; Perez, J.A.

    1998-01-01

    Return voltage measures from plane-plane and point-plane experimental test objects of polyethylene are presented. Even though a lack of reproducibility is observed, all the experimental voltage curves can be modellized as the sum of two exponential functions: a first one with a long time period and a second one with a quite shorter time parameter. This analytical behaviour could be theoretically explained by considering an exponential dielectric function response. (Author) 7 refs

  5. The subjetivacion of the lack: between Lacan and Hegel

    Directory of Open Access Journals (Sweden)

    Lorena Souyris Oportot

    2014-05-01

    Full Text Available The present article develops a reflection concerning the figure of the subjectivation and the statute of the lack  in relation to Jacques Lacan y Hegel's thought . The analysis will be addressed from a philosophical approach as and with a psychoanalytic perspective, to show the need to understand the subjectivity, not already as a "work" of duel, but ligature to the loss and the split. The idea is that the above mentioned significances make possible deconstruir and to rethink the duel in lack, that he structures to the subject in an experience "escripturaire" (escriptural and, for the same thing, of dispossession. So that the figure of the subjetivación "in" lack  will allow to grant an important place to the non-place while I spread where the unthinkable thing and the "Autre" registers.  Once exposed this, the reflection will focus on the tragic exigences behind experience “escripturaire” expressed in the image of Antigone

  6. REPROBATION AND LACK OF INTEREST IN MECHATRONICS ENGINEERING STUDENTS

    Directory of Open Access Journals (Sweden)

    César Humberto Guzmán Valdivia

    2013-07-01

    Full Text Available Engineering education in mechatronics is an attractive field of research because it is a new multidisciplinary career. However, a potential problem is the reprobation rate. In the period from January to April 2012 at the Universidad Politécnica de Zacatecas a 53% regular students of a total of 197 were registered. To find the causes of this problem, a survey was conducted to determine the causes of reprobation, lack of motivation and interest to a population of 96 students, of which 40 were the first training cycle, 32 the second and 24 the third. The surveys yielded three main results. The first indicates that the lack of interest is proportional to the time spent in college. The second shows that the reprobation rate is linked to the laziness and the excess of courses. And the last shows a lack of motivation and low expectations of student due to the monotony of the theoretical courses. In conclusion, more research is needed to have a motivated student in an engineering career in mechatronics.

  7. Survival of adult neurons lacking cholesterol synthesis in vivo.

    Science.gov (United States)

    Fünfschilling, Ursula; Saher, Gesine; Xiao, Le; Möbius, Wiebke; Nave, Klaus-Armin

    2007-01-02

    Cholesterol, an essential component of all mammalian plasma membranes, is highly enriched in the brain. Both during development and in the adult, brain cholesterol is derived from local cholesterol synthesis and not taken up from the circulation. However, the contribution of neurons and glial cells to total brain cholesterol metabolism is unknown. Using conditional gene inactivation in the mouse, we disrupted the squalene synthase gene (fdft1), which is critical for cholesterol synthesis, in cerebellar granule cells and some precerebellar nuclei. Mutant mice showed no histological signs of neuronal degeneration, displayed ultrastructurally normal synapses, and exhibited normal motor coordination. This revealed that these adult neurons do not require cell-autonomous cholesterol synthesis for survival or function. We conclude that at least some adult neurons no longer require endogenous cholesterol synthesis and can fully meet their cholesterol needs by uptake from their surrounding. Glia are a likely source of cholesterol in the central nervous system.

  8. Survival of adult neurons lacking cholesterol synthesis in vivo

    Directory of Open Access Journals (Sweden)

    Möbius Wiebke

    2007-01-01

    Full Text Available Abstract Background Cholesterol, an essential component of all mammalian plasma membranes, is highly enriched in the brain. Both during development and in the adult, brain cholesterol is derived from local cholesterol synthesis and not taken up from the circulation. However, the contribution of neurons and glial cells to total brain cholesterol metabolism is unknown. Results Using conditional gene inactivation in the mouse, we disrupted the squalene synthase gene (fdft1, which is critical for cholesterol synthesis, in cerebellar granule cells and some precerebellar nuclei. Mutant mice showed no histological signs of neuronal degeneration, displayed ultrastructurally normal synapses, and exhibited normal motor coordination. This revealed that these adult neurons do not require cell-autonomous cholesterol synthesis for survival or function. Conclusion We conclude that at least some adult neurons no longer require endogenous cholesterol synthesis and can fully meet their cholesterol needs by uptake from their surrounding. Glia are a likely source of cholesterol in the central nervous system.

  9. Dwarf Mice and Aging.

    Science.gov (United States)

    Masternak, Michal M; Darcy, Justin; Victoria, Berta; Bartke, Andrzej

    2018-01-01

    Dwarf mice have been studied for many decades, however, the focus of these studies shifted in 1996 when it was shown by Brown-Borg and her coworkers that Ames dwarf (Prop1 df ) mice are exceptionally long-lived. Since then, Snell dwarf (Pit1 dw ) and growth hormone receptor knockout (GHR-KO, a.k.a. Laron dwarf) mice were also shown to be exceptionally long-lived, presumably due to their growth hormone (GH)-deficiency or -resistance, respectively. What is of equal importance in these dwarf mice is their extended health span, that is, these animals have a longer period of life lived free of frailty and age-related diseases. This review article focuses on recent studies conducted in these dwarf mice, which concerned brown and white adipose tissue biology, microRNA (miRNA) profiling, as well as early-life dietary and hormonal interventions. Results of these studies identify novel mechanisms linking reduced GH action with extensions of both life span and health span. Copyright © 2017. Published by Elsevier Inc.

  10. Characterisation of innate lymphoid cell populations at different sites in mice with defective T cell immunity [version 3; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Emma E. Dutton

    2018-03-01

    Full Text Available Background: Innate lymphoid cells (ILCs have now been identified within most tissues of the body and current evidence indicates that this family of cells play a fundamental role in maintaining tissue homeostasis. However, few studies have compared the ILC populations between several tissues. Methods: We sought to generate a comprehensive characterisation of the ILC populations in different tissues of C57BL/6 WT and genetically modified mice targeting costimulatory pathways, using transcription factor expression to define specific groups. Results: Consistent with studies individually describing the ILC composition in different tissues, our analysis revealed different ILC groups dominate the ILC population in different tissues. Additionally, we observed a population of  IL-7Rα+Id2+ cells lacking expression of lineage markers but also lacking expression of GATA-3, RORgt or T-bet. This population was most evident in ear skin where it outnumbered the defined ILC groups, however, further experiments demonstrated that detection of these cells was influenced by how the tissue was digested, raising concerns as to its real nature. Since both ILC2 and ILC3 express ICOS, we then investigated the requirement for ICOS:ICOSL interactions in the homeostasis of ILC populations at these sites. Surprisingly, no significant differences were detected in the number of ILC1, ILC2 or ILC3 between WT and ICOSL-/- mice in any tissue, indicating that this pathway is not required for ILC homeostasis at these sites. These data were compared with CD80-/-CD86-/- mice given evidence of CD28 expression by some ILC and ILC crosstalk with activated T cells. Notably, the absence of CD28 ligands resulted in a significant increase in ILC2 and ILC3 numbers in the intestine. Conclusions: Together, these data provide new insight into ILC composition in different tissues in both WT and genetically modified mice where key costimulatory pathways are genetically deleted, providing a

  11. Immunization against Leishmania major infection using LACK- and IL-12-expressing Lactococcus lactis induces delay in footpad swelling.

    Directory of Open Access Journals (Sweden)

    Felix Hugentobler

    Full Text Available BACKGROUND: Leishmania is a mammalian parasite affecting over 12 million individuals worldwide. Current treatments are expensive, cause severe side effects, and emerging drug resistance has been reported. Vaccination is the most cost-effective means to control infectious disease but currently there is no vaccine available against Leishmaniasis. Lactococcus lactis is a non-pathogenic, non-colonizing Gram-positive lactic acid bacterium commonly used in the dairy industry. Recently, L. lactis was used to express biologically active molecules including vaccine antigens and cytokines. METHODOLOGY/PRINCIPAL FINDINGS: We report the generation of L. lactis strains expressing the protective Leishmania antigen, LACK, in the cytoplasm, secreted or anchored to the bacterial cell wall. L. lactis was also engineered to secrete biologically active single chain mouse IL-12. Subcutaneous immunization with live L. lactis expressing LACK anchored to the cell wall and L. lactis secreting IL-12 significantly delayed footpad swelling in Leishmania major infected BALB/c mice. The delay in footpad swelling correlated with a significant reduction of parasite burden in immunized animals compared to control groups. Immunization with these two L. lactis strains induced antigen-specific multifunctional T(H1 CD4(+ and CD8(+ T cells and a systemic LACK-specific T(H1 immune response. Further, protection in immunized animals correlated with a Leishmania-specific T(H1 immune response post-challenge. L. lactis secreting mouse IL-12 was essential for directing immune responses to LACK towards a protective T(H1 response. CONCLUSIONS/SIGNIFICANCE: This report demonstrates the use of L. lactis as a live vaccine against L. major infection in BALB/c mice. The strains generated in this study provide the basis for the development of an inexpensive and safe vaccine against the human parasite Leishmania.

  12. Immunization against Leishmania major Infection Using LACK- and IL-12-Expressing Lactococcus lactis Induces Delay in Footpad Swelling

    Science.gov (United States)

    Hugentobler, Felix; Yam, Karen K.; Gillard, Joshua; Mahbuba, Raya; Olivier, Martin; Cousineau, Benoit

    2012-01-01

    Background Leishmania is a mammalian parasite affecting over 12 million individuals worldwide. Current treatments are expensive, cause severe side effects, and emerging drug resistance has been reported. Vaccination is the most cost-effective means to control infectious disease but currently there is no vaccine available against Leishmaniasis. Lactococcus lactis is a non-pathogenic, non-colonizing Gram-positive lactic acid bacterium commonly used in the dairy industry. Recently, L. lactis was used to express biologically active molecules including vaccine antigens and cytokines. Methodology/Principal findings We report the generation of L. lactis strains expressing the protective Leishmania antigen, LACK, in the cytoplasm, secreted or anchored to the bacterial cell wall. L. lactis was also engineered to secrete biologically active single chain mouse IL-12. Subcutaneous immunization with live L. lactis expressing LACK anchored to the cell wall and L. lactis secreting IL-12 significantly delayed footpad swelling in Leishmania major infected BALB/c mice. The delay in footpad swelling correlated with a significant reduction of parasite burden in immunized animals compared to control groups. Immunization with these two L. lactis strains induced antigen-specific multifunctional TH1 CD4+ and CD8+ T cells and a systemic LACK-specific TH1 immune response. Further, protection in immunized animals correlated with a Leishmania-specific TH1 immune response post-challenge. L. lactis secreting mouse IL-12 was essential for directing immune responses to LACK towards a protective TH1 response. Conclusions/Significance This report demonstrates the use of L. lactis as a live vaccine against L. major infection in BALB/c mice. The strains generated in this study provide the basis for the development of an inexpensive and safe vaccine against the human parasite Leishmania. PMID:22348031

  13. Hepatic changes in metabolic gene expression in old ghrelin and ghrelin receptor knockout mice

    Science.gov (United States)

    Ghrelin knockout (GKO) and ghrelin receptor (growth hormone secretagogue receptor) knockout (GHSRKO) mice exhibit enhanced insulin sensitivity, but the mechanism is unclear. Insulin sensitivity declines with age and is inversely associated with accumulation of lipid in liver, a key glucoregulatory ...

  14. Male-like sexual behavior of female mouse lacking fucose mutarotase

    Directory of Open Access Journals (Sweden)

    Lim Dae-sik

    2010-07-01

    Full Text Available Abstract Background Mutarotases are recently characterized family of enzymes that are involved in the anomeric conversions of monosaccharides. The mammalian fucose mutarotase (FucM was reported in cultured cells to facilitate fucose utilization and incorporation into protein by glycosylation. However, the role of this enzyme in animal has not been elucidated. Results We generated a mutant mouse specifically lacking the fucose mutarotase (FucM gene. The FucM knockout mice displayed an abnormal sexual receptivity with a drastic reduction in lordosis score, although the animals were fertile due to a rare and forced intromission by a typical male. We examined the anteroventral periventricular nucleus (AVPv of the preoptic region in brain and found that the mutant females showed a reduction in tyrosine hydoxylase positive neurons compared to that of a normal female. Furthermore, the mutant females exhibited a masculine behavior, such as mounting to a normal female partner as well as showing a preference to female urine. We found a reduction of fucosylated serum alpha-fetoprotein (AFP in a mutant embryo relative to that of a wild-type embryo. Conclusions The observation that FucM-/- female mouse exhibits a phenotypic similarity to a wild-type male in terms of its sexual behavior appears to be due to the neurodevelopmental changes in preoptic area of mutant brain resembling a wild-type male. Since the previous studies indicate that AFP plays a role in titrating estradiol that are required to consolidate sexual preference of female mice, we speculate that the reduced level of AFP in FucM-/- mouse, presumably resulting from the reduced fucosylation, is responsible for the male-like sexual behavior observed in the FucM knock-out mouse.

  15. An Identification Key for Selecting Methods for Sustainability Assessments

    Directory of Open Access Journals (Sweden)

    Michiel C. Zijp

    2015-03-01

    Full Text Available Sustainability assessments can play an important role in decision making. This role starts with selecting appropriate methods for a given situation. We observed that scientists, consultants, and decision-makers often do not systematically perform a problem analyses that guides the choice of the method, partly related to a lack of systematic, though sufficiently versatile approaches to do so. Therefore, we developed and propose a new step towards method selection on the basis of question articulation: the Sustainability Assessment Identification Key. The identification key was designed to lead its user through all important choices needed for comprehensive question articulation. Subsequently, methods that fit the resulting specific questions are suggested by the key. The key consists of five domains, of which three determine method selection and two the design or use of the method. Each domain consists of four or more criteria that need specification. For example in the domain “system boundaries”, amongst others, the spatial and temporal scales are specified. The key was tested (retrospectively on a set of thirty case studies. Using the key appeared to contribute to improved: (i transparency in the link between the question and method selection; (ii consistency between questions asked and answers provided; and (iii internal consistency in methodological design. There is latitude to develop the current initial key further, not only for selecting methods pertinent to a problem definition, but also as a principle for associated opportunities such as stakeholder identification.

  16. Key drivers of airline loyalty.

    Science.gov (United States)

    Dolnicar, Sara; Grabler, Klaus; Grün, Bettina; Kulnig, Anna

    2011-10-01

    This study investigates drivers of airline loyalty. It contributes to the body of knowledge in the area by investigating loyalty for a number of a priori market segments identified by airline management and by using a method which accounts for the multi-step nature of the airline choice process. The study is based on responses from 687 passengers. Results indicate that, at aggregate level, frequent flyer membership, price, the status of being a national carrier and the reputation of the airline as perceived by friends are the variables which best discriminate between travellers loyal to the airline and those who are not. Differences in drivers of airline loyalty for a number of segments were identified. For example, loyalty programs play a key role for business travellers whereas airline loyalty of leisure travellers is difficult to trace back to single factors. For none of the calculated models satisfaction emerged as a key driver of airline loyalty.

  17. Key papers in prostate cancer.

    Science.gov (United States)

    Rodney, Simon; Shah, Taimur Tariq; Patel, Hitendra R H; Arya, Manit

    2014-11-01

    Prostate cancer is the most common cancer and second leading cause of death in men. The evidence base for the diagnosis and treatment of prostate cancer is continually changing. We aim to review and discuss past and contemporary papers on these topics to provoke debate and highlight key dilemmas faced by the urological community. We review key papers on prostate-specific antigen screening, radical prostatectomy versus surveillance strategies, targeted therapies, timing of radiotherapy and alternative anti-androgen therapeutics. Previously, the majority of patients, irrespective of risk, underwent radical open surgical procedures associated with considerable morbidity and mortality. Evidence is emerging that not all prostate cancers are alike and that low-grade disease can be safely managed by surveillance strategies and localized treatment to the prostate. The question remains as to how to accurately stage the disease and ultimately choose which treatment pathway to follow.

  18. Suppression of genetic recombination in the pseudoautosomal region and at subtelomeres in mice with a hypomorphic Spo11 allele.

    Science.gov (United States)

    Smagulova, Fatima; Brick, Kevin; Pu, Yongmei; Sengupta, Uttara; Camerini-Otero, R Daniel; Petukhova, Galina V

    2013-07-22

    Homologous recombination is the key process that generates genetic diversity and drives evolution. SPO11 protein triggers recombination by introducing DNA double stranded breaks at discreet areas of the genome called recombination hotspots. The hotspot locations are largely determined by the DNA binding specificity of the PRDM9 protein in human, mice and most other mammals. In budding yeast Saccharomyces cerevisae, which lacks a Prdm9 gene, meiotic breaks are formed opportunistically in the regions of accessible chromatin, primarily at gene promoters. The genome-wide distribution of hotspots in this organism can be altered by tethering Spo11 protein to Gal4 recognition sequences in the strain expressing Spo11 attached to the DNA binding domain of the Gal4 transcription factor. To establish whether similar re-targeting of meiotic breaks can be achieved in PRDM9-containing organisms we have generated a Gal4BD-Spo11 mouse that expresses SPO11 protein joined to the DNA binding domain of yeast Gal4. We have mapped the genome-wide distribution of the recombination initiation sites in the Gal4BD-Spo11 mice. More than two hundred of the hotspots in these mice were novel and were likely defined by Gal4BD, as the Gal4 consensus motif was clustered around the centers in these hotspots. Surprisingly, meiotic DNA breaks in the Gal4BD-Spo11 mice were significantly depleted near the ends of chromosomes. The effect is particularly striking at the pseudoautosomal region of the X and Y chromosomes - normally the hottest region in the genome. Our data suggest that specific, yet-unidentified factors influence the initiation of meiotic recombination at subtelomeric chromosomal regions.

  19. Key Topics in Sports Medicine

    OpenAIRE

    2006-01-01

    Key Topics in Sports Medicine is a single quick reference source for sports and exercise medicine. It presents the essential information from across relevant topic areas, and includes both the core and emerging issues in this rapidly developing field. It covers: 1) Sports injuries, rehabilitation and injury prevention, 2) Exercise physiology, fitness testing and training, 3) Drugs in sport, 4) Exercise and health promotion, 5) Sport and exercise for special and clinical populations, 6) The ps...

  20. Key issues for passive safety

    International Nuclear Information System (INIS)

    Hayns, M.R.

    1996-01-01

    The paper represents a summary of the introductory presentation made at this Advisory Group Meeting on the Technical Feasibility and Reliability of Passive Safety Systems. It was intended as an overview of our views on what are the key issues and what are the technical problems which might dominate any future developments of passive safety systems. It is, therefore, not a ''review paper'' as such and only record the highlights. (author)

  1. Human Resources Key Performance Indicators

    Directory of Open Access Journals (Sweden)

    Gabčanová Iveta

    2012-03-01

    Full Text Available The article brings out a proposed strategy map and respective key performance indicators (KPIs in human resources (HR. The article provides an overview of how HR activities are supported in order to reach the partial goals of HR as defined in the strategic map. Overall the aim of the paper is to show the possibilities of using the modern Balanced Scorecard method in human capital.

  2. Key issues for passive safety

    Energy Technology Data Exchange (ETDEWEB)

    Hayns, M R [AEA Technology, Harwell, Didcot (United Kingdom). European Institutions; Hicken, E F [Forschungszentrum Juelich GmbH (Germany)

    1996-12-01

    The paper represents a summary of the introductory presentation made at this Advisory Group Meeting on the Technical Feasibility and Reliability of Passive Safety Systems. It was intended as an overview of our views on what are the key issues and what are the technical problems which might dominate any future developments of passive safety systems. It is, therefore, not a ``review paper`` as such and only record the highlights. (author).

  3. Low carbon development. Key issues

    Energy Technology Data Exchange (ETDEWEB)

    Urban, Frauke; Nordensvaard, Johan (eds.)

    2013-03-07

    This comprehensive textbook addresses the interface between international development and climate change in a carbon constrained world. It discusses the key conceptual, empirical and policy-related issues of low carbon development and takes an international and interdisciplinary approach to the subject by drawing on insights from across the natural sciences and social sciences whilst embedding the discussion in a global context. The first part explores the concept of low carbon development and explains the need for low carbon development in a carbon constrained world. The book then discusses the key issues of socio-economic, political and technological nature for low carbon development, exploring topics such as the political economy, social justice, financing and carbon markets, and technologies and innovation for low carbon development. This is followed by key issues for low carbon development in policy and practice, which is presented based on cross-cutting issues such as low carbon energy, forestry, agriculture and transportation. Afterwards, practical case studies are discussed from low carbon development in low income countries in Africa, middle income countries in Asia and Latin America and high income countries in Europe and North America.

  4. Detector decoy quantum key distribution

    International Nuclear Information System (INIS)

    Moroder, Tobias; Luetkenhaus, Norbert; Curty, Marcos

    2009-01-01

    Photon number resolving detectors can enhance the performance of many practical quantum cryptographic setups. In this paper, we employ a simple method to estimate the statistics provided by such a photon number resolving detector using only a threshold detector together with a variable attenuator. This idea is similar in spirit to that of the decoy state technique, and is especially suited to those scenarios where only a few parameters of the photon number statistics of the incoming signals have to be estimated. As an illustration of the potential applicability of the method in quantum communication protocols, we use it to prove security of an entanglement-based quantum key distribution scheme with an untrusted source without the need for a squash model and by solely using this extra idea. In this sense, this detector decoy method can be seen as a different conceptual approach to adapt a single-photon security proof to its physical, full optical implementation. We show that in this scenario, the legitimate users can now even discard the double click events from the raw key data without compromising the security of the scheme, and we present simulations on the performance of the BB84 and the 6-state quantum key distribution protocols.

  5. UK Citizens Lack Simple, Objective Knowledge of the European Union

    DEFF Research Database (Denmark)

    Manners, Ian James

    2017-01-01

    214); ‘A direct European tax will be created’ (EBS 214); ‘National citizenship will disappear’ (EBS 214); and ‘Most of the European budget is spent on administrative and personnel costs’ (EB65) UK respondents were far more likely to answer incorrectly that these were true. This is likely the result...... of disinformation in UK politics and media. The data suggests that not only are UK respondents unable to answer simple questions about the EU, but that they are relatively more likely to answer incorrectly rather than admit they did not know, reflecting disinformation about the EU in the UK. This lack of simple...

  6. Reincarnation and the Lack of Imagination in Philosophy

    Directory of Open Access Journals (Sweden)

    Mikel Burley

    2015-12-01

    Full Text Available It has been observed, by D. Z. Phillips among others, that philosophy suffers from a “lack of imagination”. That is, philosophers often fail to see possibilities of sense in forms of life and discourse due to narrow habits of thinking. This is especially problematic in the philosophy of religion, not least when cross-cultural modes of inquiry are called for. This article examines the problem in relation to the philosophical investigation of reincarnation beliefs in particular. As a remedial strategy, I argue for increased attention both to ethnographic sources and to the articulation of distinctively religious moral visions that reincarnation-talk facilitates.

  7. Key Concepts in Microbial Oceanography

    Science.gov (United States)

    Bruno, B. C.; Achilles, K.; Walker, G.; Weersing, K.; Team, A

    2008-12-01

    The Center for Microbial Oceanography: Research and Education (C-MORE) is a multi-institution Science and Technology Center, established by the National Science Foundation in 2006. C-MORE's research mission is to facilitate a more comprehensive understanding of the diverse assemblages of microorganisms in the sea, ranging from the genetic basis of marine microbial biogeochemistry including the metabolic regulation and environmental controls of gene expression, to the processes that underpin the fluxes of carbon, related bioelements, and energy in the marine environment. The C-MORE education and outreach program is focused on increasing scientific literacy in microbial oceanography among students, educators, and the general public. A first step toward this goal is defining the key concepts that constitute microbial oceanography. After lengthy discussions with scientists and educators, both within and outside C-MORE, we have arrived at six key concepts: 1) Marine microbes are very small and have been around for a long time; 2) Life on Earth could not exist without microbes; 3) Most marine microbes are beneficial; 4) Microbes are everywhere: they are extremely abundant and diverse; 5) Microbes significantly impact our global climate; and 6) There are new discoveries every day in the field of microbial oceanography. A C-MORE-produced brochure on these six key concepts will be distributed at the meeting. Advanced copies may be requested by email or downloaded from the C-MORE web site(http://cmore.soest.hawaii.edu/downloads/MO_key_concepts_hi-res.pdf). This brochure also includes information on career pathways in microbial oceanography, with the aim of broadening participation in the field. C-MORE is eager to work in partnership to incorporate these key concepts into other science literacy publications, particularly those involving ocean and climate literacy. We thank the following contributors and reviewers: P Chisholm, A Dolberry, and A Thompson (MIT); N Lawrence

  8. Age-related retinopathy in NRF2-deficient mice.

    Directory of Open Access Journals (Sweden)

    Zhenyang Zhao

    2011-04-01

    Full Text Available Cumulative oxidative damage is implicated in the pathogenesis of age-related macular degeneration (AMD. Nuclear factor erythroid 2-related factor 2 (NRF2 is a transcription factor that plays key roles in retinal antioxidant and detoxification responses. The purposes of this study were to determine whether NRF2-deficient mice would develop AMD-like retinal pathology with aging and to explore the underlying mechanisms.Eyes of both wild type and Nrf2(-/- mice were examined in vivo by fundus photography and electroretinography (ERG. Structural changes of the outer retina in aged animals were examined by light and electron microscopy, and immunofluorescence labeling. Our results showed that Nrf2(-/- mice developed age-dependent degenerative pathology in the retinal pigment epithelium (RPE. Drusen-like deposits, accumulation of lipofuscin, spontaneous choroidal neovascularization (CNV and sub-RPE deposition of inflammatory proteins were present in Nrf2(-/- mice after 12 months. Accumulation of autophagy-related vacuoles and multivesicular bodies was identified by electron microscopy both within the RPE and in Bruch's membrane of aged Nrf2(-/- mice.Our data suggest that disruption of Nfe2l2 gene increased the vulnerability of outer retina to age-related degeneration. NRF2-deficient mice developed ocular pathology similar to cardinal features of human AMD and deregulated autophagy is likely a mechanistic link between oxidative injury and inflammation. The Nrf2(-/- mice can provide a novel model for mechanistic and translational research on AMD.

  9. Of Mice and Snakes: A Tail of Oct4.

    Science.gov (United States)

    Shylo, Natalia A; Weatherbee, Scott D

    2016-08-08

    The vertebrate axial skeleton comprises regions of specialized vertebrae, which vary in length between lineages. Aires et al. (2016) uncover a key role for Oct4 in determining trunk length in mice. Additionally, a heterochronic shift in Oct4 expression may underlie the extreme elongation of the trunk in snakes. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Efficient lighting in buildings: The lack of legislation in Portugal

    International Nuclear Information System (INIS)

    Almeida, António Manuel; Martins, António Gomes

    2014-01-01

    The behavior of building designers is conditioned by the existing legislation and regulations in the national context in which they operate. However, in the Portuguese legislation there are no rules concerning the use of daylight, and therefore, designers are not stimulated to adopt solutions that make use of the existing potential of sunlight availability. In the same way, it is difficult to understand the lack of specific regulation, with quantified targets, limiting power density of artificial lighting installed inside buildings. The present opportunity, generated by the need to carry out the revision of Portuguese building energy systems regulation, should be used to fill the existing gap in national legislation regarding those matters. In this paper the authors present some proposals for future legislation that will have as central purpose the utilization of efficient lighting systems and the promotion of architectural solutions that optimize the use of daylighting. It is possible, and desirable, to add new directives to national legislation that contribute to the improvement of Portuguese buildings, characterized by its good performance in terms of daylight availability, and at the same time, increasing the energy efficiency and reducing the energy consumption of lighting systems installed in those buildings. - Highlights: • In the Portuguese legislation there are no rules concerning the use of daylight. • Lack of specific regulation limiting power density of artificial lighting. • Revision of Portuguese building energy systems regulation. • Some proposals for future legislation. • Improvement of Portuguese buildings promoting energy efficiency

  11. [Lack of assertiveness in patients with eating disorders].

    Science.gov (United States)

    Behar A, Rosa; Manzo G, Rodrigo; Casanova Z, Dunny

    2006-03-01

    Low self-assertion has been noted as an important feature among patients with eating disorders. To verify, in a female population, if assertiveness is related or has a predictive capacity for the development of eating disorders. An structured clinical interview, the Eating Attitudes Test (EAT-40) and the Rathus Assertiveness Scale (RAS) were administered to 62 patients that fulfilled the DSM-IV diagnostic criteria for eating disorders and to 120 female students without eating problems. Patients with eating disorders ranked significantly higher on the EAT-40 and its factors (p assertiveness on the RAS (p Assertiveness measured by RAS and its factors was inversely related to EAT-40 and its items (r= -0.21). The predictive capability of the lack of self-assertion in the development of an eating disorder reached 53%, when patients with eating disorders and subjects at risk were considered together and compared to students without such disorder. Lack of assertiveness is a significant trait in patients with eating disorders; it may worsen its outcome and even perpetuate symptoms. Low self-assertion may be considered a predictive factor in the development of an eating disorder and must be managed from a preventive or therapeutic point of view.

  12. Individuals With OCD Lack Unrealistic Optimism Bias in Threat Estimation.

    Science.gov (United States)

    Zetsche, Ulrike; Rief, Winfried; Exner, Cornelia

    2015-07-01

    Overestimating the occurrence of threatening events has been highlighted as a central cognitive factor in the maintenance of obsessive-compulsive disorder (OCD). The present study examined the different facets of this cognitive bias, its underlying mechanisms, and its specificity to OCD. For this purpose, threat estimation, probabilistic classification learning (PCL) and psychopathological measures were assessed in 23 participants with OCD, 30 participants with social phobia, and 31 healthy controls. Whereas healthy participants showed an optimistic expectation bias regarding positive and negative future events, OCD participants lacked such a bias. This lack of an optimistic expectation bias was not specific to OCD. Compared to healthy controls, OCD participants overestimated their personal risk for experiencing negative events, but did not differ from controls in their risk estimation regarding other people. Finally, OCD participants' biases in the prediction of checking-related events were associated with their impairments in learning probabilistic cue-outcome associations in a disorder-relevant context. In sum, the present results add to a growing body of research demonstrating that cognitive biases in OCD are context-dependent. Copyright © 2015. Published by Elsevier Ltd.

  13. Crucial roles of Nox2-derived oxidative stress in deteriorating the function of insulin receptors and endothelium in dietary obesity of middle-aged mice.

    Science.gov (United States)

    Du, Junjie; Fan, Lampson M; Mai, Anna; Li, Jian-Mei

    2013-11-01

    Systemic oxidative stress associated with dietary calorie overload plays an important role in the deterioration of vascular function in middle-aged patients suffering from obesity and insulin resistance. However, effective therapy is still lacking. In this study, we used a mouse model of middle-aged obesity to investigate the therapeutic potential of pharmaceutical inhibition (apocynin, 5 mM supplied in the drinking water) or knockout of Nox2, an enzyme generating reactive oxygen species (ROS), in high-fat diet (HFD)-induced obesity, oxidative stress, insulin resistance and endothelial dysfunction. Littermates of C57BL/6J wild-type (WT) and Nox2 knockout (KO) mice (7 months old) were fed with a HFD (45% kcal fat) or normal chow diet (NCD, 12% kcal fat) for 16 weeks and used at 11 months of age. Compared to NCD WT mice, HFD WT mice developed obesity, insulin resistance, dyslipidaemia and hypertension. Aortic vessels from these mice showed significantly increased Nox2 expression and ROS production, accompanied by significantly increased ERK1/2 activation, reduced insulin receptor expression, decreased Akt and eNOS phosphorylation and impaired endothelium-dependent vessel relaxation to acetylcholine. All these HFD-induced abnormalities (except the hyperinsulinaemia) were absent in apocynin-treated WT or Nox2 KO mice given the same HFD. In conclusion, Nox2-derived ROS played a key role in damaging insulin receptor and endothelial function in dietary obesity after middle-age. Targeting Nox2 could represent a valuable therapeutic strategy in the metabolic syndrome. © 2013 The British Pharmacological Society.

  14. JNK1 ablation in mice confers long-term metabolic protection from diet-induced obesity at the cost of moderate skin oxidative damage.

    Science.gov (United States)

    Becattini, Barbara; Zani, Fabio; Breasson, Ludovic; Sardi, Claudia; D'Agostino, Vito Giuseppe; Choo, Min-Kyung; Provenzani, Alessandro; Park, Jin Mo; Solinas, Giovanni

    2016-09-01

    Obesity and insulin resistance are associated with oxidative stress, which may be implicated in the progression of obesity-related diseases. The kinase JNK1 has emerged as a promising drug target for the treatment of obesity and type 2 diabetes. JNK1 is also a key mediator of the oxidative stress response, which can promote cell death or survival, depending on the magnitude and context of its activation. In this article, we describe a study in which the long-term effects of JNK1 inactivation on glucose homeostasis and oxidative stress in obese mice were investigated for the first time. Mice lacking JNK1 (JNK1(-/-)) were fed an obesogenic high-fat diet (HFD) for a long period. JNK1(-/-) mice fed an HFD for the long term had reduced expression of antioxidant genes in their skin, more skin oxidative damage, and increased epidermal thickness and inflammation compared with the effects in control wild-type mice. However, we also observed that the protection from obesity, adipose tissue inflammation, steatosis, and insulin resistance, conferred by JNK1 ablation, was sustained over a long period and was paralleled by decreased oxidative damage in fat and liver. We conclude that compounds targeting JNK1 activity in brain and adipose tissue, which do not accumulate in the skin, may be safer and most effective.-Becattini, B., Zani, F., Breasson, L., Sardi, C., D'Agostino, V. G., Choo, M.-K., Provenzani, A., Park, J. M., Solinas, G. JNK1 ablation in mice confers long-term metabolic protection from diet-induced obesity at the cost of moderate skin oxidative damage. © FASEB.

  15. Of mice and men

    DEFF Research Database (Denmark)

    Andersen, Troels Askhøj; Troelsen, Karin de Linde Lind; Larsen, Lars Allan

    2014-01-01

    CHD is part of the phenotype. Furthermore, mapping of genomic copy number variants and exome sequencing of CHD patients have led to the identification of a large number of candidate disease genes. Experiments in animal models, particularly in mice, have been used to verify human disease genes...

  16. Age-dependent modifications of AMPA receptor subunit expression levels and related cognitive effects in 3xTg-AD mice

    Directory of Open Access Journals (Sweden)

    Pamela eCantanelli

    2014-08-01

    Full Text Available GluA1, GluA2, GluA3, and GluA4 are the constitutive subunits of AMPA receptors (AMPARs, the major mediators of fast excitatory transmission in the mammalian central nervous system. Most AMPARs are Ca2+-impermeable because of the presence of the GluA2 subunit. GluA2 mRNA undergoes an editing process that results in a Q to R substitution, a key factor in the regulation of AMPAR Ca2+-permeability. AMPARs lacking GluA2 or containing the unedited subunit are permeable to Ca2+ and Zn2+. The phenomenon physiologically modulates synaptic plasticity while, in pathologic conditions, leads to increased vulnerability to excitotoxic neuronal death. Given the importance of these subunits, we have therefore evaluated possible associations between changes in expression levels of AMPAR subunits and development of cognitive deficits in 3xTg-AD mice, a widely investigated transgenic mouse model of Alzheimer’s disease. With qRT-PCR, we assayed hippocampal mRNA expression levels of GluA1-4 subunits occurring in young [3 months of age (m.o.a.] and old (12 m.o.a Tg-AD mice and made comparisons with levels found in age-matched wild type (WT mice. Efficiency of GluA2 RNA editing was also analyzed. All animals were cognitively tested for short- and long-term spatial memory with the Morris Water Maze (MWM navigation task. 3xTg-AD mice showed age-dependent decreases of mRNA levels for all the AMPAR subunits, with the exception of GluA2. Editing remained fully efficient with aging in 3xTg-AD and WT mice. A one-to-one correlation analysis between MWM performances and GluA1-4 mRNA expression profiles showed negative correlations between GluA2 levels and MWM performances in young 3xTg-AD mice. On the contrary, positive correlations between GluA2 mRNA and MWM performances were found in young WT mice. Our data suggest that increases of AMPARs that contain GluA1, GluA3, and GluA4 subunits may help in maintaining cognition in pre-symptomatic 3xTg-AD mice.

  17. Lack of metformin effect on mouse embryo AMPK activity: implications for metformin treatment during pregnancy.

    Science.gov (United States)

    Lee, Hyung-Yul; Wei, Dan; Loeken, Mary R

    2014-01-01

    Adenosine monophosphate-activated protein kinase (AMPK) is stimulated in embryos during diabetic pregnancy by maternal hyperglycaemia-induced embryo oxidative stress. Stimulation of AMPK disrupts embryo gene expression and causes neural tube defects. Metformin, which may be taken during early pregnancy, has been reported to stimulate AMPK activity. Thus, the benefits of improved glycaemic control could be offset by stimulated embryo AMPK activity. Here, we investigated whether metformin can stimulate AMPK activity in mouse embryos and can adversely affect embryo gene expression and neural tube defects. Pregnant nondiabetic mice were administered metformin beginning on the first day of pregnancy. Activation of maternal and embryo AMPK [phospho-AMPK α (Thr172) relative to total AMPK], expression of Pax3, a gene required for neural tube closure, and neural tube defects were studied. Mouse embryonic stem cells were used as a cell culture model of embryonic neuroepithelium to study metformin effects on AMPK and Pax3 expression. Metformin had no effect on AMPK in embryos or maternal skeletal muscle but increased activated AMPK in maternal liver. Metformin did not inhibit Pax3 expression or increase neural tube defects. However, metformin increased activated AMPK and inhibited Pax3 expression by mouse embryonic stem cells. Mate1/Slc47a1 and Oct3/Slc22a, which encode metformin transporters, were expressed at barely detectable levels by embryos. Although metformin can have effects associated with diabetic embryopathy in vitro, the lack of effects on mouse embryos in vivo may be due to lack of metformin transporters and indicates that the benefits of metformin on glycaemic control are not counteracted by stimulation of embryo AMPK activity and consequent embryopathy. Copyright © 2013 John Wiley & Sons, Ltd.

  18. Docetaxel chronopharmacology in mice.

    Science.gov (United States)

    Tampellini, M; Filipski, E; Liu, X H; Lemaigre, G; Li, X M; Vrignaud, P; François, E; Bissery, M C; Lévi, F

    1998-09-01

    Docetaxel tolerance and antitumor efficacy could be enhanced if drug administration was adapted to circadian rhythms. This hypothesis was investigated in seven experiments involving a total of 626 male B6D2F1 mice, synchronized with an alternation of 12 h of light and 12 h of darkness (12:12), after i.v. administration of docetaxel. In experiment (Exp) 1, the drug was given once a week (wk) for 6 wks (20 mg/kg/wk) or for 5 wks (30 mg/kg/wk) at one of six circadian times, during light when mice were resting [3, 7, or 11 hours after light onset (HALO)], or during darkness, when mice were active (15, 19, or 23 HALO). Endpoints were survival and body weight change. In Exp 2 and 3, docetaxel (30 mg/kg/wk) was administered twice, 1 wk apart, at one of four circadian stages (7, 11, 19, or 23 HALO). Endpoints were hematological and intestinal toxicities. In Exp 4, circadian changes in cell cycle phase distribution and BCL-2 immunofluorescence were investigated in bone marrow as possible mechanisms of docetaxel tolerability rhythm. In Exp 5 to 7, docetaxel was administered to mice bearing measurable P03 pancreatic adenocarcinoma (270-370 mg), with tumor weight and survival as endpoints. Mice from Exp 5 and 6 received a weekly schedule of docetaxel at one of six circadian stages (20 or 30 mg/kg/wk at 3, 7, 11, 15, 19, or 23 HALO). In Exp 7, docetaxel (30 mg/kg) was given every 2 days (day 1, 3, 5 schedule) at 7, 11, 19, or 23 HALO. Docetaxel dosing in the second half of darkness (19 or 23 HALO) resulted in significantly worse toxicity than its administration during the light span (3, 7, or 11 HALO). The survival rate ranged from 56.3% in the mice treated at 23 HALO to 93.8 or 87.5% in those injected at 3 or 11 HALO, respectively (Exp 1, P active at 11 HALO (percentage increase in life span, 390%) and least active at 23 HALO (210%). Docetaxel tolerability and antitumor efficacy were simultaneously enhanced by drug dosing in the light span, when mice were resting. Mechanisms

  19. Lack of endogenous parathyroid hormone delays fracture healing by inhibiting vascular endothelial growth factor‑mediated angiogenesis.

    Science.gov (United States)

    Ding, Qingfeng; Sun, Peng; Zhou, Hao; Wan, Bowen; Yin, Jian; Huang, Yao; Li, Qingqing; Yin, Guoyong; Fan, Jin

    2018-07-01

    Intermittent low‑dose injections of parathyroid hormone (PTH) have been reported to exert bone anabolic effects and to promote fracture healing. As an important proangiogenic cytokine, vascular endothelial growth factor (VEGF) is secreted by bone marrow mesenchymal stem cells (BMSCs) and osteoblasts, and serves a crucial regulatory role in the process of vascular development and regeneration. To investigate whether lack of endogenous PTH causes reduced angiogenic capacity and thereby delays the process of fracture healing by downregulating the VEGF signaling pathway, a PTH knockout (PTHKO) mouse fracture model was generated. Fracture healing was observed using X‑ray and micro‑computerized tomography. Bone anabolic and angiogenic markers were analyzed by immunohistochemistry and western blot analysis. The expression levels of VEGF and associated signaling pathways in murine BMSC‑derived osteoblasts were measured by quantitative polymerase chain reaction and western blot analysis. The expression levels of protein kinase A (PKA), phosphorylated‑serine/threonine protein kinase (pAKT), hypoxia‑inducible factor‑1α (HIF1α) and VEGF were significantly decreased in BMSC‑derived osteoblasts from PTHKO mice. In addition, positive platelet endothelial cell adhesion molecule staining was reduced in PTHKO mice, as determined by immunohistochemistry. The expression levels of HIF1α, VEGF, runt‑related transcription factor 2, osteocalcin and alkaline phosphatase were also decreased in PTHKO mice, and fracture healing was delayed. In conclusion, lack of endogenous PTH may reduce VEGF expression in BMSC‑derived osteoblasts by downregulating the activity of the PKA/pAKT/HIF1α/VEGF pathway, thus affecting endochondral bone formation by causing a reduction in angiogenesis and osteogenesis, ultimately leading to delayed fracture healing.

  20. Fibre Optic Communication Key Devices

    CERN Document Server

    Grote, Norbert

    2012-01-01

    The book gives an in-depth description of the key devices of current and next generation fibre optic communication networks. In particular, the book covers devices such as semiconductor lasers, optical amplifiers, modulators, wavelength filters, and detectors but the relevant properties of optical fibres as well. The presentations include the physical principles underlying the various devices, the technologies used for the realization of the different devices, typical performance characteristics and limitations, and development trends towards more advanced components are also illustrated. Thus the scope of the book spans relevant principles, state-of-the-art implementations, the status of current research and expected future components.

  1. Symmetric autocompensating quantum key distribution

    Science.gov (United States)

    Walton, Zachary D.; Sergienko, Alexander V.; Levitin, Lev B.; Saleh, Bahaa E. A.; Teich, Malvin C.

    2004-08-01

    We present quantum key distribution schemes which are autocompensating (require no alignment) and symmetric (Alice and Bob receive photons from a central source) for both polarization and time-bin qubits. The primary benefit of the symmetric configuration is that both Alice and Bob may have passive setups (neither Alice nor Bob is required to make active changes for each run of the protocol). We show that both the polarization and the time-bin schemes may be implemented with existing technology. The new schemes are related to previously described schemes by the concept of advanced waves.

  2. Key energy technologies for Europe

    DEFF Research Database (Denmark)

    Jørgensen, B.H.

    2005-01-01

    This report on key energy technologies is part of the work undertaken by the High-Level Expert Group to prepare a report on emerging science and technology trends and the implications for EU and Member State research policies. Senior Scientist BirteHolst Jørgensen, Risø National Laboratory...... contributed by Scientific Officer Edgar Thielmann, DG TREN, Head of Department Hans Larsen, RisøNational Laboratory, Senior Asset Manager Aksel Hauge Pedersen, DONG VE, Consultant Timon Wehnert, IZT-Berlin, and Senior Scientist Martine Uyterlinde, ECN...

  3. Key concepts in social pedagogy

    DEFF Research Database (Denmark)

    Harbo, Lotte Junker

    2011-01-01

    and activities around key social pedagogical concepts, such as the Common Third, the 3 P’s, the Zone of Proximal Development and the Learning Zone model. In the article we explore how a joint activity, for example playing soccer, can be seen as a pedagogical activity and with what intentions it is undertaken......“Now I can actually play soccer with the young people without fearing that my colleagues think I am escaping the paper work.” These were the words from a participant in a social pedagogy training course in England a few years ago. This understanding emerged through in-depth discussions...

  4. Radiation carcinogenesis in radiosensitive mutant Scid mice

    International Nuclear Information System (INIS)

    Ogiu, Toshiaki; Ishii-Ohba, Hiroko; Kobayashi, Shigeru; Nishimura, Mayumi; Shimada, Yoshiya; Tsuji, Hideo; Watanabe, Fumiaki; Suzuki, Fumio; Sado, Toshihiko

    2000-01-01

    The Scid mice were established as a severe combined immunodeficient mouse strain lacking both T- and B-cell functions. Scid (homozygote), its parent strain C.B-17 (wild-type) and their hybrid F1 (heterozygote) were used for analysis of the relationship between sensitivity to acute effects of ionizing radiation and radiation-tumor development. Acute effects were studied using γ-rays and LD 50(30) was found to be 4.05 Gy in Scid, 6.5 Gy in F1 and 7.2 Gy in C.B-17. When bone marrow cells were irradiated with X-rays in vitro, survival curves of C.B-17 and F1 cells showed a region of shoulder with D 0 =0.68 and 0.67 Gy, respectively, while those of Scid were of no shoulder with D 0 =0.46 Gy. Scid mice died due to tumors (most were thymic lymphoma, T/L) 20-40 weeks after irradiation with 1-3 Gy γ-rays but C.B-17 and F1 survived longer. Bone marrow transplantation was found effective to prevent the radiation T/L. FACS analysis for surface antigens of those T/L cells suggested the change of Ras oncogenes. The change of Notch 1 gene was suggested by Southern hybridization and thus a possible role of defective DNA-PK in mice alone (not in rats and humans) was suggested as well. (K.H.)

  5. Public/private key certification authority and key distribution. Draft

    Energy Technology Data Exchange (ETDEWEB)

    Long, J.P.; Christensen, M.J.; Sturtevant, A.P.; Johnston, W.E.

    1995-09-25

    Traditional encryption, which protects messages from prying eyes, has been used for many decades. The present concepts of encryption are built from that heritage. Utilization of modern software-based encryption techniques implies much more than simply converting files to an unreadable form. Ubiquitous use of computers and advances in encryption technology coupled with the use of wide-area networking completely changed the reasons for utilizing encryption technology. The technology demands a new and extensive infrastructure to support these functions. Full understanding of these functions, their utility and value, and the need for an infrastructure, takes extensive exposure to the new paradigm. This paper addresses issues surrounding the establishment and operation of a key management system (i.e., certification authority) that is essential to the successful implementation and wide-spread use of encryption.

  6. Antigenicity of Leishmania-Activated C-Kinase Antigen (LACK in Human Peripheral Blood Mononuclear Cells, and Protective Effect of Prime-Boost Vaccination With pCI-neo-LACK Plus Attenuated LACK-Expressing Vaccinia Viruses in Hamsters

    Directory of Open Access Journals (Sweden)

    Laura Fernández

    2018-04-01

    Full Text Available Leishmania-activated C-kinase antigen (LACK is a highly conserved protein among Leishmania species and is considered a viable vaccine candidate for human leishmaniasis. In animal models, prime-boost vaccination with LACK-expressing plasmids plus attenuated vaccinia viruses (modified vaccinia Ankara [MVA] and mutant M65 expressing LACK, has been shown to protect against cutaneous leishmaniasis (CL. Further, LACK demonstrated to induce the production of protective cytokines in patients with active CL or cured visceral leishmaniasis, as well as in asymptomatic individuals from endemic areas. However, whether LACK is capable to trigger cytokine release by peripheral blood mononuclear cells from patients cured of CL due to Leishmania infantum (L. infantum or induce protection in L. infantum-infected hamsters [visceral leishmaniasis (VL model], has not yet been analyzed. The present work examines the ex vivo immunogenicity of LACK in cured VL and CL patients, and asymptomatic subjects from an L. infantum area. It also evaluates the vaccine potential of LACK against L. infantum infection in hamsters, in a protocol of priming with plasmid pCI-neo-LACK (DNA-LACK followed by a booster with the poxvirus vectors MVA-LACK or M65-LACK. LACK-stimulated PBMC from both asymptomatic and cured subjects responded by producing IFN-γ, TNF-α, and granzyme B (Th1-type response. Further, 78% of PBMC samples that responded to soluble Leishmania antigen showed IFN-γ secretion following stimulation with LACK. In hamsters, the protocol of DNA-LACK prime/MVA-LACK or M65-LACK virus boost vaccination significantly reduced the amount of Leishmania DNA in the liver and bone marrow, with no differences recorded between the use of MVA or M65 virus vector options. In summary, the Th1-type and cytotoxic responses elicited by LACK in PBMC from human subjects infected with L. infantum, and the parasite protective effect of prime/boost vaccination in hamsters with DNA-LACK/MVA-LACK

  7. Key performance indicators in British military trauma.

    Science.gov (United States)

    Stannard, Adam; Tai, Nigel R; Bowley, Douglas M; Midwinter, Mark; Hodgetts, Tim J

    2008-08-01

    Key performance indicators (KPI) are tools for assessing process and outcome in systems of health care provision and are an essential component in performance improvement. Although KPI have been used in British military trauma for 10 years, they remain poorly defined and are derived from civilian metrics that do not adjust for the realities of field trauma care. Our aim was to modify current trauma KPI to ensure they more faithfully reflect both the military setting and contemporary evidence in order to both aid accurate calibration of the performance of the British Defence Medical Services and act as a driver for performance improvement. A workshop was convened that was attended by senior, experienced doctors and nurses from all disciplines of trauma care in the British military. "Speciality-specific" KPI were developed by interest groups using evidence-based data where available and collective experience where this was lacking. In a final discussion these were streamlined into 60 KPI covering each phase of trauma management. The introduction of these KPI sets a number of important benchmarks by which British military trauma can be measured. As part of a performance improvement programme, these will allow closer monitoring of our performance and assist efforts to develop, train, and resource British military trauma providers.

  8. Three key affordances for serendipity

    DEFF Research Database (Denmark)

    Björneborn, Lennart

    2017-01-01

    Purpose Serendipity is an interesting phenomenon to study in information science as it plays a fundamental – but perhaps underestimated – role in how we discover, explore, and learn in all fields of life. The purpose of this paper is to operationalize the concept of serendipity by providing termi...... terminological “building blocks” for understanding connections between environmental and personal factors in serendipitous encounters. Understanding these connections is essential when designing affordances in physical and digital environments that can facilitate serendipity. Design....../methodology/approach In this paper, serendipity is defined as what happens when we, in unplanned ways, encounter resources (information, things, people, etc.) that we find interesting. In the outlined framework, serendipity is understood as an affordance, i.e., a usage potential when environmental and personal factors correspond...... the three key affordances and three key personal serendipity factors: curiosity, mobility, and sensitivity. Ten sub-affordances for serendipity and ten coupled personal sub-factors are also briefly outlined. Related research is compared with and mapped into the framework aiming at a theoretical validation...

  9. Key energy technologies for Europe

    International Nuclear Information System (INIS)

    Holst Joergensen, Birte

    2005-09-01

    The report is part of the work undertaken by the High-Level Expert Group to prepare a report on emerging science and technology trends and the implications for EU and Member State research policies. The outline of the report is: 1) In the introductory section, energy technologies are defined and for analytical reasons further narrowed down; 2) The description of the socio-economic challenges facing Europe in the energy field is based on the analysis made by the International Energy Agency going back to 1970 and with forecasts to 2030. Both the world situation and the European situation are described. This section also contains an overview of the main EU policy responses to energy. Both EU energy R and D as well as Member State energy R and D resources are described in view of international efforts; 3) The description of the science and technology base is made for selected energy technologies, including energy efficiency, biomass, hydrogen, and fuel cells, photovoltaics, clean fossil fuel technologies and CO 2 capture and storage, nuclear fission and fusion. When possible, a SWOT is made for each technology and finally summarised; 4) The forward look highlights some of the key problems and uncertainties related to the future energy situation. Examples of recent energy foresights are given, including national energy foresights in Sweden and the UK as well as links to a number of regional and national foresights and roadmaps; 5) Appendix 1 contains a short description of key international organisations dealing with energy technologies and energy research. (ln)

  10. Lack of production sharing laws slows joint ventures in Russia

    International Nuclear Information System (INIS)

    Knott, D.

    1995-01-01

    When Russia opened its doors to foreign oil companies in 1990, there was a rush to secure a piece of the country's potentially vast oil wealth. Since then, many of the ventures between Russian and non-Russian partners have become bogged down with operational problems and an ever changing tax and legal regime. There is a stockpile of massive developments building, while government grinds with seeming reluctance toward passing laws that will allow outside firms to do big business. For major development projects the main stumbling block is the lack of production sharing contract legislation. The paper describes the problems, the current legislation, and operating problems, then highlights several joint ventures that have been successful and several that have ended in pullouts of the foreign investor

  11. [Lack of donor organs as an argument for living donors?].

    Science.gov (United States)

    Kirste, G

    2010-09-01

    In Germany more than 12,000 patients are presently waiting for an organ donation. Living donation makes sense for the long waiting time for a kidney, but it is not a permanent solution for the lack of organ donations. In the future topics which should be discussed are intensified public relations, a better family care and the allocation of rights and duties at the German coordinating agency. For all the prospects of success after a living donation the high standards of quality and security, which are targeted by the German donor organization in recipient protection, responsible evaluation of the expanded donor criteria and immunosuppressive therapy are all in favor of post-mortem organ donation. For all the phenomenal chance of success the priority of the post-mortem organ donation is regulated by law. The living donation remains an individual decision of the donor and the personal situation of life.

  12. Problems caused by regulatory delays and lack of regulation

    Science.gov (United States)

    Reamer, Lynne A.

    1994-12-01

    An FDA perspective on some of the problems encountered during the device review process is described. Emphasis is placed on the need for communication and teamwork among all parties to make the system work. Manufacturers are encouraged to `Do it right the first time.' Pertinent questions are asked of the manufacturers and proposed solutions are presented. Day to day reality at FDA is described and document workload is revealed. Lack of regulation, or more appropriately, when less regulation is appropriate is discussed. FDA has distributed to manufacturers a new draft guidance document to help in the decisionmaking process and when to submit a 510(k) when modifications are made to a device. This and other mechanisms are in place at the FDA to streamline the review process. Manufacturers are cautioned about their decisions and to seek advice from qualified persons. FDA emphasizes that help is available and that when in doubt, call.

  13. Lack of time management as a psychosocial work risk

    Directory of Open Access Journals (Sweden)

    Ramon Cladellas

    2008-10-01

    Full Text Available This paper is aimed to explore the possible relationship between workers' lack of time management and several psychosocial risks. The psychosocial risks were assessed by means of the ISTAS21 Questionnaire, the Spanish version of the CoPsoQ (Copenhagen Psychological Questionnaire. More specifically, nine dimensions, which are directly related with time management, satisfaction, health and stress, were selected for evaluation. Time management was measured through the following variables: quantitative demands, influences and control of the time. Drawing on a sample of 142 workers from four departments (development, implantation, support and administration, the research results show that the employees who belong to a department that offers few opportunities for individual time management are less satisfied, have worse general and mental health, and experience more behavioral, symptomatic and cognitive stress than those who can manage their work schedule.

  14. Nonadherence is Associated with Lack of HIV-Related Knowledge

    DEFF Research Database (Denmark)

    Dyrehave, Charlotte; Rasmussen, Dlama Nggida; Hønge, Bo Langhoff

    2016-01-01

    -sectional study included 494 HIV-infected individuals from the Bissau HIV Cohort in Guinea-Bissau. They completed a questionnaire designed for assessment of adherence and HIV-related knowledge. RESULTS: A majority were female, 41% were illiterate, 25% did not take the medicine during the last 4 days, and 23......BACKGROUND: Poor treatment adherence is a main barrier for effective antiretroviral therapy (ART) globally. HIV-related knowledge may affect understanding and utilization of HIV medical information, hence limited health literacy is a known barrier to treatment adherence. DESIGN AND METHODS: A cross......% skipped their medicine during weekends. The most frequent reasons for not taking medicine were simply forgetting, side effects, lack of food, and being too ill to attend the clinic. Nonadherent patients had a lower level of HIV-related knowledge. CONCLUSION: Main barriers for nonadherence were side...

  15. TAM receptor knockout mice are susceptible to retinal autoimmune induction.

    Science.gov (United States)

    Ye, Fei; Li, Qiutang; Ke, Yan; Lu, Qingjun; Han, Lixia; Kaplan, Henry J; Shao, Hui; Lu, Qingxian

    2011-06-16

    TAM receptors are expressed mainly by dendritic cells and macrophages in the immune system, and mice lacking TAM receptors develop systemic autoimmune diseases because of inefficient negative control of the cytokine signaling in those cells. This study aims to test the susceptibility of the TAM triple knockout (tko) mice to the retina-specific autoantigen to develop experimental autoimmune uveoretinitis (EAU). TAM tko mice that were or were not immunized with interphotoreceptor retinoid-binding protein (IRBP) peptides were evaluated for retinal infiltration of the macrophages and CD3(+) T cells by immunohistochemistry, spontaneous activation of CD4(+) T cells, and memory T cells by flow cytometry and proliferation of IRBP-specific CD4(+) T cells by [(3)H]thymidine incorporation assay. Ocular inflammation induced by IRBP peptide immunization and specific T cell transfer were observed clinically by funduscopy and confirmed by histology. Tko mice were found to have less naive, but more activated, memory T cells, among which were exhibited high sensitivity to ocular IRBP autoantigens. Immunization with a low dose of IRBP and adoptive transfer of small numbers of IRBP-specific T cells from immunized tko mice caused the infiltration of lymphocytes, including CD3(+) T cells, into the tko retina. Mice without TAM receptor spontaneously develop IRBP-specific CD4(+) T cells and are more susceptible to retinal autoantigen immunization. This TAM knockout mouse line provides an animal model with which to study the role of antigen-presenting cells in the development of T cell-mediated uveitis.

  16. Profiling helper T cell subset gene expression in deer mice

    Directory of Open Access Journals (Sweden)

    Hjelle Brian

    2006-08-01

    Full Text Available Abstract Background Deer mice (Peromyscus maniculatus are the most common mammals in North America and are reservoirs for several zoonotic agents, including Sin Nombre virus (SNV, the principal etiologic agent of hantavirus cardiopulmonary syndrome (HCPS in North America. Unlike human HCPS patients, SNV-infected deer mice show no overt pathological symptoms, despite the presence of virus in the lungs. A neutralizing IgG antibody response occurs, but the virus establishes a persistent infection. Limitations of detailed analysis of deer mouse immune responses to SNV are the lack of reagents and methods for evaluating such responses. Results We developed real-time PCR-based detection assays for several immune-related transcription factor and cytokine genes from deer mice that permit the profiling of CD4+ helper T cells, including markers of Th1 cells (T-bet, STAT4, IFNγ, TNF, LT, Th2 cells (GATA-3, STAT6, IL-4, IL-5 and regulatory T cells (Fox-p3, IL-10, TGFβ1. These assays compare the expression of in vitro antigen-stimulated and unstimulated T cells from individual deer mice. Conclusion We developed molecular methods for profiling immune gene expression in deer mice, including a multiplexed real-time PCR assay for assessing expression of several cytokine and transcription factor genes. These assays should be useful for characterizing the immune responses of experimentally- and naturally-infected deer mice.

  17. Aerosols transmit prions to immunocompetent and immunodeficient mice.

    Directory of Open Access Journals (Sweden)

    Johannes Haybaeck

    Full Text Available Prions, the agents causing transmissible spongiform encephalopathies, colonize the brain of hosts after oral, parenteral, intralingual, or even transdermal uptake. However, prions are not generally considered to be airborne. Here we report that inbred and crossbred wild-type mice, as well as tga20 transgenic mice overexpressing PrP(C, efficiently develop scrapie upon exposure to aerosolized prions. NSE-PrP transgenic mice, which express PrP(C selectively in neurons, were also susceptible to airborne prions. Aerogenic infection occurred also in mice lacking B- and T-lymphocytes, NK-cells, follicular dendritic cells or complement components. Brains of diseased mice contained PrP(Sc and transmitted scrapie when inoculated into further mice. We conclude that aerogenic exposure to prions is very efficacious and can lead to direct invasion of neural pathways without an obligatory replicative phase in lymphoid organs. This previously unappreciated risk for airborne prion transmission may warrant re-thinking on prion biosafety guidelines in research and diagnostic laboratories.

  18. Defective chemokine signal integration in leukocytes lacking activator of G protein signaling 3 (AGS3).

    Science.gov (United States)

    Branham-O'Connor, Melissa; Robichaux, William G; Zhang, Xian-Kui; Cho, Hyeseon; Kehrl, John H; Lanier, Stephen M; Blumer, Joe B

    2014-04-11

    Activator of G-protein signaling 3 (AGS3, gene name G-protein signaling modulator-1, Gpsm1), an accessory protein for G-protein signaling, has functional roles in the kidney and CNS. Here we show that AGS3 is expressed in spleen, thymus, and bone marrow-derived dendritic cells, and is up-regulated upon leukocyte activation. We explored the role of AGS3 in immune cell function by characterizing chemokine receptor signaling in leukocytes from mice lacking AGS3. No obvious differences in lymphocyte subsets were observed. Interestingly, however, AGS3-null B and T lymphocytes and bone marrow-derived dendritic cells exhibited significant chemotactic defects as well as reductions in chemokine-stimulated calcium mobilization and altered ERK and Akt activation. These studies indicate a role for AGS3 in the regulation of G-protein signaling in the immune system, providing unexpected venues for the potential development of therapeutic agents that modulate immune function by targeting these regulatory mechanisms.

  19. Lack of protein-tyrosine sulfation disrupts photoreceptor outer segment morphogenesis, retinal function and retinal anatomy.

    Science.gov (United States)

    Sherry, David M; Murray, Anne R; Kanan, Yogita; Arbogast, Kelsey L; Hamilton, Robert A; Fliesler, Steven J; Burns, Marie E; Moore, Kevin L; Al-Ubaidi, Muayyad R

    2010-11-01

    To investigate the role(s) of protein-tyrosine sulfation in the retina, we examined retinal function and structure in mice lacking tyrosylprotein sulfotransferases (TPST) 1 and 2. Tpst double knockout (DKO; Tpst1(-/-) /Tpst2 (-/-) ) retinas had drastically reduced electroretinographic responses, although their photoreceptors exhibited normal responses in single cell recordings. These retinas appeared normal histologically; however, the rod photoreceptors had ultrastructurally abnormal outer segments, with membrane evulsions into the extracellular space, irregular disc membrane spacing and expanded intradiscal space. Photoreceptor synaptic terminals were disorganized in Tpst DKO retinas, but established ultrastructurally normal synapses, as did bipolar and amacrine cells; however, the morphology and organization of neuronal processes in the inner retina were abnormal. These results indicate that protein-tyrosine sulfation is essential for proper outer segment morphogenesis and synaptic function, but is not critical for overall retinal structure or synapse formation, and may serve broader functions in neuronal development and maintenance. © 2010 The Authors. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  20. Lack of functional specialization of neurons in the mouse primary visual cortex that have expressed calretinin

    Directory of Open Access Journals (Sweden)

    Daniela eCamillo

    2014-09-01

    Full Text Available Calretinin is a calcium-binding protein often used as a marker for a subset of inhibitory interneurons in the mammalian neocortex. We studied the labeled cells in offspring from a cross of a Cre-dependent reporter line with the CR-ires-Cre mice, which express Cre-recombinase in the same pattern as calretinin. We found that in the mature visual cortex, only a minority of the cells that have expressed calretinin and Cre-recombinase during their lifetime is GABAergic and only about 20% are immunoreactive for calretinin. The reason behind this is that calretinin is transiently expressed in many cortical pyramidal neurons during development. To determine whether neurons that express or have expressed calretinin share any distinct functional characteristics, we recorded their visual response properties using GCaMP6s calcium imaging. The average orientation selectivity, size tuning, and temporal and spatial frequency tuning of this group of cells, however, match the response profile of the general neuronal population, revealing the lack of functional specialization for the features studied.

  1. Role of Keap1-Nrf2 signaling in depression and dietary intake of glucoraphanin confers stress resilience in mice

    OpenAIRE

    Yao, Wei; Zhang, Ji-chun; Ishima, Tamaki; Dong, Chao; Yang, Chun; Ren, Qian; Ma, Min; Han, Mei; Wu, Jin; Suganuma, Hiroyuki; Ushida, Yusuke; Yamamoto, Masayuki; Hashimoto, Kenji

    2016-01-01

    The transcription factor Keap1-Nrf2 system plays a key role in inflammation which is involved in depression. We found lower expression of Keap1 and Nrf2 proteins in the prefrontal cortex (PFC), CA3 and dentate gyrus (DG) of hippocampus in mice with depression-like phenotype compared to control mice. Serum levels of pro-inflammatory cytokines in Nrf2 knock-out (KO) mice were higher than those of wild-type mice, suggestive of enhanced inflammation in KO mice. Decreased brain-derived neurotrophi...

  2. Effects of Social Defeat Stress on Sleep in Mice.

    Science.gov (United States)

    Henderson, Fiona; Vialou, Vincent; El Mestikawy, Salah; Fabre, Véronique

    2017-01-01

    Stress plays a key role in the development of psychiatric disorders and has a negative impact on sleep integrity. In mice, chronic social defeat stress (CSDS) is an ethologically valid model of stress-related disorders but little is known about its effects on sleep regulation. Here, we investigated the immediate and long-term effects of 10 consecutive days of social defeat (SD) on vigilance states in C57Bl/6J male mice. Social behavior was assessed to identify susceptible mice, i.e., mice that develop long-lasting social avoidance, and unsusceptible mice. Sleep-wake stages in mice of both groups were analyzed by means of polysomnographic recordings at baseline, after the first, third, and tenth stress sessions and on the 5th recovery day (R5) following the 10-day CSDS. In susceptible mice, each SD session produced biphasic changes in sleep-wake states that were preserved all along 10-day CSDS. These sessions elicited a short-term enhancement of wake time while rapid eye-movement (REM) sleep was strongly inhibited. Concomitantly, delta power was increased during non REM (NREM) sleep. During the following dark period, an increase in total sleep time, as well as wake fragmentation, were observed after each analyzed SD session. Similar changes were observed in unsusceptible mice. At R5, elevated high-frequency EEG activity, as observed in insomniacs, emerged during NREM sleep in both susceptible and unsusceptible groups suggesting that CSDS impaired sleep quality. Furthermore, susceptible but not unsusceptible mice displayed stress-anticipatory arousal during recovery, a common feature of anxiety disorders. Altogether, our findings show that CSDS has profound impacts on vigilance states and further support that sleep is tightly regulated by exposure to stressful events. They also revealed that susceptibility to chronic psychological stress is associated with heightened arousal, a physiological feature of stress vulnerability.

  3. Effects of Social Defeat Stress on Sleep in Mice

    Directory of Open Access Journals (Sweden)

    Fiona Henderson

    2017-11-01

    Full Text Available Stress plays a key role in the development of psychiatric disorders and has a negative impact on sleep integrity. In mice, chronic social defeat stress (CSDS is an ethologically valid model of stress-related disorders but little is known about its effects on sleep regulation. Here, we investigated the immediate and long-term effects of 10 consecutive days of social defeat (SD on vigilance states in C57Bl/6J male mice. Social behavior was assessed to identify susceptible mice, i.e., mice that develop long-lasting social avoidance, and unsusceptible mice. Sleep-wake stages in mice of both groups were analyzed by means of polysomnographic recordings at baseline, after the first, third, and tenth stress sessions and on the 5th recovery day (R5 following the 10-day CSDS. In susceptible mice, each SD session produced biphasic changes in sleep-wake states that were preserved all along 10-day CSDS. These sessions elicited a short-term enhancement of wake time while rapid eye-movement (REM sleep was strongly inhibited. Concomitantly, delta power was increased during non REM (NREM sleep. During the following dark period, an increase in total sleep time, as well as wake fragmentation, were observed after each analyzed SD session. Similar changes were observed in unsusceptible mice. At R5, elevated high-frequency EEG activity, as observed in insomniacs, emerged during NREM sleep in both susceptible and unsusceptible groups suggesting that CSDS impaired sleep quality. Furthermore, susceptible but not unsusceptible mice displayed stress-anticipatory arousal during recovery, a common feature of anxiety disorders. Altogether, our findings show that CSDS has profound impacts on vigilance states and further support that sleep is tightly regulated by exposure to stressful events. They also revealed that susceptibility to chronic psychological stress is associated with heightened arousal, a physiological feature of stress vulnerability.

  4. Key to Language Learning Success

    Directory of Open Access Journals (Sweden)

    Oktavian Mantiri

    2015-01-01

    Full Text Available This paper looks at the important elements of language learning and teaching i.e. the role of teachers as well as the attitude and motivation of learners. Teachers undoubtedly play crucial roles in students’ language learning outcome which could ignite or diminish students’ motivation. Positive attitudes and motivation – instrumental or integrative and intrinsic or extrinsic – are key to successful learning. Therefore it is paramount for language teachers as well as learners to know these roles and nurture the best possible ways where language teac