WorldWideScience

Sample records for mice increased hepcidin

  1. Hepcidin is elevated in mice injected with Mycoplasma arthritidis

    Directory of Open Access Journals (Sweden)

    Kaplan Jerry

    2009-11-01

    Full Text Available Abstract Mycoplasma arthritidis causes arthritis in specific mouse strains. M. arthritidis mitogen (MAM, a superantigen produced by M. arthritidis, activates T cells by forming a complex between the major histocompatability complex II on antigen presenting cells and the T cell receptor on CD4+ T lymphocytes. The MAM superantigen is also known to interact with Toll-like receptors (TLR 2 and 4. Hepcidin, an iron regulator protein, is upregulated by TLR4, IL-6, and IL-1. In this study, we evaluated serum hepcidin, transferrin saturation, ferritin, IL-6, IL-1, and hemoglobin levels in M. arthritidis injected C3H/HeJ (TLR2+/+, TLR4-/- mice and C3H/HeSnJ (TLR2+/+, TLR4+/+ mice over a 21 day period. C3H/HeJ mice have a defective TLR4 and an inability to produce IL-6. We also measured arthritis severity in these mice and the amount of hepcidin transcripts produced by the liver and spleen. C3H/HeJ mice developed a more severe arthritis than that of C3H/HeSnJ mice. Both mice had an increase in serum hepcidin within three days after infection. Hepcidin levels were greater in C3H/HeJ mice despite a nonfunctioning TLR4 and low serum levels of IL-6. Splenic hepcidin production in C3H/HeJ mice was delayed compared to C3H/HeSnJ mice. Unlike C3H/HeSnJ mice, C3H/HeJ mice did not develop a significant rise in serum IL-6 levels but did develop a significant increase in IL-1β during the first ten days after injection. Both mice had an increase in serum ferritin but a decrease in serum transferrin saturation. In conclusion, serum hepcidin regulation in C3H/HeJ mice does not appear to be solely dependent upon TLR4 or IL-6.

  2. Treatment with anti-IL-6 receptor antibody prevented increase in serum hepcidin levels and improved anemia in mice inoculated with IL-6–producing lung carcinoma cells

    International Nuclear Information System (INIS)

    Noguchi-Sasaki, Mariko; Sasaki, Yusuke; Shimonaka, Yasushi; Mori, Kazushige; Fujimoto-Ouchi, Kaori

    2016-01-01

    Hepcidin, a key regulator of iron metabolism, is produced mainly by interleukin-6 (IL-6) during inflammation. A mechanism linking cancer-related anemia and IL-6 through hepcidin production is suggested. To clarify the hypothesis that overproduction of IL-6 elevates hepcidin levels and contributes to the development of cancer-related anemia, we evaluated anti-IL-6 receptor antibody treatment of cancer-related anemia in an IL-6–producing human lung cancer xenograft model. Nude mice were subcutaneously inoculated with cells of the IL-6–producing human lung cancer cell line LC-06-JCK and assessed as a model of cancer-related anemia. Mice bearing LC-06-JCK were administered rat anti-mouse IL-6 receptor antibody MR16-1 and their serum hepcidin levels and hematological parameters were determined. LC-06-JCK–bearing mice developed anemia according to the production of human IL-6 from xenografts, with decreased values of hemoglobin, hematocrit, and mean corpuscular volume (MCV) compared to non–tumor-bearing (NTB) mice. LC-06-JCK–bearing mice showed decreased body weight and serum albumin with increased serum amyloid A. MR16-1 treatment showed significant inhibition of decreased body weight and serum albumin levels, and suppressed serum amyloid A level. There was no difference in tumor volume between MR16-1-treated mice and immunoglobulin G (IgG)-treated control mice. Decreased hemoglobin, hematocrit, and MCV in LC-06-JCK–bearing mice was significantly relieved by MR16-1 treatment. LC-06-JCK–bearing mice showed high red blood cell counts and erythropoietin levels as compared to NTB mice, whereas MR16-1 treatment did not affect their levels. Serum hepcidin and ferritin levels were statistically elevated in mice bearing LC-06-JCK. LC-06-JCK–bearing mice showed lower values of MCV, mean corpuscular hemoglobin (MCH), and serum iron as compared to NTB mice. Administration of MR16-1 to mice bearing LC-06-JCK significantly suppressed levels of both serum hepcidin and

  3. Heme Oxygenase Induction Suppresses Hepatic Hepcidin and Rescues Ferroportin and Ferritin Expression in Obese Mice

    Directory of Open Access Journals (Sweden)

    Nitin Puri

    2017-01-01

    Full Text Available Hepcidin, a phase II reactant secreted by hepatocytes, regulates cellular iron levels by increasing internalization of ferroportin-a transmembrane protein facilitating egress of cellular iron. Chronic low-grade inflammatory states, such as obesity, have been shown to increase oxidative stress and enhance hepcidin secretion from hepatocytes and macrophages. Heme-heme oxygenase (HO is a stress response system which reduces oxidative stress. We investigated the effects of HO-1 induction on hepatic hepcidin levels and on iron homeostasis in hepatic tissues from lean and obese mice. Obese mice exhibited hyperglycemia (p<0.05; increased levels of proinflammatory cytokines (MCP-1, IL-6, p<0.05; oxidative stress (p<0.05; and increased hepatic hepcidin levels (p<0.05. Enhancement of hepcidin was reflected in the reduced expression of ferroportin in obese mice (p<0.05. However, this effect is accompanied by a significant decline in ferritin expression. Additionally, there are reduced insulin receptor phosphorylation and attenuation of metabolic regulators pAMPK, pAKT, and pLKB1. Cobalt protoporphyrin- (CoPP- induced HO-1 upregulation in obese mice reversed these alterations (p<0.05, while attenuating hepatic hepcidin levels. These effects of CoPP were prevented in obese mice concurrently exposed to an inhibitor of HO (SnMP (p<0.05. Our results highlight a modulatory effect of HO on iron homeostasis mediated through the suppression of hepatic hepcidin.

  4. Iron regulation of hepcidin despite attenuated Smad1,5,8 signaling in mice without transferrin receptor 2 or Hfe

    Science.gov (United States)

    Corradini, Elena; Rozier, Molly; Meynard, Delphine; Odhiambo, Adam; Lin, Herbert Y.; Feng, Qi; Migas, Mary C.; Britton, Robert S.; Babitt, Jodie L.; Fleming, Robert E.

    2011-01-01

    Background & Aims HFE and transferrin receptor 2 (TFR2) are each necessary for the normal relationship between body iron status and liver hepcidin expression. In murine Hfe and Tfr2 knockout models of hereditary hemochromatosis (HH), signal transduction to hepcidin via the bone morphogenetic protein 6 (Bmp6)/Smad1,5,8 pathway is attenuated. We examined the effect of dietary iron on regulation of hepcidin expression via the Bmp6/Smad1,5,8 pathway using mice with targeted disruption of Tfr2, Hfe, or both genes. Methods Hepatic iron concentrations and mRNA expression of Bmp6 and hepcidin were compared with wild-type mice in each of the HH models on standard or iron-loading diets. Liver phospho-Smad (P-Smad)1,5,8 and Id1 mRNA levels were measured as markers of Bmp/Smad signaling. Results While Bmp6 expression was increased, liver hepcidin and Id1 expression were decreased in each of the HH models compared with wild-type mice. Each of the HH models also demonstrated attenuated P-Smad1,5,8 levels relative to liver iron status. Mice with combined Hfe/Tfr2 disruption were most affected. Dietary iron loading increased hepcidin and Id1 expression in each of the HH models. Compared with wild-type mice, HH mice demonstrated attenuated (Hfe knockout) or no increases in P-Smad1,5,8 levels in response to dietary iron loading. Conclusions These observations demonstrate that Tfr2 and Hfe are each required for normal signaling of iron status to hepcidin via Bmp6/Smad1,5,8 pathway. Mice with combined loss of Hfe and Tfr2 up-regulate hepcidin in response to dietary iron loading without increases in liver BMP6 mRNA or steady-state P-Smad1,5,8 levels. PMID:21745449

  5. Transgenic HFE-dependent induction of hepcidin in mice does not require transferrin receptor-2.

    Science.gov (United States)

    Schmidt, Paul J; Fleming, Mark D

    2012-06-01

    Hereditary hemochomatosis (HH) is caused by mutations in several genes, including HFE and transferrin receptor-2 (TFR2). Loss of either protein decreases expression of the iron regulatory hormone hepcidin by the liver, leading to inappropriately high iron uptake from the diet, and resulting in systemic iron overload. In tissue culture, overexpressed HFE and TFR2 physically interact. Hepatocellular overexpression of Hfe in vivo increases hepcidin expression, despite an associated decrease in Tfr2. On this basis, we hypothesized that Tfr2 would not be required for Hfe-dependent up-regulation of hepcidin. We show that hepatocellular overexpression of Hfe in Tfr2(Y245X/Y245X) mice leads to hepcidin induction eventuating in iron deficiency and a hypochromic, microcytic anemia. Furthermore, coimmunoprecipitation studies using liver lysates did not provide evidence for physical interaction between Hfe and Tfr2 in vivo. In conclusion, we demonstrate that Tfr2 is not essential for Hfe-mediated induction of hepcidin expression, supporting the possibility that TFR2 may regulate iron metabolism in an HFE-independent manner. Copyright © 2012 Wiley Periodicals, Inc.

  6. Hepcidin mediates transcriptional changes that modulate acute cytokine-induced inflammatory responses in mice.

    Science.gov (United States)

    De Domenico, Ivana; Zhang, Tian Y; Koening, Curry L; Branch, Ryan W; London, Nyall; Lo, Eric; Daynes, Raymond A; Kushner, James P; Li, Dean; Ward, Diane M; Kaplan, Jerry

    2010-07-01

    Hepcidin is a peptide hormone that regulates iron homeostasis and acts as an antimicrobial peptide. It is expressed and secreted by a variety of cell types in response to iron loading and inflammation. Hepcidin mediates iron homeostasis by binding to the iron exporter ferroportin, inducing its internalization and degradation via activation of the protein kinase Jak2 and the subsequent phosphorylation of ferroportin. Here we have shown that hepcidin-activated Jak2 also phosphorylates the transcription factor Stat3, resulting in a transcriptional response. Hepcidin treatment of ferroportin-expressing mouse macrophages showed changes in mRNA expression levels of a wide variety of genes. The changes in transcript levels for half of these genes were a direct effect of hepcidin, as shown by cycloheximide insensitivity, and dependent on the presence of Stat3. Hepcidin-mediated transcriptional changes modulated LPS-induced transcription in both cultured macrophages and in vivo mouse models, as demonstrated by suppression of IL-6 and TNF-alpha transcript and secreted protein. Hepcidin-mediated transcription in mice also suppressed toxicity and morbidity due to single doses of LPS, poly(I:C), and turpentine, which is used to model chronic inflammatory disease. Most notably, we demonstrated that hepcidin pretreatment protected mice from a lethal dose of LPS and that hepcidin-knockout mice could be rescued from LPS toxicity by injection of hepcidin. The results of our study suggest a new function for hepcidin in modulating acute inflammatory responses.

  7. The effect of alcohol and hydrogen peroxide on liver hepcidin gene expression in mice lacking antioxidant enzymes, glutathione peroxidase-1 or catalase.

    Science.gov (United States)

    Harrison-Findik, Duygu Dee; Lu, Sizhao

    2015-05-06

    This study investigates the regulation of hepcidin, the key iron-regulatory molecule, by alcohol and hydrogen peroxide (H2O2) in glutathione peroxidase-1 (gpx-1(-/-)) and catalase (catalase(-/-)) knockout mice. For alcohol studies, 10% ethanol was administered in the drinking water for 7 days. Gpx-1(-/-) displayed significantly higher hepatic H2O2 levels than catalase(-/-) compared to wild-type mice, as measured by 2'-7'-dichlorodihydrofluorescein diacetate (DCFH-DA). The basal level of liver hepcidin expression was attenuated in gpx-1(-/-) mice. Alcohol increased H2O2 production in catalase(-/-) and wild-type, but not gpx-1(-/-), mice. Hepcidin expression was inhibited in alcohol-fed catalase(-/-) and wild-type mice. In contrast, alcohol elevated hepcidin expression in gpx-1(-/-) mice. Gpx-1(-/-) mice also displayed higher level of basal liver CHOP protein expression than catalase(-/-) mice. Alcohol induced CHOP and to a lesser extent GRP78/BiP expression, but not XBP1 splicing or binding of CREBH to hepcidin gene promoter, in gpx-1(-/-) mice. The up-regulation of hepatic ATF4 mRNA levels, which was observed in gpx-1(-/-) mice, was attenuated by alcohol. In conclusion, our findings strongly suggest that H2O2 inhibits hepcidin expression in vivo. Synergistic induction of CHOP by alcohol and H2O2, in the absence of gpx-1, stimulates liver hepcidin gene expression by ER stress independent of CREBH.

  8. In anemia of multiple myeloma hepcidin is induced by increased bone-morphogenetic protein-2

    Science.gov (United States)

    Hepcidin is the principal iron-regulatory hormone and pathogenic factor in anemia of inflammation. Patients with multiple myeloma (MM) frequently present with anemia. We showed that MM patients had increased serum hepcidin, which inversely correlated with hemoglobin, suggesting that hepcidin contrib...

  9. Hepcidin regulation in wild-type and Hfe knockout mice in response to alcohol consumption: evidence for an alcohol-induced hypoxic response.

    Science.gov (United States)

    Heritage, Mandy L; Murphy, Therese L; Bridle, Kim R; Anderson, Gregory J; Crawford, Darrell H G; Fletcher, Linda M

    2009-08-01

    Expression of Hamp1, the gene encoding the iron regulatory peptide hepcidin, is inappropriately low in HFE-associated hereditary hemochromatosis and Hfe knockout mice (Hfe(-/-)). Since chronic alcohol consumption is also associated with disturbances in iron metabolism, we investigated the effects of alcohol consumption on hepcidin mRNA expression in Hfe(-/-) mice. Hfe(-/-) and C57BL/6 (wild-type) mice were pair-fed either an alcohol liquid diet or control diet for up to 8 weeks. The mRNA levels of hepcidin and ferroportin were measured at the mRNA level by RT-PCR and protein expression of hypoxia inducible factor-1 alpha (HIF-1alpha) was measured by western blot. Hamp1 mRNA expression was significantly decreased and duodenal ferroportin expression was increased in alcohol-fed wild-type mice at 8 weeks. Time course experiments showed that the decrease in hepcidin mRNA was not immediate, but was significant by 4 weeks. Consistent with the genetic defect, Hamp1 mRNA was decreased and duodenal ferroportin mRNA expression was increased in Hfe(-/-) mice fed on the control diet compared with wild-type animals and alcohol further exacerbated these effects. HIF-1alpha protein levels were elevated in alcohol-fed wild-type animals compared with controls. Alcohol may decrease Hamp1 gene expression independently of the HFE pathway possibly via alcohol-induced hypoxia.

  10. Hepcidin protects against lethal E. coli sepsis in mice inoculated with isolates from septic patients.

    Science.gov (United States)

    Stefanova, Deborah; Raychev, Antoan; Deville, Jaime; Humphries, Romney; Campeau, Shelley; Ruchala, Piotr; Nemeth, Elizabeta; Ganz, Tomas; Bulut, Yonca

    2018-05-07

    Iron is an essential micronutrient for most microbes and their hosts. Mammalian hosts respond to infection by inducing the iron-regulatory hormone hepcidin, which causes iron sequestration and a rapid decrease in plasma and extracellular iron concentration (hypoferremia). Previous studies showed that hepcidin regulation of iron is essential for protection from infection-associated mortality with the siderophilic pathogens Yersinia enterocolitica and Vibrio vulnificus However, the evolutionary conservation of the hypoferremic response to infection suggests that not only rare siderophilic bacteria but also common pathogens may be targeted by this mechanism. We tested 10 clinical isolates of E. coli from children with sepsis and found that both genetic (hepcidin knockout, HKO) and iatrogenic iron overload (IV iron) potentiated infection with 8 out of 10 studied isolates: after peritoneal injection of E. coli , iron-loaded mice developed sepsis with 60% to 100% mortality within 24h while control wild type mice suffered 0% mortality. Using one strain for more detailed study, we show that iron overload allowed rapid bacterial multiplication and dissemination. We further found that the presence of non-transferrin bound iron (NTBI) in circulation is more important than total plasma or tissue iron in rendering mice susceptible to infection and mortality. Post infection treatment of HKO mice with just two doses of the hepcidin agonist PR73 abolished NTBI and completely prevented sepsis-associated mortality. We demonstrate that siderophilic phenotype extends to clinically common pathogens. The use of hepcidin agonists promises to be an effective early intervention in patients with infections and dysregulated iron metabolism. Copyright © 2018 American Society for Microbiology.

  11. MyD88 Adaptor Protein Is Required for Appropriate Hepcidin Induction in Response to Dietary Iron Overload in Mice

    Directory of Open Access Journals (Sweden)

    Antonio Layoun

    2018-03-01

    Full Text Available Iron homeostasis is tightly regulated to provide virtually all cells in the body, particularly red blood cells, with this essential element while defending against its toxicity. The peptide hormone hepcidin is central to the control of the amount of iron absorbed from the diet and iron recycling from macrophages. Previously, we have shown that hepcidin induction in macrophages following Toll-like receptor (TLR stimulation depends on the presence of myeloid differentiation primary response gene 88 (MyD88. In this study, we analyzed the regulation of iron metabolism in MyD88−/− mice to further investigate MyD88 involvement in iron sensing and hepcidin induction. We show that mice lacking MyD88 accumulate significantly more iron in their livers than wild-type counterparts in response to dietary iron loading as they are unable to appropriately control hepcidin levels. The defect was associated with inappropriately low levels of Smad4 protein and Smad1/5/8 phosphorylation in liver samples found in the MyD88−/− mice compared to wild-type mice. In conclusion, our results reveal a previously unknown link between MyD88 and iron homeostasis, and provide new insights into the regulation of hepcidin through the iron-sensing pathway.

  12. The Effects of Angelica Sinensis Polysaccharide on Tumor Growth and Iron Metabolism by Regulating Hepcidin in Tumor-Bearing Mice

    Directory of Open Access Journals (Sweden)

    Feng Ren

    2018-05-01

    Full Text Available Background/Aims: Iron plays a fundamental role in cell biology and its concentration must be precisely regulated. It is well documented that excess iron burden contributes to the occurrence and progression of cancer. Hepcidin secreted by liver plays an essential role in orchestrating iron metabolism. In the present study, we aimed to investigate the ability of angelica sinensis polysaccharide (ASP to decrease iron burden in tumor-bearing mice and the mechanism of ASP regulation hepcidin expression. Methods: Western blot, RT-PCR, immunohistochemistry (IHC, and enzyme-linked immunosorbent assay (ELISA were used to detect the regulation of hepcidin and related cytokines by ASP. The role of ASP in tumor proliferation was investigated using in vivo assays. Iron depositions and iron concentrations in organs were determined by hematoxylin-eosin (H&E staining and atomic absorption spectrophotometer. Results: We found that ASP could inhibit tumor growth in mice xenografted with 4T1 and H22 cancer cells. In vivo experiments also showed that ASP could potently regulate hepcidin expression in liver and serum and decrease iron burden in liver, spleen and grafted tumors in mouse model. Treatment with ASP in hepatic cell lines reproduced comparable results in decreasing hepcidin as in mouse liver. Furthermore, we found that ASP markedly suppressed the expression of interleukin-6 (IL-6, JAK2, p-STAT3, and p-SMAD1/5/8 in liver, suggesting that JAK/STAT and BMP-SMAD pathways were involved in the regulation of hepcidin expression by ASP. We also found down-regulation of iron-related cytokines in ASP treated mice. Conclusion: The present study provides new evidence that ASP decreases hepcidin expression, which can reduce iron burden and inhibit tumor proliferation. These findings might aid ASP developed as a potential candidate for cancer treatment in patients with iron overload.

  13. Combined treatment of 3-hydroxypyridine-4-one derivatives and green tea extract to induce hepcidin expression in iron-overloaded β-thalassemic mice

    Directory of Open Access Journals (Sweden)

    Supranee Upanan

    2015-12-01

    Conclusions: The GTE + DFP treatment could ameliorate iron overload and liver oxidative damage in non-transfusion dependent β-thalassemic mice, by chelating toxic iron in plasma and tissues, and increasing hepcidin expression to inhibit duodenal iron absorption and iron release from hepatocytes and macrophages in the spleen. There is probably an advantage in giving GTE with DFP when treating patients with iron overload.

  14. Iron-dependent regulation of hepcidin in Hjv-/- mice: evidence that hemojuvelin is dispensable for sensing body iron levels.

    Directory of Open Access Journals (Sweden)

    Konstantinos Gkouvatsos

    Full Text Available Hemojuvelin (Hjv is a bone morphogenetic protein (BMP co-receptor involved in the control of systemic iron homeostasis. Functional inactivation of Hjv leads to severe iron overload in humans and mice due to marked suppression of the iron-regulatory hormone hepcidin. To investigate the role of Hjv in body iron sensing, Hjv-/- mice and isogenic wild type controls were placed on a moderately low, a standard or a high iron diet for four weeks. Hjv-/- mice developed systemic iron overload under all regimens. Transferrin (Tf was highly saturated regardless of the dietary iron content, while liver iron deposition was proportional to it. Hepcidin mRNA expression responded to fluctuations in dietary iron intake, despite the absence of Hjv. Nevertheless, iron-dependent upregulation of hepcidin was more than an order of magnitude lower compared to that seen in wild type controls. Likewise, iron signaling via the BMP/Smad pathway was preserved but substantially attenuated. These findings suggest that Hjv is not required for sensing of body iron levels and merely functions as an enhancer for iron signaling to hepcidin.

  15. Hepcidin as a Major Component of Renal Antibacterial Defenses against Uropathogenic Escherichia coli

    Science.gov (United States)

    Houamel, Dounia; Ducrot, Nicolas; Lefebvre, Thibaud; Daher, Raed; Moulouel, Boualem; Sari, Marie-Agnes; Letteron, Philippe; Lyoumi, Said; Millot, Sarah; Tourret, Jerome; Bouvet, Odile; Vaulont, Sophie; Vandewalle, Alain; Denamur, Erick; Puy, Hervé; Beaumont, Carole; Gouya, Laurent

    2016-01-01

    The iron-regulatory peptide hepcidin exhibits antimicrobial activity. Having previously shown hepcidin expression in the kidney, we addressed its role in urinary tract infection (UTI), which remains largely unknown. Experimental UTI was induced in wild-type (WT) and hepcidin-knockout (Hepc−/−) mice using the uropathogenic Escherichia coli CFT073 strain. Compared with infected WT mice, infected Hepc−/− mice showed a dramatic increase in renal bacterial load. Moreover, bacterial invasion was significantly dampened by the pretreatment of WT mice with hepcidin. Infected Hepc−/− mice exhibited decreased iron accumulation in the renal medulla and significant attenuation of the renal inflammatory response. Notably, we demonstrated in vitro bacteriostatic activity of hepcidin against CFT073. Furthermore, CFT073 repressed renal hepcidin, both in vivo and in cultured renal cells, and reduced phosphorylation of SMAD kinase in vivo, suggesting a bacterial strategy to escape the antimicrobial activities of hepcidin. In conclusion, we provide new mechanisms by which hepcidin contributes to renal host defense and suggest that targeting hepcidin offers a strategy to prevent bacterial invasion. PMID:26293821

  16. Role of Activins in Hepcidin Regulation during Malaria

    DEFF Research Database (Denmark)

    Spottiswoode, Natasha; Armitage, Andrew E; Williams, Andrew R

    2017-01-01

    /SMAD pathway and has been associated with increased hepcidin during inflammation, was upregulated in the livers of Plasmodium berghei infected mice; hepatic activin B was also upregulated at peak parasitemia during infection with Plasmodium chabaudi Concentrations of the closely related protein activin...... are unlikely to stimulate hepcidin upregulation directly. In conclusion, we present evidence that the BMP/SMAD signalling pathway is perturbed in malaria infection, but that activins, although raised in malaria infection, may not have a critical role in hepcidin upregulation in this setting....

  17. Hamp1 mRNA and plasma hepcidin levels are influenced by sex and strain but do not predict tissue iron levels in inbred mice.

    Science.gov (United States)

    McLachlan, Stela; Page, Kathryn E; Lee, Seung-Min; Loguinov, Alex; Valore, Erika; Hui, Simon T; Jung, Grace; Zhou, Jie; Lusis, Aldons J; Fuqua, Brie; Ganz, Tomas; Nemeth, Elizabeta; Vulpe, Chris D

    2017-11-01

    Iron homeostasis is tightly regulated, and the peptide hormone hepcidin is considered to be a principal regulator of iron metabolism. Previous studies in a limited number of mouse strains found equivocal sex- and strain-dependent differences in mRNA and serum levels of hepcidin and reported conflicting data on the relationship between hepcidin ( Hamp1 ) mRNA levels and iron status. Our aim was to clarify the relationships between strain, sex, and hepcidin expression by examining multiple tissues and the effects of different dietary conditions in multiple inbred strains. Two studies were done: first, Hamp1 mRNA, liver iron, and plasma diferric transferrin levels were measured in 14 inbred strains on a control diet; and second, Hamp1 mRNA and plasma hepcidin levels in both sexes and iron levels in the heart, kidneys, liver, pancreas, and spleen in males were measured in nine inbred/recombinant inbred strains raised on an iron-sufficient or high-iron diet. Both sex and strain have a significant effect on both hepcidin mRNA (primarily a sex effect) and plasma hepcidin levels (primarily a strain effect). However, liver iron and diferric transferrin levels are not predictors of Hamp1 mRNA levels in mice fed iron-sufficient or high-iron diets, nor are the Hamp1 mRNA and plasma hepcidin levels good predictors of tissue iron levels, at least in males. We also measured plasma erythroferrone, performed RNA-sequencing analysis of liver samples from six inbred strains fed the iron-sufficient, low-iron, or high-iron diets, and explored differences in gene expression between the strains with the highest and lowest hepcidin levels. NEW & NOTEWORTHY Both sex and strain have a significant effect on both hepcidin mRNA (primarily a sex effect) and plasma hepcidin levels (primarily a strain effect). Liver iron and diferric transferrin levels are not predictors of Hamp1 mRNA levels in mice, nor are the Hamp1 mRNA and plasma hepcidin levels good predictors of tissue iron levels, at least

  18. Decreased iron burden in overweight C282Y homozygous women: Putative role of increased hepcidin production.

    Science.gov (United States)

    Desgrippes, Romain; Lainé, Fabrice; Morcet, Jeff; Perrin, Michèle; Manet, Ghislain; Jezequel, Caroline; Bardou-Jacquet, Edouard; Ropert, Martine; Deugnier, Yves

    2013-05-01

    An excess of visceral adipose tissue could be involved as a modulator of the penetrance of HFE hemochromatosis since fat mass is associated with overexpression of hepcidin and low transferrin saturation was found to be associated with being overweight in women. This study was aimed at assessing the relationship between body mass index (BMI), a surrogate marker of insulin resistance, and iron burden in HFE hemochromatosis. In all, 877 patients from a cohort of C282Y homozygotes were included in the study when BMI at diagnosis and amount of iron removed (AIR) by phlebotomy were available. No relationship between AIR and BMI was found in men, whereas 15.1% (52/345) of women with AIR lean (7.9 mmoL/L ± 4.3) women (P = 0.0005). In C282Y homozygous women, BMI ≥28 kg/m(2) is independently associated with a lower amount of iron removed by phlebotomy. BMI is likely a modulator factor of the phenotypic expression of C282Y homozygosity, likely through an increase of circulating levels of hepcidin. Copyright © 2013 American Association for the Study of Liver Diseases.

  19. Role of Activins in Hepcidin Regulation during Malaria.

    Science.gov (United States)

    Spottiswoode, Natasha; Armitage, Andrew E; Williams, Andrew R; Fyfe, Alex J; Biswas, Sumi; Hodgson, Susanne H; Llewellyn, David; Choudhary, Prateek; Draper, Simon J; Duffy, Patrick E; Drakesmith, Hal

    2017-12-01

    Epidemiological observations have linked increased host iron with malaria susceptibility, and perturbed iron handling has been hypothesized to contribute to the potentially life-threatening anemia that may accompany blood-stage malaria infection. To improve our understanding of these relationships, we examined the pathways involved in regulation of the master controller of iron metabolism, the hormone hepcidin, in malaria infection. We show that hepcidin upregulation in Plasmodium berghei murine malaria infection was accompanied by changes in expression of bone morphogenetic protein (BMP)/sons of mothers against decapentaplegic (SMAD) pathway target genes, a key pathway involved in hepcidin regulation. We therefore investigated known agonists of the BMP/SMAD pathway and found that Bmp gene expression was not increased in infection. In contrast, activin B, which can signal through the BMP/SMAD pathway and has been associated with increased hepcidin during inflammation, was upregulated in the livers of Plasmodium berghei -infected mice; hepatic activin B was also upregulated at peak parasitemia during infection with Plasmodium chabaudi Concentrations of the closely related protein activin A increased in parallel with hepcidin in serum from malaria-naive volunteers infected in controlled human malaria infection (CHMI) clinical trials. However, antibody-mediated neutralization of activin activity during murine malaria infection did not affect hepcidin expression, suggesting that these proteins do not stimulate hepcidin upregulation directly. In conclusion, we present evidence that the BMP/SMAD signaling pathway is perturbed in malaria infection but that activins, although raised in malaria infection, may not have a critical role in hepcidin upregulation in this setting. Copyright © 2017 Spottiswoode et al.

  20. HJV and HFE Play Distinct Roles in Regulating Hepcidin.

    Science.gov (United States)

    Wu, Qian; Wang, Hao; An, Peng; Tao, Yunlong; Deng, Jiali; Zhang, Zhuzhen; Shen, Yuanyuan; Chen, Caiyong; Min, Junxia; Wang, Fudi

    2015-05-20

    Hereditary hemochromatosis (HH) is an iron overload disease that is caused by mutations in HFE, HJV, and several other genes. However, whether HFE-HH and HJV-HH share a common pathway via hepcidin regulation is currently unclear. Recently, some HH patients have been reported to carry concurrent mutations in both the HFE and HJV genes. To dissect the roles and molecular mechanisms of HFE and/or HJV in the pathogenesis of HH, we studied Hfe(-/-), Hjv(-/-), and Hfe(-/-)Hjv(-/-) double-knockout mouse models. Hfe(-/-)Hjv(-/-) mice developed iron overload in multiple organs at levels comparable to Hjv(-/-) mice. After an acute delivery of iron, the expression of hepcidin (i.e., Hamp1 mRNA) was increased in the livers of wild-type and Hfe(-/-) mice, but not in either Hjv(-/-) or Hfe(-/-)Hjv(-/-) mice. Furthermore, iron-induced phosphorylation of Smad1/5/8 was not detected in the livers of Hjv(-/-) or Hfe(-/-)Hjv(-/-) mice. We generated and phenotypically characterized Hfe(-/-)Hjv(-/-) double-knockout mice. In addition, because they faithfully phenocopy clinical HH patients, these mouse models are an invaluable tool for mechanistically dissecting how HFE and HJV regulate hepcidin expression. Based on our results, we conclude that HFE may depend on HJV for transferrin-dependent hepcidin regulation. The presence of residual hepcidin in the absence of HFE suggests either the presence of an unknown regulator (e.g., TFR2) that is synergistic with HJV or that HJV is sufficient to maintain basal levels of hepcidin.

  1. A seven day running training period increases basal urinary hepcidin levels as compared to cycling

    NARCIS (Netherlands)

    Sim, M.; Dawson, B.; Landers, G.J.; Swinkels, D.W.; Tjalsma, H.; Wiegerinck, E.T.G.; Trinder, D.; Peeling, P.

    2014-01-01

    BACKGROUND: This investigation compared the effects of an extended period of weight-bearing (running) vs. non-weight-bearing (cycling) exercise on hepcidin production and its implications for iron status. METHODS: Ten active males performed two separate exercise training blocks with either running

  2. Hepcidin levels are low during pregnancy and increase around delivery in women without iron deficiency - a prospective cohort study

    DEFF Research Database (Denmark)

    Hedengran, Katrine K; Nelson, Dick; Andersen, Malene R

    2015-01-01

    OBJECTIVE: To investigate hepcidin during pregnancy, delivery and postpartum in women with sufficient iron supplementation. METHODS: Hepcidin was measured using LC-MS spectroscopy in 37 women during pregnancy, delivery and postpartum period in this longitudinal study. RESULTS: Hepcidin was low du...

  3. Molecular characterization and expression analysis of a hepcidin ...

    African Journals Online (AJOL)

    After challenged with Aeromonas hydrophila infection or iron-dextran stimulation, the hepcidin transcript levels were analyzed by RT-PCR. The results revealed that the expression of hepcidin dramatically increased at 24 h post-infection of the pathogen injection. Moreover, hepcidin mRNAs in the liver, intestine and brain ...

  4. Improved mass spectrometry assay for plasma hepcidin: detection and characterization of a novel hepcidin isoform.

    Directory of Open Access Journals (Sweden)

    Coby M M Laarakkers

    Full Text Available Mass spectrometry (MS-based assays for the quantification of the iron regulatory hormone hepcidin are pivotal to discriminate between the bioactive 25-amino acid form that can effectively block the sole iron transporter ferroportin and other naturally occurring smaller isoforms without a known role in iron metabolism. Here we describe the design, validation and use of a novel stable hepcidin-25(+40 isotope as internal standard for quantification. Importantly, the relative large mass shift of 40 Da makes this isotope also suitable for easy-to-use medium resolution linear time-of-flight (TOF platforms. As expected, implementation of hepcidin-25(+40 as internal standard in our weak cation exchange (WCX TOF MS method yielded very low inter/intra run coefficients of variation. Surprisingly, however, in samples from kidney disease patients, we detected a novel peak (m/z 2673.9 with low intensity that could be identified as hepcidin-24 and had previously remained unnoticed due to peak interference with the formerly used internal standard. Using a cell-based bioassay it was shown that synthetic hepcidin-24 was, like the -22 and -20 isoforms, a significantly less potent inducer of ferroportin degradation than hepcidin-25. During prolonged storage of plasma at room temperature, we observed that a decrease in plasma hepcidin-25 was paralleled by an increase in the levels of the hepcidin-24, -22 and -20 isoforms. This provides first evidence that all determinants for the conversion of hepcidin-25 to smaller inactive isoforms are present in the circulation, which may contribute to the functional suppression of hepcidin-25, that is significantly elevated in patients with renal impairment. The present update of our hepcidin TOF MS assay together with improved insights in the source and preparation of the internal standard, and sample stability will further improve our understanding of circulating hepcidin and pave the way towards further optimization and

  5. Hepcidin- A Burgeoning Biomarker

    Directory of Open Access Journals (Sweden)

    Hemkant Manikrao Deshmukh

    2017-10-01

    Full Text Available The discovery of hepcidin has triggered a virtual ignition of studies on iron metabolism and related disorders. The peptide hormone hepcidin is a key homeostatic regulator of iron metabolism. The synthesis of hepcidin is induced by systemic iron levels and by inflammatory stimuli. Several human diseases are associated with variations in hepcidin concentrations. The evaluation of hepcidin in biological fluids is therefore a promising device in the diagnosis and management of medical situations in which iron metabolism is affected. Thus, it made us to recapitulate role of hepcidin as biomarker.

  6. Hepcidin is an antibacterial, stress-inducible peptide of the biliary system.

    Directory of Open Access Journals (Sweden)

    Pavel Strnad

    Full Text Available BACKGROUND/AIMS: Hepcidin (gene name HAMP, an IL-6-inducible acute phase peptide with antimicrobial properties, is the key negative regulator of iron metabolism. Liver is the primary source of HAMP synthesis, but it is also produced by other tissues such as kidney or heart and is found in body fluids such as urine or cerebrospinal fluid. While the role of hepcidin in biliary system is unknown, a recent study demonstrated that conditional gp130-knockout mice display diminished hepcidin levels and increased rate of biliary infections. METHODS: Expression and localization of HAMP in biliary system was analyzed by real time RT-PCR, in-situ hybridization, immunostaining and -blotting, while prohepcidin levels in human bile were determined by ELISA. RESULTS: Hepcidin was detected in mouse/human gallbladder and bile duct epithelia. Biliary HAMP is stress-inducible, in that it is increased in biliary cell lines upon IL-6 stimulation and in gallbladder mucosa of patients with acute cholecystitis. Hepcidin is also present in the bile and elevated prohepcidin levels were observed in bile of primary sclerosing cholangitis (PSC patients with concurrent bacterial cholangitis compared to PSC subjects without bacterial infection (median values 22.3 vs. 8.9; p = 0.03. In PSC-cholangitis subjects, bile prohepcidin levels positively correlated with C-reactive protein and bilirubin levels (r = 0.48 and r = 0.71, respectively. In vitro, hepcidin enhanced the antimicrobial capacity of human bile (p<0.05. CONCLUSION: Hepcidin is a stress-inducible peptide of the biliary epithelia and a potential marker of biliary stress. In the bile, hepcidin may serve local functions such as protection from bacterial infections.

  7. A low-molecular-weight compound K7174 represses hepcidin: possible therapeutic strategy against anemia of chronic disease.

    Directory of Open Access Journals (Sweden)

    Tohru Fujiwara

    Full Text Available Hepcidin is the principal iron regulatory hormone, controlling the systemic absorption and remobilization of iron from intracellular stores. The expression of the hepcidin gene, HAMP, is increased in patients with anemia of chronic disease. Previously, the synthetic compound K7174 was identified through chemical screening as a novel inhibitor of the adhesion of monocytes to cytokine-stimulated endothelial cells. K7174 also ameliorated anemia induced by inflammatory cytokines in mice, which suggests a possible involvement of hepcidin regulation. The present study was performed to assess the impact of K7174 on hepcidin expression in a human hematoma cell line and in mice in vivo. We first demonstrated that K7174 treatment in HepG2 cells significantly decreased HAMP expression. Then, we conducted microarray analysis to determine the molecular mechanism by which K7174 inhibits HAMP expression. Transcriptional profiling confirmed the downregulation of HAMP. Surprisingly, we found that K7174 strongly induced GDF15, known as a negative regulator of HAMP expression. Western blotting analysis as well as ELISA confirmed the induction of GDF15 by K7174 treatment. Furthermore, K7174-mediated HAMP suppression was rescued by the silencing of GDF15 expression. Interestingly, we found that K7174 also upregulates CEBPB. Promoter analysis and chromatin immunoprecipitation analysis revealed that CEBPB could contribute to K7174-mediated transcriptional activation of GDF15. Subsequently, we also examined whether K7174 inhibits hepcidin expression in mice. Quantitative RT-PCR analysis with liver samples from K7174-treated mice demonstrated significant upregulation of Gdf15 and downregulation of Hamp expression, as compared to control mice. Furthermore, serum hepcidin concentration was also significantly decreased in K7174-treated mice. In conclusion, K7174 inhibits hepcidin expression partly by inducing GDF15. K-7174 may be a potential therapeutic option to treat

  8. Mass spectrometry analysis of hepcidin peptides in experimental mouse models.

    Directory of Open Access Journals (Sweden)

    Harold Tjalsma

    Full Text Available The mouse is a valuable model for unravelling the role of hepcidin in iron homeostasis, however, such studies still report hepcidin mRNA levels as a surrogate marker for bioactive hepcidin in its pivotal function to block ferroportin-mediated iron transport. Here, we aimed to assess bioactive mouse Hepcidin-1 (Hep-1 and its paralogue Hepcidin-2 (Hep-2 at the peptide level. To this purpose, Fourier transform ion cyclotron resonance (FTICR and tandem-MS was used for hepcidin identification, after which a time-of-flight (TOF MS-based methodology was exploited to routinely determine Hep-1 and -2 levels in mouse serum and urine. This method was biologically validated by hepcidin assessment in: i 3 mouse strains (C57Bl/6; DBA/2 and BABL/c upon stimulation with intravenous iron and LPS, ii homozygous Hfe knock out, homozygous transferrin receptor 2 (Y245X mutated mice and double affected mice, and iii mice treated with a sublethal hepatotoxic dose of paracetamol. The results showed that detection of Hep-1 was restricted to serum, whereas Hep-2 and its presumed isoforms were predominantly present in urine. Elevations in serum Hep-1 and urine Hep-2 upon intravenous iron or LPS were only moderate and varied considerably between mouse strains. Serum Hep-1 was decreased in all three hemochromatosis models, being lowest in the double affected mice. Serum Hep-1 levels correlated with liver hepcidin-1 gene expression, while acute liver damage by paracetamol depleted Hep-1 from serum. Furthermore, serum Hep-1 appeared to be an excellent indicator of splenic iron accumulation. In conclusion, Hep-1 and Hep-2 peptide responses in experimental mouse agree with the known biology of hepcidin mRNA regulators, and their measurement can now be implemented in experimental mouse models to provide novel insights in post-transcriptional regulation, hepcidin function, and kinetics.

  9. Contribution of Hfe expression in macrophages to the regulation of hepatic hepcidin levels and iron loading

    OpenAIRE

    Makui, Hortence; Soares, Ricardo J.; Jiang, Wenlei; Constante, Marco; Santos, Manuela M.

    2005-01-01

    Hereditary hemochromatosis (HH), an iron overload disease associated with mutations in the HFE gene, is characterized by increased intestinal iron absorption and consequent deposition of excess iron, primarily in the liver. Patients with HH and Hfe-deficient (Hfe−/−) mice manifest inappropriate expression of the iron absorption regulator hepcidin, a peptide hormone produced by the liver in response to iron loading. In this study, we investigated the contribution of Hfe expression in macrophag...

  10. Hepcidin: an important iron metabolism regulator in chronic kidney disease

    Directory of Open Access Journals (Sweden)

    Sandra Azevedo Antunes

    Full Text Available Abstract Anemia is a common complication and its impact on morbimortality in patients with chronic kidney disease (CKD is well known. The discovery of hepcidin and its functions has contributed to a better understanding of iron metabolism disorders in CKD anemia. Hepcidin is a peptide mainly produced by hepatocytes and, through a connection with ferroportin, it regulates iron absorption in the duodenum and its release of stock cells. High hepcidin concentrations described in patients with CKD, especially in more advanced stages are attributed to decreased renal excretion and increased production. The elevation of hepcidin has been associated with infection, inflammation, atherosclerosis, insulin resistance and oxidative stress. Some strategies were tested to reduce the effects of hepcidin in patients with CKD, however more studies are necessary to assess the impact of its modulation in the management of anemia in this population.

  11. Effects of an Acute Exercise Bout on Serum Hepcidin Levels

    Directory of Open Access Journals (Sweden)

    Raúl Domínguez

    2018-02-01

    Full Text Available Iron deficiency is a frequent and multifactorial disorder in the career of athletes, particularly in females. Exercise-induced disturbances in iron homeostasis produce deleterious effects on performance and adaptation to training; thus, the identification of strategies that restore or maintain iron homeostasis in athletes is required. Hepcidin is a liver-derived hormone that degrades the ferroportin transport channel, thus reducing the ability of macrophages to recycle damaged iron, and decreasing iron availability. Although it has been suggested that the circulating fraction of hepcidin increases during early post-exercise recovery (~3 h, it remains unknown how an acute exercise bout may modify the circulating expression of hepcidin. Therefore, the current review aims to determine the post-exercise expression of serum hepcidin in response to a single session of exercise. The review was carried out in the Dialnet, Elsevier, Medline, Pubmed, Scielo and SPORTDiscus databases, using hepcidin (and “exercise” or “sport” or “physical activity” as a strategy of search. A total of 19 articles were included in the review after the application of the inclusion/exclusion criteria. This search found that a single session of endurance exercise (intervallic or continuous at moderate or vigorous intensity (60–90% VO2peak stimulates an increase in the circulating levels of hepcidin between 0 h and 6 h after the end of the exercise bout, peaking at ~3 h post-exercise. The magnitude of the response of hepcidin to exercise seems to be dependent on the pre-exercise status of iron (ferritin and inflammation (IL-6. Moreover, oxygen disturbances and the activation of a hypoxia-induced factor during or after exercise may stimulate a reduction of hepcidin expression. Meanwhile, cranberry flavonoids supplementation promotes an anti-oxidant effect that may facilitate the post-exercise expression of hepcidin. Further studies are required to explore the effect

  12. A novel immunological assay for hepcidin quantification in human serum.

    Directory of Open Access Journals (Sweden)

    Vasiliki Koliaraki

    Full Text Available BACKGROUND: Hepcidin is a 25-aminoacid cysteine-rich iron regulating peptide. Increased hepcidin concentrations lead to iron sequestration in macrophages, contributing to the pathogenesis of anaemia of chronic disease whereas decreased hepcidin is observed in iron deficiency and primary iron overload diseases such as hereditary hemochromatosis. Hepcidin quantification in human blood or urine may provide further insights for the pathogenesis of disorders of iron homeostasis and might prove a valuable tool for clinicians for the differential diagnosis of anaemia. This study describes a specific and non-operator demanding immunoassay for hepcidin quantification in human sera. METHODS AND FINDINGS: An ELISA assay was developed for measuring hepcidin serum concentration using a recombinant hepcidin25-His peptide and a polyclonal antibody against this peptide, which was able to identify native hepcidin. The ELISA assay had a detection range of 10-1500 microg/L and a detection limit of 5.4 microg/L. The intra- and interassay coefficients of variance ranged from 8-15% and 5-16%, respectively. Mean linearity and recovery were 101% and 107%, respectively. Mean hepcidin levels were significantly lower in 7 patients with juvenile hemochromatosis (12.8 microg/L and 10 patients with iron deficiency anemia (15.7 microg/L and higher in 7 patients with Hodgkin lymphoma (116.7 microg/L compared to 32 age-matched healthy controls (42.7 microg/L. CONCLUSIONS: We describe a new simple ELISA assay for measuring hepcidin in human serum with sufficient accuracy and reproducibility.

  13. Distinct roles for hepcidin and interleukin-6 in the recovery from anemia in mice injected with heat-killed Brucella abortus

    NARCIS (Netherlands)

    Gardenghi, Sara; Renaud, Tom M; Meloni, Alessandra; Casu, Carla; Crielaard, Bart J; Bystrom, Laura M; Greenberg-Kushnir, Noa; Sasu, Barbra J; Cooke, Keegan S; Rivella, Stefano

    2014-01-01

    Anemia of inflammation (AI) is commonly observed in chronic inflammatory states and may hinder patient recovery and survival. Induction of hepcidin, mediated by interleukin 6, leads to iron-restricted erythropoiesis and anemia. Several translational studies have been directed at neutralizing

  14. Hepcidin: A useful marker in chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Serap Duru

    2012-01-01

    Full Text Available Purpose: This study was designed to evaluate the levels of hepcidin in the serum of patients with chronic obstructive pulmonary disease (COPD. Methods: In the study, 74 male patients (ages 45-75 in a stable period for COPD were grouped as Group I: Mild COPD (n:25, Group II: Moderate COPD (n:24, and Group III: Severe COPD (n:25. Healthy non-smoker males were included in Group IV (n:35 as a control group. The differences of hepcidin level among all the groups were examined. Also, in the patient groups with COPD, hepcidin level was compared with age, body mass index, cigarette (package/year, blood parameters (iron, total iron binding capacity, ferritin, hemoglobin, hematocrit [hct], respiratory function tests, and arterial blood gas results. Results: Although there was no difference between the healthy control group and the mild COPD patient group (P=0.781 in terms of hepcidin level, there was a difference between the moderate (P=0.004 and the severe COPD patient groups (P=0.002. The hepcidin level of the control group was found to be higher than the moderate and severe COPD patient groups. In the severe COPD patients, hepcidin level increased with the increase in serum iron (P=0.000, hct (P=0.009, ferritin levels (P=0.012, and arterial oxygen saturation (SaO2, P=0.000. Conclusion: The serum hepcidin level that is decreased in severe COPD brings into mind that it may play a role in the mechanism to prevent hypoxemia. The results suggest that serum hepcidin level may be a useful marker in COPD. Larger prospective studies are needed to confirm our findings between hepcidin and COPD.

  15. Hepcidin is suppressed by erythropoiesis in hemoglobin E β-thalassemia and β-thalassemia trait

    Science.gov (United States)

    Jones, Emma; Pasricha, Sant-Rayn; Allen, Angela; Evans, Patricia; Fisher, Chris A.; Wray, Katherine; Premawardhena, Anuja; Bandara, Dyananda; Perera, Ashok; Webster, Craig; Sturges, Pamela; Olivieri, Nancy F.; St. Pierre, Timothy; Armitage, Andrew E.; Porter, John B.; Weatherall, David J.

    2015-01-01

    Hemoglobin E (HbE) β-thalassemia is the most common severe thalassemia syndrome across Asia, and millions of people are carriers. Clinical heterogeneity in HbE β-thalassemia is incompletely explained by genotype, and the interaction of phenotypic variation with hepcidin is unknown. The effect of thalassemia carriage on hepcidin is also unknown, but it could be relevant for iron supplementation programs aimed at combating anemia. In 62 of 69 Sri Lankan patients with HbE β-thalassemia with moderate or severe phenotype, hepcidin was suppressed, and overall hepcidin inversely correlated with iron accumulation. On segregating by phenotype, there were no differences in hepcidin, erythropoiesis, or hemoglobin between severe or moderate disease, but multiple linear regression showed that erythropoiesis inversely correlated with hepcidin only in severe phenotypes. In moderate disease, no independent predictors of hepcidin were identifiable; nevertheless, the low hepcidin levels indicate a significant risk for iron overload. In a population survey of Sri Lankan schoolchildren, β-thalassemia (but not HbE) trait was associated with increased erythropoiesis and mildly suppressed hepcidin, suggesting an enhanced propensity to accumulate iron. In summary, the influence of erythropoiesis on hepcidin suppression associates with phenotypic disease variation and pathogenesis in HbE β-thalassemia and indicates that the epidemiology of β-thalassemia trait requires consideration when planning public health iron interventions. PMID:25519750

  16. Suppression of iron-regulatory hepcidin by vitamin D.

    Science.gov (United States)

    Bacchetta, Justine; Zaritsky, Joshua J; Sea, Jessica L; Chun, Rene F; Lisse, Thomas S; Zavala, Kathryn; Nayak, Anjali; Wesseling-Perry, Katherine; Westerman, Mark; Hollis, Bruce W; Salusky, Isidro B; Hewison, Martin

    2014-03-01

    The antibacterial protein hepcidin regulates the absorption, tissue distribution, and extracellular concentration of iron by suppressing ferroportin-mediated export of cellular iron. In CKD, elevated hepcidin and vitamin D deficiency are associated with anemia. Therefore, we explored a possible role for vitamin D in iron homeostasis. Treatment of cultured hepatocytes or monocytes with prohormone 25-hydroxyvitamin D or active 1,25-dihydroxyvitamin D decreased expression of hepcidin mRNA by 0.5-fold, contrasting the stimulatory effect of 25-hydroxyvitamin D or 1,25-dihydroxyvitamin D on related antibacterial proteins such as cathelicidin. Promoter-reporter and chromatin immunoprecipitation analyses indicated that direct transcriptional suppression of hepcidin gene (HAMP) expression mediated by 1,25-dihydroxyvitamin D binding to the vitamin D receptor caused the decrease in hepcidin mRNA levels. Suppression of HAMP expression was associated with a concomitant increase in expression of the cellular target for hepcidin, ferroportin protein, and decreased expression of the intracellular iron marker ferritin. In a pilot study with healthy volunteers, supplementation with a single oral dose of vitamin D (100,000 IU vitamin D2) increased serum levels of 25D-hydroxyvitamin D from 27±2 ng/ml before supplementation to 44±3 ng/ml after supplementation (P<0.001). This response was associated with a 34% decrease in circulating levels of hepcidin within 24 hours of vitamin D supplementation (P<0.05). These data show that vitamin D is a potent regulator of the hepcidin-ferroportin axis in humans and highlight a potential new strategy for the management of anemia in patients with low vitamin D and/or CKD.

  17. Interleukin-10 regulates hepcidin in Plasmodium falciparum malaria

    KAUST Repository

    Huang, Honglei

    2014-02-10

    Background: Acute malarial anemia remains a major public health problem. Hepcidin, the major hormone controlling the availability of iron, is raised during acute and asymptomatic parasitemia. Understanding the role and mechanism of raised hepcidin and so reduced iron availability during infection is critical to establish evidence-based guidelines for management of malaria anemia. Our recent clinical evidence suggests a potential role of IL-10 in the regulation of hepcidin in patients with acute P. falciparum malaria. Methods: We have measured secretion of hepcidin by primary macrophages and the hepatoma cell line HepG2 stimulated with IL-10, IL-6 and Plasmodium falciparum-infected erythrocytes. Findings: We have observed that IL-10 and IL-6 production increased in primary macrophages when these cells were co-cultured with Plasmodium falciparum-infected erythrocytes. We found that IL-10 induced hepcidin secretion in primary macrophages in a dose-dependent manner but not in HepG2 cells. These effects were mediated through signal transducer and activator of transcription (STAT) 3-phosphorylation and completely abrogated by a specific STAT3 inhibitor. Conclusion: IL-10 can directly regulate hepcidin in primary macrophages but not in HepG2 cells. This effect can be modulated by Plasmodium falciparum. The results are consistent with a role for IL-10 in modulating iron metabolism during acute phase of infection. 2014 Huang et al.

  18. Iron bioavailibity from a tropical leafy vegetable in anaemic mice

    Directory of Open Access Journals (Sweden)

    Latunde-Dada Gladys O

    2011-02-01

    Full Text Available Abstract Telfairia occidentalis is a vegetable food crop that is indigenous to West Africa. The leaves and seeds are the edible parts of the plant and are used in everyday meals by incorporation into soups and stews. Previous studies have attributed improved haematological indices to the vegetable and have advocated the use of T. occidentalis in the treatment of anemia. This study investigates the ameliorative effects of T. occidentalis when compared to FeSO4 as a reference salt in anaemic mice. It also compares the bioavailability of test iron and hepatic hepcidin expression for the estimation of iron absorption in the mice. Non-haem iron was determined in the liver of mice after the experimental feeding treatments. Hepcidin mRNA expression was carried out by quantitative RT-PCR. Administration of T. occidentalis leaves led to a modest increase in haemoglobin (Hb levels in anaemic mice that were comparable to the Hb repletion in anaemic mice given FeSO4. Hepatic iron increase in the mice given either T. occidentalis or FeSO4 led to a corresponding enhancement of hepcidin mRNA expression. Induced hepcidin mRNA expression was enhanced by the addition of ascorbic acid to the test dose of iron. Hepatic hepcidin mRNA expression was found to be responsive to increase in the relative bioavailability of iron from test diets.

  19. Hepcidin expression in psoriasis patients

    Directory of Open Access Journals (Sweden)

    Nursel Dilek

    2014-01-01

    Full Text Available Background: Iron is an essential nutrient for mammals. Accelerated loss of nutrients through hyperproliferation and desquamation from the skin in psoriasis is known. Hepcidin is an important and recently discovered regulator of iron homeostasis. Aims and Objectives: The present study was undertaken to investigate the hepcidin expression in psoriasis patients. Materials and Methods: We examined peripheral blood cell counts, serum Fe, ferritin, interleukin-6 (IL-6 and hepcidin levels using respectively automated hematology analyzer, Iron assay on the AEROSET system, chemiluminescent microparticle immunoassay with automated analyzer, and enzyme-linked immunosorbent assay. Results: The independent comparison of Fe, ferritin, IL-6 and hepcidin levels in psoriasis patients and control group (healthy volunteers revealed lower Fe and higher IL-6, hepcidin levels in psoriasis patients. No significant difference was seen in the ferritin level between the psoriasis and the control group. Conclusions: We think that studies on hepcidin expression in psoriatic plaques will contribute to our understanding the role of iron and hepcidin in the pathogenesis of psoriasis.

  20. Hepcidin in chronic kidney disease : not an anaemia management tool, but promising as a cardiovascular biomarker

    NARCIS (Netherlands)

    van der Weerd, N. C.; Grooteman, M. P. C.; Nube, M. J.; ter Wee, P. M.; Swinkels, D. W.; Gaillard, C. A. J. M.

    Hepcidin is a key regulator of iron homeostasis and plays a role in the pathogenesis of anaemia of chronic disease. Its levels are increased in patients with chronic kidney disease (CKD) due to diminished renal clearance and an inflammatory state. Increased hepcidin levels in CKD patients are

  1. The effects of fat loss after bariatric surgery on inflammation, serum hepcidin, and iron absorption

    NARCIS (Netherlands)

    Cepeda-Lopez, Ana C.; Allende-Labastida, Javier; Melse-Boonstra, Alida; Osendarp, Saskia J.M.; Herter-Aeberli, Isabelle; Moretti, Diego; Rodriguez-Lastra, Ramiro; Gonzalez-Salazar, Francisco; Villalpando, Salvador; Zimmermann, Michael B.

    2016-01-01

    Background: Iron deficiency is common in obese subjects. This may be due to an increase in serum hepcidin and a decrease in iron absorption from adiposity-related inflammation. Objective: We evaluated whether weight and fat loss in obese subjects would decrease inflammation and serum hepcidin and

  2. Hepcidin as a new biomarker for detecting autologous blood transfusion.

    Science.gov (United States)

    Leuenberger, Nicolas; Barras, Laura; Nicoli, Raul; Robinson, Neil; Baume, Norbert; Lion, Niels; Barelli, Stefano; Tissot, Jean-Daniel; Saugy, Martial

    2016-05-01

    Autologous blood transfusion (ABT) is an efficient way to increase sport performance. It is also the most challenging doping method to detect. At present, individual follow-up of haematological variables via the athlete biological passport (ABP) is used to detect it. Quantification of a novel hepatic peptide called hepcidin may be a new alternative to detect ABT. In this prospective clinical trial, healthy subjects received a saline injection for the control phase, after which they donated blood that was stored and then transfused 36 days later. The impact of ABT on hepcidin as well as haematological parameters, iron metabolism, and inflammation markers was investigated. Blood transfusion had a particularly marked effect on hepcidin concentrations compared to the other biomarkers, which included haematological variables. Hepcidin concentrations increased significantly: 12 hr and 1 day after blood reinfusion, these concentrations rose by seven- and fourfold, respectively. No significant change was observed in the control phase. Hepcidin quantification is a cost-effective strategy that could be used in an "ironomics" strategy to improve the detection of ABT. © 2016 Wiley Periodicals, Inc.

  3. Hepatic iron content is independently associated with serum hepcidin levels in subjects with obesity.

    Science.gov (United States)

    Moreno-Navarrete, José María; Moreno, María; Puig, Josep; Blasco, Gerard; Ortega, Francisco; Xifra, Gemma; Ricart, Wifredo; Fernández-Real, José Manuel

    2017-10-01

    Serum hepcidin concentration is known to increase in parallel to circulating markers of iron stores. We aimed to investigate whether this is reflected at the tissue level in subjects with obesity. Serum hepcidin and ferritin levels (ELISA) and hepatic iron content (using magnetic resonance imaging) were analyzed longitudinally in 44 participants (19 without obesity and 25 with obesity). In a subgroup of 16 participants with obesity, a weight loss intervention was performed. Serum hepcidin, ferritin and hepatic iron content (HIC) were significantly increased in participants with obesity. Age- and gender-adjusted serum hepcidin was positively correlated with BMI, hsCRP, ferritin and HIC. In addition, age- and gender-adjusted serum hepcidin was positively correlated with ferritin and HIC in both non-obese and obese participants. In multivariate regression analysis, hepatic iron content (p obesity. Copyright © 2016 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  4. Hepcidin: A Critical Regulator of Iron Metabolism during Hypoxia

    Directory of Open Access Journals (Sweden)

    Korry J. Hintze

    2011-01-01

    Full Text Available Iron status affects cognitive and physical performance in humans. Recent evidence indicates that iron balance is a tightly regulated process affected by a series of factors other than diet, to include hypoxia. Hypoxia has profound effects on iron absorption and results in increased iron acquisition and erythropoiesis when humans move from sea level to altitude. The effects of hypoxia on iron balance have been attributed to hepcidin, a central regulator of iron homeostasis. This paper will focus on the molecular mechanisms by which hypoxia affects hepcidin expression, to include a review of the hypoxia inducible factor (HIF/hypoxia response element (HRE system, as well as recent evidence indicating that localized adipose hypoxia due to obesity may affect hepcidin signaling and organismal iron metabolism.

  5. Aged mice have increased inflammatory monocyte concentration ...

    Indian Academy of Sciences (India)

    monocytes from old as compared with those from young mice. The increased classic .... several instances where the isotype control antibodies stained in a similar position but at a ..... responses in young and older adults. J. Infect. Dis. 195.

  6. Differing impact of the deletion of hemochromatosis-associated molecules HFE and transferrin receptor-2 on the iron phenotype of mice lacking bone morphogenetic protein 6 or hemojuvelin.

    Science.gov (United States)

    Latour, Chloé; Besson-Fournier, Céline; Meynard, Delphine; Silvestri, Laura; Gourbeyre, Ophélie; Aguilar-Martinez, Patricia; Schmidt, Paul J; Fleming, Mark D; Roth, Marie-Paule; Coppin, Hélène

    2016-01-01

    Hereditary hemochromatosis, which is characterized by inappropriately low levels of hepcidin, increased dietary iron uptake, and systemic iron accumulation, has been associated with mutations in the HFE, transferrin receptor-2 (TfR2), and hemojuvelin (HJV) genes. However, it is still not clear whether these molecules intersect in vivo with bone morphogenetic protein 6 (BMP6)/mothers against decapentaplegic (SMAD) homolog signaling, the main pathway up-regulating hepcidin expression in response to elevated hepatic iron. To answer this question, we produced double knockout mice for Bmp6 and β2-microglobulin (a surrogate for the loss of Hfe) and for Bmp6 and Tfr2, and we compared their phenotype (hepcidin expression, Bmp/Smad signaling, hepatic and extrahepatic tissue iron accumulation) with that of single Bmp6-deficient mice and that of mice deficient for Hjv, alone or in combination with Hfe or Tfr2. Whereas the phenotype of Hjv-deficient females was not affected by loss of Hfe or Tfr2, that of Bmp6-deficient females was considerably worsened, with decreased Smad5 phosphorylation, compared with single Bmp6-deficient mice, further repression of hepcidin gene expression, undetectable serum hepcidin, and massive iron accumulation not only in the liver but also in the pancreas, the heart, and the kidneys. These results show that (1) BMP6 does not require HJV to transduce signal to hepcidin in response to intracellular iron, even if the loss of HJV partly reduces this signal, (2) another BMP ligand can replace BMP6 and significantly induce hepcidin expression in response to extracellular iron, and (3) BMP6 alone is as efficient at inducing hepcidin as the other BMPs in association with the HJV/HFE/TfR2 complex; they provide an explanation for the compensatory effect of BMP6 treatment on the molecular defect underlying Hfe hemochromatosis in mice. © 2015 by the American Association for the Study of Liver Diseases.

  7. Increased Plasmodium chabaudi malaria mortality in mice with nutritional iron deficiency can be reduced by short-term adjunctive iron supplementation

    DEFF Research Database (Denmark)

    Castberg, Filip C; Maretty, Lasse; Staalsoe, Trine

    2018-01-01

    infected mice had extramedullary splenic haematopoiesis, and iron-supplemented mice had visually detectable intracellular iron stores. CONCLUSIONS: Blood transfusions are the only currently available means to correct severe anaemia in children with malaria. The potential of carefully timed, short...... parts of the world. This has rendered interventions against iron deficiency in malaria-endemic areas controversial. METHODS: The effect of nutritional iron deficiency on the clinical outcome of Plasmodium chabaudi AS infection in A/J mice and the impact of intravenous iron supplementation with ferric...... deficiency was associated with increased mortality from P. chabaudi malaria. This increased mortality could be partially offset by carefully timed, short-duration adjunctive iron supplementation. Moribund animals were characterized by low levels of hepcidin and high levels of fibroblast growth factor 23. All...

  8. Decreased serum hepcidin concentration correlates with brain iron deposition in patients with HBV-related cirrhosis.

    Directory of Open Access Journals (Sweden)

    Dong Lin

    Full Text Available PURPOSE: Excessive brain iron accumulation contributes to cognitive impairments in hepatitis B virus (HBV-related cirrhotic patients. The underlying mechanism remains unclear. Hepcidin, a liver-produced, 25-aminoacid peptide, is the major regulator of systemic iron metabolism. Abnormal hepcidin level is a key factor in some body iron accumulation or deficiency disorders, especially in those associated with liver diseases. Our study was aimed to explore the relationship between brain iron content in patients with HBV-related cirrhosis and serum hepcidin level. METHODS: Seventy HBV-related cirrhotic patients and forty age- sex-matched healthy controls were enrolled. Brain iron content was quantified by susceptibility weighted phase imaging technique. Serum hepcidin as well as serum iron, serum transferrin, ferritin, soluble transferrin receptor, total iron binding capacity, and transferrin saturation were tested in thirty cirrhotic patients and nineteen healthy controls. Pearson correlation analysis was performed to investigate correlation between brain iron concentrations and serum hepcidin, or other iron parameters. RESULTS: Cirrhotic patients had increased brain iron accumulation compared to controls in the left red nuclear, the bilateral substantia nigra, the bilateral thalamus, the right caudate, and the right putamen. Cirrhotic patients had significantly decreased serum hepcidin concentration, as well as lower serum transferring level, lower total iron binding capacity and higher transferrin saturation, compared to controls. Serum hepcidin level negatively correlated with the iron content in the right caudate, while serum ferritin level positively correlated with the iron content in the bilateral putamen in cirrhotic patients. CONCLUSIONS: Decreased serum hepcidin level correlated with excessive iron accumulation in the basal ganglia in HBV-related cirrhotic patients. Our results indicated that systemic iron overload underlined regional

  9. Impairment of Hepcidin Upregulation by Lipopolysaccharide in the Interleukin-6 Knockout Mouse Brain

    Directory of Open Access Journals (Sweden)

    Fa-Li Zhang

    2017-11-01

    Full Text Available To find out whether the Interleukin-6 (IL-6/signal transducer and activator of transcription 3 (STAT3 signaling pathway is involved in the expression of hepcidin in the mouse brain in vivo, we investigated the phosphorylation of STAT3, as well as the expression of hepcidin mRNA, ferroportin 1 (Fpn1 and ferritin light chain (Ft-L proteins in the cortex and hippocampus of LPS-treated wild type (IL-6+/+ and IL-6 knockout (IL-6-/- mice. We demonstrated that IL-6 knockout could significantly reduce the response of hepcidin mRNA, phospho-STAT3, Fpn1 and Ft-L protein expression to LPS treatment, in both the cortex and hippocampus of mice. Also, Stattic, an inhibitor of STAT3, significantly reduced the expression of phospho-STAT3 and hepcidin mRNA in the cortex and hippocampus of the LPS-treated wild type mice. These findings provide in vivo evidence for the involvement of the IL-6/STAT3 signaling pathway in the expression of hepcidin.

  10. Decreased serum hepcidin, inflammation, and improved functional iron status six-months post-restrictive bariatric surgery.

    Science.gov (United States)

    Excess adiposity is associated with low-grade inflammation and decreased iron status. Iron depletion (ID) in obesity is thought to be mediated by an inflammation-induced increase in the body’s main regulator of iron homeostasis, hepcidin. Elevated hepcidin can result in ID as it prevents the release...

  11. Characterization of the hepcidin gene in eight species of bats.

    Science.gov (United States)

    Stasiak, Iga M; Smith, Dale A; Crawshaw, Graham J; Hammermueller, Jutta D; Bienzle, Dorothee; Lillie, Brandon N

    2014-02-01

    Hemochromatosis, or iron storage disease, has been associated with significant liver disease and mortality in captive Egyptian fruit bats (Rousettus aegyptiacus). The physiologic basis for this susceptibility has not been established. In humans, a deficiency or resistance to the iron regulatory hormone, hepcidin has been implicated in the development of hereditary hemochromatosis. In the present study, we compared the coding sequence of the hepcidin gene in eight species of bats representing three distinct taxonomic families with diverse life histories and dietary preferences. Bat hepcidin mRNA encoded a 23 amino acid signal peptide, a 34 or 35 amino acid pro-region, and a 25 amino acid mature peptide, similar to other mammalian species. Differences in the sequence of the portion of the hepcidin gene that encodes the mature peptide that might account for the increased susceptibility of the Egyptian fruit bat to iron storage disease were not identified. Variability in gene sequence corresponded to the taxonomic relationship amongst species. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Hepcidin Plays a Key Role in 6-OHDA Induced Iron Overload and Apoptotic Cell Death in a Cell Culture Model of Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Qi Xu

    2016-01-01

    Full Text Available Background. Elevated brain iron levels have been implicated in the pathogenesis of Parkinson’s disease (PD. However, the precise mechanism underlying abnormal iron accumulation in PD is not clear. Hepcidin, a hormone primarily produced by hepatocytes, acts as a key regulator in both systemic and cellular iron homeostasis. Objective. We investigated the role of hepcidin in 6-hydroxydopamine (6-OHDA induced apoptosis in a cell culture model of PD. Methods. We downregulated hepcidin using siRNA interference in N27 dopaminergic neuronal cells and made a comparison with control siRNA transfected cells to investigate the role of hepcidin in 6-OHDA induced neurodegeneration. Results. Hepcidin knockdown (32.3%, P<0.0001 upregulated ferroportin 1 expression and significantly (P<0.05 decreased intracellular iron by 25%. Hepcidin knockdown also reduced 6-OHDA induced caspase-3 activity by 42% (P<0.05 and DNA fragmentation by 29% (P=0.086 and increased cell viability by 22% (P<0.05. In addition, hepcidin knockdown significantly attenuated 6-OHDA induced protein carbonyls by 52% (P<0.05 and intracellular iron by 28% (P<0.01, indicating the role of hepcidin in oxidative stress. Conclusions. Our results demonstrate that hepcidin knockdown protected N27 cells from 6-OHDA induced apoptosis and that hepcidin plays a major role in reducing cellular iron burden and oxidative damage by possibly regulating cellular iron export mediated by ferroportin 1.

  13. Tmprss6 is a genetic modifier of the Hfe-hemochromatosis phenotype in mice

    Science.gov (United States)

    Whittlesey, Rebecca L.; Andrews, Nancy C.

    2011-01-01

    The hereditary hemochromatosis protein HFE promotes the expression of hepcidin, a circulating hormone produced by the liver that inhibits dietary iron absorption and macrophage iron release. HFE mutations are associated with impaired hepatic bone morphogenetic protein (BMP)/SMAD signaling for hepcidin production. TMPRSS6, a transmembrane serine protease mutated in iron-refractory iron deficiency anemia, inhibits hepcidin expression by dampening BMP/SMAD signaling. In the present study, we used genetic approaches in mice to examine the relationship between Hfe and Tmprss6 in the regulation of systemic iron homeostasis. Heterozygous loss of Tmprss6 in Hfe−/− mice reduced systemic iron overload, whereas homozygous loss caused systemic iron deficiency and elevated hepatic expression of hepcidin and other Bmp/Smad target genes. In contrast, neither genetic loss of Hfe nor hepatic Hfe overexpression modulated the hepcidin elevation and systemic iron deficiency of Tmprss6−/− mice. These results indicate that genetic loss of Tmprss6 increases Bmp/Smad signaling in an Hfe-independent manner that can restore Bmp/Smad signaling in Hfe−/− mice. Furthermore, these results suggest that natural genetic variation in the human ortholog TMPRSS6 might modify the clinical penetrance of HFE-associated hereditary hemochromatosis, raising the possibility that pharmacologic inhibition of TMPRSS6 could attenuate iron loading in this disorder. PMID:21355094

  14. Hepcidin is directly regulated by insulin and plays an important role in iron overload in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Wang, Heyang; Li, Hongxia; Jiang, Xin; Shi, Wencai; Shen, Zhilei; Li, Min

    2014-05-01

    Iron overload is frequently observed in type 2 diabetes mellitus (DM2), but the underlying mechanisms remain unclear. We hypothesize that hepcidin may be directly regulated by insulin and play an important role in iron overload in DM2. We therefore examined the hepatic iron content, serum iron parameters, intestinal iron absorption, and liver hepcidin expression in rats treated with streptozotocin (STZ), which was given alone or after insulin resistance induced by a high-fat diet. The direct effect of insulin on hepcidin and its molecular mechanisms were furthermore determined in vitro in HepG2 cells. STZ administration caused a significant reduction in liver hepcidin level and a marked increase in intestinal iron absorption and serum and hepatic iron content. Insulin obviously upregulated hepcidin expression in HepG2 cells and enhanced signal transducer and activator of transcription 3 protein synthesis and DNA binding activity. The effect of insulin on hepcidin disappeared when the signal transducer and activator of transcription 3 pathway was blocked and could be partially inhibited by U0126. In conclusion, the current study suggests that hepcidin can be directly regulated by insulin, and the suppressed liver hepcidin synthesis may be an important reason for the iron overload in DM2.

  15. Citrate Defines a Regulatory Link Between Energy Metabolism and the Liver Hormone Hepcidin

    OpenAIRE

    Ladeira Courelas da Silva, Ana Rita

    2017-01-01

    Iron plays a critical role as an oxygen carrier in hemoglobin as well as a constituent of iron-sulfur clusters. Increasing evidence suggests that mechanisms maintaining iron homeostasis cross-talk to intermediary metabolism. The liver hormone hepcidin is the key regulator of systemic iron metabolism. Hepcidin transcriptional control is linked to the nutrient-sensing mTOR pathway, proliferative signals, gluconeogenic responses during starvation and hormones that modulate energy metabolism. The...

  16. Longitudinal Analysis of the Interaction Between Obesity and Pregnancy on Iron Homeostasis: Role of Hepcidin.

    Science.gov (United States)

    Flores-Quijano, María Eugenia; Montalvo-Velarde, Irene; Vital-Reyes, Victor Saul; Rodríguez-Cruz, Maricela; Rendón-Macías, Mario Enrique; López-Alarcón, Mardia

    2016-10-01

    When pregnancy occurs in obese women, two opposite mechanisms for iron homeostasis concur: increased need for available iron to support erythropoiesis and decreased iron mobilization from diets and stores due to obesity-related inflammation linked to overexpressed hepcidin. Few studies have examined the role of hepcidin on maternal iron homeostasis in the context of obese pregnancy. The aim of the study was to evaluate the combined effect of maternal obesity and pregnancy on hepcidin and maternal iron status while accounting for inflammation and iron supplementation. We conducted a secondary analysis of a cohort of pregnant women recruited from a referral obstetric hospital in Mexico City. Circulating biomarkers of iron status (hepcidin, ferritin [SF], transferrin receptor [sTfR], erythropoietin [EPO]), and inflammation (C-reactive protein [CRP], tumor necrosis factor-[TNF]α, and interleukin-[IL]6) were determined monthly throughout pregnancy. Repeated measures ANOVA and logistic regression models were used for statistics. Twenty-three obese (Ob) and 25 lean (Lc) women were studied. SF and hepcidin declined, and EPO and sTfR increased throughout pregnancy in both groups. sTfR increased more in Ob than in Lc (p = 0.024). The smallest hepcidin decline occurred in iron-supplemented Ob women compared to non-supplemented Lc women (p = 0.022). The risk for iron deficiency at the end of pregnancy was higher for Ob than for Lc (OR = 4.45, 95% CI = 2.07-9.58) after adjusting for iron supplementation and hepcidin concentration. Pre-gestational obesity increases the risk of maternal iron deficiency despite iron supplementation. Overexpressed hepcidin appears to be a potential mechanism. Copyright © 2016 IMSS. Published by Elsevier Inc. All rights reserved.

  17. Ivastimul used to increase radioresistance of mice

    International Nuclear Information System (INIS)

    Rotkovska, D.; Vacek, A.; Bartonickova, A.

    1989-01-01

    A study was made of the effect of ivastimul (IS), an aqueous extract from unicellular Chlorella algae, on the radioresistance and some haemopoiesis parameters of mice exposed to 60 Co-γ-radiation. With median and absolutely lethal radiation doses, IS was shown to produce a pronounced protective effect displayed by the increased survival rate. With sublethal doses, IS elevated the postirradiation formation of endogenous colonies and restoration of bone marrow and spleen cellularity and spleen mass

  18. Iron Supplementation during Three Consecutive Days of Endurance Training Augmented Hepcidin Levels

    Directory of Open Access Journals (Sweden)

    Aya Ishibashi

    2017-07-01

    Full Text Available Iron supplementation contributes an effort to improving iron status among athletes, but it does not always prevent iron deficiency. In the present study, we explored the effect of three consecutive days of endurance training (twice daily on the hepcidin-25 (hepcidin level. The effect of iron supplementation during this period was also determined. Fourteen male endurance athletes were enrolled and randomly assigned to either an iron-treated condition (Fe condition, n = 7 or a placebo condition (Control condition; CON, n = 7. They engaged in two 75-min sessions of treadmill running at 75% of maximal oxygen uptake on three consecutive days (days 1–3. The Fe condition took 12 mg of iron twice daily (24 mg/day, and the CON condition did not. On day 1, both conditions exhibited significant increases in serum hepcidin and plasma interleukin-6 levels after exercise (p < 0.05. In the CON condition, the hepcidin level did not change significantly throughout the training period. However, in the Fe condition, the serum hepcidin level on day 4 was significantly higher than that of the CON condition (p < 0.05. In conclusion, the hepcidin level was significantly elevated following three consecutive days of endurance training when moderate doses of iron were taken.

  19. Iron Supplementation during Three Consecutive Days of Endurance Training Augmented Hepcidin Levels.

    Science.gov (United States)

    Ishibashi, Aya; Maeda, Naho; Kamei, Akiko; Goto, Kazushige

    2017-07-30

    Iron supplementation contributes an effort to improving iron status among athletes, but it does not always prevent iron deficiency. In the present study, we explored the effect of three consecutive days of endurance training (twice daily) on the hepcidin-25 (hepcidin) level. The effect of iron supplementation during this period was also determined. Fourteen male endurance athletes were enrolled and randomly assigned to either an iron-treated condition (Fe condition, n = 7) or a placebo condition (Control condition; CON, n = 7). They engaged in two 75-min sessions of treadmill running at 75% of maximal oxygen uptake on three consecutive days (days 1-3). The Fe condition took 12 mg of iron twice daily (24 mg/day), and the CON condition did not. On day 1, both conditions exhibited significant increases in serum hepcidin and plasma interleukin-6 levels after exercise ( p < 0.05). In the CON condition, the hepcidin level did not change significantly throughout the training period. However, in the Fe condition, the serum hepcidin level on day 4 was significantly higher than that of the CON condition ( p < 0.05). In conclusion, the hepcidin level was significantly elevated following three consecutive days of endurance training when moderate doses of iron were taken.

  20. Rethinking Iron Regulation and Assessment in Iron Deficiency, Anemia of Chronic Disease, and Obesity: Introducing Hepcidin

    Science.gov (United States)

    Tussing-Humphreys, Lisa; Pustacioglu, Cenk; Nemeth, Elizabeta; Braunschweig, Carol

    2012-01-01

    Adequate iron availability is essential to human development and overall health. Iron is a key component of oxygen-carrying proteins, has a pivotal role in cellular metabolism, and is essential to cell growth and differentiation. Inadequate dietary iron intake, chronic and acute inflammatory conditions, and obesity are each associated with alterations in iron homeostasis. Tight regulation of iron is necessary because iron is highly toxic and human beings can only excrete small amounts through sweat, skin and enterocyte sloughing, and fecal and menstrual blood loss. Hepcidin, a small peptide hormone produced mainly by the liver, acts as the key regulator of systemic iron homeostasis. Hepcidin controls movement of iron into plasma by regulating the activity of the sole known iron exporter ferroportin-1. Downregulation of the ferroportin-1 exporter results in sequestration of iron within intestinal enterocytes, hepatocytes, and iron-storing macrophages reducing iron bioavailability. Hepcidin expression is increased by higher body iron levels and inflammation and decreased by anemia and hypoxia. Importantly, existing data illustrate that hepcidin may play a significant role in the development of several iron-related disorders, including the anemia of chronic disease and the iron dysregulation observed in obesity. Therefore, the purpose of this article is to discuss iron regulation, with specific emphasis on systemic regulation by hepcidin, and examine the role of hepcidin within several disease states, including iron deficiency, anemia of chronic disease, and obesity. The relationship between obesity and iron depletion and the clinical assessment of iron status will also be reviewed. PMID:22717199

  1. Is hepcidin a new cardiovascular risk marker in polycystic ovary syndrome?

    Science.gov (United States)

    Gözdemir, Elif; Kaygusuz, Ikbal; Kafalı, Hasan

    2013-01-01

    Polycystic ovary syndrome (PCOS) is associated with reproductive and metabolic abnormalities and carries a number of cardiovascular risk factors. Low-grade chronic inflammation has been thought to play a role in the pathogenesis of atherosclerosis and PCOS patients have an increased rate of subclinical inflammation. In the present study, considering the major role that hepcidin plays in the regulation of iron metabolism and as an inflammatory marker, we investigated hepcidin in PCOS patients and its role in predicting cardiovascular disease (CVD) development. Forty patients with PCOS and 40 age- and body mass index-matched healthy controls were included in the study. Iron metabolites, insulin resistance (IR), inflammatory markers and hepcidin levels were analyzed. IR parameters, inflammatory markers, iron parameters and hepcidin levels were similar between the PCOS and control groups. While the inflammatory markers were significantly high in the overweight and obese PCOS subgroup, the hepcidin levels were also high but this elevation was not statistically significant. Obesity is the principle mechanism of chronic inflammation and IR in PCOS patients. C-reactive protein and interleukin-6 should be used to predict and follow the risk of CVD development in PCOS cases. Hepcidin may be used as an additional marker in the follow-up of PCOS patients in the future. Copyright © 2013 S. Karger AG, Basel.

  2. Taurine increases hippocampal neurogenesis in aging mice

    Directory of Open Access Journals (Sweden)

    Elias Gebara

    2015-05-01

    Full Text Available Aging is associated with increased inflammation and reduced hippocampal neurogenesis, which may in turn contribute to cognitive impairment. Taurine is a free amino acid found in numerous diets, with anti-inflammatory properties. Although abundant in the young brain, the decrease in taurine concentration with age may underlie reduced neurogenesis. Here, we assessed the effect of taurine on hippocampal neurogenesis in middle-aged mice. We found that taurine increased cell proliferation in the dentate gyrus through the activation of quiescent stem cells, resulting in increased number of stem cells and intermediate neural progenitors. Taurine had a direct effect on stem/progenitor cells proliferation, as observed in vitro, and also reduced activated microglia. Furthermore, taurine increased the survival of newborn neurons, resulting in a net increase in adult neurogenesis. Together, these results show that taurine increases several steps of adult neurogenesis and support a beneficial role of taurine on hippocampal neurogenesis in the context of brain aging.

  3. Effect of excess iron on oxidative stress and gluconeogenesis through hepcidin during mitochondrial dysfunction.

    Science.gov (United States)

    Lee, Hyo Jung; Choi, Joo Sun; Lee, Hye Ja; Kim, Won-Ho; Park, Sang Ick; Song, Jihyun

    2015-12-01

    Excessive tissue iron levels are a risk factor for insulin resistance and type 2 diabetes, which are associated with alterations in iron metabolism. However, the mechanisms underlying this association are not well understood. This study used human liver SK-HEP-1 cells to examine how excess iron induces mitochondrial dysfunction and how hepcidin controls gluconeogenesis. Excess levels of reactive oxygen species (ROS) and accumulated iron due to iron overload induced mitochondrial dysfunction, leading to a decrease in cellular adenosine triphosphate content and cytochrome c oxidase III expression, with an associated increase in gluconeogenesis. Disturbances in mitochondrial function caused excess iron deposition and unbalanced expression of iron metabolism-related proteins such as hepcidin, ferritin H and ferroportin during the activation of p38 mitogen-activated protein kinase (MAPK) and CCAAT/enhancer-binding protein alpha (C/EBPα), which are responsible for increased phosphoenolpyruvate carboxykinase expression. Desferoxamine and n-acetylcysteine ameliorated these deteriorations by inhibiting p38 MAPK and C/EBPα activity through iron chelation and ROS scavenging activity. Based on experiments using hepcidin shRNA and hepcidin overexpression, the activation of hepcidin affects ROS generation and iron deposition, which disturbs mitochondrial function and causes an imbalance in iron metabolism and increased gluconeogenesis. Repression of hepcidin activity can reverse these changes. Our results demonstrate that iron overload is associated with mitochondrial dysfunction and that together they can cause abnormal hepatic gluconeogenesis. Hepcidin expression may modulate this disorder by regulating ROS generation and iron deposition. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Hepcidin-Induced Iron Deficiency Is Related to Transient Anemia and Hypoferremia in Kawasaki Disease Patients

    Science.gov (United States)

    Huang, Ying-Hsien; Kuo, Ho-Chang; Huang, Fu-Chen; Yu, Hong-Ren; Hsieh, Kai-Sheng; Yang, Ya-Ling; Sheen, Jiunn-Ming; Li, Sung-Chou; Kuo, Hsing-Chun

    2016-01-01

    Kawasaki disease (KD) is a type of systemic vasculitis that primarily affects children under the age of five years old. For sufferers of KD, intravenous immunoglobulin (IVIG) has been found to successfully diminish the occurrence of coronary artery lesions. Anemia is commonly found in KD patients, and we have shown that in appropriately elevated hepcidin levels are related to decreased hemoglobin levels in these patients. In this study, we investigated the time period of anemia and iron metabolism during different stages of KD. A total of 100 patients with KD and 20 control subjects were enrolled in this study for red blood cell and hemoglobin analysis. Furthermore, plasma, urine hepcidin, and plasma IL-6 levels were evaluated using enzyme-linked immunosorbent assay in 20 KD patients and controls. Changes in hemoglobin, plasma iron levels, and total iron binding capacity (TIBC) were also measured in patients with KD. Hemoglobin, iron levels, and TIBC were lower (p < 0.001, p = 0.009, and p < 0.001, respectively) while plasma IL-6 and hepcidin levels (both p < 0.001) were higher in patients with KD than in the controls prior to IVIG administration. Moreover, plasma hepcidin levels were positively and significantly correlated with urine hepcidin levels (p < 0.001) prior to IVIG administration. After IVIG treatment, plasma hepcidin and hemoglobin levels significantly decreased (both p < 0.001). Of particular note was a subsequent gradual increase in hemoglobin levels during the three weeks after IVIG treatment; nevertheless, the hemoglobin levels stayed lower in KD patients than in the controls (p = 0.045). These findings provide a longitudinal study of hemoglobin changes and among the first evidence that hepcidin induces transient anemia and hypoferremia during KD’s acute inflammatory phase. PMID:27187366

  5. Hepcidin-Induced Iron Deficiency Is Related to Transient Anemia and Hypoferremia in Kawasaki Disease Patients

    Directory of Open Access Journals (Sweden)

    Ying-Hsien Huang

    2016-05-01

    Full Text Available Kawasaki disease (KD is a type of systemic vasculitis that primarily affects children under the age of five years old. For sufferers of KD, intravenous immunoglobulin (IVIG has been found to successfully diminish the occurrence of coronary artery lesions. Anemia is commonly found in KD patients, and we have shown that in appropriately elevated hepcidin levels are related to decreased hemoglobin levels in these patients. In this study, we investigated the time period of anemia and iron metabolism during different stages of KD. A total of 100 patients with KD and 20 control subjects were enrolled in this study for red blood cell and hemoglobin analysis. Furthermore, plasma, urine hepcidin, and plasma IL-6 levels were evaluated using enzyme-linked immunosorbent assay in 20 KD patients and controls. Changes in hemoglobin, plasma iron levels, and total iron binding capacity (TIBC were also measured in patients with KD. Hemoglobin, iron levels, and TIBC were lower (p < 0.001, p = 0.009, and p < 0.001, respectively while plasma IL-6 and hepcidin levels (both p < 0.001 were higher in patients with KD than in the controls prior to IVIG administration. Moreover, plasma hepcidin levels were positively and significantly correlated with urine hepcidin levels (p < 0.001 prior to IVIG administration. After IVIG treatment, plasma hepcidin and hemoglobin levels significantly decreased (both p < 0.001. Of particular note was a subsequent gradual increase in hemoglobin levels during the three weeks after IVIG treatment; nevertheless, the hemoglobin levels stayed lower in KD patients than in the controls (p = 0.045. These findings provide a longitudinal study of hemoglobin changes and among the first evidence that hepcidin induces transient anemia and hypoferremia during KD’s acute inflammatory phase.

  6. Hepcidin: an important iron metabolism regulator in chronic kidney disease.

    Science.gov (United States)

    Antunes, Sandra Azevedo; Canziani, Maria Eugênia Fernandes

    2016-01-01

    Anemia is a common complication and its impact on morbimortality in patients with chronic kidney disease (CKD) is well known. The discovery of hepcidin and its functions has contributed to a better understanding of iron metabolism disorders in CKD anemia. Hepcidin is a peptide mainly produced by hepatocytes and, through a connection with ferroportin, it regulates iron absorption in the duodenum and its release of stock cells. High hepcidin concentrations described in patients with CKD, especially in more advanced stages are attributed to decreased renal excretion and increased production. The elevation of hepcidin has been associated with infection, inflammation, atherosclerosis, insulin resistance and oxidative stress. Some strategies were tested to reduce the effects of hepcidin in patients with CKD, however more studies are necessary to assess the impact of its modulation in the management of anemia in this population. Resumo Anemia é uma complicação frequente e seu impacto na morbimortalidade é bem conhecido em pacientes com doença renal crônica (DRC). A descoberta da hepcidina e de suas funções contribuíram para melhor compreensão dos distúrbios do metabolismo de ferro na anemia da DRC. Hepcidina é um peptídeo produzido principalmente pelos hepatócitos, e através de sua ligação com a ferroportina, regula a absorção de ferro no duodeno e sua liberação das células de estoque. Altas concentrações de hepcidina descritas em pacientes com DRC, principalmente em estádios mais avançados, são atribuídas à diminuição da excreção renal e ao aumento de sua produção. Elevação de hepcidina tem sido associada à ocorrência de infecção, inflamação, aterosclerose, resistência à insulina e estresse oxidativo. Algumas estratégias foram testadas para diminuir os efeitos da hepcidina em pacientes com DRC, entretanto, serão necessários mais estudos para avaliar o impacto de sua modulação no manejo da anemia nessa população.

  7. Hepcidin Protects Neuron from Hemin-Mediated Injury by Reducing Iron

    Directory of Open Access Journals (Sweden)

    Yu-Fu Zhou

    2017-05-01

    Full Text Available Hemin plays a key role in mediating secondary neuronal injury after intracerebral hemorrhage (ICH and the cell toxicity of hemin is thought to be due to iron that is liberated when hemin is degraded. In a recent study, we demonstrated the iron regulatory hormone hepcidin reduces brain iron in iron-overloaded rats. Therefore, we hypothesized that hepcidin might be able to reduce iron and then protect neurons from hemin or iron-mediated neurotoxicity in hemin-treated neuronal cells. Here, we tested the hypothesis and demonstrated that ad-hepcidin and hepcidin peptide both have the ability to suppress the hemin-induced increase in LDH release and apoptotic cell numbers, to reduce cell iron and ferritin contents, and to inhibit expression of transferrin receptor 1, divalent metal transporter 1, and ferroportin 1 in hemin-treated neurons. We conclude that hepcidin protects neuron from hemin-mediated injury by reducing iron via inhibition of expression of iron transport proteins.

  8. Iron status and the acute post-exercise hepcidin response in athletes.

    Directory of Open Access Journals (Sweden)

    Peter Peeling

    Full Text Available This study explored the relationship between serum ferritin and hepcidin in athletes. Baseline serum ferritin levels of 54 athletes from the control trial of five investigations conducted in our laboratory were considered; athletes were grouped according to values 100 μg/L (SF>100. Data pooling resulted in each athlete completing one of five running sessions: (1 8 × 3 min at 85% vVO2peak; (2 5 × 4 min at 90% vVO2peak; (3 90 min continuous at 75% vVO2peak; (4 40 min continuous at 75% vVO2peak; (5 40 min continuous at 65% vVO2peak. Athletes from each running session were represented amongst all four groups; hence, the mean exercise duration and intensity were not different (p>0.05. Venous blood samples were collected pre-, post- and 3 h post-exercise, and were analysed for serum ferritin, iron, interleukin-6 (IL-6 and hepcidin-25. Baseline and post-exercise serum ferritin levels were different between groups (p0.05. Post-exercise IL-6 was significantly elevated compared to baseline within each group (p100; p<0.05. An athlete's iron stores may dictate the baseline hepcidin levels and the magnitude of post-exercise hepcidin response. Low iron stores suppressed post-exercise hepcidin, seemingly overriding any inflammatory-driven increases.

  9. Sustained Submicromolar H2O2 Levels Induce Hepcidin via Signal Transducer and Activator of Transcription 3 (STAT3)*

    Science.gov (United States)

    Millonig, Gunda; Ganzleben, Ingo; Peccerella, Teresa; Casanovas, Guillem; Brodziak-Jarosz, Lidia; Breitkopf-Heinlein, Katja; Dick, Tobias P.; Seitz, Helmut-Karl; Muckenthaler, Martina U.; Mueller, Sebastian

    2012-01-01

    The peptide hormone hepcidin regulates mammalian iron homeostasis by blocking ferroportin-mediated iron export from macrophages and the duodenum. During inflammation, hepcidin is strongly induced by interleukin 6, eventually leading to the anemia of chronic disease. Here we show that hepatoma cells and primary hepatocytes strongly up-regulate hepcidin when exposed to low concentrations of H2O2 (0.3–6 μm), concentrations that are comparable with levels of H2O2 released by inflammatory cells. In contrast, bolus treatment of H2O2 has no effect at low concentrations and even suppresses hepcidin at concentrations of >50 μm. H2O2 treatment synergistically stimulates hepcidin promoter activity in combination with recombinant interleukin-6 or bone morphogenetic protein-6 and in a manner that requires a functional STAT3-responsive element. The H2O2-mediated hepcidin induction requires STAT3 phosphorylation and is effectively blocked by siRNA-mediated STAT3 silencing, overexpression of SOCS3 (suppressor of cytokine signaling 3), and antioxidants such as N-acetylcysteine. Glycoprotein 130 (gp130) is required for H2O2 responsiveness, and Janus kinase 1 (JAK1) is required for adequate basal signaling, whereas Janus kinase 2 (JAK2) is dispensable upstream of STAT3. Importantly, hepcidin levels are also increased by intracellular H2O2 released from the respiratory chain in the presence of rotenone or antimycin A. Our results suggest a novel mechanism of hepcidin regulation by nanomolar levels of sustained H2O2. Thus, similar to cytokines, H2O2 provides an important regulatory link between inflammation and iron metabolism. PMID:22932892

  10. Freund's adjuvant-induced inflammation: clinical findings and its effect on hepcidin mRNA expression in horses

    Directory of Open Access Journals (Sweden)

    José P. Oliveira-Filho

    2014-01-01

    Full Text Available Hypoferremia observed during systemic inflammatory disorders is regulated by hepcidin. Hepcidin up-regulation is particularly important during acute inflammation, as it restricts the availability of iron, which is necessary for pathogenic microorganism growth before adaptive immunity occurs. The aim of this study was to evaluate the clinical findings and hepatic hepcidin mRNA expression in horses using a Freund's complete adjuvant (FCA model of inflammation. The expression of hepcidin mRNA in the liver was determined in healthy horses following two intramuscular injections of FCA at 0 h and 12 h. Plasma iron and fibrinogen concentrations were measured at multiple time points between 0 h and 240 h post-FCA injection (PI. Hepcidin mRNA expression was determined by RT-qPCR using liver biopsy samples performed at 0 h (control, 6 h and 18 h PI. The mean plasma fibrinogen level was significantly different from the control values only between 120 and 216 h PI. The mean plasma iron level was significantly lower than the control between 16 and 72 h PI, reaching the lowest levels at 30 h PI (33 % of the initial value, and returned to the reference value from 96 h PI to the end of the experiment. Hepcidin mRNA expression increased at 6 h PI and remained high at 18 h PI. The iron plasma concentration was an earlier indicator of inflammatory processes in horses when compared with fibrinogen and might be useful for the early detection of inflammation in the horse. FCA administration caused the rapid onset of hypoferremia, and this effect was likely the result of up-regulated hepatic hepcidin gene expression. This study emphasizes the importance of hepcidin and iron metabolism during inflammation in horses.

  11. High-Throughput Screening of Small Molecules Identifies Hepcidin Antagonists

    Science.gov (United States)

    Fung, Eileen; Sugianto, Priscilla; Hsu, Jason; Damoiseaux, Robert; Ganz, Tomas

    2013-01-01

    Anemia of inflammation (AI) is common in patients with infection, autoimmune diseases, cancer, and chronic kidney disease. Unless the underlying condition can be reversed, treatment options are limited to erythropoiesis-stimulating agents with or without intravenous iron therapy, modalities that are not always effective and can cause serious adverse effects. Hepcidin, the iron regulatory hormone, has been identified as a pathogenic factor in the development of AI. To explore new therapeutic options for AI and other iron-related disorders caused by hepcidin excess, we developed a cell-based screen to identify hepcidin antagonists. Of the 70,000 small molecules in the library, we identified 14 compounds that antagonized the hepcidin effect on ferroportin. One of these was fursultiamine, a Food and Drug Administration (FDA)–approved thiamine derivative. Fursultiamine directly interfered with hepcidin binding to its receptor, ferroportin, by blocking ferroportin C326 thiol residue essential for hepcidin binding. Consequently, fursultiamine prevented hepcidin-induced ferroportin ubiquitination, endocytosis, and degradation in vitro and allowed continuous cellular iron export despite the presence of hepcidin, with IC50 in the submicromolar range. Thiamine, the fursultiamine metabolite, and benfotiamine, another thiamine derivative, did not interfere with the effect of hepcidin on ferroportin. Other FDA-approved thiol-reactive compounds were at least 1000-fold less potent than fursultiamine in antagonizing hepcidin. In vivo, fursultiamine did not reproducibly antagonize the effect of hepcidin on serum iron, likely because of its rapid conversion to inactive metabolites. Fursultiamine is a unique antagonist of hepcidin in vitro that could serve as a template for the development of drug candidates that inhibit the hepcidin-ferroportin interaction. PMID:23292796

  12. Mice lacking neuropeptide Y show increased sensitivity to cocaine

    DEFF Research Database (Denmark)

    Sørensen, Gunnar; Woldbye, David Paul Drucker

    2012-01-01

    There is increasing data implicating neuropeptide Y (NPY) in the neurobiology of addiction. This study explored the possible role of NPY in cocaine-induced behavior using NPY knockout mice. The transgenic mice showed a hypersensitive response to cocaine in three animal models of cocaine addiction...

  13. Identification of centrarchid hepcidins and evidence that 17β-estradiol disrupts constitutive expression of hepcidin-1 and inducible expression of hepcidin-2 in largemouth bass (Micropterus salmoides)

    Science.gov (United States)

    Robertson, L.S.; Iwanowicz, L.R.; Marranca, J.M.

    2009-01-01

    Hepcidin is a highly conserved antimicrobial peptide and iron-regulatory hormone. Here, we identify two hepcidin genes (hep-1 and hep-2) in largemouth bass (Micropterus salmoides) and smallmouth bass (Micropterus dolomieu). Hepcidin-1 contains a putative ATCUN metal-binding site in the amino-terminus that is missing in hepcidin-2, suggesting that hepcidin-1 may function as an iron-regulatory hormone. Both hepcidins are predominately expressed in the liver of largemouth bass, similar to other fish and mammals. Experimental exposure of pond-raised largemouth bass to 17β-estradiol and/or the bacteria Edwardsiella ictaluri led to distinct changes in expression of hep-1 and hep-2. Estradiol reduced the constitutive expression of hep-1 in the liver. Bacterial exposure induced expression of hep-2, suggesting that hepcidin-2 may have an antimicrobial function, and this induction was abolished by estradiol. To our knowledge, this is the first report of the regulation of hepcidin expression by estradiol in either fish or mammals.

  14. Identification of centrarchid hepcidins and evidence that 17beta-estradiol disrupts constitutive expression of hepcidin-1 and inducible expression of hepcidin-2 in largemouth bass (Micropterus salmoides).

    Science.gov (United States)

    Robertson, Laura S; Iwanowicz, Luke R; Marranca, Jamie Marie

    2009-06-01

    Hepcidin is a highly conserved antimicrobial peptide and iron-regulatory hormone. Here, we identify two hepcidin genes (hep-1 and hep-2) in largemouth bass (Micropterus salmoides) and smallmouth bass (Micropterus dolomieu). Hepcidin-1 contains a putative ATCUN metal-binding site in the amino-terminus that is missing in hepcidin-2, suggesting that hepcidin-1 may function as an iron-regulatory hormone. Both hepcidins are predominately expressed in the liver of largemouth bass, similar to other fish and mammals. Experimental exposure of pond-raised largemouth bass to 17beta-estradiol and/or the bacteria Edwardsiella ictaluri led to distinct changes in expression of hep-1 and hep-2. Estradiol reduced the constitutive expression of hep-1 in the liver. Bacterial exposure induced expression of hep-2, suggesting that hepcidin-2 may have an antimicrobial function, and this induction was abolished by estradiol. To our knowledge, this is the first report of the regulation of hepcidin expression by estradiol in either fish or mammals.

  15. Herbkines increases physical stamina in mice.

    Science.gov (United States)

    Koo, Hyun-Na; Lee, Jai-Kyoo; Hong, Seung-Heon; Kim, Hyung-Min

    2004-01-01

    Herbkines has been used for the purpose of development of physical strength. In the present study, we investigated the effect of Herbkines on performance of the forced swimming test (FST) and on blood biochemical parameters related to fatigue: blood urea nitrogen (BUN), creatine kinase (CK), lactic dehydrogenase (LDH), glucose (Glc), and total protein (TP). Herbkines were orally administered to mice, 10 ml/kg, continuously once per day for 2 weeks using a feeding atraumatic needle. After 2 d, on FST, the immobility time was decreased in the Herbkines-fed group (178+/-8.2 s) in comparison with the control group (189+/-22 s); however, the statistical difference was very weak (p=0.596). After 2 weeks, the immobility time was significantly decreased in the Herbkines-fed group (196+/-4.5 s) in comparison with the control group (221+/-6.2 s). In addition, the content of BUN in the blood serum was significantly decreased. However, the levels of CK, LDH, Glc, and TP did not show a significant change. The results predict a potential benefit of Herbkines as an anti-fatigue treatment and for improving physical stamina.

  16. Hepcidin Response to Iron Therapy in Patients with Non-Dialysis Dependent CKD: An Analysis of the FIND-CKD Trial.

    Science.gov (United States)

    Gaillard, Carlo A; Bock, Andreas H; Carrera, Fernando; Eckardt, Kai-Uwe; Van Wyck, David B; Bansal, Sukhvinder S; Cronin, Maureen; Meier, Yvonne; Larroque, Sylvain; Roger, Simon D; Macdougall, Iain C

    2016-01-01

    Hepcidin is the key regulator of iron homeostasis but data are limited regarding its temporal response to iron therapy, and response to intravenous versus oral iron. In the 56-week, open-label, multicenter, prospective, randomized FIND-CKD study, 626 anemic patients with non-dialysis dependent chronic kidney disease (ND-CKD) and iron deficiency not receiving an erythropoiesis stimulating agent were randomized (1:1:2) to intravenous ferric carboxymaltose (FCM), targeting higher (400-600μg/L) or lower (100-200μg/L) ferritin, or to oral iron. Serum hepcidin levels were measured centrally in a subset of 61 patients. Mean (SD) baseline hepcidin level was 4.0(3.5), 7.3(6.4) and 6.5(5.6) ng/mL in the high ferritin FCM (n = 17), low ferritin FCM (n = 16) and oral iron group (n = 28). The mean (SD) endpoint value (i.e. the last post-baseline value) was 26.0(9.1),15.7(7.7) and 16.3(11.0) ng/mL, respectively. The increase in hepcidin from baseline was significantly smaller with low ferritin FCM or oral iron vs high ferritin FCM at all time points up to week 52. Significant correlations were found between absolute hepcidin and ferritin values (r = 0.65, p<0.001) and between final post-baseline increases in both parameters (r = 0.70, p<0.001). The increase in hepcidin levels over the 12-month study generally mirrored the cumulative iron dose in each group. Hepcidin and transferrin saturation (TSAT) absolute values showed no correlation, although there was an association between final post-baseline increases (r = 0.42, p<0.001). Absolute values (r = 0.36, p = 0.004) and final post-baseline increases of hepcidin and hemoglobin (p = 0.30, p = 0.030) correlated weakly. Baseline hepcidin levels were not predictive of a hematopoietic response to iron therapy. In conclusion, hepcidin levels rose in response to either intravenous or oral iron therapy, but the speed and extent of the rise was greatest with intravenous iron targeting a higher ferritin level. However neither the

  17. Iron storage disease (hemochromatosis) and hepcidin response to iron load in two species of pteropodid fruit bats relative to the common vampire bat.

    Science.gov (United States)

    Stasiak, Iga M; Smith, Dale A; Ganz, Tomas; Crawshaw, Graham J; Hammermueller, Jutta D; Bienzle, Dorothee; Lillie, Brandon N

    2018-07-01

    Hepcidin is the key regulator of iron homeostasis in the body. Iron storage disease (hemochromatosis) is a frequent cause of liver disease and mortality in captive Egyptian fruit bats (Rousettus aegyptiacus), but reasons underlying this condition are unknown. Hereditary hemochromatosis in humans is due to deficiency of hepcidin or resistance to the action of hepcidin. Here, we investigated the role of hepcidin in iron metabolism in one species of pteropodid bat that is prone to iron storage disease [Egyptian fruit bat (with and without hemochromatosis)], one species of pteropodid bat where iron storage disease is rare [straw-colored fruit bat (Eidolon helvum)], and one species of bat with a natural diet very high in iron, in which iron storage disease is not reported [common vampire bat (Desmodus rotundus)]. Iron challenge via intramuscular injection of iron dextran resulted in significantly increased liver iron content and histologic iron scores in all three species, and increased plasma iron in Egyptian fruit bats and straw-colored fruit bats. Hepcidin mRNA expression increased in response to iron administration in healthy Egyptian fruit bats and common vampire bats, but not in straw-colored fruit bats or Egyptian fruit bats with hemochromatosis. Hepcidin gene expression significantly correlated with liver iron content in Egyptian fruit bats and common vampire bats, and with transferrin saturation and plasma ferritin concentration in Egyptian fruit bats. Induction of hepcidin gene expression in response to iron challenge is absent in straw-colored fruit bats and in Egyptian fruit bats with hemochromatosis and, relative to common vampire bats and healthy humans, is low in Egyptain fruit bats without hemochromatosis. Limited hepcidin response to iron challenge may contribute to the increased susceptibility of Egyptian fruit bats to iron storage disease.

  18. Dim Light at Night Increases Body Mass of Female Mice

    OpenAIRE

    Aubrecht, Taryn G.; Jenkins, Richelle; Nelson, Randy J.

    2014-01-01

    During the past century the prevalence of light at night has increased in parallel with obesity rates. Dim light at night (dLAN) increases body mass in male mice. However, the effects of light at night on female body mass remain unspecified. Thus, female mice were exposed to a standard light/dark (LD; 16h light at ~150 lux/8h dark at ~0 lux) cycle or to light/dim light at night (dLAN; 16h light at ~150 lux/8h dim light at ~5 lux) cycles for six weeks. Females exposed to dLAN increased the rat...

  19. Increased anxiety-related behaviour in Hint1 knockout mice.

    Science.gov (United States)

    Varadarajulu, Jeeva; Lebar, Maria; Krishnamoorthy, Gurumoorthy; Habelt, Sonja; Lu, Jia; Bernard Weinstein, I; Li, Haiyang; Holsboer, Florian; Turck, Christoph W; Touma, Chadi

    2011-07-07

    Several reports have implicated a role for the histidine triad nucleotide-binding protein-1 (Hint1) in psychiatric disorders. We have studied the emotional behaviour of male Hint1 knockout (Hint1 KO) mice in a battery of tests and performed biochemical analyses on brain tissue. The behavioural analysis revealed that Hint1 KO mice exhibit an increased emotionality phenotype compared to wildtype (WT) mice, while no significant differences in locomotion or general exploratory activity were noted. In the elevated plus-maze (EPM) test, the Hint1 KO animals entered the open arms of the apparatus less often than WT littermates. Similarly, in the dark-light box test, Hint1 KO mice spent less time in the lit compartment and the number of entries were reduced, which further confirmed an increased anxiety-related behaviour. Moreover, the Hint1 KO animals showed significantly more struggling and less floating behaviour in the forced swim test (FST), indicating an increased emotional arousal in aversive situations. Hint1 is known as a protein kinase C (PKC) interacting protein. Western blot analysis showed that PKCγ expression was elevated in Hint1 KO compared to WT mice. Interestingly, PKCγ mRNA levels of the two groups did not show a significant difference, implying a post-transcriptional PKCγ regulation. In addition, PKC enzymatic activity was increased in Hint1 KO compared to WT mice. In summary, our results indicate a role for Hint1 and PKCγ in modulating anxiety-related and stress-coping behaviour in mice. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Chronic Co-species Housing Mice and Rats Increased the Competitiveness of Male Mice.

    Science.gov (United States)

    Liu, Ying-Juan; Li, Lai-Fu; Zhang, Yao-Hua; Guo, Hui-Fen; Xia, Min; Zhang, Meng-Wei; Jing, Xiao-Yuan; Zhang, Jing-Hua; Zhang, Jian-Xu

    2017-03-01

    Rats are predators of mice in nature. Nevertheless, it is a common practice to house mice and rats in a same room in some laboratories. In this study, we investigated the behavioral and physiological responsively of mice in long-term co-species housing conditions. Twenty-four male mice were randomly assigned to their original raising room (control) or a rat room (co-species-housed) for more than 6 weeks. In the open-field and light-dark box tests, the behaviors of the co-species-housed mice and controls were not different. In a 2-choice test of paired urine odors [rabbit urine (as a novel odor) vs. rat urine, cat urine (as a natural predator-scent) vs. rabbit urine, and cat urine vs. rat urine], the co-species-housed mice were more ready to investigate the rat urine odor compared with the controls and may have adapted to it. In an encounter test, the rat-room-exposed mice exhibited increased aggression levels, and their urines were more attractive to females. Correspondingly, the levels of major urinary proteins were increased in the co-species-housed mouse urine, along with some volatile pheromones. The serum testosterone levels were also enhanced in the co-species-housed mice, whereas the corticosterone levels were not different. The norepinephrine, dopamine, and 5-HT levels in the right hippocampus and striatum were not different between the 2. Our findings indicate that chronic co-species housing results in adaptation in male mice; furthermore, it appears that long-term rat-odor stimuli enhance the competitiveness of mice, which suggests that appropriate predator-odor stimuli may be important to the fitness of prey animals. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Dim light at night increases body mass of female mice.

    Science.gov (United States)

    Aubrecht, Taryn G; Jenkins, Richelle; Nelson, Randy J

    2015-05-01

    During the past century, the prevalence of light at night has increased in parallel with obesity rates. Dim light at night (dLAN) increases body mass in male mice. However, the effects of light at night on female body mass remain unspecified. Thus, female mice were exposed to a standard light/dark (LD; 16 h light at ∼150 lux/8 h dark at ∼0 lux) cycle or to light/dim light at night (dLAN; 16 h light at ∼150 lux/8 h dim light at ∼5 lux) cycles for six weeks. Females exposed to dLAN increased the rate of change in body mass compared to LD mice despite reduced total food intake during weeks five and six, suggesting that dLAN disrupted circadian rhythms resulting in deranged metabolism.

  2. Convergence of hepcidin deficiency, systemic iron overloading, heme accumulation, and REV-ERBα/β activation in aryl hydrocarbon receptor-elicited hepatotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Fader, Kelly A.; Nault, Rance [Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824 (United States); Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824 (United States); Kirby, Mathew P.; Markous, Gena [Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824 (United States); Matthews, Jason [Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo 0316 (Norway); Zacharewski, Timothy R., E-mail: tzachare@msu.edu [Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824 (United States); Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824 (United States)

    2017-04-15

    Persistent aryl hydrocarbon receptor (AhR) agonists elicit dose-dependent hepatic lipid accumulation, oxidative stress, inflammation, and fibrosis in mice. Iron (Fe) promotes AhR-mediated oxidative stress by catalyzing reactive oxygen species (ROS) production. To further characterize the role of Fe in AhR-mediated hepatotoxicity, male C57BL/6 mice were orally gavaged with sesame oil vehicle or 0.01–30 μg/kg 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) every 4 days for 28 days. Duodenal epithelial and hepatic RNA-Seq data were integrated with hepatic AhR ChIP-Seq, capillary electrophoresis protein measurements, and clinical chemistry analyses. TCDD dose-dependently repressed hepatic expression of hepcidin (Hamp and Hamp2), the master regulator of systemic Fe homeostasis, resulting in a 2.6-fold increase in serum Fe with accumulating Fe spilling into urine. Total hepatic Fe levels were negligibly increased while transferrin saturation remained unchanged. Furthermore, TCDD elicited dose-dependent gene expression changes in heme biosynthesis including the induction of aminolevulinic acid synthase 1 (Alas1) and repression of uroporphyrinogen decarboxylase (Urod), leading to a 50% increase in hepatic hemin and a 13.2-fold increase in total urinary porphyrins. Consistent with this heme accumulation, differential gene expression suggests that heme activated BACH1 and REV-ERBα/β, causing induction of heme oxygenase 1 (Hmox1) and repression of fatty acid biosynthesis, respectively. Collectively, these results suggest that Hamp repression, Fe accumulation, and increased heme levels converge to promote oxidative stress and the progression of TCDD-elicited hepatotoxicity. - Highlights: • TCDD represses hepatic hepcidin expression, leading to systemic iron overloading. • Dysregulation of heme biosynthesis is consistent with heme and porphyrin accumulation. • Heme-activated REV-ERBα/β repress circadian-regulated hepatic lipid metabolism. • Disruption of iron

  3. Serum hepcidin levels are associated with serum triglycerides and interleukin-6 concentrations in patients with end-stage renal disease.

    Science.gov (United States)

    Samouilidou, Elisabeth; Pantelias, Konstantinos; Petras, Dimitrios; Tsirpanlis, George; Bakirtzi, Joulia; Chatzivasileiou, George; Tzanatos, Helen; Grapsa, Eirini

    2014-06-01

    Hepcidin has emerged as a peptide with a key role in the regulation of iron homeostasis in patients with chronic kidney disease (CKD), having a strong dependence on inflammation. Recent studies reveal that hepcidin may be also associated with the progression of atherosclerosis. This study was performed to analyze the relation of hepcidin to markers of atherosclerosis and inflammation in patients on dialysis. A total of 90 individuals were enrolled. Sixty patients with end-stage renal disease, who were on hemodialysis (HD) (N = 30) and peritoneal dialysis (N = 30) were compared with 30 normal controls (NC). Age, body mass index, time on dialysis, serum lipids, C-reactive protein (CRP) and interleukin-6 (IL-6) were measured and analyzed in correlation with hepcidin concentration. It was found that patients on HD and peritoneal dialysis have significantly higher (P triglycerides (r = 0.401, P = 0.005), HDL-C (r = -0.268, P = 0.048), CRP (r = 0.436, P = 0.0007) and IL-6 (r = 0.569, P triglycerides (β = 0.402, P = 0.041) and IL-6 (β = 0.559, P = 0.006). Moreover, patients with high triglycerides in combination with high IL-6 levels have significantly increased concentrations of hepcidin than those with low triglycerides and low IL-6 levels (P triglycerides and high IL-6 serum concentrations. This probably suggests that hepcidin may play a role to the progression of atherosclerosis and inflammation, but this hypothesis should be further evaluated. © 2013 The Authors. Therapeutic Apheresis and Dialysis © 2013 International Society for Apheresis.

  4. Effects of macro- and micronutrients on exercise-induced hepcidin response in highly trained endurance athletes.

    Science.gov (United States)

    Dahlquist, Dylan T; Stellingwerff, Trent; Dieter, Brad P; McKenzie, Donald C; Koehle, Michael S

    2017-10-01

    Iron deficiency has ergolytic effects on athletic performance. Exercise-induced inflammation impedes iron absorption in the digestive tract by upregulating the expression of the iron regulatory protein, hepcidin. Limited research indicates the potential of specific macro- and micronutrients on blunting exercise-induced hepcidin. Therefore, we investigated the effects of postexercise supplementation with protein and carbohydrate (CHO) and vitamins D 3 and K 2 on the postexercise hepcidin response. Ten highly trained male cyclists (age: 26.9 ± 6.4 years; maximal oxygen uptake: 67.4 ± 4.4 mL·kg -1 ·min -1 completed 4 cycling sessions in a randomized, placebo-controlled, single-blinded, triple-crossover study. Experimental days consisted of an 8-min warm-up at 50% power output at maximal oxygen uptake, followed by 8 × 3-min intervals at 85% power output at maximal oxygen uptake with 1.5 min at 60% power output at maximal oxygen uptake between each interval. Blood samples were collected pre- and postexercise, and at 3 h postexercise. Three different drinks consisting of CHO (75 g) and protein (25 g) with (VPRO) or without (PRO) vitamins D 3 (5000 IU) and K 2 (1000 μg), or a zero-calorie control drink (PLA) were consumed immediately after the postexercise blood sample. Results showed that the postexercise drinks had no significant (p ≥ 0.05) effect on any biomarker measured. There was a significant (p < 0.05) increase in hepcidin and interleukin-6 following intense cycling intervals in the participants. Hepcidin increased significantly (p < 0.05) from baseline (nmol·L -1 : 9.94 ± 8.93, 14.18 ± 14.90, 10.44 ± 14.62) to 3 h postexercise (nmol·L -1 : 22.27 ± 13.41, 25.44 ± 11.91, 22.57 ± 15.57) in VPRO, PRO, and PLA, respectively. Contrary to our hypothesis, the drink compositions used did not blunt the postexercise hepcidin response in highly trained athletes.

  5. Intermittent hypoxia increases insulin resistance in genetically obese mice.

    Science.gov (United States)

    Polotsky, Vsevolod Y; Li, Jianguo; Punjabi, Naresh M; Rubin, Arnon E; Smith, Philip L; Schwartz, Alan R; O'Donnell, Christopher P

    2003-10-01

    Obstructive sleep apnoea, a syndrome that leads to recurrent intermittent hypoxia, is associated with insulin resistance in obese individuals, but the mechanisms underlying this association remain unknown. We utilized a mouse model to examine the effects of intermittent hypoxia on insulin resistance in lean C57BL/6J mice and leptin-deficient obese (C57BL/6J-Lepob) mice. In lean mice, exposure to intermittent hypoxia for 5 days (short term) resulted in a decrease in fasting blood glucose levels (from 173 +/- 11 mg dl-1 on day 0 to 138 +/- 10 mg dl-1 on day 5, P obese mice, short-term intermittent hypoxia led to a decrease in blood glucose levels accompanied by a 607 +/- 136 % (P intermittent hypoxia was completely abolished by prior leptin infusion. Obese mice exposed to intermittent hypoxia for 12 weeks (long term) developed a time-dependent increase in fasting serum insulin levels (from 3.6 +/- 1.1 ng ml-1 at baseline to 9.8 +/- 1.8 ng ml-1 at week 12, P intermittent hypoxia is dependent on the disruption of leptin pathways.

  6. Regulation of transepithelial transport of iron by hepcidin

    Directory of Open Access Journals (Sweden)

    NATALIA P MENA

    2006-01-01

    Full Text Available Hepcidin (Hepc is a 25 amino acid cationic peptide with broad antibacterial and antifungal actions. A likely role for Hepc in iron metabolism was suggested by the observation that mice having disruption of the gene encoding the transcription factor USF2 failed to produce Hepc mRNA and developed spontaneous visceral iron overload. Lately, Hepc has been considered the "stores regulator," a putative factor that signals the iron content of the body to intestinal cells. In this work, we characterized the effect of Hepc produced by hepatoma cells on iron absorption by intestinal cells. To that end, human Hepc cDNA was cloned and overexpressed in HepG2 cells and conditioned media from Hepc-overexpressing cells was used to study the effects of Hepc on intestinal Caco-2 cells grown in bicameral inserts. The results indicate that Hepc released by HepG2 inhibited apical iron uptake by Caco-2 cells, probably by inhibiting the expression of the apical transporter DMT1. These results support a model in which Hepc released by the liver negatively regulates the expression of transporter DMT1 in the enterocyte

  7. Expression of Hepcidin and Growth Differentiation Factor 15 (GDF-15 Levels in Thalassemia Patients with Iron Overload and Positive Anti Hepatitis C Virus

    Directory of Open Access Journals (Sweden)

    Nuri Dyah Indrasari

    2016-09-01

    Full Text Available Background: Thalassemia patients who undergo life-long recurrent blood transfusion will experience iron overload in various organs including the liver and possibly suffer from chronic hepatitis C infection which may lead to liver impairment. The liver produces hepcidin, a hormone which plays role in the regulation of iron level in the blood. Various factors may influence hepcidin level in the blood. Chronic hepatitis C causes iron overload and liver impairment. Liver impairment and haemolytic anaemia due to haemoglobinopathy will suppress hepcidin production. Anaemia stimulates growth differentiation factor 15 (GDF-15 to increase erythropoiesis and suppress hepcidin production. Iron overload causes increase in hepcidin level. Presence of factors which decrease or increase hepcidin production will express various levels of hepcidin. This study aimed to identify the expression of hepcidin and GDF-15 levels in thalassemia patients with iron overload and positive anti-HCV. Information on hepcidin and GDF-15 levels are beneficial in the management of iron overload in thalassemia with positive anti-HCV. Method: This study was a descriptive analytic study in thalassemia patients who had received recurrent blood transfusion ≥ 12 times, suffered from iron overload (transferrin saturation > 55% and ferritin > 1,000 ng/mL, which consisted of 31 individuals with positive anti-HCV and 27 individuals with negative anti-HCV. This study was performed in Thalassemia Centre Department of Child Health and Department of Clinical Pathology, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo Hospital, in October 2011–January 2012. Serum hepcidin and GDF-15 examinations were performed using enzyme-linked immunosorbent assay (ELISA method. Aspartate aminotransferase (AST and alanine aminotransferase (ALT examinations were performed using colorimetry method. Data on ferritin and transferrin saturation were obtained from medical records in the last 3

  8. Glial cell ceruloplasmin and hepcidin differentially regulate iron efflux from brain microvascular endothelial cells.

    Science.gov (United States)

    McCarthy, Ryan C; Kosman, Daniel J

    2014-01-01

    We have used an in vitro model system to probe the iron transport pathway across the brain microvascular endothelial cells (BMVEC) of the blood-brain barrier (BBB). This model consists of human BMVEC (hBMVEC) and C6 glioma cells (as an astrocytic cell line) grown in a transwell, a cell culture system commonly used to quantify metabolite flux across a cell-derived barrier. We found that iron efflux from hBMVEC through the ferrous iron permease ferroportin (Fpn) was stimulated by secretion of the soluble form of the multi-copper ferroxidase, ceruloplasmin (sCp) from the co-cultured C6 cells. Reciprocally, expression of sCp mRNA in the C6 cells was increased by neighboring hBMVEC. In addition, data indicate that C6 cell-secreted hepcidin stimulates internalization of hBMVEC Fpn but only when the end-feet projections characteristic of this glia-derived cell line are proximal to the endothelial cells. This hepcidin-dependent loss of Fpn correlated with knock-down of iron efflux from the hBMVEC; this result was consistent with the mechanism by which hepcidin regulates iron efflux in mammalian cells. In summary, the data support a model of iron trafficking across the BBB in which the capillary endothelium induce the underlying astrocytes to produce the ferroxidase activity needed to support Fpn-mediated iron efflux. Reciprocally, astrocyte proximity modulates the effective concentration of hepcidin at the endothelial cell membrane and thus the surface expression of hBMVEC Fpn. These results are independent of the source of hBMVEC iron (transferrin or non-transferrin bound) indicating that the model developed here is broadly applicable to brain iron homeostasis.

  9. Serum hepcidin levels, iron status, and HFE gene alterations during the first year of life in healthy Spanish infants.

    Science.gov (United States)

    Aranda, Nuria; Bedmar, Cristina; Arija, Victoria; Jardí, Cristina; Jimenez-Feijoo, Rosa; Ferré, Natalia; Tous, Monica

    2018-06-01

    The aims of this study were to describe hepcidin levels and to assess their associations with iron status and the main variants in the HFE gene in healthy and full-term newborns during the first year of life, as a longitudinal study conducted on 140 infants. Anthropometric and biochemical parameters, hepcidin, hemoglobin (Hb), serum ferritin (SF), transferrin saturation (TS), mean corpuscular volume (MCV), and C-reactive protein (CRP), were assessed in 6- and 12-month-olds. Infants were genotyped for the three main HFE variants: C282Y, H63D, and S65C. Hepcidin levels increased from 6 to 12 months of age (43.7 ± 1.5 to 52.0 ± 1.5 ng/mL; p HFE gene (p = 0.046 and p = 0.048 in 6- and 12-month-olds, respectively). However, this association was not found in HFE-alteration-carrying infants. Hepcidin levels increased in healthy infants during the first year of life and were positively associated with iron levels only in infants with wild-type HFE gene, a situation that requires further investigation.

  10. Impact of graphene-based nanomaterials (GBNMs) on the structural and functional conformations of hepcidin peptide

    Science.gov (United States)

    Singh, Krishna P.; Baweja, Lokesh; Wolkenhauer, Olaf; Rahman, Qamar; Gupta, Shailendra K.

    2018-03-01

    Graphene-based nanomaterials (GBNMs) are widely used in various industrial and biomedical applications. GBNMs of different compositions, size and shapes are being introduced without thorough toxicity evaluation due to the unavailability of regulatory guidelines. Computational toxicity prediction methods are used by regulatory bodies to quickly assess health hazards caused by newer materials. Due to increasing demand of GBNMs in various size and functional groups in industrial and consumer based applications, rapid and reliable computational toxicity assessment methods are urgently needed. In the present work, we investigate the impact of graphene and graphene oxide nanomaterials on the structural conformations of small hepcidin peptide and compare the materials for their structural and conformational changes. Our molecular dynamics simulation studies revealed conformational changes in hepcidin due to its interaction with GBMNs, which results in a loss of its functional properties. Our results indicate that hepcidin peptide undergo severe structural deformations when superimposed on the graphene sheet in comparison to graphene oxide sheet. These observations suggest that graphene is more toxic than a graphene oxide nanosheet of similar area. Overall, this study indicates that computational methods based on structural deformation, using molecular dynamics (MD) simulations, can be used for the early evaluation of toxicity potential of novel nanomaterials.

  11. A mechanistic study to increase understanding of titanium dioxide nanoparticles-increased plasma glucose in mice.

    Science.gov (United States)

    Hu, Hailong; Li, Li; Guo, Qian; Jin, Sanli; Zhou, Ying; Oh, Yuri; Feng, Yujie; Wu, Qiong; Gu, Ning

    2016-09-01

    Titanium dioxide nanoparticle (TiO2 NP) is an authorized food additive. Previous studies determined oral administration of TiO2 NPs increases plasma glucose in mice via inducing insulin resistance. An increase in reactive oxygen species (ROS) has been considered the possible mechanism of increasing plasma glucose. However, persistently high plasma glucose is also a mechanism of increasing ROS. This study aims to explore whether TiO2 NPs increase plasma glucose via ROS. We found after oral administration of TiO2 NPs, an increase in ROS preceded an increase in plasma glucose. Subsequently, mice were treated with two antioxidants (resveratrol and vitamin E) at the same time as oral administration of TiO2 NPs. Results showed resveratrol and vitamin E reduced TiO2 NPs-increased ROS. An increase in plasma glucose was also inhibited. Further research showed resveratrol and vitamin E inhibited the secretion of TNF-α and IL-6, and the phosphorylation of JNK and p38 MAPK, resulting in improved insulin resistance. These results suggest TiO2 NPs increased ROS levels, and then ROS activated inflammatory cytokines and phosphokinases, and thus induced insulin resistance, resulting in an increase in plasma glucose. Resveratrol and vitamin E can reduce TiO2 NPs-increased ROS and thereby inhibit an increase in plasma glucose in mice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Association between ferritin and hepcidin levels and inflammatory status in patients with type 2 diabetes mellitus and obesity.

    Science.gov (United States)

    Andrews, Mónica; Soto, Néstor; Arredondo-Olguín, Miguel

    2015-01-01

    The aim of this study was to determine the association between iron parameters and inflammation in obese individuals with and without type 2 diabetes mellitus (T2DM). We studied 132 obese individuals (OB), 60 individuals with T2DM, 106 obese individuals with T2DM (T2DOB), and 146 controls (C). All of were men aged >30 y. Biochemical, iron nutrition, and oxidative stress parameters were determined. Peripheral mononuclear cells were isolated and total RNA was extracted to quantify tumor necrosis factor (TNF)-α, nuclear factor (NF)-κB, interleukin (IL)-6, toll-like receptor (TLR)-2/4 and hepcidin by quantitative reverse transcription polymerase chain reaction. OB, T2DM, and T2DOB individuals had higher ferritin, retinol-binding protein 4, and thiobarbituric acid reactive substance (TBAR) levels than controls. T2DOB and T2DM individuals showed high high-sensitivity C-reactive protein (hsCRP) levels and OB with and without T2DM had elevated levels of serum hepcidin. Heme oxygenase activity was high in OB and T2DM and there were no differences observed in superoxide dismutase and glutathione parameters. A correlation between TBARS and ferritin in T2DOB was observed (r = 0.31; P diabetes and obesity with ferritin, TBARS, and hsCRP levels. The upper quartiles of ferritin, TBARS and hepcidin showed an adjusted odd ratio for T2DM of 1.782, 2.250, and 4.370, respectively. TNF-α, IL-6, hepcidin, NF-κB, TLR-2/4 mRNA abundances were increased in T2DM and T2DOB. Elevated hsCRP and hepcidin levels, and increased gene expression of TNF-α, IL-6, NF-κB, and TLR-2/4 in patients with diabetes, obesity, or both exacerbate and perpetuate the insulin resistance and inflammatory state. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. The determinants of hepcidin level in chronic kidney disease and hemodialysis Saudi patients

    Directory of Open Access Journals (Sweden)

    Tarek Mohamed Ali

    2014-06-01

    Conclusions: Hepcidin levels are correlated to the glycemic status in CKD and HD patients and hepcidin levels in hemodialysed patients were significantly correlated with eGFR but it is not considered as an independent predictor for hepcidin level in these patients.

  14. TEMPOL increases NAD+ and improves redox imbalance in obese mice

    Directory of Open Access Journals (Sweden)

    Mayumi Yamato

    2016-08-01

    Full Text Available Continuous energy conversion is controlled by reduction–oxidation (redox processes. NAD+ and NADH represent an important redox couple in energy metabolism. 4-Hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPOL is a redox-cycling nitroxide that promotes the scavenging of several reactive oxygen species (ROS and is reduced to hydroxylamine by NADH. TEMPOL is also involved in NAD+ production in the ascorbic acid–glutathione redox cycle. We utilized the chemical properties of TEMPOL to investigate the effects of antioxidants and NAD+/NADH modulators on the metabolic imbalance in obese mice. Increases in the NAD+/NADH ratio by TEMPOL ameliorated the metabolic imbalance when combined with a dietary intervention, changing from a high-fat diet to a normal diet. Plasma levels of the superoxide marker dihydroethidium were higher in mice receiving the dietary intervention compared with a control diet, but were normalized with TEMPOL consumption. These findings provide novel insights into redox regulation in obesity.

  15. Modelling Systemic Iron Regulation during Dietary Iron Overload and Acute Inflammation: Role of Hepcidin-Independent Mechanisms.

    Science.gov (United States)

    Enculescu, Mihaela; Metzendorf, Christoph; Sparla, Richard; Hahnel, Maximilian; Bode, Johannes; Muckenthaler, Martina U; Legewie, Stefan

    2017-01-01

    Systemic iron levels must be maintained in physiological concentrations to prevent diseases associated with iron deficiency or iron overload. A key role in this process plays ferroportin, the only known mammalian transmembrane iron exporter, which releases iron from duodenal enterocytes, hepatocytes, or iron-recycling macrophages into the blood stream. Ferroportin expression is tightly controlled by transcriptional and post-transcriptional mechanisms in response to hypoxia, iron deficiency, heme iron and inflammatory cues by cell-autonomous and systemic mechanisms. At the systemic level, the iron-regulatory hormone hepcidin is released from the liver in response to these cues, binds to ferroportin and triggers its degradation. The relative importance of individual ferroportin control mechanisms and their interplay at the systemic level is incompletely understood. Here, we built a mathematical model of systemic iron regulation. It incorporates the dynamics of organ iron pools as well as regulation by the hepcidin/ferroportin system. We calibrated and validated the model with time-resolved measurements of iron responses in mice challenged with dietary iron overload and/or inflammation. The model demonstrates that inflammation mainly reduces the amount of iron in the blood stream by reducing intracellular ferroportin transcription, and not by hepcidin-dependent ferroportin protein destabilization. In contrast, ferroportin regulation by hepcidin is the predominant mechanism of iron homeostasis in response to changing iron diets for a big range of dietary iron contents. The model further reveals that additional homeostasis mechanisms must be taken into account at very high dietary iron levels, including the saturation of intestinal uptake of nutritional iron and the uptake of circulating, non-transferrin-bound iron, into liver. Taken together, our model quantitatively describes systemic iron metabolism and generated experimentally testable predictions for additional

  16. The impact of maternal obesity on iron status, placental transferrin receptor expression and hepcidin expression in human pregnancy.

    Science.gov (United States)

    Garcia-Valdes, L; Campoy, C; Hayes, H; Florido, J; Rusanova, I; Miranda, M T; McArdle, H J

    2015-04-01

    Obesity is associated with decreased iron status, possibly due to a rise in hepcidin, an inflammatory protein known to reduce iron absorption. In animals, we have shown that maternal iron deficiency is minimised in the foetus by increased expression of placental transferrin receptor (pTFR1), resulting in increased iron transfer at the expense of maternal iron stores. This study examines the effect of obesity during pregnancy on maternal and neonatal iron status in human cohorts and whether the placenta can compensate for decreased maternal iron stores by increasing pTFR1 expression. A total of 240 women were included in this study. One hundred and fifty-eight placentas (Normal: 90; Overweight: 37; Obese: 31) were collected at delivery. Maternal iron status was measured by determining serum transferrin receptor (sTFR) and ferritin levels at 24 and 34 weeks and at delivery. Hepcidin in maternal and cord blood was measured by ELISA and pTFR1 in placentas by western blotting and real-time RT-PCR. Low iron stores were more common in obese women. Hepcidin levels (ng ml(-1)) at the end of the pregnancy were higher in obese than normal women (26.03±12.95 vs 18.00±10.77, PMaternal hepcidin levels were correlated with maternal iron status (sTFR r=0.2 P=0.025), but not with neonatal values. mRNA and protein levels of pTFR1 were both inversely related to maternal iron status. For mRNA and all women, sTFR r=0.2 P=0.044. Ferritin mRNA levels correlated only in overweight women r=-0.5 P=0.039 with hepcidin (r=0.1 P=0.349), irrespective of maternal body mass index (BMI). The data support the hypothesis that obese pregnant women have a greater risk of iron deficiency and that hepcidin may be a regulatory factor. Further, we show that the placenta responds to decreased maternal iron status by increasing pTFR1 expression.

  17. Hippocampal brain-derived neurotrophic factor but not neurotrophin-3 increases more in mice selected for increased voluntary wheel running.

    Science.gov (United States)

    Johnson, R A; Rhodes, J S; Jeffrey, S L; Garland, T; Mitchell, G S

    2003-01-01

    Voluntary wheel running in rats increases hippocampal brain-derived neurotrophic factor (BDNF) expression, a neurochemical important for neuronal survival, differentiation, connectivity and synaptic plasticity. Here, we report the effects of wheel running on BDNF and neurotrophin-3 (NT-3) protein levels in normal control mice, and in mice selectively bred (25 generations) for increased voluntary wheel running. We hypothesized that increased voluntary wheel running in selected (S) mice would increase CNS BDNF and NT-3 protein levels more than in control (C) mice. Baseline hippocampal BDNF levels (mice housed without running wheels) were similar in S and C mice. Following seven nights of running, hippocampal BDNF increased significantly more in S versus C mice, and levels were correlated with distance run (considering C and S mice together). Spinal and cerebellar BDNF and hippocampal NT-3 levels were not significantly affected by wheel running in any group, but there was a small, positive correlation between spinal C3-C6 BDNF levels and distance run (considering C and S mice together). This is the first study to demonstrate that mice which choose to run more have greater elevations in hippocampal BDNF, suggesting enhanced potential for exercise-induced hippocampal neuroplasticity.

  18. Increased vascular sympathetic modulation in mice with Mas receptor deficiency

    Science.gov (United States)

    Rabello Casali, Karina; Ravizzoni Dartora, Daniela; Moura, Marina; Bertagnolli, Mariane; Bader, Michael; Haibara, Andrea; Alenina, Natalia; Irigoyen, Maria Claudia; Santos, Robson A

    2016-01-01

    Introduction: The angiotensin-converting enzyme 2 (ACE2)/angiotensin (Ang)-(1–7)/Mas axis could modulate the heart rate (HR) and blood pressure variabilities (BPV) which are important predictors of cardiovascular risk and provide information about the autonomic modulation of the cardiovascular system. Therefore we investigated the effect of Mas deficiency on autonomic modulation in wild type and Mas-knockout (KO) mice. Methods: Blood pressure was recorded at high sample rate (4000 Hz). Stationary sequences of 200–250 beats were randomly chosen. Frequency domain analysis of HR and BPV was performed with an autoregressive algorithm on the pulse interval sequences and on respective systolic sequences. Results: The KO group presented an increase of systolic arterial pressure (SAP; 127.26±11.20 vs 135.07±6.98 mmHg), BPV (3.54±1.54 vs 5.87±2.12 mmHg2), and low-frequency component of systolic BPV (0.12±0.11 vs 0.47±0.34 mmHg2). Conclusions: The deletion of Mas receptor is associated with an increase of SAP and with an increased BPV, indicating alterations in autonomic control. Increase of sympathetic vascular modulation in absence of Mas evidences the important role of Ang-(1–7)/Mas on cardiovascular regulation. Moreover, the absence of significant changes in HR and HRV can indicate an adaptation of autonomic cardiac balance. Our results suggest that the Ang-(1–7)/Mas axis seems more important in autonomic modulation of arterial pressure than HR. PMID:27080540

  19. Interleukin-10 regulates hepcidin in Plasmodium falciparum malaria

    KAUST Repository

    Huang, Honglei; Lamikanra, Abigail A.; Alkaitis, Matthew S.; Thé zé nas, Marie L.; Ramaprasad, Abhinay; Moussa, Ehab; Roberts, David J.; Casals-Pascual, Climent

    2014-01-01

    . falciparum malaria. Methods: We have measured secretion of hepcidin by primary macrophages and the hepatoma cell line HepG2 stimulated with IL-10, IL-6 and Plasmodium falciparum-infected erythrocytes. Findings: We have observed that IL-10 and IL-6 production

  20. Ghrelin administered spinally increases the blood glucose level in mice.

    Science.gov (United States)

    Sim, Yun-Beom; Park, Soo-Hyun; Kim, Sung-Su; Kim, Chea-Ha; Kim, Su-Jin; Lim, Su-Min; Jung, Jun-Sub; Suh, Hong-Won

    2014-04-01

    Ghrelin is known as a regulator of the blood glucose homeostasis and food intake. In the present study, the possible roles of ghrelin located in the spinal cord in the regulation of the blood glucose level were investigated in ICR mice. We found that intrathecal (i.t.) injection with ghrelin (from 1 to 10 μg) caused an elevation of the blood glucose level. In addition, i.t. pretreatment with YIL781 (ghrelin receptor antagonist; from 0.1 to 5 μg) markedly attenuated ghrelin-induced hyperglycemic effect. The plasma insulin level was increased by ghrelin. The enhanced plasma insulin level by ghrelin was reduced by i.t. pretreatment with YIL781. However, i.t. pretreatment with glucagon-like peptide-1 (GLP-1; 5 μg) did not affect the ghrelin-induced hyperglycemia. Furthermore, i.t. administration with ghrelin also elevated the blood glucose level, but in an additive manner, in d-glucose-fed model. Our results suggest that the activation of ghrelin receptors located in the spinal cord plays important roles for the elevation of the blood glucose level. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Branched-chain amino acids reduce hepatic iron accumulation and oxidative stress in hepatitis C virus polyprotein-expressing mice

    Science.gov (United States)

    Korenaga, Masaaki; Nishina, Sohji; Korenaga, Keiko; Tomiyama, Yasuyuki; Yoshioka, Naoko; Hara, Yuichi; Sasaki, Yusuke; Shimonaka, Yasushi; Hino, Keisuke

    2015-01-01

    Background & Aims Branched-chain amino acids (BCAA) reduce the incidence of hepatocellular carcinoma (HCC) in patients with cirrhosis. However, the mechanisms that underlie these effects remain unknown. Previously, we reported that oxidative stress in male transgenic mice that expressed hepatitis C virus polyprotein (HCVTgM) caused hepatic iron accumulation by reducing hepcidin transcription, thereby leading to HCC development. This study investigated whether long-term treatment with BCAA reduced hepatic iron accumulation and oxidative stress in iron-overloaded HCVTgM and in patients with HCV-related advanced fibrosis. Methods Male HCVTgM were fed an excess-iron diet that comprised either casein or 3.0% BCAA, or a control diet, for 6 months. Results For HCVTgM, BCAA supplementation increased the serum hepcidin-25 levels and antioxidant status [ratio of biological antioxidant potential (BAP) relative to derivatives of reactive oxygen metabolites (dROM)], decreased the hepatic iron contents, attenuated reactive oxygen species generation, and restored mitochondrial superoxide dismutase expression and mitochondrial complex I activity in the liver compared with mice fed the control diet. After 48 weeks of BCAA supplementation in patients with HCV-related advanced fibrosis, BAP/dROM and serum hepcidin-25 increased and serum ferritin decreased compared with the pretreatment levels. Conclusions BCAA supplementation reduced oxidative stress by restoring mitochondrial function and improved iron metabolism by increasing hepcidin-25 in both iron-overloaded HCVTgM and patients with HCV-related advanced fibrosis. These activities of BCAA may partially account for their inhibitory effects on HCC development in cirrhosis patients. PMID:25156780

  2. Hemolytic anemia repressed hepcidin level without hepatocyte iron overload: lesson from Günther disease model.

    Science.gov (United States)

    Millot, Sarah; Delaby, Constance; Moulouel, Boualem; Lefebvre, Thibaud; Pilard, Nathalie; Ducrot, Nicolas; Ged, Cécile; Lettéron, Philippe; de Franceschi, Lucia; Deybach, Jean Charles; Beaumont, Carole; Gouya, Laurent; De Verneuil, Hubert; Lyoumi, Saïd; Puy, Hervé; Karim, Zoubida

    2017-02-01

    Hemolysis occurring in hematologic diseases is often associated with an iron loading anemia. This iron overload is the result of a massive outflow of hemoglobin into the bloodstream, but the mechanism of hemoglobin handling has not been fully elucidated. Here, in a congenital erythropoietic porphyria mouse model, we evaluate the impact of hemolysis and regenerative anemia on hepcidin synthesis and iron metabolism. Hemolysis was confirmed by a complete drop in haptoglobin, hemopexin and increased plasma lactate dehydrogenase, an increased red blood cell distribution width and osmotic fragility, a reduced half-life of red blood cells, and increased expression of heme oxygenase 1. The erythropoiesis-induced Fam132b was increased, hepcidin mRNA repressed, and transepithelial iron transport in isolated duodenal loops increased. Iron was mostly accumulated in liver and spleen macrophages but transferrin saturation remained within the normal range. The expression levels of hemoglobin-haptoglobin receptor CD163 and hemopexin receptor CD91 were drastically reduced in both liver and spleen, resulting in heme- and hemoglobin-derived iron elimination in urine. In the kidney, the megalin/cubilin endocytic complex, heme oxygenase 1 and the iron exporter ferroportin were induced, which is reminiscent of significant renal handling of hemoglobin-derived iron. Our results highlight ironbound hemoglobin urinary clearance mechanism and strongly suggest that, in addition to the sequestration of iron in macrophages, kidney may play a major role in protecting hepatocytes from iron overload in chronic hemolysis. Copyright© Ferrata Storti Foundation.

  3. Role of hepcidin-ferroportin axis in the pathophysiology, diagnosis, and treatment of anemia of chronic inflammation.

    Science.gov (United States)

    Langer, Arielle L; Ginzburg, Yelena Z

    2017-06-01

    Anemia of chronic inflammation (ACI) is a frequently diagnosed anemia and portends an independently increased morbidity and poor outcome associated with multiple underlying diseases. The pathophysiology of ACI is multifactorial, resulting from the effects of inflammatory cytokines which both directly and indirectly suppress erythropoiesis. Recent advances in molecular understanding of iron metabolism provide strong evidence that immune mediators, such as IL-6, lead to hepcidin-induced hypoferremia, iron sequestration, and decreased iron availability for erythropoiesis. The role of hepcidin-ferroportin axis in the pathophysiology of ACI is stimulating the development of new diagnostics and targeted therapies. In this review, we present an overview of and rationale for inflammation-, iron-, and erythropoiesis-related strategies currently in development. © 2017 International Society for Hemodialysis.

  4. Intestine-specific deletion of microsomal triglyceride transfer protein increases mortality in aged mice.

    Science.gov (United States)

    Liang, Zhe; Xie, Yan; Dominguez, Jessica A; Breed, Elise R; Yoseph, Benyam P; Burd, Eileen M; Farris, Alton B; Davidson, Nicholas O; Coopersmith, Craig M

    2014-01-01

    Mice with conditional, intestine-specific deletion of microsomal triglyceride transfer protein (Mttp-IKO) exhibit a complete block in chylomicron assembly together with lipid malabsorption. Young (8-10 week) Mttp-IKO mice have improved survival when subjected to a murine model of Pseudomonas aeruginosa-induced sepsis. However, 80% of deaths in sepsis occur in patients over age 65. The purpose of this study was to determine whether age impacts outcome in Mttp-IKO mice subjected to sepsis. Aged (20-24 months) Mttp-IKO mice and WT mice underwent intratracheal injection with P. aeruginosa. Mice were either sacrificed 24 hours post-operatively for mechanistic studies or followed seven days for survival. In contrast to young septic Mttp-IKO mice, aged septic Mttp-IKO mice had a significantly higher mortality than aged septic WT mice (80% vs. 39%, p = 0.005). Aged septic Mttp-IKO mice exhibited increased gut epithelial apoptosis, increased jejunal Bax/Bcl-2 and Bax/Bcl-XL ratios yet simultaneously demonstrated increased crypt proliferation and villus length. Aged septic Mttp-IKO mice also manifested increased pulmonary myeloperoxidase levels, suggesting increased neutrophil infiltration, as well as decreased systemic TNFα compared to aged septic WT mice. Blocking intestinal chylomicron secretion alters mortality following sepsis in an age-dependent manner. Increases in gut apoptosis and pulmonary neutrophil infiltration, and decreased systemic TNFα represent potential mechanisms for why intestine-specific Mttp deletion is beneficial in young septic mice but harmful in aged mice as each of these parameters are altered differently in young and aged septic WT and Mttp-IKO mice.

  5. Intestine-specific deletion of microsomal triglyceride transfer protein increases mortality in aged mice.

    Directory of Open Access Journals (Sweden)

    Zhe Liang

    Full Text Available Mice with conditional, intestine-specific deletion of microsomal triglyceride transfer protein (Mttp-IKO exhibit a complete block in chylomicron assembly together with lipid malabsorption. Young (8-10 week Mttp-IKO mice have improved survival when subjected to a murine model of Pseudomonas aeruginosa-induced sepsis. However, 80% of deaths in sepsis occur in patients over age 65. The purpose of this study was to determine whether age impacts outcome in Mttp-IKO mice subjected to sepsis.Aged (20-24 months Mttp-IKO mice and WT mice underwent intratracheal injection with P. aeruginosa. Mice were either sacrificed 24 hours post-operatively for mechanistic studies or followed seven days for survival.In contrast to young septic Mttp-IKO mice, aged septic Mttp-IKO mice had a significantly higher mortality than aged septic WT mice (80% vs. 39%, p = 0.005. Aged septic Mttp-IKO mice exhibited increased gut epithelial apoptosis, increased jejunal Bax/Bcl-2 and Bax/Bcl-XL ratios yet simultaneously demonstrated increased crypt proliferation and villus length. Aged septic Mttp-IKO mice also manifested increased pulmonary myeloperoxidase levels, suggesting increased neutrophil infiltration, as well as decreased systemic TNFα compared to aged septic WT mice.Blocking intestinal chylomicron secretion alters mortality following sepsis in an age-dependent manner. Increases in gut apoptosis and pulmonary neutrophil infiltration, and decreased systemic TNFα represent potential mechanisms for why intestine-specific Mttp deletion is beneficial in young septic mice but harmful in aged mice as each of these parameters are altered differently in young and aged septic WT and Mttp-IKO mice.

  6. Increasing Muscle Mass Improves Vascular Function in Obese (db/db) Mice

    Science.gov (United States)

    Qiu, Shuiqing; Mintz, James D.; Salet, Christina D.; Han, Weihong; Giannis, Athanassios; Chen, Feng; Yu, Yanfang; Su, Yunchao; Fulton, David J.; Stepp, David W.

    2014-01-01

    Background A sedentary lifestyle is an independent risk factor for cardiovascular disease and exercise has been shown to ameliorate this risk. Inactivity is associated with a loss of muscle mass, which is also reversed with isometric exercise training. The relationship between muscle mass and vascular function is poorly defined. The aims of the current study were to determine whether increasing muscle mass by genetic deletion of myostatin, a negative regulator of muscle growth, can influence vascular function in mesenteric arteries from obese db/db mice. Methods and Results Myostatin expression was elevated in skeletal muscle of obese mice and associated with reduced muscle mass (30% to 50%). Myostatin deletion increased muscle mass in lean (40% to 60%) and obese (80% to 115%) mice through increased muscle fiber size (PMyostatin deletion decreased adipose tissue in lean mice, but not obese mice. Markers of insulin resistance and glucose tolerance were improved in obese myostatin knockout mice. Obese mice demonstrated an impaired endothelial vasodilation, compared to lean mice. This impairment was improved by superoxide dismutase mimic Tempol. Deletion of myostatin improved endothelial vasodilation in mesenteric arteries in obese, but not in lean, mice. This improvement was blunted by nitric oxide (NO) synthase inhibitor l‐NG‐nitroarginine methyl ester (l‐NAME). Prostacyclin (PGI2)‐ and endothelium‐derived hyperpolarizing factor (EDHF)‐mediated vasodilation were preserved in obese mice and unaffected by myostatin deletion. Reactive oxygen species) was elevated in the mesenteric endothelium of obese mice and down‐regulated by deletion of myostatin in obese mice. Impaired vasodilation in obese mice was improved by NADPH oxidase inhibitor (GKT136901). Treatment with sepiapterin, which increases levels of tetrahydrobiopterin, improved vasodilation in obese mice, an improvement blocked by l‐NAME. Conclusions Increasing muscle mass by genetic deletion of

  7. Increased intracellular Th1 cytokines in scid mice with inflammatory bowel disease

    DEFF Research Database (Denmark)

    Bregenholt, S; Claesson, Mogens Helweg

    1998-01-01

    Severe combined immunodeficient (scid) mice engrafted with small pieces of full thickness gut wall from immunocompetent syngenic donors develop a chronic and lethal colitis. Lymphocytes from the lamina propria of engrafted mice were analyzed for phorbol ester/ionomycin-induced cytokine production...... by intracellular staining. A 4-5-fold increase in the fraction of IFN-gamma-producing CD4+ lamina propria T cells was found in moderately and severely diseased mice when compared to healthy congenic C.B-17 control mice. The number of IL-2-producing T cells was increased by approximately 2-fold when comparing mice...... suffering from severe disease to healthy control mice. The fraction of TNF-alpha positive CD4+ T cells was increased by a factor of two in both moderately and severely diseased mice. When analyzing Th2 cytokines, it was found that the levels of IL-4-producing CD4+ T cells was not altered in diseased animals...

  8. Aspirin down Regulates Hepcidin by Inhibiting NF-κB and IL6/JAK2/STAT3 Pathways in BV-2 Microglial Cells Treated with Lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Wan-Ying Li

    2016-12-01

    Full Text Available Aspirin down regulates transferrin receptor 1 (TfR1 and up regulates ferroportin 1 (Fpn1 and ferritin expression in BV-2 microglial cells treated without lipopolysaccharides (LPS, as well as down regulates hepcidin and interleukin 6 (IL-6 in cells treated with LPS. However, the relevant mechanisms are unknown. Here, we investigate the effects of aspirin on expression of hepcidin and iron regulatory protein 1 (IRP1, phosphorylation of Janus kinase 2 (JAK2, signal transducer and activator of transcription 3 (STAT3 and P65 (nuclear factor-κB, and the production of nitric oxide (NO in BV-2 microglial cells treated with and without LPS. We demonstrated that aspirin inhibited hepcidin mRNA as well as NO production in cells treated with LPS, but not in cells without LPS, suppresses IL-6, JAK2, STAT3, and P65 (nuclear factor-κB phosphorylation and has no effect on IRP1 in cells treated with or without LPS. These findings provide evidence that aspirin down regulates hepcidin by inhibiting IL6/JAK2/STAT3 and P65 (nuclear factor-κB pathways in the cells under inflammatory conditions, and imply that an aspirin-induced reduction in TfR1 and an increase in ferritin are not associated with IRP1 and NO.

  9. Insights into the Antimicrobial Properties of Hepcidins: Advantages and Drawbacks as Potential Therapeutic Agents

    Directory of Open Access Journals (Sweden)

    Lisa Lombardi

    2015-04-01

    Full Text Available The increasing frequency of multi-drug resistant microorganisms has driven research into alternative therapeutic strategies. In this respect, natural antimicrobial peptides (AMPs hold much promise as candidates for the development of novel antibiotics. However, AMPs have some intrinsic drawbacks, such as partial degradation by host proteases or inhibition by host body fluid composition, potential toxicity, and high production costs. This review focuses on the hepcidins, which are peptides produced by the human liver with a known role in iron homeostasis, as well by numerous other organisms (including fish, reptiles, other mammals, and their potential as antibacterial and antifungal agents. Interestingly, the antimicrobial properties of human hepcidins are enhanced at acidic pH, rendering these peptides appealing for the design of new drugs targeting infections that occur in body areas with acidic physiological pH. This review not only considers current research on the direct killing activity of these peptides, but evaluates the potential application of these molecules as coating agents preventing biofilm formation and critically assesses technical obstacles preventing their therapeutic application.

  10. The Inflammatory Response to Social Defeat is Increased in Older Mice

    OpenAIRE

    Kinsey, Steven G.; Bailey, Michael T.; Sheridan, John F.; Padgett, David A.

    2007-01-01

    Previous research indicates that repeated social defeat of mice causes increased lymphocyte trafficking to the spleen, elevated proinflammatory cytokine production, and induced glucocorticoid insensitivity in splenocytes. Social defeat also causes increases in anxiety-like behavior. This study investigated whether repeated social defeat results in similar immunoregulatory and behavioral changes in older mice as those seen previously in young adult mice. The data revealed that, regardless of a...

  11. Cationic PEGylated liposomes incorporating an antimicrobial peptide tilapia hepcidin 2-3: an adjuvant of epirubicin to overcome multidrug resistance in cervical cancer cells.

    Science.gov (United States)

    Juang, Vivian; Lee, Hsin-Pin; Lin, Anya Maan-Yuh; Lo, Yu-Li

    Antimicrobial peptides (AMPs) have been recently evaluated as a new generation of adjuvants in cancer chemotherapy. In this study, we designed PEGylated liposomes encapsulating epirubicin as an antineoplastic agent and tilapia hepcidin 2-3, an AMP, as a multidrug resistance (MDR) transporter suppressor and an apoptosis/autophagy modulator in human cervical cancer HeLa cells. Cotreatment of HeLa cells with PEGylated liposomal formulation of epirubicin and hepcidin 2-3 significantly increased the cytotoxicity of epirubicin. The liposomal formulations of epirubicin and/or hepcidin 2-3 were found to noticeably escalate the intracellular H 2 O 2 and O 2 - levels of cancer cells. Furthermore, these treatments considerably reduced the mRNA expressions of MDR protein 1, MDR-associated protein (MRP) 1, and MRP2. The addition of hepcidin 2-3 in liposomes was shown to markedly enhance the intracellular epirubicin uptake and mainly localized into the nucleus. Moreover, this formulation was also found to trigger apoptosis and autophagy in HeLa cells, as validated by significant increases in the expressions of cleaved poly ADP ribose polymerase, caspase-3, caspase-9, and light chain 3 (LC3)-II, as well as a decrease in mitochondrial membrane potential. The apoptosis induction was also confirmed by the rise in sub-G1 phase of cell cycle assay and apoptosis percentage of annexin V/propidium iodide assay. We found that liposomal epirubicin and hepcidin 2-3 augmented the accumulation of GFP-LC3 puncta as amplified by chloroquine, implying the involvement of autophagy. Interestingly, the partial inhibition of necroptosis and the epithelial-mesenchymal transition by this combination was also verified. Altogether, our results provide evidence that coincubation with PEGylated liposomes of hepcidin 2-3 and epirubicin caused programmed cell death in cervical cancer cells through modulation of multiple signaling pathways, including MDR transporters, apoptosis, autophagy, and/or necroptosis

  12. Cationic PEGylated liposomes incorporating an antimicrobial peptide tilapia hepcidin 2–3: an adjuvant of epirubicin to overcome multidrug resistance in cervical cancer cells

    Directory of Open Access Journals (Sweden)

    Juang V

    2016-11-01

    Full Text Available Vivian Juang,1 Hsin-Pin Lee,2 Anya Maan-Yuh Lin,1,3 Yu-Li Lo1 1Department and Institute of Pharmacology, National Yang-Ming University, 2Department of Biological Sciences and Technology, National University of Tainan, 3Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China Abstract: Antimicrobial peptides (AMPs have been recently evaluated as a new generation of adjuvants in cancer chemotherapy. In this study, we designed PEGylated liposomes encapsulating epirubicin as an antineoplastic agent and tilapia hepcidin 2–3, an AMP, as a multidrug resistance (MDR transporter suppressor and an apoptosis/autophagy modulator in human cervical cancer HeLa cells. Cotreatment of HeLa cells with PEGylated liposomal formulation of epirubicin and hepcidin 2–3 significantly increased the cytotoxicity of epirubicin. The liposomal formulations of epirubicin and/or hepcidin 2–3 were found to noticeably escalate the intracellular H2O2 and O2- levels of cancer cells. Furthermore, these treatments considerably reduced the mRNA expressions of MDR protein 1, MDR-associated protein (MRP 1, and MRP2. The addition of hepcidin 2–3 in liposomes was shown to markedly enhance the intracellular epirubicin uptake and mainly localized into the nucleus. Moreover, this formulation was also found to trigger apoptosis and autophagy in HeLa cells, as validated by significant increases in the expressions of cleaved poly ADP ribose polymerase, caspase-3, caspase-9, and light chain 3 (LC3-II, as well as a decrease in mitochondrial membrane potential. The apoptosis induction was also confirmed by the rise in sub-G1 phase of cell cycle assay and apoptosis percentage of annexin V/propidium iodide assay. We found that liposomal epirubicin and hepcidin 2–3 augmented the accumulation of GFP-LC3 puncta as amplified by chloroquine, implying the involvement of autophagy. Interestingly, the partial inhibition of necroptosis and the epithelial

  13. Hepcidin: A Critical Regulator Of Iron Metabolism During Hypoxia

    Science.gov (United States)

    2011-01-01

    inducible factor (HIF)/hypoxia response element ( HRE ) system, as well as recent evidence indicating that localized adipose hypoxia due to obesity may...mechanisms by which hypoxia affects hepcidin expression, to include a review of the hypoxia inducible factor (HIF)/hypoxia response element ( HRE ) system, as...a battery of genes are induced by the hypoxia inducible factor (HIF)/hypoxia response element ( HRE ) system. The HIF system senses O2 levels through

  14. Decreased Blastocyst Production in Mice Exposed to Increased Rack Noise

    Science.gov (United States)

    Zamora, Bernadette M; Jiang, Meisheng; Wang, Ying; Chai, Minghua; Lawson, P Timothy; Lawson, Gregory W

    2009-01-01

    This study was conducted to investigate the possible effect of rack type on the blastocyst yield of mouse embryo donors. The first phase of the study consisted of housing some mice (group A) in a ventilated rack and others (group B) in a static rack in the same room for 3 d, followed by euthanasia for blastocyst collection and corticosterone assay. Parametric tests were used to compare groups. The number of blastocysts per donor was lower in group A (5.0 ± 1.4 blastocysts) than group B (13.1 ± 3.7 blastocysts). Mean noise was higher in the ventilated rack (80.4 dBC) than in the static rack (69.2 dBC). Serum corticosterone concentrations did not differ between groups. For the second phase of the study, a third group of mice (group C) was housed in a static rack without a ventilated rack in the same room. The noise level for group C was even lower (45.18 ± 2.91 dBC), and the blastocyst count per donor (16.4 ± 2.4) was higher than that of group B. The mean noise levels of empty ventilated and static racks differed significantly between groups for 10 different sound frequencies. Plotting mean blastocyst production against mean rack noise revealed a negative linear relationship with good strength of correlation. These results support the earlier observation that decreased blastocyst count occurs following housing of bred C57BL/6 donor mice in ventilated cages. PMID:19807968

  15. Serum hepcidin is significantly associated with iron absorption from food and supplemental sources in healthy young woman

    Science.gov (United States)

    Hepcidin is a key regulator of iron homeostasis, but to date no studies have examined the effect of hepcidin on iron absorption in humans. Our objective was to assess relations between both serum hepcidin and serum prohepcidin with nonheme-iron absorption in the presence and absence of food with the...

  16. Expression of HIV gp120 protein increases sensitivity to the rewarding properties of methamphetamine in mice

    Science.gov (United States)

    Kesby, James P.; Hubbard, David T.; Markou, Athina; Semenova, Svetlana

    2012-01-01

    Methamphetamine abuse and human immunodeficiency virus (HIV) infection induce neuropathological changes in corticolimbic brain areas involved in reward and cognitive function. Little is known about the combined effects of methamphetamine and HIV infection on cognitive and reward processes. The HIV/gp120 protein induces neurodegeneration in mice, similar to HIV-induced pathology in humans. We investigated the effects of gp120 expression on associative learning, preference for methamphetamine and non-drug reinforcers, and sensitivity to the conditioned rewarding properties of methamphetamine in transgenic (tg) mice expressing HIV/gp120 protein (gp120-tg). gp120-tg mice learned the operant response for food at the same rate as non-tg mice. In the two-bottle choice procedure with restricted access to drugs, gp120-tg mice exhibited greater preference for methamphetamine and saccharin than non-tg mice, whereas preference for quinine was similar between genotypes. Under conditions of unrestricted access to methamphetamine, the mice exhibited a decreased preference for increasing methamphetamine concentrations. However, male gp120-tg mice showed a decreased preference for methamphetamine at lower concentrations than non-tg male mice. gp120-tg mice developed methamphetamine-induced conditioned place preference at lower methamphetamine doses compared with non-tg mice. No differences in methamphetamine pharmacokinetics were found between genotypes. These results indicate that gp120-tg mice exhibit no deficits in associative learning or reward/motivational function for a natural reinforcer. Interestingly, gp120 expression resulted in increased preference for methamphetamine and a highly palatable non-drug reinforcer (saccharin) and increased sensitivity to methamphetamine-induced conditioned reward. These data suggest that HIV-positive individuals may have increased sensitivity to methamphetamine, leading to high methamphetamine abuse potential in this population. PMID

  17. Influence of beetroot (Beta vulgaris var. cruenta) on mice leukocytes increase

    OpenAIRE

    Amaro, Jony

    2014-01-01

    Background: Beetroot is a flavonoid-containing Mediterranean plant used for food and medicinal purposes. Objectives: To determine the influence of Beta vulgaris var. cruenta extract consumption in increasing albino mice leukocytes. Design: Experimental study. Setting: School N° 1182 bioterium. Biologic material: Twenty male Balb/c albino mice weighing 24 g average. Interventions: Two groups of ten mice each were formed; the experimental group received Beta vulgaris var. cruenta extract at 250...

  18. Expression of the iron hormone hepcidin distinguished different types of anemia in African children

    NARCIS (Netherlands)

    Pasricha, S.R.; Atkinson, S.H.; Armitage, A.E.; Khandwala, S.; Veenemans, J.; Cox, S.E.; Eddowes, L.A.; Hayes, T.; Doherty, C.P.; Demir, A.Y.; Tijhaar, E.J.; Verhoef, H.; Prentice, A.M.; Drakesmith, H.

    2014-01-01

    Childhood anemia is a major global health problem resulting from multiple causes. Iron supplementation addresses iron deficiency anemia but is undesirable for other types of anemia and may exacerbate infections. The peptide hormone hepcidin governs iron absorption; hepcidin transcription is mediated

  19. Plasma hepcidin levels and anemia in old age. The Leiden 85-Plus Study

    NARCIS (Netherlands)

    Elzen, W.P. den; Craen, A.J. de; Wiegerinck, E.T.G.; Westendorp, R.G.J.; Swinkels, D.W.; Gussekloo, J.

    2013-01-01

    Hepcidin, an important regulator of iron homeostasis, is suggested to be causally related to anemia of inflammation. The aim of this study was to explore the role of plasma hepcidin in anemia among older persons from the general population. The Leiden 85-Plus Study is a population-based study of

  20. Mechanisms of an increased level of serum iron in gamma-irradiated mice

    International Nuclear Information System (INIS)

    Xie, Li-hua; Zhang, Xiao-hong; Hu, Xiao-dan; Min, Xuan-yu; Zhou, Qi-fu; Zhang, Hai-qian

    2016-01-01

    The potential mechanisms underlying the increase in serum iron concentration in gamma-irradiated mice were studied. The gamma irradiation dose used was 4 Gy, and cobalt-60 ( 60 Co) source was used for the irradiation. The dose rate was 0.25 Gy/min. In the serum of irradiated mice, the concentration of ferrous ions decreased, whereas the serum iron concentration increased. The concentration of ferrous ions in irradiated mice returned to normal at 21 day post-exposure. The concentration of reactive oxygen species in irradiated mice increased immediately following irradiation but returned to normal at 7 day post-exposure. Serum iron concentration in gamma-irradiated mice that were pretreated with reduced glutathione was significant lower (p < 0.01) than that in mice exposed to gamma radiation only. However, the serum iron concentration was still higher than that in normal mice (p < 0.01). This change was biphasic, characterized by a maximal decrease phase occurring immediately after gamma irradiation (relative to the irradiated mice) and a recovery plateau observed during the 7th and 21st day post-irradiation, but serum iron recovery was still less than that in the gamma-irradiated mice (4 Gy). In gamma-irradiated mice, ceruloplasmin activity increased and serum copper concentration decreased immediately after irradiation, and both of them were constant during the 7th and 21st day post-irradiation. It was concluded that ferrous ions in irradiated mice were oxidized to ferric ions by ionizing radiation. Free radicals induced by gamma radiation and ceruloplasmin mutually participated in this oxidation process. The ferroxidase effect of ceruloplasmin was achieved by transfer of electrons from ferrous ions to cupric ions. (orig.)

  1. Hepcidin plasma levels are not associated with changes in haemoglobin in early rheumatoid arthritis patients

    DEFF Research Database (Denmark)

    Østgård, R D; Glerup, H; Jurik, A G

    2017-01-01

    Objective: A reduction in haemoglobin level is a frequent complication among rheumatoid arthritis (RA) patients. Hepcidin has been linked to disturbed erythropoiesis. The objective of this study was to investigate the longitudinal changes in hepcidin in patients with early RA. Method: Hepcidin...... with disease-modifying anti-rheumatic drugs (DMARDs) and with additional adalimumab (ADA, n = 42) or placebo (PLA, n = 38) during 52 weeks, using a treat-to-target strategy, aiming for a 28-joint Disease Activity Score (DAS28) levels [median (interquartile range)] were 9...... = 0.48, p levels of haemoglobin and hepcidin at baseline or during the 52 week follow-up. No change in haemoglobin levels was seen as a function of hepcidin changes. In a mixed statistical model, no single factor was connected with the regulation...

  2. Inhibition of myeloperoxidase decreases vascular oxidative stress and increases vasodilatation in sickle cell disease mice.

    Science.gov (United States)

    Zhang, Hao; Xu, Hao; Weihrauch, Dorothee; Jones, Deron W; Jing, Xigang; Shi, Yang; Gourlay, David; Oldham, Keith T; Hillery, Cheryl A; Pritchard, Kirkwood A

    2013-11-01

    Activated leukocytes and polymorphonuclear neutrophils (PMN) release myeloperoxidase (MPO), which binds to endothelial cells (EC), is translocated, and generates oxidants that scavenge nitric oxide (NO) and impair EC function. To determine whether MPO impairs EC function in sickle cell disease (SCD), control (AA) and SCD mice were treated with N-acetyl-lysyltyrosylcysteine-amide (KYC). SCD humans and mice have high plasma MPO and soluble L-selectin (sL-selectin). KYC had no effect on MPO but decreased plasma sL-selectin and malondialdehyde in SCD mice. MPO and 3-chlorotyrosine (3-ClTyr) were increased in SCD aortas. KYC decreased MPO and 3-ClTyr in SCD aortas to the levels in AA aortas. Vasodilatation in SCD mice was impaired. KYC increased vasodilatation in SCD mice more than 2-fold, to ∼60% of levels in AA mice. KYC inhibited MPO-dependent 3-ClTyr formation in EC proteins. SCD mice had high plasma alanine transaminase (ALT), which tended to decrease in KYC-treated SCD mice (P = 0.07). KYC increased MPO and XO/XDH and decreased 3-ClTyr and 3-nitrotyrosine (3-NO₂Tyr) in SCD livers. These data support the hypothesis that SCD increases release of MPO, which generates oxidants that impair EC function and injure livers. Inhibiting MPO is an effective strategy for decreasing oxidative stress and liver injury and restoring EC function in SCD.

  3. Prevention of lymphocyte apoptosis in septic mice with cancer increases mortality.

    Science.gov (United States)

    Fox, Amy C; Breed, Elise R; Liang, Zhe; Clark, Andrew T; Zee-Cheng, Brendan R; Chang, Katherine C; Dominguez, Jessica A; Jung, Enjae; Dunne, W Michael; Burd, Eileen M; Farris, Alton B; Linehan, David C; Coopersmith, Craig M

    2011-08-15

    Lymphocyte apoptosis is thought to have a major role in the pathophysiology of sepsis. However, there is a disconnect between animal models of sepsis and patients with the disease, because the former use subjects that were healthy prior to the onset of infection while most patients have underlying comorbidities. The purpose of this study was to determine whether lymphocyte apoptosis prevention is effective in preventing mortality in septic mice with preexisting cancer. Mice with lymphocyte Bcl-2 overexpression (Bcl-2-Ig) and wild type (WT) mice were injected with a transplantable pancreatic adenocarcinoma cell line. Three weeks later, after development of palpable tumors, all animals received an intratracheal injection of Pseudomonas aeruginosa. Despite having decreased sepsis-induced T and B lymphocyte apoptosis, Bcl-2-Ig mice had markedly increased mortality compared with WT mice following P. aeruginosa pneumonia (85 versus 44% 7-d mortality; p = 0.004). The worsened survival in Bcl-2-Ig mice was associated with increases in Th1 cytokines TNF-α and IFN-γ in bronchoalveolar lavage fluid and decreased production of the Th2 cytokine IL-10 in stimulated splenocytes. There were no differences in tumor size or pulmonary pathology between Bcl-2-Ig and WT mice. To verify that the mortality difference was not specific to Bcl-2 overexpression, similar experiments were performed in Bim(-/-) mice. Septic Bim(-/-) mice with cancer also had increased mortality compared with septic WT mice with cancer. These data demonstrate that, despite overwhelming evidence that prevention of lymphocyte apoptosis is beneficial in septic hosts without comorbidities, the same strategy worsens survival in mice with cancer that are given pneumonia.

  4. The A736V TMPRSS6 polymorphism influences hepcidin and iron metabolism in chronic hemodialysis patients: TMPRSS6 and hepcidin in hemodialysis

    Directory of Open Access Journals (Sweden)

    Pelusi Serena

    2013-02-01

    Full Text Available Abstract Background Aim of this study was to evaluate whether the A736V TMPRSS6 polymorphism, a major genetic determinant of iron metabolism in healthy subjects, influences serum levels of hepcidin, the hormone regulating iron metabolism, and erythropoiesis in chronic hemodialysis (CHD. Methods To this end, we considered 199 CHD patients from Northern Italy (157 with hepcidin evaluation, and 188 healthy controls without iron deficiency, matched for age and gender. Genetic polymorphisms were evaluated by allele specific polymerase chain reaction assays, and hepcidin quantified by mass spectrometry. Results Serum hepcidin levels were not different between the whole CHD population and controls (median 7.1, interquartile range (IQR 0.55-17.1 vs. 7.4, 4.5-17.9 nM, respectively, but were higher in the CHD subgroup after exclusion of subjects with relative iron deficiency (p = 0.04. In CHD patients, the A736V TMPRSS6 polymorphism influenced serum hepcidin levels in individuals positive for mutations in the HFE gene of hereditary hemochromatosis (p 30 ng/ml; n = 86, hepcidin was associated with lower mean corpuscular volume (p = 0.002, suggesting that it contributed to iron-restricted erythropoiesis. In line with previous results, in patients without acute inflammation and severe iron deficiency the “high hepcidin” 736 V TMPRSS6 variant was associated with higher erythropoietin maintenance dose (p = 0.016, independently of subclinical inflammation (p = 0.02. Conclusions The A736V TMPRSS6 genotype influences hepcidin levels, erythropoiesis, and anemia management in CHD patients. Evaluation of the effect of TMPRSS6 genotype on clinical outcomes in prospective studies in CHD may be useful to predict the outcomes of hepcidin manipulation, and to guide treatment personalization by optimizing anemia management.

  5. Microvascular dysfunction with increased vascular leakage response in mice systemically exposed to arsenic.

    Science.gov (United States)

    Chen, Shih-Chieh; Huang, Shin-Yin; Lu, Chi-Yu; Hsu, Ya-Hung; Wang, Dean-Chuan

    2014-09-01

    The mechanisms underlying cardiovascular disease induced by arsenic exposure are not completely understood. The objectives of this study were to investigate whether arsenic-fed mice have an increased vascular leakage response to vasoactive agents and whether enhanced type-2 protein phosphatase (PP2A) activity is involved in mustard oil-induced leakage. ICR mice were fed water or sodium arsenite (20 mg/kg) for 4 or 8 weeks. The leakage response to vasoactive agents was quantified using the Evans blue (EB) technique or vascular labeling with carbon particles. Increased EB leakage and high density of carbon-labeled microvessels were detected in arsenic-fed mice treated with mustard oil. Histamine induced significantly higher vascular leakage in arsenic-fed mice than in water-fed mice. Pretreatment with the PP2A inhibitor okadaic acid or the neurokinin 1 receptor (NK1R) blocker RP67580 significantly reduced mustard oil-induced vascular leakage in arsenic-fed mice. The protein levels of PP2Ac and NK1R were similar in both groups. PP2A activity was significantly higher in the arsenic-fed mice compared with the control group. These findings indicate that microvessels generally respond to vasoactive agents, and that the increased PP2A activity is involved in mustard oil-induced vascular leakage in arsenic-fed mice. Arsenic may initiate endothelial dysfunction, resulting in vascular leakage in response to vasoactive agents.

  6. Increased susceptibility to chemotherapeutic alkylating agents of mice deficient in DNA repair methyltransferase.

    Science.gov (United States)

    Shiraishi, A; Sakumi, K; Sekiguchi, M

    2000-10-01

    O(6)-methylguanine-DNA methyltransferase plays vital roles in preventing induction of mutations and cancer as well as cell death related to alkylating agents. Mice defective in the MGMT: gene, encoding the methyltransferase, were used to evaluate cell death-inducing and tumorigenic activities of therapeutic agents which have alkylation potential. MGMT(-/-) mice were considerably more sensitive to dacarbazine, a monofunctional triazene, than were wild-type mice, in terms of survival. When dacarbazine was administered i.p. to 6-week-old mice and survival at 30 days was enumerated, LD(50) values of MGMT(-/-) and MGMT(+/+) mice were 20 and 450 mg/kg body wt, respectively. Increased sensitivity of MGMT(-/-) mice to 1-(4-amino-2-methyl-5-pyrimidinyl)methyl-3-(2-chloroethyl)-3-nitrosou rea (ACNU), a bifunctional nitrosourea, was also noted. On the other hand, there was no difference in survival of MGMT(+/+) and MGMT(-/-) mice exposed to cyclophosphamide, a bifunctional nitrogen mustard. It appears that dacarbazine and ACNU produce O(6)-alkylguanine as a major toxic lesion, while cyclophosphamide yields other types of modifications in DNA which are not subjected to the action of the methyltransferase. MGMT(-/-) mice seem to be less refractory to the tumor-inducing effect of dacarbazine than are MGMT(+/+) mice. Thus, the level of O(6)-methylguanine-DNA methyltransferase activity is an important factor when determining susceptibility to drugs with the potential for alkylation.

  7. COX-2 disruption leads to increased central vasopressin stores and impaired urine concentrating ability in mice

    DEFF Research Database (Denmark)

    Norregaard, Rikke; Madsen, Kirsten Morill; Hansen, Pernille Bl

    2011-01-01

    It was hypothesized that cyclooxygenase-2 (COX-2) activity promotes urine concentrating ability through stimulation of vasopressin (AVP) release after water deprivation (WD). COX-2-deficient (COX-2(-/-), C57BL/6) and wild-type (WT) mice were water deprived for 24 h, and water balance, central AVP m...... osmolality in COX-2(-/-) mice irrespective of gender. Hypothalamic AVP mRNA level increased and was unchanged between COX-2(-/-) and WT after WD. AVP peptide content was higher in COX-2(-/-) compared with WT. At baseline, plasma AVP concentration was elevated in conscious chronically catheterized COX-2......(-/-) mice, but after WD plasma AVP was unchanged between COX-2(-/-) and WT mice (43 ± 11 vs. 70 ± 16 pg/ml). Renal V2 receptor abundance was downregulated in COX-2(-/-) mice. Medullary interstitial osmolality increased and did not differ between COX-2(-/-) and WT after WD. Aquaporin-2 (AQP2; cortex...

  8. Increase in swimming endurance capacity of mice by capsaicin-induced adrenal catecholamine secretion.

    Science.gov (United States)

    Kim, K M; Kawada, T; Ishihara, K; Inoue, K; Fushiki, T

    1997-10-01

    Increase in endurance swimming capacity caused by capsaicin (CAP), a pungent component of red pepper, -induced increase of fat metabolism in mice was investigated using an adjustable-current water pool. The mice administered CAP via a stomach tube, showed longer swimming time until exhaustion than the control group of mice, in a dose-dependent manner. The maximal effect was observed at a dose of 10 mg/kg while more than 15 mg/kg had no effect. The increase of endurance was observed only when CAP was administered two hours before swimming. After the administration of CAP, the serum glucose concentration rapidly increased and then decreased within 60 min, while the concentration of serum-free fatty acids gradually increased through 3 hours. The residual glycogen concentration of the gastrocnemius muscle after 30 min of swimming was significantly higher in the CAP-administered mice than in control mice, suggesting that use of the serum free fatty acids spared muscle glycogen consumption. The serum adrenaline concentration significantly increased with twin peaks at 30 min and two hours after administration of CAP. An experiment using adrenalectomized mice was done to confirm that the effect of CAP is due to increased energy metabolism through the secretion of adrenaline from the adrenal gland. The swimming endurance capacity of the adrenalectomized mice was not increased by CAP administration, although adrenaline injection induced a 58% increase in the endurance time. These results suggest that the increase of swimming endurance induced by CAP in mice is caused by an increase in fatty acid utilization due to CAP-induced adrenal catecholamine secretion.

  9. Increased liver pathology in hepatitis C virus transgenic mice expressing the hepatitis B virus X protein

    International Nuclear Information System (INIS)

    Keasler, Victor V.; Lerat, Herve; Madden, Charles R.; Finegold, Milton J.; McGarvey, Michael J.; Mohammed, Essam M.A.; Forbes, Stuart J.; Lemon, Stanley M.; Hadsell, Darryl L.; Grona, Shala J.; Hollinger, F. Blaine; Slagle, Betty L.

    2006-01-01

    Transgenic mice expressing the full-length HCV coding sequence were crossed with mice that express the HBV X gene-encoded regulatory protein HBx (ATX mice) to test the hypothesis that HBx expression accelerates HCV-induced liver pathogenesis. At 16 months (mo) of age, hepatocellular carcinoma was identified in 21% of HCV/ATX mice, but in none of the single transgenic animals. Analysis of 8-mo animals revealed that, relative to HCV/WT mice, HCV/ATX mice had more severe steatosis, greater liver-to-body weight ratios, and a significant increase in the percentage of hepatocytes staining for proliferating cell nuclear antigen. Furthermore, primary hepatocytes from HCV, ATX, and HCV/ATX transgenic mice were more resistant to fas-mediated apoptosis than hepatocytes from nontransgenic littermates. These results indicate that HBx expression contributes to increased liver pathogenesis in HCV transgenic mice by a mechanism that involves an imbalance in hepatocyte death and regeneration within the context of severe steatosis

  10. Increased susceptibility to Yersinia enterocolitica Infection of Tff2 deficient mice.

    Science.gov (United States)

    Shah, Aftab A; Mihalj, Martina; Ratkay, Ivana; Lubka-Pathak, Maria; Balogh, Peter; Klingel, Karin; Bohn, Erwin; Blin, Nikolaus; Baus-Loncar, Mirela

    2012-01-01

    TFF2 is one of the members of the trefoil factor family, known for its role in protection of gastrointestinal epithelia upon injury; however, recent studies suggest that TFF2 could also play an important role in the immune system. In the present study Tff2 deficient and wild type mice were infected by Y. enterocolitica which resulted in a lethal outcome in all Tff2 deficient mice, but not in WT animals. Yersinia invaded Peyer's patches more efficiently as shown by high bacterial titers in the KO mice while wild type mice displayed lower titers and a visible bacterial accumulation in the intestine. Bacterial accumulation in Peyer's patches of Tff2 deficient mice was accompanied by increased recruitment of macrophages. While an increased level of MAC-1 positive cells was observed in the spleens of both Tff2 deficient and WT mice at third day post infection, bacterial dissemination to liver, lung and kidneys was observed only in Tff2 knock-out mice. Analysis of the cellular composition of spleen did not reveal any substantial alteration to WT animals, suggesting possible disregulation of hemopoietic cells involved in immune response to Y. enterocolitica. These new data indicate that Tff2 plays an important role in immune response by protecting the organism from consequences of infection and that Tff2 knock-out mice react adversely to bacterial infections, in this case specifically to Y. enterocolitica. Copyright © 2012 S. Karger AG, Basel.

  11. Ageing Fxr deficient mice develop increased energy expenditure, improved glucose control and liver damage resembling NASH.

    Directory of Open Access Journals (Sweden)

    Mikael Bjursell

    Full Text Available Nuclear receptor subfamily 1, group H, member 4 (Nr1h4, FXR is a bile acid activated nuclear receptor mainly expressed in the liver, intestine, kidney and adrenal glands. Upon activation, the primary function is to suppress cholesterol 7 alpha-hydroxylase (Cyp7a1, the rate-limiting enzyme in the classic or neutral bile acid synthesis pathway. In the present study, a novel Fxr deficient mouse line was created and studied with respect to metabolism and liver function in ageing mice fed chow diet. The Fxr deficient mice were similar to wild type mice in terms of body weight, body composition, energy intake and expenditure as well as behaviours at a young age. However, from 15 weeks of age and onwards, the Fxr deficient mice had almost no body weight increase up to 39 weeks of age mainly because of lower body fat mass. The lower body weight gain was associated with increased energy expenditure that was not compensated by increased food intake. Fasting levels of glucose and insulin were lower and glucose tolerance was improved in old and lean Fxr deficient mice. However, the Fxr deficient mice displayed significantly increased liver weight, steatosis, hepatocyte ballooning degeneration and lobular inflammation together with elevated plasma levels of ALT, bilirubin and bile acids, findings compatible with non-alcoholic steatohepatitis (NASH and cholestasis. In conclusion, ageing Fxr deficient mice display late onset leanness associated with elevated energy expenditure and improved glucose control but develop severe NASH-like liver pathology.

  12. Ageing Fxr deficient mice develop increased energy expenditure, improved glucose control and liver damage resembling NASH.

    Science.gov (United States)

    Bjursell, Mikael; Wedin, Marianne; Admyre, Therése; Hermansson, Majlis; Böttcher, Gerhard; Göransson, Melker; Lindén, Daniel; Bamberg, Krister; Oscarsson, Jan; Bohlooly-Y, Mohammad

    2013-01-01

    Nuclear receptor subfamily 1, group H, member 4 (Nr1h4, FXR) is a bile acid activated nuclear receptor mainly expressed in the liver, intestine, kidney and adrenal glands. Upon activation, the primary function is to suppress cholesterol 7 alpha-hydroxylase (Cyp7a1), the rate-limiting enzyme in the classic or neutral bile acid synthesis pathway. In the present study, a novel Fxr deficient mouse line was created and studied with respect to metabolism and liver function in ageing mice fed chow diet. The Fxr deficient mice were similar to wild type mice in terms of body weight, body composition, energy intake and expenditure as well as behaviours at a young age. However, from 15 weeks of age and onwards, the Fxr deficient mice had almost no body weight increase up to 39 weeks of age mainly because of lower body fat mass. The lower body weight gain was associated with increased energy expenditure that was not compensated by increased food intake. Fasting levels of glucose and insulin were lower and glucose tolerance was improved in old and lean Fxr deficient mice. However, the Fxr deficient mice displayed significantly increased liver weight, steatosis, hepatocyte ballooning degeneration and lobular inflammation together with elevated plasma levels of ALT, bilirubin and bile acids, findings compatible with non-alcoholic steatohepatitis (NASH) and cholestasis. In conclusion, ageing Fxr deficient mice display late onset leanness associated with elevated energy expenditure and improved glucose control but develop severe NASH-like liver pathology.

  13. Anti-tau antibody administration increases plasma tau in transgenic mice and patients with tauopathy

    Science.gov (United States)

    Yanamandra, Kiran; Patel, Tirth K.; Jiang, Hong; Schindler, Suzanne; Ulrich, Jason D.; Boxer, Adam L.; Miller, Bruce L.; Kerwin, Diana R.; Gallardo, Gilbert; Stewart, Floy; Finn, Mary Beth; Cairns, Nigel J.; Verghese, Philip B.; Fogelman, Ilana; West, Tim; Braunstein, Joel; Robinson, Grace; Keyser, Jennifer; Roh, Joseph; Knapik, Stephanie S.; Hu, Yan; Holtzman, David M.

    2017-01-01

    Tauopathies are a group of disorders in which the cytosolic protein tau aggregates and accumulates in cells within the brain, resulting in neurodegeneration. A promising treatment being explored for tauopathies is passive immunization with anti-tau antibodies. We previously found that administration of an anti-tau antibody to human tau transgenic mice increased the concentration of plasma tau. We further explored the effects of administering an anti-tau antibody on plasma tau. After peripheral administration of an anti-tau antibody to human patients with tauopathy and to mice expressing human tau in the central nervous system, there was a dose-dependent increase in plasma tau. In mouse plasma, we found that tau had a short half-life of 8 min that increased to more than 3 hours after administration of anti-tau antibody. As tau transgenic mice accumulated insoluble tau in the brain, brain soluble and interstitial fluid tau decreased. Administration of anti-tau antibody to tau transgenic mice that had decreased brain soluble tau and interstitial fluid tau resulted in an increase in plasma tau, but this increase was less than that observed in tau transgenic mice without these brain changes. Tau transgenic mice subjected to acute neuronal injury using 3-nitropropionic acid showed increased interstitial fluid tau and plasma tau. These data suggest that peripheral administration of an anti-tau antibody results in increased plasma tau, which correlates with the concentration of extracellular and soluble tau in the brain. PMID:28424326

  14. [The clinical significance of hepcidin detection in the patients with anemia and rheumatoid arthritis].

    Science.gov (United States)

    Galushko, E A

    2014-01-01

    The prevalence of anemia in patients with rheumatoid arthritis (RA) varies from 30 to 70%. 25% of the cases are diagnosed within 1 year after onset of the disease. On the whole, anemia in RA is described as anemia of a chronic disease (ACD). Pathogenesis ofACD is a multifactor process underlain by an immune mechanism: cytokines and cells ofthe reticuloendothelial system cause changes in iron homeostasis, proliferation of erythroid precursors, erythropoietin production and lifespan of erythrocytes. The key pathogenetic factor is disordered iron metabolism. IL-6 increasing hepatic production acute-phase protein (hepcidin) is the most important cytokine involved in ACD pathogenesis. Hence the necessity to measure its serum level for differential diagnostics of anemic syndrome in patients with RA and the choice of effective basal therapy. Recent data on the therapeutic potency of tocilizumab (IL-6 receptor inhibitor) demonstrate not its safety and sustainable beneficial clinical effect in combination with the favourable action on hemoglobin profile and reduction offatigue.

  15. Some putative prebiotics increase the severity of Salmonella enterica serovar Typhimurium infection in mice

    Directory of Open Access Journals (Sweden)

    Lahtinen Sampo

    2009-01-01

    Full Text Available Abstract Background Prebiotics are non-digestible food ingredients believed to beneficially affect host health by selectively stimulating the growth of the beneficial bacteria residing in the gut. Such beneficial bacteria have been reported to protect against pathogenic infections. However, contradicting results on prevention of Salmonella infections with prebiotics have been published. The aim of the present study was to examine whether S. Typhimurium SL1344 infection in mice could be prevented by administration of dietary carbohydrates with different structures and digestibility profiles. BALB/c mice were fed a diet containing 10% of either of the following carbohydrates: inulin, fructo-oligosaccharide, xylo-oligosaccharide, galacto-oligosaccharide, apple pectin, polydextrose or beta-glucan for three weeks prior to oral Salmonella challenge (107 CFU and compared to mice fed a cornstarch-based control diet. Results The mice fed with diets containing fructo-oligosaccharide (FOS or xylo-oligosaccharide (XOS had significantly higher (P < 0.01 and P < 0.05 numbers of S. Typhimurium SL1344 in liver, spleen and mesenteric lymph nodes when compared to the mice fed with the cornstarch-based control diet. Significantly increased amounts (P < 0.01 of Salmonella were detected in ileal and fecal contents of mice fed with diets supplemented with apple pectin, however these mice did not show significantly higher numbers of S. Typhimyrium in liver, spleen and lymph nodes than animals from the control group (P < 0.20. The acute-phase protein haptoglobin was a good marker for translocation of S. Typhimurium in mice. In accordance with the increased counts of Salmonella in the organs, serum concentrations of haptoglobin were significantly increased in the mice fed with FOS or XOS (P < 0.001. Caecum weight was increased in the mice fed with FOS (P < 0.01, XOS (P < 0.01, or polydextrose (P < 0.001, and caecal pH was reduced in the mice fed with polydextrose (P < 0

  16. Analysis of hepcidin expression: in situ hybridization and quantitative polymerase chain reaction from paraffin sections.

    Science.gov (United States)

    Sakuraoka, Yuhki; Sawada, Tokihiko; Shiraki, Takayuki; Park, Kyunghwa; Sakurai, Yuhichiro; Tomosugi, Naohisa; Kubota, Keiichi

    2012-07-28

    To establish methods for quantitative polymerase chain reaction (PCR) for hepcidin using RNAs isolated from paraffin-embedded sections and in situ hybridization of hepatocellular carcinoma (HCC). Total RNA from paraffin-embedded sections was isolated from 68 paraffin-embedded samples of HCC. Samples came from 54 male and 14 female patients with a mean age of 66.8 ± 7.8 years. Quantitative PCR was performed. Immunohistochemistry and in situ hybridization for hepcidin were also performed. Quantitative PCR for hepcidin using RNAs isolated from paraffin-embedded sections of HCC was performed successfully. The expression level of hepcidin mRNA in cancer tissues was significantly higher than that in non-cancer tissues. A method of in situ hybridization for hepcidin was established successfully, and this demonstrated that hepcidin mRNA was expressed in non-cancerous tissue but absent in cancerous tissue. We have established novel methods for quantitative PCR for hepcidin using RNAs isolated from paraffin-embedded sections and in situ hybridization of HCC.

  17. Improved LC-MS/MS method for the quantification of hepcidin-25 in clinical samples.

    Science.gov (United States)

    Abbas, Ioana M; Hoffmann, Holger; Montes-Bayón, María; Weller, Michael G

    2018-06-01

    Mass spectrometry-based methods play a crucial role in the quantification of the main iron metabolism regulator hepcidin by singling out the bioactive 25-residue peptide from the other naturally occurring N-truncated isoforms (hepcidin-20, -22, -24), which seem to be inactive in iron homeostasis. However, several difficulties arise in the MS analysis of hepcidin due to the "sticky" character of the peptide and the lack of suitable standards. Here, we propose the use of amino- and fluoro-silanized autosampler vials to reduce hepcidin interaction to laboratory glassware surfaces after testing several types of vials for the preparation of stock solutions and serum samples for isotope dilution liquid chromatography-tandem mass spectrometry (ID-LC-MS/MS). Furthermore, we have investigated two sample preparation strategies and two chromatographic separation conditions with the aim of developing a LC-MS/MS method for the sensitive and reliable quantification of hepcidin-25 in serum samples. A chromatographic separation based on usual acidic mobile phases was compared with a novel approach involving the separation of hepcidin-25 with solvents at high pH containing 0.1% of ammonia. Both methods were applied to clinical samples in an intra-laboratory comparison of two LC-MS/MS methods using the same hepcidin-25 calibrators with good correlation of the results. Finally, we recommend a LC-MS/MS-based quantification method with a dynamic range of 0.5-40 μg/L for the assessment of hepcidin-25 in human serum that uses TFA-based mobile phases and silanized glass vials. Graphical abstract Structure of hepcidin-25 (Protein Data Bank, PDB ID 2KEF).

  18. Hexachlorobenzene stimulates uroporphyria in low affinity AHR mice without increasing CYP1A2

    International Nuclear Information System (INIS)

    Gorman, Nadia; Trask, Heidi S.; Robinson, Susan W.; Sinclair, Jacqueline F.; Gerhard, Glenn S.; Smith, Andrew G.; Sinclair, Peter R.

    2007-01-01

    Hexachlorobenzene (HCB), a weak ligand of the aryl hydrocarbon receptor (AHR), causes hepatic uroporphyrin (URO) accumulation (uroporphyria) in humans and animals. CYP1A2 has been shown to be necessary in the development of uroporphyria in mice. Using mice expressing the low affinity form of the AH receptor (AHRd), we investigated whether the enhancement of uroporphyria by HCB involves an obligatory increase in CYP1A2 as measured by specific enzyme assays and immunoblotting. We compared the ability of HCB, in combination with iron dextran and the porphyrin precursor, 5-aminolevulinate (ALA), to cause uroporphyria in a strain of mice (C57BL/6) which expresses the high affinity form of the receptor (AHRb 1 ), with three strains of mice (SWR and two 129 sublines) expressing the low affinity AHRd. In C57BL/6 mice, HCB-enhanced uroporphyria was associated with a doubling of CYP1A2. HCB treatment produced uroporphyria in iron-loaded mice expressing AHRd, even though there was little or no increase in CYP1A2. Cyp1a2(-/-) mice in a 129 background were completely resistant to HCB-induced uroporphyria, and female Hfe(-/-) 129 mice, in which the levels of hepatic CYP1A2 were half of those of the male levels, responded poorly. The effect of exogenous iron, administered in the form of iron dextran, on HCB enhancement of uroporphryia could be replicated utilizing the endogenous hepatic iron accumulated in 129 Hfe(-/-) mice. In conclusion, some minimal basal expression of CYP1A2 is essential for HCB-mediated enhancement of uroporphyria, but increases in CYP1A2 above that level are not essential

  19. Activation of inflammatory signaling by lipopolysaccharide produces a prolonged increase of voluntary alcohol intake in mice

    Science.gov (United States)

    Blednov, Y.A.; Benavidez, J.M.; Geil, C.; Perra, S.; Morikawa, H.; Harris, R.A.

    2011-01-01

    Previous studies showed that mice with genetic predisposition for high alcohol consumption as well as human alcoholics show changes in brain expression of genes related to immune signaling. In addition, mutant mice lacking genes related to immune function show decreased alcohol consumption (Blednov et al., in press), suggesting that immune signaling promotes alcohol consumption. To test the possibility that activation of immune signaling will increase alcohol consumption, we treated mice with lipopolysaccaride (LPS; 1 mg/kg, i.p.) and tested alcohol consumption in the continuous two-bottle choice test. To take advantage of the long-lasting activation of brain immune signaling by LPS, we measured drinking beginning one week or one month after LPS treatment and continued the studies for several months. LPS produced persistent increases in alcohol consumption in C57/Bl6 J (B6) inbred mice, FVBxB6F1 and B6xNZBF1 hybrid mice, but not in FVB inbred mice. To determine if this effect of LPS is mediated through binding to TLR4, we tested mice lacking CD14, a key component of TLR4 signaling. These null mutants showed no increase of alcohol intake after treatment with LPS. LPS treatment decreased ethanol-conditioned taste aversion but did not alter ethanol-conditioned place preference (B6xNZBF1 mice). Electro-physiological studies of dopamine neurons in the ventral tegmental area showed that pretreatment of mice with LPS decreased the neuronal firing rate. These results suggest that activation of immune signaling promotes alcohol consumption and alters certain aspects of alcohol reward/aversion. PMID:21266194

  20. Aldosterone Inhibits the Fetal Program and Increases Hypertrophy in the Heart of Hypertensive Mice

    Science.gov (United States)

    Azibani, Feriel; Devaux, Yvan; Coutance, Guillaume; Schlossarek, Saskia; Polidano, Evelyne; Fazal, Loubina; Merval, Regine; Carrier, Lucie; Solal, Alain Cohen; Chatziantoniou, Christos; Launay, Jean-Marie; Samuel, Jane-Lise; Delcayre, Claude

    2012-01-01

    Background Arterial hypertension (AH) induces cardiac hypertrophy and reactivation of “fetal” gene expression. In rodent heart, alpha-Myosin Heavy Chain (MyHC) and its micro-RNA miR-208a regulate the expression of beta-MyHC and of its intronic miR-208b. However, the role of aldosterone in these processes remains unclear. Methodology/Principal Findings RT-PCR and western-blot were used to investigate the genes modulated by arterial hypertension and cardiac hyperaldosteronism. We developed a model of double-transgenic mice (AS-Ren) with cardiac hyperaldosteronism (AS mice) and systemic hypertension (Ren). AS-Ren mice had increased (x2) angiotensin II in plasma and increased (x2) aldosterone in heart. Ren and AS-Ren mice had a robust and similar hypertension (+70%) versus their controls. Anatomical data and echocardiography showed a worsening of cardiac hypertrophy (+41%) in AS-Ren mice (P<0.05 vs Ren). The increase of ANP (x 2.5; P<0.01) mRNA observed in Ren mice was blunted in AS-Ren mice. This non-induction of antitrophic natriuretic peptides may be involved in the higher trophic cardiac response in AS-Ren mice, as indicated by the markedly reduced cardiac hypertrophy in ANP-infused AS-Ren mice for one month. Besides, the AH-induced increase of ßMyHC and its intronic miRNA-208b was prevented in AS-Ren. The inhibition of miR 208a (−75%, p<0.001) in AS-Ren mice compared to AS was associated with increased Sox 6 mRNA (x 1.34; p<0.05), an inhibitor of ßMyHC transcription. Eplerenone prevented all aldosterone-dependent effects. Conclusions/Significance Our results indicate that increased aldosterone in heart inhibits the induction of atrial natriuretic peptide expression, via the mineralocorticoid receptor. This worsens cardiac hypertrophy without changing blood pressure. Moreover, this work reveals an original aldosterone-dependent inhibition of miR-208a in hypertension, resulting in the inhibition of β-myosin heavy chain expression through the induction of

  1. Aldosterone inhibits the fetal program and increases hypertrophy in the heart of hypertensive mice.

    Directory of Open Access Journals (Sweden)

    Feriel Azibani

    Full Text Available BACKGROUND: Arterial hypertension (AH induces cardiac hypertrophy and reactivation of "fetal" gene expression. In rodent heart, alpha-Myosin Heavy Chain (MyHC and its micro-RNA miR-208a regulate the expression of beta-MyHC and of its intronic miR-208b. However, the role of aldosterone in these processes remains unclear. METHODOLOGY/PRINCIPAL FINDINGS: RT-PCR and western-blot were used to investigate the genes modulated by arterial hypertension and cardiac hyperaldosteronism. We developed a model of double-transgenic mice (AS-Ren with cardiac hyperaldosteronism (AS mice and systemic hypertension (Ren. AS-Ren mice had increased (x2 angiotensin II in plasma and increased (x2 aldosterone in heart. Ren and AS-Ren mice had a robust and similar hypertension (+70% versus their controls. Anatomical data and echocardiography showed a worsening of cardiac hypertrophy (+41% in AS-Ren mice (P<0.05 vs Ren. The increase of ANP (x 2.5; P<0.01 mRNA observed in Ren mice was blunted in AS-Ren mice. This non-induction of antitrophic natriuretic peptides may be involved in the higher trophic cardiac response in AS-Ren mice, as indicated by the markedly reduced cardiac hypertrophy in ANP-infused AS-Ren mice for one month. Besides, the AH-induced increase of ßMyHC and its intronic miRNA-208b was prevented in AS-Ren. The inhibition of miR 208a (-75%, p<0.001 in AS-Ren mice compared to AS was associated with increased Sox 6 mRNA (x 1.34; p<0.05, an inhibitor of ßMyHC transcription. Eplerenone prevented all aldosterone-dependent effects. CONCLUSIONS/SIGNIFICANCE: Our results indicate that increased aldosterone in heart inhibits the induction of atrial natriuretic peptide expression, via the mineralocorticoid receptor. This worsens cardiac hypertrophy without changing blood pressure. Moreover, this work reveals an original aldosterone-dependent inhibition of miR-208a in hypertension, resulting in the inhibition of β-myosin heavy chain expression through the induction

  2. [The effect of exogenous antioxidants on the antioxidant status of erythrocytes and hepcidin content in blood of patients with disorders of iron metabolism regulation].

    Science.gov (United States)

    Shcherbinina, S P; Levina, A A; Lisovskaia, I L; Ataullakhanov, F I

    2013-01-01

    In many diseases associated with impairments in iron metabolism, erythrocytes exhibit an increased sensitivity to oxidative stress induced in vitro. In this study, we have examined the antioxidant status of erythrocytes from healthy donors and from 12 patients with disorders of iron homeostasis by measuring the extent of t-BHP-induced hemolysis in vitro. The extent of hemolysis observed with patient erythrocytes was significantly higher than that observed in experiment with normal cells. After therapeutic infusions of the antioxidants mexidol or emoxypin, oxidative hemolysis in patients was restored to normal values and blood hepcidin content increased significantly. A significant correlation was observed between hepcidin concentration after treatment and t-BHP-induced hemolysis before treatment. These data suggest that antioxidants may exert a favorable effect under pathological conditions associated with iron overload disease.

  3. Wfs1-deficient mice display altered function of serotonergic system and increased behavioural response to antidepressants

    Directory of Open Access Journals (Sweden)

    Tanel eVisnapuu

    2013-07-01

    Full Text Available It has been shown that mutations in the WFS1 gene make humans more susceptible to mood disorders. Besides that, mood disorders are associated with alterations in the activity of serotonergic and noradrenergic systems. Therefore, in this study, the effects of imipramine, an inhibitor of serotonin (5-HT and noradrenaline (NA reuptake, and paroxetine, a selective inhibitor of 5-HT reuptake, were studied in tests of behavioural despair. The tail suspension test (TST and forced swimming test (FST were performed in Wfs1-deficient mice. Simultaneously, gene expression and monoamine metabolism studies were conducted to evaluate changes in 5-HT- and NA-ergic systems of Wfs1-deficient mice. The basal immobility time of Wfs1-deficient mice in TST and FST did not differ from that of their wild-type littermates. However, a significant reduction of immobility time in response to lower doses of imipramine and paroxetine was observed in homozygous Wfs1-deficient mice, but not in their wild-type littermates. In gene expression studies, the levels of 5-HT transporter (SERT were significantly reduced in the pons of homozygous animals. Monoamine metabolism was assayed separately in the dorsal and ventral striatum of naive mice and mice exposed for 30 minutes tobrightly lit motility boxes. We found that this aversive challenge caused a significant increase in the levels of 5-HT and 5-hydroxyindoleacetic acid (5-HIAA, a metabolite of 5-HT, in the ventral and dorsal striatum of wild-type mice, but not in their homozygous littermates. Taken together, the blunted 5-HT metabolism and reduced levels of SERT are a likely reason for the elevated sensitivity of these mice to the action of imipramine and paroxetine. These changes in the pharmacological and neurochemical phenotype of Wfs1-deficient mice may help to explain the increased susceptibility of Wolfram syndrome patients to depressive states.

  4. Forebrain-Specific Loss of BMPRII in Mice Reduces Anxiety and Increases Object Exploration

    OpenAIRE

    McBrayer, Zofeyah L.; Dimova, Jiva; Pisansky, Marc T.; Sun, Mu; Beppu, Hideyuki; Gewirtz, Jonathan C.; O’Connor, Michael B.

    2015-01-01

    To investigate the role of Bone Morphogenic Protein Receptor Type II (BMPRII) in learning, memory, and exploratory behavior in mice, a tissue-specific knockout of BMPRII in the post-natal hippocampus and forebrain was generated. We found that BMPRII mutant mice had normal spatial learning and memory in the Morris water maze, but showed significantly reduced swimming speeds with increased floating behavior. Further analysis using the Porsolt Swim Test to investigate behavioral despair did not ...

  5. Intermittent long-wavelength red light increases the period of daily locomotor activity in mice

    Directory of Open Access Journals (Sweden)

    Hughes Amanda M

    2005-05-01

    Full Text Available Abstract Background We observed that a dim, red light-emitting diode (LED triggered by activity increased the circadian periods of lab mice compared to constant darkness. It is known that the circadian period of rats increases when vigorous wheel-running triggers full-spectrum lighting; however, spectral sensitivity of photoreceptors in mice suggests little or no response to red light. Thus, we decided to test the following hypotheses: dim red light illumination triggered by activity (LEDfb increases the circadian period of mice compared to constant dark (DD; covering the LED prevents the effect on period; and DBA2/J mice have a different response to LEDfb than C57BL6/J mice. Methods The irradiance spectra of the LEDs were determined by spectrophotometer. Locomotor activity of C57BL/6J and DBA/2J mice was monitored by passive-infrared sensors and circadian period was calculated from the last 10 days under each light condition. For constant dark (DD, LEDs were switched off. For LED feedback (LEDfb, the red LED came on when the mouse was active and switched off seconds after activity stopped. For taped LED the red LED was switched on but covered with black tape. Single and multifactorial ANOVAs and post-hoc t-tests were done. Results The circadian period of mice was longer under LEDfb than under DD. Blocking the light eliminated the effect. There was no difference in period change in response to LEDfb between C57BL/6 and DBA/2 mice. Conclusion An increase in mouse circadian period due to dim far-red light (1 lux at 652 nm exposure was unexpected. Since blocking the light stopped the response, sound from the sensor's electronics was not the impetus of the response. The results suggest that red light as background illumination should be avoided, and indicator diodes on passive infrared motion sensors should be switched off.

  6. Chronic high-sucrose diet increases fibroblast growth factor 21 production and energy expenditure in mice.

    Science.gov (United States)

    Maekawa, Ryuya; Seino, Yusuke; Ogata, Hidetada; Murase, Masatoshi; Iida, Atsushi; Hosokawa, Kaori; Joo, Erina; Harada, Norio; Tsunekawa, Shin; Hamada, Yoji; Oiso, Yutaka; Inagaki, Nobuya; Hayashi, Yoshitaka; Arima, Hiroshi

    2017-11-01

    Excess carbohydrate intake causes obesity in humans. On the other hand, acute administration of fructose, glucose or sucrose in experimental animals has been shown to increase the plasma concentration of anti-obesity hormones such as glucagon-like peptide 1 (GLP-1) and Fibroblast growth factor 21 (FGF21), which contribute to reducing body weight. However, the secretion and action of GLP-1 and FGF21 in mice chronically fed a high-sucrose diet has not been investigated. To address the role of anti-obesity hormones in response to increased sucrose intake, we analyzed mice fed a high-sucrose diet, a high-starch diet or a normal diet for 15 weeks. Mice fed a high-sucrose diet showed resistance to body weight gain, in comparison with mice fed a high-starch diet or control diet, due to increased energy expenditure. Plasma FGF21 levels were highest among the three groups in mice fed a high-sucrose diet, whereas no significant difference in GLP-1 levels was observed. Expression levels of uncoupling protein 1 (UCP-1), FGF receptor 1c (FGFR1c) and β-klotho (KLB) mRNA in brown adipose tissue were significantly increased in high sucrose-fed mice, suggesting increases in FGF21 sensitivity and energy expenditure. Expression of carbohydrate responsive element binding protein (ChREBP) mRNA in liver and brown adipose tissue was also increased in high sucrose-fed mice. These results indicate that FGF21 production in liver and brown adipose tissue is increased in high-sucrose diet and participates in resistance to weight gain. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Persistent Salmonella enterica serovar Typhimurium Infection Increases the Susceptibility of Mice to Develop Intestinal Inflammation

    Directory of Open Access Journals (Sweden)

    Bárbara M. Schultz

    2018-05-01

    Full Text Available Chronic intestinal inflammations are triggered by genetic and environmental components. However, it remains unclear how specific changes in the microbiota, host immunity, or pathogen exposure could promote the onset and exacerbation of these diseases. Here, we evaluated whether Salmonella enterica serovar Typhimurium (S. Typhimurium infection increases the susceptibility to develop intestinal inflammation in mice. Two mouse models were used to evaluate the impact of S. Typhimurium infection: the chemical induction of colitis by dextran sulfate sodium (DSS and interleukin (IL-10−/− mice, which develop spontaneous intestinal inflammation. We observed that S. Typhimurium infection makes DSS-treated and IL-10−/− mice more susceptible to develop intestinal inflammation. Importantly, this increased susceptibility is associated to the ability of S. Typhimurium to persist in liver and spleen of infected mice, which depends on the virulence proteins secreted by Salmonella Pathogenicity Island 2-encoded type three secretion system (TTSS-2. Although immunization with a live attenuated vaccine resulted in a moderate reduction of the IL-10−/− mice susceptibility to develop intestinal inflammation due to previous S. Typhimurium infection, it did not prevent bacterial persistence. Our results suggest that persistent S. Typhimurium infection may increase the susceptibility of mice to develop inflammation in the intestine, which could be associated with virulence proteins secreted by TTSS-2.

  8. Yokukansankachimpihange increased body weight but not food-incentive motivation in wild-type mice.

    Science.gov (United States)

    Hamaguchi, Takuya; Tsutsui-Kimura, Iku; F Tanaka, Kenji; Mimura, Masaru

    2017-08-01

    Yokukansankachimpihange (YKSCH), a traditional Japanese medicine, is widely used for the amelioration of the behavioral and psychological symptoms of dementia with digestive dysfunction. Regardless of its successful use for digestive dysfunction, the effect of YKSCH on body weight was unknown. Furthermore, if YKSCH increased body weight, it might increase motivation according to Kampo medicine theory. Therefore, we investigated whether YKSCH had the potential to increase body weight and enhance motivation in mice. To address this, C57BL/6J mice were used to evaluate the long-term effect of YKSCH on body weight and food-incentive motivation. As part of the evaluation, we optimized an operant test for use over the long-term. We found that feeding mice YKSCH-containing chow increased body weight, but did not increase their motivation to food reward. We propose that YKSCH may be a good treatment option for preventing decrease in body weight in patients with dementia.

  9. Lepidium meyenii (Maca increases litter size in normal adult female mice

    Directory of Open Access Journals (Sweden)

    Gasco Manuel

    2005-05-01

    Full Text Available Abstract Background Lepidium meyenii, known as Maca, grows exclusively in the Peruvian Andes over 4000 m altitude. It has been used traditionally to increase fertility. Previous scientific studies have demonstrated that Maca increases spermatogenesis and epididymal sperm count. The present study was aimed to investigate the effects of Maca on several fertility parameters of female mice at reproductive age. Methods Adult female Balb/C mice were divided at random into three main groups: i Reproductive indexes group, ii Implantation sites group and iii Assessment of uterine weight in ovariectomized mice. Animals received an aqueous extract of lyophilized Yellow Maca (1 g/Kg BW or vehicle orally as treatment. In the fertility indexes study, animals received the treatment before, during and after gestation. The fertility index, gestation index, post-natal viability index, weaning viability index and sex ratio were calculated. Sexual maturation was evaluated in the female pups by the vaginal opening (VO day. In the implantation study, females were checked for implantation sites at gestation day 7 and the embryos were counted. In ovariectomized mice, the uterine weight was recorded at the end of treatment. Results Implantation sites were similar in mice treated with Maca and in controls. All reproductive indexes were similar in both groups of treatment. The number of pups per dam at birth and at postnatal day 4 was significantly higher in the group treated with Maca. VO day occurred earlier as litter size was smaller. Maca did not affect VO day. In ovariectomized mice, the treatment with Maca increased significantly the uterine weights in comparison to their respective control group. Conclusion Administration of aqueous extract of Yellow Maca to adult female mice increases the litter size. Moreover, this treatment increases the uterine weight in ovariectomized animals. Our study confirms for the first time some of the traditional uses of Maca to

  10. Niacin increases adiponectin and decreases adipose tissue inflammation in high fat diet-fed mice.

    Directory of Open Access Journals (Sweden)

    Desiree Wanders

    Full Text Available To determine the effects of niacin on adiponectin and markers of adipose tissue inflammation in a mouse model of obesity.Male C57BL/6 mice were placed on a control or high-fat diet (HFD and were maintained on such diets for the duration of the study. After 6 weeks on the control or high fat diets, vehicle or niacin treatments were initiated and maintained for 5 weeks. Identical studies were conducted concurrently in HCA2 (-/- (niacin receptor(-/- mice.Niacin increased serum concentrations of the anti-inflammatory adipokine, adiponectin by 21% in HFD-fed wild-type mice, but had no effect on lean wild-type or lean or HFD-fed HCA2 (-/- mice. Niacin increased adiponectin gene and protein expression in the HFD-fed wild-type mice only. The increases in adiponectin serum concentrations, gene and protein expression occurred independently of changes in expression of PPARγ C/EBPα or SREBP-1c (key transcription factors known to positively regulate adiponectin gene transcription in the adipose tissue. Further, niacin had no effect on adipose tissue expression of ERp44, Ero1-Lα, or DsbA-L (key ER chaperones involved in adiponectin production and secretion. However, niacin treatment attenuated HFD-induced increases in adipose tissue gene expression of MCP-1 and IL-1β in the wild-type HFD-fed mice. Niacin also reduced the expression of the pro-inflammatory M1 macrophage marker CD11c in HFD-fed wild-type mice.Niacin treatment attenuates obesity-induced adipose tissue inflammation through increased adiponectin and anti-inflammatory cytokine expression and reduced pro-inflammatory cytokine expression in a niacin receptor-dependent manner.

  11. Neonatal maternal separation increases susceptibility to experimental colitis and acute stress exposure in male mice

    Directory of Open Access Journals (Sweden)

    Isabella M. Fuentes

    2016-12-01

    Full Text Available Experiencing early life stress can result in maladjusted stress response via dysregulation of the hypothalamic-pituitary-adrenal axis and serves as a risk factor for developing chronic pelvic pain disorders. We investigated whether neonatal maternal separation (NMS would increase susceptibility to experimental colitis or exposure to acute or chronic stress. Male mice underwent NMS from postnatal day 1–21 and as adults were assessed for open field behavior, hindpaw sensitivity, and visceromotor response (VMR to colorectal distension (CRD. VMR was also measured before and after treatment with intracolonic trinitrobenzene sulfonic acid (TNBS or exposure to acute or chronic water avoidance stress (WAS. Myeloperoxidase (MPO activity, proinflammatory gene and corticotropin-releasing factor (CRF receptor expression were measured in distal colon. Baseline VMR was not affected by NMS, but undergoing CRD increased anxiety-like behaviors and mechanical hindpaw sensitivity of NMS mice. Treatment with TNBS dose-dependently decreased body weight and survival only in NMS mice. Following TNBS treatment, IL-6 and artemin mRNA levels were decreased in the distal colon of NMS mice, despite increased MPO activity. A single WAS exposure increased VMR during CRD in NMS mice and increased IL-6 mRNA and CRF2 protein levels in the distal colon of naïve mice, whereas CRF2 protein levels were heightened in NMS colon both at baseline and post-WAS exposure. Taken together, these results suggest that NMS in mice disrupts inflammatory- and stress-induced gene expression in the colon, potentially contributing towards an exaggerated response to specific stressors later in life.

  12. Resveratrol increases F508del-CFTR dependent salivary secretion in cystic fibrosis mice

    Directory of Open Access Journals (Sweden)

    Barbara Dhooghe

    2015-07-01

    Full Text Available Cystic fibrosis (CF is a fatal genetic disease associated with widespread exocrine gland dysfunction. Studies have suggested activating effects of resveratrol, a naturally-occurring polyphenol compound with antioxidant and anti-inflammatory properties, on CF transmembrane conductance regulator (CFTR protein function. We assayed, in F508del-CFTR homozygous (CF and in wild-type mice, the effect of resveratrol on salivary secretion in basal conditions, in response to inhibition by atropine (basal β-adrenergic-dependent component and to stimulation by isoprenaline (CFTR-dependent component. Both components of the salivary secretion were smaller in CF mice than in controls. Two hours after intraperitoneal administration of resveratrol (50 mg/kg dissolved in DMSO, the compound was detected in salivary glands. As in both CF and in wild-type mice, DMSO alone increased the response to isoprenaline in males but not in females, the effect of resveratrol was only measured in females. In wild-type mice, isoprenaline increased secretion by more than half. In CF mice, resveratrol rescued the response to isoprenaline, eliciting a 2.5-fold increase of β-adrenergic-stimulated secretion. We conclude that the salivary secretion assay is suitable to test DMSO-soluble CFTR modulators in female mice. We show that resveratrol applied in vivo to mice reaches salivary glands and increases β-adrenergic secretion. Immunolabelling of CFTR in human bronchial epithelial cells suggests that the effect is associated with increased CFTR protein expression. Our data support the view that resveratrol is beneficial for treating CF. The salivary secretion assay has a potential application to test efficacy of novel CF therapies.

  13. Carrageenan-Induced Colonic Inflammation Is Reduced in Bcl10 Null Mice and Increased in IL-10-Deficient Mice

    Directory of Open Access Journals (Sweden)

    Sumit Bhattacharyya

    2013-01-01

    Full Text Available The common food additive carrageenan is a known activator of inflammation in mammalian tissues and stimulates both the canonical and noncanonical pathways of NF-κB activation. Exposure to low concentrations of carrageenan (10 μg/mL in the water supply has produced glucose intolerance, insulin resistance, and impaired insulin signaling in C57BL/6 mice. B-cell leukemia/lymphoma 10 (Bcl10 is a mediator of inflammatory signals from Toll-like receptor (TLR 4 in myeloid and epithelial cells. Since the TLR4 signaling pathway is activated in diabetes and by carrageenan, we addressed systemic and intestinal inflammatory responses following carrageenan exposure in Bcl10 wild type, heterozygous, and null mice. Fecal calprotectin and circulating keratinocyte chemokine (KC, nuclear RelA and RelB, phospho(Thr559-NF-κB-inducing kinase (NIK, and phospho(Ser36-IκBα in the colonic epithelial cells were significantly less (P<0.001 in the carrageenan-treated Bcl10 null mice than in controls. IL-10-deficient mice exposed to carrageenan in a germ-free environment showed an increase in activation of the canonical pathway of NF-κB (RelA activation, but without increase in RelB or phospho-Bcl10, and exogenous IL-10 inhibited only the canonical pathway of NF-κB activation in cultured colonic cells. These findings demonstrate a Bcl10 requirement for maximum development of carrageenan-induced inflammation and lack of complete suppression by IL-10 of carrageenan-induced inflammation.

  14. Increased radiosensitivity and radiation-induced apoptosis in SRC-3 knockout mice

    International Nuclear Information System (INIS)

    Jin Jie; Wang Yu; Xu Yang; Chen Shilei; Wang Junping; Ran Xinze; Su Yongping; Wang Jin

    2014-01-01

    Steroid receptor coactivator-3 (SRC-3), a multifunctional transcriptional coactivator, plays an important role in regulation of cell apoptosis in chemoresistant cancer cells. However, its role in radiation-induced apoptosis in hematopoietic cells is still unclear. In this study, we used SRC-3 knockout (SRC-3 -/- ) mice to assess the role of SRC-3 in radiation-induced hematopoietic injury in vivo. After a range of doses of irradiation, SRC-3 -/- mice exhibited lower counts of peripheral blood cells and bone marrow (BM) mononuclear cells and excessive BM depression, which resulted in a significantly higher mortality compared with wildtype mice. Moreover, BM mononuclear cells obtained from SRC-3 -/- mice showed a remarkable increase in radiation-induced apoptosis. Collectively, our data demonstrate that SRC-3 plays a role in radiation-induced apoptosis of BM hematopoietic cells. Regulation of SRC-3 might influence the radiosensitivity of hematopoietic cells, which highlights a potential therapeutic target for radiation-induced hematopoietic injury. (author)

  15. The XX sex chromosome complement in mice is associated with increased spontaneous lupus compared with XY.

    Science.gov (United States)

    Sasidhar, Manda V; Itoh, Noriko; Gold, Stefan M; Lawson, Gregory W; Voskuhl, Rhonda R

    2012-08-01

    Many autoimmune diseases are characterised by a female predominance. This may be caused by sex hormones, sex chromosomes or both. This report uses a transgenic mouse model to investigate how sex chromosome complement, not confounded by differences in gonadal type, might contribute to lupus pathogenesis. Transgenic NZM2328 mice were created by deletion of the Sry gene from the Y chromosome, thereby separating genetic from gonadal sex. Survival, renal histopathology and markers of immune activation were compared in mice carrying the XX versus the XY(-) sex chromosome complement, with each genotype being ovary bearing. Mice with XX sex chromosome complement compared with XY(-) exhibited poorer survival rates and increased kidney pathology. Splenic T lymphocytes from XX mice demonstrated upregulated X-linked CD40 ligand expression and higher levels of activation markers ex vivo. Increased MMP, TGF and IL-13 production was found, while IL-2 was lower in XX mice. An accumulation of splenic follicular B cells and peritoneal marginal zone B cells was observed, coupled with upregulated costimulatory marker expression on B cells in XX mice. These data show that the XX sex chromosome complement, compared with XY(-), is associated with accelerated spontaneous lupus.

  16. Intermittent Hypoxia Increases the Severity of Bleomycin-Induced Lung Injury in Mice

    Directory of Open Access Journals (Sweden)

    Thomas Gille

    2018-01-01

    Full Text Available Background. Severe obstructive sleep apnea (OSA with chronic intermittent hypoxia (IH is common in idiopathic pulmonary fibrosis (IPF. Here, we evaluated the impact of IH on bleomycin- (BLM- induced pulmonary fibrosis in mice. Methods. C57BL/6J mice received intratracheal BLM or saline and were exposed to IH (40 cycles/hour; FiO2 nadir: 6%; 8 hours/day or intermittent air (IA. In the four experimental groups, we evaluated (i survival; (ii alveolar inflammation, pulmonary edema, lung oxidative stress, and antioxidant enzymes; (iii lung cell apoptosis; and (iv pulmonary fibrosis. Results. Survival at day 21 was lower in the BLM-IH group (p<0.05. Pulmonary fibrosis was more severe at day 21 in BLM-IH mice, as assessed by lung collagen content (p=0.02 and histology. At day 4, BLM-IH mice developed a more severe neutrophilic alveolitis, (p<0.001. Lung oxidative stress was observed, and superoxide dismutase and glutathione peroxidase expression was decreased in BLM-IH mice (p<0.05 versus BLM-IA group. At day 8, pulmonary edema was observed and lung cell apoptosis was increased in the BLM-IH group. Conclusion. These results show that exposure to chronic IH increases mortality, lung inflammation, and lung fibrosis in BLM-treated mice. This study raises the question of the worsening impact of severe OSA in IPF patients.

  17. Urinary Hepcidin Levels in Iron-Deficient and Iron-Supplemented Piglets Correlate with Hepcidin Hepatic mRNA and Serum Levels and with Body Iron Status.

    Directory of Open Access Journals (Sweden)

    Robert Staroń

    Full Text Available Among livestock, domestic pig (Sus scrofa is a species, in which iron metabolism has been most intensively examined during last decade. The obvious reason for studying the regulation of iron homeostasis especially in young pigs is neonatal iron deficiency anemia commonly occurring in these animals. Moreover, supplementation of essentially all commercially reared piglets with iron entails a need for monitoring the efficacy of this routine practice followed in the swine industry for several decades. Since the discovery of hepcidin many studies confirmed its role as key regulator of iron metabolism and pointed out the assessment of its concentrations in biological fluids as diagnostic tool for iron-related disorder. Here we demonstrate that urine hepcidin-25 levels measured by a combination of weak cation exchange chromatography and time-of-flight mass spectrometry (WCX-TOF MS are highly correlated with mRNA hepcidin expression in the liver and plasma hepcidin-25 concentrations in anemic and iron-supplemented 28-day old piglets. We also found a high correlation between urine hepcidin level and hepatic non-heme iron content. Our results show that similarly to previously described transgenic mouse models of iron disorders, young pigs constitute a convenient animal model to explore accuracy and relationship between indicators for assessing systemic iron status.

  18. Increased consumption of ethanol and sugar water in mice lacking the dopamine D2 long receptor.

    Science.gov (United States)

    Bulwa, Zachary B; Sharlin, Jordan A; Clark, Peter J; Bhattacharya, Tushar K; Kilby, Chessa N; Wang, Yanyan; Rhodes, Justin S

    2011-11-01

    Individual differences in dopamine D2 receptor (D2R) expression in the brain are thought to influence motivation and reinforcement for ethanol and other rewards. D2R exists in two isoforms, D2 long (D2LR) and D2 short (D2SR), produced by alternative splicing of the same gene. The relative contributions of D2LR versus D2SR to ethanol and sugar water drinking are not known. Genetic engineering was used to produce a line of knockout (KO) mice that lack D2LR and consequently have increased expression of D2SR. KO and wild-type (WT) mice of both sexes were tested for intake of 20% ethanol, 10% sugar water and plain tap water using established drinking-in-the-dark procedures. Mice were also tested for effects of the D2 antagonist eticlopride on intake of ethanol to determine whether KO responses were caused by lack of D2LR or overrepresentation of D2SR. Locomotor activity on running wheels and in cages without wheels was also measured for comparison. D2L KO mice drank significantly more ethanol than WT in both sexes. KO mice drank more sugar water than WT in females but not in males. Eticlopride dose dependently decreased ethanol intake in all groups except male KO. KO mice were less physically active than WT in cages with or without running wheels. Results suggest that overrepresentation of D2SR contributes to increased intake of ethanol in the KO mice. Decreasing wheel running and general levels of physical activity in the KO mice rules out the possibility that higher intake results from higher motor activity. Results extend the literature implicating altered expression of D2R in risk for addiction by delineating the contribution of individual D2R isoforms. These findings suggest that D2LR and D2SR play differential roles in consumption of alcohol and sugar rewards. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Western diet increases wheel running in mice selectively bred for high voluntary wheel running.

    Science.gov (United States)

    Meek, T H; Eisenmann, J C; Garland, T

    2010-06-01

    Mice from a long-term selective breeding experiment for high voluntary wheel running offer a unique model to examine the contributions of genetic and environmental factors in determining the aspects of behavior and metabolism relevant to body-weight regulation and obesity. Starting with generation 16 and continuing through to generation 52, mice from the four replicate high runner (HR) lines have run 2.5-3-fold more revolutions per day as compared with four non-selected control (C) lines, but the nature of this apparent selection limit is not understood. We hypothesized that it might involve the availability of dietary lipids. Wheel running, food consumption (Teklad Rodent Diet (W) 8604, 14% kJ from fat; or Harlan Teklad TD.88137 Western Diet (WD), 42% kJ from fat) and body mass were measured over 1-2-week intervals in 100 males for 2 months starting 3 days after weaning. WD was obesogenic for both HR and C, significantly increasing both body mass and retroperitoneal fat pad mass, the latter even when controlling statistically for wheel-running distance and caloric intake. The HR mice had significantly less fat than C mice, explainable statistically by their greater running distance. On adjusting for body mass, HR mice showed higher caloric intake than C mice, also explainable by their higher running. Accounting for body mass and running, WD initially caused increased caloric intake in both HR and C, but this effect was reversed during the last four weeks of the study. Western diet had little or no effect on wheel running in C mice, but increased revolutions per day by as much as 75% in HR mice, mainly through increased time spent running. The remarkable stimulation of wheel running by WD in HR mice may involve fuel usage during prolonged endurance exercise and/or direct behavioral effects on motivation. Their unique behavioral responses to WD may render HR mice an important model for understanding the control of voluntary activity levels.

  20. Increased Melanoma Growth and Metastasis Spreading in Mice Overexpressing Placenta Growth Factor

    Science.gov (United States)

    Marcellini, Marcella; De Luca, Naomi; Riccioni, Teresa; Ciucci, Alessandro; Orecchia, Angela; Lacal, Pedro Miguel; Ruffini, Federica; Pesce, Maurizio; Cianfarani, Francesca; Zambruno, Giovanna; Orlandi, Augusto; Failla, Cristina Maria

    2006-01-01

    Placenta growth factor (PlGF), a member of the vascular endothelial growth factor family, plays an important role in adult pathological angiogenesis. To further investigate PlGF functions in tumor growth and metastasis formation, we used transgenic mice overexpressing PlGF in the skin under the control of the keratin 14 promoter. These animals showed a hypervascularized phenotype of the skin and increased levels of circulating PlGF with respect to their wild-type littermates. Transgenic mice and controls were inoculated intradermally with B16-BL6 melanoma cells. The tumor growth rate was fivefold increased in transgenic animals compared to wild-type mice, in the presence of a similar percentage of tumor necrotic tissue. Tumor vessel area was increased in transgenic mice as compared to controls. Augmented mobilization of endothelial and hematopoietic stem cells from the bone marrow was observed in transgenic animals, possibly contributing to tumor vascularization. The number and size of pulmonary metastases were significantly higher in transgenic mice compared to wild-type littermates. Finally, PlGF promoted tumor cell invasion of the extracellular matrix and increased the activity of selected matrix metalloproteinases. These findings indicate that PlGF, in addition to enhancing tumor angiogenesis and favoring tumor growth, may directly influence melanoma dissemination. PMID:16877362

  1. A selective splicing variant of hepcidin mRNA in hepatocellular carcinoma cell lines

    International Nuclear Information System (INIS)

    Toki, Yasumichi; Sasaki, Katsunori; Tanaka, Hiroki; Yamamoto, Masayo; Hatayama, Mayumi; Ito, Satoshi; Ikuta, Katsuya; Shindo, Motohiro; Hasebe, Takumu; Nakajima, Shunsuke; Sawada, Koji; Fujiya, Mikihiro; Torimoto, Yoshihiro; Ohtake, Takaaki; Kohgo, Yutaka

    2016-01-01

    Hepcidin is a main regulator of iron metabolism, of which abnormal expression affects intestinal absorption and reticuloendothelial sequestration of iron by interacting with ferroportin. It is also noted that abnormal iron accumulation is one of the key factors to facilitate promotion and progression of cancer including hepatoma. By RT-PCR/agarose gel electrophoresis of hepcidin mRNA in a hepatocellular carcinoma cell line HLF, a smaller mRNA band was shown in addition to the wild-type hepcidin mRNA. From sequencing analysis, this additional band was a selective splicing variant of hepcidin mRNA lacking exon 2 of HAMP gene, producing the transcript that encodes truncated peptide lacking 20 amino acids at the middle of preprohepcidin. In the present study, we used the digital PCR, because such a small amount of variant mRNA was difficult to quantitate by the conventional RT-PCR amplification. Among seven hepatoma-derived cell lines, six cell lines have significant copy numbers of this variant mRNA, but not in one cell line. In the transient transfection analysis of variant-type hepcidin cDNA, truncated preprohepcidin has a different character comparing with native preprohepcidin: its product is insensitive to digestion, and secreted into the medium as a whole preprohepcidin form without maturation. Loss or reduction of function of HAMP gene by aberrantly splicing may be a suitable phenomenon to obtain the proliferating advantage of hepatoma cells. - Highlights: • An aberrant splicing variant of hepcidin mRNA lacking exon 2 of HAMP gene. • Absolute quantification of hepcidin mRNA by digital PCR amplification. • Hepatoma-derived cell lines have significant copies of variant-type hepcidin mRNA. • Truncated preprohepcidin is secreted from cells without posttranslational cleavage.

  2. A selective splicing variant of hepcidin mRNA in hepatocellular carcinoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Toki, Yasumichi [Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Hokkaido 078-8510 (Japan); Sasaki, Katsunori, E-mail: k-sasaki@asahikawa-med.ac.jp [Department of Gastrointestinal Immunology and Regenerative Medicine, Asahikawa Medical University, Hokkaido 078-8510 (Japan); Tanaka, Hiroki [Department of Legal Medicine, Asahikawa Medical University, Hokkaido 078-8510 (Japan); Yamamoto, Masayo; Hatayama, Mayumi; Ito, Satoshi; Ikuta, Katsuya; Shindo, Motohiro; Hasebe, Takumu; Nakajima, Shunsuke; Sawada, Koji; Fujiya, Mikihiro [Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Hokkaido 078-8510 (Japan); Torimoto, Yoshihiro [Oncology Center, Asahikawa Medical University Hospital, Hokkaido 078-8510 (Japan); Ohtake, Takaaki; Kohgo, Yutaka [Department of Gastroenterology, International University of Health and Welfare Hospital, Tochigi 329-2763 (Japan)

    2016-08-05

    Hepcidin is a main regulator of iron metabolism, of which abnormal expression affects intestinal absorption and reticuloendothelial sequestration of iron by interacting with ferroportin. It is also noted that abnormal iron accumulation is one of the key factors to facilitate promotion and progression of cancer including hepatoma. By RT-PCR/agarose gel electrophoresis of hepcidin mRNA in a hepatocellular carcinoma cell line HLF, a smaller mRNA band was shown in addition to the wild-type hepcidin mRNA. From sequencing analysis, this additional band was a selective splicing variant of hepcidin mRNA lacking exon 2 of HAMP gene, producing the transcript that encodes truncated peptide lacking 20 amino acids at the middle of preprohepcidin. In the present study, we used the digital PCR, because such a small amount of variant mRNA was difficult to quantitate by the conventional RT-PCR amplification. Among seven hepatoma-derived cell lines, six cell lines have significant copy numbers of this variant mRNA, but not in one cell line. In the transient transfection analysis of variant-type hepcidin cDNA, truncated preprohepcidin has a different character comparing with native preprohepcidin: its product is insensitive to digestion, and secreted into the medium as a whole preprohepcidin form without maturation. Loss or reduction of function of HAMP gene by aberrantly splicing may be a suitable phenomenon to obtain the proliferating advantage of hepatoma cells. - Highlights: • An aberrant splicing variant of hepcidin mRNA lacking exon 2 of HAMP gene. • Absolute quantification of hepcidin mRNA by digital PCR amplification. • Hepatoma-derived cell lines have significant copies of variant-type hepcidin mRNA. • Truncated preprohepcidin is secreted from cells without posttranslational cleavage.

  3. The dynamics of hepcidin-ferroportin internalization and consequences of a novel ferroportin disease mutation.

    Science.gov (United States)

    Wallace, Daniel F; McDonald, Cameron J; Ostini, Lesa; Iser, David; Tuckfield, Annabel; Subramaniam, V Nathan

    2017-10-01

    The hepcidin-ferroportin axis underlies the pathophysiology of many iron-associated disorders and is a key target for the development of therapeutics for treating iron-associated disorders. The aims of this study were to investigate the dynamics of hepcidin-mediated ferroportin internalization and the consequences of a novel disease-causing mutation on ferroportin function. Specific reagents for ferroportin are limited; we developed and characterized antibodies against the largest extracellular loop of ferroportin and developed a novel cell-based assay for studying hepcidin-ferroportin function. We show that hepcidin-mediated ferroportin internalization is a rapid process and could be induced using low concentrations of hepcidin. Targeted next-generation sequencing utilizing an iron metabolism gene panel developed in our group identified a novel ferroportin p.D84E variant in a patient with iron overload. Wild-type and mutant ferroportin constructs were generated, transfected into HEK293 cells and analysed using an all-in-one flow-cytometry-based assay to study the effects on hepcidin-mediated internalization and iron transport. Consistent with the classical phenotype of ferroportin disease, the p.D84E mutation results in an inability to transport iron and hepcidin insensitivity. These results validate a recently proposed 3D-structural model of ferroportin and highlight the significance of this variant in the structure and function of ferroportin. Our novel ferroportin antibody and assay will be valuable tools for investigating the regulation of hepcidin/ferroportin function and the development of novel approaches for the therapeutic modulation of iron homeostasis. © 2017 Wiley Periodicals, Inc.

  4. MKR mice have increased dynamic glucose disposal despite metabolic inflexibility, and hepatic and peripheral insulin insensitivity.

    Science.gov (United States)

    Vaitheesvaran, B; LeRoith, D; Kurland, I J

    2010-10-01

    Recent work has shown that there can be significant differences when glucose disposal is assessed for high-fat induced insulin resistance by static clamp methods vs dynamic assessment during a stable isotope i.p. glucose tolerance test. MKR mice, though lean, have severe insulin resistance and decreased muscle fatty acid oxidation. Our goal was to assess dynamic vs static glucose disposal in MKR mice, and to correlate glucose disposal and muscle-adipose-liver flux interactions with metabolic flexibility (indirect calorimetry) and muscle characteristics. Stable isotope flux phenotyping was performed using [6,6-(2)H(2)]glucose, [U-(13)C(6)]glucose and [2-(13)C]glycerol. Muscle triacylglycerol (TAG) and diacylglycerol (DAG) content was assessed by thin layer chromatography, and histological determination of fibre type and cytochrome c activity performed. Metabolic flexibility was assessed by indirect calorimetry. Indirect calorimetry showed that MKR mice used more glucose than FVB/N mice during fasting (respiratory exchange ratio [RER] 0.88 vs 0.77, respectively). Compared with FVB/N mice, MKR mice had faster dynamic glucose disposal, despite increased whole-muscle DAG and TAG, and similar hepatic glucose production with higher fasting insulin and unchanged basal glucose. Fed MKR muscle had more glycogen, and increased levels of GLUT1 and GLUT4 than FVB/N muscle. Histology indicated that MKR soleus had mildly decreased cytochrome c activity overall and more type II (glycolytic) fibres compared with that in FVB/N mice. MKR muscle adapts to using glucose, with more type II fibres present in red muscle. Fasting RER is elevated and glucose disposal during an i.p. glucose tolerance test is accelerated despite increased muscle DAG and TAG. Metabolic inflexibility may result from the compensatory use of fuel that can be best utilised for energy requirements; static vs dynamic glucose disposal assessments may measure complementary aspects of metabolic flexibility and insulin

  5. Cold hypersensitivity increases with age in mice with sickle cell disease

    Science.gov (United States)

    Zappia, Katherine J.; Garrison, Sheldon R.; Hillery, Cheryl A.; Stucky, Cheryl L.

    2014-01-01

    Sickle cell disease (SCD) is associated with acute vaso-occlusive crises that trigger painful episodes and frequently involves ongoing, chronic pain. Additionally, both humans and mice with SCD experience heighted cold sensitivity. However, studies have not addressed the mechanism(s) underlying the cold sensitization, nor its progression with age. Here we measured thermotaxis behavior in young and aged mice with severe SCD. Sickle mice had a marked increase in cold sensitivity measured by a cold preference test. Further, cold hypersensitivity worsened with advanced age. We assessed whether enhanced peripheral input contributes to the chronic cold pain behavior by recording from C fibers, many of which are cold-sensitive, in skin-nerve preparations. We observed that C fibers from sickle mice displayed a shift to warmer (more sensitive) cold-detection thresholds. To address mechanisms underlying the cold sensitization in primary afferent neurons, we quantified mRNA expression levels for ion channels thought to be involved in cold detection. These included the Transient Receptor Potential Melastatin 8 (Trpm8) and TRP Ankyrin 1 (Trpa1) channels, as well as the two-pore domain potassium channels, TREK-1 (Kcnk2), TREK-2 (Kcnk4), and TRAAK (Kcnk10). Surprisingly, transcript expression levels of all of these channels were comparable between sickle and control mice. We further examined transcript expression of 83 additional pain-related genes and found increased mRNA levels for endothelin 1 and tachykinin receptor 1. These factors may contribute to hypersensitivity in sickle mice at both the afferent and behavioral levels. Sensory neurons from sickle cell disease mice are sensitized to cold, mirroring behavioral observations, and have increased expression of endothelin 1 and tachykinin receptor 1. PMID:24953902

  6. Increased high-density lipoprotein cholesterol levels in mice with XX versus XY sex chromosomes.

    Science.gov (United States)

    Link, Jenny C; Chen, Xuqi; Prien, Christopher; Borja, Mark S; Hammerson, Bradley; Oda, Michael N; Arnold, Arthur P; Reue, Karen

    2015-08-01

    The molecular mechanisms underlying sex differences in dyslipidemia are poorly understood. We aimed to distinguish genetic and hormonal regulators of sex differences in plasma lipid levels. We assessed the role of gonadal hormones and sex chromosome complement on lipid levels using the four core genotypes mouse model (XX females, XX males, XY females, and XY males). In gonadally intact mice fed a chow diet, lipid levels were influenced by both male-female gonadal sex and XX-XY chromosome complement. Gonadectomy of adult mice revealed that the male-female differences are dependent on acute effects of gonadal hormones. In both intact and gonadectomized animals, XX mice had higher HDL cholesterol (HDL-C) levels than XY mice, regardless of male-female sex. Feeding a cholesterol-enriched diet produced distinct patterns of sex differences in lipid levels compared with a chow diet, revealing the interaction of gonadal and chromosomal sex with diet. Notably, under all dietary and gonadal conditions, HDL-C levels were higher in mice with 2 X chromosomes compared with mice with an X and Y chromosome. By generating mice with XX, XY, and XXY chromosome complements, we determined that the presence of 2 X chromosomes, and not the absence of the Y chromosome, influences HDL-C concentration. We demonstrate that having 2 X chromosomes versus an X and Y chromosome complement drives sex differences in HDL-C. It is conceivable that increased expression of genes escaping X-inactivation in XX mice regulates downstream processes to establish sexual dimorphism in plasma lipid levels. © 2015 American Heart Association, Inc.

  7. Susceptibility to hippocampal kindling seizures is increased in aging C57 black mice

    Directory of Open Access Journals (Sweden)

    Kurt R. Stover

    2017-12-01

    Full Text Available The incidence of seizures increases with old age. Stroke, dementia and brain tumors are recognized risk factors for new-onset seizures in the aging populations and the incidence of these conditions also increased with age. Whether aging is associated with higher seizure susceptibility in the absence of the above pathologies remains unclear. We used classic kindling to explore this issue as the kindling model is highly reproducible and allows close monitoring of electrographic and motor seizure activities in individual animals. We kindled male young and aging mice (C57BL/6 strain, 2–3 and 18–22 months of age via daily hippocampal CA3 stimulation and monitored seizure activity via video and electroencephalographic recordings. The aging mice needed fewer stimuli to evoke stage-5 motor seizures and exhibited longer hippocampal afterdischarges and more frequent hippocampal spikes relative to the young mice, but afterdischarge thresholds and cumulative afterdischarge durations to stage 5 motor seizures were not different between the two age groups. While hippocampal injury and structural alterations at cellular and micro-circuitry levels remain to be examined in the kindled mice, our present observations suggest that susceptibility to hippocampal CA3 kindling seizures is increased with aging in male C57 black mice.

  8. Mice deficient in transmembrane prostatic acid phosphatase display increased GABAergic transmission and neurological alterations.

    Directory of Open Access Journals (Sweden)

    Heidi O Nousiainen

    Full Text Available Prostatic acid phosphatase (PAP, the first diagnostic marker and present therapeutic target for prostate cancer, modulates nociception at the dorsal root ganglia (DRG, but its function in the central nervous system has remained unknown. We studied expression and function of TMPAP (the transmembrane isoform of PAP in the brain by utilizing mice deficient in TMPAP (PAP-/- mice. Here we report that TMPAP is expressed in a subpopulation of cerebral GABAergic neurons, and mice deficient in TMPAP show multiple behavioral and neurochemical features linked to hyperdopaminergic dysregulation and altered GABAergic transmission. In addition to increased anxiety, disturbed prepulse inhibition, increased synthesis of striatal dopamine, and augmented response to amphetamine, PAP-deficient mice have enlarged lateral ventricles, reduced diazepam-induced loss of righting reflex, and increased GABAergic tone in the hippocampus. TMPAP in the mouse brain is localized presynaptically, and colocalized with SNARE-associated protein snapin, a protein involved in synaptic vesicle docking and fusion, and PAP-deficient mice display altered subcellular distribution of snapin. We have previously shown TMPAP to reside in prostatic exosomes and we propose that TMPAP is involved in the control of GABAergic tone in the brain also through exocytosis, and that PAP deficiency produces a distinct neurological phenotype.

  9. BMP signaling modulates hepcidin expression in zebrafish embryos independent of hemojuvelin.

    Directory of Open Access Journals (Sweden)

    Yann Gibert

    2011-01-01

    Full Text Available Hemojuvelin (Hjv, a member of the repulsive-guidance molecule (RGM family, upregulates transcription of the iron regulatory hormone hepcidin by activating the bone morphogenetic protein (BMP signaling pathway in mammalian cells. Mammalian models have identified furin, neogenin, and matriptase-2 as modifiers of Hjv's function. Using the zebrafish model, we evaluated the effects of hjv and its interacting proteins on hepcidin expression during embryonic development. We found that hjv is strongly expressed in the notochord and somites of the zebrafish embryo and that morpholino knockdown of hjv impaired the development of these structures. Knockdown of hjv or other hjv-related genes, including zebrafish orthologs of furin or neogenin, however, failed to decrease hepcidin expression relative to liver size. In contrast, overexpression of bmp2b or knockdown of matriptase-2 enhanced the intensity and extent of hepcidin expression in zebrafish embryos, but this occurred in an hjv-independent manner. Furthermore, we demonstrated that zebrafish hjv can activate the human hepcidin promoter and enhance BMP responsive gene expression in vitro, but is expressed at low levels in the zebrafish embryonic liver. Taken together, these data support an alternative mechanism for hepcidin regulation during zebrafish embryonic development, which is independent of hjv.

  10. Serum hepcidin-25 may replace the ferritin index in the Thomas plot in assessing iron status in anemic patients.

    Science.gov (United States)

    Thomas, C; Kobold, U; Balan, S; Roeddiger, R; Thomas, L

    2011-04-01

    Biochemical markers of iron deficiency do not distinguish iron-deficient anemia (IDA) from the anemia of chronic disease (ACD) and the combined state of ACD/IDA. Serum hepcidin-25 might be a marker resolving this problem. We investigated the extent to which serum hepcidin-25 enables the differentiation of the states above in comparison with the ferritin index plot, the so-called Thomas plot [soluble transferrin receptor (sTfR)/log ferritin and the reticulocyte hemoglobin content (CHr)]. Serum hepcidin-25 was determined in 155 anemic patients who were classified as having latent iron deficiency (latent ID), IDA, ACD, or ACD/IDA using the ferritin index plot (Thomas plot). Hepcidin-25 was determined using an isotope-dilution micro-HPLC-tandem mass spectrometry method. The ability to discriminate among these states based on serum hepcidin-25 alone or in combination with the CHr was evaluated in a receiver operating characteristic curve analysis and a comparison with the recently established ferritin index plot. Serum hepcidin-25 correlated with ferritin and the ferritin index. Use of a hepcidin-25 cutoff level of ≤4 nmol/l allowed the differentiation of IDA from ACD and ACD/IDA. Furthermore, the discrimination of ACD/IDA from ACD required combination with CHr in a new plot (hepcidin-25 and the CHr). The hepcidin-25 plot and the ferritin index plot showed a good correspondence in the differentiation of iron states in patients with anemia. Patients with IDA can be differentiated from ACD and ACD/IDA but not ACD from ACD/IDA based on hepcidin-25 alone. The combination of hepcidin-25 with CHr in the hepcidin-25 plot was useful for the differentiation of the states above. © 2010 Blackwell Publishing Ltd.

  11. Overexpression of BID in thyroids of transgenic mice increases sensitivity to iodine-induced autoimmune thyroiditis

    Science.gov (United States)

    2014-01-01

    Background BID functions as a bridge molecule between death-receptor and mitochondrial related apoptotic pathways to amplify apoptotic signaling. Our previous studies have demonstrated a substantial increase in BID expression in primary normal thyroid epithelia cells treated with inflammatory cytokines, including the combination of IFNγ and IL-1β or IFNγ and TNFα. The aim of this study was to determine whether an increase in BID expression in thyroid can induce autoimmune thyroiditis. Methods A transgenic mouse line that expresses human BID in thyroid cells was established by fusing a mouse thyroglobulin (Tg) promoter upstream of human BID (Tg-BID). We tested whether the increased expression of pro-apoptotic BID in thyroid would induce autoimmune thyroiditis, both in the presence and absence of 0.3% iodine water. Results Our data show that Tg-BID mice in a CBA/J (H-2 k) background do not spontaneously develop autoimmune thyroiditis for over a year. However, upon ingestion of iodine in the drinking water, autoimmune thyroiditis does develop in Tg-BID transgenic mice, as shown by a significant increase in anti-Tg antibody and mononuclear cell infiltration in the thyroid glands in 30% of mice tested. Serum T4 levels, however, were similar between iodine-treated Tg-BID transgenic mice and the wild type mice. Conclusions Our data demonstrate that increased thyroid expression of BID facilitates the development of autoimmune thyroiditis induced by iodine uptake. However, the overexpression of BID itself is not sufficient to initiate thyroiditis in CBA/J (H-2 k) mice. PMID:24957380

  12. Deficiency of C5L2 increases macrophage infiltration and alters adipose tissue function in mice.

    Directory of Open Access Journals (Sweden)

    Danny Gauvreau

    Full Text Available BACKGROUND: Obesity is considered as a systemic chronic low grade inflammation characterized by increased serum pro-inflammatory proteins and accumulation of macrophages within white adipose tissue (WAT of obese patients. C5L2, a 7-transmembrane receptor, serves a dual function, binding the lipogenic hormone acylation stimulating protein (ASP, and C5a, involved in innate immunity. AIM: We evaluated the impact of C5L2 on macrophage infiltration in WAT of wildtype (Ctl and C5L2 knock-out (C5L2(-/- mice over 6, 12 and 24 weeks on a chow diet and moderate diet-induced obesity (DIO conditions. RESULTS: In Ctl mice, WAT C5L2 and C5a receptor mRNA increased (up to 10-fold both over time and with DIO. By contrast, in C5L2(-/-, there was no change in C5aR in WAT. C5L2(-/- mice displayed higher macrophage content in WAT, varying by time, fat depot and diet, associated with altered systemic and WAT cytokine patterns compared to Ctl mice. However, in all cases, the M1 (pro- vs M2 (anti-inflammatory macrophage proportion was unchanged but C5L2(-/- adipose tissue secretome appeared to be more chemoattractant. Moreover, C5L2(-/- mice have increased food intake, increased WAT, and altered WAT lipid gene expression, which is reflected systemically. Furthermore, C5L2(-/- mice have altered glucose/insulin metabolism, adiponectin and insulin signalling gene expression in WAT, which could contribute to development of insulin resistance. CONCLUSION: Disruption of C5L2 increases macrophage presence in WAT, contributing to obesity-associated pathologies, and further supports a dual role of complement in WAT. Understanding this effect of the complement system pathway could contribute to targeting treatment of obesity and its comorbidities.

  13. Prohormone convertase 2 activity is increased in the hippocampus of Wfs1 knockout mice

    Directory of Open Access Journals (Sweden)

    Karin eTein

    2015-08-01

    Full Text Available BackgroundMutations in WFS1 gene cause Wolfram syndrome, which is a rare autosomal recessive disorder, characterized by diabetes insipidus, diabetes mellitus, optic nerve atrophy and deafness (DIDMOAD. The WFS1 gene product wolframin is located in the endoplasmic reticulum. Mice lacking this gene exhibit disturbances in the processing and secretion of peptides, such as vasopressin and insulin. In the brain, high levels of the wolframin protein have been observed in the hippocampus, amygdala and limbic structures. The aim of this study was to investigate the effect of Wfs1 knockout on peptide processing in mouse hippocampus. A peptidomic approach was used to characterize individual peptides in the hippocampus of wild-type and Wfs1 knockout mice. ResultsWe identified 126 peptides in hippocampal extracts and the levels of 10 peptides differed between Wfs1 KO and wild-type mice at P<0.05. The peptide with the largest alteration was little-LEN, which level was 25 times higher in the hippocampus of Wfs1 KO mice compared to wild-type mice. Processing (cleavage of little-LEN from the Pcsk1n gene product proSAAS involves prohormone convertase 2 (PC2. Thus, PC2 activity was measured in extracts prepared from the hippocampus of Wfs1 knockout mice. The activity of PC2 in Wfs1 mutant mice was significantly higher (149.9±2.3%, p<0.0001, n=8 than in wild-type mice (100.0±7.0%, n=8. However, Western blot analysis showed that protein levels of 7B2, proPC2 and PC2 were same in both groups, and so were gene expression levels.ConclusionsProcessing of proSAAS is altered in the hippocampus of Wfs1-KO mice, which is caused by increased activity of PC2. Increased activity of PC2 in Wfs1 knockout mice is not caused by alteration in the levels of PC2 protein. Our results suggest a functional link between Wfs1 and PC2. Thus, the detailed molecular mechanism of the role of Wfs1 in the regulation of PC2 activity needs further investigation.

  14. Voluntary exercise and increased food intake after mild chronic stress improve social avoidance behavior in mice.

    Science.gov (United States)

    Otsuka, Airi; Shiuchi, Tetsuya; Chikahisa, Sachiko; Shimizu, Noriyuki; Séi, Hiroyoshi

    2015-11-01

    It is well-established that exercise can influence psychological conditions, cognitive function, and energy metabolism in peripheral tissues including the skeletal muscle. However, it is not clear whether exercise can influence social interaction with others and alleviate defeat stress. This study investigated the effect of voluntary wheel running on impaired social interaction induced by chronic social defeat stress (SDS) using the resident-intruder social defeat model. Mice were divided into three groups: control, stress alone, and stress+exercise. SDS was performed by exposing C57BL/6 mice to retired ICR mice for 2.5 min. The C57BL/6 mice were continuously defeated by these resident (aggressor) mice and, following 5 days of SDS, experienced 2 days of rest with no SDS. Mice in the stress+exercise group were allowed to voluntarily run on a wheel for 2h after every SDS exposure. Two weeks later, compared to the control group, the stress group showed a higher ratio of time spent in the corner zone of a social interaction paradigm even though SDS did not elicit depressive- and anxiety-like behaviors. We also observed that voluntary exercise, which did not affect muscle weight and gene expression, decreased social avoidance behavior of stressed mice without clear changes in brain monoamine levels. Interestingly, food intake in the stress+exercise group was the greatest among the three groups. To test the effect of the exercise-induced increase in food intake on social behavior, we set up a pair-fed group where food intake was restricted. We then compared these mice to mice in the stress alone group. We found that the ratio of time spent in the corner zone of the social interaction test was not different between ad libitum- and pair-fed groups, although pair-fed mice spent more time in the corner zone when an aggressor mouse was present than when it was absent. In addition, pair-feeding did not show exercise-induced reductions of adrenal gland weight and enhanced the

  15. Low dose diagnostic radiation does not increase cancer risk in cancer prone mice

    Energy Technology Data Exchange (ETDEWEB)

    Boreham, D., E-mail: dboreham@nosm.ca [Northern Ontario School of Medicine, ON (Canada); Phan, N., E-mail: nghiphan13@yahoo.com [Univ. of Ottawa, Ottawa, ON (Canada); Lemon, J., E-mail: lemonja@mcmaster.ca [McMaster Univ., Hamilton, ON (Canada)

    2014-07-01

    The increased exposure of patients to low dose diagnostic ionizing radiation has created concern that these procedures will result in greater risk of carcinogenesis. However, there is substantial evidence that shows in many cases that low dose exposure has the opposite effect. We have investigated whether CT scans can modify mechanisms associated with carcinogenesis in cancer-prone mice. Cancer was induced in Trp53+/- mice with an acute high dose whole-body 4 Gy γ-radiation exposure. Four weeks following the cancer-inducing dose, weekly whole-body CT scans (10 mGy/scan, 75 kVp X-rays) were given for ten consecutive weeks adding an additional radiation burden of 0.1 Gy. Short-term biological responses and subsequent lifetime cancer risk were investigated. Five days following the last CT scan, there were no detectable differences in the spontaneous levels of DNA damage in blood cells (reticulocytes). In fact, CT scanned mice had significantly lower constitutive levels of oxidative DNA damage and cell death (apoptosis), compared to non-CT scanned mice. This shows that multiple low dose radiation exposures modified the radio response and indicates protective processes were induced in mice. In mice treated with the multiple CT scans following the high cancer-inducing 4 Gy dose, tumour latency was increased, significantly prolonging lifespan. We conclude that repeated CT scans can reduce the cancer risk of a prior high-dose radiation exposure, and delay the progression of specific types of radiation-induced cancers in Trp53+/-mice. This research shows for the first time that low dose exposure long after cancer initiation events alter risk and reduce cancer morbidity. Cancer induction following low doses does not follow a linear non-threshold model of risk and this model should not be used to extrapolate risk to humans following low dose exposure to ionizing radiation. (author)

  16. 2-heptyl-formononetin increases cholesterol and induces hepatic steatosis in mice

    DEFF Research Database (Denmark)

    Andersen, Charlotte; Schjoldager, Janne Gram; Tortzen, Christian

    2013-01-01

    Consumption of isoflavones may prevent adiposity, hepatic steatosis, and dyslipidaemia. However, studies in the area are few and primarily with genistein. This study investigated the effects of formononetin and its synthetic analogue, 2-heptyl-formononetin (C7F), on lipid and cholesterol metabolism...... in C57BL/6J mice. The mice were fed a cholesterol-enriched diet for five weeks to induce hypercholesterolemia and were then fed either the cholesterol-enriched diet or the cholesterol-enriched diet-supplemented formononetin or C7F for three weeks. Body weight and composition, glucose homeostasis......, and plasma lipids were compared. In another experiment, mice were fed the above diets for five weeks, and hepatic triglyceride accumulation and gene expression and histology of adipose tissue and liver were examined. Supplementation with C7F increased plasma HDL-cholesterol thereby increasing the plasma...

  17. Increased numbers of spleen colony forming units in B cell deficient CBA/N mice

    International Nuclear Information System (INIS)

    Wiktor-Jedrzejczak, W.; Krupienicz, A.; Scher, I.

    1986-01-01

    The formation of exogenous and endogenous spleen colonies was studied in immune-defective mice expressing the CBA/N X-linked xid gene. Bone marrow and spleen cells of immune deficient mice formed increased numbers of eight-day exogenous spleen colonies when transferred to either normal or B cell deficient lethally irradiated recipients. Moreover, defective mice showed increased formation of five-day endogenous spleen colonies (derived from transient endogenous colony forming units; T-CFU) and of ten-day endogenous spleen colonies (derived from CFU-S). Among the possible mechanisms responsible for the observed effects, the most probable appears the one in which decreased numbers of B cell precursors stimulate stem cell pools through a feedback mechanism. (orig.) [de

  18. Selection for increased voluntary wheel-running affects behavior and brain monoamines in mice

    Science.gov (United States)

    Waters, R.Parrish; Pringle, R.B.; Forster, G.L.; Renner, K.J.; Malisch, J.L.; Garland, T.; Swallow, J.G.

    2013-01-01

    Selective-breeding of house mice for increased voluntary wheel-running has resulted in multiple physiological and behavioral changes. Characterizing these differences may lead to experimental models that can elucidate factors involved in human diseases and disorders associated with physical inactivity, or potentially treated by physical activity, such as diabetes, obesity, and depression. Herein, we present ethological data for adult males from a line of mice that has been selectively bred for high levels of voluntary wheel-running and from a non-selected control line, housed with or without wheels. Additionally, we present concentrations of central monoamines in limbic, striatal, and midbrain regions. We monitored wheel-running for 8 weeks, and observed home-cage behavior during the last 5 weeks of the study. Mice from the selected line accumulated more revolutions per day than controls due to increased speed and duration of running. Selected mice exhibited more active behaviors than controls, regardless of wheel access, and exhibited less inactivity and grooming than controls. Selective-breeding also influenced the longitudinal patterns of behavior. We found statistically significant differences in monoamine concentrations and associated metabolites in brain regions that influence exercise and motivational state. These results suggest underlying neurochemical differences between selected and control lines that may influence the observed differences in behavior. Our results bolster the argument that selected mice can provide a useful model of human psychological and physiological diseases and disorders. PMID:23352668

  19. Chronic mild stress increases alcohol intake in mice with low dopamine D2 receptor levels.

    Science.gov (United States)

    Delis, Foteini; Thanos, Panayotis K; Rombola, Christina; Rosko, Lauren; Grandy, David; Wang, Gene-Jack; Volkow, Nora D

    2013-02-01

    Alcohol use disorders emerge from a complex interaction between environmental and genetic factors. Stress and dopamine D2 receptor levels (DRD2) have been shown to play a central role in alcoholism. To better understand the interactions between DRD2 and stress in ethanol intake behavior, we subjected Drd2 wild-type (+/+), heterozygous (+/-), and knockout (-/-) mice to 4 weeks of chronic mild stress (CMS) and to an ethanol two-bottle choice during CMS weeks 2-4. Prior to and at the end of the experiment, the animals were tested in the forced swim and open field tests. We measured ethanol intake and preference, immobility in the force swim test, and activity in the open field. We show that under no CMS, Drd2+/- and Drd2-/- mice had lower ethanol intake and preference compared with Drd2+/+. Exposure to CMS decreased ethanol intake and preference in Drd2+/+ and increased them in Drd2+/- and Drd2-/- mice. At baseline, Drd2+/- and Drd2-/- mice had significantly lower activity in the open field than Drd2+/+, whereas no genotype differences were observed in the forced swim test. Exposure to CMS increased immobility during the forced swim test in Drd2+/- mice, but not in Drd2+/+ or Drd2-/- mice, and ethanol intake reversed this behavior. No changes were observed in open field test measures. These findings suggest that in the presence of a stressful environment, low DRD2 levels are associated with increased ethanol intake and preference and that under this condition, increased ethanol consumption could be used as a strategy to alleviate negative mood. (PsycINFO Database Record (c) 2013 APA, all rights reserved).

  20. Respiratory syncytial virus increases lung cellular bioenergetics in neonatal C57BL/6 mice

    International Nuclear Information System (INIS)

    Alsuwaidi, Ahmed R.; Albawardi, Alia; Almarzooqi, Saeeda; Benedict, Sheela; Othman, Aws R.; Hartwig, Stacey M.; Varga, Steven M.; Souid, Abdul-Kader

    2014-01-01

    We have previously reported that lung cellular bioenergetics (cellular respiration and ATP) increased in 4–10 week-old BALB/c mice infected with respiratory syncytial virus (RSV). This study examined the kinetics and changes in cellular bioenergetics in ≤2-week-old C57BL/6 mice following RSV infection. Mice (5–14 days old) were inoculated intranasally with RSV and the lungs were examined on days 1–10 post-infection. Histopathology and electron microscopy revealed preserved pneumocyte architectures and organelles. Increased lung cellular bioenergetics was noted from days 1–10 post-infection. Cellular GSH remained unchanged. These results indicate that the increased lung cellular respiration (measured by mitochondrial O 2 consumption) and ATP following RSV infection is independent of either age or genetic background of the host. - Highlights: • RSV infection increases lung cellular respiration and ATP in neonatal C57BL/6 mice. • Increased lung cellular bioenergetics is a biomarker of RSV infection. • Lung cellular glutathione remains unchanged in RSV infection

  1. Respiratory syncytial virus increases lung cellular bioenergetics in neonatal C57BL/6 mice

    Energy Technology Data Exchange (ETDEWEB)

    Alsuwaidi, Ahmed R., E-mail: alsuwaidia@uaeu.ac.ae [Departments of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain (United Arab Emirates); Albawardi, Alia, E-mail: alia.albawardi@uaeu.ac.ae [Departments of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain (United Arab Emirates); Almarzooqi, Saeeda, E-mail: saeeda.almarzooqi@uaeu.ac.ae [Departments of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain (United Arab Emirates); Benedict, Sheela, E-mail: sheela.benedict@uaeu.ac.ae [Departments of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain (United Arab Emirates); Othman, Aws R., E-mail: aws.rashad@uaeu.ac.ae [Departments of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain (United Arab Emirates); Hartwig, Stacey M., E-mail: stacey-hartwig@uiowa.edu [Department of Microbiology, Department of Pathology and Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242 (United States); Varga, Steven M., E-mail: steven-varga@uiowa.edu [Department of Microbiology, Department of Pathology and Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242 (United States); Souid, Abdul-Kader, E-mail: asouid@uaeu.ac.ae [Departments of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain (United Arab Emirates)

    2014-04-15

    We have previously reported that lung cellular bioenergetics (cellular respiration and ATP) increased in 4–10 week-old BALB/c mice infected with respiratory syncytial virus (RSV). This study examined the kinetics and changes in cellular bioenergetics in ≤2-week-old C57BL/6 mice following RSV infection. Mice (5–14 days old) were inoculated intranasally with RSV and the lungs were examined on days 1–10 post-infection. Histopathology and electron microscopy revealed preserved pneumocyte architectures and organelles. Increased lung cellular bioenergetics was noted from days 1–10 post-infection. Cellular GSH remained unchanged. These results indicate that the increased lung cellular respiration (measured by mitochondrial O{sub 2} consumption) and ATP following RSV infection is independent of either age or genetic background of the host. - Highlights: • RSV infection increases lung cellular respiration and ATP in neonatal C57BL/6 mice. • Increased lung cellular bioenergetics is a biomarker of RSV infection. • Lung cellular glutathione remains unchanged in RSV infection.

  2. Increased Oocyte Degeneration and Follicular Atresia during the Estrous Cycle in Anti-Müllerian Hormone Null Mice

    NARCIS (Netherlands)

    Visser, Jenny A.; Durlinger, Alexandra L.L.; Peters, Isolde J.J.; Heuvel, Edwin R. van den; Rose, Ursula M.; Kramer, Piet; Jong, Frank H. de; Themmen, Axel P.N.

    2007-01-01

    Anti-Müllerian hormone (AMH) plays an important role in folliculogenesis. AMH null mice display an increased recruitment of primordial follicles. Nevertheless, these mice do not have proportionally more preovulatory follicles. Therefore, AMH null mice provide an interesting genetic model to study

  3. Mice with GFAP-targeted loss of neurofibromin demonstrate increased axonal MET expression with aging.

    Science.gov (United States)

    Su, Weiping; Xing, Rubing; Guha, Abhijit; Gutmann, David H; Sherman, Larry S

    2007-05-01

    Neurofibromatosis 1 (NF1) is a common genetic disease that predisposes patients to peripheral nerve tumors and central nervous system (CNS) abnormalities including low-grade astrocytomas and cognitive disabilities. Using mice with glial fibrillary acidic protein (GFAP)-targeted Nf1 loss (Nf1(GFAP)CKO mice), we found that Nf1(-/-) astrocytes proliferate faster and are more invasive than wild-type astrocytes. In light of our previous finding that aberrant expression of the MET receptor tyrosine kinase contributes to the invasiveness of human NF1-associated malignant peripheral nerve sheath tumors, we sought to determine whether MET expression is aberrant in the brains of Nf1 mutant mice. We found that Nf1(-/-) astrocytes express slightly more MET than wild-type cells in vitro, but do not express elevated MET in situ. However, fiber tracts containing myelinated axons in the hippocampus, midbrain, cerebral cortex, and cerebellum express higher than normal levels of MET in older (> or =6 months) Nf1(GFAP)CKO mice. Both Nf1(GFAP)CKO and wild-type astrocytes induced MET expression in neurites of wild-type hippocampal neurons in vitro, suggesting that astrocyte-derived signals may induce MET in Nf1 mutant mice. Because the Nf1 gene product functions as a RAS GTPase, we examined MET expression in the brains of mice with GFAP-targeted constitutively active forms of RAS. MET was elevated in axonal fiber tracts in mice with active K-RAS but not H-RAS. Collectively, these data suggest that loss of Nf1 in either astrocytes or GFAP(+) neural progenitor cells results in increased axonal MET expression, which may contribute to the CNS abnormalities in children and adults with NF1. (c) 2007 Wiley-Liss, Inc.

  4. Increased brain damage after ischaemic stroke in mice lacking the chemokine receptor CCR5

    Science.gov (United States)

    Sorce, S; Bonnefont, J; Julien, S; Marq-Lin, N; Rodriguez, I; Dubois-Dauphin, M; Krause, KH

    2010-01-01

    Background and purpose: The chemokine receptor CCR5 is well known for its function in immune cells; however, it is also expressed in the brain, where its specific role remains to be elucidated. Because genetic factors may influence the risk of developing cerebral ischaemia or affect its clinical outcome, we have analysed the role of CCR5 in experimental stroke. Experimental approach: Permanent cerebral ischaemia was performed by occlusion of the middle cerebral artery in wild-type and CCR5-deficient mice. Locomotor behaviour, infarct size and histochemical alterations were analysed at different time points after occlusion. Key results: The cerebral vasculature was comparable in wild-type and CCR5-deficient mice. However, the size of the infarct and the motor deficits after occlusion were markedly increased in CCR5-deficient mice as compared with wild type. No differences between wild-type and CCR5-deficient mice were elicited by occlusion with respect to the morphology and abundance of astrocytes and microglia. Seven days after occlusion the majority of CCR5-deficient mice displayed neutrophil invasion in the infarct region, which was not observed in wild type. As compared with wild type, the infarct regions of CCR5-deficient mice were characterized by increased neuronal death. Conclusions and implications: Lack of CCR5 increased the severity of brain injury following occlusion of the middle cerebral artery. This is of particular interest with respect to the relatively frequent occurrence of CCR5 deficiency in the human population (1–2% of the Caucasian population) and the advent of CCR5 inhibitors as novel drugs. PMID:20423342

  5. Miraxanthin-V, Liriodenin and Chitranone are Hepcidin Antagonist In silico for Iron Deficiency Anemia

    Science.gov (United States)

    Yotriana, S.; Suselo, YH; Muthmainah; Indarto, D.

    2018-03-01

    Anemia is one of the greatest nutrition problem in the world that is commonly found in children, pregnant women and reproductive women. This disorder is predominantly caused by iron deficiency. Hepcidin, a hepatic hormone, regulates iron metabolism and high serum levels of this hormone are detected in patients with iron deficiency anemia (IDA). Anticalin is a sintetic compound which is able to interacts with hepcidin leading to inhibition of ferroportin-hepcidin binding complexes but its therapeutic effects are still under investigation. Indonesia has various herbal plants which are potentially developed to treat some human diseases. Therefore, the purpose of this study was to identify phytochemicals derived from Indonesian plants that is able to inhibit hepcidin-ferroportin interaction. A bioinformatics study with molecular docking method was used in this study. Three-dimensional structures of human hepcidin and anticalin were obtained from the Protein Data Bank (ID: 1M4F and 4QAE respectively). Because their molecular size was big, each molecule was cut into 2 parts of its binding sites. All phytochemicals structures were obtained from HerbalDB and PubChem NCBI database. Truncated anticalin/phytochemicals were molecularly docked with truncated hepcidin by using AutoDock Vina 1.1.2. and their interactions were visualized using PyMol 1.3. Truncated Anticalin had -4.6 and -4.2 kcal/mol binding affinity to truncated human hepcidin. Truncated anticalin 1 was bound to Cys13, Cys14, Arg16 and Ser17 residues in truncated hepcidin 1 while truncated anticalin 2 was at Cy23 and Lys24 residues in truncated hepcidin 2. Miraxanthine-V, Liriodenin and Chitranone had lower binding affinity (-4.8±0.77, -4.7±0.33 and -5.01±0.30 kcal/mol respectively) than that of anticalin and occupied binding sites as same as anticalin did. There are three phytochemicals that potentially become hepcidin antagonists in silico. In vitro assays are required for verification of the antagonist

  6. Increased Rrm2 gene dosage reduces fragile site breakage and prolongs survival of ATR mutant mice

    DEFF Research Database (Denmark)

    Lopez-Contreras, Andres J; Specks, Julia; Barlow, Jacqueline H

    2015-01-01

    In Saccharomyces cerevisiae, absence of the checkpoint kinase Mec1 (ATR) is viable upon mutations that increase the activity of the ribonucleotide reductase (RNR) complex. Whether this pathway is conserved in mammals remains unknown. Here we show that cells from mice carrying extra alleles of the...

  7. Multiple alterations of platelet functions dominated by increased secretion in mice lacking Cdc42 in platelets

    DEFF Research Database (Denmark)

    Pleines, Irina; Eckly, Anita; Elvers, Margitta

    2010-01-01

    formation and exocytosis in various cell types, but its exact function in platelets is not established. Here, we show that the megakaryocyte/platelet-specific loss of Cdc42 leads to mild thrombocytopenia and a small increase in platelet size in mice. Unexpectedly, Cdc42-deficient platelets were able to form...

  8. Increased susceptibility to diet-induced obesity in GPRC6A receptor knockout mice

    DEFF Research Database (Denmark)

    Clemmensen, Christoffer; Smajilovic, Sanela; Madsen, Andreas N

    2013-01-01

    locomotor activity. Moreover, diet-induced obese Gprc6a KO mice had increased circulating insulin and leptin levels relative to WT animals, thereby demonstrating that endocrine abnormalities associate with the reported disturbances in energy balance. The phenotype was further accompanied by disruptions...... complications is still elusive. In the present study, we investigated the impact of GPRC6A deficiency in a murine model of diet-induced obesity (DIO). Male Gprc6a knockout (KO) mice and WT littermates were subjected to a high-fat diet (HFD) for 25 weeks and exposed to comprehensive metabolic phenotyping...

  9. Dietary Chitosan Supplementation Increases Microbial Diversity and Attenuates the Severity of Citrobacter rodentium Infection in Mice

    Directory of Open Access Journals (Sweden)

    Guiping Guan

    2016-01-01

    Full Text Available C57BL/6 mice were tested in order to investigate the effects of dietary chitosan (COS supplements on intestinal microflora and resistance to Citrobacter rodentium infection. The findings reveal that, after consuming a 300 mg/kg COS diet for 14 days, microflora became more diverse as a result of the supplement. Mice receiving COS exhibited an increase in the percentage of Bacteroidetes phylum and a decrease in the percentage of Firmicutes phylum. After Citrobacter rodentium infection, the histopathology scores indicated that COS feeding resulted in less severe colitis. IL-6 and TNF-α were significantly lower in colon from COS-feeding mice than those in the control group. Furthermore, mice in COS group were also found to experience inhibited activation of nuclear factor-kappa B (NF-κB in the colonic tissue. Overall, the findings revealed that adding 300 mg/kg COS to the diet changed the composition of the intestinal microflora of mice, resulting in suppressed NF-κB activation and less production of TNF-α and IL-6; and these changes led to better control of inflammation and resolution of infection with C. rodentium.

  10. Role of Hypothalamic Melanocortin System in Adaptation of Food Intake to Food Protein Increase in Mice

    Science.gov (United States)

    Pillot, Bruno; Duraffourd, Céline; Bégeot, Martine; Joly, Aurélie; Luquet, Serge; Houberdon, Isabelle; Naville, Danielle; Vigier, Michèle; Gautier-Stein, Amandine; Magnan, Christophe; Mithieux, Gilles

    2011-01-01

    The hypothalamic melanocortin system—the melanocortin receptor of type 4 (MC4R) and its ligands: α-melanin-stimulating hormone (α-MSH, agonist, inducing hypophagia), and agouti-related protein (AgRP, antagonist, inducing hyperphagia)—is considered to play a central role in the control of food intake. We tested its implication in the mediation of the hunger-curbing effects of protein-enriched diets (PED) in mice. Whereas there was a 20% decrease in food intake in mice fed on the PED, compared to mice fed on an isocaloric starch-enriched diet, there was a paradoxical decrease in expression of the hypothalamic proopiomelanocortin gene, precursor of α-MSH, and increase in expression of the gene encoding AgRP. The hypophagia effect of PED took place in mice with invalidation of either MC4R or POMC, and was even strengthened in mice with ablation of the AgRP-expressing neurons. These data strongly suggest that the hypothalamic melanocortin system does not mediate the hunger-curbing effects induced by changes in the macronutrient composition of food. Rather, the role of this system might be to defend the body against the variations in food intake generated by the nutritional environment. PMID:21544212

  11. Role of hypothalamic melanocortin system in adaptation of food intake to food protein increase in mice.

    Directory of Open Access Journals (Sweden)

    Bruno Pillot

    Full Text Available The hypothalamic melanocortin system--the melanocortin receptor of type 4 (MC4R and its ligands: α-melanin-stimulating hormone (α-MSH, agonist, inducing hypophagia, and agouti-related protein (AgRP, antagonist, inducing hyperphagia--is considered to play a central role in the control of food intake. We tested its implication in the mediation of the hunger-curbing effects of protein-enriched diets (PED in mice. Whereas there was a 20% decrease in food intake in mice fed on the PED, compared to mice fed on an isocaloric starch-enriched diet, there was a paradoxical decrease in expression of the hypothalamic proopiomelanocortin gene, precursor of α-MSH, and increase in expression of the gene encoding AgRP. The hypophagia effect of PED took place in mice with invalidation of either MC4R or POMC, and was even strengthened in mice with ablation of the AgRP-expressing neurons. These data strongly suggest that the hypothalamic melanocortin system does not mediate the hunger-curbing effects induced by changes in the macronutrient composition of food. Rather, the role of this system might be to defend the body against the variations in food intake generated by the nutritional environment.

  12. Sensitivity to neurotoxic stress is not increased in progranulin-deficient mice.

    Science.gov (United States)

    Petkau, Terri L; Zhu, Shanshan; Lu, Ge; Fernando, Sarah; Cynader, Max; Leavitt, Blair R

    2013-11-01

    Loss-of-function mutations in the progranulin (GRN) gene are a common cause of autosomal dominant frontotemporal lobar degeneration, a fatal and progressive neurodegenerative disorder common in people less than 65 years of age. In the brain, progranulin is expressed in multiple regions at varying levels, and has been hypothesized to play a neuroprotective or neurotrophic role. Four neurotoxic agents were injected in vivo into constitutive progranulin knockout (Grn(-/-)) mice and their wild-type (Grn(+/+)) counterparts to assess neuronal sensitivity to toxic stress. Administration of 3-nitropropionic acid, quinolinic acid, kainic acid, and pilocarpine induced robust and measurable neuronal cell death in affected brain regions, but no differential cell death was observed between Grn(+/+) and Grn(-/-) mice. Thus, constitutive progranulin knockout mice do not have increased sensitivity to neuronal cell death induced by the acute chemical models of neuronal injury used in this study. Copyright © 2013. Published by Elsevier Inc.

  13. Mice selectively bred for high voluntary wheel-running behavior conserve more fat despite increased exercise.

    Science.gov (United States)

    Hiramatsu, Layla; Garland, Theodore

    2018-04-20

    Physical activity is an important component of energy expenditure, and acute changes in activity can lead to energy imbalances that affect body composition, even under ad libitum food availability. One example of acute increases in physical activity is four replicate, selectively-bred High Runner (HR) lines of mice that voluntarily run ~3-fold more wheel revolutions per day over 6-day trials and are leaner, as compared with four non-selected control (C) lines. We expected that voluntary exercise would increase food consumption, build lean mass, and reduce fat mass, but that these effects would likely differ between HR and C lines or between the sexes. We compared wheel running, cage activity, food consumption, and body composition between HR and C lines for young adults of both sexes, and examined interrelationships of those traits across 6 days of wheel access. Before wheel testing, HR mice weighed less than C, primarily due to reduced lean mass, and females were lighter than males, entirely due to lower lean mass. Over 6 days of wheel access, all groups tended to gain small amounts of lean mass, but lose fat mass. HR mice lost less fat than C mice, in spite of much higher activity levels, resulting in convergence to a fat mass of ~1.7 g for all 4 groups. HR mice consumed more food than C mice (with body mass as a covariate), even accounting for their higher activity levels. No significant sex-by-linetype interactions were observed for any of the foregoing traits. Structural equation models showed that the four sex-by-linetype groups differed considerably in the complex phenotypic architecture of these traits. Interrelationships among traits differed by genetic background and sex, lending support to the idea that recommendations regarding weight management, diet, and exercise may need to be tailored to the individual level. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Histone deacetylase inhibitors reverse age-related increases in side effects of haloperidol in mice.

    Science.gov (United States)

    Montalvo-Ortiz, Janitza L; Fisher, Daniel W; Rodríguez, Guadalupe; Fang, Deyu; Csernansky, John G; Dong, Hongxin

    2017-08-01

    Older patients can be especially susceptible to antipsychotic-induced side effects, and the pharmacodynamic mechanism underlying this phenomenon remains unclear. We hypothesized that age-related epigenetic alterations lead to decreased expression and functionality of the dopamine D2 receptor (D2R), contributing to this susceptibility. In this study, we treated young (2-3 months old) and aged (22-24 months old) C57BL/6 mice with the D2R antagonist haloperidol (HAL) once a day for 14 days to evaluate HAL-induced motor side effects. In addition, we pretreated separate groups of young and aged mice with histone deacetylase (HDAC) inhibitors valproic acid (VPA) or entinostat (MS-275) and then administered HAL. Our results show that the motor side effects of HAL are exaggerated in aged mice as compared to young mice and that HDAC inhibitors are able to reverse the severity of these deficits. HAL-induced motor deficits in aged mice are associated with an age- and drug-dependent decrease in striatal D2R protein levels and functionality. Further, histone acetylation was reduced while histone tri-methylation was increased at specific lysine residues of H3 and H4 within the Drd2 promoter in the striatum of aged mice. HDAC inhibitors, particularly VPA, restored striatal D2R protein levels and functionality and reversed age- and drug-related histone modifications at the Drd2 promoter. These results suggest that epigenetic changes at the striatal Drd2 promoter drive age-related increases in antipsychotic side effect susceptibility, and HDAC inhibitors may be an effective adjunct treatment strategy to reduce side effects in aged populations.

  15. Brain mitochondria from DJ-1 knockout mice show increased respiration-dependent hydrogen peroxide consumption

    Directory of Open Access Journals (Sweden)

    Pamela Lopert

    2014-01-01

    Full Text Available Mutations in the DJ-1 gene have been shown to cause a rare autosomal-recessive genetic form of Parkinson’s disease (PD. The function of DJ-1 and its role in PD development has been linked to multiple pathways, however its exact role in the development of PD has remained elusive. It is thought that DJ-1 may play a role in regulating reactive oxygen species (ROS formation and overall oxidative stress in cells through directly scavenging ROS itself, or through the regulation of ROS scavenging systems such as glutathione (GSH or thioredoxin (Trx or ROS producing complexes such as complex I of the electron transport chain. Previous work in this laboratory has demonstrated that isolated brain mitochondria consume H2O2 predominantly by the Trx/Thioredoxin Reductase (TrxR/Peroxiredoxin (Prx system in a respiration dependent manner (Drechsel et al., Journal of Biological Chemistry, 2010. Therefore we wanted to determine if mitochondrial H2O2 consumption was altered in brains from DJ-1 deficient mice (DJ-1−/−. Surprisingly, DJ-1−/− mice showed an increase in mitochondrial respiration-dependent H2O2 consumption compared to controls. To determine the basis of the increased H2O2 consumption in DJ1−/− mice, the activities of Trx, Thioredoxin Reductase (TrxR, GSH, glutathione disulfide (GSSG and glutathione reductase (GR were measured. Compared to control mice, brains from DJ-1−/− mice showed an increase in (1 mitochondrial Trx activity, (2 GSH and GSSG levels and (3 mitochondrial glutaredoxin (GRX activity. Brains from DJ-1−/− mice showed a decrease in mitochondrial GR activity compared to controls. The increase in the enzymatic activities of mitochondrial Trx and total GSH levels may account for the increased H2O2 consumption observed in the brain mitochondria in DJ-1−/− mice perhaps as an adaptive response to chronic DJ-1 deficiency.

  16. Particulate matter air pollution causes oxidant-mediated increase in gut permeability in mice

    Directory of Open Access Journals (Sweden)

    Keshavarzian Ali

    2011-06-01

    Full Text Available Abstract Background Exposure to particulate matter (PM air pollution may be an important environmental factor leading to exacerbations of inflammatory illnesses in the GI tract. PM can gain access to the gastrointestinal (GI tract via swallowing of air or secretions from the upper airways or mucociliary clearance of inhaled particles. Methods We measured PM-induced cell death and mitochondrial ROS generation in Caco-2 cells stably expressing oxidant sensitive GFP localized to mitochondria in the absence or presence of an antioxidant. C57BL/6 mice were exposed to a very high dose of urban PM from Washington, DC (200 μg/mouse or saline via gastric gavage and small bowel and colonic tissue were harvested for histologic evaluation, and RNA isolation up to 48 hours. Permeability to 4kD dextran was measured at 48 hours. Results PM induced mitochondrial ROS generation and cell death in Caco-2 cells. PM also caused oxidant-dependent NF-κB activation, disruption of tight junctions and increased permeability of Caco-2 monolayers. Mice exposed to PM had increased intestinal permeability compared with PBS treated mice. In the small bowel, colocalization of the tight junction protein, ZO-1 was lower in the PM treated animals. In the small bowel and colon, PM exposed mice had higher levels of IL-6 mRNA and reduced levels of ZO-1 mRNA. Increased apoptosis was observed in the colon of PM exposed mice. Conclusions Exposure to high doses of urban PM causes oxidant dependent GI epithelial cell death, disruption of tight junction proteins, inflammation and increased permeability in the gut in vitro and in vivo. These PM-induced changes may contribute to exacerbations of inflammatory disorders of the gut.

  17. Increased anxiety and fear memory in adult mice lacking type 2 deiodinase.

    Science.gov (United States)

    Bárez-López, Soledad; Montero-Pedrazuela, Ana; Bosch-García, Daniel; Venero, César; Guadaño-Ferraz, Ana

    2017-10-01

    A euthyroid state in the brain is crucial for its adequate development and function. Impairments in thyroid hormones (THs; T3 or 3,5,3'-triiodothyronine and T4 or thyroxine) levels and availability in brain can lead to neurological alterations and to psychiatric disorders, particularly mood disorders. The thyroid gland synthetizes mainly T4, which is secreted to circulating blood, however, most actions of THs are mediated by T3, the transcriptionally active form. In the brain, intracellular concentrations of T3 are modulated by the activity of type 2 (D2) and type 3 (D3) deiodinases. In the present work, we evaluated learning and memory capabilities and anxiety-like behavior at adult stages in mice lacking D2 (D2KO) and we analyzed the impact of D2-deficiency on TH content and on the expression of T3-dependent genes in the amygdala and the hippocampus. We found that D2KO mice do not present impairments in spatial learning and memory, but they display emotional alterations with increased anxiety-like behavior as well as enhanced auditory-cued fear memory and spontaneous recovery of fear memory following extinction. D2KO mice also presented reduced T3 content in the hippocampus and decreased expression of the T3-dependent gene Dio3 in the amygdala suggesting a hypothyroid status in this structure. We propose that the emotional dysfunctions found in D2KO mice can arise from the reduced T3 content in their brain, which consequently leads to alterations in gene expression with functional consequences. We found a downregulation in the gene encoding for the calcium-binding protein calretinin (Calb2) in the amygdala of D2KO mice that could affect the GABAergic transmission. The current findings in D2KO mice can provide insight into emotional disorders present in humans with DIO2 polymorphisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Increased adiposity, dysregulated glucose metabolism and systemic inflammation in Galectin-3 KO mice.

    Directory of Open Access Journals (Sweden)

    Jingbo Pang

    Full Text Available Obesity and type 2 diabetes are associated with increased production of Galectin-3 (Gal-3, a protein that modulates inflammation and clearance of glucose adducts. We used Lean and Diet-induced Obese (DIO WT and Gal-3 KO mice to investigate the role of Gal-3 in modulation of adiposity, glucose metabolism and inflammation. Deficiency of Gal-3 lead to age-dependent development of excess adiposity and systemic inflammation, as indicated by elevated production of acute-phase proteins, number of circulating pro-inflammatory Ly6C(high monocytes and development of neutrophilia, microcytic anemia and thrombocytosis in 20-week-old Lean and DIO male Gal-3 KO mice. This was associated with impaired fasting glucose, heightened response to a glucose tolerance test and reduced adipose tissue expression of adiponectin, Gal-12, ATGL and PPARγ, in the presence of maintained insulin sensitivity and hepatic expression of gluconeogenic enzymes in 20-week-old Gal-3 KO mice compared to their diet-matched WT controls. Expression of PGC-1α and FGF-21 in the liver of Lean Gal-3 KO mice was comparable to that observed in DIO animals. Impaired fasting glucose and altered responsiveness to a glucose load preceded development of excess adiposity and systemic inflammation, as demonstrated in 12-week-old Gal-3 KO mice. Finally, a role for the microflora in mediating the fasting hyperglycemia, but not the excessive response to a glucose load, of 12-week-old Gal-3 KO mice was demonstrated by administration of antibiotics. In conclusion, Gal-3 is an important modulator of glucose metabolism, adiposity and inflammation.

  19. Food restriction increases long-term memory persistence in adult or aged mice.

    Science.gov (United States)

    Talhati, F; Patti, C L; Zanin, K A; Lopes-Silva, L B; Ceccon, L M B; Hollais, A W; Bizerra, C S; Santos, R; Tufik, S; Frussa-Filho, R

    2014-04-03

    Food restriction (FR) seems to be the unique experimental manipulation that leads to a remarkable increase in lifespan in rodents. Evidences have suggested that FR can enhance memory in distinct animal models mainly during aging. However, only few studies systemically evaluated the effects FR on memory formation in both adult (3-month-old) and aged (18-24-month-old) mice. Thus, the aim of the present study was to investigate the effects of acute (12h) or repeated (12h/day for 2days) FR protocols on learning and memory of adult and aged mice evaluated in the plus-maze discriminative avoidance task (PM-DAT), an animal model that concurrently (but independently) evaluates learning and memory, anxiety and locomotion. We also investigated the possible role of FR-induced stress by the corticosterone concentration in adult mice. Male mice were kept at home cage with food ad libitum (CTRL-control condition) or subjected to FR during the dark phase of the cycle for 12h/day or 12h/2days. The FR protocols were applied before training, immediately after it or before testing. Our results demonstrated that only FR for 2days enhanced memory persistence when applied before training in adults and before testing in aged mice. Conversely, FR for 2days impaired consolidation and exerted no effects on retrieval irrespective of age. These effects do not seem to be related to corticosterone concentration. Collectively, these results indicate that FR for 2days can promote promnestic effects not only in aged mice but also in adults. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Rapamycin-ameliorated diabetic symptoms involved in increasing adiponectin expression in diabetic mice on a high-fat diet.

    Science.gov (United States)

    Gong, Fang-Hua; Ye, Yan-Na; Li, Jin-Meng; Zhao, Hai-Yang; Li, Xiao-Kun

    2017-07-01

    Recent studies showed that rapamycin improved diabetic complications. Here, we investigated the metabolic effects of rapamycin in type 2 diabetes model (T2DM) mice. Mice were treated with a daily intraperitoneal injection of rapamycin at 2 mg/kg or vehicle only for 3 weeks and were maintained on a high-fat diet. The treated diabetic mice exhibited decreased body weight, blood glucose levels, and fat mass. FGF21 expression was suppressed in C57B/L6 mice, but adiponectin expression increased both in FGF21 KO and C57B/L6 mice. These results suggest that rapamycin may alleviate FGF21 resistance in mice on a high-fat diet. The reduction of adipose tissue mass of the diabetic mice may be due to the increased adiponectin. Copyright © 2017. Published by Elsevier Taiwan.

  1. Kidney Mass Reduction Leads to l-Arginine Metabolism-Dependent Blood Pressure Increase in Mice.

    Science.gov (United States)

    Pillai, Samyuktha Muralidharan; Seebeck, Petra; Fingerhut, Ralph; Huang, Ji; Ming, Xiu-Fen; Yang, Zhihong; Verrey, François

    2018-02-25

    Uninephrectomy (UNX) is performed for various reasons, including kidney cancer or donation. Kidneys being the main site of l-arginine production in the body, we tested whether UNX mediated kidney mass reduction impacts l-arginine metabolism and thereby nitric oxide production and blood pressure regulation in mice. In a first series of experiments, we observed a significant increase in arterial blood pressure 8 days post-UNX in female and not in male mice. Further experimental series were performed in female mice, and the blood pressure increase was confirmed by telemetry. l-citrulline, that is used in the kidney to produce l-arginine, was elevated post-UNX as was also asymmetric dimethylarginine, an inhibitor of nitric oxide synthase that competes with l-arginine and is a marker for renal failure. Interestingly, the UNX-induced blood pressure increase was prevented by supplementation of the diet with 5% of the l-arginine precursor, l-citrulline. Because l-arginine is metabolized in the kidney and other peripheral tissues by arginase-2, we tested whether the lack of this metabolic pathway also compensates for decreased l-arginine production in the kidney and/or for local nitric oxide synthase inhibition and consecutive blood pressure increase. Indeed, upon uninephrectomy, arginase-2 knockout mice (Arg-2 -/- ) neither displayed an increase in asymmetric dimethylarginine and l-citrulline plasma levels nor a significant increase in blood pressure. UNX leads to a small increase in blood pressure that is prevented by l-citrulline supplementation or arginase deficiency, 2 measures that appear to compensate for the impact of kidney mass reduction on l-arginine metabolism. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  2. Increase in Vascular Injury of Sodium Overloaded Mice May be Related to Vascular Angiotensin Modulation.

    Directory of Open Access Journals (Sweden)

    Cintia Taniguti Lima

    Full Text Available This study aimed to analyzing the effect of chronic sodium overload upon carotid and femoral injury, and its relation to vascular angiotensin modulation. Male C57Bl6 mice were divided in: control (cont, receiving 1% NaCl solution for 2 weeks (salt-2 or 12 weeks (salt-12. Two-weeks before the end of the study, a 2mm catheter was implanted around the left femoral and carotid arteries to induce injury. Blood pressure (BP and heart rate (HR were measured at the end of the study by tail plethysmography. Arteries were collected and prepared for histological analysis to determine arterial thickening and perivascular collagen deposition. Angiotensin II and Ang(1-7 were quantified in fresh arteries using the HPLC method. There were no differences in body weight, BP and HR. Intima/media ratio had a similar increase in both injured arteries of cont and salt-2 mice, but a more pronounced increase was observed in salt-12 mice (31.1±6%. On the other hand, sodium overload modified perivascular collagen deposition, increasing thick fibers (cont: 0.5%; salt-2: 3.4%; salt-12: 0.6% and decreasing thin fibers (cont: 7.4%; salt-2: 0.5%; salt-12: 6.8% in non-injured arteries. Injured arteries presented similar collagen fiber distribution. Angiotensin quantification showed increased Ang(1-7 in salt treated mice (salt-2: +72%; salt-12: +45% with a concomitant decrease in Ang II (salt-2: -54%; salt-12: -60%. Vascular injury increased significantly Ang(1-7 in salt-12 mice (+80%, maintaining Ang II reduction similar to that of a non-injured artery. The lack of changes in BP and HR suggests that the structural changes observed may be due to non-hemodynamic mechanisms such as local renin-angiotensin system. Collagen evaluation suggests that sodium overload induces time-related changes in vascular remodeling. The increase of artery injury with concomitant increase in Ang(1-7 in 12-week treated mice shows a direct association between the duration of salt treatment and the

  3. A hepcidina como parâmetro bioquímico na avaliação da anemia por deficiência de ferro Hepcidin as a biochemical parameter for the assessment of iron deficiency anemia

    Directory of Open Access Journals (Sweden)

    Andrea dos Reis Lemos

    2010-01-01

    parameter for assessment of iron deficiency anemia is reported in this review. A literature review was carried out in the databases PubMed and LILACS, between 2006-2010, assessing hepcidin as a parameter for the regulation of iron metabolism. During this period 35 studies were published in international journals and one study in a Brazilian journal. The production of hepcidin is homeostatically regulated by anemia and hypoxia. When oxygen supply is inadequate the level of hepcidin decreases. Therefore, more iron from the diet and from the stock of macrophages and hepatocytes becomes available. Hepcidin links to ferroportin, regulating iron release to plasma. When the hepcidin concentrations are low, the molecules of ferroportin are exposed on the plasmatic membrane and release iron. When hepcidin levels increase, hepcidin binds to molecules of ferroportin inducing its internalization and degradation and iron release gradually decreases. Apparently, development of diagnosis and therapy for anemia based on the parameter hepcidin may provide a more effective approach. Large-studies are needed to demonstrate the importance of hepcidin for the differential diagnosis of anemia, including sample protocols for analysis, with standards similar to those used in other biochemical evaluations, as well as the definition of cut-off points for the plasma and urinary expression of this peptide.

  4. Mice lacking the kf-1 gene exhibit increased anxiety- but not despair-like behavior

    Directory of Open Access Journals (Sweden)

    Atsushi Tsujimura

    2008-09-01

    Full Text Available KF-1 was originally identified as a protein encoded by human gene with increased expression in the cerebral cortex of a patient with Alzheimer’s disease. In mouse brain, kf-1 mRNA is detected predominantly in the hippocampus and cerebellum, and kf-1 gene expression is elevated also in the frontal cortex of rats after chronic antidepressant treatments. KF-1 mediates E2-dependent ubiquitination and may modulate cellular protein levels as an E3 ubiquitin ligase, though its target proteins are not yet identified. To elucidate the role of kf-1 in the central nervous system, we generated kf-1 knockout mice by gene targeting, using Cre-lox recombination. The resulting kf-1−/− mice were normal and healthy in appearance. Behavioral analyses revealed that kf-1−/− mice showed significantly increased anxiety-like behavior compared with kf-1+/+ littermates in the light/dark transition and elevated plus maze tests; however, no significant differences were observed in exploratory locomotion using the open field test or in behavioral despair using the forced swim and tail suspension tests. These observations suggest that KF-1 suppresses selectively anxiety under physiological conditions probably through modulating protein levels of its unknown target(s. Interestingly, kf-1−/− mice exhibited significantly increased prepulse inhibition, which is usually reduced in human schizophrenic patients. Thus, the kf-1−/− mice provide a novel animal model for elucidating molecular mechanisms of psychiatric diseases such as anxiety/depression, and may be useful for screening novel anxiolytic/antidepressant compounds.

  5. Anti-myostatin antibody increases muscle mass and strength and improves insulin sensitivity in old mice.

    Science.gov (United States)

    Camporez, João-Paulo G; Petersen, Max C; Abudukadier, Abulizi; Moreira, Gabriela V; Jurczak, Michael J; Friedman, Glenn; Haqq, Christopher M; Petersen, Kitt Falk; Shulman, Gerald I

    2016-02-23

    Sarcopenia, or skeletal muscle atrophy, is a debilitating comorbidity of many physiological and pathophysiological processes, including normal aging. There are no approved therapies for sarcopenia, but the antihypertrophic myokine myostatin is a potential therapeutic target. Here, we show that treatment of young and old mice with an anti-myostatin antibody (ATA 842) for 4 wk increased muscle mass and muscle strength in both groups. Furthermore, ATA 842 treatment also increased insulin-stimulated whole body glucose metabolism in old mice, which could be attributed to increased insulin-stimulated skeletal muscle glucose uptake as measured by a hyperinsulinemic-euglycemic clamp. Taken together, these studies provide support for pharmacological inhibition of myostatin as a potential therapeutic approach for age-related sarcopenia and metabolic disease.

  6. Increased demyelination and axonal damage in metallothionein I+II-deficient mice during experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Penkowa, M; Espejo, C; Martínez-Cáceres, E M

    2003-01-01

    Metallothioneins I+II (MT-I+II) are antioxidant, neuroprotective factors. We previously showed that MT-I+II deficiency during experimental autoimmune encephalomyelitis (EAE) leads to increased disease incidence and clinical symptoms. Moreover, the inflammatory response of macrophages and T cells......, oxidative stress, and apoptotic cell death during EAE were increased by MT-I+II deficiency. We now show for the first time that demyelination and axonal damage are significantly increased in MT-I+II deficient mice during EAE. Furthermore, oligodendroglial regeneration, growth cone formation, and tissue...... repair including expression of trophic factors were significantly reduced in MT-I+II-deficient mice during EAE. Accordingly, MT-I+II have protective and regenerative roles in the brain....

  7. Obesity-induced oxidative stress, accelerated functional decline with age and increased mortality in mice.

    Science.gov (United States)

    Zhang, Yiqiang; Fischer, Kathleen E; Soto, Vanessa; Liu, Yuhong; Sosnowska, Danuta; Richardson, Arlan; Salmon, Adam B

    2015-06-15

    Obesity is a serious chronic disease that increases the risk of numerous co-morbidities including metabolic syndrome, cardiovascular disease and cancer as well as increases risk of mortality, leading some to suggest this condition represents accelerated aging. Obesity is associated with significant increases in oxidative stress in vivo and, despite the well-explored relationship between oxidative stress and aging, the role this plays in the increased mortality of obese subjects remains an unanswered question. Here, we addressed this by undertaking a comprehensive, longitudinal study of a group of high fat-fed obese mice and assessed both their changes in oxidative stress and in their performance in physiological assays known to decline with aging. In female C57BL/6J mice fed a high-fat diet starting in adulthood, mortality was significantly increased as was oxidative damage in vivo. High fat-feeding significantly accelerated the decline in performance in several assays, including activity, gait, and rotarod. However, we also found that obesity had little effect on other markers of function and actually improved performance in grip strength, a marker of muscular function. Together, this first comprehensive assessment of longitudinal, functional changes in high fat-fed mice suggests that obesity may induce segmental acceleration of some of the aging process. Published by Elsevier Inc.

  8. Increased infectivity of anchorless mouse scrapie prions in transgenic mice overexpressing human prion protein.

    Science.gov (United States)

    Race, Brent; Phillips, Katie; Meade-White, Kimberly; Striebel, James; Chesebro, Bruce

    2015-06-01

    mice expressing only anchorless PrP were more infectious than prions produced in mice expressing anchored PrP. Thus, the lack of the GPI anchor on prions reduced the effect of the mouse-human species barrier. Our results suggest that prion diseases that produce higher levels of anchorless PrP may pose an increased risk for cross-species infection. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. Increased bile acids in enterohepatic circulation by short-term calorie restriction in male mice

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Zidong Donna [Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160 (United States); Klaassen, Curtis D., E-mail: cklaasse@kumc.edu [Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, 66160 (United States)

    2013-12-15

    Previous studies showed glucose and insulin signaling can regulate bile acid (BA) metabolism during fasting or feeding. However, limited knowledge is available on the effect of calorie restriction (CR), a well-known anti-aging intervention, on BA homeostasis. To address this, the present study utilized a “dose–response” model of CR, where male C57BL/6 mice were fed 0, 15, 30, or 40% CR diets for one month, followed by BA profiling in various compartments of the enterohepatic circulation by UPLC-MS/MS technique. This study showed that 40% CR increased the BA pool size (162%) as well as total BAs in serum, gallbladder, and small intestinal contents. In addition, CR “dose-dependently” increased the concentrations of tauro-cholic acid (TCA) and many secondary BAs (produced by intestinal bacteria) in serum, such as tauro-deoxycholic acid (TDCA), DCA, lithocholic acid, ω-muricholic acid (ωMCA), and hyodeoxycholic acid. Notably, 40% CR increased TDCA by over 1000% (serum, liver, and gallbladder). Interestingly, 40% CR increased the proportion of 12α-hydroxylated BAs (CA and DCA), which correlated with improved glucose tolerance and lipid parameters. The CR-induced increase in BAs correlated with increased expression of BA-synthetic (Cyp7a1) and conjugating enzymes (BAL), and the ileal BA-binding protein (Ibabp). These results suggest that CR increases BAs in male mice possibly through orchestrated increases in BA synthesis and conjugation in liver as well as intracellular transport in ileum. - Highlights: • Dose response effects of short-term CR on BA homeostasis in male mice. • CR increased the BA pool size and many individual BAs. • CR altered BA composition (increased proportion of 12α-hydroxylated BAs). • Increased mRNAs of BA enzymes in liver (Cyp7a1 and BAL) and ileal BA binding protein.

  10. Female Nur77-deficient mice show increased susceptibility to diet-induced obesity.

    Directory of Open Access Journals (Sweden)

    Sonia Perez-Sieira

    Full Text Available Adipose tissue is essential in the regulation of body weight. The key process in fat catabolism and the provision of energy substrate during times of nutrient deprivation or enhanced energy demand is the hydrolysis of triglycerides and the release of fatty acids and glycerol. Nur77 is a member of the NR4A subfamily of nuclear receptors that plays an important metabolic role, modulating hepatic glucose metabolism and lipolysis in muscle. However, its endogenous role on white adipose tissue, as well as the gender dependency of these mechanisms, remains largely unknown. Male and female wild type and Nur77 deficient mice were fed with a high fat diet (45% calories from fat for 4 months. Mice were analyzed in vivo with the indirect calorimetry system, and tissues were analyzed by real-time PCR and Western blot analysis. Female, but not male Nur77 deficient mice, gained more weight and fat mass when compared to wild type mice fed with high fat diet, which can be explained by decreased energy expenditure. The lack of Nur77 also led to a decreased pHSL/HSL ratio in white adipose tissue and increased expression of CIDEA in brown adipose tissue of female Nur77 deficient mice. Overall, these findings suggest that Nur77 is an important physiological modulator of lipid metabolism in adipose tissue and that there are gender differences in the sensitivity to deletion of the Nur77 signaling. The decreased energy expenditure and the actions of Nur77 on liver, muscle, brown and white adipose tissue contribute to the increased susceptibility to diet-induced obesity in females lacking Nur77.

  11. Tributyltin exposure induces gut microbiome dysbiosis with increased body weight gain and dyslipidemia in mice.

    Science.gov (United States)

    Guo, Hao; Yan, Haotian; Cheng, Dong; Wei, Xinglong; Kou, Ruirui; Si, Jiliang

    2018-05-03

    Gut microbiome dysbiosis plays a profound role in the pathogenesis of obesity and tributyltin (TBT) has been found as an environmental obesogen. However, whether TBT could disturb gut microbiome and the relationship between obesity induced by TBT exposure and alteration in gut microbiota are still unknown. In order to assess the association between them, mice were exposed to TBTCl (50 μg kg -1 ) once every three days from postnatal days (PNDs) 24 to 54. The results demonstrated that TBT exposure resulted in increased body weight gain, lager visceral fat accumulation and dyslipidemia in male mice on PND 84. Correspondingly, 16S rRNA gene sequencing revealed that TBT treatment decreased gut microbial species and perturbed the microbiome composition in mice. Furthermore, Pearson's corelation coefficient analysis showed a significantly negative correlation between the body weight and the alpha diversity of gut microbiome. These results suggested that TBT exposure could induce gut microbiome dysbiosis in mice, which might contribute to the obesity pathogenesis. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Increased sensitivity of apolipoprotein E knockout mice to copper-induced oxidative injury to the liver.

    Science.gov (United States)

    Chen, Yuan; Li, Bin; Zhao, Ran-ran; Zhang, Hui-feng; Zhen, Chao; Guo, Li

    2015-04-10

    Apolipoprotein E (ApoE) genotypes are related to clinical presentations in patients with Wilson's disease, indicating that ApoE may play an important role in the disease. However, our understanding of the role of ApoE in Wilson's disease is limited. High copper concentration in Wilson's disease induces excessive generation of free oxygen radicals. Meanwhile, ApoE proteins possess antioxidant effects. We therefore determined whether copper-induced oxidative damage differ in the liver of wild-type and ApoE knockout (ApoE(-/-)) mice. Both wild-type and ApoE(-/-) mice were intragastrically administered with 0.2 mL of copper sulfate pentahydrate (200 mg/kg; a total dose of 4 mg/d) or the same volume of saline daily for 12 weeks, respectively. Copper and oxidative stress markers in the liver tissue and in the serum were assessed. Our results showed that, compared with the wild-type mice administered with copper, TBARS as a marker of lipid peroxidation, the expression of oxygenase-1 (HO-1), NAD(P)H dehydrogenase, and quinone 1 (NQO1) significantly increased in the ApoE(-/-) mice administered with copper, meanwhile superoxide dismutase (SOD) activity significantly decreased. Thus, it is concluded that ApoE may protect the liver from copper-induced oxidative damage in Wilson's disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Protein energy malnutrition decreases immunity and increases susceptibility to influenza infection in mice.

    Science.gov (United States)

    Taylor, Andrew K; Cao, Weiping; Vora, Keyur P; De La Cruz, Juan; Shieh, Wun-Ju; Zaki, Sherif R; Katz, Jacqueline M; Sambhara, Suryaprakash; Gangappa, Shivaprakash

    2013-02-01

    Protein energy malnutrition (PEM), a common cause of secondary immune deficiency in children, is associated with an increased risk of infections. Very few studies have addressed the relevance of PEM as a risk factor for influenza. We investigated the influence of PEM on susceptibility to, and immune responses following, influenza virus infection using isocaloric diets providing either adequate protein (AP; 18%) or very low protein (VLP; 2%) in a mouse model. We found that mice maintained on the VLP diet, when compared to mice fed with the AP diet, exhibited more severe disease following influenza infection based on virus persistence, trafficking of inflammatory cell types to the lung tissue, and virus-induced mortality. Furthermore, groups of mice maintained on the VLP diet showed significantly lower virus-specific antibody response and a reduction in influenza nuclear protein-specific CD8(+) T cells compared with mice fed on the AP diet. Importantly, switching diets for the group maintained on the VLP diet to the AP diet improved virus clearance, as well as protective immunity to viral challenge. Our results highlight the impact of protein energy on immunity to influenza infection and suggest that balanced protein energy replenishment may be one strategy to boost immunity against influenza viral infections.

  14. Increased heart rate variability in mice overexpressing the Cu/Zn superoxide dismutase.

    Science.gov (United States)

    Thireau, Jérôme; Poisson, Denise; Zhang, Bei Li; Gillet, Ludovic; Le Pécheur, Marie; Andres, Christian; London, Jacqueline; Babuty, Dominique

    2008-08-15

    Cu/Zn superoxide dismutase (SOD1) is implicated in various pathological conditions including Down's syndrome, neurodegenerative diseases, and afflictions of the autonomic nervous system (ANS). To assess the SOD1 contribution to ANS dysfunction, especially its influence on cardiac regulation, we studied the heart rate variability (HRV) and cardiac arrhythmias in conscious 12-month-old male and female transgenic mice for the human SOD1 gene (TghSOD1). TghSOD1 mice presented heart rate reduction as compared with control FVB/N individuals. All HRV parameters reflecting parasympathetic activity were increased in TghSOD1. Pharmacological studies confirmed that the parasympathetic tone was exacerbated and the sympathetic pathway was functional in TghSOD1 mice. A high frequency of atrioventricular block and premature ventricular contractions was observed in TghSOD1. By biochemical assays we found that SOD1 activities were multiplied by 9 and 4 respectively in the heart and brainstem of transgenic mice. A twofold decrease in cholinesterase activity was observed in the heart but not in the brainstem. We demonstrate that SOD1 overexpression induces an ANS dysfunction by an exacerbated vagal tone that may be related to impaired cardiac activity of the cholinesterases and may explain the high occurrence of arrhythmias.

  15. Paclitaxel-induced hypothermia and hypoperfusion increase breast cancer metastasis and angiogenesis in mice

    Science.gov (United States)

    Ami, Nozomi; Sato, Hideki; Hayakawa, Yoshihiro

    2018-01-01

    Housing temperature has been shown to influence thermoregulation and behavior of preclinical cancer models; and anti-cancer drugs typically reduce peripheral blood flow and body temperature. In the present study, the effects of paclitaxel (PTX)-induced reduction of body temperature and peripheral blood flow on metastatic 4T1 breast cancer was investigated in a mouse model and the modification of these effects by thermoneutral temperature was also assessed. A single dose of PTX decreased the body temperature and peripheral blood flow in mice housed at a standard temperature (23°C). Furthermore, although lung metastasis and angiogenesis of inoculated 4T1 cells increased in mice pretreated with PTX, mice housed at a thermoneutral temperature (30°C) could compensate their body temperature and peripheral blood flow compared with control mice, and also suppressed 4T1 angiogenesis and metastasis to lung. The present results imply that maintenance of body temperature or efficient energy supply for thermogenesis may prevent tumor relapse or metastasis after chemotherapy. PMID:29434941

  16. Caffeine stimulates voluntary wheel running in mice without increasing aerobic capacity.

    Science.gov (United States)

    Claghorn, Gerald C; Thompson, Zoe; Wi, Kristianna; Van, Lindsay; Garland, Theodore

    2017-03-01

    The "energy drink" Red Bull and the "sports drink" Gatorade are often marketed to athletes, with claims that they cause performance gains. However, both are high in sugars, and also consumed by non-athletes. Few studies have addressed the effects of these drinks or their biologically active components in rodent exercise models. We used three experiments to test effects on both voluntary exercise behavior and maximal aerobic capacity in lines of mice known to differ in "athletic" traits. Mice from four replicate High Runner (HR) lines have been selectively bred for voluntary running on wheels, and run approximately three times as many revolutions per day as do mice from four non-selected Control (C) lines. HR mice also have higher endurance and maximal oxygen consumption (VO 2 max) during forced treadmill exercise. In Experiment 1, we tested the hypothesis that Gatorade or Red Bull might cause or allow mice to increase their voluntary wheel running. On days 5 and 6 of 6days of wheel access, as is used to select breeders, HR mice ran 3.3-fold more than C, and females ran 1.2-fold more than males, with no linetype by sex interaction. On day 7, mice were administered Gatorade, Red Bull or tap water. During the subsequent 19-hour period, Gatorade had no statistical effect on running, but Red Bull significantly increased distance run by both sexes and in both HR and C lines. The increase in distance run caused by Red Bull was attributable to time spent running, not an increase in mean (or maximum) speed. As previous studies have found that sucrose alone does not generally increase wheel running, we tested two other active ingredients in Red Bull, caffeine and taurine, in Experiment 2. With a similar testing protocol, caffeine alone and caffeine+taurine increased running by about half the magnitude of Red Bull. In Experiment 3, we tested the hypothesis that Red Bull or caffeine alone can increase physiological performance ability during aerobic exercise, measured as VO 2

  17. Antifatigue and increasing exercise performance of Actinidia arguta crude alkaloids in mice

    Directory of Open Access Journals (Sweden)

    Yangyang Liu

    2016-10-01

    Full Text Available Actinidia arguta (Siebold et Zucc. Planch. ex. Miq. is one of the most recently domesticated fruit species with increasing commercial production worldwide. It is a well-known traditional Chinese medicine and is used to reduce blood glucose and treat atopic dermatitis. In addition, it possesses antioxidant, anticancer, and antiallergic properties. In this study, we investigated the physical antifatigue and exercise performance effects of A. arguta crude alkaloids (AACA extracted with 70% ethanol. Four groups of male Kunming mice (n = 16 were orally administered AACA at doses of 0 mg/kg/d (vehicle, 50 mg/kg/d (AACA-50, 100 mg/kg/d (AACA-100, or 200 mg/kg/d (AACA-200 for 28 days. The effect of AACA treatment on exercise performance was studied using the forelimb grip strength experiment and by the measurement of the weight-loaded swimming time. The antifatigue effect is evaluated based on fatigue-associated biochemical parameters, hepatic and muscular glycogen levels, and changes in the morphology of transverse and longitudinal sections of skeletal muscle. The results showed that AACA could elevate the endurance and grip strength in mice. The exhaustive swimming time of the AACA-50, AACA-100, and AACA-200 groups was significantly (p < 0.05 increased compared with the vehicle. The swimming time of the AACA-100 group was the longest among all groups studied. Mice in the AACA-treated groups had decreased levels of lactate, ammonia, and creatine kinase after a physical challenge compared with the vehicle group. The tissue glycogen, an important energy source during exercise, significantly increased with AACA. The morphology of transverse and longitudinal sections of skeletal muscle did not change in the vehicle group. Overall, these findings suggest that AACA possesses antifatigue effects and increases exercise performance in mice. Therefore, A. arguta may be developed as an antifatigue dietary supplement in the category of functional foods.

  18. Lactobacillus reuteri increases mucus thickness and ameliorates dextran sulphate sodium-induced colitis in mice.

    Science.gov (United States)

    Ahl, D; Liu, H; Schreiber, O; Roos, S; Phillipson, M; Holm, L

    2016-08-01

    The aim of this study was to investigate whether two Lactobacillus reuteri strains (rat-derived R2LC and human-derived ATCC PTA 4659 (4659)) could protect mice against colitis, as well as delineate the mechanisms behind this protection. Mice were given L. reuteri R2LC or 4659 by gavage once daily for 14 days, and colitis was induced by addition of 3% DSS (dextran sulphate sodium) to drinking water for the last 7 days of this period. The severity of disease was assessed through clinical observations, histological evaluation and ELISA measurements of myeloperoxidase (MPO) and pro-inflammatory cytokines from colonic samples. Mucus thickness was measured in vivo with micropipettes, and tight junction protein expression was assessed using immunohistochemistry. Colitis severity was significantly reduced by L. reuteri R2LC or 4659 when evaluated both clinically and histologically. The inflammation markers MPO, IL-1β, IL-6 and mKC (mouse keratinocyte chemoattractant) were increased by DSS and significantly reduced by the L. reuteri strains. The firmly adherent mucus thickness was reduced by DSS, but significantly increased by L. reuteri in both control and DSS-treated mice. Expression of the tight junction proteins occludin and ZO-1 was significantly increased in the bottom of the colonic crypts by L. reuteri R2LC. These results demonstrate that each of the two different L. reuteri strains, one human-derived and one-rat-derived, protects against colitis in mice. Mechanisms behind this protection could at least partly be explained by the increased mucus thickness as well as a tightened epithelium in the stem cell area of the crypts. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  19. Hepatic ACAT2 knock down increases ABCA1 and modifies HDL metabolism in mice.

    Directory of Open Access Journals (Sweden)

    Matteo Pedrelli

    Full Text Available OBJECTIVES: ACAT2 is the exclusive cholesterol-esterifying enzyme in hepatocytes and enterocytes. Hepatic ABCA1 transfers unesterified cholesterol (UC to apoAI, thus generating HDL. By changing the hepatic UC pool available for ABCA1, ACAT2 may affect HDL metabolism. The aim of this study was to reveal whether hepatic ACAT2 influences HDL metabolism. DESIGN: WT and LXRα/β double knockout (DOKO mice were fed a western-type diet for 8 weeks. Animals were i.p. injected with an antisense oligonucleotide targeted to hepatic ACAT2 (ASO6, or with an ASO control. Injections started 4 weeks after, or concomitantly with, the beginning of the diet. RESULTS: ASO6 reduced liver cholesteryl esters, while not inducing UC accumulation. ASO6 increased hepatic ABCA1 protein independently of the diet conditions. ASO6 affected HDL lipids (increased UC only in DOKO, while it increased apoE-containing HDL in both genotypes. In WT mice ASO6 led to the appearance of large HDL enriched in apoAI and apoE. CONCLUSIONS: The use of ASO6 revealed a new pathway by which the liver may contribute to HDL metabolism in mice. ACAT2 seems to be a hepatic player affecting the cholesterol fluxes fated to VLDL or to HDL, the latter via up-regulation of ABCA1.

  20. Myeloid differentiation factor 88 (MyD88-deficiency increases risk of diabetes in mice.

    Directory of Open Access Journals (Sweden)

    Toru Hosoi

    Full Text Available BACKGROUND: Multiple lines of evidence suggest innate immune response pathways to be involved in the development of obesity-associated diabetes although the molecular mechanism underling the disease is unknown. Recent observations suggest that saturated fatty acids can act as a ligand for toll-like receptor (TLR 4, which is thought to mediate obesity-associated insulin resistance. Myeloid differentiation factor 88 (MyD88 is an adapter protein for TLR/IL-1 receptor signaling, which is involved in the activation of inflammatory pathways. To evaluate molecular mechanisms linking obesity-associated diabetes down-stream of TLR4, we investigated physiological role of MyD88 in high-fat diet (HFD-induced obesity. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we found MyD88-deficient mice fed a HFD had increased circulating levels of insulin, leptin and cholesterol, as well as liver dysfunction (increased induction of ALT levels, increased activation of JNK and cleavage of PARP, which were linked to the onset of severe diabetes. On the other hand, TNF-alpha would not be involved in HFD-induced diabetes in MyD88-deficient mice, because TNF-alpha level was attenuated in MyD88-deficient mice fed with HFD. CONCLUSIONS/SIGNIFICANCE: The present finding of an unexpected role for MyD88 in preventing diabetes may provide a potential novel target/strategy for treating metabolic syndrome.

  1. Deficiency of ABCA1 and ABCG1 in Macrophages Increases Inflammation and Accelerates Atherosclerosis in Mice

    Science.gov (United States)

    Westerterp, Marit; Murphy, Andrew J.; Wang, Mi; Pagler, Tamara A.; Vengrenyuk, Yuliya; Kappus, Mojdeh S.; Gorman, Darren J.; Nagareddy, Prabhakara R.; Zhu, Xuewei; Abramowicz, Sandra; Parks, John S.; Welch, Carrie; Fisher, Edward A.; Wang, Nan; Yvan-Charvet, Laurent; Tall, Alan R.

    2013-01-01

    Rationale Plasma HDL levels are inversely correlated with atherosclerosis. Although it is widely assumed that this is due to the ability of HDL to promote cholesterol efflux from macrophage foam cells, direct experimental support for this hypothesis is lacking. Objective To assess the role of macrophage cholesterol efflux pathways in atherogenesis. Methods and Results We developed MAC-ABCDKO mice with efficient deletion of the ATP Binding Cassette Transporters A1 and G1 (ABCA1 and ABCG1) in macrophages but not in hematopoietic stem or progenitor populations. MAC-ABCDKO bone marrow (BM) was transplanted into Ldlr-/- recipients. On the chow diet, these mice had similar plasma cholesterol and blood monocyte levels but increased atherosclerosis compared to controls. On the Western type diet (WTD), MAC-ABCDKO BM transplanted Ldlr-/- mice had disproportionate atherosclerosis, considering they also had lower VLDL/LDL cholesterol levels than controls. ABCA1/G1 deficient macrophages in lesions showed increased inflammatory gene expression. Unexpectedly, WTD-fed MAC-ABCDKO BM transplanted Ldlr-/- mice displayed monocytosis and neutrophilia in the absence of HSPC proliferation. Mechanistic studies revealed increased expression of M-CSF and G-CSF in splenic macrophage foam cells, driving BM monocyte and neutrophil production. Conclusion These studies 1) show that macrophage deficiency of ABCA1/G1 is pro-atherogenic likely by promoting plaque inflammation and 2) uncover a novel positive feedback loop in which cholesterol-laden splenic macrophages signal BM progenitors to produce monocytes, with suppression by macrophage cholesterol efflux pathways. PMID:23572498

  2. Increased seizure susceptibility and other toxicity symptoms following acute sulforaphane treatment in mice

    Energy Technology Data Exchange (ETDEWEB)

    Socała, Katarzyna, E-mail: ksocala@op.pl [Department of Animal Physiology, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, Lublin (Poland); Nieoczym, Dorota [Department of Animal Physiology, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, Lublin (Poland); Kowalczuk-Vasilev, Edyta [Institute of Animal Nutrition and Bromatology, University of Life Sciences, Lublin (Poland); Wyska, Elżbieta [Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, Kraków (Poland); Wlaź, Piotr [Department of Animal Physiology, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, Lublin (Poland)

    2017-07-01

    Activation of Nrf2 with sulforaphane has recently gained attention as a new therapeutic approach in the treatment of many diseases, including epilepsy. As a plant-derived compound, sulforaphane is considered to be safe and well-tolerated. It is widely consumed, also by patients suffering from seizure and taking antiepileptic drugs, but no toxicity profile of sulforaphane exists. Since many natural remedies and dietary supplements may increase seizure risk and potentially interact with antiepileptic drugs, the aim of our study was to investigate the acute effects of sulforaphane on seizure thresholds and activity of some first- and second-generation antiepileptic drugs in mice. In addition, some preliminary toxicity profile of sulforaphane in mice after intraperitoneal injection was evaluated. The LD{sub 50} value of sulforaphane in mice was estimated at 212.67 mg/kg, while the TD{sub 50} value – at 191.58 mg/kg. In seizure tests, sulforaphane at the highest dose tested (200 mg/kg) significantly decreased the thresholds for the onset of the first myoclonic twitch and generalized clonic seizure in the iv PTZ test as well as the threshold for the 6 Hz-induced psychomotor seizure. At doses of 10–200 mg/kg, sulforaphane did not affect the threshold for the iv PTZ-induced forelimb tonus or the threshold for maximal electroshock-induced hindlimb tonus. Interestingly, sulforaphane (at 100 mg/kg) potentiated the anticonvulsant efficacy of carbamazepine in the maximal electroshock seizure test. This interaction could have been pharmacokinetic in nature, as sulforaphane increased concentrations of carbamazepine in both serum and brain tissue. The toxicity study showed that high doses of sulforaphane produced marked sedation (at 150–300 mg/kg), hypothermia (at 150–300 mg/kg), impairment of motor coordination (at 200–300 mg/kg), decrease in skeletal muscle strength (at 250–300 mg/kg), and deaths (at 200–300 mg/kg). Moreover, blood analysis showed leucopenia in

  3. Increased seizure susceptibility and other toxicity symptoms following acute sulforaphane treatment in mice

    International Nuclear Information System (INIS)

    Socała, Katarzyna; Nieoczym, Dorota; Kowalczuk-Vasilev, Edyta; Wyska, Elżbieta; Wlaź, Piotr

    2017-01-01

    Activation of Nrf2 with sulforaphane has recently gained attention as a new therapeutic approach in the treatment of many diseases, including epilepsy. As a plant-derived compound, sulforaphane is considered to be safe and well-tolerated. It is widely consumed, also by patients suffering from seizure and taking antiepileptic drugs, but no toxicity profile of sulforaphane exists. Since many natural remedies and dietary supplements may increase seizure risk and potentially interact with antiepileptic drugs, the aim of our study was to investigate the acute effects of sulforaphane on seizure thresholds and activity of some first- and second-generation antiepileptic drugs in mice. In addition, some preliminary toxicity profile of sulforaphane in mice after intraperitoneal injection was evaluated. The LD 50 value of sulforaphane in mice was estimated at 212.67 mg/kg, while the TD 50 value – at 191.58 mg/kg. In seizure tests, sulforaphane at the highest dose tested (200 mg/kg) significantly decreased the thresholds for the onset of the first myoclonic twitch and generalized clonic seizure in the iv PTZ test as well as the threshold for the 6 Hz-induced psychomotor seizure. At doses of 10–200 mg/kg, sulforaphane did not affect the threshold for the iv PTZ-induced forelimb tonus or the threshold for maximal electroshock-induced hindlimb tonus. Interestingly, sulforaphane (at 100 mg/kg) potentiated the anticonvulsant efficacy of carbamazepine in the maximal electroshock seizure test. This interaction could have been pharmacokinetic in nature, as sulforaphane increased concentrations of carbamazepine in both serum and brain tissue. The toxicity study showed that high doses of sulforaphane produced marked sedation (at 150–300 mg/kg), hypothermia (at 150–300 mg/kg), impairment of motor coordination (at 200–300 mg/kg), decrease in skeletal muscle strength (at 250–300 mg/kg), and deaths (at 200–300 mg/kg). Moreover, blood analysis showed leucopenia in mice injected

  4. Arsenic induces diabetic effects through beta-cell dysfunction and increased gluconeogenesis in mice

    Science.gov (United States)

    Liu, Su; Guo, Xuechao; Wu, Bing; Yu, Haiyan; Zhang, Xuxiang; Li, Mei

    2014-11-01

    Arsenic as a potential risk factor for type 2 diabetes has been received attention recently. However, the roles of arsenic on development of diabetes are unclear. In this study, we compared the influences of inorganic arsenic (iAs) on normal and diabetic mice by systems toxicology approaches. Although iAs exposure did not change glucose tolerance in normal mice, it caused the pancreatic β-cell dysfunction and increased gluconeogenesis and oxidative damages in liver. However, iAs exposure worsened the glucose tolerance in diabetic mice, which might be due to increased gluconeogenesis and impairment of pancreatic β-cell function. It is interesting that iAs exposure could improve the insulin sensitivity based on the insulin tolerance testing by the activation of glucose uptake-related genes and enzymes in normal and diabetic individuals. Our data suggested that iAs exposure could cause pre-diabetic effects by altering the lipid metabolism, gluconeogenesis and insulin secretion in normal individual, and worsen diabetic effects in diabetes individual by these processes. Insulin resistance might be not the reason of diabetic effects caused by iAs, indicating that mechanism of the diabetogenic effects of iAs exposure is different from the mechanism associated with traditional risk factors (such as obesity)-reduced type 2 diabetes.

  5. Arsenic induces diabetic effects through beta-cell dysfunction and increased gluconeogenesis in mice.

    Science.gov (United States)

    Liu, Su; Guo, Xuechao; Wu, Bing; Yu, Haiyan; Zhang, Xuxiang; Li, Mei

    2014-11-04

    Arsenic as a potential risk factor for type 2 diabetes has been received attention recently. However, the roles of arsenic on development of diabetes are unclear. In this study, we compared the influences of inorganic arsenic (iAs) on normal and diabetic mice by systems toxicology approaches. Although iAs exposure did not change glucose tolerance in normal mice, it caused the pancreatic β-cell dysfunction and increased gluconeogenesis and oxidative damages in liver. However, iAs exposure worsened the glucose tolerance in diabetic mice, which might be due to increased gluconeogenesis and impairment of pancreatic β-cell function. It is interesting that iAs exposure could improve the insulin sensitivity based on the insulin tolerance testing by the activation of glucose uptake-related genes and enzymes in normal and diabetic individuals. Our data suggested that iAs exposure could cause pre-diabetic effects by altering the lipid metabolism, gluconeogenesis and insulin secretion in normal individual, and worsen diabetic effects in diabetes individual by these processes. Insulin resistance might be not the reason of diabetic effects caused by iAs, indicating that mechanism of the diabetogenic effects of iAs exposure is different from the mechanism associated with traditional risk factors (such as obesity)-reduced type 2 diabetes.

  6. Forebrain-Specific Loss of BMPRII in Mice Reduces Anxiety and Increases Object Exploration.

    Science.gov (United States)

    McBrayer, Zofeyah L; Dimova, Jiva; Pisansky, Marc T; Sun, Mu; Beppu, Hideyuki; Gewirtz, Jonathan C; O'Connor, Michael B

    2015-01-01

    To investigate the role of Bone Morphogenic Protein Receptor Type II (BMPRII) in learning, memory, and exploratory behavior in mice, a tissue-specific knockout of BMPRII in the post-natal hippocampus and forebrain was generated. We found that BMPRII mutant mice had normal spatial learning and memory in the Morris water maze, but showed significantly reduced swimming speeds with increased floating behavior. Further analysis using the Porsolt Swim Test to investigate behavioral despair did not reveal any differences in immobility between mutants and controls. In the Elevated Plus Maze, BMPRII mutants and Smad4 mutants showed reduced anxiety, while in exploratory tests, BMPRII mutants showed more interest in object exploration. These results suggest that loss of BMPRII in the mouse hippocampus and forebrain does not disrupt spatial learning and memory encoding, but instead impacts exploratory and anxiety-related behaviors.

  7. Forebrain-Specific Loss of BMPRII in Mice Reduces Anxiety and Increases Object Exploration.

    Directory of Open Access Journals (Sweden)

    Zofeyah L McBrayer

    Full Text Available To investigate the role of Bone Morphogenic Protein Receptor Type II (BMPRII in learning, memory, and exploratory behavior in mice, a tissue-specific knockout of BMPRII in the post-natal hippocampus and forebrain was generated. We found that BMPRII mutant mice had normal spatial learning and memory in the Morris water maze, but showed significantly reduced swimming speeds with increased floating behavior. Further analysis using the Porsolt Swim Test to investigate behavioral despair did not reveal any differences in immobility between mutants and controls. In the Elevated Plus Maze, BMPRII mutants and Smad4 mutants showed reduced anxiety, while in exploratory tests, BMPRII mutants showed more interest in object exploration. These results suggest that loss of BMPRII in the mouse hippocampus and forebrain does not disrupt spatial learning and memory encoding, but instead impacts exploratory and anxiety-related behaviors.

  8. Apple, Cherry, and Blackcurrant Increases Nuclear Factor Kappa B Activation in Liver of Transgenic Mice

    DEFF Research Database (Denmark)

    Balstad, Trude; Paur, Ingvild; Poulsen, Morten

    2010-01-01

    Nuclear factor kappa B (NF-B) is essential in normal physiology, and several human disorders involve inappropriate regulation of NF-B. Diets dominated by plant-based foods protect against chronic diseases, and several food derived compounds have been identified as promising NF-B modulators. We...... investigated the effects of diets supplemented with apple, blackcurrant, or cherries on lipopolysaccharide (LPS)-induced NF-B activation in transgenic NF-B-luciferase mice. Whole body and organ specific NF-B activities were determined. The mice had ad libitum access to the respective experimental diets for 7...... slightly higher whole-body NF-B activation at 4 h, and all 3 experimental groups had higher NF-B activation at 6 h. LPS-induced NF-B activation in liver was increased with all 3 experimental diets, but no effects were observed in other organs. Our findings indicate that high intakes of lyophilized fruits...

  9. Urinary hepcidin level as an early predictor of iron deficiency in children: A case control study

    Directory of Open Access Journals (Sweden)

    Gharib Amal F

    2011-08-01

    Full Text Available Abstract Background The ideal screening test would be capable of identifying iron deficiency in the absence of anemia. We tried to detect role of urinary hepcidin-25 level in early prediction of iron deficiency in children. Methods This is a case control study performed on 100 children in Hematology Unit of Pediatric Department, Zagazig University Hospital, Egypt. Our study included 25 cases of iron deficiency (ID stage-1 (iron depletion, 25 cases ID stage-2 (iron-deficient erythropoiesis, 25 cases ID stage-3 (iron deficiency anemia and 25 healthy children as a control group. Estimation of iron status parameters was done. Urinary hepcidin-25 level was detected. Results Urinary hepcidin-25 level was significantly lower in all stages of iron deficiency than in control group, more significant reduction in its level was observed with the progress in severity of iron deficiency. Urinary hepcidin showed significant positive correlation with hemoglobin, mean corpuscular volume, hematocrit value, serum iron and ferritin and transferrin saturation. In contrary, it showed significant negative correlation with serum transferrin and total iron binding capacity. Urinary hepcidin at cutoff point ≤0.94 nmol/mmol Cr could Predict ID stage-1 with sensitivity 88% and specificity 88%. Cutoff point ≤0.42 nmol/mmol Cr could predict ID stage-2 with sensitivity 96% and specificity 92%. Cutoff point ≤0.08 nmol/mmol Cr could Predict ID stage-3 with Sensitivity 96% and specificity 100%. Conclusions We can conclude that detection of urinary hepcidin-25 level was a simple and non invasive test and could predict iron deficiency very early, before appearance of hematological affections.

  10. The Role of Insulin Therapy in Correcting Hepcidin Levels in Patients with Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Driton Vela

    2017-05-01

    Full Text Available Objectives: Iron overload can cause or contribute to the pathogenesis of type 2 diabetes mellitus (T2DM, but how the major parameters of iron metabolism change in different settings of diabetes are still unclear. The aim of this study was to determine the relationship between iron, ferritin, and hepcidin levels in diabetic patients and the effect of insulin treatment. Methods: The study included 80 subjects, 60 with T2DM and 20 without (control group. Serum hepcidin, insulin, ferritin, and iron levels were determined as well as other clinical parameters. The associations between these parameters were analyzed between both groups. Results: Hepcidin levels expressed as mean± standard deviation between groups showed no significant changes (14.4±6.7 ng/mL for the control group, and 18.4±7.9 ng/mL for patients with diabetes, p = 0.069. Parameters of iron metabolism showed modest correlation with the parameters of glucose metabolism. However, the correlation between ferritin and insulin in both groups was statistically significant (p = 0.032; ρ = 0.480 vs. p = 0.011; ρ = 0.328. Conclusions: Our study showed that hepcidin levels in patients with T2DM on insulin therapy do not change, which might be a result of treatment with insulin. In this context, insulin treatment can be used as a novel method for correction of hepcidin levels. By correcting hepcidin levels, we can prevent cellular iron overload and reduce the risk of diabetes.

  11. Effects of broad bean (Vicia faba L.) extract consumption on leukocytes increase in mice

    OpenAIRE

    Amaro Terrazos, Jony; Moisés Saldaña, Ítalo

    2015-01-01

    We read with interest the article published by Amaro, which shows that there is an increase of leukocytes to manage beets in albino mice of the species Mus musculus Balb / c (1) strain. We want to share the results of a study that bean (Vicia faba L.), a plant that has the role in the diet of rural and urban dwellers for its contribution in proteins characteristic of all legume was used, and for their contribution carbohydrate, minerals and vitamins. The importance of this kind is increasing ...

  12. Post-transfusion changes in serum hepcidin and iron parameters in preterm infants.

    Science.gov (United States)

    Stripeli, Fotini; Kapetanakis, John; Gourgiotis, Dimitris; Drakatos, Antonis; Tsolia, Maria; Kossiva, Lydia

    2018-02-01

    Packed red blood cell transfusion is common in preterm neonates. Hepcidin acts as a negative feedback iron regulator. Iron parameters such as immature reticulocyte fraction (IRF) and high-light-scatter reticulocytes (HLR) are used to clarify iron metabolism. Very little is known about the regulation of hepcidin in preterm infants because most reports have evaluated prohepcidin. The aim of this study was therefore to evaluate serum hepcidin and establish hematological parameters in preterm infants after transfusion. The subjects consisted of 19 newborns (10 boys) with mean gestational age 29.1 ± 2.0 weeks, who had been transfused at the chronological age of 44.84 ± 19.61 days. Blood sample was collected before the transfusion and thereafter at 5 days and at 1 month. Serum hepcidin and other iron parameters were evaluated. Mean serum hepcidin before and 5 days after transfusion was significantly different (5.5 ± 5.1 vs 10 ± 7.9 ng/mL respectively, P = 0.005). IRF and % HLR were also decreased significantly, 5 days after transfusion (0.4 ± 0.2 vs 0.2 ± 0.1, P = 0.009; 1.4 ± 1.5% vs 0.5 ± 0.4%, P = 0.012, respectively). Changes in hepcidin 5 days after transfusion were correlated significantly with changes in mean corpuscular hemoglobin (β, 0.13; SE, 0.05; P = 0.017), total iron binding capacity (β, 3.74; SE, 1.56; P = 0.016) and transferrin (β, 2.9, SE, 1.4; P = 0.039). Serum hepcidin concentration, along with IRF and HLR, are potentially useful in estimating pre- and post-transfusion iron status. Larger studies are needed to evaluate the sensitivity and specificity of hepcidin compared with ordinary iron parameters in premature infants. © 2017 Japan Pediatric Society.

  13. Conditional Expression of the Androgen Receptor Increases Susceptibility of Bladder Cancer in Mice.

    Directory of Open Access Journals (Sweden)

    Daniel T Johnson

    Full Text Available Bladder cancer represents a significant human tumor burden, accounting for about 7.7% and 2.4% of all cancer cases in males and females, respectively. While men have a higher risk of developing bladder cancer, women tend to present at a later stage of disease and with more aggressive tumors. Previous studies have suggested a promotional role of androgen signaling in enhancing bladder cancer development. To directly assess the role of androgens in bladder tumorigenesis, we have developed a novel transgenic mouse strain, R26hARLoxP/+:Upk3aGCE/+, in which the human AR transgene is conditionally expressed in bladder urothelium. Intriguingly, both male and female R26hARLoxP/+:Upk3aGCE/+ mice display a higher incidence of urothelial cell carcinoma (UCC than the age and sex matched control littermates in response to the carcinogen, N-butyl-N-(4-hydroxybutyl nitrosamine (BBN. We detect expression of the human AR transgene in CK5-positive and p63-positive basal cells in bladder urothelium. Further analyses of UCC tissues from R26hARLoxP/+:Upk3aGCE/+ mice showed that the majority of tumor cells are of urothelial basal cell origin. Positive immunostaining of transgenic AR protein was observed in the majority of tumor cells of the transgenic mice, providing a link between transgenic AR expression and oncogenic transformation. We observed an increase in Ki67 positive cells within the UCC lesions of transgenic AR mice. Manipulating endogenous androgen levels by castration and androgen supplementation directly affected bladder tumor development in male and female R26hARLoxP/+:Upk3aGCE/+ mice, respectively. Taken together, our data demonstrate for the first time that conditional activation of transgenic AR expression in bladder urothelium enhances carciongen-induced bladder tumor formation in mice. This new AR transgenic mouse line mimics certain features of human bladder cancer and can be used to study bladder tumorigenesis and for drug development.

  14. Progesterone receptor antagonist CDB-4124 increases depression-like behavior in mice without affecting locomotor ability.

    Science.gov (United States)

    Beckley, Ethan H; Scibelli, Angela C; Finn, Deborah A

    2011-07-01

    Progesterone withdrawal has been proposed as an underlying factor in premenstrual syndrome and postpartum depression. Progesterone withdrawal induces forced swim test (FST) immobility in mice, a depression-like behavior, but the contribution of specific receptors to this effect is unclear. The role of progesterone's GABA(A) receptor-modulating metabolite allopregnanolone in depression- and anxiety-related behaviors has been extensively documented, but little attention has been paid to the role of progesterone receptors. We administered the classic progesterone receptor antagonist mifepristone (RU-38486) and the specific progesterone receptor antagonist CDB-4124 to mice that had been primed with progesterone for five days, and found that both compounds induced FST immobility reliably, robustly, and in a dose-dependent fashion. Although CDB-4124 increased FST immobility, it did not suppress initial activity in a locomotor test. These findings suggest that decreased progesterone receptor activity contributes to depression-like behavior in mice, consistent with the hypothesis that progesterone withdrawal may contribute to the symptoms of premenstrual syndrome or postpartum depression. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Progesterone receptor antagonist CDB-4124 increases depression-like behavior in mice without affecting locomotor ability

    Science.gov (United States)

    Beckley, Ethan H.; Scibelli, Angela C.; Finn, Deborah A.

    2010-01-01

    Progesterone withdrawal has been proposed as an underlying factor in premenstrual syndrome and postpartum depression. Progesterone withdrawal induces forced swim test (FST) immobility in mice, a depression-like behavior, but the contribution of specific receptors to this effect is unclear. The role of progesterone’s GABAA receptor-modulating metabolite allopregnanolone in depression- and anxiety-related behaviors has been extensively documented, but little attention has been paid to the role of progesterone receptors. We administered the classic progesterone receptor antagonist mifepristone (RU-38486) and the specific progesterone receptor antagonist CDB-4124 to mice that had been primed with progesterone for five days, and found that both compounds induced FST immobility reliably, robustly, and in a dose-dependent fashion. Although CDB-4124 increased FST immobility, it did not suppress initial activity in a locomotor test. These findings suggest that decreased progesterone receptor activity contributes to depression-like behavior in mice, consistent with the hypothesis that progesterone withdrawal may contribute to the symptoms of premenstrual syndrome or postpartum depression. PMID:21163582

  16. Increased sphingosine-1-phosphate improves muscle regeneration in acutely injured mdx mice

    Science.gov (United States)

    2013-01-01

    Background Presently, there is no effective treatment for the lethal muscle wasting disease Duchenne muscular dystrophy (DMD). Here we show that increased sphingosine-1-phoshate (S1P) through direct injection or via the administration of the small molecule 2-acetyl-4(5)-tetrahydroxybutyl imidazole (THI), an S1P lyase inhibitor, has beneficial effects in acutely injured dystrophic muscles of mdx mice. Methods We treated mdx mice with and without acute injury and characterized the histopathological and functional effects of increasing S1P levels. We also tested exogenous and direct administration of S1P on mdx muscles to examine the molecular pathways under which S1P promotes regeneration in dystrophic muscles. Results Short-term treatment with THI significantly increased muscle fiber size and extensor digitorum longus (EDL) muscle specific force in acutely injured mdx limb muscles. In addition, the accumulation of fibrosis and fat deposition, hallmarks of DMD pathology and impaired muscle regeneration, were lower in the injured muscles of THI-treated mdx mice. Furthermore, increased muscle force was observed in uninjured EDL muscles with a longer-term treatment of THI. Such regenerative effects were linked to the response of myogenic cells, since intramuscular injection of S1P increased the number of Myf5nlacz/+ positive myogenic cells and newly regenerated myofibers in injured mdx muscles. Intramuscular injection of biotinylated-S1P localized to muscle fibers, including newly regenerated fibers, which also stained positive for S1P receptor 1 (S1PR1). Importantly, plasma membrane and perinuclear localization of phosphorylated S1PR1 was observed in regenerating muscle fibers of mdx muscles. Intramuscular increases of S1P levels, S1PR1 and phosphorylated ribosomal protein S6 (P-rpS6), and elevated EDL muscle specific force, suggest S1P promoted the upregulation of anabolic pathways that mediate skeletal muscle mass and function. Conclusions These data show that S1P is

  17. Functional hypothalamic amenorrhea due to increased CRH tone in melanocortin receptor 2-deficient mice.

    Science.gov (United States)

    Matsuwaki, Takashi; Nishihara, Masugi; Sato, Tsuyoshi; Yoda, Tetsuya; Iwakura, Yoichiro; Chida, Dai

    2010-11-01

    Exposure to chronic stressors results in dysregulation of the hypothalamic-pituitary-adrenal axis and a disruption in reproduction. CRH, the principal regulator of the hypothalamic-pituitary-adrenal axis induces the secretion of ACTH from the pituitary, which stimulates adrenal steroidogenesis via the specific cell-surface melanocortin 2 receptor (MC2R). Previously, we demonstrated that MC2R(-/-) mice had undetectable levels of corticosterone despite high ACTH levels. Here, we evaluated the reproductive functions of female MC2R(-/-) mice and analyzed the mechanism of the disrupted cyclicity of these mice. The expression of CRH in the paraventricular nucleus was significantly increased in MC2R(-/-) mice under nonstressed conditions. Although MC2R(-/-) females were fertile, they showed a prolonged estrous cycle. After hormonal stimulation, MC2R(-/-) females produced nearly-normal numbers of eggs, but slightly less than MC2R(+/-) females, and showed near-normal ovarian histology. During diestrus, the number of GnRH-positive cells in the medial preoptic area was significantly reduced in MC2R(-/-) females. CRH type 1 receptor antagonist restored estrous cyclicity in MC2R(-/-) females. Kisspeptin-positive areas in the arcuate nucleus were comparable, whereas kisspeptin-positive areas in the anteroventral periventricular nucleus in MC2R(-/-) females were significantly reduced compared with MC2R(+/-) females, suggesting that arcuate nucleus kisspeptin is not involved, but anteroventral periventricular nucleus kisspeptin may be involved, in the maintenance of estrous cyclicity. Our findings show that high levels of hypothalamic CRH disturb estrous cyclicity in the female animals and that the MC2R(-/-) female is a unique animal model of functional hypothalamic amenorrhea.

  18. Enhanced depletion of glutathione and increased liver oxidative damage in aflatoxin-fed mice infected with Plasmodium berghei

    DEFF Research Database (Denmark)

    Ankrah, N A; Sittie, A; Addo, P G

    1995-01-01

    levels accompanied by a significant increase in serum cholinesterase and liver malonic dialdehyde levels in the mice fed aflatoxin compared with those in the control group. The results suggested that malaria parasites can enhance depletion of host glutathione and oxidative damage of the liver in mice fed...

  19. Inhibition of myeloperoxidase decreases vascular oxidative stress and increases vasodilatation in sickle cell disease mice1[S

    Science.gov (United States)

    Zhang, Hao; Xu, Hao; Weihrauch, Dorothee; Jones, Deron W.; Jing, Xigang; Shi, Yang; Gourlay, David; Oldham, Keith T.; Hillery, Cheryl A.; Pritchard, Kirkwood A.

    2013-01-01

    Activated leukocytes and polymorphonuclear neutrophils (PMN) release myeloperoxidase (MPO), which binds to endothelial cells (EC), is translocated, and generates oxidants that scavenge nitric oxide (NO) and impair EC function. To determine whether MPO impairs EC function in sickle cell disease (SCD), control (AA) and SCD mice were treated with N-acetyl-lysyltyrosylcysteine-amide (KYC). SCD humans and mice have high plasma MPO and soluble L-selectin (sL-selectin). KYC had no effect on MPO but decreased plasma sL-selectin and malondialdehyde in SCD mice. MPO and 3-chlorotyrosine (3-ClTyr) were increased in SCD aortas. KYC decreased MPO and 3-ClTyr in SCD aortas to the levels in AA aortas. Vasodilatation in SCD mice was impaired. KYC increased vasodilatation in SCD mice more than 2-fold, to ∼60% of levels in AA mice. KYC inhibited MPO-dependent 3-ClTyr formation in EC proteins. SCD mice had high plasma alanine transaminase (ALT), which tended to decrease in KYC-treated SCD mice (P = 0.07). KYC increased MPO and XO/XDH and decreased 3-ClTyr and 3-nitrotyrosine (3-NO2Tyr) in SCD livers. These data support the hypothesis that SCD increases release of MPO, which generates oxidants that impair EC function and injure livers. Inhibiting MPO is an effective strategy for decreasing oxidative stress and liver injury and restoring EC function in SCD. PMID:23956444

  20. Impaired inflammatory response and increased oxidative stress and neurodegeneration after brain injury in interleukin-6-deficient mice

    DEFF Research Database (Denmark)

    Penkowa, M; Giralt, M; Carrasco, J

    2000-01-01

    of the antioxidants Cu/Zn-superoxide dismutase (Cu/Zn-SOD), Mn-SOD, and catalase remained unaffected by the IL-6 deficiency. The lesioned mice showed increased oxidative stress, as judged by malondialdehyde (MDA) and nitrotyrosine (NITT) levels and by formation of inducible nitric oxide synthase (iNOS). IL-6KO mice...

  1. Chronic cladribine administration increases amyloid beta peptide generation and plaque burden in mice.

    Directory of Open Access Journals (Sweden)

    Crystal D Hayes

    Full Text Available The clinical uses of 2-chloro-2'-deoxyadenosine (2-CDA or cladribine which was initially prescribed to patients with hematological and lymphoid cancers is now extended to treat patients with multiple sclerosis (MS. Previous data has shown that 2-CDA has high affinity to the brain and readily passes through the blood brain barrier reaching CSF concentrations 25% of that found in plasma. However, whether long-term administration of 2-CDA can lead to any adverse effects in patients or animal models is not yet clearly known.Here we show that exposure of 2-CDA to CHO cells stably expressing wild-type APP751 increased generation and secretion of amyloid β peptide (Aβ in to the conditioned medium. Interestingly, increased Aβ levels were noticed even at non-toxic concentrations of 2-CDA. Remarkably, chronic treatment of APdE9 mice, a model of Alzheimer's disease with 2-CDA for 60 days increased amyloid plaque burden by more than 1-fold. Increased Aβ generation appears to result from increased turnover of APP as revealed by cycloheximide-chase experiments. Additionally, surface labeling of APP with biotin and immunoprecipitation of surface labeled proteins with anti-biotin antibody also indicated increased APP at the cell surface in 2-CDA treated cells compared to controls. Increased turnover of APP by 2-CDA in turn might be a consequence of decreased protein levels of PIN 1, which is known to regulate cis-trans isomerization and phosphorylation of APP. Most importantly, like many other oncology drugs, 2-CDA administration led to significant delay in acquiring a reward-based learning task in a T maze paradigm.Taken together, these data provide compelling evidence for the first time that chronic 2-CDA administration can increase amyloidogenic processing of APP leading to robustly increased plaque burden which may be responsible for the observed deficits in learning skills. Thus chronic treatment of mice with 2-CDA can have deleterious effects in vivo.

  2. Increased metastatic potential of tumor cells in von Willebrand factor-deficient mice.

    Science.gov (United States)

    Terraube, V; Pendu, R; Baruch, D; Gebbink, M F B G; Meyer, D; Lenting, P J; Denis, C V

    2006-03-01

    The key role played by von Willebrand factor (VWF) in platelet adhesion suggests a potential implication in various pathologies, where this process is involved. In cancer metastasis development, tumor cells interact with platelets and the vessel wall to extravasate from the circulation. As a potential mediator of platelet-tumor cell interactions, VWF could influence this early step of tumor spread and therefore play a role in cancer metastasis. To investigate whether VWF is involved in metastasis development. In a first step, we characterized the interaction between murine melanoma cells B16-BL6 and VWF in vitro. In a second step, an experimental metastasis model was used to compare the formation of pulmonary metastatic foci in C57BL/6 wild-type and VWF-null mice following the injection of B16-BL6 cells or Lewis lung carcinoma cells. In vitro adhesion assays revealed that VWF is able to promote a dose-dependent adhesion of B16-BL6 cells via its Arg-Gly-Asp (RGD) sequence. In the experimental metastasis model, we found a significant increase in the number of pulmonary metastatic foci in VWF-null mice compared with the wild-type mice, a phenotype that could be corrected by restoring VWF plasma levels. We also showed that increased survival of the tumor cells in the lungs during the first 24 h in the absence of VWF was the cause of this increased metastasis. These findings suggest that VWF plays a protective role against tumor cell dissemination in vivo. Underlying mechanisms remain to be investigated.

  3. Telomerase-Deficient Mice Exhibit Bone Loss Owing to Defects in Osteoblasts and Increased Osteoclastogenesis by Inflammatory Microenvironment

    DEFF Research Database (Denmark)

    Saeed, H.; Abdallah, B. M.; Ditzel, N.

    2011-01-01

    Telomere shortening owing to telomerase deficiency leads to accelerated senescence of human skeletal (mesenchymal) stem cells (MSCs) in vitro, whereas overexpression leads to telomere elongation, extended life span, and enhanced bone formation. To study the role of telomere shortening in vivo, we...... studied the phenotype of telomerase-deficient mice (Terc(-/-)).Terc(-/-) mice exhibited accelerated age-related bone loss starting at 3 months of age and during 12 months of follow-up revealed by dual-energy X-ray absorptiometric (DXA) scanning and by micro-computed tomography (mu CT). Bone...... histomorphometry revealed decreased mineralized surface and bone-formation rate as well as increased osteoclast number and size in Terc(-/-) mice. Also, serum total deoxypyridinoline (tDPD) was increased in Terc(-/-) mice. MSCs and osteoprogenitors isolated from Terc(-l-) mice exhibited intrinsic defects...

  4. Tight Skin 2 Mice Exhibit Delayed Wound Healing Caused by Increased Elastic Fibers in Fibrotic Skin.

    Science.gov (United States)

    Long, Kristen B; Burgwin, Chelsea M; Huneke, Richard; Artlett, Carol M; Blankenhorn, Elizabeth P

    2014-09-01

    Rationale: The Tight Skin 2 (Tsk2) mouse model of systemic sclerosis (SSc) has many features of human disease, including tight skin, excessive collagen deposition, alterations in the extracellular matrix (ECM), increased elastic fibers, and occurrence of antinuclear antibodies with age. A tight skin phenotype is observed by 2 weeks of age, but measurable skin fibrosis is only apparent at 10 weeks. We completed a series of wound healing experiments to determine how fibrosis affects wound healing in Tsk2/+ mice compared with their wild-type (WT) littermates. Method: We performed these experiments by introducing four 4 mm biopsy punched wounds on the back of each mouse, ventral of the midline, and observed wound healing over 10 days. Tsk2/+ mice showed significantly delayed wound healing and increased wound size compared with the WT littermates at both 5 and 10 weeks of age. We explored the potential sources of this response by wounding Tsk2/+ mice that were genetically deficient either for the NLRP3 inflammasome (a known fibrosis mediator), or for elastic fibers in the skin, using a fibulin-5 knockout. Conclusion: We found that the loss of elastic fibers restores normal wound healing in the Tsk2/+ mouse and that the loss of the NLRP3 inflammasome had no effect. We conclude that elastic fiber dysregulation is the primary cause of delayed wound healing in the Tsk2/+ mouse and therapies that promote collagen deposition in the tissue matrix in the absence of elastin deposition might be beneficial in promoting wound healing in SSc and other diseases.

  5. Deficiency of heat shock transcription factor 1 suppresses heat stress-associated increase in slow soleus muscle mass of mice.

    Science.gov (United States)

    Ohno, Y; Egawa, T; Yokoyama, S; Nakai, A; Sugiura, T; Ohira, Y; Yoshioka, T; Goto, K

    2015-12-01

    Effects of heat shock transcription factor 1 (HSF1) deficiency on heat stress-associated increase in slow soleus muscle mass of mice were investigated. Both HSF1-null and wild-type mice were randomly assigned to control and heat-stressed groups. Mice in heat-stressed group were exposed to heat stress (41 °C for 60 min) in an incubator without anaesthesia. Significant increase in wet and dry weights, and protein content of soleus muscle in wild-type mice was observed seven days after the application of the heat stress. However, heat stress had no impact on soleus muscle mass in HSF1-null mice. Neither type of mice exhibited much effect of heat stress on HSF mRNA expression (HSF1, HSF2 and HSF4). On the other hand, heat stress upregulated heat shock proteins (HSPs) at the mRNA (HSP72) and protein (HSP72 and HSP110) levels in wild-type mice, but not in HSF1-null mice. The population of Pax7-positive nuclei relative to total myonuclei of soleus muscle in wild-type mice was significantly increased by heat stress, but not in HSF1-null mice. Furthermore, the absence of HSF1 gene suppressed heat stress-associated phosphorylation of Akt and p70 S6 kinase (p-p70S6K) in soleus muscle. Heat stress-associated increase in skeletal muscle mass may be induced by HSF1 and/or HSF1-mediated stress response that activates muscle satellite cells and Akt/p70S6K signalling pathway. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  6. Expression and cellular localization of hepcidin mRNA and protein in normal rat brain

    Czech Academy of Sciences Publication Activity Database

    Raha-Chowdhury, R.; Raha, A.A.; Forostyak, Serhiy; Zhao, J.W.; Stott, S.R.W.; Bomford, A.

    2015-01-01

    Roč. 16, APR 21 (2015), s. 24 ISSN 1471-2202 Institutional support: RVO:68378041 Keywords : hepcidin * ferroportin * defensin * inflammatory cytokines * brain iron homeostasis * blood brain barrier * pericytes * sub-ventricular zone * neurogenesis Subject RIV: FH - Neurology Impact factor: 2.304, year: 2015

  7. A multi-scale model of hepcidin promoter regulation reveals factors controlling systemic iron homeostasis.

    Directory of Open Access Journals (Sweden)

    Guillem Casanovas

    2014-01-01

    Full Text Available Systemic iron homeostasis involves a negative feedback circuit in which the expression level of the peptide hormone hepcidin depends on and controls the iron blood levels. Hepcidin expression is regulated by the BMP6/SMAD and IL6/STAT signaling cascades. Deregulation of either pathway causes iron-related diseases such as hemochromatosis or anemia of inflammation. We quantitatively analyzed how BMP6 and IL6 control hepcidin expression. Transcription factor (TF phosphorylation and reporter gene expression were measured under co-stimulation conditions, and the promoter was perturbed by mutagenesis. Using mathematical modeling, we systematically analyzed potential mechanisms of cooperative and competitive promoter regulation by the transcription factors, and experimentally validated the model predictions. Our results reveal that hepcidin cross-regulation primarily occurs by combinatorial transcription factor binding to the promoter, whereas signaling crosstalk is insignificant. We find that the presence of two BMP-responsive elements enhances the steepness of the promoter response towards the iron-sensing BMP signaling axis, which promotes iron homeostasis in vivo. IL6 co-stimulation reduces the promoter sensitivity towards the BMP signal, because the SMAD and STAT transcription factors compete for recruiting RNA polymerase to the transcription start site. This may explain why inflammatory signals disturb iron homeostasis in anemia of inflammation. Taken together, our results reveal why the iron homeostasis circuit is sensitive to perturbations implicated in disease.

  8. Leptin Increases Striatal Dopamine D2 Receptor Binding in Leptin-Deficient Obese (ob/ob) Mice

    Energy Technology Data Exchange (ETDEWEB)

    Pfaffly, J.; Michaelides, M.; Wang, G-J.; Pessin, J.E.; Volkow, N.D.; Thanos, P.K.

    2010-06-01

    Peripheral and central leptin administration have been shown to mediate central dopamine (DA) signaling. Leptin-receptor deficient rodents show decreased DA D2 receptor (D2R) binding in striatum and unique DA profiles compared to controls. Leptin-deficient mice show increased DA activity in reward-related brain regions. The objective of this study was to examine whether basal D2R-binding differences contribute to the phenotypic behaviors of leptin-deficient ob/ob mice, and whether D2R binding is altered in response to peripheral leptin treatment in these mice. Leptin decreased body weight, food intake, and plasma insulin concentration in ob/ob mice but not in wild-type mice. Basal striatal D2R binding (measured with autoradiography [{sup 3}H] spiperone) did not differ between ob/ob and wild-type mice but the response to leptin did. In wild-type mice, leptin decreased striatal D2R binding, whereas, in ob/ob mice, leptin increased D2R binding. Our findings provide further evidence that leptin modulates D2R expression in striatum and that these effects are genotype/phenotype dependent.

  9. Irgm1-deficient mice exhibit Paneth cell abnormalities and increased susceptibility to acute intestinal inflammation.

    Science.gov (United States)

    Liu, Bo; Gulati, Ajay S; Cantillana, Viviana; Henry, Stanley C; Schmidt, Elyse A; Daniell, Xiaoju; Grossniklaus, Emily; Schoenborn, Alexi A; Sartor, R Balfour; Taylor, Gregory A

    2013-10-15

    Crohn's disease (CD) is a chronic, immune-mediated, inflammatory disorder of the intestine that has been linked to numerous susceptibility genes, including the immunity-related GTPase (IRG) M (IRGM). IRGs comprise a family of proteins known to confer resistance to intracellular infections through various mechanisms, including regulation of phagosome processing, cell motility, and autophagy. However, despite its association with CD, the role of IRGM and other IRGs in regulating intestinal inflammation is unclear. We investigated the involvement of Irgm1, an ortholog of IRGM, in the genesis of murine intestinal inflammation. After dextran sodium sulfate exposure, Irgm1-deficient [Irgm1 knockout (KO)] mice showed increased acute inflammation in the colon and ileum, with worsened clinical responses. Marked alterations of Paneth cell location and granule morphology were present in Irgm1 KO mice, even without dextran sodium sulfate exposure, and were associated with impaired mitophagy and autophagy in Irgm1 KO intestinal cells (including Paneth cells). This was manifested by frequent tubular and swollen mitochondria and increased LC3-positive autophagic structures. Interestingly, these LC3-positive structures often contained Paneth cell granules. These results suggest that Irgm1 modulates acute inflammatory responses in the mouse intestine, putatively through the regulation of gut autophagic processes, that may be pivotal for proper Paneth cell functioning.

  10. Chronic pyruvate supplementation increases exploratory activity and brain energy reserves in young and middle-aged mice

    DEFF Research Database (Denmark)

    Koivisto, Hennariikka; Leinonen, Henri; Puurula, Mari

    2016-01-01

    to brain and thereby attenuate aging- or AD-related cognitive impairment. Mice received ~800 mg/kg/day Na-pyruvate in their chow for 2-6 months. In middle-aged wild-type mice and in 6.5-month-old APP/PS1 mice, pyruvate facilitated spatial learning and increased exploration of a novel odor. However......, in passive avoidance task for fear memory, the treatment group was clearly impaired. Independent of age, long-term pyruvate increased explorative behavior, which likely explains the paradoxical impairment in passive avoidance. We also assessed pyruvate effects on body weight, muscle force, and endurance...

  11. Exposure to bisphenol A, but not phthalates, increases spontaneous diabetes type 1 development in NOD mice.

    Science.gov (United States)

    Bodin, Johanna; Kocbach Bølling, Anette; Wendt, Anna; Eliasson, Lena; Becher, Rune; Kuper, Frieke; Løvik, Martinus; Nygaard, Unni Cecilie

    2015-01-01

    Type 1 diabetes mellitus (T1DM) is an autoimmune destruction of insulin producing pancreatic beta-cells due to a genetic predisposition and can be triggered by environmental factors. We have previously shown that bisphenol A (BPA) accelerates the spontaneous development of diabetes in non-obese diabetic (NOD) mice. Here, we hypothesized that oral exposure to a mixture of the endocrine disruptors BPA and phthalates, relevant for human exposure, would accelerate diabetes development compared to BPA alone. NOD mice were exposed to BPA (1 mg/l), a mixture of phthalates (DEHP 1 mg/l, DBP 0.2 mg/l, BBP 10 mg/l and DiBP 20 mg/l) or a combination of BPA and the phthalate mixture through drinking water from conception and throughout life. Previous observations that BPA exposure increased the prevalence of diabetes and insulitis and decreased the number of tissue resident macrophages in pancreas were confirmed, and extended by demonstrating that BPA exposure also impaired the phagocytic activity of peritoneal macrophages. None of these effects were observed after phthalate exposure alone. The phthalate exposure in combination with BPA seemed to dampen the BPA effects on macrophage number and function as well as diabetes development, but not insulitis development. Exposure to BPA alone or in combination with phthalates decreased cytokine release (TNFα, IL-6, IL-10, IFNγ, IL-4) from in vitro stimulated splenocytes and lymph node cells, indicating systemic changes in immune function. In conclusion, exposure to BPA, but not to phthalates or mixed exposure to BPA and phthalates, accelerated diabetes development in NOD mice, apparently in part via systemic immune alterations including decreased macrophage function.

  12. Exposure to bisphenol A, but not phthalates, increases spontaneous diabetes type 1 development in NOD mice

    Directory of Open Access Journals (Sweden)

    Johanna Bodin

    2015-01-01

    Full Text Available Type 1 diabetes mellitus (T1DM is an autoimmune destruction of insulin producing pancreatic beta-cells due to a genetic predisposition and can be triggered by environmental factors. We have previously shown that bisphenol A (BPA accelerates the spontaneous development of diabetes in non-obese diabetic (NOD mice. Here, we hypothesized that oral exposure to a mixture of the endocrine disruptors BPA and phthalates, relevant for human exposure, would accelerate diabetes development compared to BPA alone. NOD mice were exposed to BPA (1 mg/l, a mixture of phthalates (DEHP 1 mg/l, DBP 0.2 mg/l, BBP 10 mg/l and DiBP 20 mg/l or a combination of BPA and the phthalate mixture through drinking water from conception and throughout life. Previous observations that BPA exposure increased the prevalence of diabetes and insulitis and decreased the number of tissue resident macrophages in pancreas were confirmed, and extended by demonstrating that BPA exposure also impaired the phagocytic activity of peritoneal macrophages. None of these effects were observed after phthalate exposure alone. The phthalate exposure in combination with BPA seemed to dampen the BPA effects on macrophage number and function as well as diabetes development, but not insulitis development. Exposure to BPA alone or in combination with phthalates decreased cytokine release (TNFα, IL-6, IL-10, IFNγ, IL-4 from in vitro stimulated splenocytes and lymph node cells, indicating systemic changes in immune function. In conclusion, exposure to BPA, but not to phthalates or mixed exposure to BPA and phthalates, accelerated diabetes development in NOD mice, apparently in part via systemic immune alterations including decreased macrophage function.

  13. Voluntary aerobic exercise increases arterial resilience and mitochondrial health with aging in mice

    Science.gov (United States)

    Gioscia-Ryan, Rachel A.; Battson, Micah L.; Cuevas, Lauren M.; Zigler, Melanie C.; Sindler, Amy L.; Seals, Douglas R.

    2016-01-01

    Mitochondrial dysregulation and associated excessive reactive oxygen species (mtROS) production is a key source of oxidative stress in aging arteries that reduces baseline function and may influence resilience (ability to withstand stress). We hypothesized that voluntary aerobic exercise would increase arterial resilience in old mice. An acute mitochondrial stressor (rotenone) caused greater (further) impairment in peak carotid EDD in old (~27 mo., OC, n=12;−32.5±-10.5%) versus young (~7 mo., YC n=11;−5.4±- 3.7%) control male mice, whereas arteries from young and old exercising (YVR n=10 and OVR n=11, 10-wk voluntary running;−0.8±-2.1% and −8.0±4.9%, respectively) mice were protected. Ex-vivo simulated Western diet (WD, high glucose and palmitate) caused greater impairment in EDD in OC (-28.5±8.6%) versus YC (-16.9±5.2%) and YVR (-15.3±2.3%), whereas OVR (-8.9±3.9%) were more resilient (not different versus YC). Simultaneous ex-vivo treatment with mitochondria-specific antioxidant MitoQ attenuated WD-induced impairments in YC and OC, but not YVR or OVR, suggesting that exercise improved resilience to mtROS-mediated stress. Exercise normalized age-related alterations in aortic mitochondrial protein markers PGC-1α, SIRT-3 and Fis1 and augmented cellular antioxidant and stress response proteins. Our results indicate that arterial aging is accompanied by reduced resilience and mitochondrial health, which are restored by voluntary aerobic exercise. PMID:27875805

  14. Voluntary aerobic exercise increases arterial resilience and mitochondrial health with aging in mice.

    Science.gov (United States)

    Gioscia-Ryan, Rachel A; Battson, Micah L; Cuevas, Lauren M; Zigler, Melanie C; Sindler, Amy L; Seals, Douglas R

    2016-11-22

    Mitochondrial dysregulation and associated excessive reactive oxygen species (mtROS) production is a key source of oxidative stress in aging arteries that reduces baseline function and may influence resilience (ability to withstand stress). We hypothesized that voluntary aerobic exercise would increase arterial resilience in old mice. An acute mitochondrial stressor (rotenone) caused greater (further) impairment in peak carotid EDD in old (~27 mo., OC, n=12; -32.5±-10.5%) versus young (~7 mo., YC n=11; -5.4±- 3.7%) control male mice, whereas arteries from young and old exercising (YVR n=10 and OVR n=11, 10-wk voluntary running; -0.8±-2.1% and -8.0±4.9%, respectively) mice were protected. Ex-vivo simulated Western diet (WD, high glucose and palmitate) caused greater impairment in EDD in OC (-28.5±8.6%) versus YC (-16.9±5.2%) and YVR (-15.3±2.3%), whereas OVR (-8.9±3.9%) were more resilient (not different versus YC). Simultaneous ex-vivo treatment with mitochondria-specific antioxidant MitoQ attenuated WD-induced impairments in YC and OC, but not YVR or OVR, suggesting that exercise improved resilience to mtROS-mediated stress. Exercise normalized age-related alterations in aortic mitochondrial protein markers PGC-1α, SIRT-3 and Fis1 and augmented cellular antioxidant and stress response proteins. Our results indicate that arterial aging is accompanied by reduced resilience and mitochondrial health, which are restored by voluntary aerobic exercise.

  15. Deletion of the Wolfram syndrome-related gene Wfs1 results in increased sensitivity to ethanol in female mice.

    Science.gov (United States)

    Raud, Sirli; Reimets, Riin; Loomets, Maarja; Sütt, Silva; Altpere, Alina; Visnapuu, Tanel; Innos, Jürgen; Luuk, Hendrik; Plaas, Mario; Volke, Vallo; Vasar, Eero

    2015-08-01

    Wolfram syndrome, induced by mutation in WFS1 gene, increases risk of developing mood disorders in humans. In mice, Wfs1 deficiency cause higher anxiety-like behaviour and increased response to anxiolytic-like effect of diazepam, a GABAA receptor agonist. As GABAergic system is also target for ethanol, we analysed its anxiolytic-like and sedative properties in Wfs1-deficient mice using elevated plus-maze test and tests measuring locomotor activity and coordination, respectively. Additionally loss of righting reflex test was conducted to study sedative/hypnotic properties of ethanol, ketamine and pentobarbital. To evaluate pharmacokinetics of ethanol in mice enzymatic colour test was used. Finally, gene expression of alpha subunits of GABAA receptors following ethanol treatment was studied by real-time-PCR. Compared to wild-types, Wfs1-deficient mice were more sensitive to ethanol-induced anxiolytic-like effect, but less responsive to impairment of motor coordination. Ethanol and pentobarbital, but not ketamine, caused longer duration of hypnosis in Wfs1-deficient mice. The expression of Gabra2 subunit at 30 minutes after ethanol injection was significantly increased in the frontal cortex of Wfs1-deficient mice as compared to respective vehicle-treated mice. For the temporal lobe, similar change in Gabra2 mRNA occurred at 60 minutes after ethanol treatment in Wfs1-deficient mice. No changes were detected in Gabra1 and Gabra3 mRNA following ethanol treatment. Taken together, increased anxiolytic-like effect of ethanol in Wfs1-deficient mice is probably related to altered Gabra2 gene expression. Increased anti-anxiety effect of GABAA receptor agonists in the present work and earlier studies (Luuk et al., 2009) further suggests importance of Wfs1 gene in the regulation of emotional behaviour. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Evaluation of plasma sphingosine 1-phosphate, hepcidin and cardiovascular damage biomarkers (cardiac troponin I and homocysteine) in rats infected with brucellosis and vaccinated (Rev-1, RB-51).

    Science.gov (United States)

    Azimzadeh, Kaveh; Nasrollahi Nargesabad, Reza; Vousooghi, Nasim

    2017-08-01

    Brucellosis is known as one of important zoonosis. Studying the histological and biochemical effects of the disease could help to increase our knowledge about it. The aim of the present study was to evaluate changes of plasma parameters after intraperitoneal injection of two species of Brucella (Brucella melitensis and Brucella abortus) and two vaccines (Rev-1, RB-51) in the rat. Forty male rats were divided into five groups (n = 8 in each group). Two groups received suspensions of Brucella abortus and Brucella melitensis and two other groups were injected intraperitoneally with two mentioned vaccines and the last group received only distilled water. The results showed a significant increase in sphingosine 1-phosphate, Malondialdehyde, hepcidin, homocysteine, cardiac troponin I and copper levels and a considerable decrease in the levels of iron and zinc (P ≤ 0.01) in infected groups compared to the control animals. In vaccinated groups, hepcidin was increased but other parameters were not changed in comparison to the control group. It can be concluded that increase of homocysteine and cardiac troponin I in brucellosis could be a warning for cardiac adverse effects. Besides, increase of sphingosine 1-phosphate probably indicates its stimulant and modulatory effects in anti- Brucellosis biochemical pathways of the host. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. A mutation in the HFE gene is associated with altered brain iron profiles and increased oxidative stress in mice.

    Science.gov (United States)

    Nandar, Wint; Neely, Elizabeth B; Unger, Erica; Connor, James R

    2013-06-01

    Because of the increasing evidence that H63D HFE polymorphism appears in higher frequency in neurodegenerative diseases, we evaluated the neurological consequences of H63D HFE in vivo using mice that carry H67D HFE (homologous to human H63D). Although total brain iron concentration did not change significantly in the H67D mice, brain iron management proteins expressions were altered significantly. The 6-month-old H67D mice had increased HFE and H-ferritin expression. At 12 months, H67D mice had increased H- and L-ferritin but decreased transferrin expression suggesting increased iron storage and decreased iron mobilization. Increased L-ferritin positive microglia in H67D mice suggests that microglia increase iron storage to maintain brain iron homeostasis. The 6-month-old H67D mice had increased levels of GFAP, increased oxidatively modified protein levels, and increased cystine/glutamate antiporter (xCT) and hemeoxygenase-1 (HO-1) expression indicating increased metabolic and oxidative stress. By 12 months, there was no longer increased astrogliosis or oxidative stress. The decrease in oxidative stress at 12 months could be related to an adaptive response by nuclear factor E2-related factor 2 (Nrf2) that regulates antioxidant enzymes expression and is increased in the H67D mice. These findings demonstrate that the H63D HFE impacts brain iron homeostasis, and promotes an environment of oxidative stress and induction of adaptive mechanisms. These data, along with literature reports on humans with HFE mutations provide the evidence to overturn the traditional paradigm that the brain is protected from HFE mutations. The H67D knock-in mouse can be used as a model to evaluate how the H63D HFE mutation contributes to neurodegenerative diseases. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. A strong anti-inflammatory signature revealed by liver transcription profiling of Tmprss6-/- mice.

    Directory of Open Access Journals (Sweden)

    Michela Riba

    Full Text Available Control of systemic iron homeostasis is interconnected with the inflammatory response through the key iron regulator, the antimicrobial peptide hepcidin. We have previously shown that mice with iron deficiency anemia (IDA-low hepcidin show a pro-inflammatory response that is blunted in iron deficient-high hepcidin Tmprss6 KO mice. The transcriptional response associated with chronic hepcidin overexpression due to genetic inactivation of Tmprss6 is unknown. By using whole genome transcription profiling of the liver and analysis of spleen immune-related genes we identified several functional pathways differentially expressed in Tmprss6 KO mice, compared to IDA animals and thus irrespective of the iron status. In the effort of defining genes potentially targets of Tmprss6 we analyzed liver gene expression changes according to the genotype and independently of treatment. Tmprss6 inactivation causes down-regulation of liver pathways connected to immune and inflammatory response as well as spleen genes related to macrophage activation and inflammatory cytokines production. The anti-inflammatory status of Tmprss6 KO animals was confirmed by the down-regulation of pathways related to immunity, stress response and intracellular signaling in both liver and spleen after LPS treatment. Opposite to Tmprss6 KO mice, Hfe(-/- mice are characterized by iron overload with inappropriately low hepcidin levels. Liver expression profiling of Hfe(-/- deficient versus iron loaded mice show the opposite expression of some of the genes modulated by the loss of Tmprss6. Altogether our results confirm the anti-inflammatory status of Tmprss6 KO mice and identify new potential target pathways/genes of Tmprss6.

  19. Social crowding in the night-time reduces an anxiety-like behavior and increases social interaction in adolescent mice.

    Science.gov (United States)

    Ago, Yukio; Tanaka, Tatsunori; Ota, Yuki; Kitamoto, Mari; Imoto, Emina; Takuma, Kazuhiro; Matsuda, Toshio

    2014-08-15

    Rearing in crowded conditions is a psychosocial stressor that affects biological functions. The effects of continuous crowding for many days have been studied, but those of crowding over a limited time have not. In this study, we examined the effects of night-time or daytime crowding over 2 weeks on behavior in adolescent and adult mice. Crowding (20 mice/cage) in either the night-time or daytime did not affect locomotor activity in the open field test or cognitive function in the fear conditioning test. In contrast, night-time crowding, but not daytime crowding, had an anxiolytic effect in the elevated plus-maze test and increased social interaction in adolescent mice, but not in adult mice. The first night-time, but not daytime, crowding increased plasma corticosterone levels in adolescent mice, although night-time crowding over 2 weeks did not affect the corticosterone levels. Furthermore, no significant effects of the first crowding were observed in adult mice. In a second crowding condition (six mice/small cage), the anxiolytic-like effects of night-time crowding and the change in plasma corticosterone levels were not observed, suggesting that the density of mice is not important for the behavioral consequences of crowding. Night-time crowding did not affect neurotrophic/growth factor levels and hippocampal neurogenesis in adolescent mice. These findings suggest that night-time crowding leads to anxiolytic-like behaviors in adolescent mice, and imply that night-time crowding stress in adolescence may be beneficial to brain functions. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Genetic ablation of CD68 results in mice with increased bone and dysfunctional osteoclasts.

    Directory of Open Access Journals (Sweden)

    Jason W Ashley

    Full Text Available CD68 is a member of the lysosome associated membrane protein (LAMP family that is restricted in its expression to cells of the monocyte/macrophage lineage. This lineage restriction includes osteoclasts, and, while previous studies of CD68 in macrophages and dendritic cells have proposed roles in lipid metabolism, phagocytosis, and antigen presentation, the expression and function of CD68 in osteoclasts have not been explored. In this study, we investigated the expression and localization of CD68 in macrophages and osteoclasts in response to the monocyte/macrophage-colony stimulating factor (M-CSF and the receptor activator of NF-κB ligand (RANKL. We found that M-CSF stimulates CD68 expression and RANKL alters the apparent molecular weight of CD68 as measured by Western immunoblotting. In addition, we explored the significance of CD68 expression in osteoclasts by generating mice that lack expression of CD68. These mice have increased trabecular bone, and in vitro assessment of CD68(-/- osteoclasts revealed that, in the absence of CD68, osteoclasts demonstrate an accumulation of intracellular vesicle-like structures, and do not efficiently resorb bone. These findings demonstrate a role for CD68 in the function of osteoclasts, and future studies will determine the mechanistic nature of the defects seen in CD68(-/- osteoclasts.

  1. Radiation enhances silica translocation to the pulmonary interstitium and increases fibrosis in mice

    International Nuclear Information System (INIS)

    Adamson, I.Y.R.

    1992-01-01

    The effects of whole body irradiation (WBR) on particle clearance and the development of pulmonary fibrosis have been investigated. Using carbon, clearance is accomplished by polymorphonuclear leukocytes (PMN) and alveolar macrophages (AM), and only a few particles reach the interstitum. However, in preirradiated mice, the usual eflux of inflammatory cells is much delayed so that more free carbon remains in the alveoli, and by 1 week, many particles cross the epithelium to be phagocytized by interstitial macrophages. Carbon is found in the peribronchiolar interstitium 6 months later with no evidence of fibrosis. In the present study, mice received 1 mg silica intratracheally 2 days after 6.5 Gy WBR when the white blood cell count was low. A much-reduced Am and PMN response was found in the following 2 weeks compared to the reaction to silica alone, and many silica particles reached interstitial macrophages. In this case, macrophage activation by silica was associated with fibroblast proliferation, and by 16 weeks, much more pulmonary fibrosis was produced than after silica or irradiation only. This was measured biochemically and correlated with a large increase in retained silica in the irradiation-silica group. The results indicate that radiation inhibits the inflammatory response to particle instillation, resulting in greater translocation of free particles to the pulmonary interstitium. In the case of silica, the greater, prolonged interaction with interstitial macrophages leads to a much exaggerated fibrotic reaction. 17 refs., 11 figs

  2. Adenovirus-mediated sphingomyelin synthase 2 increases atherosclerotic lesions in ApoE KO mice

    Directory of Open Access Journals (Sweden)

    Zhao Yarui

    2011-01-01

    Full Text Available Abstract Background Sphingomyelin synthase 2 (SMS2 contributes to de novo sphingomyelin (SM biosynthesis. Its activity is related to SM levels in the plasma and the cell membrane. In this study, we investigated the possibility of a direct relationship between SMS and atherosclerosis. Methods The Adenovirus containing SMS2 gene was given into 10-week ApoE KO C57BL/6J mice by femoral intravenous injection. In the control group, the Adenovirus containing GFP was given. To confirm this model, we took both mRNA level examination (RT-PCR and protein level examination (SMS activity assay. Result We generated recombinant adenovirus vectors containing either human SMS2 cDNA (AdV-SMS2 or GFP cDNA (AdV-GFP. On day six after intravenous infusion of 2 × 1011 particle numbers into ten-week-old apoE KO mice, AdV-SMS2 treatment significantly increased liver SMS2 mRNA levels and SMS activity (by 2.7-fold, 2.3-fold, p Conclusions Our results present direct morphological evidence for the pro-atherogenic capabilities of SMS2. SMS2 could be a potential target for treating atherosclerosis.

  3. Continues administration of Nano-PSO significantly increased survival of genetic CJD mice.

    Science.gov (United States)

    Binyamin, Orli; Keller, Guy; Frid, Kati; Larush, Liraz; Magdassi, Shlomo; Gabizon, Ruth

    2017-12-01

    We have shown previously that Nano-PSO, a nanodroplet formulation of pomegranate seed oil, delayed progression of neurodegeneration signs when administered for a designated period of time to TgMHu2ME199K mice, modeling for genetic prion disease. In the present work, we treated these mice with a self-emulsion formulation of Nano-PSO or a parallel Soybean oil formulation from their day of birth until a terminal disease stage. We found that long term Nano-PSO administration resulted in increased survival of TgMHu2ME199K lines by several months. Interestingly, initiation of treatment at day 1 had no clinical advantage over initiation at day 70, however cessation of treatment at 9months of age resulted in the rapid loss of the beneficial clinical effect. Pathological studies revealed that treatment with Nano-PSO resulted in the reduction of GAG accumulation and lipid oxidation, indicating a strong neuroprotective effect. Contrarily, the clinical effect of Nano-PSO did not correlate with reduction in the levels of disease related PrP, the main prion marker. We conclude that long term administration of Nano-PSO is safe and may be effective in the prevention/delay of onset of neurodegenerative conditions such as genetic CJD. Copyright © 2017. Published by Elsevier Inc.

  4. IL-18 Does not Increase Allergic Airway Disease in Mice When Produced by BCG

    Science.gov (United States)

    Amniai, L.; Biet, F.; Marquillies, P.; Locht, C.; Pestel, J.; Tonnel, A.-B.; Duez, C.

    2007-01-01

    Whilst BCG inhibits allergic airway responses in murine models, IL-18 has adversary effects depending on its environment. We therefore constructed a BCG strain producing murine IL-18 (BCG-IL-18) and evaluated its efficiency to prevent an asthma-like reaction in mice. BALB/cByJ mice were sensitized (day (D) 1 and D10) by intraperitoneal injection of ovalbumin (OVA)-alum and primary (D20–22) and secondary (D62, 63) challenged with OVA aerosols. BCG or BCG-IL-18 were intraperitonealy administered 1 hour before each immunization (D1 and D10). BCG-IL-18 and BCG were shown to similarly inhibit the development of AHR, mucus production, eosinophil influx, and local Th2 cytokine production in BAL, both after the primary and secondary challenge. These data show that IL-18 did not increase allergic airway responses in the context of the mycobacterial infection, and suggest that BCG-IL-18 and BCG are able to prevent the development of local Th2 responses and therefore inhibit allergen-induced airway responses even after restimulation. PMID:18299704

  5. Recurrent exposure to subclinical lipopolysaccharide increases mortality and induces cardiac fibrosis in mice.

    Directory of Open Access Journals (Sweden)

    Wilbur Y W Lew

    Full Text Available BACKGROUND: Circulating subclinical lipopolysaccharide (LPS occurs in health and disease. Ingesting high fatty meals increases LPS that cause metabolic endotoxemia. Subclinical LPS in periodontal disease may impair endothelial function. The heart may be targeted as cardiac cells express TLR4, the LPS receptor. It was hypothesized that recurrent exposure to subclinical LPS increases mortality and causes cardiac fibrosis. METHODS: C57Bl/6 mice were injected with intraperitoneal saline (control, low dose LPS (0.1 or 1 mg/kg, or moderate dose LPS (10 or 20 mg/kg, once a week for 3 months. Left ventricular (LV function (echocardiography, hemodynamics (tail cuff pressure and electrocardiograms (telemetry were measured. Cardiac fibrosis was assessed by picrosirius red staining and LV expression of fibrosis related genes (QRT-PCR. Adult cardiac fibroblasts were isolated and exposed to LPS. RESULTS: LPS injections transiently increased heart rate and blood pressure (<6 hours and mildly decreased LV function with full recovery by 24 hours. Mice tolerated weekly LPS for 2-3 months with no change in activity, appearance, appetite, weight, blood pressure, LV function, oximetry, or blood chemistries. Mortality increased after 60-90 days with moderate, but not low dose LPS. Arrhythmias occurred a few hours before death. LV collagen fraction area increased dose-dependently from 3.0±0.5% (SEM in the saline control group, to 5.6±0.5% with low dose LPS and 9.7±0.9% with moderate dose LPS (P<0.05 moderate vs low dose LPS, and each LPS dose vs control. LPS increased LV expression of collagen Iα1, collagen IIIα1, MMP2, MMP9, TIMP1, periostin and IL-6 (P<0.05 moderate vs low dose LPS and vs control. LPS increased α-SMA immunostaining of myofibroblasts. LPS dose-dependently increased IL-6 in isolated adult cardiac fibroblasts. CONCLUSIONS: Recurrent exposure to subclinical LPS increases mortality and induces cardiac fibrosis.

  6. Delayed and transient increase of adult hippocampal neurogenesis by physical exercise in DBA/2 mice.

    Directory of Open Access Journals (Sweden)

    Rupert W Overall

    Full Text Available This study builds on the findings that physical activity, such as wheel running in mice, enhances cell proliferation and neurogenesis in the adult hippocampus of the common mouse strain C57BL/6, and that the baseline level of neurogenesis varies by strain, being considerably lower in DBA/2. Because C57BL/6 and DBA/2 are important as the parental strains of the BXD recombinant inbred cross which allows the detection of genetic loci regulating phenotypes such as adult neurogenesis, we performed the current study to investigate the gene x environment interactions regulating neurogenesis. At equal distances and times run DBA/2J mice lacked the acute increase in precursor cell proliferation known from C57BL/6. In DBA/2J proliferation even negatively correlated with the distance run. This was neither due to a stress response (to running itself or single housing nor differences in estrous cycle. DBA/2 animals exhibited a delayed and weaker pro-neurogenic response with a significant increase in numbers of proliferating cells first detectable after more than a week of wheel running. The proliferative response to running was transient in both strains, the effect being undetectable by 6 weeks. There was also a small transient increase in the production of new neurons in DBA/2J, although these extra cells did not survive. These findings indicate that the comparison between C57BL/6 and DBA/2, and by extension the BXD genetic reference population derived from these strains, should provide a powerful tool for uncovering the complex network of modifier genes affecting the activity-dependent regulation of adult hippocampal neurogenesis. More generally, our findings also describe how the external physical environment interacts with the internal genetic environment to produce different responses to the same behavioral stimuli.

  7. Association between baseline serum hepcidin levels and infection in kidney transplant recipients: Potential role for iron overload.

    Science.gov (United States)

    Fernández-Ruiz, Mario; Parra, Patricia; Ruiz-Merlo, Tamara; López-Medrano, Francisco; San Juan, Rafael; Polanco, Natalia; González, Esther; Andrés, Amado; Aguado, José María

    2018-02-01

    The liver-synthesized peptide hepcidin is a key regulator of iron metabolism and correlates with total iron stores. We analyzed the association between pre-transplant hepcidin-25 levels and infection after kidney transplantation (KT). Serum hepcidin-25 levels were measured at baseline by high-sensitivity ELISA in 91 patients undergoing KT at our institution between December 2011 and March 2013. The impact of this biomarker on the incidence of post-transplant infection (excluding lower urinary tract infection) during the first year was assessed by Cox regression. Mean hepcidin-25 level was 82.3 ± 67.4 ng/mL and strongly correlated with serum ferritin (Spearman's rho = 0.703; P role for iron overload in the individual susceptibility to post-transplant infection. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. The number of preproghrelin mRNA expressing cells is increased in mice with activity-based anorexia.

    Science.gov (United States)

    François, Marie; Barde, Swapnali; Achamrah, Najate; Breton, Jonathan; do Rego, Jean-Claude; Coëffier, Moïse; Hökfelt, Tomas; Déchelotte, Pierre; Fetissov, Sergueï O

    2015-06-01

    Plasma levels of ghrelin, an orexigenic peptide, are increased during conditions of chronic starvation, such as in patients with anorexia nervosa. However, it is not known whether such increase can be related to the number of preproghrelin mRNA-expressing cells in the stomach, and if chronic starvation may activate a tentative central ghrelin production. In this work, in situ hybridization technique was used to analyze the presence and number of preproghrelin mRNA-expressing cells in the stomach and the hypothalamus of mice with activity-based anorexia (ABA) induced by the combination of running wheel activity with progressive, during 10 days, feeding-time restriction (FTR) and compared with sedentary FTR, ABA pair-fed (PF) and ad libitum-fed control mice. All food-restricted mice lost more than 20% of body weight. Body weight loss was similar in ABA and PF mice, but it was more pronounced than in FTR mice. Food intake was also lower in ABA than in FTR mice. Preproghrelin mRNA-expressing cells in the stomach were increased proportionally to the body weight loss in all food-restricted groups with the highest number in ABA mice. No preproghrelin mRNA-producing cells were detectable in the hypothalamus of either control or food-restricted mice. Thus, the increased number of gastric preproghrelin mRNA-producing cells during chronic starvation proportionally to the body weight loss and reduced food intake may underlie increased plasma ghrelin. Hyperactivity-induced anorexia appears to further increase the number of preproghrelin mRNA-producing cells in the stomach. No evidence was found for ghrelin expression in the hypothalamus, not even in any of the present experimental models. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Hepcidin-25 in diabetic chronic kidney disease is predictive for mortality and progression to end stage renal disease.

    Directory of Open Access Journals (Sweden)

    Martin Wagner

    Full Text Available Anemia is common and is associated with impaired clinical outcomes in diabetic chronic kidney disease (CKD. It may be explained by reduced erythropoietin (EPO synthesis, but recent data suggest that EPO-resistance and diminished iron availability due to inflammation contribute significantly. In this cohort study, we evaluated the impact of hepcidin-25--the key hormone of iron-metabolism--on clinical outcomes in diabetic patients with CKD along with endogenous EPO levels.249 diabetic patients with CKD of any stage, excluding end-stage renal disease (ESRD, were enrolled (2003-2005, if they were not on EPO-stimulating agent and iron therapy. Hepcidin-25 levels were measured by radioimmunoassay. The association of hepcidin-25 at baseline with clinical variables was investigated using linear regression models. All-cause mortality and a composite endpoint of CKD progression (ESRD or doubling of serum creatinine were analyzed by Cox proportional hazards models.Patients (age 67 yrs, 53% male, GFR 51 ml/min, hemoglobin 131 g/L, EPO 13.5 U/L, hepcidin-25 62.0 ng/ml were followed for a median time of 4.2 yrs. Forty-nine patients died (19.7% and forty (16.1% patients reached the composite endpoint. Elevated hepcidin levels were independently associated with higher ferritin-levels, lower EPO-levels and impaired kidney function (all p<0.05. Hepcidin was related to mortality, along with its interaction with EPO, older age, greater proteinuria and elevated CRP (all p<0.05. Hepcidin was also predictive for progression of CKD, aside from baseline GFR, proteinuria, low albumin- and hemoglobin-levels and a history of CVD (all p<0.05.We found hepcidin-25 to be associated with EPO and impaired kidney function in diabetic CKD. Elevated hepcidin-25 and EPO-levels were independent predictors of mortality, while hepcidin-25 was also predictive for progression of CKD. Both hepcidin-25 and EPO may represent important prognostic factors of clinical outcome and have the

  10. Heterozygous disruption of activin receptor-like kinase 1 is associated with increased arterial pressure in mice

    Directory of Open Access Journals (Sweden)

    María González-Núñez

    2015-11-01

    Full Text Available The activin receptor-like kinase 1 (ALK-1 is a type I cell-surface receptor for the transforming growth factor-β (TGF-β family of proteins. Hypertension is related to TGF-β1, because increased TGF-β1 expression is correlated with an elevation in arterial pressure (AP and TGF-β expression is upregulated by the renin-angiotensin-aldosterone system. The purpose of this study was to assess the role of ALK-1 in regulation of AP using Alk1 haploinsufficient mice (Alk1+/−. We observed that systolic and diastolic AP were significantly higher in Alk1+/− than in Alk1+/+ mice, and all functional and structural cardiac parameters (echocardiography and electrocardiography were similar in both groups. Alk1+/− mice showed alterations in the circadian rhythm of AP, with higher AP than Alk1+/+ mice during most of the light period. Higher AP in Alk1+/− mice is not a result of a reduction in the NO-dependent vasodilator response or of overactivation of the peripheral renin-angiotensin system. However, intracerebroventricular administration of losartan had a hypotensive effect in Alk1+/− and not in Alk1+/+ mice. Alk1+/− mice showed a greater hypotensive response to the β-adrenergic antagonist atenolol and higher concentrations of epinephrine and norepinephrine in plasma than Alk1+/+ mice. The number of brain cholinergic neurons in the anterior basal forebrain was reduced in Alk1+/− mice. Thus, we concluded that the ALK-1 receptor is involved in the control of AP, and the high AP of Alk1+/− mice is explained mainly by the sympathetic overactivation shown by these animals, which is probably related to the decreased number of cholinergic neurons.

  11. Mice lacking melanin-concentrating hormone receptor 1 demonstrate increased heart rate associated with altered autonomic activity.

    Science.gov (United States)

    Astrand, Annika; Bohlooly-Y, Mohammad; Larsdotter, Sara; Mahlapuu, Margit; Andersén, Harriet; Tornell, Jan; Ohlsson, Claes; Snaith, Mike; Morgan, David G A

    2004-10-01

    Melanin-concentrating hormone (MCH) plays an important role in energy balance. The current studies were carried out on a new line of mice lacking the rodent MCH receptor (MCHR1(-/-) mice). These mice confirmed the previously reported lean phenotype characterized by increased energy expenditure and modestly increased caloric intake. Because MCH is expressed in the lateral hypothalamic area, which also has an important role in the regulation of the autonomic nervous system, heart rate and blood pressure were measured by a telemetric method to investigate whether the increased energy expenditure in these mice might be due to altered autonomic nervous system activity. Male MCHR1(-/-) mice demonstrated a significantly increased heart rate [24-h period: wild type 495 +/- 4 vs. MCHR1(-/-) 561 +/- 8 beats/min (P dark phase: wild type 506 +/- 8 vs. MCHR1(-/-) 582 +/- 9 beats/min (P light phase: wild type 484 +/- 13 vs. MCHR1(-/-) 539 +/- 9 beats/min (P vs. MCHR1(-/-) 113 +/- 0.4 mmHg (P > 0.05)]. Locomotor activity and core body temperature were higher in the MCHR1(-/-) mice during the dark phase only and thus temporally dissociated from heart rate differences. On fasting, wild-type animals rapidly downregulated body temperature and heart rate. MCHR1(-/-) mice displayed a distinct delay in the onset of this downregulation. To investigate the mechanism underlying these differences, autonomic blockade experiments were carried out. Administration of the adrenergic antagonist metoprolol completely reversed the tachycardia seen in MCHR1(-/-) mice, suggesting an increased sympathetic tone.

  12. Bile acid sequestration reduces plasma glucose levels in db/db mice by increasing its metabolic clearance rate.

    Directory of Open Access Journals (Sweden)

    Maxi Meissner

    Full Text Available AIMS/HYPOTHESIS: Bile acid sequestrants (BAS reduce plasma glucose levels in type II diabetics and in murine models of diabetes but the mechanism herein is unknown. We hypothesized that sequestrant-induced changes in hepatic glucose metabolism would underlie reduced plasma glucose levels. Therefore, in vivo glucose metabolism was assessed in db/db mice on and off BAS using tracer methodology. METHODS: Lean and diabetic db/db mice were treated with 2% (wt/wt in diet Colesevelam HCl (BAS for 2 weeks. Parameters of in vivo glucose metabolism were assessed by infusing [U-(13C]-glucose, [2-(13C]-glycerol, [1-(2H]-galactose and paracetamol for 6 hours, followed by mass isotopologue distribution analysis, and related to metabolic parameters as well as gene expression patterns. RESULTS: Compared to lean mice, db/db mice displayed an almost 3-fold lower metabolic clearance rate of glucose (p = 0.0001, a ∼300% increased glucokinase flux (p = 0.001 and a ∼200% increased total hepatic glucose production rate (p = 0.0002. BAS treatment increased glucose metabolic clearance rate by ∼37% but had no effects on glucokinase flux nor total hepatic or endogenous glucose production. Strikingly, BAS-treated db/db mice displayed reduced long-chain acylcarnitine content in skeletal muscle (p = 0.0317 but not in liver (p = 0.189. Unexpectedly, BAS treatment increased hepatic FGF21 mRNA expression 2-fold in lean mice (p = 0.030 and 3-fold in db/db mice (p = 0.002. CONCLUSIONS/INTERPRETATION: BAS induced plasma glucose lowering in db/db mice by increasing metabolic clearance rate of glucose in peripheral tissues, which coincided with decreased skeletal muscle long-chain acylcarnitine content.

  13. High-fat feeding increases hepatic vitamin C synthesis and its circulatory mobilization in mice

    DEFF Research Database (Denmark)

    Christensen, Britt Tranberg; Hansen, Axel Jacob Kornerup; Lykkesfeldt, Jens

    2014-01-01

    , glucose and vitC concentrations. Hepatic vitC concentration and gulonolactone oxidase (GLO) capacity, as a measure of vitC de novo biosynthesis, were analyzed in liver homogenates. RESULTS: HF diet significantly increased plasma concentrations of vitC compared with a control diet low in fat (P ... to modulate their vitC homeostasis during high-fat (HF) feeding. METHODS: Twenty-five male 5-week-old C57BL/6 mice were fed high- or low-fat diets for 14 weeks. An oral glucose tolerance test (OGTT) was performed after 12 weeks of intervention. Terminal fasting plasma samples were analyzed for insulin.......05). Hepatic de novo biosynthesis of vitC was upregulated (P glucose and insulin concentrations...

  14. Increased hypoxia-inducible factor-1α in striated muscle of tumor-bearing mice.

    Science.gov (United States)

    Devine, Raymond D; Bicer, Sabahattin; Reiser, Peter J; Wold, Loren E

    2017-06-01

    Cancer cachexia is a progressive wasting disease resulting in significant effects on the quality of life and high mortality. Most studies on cancer cachexia have focused on skeletal muscle; however, the heart is now recognized as a major site of cachexia-related effects. To elucidate possible mechanisms, a proteomic study was performed on the left ventricles of colon-26 (C26) adenocarcinoma tumor-bearing mice. The results revealed several changes in proteins involved in metabolism. An integrated pathway analysis of the results revealed a common mediator in hypoxia-inducible factor-1α (HIF-1α). Work by other laboratories has shown that extensive metabolic restructuring in the C26 mouse model causes changes in gene expression that may be affected directly by HIF-1α, such as glucose metabolic genes. M-mode echocardiography showed progressive decline in heart function by day 19 , exhibited by significantly decreased ejection fraction and fractional shortening, along with posterior wall thickness. Using Western blot analysis, we confirmed that HIF-1α is significantly upregulated in the heart, whereas there were no changes in its regulatory proteins, prolyl hydroxylase domain-containing protein 2 (PHD2) and von Hippel-Lindau protein (VHL). PHD2 requires both oxygen and iron as cofactors for the hydroxylation of HIF-1α, marking it for ubiquination via VHL and subsequent destruction by the proteasome complex. We examined venous blood gas values in the tumor-bearing mice and found significantly lower oxygen concentration compared with control animals in the third week after tumor inoculation. We also examined select skeletal muscles to determine whether they are similarly affected. In the diaphragm, extensor digitorum longus, and soleus, we found significantly increased HIF-1α in tumor-bearing mice, indicating a hypoxic response, not only in the heart, but also in skeletal muscle. These results indicate that HIF-1α may contribute, in part, to the metabolic changes

  15. Ciprofloxacin Derivatives Affect Parasite Cell Division and Increase the Survival of Mice Infected with Toxoplasma gondii.

    Directory of Open Access Journals (Sweden)

    Erica S Martins-Duarte

    Full Text Available Toxoplasmosis, caused by the protozoan Toxoplasma gondii, is a worldwide disease whose clinical manifestations include encephalitis and congenital malformations in newborns. Previously, we described the synthesis of new ethyl-ester derivatives of the antibiotic ciprofloxacin with ~40-fold increased activity against T. gondii in vitro, compared with the original compound. Cipro derivatives are expected to target the parasite's DNA gyrase complex in the apicoplast. The activity of these compounds in vivo, as well as their mode of action, remained thus far uncharacterized. Here, we examined the activity of the Cipro derivatives in vivo, in a model of acute murine toxoplasmosis. In addition, we investigated the cellular effects T. gondii tachyzoites in vitro, by immunofluorescence and transmission electron microscopy (TEM. When compared with Cipro treatment, 7-day treatments with Cipro derivatives increased mouse survival significantly, with 13-25% of mice surviving for up to 60 days post-infection (vs. complete lethality 10 days post-infection, with Cipro treatment. Light microscopy examination early (6 and 24h post-infection revealed that 6-h treatments with Cipro derivatives inhibited the initial event of parasite cell division inside host cells, in an irreversible manner. By TEM and immunofluorescence, the main cellular effects observed after treatment with Cipro derivatives and Cipro were cell scission inhibition--with the appearance of 'tethered' parasites--malformation of the inner membrane complex, and apicoplast enlargement and missegregation. Interestingly, tethered daughter cells resulting from Cipro derivatives, and also Cipro, treatment did not show MORN1 cap or centrocone localization. The biological activity of Cipro derivatives against C. parvum, an apicomplexan species that lacks the apicoplast, is, approximately, 50 fold lower than that in T. gondii tachyzoites, supporting that these compounds targets the apicoplast. Our results

  16. Increased susceptibility to diet-induced obesity in histamine-deficient mice

    DEFF Research Database (Denmark)

    Jørgensen, Emilie A; Vogelsang, Thomas W; Knigge, Ulrich

    2006-01-01

    in the development of high-fat diet (HFD)-induced obesity. METHODS: Histamine-deficient histidine decarboxylase knock-out (HDC-KO) mice and C57BL/6J wild-type (WT) mice were given either a standard diet (STD) or HFD for 8 weeks. Body weight, 24-hour caloric intake, epididymal adipose tissue size, plasma leptin...... weeks, whereas a significant difference in body weight gain was first observed after 5 weeks in WT mice. After 8 weeks 24-hour caloric intake was significantly lower in HFD- than in STD-fed WT mice. In HDC-KO mice no difference in caloric intake was observed between HFD- and STD-fed mice. After 8 weeks...

  17. Pulmonary oxidative stress is increased in cyclooxygenase-2 knockdown mice with mild pulmonary hypertension induced by monocrotaline.

    Directory of Open Access Journals (Sweden)

    Francesca Seta

    Full Text Available The aim of this study was to examine the role of cyclooxygenase-2 (COX-2 and downstream signaling of prostanoids in the pathogenesis of pulmonary hypertension (PH using mice with genetically manipulated COX-2 expression. COX-2 knockdown (KD mice, characterized by 80-90% suppression of COX-2, and wild-type (WT control mice were treated weekly with monocrotaline (MCT over 10 weeks. Mice were examined for cardiac hypertrophy/function and right ventricular pressure. Lung histopathological analysis was performed and various assays were carried out to examine oxidative stress, as well as gene, protein, cytokine and prostanoid expression. We found that MCT increased right ventricular systolic and pulmonary arterial pressures in comparison to saline-treated mice, with no evidence of cardiac remodeling. Gene expression of endothelin receptor A and thromboxane synthesis, regulators of vasoconstriction, were increased in MCT-treated lungs. Bronchoalveolar lavage fluid and lung sections demonstrated mild inflammation and perivascular edema but activation of inflammatory cells was not predominant under the experimental conditions. Heme oxygenase-1 (HO-1 expression and indicators of oxidative stress in lungs were significantly increased, especially in COX-2 KD MCT-treated mice. Gene expression of NOX-4, but not NOX-2, two NADPH oxidase subunits crucial for superoxide generation, was induced by ∼4-fold in both groups of mice by MCT. Vasodilatory and anti-aggregatory prostacyclin was reduced by ∼85% only in MCT-treated COX-2 KD mice. This study suggests that increased oxidative stress-derived endothelial dysfunction, vasoconstriction and mild inflammation, exacerbated by the lack of COX-2, contribute to the pathogenesis of early stages of PH when mild hemodynamic changes are evident and not yet accompanied by vascular and cardiac remodeling.

  18. Increased skin barrier disruption by sodium lauryl sulfate in mice expressing a constitutively active STAT6 in T cells.

    Science.gov (United States)

    DaSilva, Sonia C; Sahu, Ravi P; Konger, Raymond L; Perkins, Susan M; Kaplan, Mark H; Travers, Jeffrey B

    2012-01-01

    Atopic dermatitis (AD) is a pruritic, chronic inflammatory skin disease that affects 10-20% of children and 1-3% of adults worldwide. Recent studies have indicated that the ability of Th2 cytokines, such as interleukin-4 (IL-4) to regulate skin barrier function may be a predisposing factor for AD development. The present studies examined the ability of increased Th2 activity to affect cutaneous barrier function in vivo and epidermal thickening. Mice that express a constitutively active Signal Transducer and Activator of Transcription 6 (STAT6VT) have increased Th2 cells and a predisposition to allergic inflammation were used in these studies, they demonstrate that topical treatment with the irritant sodium lauryl sulfate (SLS) caused increased transepidermal water loss and epidermal thickening in STAT6VT mice over similarly treated wild-type mice. The proliferation marker Ki-67 was increased in the epidermis of STAT6VT compared to the wild-type mice. However, these differences do not appear to be linked to the addition of an irritant as control-treated STAT6VT skin also exhibited elevated Ki-67 levels, suggesting that the increased epidermal thickness in SLS-treated STAT6VT mice is primarily driven by epidermal cell hypertrophy rather than an increase in cellular proliferation. Our results suggest that an environment with increased Th2 cytokines results in abnormal responses to topical irritants.

  19. Tibial loading increases osteogenic gene expression and cortical bone volume in mature and middle-aged mice.

    Directory of Open Access Journals (Sweden)

    Matthew J Silva

    Full Text Available There are conflicting data on whether age reduces the response of the skeleton to mechanical stimuli. We examined this question in female BALB/c mice of different ages, ranging from young to middle-aged (2, 4, 7, 12 months. We first assessed markers of bone turnover in control (non-loaded mice. Serum osteocalcin and CTX declined significantly from 2 to 4 months (p<0.001. There were similar age-related declines in tibial mRNA expression of osteoblast- and osteoclast-related genes, most notably in late osteoblast/matrix genes. For example, Col1a1 expression declined 90% from 2 to 7 months (p<0.001. We then assessed tibial responses to mechanical loading using age-specific forces to produce similar peak strains (-1300 µε endocortical; -2350 µε periosteal. Axial tibial compression was applied to the right leg for 60 cycles/day on alternate days for 1 or 6 weeks. qPCR after 1 week revealed no effect of loading in young (2-month mice, but significant increases in osteoblast/matrix genes in older mice. For example, in 12-month old mice Col1a1 was increased 6-fold in loaded tibias vs. controls (p = 0.001. In vivo microCT after 6 weeks revealed that loaded tibias in each age group had greater cortical bone volume (BV than contralateral control tibias (p<0.05, due to relative periosteal expansion. The loading-induced increase in cortical BV was greatest in 4-month old mice (+13%; p<0.05 vs. other ages. In summary, non-loaded female BALB/c mice exhibit an age-related decline in measures related to bone formation. Yet when subjected to tibial compression, mice from 2-12 months have an increase in cortical bone volume. Older mice respond with an upregulation of osteoblast/matrix genes, which increase to levels comparable to young mice. We conclude that mechanical loading of the tibia is anabolic for cortical bone in young and middle-aged female BALB/c mice.

  20. The influence of snakehead (Channa striata) fish extract to increase hyperglycemic mice fertility based on spermatogenic cell composition

    Science.gov (United States)

    Hidayati, Dewi; Abdulgani, Nurlita; Ashuri, Nova Maulidina; Sa'adah, Noor Nailis; Lukitasari, Maharani

    2017-06-01

    Reproductive dysfunction is recognized as a consequence of diabetes mellitus. Previous study revealed that snakehead (Channa striata) fish extract can repairing the pancreas histological structure which by that decreasing the blood glucose levels. Further research was conducted to determine the influence of snakehead fish extract (SHFE) to increasing the fertility of hyperglycemic mice based on spermatogenic cell composition. Twenty five adult mice (Mus musculus) were induced intraperitoneally to be hyperglycemic using alloxan monohydrate single dose of 190 mg/kg body weight. Hyperglycemic mice treated orally for 14 days using SHFE which grouped into five treatment dosages. Testicular histology were prepared using the paraffin methods and stained with Haematoxylin and Eosin. According to ANOVA and Tukey's test, it was found that spermatogenic cells population as well as its composition in the testis of mice that treated with SHFE are significantly higher than hyperglichemic mice. The highest dose of SHFE (0.15 ml/day), showed highest spermatogenic cell. All hyperglichemic mice that treated with SHFE exhibited the ratio composition of spermatogonia: spermatocytes: spermatids as same as with control (healthy mice) i.e. 1:1:3 respectively.

  1. Increased glucocerebrosidase (GBA) 2 activity in GBA1 deficient mice brains and in Gaucher leucocytes.

    Science.gov (United States)

    Burke, Derek G; Rahim, Ahad A; Waddington, Simon N; Karlsson, Stefan; Enquist, Ida; Bhatia, Kailash; Mehta, Atul; Vellodi, Ashok; Heales, Simon

    2013-09-01

    Lysosomal glucocerebrosidase (GBA1) deficiency is causative for Gaucher disease. Not all individuals with GBA1 mutations develop neurological involvement raising the possibility that other factors may provide compensatory protection. One factor may be the activity of the non-lysosomal β-glucosidase (GBA2) which exhibits catalytic activity towards glucosylceramide and is reported to be highly expressed in brain tissue. Here, we assessed brain GBA2 enzymatic activity in wild type, heterozygote and GBA1 deficient mice. Additionally, we determined activity in leucocytes obtained from 13 patients with Gaucher disease, 10 patients with enzymology consistent with heterozygote status and 19 controls. For wild type animals, GBA2 accounted for over 85 % of total brain GBA activity and was significantly elevated in GBA1 deficient mice when compared to heterozygote and wild types (GBA1 deficient; 92.4 ± 5.6, heterozygote; 71.5 ± 2.4, wild type 76.8 ± 5.1 nmol/h/mg protein). For the patient samples, five Gaucher patients had GBA2 leucocyte activities markedly greater than controls. No difference in GBA2 activity was apparent between the control and carrier groups. Undetectable GBA2 activity was identified in four leucocyte preparations; one in the control group, two in the carrier group and one from the Gaucher disease group. Work is now required to ascertain whether GBA2 activity is a disease modifying factor in Gaucher disease and to identify the mechanism(s) responsible for triggering increased GBA2 activity in GBA1 deficiency states.

  2. Increasing brain serotonin corrects CO2 chemosensitivity in methyl-CpG-binding protein 2 (Mecp2)-deficient mice

    Science.gov (United States)

    Toward, Marie A.; Abdala, Ana P.; Knopp, Sharon J.; Paton, Julian F. R.; Bissonnette, John M.

    2013-01-01

    Mice deficient in the transcription factor methyl-CpG-binding protein 2 (Mecp2), a mouse model of Rett syndrome, display reduced CO2 chemosensitivity, which may contribute to their breathing abnormalities. In addition, patients with Rett syndrome and male mice that are null for Mecp2 show reduced levels of brain serotonin (5-HT). Serotonin is known to play a role in central chemosensitivity, and we hypothesized that increasing the availability of 5-HT in this mouse model would improve their respiratory response to CO2. Here we determined the apnoeic threshold in heterozygous Mecp2-deficient female mice and examined the effects of blocking 5-HT reuptake on the CO2 response in Mecp2-null male mice. Studies were performed in B6.129P2(C)-Mecp2τm1.1Bird null males and heterozygous females. In an in situ preparation, seven of eight Mecp2-deficient heterozygous females showed arrest of phrenic nerve activity when arterial CO2 was lowered to 3%, whereas the wild-types maintained phrenic nerve amplitude at 53 ± 3% of maximal. In vivo plethysmography studies were used to determine CO2 chemosensitivity in null males. These mice were exposed sequentially to 1, 3 and 5% CO2. The percentage increase in minute ventilation in response to increased inspired CO2 was less in Mecp2−/y than in Mecp2+/y mice. Pretreatment with citalopram, a selective 5-HT reuptake inhibitor (2.5 mg kg−1 I.P.), 40 min prior to CO2 exposure, in Mecp2−/y mice resulted in an improvement in CO2 chemosensitivity to wild-type levels. These results suggest that decreased 5-HT in Mecp2-deficient mice reduces CO2 chemosensitivity, and restoring 5-HT levels can reverse this effect. PMID:23180809

  3. Clostridium sordellii lethal toxin kills mice by inducing a major increase in lung vascular permeability.

    Science.gov (United States)

    Geny, Blandine; Khun, Huot; Fitting, Catherine; Zarantonelli, Leticia; Mazuet, Christelle; Cayet, Nadège; Szatanik, Marek; Prevost, Marie-Christine; Cavaillon, Jean-Marc; Huerre, Michel; Popoff, Michel R

    2007-03-01

    When intraperitoneally injected into Swiss mice, Clostridium sordellii lethal toxin reproduces the fatal toxic shock syndrome observed in humans and animals after natural infection. This animal model was used to study the mechanism of lethal toxin-induced death. Histopathological and biochemical analyses identified lung and heart as preferential organs targeted by lethal toxin. Massive extravasation of blood fluid in the thoracic cage, resulting from an increase in lung vascular permeability, generated profound modifications such as animal dehydration, increase in hematocrit, hypoxia, and finally, cardiorespiratory failure. Vascular permeability increase induced by lethal toxin resulted from modifications of lung endothelial cells as evidenced by electron microscopy. Immunohistochemical analysis demonstrated that VE-cadherin, a protein participating in intercellular adherens junctions, was redistributed from membrane to cytosol in lung endothelial cells. No major sign of lethal toxin-induced inflammation was observed that could participate in the toxic shock syndrome. The main effect of the lethal toxin is the glucosylation-dependent inactivation of small GTPases, in particular Rac, which is involved in actin polymerization occurring in vivo in lungs leading to E-cadherin junction destabilization. We conclude that the cells most susceptible to lethal toxin are lung vascular endothelial cells, the adherens junctions of which were altered after intoxication.

  4. Transgenic Mice Expressing Yeast CUP1 Exhibit Increased Copper Utilization from Feeds

    Science.gov (United States)

    Chen, Zhenliang; Liao, Rongrong; Zhang, Xiangzhe; Wang, Qishan; Pan, Yuchun

    2014-01-01

    Copper is required for structural and catalytic properties of a variety of enzymes participating in many vital biological processes for growth and development. Feeds provide most of the copper as an essential micronutrient consumed by animals, but inorganic copper could not be utilized effectively. In the present study, we aimed to develop transgenic mouse models to test if copper utilization will be increased by providing the animals with an exogenous gene for generation of copper chelatin in saliva. Considering that the S. cerevisiae CUP1 gene encodes a Cys-rich protein that can bind copper as specifically as copper chelatin in yeast, we therefore constructed a transgene plasmid containing the CUP1 gene regulated for specific expression in the salivary glands by a promoter of gene coding pig parotid secretory protein. Transgenic CUP1 was highly expressed in the parotid and submandibular salivary glands and secreted in saliva as a 9-kDa copper-chelating protein. Expression of salivary copper-chelating proteins reduced fecal copper contents by 21.61% and increased body-weight by 12.97%, suggesting that chelating proteins improve the utilization and absorbed efficacy of copper. No negative effects on the health of the transgenic mice were found by blood biochemistry and histology analysis. These results demonstrate that the introduction of the salivary CUP1 transgene into animals offers a possible approach to increase the utilization efficiency of copper and decrease the fecal copper contents. PMID:25265503

  5. Lactobacillus salivarius Isolated from Patients with Rheumatoid Arthritis Suppresses Collagen-Induced Arthritis and Increases Treg Frequency in Mice.

    Science.gov (United States)

    Liu, Xiaofei; Zhang, Juan; Zou, Qinghua; Zhong, Bing; Wang, Heng; Mou, Fangxiang; Wu, Like; Fang, Yongfei

    2016-12-01

    Previously, we demonstrated that Lactobacillus salivarius was more abundant in patients with rheumatoid arthritis (RA), an inflammatory autoimmune disease wherein the gut microbiota is altered, than in healthy individuals. However, the effect of L. salivarius in RA is unclear. Hence, we investigated the effect of L. salivarius isolated from patients with RA on collagen-induced arthritis (CIA) in mice. L. salivarius UCC118 or L. plantarum WCFS1 isolated from patients with RA was administered orally for 5 weeks, starting from 2 weeks before the induction of arthritis in DBA/1 mice. Clinical score progression, histological changes, serum cytokine concentrations, and the proportion of interleukin (IL)-17-producing T cells [T helper 17 (Th17)] and regulatory T cells (Tregs) in the spleen were evaluated. Bone erosion was evaluated by micro-computed tomography. CIA mice treated with either L. salivarius or L. plantarum showed lower arthritis scores, milder synovial infiltration, and less bone erosion when compared with phosphate-buffered, saline-treated CIA mice. Administration of L. salivarius and L. plantarum reduced the Th17 cell fraction and increased the Treg fraction. L. salivarius-treated CIA mice displayed a significant increase in serum anti-inflammatory IL-10 levels. Thus, pretreatment with L. salivarius could significantly improve CIA in mice and may help alleviate RA in a clinical setting.

  6. SLAM family markers are conserved among hematopoietic stem cells from old and reconstituted mice and markedly increase their purity.

    Science.gov (United States)

    Yilmaz, Omer H; Kiel, Mark J; Morrison, Sean J

    2006-02-01

    Recent advances have increased the purity of hematopoietic stem cells (HSCs) isolated from young mouse bone marrow. However, little attention has been paid to the purity of HSCs from other contexts. Although Thy-1 low Sca-1+ Lineage- c-kit+ cells from young bone marrow are highly enriched for HSCs (1 in 5 cells gives long-term multilineage reconstitution after transplantation into irradiated mice), the same population from old, reconstituted, or cytokine-mobilized mice engrafts much less efficiently (1 in 78 to 1 in 185 cells gives long-term multilineage reconstitution). To test whether we could increase the purity of HSCs isolated from these contexts, we examined the SLAM family markers CD150 and CD48. All detectable HSCs from old, reconstituted, and cyclophosphamide/G-CSF-mobilized mice were CD150+ CD48-, just as in normal young bone marrow. Thy-1 low Sca-1+ Lineage- c-kit+ cells from old, reconstituted, or mobilized mice included mainly CD48+ and/or CD150- cells that lacked reconstituting ability. CD150+ CD48- Sca-1+ Lineage- c-kit+ cells from old, reconstituted, or mobilized mice were much more highly enriched for HSCs, with 1 in 3 to 1 in 7 cells giving long-term multilineage reconstitution. SLAM family receptor expression is conserved among HSCs from diverse contexts, and HSCs from old, reconstituted, and mobilized mice engraft relatively efficiently after transplantation when contaminating cells are eliminated.

  7. Disruption of the GH Receptor Gene in Adult Mice Increases Maximal Lifespan in Females

    DEFF Research Database (Denmark)

    Junnila, Riia K.; Duran-Ortiz, Silvana; Suer, Ozan

    2016-01-01

    GH and IGF-1 are important for a variety of physiological processes including growth, development, and aging. Mice with reduced levels of GH and IGF-1 have been shown to live longer than wild-type controls. Our laboratory has previously found that mice with a GH receptor gene knockout (GHRKO) fro...

  8. Working Memory Deficits, Increased Anxiety-Like Traits, and Seizure Susceptibility in BDNF Overexpressing Mice

    Science.gov (United States)

    Papaleo, Francesco; Silverman, Jill L.; Aney, Jordan; Tian, Qingjun; Barkan, Charlotte L.; Chadman, Kathryn K.; Crawley, Jacqueline N.

    2011-01-01

    BDNF regulates components of cognitive processes and has been implicated in psychiatric disorders. Here we report that genetic overexpression of the BDNF mature isoform (BDNF-tg) in female mice impaired working memory functions while sparing components of fear conditioning. BDNF-tg mice also displayed reduced breeding efficiency, higher…

  9. Soybean meal fermented by Aspergillus awamori increases the cytochrome P-450 content of the liver microsomes of mice.

    Science.gov (United States)

    Kishida, T; Ataki, H; Takebe, M; Ebihara, K

    2000-04-01

    The effect of soybean meal fermented by Aspergillus awamori on the acute lethality of acetaldehyde, pentobarbital sleeping time, and cytochrome P-450 content of the hepatic microsomes was studied in mice. Most of the daidzin and genistin in soybean meal (SBM) were converted into the respective aglycones, daidzein and genistein, by fermentation. In experiment 1, mice were fed isonitrogenic test diets with one of the following five protein sources for 28 d: casein, SBM, fermented and hot-air-dried SBM (FSBM-HD), fermented and freeze-dried SBM (FSBM-FD), or methanol-extracted FSBM-FD (FSMB-FD-R). The acute lethality of acetaldehyde in mice fed the FSBM-FD diet was significantly lower than that in mice fed the SBM, FSBM-HD, or FSBM-FD-R diet. In experiments 2 and 3, mice were fed isonitrogenic test diets with one of the following four protein sources for 28 d: casein, SBM, FSBM-FD, and FSBM-FD-R. The pentobarbital sleeping time was significantly shorter and the cytochrome P-450 content was significantly higher in the mice fed the FSBM-FD diet than the respective value in mice fed the other test diets. In experiment 4, mice were fed one of eight diets which contained different levels of aglycone obtained by varying the proportion of FSBM-FD and FSBM-FD-R, for 28 d. The cytochrome P-450 content in hepatic microsomes increased as the dietary level of isoflavonoid aglycones increased, but there was a saturation phenomenon. These results suggest that soy isoflavonoid aglycones are more potent inducers of cytochrome P-450 than isoflavonoid glycosides.

  10. Increased Expression of the Na,K-ATPase alpha4 Isoform Enhances Sperm Motility in Transgenic Mice1

    Science.gov (United States)

    Jimenez, Tamara; Sanchez, Gladis; McDermott, Jeffrey P.; Nguyen, Anh-Nguyet; Kumar, T. Rajendra; Blanco, Gustavo

    2010-01-01

    The Na,K-ATPase alpha4 (ATP1A4) isoform is specifically expressed in male germ cells and is highly prevalent in spermatozoa. Although selective inhibition of alpha4 activity with ouabain has been shown to affect sperm motility, a more direct analysis of the role of this isoform in sperm movement has not yet been demonstrated. To establish this, we engineered transgenic mice that express the rat alpha4 isoform fused to green fluorescent protein in male germ cells, under the control of the mouse protamine 1 promoter. We showed that the rat Atp1a4 transgene is expressed in mouse spermatozoa and that it is localized to the sperm flagellum. In agreement with increased expression of the alpha4 isoform, sperm from transgenic mice displayed higher alpha4-specific Na,K-ATPase activity and binding of fluorescently labeled ouabain than wild-type mice. In contrast, expression and activity of ATP1A1 (alpha1), the other Na,K-ATPase alpha isoform present in sperm, remained unchanged. Similar to wild-type mice, mice expressing the alpha4 transgene exhibited normal testis and sperm morphology and no differences in fertility. However, compared to wild-type mice, sperm from transgenic mice displayed plasma membrane hyperpolarization and higher total and progressive motility. Other parameters of motility also increased, including straight-line, curvilinear, and average path velocities and amplitude of lateral head displacement. In addition, sperm from the transgenic mice showed enhanced sperm hyperactive motility, but no changes in progesterone-induced acrosome reaction. Altogether, these results provide new genetic evidence for the role of the ATP1A4 isoform in sperm motility, under both noncapacitating and capacitating conditions. PMID:20826726

  11. Increased plasma citrulline in mice marks diet-induced obesity and may predict the development of the metabolic syndrome.

    Directory of Open Access Journals (Sweden)

    Manuela Sailer

    Full Text Available In humans, plasma amino acid concentrations of branched-chain amino acids (BCAA and aromatic amino acids (AAA increase in states of obesity, insulin resistance and diabetes. We here assessed whether these putative biomarkers can also be identified in two different obesity and diabetic mouse models. C57BL/6 mice with diet-induced obesity (DIO mimic the metabolic impairments of obesity in humans characterized by hyperglycemia, hyperinsulinemia and hepatic triglyceride accumulation. Mice treated with streptozotocin (STZ to induce insulin deficiency were used as a type 1 diabetes model. Plasma amino acid profiling of two high fat (HF feeding trials revealed that citrulline and ornithine concentrations are elevated in obese mice, while systemic arginine bioavailability (ratio of plasma arginine to ornithine + citrulline is reduced. In skeletal muscle, HF feeding induced a reduction of arginine levels while citrulline levels were elevated. However, arginine or citrulline remained unchanged in their key metabolic organs, intestine and kidney. Moreover, the intestinal conversion of labeled arginine to ornithine and citrulline in vitro remained unaffected by HF feeding excluding the intestine as prime site of these alterations. In liver, citrulline is mainly derived from ornithine in the urea cycle and DIO mice displayed reduced hepatic ornithine levels. Since both amino acids share an antiport mechanism for mitochondrial import and export, elevated plasma citrulline may indicate impaired hepatic amino acid handling in DIO mice. In the insulin deficient mice, plasma citrulline and ornithine levels also increased and additionally these animals displayed elevated BCAA and AAA levels like insulin resistant and diabetic patients. Therefore, type 1 diabetic mice but not DIO mice show the "diabetic fingerprint" of plasma amino acid changes observed in humans. Additionally, citrulline may serve as an early indicator of the obesity-dependent metabolic

  12. Dim light at night increases depressive-like responses in male C3H/HeNHsd mice.

    Science.gov (United States)

    Fonken, Laura K; Nelson, Randy J

    2013-04-15

    Daily patterns of light exposure have become increasingly variable since the widespread adoption of electrical lighting during the 20th century. Seasonal fluctuations in light exposure, shift-work, and transmeridian travel are all associated with alterations in mood. These studies implicate fluctuations in environmental lighting in the development of depressive disorders. Here we argue that exposure to light at night (LAN) may be causally linked to depression. Male C3H/HeNHsd mice, which produce nocturnal melatonin, were housed in either a standard light/dark (LD) cycle or exposed to nightly dim (5 lux) LAN (dLAN). After four weeks in lighting conditions mice underwent behavioral testing and hippocampal tissue was collected at the termination of the study for qPCR. Here were report that mice exposed to dLAN increase depressive-like responses in both a sucrose anhedonia and forced swim test. In contrast to findings in diurnal grass rats, dLAN mice perform comparably to mice housed under dark nights in a hippocampus-dependent learning and memory task. TNFα and IL1β gene expression do not differ between groups, demonstrating that changes in these pro-inflammatory cytokines do not mediate dLAN induced depressive-like responses in mice. BDNF expression is reduced in the hippocampus of mice exposed to dLAN. These results indicate that low levels of LAN can alter mood in mice. This study along with previous work implicates LAN as a potential factor contributing to depression. Further understanding of the mechanisms through which LAN contributes to changes in mood is important for characterizing and treating depressive disorders. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. H. pylori attenuates TNBS-induced colitis via increasing mucosal Th2 cells in mice.

    Science.gov (United States)

    Wu, Yi-Zhong; Tan, Gao; Wu, Fang; Zhi, Fa-Chao

    2017-09-26

    There is an epidemiological inverse relationship between Helicobacter pylori ( H. pylori ) infection and Crohn's disease (CD). However, whether H. pylori plays a protective role against CD remains unclear. Since 2, 4, 6-trinitrobenzene sulfonic acid (TNBS)-induced colitis is thought to resemble CD, we investigated whether H. pylori can attenuate TNBS-induced colitis in mice. Here we show that H. pylori can attenuate the severity of TNBS-induced colitis. In addition, H. pylori not only down-regulates Th17 and Th1 cytokine expression, but can up-regulate Th2 cytokine expression and increase the Th2:Th17 ratio of CD4 + T in the colonic mucosa of TNBS-induced colitis. Our results indicate that H. pylori attenuates TNBS-induced colitis mainly through increasing Th2 cells in murine colonic mucosa. Our finding offers a novel view on the role of H. pylori in regulating gastrointestinal immunity, and may open a new avenue for development of therapeutic strategies in CD by making use of asymptomatic H. pylori colonization.

  14. Lovastatin delays infection and increases survival rates in AG129 mice infected with dengue virus serotype 2.

    Directory of Open Access Journals (Sweden)

    Marlen Martinez-Gutierrez

    Full Text Available BACKGROUND: It has been reported that treatment of DENV-infected cultures with Lovastatin (LOV, can affect viral assembly. The objective of this study was to evaluate the effect of LOV on the survival rate and viremia levels of DENV-2-infected AG129 mice. METHODOLOGY/PRINCIPAL FINDINGS: Mice were inoculated with 1 × 10(6 plaque-forming units (PFU/ml of DENV-2 and treated with LOV (200 mg/kg/day. Pre-treatment with one or three doses of LOV increased the survival rate compared to untreated mice (7.3 and 7.1 days, respectively, compared to 4.8 days. Viremia levels also decreased by 21.8% compared to untreated mice, but only in the group administered three doses prior to inoculation. When LOV was administered after viral inoculation, the survival rate increased (7.3 days in the group treated at 24 hpi, 6.8 days in the group treated at 48 hpi and 6.5 days in the group treated with two doses compared to the untreated group (4.8 days. Interestingly, the serum viral titer increased by 24.6% in mice treated at 48 hpi with a single dose of LOV and by 21.7% in mice treated with two doses (at 24 and 48 hpi of LOV compared to untreated mice. Finally histopathological changes in the liver and spleen in infected and untreated mice included massive extramedullary erythropoiesis foci and inflammatory filtration, and these characteristics were decreased or absent in LOV-treated mice. CONCLUSIONS/SIGNIFICANCE: Our results suggest that the effect of LOV on viremia depends on the timing of treatment and on the number of doses administered. We observed a significant increase in the survival rate in both schemes due to a delay in the progression of the disease. However, the results obtained in the post-treatment scheme must be handled carefully because this treatment scheme increases viremia and we do not know how this increase could affect disease progression in humans.

  15. Increased oxidative stress and apoptosis in the hypothalamus of diabetic male mice in the insulin receptor substrate-2 knockout model

    Science.gov (United States)

    Canelles, Sandra; Argente, Jesús; Barrios, Vicente

    2016-01-01

    ABSTRACT Insulin receptor substrate-2-deficient (IRS2−/−) mice are considered a good model to study the development of diabetes because IRS proteins mediate the pleiotropic effects of insulin-like growth factor-I (IGF-I) and insulin on metabolism, mitogenesis and cell survival. The hypothalamus might play a key role in the early onset of diabetes, owing to its involvement in the control of glucose homeostasis and energy balance. Because some inflammatory markers are elevated in the hypothalamus of diabetic IRS2−/− mice, our aim was to analyze whether the diabetes associated with the absence of IRS2 results in hypothalamic injury and to analyze the intracellular mechanisms involved. Only diabetic IRS2−/− mice showed increased cell death and activation of caspase-8 and -3 in the hypothalamus. Regulators of apoptosis such as FADD, Bcl-2, Bcl-xL and p53 were also increased, whereas p-IκB and c-FLIPL were decreased. This was accompanied by increased levels of Nox-4 and catalase, enzymes involved in oxidative stress. In summary, the hypothalamus of diabetic IRS2−/− mice showed an increase in oxidative stress and inflammatory markers that finally resulted in cell death via substantial activation of the extrinsic apoptotic pathway. Conversely, non-diabetic IRS2−/− mice did not show cell death in the hypothalamus, possibly owing to an increase in the levels of circulating IGF-I and in the enhanced hypothalamic IGF-IR phosphorylation that would lead to the stimulation of survival pathways. In conclusion, diabetes in IRS2-deficient male mice is associated with increased oxidative stress and apoptosis in the hypothalamus. PMID:27013528

  16. EAAC1 Gene Deletion Increases Neuronal Death and Blood Brain Barrier Disruption after Transient Cerebral Ischemia in Female Mice

    Directory of Open Access Journals (Sweden)

    Bo Young Choi

    2014-10-01

    Full Text Available EAAC1 is important in modulating brain ischemic tolerance. Mice lacking EAAC1 exhibit increased susceptibility to neuronal oxidative stress in mice after transient cerebral ischemia. EAAC1 was first described as a glutamate transporter but later recognized to also function as a cysteine transporter in neurons. EAAC1-mediated transport of cysteine into neurons contributes to neuronal antioxidant function by providing cysteine substrates for glutathione synthesis. Here we evaluated the effects of EAAC1 gene deletion on hippocampal blood vessel disorganization after transient cerebral ischemia. EAAC1−/− female mice subjected to transient cerebral ischemia by common carotid artery occlusion for 30 min exhibited twice as much hippocampal neuronal death compared to wild-type female mice as well as increased reduction of neuronal glutathione, blood–brain barrier (BBB disruption and vessel disorganization. Pre-treatment of N-acetyl cysteine, a membrane-permeant cysteine prodrug, increased basal glutathione levels in the EAAC1−/− female mice and reduced ischemic neuronal death, BBB disruption and vessel disorganization. These findings suggest that cysteine uptake by EAAC1 is important for neuronal antioxidant function under ischemic conditions.

  17. Iron status and systemic inflammation, but not gut inflammation, strongly predict gender-specific concentrations of serum hepcidin in infants in rural Kenya.

    Directory of Open Access Journals (Sweden)

    Tanja Jaeggi

    Full Text Available Hepcidin regulation by competing stimuli such as infection and iron deficiency has not been studied in infants and it's yet unknown whether hepcidin regulatory pathways are fully functional in infants. In this cross-sectional study including 339 Kenyan infants aged 6.0±1.1 months (mean±SD, we assessed serum hepcidin-25, biomarkers of iron status and inflammation, and fecal calprotectin. Prevalence of inflammation, anemia, and iron deficiency was 31%, 71%, 26%, respectively. Geometric mean (±SD serum hepcidin was 6.0 (±3.4 ng/mL, and was significantly lower in males than females. Inflammation (C-reactive protein and interleukin-6 and iron status (serum ferritin, zinc protoporphyrin and soluble transferrin receptor were significant predictors of serum hepcidin, explaining nearly 60% of its variance. There were small, but significant differences in serum hepcidin comparing iron deficient anemic (IDA infants without inflammation to iron-deficient anemic infants with inflammation (1.2 (±4.9 vs. 3.4 (±4.9 ng/mL; P<0.001. Fecal calprotectin correlated with blood/mucus in the stool but not with hepcidin. Similarly, the gut-linked cytokines IL-12 and IL-17 did not correlate with hepcidin. We conclude that hepcidin regulatory pathways are already functional in infancy, but serum hepcidin alone may not clearly discriminate between iron-deficient anemic infants with and without infection. We propose gender-specific reference values for serum hepcidin in iron-replete infants without inflammation.

  18. Identification of tissue sites for increased albumin degradation in sarcoma-bearing mice

    International Nuclear Information System (INIS)

    Andersson, C.; Iresjoe, B.M.L.; Lundholm, K.

    1991-01-01

    Plasma albumin concentration declines in both experimental and clinical cancer. Previous investigations have demonstrated that this is partly explained by increased breakdown of albumin. The present study has identified the tissue sites for increased albumin degradation in a nonmetastasizing sarcoma mouse (C57/BL6J) model. Results have been compared to nontumor-bearing animals either freely fed or food restricted (pair-weighed) so that their body composition was similar to tumor-bearing animals. Tumor-bearing mice had increased albumin degradation (0.13 +/- 0.02 mg/hr/g bw) compared to both freely fed (0.09 +/- 0.007) and pair-weighed control animals (0.05 +/- 0.008). Radioactivity from circulating [3H]raffine aldehyde labeled albumin appeared with maximum peak values in lysosomes isolated from both tumor and nontumor tissues at 48 hr following iv injection. The intralysosomal accumulation of radioactivity was two- to threefold higher in tumor tissue compared to liver tissue, although the specific activity of protease(s) for albumin degradation measured in vitro was not higher in tumor tissue (30.4 +/- 3.6 mg/hr/g tissue) compared to normal liver tissue (36.9 +/- 1.7). Accounting for the entire tumor the proteolytic capacity for albumin breakdown was however much larger in the tumor (161.6 +/- 32.6 mg/organ) compared to both normal liver (37.5 +/- 2.3) and tumor-host liver (56.4 +/- 2.8). Pepstatin inhibited 78 +/- 6% of the proteolytic activity in the tumor measured by 125I-labeled undenatured mouse albumin as the substrate. Leupeptin inhibited 49 +/- 6%. There was a significantly decreased breakdown of albumin in both skeletal muscles and the gastrointestinal tract from tumor-bearing animals

  19. The long-acting GLP-1 derivative NN2211 ameliorates glycemia and increases beta-cell mass in diabetic mice

    DEFF Research Database (Denmark)

    Rolin, Bidda; Larsen, Marianne O; Gotfredsen, Carsten F

    2002-01-01

    in food intake, there were no significant differences between NN2211 and vehicle treatment, and body weight was not affected. Histological examination revealed that beta-cell proliferation and mass were not increased significantly in ob/ob mice with NN2211, although there was a strong tendency...... for increased proliferation. In db/db mice, exendin-4 and NN2211 decreased blood glucose compared with vehicle, but NN2211 had a longer duration of action. Food intake was lowered only on day 1 with both compounds, and body weight was unaffected. beta-Cell proliferation rate and mass were significantly...

  20. Celecoxib increases miR-222 while deterring aromatase-expressing breast tumor growth in mice

    International Nuclear Information System (INIS)

    Wong, Tsz Yan; Li, Fengjuan; Lin, Shu-mei; Chan, Franky L; Chen, Shiuan; Leung, Lai K

    2014-01-01

    Breast cancer is one of the most deadly diseases in women. Inhibiting the synthesis of estrogen is effective in treating patients with estrogen-responsive breast cancer. Previous studies have demonstrated that use of cyclooxygenase (COX) inhibitors is associated with reduced breast cancer risk. In the present study, we employed an established mouse model for postmenopausal breast cancer to evaluate the potential mechanisms of the COX-2 inhibitor celecoxib. Aromatase-expressing MCF-7 cells were transplanted into ovariectomized athymic mice. The animals were given celecoxib at 1500 ppm or aspirin at 200 ppm by oral administration with androstenedione injection. Our results showed that both COX inhibitors could suppress the cancer xenograft growth without changing the plasma estrogen level. Protein expression of ERα, COX-2, Cyclin A, and Bcl-xL were reduced in celecoxib-treated tumor samples, whereas only Bcl-xL expression was suppressed in those treated with aspirin. Among the breast cancer-related miRNAs, miR-222 expression was elevated in samples treated with celecoxib. Further studies in culture cells verified that the increase in miR-222 expression might contribute to ERα downregulation but not the growth deterrence of cells. Overall, this study suggested that both celecoxib and aspirin could prevent breast cancer growth by regulating proteins in the cell cycle and apoptosis without blocking estrogen synthesis. Besides, celecoxib might affect miR expression in an undesirable fashion

  1. Repeated superovulation increases the risk of osteoporosis and cardiovascular diseases by accelerating ovarian aging in mice.

    Science.gov (United States)

    Zhang, Jinjin; Lai, Zhiwen; Shi, Liangyan; Tian, Yong; Luo, Aiyue; Xu, Zheyuan; Ma, Xiangyi; Wang, Shixuan

    2018-05-22

    Superovulation procedures and assisted reproductive technologies have been widely used to treat couples who have infertility problems. Although generally safe, the superovulation procedures are associated with a series of complications, such as ovarian hyper-stimulation syndrome, thromboembolism, and adnexal torsion. The role of long-term repeated superovulation in ovarian aging and especially in associated disorders such as osteoporosis and cardiovascular diseases is still unclear. In this study, we sought to determine if repeated superovulation by ten cycles of treatment with pregnant mare serum gonadotropin/human chorionic gonadotropin could affect ovarian reserve, ovarian function, bone density and heart function. Ovarian reserve and function were reflected by the size of the primordial follicle pool, anti-Mullerian hormone expressions, hormone levels and fertility status. Furthermore, we examined bone density and heart function by microCT and cardiovascular ultrasonography, respectively. After repeated superovulation, the size of the primordial follicle pool and the expression of anti-mullerian hormone decreased, along with the concentrations of estrogen and progesterone. Mice exposed to repeated superovulation showed an obvious decrease in fertility and fecundity. Furthermore, both bone density and heart ejection fraction significantly decreased. These results suggest that repeated superovulation may increase the risk of osteoporosis and cardiovascular diseases by accelerating ovarian aging.

  2. Propeptide-mediated inhibition of myostatin increases muscle mass through inhibiting proteolytic pathways in aged mice.

    Science.gov (United States)

    Collins-Hooper, Henry; Sartori, Roberta; Macharia, Raymond; Visanuvimol, Korntip; Foster, Keith; Matsakas, Antonios; Flasskamp, Hannah; Ray, Steve; Dash, Philip R; Sandri, Marco; Patel, Ketan

    2014-09-01

    Mammalian aging is accompanied by a progressive loss of skeletal muscle, a process called sarcopenia. Myostatin, a secreted member of the transforming growth factor-β family of signaling molecules, has been shown to be a potent inhibitor of muscle growth. Here, we examined whether muscle growth could be promoted in aged animals by antagonizing the activity of myostatin through the neutralizing activity of the myostatin propeptide. We show that a single injection of an AAV8 virus expressing the myostatin propeptide induced an increase in whole body weights and all muscles examined within 7 weeks of treatment. Our cellular studies demonstrate that muscle enlargement was due to selective fiber type hypertrophy, which was accompanied by a shift toward a glycolytic phenotype. Our molecular investigations elucidate the mechanism underpinning muscle hypertrophy by showing a decrease in the expression of key genes that control ubiquitin-mediated protein breakdown. Most importantly, we show that the hypertrophic muscle that develops as a consequence of myostatin propeptide in aged mice has normal contractile properties. We suggest that attenuating myostatin signaling could be a very attractive strategy to halt and possibly reverse age-related muscle loss. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Increased expression of PPARγ in high fat diet-induced liver steatosis in mice

    International Nuclear Information System (INIS)

    Inoue, Mitsutaka; Ohtake, Takaaki; Motomura, Wataru; Takahashi, Nobuhiko; Hosoki, Yayoi; Miyoshi, Shigeki; Suzuki, Yasuaki; Saito, Hiroyuki; Kohgo, Yutaka; Okumura, Toshikatsu

    2005-01-01

    The present study was performed to examine a hypothesis that peroxisome proliferator-activated receptor γ (PPARγ) is implicated in high fat diet-induced liver steatosis. Mice were fed with control or high fat diet containing approximately 10% or 80% cholesterol, respectively. Macroscopic and microscopic findings demonstrated that lipid accumulation in the liver was observed as early as 2 weeks after high fat diet and that high fat diet for 12 weeks developed a fatty liver phenotype, establishing a novel model of diet-induced liver steatosis. Gene profiling with microarray and real-time PCR studies demonstrated that among genes involved in lipid metabolism, adipogenesis-related genes, PPARγ and its targeted gene, CD36 mRNA expression was specifically up-regulated in the liver by high fat diet for 2 weeks. Immunohistochemical study revealed that PPARγ protein expression is increased in the nuclei of hepatocytes by high fat diet. It was also shown that protein expression of cAMP response element-binding protein (CREB), an upstream molecule of PPARγ, in the liver was drastically suppressed by high fat diet. All these results suggest for the first time that the CREB-PPARγ signaling pathway may be involved in the high fat diet-induced liver steatosis

  4. Human plasma phospholipid transfer protein increases the antiatherogenic potential of high density lipoproteins in transgenic mice

    NARCIS (Netherlands)

    M.J. van Haperen (Rien); A. van Tol (Arie); P. Vermeulen; M. Jauhiainen; T. van Gent (Teus); P.M. van den Berg (Paul); S. Ehnholm (Sonja); A.W.M. van der Kamp (Arthur); M.P.G. de Crom (Rini); F.G. Grosveld (Frank)

    2000-01-01

    textabstractPlasma phospholipid transfer protein (PLTP) transfers phospholipids between lipoprotein particles and alters high density lipoprotein (HDL) subfraction patterns in vitro, but its physiological function is poorly understood. Transgenic mice that overexpress

  5. Methamphetamine Increases Locomotion and Dopamine Transporter Activity in Dopamine D5 Receptor-Deficient Mice

    OpenAIRE

    Hayashizaki, Seiji; Hirai, Shinobu; Ito, Yumi; Honda, Yoshiko; Arime, Yosefu; Sora, Ichiro; Okado, Haruo; Kodama, Tohru; Takada, Masahiko

    2013-01-01

    Dopamine regulates the psychomotor stimulant activities of amphetamine-like substances in the brain. The effects of dopamine are mediated through five known dopamine receptor subtypes in mammals. The functional relevance of D5 dopamine receptors in the central nervous system is not well understood. To determine the functional relevance of D5 dopamine receptors, we created D5 dopamine receptor-deficient mice and then used these mice to assess the roles of D5 dopamine receptors in the behaviora...

  6. Increasing the effectiveness of intracerebral injections in adult and neonatal mice: a neurosurgical point of view.

    Science.gov (United States)

    Mathon, Bertrand; Nassar, Mérie; Simonnet, Jean; Le Duigou, Caroline; Clemenceau, Stéphane; Miles, Richard; Fricker, Desdemona

    2015-12-01

    Intracerebral injections of tracers or viral constructs in rodents are now commonly used in the neurosciences and must be executed perfectly. The purpose of this article is to update existing protocols for intracerebral injections in adult and neonatal mice. Our procedure for stereotaxic injections in adult mice allows the investigator to improve the effectiveness and safety, and save time. Furthermore, for the first time, we describe a two-handed procedure for intracerebral injections in neonatal mice that can be performed by a single operator in a very short time. Our technique using the stereotaxic arm allows a higher precision than freehand techniques previously described. Stereotaxic injections in adult mice can be performed in 20 min and have >90% efficacy in targeting the injection site. Injections in neonatal mice can be performed in 5 min. Efficacy depends on the difficulty of precisely localizing the injection sites, due to the small size of the animal. We describe an innovative, effortless, and reproducible surgical protocol for intracerebral injections in adult and neonatal mice.

  7. GPR40/FFAR1 deficient mice increase noradrenaline levels in the brain and exhibit abnormal behavior

    Directory of Open Access Journals (Sweden)

    Fuka Aizawa

    2016-12-01

    Full Text Available The free fatty acid receptor 1 (GPR40/FFAR1 is a G protein-coupled receptor, which is activated by long chain fatty acids. We have previously demonstrated that activation of brain GPR40/FFAR1 exerts an antinociceptive effect that is mediated by the modulation of the descending pain control system. However, it is unclear whether brain GPR40/FFAR1 contributes to emotional function. In this study, we investigated the involvement of GPR40/FFAR1 in emotional behavior using GPR40/FFAR1 deficient (knockout, KO mice. The emotional behavior in wild and KO male mice was evaluated at 9–10 weeks of age by the elevated plus-maze test, open field test, social interaction test, and sucrose preference test. Brain monoamines levels were measured using LC–MS/MS. The elevated plus-maze test and open field tests revealed that the KO mice reduced anxiety-like behavior. There were no differences in locomotor activity or social behavior between the wild and KO mice. In the sucrose preference test, the KO mice showed reduction in sucrose preference and intake. The level of noradrenaline was higher in the hippocampus, medulla oblongata, hypothalamus and midbrain of KO mice. Therefore, these results suggest that brain GPR40/FFAR1 is associated with anxiety- and depression-related behavior regulated by the increment of noradrenaline in the brain.

  8. GPR40/FFAR1 deficient mice increase noradrenaline levels in the brain and exhibit abnormal behavior.

    Science.gov (United States)

    Aizawa, Fuka; Nishinaka, Takashi; Yamashita, Takuya; Nakamoto, Kazuo; Kurihara, Takashi; Hirasawa, Akira; Kasuya, Fumiyo; Miyata, Atsuro; Tokuyama, Shogo

    2016-12-01

    The free fatty acid receptor 1 (GPR40/FFAR1) is a G protein-coupled receptor, which is activated by long chain fatty acids. We have previously demonstrated that activation of brain GPR40/FFAR1 exerts an antinociceptive effect that is mediated by the modulation of the descending pain control system. However, it is unclear whether brain GPR40/FFAR1 contributes to emotional function. In this study, we investigated the involvement of GPR40/FFAR1 in emotional behavior using GPR40/FFAR1 deficient (knockout, KO) mice. The emotional behavior in wild and KO male mice was evaluated at 9-10 weeks of age by the elevated plus-maze test, open field test, social interaction test, and sucrose preference test. Brain monoamines levels were measured using LC-MS/MS. The elevated plus-maze test and open field tests revealed that the KO mice reduced anxiety-like behavior. There were no differences in locomotor activity or social behavior between the wild and KO mice. In the sucrose preference test, the KO mice showed reduction in sucrose preference and intake. The level of noradrenaline was higher in the hippocampus, medulla oblongata, hypothalamus and midbrain of KO mice. Therefore, these results suggest that brain GPR40/FFAR1 is associated with anxiety- and depression-related behavior regulated by the increment of noradrenaline in the brain. Copyright © 2016 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  9. Tissue Selective Androgen Receptor Modulators (SARMs) Increase Pelvic Floor Muscle Mass in Ovariectomized Mice.

    Science.gov (United States)

    Ponnusamy, Suriyan; Sullivan, Ryan D; Thiyagarajan, Thirumagal; Tillmann, Heather; Getzenberg, Robert H; Narayanan, Ramesh

    2017-03-01

    Stress urinary incontinence (SUI), a prevalent condition, is represented by an involuntary leakage of urine that results, at least in part, from weakened or damaged pelvic floor muscles and is triggered by physical stress. Current treatment options are limited with no oral therapies available. The pelvic floor is rich in androgen receptor and molecules with anabolic activity including selective androgen receptor modulators (SARMs) may serve as therapeutic options for individuals with SUI. In this study, two SARMs (GTx-024 and GTx-027) were evaluated in a post-menopausal animal model in order to determine their effect on pelvic floor muscles. Female C57BL/6 mice were ovariectomized and their pelvic muscles allowed to regress. The animals were then treated with vehicle or doses of GTx-024 or GTx-027. Animal total body weight, lean body mass, and pelvic floor muscle weights were measured along with the expression of genes associated with muscle catabolism. Treatment with the SARMs resulted in a restoration of the pelvic muscles to the sham-operated weight. Coordinately, the induction of genes associated with muscle catabolism was inhibited. Although a trend was observed towards an increase in total lean body mass in the SARM-treated groups, no significant differences were detected. Treatment of an ovariectomized mouse model with SARMs resulted in an increase in pelvic floor muscles, which may translate to an improvement of symptoms associated with SUI and serves as the basis for evaluating their clinical use. J. Cell. Biochem. 118: 640-646, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Improved Insulin Sensitivity despite Increased Visceral Adiposity in Mice Deficient for the Immune Cell Transcription Factor T-bet

    Science.gov (United States)

    Stolarczyk, Emilie; Vong, Chi Teng; Perucha, Esperanza; Jackson, Ian; Cawthorne, Michael A.; Wargent, Edward T.; Powell, Nick; Canavan, James B.; Lord, Graham M.; Howard, Jane K.

    2013-01-01

    Summary Low-grade inflammation in fat is associated with insulin resistance, although the mechanisms are unclear. We report that mice deficient in the immune cell transcription factor T-bet have lower energy expenditure and increased visceral fat compared with wild-type mice, yet paradoxically are more insulin sensitive. This striking phenotype, present in young T-bet−/− mice, persisted with high-fat diet and increasing host age and was associated with altered immune cell numbers and cytokine secretion specifically in visceral adipose tissue. However, the favorable metabolic phenotype observed in T-bet-deficient hosts was lost in T-bet−/− mice also lacking adaptive immunity (T-bet−/−xRag2−/−), demonstrating that T-bet expression in the adaptive rather than the innate immune system impacts host glucose homeostasis. Indeed, adoptive transfer of T-bet-deficient, but not wild-type, CD4+ T cells to Rag2−/− mice improved insulin sensitivity. Our results reveal a role for T-bet in metabolic physiology and obesity-associated insulin resistance. PMID:23562076

  11. Increased anxiety, voluntary alcohol consumption and ethanol-induced place preference in mice following chronic psychosocial stress.

    Science.gov (United States)

    Bahi, Amine

    2013-07-01

    Stress exposure is known to be a risk factor for alcohol use and anxiety disorders. Comorbid chronic stress and alcohol dependence may lead to a complicated and potentially severe treatment profile. To gain an understanding of the interaction between chronic psychosocial stress and drug exposure, we studied the effects of concomitant chronic stress exposure on alcohol reward using two-bottle choice and ethanol-conditioned place preference (CPP). The study consisted of exposure of the chronic subordinate colony (CSC) mice "intruders" to an aggressive "resident" mouse for 19 consecutive days. Control mice were single housed (SHC). Ethanol consumption using two-bottle choice paradigm and ethanol CPP acquisition was assessed at the end of this time period. As expected, CSC exposure increased anxiety-like behavior and reduced weight gain as compared to SHC controls. Importantly, in the two-bottle choice procedure, CSC mice showed higher alcohol intake than SHC. When testing their response to ethanol-induced CPP, CSC mice achieved higher preference for the ethanol-paired chamber. In fact, CSC exposure increased ethanol-CPP acquisition. Taken together, these data demonstrate the long-term consequences of chronic psychosocial stress on alcohol intake in male mice, suggesting chronic stress as a risk factor for developing alcohol consumption and/or anxiety disorders.

  12. Increase of arginase activity in old apolipoprotein-E deficient mice under Western diet associated with changes in neurovascular unit

    Directory of Open Access Journals (Sweden)

    Badaut Jérôme

    2012-06-01

    Full Text Available Abstract Aging and atherosclerosis are well-recognized risk factors for cardiac and neurovascular diseases. The Apolipoprotein E deficient (ApoE−/− mouse on a high-fat diet is a classical model of atherosclerosis, characterized by the presence of atherosclerotic plaques in extracranial vessels but not in cerebral arteries. Increase in arginase activity was shown to participate in vascular dysfunction in the peripheral arteries of atherosclerotic mice by changing the level of nitric oxide (NO. NO plays a key role in the physiological functions of the neurovascular unit (NVU. However, the regulation of arginase expression and activity in the brain was never investigated in association with changes in the NVU, ApoE deficiency and high fat diet. Fourteen-month-old ApoE−/− mice on high-fat diet exhibited deposition of lipids in the NVU, impairment of blood–brain barrier properties, astrogliosis and an increase of aquaporin 4 staining. In association with these changes, brain arginase activity was significantly increased in the old ApoE−/− mice as compared to old wild type mice, with an increase in the level of arginase type I in the blood vessels. In conclusion, aging in this classical mouse model of atherosclerosis induces an increase in the level and activity of arginase I that may impair NO synthesis and contribute to changes in the NVU leading to blood–brain barrier leakage and inflammation.

  13. Increased Susceptibility of Humanized NSG Mice to Panton-Valentine Leukocidin and Staphylococcus aureus Skin Infection.

    Directory of Open Access Journals (Sweden)

    Ching Wen Tseng

    Full Text Available Staphylococcus aureus is a leading cause of skin and soft-tissue infections worldwide. Mice are the most commonly used animals for modeling human staphylococcal infections. However a supra-physiologic S. aureus inoculum is required to establish gross murine skin pathology. Moreover, many staphylococcal factors, including Panton-Valentine leukocidin (PVL elaborated by community-associated methicillin-resistant S. aureus (CA-MRSA, exhibit selective human tropism and cannot be adequately studied in mice. To overcome these deficiencies, we investigated S. aureus infection in non-obese diabetic (NOD/severe combined immune deficiency (SCID/IL2rγnull (NSG mice engrafted with human CD34+ umbilical cord blood cells. These "humanized" NSG mice require one to two log lower inoculum to induce consistent skin lesions compared with control mice, and exhibit larger cutaneous lesions upon infection with PVL+ versus isogenic PVL- S. aureus. Neutrophils appear important for PVL pathology as adoptive transfer of human neutrophils alone to NSG mice was sufficient to induce dermonecrosis following challenge with PVL+ S. aureus but not PVL- S. aureus. PMX53, a human C5aR inhibitor, blocked PVL-induced cellular cytotoxicity in vitro and reduced the size difference of lesions induced by the PVL+ and PVL- S. aureus, but PMX53 also reduced recruitment of neutrophils and exacerbated the infection. Overall, our findings establish humanized mice as an important translational tool for the study of S. aureus infection and provide strong evidence that PVL is a human virulence factor.

  14. Iron status and systemic inflammation, but not gut inflammation, strongly predict gender-specific concentrations of serum hepcidin in infants in rural kenya

    NARCIS (Netherlands)

    Jaeggi, T.; Moretti, D.; Kvalsvig, J.; Holding, P.A.; Tjalsma, H.; Kortman, G.A.M.; Joosten, I.; Mwangi, A.; Zimmermann, M.B.

    2013-01-01

    Hepcidin regulation by competing stimuli such as infection and iron deficiency has not been studied in infants and it's yet unknown whether hepcidin regulatory pathways are fully functional in infants. In this cross-sectional study including 339 Kenyan infants aged 6.0+/-1.1 months (mean+/-SD), we

  15. Obligatory Role of EP1 Receptors in the Increase in Cerebral Blood Flow Produced by Hypercapnia in the Mice.

    Directory of Open Access Journals (Sweden)

    Ken Uekawa

    Full Text Available Hypercapnia induces potent vasodilation in the cerebral circulation. Although it has long been known that prostanoids participate in the cerebrovascular effects of hypercapnia, the role of prostaglandin E2 (PGE2 and PGE2 receptors have not been fully investigated. In this study, we sought to determine whether cyclooxygenase-1 (COX-1-derived PGE2 and EP1 receptors are involved in the cerebrovascular response induced by hypercapnia. Cerebral blood flow (CBF was recorded by laser-Doppler flowmetry in the somatosenasory cortex of anesthetized male EP1-/- mice and wild type (WT littermates. In WT mice, neocortical application of the EP1 receptor antagonist SC-51089 attenuated the increase in CBF elicited by systemic hypercapnia (pCO2 = 50-60 mmHg. SC-51089 also attenuated the increase in CBF produced by neocortical treatment of arachidonic acid or PGE2. These CBF responses were also attenuated in EP1-/- mice. In WT mice, the COX-1 inhibitor SC-560, but not the COX-2 inhibitor NS-398, attenuated the hypercapnic CBF increase. Neocortical application of exogenous PGE2 restored the attenuation in resting CBF and the hypercapnic response induced by SC-560. In contrast, exogenous PGE2 failed to rescue the attenuation both in WT mice induced by SC-51089 and EP1-/- mice, attesting to the obligatory role of EP1 receptors in the response. These findings indicate that the hypercapnic vasodilatation depends on COX-1-derived PGE2 acting on EP1 receptors and highlight the critical role that COX-1-derived PGE2 and EP1 receptors play in the hypercapnic regulation of the cerebral circulation.

  16. Cecal ligation and puncture followed by MRSA pneumonia increases mortality in mice and blunts production of local and systemic cytokines

    Science.gov (United States)

    Jung, Enjae; Perrone, Erin E.; Liang, Zhe; Breed, Elise R.; Dominguez, Jessica A.; Clark, Andrew T.; Fox, Amy C.; Dunne, W. Michael; Burd, Eileen M.; Farris, Alton B.; Hotchkiss, Richard S.; Coopersmith, Craig M.

    2011-01-01

    Mortality in the ICU frequently results from the synergistic effect of two temporally-distinct infections. This study examined the pathophysiology of a new model of intraabdominal sepsis followed by methicillin-resistant Staphylococcus aureus (MRSA) pneumonia. Mice underwent cecal ligation and puncture (CLP) or sham laparotomy followed three days later by an intratracheal injection of MRSA or saline. Both CLP/saline and sham/MRSA mice had 100% survival while animals with CLP followed by MRSA pneumonia had 67% seven-day survival. Animals subjected to CLP/MRSA had increased bronchoalveolar lavage (BAL) concentrations of MRSA compared to sham/MRSA animals. Animals subjected to sham/MRSA pneumonia had increased BAL levels of IL-6, TNF-α, and G-CSF compared to those given intratracheal saline while CLP/MRSA mice had a blunted local inflammatory response with markedly decreased cytokine levels. Similarly, animals subjected to CLP/saline had increased peritoneal lavage levels of IL-6 and IL-1β compared to those subjected to sham laparotomy while this response was blunted in CLP/MRSA mice. Systemic cytokines were upregulated in both CLP/saline and sham/MRSA mice, and this was blunted by the combination of CLP/MRSA. In contrast, no synergistic effect on pneumonia severity, white blood cell count or lymphocyte apoptosis was identified in CLP/MRSA mice compared to animals with either insult in isolation. These results indicate that a clinically relevant model of CLP followed by MRSA pneumonia causes higher mortality than could have been predicted from studying either infection in isolation, and this was associated with a blunted local (pulmonary and peritoneal) and systemic inflammatory response and decreased ability to clear infection. PMID:21937950

  17. Transcranial low-level laser therapy increases memory, learning, neuroprogenitor cells, BDNF and synaptogenesis in mice with traumatic brain injury

    Science.gov (United States)

    Xuan, Weijun; Huang, Liyi; Vatansever, Fatma; Agrawal, Tanupriya; Hamblin, Michael R.

    2015-03-01

    Increasing concern is evident over the epidemic of traumatic brain injury in both civilian and military medicine, and the lack of approved treatments. Transcranial low level laser therapy tLLLT) is a new approach in which near infrared laser is delivered to the head, penetrates the scalp and skull to reach the brain. We asked whether tLLLT at 810-nm could improve memory and learning in mice with controlled cortical impact traumatic brain injury. We investigated the mechanism of action by immunofluorescence studies in sections from brains of mice sacrificed at different times. Mice with TBI treated with 1 or 3 daily laser applications performed better on Morris Water Maze test at 28 days. Laser treated mice had increased BrdU incorporation into NeuN positive cells in the dentate gyrus and subventricular zone indicating formation of neuroprogenitor cells at 7 days and less at 28 days. Markers of neuron migration (DCX and Tuj1) were also increased, as was the neurotrophin, brain derived neurotrophic factor (BDNF) at 7 days. Markers of synaptogenesis (formation of new connections between existing neurons) were increased in the perilesional cortex at 28 days. tLLLT is proposed to be able to induce the brain to repair itself after injury. However its ability to induce neurogenesis and synaptogenesis suggests that tLLLT may have much wider applications to neurodegenerative and psychiatric disorders.

  18. CD36 deficiency increases insulin sensitivity in muscle, but induces insulin resistance in the liver in mice

    NARCIS (Netherlands)

    Goudriaan, J.R.; Dahlmans, V.E.H.; Teusink, B.; Ouwens, D.M.; Febbraio, M.; Maassen, J.A.; Romijn, J.A.; Havekes, L.M.; Voshol, P.J.

    2003-01-01

    CD36 (fatty acid translocase) is involved in high-affinity peripheral fatty acid uptake. Mice lacking CD36 exhibit increased plasma free fatty acid and triglyceride (TG) levels and decreased glucose levels. Studies in spontaneous hypertensive rats lacking functional CD36 link CD36 to the

  19. Nesting behavior of house mice (Mus domesticus) selected for increased wheel-running activity.

    Science.gov (United States)

    Carter, P A; Swallow, J G; Davis, S J; Garland, T

    2000-03-01

    Nest building was measured in "active" (housed with access to running wheels) and "sedentary" (without wheel access) mice (Mus domesticus) from four replicate lines selected for 10 generations for high voluntary wheel-running behavior, and from four randombred control lines. Based on previous studies of mice bidirectionally selected for thermoregulatory nest building, it was hypothesized that nest building would show a negative correlated response to selection on wheel-running. Such a response could constrain the evolution of high voluntary activity because nesting has also been shown to be positively genetically correlated with successful production of weaned pups. With wheel access, selected mice of both sexes built significantly smaller nests than did control mice. Without wheel access, selected females also built significantly smaller nests than did control females, but only when body mass was excluded from the statistical model, suggesting that body mass mediated this correlated response to selection. Total distance run and mean running speed on wheels was significantly higher in selected mice than in controls, but no differences in amount of time spent running were measured, indicating a complex cause of the response of nesting to selection for voluntary wheel running.

  20. Socially dominant mice in C57BL6 background show increased social motivation.

    Science.gov (United States)

    Kunkel, Thaddeus; Wang, Hongbing

    2018-01-15

    A series of behavioral tests measuring social dominance, social motivation, and non-social motivation are examined in adult male C57BL6 mice. By using the well-known tube dominance test to determine social dominance and rank, we find that, in the absence of competition for resource and mating, group-housed mouse cage-mates display stable and mostly linear and transitive social hierarchies. Mice with top and bottom social ranks are subjected to a three-chamber social interaction test to measure social motivation. The top ranked mice spend more time interacting with a stranger mouse than the bottom ranked mice, suggesting that social dominance may positively influence social motivation. When subjected to a novel environment, mice with different social ranks show similar locomotion and exploring activity in the open field test, suggesting no detectable difference in certain aspects of non-social motivation. These results demonstrate a behavioral correlation between social dominance and social motivation. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. CCAAT/enhancer binding protein β deletion increases mitochondrial function and protects mice from LXR-induced hepatic steatosis

    International Nuclear Information System (INIS)

    Rahman, Shaikh M.; Choudhury, Mahua; Janssen, Rachel C.; Baquero, Karalee C.; Miyazaki, Makoto; Friedman, Jacob E.

    2013-01-01

    Highlights: ► LXR agonist activation increases liver TG accumulation by increasing lipogenesis. ► C/EBPβ −/− mouse prevents LXR activation-mediated induction of hepatic lipogenesis. ► C/EBPβ deletion increases mitochondrial transport chain function. ► Beneficial effects of LXR activation on liver cholesterol metabolism did not change. ► C/EBPβ inhibition might have important therapeutic potential. -- Abstract: Drugs designed specifically to activate liver X receptors (LXRs) have beneficial effects on lowering cholesterol metabolism and inflammation but unfortunately lead to severe hepatic steatosis. The transcription factor CCAAT/enhancer binding protein beta (C/EBPβ) is an important regulator of liver gene expression but little is known about its involvement in LXR-based steatosis and cholesterol metabolism. The present study investigated the role of C/EBPβ expression in LXR agonist (T0901317)-mediated alteration of hepatic triglyceride (TG) and lipogenesis in mice. C/EBPβ deletion in mice prevented LXR agonist-mediated induction of lipogenic gene expression in liver in conjunction with significant reduction of liver TG accumulation. Surprisingly, C/EBPβ −/− mice showed a major increase in liver mitochondrial electron chain function compared to WT mice. Furthermore, LXR activation in C/EBPβ −/− mice increased the expression of liver ATP-binding cassette transporter ABCG1, a gene implicated in cholesterol efflux and reducing blood levels of total and LDL-cholesterol. Together, these findings establish a central role for C/EBPβ in the LXR-mediated steatosis and mitochondrial function, without impairing the influence of LXR activation on lowering LDL and increasing HDL-cholesterol. Inactivation of C/EBPβ might therefore be an important therapeutic strategy to prevent LXR activation-mediated adverse effects on liver TG metabolism without disrupting its beneficial effects on cholesterol metabolism.

  2. CCAAT/enhancer binding protein {beta} deletion increases mitochondrial function and protects mice from LXR-induced hepatic steatosis

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Shaikh M., E-mail: rmizanoor@hotmail.com [Department of Pediatrics, School of Medicine, University of Colorado Denver, Aurora, CO 80045 (United States); Choudhury, Mahua; Janssen, Rachel C.; Baquero, Karalee C. [Department of Pediatrics, School of Medicine, University of Colorado Denver, Aurora, CO 80045 (United States); Miyazaki, Makoto [Division of Renal Diseases and Hypertension, School of Medicine, University of Colorado Denver, Aurora, CO 80045 (United States); Friedman, Jacob E. [Department of Pediatrics, School of Medicine, University of Colorado Denver, Aurora, CO 80045 (United States); Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, Aurora, CO 80045 (United States)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer LXR agonist activation increases liver TG accumulation by increasing lipogenesis. Black-Right-Pointing-Pointer C/EBP{beta}{sup -/-} mouse prevents LXR activation-mediated induction of hepatic lipogenesis. Black-Right-Pointing-Pointer C/EBP{beta} deletion increases mitochondrial transport chain function. Black-Right-Pointing-Pointer Beneficial effects of LXR activation on liver cholesterol metabolism did not change. Black-Right-Pointing-Pointer C/EBP{beta} inhibition might have important therapeutic potential. -- Abstract: Drugs designed specifically to activate liver X receptors (LXRs) have beneficial effects on lowering cholesterol metabolism and inflammation but unfortunately lead to severe hepatic steatosis. The transcription factor CCAAT/enhancer binding protein beta (C/EBP{beta}) is an important regulator of liver gene expression but little is known about its involvement in LXR-based steatosis and cholesterol metabolism. The present study investigated the role of C/EBP{beta} expression in LXR agonist (T0901317)-mediated alteration of hepatic triglyceride (TG) and lipogenesis in mice. C/EBP{beta} deletion in mice prevented LXR agonist-mediated induction of lipogenic gene expression in liver in conjunction with significant reduction of liver TG accumulation. Surprisingly, C/EBP{beta}{sup -/-} mice showed a major increase in liver mitochondrial electron chain function compared to WT mice. Furthermore, LXR activation in C/EBP{beta}{sup -/-} mice increased the expression of liver ATP-binding cassette transporter ABCG1, a gene implicated in cholesterol efflux and reducing blood levels of total and LDL-cholesterol. Together, these findings establish a central role for C/EBP{beta} in the LXR-mediated steatosis and mitochondrial function, without impairing the influence of LXR activation on lowering LDL and increasing HDL-cholesterol. Inactivation of C/EBP{beta} might therefore be an important therapeutic strategy to prevent LXR

  3. Increased ophthalmic acid production is supported by amino acid catabolism under fasting conditions in mice.

    Science.gov (United States)

    Kobayashi, Sho; Lee, Jaeyong; Takao, Toshifumi; Fujii, Junichi

    2017-09-23

    Glutathione (GSH) plays pivotal roles in antioxidation and detoxification. The transsulfuration pathway, in conjunction with methionine metabolism, produces equimolar amounts of cysteine (Cys) and 2-oxobutyric acid (2OB). The resulting 2OB is then converted into 2-aminobutyric acid (2AB) by a transaminase and is utilized as a substitute for Cys by the GSH-synthesizing machinery to produce ophthalmic acid (OPT). By establishing a method for simultaneously measuring Cys, GSH, and OPT by liquid chromatography-mass spectrometry, we found that fasting causes an elevation in OPT levels in the liver and blood plasma, even though the levels of Cys and GSH are decreased. Autophagy was activated, but the levels of GSH/OPT-synthesizing enzymes remained unchanged. After 6 h of fasting, the mice were given 1% 2AB and/or 5% glucose in the drinking water for an additional 24 h and the above metabolites analyzed. 2AB administration caused an increase in OPT levels, and, when glucose was co-administered with 2AB, the levels of OPT were elevated further but GSH levels were decreased somewhat. These results suggest that, while Cys is utilized for glyconeogenesis under fasting conditions, reaching levels that were insufficient for the synthesis of GSH, 2OB was preferentially converted to 2AB via amino acid catabolism and was utilized as a building block for OPT. Thus the consumption of Cys and the parallel elevation of 2AB under fasting conditions appeared to force γ-glutamylcysteine synthetase to form γ-glutamyl-2AB, despite the fact that the enzyme has a higher Km value for 2AB than Cys. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Increasing kynurenine brain levels reduces ethanol consumption in mice by inhibiting dopamine release in nucleus accumbens.

    Science.gov (United States)

    Giménez-Gómez, Pablo; Pérez-Hernández, Mercedes; Gutiérrez-López, María Dolores; Vidal, Rebeca; Abuin-Martínez, Cristina; O'Shea, Esther; Colado, María Isabel

    2018-06-01

    Recent research suggests that ethanol (EtOH) consumption behaviour can be regulated by modifying the kynurenine (KYN) pathway, although the mechanisms involved have not yet been well elucidated. To further explore the implication of the kynurenine pathway in EtOH consumption we inhibited kynurenine 3-monooxygenase (KMO) activity with Ro 61-8048 (100 mg/kg, i.p.), which shifts the KYN metabolic pathway towards kynurenic acid (KYNA) production. KMO inhibition decreases voluntary binge EtOH consumption and EtOH preference in mice subjected to "drinking in the dark" (DID) and "two-bottle choice" paradigms, respectively. This effect seems to be a consequence of increased KYN concentration, since systemic KYN administration (100 mg/kg, i.p.) similarly deters binge EtOH consumption in the DID model. Despite KYN and KYNA being well-established ligands of the aryl hydrocarbon receptor (AhR), administration of AhR antagonists (TMF 5 mg/kg and CH-223191 20 mg/kg, i.p.) and of an agonist (TCDD 50 μg/kg, intragastric) demonstrates that signalling through this receptor is not involved in EtOH consumption behaviour. Ro 61-8048 did not alter plasma acetaldehyde concentration, but prevented EtOH-induced dopamine release in the nucleus accumbens shell. These results point to a critical involvement of the reward circuitry in the reduction of EtOH consumption induced by KYN and KYNA increments. PNU-120596 (3 mg/kg, i.p.), a positive allosteric modulator of α7-nicotinic acetylcholine receptors, partially prevented the Ro 61-8048-induced decrease in EtOH consumption. Overall, our results highlight the usefulness of manipulating the KYN pathway as a pharmacological tool for modifying EtOH consumption and point to a possible modulator of alcohol drinking behaviour. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Recovery of Corneal Sensitivity and Increase in Nerve Density and Wound Healing in Diabetic Mice After PEDF Plus DHA Treatment.

    Science.gov (United States)

    He, Jiucheng; Pham, Thang Luong; Kakazu, Azucena; Bazan, Haydee E P

    2017-09-01

    Diabetic keratopathy decreases corneal sensation and tear secretion and delays wound healing after injury. In the current study, we tested the effect of treatment with pigment epithelium-derived factor (PEDF) in combination with docosahexaenoic acid (DHA) on corneal nerve regeneration in a mouse model of diabetes with or without corneal injury. The study was performed in streptozotocin-induced diabetic mice (C57BL/6). Ten weeks after streptozotocin injection, diabetic mice showed significant decreases of corneal sensitivity, tear production, and epithelial subbasal nerve density when compared with age-matched normal mice. After diabetic mice were wounded in the right eye and treated in both eyes with PEDF+DHA for 2 weeks, there was a significant increase in corneal epithelial nerve regeneration and substance P-positive nerve density in both wounded and unwounded eyes compared with vehicle-treated corneas. There also was elevated corneal sensitivity and tear production in the treated corneas compared with vehicle. In addition, PEDF+DHA accelerated corneal wound healing, selectively recruited type 2 macrophages, and prevented neutrophil infiltration in diabetic wounded corneas. These results suggest that topical treatment with PEDF+DHA promotes corneal nerve regeneration and wound healing in diabetic mice and could potentially be exploited as a therapeutic option for the treatment of diabetic keratopathy. © 2017 by the American Diabetes Association.

  6. Hypocretin-2 saporin lesions of the ventrolateral periaquaductal gray (vlPAG increase REM sleep in hypocretin knockout mice.

    Directory of Open Access Journals (Sweden)

    Satvinder Kaur

    2009-07-01

    Full Text Available Ten years ago the sleep disorder narcolepsy was linked to the neuropeptide hypocretin (HCRT, also known as orexin. This disorder is characterized by excessive day time sleepiness, inappropriate triggering of rapid-eye movement (REM sleep and cataplexy, which is a sudden loss of muscle tone during waking. It is still not known how HCRT regulates REM sleep or muscle tone since HCRT neurons are localized only in the lateral hypothalamus while REM sleep and muscle atonia are generated from the brainstem. To identify a potential neuronal circuit, the neurotoxin hypocretin-2-saporin (HCRT2-SAP was used to lesion neurons in the ventral lateral periaquaductal gray (vlPAG. The first experiment utilized hypocretin knock-out (HCRT-ko mice with the expectation that deletion of both HCRT and its target neurons would exacerbate narcoleptic symptoms. Indeed, HCRT-ko mice (n = 8 given the neurotoxin HCRT2-SAP (16.5 ng/23nl/sec each side in the vlPAG had levels of REM sleep and sleep fragmentation that were considerably higher compared to HCRT-ko given saline (+39%; n = 7 or wildtype mice (+177%; n = 9. However, cataplexy attacks did not increase, nor were levels of wake or non-REM sleep changed. Experiment 2 determined the effects in mice where HCRT was present but the downstream target neurons in the vlPAG were deleted by the neurotoxin. This experiment utilized an FVB-transgenic strain of mice where eGFP identifies GABA neurons. We verified this and also determined that eGFP neurons were immunopositive for the HCRT-2 receptor. vlPAG lesions in these mice increased REM sleep (+79% versus saline controls and it was significantly correlated (r = 0.89 with loss of eGFP neurons. These results identify the vlPAG as one site that loses its inhibitory control over REM sleep, but does not cause cataplexy, as a result of hypocretin deficiency.

  7. Aggression and increased glutamate in the mPFC during withdrawal from intermittent alcohol in outbred mice.

    Science.gov (United States)

    Hwa, Lara S; Nathanson, Anna J; Shimamoto, Akiko; Tayeh, Jillian K; Wilens, Allison R; Holly, Elizabeth N; Newman, Emily L; DeBold, Joseph F; Miczek, Klaus A

    2015-08-01

    Disrupted social behavior, including occasional aggressive outbursts, is characteristic of withdrawal from long-term alcohol (EtOH) use. Heavy EtOH use and exaggerated responses during withdrawal may be treated using glutamatergic N-methyl-D-aspartate receptor (NMDAR) antagonists. The current experiments explore aggression and medial prefrontal cortex (mPFC) glutamate as consequences of withdrawal from intermittent access to EtOH and changes in aggression and mPFC glutamate caused by NMDAR antagonists memantine and ketamine. Swiss male mice underwent withdrawal following 1-8 weeks of intermittent access to 20 % EtOH. Aggressive and nonaggressive behaviors with a conspecific were measured 6-8 h into EtOH withdrawal after memantine or ketamine (0-30 mg/kg, i.p.) administration. In separate mice, extracellular mPFC glutamate after memantine was measured during withdrawal using in vivo microdialysis. At 6-8 h withdrawal from EtOH, mice exhibited more convulsions and aggression and decreased social contact compared to age-matched water controls. Memantine, but not ketamine, increased withdrawal aggression at the 5-mg/kg dose in mice with a history of 8 weeks of EtOH but not 1 or 4 weeks of EtOH or in water drinkers. Tonic mPFC glutamate was higher during withdrawal after 8 weeks of EtOH compared to 1 week of EtOH or 8 weeks of water. Five milligrams per kilogram of memantine increased glutamate in 8-week EtOH mice, but also in 1-week EtOH and water drinkers. These studies reveal aggressive behavior as a novel symptom of EtOH withdrawal in outbred mice and confirm a role of NMDARs during withdrawal aggression and for disrupted social behavior.

  8. Voluntary wheel running increases satellite cell abundance and improves recovery from disuse in gastrocnemius muscles from mice.

    Science.gov (United States)

    Brooks, Matthew J; Hajira, Ameena; Mohamed, Junaith S; Alway, Stephen E

    2018-02-22

    Reloading of atrophied muscles after hindlimb suspension unloading (HSU) can induce injury and prolong recovery. Low-impact exercise, such as voluntary wheel running, has been identified as a non-damaging rehabilitation therapy in rodents, but its effects on muscle function, morphology, and satellite cell activity after HSU are unclear. This study tested the hypothesis that low impact wheel running would increase satellite cell proliferation and improve recovery of muscle structure and function after HSU in mice. Young adult male and female C57BL/6 mice (n=6/group) were randomly placed into 5 groups. These included HSU without recovery (HSU), normal ambulatory recovery for 14 days after HSU (HSU+NoWR), and voluntary wheel running recovery for 14 days after HSU (HSU+WR). Two control groups were used: non-suspended mice-cage controls (Control) and voluntary wheel running controls (ControlWR). Satellite cell activation, was evaluated by providing mice 5-bromo-2'-deoxyuridine (BrdU) in their drinking water. As expected, HSU significantly reduced in vivo maximal force and decreased the in vivo fatigability and decreased type I and IIa myosin heavy chain (MHC) abundance in plantarflexor muscles. HSU+WR mice significantly improved plantarflexor fatigue resistance, increased type type I and IIa MHC abundance, increased fiber cross sectional area (CSA), and an increased the percentage of type I and IIA muscle fibers in the gastrocnemius muscle. HSU+WR mice also had a significantly greater percentage of BrdU-positive and Pax 7 positive nuclei inside muscle fibers and a greater MyoD to Pax 7 protein ratio when compared to HSU+NoWR mice. The mechanotransduction protein Yes-associated protein (YAP) was elevated with reloading after HSU, but HSU+WR had lower levels of the inactive phosphorylated YAP serine127 which may have contributed to increased satellite cell activation creased with reloading after HSU. These results indicate that voluntary wheel running increased YAP

  9. An herbal medicine, Go-sha-jinki-gan (GJG, increases muscle weight in severe muscle dystrophy model mice

    Directory of Open Access Journals (Sweden)

    Yusei Takemoto

    2017-12-01

    Full Text Available Go-sha-jinki-gan (GJG, a traditional Japanese herbal medicine has a clinical implication to alleviate age-related symptoms, especially in some motor disorders. However, the scientific evidence is limited, and there is a possibility to expand the medical application range of GJG. Using senescence-accelerated mice, our group showed that GJG exerted an effect to prevent sarcopenia, the aged-related loss of skeletal muscle. Because muscular dystrophy is characterized by a progressive loss of skeletal muscle, we examined the effects of GJG on a mouse model of muscular dystrophy. Using a newly established mouse model for Duchenne muscular dystrophy (DMD, DBA/2-mdx, we showed that GJG significantly increased the body and skeletal muscle weights in comparison to the control DBA/2-mdx mice, regardless of gender. The increased skeletal muscle mass resulted from an increment in the myofiber size, but not from the myofiber number. Both the skeletal muscle regenerative ability and the accumulation of fibrosis (the dystrophic pathology in GJG-fed DBA/2-mdx mice were comparable to those in control DBA/2-mdx mice, suggesting that the cellular target of GJG is myofibers, with no contribution from the muscle satellite cells neither in an direct nor in an indirect manner. Taken together, GJG increased the skeletal muscle mass in a mouse model of muscular dystrophy, in addition to our previously tested sarcopenia mouse model.

  10. IGF-II transgenic mice display increased aberrant colon crypt multiplicity and tumor volume after 1,2-dimethylhydrazine treatment

    Directory of Open Access Journals (Sweden)

    Oesterle Doris

    2006-01-01

    Full Text Available Abstract In colorectal cancer insulin-like growth factor II (IGF-II is frequently overexpressed. To evaluate, whether IGF-II affects different stages of tumorigenesis, we induced neoplastic alterations in the colon of wild-type and IGF-II transgenic mice using 1,2-dimethylhydrazine (DMH. Aberrant crypt foci (ACF served as markers of early lesions in the colonic mucosa, whereas adenomas and carcinomas characterized the endpoints of tumor development. DMH-treatment led initially to significantly more ACF in IGF-II transgenic than in wild-type mice. This increase in ACF was especially prominent for those consisting of ≥three aberrant crypts (AC. Nevertheless, adenomas and adenocarcinomas of the colon, present after 34 weeks in both genetic groups, were not found at different frequency. Tumor volumes, however, were significantly higher in IGF-II transgenic mice and correlated with serum IGF-II levels. Immunohistochemical staining for markers of proliferation and apoptosis revealed increased cell proliferation rates in tumors of IGF-II transgenic mice without significant affection of apoptosis. Increased proliferation was accompanied by elevated localization of β-catenin in the cytosol and cell nuclei and reduced appearance at the inner plasma membrane. In conclusion, we provide evidence that IGF-II, via activation of the β-catenin signaling cascade, promotes growth of ACF and tumors without affecting tumor numbers.

  11. Radiation resistance in mice increased following chronic application of Li/sub 2/CO/sub 3/

    Energy Technology Data Exchange (ETDEWEB)

    Vacek, A.; Sikulova, J.; Bartonickova, A. (Ceskoslovenska Akademie Ved, Brno. Biofysikalni Ustav)

    1982-01-01

    In experiments on strain H mice the increased radiation resistance of mice was analysed after three weeks' feeding with a diet including Li given as lithium carbonicum. The concentration of Li in the serum during the first three days of feeding was increased to 0.5 mmol/l and remained at that level to the end of feeding. The application of Li increased the overall number of stem cells in the spleen by 80 per cent compared with the control group. D/sub 0/ of the line of dependence of the number of endogenous colonies on radiation dose increased following Li application by 1.2 Gy compared with controls. The proliferation activity of haemopoietic stem cells observed 90 min after injection of hydroxyurea was, after 21 days feeding with a mixture containing Li, increased by 200 per cent. The results support the idea that the increased radiation resistance of mice following feeding with Li salts before irradiation may be due to the increased content and resistance of the haemopoietic stem cells, as well as activation of granulopoiesis.

  12. Selective inbreeding does not increase gut microbiota similarity in BALB/c mice

    DEFF Research Database (Denmark)

    Pang, Wanyong; Stradiotto, Damiano; Krych, Lukasz

    2012-01-01

    microbiota. BALB/cCrl mice were, however, found to have a mean heterozygosity of only 0.8% in their genome, and selection of breeders with a high similarity in the gut microbiota for three generations did not change the overall gut microbiota similarity, which was 66% in the P generation and 66%, 64% and 63...

  13. Behavioural and physiological responses to increased foraging effort in male mice

    NARCIS (Netherlands)

    Vaanholt, Lobke M.; De Jong, Berber; Garland, Theodore; Daan, Serge; Visser, G. Henk; Garland, Jr.

    2007-01-01

    Free-living animals must forage for food and hence may face energetic constraints imposed by their natural environmental conditions (e. g. ambient temperature, food availability). Simulating the variation in such constraints, we have experimentally manipulated the rate of work (wheel running) mice

  14. Androgen receptor disruption increases the osteogenic response to mechanical loading in male mice

    NARCIS (Netherlands)

    Callewaert, F.; Bakker, A.; Schrooten, J.; Van Meerbeek, B.; Verhoeven, G.; Boonen, S.; Vanderschueren, D.

    2010-01-01

    In female mice, estrogen receptor-alpha (ERα) mediates the anabolic response of bone to mechanical loading. Whether ERα plays a similar role in the male skeleton and to what extent androgens and androgen receptor (AR) affect this response in males remain unaddressed. Therefore, we studied the

  15. Some putative prebiotics increase the severity of Salmonella enterica serovar Typhimurium infection in mice

    DEFF Research Database (Denmark)

    Petersen, Anne; Heegaard, Peter M. H.; Pedersen, Anna Lovmand

    2009-01-01

    containing 10% of either of the following carbohydrates: inulin, fructo-oligosaccharide, xylo-oligosaccharide, galacto-oligosaccharide, apple pectin, polydextrose or beta-glucan for three weeks prior to oral Salmonella challenge (107 CFU) and compared to mice fed a cornstarch-based control diet. RESULTS...

  16. DPP-4 inhibitor des-F-sitagliptin treatment increased insulin exocytosis from db/db mice {beta} cells

    Energy Technology Data Exchange (ETDEWEB)

    Nagamatsu, Shinya, E-mail: shinya@ks.kyorin-u.ac.jp [Department of Biochemistry, Kyorin University School of Medicine, Mitaka, Tokyo 181-8611 (Japan); Ohara-Imaizumi, Mica; Nakamichi, Yoko; Aoyagi, Kyota; Nishiwaki, Chiyono [Department of Biochemistry, Kyorin University School of Medicine, Mitaka, Tokyo 181-8611 (Japan)

    2011-09-09

    Highlights: {yields} Anti-diabetic new drug, DPP-4 inhibitor, can affect the insulin exocytosis. {yields} DPP-4 inhibitor treatment altered syntaxin 1 expression. {yields} Treatment of db/db mice with DPP-4 inhibitor increased insulin release. -- Abstract: Incretin promotes insulin secretion acutely. Recently, orally-administered DPP-4 inhibitors represent a new class of anti-hyperglycemic agents. Indeed, inhibitors of dipeptidyl peptidase-IV (DPP-4), sitagliptin, has just begun to be widely used as therapeutics for type 2 diabetes. However, the effects of sitagliptin-treatment on insulin exocytosis from single {beta}-cells are yet unknown. We therefore investigated how sitagliptin-treatment in db/db mice affects insulin exocytosis by treating db/db mice with des-F-sitagliptin for 2 weeks. Perfusion studies showed that 2 weeks-sitagliptin treatment potentiated insulin secretion. We then analyzed insulin granule motion and SNARE protein, syntaxin 1, by TIRF imaging system. TIRF imaging of insulin exocytosis showed the increased number of docked insulin granules and increased fusion events from them during first-phase release. In accord with insulin exocytosis data, des-F-sitagliptin-treatment increased the number of syntaxin 1 clusters on the plasma membrane. Thus, our data demonstrated that 2-weeks des-F-sitagliptin-treatment increased the fusion events of insulin granules, probably via increased number of docked insulin granules and that of syntaxin 1 clusters.

  17. Neuroligin 2 R215H Mutant Mice Manifest Anxiety, Increased Prepulse Inhibition, and Impaired Spatial Learning and Memory

    Directory of Open Access Journals (Sweden)

    Chia-Hsiang Chen

    2017-11-01

    Full Text Available Neuroligin 2 (NLGN2 is a postsynaptic adhesion protein that plays an essential role in synaptogenesis and function of inhibitory neuron. We previously identified a missense mutation R215H of the NLGN2 in a patient with schizophrenia. This missense mutation was shown to be pathogenic in several cell-based assays. The objective of this study was to better understand the behavioral consequences of this mutation in vivo. We generated a line of transgenic mice carrying this mutation using a recombinant-based method. The mice were subjected to a battery of behavioral tests including open field locomotor activity assay, prepulse inhibition (PPI assay, accelerated rotarod test, novel location and novel recognition tests, elevated plus-maze (EPM test, and Morris water maze test. The transgenic animals were viable and fertile, but the Nlgn2 R215H knock-in (KI homozygous mice showed growth retardation, anxiety-like behavior, increased PPI, and impaired spatial learning and memory. There was no significant interaction between sex and genotype in most behavioral tests; however, we observed a significant interaction between sex and genotype in EPM test in this study. Also, we found that the Nlgn2 R215H homozygous KI mice did not express the NLGN2 protein, resembling Nlgn2 knockout mice. Our results demonstrate that Nlgn2 R215H KI homozygous mice manifest several behavioral abnormalities similar to those found in psychiatric patients carrying NLGN2 mutations, indicating that dysfunction of NLGN2 contributes to the pathogenesis of certain psychiatric symptoms commonly present in various mental disorders, not limited to schizophrenia.

  18. Ketogenic diet exposure during the juvenile period increases social behaviors and forebrain neural activation in adult Engrailed 2 null mice.

    Science.gov (United States)

    Verpeut, Jessica L; DiCicco-Bloom, Emanuel; Bello, Nicholas T

    2016-07-01

    Prolonged consumption of ketogenic diets (KD) has reported neuroprotective benefits. Several studies suggest KD interventions could be useful in the management of neurological and developmental disorders. Alterations in the Engrailed (En) genes, specifically Engrailed 2 (En2), have neurodevelopmental consequences and produce autism-related behaviors. The following studies used En2 knockout (KO; En2(-/-)), and wild-type (WT; En2(+/+)), male mice fed either KD (80% fat, 0.1% carbohydrates) or control diet (CD; 10% fat, 70% carbohydrates). The objective was to determine whether a KD fed from weaning at postnatal day (PND) 21 to adulthood (PND 60) would alter brain monoamines concentrations, previously found dysregulated, and improve social outcomes. In WT animals, there was an increase in hypothalamic norepinephrine content in the KD-fed group. However, regional monoamines were not altered in KO mice in KD-fed compared with CD-fed group. In order to determine the effects of juvenile exposure to KD in mice with normal blood ketone levels, separate experiments were conducted in mice removed from the KD or CD and fed standard chow for 2days (PND 62). In a three-chamber social test with a novel mouse, KO mice previously exposed to the KD displayed similar social and self-grooming behaviors compared with the WT group. Groups previously exposed to a KD, regardless of genotype, had more c-Fos-positive cells in the cingulate cortex, lateral septal nuclei, and anterior bed nucleus of the stria terminalis. In the novel object condition, KO mice previously exposed to KD had similar behavioral responses and pattern of c-Fos immunoreactivity compared with the WT group. Thus, juvenile exposure to KD resulted in short-term consequences of improving social interactions and appropriate exploratory behaviors in a mouse model that displays autism-related behaviors. Such findings further our understanding of metabolic-based therapies for neurological and developmental disorders

  19. Andrographolide attenuates skeletal muscle dystrophy in mdx mice and increases efficiency of cell therapy by reducing fibrosis.

    Science.gov (United States)

    Cabrera, Daniel; Gutiérrez, Jaime; Cabello-Verrugio, Claudio; Morales, Maria Gabriela; Mezzano, Sergio; Fadic, Ricardo; Casar, Juan Carlos; Hancke, Juan L; Brandan, Enrique

    2014-01-01

    Duchenne muscular dystrophy (DMD) is characterized by the absence of the cytoskeletal protein dystrophin, muscle wasting, increased transforming growth factor type beta (TGF-β) signaling, and fibrosis. At the present time, the only clinically validated treatments for DMD are glucocorticoids. These drugs prolong muscle strength and ambulation of patients for a short term only and have severe adverse effects. Andrographolide, a bicyclic diterpenoid lactone, has traditionally been used for the treatment of colds, fever, laryngitis, and other infections with no or minimal side effects. We determined whether andrographolide treatment of mdx mice, an animal model for DMD, affects muscle damage, physiology, fibrosis, and efficiency of cell therapy. mdx mice were treated with andrographolide for three months and skeletal muscle histology, creatine kinase activity, and permeability of muscle fibers were evaluated. Fibrosis and TGF-β signaling were evaluated by indirect immunofluorescence and Western blot analyses. Muscle strength was determined in isolated skeletal muscles and by a running test. Efficiency of cell therapy was determined by grafting isolated skeletal muscle satellite cells onto the tibialis anterior of mdx mice. mdx mice treated with andrographolide exhibited less severe muscular dystrophy than untreated dystrophic mice. They performed better in an exercise endurance test and had improved muscle strength in isolated muscles, reduced skeletal muscle impairment, diminished fibrosis and a significant reduction in TGF-β signaling. Moreover, andrographolide treatment of mdx mice improved grafting efficiency upon intramuscular injection of dystrophin-positive satellite cells. These results suggest that andrographolide could be used to improve quality of life in individuals with DMD.

  20. Genomic organization and tissue-specific expression of hepcidin in the pacific mutton hamlet, Alphestes immaculatus (Breder, 1936).

    Science.gov (United States)

    Masso-Silva, Jorge; Diamond, Gill; Macias-Rodriguez, Maria; Ascencio, Felipe

    2011-12-01

    Hepcidin is a cysteine-rich peptide involved in iron metabolism, inflammatory response and as antimicrobial peptide. Despite the fact that hepcidins have been identified in several fish species, only few have been completely characterized. This study, described the identification and complete molecular characterization of the hepcidin antimicrobial peptide 1 (HAMP1) gene of Alphestes immaculatus. Moreover, its specific expression level at both basal and lipopolysaccharide (LPS)-induced conditions in different tissues was also determined by real-time PCR. Results showed that the HAMP1gene consists of three exons and two introns encoding a preprohepcidin composed of 90 aa (24 aa for signal peptide, 40 aa for prodomain and 26 aa for mature peptide). The promoter region analysis revealed a TATA box sequence and several putative transcription factor binding sites. A comparative analysis showed CEBPα, CEBPβ, NF-kB, HNF3, GATA-1 and c-Rel as the most common found in fishes. The mature peptide possesses a pI of 8.34, which is the average among fish hepcidin. In addition, the structural modeling showed a hairpin structure with four putative disulfide bonds. A phylogenetic analysis revealed that this hepcidin gene is a HAMP1 class, and is clustered into the same group with the Serranid fish Epinephelus moara and the Antarctic fish Lycodichthys dearborni. Finally, the relative expression levels showed high basal values in liver and muscle, whereas in LPS-induced fish the relative expression tendency changed, with the highest values in spleen and head kidney tissues. This study describes the completely characterized HAMP1 gene of A. immaculatus and their patterns of expression level at different conditions and in different tissues, showing by first time muscle hepcidin expression could be relevant in the immune response in fish. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Research Article. Comparative Analysis of Hepcidin-25 and Inflammatory Markers in Patients with Chronic Kidney Disease with and without Anemia

    Directory of Open Access Journals (Sweden)

    Căldăraru Carmen Denise

    2017-03-01

    Full Text Available Introduction: Hepcidin is a regulatory protein in iron metabolism; we do not know the role in chronic kidney disease anemia. Methods: 22 patients with CKD anemia and 15 patients with CKD without anemia were investigated. CKD anemia-inclusion criteria: over 18 years, hemoglobin ≤12 g/dl for women and ≤13 g/dl for men, no treatment for anemia 6 months before enrollment, glomerular filtration rate (eGFR <60 ml/min/1.73m2 and stable creatinine three months before enrollment. Exclusion criteria: infection, bleeding, malignancy, systemic or liver disease, immunosuppression, renal replacement therapy. CKD without anemia-inclusion criteria: over 18 years, no anemia or treatment for anemia, CKD with stable creatinine values three months before enrollment. Exclusion criteria: medical conditions known to have a role in the development of polycythemia. Hepcidin-25 and ferritin were measured by ELISA method. Erythropoietin (EPO, tumor necrosis factor (TNF-α, interleukin (IL-6 were evaluated using chemiluminescent enzyme immunometric assays. Unpaired T test, Pearson correlation and multiple regression were used for statistical analysis. Results: Hemoglobin values were significantly lower in anemia group. There were no differences in terms of eGFR, age, body mass index, serum hepcidin, erythropoietin, fibrinogen, IL-6, and TNF-α between CKD patients with and without anemia. Serum hepcidin correlated positively with ferritin (r=0.45 p<0.05, TNF-α (r=0.54, p<0.05 and negatively with erythropoietin (r=-0.51, p<0.05. Multiple linear regression analysis demonstrated that TNF-α is an independent predictor of serum hepcidin in our patients (p=0.003, R=0.71. Conclusion: We found no differences in serum hepcidin, erythropoietin and inflammatory markers in non-dialysis CKD patients with and without anemia.

  2. Hepcidin as a possible marker in determination of malignancy degree and sensitivity of breast cancer cells to cytostatic drugs.

    Science.gov (United States)

    Yalovenko, T M; Todor, I M; Lukianova, N Y; Chekhun, V F

    2016-06-01

    To investigate the role of hepcidin (Hepc) in the formation of cells malignant phenotype in vitro and its expression in the dyna-mics of growth of Walker-256 carcinosarcoma with different sensitivity to doxorubicin (Dox). The cell lines used in the analysis included T47D, MCF-7, MDA-MB-231, MDA-MB-468, MCF/CP, and MCF/Dox. Hepc expression was studied by immunocytochemical method. "Free" iron content was determined by EPR spectroscopy. Determination of Hepc expression in homogenates of tumor tissue and in blood serum of rats with Dox-sensitive and -resistant Walker-256 carcinosarcoma was performed. It was found that Hepc levels in breast cancer (BC) cells with high degree of malignancy (MDA-MB-231, MDA-MB-468) and drug-resistant phenotype (MCF/CP, MCF/Dox) were by 1.5-2 times higher (p < 0.05) in comparison with sensitive and less malignant BC cells. The development of drug-resistant phenotype in Walker-256 carcinosarcoma cells was accompanied by increasing of Hepc and "free" iron content (by 2.4 and 1.2 times, respectively). The data of in vitro and in vivo research evidenced on involvement of Hepc in formation of BC cells malignant phenotype and their resistance to Dox.

  3. Irbesartan increased PPAR{gamma} activity in vivo in white adipose tissue of atherosclerotic mice and improved adipose tissue dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Iwai, Masaru; Kanno, Harumi; Senba, Izumi; Nakaoka, Hirotomo; Moritani, Tomozo [Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Shitsukawa, Tohon, Ehime 791-0295 (Japan); Horiuchi, Masatsugu, E-mail: horiuchi@m.ehime-u.ac.jp [Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Shitsukawa, Tohon, Ehime 791-0295 (Japan)

    2011-03-04

    Research highlights: {yields} Atherosclerotic apolipoprotein E-deficient (ApoEKO) mice were treated with irbesartan. {yields} Irbesartan decreased white adipose tissue weight without affecting body weight. {yields} DNA-binding for PPAR{gamma} was increased in white adipose tissue in vivo by irbesartan. {yields} Irbesartan increased adipocyte number in white adipose tissue. {yields} Irbesatan increased the expression of adiponectin and leptin in white adipose tissue. -- Abstract: The effect of the PPAR{gamma} agonistic action of an AT{sub 1} receptor blocker, irbesartan, on adipose tissue dysfunction was explored using atherosclerotic model mice. Adult male apolipoprotein E-deficient (ApoEKO) mice at 9 weeks of age were treated with a high-cholesterol diet (HCD) with or without irbesartan at a dose of 50 mg/kg/day for 4 weeks. The weight of epididymal and retroperitoneal adipose tissue was decreased by irbesartan without changing food intake or body weight. Treatment with irbesartan increased the expression of PPAR{gamma} in white adipose tissue and the DNA-binding activity of PPAR{gamma} in nuclear extract prepared from adipose tissue. The expression of adiponectin, leptin and insulin receptor was also increased by irbesartan. These results suggest that irbesartan induced activation of PPAR{gamma} and improved adipose tissue dysfunction including insulin resistance.

  4. Chronic pyruvate supplementation increases exploratory activity and brain energy reserves in young and middle-aged mice

    Directory of Open Access Journals (Sweden)

    Hennariikka eKoivisto

    2016-03-01

    Full Text Available Numerous studies have reported neuroprotective effects of pyruvate when given in systemic injections. Impaired glucose uptake and metabolism are found in Alzheimer's disease (AD and in AD mouse models. We tested whether dietary pyruvate supplementation is able to provide added energy supply to brain and thereby attenuate aging- or AD-related cognitive impairment. Mice received ~ 800 mg/kg/day Na-pyruvate in their chow for 2- 6 months. In middle-aged wild-type mice and in 6.5-month-old APP/PS1 mice, pyruvate facilitated spatial learning and increased exploration of a novel odor. However, in passive avoidance task for fear memory, the treatment group was clearly impaired. Independent of age, long-term pyruvate increased explorative behavior, which likely explains the paradoxical impairment in passive avoidance. We also assessed pyruvate effects on body weight, muscle force and endurance, and found no effects. Metabolic post-mortem assays revealed increased energy compounds in nuclear magnetic resonance spectroscopy as well as increased brain glycogen storages in the pyruvate group. Pyruvate supplementation may counteract aging-related behavioral impairment but its beneficial effect seems related to increased explorative activity rather than direct memory enhancement.

  5. Myostatin-deficiency in mice increases global gene expression at the Dlk1-Dio3 locus in the skeletal muscle.

    Science.gov (United States)

    Hitachi, Keisuke; Tsuchida, Kunihiro

    2017-01-24

    Myostatin, a member of the transforming growth factor-beta superfamily, is a negative regulator of skeletal muscle growth and development. Myostatin inhibition leads to increased skeletal muscle mass in mammals; hence, myostatin is considered a potential therapeutic target for skeletal muscle wasting. However, downstream molecules of myostatin in the skeletal muscle have not been fully elucidated. Here, we identified the Dlk1-Dio3 locus at the mouse chromosome 12qF1, also called as the callipyge locus in sheep, as a novel downstream target of myostatin. In skeletal muscle of myostatin knockout mice, the expression of mature miRNAs at the Dlk1-Dio3 locus was significantly increased. The increased miRNA levels are caused by the transcriptional activation of the Dlk1-Dio3 locus, because a significant increase in the primary miRNA transcript was observed in myostatin knockout mice. In addition, we found increased expression of coding and non-coding genes (Dlk1, Gtl2, Rtl1/Rtl1as, and Rian) at the Dlk1-Dio3 locus in myostatin-deficient skeletal muscle. Moreover, epigenetic changes, associated with the regulation of the Dlk1-Dio3 locus, were observed in myostatin knockout mice. Taken together, this is the first report demonstrating the role of myostatin in regulating the Dlk1-Dio3 (the callipyge) locus in the skeletal muscle.

  6. Dietary Tocotrienol/γ-Cyclodextrin Complex Increases Mitochondrial Membrane Potential and ATP Concentrations in the Brains of Aged Mice

    Directory of Open Access Journals (Sweden)

    Anke Schloesser

    2015-01-01

    Full Text Available Brain aging is accompanied by a decrease in mitochondrial function. In vitro studies suggest that tocotrienols, including γ- and δ-tocotrienol (T3, may exhibit neuroprotective properties. However, little is known about the effect of dietary T3 on mitochondrial function in vivo. In this study, we monitored the effect of a dietary T3/γ-cyclodextrin complex (T3CD on mitochondrial membrane potential and ATP levels in the brain of 21-month-old mice. Mice were fed either a control diet or a diet enriched with T3CD providing 100 mg T3 per kg diet for 6 months. Dietary T3CD significantly increased mitochondrial membrane potential and ATP levels compared to those of controls. The increase in MMP and ATP due to dietary T3CD was accompanied by an increase in the protein levels of the mitochondrial transcription factor A (TFAM. Furthermore, dietary T3CD slightly increased the mRNA levels of superoxide dismutase, γ-glutamyl cysteinyl synthetase, and heme oxygenase 1 in the brain. Overall, the present data suggest that T3CD increases TFAM, mitochondrial membrane potential, and ATP synthesis in the brains of aged mice.

  7. Irbesartan increased PPARγ activity in vivo in white adipose tissue of atherosclerotic mice and improved adipose tissue dysfunction

    International Nuclear Information System (INIS)

    Iwai, Masaru; Kanno, Harumi; Senba, Izumi; Nakaoka, Hirotomo; Moritani, Tomozo; Horiuchi, Masatsugu

    2011-01-01

    Research highlights: → Atherosclerotic apolipoprotein E-deficient (ApoEKO) mice were treated with irbesartan. → Irbesartan decreased white adipose tissue weight without affecting body weight. → DNA-binding for PPARγ was increased in white adipose tissue in vivo by irbesartan. → Irbesartan increased adipocyte number in white adipose tissue. → Irbesatan increased the expression of adiponectin and leptin in white adipose tissue. -- Abstract: The effect of the PPARγ agonistic action of an AT 1 receptor blocker, irbesartan, on adipose tissue dysfunction was explored using atherosclerotic model mice. Adult male apolipoprotein E-deficient (ApoEKO) mice at 9 weeks of age were treated with a high-cholesterol diet (HCD) with or without irbesartan at a dose of 50 mg/kg/day for 4 weeks. The weight of epididymal and retroperitoneal adipose tissue was decreased by irbesartan without changing food intake or body weight. Treatment with irbesartan increased the expression of PPARγ in white adipose tissue and the DNA-binding activity of PPARγ in nuclear extract prepared from adipose tissue. The expression of adiponectin, leptin and insulin receptor was also increased by irbesartan. These results suggest that irbesartan induced activation of PPARγ and improved adipose tissue dysfunction including insulin resistance.

  8. Exercise Increases Insulin Content and Basal Secretion in Pancreatic Islets in Type 1 Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Han-Hung Huang

    2011-01-01

    Full Text Available Exercise appears to improve glycemic control for people with type 1 diabetes (T1D. However, the mechanism responsible for this improvement is unknown. We hypothesized that exercise has a direct effect on the insulin-producing islets. Eight-week-old mice were divided into four groups: sedentary diabetic, exercised diabetic, sedentary control, and exercised control. The exercised groups participated in voluntary wheel running for 6 weeks. When compared to the control groups, the islet density, islet diameter, and β-cell proportion per islet were significantly lower in both sedentary and exercised diabetic groups and these alterations were not improved with exercise. The total insulin content and insulin secretion were significantly lower in sedentary diabetics compared to controls. Exercise significantly improved insulin content and insulin secretion in islets in basal conditions. Thus, some improvements in exercise-induced glycemic control in T1D mice may be due to enhancement of insulin content and secretion in islets.

  9. Ghrelin Agonist JMV 1843 Increases Food Intake, Body Weight and Expression of Orexigenic Neuropeptides in Mice

    Czech Academy of Sciences Publication Activity Database

    Holubová, Martina; Špolcová, Andrea; Demianova, Zuzana; Sýkora, D.; Fehrentz, J. A.; Martinez, J.; Štofková, A.; Jurčovičová, J.; Drápalová, J.; Lacinová, Z.; Haluzík, M.; Železná, Blanka; Maletínská, Lenka

    2013-01-01

    Roč. 62, č. 4 (2013), s. 435-444 ISSN 0862-8408 R&D Projects: GA ČR GA303/09/0744; GA ČR GAP303/10/1368 Institutional support: RVO:61388963 Keywords : GHS-R agonists * JMV 1843 * male C57BL/6 mice * food intake * NPY/AgRP Subject RIV: CE - Biochemistry Impact factor: 1.487, year: 2013

  10. Progesterone receptor antagonist CDB-4124 increases depression-like behavior in mice without affecting locomotor ability

    OpenAIRE

    Beckley, Ethan H.; Scibelli, Angela C.; Finn, Deborah A.

    2010-01-01

    Progesterone withdrawal has been proposed as an underlying factor in premenstrual syndrome and postpartum depression. Progesterone withdrawal induces forced swim test (FST) immobility in mice, a depression-like behavior, but the contribution of specific receptors to this effect is unclear. The role of progesterone’s GABAA receptor-modulating metabolite allopregnanolone in depression- and anxiety-related behaviors has been extensively documented, but little attention has been paid to the role ...

  11. Minocycline prevents cerebral malaria, confers neuroprotection and increases survivability of mice during Plasmodium berghei ANKA infection.

    Science.gov (United States)

    Apoorv, Thittayil Suresh; Babu, Phanithi Prakash

    2017-02-01

    Cerebral malaria (CM) is a neurological complication arising due to Plasmodium falciparum or Plasmodium vivax infection. Minocycline, a semi-synthetic tetracycline, has been earlier reported to have a neuroprotective role in several neurodegenerative diseases. In this study, we investigated the effect of minocycline treatment on the survivability of mice during experimental cerebral malaria (ECM). The currently accepted mouse model, C57BL/6 mice infected with Plasmodium berghei ANKA, was used for the study. Infected mice were treated with an intra-peritoneal dose of minocycline hydrochloride, 45mg/kg daily for ten days that led to parasite clearance in blood, brain, liver and spleen on 7th day post-infection; and the mice survived until experiment ended (90days) without parasite recrudescence. Evans blue extravasation assay showed that blood-brain barrier integrity was maintained by minocycline. The tumor necrosis factor-alpha protein level and caspase activity, which is related to CM pathogenesis, was significantly reduced in the minocycline-treated group. Fluoro-Jade® C and hematoxylin-eosin staining of the brains of minocycline group revealed a decrease in degenerating neurons and absence of hemorrhages respectively. Minocycline treatment led to decrease in gene expressions of inflammatory mediators like interferon-gamma, CXCL10, CCL5, CCL2; receptors CXCR3 and CCR2; and hence decrease in T-cell-mediated cerebral inflammation. We also proved that this reduction in gene expressions is irrespective of the anti-parasitic property of minocycline. The distinct ability of minocycline to modulate gene expressions of CXCL10 and CXCR3 makes it effective than doxycycline, a tetracycline used as chemoprophylaxis. Our study shows that minocycline is highly effective in conferring neuroprotection during ECM. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. High Insulin Levels in KK-Ay Diabetic Mice Cause Increased Cortical Bone Mass and Impaired Trabecular Micro-Structure

    Directory of Open Access Journals (Sweden)

    Cen Fu

    2015-04-01

    Full Text Available Type 2 diabetes mellitus (T2DM is a chronic disease characterized by hyperglycemia, hyperinsulinemia and complications, including obesity and osteoporosis. Rodents have been widely used to model human T2DM and investigate its effect on the skeleton. We aimed to investigate skeletal alterations in Yellow Kuo Kondo (KK-Ay diabetic mice displaying high insulin and glucose levels. Bone mineral density (BMD, micro-architecture and bone metabolism-related genes were analyzed. The total femoral areal BMD (aBMD, cortical volumetric BMD (vBMD and thickness were significantly increased in KK-Ay mice, while the trabecular vBMD and mineralized bone volume/tissue volume (BV/TV, trabecular thickness and number were decreased compared to C57BL mice. The expression of both osteoblast-related genes, such as osteocalcin (OC, bone sialoprotein, Type I Collagen, osteonectin, RUNX2 and OSX, and osteoclast-related genes, such as TRAP and TCIRG, were up-regulated in KK-Ay mice. Correlation analyses showed that serum insulin levels were positively associated with aBMD, cortical vBMD and thickness and negatively associated with trabecular vBMD and micro-architecture. In addition, serum insulin levels were positively related to osteoblast-related and osteoclast-related gene expression. Our data suggest that high insulin levels in KK-Ay diabetic mice may increase cortical bone mass and impair trabecular micro-structure by up-regulating osteoblast-and osteoclast-related gene expression.

  13. Increased Tim-3 expression alleviates liver injury by regulating macrophage activation in MCD-induced NASH mice.

    Science.gov (United States)

    Du, Xianhong; Wu, Zhuanchang; Xu, Yong; Liu, Yuan; Liu, Wen; Wang, Tixiao; Li, Chunyang; Zhang, Cuijuan; Yi, Fan; Gao, Lifen; Liang, Xiaohong; Ma, Chunhong

    2018-05-07

    As an immune checkpoint, Tim-3 plays roles in the regulation of both adaptive and innate immune cells including macrophages and is greatly involved in chronic liver diseases. However, the precise roles of Tim-3 in nonalcoholic steatohepatitis (NASH) remain unstated. In the current study, we analyzed Tim-3 expression on different subpopulations of liver macrophages and further investigated the potential roles of Tim-3 on hepatic macrophages in methionine and choline-deficient diet (MCD)-induced NASH mice. The results of flow cytometry demonstrated the significantly increased expression of Tim-3 on all detected liver macrophage subsets in MCD mice, including F4/80 + CD11b + , F4/80 + CD68 + , and F4/80 + CD169 + macrophages. Remarkably, Tim-3 knockout (KO) significantly accelerated MCD-induced liver steatosis, displaying higher serum ALT, larger hepatic vacuolation, more liver lipid deposition, and more severe liver fibrosis. Moreover, compared with wild-type C57BL/6 mice, Tim-3 KO MCD mice demonstrated an enhanced expression of NOX2, NLRP3, and caspase-1 p20 together with increased generation of IL-1β and IL-18 in livers. In vitro studies demonstrated that Tim-3 negatively regulated the production of reactive oxygen species (ROS) and related downstream pro-inflammatory cytokine secretion of IL-1β and IL-18 in macrophages. Exogenous administration of N-Acetyl-L-cysteine (NAC), a small molecular inhibitor of ROS, remarkably suppressed caspase-1 p20 expression and IL-1β and IL-18 production in livers of Tim-3 KO mice, thus significantly reducing the severity of steatohepatitis induced by MCD. In conclusion, Tim-3 is a promising protector in MCD-induced steatohepatitis by controlling ROS and the associated pro-inflammatory cytokine production in macrophages.

  14. Increase in cortical pyramidal cell excitability accompanies depression-like behavior in mice: a transcranial magnetic stimulation study.

    Science.gov (United States)

    Sun, Peng; Wang, Furong; Wang, Li; Zhang, Yu; Yamamoto, Ryo; Sugai, Tokio; Zhang, Qing; Wang, Zhengda; Kato, Nobuo

    2011-11-09

    Clinical evidence suggests that cortical excitability is increased in depressives. We investigated its cellular basis in a mouse model of depression. In a modified version of forced swimming (FS), mice were initially forced to swim for 5 consecutive days and then were treated daily with repetitive transcranial magnetic stimulation (rTMS) or sham treatment for the following 4 weeks without swimming. On day 2 through day 5, the mice manifested depression-like behaviors. The next and last FS was performed 4 weeks later, which revealed a 4 week maintenance of depression-like behavior in the sham mice. In slices from the sham controls, excitability in cingulate cortex pyramidal cells was elevated in terms of membrane potential and frequencies of spikes evoked by current injection. Depolarized resting potential was shown to depend on suppression of large conductance calcium-activated potassium (BK) channels. This BK channel suppression was confirmed by measuring spike width, which depends on BK channels. Chronic rTMS treatment during the 4 week period significantly reduced the depression-like behavior. In slices obtained from the rTMS mice, normal excitability and BK channel activity were recovered. Expression of a scaffold protein Homer1a was reduced by the FS and reversed by rTMS in the cingulate cortex. Similar recovery in the same behavioral, electrophysiological, and biochemical features was observed after chronic imipramine treatment. The present study demonstrated that manifestation and disappearance of depression-like behavior are in parallel with increase and decrease in cortical neuronal excitability in mice and suggested that regulation of BK channels by Homer1a is involved in this parallelism.

  15. Gugulipid causes hypercholesterolemia leading to endothelial dysfunction, increased atherosclerosis, and premature death by ischemic heart disease in male mice.

    Directory of Open Access Journals (Sweden)

    Andrea Leiva

    Full Text Available For proper cholesterol metabolism, normal expression and function of scavenger receptor class B type I (SR-BI, a high-density lipoprotein (HDL receptor, is required. Among the factors that regulate overall cholesterol homeostasis and HDL metabolism, the nuclear farnesoid X receptor plays an important role. Guggulsterone, a bioactive compound present in the natural product gugulipid, is an antagonist of this receptor. This natural product is widely used globally as a natural lipid-lowering agent, although its anti-atherogenic cardiovascular benefit in animal models or humans is unknown. The aim of this study was to determine the effects of gugulipid on cholesterol homeostasis and development of mild and severe atherosclerosis in male mice. For this purpose, we evaluated the impact of gugulipid treatment on liver histology, plasma lipoprotein cholesterol, endothelial function, and development of atherosclerosis and/or ischemic heart disease in wild-type mice; apolipoprotein E knockout mice, a model of atherosclerosis without ischemic complications; and SR-B1 knockout and atherogenic-diet-fed apolipoprotein E hypomorphic (SR-BI KO/ApoER61h/h mice, a model of lethal ischemic heart disease due to severe atherosclerosis. Gugulipid administration was associated with histological abnormalities in liver, increased alanine aminotransferase levels, lower hepatic SR-BI content, hypercholesterolemia due to increased HDL cholesterol levels, endothelial dysfunction, enhanced atherosclerosis, and accelerated death in animals with severe ischemic heart disease. In conclusion, our data show important adverse effects of gugulipid intake on HDL metabolism and atherosclerosis in male mice, suggesting potential and unknown deleterious effects on cardiovascular health in humans. In addition, these findings reemphasize the need for rigorous preclinical and clinical studies to provide guidance on the consumption of natural products and regulation of their use in the

  16. Increasing brain angiotensin converting enzyme 2 activity decreases anxiety-like behavior in male mice by activating central Mas receptors.

    Science.gov (United States)

    Wang, Lei; de Kloet, Annette D; Pati, Dipanwita; Hiller, Helmut; Smith, Justin A; Pioquinto, David J; Ludin, Jacob A; Oh, S Paul; Katovich, Michael J; Frazier, Charles J; Raizada, Mohan K; Krause, Eric G

    2016-06-01

    Over-activation of the brain renin-angiotensin system (RAS) has been implicated in the etiology of anxiety disorders. Angiotensin converting enzyme 2 (ACE2) inhibits RAS activity by converting angiotensin-II, the effector peptide of RAS, to angiotensin-(1-7), which activates the Mas receptor (MasR). Whether increasing brain ACE2 activity reduces anxiety by stimulating central MasR is unknown. To test the hypothesis that increasing brain ACE2 activity reduces anxiety-like behavior via central MasR stimulation, we generated male mice overexpressing ACE2 (ACE2 KI mice) and wild type littermate controls (WT). ACE2 KI mice explored the open arms of the elevated plus maze (EPM) significantly more than WT, suggesting increasing ACE2 activity is anxiolytic. Central delivery of diminazene aceturate, an ACE2 activator, to C57BL/6 mice also reduced anxiety-like behavior in the EPM, but centrally administering ACE2 KI mice A-779, a MasR antagonist, abolished their anxiolytic phenotype, suggesting that ACE2 reduces anxiety-like behavior by activating central MasR. To identify the brain circuits mediating these effects, we measured Fos, a marker of neuronal activation, subsequent to EPM exposure and found that ACE2 KI mice had decreased Fos in the bed nucleus of stria terminalis but had increased Fos in the basolateral amygdala (BLA). Within the BLA, we determined that ∼62% of GABAergic neurons contained MasR mRNA and expression of MasR mRNA was upregulated by ACE2 overexpression, suggesting that ACE2 may influence GABA neurotransmission within the BLA via MasR activation. Indeed, ACE2 overexpression was associated with increased frequency of spontaneous inhibitory postsynaptic currents (indicative of presynaptic release of GABA) onto BLA pyramidal neurons and central infusion of A-779 eliminated this effect. Collectively, these results suggest that ACE2 may reduce anxiety-like behavior by activating central MasR that facilitate GABA release onto pyramidal neurons within the

  17. Drinking water treatment is not associated with an observed increase in neural tube defects in mice

    Science.gov (United States)

    Melin, Vanessa E.; Johnstone, David W.; Etzkorn, Felicia A.

    2018-01-01

    Disinfection by-products (DBPs) arise when natural organic matter in source water reacts with disinfectants used in the water treatment process. Studies have suggested an association between DBPs and birth defects. Neural tube defects (NTDs) in embryos of untreated control mice were first observed in-house in May 2006 and have continued to date. The source of the NTD-inducing agent was previously determined to be a component of drinking water. Tap water samples from a variety of sources were analyzed for trihalomethanes (THMs) to determine if they were causing the malformations. NTDs were observed in CD-1 mice provided with treated and untreated surface water. Occurrence of NTDs varied by water source and treatment regimens. THMs were detected in tap water derived from surface water but not detected in tap water derived from a groundwater source. THMs were absent in untreated river water and laboratory purified waters, yet the percentage of NTDs in untreated river water were similar to the treated water counterpart. These findings indicate that THMs were not the primary cause of NTDs in the mice since the occurrence of NTDs was unrelated to drinking water disinfection. PMID:24497082

  18. Striatum-dependent habits are insensitive to both increases and decreases in reinforcer value in mice.

    Science.gov (United States)

    Quinn, Jennifer J; Pittenger, Christopher; Lee, Anni S; Pierson, Jamie L; Taylor, Jane R

    2013-03-01

    The mouse has emerged as an advantageous species for studying the brain circuitry that underlies complex behavior and for modeling neuropsychiatric disease. The transition from flexible, goal-directed actions to inflexible, habitual responses is argued to be a valid and reliable behavioral model for studying a core aspect of corticostriatal systems that is implicated in certain forms of psychopathology. This transition is thought to correspond to a progression of behavioral control from associative to sensorimotor corticobasal ganglia networks. Habits form following extensive training and are characterized by reduced sensitivity of instrumental responding to reinforcer revaluation; few studies have examined this form of behavioral control in mice. Here we examined the involvement of the dorsolateral and dorsomedial striatum in this transition in the C57BL/6 inbred mouse strain. We provided evidence that damage to the dorsolateral striatum disrupted habitual responding, i.e. it preserved sensitivity to changes in outcome value following either outcome devaluation or, shown for the first time in mice, outcome inflation. Together, these data show that instrumental responding in lesioned mice tracks the current value of a reinforcer and provide evidence that neuroanatomical mechanisms underlying habit learning in rats are preserved in the mouse. This will allow for the genetic and molecular dissection of neural factors involved in decision-making and mechanisms of aberrant habit formation. © 2013 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  19. Long-term obestatin treatment of mice type 2 diabetes increases insulin sensitivity and improves liver function.

    Science.gov (United States)

    Kołodziejski, Paweł A; Pruszyńska-Oszmałek, Ewa; Strowski, Mathias Z; Nowak, Krzysztof W

    2017-06-01

    Obestatin and ghrelin are peptides encoded by the preproghrelin gene. Obestatin inhibits food intake, in addition to regulation of glucose and lipid metabolism. Here, we test the ability of obestatin at improving metabolic control and liver function in type 2 diabetic animals (type 2 diabetes mellitus). The effects of chronic obestatin treatment of mice with experimentally induced type 2 diabetes mellitus on serum levels of glucose and lipids, and insulin sensitivity are characterized. In addition, alterations of hepatic lipid and glycogen contents are evaluated. Obestatin reduced body weight and decreased serum glucose, fructosamine, and β-hydroxybutyrate levels, as well as total and low-density lipoprotein fractions of cholesterol. In addition, obestatin increased high-density lipoproteins cholesterol levels and enhanced insulin sensitivity in mice with type 2 diabetes mellitus. Moreover, obestatin diminished liver mass, hepatic triglycerides and cholesterol contents, while glycogen content was higher in livers of healthy and mice with type 2 diabetes mellitus treated with obestatin. These changes were accompanied by reduction of increased alanine aminotransferase, aspartate aminotransferase, and gamma glutamyl transpeptidase in T2DM mice with type 2 diabetes mellitus. Obestatin increased adiponectin levels and reduced leptin concentration. Obestatin influenced the expression of genes involved in lipid and carbohydrate metabolism by increasing Fabp5 and decreasing G6pc, Pepck, Fgf21 mRNA in the liver. Obestatin increased both, AKT and AMPK phosphorylation, and sirtuin 1 (SIRT1) protein levels as well as mRNA expression in the liver. Obestatin improves metabolic abnormalities in type 2 diabetes mellitus, restores hepatic lipid contents and decreases hepatic enzymes. Therefore, obestatin could potentially have a therapeutic relevance in treating of insulin resistance and metabolic dysfunctions in type 2 diabetes mellitus.

  20. Voluntary wheel running increases bile acid as well as cholesterol excretion and decreases atherosclerosis in hypercholesterolemic mice.

    Science.gov (United States)

    Meissner, Maxi; Lombardo, Elisa; Havinga, Rick; Tietge, Uwe J F; Kuipers, Folkert; Groen, Albert K

    2011-10-01

    Regular physical activity decreases the risk for atherosclerosis but underlying mechanisms are not fully understood. We questioned whether voluntary wheel running provokes specific modulations in cholesterol turnover that translate into a decreased atherosclerotic burden in hypercholesterolemic mice. Male LDLR-deficient mice (8 weeks old) had either access to a voluntary running wheel for 12 weeks (RUN) or remained sedentary (CONTROL). Both groups were fed a western-type/high cholesterol diet. Running activity and food intake were recorded. At 12 weeks of intervention, feces, bile and plasma were collected to determine fecal, biliary and plasma parameters of cholesterol metabolism and plasma cytokines. Atherosclerotic lesion size was determined in the aortic root. RUN weighed less (∼13%) while food consumption was increased by 17% (p=0.004). Plasma cholesterol levels were decreased by 12% (p=0.035) and plasma levels of pro-atherogenic lipoproteins decreased in RUN compared to control. Running modulated cholesterol catabolism by enhancing cholesterol turnover: RUN displayed an increased biliary bile acid secretion (68%, p=0.007) and increased fecal bile acid (93%, p=0.009) and neutral sterol (33%, p=0.002) outputs compared to control indicating that reverse cholesterol transport was increased in RUN. Importantly, aortic lesion size was decreased by ∼33% in RUN (p=0.033). Voluntary wheel running reduces atherosclerotic burden in hypercholesterolemic mice. An increased cholesterol turnover, specifically its conversion into bile acids, may underlie the beneficial effect of voluntary exercise in mice. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  1. Ascorbate availability affects tumor implantation-take rate and increases tumor rejection in Gulo–/– mice

    Directory of Open Access Journals (Sweden)

    Campbell EJ

    2016-04-01

    Full Text Available Elizabeth J Campbell,1 Margreet CM Vissers,2 Gabi U Dachs1 1Mackenzie Cancer Research Group, 2Centre for Free Radical Research, Department of Pathology, University of Otago, Christchurch, New Zealand Abstract: In solid tumors, HIF1 upregulates the expression of hundreds of genes involved in cell survival, tumor growth, and adaptation to the hypoxic microenvironment. HIF1 stabilization and activity are suppressed by prolyl and asparagine hydroxylases, which require oxygen as a substrate and ascorbate as a cofactor. This has led us to hypothesize that intracellular ascorbate availability could modify the hypoxic HIF1 response and influence tumor growth. In this study, we investigated the effect of variable intracellular ascorbate levels on HIF1 induction in cancer cells in vitro, and on tumor-take rate and growth in the Gulo–/– mouse. These mice depend on dietary ascorbate, and were supplemented with 3,300 mg/L, 330 mg/L, or 33 mg/L ascorbate in their drinking water, resulting in saturating, medium, or low plasma and tissue ascorbate levels, respectively. In Lewis lung carcinoma cells (LL/2 in culture, optimal ascorbate supplementation reduced HIF1 accumulation under physiological but not pathological hypoxia. LL/2, B16-F10 melanoma, or CMT-93 colorectal cancer cells were implanted subcutaneously into Gulo–/– mice at a range of cell inocula. Establishment of B16-F10 tumors in mice supplemented with 3,300 mg/L ascorbate required an increased number of cancer cells to initiate tumor growth compared with the number of cells required in mice on suboptimal ascorbate intake. Elevated ascorbate intake was also associated with decreased tumor ascorbate levels and a reduction in HIF1α expression and transcriptional activity. Following initial growth, all CMT-93 tumors regressed spontaneously, but mice supplemented with 33 mg/L ascorbate had lower plasma ascorbate levels and grew larger tumors than optimally supplemented mice. The data from this

  2. The adipokine leptin increases skeletal muscle mass and significantly alters skeletal muscle miRNA expression profile in aged mice

    International Nuclear Information System (INIS)

    Hamrick, Mark W.; Herberg, Samuel; Arounleut, Phonepasong; He, Hong-Zhi; Shiver, Austin; Qi, Rui-Qun; Zhou, Li; Isales, Carlos M.

    2010-01-01

    Research highlights: → Aging is associated with muscle atrophy and loss of muscle mass, known as the sarcopenia of aging. → We demonstrate that age-related muscle atrophy is associated with marked changes in miRNA expression in muscle. → Treating aged mice with the adipokine leptin significantly increased muscle mass and the expression of miRNAs involved in muscle repair. → Recombinant leptin therapy may therefore be a novel approach for treating age-related muscle atrophy. -- Abstract: Age-associated loss of muscle mass, or sarcopenia, contributes directly to frailty and an increased risk of falls and fractures among the elderly. Aged mice and elderly adults both show decreased muscle mass as well as relatively low levels of the fat-derived hormone leptin. Here we demonstrate that loss of muscle mass and myofiber size with aging in mice is associated with significant changes in the expression of specific miRNAs. Aging altered the expression of 57 miRNAs in mouse skeletal muscle, and many of these miRNAs are now reported to be associated specifically with age-related muscle atrophy. These include miR-221, previously identified in studies of myogenesis and muscle development as playing a role in the proliferation and terminal differentiation of myogenic precursors. We also treated aged mice with recombinant leptin, to determine whether leptin therapy could improve muscle mass and alter the miRNA expression profile of aging skeletal muscle. Leptin treatment significantly increased hindlimb muscle mass and extensor digitorum longus fiber size in aged mice. Furthermore, the expression of 37 miRNAs was altered in muscles of leptin-treated mice. In particular, leptin treatment increased the expression of miR-31 and miR-223, miRNAs known to be elevated during muscle regeneration and repair. These findings suggest that aging in skeletal muscle is associated with marked changes in the expression of specific miRNAs, and that nutrient-related hormones such as leptin

  3. The adipokine leptin increases skeletal muscle mass and significantly alters skeletal muscle miRNA expression profile in aged mice

    Energy Technology Data Exchange (ETDEWEB)

    Hamrick, Mark W., E-mail: mhamrick@mail.mcg.edu [Department of Cellular Biology and Anatomy, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); Department of Orthopaedic Surgery, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); Herberg, Samuel; Arounleut, Phonepasong [Department of Cellular Biology and Anatomy, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); Department of Orthopaedic Surgery, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); He, Hong-Zhi [Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI (United States); Department of Dermatology, Henry Ford Health System, Detroit, MI (United States); Shiver, Austin [Department of Cellular Biology and Anatomy, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); Department of Orthopaedic Surgery, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); Qi, Rui-Qun [Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI (United States); Department of Dermatology, Henry Ford Health System, Detroit, MI (United States); Zhou, Li [Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI (United States); Department of Dermatology, Henry Ford Health System, Detroit, MI (United States); Department of Internal Medicine, Henry Ford Health System, Detroit, MI (United States); Isales, Carlos M. [Department of Cellular Biology and Anatomy, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); Department of Orthopaedic Surgery, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); others, and

    2010-09-24

    Research highlights: {yields} Aging is associated with muscle atrophy and loss of muscle mass, known as the sarcopenia of aging. {yields} We demonstrate that age-related muscle atrophy is associated with marked changes in miRNA expression in muscle. {yields} Treating aged mice with the adipokine leptin significantly increased muscle mass and the expression of miRNAs involved in muscle repair. {yields} Recombinant leptin therapy may therefore be a novel approach for treating age-related muscle atrophy. -- Abstract: Age-associated loss of muscle mass, or sarcopenia, contributes directly to frailty and an increased risk of falls and fractures among the elderly. Aged mice and elderly adults both show decreased muscle mass as well as relatively low levels of the fat-derived hormone leptin. Here we demonstrate that loss of muscle mass and myofiber size with aging in mice is associated with significant changes in the expression of specific miRNAs. Aging altered the expression of 57 miRNAs in mouse skeletal muscle, and many of these miRNAs are now reported to be associated specifically with age-related muscle atrophy. These include miR-221, previously identified in studies of myogenesis and muscle development as playing a role in the proliferation and terminal differentiation of myogenic precursors. We also treated aged mice with recombinant leptin, to determine whether leptin therapy could improve muscle mass and alter the miRNA expression profile of aging skeletal muscle. Leptin treatment significantly increased hindlimb muscle mass and extensor digitorum longus fiber size in aged mice. Furthermore, the expression of 37 miRNAs was altered in muscles of leptin-treated mice. In particular, leptin treatment increased the expression of miR-31 and miR-223, miRNAs known to be elevated during muscle regeneration and repair. These findings suggest that aging in skeletal muscle is associated with marked changes in the expression of specific miRNAs, and that nutrient

  4. Zonulin transgenic mice show altered gut permeability and increased morbidity/mortality in the DSS colitis model.

    Science.gov (United States)

    Sturgeon, Craig; Lan, Jinggang; Fasano, Alessio

    2017-06-01

    Increased small intestinal permeability (IP) has been proposed to be an integral element, along with genetic makeup and environmental triggers, in the pathogenies of chronic inflammatory diseases (CIDs). We identified zonulin as a master regular of intercellular tight junctions linked to the development of several CIDs. We aim to study the role of zonulin-mediated IP in the pathogenesis of CIDs. Zonulin transgenic Hp2 mice (Ztm) were subjected to dextran sodium sulfate (DSS) treatment for 7 days, followed by 4-7 days' recovery and compared to C57Bl/6 (wild-type (WT)) mice. IP was measured in vivo and ex vivo, and weight, histology, and survival were monitored. To mechanistically link zonulin-dependent impairment of small intestinal barrier function with clinical outcome, Ztm were treated with the zonulin inhibitor AT1001 added to drinking water in addition to DSS. We observed increased morbidity (more pronounced weight loss and colitis) and mortality (40-70% compared with 0% in WT) at 11 days post-DSS treatment in Ztm compared with WT mice. Both in vivo and ex vivo measurements showed an increased IP at baseline in Ztm compared to WT mice, which was exacerbated by DSS treatment and was associated with upregulation of zonulin gene expression (fourfold in the duodenum, sixfold in the jejunum). Treatment with AT1001 prevented the DSS-induced increased IP both in vivo and ex vivo without changing zonulin gene expression and completely reverted morbidity and mortality in Ztm. Our data show that zonulin-dependent small intestinal barrier impairment is an early step leading to the break of tolerance with subsequent development of CIDs. © 2017 New York Academy of Sciences.

  5. Constitutively active ezrin increases membrane tension, slows migration, and impedes endothelial transmigration of lymphocytes in vivo in mice.

    Science.gov (United States)

    Liu, Yin; Belkina, Natalya V; Park, Chung; Nambiar, Raj; Loughhead, Scott M; Patino-Lopez, Genaro; Ben-Aissa, Khadija; Hao, Jian-Jiang; Kruhlak, Michael J; Qi, Hai; von Andrian, Ulrich H; Kehrl, John H; Tyska, Matthew J; Shaw, Stephen

    2012-01-12

    ERM (ezrin, radixin moesin) proteins in lymphocytes link cortical actin to plasma membrane, which is regulated in part by ERM protein phosphorylation. To assess whether phosphorylation of ERM proteins regulates lymphocyte migration and membrane tension, we generated transgenic mice whose T-lymphocytes express low levels of ezrin phosphomimetic protein (T567E). In these mice, T-cell number in lymph nodes was reduced by 27%. Lymphocyte migration rate in vitro and in vivo in lymph nodes decreased by 18% to 47%. Lymphocyte membrane tension increased by 71%. Investigations of other possible underlying mechanisms revealed impaired chemokine-induced shape change/lamellipod extension and increased integrin-mediated adhesion. Notably, lymphocyte homing to lymph nodes was decreased by 30%. Unlike most described homing defects, there was not impaired rolling or sticking to lymph node vascular endothelium but rather decreased migration across that endothelium. Moreover, decreased numbers of transgenic T cells in efferent lymph suggested defective egress. These studies confirm the critical role of ERM dephosphorylation in regulating lymphocyte migration and transmigration. Of particular note, they identify phospho-ERM as the first described regulator of lymphocyte membrane tension, whose increase probably contributes to the multiple defects observed in the ezrin T567E transgenic mice.

  6. 17β-estradiol increases liver and serum docosahexaenoic acid in mice fed varying levels of α-linolenic acid.

    Science.gov (United States)

    Mason, Julie K; Kharotia, Shikhil; Wiggins, Ashleigh K A; Kitson, Alex P; Chen, Jianmin; Bazinet, Richard P; Thompson, Lilian U

    2014-08-01

    Docosahexaenoic acid (DHA) is considered to be important for cardiac and brain function, and 17β-estradiol (E2) appears to increase the conversion of α-linolenic acid (ALA) into DHA. However, the effect of varying ALA intake on the positive effect of E2 on DHA synthesis is not known. Therefore, the objective of this study was to investigate the effects of E2 supplementation on tissue and serum fatty acids in mice fed a low-ALA corn oil-based diet (CO, providing 0.6 % fatty acids as ALA) or a high ALA flaxseed meal-based diet (FS, providing 11.2 % ALA). Ovariectomized mice were implanted with a slow-release E2 pellet at 3 weeks of age and half the mice had the pellet removed at 7 weeks of age. Mice were then randomized onto either the CO or FS diet. After 4 weeks, the DHA concentration was measured in serum, liver and brain. A significant main effect of E2 was found for liver and serum DHA, corresponding to 25 and 15 % higher DHA in livers of CO and FS rats, respectively, and 19 and 13 % in serum of CO and FS rats, respectively, compared to unsupplemented mice. There was no effect of E2 on brain DHA. E2 results in higher DHA in serum and liver, at both levels of dietary ALA investigated presently, suggesting that higher ALA intake may result in higher DHA in individuals with higher E2 status.

  7. Voluntary exercise increases cholesterol efflux but not macrophage reverse cholesterol transport in vivo in mice

    Directory of Open Access Journals (Sweden)

    Kuipers Folkert

    2010-07-01

    Full Text Available Abstract Physical exercise beneficially impacts on the plasma lipoprotein profile as well as on the incidence of cardiovascular events and is therefore recommended in primary and secondary prevention strategies against atherosclerotic cardiovascular disease. However, the underlying mechanisms of the protective effect of exercise remain largely unknown. Therefore, the present study tested the hypothesis that voluntary exercise in mice impacts on cholesterol efflux and in vivo reverse cholesterol transport (RCT. After two weeks of voluntary wheel running (average 10.1 ± 1.4 km/day plasma triglycerides were lower (p

  8. Erythropoietin over-expression protects against diet-induced obesity in mice through increased fat oxidation in muscles.

    Directory of Open Access Journals (Sweden)

    Pernille Hojman

    Full Text Available Erythropoietin can be over-expressed in skeletal muscles by gene electrotransfer, resulting in 100-fold increase in serum EPO and significant increases in haemoglobin levels. Earlier studies have suggested that EPO improves several metabolic parameters when administered to chronically ill kidney patients. Thus we applied the EPO over-expression model to investigate the metabolic effect of EPO in vivo.At 12 weeks, EPO expression resulted in a 23% weight reduction (P<0.01 in EPO transfected obese mice; thus the mice weighed 21.9+/-0.8 g (control, normal diet, 21.9+/-1.4 g (EPO, normal diet, 35.3+/-3.3 g (control, high-fat diet and 28.8+/-2.6 g (EPO, high-fat diet. Correspondingly, DXA scanning revealed that this was due to a 28% reduction in adipose tissue mass.The decrease in adipose tissue mass was accompanied by a complete normalisation of fasting insulin levels and glucose tolerance in the high-fat fed mice. EPO expression also induced a 14% increase in muscle volume and a 25% increase in vascularisation of the EPO transfected muscle. Muscle force and stamina were not affected by EPO expression. PCR array analysis revealed that genes involved in lipid metabolism, thermogenesis and inflammation were increased in muscles in response to EPO expression, while genes involved in glucose metabolism were down-regulated. In addition, muscular fat oxidation was increased 1.8-fold in both the EPO transfected and contralateral muscles.In conclusion, we have shown that EPO when expressed in supra-physiological levels has substantial metabolic effects including protection against diet-induced obesity and normalisation of glucose sensitivity associated with a shift to increased fat metabolism in the muscles.

  9. Cholinergic degeneration is associated with increased plaque deposition and cognitive impairment in APPswe/PS1dE9 mice

    DEFF Research Database (Denmark)

    Laursen, Bettina; Mørk, Arne; Plath, Niels

    2013-01-01

    mice was not due to a more extensive cholinergic degeneration since the reduction in choline acetyltransferase activity was similar following SAP treatment in APP/PS1 mice and Wt. Interestingly, plaque load was significantly increased in SAP treated APP/PS1 mice relative to sham lesioned APP/PS1 mice....... Additionally, APP/PS1 mice treated with SAP showed a tendency towards an increased level of soluble and insoluble Aß1-40 and Aß1-42 measured in brain tissue homogenate. Our results suggest that the combination of cholinergic degeneration and Aß overexpression in the APP/PS1 mouse model results in cognitive...... decline and accelerated plaque burden. SAP treated APP/PS1 mice might thus constitute an improved model of Alzheimer's disease-like neuropathology and cognitive deficits compared to the conventional APP/PS1 model without selective removal of basal forebrain cholinergic neurons....

  10. Leptin rapidly improves glucose homeostasis in obese mice by increasing hypothalamic insulin sensitivity.

    Science.gov (United States)

    Koch, Christiane; Augustine, Rachael A; Steger, Juliane; Ganjam, Goutham K; Benzler, Jonas; Pracht, Corinna; Lowe, Chrishanthi; Schwartz, Michael W; Shepherd, Peter R; Anderson, Greg M; Grattan, David R; Tups, Alexander

    2010-12-01

    Obesity is associated with resistance to the actions of both leptin and insulin via mechanisms that remain incompletely understood. To investigate whether leptin resistance per se contributes to insulin resistance and impaired glucose homeostasis, we investigated the effect of acute leptin administration on glucose homeostasis in normal as well as leptin- or leptin receptor-deficient mice. In hyperglycemic, leptin-deficient Lep(ob/ob) mice, leptin acutely and potently improved glucose metabolism, before any change of body fat mass, via a mechanism involving the p110α and β isoforms of phosphatidylinositol-3-kinase (PI3K). Unlike insulin, however, the anti-diabetic effect of leptin occurred independently of phospho-AKT, a major downstream target of PI3K, and instead involved enhanced sensitivity of the hypothalamus to insulin action upstream of PI3K, through modulation of IRS1 (insulin receptor substrate 1) phosphorylation. These data suggest that leptin resistance, as occurs in obesity, reduces the hypothalamic response to insulin and thereby impairs peripheral glucose homeostasis, contributing to the development of type 2 diabetes.

  11. Increasing Hematopoietic Stem Cell Yield to Develop Mice with Human Immune Systems

    Directory of Open Access Journals (Sweden)

    Juan-Carlos Biancotti

    2013-01-01

    Full Text Available Hematopoietic stem cells (HSCs are unique in their capacity to give rise to all mature cells of the immune system. For years, HSC transplantation has been used for treatment of genetic and neoplastic diseases of the hematopoietic and immune systems. The sourcing of HSCs from human umbilical cord blood has salient advantages over isolation from mobilized peripheral blood. However, poor sample yield has prompted development of methodologies to expand HSCs ex vivo. Cytokines, trophic factors, and small molecules have been variously used to promote survival and proliferation of HSCs in culture, whilst strategies to lower the concentration of inhibitors in the culture media have recently been applied to promote HSC expansion. In this paper, we outline strategies to expand HSCs in vitro, and to improve engraftment and reconstitution of human immune systems in immunocompromised mice. To the extent that these “humanized” mice are representative of the endogenous human immune system, they will be invaluable tools for both basic science and translational medicine.

  12. Microfluidic enhancement of intramedullary pressure increases interstitial fluid flow and inhibits bone loss in hindlimb suspended mice.

    Science.gov (United States)

    Kwon, Ronald Y; Meays, Diana R; Tang, W Joyce; Frangos, John A

    2010-08-01

    Interstitial fluid flow (IFF) has been widely hypothesized to mediate skeletal adaptation to mechanical loading. Although a large body of in vitro evidence has demonstrated that fluid flow stimulates osteogenic and antiresorptive responses in bone cells, there is much less in vivo evidence that IFF mediates loading-induced skeletal adaptation. This is due in large part to the challenges associated with decoupling IFF from matrix strain. In this study we describe a novel microfluidic system for generating dynamic intramedullary pressure (ImP) and IFF within the femurs of alert mice. By quantifying fluorescence recovery after photobleaching (FRAP) within individual lacunae, we show that microfluidic generation of dynamic ImP significantly increases IFF within the lacunocanalicular system. In addition, we demonstrate that dynamic pressure loading of the intramedullary compartment for 3 minutes per day significantly eliminates losses in trabecular and cortical bone mineral density in hindlimb suspended mice, enhances trabecular and cortical structural integrity, and increases endosteal bone formation rate. Unlike previously developed modalities for enhancing IFF in vivo, this is the first model that allows direct and dynamic modulation of ImP and skeletal IFF within mice. Given the large number of genetic tools for manipulating the mouse genome, this model is expected to serve as a powerful investigative tool in elucidating the role of IFF in skeletal adaptation to mechanical loading and molecular mechanisms mediating this process.

  13. Erythropoietin over-expression protects against diet-induced obesity in mice through increased fat oxidation in muscles

    DEFF Research Database (Denmark)

    Hojman, Pernille; Brolin, Camilla; Gissel, Hanne

    2009-01-01

    patients. Thus we applied the EPO over-expression model to investigate the metabolic effect of EPO in vivo.At 12 weeks, EPO expression resulted in a 23% weight reduction (Pobese mice; thus the mice weighed 21.9+/-0.8 g (control, normal diet,) 21.9+/-1.4 g (EPO, normal diet), 35.......3+/-3.3 g (control, high-fat diet) and 28.8+/-2.6 g (EPO, high-fat diet). Correspondingly, DXA scanning revealed that this was due to a 28% reduction in adipose tissue mass.The decrease in adipose tissue mass was accompanied by a complete normalisation of fasting insulin levels and glucose tolerance......-physiological levels has substantial metabolic effects including protection against diet-induced obesity and normalisation of glucose sensitivity associated with a shift to increased fat metabolism in the muscles....

  14. Troglitazone treatment increases bone marrow adipose tissue volume but does not affect trabecular bone volume in mice

    DEFF Research Database (Denmark)

    Erikstrup, Lise Tornvig; Mosekilde, Leif; Justesen, J

    2001-01-01

    proliferator activated receptor-gamma (PPARgamma). Histomorphometric analysis of proximal tibia was performed in order to quantitate the amount of trabecular bone volume per total volume (BV/TV %), adipose tissue volume per total volume (AV/TV %), and hematopoietic marrow volume per total volume (HV......Aging is associated with decreased trabecular bone mass and increased adipocyte formation in bone marrow. As osteoblasts and adipocytes share common precursor cells present in the bone marrow stroma, it has been proposed that an inverse relationship exists between adipocyte and osteoblast....../TV %) using the point-counting technique. Bone size did not differ between the two groups. In troglitazone-treated mice, AV/TV was significantly higher than in control mice (4.7+/-2.1% vs. 0.2+/-0.3%, respectively, mean +/- SD, P

  15. Mutation of the key residue for extraribosomal function of ribosomal protein S19 cause increased grooming behaviors in mice.

    Science.gov (United States)

    Chen, Jun; Kaitsuka, Taku; Fujino, Rika; Araki, Kimi; Tomizawa, Kazuhito; Yamamoto, Tetsuro

    2016-08-26

    Ribosomal protein S19 (RP S19) possesses ribosomal function as RP S19 monomer and extraribosomal function as cross-linked RP S19 oligomers which function as a ligand of the complement 5a (C5a) receptor (CD88). We have generated a Gln137Glu-RP S19 knock-in (KI) mouse, which is shown to possess the weakened extraribosomal function of RP S19. Because whether the extraribosomal function of RP S19 has a role in brain function had been unclear, we performed behavioral analysis on these mice and demonstrated that KI mice displayed an increased grooming behavior during open-field test and elevated plus maze test and an enhanced freezing behavior in contextual fear conditioning test. These results suggest an involvement of RP S19 oligomers in some anxiety-like behavior, especially grooming behavior. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Characterization of vitamin D-deficient klotho(-/-) mice: do increased levels of serum 1,25(OH)2D3 cause disturbed calcium and phosphate homeostasis in klotho(-/-) mice?

    NARCIS (Netherlands)

    Woudenberg-Vrenken, T.E.; van der Eerden, B.C.; van der Kemp, A.W.; Leeuwen, J.P. van; Bindels, R.J.M.; Hoenderop, J.G.J.

    2012-01-01

    BACKGROUND: Klotho(-/-) mice display disturbed Ca(2+) and vitamin D homeostasis. Renal cytochrome p450 27b1 (Cyp27b1), the enzyme that catalyzes the hydrolysis to 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), is increased in klotho(-/-) mice, and a 1,25(OH)(2)D(3)-deficient diet partially normalized

  17. Intermittent Fasting Promotes Fat Loss With Lean Mass Retention, Increased Hypothalamic Norepinephrine Content, and Increased Neuropeptide Y Gene Expression in Diet-Induced Obese Male Mice.

    Science.gov (United States)

    Gotthardt, Juliet D; Verpeut, Jessica L; Yeomans, Bryn L; Yang, Jennifer A; Yasrebi, Ali; Roepke, Troy A; Bello, Nicholas T

    2016-02-01

    Clinical studies indicate alternate-day, intermittent fasting (IMF) protocols result in meaningful weight loss in obese individuals. To further understand the mechanisms sustaining weight loss by IMF, we investigated the metabolic and neural alterations of IMF in obese mice. Male C57/BL6 mice were fed a high-fat diet (HFD; 45% fat) ad libitum for 8 weeks to promote an obese phenotype. Mice were divided into four groups and either maintained on ad libitum HFD, received alternate-day access to HFD (IMF-HFD), and switched to ad libitum low-fat diet (LFD; 10% fat) or received IMF of LFD (IMF-LFD). After 4 weeks, IMF-HFD (∼13%) and IMF-LFD (∼18%) had significantly lower body weights than the HFD. Body fat was also lower (∼40%-52%) in all diet interventions. Lean mass was increased in the IMF-LFD (∼12%-13%) compared with the HFD and IMF-HFD groups. Oral glucose tolerance area under the curve was lower in the IMF-HFD (∼50%), whereas the insulin tolerance area under the curve was reduced in all diet interventions (∼22%-42%). HPLC measurements of hypothalamic tissue homogenates indicated higher (∼55%-60%) norepinephrine (NE) content in the anterior regions of the medial hypothalamus of IMF compared with the ad libitum-fed groups, whereas NE content was higher (∼19%-32%) in posterior regions in the IMF-LFD group only. Relative gene expression of Npy in the arcuate nucleus was increased (∼65%-75%) in IMF groups. Our novel findings indicate that intermittent fasting produces alterations in hypothalamic NE and neuropeptide Y, suggesting the counterregulatory processes of short-term weight loss are associated with an IMF dietary strategy.

  18. Daily supplementation with fresh pomegranate juice increases paraoxonase 1 expression and activity in mice fed a high-fat diet.

    Science.gov (United States)

    Estrada-Luna, D; Martínez-Hinojosa, E; Cancino-Diaz, J C; Belefant-Miller, H; López-Rodríguez, G; Betanzos-Cabrera, G

    2018-02-01

    Studies have found that pomegranate juice (PJ) consumption increases the binding of high-density lipoproteins (HDL) to paraoxonase 1 (PON1), thus increasing the catalytic activity of this enzyme. PON1 is an antioxidant arylesterase synthesized in the liver and transported in plasma in association with HDL. Decreased levels of PON1 are associated with higher levels of cholesterol. We determined the effects of PJ on body weight, cholesterol, and triacylglycerols through 5 months of supplementation. In addition, the effect of PJ on pon1 gene expression in the liver was also measured by RT-qPCR as well as the activity in serum by a semiautomated method using paraoxon as a substrate. CD-1 mice were either fed a control diet or were fed a high-fat diet 1.25% (wt/wt) cholesterol, 0.5% (wt/wt) sodium cholate, and 15% (wt/wt) saturated fat. 300 μL of PJ containing 0.35 mmol total polyphenols was administered by oral gavage to half of the high fat mice daily. The rest of the high fat mice and the control mice were administered with 300 μL of water. PJ-supplemented animals had significantly higher levels of expression of pon1 compared to the unsupplemented group. PJ-supplemented animals had twice the PON1 activity of the unsupplemented group. In addition, PJ-supplemented animals had the lowest body weight and significantly reduced cholesterol and triacylglycerol levels, although the tricylglycerol levels were not consistently decreased. These results suggest that PJ protects against the effects of a high-fat diet in body weight, and cholesterol levels.

  19. Smad4 loss in mice causes spontaneous head and neck cancer with increased genomic instability and inflammation.

    Science.gov (United States)

    Bornstein, Sophia; White, Ruth; Malkoski, Stephen; Oka, Masako; Han, Gangwen; Cleaver, Timothy; Reh, Douglas; Andersen, Peter; Gross, Neil; Olson, Susan; Deng, Chuxia; Lu, Shi-Long; Wang, Xiao-Jing

    2009-11-01

    Smad4 is a central mediator of TGF-beta signaling, and its expression is downregulated or lost at the malignant stage in several cancer types. In this study, we found that Smad4 was frequently downregulated not only in human head and neck squamous cell carcinoma (HNSCC) malignant lesions, but also in grossly normal adjacent buccal mucosa. To gain insight into the importance of this observation, we generated mice in which Smad4 was deleted in head and neck epithelia (referred to herein as HN-Smad4-/- mice) and found that they developed spontaneous HNSCC. Interestingly, both normal head and neck tissue and HNSCC from HN-Smad4-/- mice exhibited increased genomic instability, which correlated with downregulated expression and function of genes encoding proteins in the Fanconi anemia/Brca (Fanc/Brca) DNA repair pathway linked to HNSCC susceptibility in humans. Consistent with this, further analysis revealed a correlation between downregulation of Smad4 protein and downregulation of the Brca1 and Rad51 proteins in human HNSCC. In addition to the above changes in tumor epithelia, both normal head and neck tissue and HNSCC from HN-Smad4-/- mice exhibited severe inflammation, which was associated with increased expression of TGF-beta1 and activated Smad3. We present what we believe to be the first single gene-knockout model for HNSCC, in which both HNSCC formation and invasion occurred as a result of Smad4 deletion. Our results reveal an intriguing connection between Smad4 and the Fanc/Brca pathway and highlight the impact of epithelial Smad4 loss on inflammation.

  20. Hepcidin and hemoglobin content parameters in the diagnosis of iron deficiency in rheumatoid arthritis patients with anemia

    NARCIS (Netherlands)

    Santen, S. van; Dongen-Lases, E.C. van; Vegt, F. de; Laarakkers, C.M.; Riel, P.L. van; Ede, A.E. van; Swinkels, D.W.

    2011-01-01

    OBJECTIVE: To explore the utility of the novel iron indices hepcidin, reticulocyte hemoglobin content (Ret-Hgb), and erythrocyte (red blood cell) hemoglobin content (RBC-Hgb) for detection of iron deficiency in rheumatoid arthritis (RA) patients with anemia and active inflammation and to compare

  1. Exercise training effects on hypoxic and hypercapnic ventilatory responses in mice selected for increased voluntary wheel running.

    Science.gov (United States)

    Kelly, Scott A; Rezende, Enrico L; Chappell, Mark A; Gomes, Fernando R; Kolb, Erik M; Malisch, Jessica L; Rhodes, Justin S; Mitchell, Gordon S; Garland, Theodore

    2014-02-01

    What is the central question of this study? We used experimental evolution to determine how selective breeding for high voluntary wheel running and exercise training (7-11 weeks) affect ventilatory chemoreflexes of laboratory mice at rest. What is the main finding and its importance? Selective breeding, although significantly affecting some traits, did not systematically alter ventilation across gas concentrations. As with most human studies, our findings support the idea that endurance training attenuates resting ventilation. However, little evidence was found for a correlation between ventilatory chemoreflexes and the amount of individual voluntary wheel running. We conclude that exercise 'training' alters respiratory behaviours, but these changes may not be necessary to achieve high levels of wheel running. Ventilatory control is affected by genetics, the environment and gene-environment and gene-gene interactions. Here, we used an experimental evolution approach to test whether 37 generations of selective breeding for high voluntary wheel running (genetic effects) and/or long-term (7-11 weeks) wheel access (training effects) alter acute respiratory behaviour of mice resting in normoxic, hypoxic and hypercapnic conditions. As the four replicate high-runner (HR) lines run much more than the four non-selected control (C) lines, we also examined whether the amount of exercise among individual mice was a quantitative predictor of ventilatory chemoreflexes at rest. Selective breeding and/or wheel access significantly affected several traits. In normoxia, HR mice tended to have lower mass-adjusted rates of oxygen consumption and carbon dioxide production. Chronic wheel access increased oxygen consumption and carbon dioxide production in both HR and C mice during hypercapnia. Breathing frequency and minute ventilation were significantly reduced by chronic wheel access in both HR and C mice during hypoxia. Selection history, while significantly affecting some traits

  2. Increased haematopoietic stem cell survival in mice injected with tocopherol after X-irradiation

    International Nuclear Information System (INIS)

    Roy, R.M.; Malick, M.A.; Clark, G.M.

    1982-01-01

    Tocopherol injection (2.5 mg) immediately after irradiation reduced lethality only during bone-marrow syndrome. Endogenous spleen colony count at 8 days after X-radiation were significantly greater in vitamin-E-injected mice compared to noninjected or vehicle-injected animals; however, 59 Fe incorporation into spleen and bone marrow did not suggest enhanced erythropoietic activity in vitamin-E-injected groups at 2, 4, 8 and 10 days following irradiation. Mitotic index and frequency of micronuclei in marrow at 24 hours post irradiation (3 GY) were unaffected by tocopherol injection. The uptake of tritium from injected 3 H-tocopherol suggests that tocopherol has been accumulated in spleens but not marrows of irradiated animals within a few hours. Also tocopherol has no effect on endogenous spleen colony counts if injected after 5 hours nor is there an effect on the seeding efficiency of exogenous bonemarrow cells injected into recipients receiving tocopherol after irradiation. (orig.) [de

  3. Loss of Akt1 in mice increases energy expenditure and protects against diet-induced obesity.

    Science.gov (United States)

    Wan, Min; Easton, Rachael M; Gleason, Catherine E; Monks, Bobby R; Ueki, Kohjiro; Kahn, C Ronald; Birnbaum, Morris J

    2012-01-01

    Akt is encoded by a gene family for which each isoform serves distinct but overlapping functions. Based on the phenotypes of the germ line gene disruptions, Akt1 has been associated with control of growth, whereas Akt2 has been linked to metabolic regulation. Here we show that Akt1 serves an unexpected role in the regulation of energy metabolism, as mice deficient for Akt1 exhibit protection from diet-induced obesity and its associated insulin resistance. Although skeletal muscle contributes most of the resting and exercising energy expenditure, muscle-specific deletion of Akt1 does not recapitulate the phenotype, indicating that the role of Akt1 in skeletal muscle is cell nonautonomous. These data indicate a previously unknown function of Akt1 in energy metabolism and provide a novel target for treatment of obesity.

  4. Aging increases the susceptibility of hepatic inflammation, liver fibrosis and aging in response to high-fat diet in mice.

    Science.gov (United States)

    Kim, In Hee; Xu, Jun; Liu, Xiao; Koyama, Yukinori; Ma, Hsiao-Yen; Diggle, Karin; You, Young-Hyun; Schilling, Jan M; Jeste, Dilip; Sharma, Kumar; Brenner, David A; Kisseleva, Tatiana

    2016-08-01

    We aimed to investigate whether aging increases the susceptibility of hepatic and renal inflammation or fibrosis in response to high-fat diet (HFD) and explore the underlying genetic alterations. Middle (10 months old) and old (20 months old) aged, male C57BL/6N mice were fed either a low-fat diet (4 % fat) or HFD (60 % fat) for 4 months. Young (3 months old) aged mice were included as control group. HFD-induced liver and kidney injuries were analyzed by serum and urine assay, histologic staining, immunohistochemistry, and reverse-transcription real-time quantitative polymerase chain reaction. Total RNA sequencing with next-generation technology was done with RNA extracted from liver tissues. With HFD feeding, aged was associated with higher serum alanine aminotransferase levels, marked infiltration of hepatic macrophages, and increased expression of inflammatory cytokines (MCP1, TNF-α, IL-1β, IL-6, IL-12, IL-17A). Importantly, aged mice showed more advanced hepatic fibrosis and increased expression of fibrogenic markers (Col-I-α1, αSMA, TGF-β1, TGF-β2, TGFβRII, PDGF, PDGFRβII, TIMP1) in response to HFD. Aged mice fed on HFD also showed increased oxidative stress and TLR4 expression. In the total RNA seq and gene ontology analysis of liver, old-aged HFD group showed significant up-regulation of genes linked to innate immune response, immune response, defense response, inflammatory response compared to middle-aged HFD group. Meanwhile, aging and HFD feeding showed significant increase in glomerular size and mesangial area, higher urine albumin/creatinine ratio, and advanced renal inflammation or fibrosis. However, the difference of HFD-induced renal injury between old-aged group and middle-aged group was not significant. The susceptibility of hepatic fibrosis as well as hepatic inflammation in response to HFD was significantly increased with aging. In addition, aging was associated with glomerular alterations and increased renal inflammation or

  5. Daily energy balance in growth hormone receptor/binding protein (GHR−/−) gene-disrupted mice is achieved through an increase in dark-phase energy efficiency

    Science.gov (United States)

    Longo, Kenneth A.; Berryman, Darlene E.; Kelder, Bruce; Charoenthongtrakul, Soratree; DiStefano, Peter S.; Geddes, Brad J.; Kopchick, John

    2009-01-01

    The goal of this study was to examine factors that contribute to energy balance in female GHR −/− mice. We measured energy intake, energy expenditure (EE), fuel utilization, body mass (Mb) changes and physical activity in 17 month-old female GHR −/− mice and their age-matched wild type littermates. The GHR −/− mice were smaller, consumed more food per unit Mb, had greater EE per unit Mb and had an increase in 24-h EE/Mb that was similar to the increase in their surface-area-to-volume ratio. Locomotor activity (LMA) was reduced in the GHR −/− mice, but the energetic cost associated with their LMA was greater than in wild type controls. Furthermore, Mb and LMA were independent explanatory covariates of most of the variance in EE, and when adjusted for Mb and LMA, the GHR −/− mice had higher EE during both the light and dark phases of the daily cycle. Respiratory quotient was lower in GHR −/− mice during the light phase, which indicated a greater utilization of lipid relative to carbohydrate in these mice. Additionally, GHR −/− mice had higher ratios of caloric intake to EE at several intervals during the dark phase, and this effect was greater and more sustained in the final three hours of the dark phase. Therefore, we conclude that GHR −/− mice are able to overcome the substantial energetic challenges of dwarfism through several mechanisms that promote stable Mb. Relative to wild type mice, the GHR −/− mice consumed more calories per unit Mb, which offset the disproportionate increase in their daily energy expenditure. While GHR −/− mice oxidized a greater proportion of lipid during the light phase in order to meet their energy requirements, they achieved greater energy efficiency and storage during the dark phase through a combination of higher energy consumption and lower LMA. PMID:19747867

  6. Daily energy balance in growth hormone receptor/binding protein (GHR -/-) gene-disrupted mice is achieved through an increase in dark-phase energy efficiency.

    Science.gov (United States)

    Longo, Kenneth A; Berryman, Darlene E; Kelder, Bruce; Charoenthongtrakul, Soratree; Distefano, Peter S; Geddes, Brad J; Kopchick, John J

    2010-02-01

    The goal of this study was to examine factors that contribute to energy balance in female GHR -/- mice. We measured energy intake, energy expenditure (EE), fuel utilization, body mass (M(b)) changes and physical activity in 17month-old female GHR -/- mice and their age-matched wild type littermates. The GHR -/- mice were smaller, consumed more food per unit M(b), had greater EE per unit M(b) and had an increase in 24-h EE/M(b) that was similar to the increase in their surface-area-to-volume ratio. Locomotor activity (LMA) was reduced in the GHR -/- mice, but the energetic cost associated with their LMA was greater than in wild type controls. Furthermore, M(b) and LMA were independent explanatory covariates of most of the variance in EE, and when adjusted for M(b) and LMA, the GHR -/- mice had higher EE during both the light and dark phases of the daily cycle. Respiratory quotient was lower in GHR -/- mice during the light phase, which indicated a greater utilization of lipid relative to carbohydrate in these mice. Additionally, GHR -/- mice had higher ratios of caloric intake to EE at several intervals during the dark phase, and this effect was greater and more sustained in the final 3h of the dark phase. Therefore, we conclude that GHR -/- mice are able to overcome the substantial energetic challenges of dwarfism through several mechanisms that promote stable M(b). Relative to wild type mice, the GHR -/- mice consumed more calories per unit M(b), which offset the disproportionate increase in their daily energy expenditure. While GHR -/- mice oxidized a greater proportion of lipid during the light phase in order to meet their energy requirements, they achieved greater energy efficiency and storage during the dark phase through a combination of higher energy consumption and lower LMA. Copyright 2009 Elsevier Ltd. All rights reserved.

  7. ATP Synthase β-Chain Overexpression in SR-BI Knockout Mice Increases HDL Uptake and Reduces Plasma HDL Level

    Directory of Open Access Journals (Sweden)

    Kexiu Song

    2014-01-01

    Full Text Available HDL cholesterol is known to be inversely correlated with cardiovascular disease due to its diverse antiatherogenic functions. SR-BI mediates the selective uptake of HDL-C. SR-BI knockout diminishes but does not completely block the transport of HDL; other receptors may be involved. Ectopic ATP synthase β-chain in hepatocytes has been previously characterized as an apoA-I receptor, triggering HDL internalization. This study was undertaken to identify the overexpression of ectopic ATP synthase β-chain on DIL-HDL uptake in primary hepatocytes in vitro and on plasma HDL levels in SR-BI knockout mice. Human ATP synthase β-chain cDNA was delivered to the mouse liver by adenovirus and GFP adenovirus as control. The adenovirus-mediated overexpression of β-chain was identified at both mRNA and protein levels on mice liver and validated by its increasing of DiL-HDL uptake in primary hepatocytes. In response to hepatic overexpression of β-chain, plasma HDL-C levels and cholesterol were reduced in SR-BI knockout mice, compared with the control. The present data suggest that ATP synthase β-chain can serve as the endocytic receptor of HDL, and its overexpression can reduce plasma HDL-C.

  8. The adaptation of limb kinematics to increasing walking speeds in freely moving mice 129/Sv and C57BL/6.

    Science.gov (United States)

    Serradj, Nadjet; Jamon, Marc

    2009-07-19

    The kinematics of locomotion was analyzed in two strains of great importance for the creation of mutated mice (C56BL/6 and 129/Sv). Different behavioral situations were used to trigger sequences of movement covering the whole range of velocities in the mice, and the variations of kinematic parameters were analyzed in relation with velocity. Both stride frequency and stride length contributed to the moving speed, but stride frequency was found to be the main contributor to the speed increase. A trot-gallop transition was detected at speed about 70 cm/s, in relation with a sharp shift in limb coordination. The results of this study were consistent with pieces of information previously published concerning the gait analyses of other strains, and provided an integrative view of the basic motor pattern of mice. On the other hand some qualitative differences were found in the movement characteristics of the two strains. The stride frequency showed a higher contribution to speed in 129/Sv than in C57BL/6. In addition, 129/Sv showed a phase shift in the forelimb and hindlimb, and a different position of the foot during the stance time that revealed a different gait and body position during walking. Overall, 129/Sv moved at a slower speed than C57BL/6 in any behavioral situation. This difference was related to a basal lower level of motor activity. The possibility that an alteration in the dopamine circuit was responsible for the different movement pattern in 129/Sv is discussed.

  9. SPILANTHES ACMELLA AND PHYSICAL EXERCISE INCREASED TESTOSTERONE LEVELS AND OSTEOBLAST CELLS IN GLUCOCORTICOID-INDUCED OSTEOPOROSIS MALE MICE

    Directory of Open Access Journals (Sweden)

    Hening Laswati

    2015-08-01

    Full Text Available Background: Glucocorticoid-induced osteoporosis is leading cause of secondary osteoporosis by decreasing formation activity and increasing resorption activity. Spilanthes acmella, is one of Indonesia medicinal plants that contain of polyphenol and flavonoids. Previously in vitro study showed that buthanol and water fraction from this plant have increased alkaline phosphatase that known as marker of bone formation. The objective of this study to analyze the effect of Spilanthes acmella  and physical exercise in increasing testosterone and  osteoblast cells of femoral’s trabecular glucocorticoid-induced osteoporosis male mice. Method: This study using a posttest control group design, 36 male healthy mice (5 months old  were randomizely devided into 6 groups, there are : 1.Healthy control group (without induction dexamethaxone, 2.Osteoporosis groups (induction with dexamethaxone without treatment, 3.Positive control receive suspension alendronat, 4.70% Ethanol extract of Spilanthes acmella group, 5.Combination group of 70% extract ethanol of Spilanthes acmella and exercise, and 6.Exercise group  (walking using mice treadmill 10m/minute, 5-12 minutes 3 times a week. All of the intervention were given for 4 weeks. The serum levels of testosterone were determined using  immunoserology (ELISA and osteoblast cells were determined histomorphometry by light microscopy.  All statistical test were carried out using SPSS 23 and statistical significance was  set at p<0.05 for all analysis. The testosterone levels  between group were compared using Mann-Whitney test and osteoblast cells between group were compared with multiple comparison. Results: It showed that the alendronate group, combination group and the exercise group increasing testosterone level (p<0.05 from that osteoporotic group. There were also increasing osteoblast cells (p<0.05 in the alendronate group and combination group. There was no correlation between testosterone level and

  10. Decreased number of interneurons and increased seizures in neuropilin 2 deficient mice: implications for autism and epilepsy.

    Science.gov (United States)

    Gant, John C; Thibault, Oliver; Blalock, Eric M; Yang, Jun; Bachstetter, Adam; Kotick, James; Schauwecker, Paula E; Hauser, Kurt F; Smith, George M; Mervis, Ron; Li, YanFang; Barnes, Gregory N

    2009-04-01

    Clinically, perturbations in the semaphorin signaling system have been associated with autism and epilepsy. The semaphorins have been implicated in guidance, migration, differentiation, and synaptic plasticity of neurons. The semaphorin 3F (Sema3F) ligand and its receptor, neuropilin 2 (NPN2) are highly expressed within limbic areas. NPN2 signaling may intimately direct the apposition of presynaptic and postsynaptic locations, facilitating the development and maturity of hippocampal synaptic function. To further understand the role of NPN2 signaling in central nevous system (CNS) plasticity, structural and functional alterations were assessed in NPN2 deficient mice. In NPN2 deficient mice, we measured seizure susceptibility after kainic acid or pentylenetetrazol, neuronal excitability and synaptic throughput in slice preparations, principal and interneuron cell counts with immunocytochemical protocols, synaptosomal protein levels with immunoblots, and dendritic morphology with Golgi-staining. NPN2 deficient mice had shorter seizure latencies, increased vulnerability to seizure-related death, were more likely to develop spontaneous recurrent seizure activity after chemical challenge, and had an increased slope on input/output curves. Principal cell counts were unchanged, but GABA, parvalbumin, and neuropeptide Y interneuron cell counts were significantly reduced. Synaptosomal NPN2 protein levels and total number of GABAergic synapses were decreased in a gene dose-dependent fashion. CA1 pyramidal cells showed reduced dendritic length and complexity, as well as an increased number of dendritic spines. These data suggest the novel hypothesis that the Sema 3F signaling system's role in appropriate placement of subsets of hippocampal interneurons has critical downstream consequences for hippocampal function, resulting in a more seizure susceptible phenotype.

  11. Caffeine synergizes with another coffee component to increase plasma GCSF: linkage to cognitive benefits in Alzheimer's mice.

    Science.gov (United States)

    Cao, Chuanhai; Wang, Li; Lin, Xiaoyang; Mamcarz, Malgorzata; Zhang, Chi; Bai, Ge; Nong, Jasson; Sussman, Sam; Arendash, Gary

    2011-01-01

    Retrospective and prospective epidemiologic studies suggest that enhanced coffee/caffeine intake during aging reduces risk of Alzheimer's disease (AD). Underscoring this premise, our studies in AD transgenic mice show that long-term caffeine administration protects against cognitive impairment and reduces brain amyloid-β levels/deposition through suppression of both β- and γ-secretase. Because coffee contains many constituents in addition to caffeine that may provide cognitive benefits against AD, we examined effects of caffeinated and decaffeinated coffee on plasma cytokines, comparing their effects to caffeine alone. In both AβPPsw+PS1 transgenic mice and non-transgenic littermates, acute i.p. treatment with caffeinated coffee greatly and specifically increased plasma levels of granulocyte-colony stimulating factor (GCSF), IL-10, and IL-6. Neither caffeine solution alone (which provided high plasma caffeine levels) or decaffeinated coffee provided this effect, indicating that caffeine synergized with some as yet unidentified component of coffee to selectively elevate these three plasma cytokines. The increase in GCSF is particularly important because long-term treatment with coffee (but not decaffeinated coffee) enhanced working memory in a fashion that was associated only with increased plasma GCSF levels among all cytokines. Since we have previously reported that long-term GCSF treatment enhances cognitive performance in AD mice through three possible mechanisms (e.g., recruitment of microglia from bone marrow, synaptogenesis, and neurogenesis), the same mechanisms could be complimentary to caffeine's established ability to suppress Aβ production. We conclude that coffee may be the best source of caffeine to protect against AD because of a component in coffee that synergizes with caffeine to enhance plasma GCSF levels, resulting in multiple therapeutic actions against AD.

  12. Oral administration of hot water extracts of Chlorella vulgaris increases physical stamina in mice.

    Science.gov (United States)

    An, Hyo-Jin; Choi, Hyun-Myung; Park, Hyeung-Suk; Han, Jae-Gab; Lee, Eun-Hee; Park, Young-Sig; Um, Jae-Young; Hong, Seung-Heon; Kim, Hyung-Min

    2006-01-01

    A unicellular algae, Chlorella vulgaris, was used as a biological response modifier. Although hot water extracts of C. vulgaris (CVE) are thought to augment immune responses, the effect of CVE on fatigue and physical stamina has not been studied. In the present study, we investigated the effect of CVE on forced swimming test and blood biochemical parameters related to fatigue, blood urea nitrogen (BUN), creatine kinase (CK), lactic dehydrogenase (LDH), glucose (Glc), and total protein (TP). CVE (0.05-0.15 g/kg/day) was orally administered to mice. After 7 days, the immobility time was decreased in the 0.1- and 0.15-g/kg CVE-treated groups (179 +/- 8.3 and 175 +/- 2.1 s) in comparison with the control group (223 +/- 5.4 s). In addition, the contents of BUN, CK, and LDH in the blood serum were decreased in the CVE-fed group. However, they had no effect on the elevation of Glc and TP level. The results predict a potential benefit of CVE for enhancing immune function and improving physical stamina. Copyright 2006 S. Karger AG, Basel.

  13. Municipal wastewater affects adipose deposition in male mice and increases 3T3-L1 cell differentiation

    International Nuclear Information System (INIS)

    Biasiotto, Giorgio; Zanella, Isabella; Masserdotti, Alice; Pedrazzani, Roberta; Papa, Matteo; Caimi, Luigi; Di Lorenzo, Diego

    2016-01-01

    Trace concentration of EDs (endocrine disrupting compounds) in water bodies caused by wastewater treatment plant effluents is a recognized problem for the health of aquatic organisms and their potential to affect human health. In this paper we show that continuous exposure of male mice from early development to the adult life (140 days) to unrestricted drinking of wastewater collected from a municipal sewage treatment plant, is associated with an increased adipose deposition and weight gain during adulthood because of altered body homeostasis. In parallel, bisphenol A (BPA) at the administration dose of 5 μg/kg/body weight, shows an increasing effect on total body weight and fat mass. In vitro, a solid phase extract (SPE) of the wastewater (eTW), caused stimulation of 3T3-L1 adipocyte differentiation at dilutions of 0.4 and 1 % in the final culture medium which contained a concentration of BPA of 40 nM and 90 nM respectively. Pure BPA also promoted adipocytes differentiation at the concentration of 50 and 80 μM. BPA effect in 3T3-L1 cells was associated to the specific activation of the estrogen receptor alpha (ERα) in undifferentiated cells and the estrogen receptor beta (ERβ) in differentiated cells. BPA also activated the Peroxisome Proliferator Activated Receptor gamma (PPARγ) upregulating a minimal 3XPPARE luciferase reporter and the PPARγ-target promoter of the aP2 gene in adipose cells, while it was not effective in preadipocytes. The pure estrogen receptor agonist diethylstilbestrol (DES) played an opposite action to that of BPA inhibiting PPARγ activity in adipocytes, preventing cell differentiation, activating ERα in preadipocytes and inhibiting ERα and ERβ regulation in adipocytes. The results of this work show that the drinking of chemically-contaminated wastewater promotes fat deposition in male mice and that EDs present in sewage are likely responsible for this effect through a nuclear receptor-mediated mechanism. - Highlights: • Sewage

  14. Adipose-specific deletion of TFAM increases mitochondrial oxidation and protects mice against obesity and insulin resistance

    DEFF Research Database (Denmark)

    Vernochet, Cecile; Mourier, Arnaud; Bezy, Olivier

    2012-01-01

    Obesity and type 2 diabetes are associated with mitochondrial dysfunction in adipose tissue, but the role for adipose tissue mitochondria in the development of these disorders is currently unknown. To understand the impact of adipose tissue mitochondria on whole-body metabolism, we have generated...... oxygen consumption and uncoupling. As a result, F-TFKO mice exhibit higher energy expenditure and are protected from age- and diet-induced obesity, insulin resistance, and hepatosteatosis, despite a greater food intake. Thus, TFAM deletion in the adipose tissue increases mitochondrial oxidation that has...... positive metabolic effects, suggesting that regulation of adipose tissue mitochondria may be a potential therapeutic target for the treatment of obesity....

  15. Antibody directed against human YKL-40 increases tumor volume in a human melanoma xenograft model in scid mice

    DEFF Research Database (Denmark)

    Salamon, Johannes; Hoffmann, Tatjana; Elies, Eva

    2014-01-01

    were treated with intraperitoneal injections of anti-YKL-40, isoptype control or PBS. Non-YKL-40 expressing human pancreatic carcinoma cell line PaCa 5061 served as additional control. MR imaging was used for evaluation of tumor growth. Two days after the first injections of anti-YKL-40, tumor volume...... had increased significantly compared with controls, whereas no effects were observed for control tumors from PaCa 5061 cells lacking YKL-40 expression. After 18 days, mean tumor size of the mice receiving repeated anti-YKL-40 injections was 1.82 g, >4 times higher than mean tumor size of the controls...

  16. Municipal wastewater affects adipose deposition in male mice and increases 3T3-L1 cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Biasiotto, Giorgio; Zanella, Isabella [Laboratory of Biotechnology, Civic Hospital of Brescia, Brescia (Italy); Department of Molecular and Translational Medicine, University of Brescia, Brescia (Italy); Masserdotti, Alice [Laboratory of Biotechnology, Civic Hospital of Brescia, Brescia (Italy); Pedrazzani, Roberta [DIMI Department of Mechanical and Industrial Engineering, University of Brescia, via Branze 38, I-25123 Brescia (Italy); Papa, Matteo [DICATAM Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, via Branze 43, I-25123 Brescia (Italy); Caimi, Luigi [Laboratory of Biotechnology, Civic Hospital of Brescia, Brescia (Italy); Department of Molecular and Translational Medicine, University of Brescia, Brescia (Italy); Di Lorenzo, Diego, E-mail: diego.dilorenzo@yahoo.it [Laboratory of Biotechnology, Civic Hospital of Brescia, Brescia (Italy)

    2016-04-15

    Trace concentration of EDs (endocrine disrupting compounds) in water bodies caused by wastewater treatment plant effluents is a recognized problem for the health of aquatic organisms and their potential to affect human health. In this paper we show that continuous exposure of male mice from early development to the adult life (140 days) to unrestricted drinking of wastewater collected from a municipal sewage treatment plant, is associated with an increased adipose deposition and weight gain during adulthood because of altered body homeostasis. In parallel, bisphenol A (BPA) at the administration dose of 5 μg/kg/body weight, shows an increasing effect on total body weight and fat mass. In vitro, a solid phase extract (SPE) of the wastewater (eTW), caused stimulation of 3T3-L1 adipocyte differentiation at dilutions of 0.4 and 1 % in the final culture medium which contained a concentration of BPA of 40 nM and 90 nM respectively. Pure BPA also promoted adipocytes differentiation at the concentration of 50 and 80 μM. BPA effect in 3T3-L1 cells was associated to the specific activation of the estrogen receptor alpha (ERα) in undifferentiated cells and the estrogen receptor beta (ERβ) in differentiated cells. BPA also activated the Peroxisome Proliferator Activated Receptor gamma (PPARγ) upregulating a minimal 3XPPARE luciferase reporter and the PPARγ-target promoter of the aP2 gene in adipose cells, while it was not effective in preadipocytes. The pure estrogen receptor agonist diethylstilbestrol (DES) played an opposite action to that of BPA inhibiting PPARγ activity in adipocytes, preventing cell differentiation, activating ERα in preadipocytes and inhibiting ERα and ERβ regulation in adipocytes. The results of this work show that the drinking of chemically-contaminated wastewater promotes fat deposition in male mice and that EDs present in sewage are likely responsible for this effect through a nuclear receptor-mediated mechanism. - Highlights: • Sewage

  17. Inactivated Parapoxvirus ovis induces a transient increase in the expression of proinflammatory, Th1-related, and autoregulatory cytokines in mice

    International Nuclear Information System (INIS)

    Anziliero, D.; Weiblen, R.; Kreutz, L.C.; Spilki, F.; Flores, E.F.

    2014-01-01

    The immunostimulatory properties of inactivated Parapoxvirus ovis (iPPVO) have long been investigated in different animal species and experimental settings. In this study, we investigated the effects of iPPVO on cytokine expression in mice after intraperitoneal inoculation. Spleen and sera collected from iPPVO-treated mice at intervals after inoculation were submitted to cytokine mRNA determination by real-time PCR (qPCR), serum protein concentration by ELISA, and interferon (IFN)-α/β activity by bioassay. The spleen of iPPVO-treated animals showed a significant increase in mRNA expression of all cytokines assayed, with different kinetics and magnitude. Proinflammatory cytokines interleukin (IL)-1β, tumor necrosis factor-alpha (TNF-α), and IL-8 mRNA peaked at 24 hours postinoculation (hpi; 5.4-fold increase) and 48 hpi (3- and 10-fold increases), respectively. A 15-fold increase in IFN-γ and 6-fold IL-12 mRNA increase were detected at 48 and 24 hpi, respectively. Increased expression of autoregulatory cytokines (Th2), mainly IL-10 and IL-4, could be detected at later times (72 and 96 hpi) with peaks of 4.7- and 4.9-fold increases, respectively. IFN-I antiviral activity against encephalomyocarditis virus was demonstrated in sera of treated animals between 6 and 12 hpi, with a >90% reduction in the number of plaques. Measurement of serum proteins by ELISA revealed increased levels of IL-1, TNF-α, IL-12, IFN-γ, and IL-10, with kinetics similar to those observed by qPCR, especially for IL-12 and IFN-γ. These data demonstrate that iPPVO induced a transient and complex cytokine response, initially represented by Th1-related cytokines followed by autoregulatory and Th2 cytokines

  18. Inactivated Parapoxvirus ovis induces a transient increase in the expression of proinflammatory, Th1-related, and autoregulatory cytokines in mice

    Energy Technology Data Exchange (ETDEWEB)

    Anziliero, D.; Weiblen, R. [Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil, Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Santa Maria, RS (Brazil); Kreutz, L.C. [Programa de Pós-Graduação em Bioexperimentação, Faculdade de Agronomia e Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, RS, Brasil, Programa de Pós-Graduação em Bioexperimentação, Faculdade de Agronomia e Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, RS (Brazil); Spilki, F. [Laboratório de Microbiologia Molecular, Instituto de Ciências da Saúde, Universidade Feevale, Novo Hamburgo, RS, Brasil, Laboratório de Microbiologia Molecular, Instituto de Ciências da Saúde, Universidade Feevale, Novo Hamburgo, RS (Brazil); Flores, E.F. [Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil, Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Santa Maria, RS (Brazil)

    2014-02-17

    The immunostimulatory properties of inactivated Parapoxvirus ovis (iPPVO) have long been investigated in different animal species and experimental settings. In this study, we investigated the effects of iPPVO on cytokine expression in mice after intraperitoneal inoculation. Spleen and sera collected from iPPVO-treated mice at intervals after inoculation were submitted to cytokine mRNA determination by real-time PCR (qPCR), serum protein concentration by ELISA, and interferon (IFN)-α/β activity by bioassay. The spleen of iPPVO-treated animals showed a significant increase in mRNA expression of all cytokines assayed, with different kinetics and magnitude. Proinflammatory cytokines interleukin (IL)-1β, tumor necrosis factor-alpha (TNF-α), and IL-8 mRNA peaked at 24 hours postinoculation (hpi; 5.4-fold increase) and 48 hpi (3- and 10-fold increases), respectively. A 15-fold increase in IFN-γ and 6-fold IL-12 mRNA increase were detected at 48 and 24 hpi, respectively. Increased expression of autoregulatory cytokines (Th2), mainly IL-10 and IL-4, could be detected at later times (72 and 96 hpi) with peaks of 4.7- and 4.9-fold increases, respectively. IFN-I antiviral activity against encephalomyocarditis virus was demonstrated in sera of treated animals between 6 and 12 hpi, with a >90% reduction in the number of plaques. Measurement of serum proteins by ELISA revealed increased levels of IL-1, TNF-α, IL-12, IFN-γ, and IL-10, with kinetics similar to those observed by qPCR, especially for IL-12 and IFN-γ. These data demonstrate that iPPVO induced a transient and complex cytokine response, initially represented by Th1-related cytokines followed by autoregulatory and Th2 cytokines.

  19. The Brewed Rice Vinegar Kurozu Increases HSPA1A Expression and Ameliorates Cognitive Dysfunction in Aged P8 Mice.

    Directory of Open Access Journals (Sweden)

    Hiroaki Kanouchi

    Full Text Available Kurozu is a traditional Japanese rice vinegar. During fermentation and aging of the Kurozu liquid in an earthenware jar over 1 year, a solid residue called Kurozu Moromi is produced. In the present study, we evaluated whether concentrated Kurozu or Kurozu Moromi could ameliorate cognitive dysfunction in the senescence-accelerated P8 mouse. Senescence-accelerated P8 mice were fed 0.25% (w/w concentrated Kurozu or 0.5% (w/w Kurozu Moromi for 4 or 25 weeks. Kurozu suppressed cognitive dysfunction and amyloid accumulation in the brain, while Kurozu Moromi showed a tendency to ameliorate cognitive dysfunction, but the effect was not significant. We hypothesize that concentrated Kurozu has an antioxidant effect; however, the level of lipid peroxidation in the brain did not differ in senescence-accelerated P8 mice. DNA microarray analysis indicated that concentrated Kurozu increased HSPA1A mRNA expression, a protein that prevents protein misfolding and aggregation. The increase in HSPA1A expression by Kurozu was confirmed using quantitative real-time PCR and immunoblotting methods. The suppression of amyloid accumulation by concentrated Kurozu may be associated with HSPA1A induction. However, concentrated Kurozu could not increase HSPA1A expression in mouse primary neurons, suggesting it may not directly affect neurons.

  20. The refinement of ipsilateral eye retinotopic maps is increased by removing the dominant contralateral eye in adult mice.

    Directory of Open Access Journals (Sweden)

    Spencer L Smith

    2010-03-01

    Full Text Available Shortly after eye opening, initially disorganized visual cortex circuitry is rapidly refined to form smooth retinotopic maps. This process asymptotes long before adulthood, but it is unknown whether further refinement is possible. Prior work from our lab has shown that the retinotopic map of the non-dominant ipsilateral eye develops faster when the dominant contralateral eye is removed. We examined whether input from the contralateral eye might also limit the ultimate refinement of the ipsilateral eye retinotopic map in adults. In addition, we examined whether the increased refinement involved the recruitment of adjacent cortical area.By surgically implanting a chronic optical window over visual cortex in mice, we repeatedly measured the degree of retinotopic map refinement using quantitative intrinsic signal optical imaging over four weeks. We removed the contralateral eye and observed that the retinotopic map for the ipsilateral eye was further refined and the maximum magnitude of response increased. However, these changes were not accompanied by an increase in the area of responsive cortex.Since the retinotopic map was functionally refined to a greater degree without taking over adjacent cortical area, we conclude that input from the contralateral eye limits the normal refinement of visual cortical circuitry in mice. These findings suggest that the refinement capacity of cortical circuitry is normally saturated.

  1. Increased physical activity ameliorates high fat diet-induced bone resorption in mice

    Science.gov (United States)

    It has been recognized that mechanical stresses associated with physical activity (PA) have beneficial effects on increasing bone mineral density (BMD) and improving bone quality. On the other hand, high fat diet (HFD) and obesity increase bone marrow adiposity leading to increased excretion of pro-...

  2. Increasing the inspiratory time and I:E ratio during mechanical ventilation aggravates ventilator-induced lung injury in mice.

    Science.gov (United States)

    Müller-Redetzky, Holger C; Felten, Matthias; Hellwig, Katharina; Wienhold, Sandra-Maria; Naujoks, Jan; Opitz, Bastian; Kershaw, Olivia; Gruber, Achim D; Suttorp, Norbert; Witzenrath, Martin

    2015-01-28

    Lung-protective ventilation reduced acute respiratory distress syndrome (ARDS) mortality. To minimize ventilator-induced lung injury (VILI), tidal volume is limited, high plateau pressures are avoided, and positive end-expiratory pressure (PEEP) is applied. However, the impact of specific ventilatory patterns on VILI is not well defined. Increasing inspiratory time and thereby the inspiratory/expiratory ratio (I:E ratio) may improve oxygenation, but may also be harmful as the absolute stress and strain over time increase. We thus hypothesized that increasing inspiratory time and I:E ratio aggravates VILI. VILI was induced in mice by high tidal-volume ventilation (HVT 34 ml/kg). Low tidal-volume ventilation (LVT 9 ml/kg) was used in control groups. PEEP was set to 2 cm H2O, FiO2 was 0.5 in all groups. HVT and LVT mice were ventilated with either I:E of 1:2 (LVT 1:2, HVT 1:2) or 1:1 (LVT 1:1, HVT 1:1) for 4 hours or until an alternative end point, defined as mean arterial blood pressure below 40 mm Hg. Dynamic hyperinflation due to the increased I:E ratio was excluded in a separate group of animals. Survival, lung compliance, oxygenation, pulmonary permeability, markers of pulmonary and systemic inflammation (leukocyte differentiation in lung and blood, analyses of pulmonary interleukin-6, interleukin-1β, keratinocyte-derived chemokine, monocyte chemoattractant protein-1), and histopathologic pulmonary changes were analyzed. LVT 1:2 or LVT 1:1 did not result in VILI, and all individuals survived the ventilation period. HVT 1:2 decreased lung compliance, increased pulmonary neutrophils and cytokine expression, and evoked marked histologic signs of lung injury. All animals survived. HVT 1:1 caused further significant worsening of oxygenation, compliance and increased pulmonary proinflammatory cytokine expression, and pulmonary and blood neutrophils. In the HVT 1:1 group, significant mortality during mechanical ventilation was observed. According to the "baby lung

  3. Molecular characterization and expression analysis of a hepcidin ...

    African Journals Online (AJOL)

    Jane

    2011-08-03

    Aug 3, 2011 ... the liver, intestine and brain were 2.4, 1.5 and 2-fold increase, respectively, compared with the control animals after 5 days .... (sex change) of RFE attracted more attention (Cheng et al., 2003 ...... Molecular Biology. New York: ...

  4. Increased adipogenesis in cultured embryonic chondrocytes and in adult bone marrow of dominant negative Erg transgenic mice.

    Directory of Open Access Journals (Sweden)

    Sébastien Flajollet

    Full Text Available In monolayer culture, primary articular chondrocytes have an intrinsic tendency to lose their phenotype during expansion. The molecular events underlying this chondrocyte dedifferentiation are still largely unknown. Several transcription factors are important for chondrocyte differentiation. The Ets transcription factor family may be involved in skeletal development. One family member, the Erg gene, is mainly expressed during cartilage formation. To further investigate the potential role of Erg in the maintenance of the chondrocyte phenotype, we isolated and cultured chondrocytes from the rib cartilage of embryos of transgenic mice that express a dominant negative form of Erg (DN-Erg during cartilage formation. DN-Erg expression in chondrocytes cultured for up to 20 days did not affect the early dedifferentiation usually observed in cultured chondrocytes. However, lipid droplets accumulated in DN-Erg chondrocytes, suggesting adipocyte emergence. Transcriptomic analysis using a DNA microarray, validated by quantitative RT-PCR, revealed strong differential gene expression, with a decrease in chondrogenesis-related markers and an increase in adipogenesis-related gene expression in cultured DN-Erg chondrocytes. These results indicate that Erg is involved in either maintaining the chondrogenic phenotype in vitro or in cell fate orientation. Along with the in vitro studies, we compared adipocyte presence in wild-type and transgenic mice skeletons. Histological investigations revealed an increase in the number of adipocytes in the bone marrow of adult DN-Erg mice even though no adipocytes were detected in embryonic cartilage or bone. These findings suggest that the Ets transcription factor family may contribute to the homeostatic balance in skeleton cell plasticity.

  5. Overexpression of eIF-5A2 in mice causes accelerated organismal aging by increasing chromosome instability

    Directory of Open Access Journals (Sweden)

    Chen Leilei

    2011-05-01

    Full Text Available Abstract Background Amplification of 3q26 is one of the most frequent genetic alterations in many human malignancies. Recently, we isolated a novel oncogene eIF-5A2 within the 3q26 region. Functional study has demonstrated the oncogenic role of eIF-5A2 in the initiation and progression of human cancers. In the present study, we aim to investigate the physiological and pathological effect of eIF-5A2 in an eIF-5A2 transgenic mouse model. Methods An eIF-5A2 transgenic mouse model was generated using human eIF-5A2 cDNA. The eIF-5A2 transgenic mice were characterized by histological and immunohistochemistry analyses. The aging phenotypes were further characterized by wound healing, bone X-ray imaging and calcification analysis. Mouse embryo fibroblasts (MEF were isolated to further investigate molecular mechanism of eIF-5A2 in aging. Results Instead of resulting in spontaneous tumor formation, overexpression of eIF-5A2 accelerated the aging process in adult transgenic mice. This included decreased growth rate and body weight, shortened life span, kyphosis, osteoporosis, delay of wound healing and ossification. Investigation of the correlation between cellular senescence and aging showed that cellular senescence is not required for the aging phenotypes in eIF-5A2 mice. Interestingly, we found that activation of eIF-5A2 repressed p19 level and therefore destabilized p53 in transgenic mouse embryo fibroblast (MEF cells. This subsequently allowed for the accumulation of chromosomal instability, such as errors in cell dividing during metaphase and anaphase. Additionally, a significantly increase in number of aneuploidy cells (p Conclusion These observations suggest that eIF-5A2 mouse models could accelerate organismal aging by increasing chromosome instability.

  6. Radiation sources providing increased UVA/UVB ratios induce photoprotection dependent on the UVA dose in hairless mice.

    Science.gov (United States)

    Reeve, Vivienne E; Domanski, Diane; Slater, Michael

    2006-01-01

    In studies involving mice in which doses of UVA (320-400 nm) and UVB (290-320 nm) radiation were administered alone or combined sequentially, we observed a protective effect of UVA against UVB-induced erythema/edema and systemic suppression of contact hypersensitivity. The UVA immunoprotection was mediated by the induction of the stress enzyme heme oxygenase-1 (HO-1) in the skin, protection of the cutaneous Th1 cytokines interferon-gamma (IFN-gamma) and IL-12 and inhibition of the UVB-induced expression of the Th2 cytokine IL-10. In this study, we seek evidence for an immunological waveband interaction when UVA and UVB are administered concurrently to hairless mice as occurs during sunlight exposure in humans. A series of spectra providing varying ratios of UVA/UVB were developed, with the UVA ratio increased to approximately 3.5 times the UVA component in solar simulated UV (SSUV). We report that progressively increasing the UVA component of the radiation while maintaining a constant UVB dose resulted in a reduction of both the erythema/edema reaction and the degree of systemic immunosuppression, as measured as contact hypersensitivity. The UVA-enhanced immunoprotection was abrogated in mice treated with a specific HO enzyme inhibitor. UVA-enhanced radiation also upregulated the expression of cutaneous IFN-gamma and IL-12 and inhibited expression of both IL-6 and IL-10, compared with the activity of SSUV. The results were consistent with the previously characterized mechanisms of photoprotection by the UVA waveband alone and suggest that the UVA component of solar UV may have beneficial properties for humans.

  7. β-cell-specific IL-2 therapy increases islet Foxp3+Treg and suppresses type 1 diabetes in NOD mice.

    Science.gov (United States)

    Johnson, Mark C; Garland, Alaina L; Nicolson, Sarah C; Li, Chengwen; Samulski, R Jude; Wang, Bo; Tisch, Roland

    2013-11-01

    Interleukin-2 (IL-2) is a critical cytokine for the homeostasis and function of forkhead box p3-expressing regulatory T cells (Foxp3(+)Tregs). Dysregulation of the IL-2-IL-2 receptor axis is associated with aberrant Foxp3(+)Tregs and T cell-mediated autoimmune diseases such as type 1 diabetes. Treatment with recombinant IL-2 has been reported to enhance Foxp3(+)Tregs and suppress different models of autoimmunity. However, efficacy of IL-2 therapy is dependent on achieving sufficient levels of IL-2 to boost tissue-resident Foxp3(+)Tregs while avoiding the potential toxic effects of systemic IL-2. With this in mind, adeno-associated virus (AAV) vector gene delivery was used to localize IL-2 expression to the islets of NOD mice. Injection of a double-stranded AAV vector encoding IL-2 driven by a mouse insulin promoter (dsAAVmIP-IL2) increased Foxp3(+)Tregs in the islets but not the draining pancreatic lymph nodes. Islet Foxp3(+)Tregs in dsAAVmIP-IL2-treated NOD mice exhibited enhanced fitness marked by increased expression of Bcl-2, proliferation, and suppressor function. In contrast, ectopic IL-2 had no significant effect on conventional islet-infiltrating effector T cells. Notably, β-cell-specific IL-2 expression suppressed late preclinical type 1 diabetes in NOD mice. Collectively, these findings demonstrate that β-cell-specific IL-2 expands an islet-resident Foxp3(+)Tregs pool that effectively suppresses ongoing type 1 diabetes long term.

  8. Pregnancy in obese mice protects selectively against visceral adiposity and is associated with increased adipocyte estrogen signalling.

    Directory of Open Access Journals (Sweden)

    Silvia M A Pedroni

    Full Text Available Maternal obesity is linked with increased adverse pregnancy outcomes for both mother and child. The metabolic impact of excessive fat within the context of pregnancy is not fully understood. We used a mouse model of high fat (HF feeding to induce maternal obesity to identify adipose tissue-mediated mechanisms driving metabolic dysfunction in pregnant and non-pregnant obese mice. As expected, chronic HF-feeding for 12 weeks preceding pregnancy increased peripheral (subcutaneous and visceral (mesenteric fat mass. However, unexpectedly at late gestation (E18.5 HF-fed mice exhibited a remarkable normalization of visceral but not peripheral adiposity, with a 53% reduction in non-pregnant visceral fat mass expressed as a proportion of body weight (P<0.001. In contrast, in control animals, pregnancy had no effect on visceral fat mass proportion. Obesity exaggerated glucose intolerance at mid-pregnancy (E14.5. However by E18.5, there were no differences, in glucose tolerance between obese and control mice. Transcriptomic analysis of visceral fat from HF-fed dams at E18.5 revealed reduced expression of genes involved in de novo lipogenesis (diacylglycerol O-acyltransferase 2--Dgat2 and inflammation (chemokine C-C motif ligand 20--Ccl2 and upregulation of estrogen receptor α (ERα compared to HF non pregnant. Attenuation of adipose inflammation was functionally confirmed by a 45% reduction of CD11b+CD11c+ adipose tissue macrophages (expressed as a proportion of all stromal vascular fraction cells in HF pregnant compared to HF non pregnant animals (P<0.001. An ERα selective agonist suppressed both de novo lipogenesis and expression of lipogenic genes in adipocytes in vitro. These data show that, in a HF model of maternal obesity, late gestation is associated with amelioration of visceral fat hypertrophy, inflammation and glucose intolerance, and suggest that these effects are mediated in part by elevated visceral adipocyte ERα signaling.

  9. Serotonin and Histamine Therapy Increases Tetanic Forces of Myoblasts, Reduces Muscle Injury, and Improves Grip Strength Performance of Dmdmdx Mice

    Directory of Open Access Journals (Sweden)

    Volkan Gurel

    2015-11-01

    Full Text Available Duchenne muscular dystrophy (DMD is a recessive X-linked fatal disorder caused by a mutation in the dystrophin gene. Although several therapeutic approaches have been studied, none has led to substantial long-term effects in patients. The aim of this study was to test a serotonin and histamine (S&H combination on human skeletal myoblasts and Dmdmdx mice for its effects on muscle strength and injury. Normal human bioartificial muscles (BAMs were treated, and muscle tetanic forces and muscle injury tests were performed using the MyoForce Analysis System. Dmdmdx mice, the murine model of DMD, were administered serotonin, histamine, or S&H combination twice daily for 6 weeks, and functional performance tests were conducted once a week. The S&H combination treatment caused significant increases in tetanic forces at all time points and concentrations tested as compared to the saline controls. Dose response of the BAMs to the treatment demonstrated a significant increase in force generation at all concentrations compared to the controls after 3 to 4 days of drug treatment. The highest 3 concentrations had a significant effect on lowering contractile-induced injury as measured by a reduction in the release of adenylate kinase. Histamine-only and S&H treatments improved grip strength of Dmdmdx mice, whereas serotonin-only treatment resulted in no significant improvement in muscle strength. The results of this study indicate that S&H therapy might be a promising new strategy for muscular dystrophies and that the mechanism should be further investigated.

  10. A mutation in the dynein heavy chain gene compensates for energy deficit of mutant SOD1 mice and increases potentially neuroprotective IGF-1

    Directory of Open Access Journals (Sweden)

    Larmet Yves

    2011-04-01

    Full Text Available Abstract Background Amyotrophic lateral sclerosis (ALS is a fatal neurodegenerative disease characterized by a progressive loss of motor neurons. ALS patients, as well as animal models such as mice overexpressing mutant SOD1s, are characterized by increased energy expenditure. In mice, this hypermetabolism leads to energy deficit and precipitates motor neuron degeneration. Recent studies have shown that mutations in the gene encoding the dynein heavy chain protein are able to extend lifespan of mutant SOD1 mice. It remains unknown whether the protection offered by these dynein mutations relies on a compensation of energy metabolism defects. Results SOD1(G93A mice were crossbred with mice harboring the dynein mutant Cramping allele (Cra/+ mice. Dynein mutation increased adipose stores in compound transgenic mice through increasing carbohydrate oxidation and sparing lipids. Metabolic changes that occurred in double transgenic mice were accompanied by the normalization of the expression of key mRNAs in the white adipose tissue and liver. Furthermore, Dynein Cra mutation rescued decreased post-prandial plasma triglycerides and decreased non esterified fatty acids upon fasting. In SOD1(G93A mice, the dynein Cra mutation led to increased expression of IGF-1 in the liver, increased systemic IGF-1 and, most importantly, to increased spinal IGF-1 levels that are potentially neuroprotective. Conclusions These findings suggest that the protection against SOD1(G93A offered by the Cramping mutation in the dynein gene is, at least partially, mediated by a reversal in energy deficit and increased IGF-1 availability to motor neurons.

  11. Dietary fish oil, and to a lesser extent the fat-1 transgene, increases astrocyte activation in response to intracerebroventricular amyloid-β 1-40 in mice.

    Science.gov (United States)

    Hopperton, Kathryn E; James, Nicholas C E; Mohammad, Dana; Irfan, Maha; Bazinet, Richard P

    2017-11-07

    Increases in astrocytes and one of their markers, glial fibrillary acidic protein (GFAP) have been reported in the brains of patients with Alzheimer's disease (AD). N-3 polyunsaturated fatty acids (PUFA) modulate neuroinflammation in animal models; however, their effect on astrocytes is unclear. Fat-1 mice and their wildtype littermates were fed either a fish oil diet or a safflower oil diet deprived of n-3 PUFA. At 12 weeks, mice underwent intracerebroventricular infusion of amyloid-β 1-40. Astrocyte phenotype in the hippocampus was assessed at baseline and 10 days post-surgery using immunohistochemistry with various microscopy and image analysis techniques. GFAP increased in all groups in response to amyloid-β, with a greater increase in fish oil-fed mice than either fat-1 or wildtype safflower oil-fed mice. Astrocytes in this group were also more hypertrophic, suggesting increased activation. Both fat-1- and fish oil-fed mice had greater increases in branch number and length in response to amyloid-β infusion than wildtype safflower animals. Fish oil feeding, and to a lesser extent the fat-1 transgene, enhances the astrocyte activation phenotype in response to amyloid-β 1-40. Astrocytes in mice fed fish oil were more activated in response to amyloid-β than in fat-1 mice despite similar levels of hippocampal n-3 PUFA, which suggests that other fatty acids or dietary factors contribute to this effect.

  12. Fluoxetine reverts chronic restraint stress-induced depression-like behaviour and increases neuropeptide Y and galanin expression in mice

    DEFF Research Database (Denmark)

    Christiansen, Søren Hofman Oliveira; Olesen, Mikkel Vestergaard; Wörtwein, Gitta

    2011-01-01

    Stressful life events and chronic stress are implicated in the development of depressive disorder in humans. Neuropeptide Y (NPY) and galanin have been shown to modulate the stress response, and exert antidepressant-like effects in rodents. To further investigate these neuropeptides in depression......-like behaviour, NPY and galanin gene expression was studied in brains of mice subjected to chronic restraint stress (CRS) and concomitant treatment with the antidepressant fluoxetine (FLX). CRS caused a significant increase in depression-like behaviour that was associated with increased NPY mRNA levels...... in the medial amygdala. Concomitant FLX treatment reverted depression-like effects of CRS and led to significant increases in levels of NPY and galanin mRNA in the dentate gyrus, amygdala, and piriform cortex. These findings suggest that effects on NPY and galanin gene expression could play a role...

  13. Exercise restores decreased physical activity levels and increases markers of autophagy and oxidative capacity in myostatin/activin-blocked mdx mice.

    Science.gov (United States)

    Hulmi, Juha J; Oliveira, Bernardo M; Silvennoinen, Mika; Hoogaars, Willem M H; Pasternack, Arja; Kainulainen, Heikki; Ritvos, Olli

    2013-07-15

    The importance of adequate levels of muscle size and function and physical activity is widely recognized. Myostatin/activin blocking increases skeletal muscle mass but may decrease muscle oxidative capacity and can thus be hypothesized to affect voluntary physical activity. Soluble activin receptor IIB (sActRIIB-Fc) was produced to block myostatin/activins. Modestly dystrophic mdx mice were injected with sActRIIB-Fc or PBS with or without voluntary wheel running exercise for 7 wk. Healthy mice served as controls. Running for 7 wk attenuated the sActRIIB-Fc-induced increase in body mass by decreasing fat mass. Running also enhanced/restored the markers of muscle oxidative capacity and autophagy in mdx mice to or above the levels of healthy mice. Voluntary running activity was decreased by sActRIIB-Fc during the first 3-4 wk correlating with increased body mass. Home cage physical activity of mice, quantified from the force plate signal, was decreased by sActRIIB-Fc the whole 7-wk treatment in sedentary mice. To understand what happens during the first weeks after sActRIIB-Fc administration, when mice are less active, healthy mice were injected with sActRIIB-Fc or PBS for 2 wk. During the sActRIIB-Fc-induced rapid 2-wk muscle growth period, oxidative capacity and autophagy were reduced, which may possibly explain the decreased running activity. These results show that increased muscle size and decreased markers of oxidative capacity and autophagy during the first weeks of myostatin/activin blocking are associated with decreased voluntary activity levels. Voluntary exercise in dystrophic mice enhances the markers of oxidative capacity and autophagy to or above the levels of healthy mice.

  14. Altered Brain Excitability and Increased Anxiety in Mice With Experimental Colitis: Consideration of Hyperalgesia and Sex Differences

    Directory of Open Access Journals (Sweden)

    Kewir D. Nyuyki

    2018-04-01

    Full Text Available Crohn’s disease (CD and ulcerative colitis (UC are incurable lifelong inflammatory bowel diseases (IBD with a rising worldwide incidence. IBD is characterized by diarrhea, rectal bleeding, severe cramping and weight loss. However, there is a growing evidence that IBD is also associated with anxiety- and depression-related disorders, which further increase the societal burden of these diseases. Given the limited knowledge of central nervous system (CNS changes in IBD, we investigated CNS-related comorbidities in a mouse model of experimental colitis induced by dextran sulfate sodium (DSS administration in drinking water for 5 days. In male and female C57BL6J mice, DSS treatment caused increased brain excitability, revealed by a decrease in seizure onset times after intraperitoneal administration of kainic acid. Moreover, both sexes showed increased anxiety-related behavior in the elevated plus-maze (EPM and open field (OF paradigms. We assessed somatic pain levels, because they may influence behavioral responses. Only male mice were hyperalgesic when tested with calibrated von Frey hairs and on the hotplate for mechanical and thermal pain sensitivity respectively. Administration of diazepam (DZP; ip, 1 mg/kg 30 min before EPM rescued the anxious phenotype and improved locomotion, even though it significantly increased thermal sensitivity in both sexes. This indicates that the altered behavioral response is unlikely attributable to an interference with movement due to somatic pain in females. We show that experimental colitis increases CNS excitability in response to administration of kainic acid, and increases anxiety-related behavior as revealed using the EPM and OF tests.

  15. Hepcidin promotes osteogenic differentiation through the bone morphogenetic protein 2/small mothers against decapentaplegic and mitogen-activated protein kinase/P38 signaling pathways in mesenchymal stem cells

    OpenAIRE

    LU, HUADING; LIAN, LIYI; SHI, DEHAI; ZHAO, HUIQING; DAI, YUHU

    2014-01-01

    The ability of mesenchymal stem cells (MSCs) to differentiate into osteogenic lineages requires management for their future use in treating bone destruction and osteoporosis. Hepcidin is closely associated with bone metabolism, however, it remains to be elucidated whether hepcidin affects osteogenic differentiation in MSCs. The present study demonstrated that hepcidin enhanced osteoblastic differentiation and mineralization, which was manifested by an upregulation in the differentiation marke...

  16. Male mice that lack the G-protein-coupled receptor GPR41 have low energy expenditure and increased body fat content.

    Science.gov (United States)

    Bellahcene, Mohamed; O'Dowd, Jacqueline F; Wargent, Ed T; Zaibi, Mohamed S; Hislop, David C; Ngala, Robert A; Smith, David M; Cawthorne, Michael A; Stocker, Claire J; Arch, Jonathan R S

    2013-05-28

    SCFA are produced in the gut by bacterial fermentation of undigested carbohydrates. Activation of the Gαi-protein-coupled receptor GPR41 by SCFA in β-cells and sympathetic ganglia inhibits insulin secretion and increases sympathetic outflow, respectively. A possible role in stimulating leptin secretion by adipocytes is disputed. In the present study, we investigated energy balance and glucose homoeostasis in GPR41 knockout mice fed on a standard low-fat or a high-fat diet. When fed on the low-fat diet, body fat mass was raised and glucose tolerance was impaired in male but not female knockout mice compared to wild-type mice. Soleus muscle and heart weights were reduced in the male mice, but total body lean mass was unchanged. When fed on the high-fat diet, body fat mass was raised in male but not female GPR41 knockout mice, but by no more in the males than when they were fed on the low-fat diet. Body lean mass and energy expenditure were reduced in male mice but not in female knockout mice. These results suggest that the absence of GPR41 increases body fat content in male mice. Gut-derived SCFA may raise energy expenditure and help to protect against obesity by activating GPR41.

  17. Resveratrol Directly Binds to Mitochondrial Complex I and Increases Oxidative Stress in Brain Mitochondria of Aged Mice.

    Directory of Open Access Journals (Sweden)

    Naïg Gueguen

    Full Text Available Resveratrol is often described as a promising therapeutic molecule for numerous diseases, especially in metabolic and neurodegenerative disorders. While the mechanism of action is still debated, an increasing literature reports that resveratrol regulates the mitochondrial respiratory chain function. In a recent study we have identified mitochondrial complex I as a direct target of this molecule. Nevertheless, the mechanisms and consequences of such an interaction still require further investigation. In this study, we identified in silico by docking study a binding site for resveratrol at the nucleotide pocket of complex I. In vitro, using solubilized complex I, we demonstrated a competition between NAD+ and resveratrol. At low doses (<5μM, resveratrol stimulated complex I activity, whereas at high dose (50 μM it rather decreased it. In vivo, in brain mitochondria from resveratrol treated young mice, we showed that complex I activity was increased, whereas the respiration rate was not improved. Moreover, in old mice with low antioxidant defenses, we demonstrated that complex I activation by resveratrol led to oxidative stress. These results bring new insights into the mechanism of action of resveratrol on mitochondria and highlight the importance of the balance between pro- and antioxidant effects of resveratrol depending on its dose and age. These parameters should be taken into account when clinical trials using resveratrol or analogues have to be designed.

  18. Antioxidative Diet Supplementation Reverses High-Fat Diet-Induced Increases of Cardiovascular Risk Factors in Mice

    Directory of Open Access Journals (Sweden)

    Hilda Vargas-Robles

    2015-01-01

    Full Text Available Obesity is a worldwide epidemic that is characterized not only by excessive fat deposition but also by systemic microinflammation, high oxidative stress, and increased cardiovascular risk factors. While diets enriched in natural antioxidants showed beneficial effects on oxidative stress, blood pressure, and serum lipid composition, diet supplementation with synthetic antioxidants showed contradictive results. Thus, we tested in C57Bl/6 mice whether a daily dosage of an antioxidative mixture consisting of vitamin C, vitamin E, L-arginine, eicosapentaenoic acid, and docosahexaenoic acid (corabion would affect cardiovascular risk factors associated with obesity. Obese mice showed increased serum triglyceride and glucose levels and hypertension after eight weeks of being fed a high-fat diet (HFD. Importantly, corabion ameliorated all of these symptoms significantly. Oxidative stress and early signs of systemic microinflammation already developed after two weeks of high-fat diet and were significantly reduced by daily doses of corabion. Of note, the beneficial effects of corabion could not be observed when applying its single antioxidative components suggesting that a combination of various nutrients is required to counteract HFD-induced cardiovascular risk factors. Thus, daily consumption of corabion may be beneficial for the management of obesity-related cardiovascular complications.

  19. A combination of exercise and capsinoid supplementation additively suppresses diet-induced obesity by increasing energy expenditure in mice.

    Science.gov (United States)

    Ohyama, Kana; Nogusa, Yoshihito; Suzuki, Katsuya; Shinoda, Kosaku; Kajimura, Shingo; Bannai, Makoto

    2015-02-15

    Exercise effectively prevents the development of obesity and obesity-related diseases such as type 2 diabetes. Capsinoids (CSNs) are capsaicin analogs found in a nonpungent pepper that increase whole body energy expenditure. Although both exercise and CSNs have antiobesity functions, the effectiveness of exercise with CSN supplementation has not yet been investigated. Here, we examined whether the beneficial effects of exercise could be further enhanced by CSN supplementation in mice. Mice were randomly assigned to four groups: 1) high-fat diet (HFD, Control), 2) HFD containing 0.3% CSNs, 3) HFD with voluntary running wheel exercise (Exercise), and 4) HFD containing 0.3% CSNs with voluntary running wheel exercise (Exercise + CSN). After 8 wk of ingestion, blood and tissues were collected and analyzed. Although CSNs significantly suppressed body weight gain under the HFD, CSN supplementation with exercise additively decreased body weight gain and fat accumulation and increased whole body energy expenditure compared with exercise alone. Exercise together with CSN supplementation robustly improved metabolic profiles, including the plasma cholesterol level. Furthermore, this combination significantly prevented diet-induced liver steatosis and decreased the size of adipocyte cells in white adipose tissue. Exercise and CSNs significantly increased cAMP levels and PKA activity in brown adipose tissue (BAT), indicating an increase of lipolysis. Moreover, they significantly activated both the oxidative phosphorylation gene program and fatty acid oxidation in skeletal muscle. These results indicate that CSNs efficiently promote the antiobesity effect of exercise, in part by increasing energy expenditure via the activation of fat oxidation in skeletal muscle and lipolysis in BAT. Copyright © 2015 the American Physiological Society.

  20. Short-Term High-Fat Diet Increases Leptin Activation of CART Neurons and Advances Puberty in Female Mice.

    Science.gov (United States)

    Venancio, Jade Cabestre; Margatho, Lisandra Oliveira; Rorato, Rodrigo; Rosales, Roberta Ribeiro Costa; Debarba, Lucas Kniess; Coletti, Ricardo; Antunes-Rodrigues, Jose; Elias, Carol F; Elias, Lucila Leico K

    2017-11-01

    Leptin is a permissive factor for puberty initiation, participating as a metabolic cue in the activation of the kisspeptin (Kiss1)-gonadotropin-releasing hormone neuronal circuitry; however, it has no direct effect on Kiss1 neurons. Leptin acts on hypothalamic cocaine- and amphetamine-regulated transcript (CART) neurons, participating in the regulation of energy homeostasis. We investigated the influence of a short-term high-fat diet (HFD) on the effect of leptin on puberty timing. Kiss1-hrGFP female mice received a HFD or regular diet (RD) after weaning at postnatal day (PN)21 and were studied at PN28 and PN32. The HFD increased body weight and plasma leptin concentrations and decreased the age at vaginal opening (HFD, 32 ± 0.53 days; RD, 38 ± 0.67 days). Similar colocalization of neurokinin B and dynorphin in Kiss1-hrGFP neurons of the arcuate nucleus (ARC) was observed between the HFD and RD groups. The HFD increased CART expression in the ARC and Kiss1 messenger RNA expression in the anteroventral periventricular (AVPV)/anterior periventricular (Pe). The HFD also increased the number of ARC CART neurons expressing leptin-induced phosphorylated STAT3 (signal transducer and activator of transcription 3) at PN32. Close apposition of CART fibers to Kiss1-hrGFP neurons was observed in the ARC of both RD- and HFD-fed mice. In conclusion, these data reinforce the notion that a HFD increases kisspeptin expression in the AVPV/Pe and advances puberty initiation. Furthermore, we have demonstrated that the HFD-induced earlier puberty is associated with an increase in CART expression in the ARC. Therefore, these data indicate that CART neurons in the ARC can mediate the effect of leptin on Kiss1 neurons in early puberty induced by a HFD. Copyright © 2017 Endocrine Society.

  1. ADAMTS-7 Expression Increases in the Early Stage of Angiotensin II-Induced Renal Injury in Elderly Mice

    Directory of Open Access Journals (Sweden)

    Yan-Xiang Gao

    2014-03-01

    Full Text Available Background/Aims: We investigated the recently described family of proteinases, a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTs, and matrix metalloproteinases (MMPs as inflammatory mediators in inflammatory kidney damage by studying ADAMTS-1, -4, and -7 and MMP-9 expression in elderly mouse kidneys after angiotensin II (Ang II administration. Methods: Ang II (2.5 µg/kg/min or norepinephrine (8.3 µg/kg/min was subcutaneously infused in old mice. Renal injury was assessed by hematoxylin-eosin staining, 24-h albuminuria, and immunohistochemistry to evaluate inflammatory cell markers. The mRNA and protein expression of ADAMTS-1, -4, and -7 and MMP-9 were determined using real-time PCR, Western blot, and immunohistochemistry 3 days after Ang II or norepinephrine administration. Results: Elderly mice in the Ang II group developed hypertension and pathological kidney damage. The mRNA and protein levels of ADAMTS-7 in the Ang II group were 3.3 ± 1.1 (P = 0.019 and 1.6 ± 0.1 (P = 0.047 vs. 1.0 ± 0.1 and 1.0 ± 0.1 in the control group on day 3. In contrast, treatment with the hypertensive agent norepinephrine did not lead to obvious renal damage or an increase in renal ADAMTS-7 expression. Conclusions: Renal ADAMTS-7 expression was induced by Ang II in elderly mice. The overexpression of ADATMTS-7 might contribute to early inflammatory kidney damage associated with aging.

  2. Growth Hormone Receptor Antagonist Transgenic Mice Have Increased Subcutaneous Adipose Tissue Mass, Altered Glucose Homeostasis and No Change in White Adipose Tissue Cellular Senescence.

    Science.gov (United States)

    Comisford, Ross; Lubbers, Ellen R; Householder, Lara A; Suer, Ozan; Tchkonia, Tamara; Kirkland, James L; List, Edward O; Kopchick, John J; Berryman, Darlene E

    2016-01-01

    Growth hormone (GH)-resistant/deficient mice experience improved glucose homeostasis and substantially increased lifespan. Recent evidence suggests that long-lived GH-resistant/deficient mice are protected from white adipose tissue (WAT) dysfunction, including WAT cellular senescence, impaired adipogenesis and loss of subcutaneous WAT in old age. This preservation of WAT function has been suggested to be a potential mechanism for the extended lifespan of these mice. The objective of this study was to examine WAT senescence, WAT distribution and glucose homeostasis in dwarf GH receptor antagonist (GHA) transgenic mice, a unique mouse strain having decreased GH action but normal longevity. 18-month-old female GHA mice and wild-type (WT) littermate controls were used. Prior to dissection, body composition, fasting blood glucose as well as glucose and insulin tolerance tests were performed. WAT distribution was determined by weighing four distinct WAT depots at the time of dissection. Cellular senescence in four WAT depots was assessed using senescence-associated β-galactosidase staining to quantify the senescent cell burden, and real-time qPCR to quantify gene expression of senescence markers p16 and IL-6. GHA mice had a 22% reduction in total body weight, a 33% reduction in lean mass and a 10% increase in body fat percentage compared to WT controls. GHA mice had normal fasting blood glucose and improved insulin sensitivity; however, they exhibited impaired glucose tolerance. Moreover, GHA mice displayed enhanced lipid storage in the inguinal subcutaneous WAT depot (p < 0.05) and a 1.7-fold increase in extra-/intraperitoneal WAT ratio compared to controls (p < 0.05). Measurements of WAT cellular senescence showed no difference between GHA mice and WT controls. Similar to other mice with decreased GH action, female GHA mice display reduced age-related lipid redistribution and improved insulin sensitivity, but no change in cellular senescence. The similar abundance of

  3. Growth hormone receptor antagonist (GHA) transgenic mice have increased subcutaneous adipose tissue mass, altered glucose homeostasis, and no change in white adipose tissue cellular senescence

    Science.gov (United States)

    Comisford, Ross; Lubbers, Ellen R.; Householder, Lara; Suer, Ozan; Tchkonia, Tamara; Kirkland, James L.; List, Edward O.; Kopchick, John J.; Berryman, Darlene E.

    2015-01-01

    Background Growth hormone (GH) resistant/deficient mice experience improved glucose homeostasis and substantially increased lifespan. Recent evidence suggests long-lived GH resistant/deficient mice are protected from white adipose tissue (WAT) dysfunction, including WAT cellular senescence, impaired adipogenesis and loss of subcutaneous WAT in old age. This preservation of WAT function has been suggested to be a potential mechanism for the extended lifespan of these mice. OBJECTIVE The objective of this study was to examine white adipose tissue (WAT) senescence, WAT distribution, and glucose homeostasis in dwarf growth hormone receptor antagonist (GHA) transgenic mice, a unique mouse strain having decreased GH action but normal longevity. METHODS 18mo old female GHA mice and wild type (WT) littermate controls were used. Prior to dissection, body composition, fasting blood glucose, and glucose and insulin tolerance tests were performed. WAT distribution was determined by weighing four distinct WAT depots at the time of dissection. Cellular senescence in four WAT depots was assessed using senescence-associated β-galactosidase (SA-β-gal) staining to quantify the senescent cell burden and real time qPCR to quantify gene expression of senescence markers p16 and IL-6. RESULTS GHA mice had a 22% reduction in total body weight, 33% reduction in lean mass, and a 10% increase in body fat percentage compared to WT controls. GHA mice had normal fasting blood glucose and improved insulin sensitivity; however, they exhibited impaired glucose tolerance. Moreover, GHA mice displayed enhanced lipid storage in the inguinal subcutaneous WAT depot (p<.05) and a 1.7 fold increase in extra-/intraperitoneal WAT ratio compared to controls (p<.05). Measurements of WAT cellular senescence showed no difference between GHA mice and WT controls. CONCLUSIONS Similar to other mice with decreased GH action, female GHA mice display reduced age-related lipid redistribution and improved insulin

  4. Mice Deficient in Both Mn Superoxide Dismutase and Glutathione Peroxidase-1 Have Increased Oxidative Damage and a Greater Incidence of Pathology but No Reduction in Longevity

    Science.gov (United States)

    Zhang, Yiqiang; Ikeno, Yuji; Qi, Wenbo; Chaudhuri, Asish; Li, Yan; Bokov, Alex; Thorpe, Suzanne R.; Baynes, John W.; Epstein, Charles; Richardson, Arlan

    2009-01-01

    To test the impact of increased mitochondrial oxidative stress as a mechanism underlying aging and age-related pathologies, we generated mice with a combined deficiency in two mitochondrial-localized antioxidant enzymes, Mn superoxide dismutase (MnSOD) and glutathione peroxidase-1 (Gpx-1). We compared life span, pathology, and oxidative damage in Gpx1−/−, Sod2+/−Gpx1+/−, Sod2+/−Gpx1−/−, and wild-type control mice. Oxidative damage was elevated in Sod2+/−Gpx1−/− mice, as shown by increased DNA oxidation in liver and skeletal muscle and increased protein oxidation in brain. Surprisingly, Sod2+/−Gpx1−/− mice showed no reduction in life span, despite increased levels of oxidative damage. Consistent with the important role for oxidative stress in tumorigenesis during aging, the incidence of neoplasms was significantly increased in the older Sod2+/−Gpx1−/− mice (28–30 months). Thus, these data do not support a significant role for increased oxidative stress as a result of compromised mitochondrial antioxidant defenses in modulating life span in mice and do not support the oxidative stress theory of aging. PMID:19776219

  5. Increased Expression of TGF-β1 in Correlation with Liver Fibrosis during Echinococcus granulosus Infection in Mice.

    Science.gov (United States)

    Liu, Yumei; Abudounnasier, Gulizhaer; Zhang, Taochun; Liu, Xuelei; Wang, Qian; Yan, Yi; Ding, Jianbing; Wen, Hao; Yimiti, Delixiati; Ma, Xiumin

    2016-08-01

    To investigate the potential role of transforming growth factor (TGF)-β1 in liver fibrosis during Echinococcus granulosus infection, 96 BALB/c mice were randomly divided into 2 groups, experimental group infected by intraperitoneal injection with a metacestode suspension and control group given sterile physiological saline. The liver and blood samples were collected at days 2, 8, 30, 90, 180, and 270 post infection (PI), and the expression of TGF-β1 mRNA and protein was determined by real-time quantitative RT-PCR and ELISA, respectively. We also evaluated the pathological changes in the liver during the infection using hematoxylin and eosin (H-E) and Masson staining of the liver sections. Pathological analysis of H-E stained infected liver sections revealed liver cell edema, bile duct proliferation, and structural damages of the liver as evidenced by not clearly visible lobular architecture of the infected liver, degeneration of liver cell vacuoles, and infiltration of lymphocytes at late stages of infection. The liver tissue sections from control mice remained normal. Masson staining showed worsening of liver fibrosis at the end stages of the infection. The levels of TGF-β1 did not show significant changes at the early stages of infection, but there were significant increases in the levels of TGF-β1 at the middle and late stages of infection (Pgranulosus infection may play a significant role in liver fibrosis associated with E. granulosus infection.

  6. Short-term exposure of mice to gasoline vapor increases the metallothionein expression in the brain, lungs and kidney.

    Science.gov (United States)

    Grebić, D; Jakovac, H; Mrakovcić-Sutić, I; Tomac, J; Bulog, A; Micović, V; Radosević-Stasić, B

    2007-06-01

    Environmental airborne pollution has been repeatedly shown to affect multiple aspects of brain and cardiopulmonary function, leading to cognitive and behavioral changes and to the pronounced inflammatory response in the respiratory airways. Since in the cellular defense system the important role might have stress proteins-metallothionein (MT)-I and MT-II, which are involved in sequestration and dispersal of metal ions, regulation of the biosynthesis and activities of zinc-dependent transcription factors, as well as in cellular protection from reactive oxygen species, genotoxicity and apoptosis, in this study we investigated their expression in the brain, lungs and kidney, following intermittent exposure of mice to gasoline vapor. Control groups consisted of intact mice and of those closed in the metabolic chamber and ventilated with fresh air. The data obtained by immunohistochemistry showed that gasoline inhalation markedly upregulated the MTs expression in tissues which were directly or indirectly exposed to toxic components, significantly increasing the number of MT I+II positive cells in CNS (the entorhinal cortex, ependymal cells, astroglial cells in subventricular zone and inside the brain parenchyma, subgranular and CA1-CA3 zone of the dentate gyrus in hippocampus and macrophages-like cells in perivascular spaces), in the lungs (pneumocytes type I and type II) and in the kidneys (parietal wall of Bowman capsule, proximal and distal tubules). The data point to the protective and growth-regulatory effects of MT I + II on places of injuries, induced by inhalation of gasoline vapor.

  7. IL-18 Does not Increase Allergic Airway Disease in Mice When Produced by BCG

    Directory of Open Access Journals (Sweden)

    L. Amniai

    2007-01-01

    These data show that IL-18 did not increase allergic airway responses in the context of the mycobacterial infection, and suggest that BCG-IL-18 and BCG are able to prevent the development of local Th2 responses and therefore inhibit allergen-induced airway responses even after restimulation.

  8. Increased survival of CBA pluripotent haemopoietic stem cells in vitro induced by a marrow stromal factor in Sl/Sl/sup d/ mice

    Energy Technology Data Exchange (ETDEWEB)

    Blackburn, M J; Patt, H M

    1979-07-01

    Media conditioned by marrow adherent cells from anaemic Sl/Sl/sup d/ and W/W/sup v/ mice increased the 24-h survival of CBA CFU/sub s/ in vitro compared to fresh medium to about the same extent as marrow-conditioned medium from normal Sl/sup +//Sl/sup +/, W/sup +//W/sup +/, and CBA mice. Sl/Sl/sup d/ marrow-conditioned medium also increased the percentage of CFU/sub s/ in DNA synthesis to the same extent as CBA marrow-conditioned medium. These results demonstrate that Sl/Sl/sup d/ mice produce a marrow stromal factor that increases both survival of CFU/sub s/ and the percentage of CFU/sub s/ in DNA synthesis in vitro. Therefore, the defective haemopoietic microenvironment of Sl/Sl/sup d/ mice is not due to a deficiency in the production of this factor.

  9. Increased biosynthesis and processing of fibronectin in fibroblasts from diabetic mice

    International Nuclear Information System (INIS)

    Phan-Thanh, L.; Robert, L.; Derouette, J.C.; Labat-Robert, J.

    1987-01-01

    Diabetic connective tissues exhibit a deranged regulation of extracellular matrix biosynthesis. Fibronectin is shown to be increased in human dermal connective tissue by immunofluorescence, mainly at the dermoepidermal and capillary basement membranes. The rate of fibronectin biosynthesis, excretion, and incorporation in a pericellular polymeric form was investigated using genetically diabetic KK mouse skin and fibroblasts as compared to swiss and C57BL mouse skin and fibroblasts. The rate of incorporation of [ 35 S]methionine into proteins recovered in the culture medium or in deoxycholate and NaDodSO 4 or urea extracts was investigated. The rate of incorporation in the medium and deoxycholate extracts was comparable. However, the relative rate of incorporation of the tracer in the NaDodSO 4 -extractable, pericellular polymeric form was increased in the diabetic KK fibroblasts both for total proteins and for fibronectin. In pulse-chase experiments, the deoxycholate-soluble and NaDodSO 4 -soluble fractions exhibited a precursor-product relationship. The rate of passage of fibronectin from the deoxycholate-soluble (cellular compartment) form to the NaDodSO 4 -soluble (pericellular polymeric) form was strongly accelerated in the diabetic fibroblast cultures. These results confirm the increased rate of synthesis of fibronectin in diabetic fibroblasts as well as its processing from the cellular compartment to the polymeric pericellular form

  10. Lipopolysaccharide precipitates hepatic encephalopathy and increases blood-brain barrier permeability in mice with acute liver failure.

    Science.gov (United States)

    Chastre, Anne; Bélanger, Mireille; Nguyen, Bich N; Butterworth, Roger F

    2014-03-01

    Acute liver failure (ALF) is frequently complicated by infection leading to precipitation of central nervous system complications such as hepatic encephalopathy (HE) and increased mortality. There is evidence to suggest that when infection occurs in ALF patients, the resulting pro-inflammatory mechanisms may be amplified that could, in turn, have a major impact on blood-brain barrier (BBB) function. The aim of this study was to investigate the role of endotoxemia on the progression of encephalopathy in relation to BBB permeability during ALF. Adult male C57-BL6 mice with ALF resulting from azoxymethane-induced toxic liver injury were administered trace amounts of the endotoxin component lipopolysaccharide (LPS). Effects on the magnitude of the systemic inflammatory response, liver pathology and BBB integrity were measured as a function of progression of HE, defined as time to loss of corneal reflex (coma). Lipopolysaccharide caused additional two- to seven-fold (P liver pathology and associated increases of circulating transaminases as well as increased hyperammonaemia consistent with a further loss of viable hepatocytes. LPS treatment of ALF mice led to a rapid precipitation of hepatic coma and the BBB became permeable to the 25-kDa protein immunoglobulin G (IgG). This extravasation of IgG was accompanied by ignificant up-regulation of matrix metalloproteinase-9 (MMP-9), an endopeptidase known to modulate opening of the BBB in a wide range of neurological disorders. These findings represent the first direct evidence of inflammation-related BBB permeability changes in ALF. © 2013 John Wiley & Sons A/S. Publishing by John Wiley & Sons Ltd.

  11. Statins Increase Mitochondrial and Peroxisomal Fatty Acid Oxidation in the Liver and Prevent Non-Alcoholic Steatohepatitis in Mice

    Directory of Open Access Journals (Sweden)

    Han-Sol Park

    2016-04-01

    Full Text Available BackgroundNon-alcoholic fatty liver disease is the most common form of chronic liver disease in industrialized countries. Recent studies have highlighted the association between peroxisomal dysfunction and hepatic steatosis. Peroxisomes are intracellular organelles that contribute to several crucial metabolic processes, such as facilitation of mitochondrial fatty acid oxidation (FAO and removal of reactive oxygen species through catalase or plasmalogen synthesis. Statins are known to prevent hepatic steatosis and non-alcoholic steatohepatitis (NASH, but underlying mechanisms of this prevention are largely unknown.MethodsSeven-week-old C57BL/6J mice were given normal chow or a methionine- and choline-deficient diet (MCDD with or without various statins, fluvastatin, pravastatin, simvastatin, atorvastatin, and rosuvastatin (15 mg/kg/day, for 6 weeks. Histological lesions were analyzed by grading and staging systems of NASH. We also measured mitochondrial and peroxisomal FAO in the liver.ResultsStatin treatment prevented the development of MCDD-induced NASH. Both steatosis and inflammation or fibrosis grades were significantly improved by statins compared with MCDD-fed mice. Gene expression levels of peroxisomal proliferator-activated receptor α (PPARα were decreased by MCDD and recovered by statin treatment. MCDD-induced suppression of mitochondrial and peroxisomal FAO was restored by statins. Each statin's effect on increasing FAO and improving NASH was independent on its effect of decreasing cholesterol levels.ConclusionStatins prevented NASH and increased mitochondrial and peroxisomal FAO via induction of PPARα. The ability to increase hepatic FAO is likely the major determinant of NASH prevention by statins. Improvement of peroxisomal function by statins may contribute to the prevention of NASH.

  12. Fatherhood contributes to increased hippocampal spine density and anxiety regulation in California mice.

    Science.gov (United States)

    Glasper, Erica R; Hyer, Molly M; Katakam, Jhansi; Harper, Robyn; Ameri, Cyrus; Wolz, Thomas

    2016-01-01

    Parenting alters the hippocampus, an area of the brain that undergoes significant experience-induced plasticity and contributes to emotional regulation. While the relationship between maternal care and hippocampal neuroplasticity has been characterized, the extent to which fatherhood alters the structure and function of the hippocampus is far less understood. Here, we investigated to what extent fatherhood altered anxiety regulation and dendritic morphology of the hippocampus using the highly paternal California mouse (Peromyscus californicus). Fathers spent significan