WorldWideScience

Sample records for mice improves brown

  1. Deletion of inducible nitric-oxide synthase in leptin-deficient mice improves brown adipose tissue function.

    Directory of Open Access Journals (Sweden)

    Sara Becerril

    Full Text Available BACKGROUND: Leptin and nitric oxide (NO on their own participate in the control of non-shivering thermogenesis. However, the functional interplay between both factors in this process has not been explored so far. Therefore, the aim of the present study was to analyze the impact of the absence of the inducible NO synthase (iNOS gene in the regulation of energy balance in ob/ob mice. METHODS AND FINDINGS: Double knockout (DBKO mice simultaneously lacking the ob and iNOS genes were generated, and the expression of molecules involved in the control of brown fat cell function was analyzed by real-time PCR, western-blot and immunohistochemistry. Twelve week-old DBKO mice exhibited reduced body weight (p<0.05, decreased amounts of total fat pads (p<0.05, lower food efficiency rates (p<0.05 and higher rectal temperature (p<0.05 than ob/ob mice. Ablation of iNOS also improved the carbohydrate and lipid metabolism of ob/ob mice. DBKO showed a marked reduction in the size of brown adipocytes compared to ob/ob mutants. In this sense, in comparison to ob/ob mice, DBKO rodents showed an increase in the expression of PR domain containing 16 (Prdm16, a transcriptional regulator of brown adipogenesis. Moreover, iNOS deletion enhanced the expression of mitochondria-related proteins, such as peroxisome proliferator-activated receptor gamma coactivator-1 alpha (Pgc-1alpha, sirtuin-1 (Sirt-1 and sirtuin-3 (Sirt-3. Accordingly, mitochondrial uncoupling proteins 1 and 3 (Ucp-1 and Ucp-3 were upregulated in brown adipose tissue (BAT of DBKO mice as compared to ob/ob rodents. CONCLUSION: Ablation of iNOS improved the energy balance of ob/ob mice by decreasing food efficiency through an increase in thermogenesis. These effects may be mediated, in part, through the recovery of the BAT phenotype and brown fat cell function improvement.

  2. Deletion of inducible nitric-oxide synthase in leptin-deficient mice improves brown adipose tissue function.

    Science.gov (United States)

    Becerril, Sara; Rodríguez, Amaia; Catalán, Victoria; Sáinz, Neira; Ramírez, Beatriz; Collantes, María; Peñuelas, Iván; Gómez-Ambrosi, Javier; Frühbeck, Gema

    2010-06-04

    Leptin and nitric oxide (NO) on their own participate in the control of non-shivering thermogenesis. However, the functional interplay between both factors in this process has not been explored so far. Therefore, the aim of the present study was to analyze the impact of the absence of the inducible NO synthase (iNOS) gene in the regulation of energy balance in ob/ob mice. Double knockout (DBKO) mice simultaneously lacking the ob and iNOS genes were generated, and the expression of molecules involved in the control of brown fat cell function was analyzed by real-time PCR, western-blot and immunohistochemistry. Twelve week-old DBKO mice exhibited reduced body weight (padipose tissue (BAT) of DBKO mice as compared to ob/ob rodents. Ablation of iNOS improved the energy balance of ob/ob mice by decreasing food efficiency through an increase in thermogenesis. These effects may be mediated, in part, through the recovery of the BAT phenotype and brown fat cell function improvement.

  3. Exendin-4 improves thermogenic capacity by regulating fat metabolism on brown adipose tissue in mice with diet-induced obesity.

    Science.gov (United States)

    Wei, Qiong; Li, Ling; Chen, Ji-an; Wang, Shao-hua; Sun, Zi-lin

    2015-01-01

    This study aimed to investigate the benefits of exendin-4 treatment on brown adipose tissue (BAT) in C57BL/6J mice with high-fat diet (HFD)-induced obesity. We examined the effects of exendin-4 on body adiposity and the level of genes associated with adipogenesis, glucose/lipid uptake, lipolysis, and thermogenesis in mice with diet-induced obesity. Exendin-4 treatment deceased body weight, serum-free fatty acid, and triglyceride levels in HFD-induced obese C57BL/6J mice. Exendin-4 treatment increased the expression of genes associated with adipogenesis, glucose/lipid uptake, lipolysis, and thermogenesis in BAT. Compared with HFD-fed mice, exendin-4 treatment also exhibited elevated energy expenditure and reduced respiratory quotient, but showed similar food intake and locomotor activity. Exendin-4 treatment reduced high-fat-induced obesity by decreasing adiposity and increasing thermogenesis. This result suggests that GLP-1 agonist may be a new approach to combat obesity by shifting the energy balance from obesogenesis to thermogenesis. © 2015 by the Association of Clinical Scientists, Inc.

  4. Salsalate activates brown adipose tissue in mice

    NARCIS (Netherlands)

    Dam, A.D. van; Nahon, K.J.; Kooijman, S.; Berg, S.M. van den; Kanhai, A.A.; Kikuchi, T.; Heemskerk, M.M.; Harmelen,V. van; Lombès, M.; Hoek,A.M. van den; Winther, M.P. de; Lutgens, E.; Guigas, B.; Rensen, P.C.; Boon, M.R.

    2015-01-01

    Salsalate improves glucose intolerance and dyslipidemia in type 2 diabetes patients, but the mechanism is still unknown. The aim of the current study was to unravel the molecular mechanisms involved in these beneficial metabolic effects of salsalate by treating mice with salsalate during and after d

  5. Thyroid hormone status defines brown adipose tissue activity and browning of white adipose tissues in mice.

    Science.gov (United States)

    Weiner, Juliane; Kranz, Mathias; Klöting, Nora; Kunath, Anne; Steinhoff, Karen; Rijntjes, Eddy; Köhrle, Josef; Zeisig, Vilia; Hankir, Mohammed; Gebhardt, Claudia; Deuther-Conrad, Winnie; Heiker, John T; Kralisch, Susan; Stumvoll, Michael; Blüher, Matthias; Sabri, Osama; Hesse, Swen; Brust, Peter; Tönjes, Anke; Krause, Kerstin

    2016-12-12

    The present study aimed to determine the effect of thyroid hormone dysfunction on brown adipose tissue activity and white adipose tissue browning in mice. Twenty randomized female C57BL/6NTac mice per treatment group housed at room temperature were rendered hypothyroid or hyperthyroid. In-vivo small animal (18)F-FDG PET/MRI was performed to determine the effects of hypo- and hyperthyroidism on BAT mass and BAT activity. Ex-vivo(14)C-acetate loading assay and assessment of thermogenic gene and protein expression permitted analysis of oxidative and thermogenic capacities of WAT and BAT of eu-, hyper and hypothyroid mice. (18)F-FDG PET/MRI revealed a lack of brown adipose tissue activity in hypothyroid mice, whereas hyperthyroid mice displayed increased BAT mass alongside enhanced (18)F-FDG uptake. In white adipose tissue of both, hyper- and hypothyroid mice, we found a significant induction of thermogenic genes together with multilocular adipocytes expressing UCP1. Taken together, these results suggest that both the hyperthyroid and hypothyroid state stimulate WAT thermogenesis most likely as a consequence of enhanced adrenergic signaling or compensation for impaired BAT function, respectively.

  6. Effect of intermittent cold exposure on brown fat activation, obesity, and energy homeostasis in mice.

    Directory of Open Access Journals (Sweden)

    Yann Ravussin

    Full Text Available Homeotherms have specific mechanisms to maintain a constant core body temperature despite changes in thermal environment, food supply, and metabolic demand. Brown adipose tissue, the principal thermogenic organ, quickly and efficiently increases heat production by dissipating the mitochondrial proton motive force. It has been suggested that activation of brown fat, via either environmental (i.e. cold exposure or pharmacologic means, could be used to increase metabolic rate and thus reduce body weight. Here we assess the effects of intermittent cold exposure (4°C for one to eight hours three times a week on C57BL/6J mice fed a high fat diet. Cold exposure increased metabolic rate approximately two-fold during the challenge and activated brown fat. In response, food intake increased to compensate fully for the increased energy expenditure; thus, the mice showed no reduction in body weight or adiposity. Despite the unchanged adiposity, the cold-treated mice showed transient improvements in glucose homeostasis. Administration of the cannabinoid receptor-1 inverse agonist AM251 caused weight loss and improvements in glucose homeostasis, but showed no further improvements when combined with cold exposure. These data suggest that intermittent cold exposure causes transient, meaningful improvements in glucose homeostasis, but without synergy when combined with AM251. Since energy expenditure is significantly increased during cold exposure, a drug that dissociates food intake from metabolic demand during cold exposure may achieve weight loss and further metabolic improvements.

  7. BMP4 Gene Therapy in Mature Mice Reduces BAT Activation but Protects from Obesity by Browning Subcutaneous Adipose Tissue

    Directory of Open Access Journals (Sweden)

    Jenny M. Hoffmann

    2017-08-01

    Full Text Available We examined the effect of Bone Morphogenetic Protein 4 (BMP4 on energy expenditure in adult mature mice by targeting the liver with adeno-associated viral (AAV BMP4 vectors to increase circulating levels. We verified the direct effect of BMP4 in inducing a brown oxidative phenotype in differentiating preadipocytes in vitro. AAV-BMP4-treated mice display marked browning of subcutaneous adipocytes, with increased mitochondria and Uncoupling Protein 1 (UCP1. These mice are protected from obesity on a high-fat diet and have increased whole-body energy expenditure, improved insulin sensitivity, reduced liver fat, and reduced adipose tissue inflammation. On a control diet, they show unchanged body weight but improved insulin sensitivity. In contrast, AAV-BMP4-treated mice showed beiging of BAT with reduced UCP1, increased lipids, and reduced hormone-sensitive lipase (HSL. Thus, BMP4 exerts different effects on WAT and BAT, but the overall effect is to enhance insulin sensitivity and whole-body energy expenditure by browning subcutaneous adipose tissue.

  8. An ERβ agonist induces browning of subcutaneous abdominal fat pad in obese female mice.

    Science.gov (United States)

    Miao, Yi-Fei; Su, Wen; Dai, Yu-Bing; Wu, Wan-Fu; Huang, Bo; Barros, Rodrigo P A; Nguyen, Hao; Maneix, Laure; Guan, You-Fei; Warner, Margaret; Gustafsson, Jan-Åke

    2016-12-06

    Estrogen, via estrogen receptor alpha (ERα), exerts several beneficial effects on metabolism and energy homeostasis by controlling size, enzymatic activity and hormonal content of adipose tissue. The actions of estrogen on sympathetic ganglia, which are key players in the browning process, are less well known. In the present study we show that ERβ influences browning of subcutaneous adipose tissue (SAT) via its actions both on sympathetic ganglia and on the SAT itself. A 3-day-treatment with a selective ERβ agonist, LY3201, induced browning of SAT in 1-year-old obese WT and ERα(-/-) female mice. Browning was associated with increased expression of ERβ in the nuclei of neurons in the sympathetic ganglia, increase in tyrosine hydroxylase in both nerve terminals in the SAT and sympathetic ganglia neurons and an increase of β3-adrenoceptor in the SAT. LY3201 had no effect on browning in young female or male mice. In the case of young females browning was already maximal while in males there was very little expression of ERβ in the SAT and very little expression of the β3-adrenoceptor. The increase in both sympathetic tone and responsiveness of adipocytes to catecholamines reveals a novel role for ERβ in controlling browning of adipose tissue.

  9. Brown Adipose Tissue Transplantation Reverses Obesity in Ob/Ob Mice.

    Science.gov (United States)

    Liu, Xiaomeng; Wang, Siping; You, Yilin; Meng, Minghui; Zheng, Zongji; Dong, Meng; Lin, Jun; Zhao, Qianwei; Zhang, Chuanhai; Yuan, Xiaoxue; Hu, Tao; Liu, Lieqin; Huang, Yuanyuan; Zhang, Lei; Wang, Dehua; Zhan, Jicheng; Jong Lee, Hyuek; Speakman, John R; Jin, Wanzhu

    2015-07-01

    Increasing evidence indicates that brown adipose tissue (BAT) transplantation enhances whole-body energy metabolism in a mouse model of diet-induced obesity. However, it remains unclear whether BAT also has such beneficial effects on genetically obese mice. To address this issue, we transplanted BAT from C57/BL6 mice into the dorsal subcutaneous region of age- and sex-matched leptin deficient Ob/Ob mice. Interestingly, BAT transplantation led to a significant reduction of body weight gain with increased oxygen consumption and decreased total body fat mass, resulting in improvement of insulin resistance and liver steatosis. In addition, BAT transplantation increased the level of circulating adiponectin, whereas it reduced the levels of circulating free T3 and T4, which regulate thyroid hormone sensitivity in peripheral tissues. BAT transplantation also increased β3-adrenergic receptor and fatty acid oxidation related gene expression in subcutaneous and epididymal (EP) white adipose tissue. Accordingly, BAT transplantation increased whole-body thermogenesis. Taken together our results demonstrate that BAT transplantation may reduce obesity and its related diseases by activating endogenous BAT.

  10. AHNAK deficiency promotes browning and lipolysis in mice via increased responsiveness to β-adrenergic signalling.

    Science.gov (United States)

    Shin, Jae Hoon; Lee, Seo Hyun; Kim, Yo Na; Kim, Il Yong; Kim, Youn Ju; Kyeong, Dong Soo; Lim, Hee Jung; Cho, Soo Young; Choi, Junhee; Wi, Young Jin; Choi, Jae-Hoon; Yoon, Yeo Sung; Bae, Yun Soo; Seong, Je Kyung

    2016-03-18

    In adipose tissue, agonists of the β3-adrenergic receptor (ADRB3) regulate lipolysis, lipid oxidation, and thermogenesis. The deficiency in the thermogenesis induced by neuroblast differentiation-associated protein AHNAK in white adipose tissue (WAT) of mice fed a high-fat diet suggests that AHNAK may stimulate energy expenditure via development of beige fat. Here, we report that AHNAK deficiency promoted browning and thermogenic gene expression in WAT but not in brown adipose tissue of mice stimulated with the ADRB3 agonist CL-316243. Consistent with the increased thermogenesis, Ahnak(-/-) mice exhibited an increase in energy expenditure, accompanied by elevated mitochondrial biogenesis in WAT depots in response to CL-316243. Additionally, AHNAK-deficient WAT contained more eosinophils and higher levels of type 2 cytokines (IL-4/IL-13) to promote browning of WAT in response to CL-316243. This was associated with enhanced sympathetic tone in the WAT via upregulation of adrb3 and tyrosine hydroxylase (TH) in response to β-adrenergic activation. CL-316243 activated PKA signalling and enhanced lipolysis, as evidenced by increased phosphorylation of hormone-sensitive lipase and release of free glycerol in Ahnak(-/-) mice compared to wild-type mice. Overall, these findings suggest an important role of AHNAK in the regulation of thermogenesis and lipolysis in WAT via β-adrenergic signalling.

  11. Glucoraphanin Ameliorates Obesity and Insulin Resistance Through Adipose Tissue Browning and Reduction of Metabolic Endotoxemia in Mice.

    Science.gov (United States)

    Nagata, Naoto; Xu, Liang; Kohno, Susumu; Ushida, Yusuke; Aoki, Yudai; Umeda, Ryohei; Fuke, Nobuo; Zhuge, Fen; Ni, Yinhua; Nagashimada, Mayumi; Takahashi, Chiaki; Suganuma, Hiroyuki; Kaneko, Shuichi; Ota, Tsuguhito

    2017-05-01

    Low-grade sustained inflammation links obesity to insulin resistance and nonalcoholic fatty liver disease (NAFLD). However, therapeutic approaches to improve systemic energy balance and chronic inflammation in obesity are limited. Pharmacological activation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) alleviates obesity and insulin resistance in mice; however, Nrf2 inducers are not clinically available owing to safety concerns. Thus, we examined whether dietary glucoraphanin, a stable precursor of the Nrf2 inducer sulforaphane, ameliorates systemic energy balance, chronic inflammation, insulin resistance, and NAFLD in high-fat diet (HFD)-fed mice. Glucoraphanin supplementation attenuated weight gain, decreased hepatic steatosis, and improved glucose tolerance and insulin sensitivity in HFD-fed wild-type mice but not in HFD-fed Nrf2 knockout mice. Compared with vehicle-treated controls, glucoraphanin-treated HFD-fed mice had lower plasma lipopolysaccharide levels and decreased relative abundance of the gram-negative bacteria family Desulfovibrionaceae in their gut microbiomes. In HFD-fed mice, glucoraphanin increased energy expenditure and the protein expression of uncoupling protein 1 (Ucp1) in inguinal and epididymal adipose depots. Additionally, in this group, glucoraphanin attenuated hepatic lipogenic gene expression, lipid peroxidation, classically activated M1-like macrophage accumulation, and inflammatory signaling pathways. By promoting fat browning, limiting metabolic endotoxemia-related chronic inflammation, and modulating redox stress, glucoraphanin may mitigate obesity, insulin resistance, and NAFLD. © 2017 by the American Diabetes Association.

  12. Brown propolis attenuates cerebral ischemia-induced oxidative damage via affecting antioxidant enzyme system in mice.

    Science.gov (United States)

    Bazmandegan, Gholamreza; Boroushaki, Mohammad Taher; Shamsizadeh, Ali; Ayoobi, Fatemeh; Hakimizadeh, Elham; Allahtavakoli, Mohammad

    2017-01-01

    Oxidative stress plays a critical role in ischemic brain injury. Superoxide dismutase (SOD) and glutathione peroxidase (GPx) are the enzymes underlying the endogenous antioxidant mechanisms affected by stroke and are considered as oxidative stress biomarkers. Brown propolis (BP) is a bioactive natural product with a set of biological activities that in turn may differ depending on the area from which the substance is originated. The aim of this study was to investigate the effect of water-extracted brown propolis (WEBPs), from two regions of Iran, against cerebral ischemia-induced oxidative injury in a mouse model of stroke. Experimentally, the chemical characterization and total polyphenol content were determined using GC/MS and Folin-Ciocalteu assay respectively. Seventy-two adult male mice were randomly divided into the surgical sham group, control group (treated with vehicle), and four groups of WEBPs-treated animals. The WEBPs were administered at the doses of 100 and 200mg/kg IP, during four different time points. Oxidative stress biomarkers (SOD and GPx activity, SOD/GPx ratio), lipid peroxidation (LPO) index (malondialdehyde content) and infarct volume were measured 48h post stroke. Behavioral tests were evaluated 24 and 48h after stroke. WEBPs treatment resulted in significant restoration of antioxidant enzymes activity and a subsequent decrease in LPO as well as the infarct volume compared to the control group. Sensory-motor impairment and neurological deficits were improved significantly as well. These results indicate that Iranian BP confers neuroprotection on the stroke-induced neuronal damage via an antioxidant mechanism which seems to be mediated by the endogenous antioxidant system. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  13. Attainment of brown adipocyte features in white adipocytes of hormone-sensitive lipase null mice.

    Directory of Open Access Journals (Sweden)

    Kristoffer Ström

    Full Text Available BACKGROUND: Hormone-sensitive lipase (HSL is expressed predominantly in adipose tissue, where it plays an important role in catecholamine-stimulated hydrolysis of stored tri- and diglycerides, thus mobilizing fatty acids. HSL exhibits broad substrate specificity and besides acylglycerides it hydrolyzes cholesteryl esters, retinyl esters and lipoidal esters. Despite its role in fatty acid mobilization, HSL null mice have been shown to be resistant to diet-induced obesity. METHODOLOGY/PRINCIPAL FINDINGS: Following a high-fat diet (HFD regimen, energy expenditure, measured using indirect calorimetry, was increased in HSL null mice. White adipose tissue of HSL null mice was characterized by reduced mass and reduced protein expression of PPARgamma, a key transcription factor in adipogenesis, and stearoyl-CoA desaturase 1, the expression of which is known to be positively correlated to the differentiation state of the adipocyte. The protein expression of uncoupling protein-1 (UCP-1, the highly specific marker of brown adipocytes, was increased 7-fold in white adipose tissue of HSL null mice compared to wildtype littermates. Transmission electron microscopy revealed an increase in the size of mitochondria of white adipocytes of HSL null mice. The mRNA expression of pRb and RIP140 was decreased in isolated white adipocytes, while the expression of UCP-1 and CPT1 was increased in HSL null mice compared to wildtype littermates. Basal oxygen consumption was increased almost 3-fold in white adipose tissue of HSL null mice and was accompanied by increased uncoupling activity. CONCLUSIONS: These data suggest that HSL is involved in the determination of white versus brown adipocytes during adipocyte differentiation The exact mechanism(s underlying this novel role of HSL remains to be elucidated, but it seems clear that HSL is required to sustain normal expression levels of pRb and RIP140, which both promote differentiation into the white, rather than the brown

  14. Transcriptome profiling reveals divergent expression shifts in brown and white adipose tissue from long-lived GHRKO mice.

    Science.gov (United States)

    Stout, Michael B; Swindell, William R; Zhi, Xu; Rohde, Kyle; List, Edward O; Berryman, Darlene E; Kopchick, John J; Gesing, Adam; Fang, Yimin; Masternak, Michal M

    2015-09-29

    Mice lacking the growth hormone receptor (GHRKO) exhibit improved lifespan and healthspan due to loss of growth hormone signaling. Both the distribution and activity of brown and white adipose tissue (BAT and WAT) are altered in GHRKO mice, but the contribution of each tissue to age-related phenotypes has remained unclear. We therefore used whole-genome microarrays to evaluate transcriptional differences in BAT and WAT depots between GHRKO and normal littermates at six months of age. Our findings reveal a unique BAT transcriptome as well as distinctive responses of BAT to Ghr ablation. BAT from GHRKO mice exhibited elevated expression of genes associated with mitochondria and metabolism, along with reduced expression of genes expressed by monocyte-derived cells (dendritic cells [DC] and macrophages). Largely the opposite was observed in WAT, with increased expression of DC-expressed genes and reduced expression of genes associated with metabolism, cellular respiration and the mitochondrial inner envelope. These findings demonstrate divergent response patterns of BAT and WAT to loss of GH signaling in GHRKO mice. These patterns suggest both BAT and WAT contribute in different ways to phenotypes in GHRKO mice, with Ghr ablation blunting inflammation in BAT as well as cellular metabolism and mitochondrial biogenesis in WAT.

  15. Changes in white and brown adipose tissue microRNA expression in cold-induced mice.

    Science.gov (United States)

    Tao, Cong; Huang, Shujuan; Wang, Yajun; Wei, Gang; Zhang, Yang; Qi, Desheng; Wang, Yanfang; Li, Kui

    2015-07-31

    There are two classic adipose tissues in mammals, white adipose tissue (WAT) and brown adipose tissue (BAT). It has been well known that browning of WAT can be induced by cold exposure. In this study, to identify the novel cold responsive key miRNAs that are involved in browning, mice were housed at 6 °C for 10 days, and deep sequencing of the miRNAs of WAT and BAT was performed. Our data showed that WAT and BAT displayed distinct expression profiles due to their different locations, morphology and biological function. A total of 27 BAT and 29 WAT differentially expressed (DE) miRNAs were identified in response to cold stimulation, respectively (fold change >2 and false discovery rate (FDR) adipose tissues. Furthermore, the potential target genes of the DE miRNAs from BAT and WAT were predicted computationally, and the KEGG pathway analysis revealed the enrichment pathways in cold stimulated adipose tissues. The expression pattern of miR-144-3p/Bmpr1b/Phlda1 and miR-146a-5p/Sphk2 were further measured by qPCR. Finally, we found that miR-146a-5p was significantly induced during the primary adipogenesis caused by BAT differentiation, whereas miR-144-3p was decreased. Our study identifies for the first time the novel miRNAs involved in browning of WAT by sequencing and expands the therapeutic approaches for combating metabolic diseases.

  16. Impaired Thermogenesis and a Molecular Signature for Brown Adipose Tissue in Id2 Null Mice

    Directory of Open Access Journals (Sweden)

    Peng Zhou

    2016-01-01

    Full Text Available Inhibitor of DNA binding 2 (ID2 is a helix-loop-helix transcriptional repressor rhythmically expressed in many adult tissues. Our previous studies have demonstrated that Id2 null mice have sex-specific elevated glucose uptake in brown adipose tissue (BAT. Here we further explored the role of Id2 in the regulation of core body temperature over the circadian cycle and the impact of Id2 deficiency on genes involved in insulin signaling and adipogenesis in BAT. We discovered a reduced core body temperature in Id2−/− mice. Moreover, in Id2−/− BAT, 30 genes including Irs1, PPARs, and PGC-1s were identified as differentially expressed in a sex-specific pattern. These data provide valuable insights into the impact of Id2 deficiency on energy homeostasis of mice in a sex-specific manner.

  17. Modified Protein Improves Vitiligo Symptoms in Mice

    Science.gov (United States)

    ... 2013 (historical) Modified Protein Improves Vitiligo Symptoms in Mice Altering a key protein involved in the development ... pigmentation loss associated with the skin disorder in mice, according to recent research funded by the NIH’s ...

  18. Comparative Study on the Hypoglycemic and Antioxidative Effects of Fermented Paste (Doenjang Prepared from Soybean and Brown Rice Mixed with Rice Bran or Red Ginseng Marc in Mice Fed with High Fat Diet

    Directory of Open Access Journals (Sweden)

    Soo Im Chung

    2014-10-01

    Full Text Available The effects of fermented paste made from soybean, brown rice, or brown rice in combination with rice bran or red ginseng marc on the glucose metabolism and antioxidative defense system in high fat-fed mice were investigated. The mice were given experimental diets for eight weeks: Normal control, high fat, and high fat supplemented with soybean fermented paste, brown rice fermented paste, brown rice-rice bran fermented paste, or brown rice-red ginseng marc fermented paste. The high fat group showed markedly higher blood glucose level and erythrocyte lipid peroxidation than the normal control group. Diet supplementation of fermented paste inhibited the high fat-induced hyperglycemia and oxidative stress via regulation of the glucose-regulating and antioxidant enzymes activities. The soybean and brown rice-red ginseng marc fermented pastes were the most effective in improving the glucose metabolism and antioxidant defense status in mice under high fat diet condition. These findings illustrate that brown rice, in combination with red ginseng marc, may be useful in the development of fermented paste with strong hypoglycemic and antioxidative activities.

  19. Ablation of ghrelin receptor reduces adiposity and improves insulin sensitivity during aging by regulating fat metabolism in white and brown adipose tissues.

    Science.gov (United States)

    Lin, Ligen; Saha, Pradip K; Ma, Xiaojun; Henshaw, Iyabo O; Shao, Longjiang; Chang, Benny H J; Buras, Eric D; Tong, Qiang; Chan, Lawrence; McGuinness, Owen P; Sun, Yuxiang

    2011-12-01

    Aging is associated with increased adiposity in white adipose tissues and impaired thermogenesis in brown adipose tissues; both contribute to increased incidences of obesity and type 2 diabetes. Ghrelin is the only known circulating orexigenic hormone that promotes adiposity. In this study, we show that ablation of the ghrelin receptor (growth hormone secretagogue receptor, GHS-R) improves insulin sensitivity during aging. Compared to wild-type (WT) mice, old Ghsr(-/-) mice have reduced fat and preserve a healthier lipid profile. Old Ghsr(-/-) mice also exhibit elevated energy expenditure and resting metabolic rate, yet have similar food intake and locomotor activity. While GHS-R expression in white and brown adipose tissues was below the detectable level in the young mice, GHS-R expression was readily detectable in visceral white fat and interscapular brown fat of the old mice. Gene expression profiles reveal that Ghsr ablation reduced glucose/lipid uptake and lipogenesis in white adipose tissues but increased thermogenic capacity in brown adipose tissues. Ghsr ablation prevents age-associated decline in thermogenic gene expression of uncoupling protein 1 (UCP1). Cell culture studies in brown adipocytes further demonstrate that ghrelin suppresses the expression of adipogenic and thermogenic genes, while GHS-R antagonist abolishes ghrelin's effects and increases UCP1 expression. Hence, GHS-R plays an important role in thermogenic impairment during aging. Ghsr ablation improves aging-associated obesity and insulin resistance by reducing adiposity and increasing thermogenesis. Growth hormone secretagogue receptor antagonists may be a new means of combating obesity by shifting the energy balance from obesogenesis to thermogenesis. © 2011 The Authors. Aging Cell © 2011 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.

  20. Reversal of type 1 diabetes in mice by brown adipose tissue transplant.

    Science.gov (United States)

    Gunawardana, Subhadra C; Piston, David W

    2012-03-01

    Current therapies for type 1 diabetes (T1D) involve insulin replacement or transplantation of insulin-secreting tissue, both of which suffer from numerous limitations and complications. Here, we show that subcutaneous transplants of embryonic brown adipose tissue (BAT) can correct T1D in streptozotocin-treated mice (both immune competent and immune deficient) with severely impaired glucose tolerance and significant loss of adipose tissue. BAT transplants result in euglycemia, normalized glucose tolerance, reduced tissue inflammation, and reversal of clinical diabetes markers such as polyuria, polydipsia, and polyphagia. These effects are independent of insulin but correlate with recovery of the animals' white adipose tissue. BAT transplants lead to significant increases in adiponectin and leptin, but with levels that are static and not responsive to glucose. Pharmacological blockade of the insulin receptor in BAT transplant mice leads to impaired glucose tolerance, similar to what is seen in nondiabetic animals, indicating that insulin receptor activity plays a role in the reversal of diabetes. One possible candidate for activating the insulin receptor is IGF-1, whose levels are also significantly elevated in BAT transplant mice. Thus, we propose that the combined action of multiple adipokines establishes a new equilibrium in the animal that allows for chronic glycemic control without insulin.

  1. Transcriptional analysis of brown adipose tissue in leptin-deficient mice lacking inducible nitric oxide synthase: evidence of the role of Med1 in energy balance.

    Science.gov (United States)

    Becerril, Sara; Rodríguez, Amaia; Catalán, Victoria; Sáinz, Neira; Ramírez, Beatriz; Gómez-Ambrosi, Javier; Frühbeck, Gema

    2012-07-03

    Leptin and nitric oxide (NO) are implicated in the control of energy homeostasis. The aim of the present study was to examine the impact of the absence of the inducible NO synthase (iNOS) gene on the regulation of energy balance in ob/ob mice analyzing the changes in gene expression levels in brown adipose tissue (BAT). Double knockout (DBKO) mice simultaneously lacking the ob and iNOS genes were generated and the expression of genes involved in energy balance including fatty acid and glucose metabolism as well as mitochondrial genes were analyzed by microarrays. DBKO mice exhibited an improvement in energy balance with a decrease in body weight (P < 0.001), total fat pads (P < 0.05), and food intake (P < 0.05), as well as an enhancement in BAT function compared with ob/ob mice. To better understand the molecular events associated with this improvement, BAT gene expression was analyzed. Of particular interest, gene expression levels of the key subunit of the Mediator complex Med1 was upregulated (P < 0.05) in DBKO mice. Real-time PCR and immunohistochemistry further confirmed this data. Med1 is implicated in adipogenesis, lipid metabolic and biosynthetic processes, glucose metabolism, and mitochondrial metabolic pathways. Med1 plays an important role in the transcriptional control of genes implicated in energy homeostasis, suggesting that the improvement in energy balance and BAT function of the DBKO mice is mediated, at least in part, through the transcription coactivator Med1.

  2. Enhanced thermogenic program by non-viral delivery of combinatory browning genes to treat diet-induced obesity in mice.

    Science.gov (United States)

    Park, Hongsuk; Cho, Sungpil; Janat-Amsbury, Margit M; Bae, You Han

    2015-12-01

    Thermogenic program (also known as browning) is a promising and attractive anti-obesity approach. Islet amyloid polypeptide (IAPP) and irisin have emerged as potential browning hormones that hold high potential to treat obesity. Here, we have constructed a dual browning gene system containing both IAPP and irisin (derived from fibronectin type III domain containing 5; FNDC5) combined with 2A and furin self-cleavage sites. Intraperitoneal administration of the construct complexed with a linear polyethylenimine into diet-induced obese mice demonstrated the elevation of anti-obesogenic effects characterized as the decreased body weight, adiposity, and levels of glucose and insulin. In addition, the construct delivery increased energy expenditure and the expression of core molecular determinants associated with browning. The additional advantages of the dual browning gene construct delivery compared to both single gene construct delivery and dual peptide delivery can be emphasized on efficacy and practicability. Hence, we have concluded that dual browning gene delivery makes it therapeutically attractive for diet-induced obesity treatment.

  3. Cold-Induced Browning Dynamically Alters the Expression Profiles of Inflammatory Adipokines with Tissue Specificity in Mice

    Directory of Open Access Journals (Sweden)

    Xiao Luo

    2016-05-01

    Full Text Available Cold exposure or β3-adrenoceptor agonist treatment induces the adipose tissues remodeling, relevant for beige adipogenesis within white adipose tissue (WAT. It remains unclear whether this process influences inflammatory adipokines expression in adipose tissues. We determine the temporal profile of cold or β3-adrenoceptor agonist (CL316,243-induced changes in the expression of inflammatory adipokines in adipose tissues in mice or primary mice adipocytes. Male C57BL/6J mice at eight weeks old were exposed to 4 °C for 1–5 days. Interscapular brown adipose tissue (iBAT, inguinal subcutaneous WAT (sWAT and epididymal WAT (eWAT were harvested for gene and protein expression analysis. In addition, cultured primary mice brown adipocyte (BA and white adipocyte (WA treated with or without CL316,243 were harvested for gene expression analysis. The inflammatory adipokines expressed significantly higher in WAT than BAT at baseline. They were rapidly changed in iBAT, while down-regulated in sWAT and up-regulated in eWAT during the cold acclimation. Upon CL316,243 treatment, detected inflammatory adipokines except Leptin were transiently increased in both BA and WA. Our in vivo and in vitro data demonstrate that the browning process alters the inflammatory adipokines expression in adipose tissues, which is acutely responded to in iBAT, dynamically decreased in sWAT whilst increased in eWAT for compensation.

  4. Identification of anti-inflammatory effects of extract of brown algae Padina sp. in mice (Mus musculus: A pilot study

    Directory of Open Access Journals (Sweden)

    Dwi Fitrah Ariani Bahar

    2016-06-01

    Full Text Available Infection, tissue damage, or interference immune response are factors that cause inflasmmatory reactions of teeth and surrounding tissues. To reduce the side effects of pharmaceutical drugs, it is necessary to research which uses the principle of back to nature as a source of medicines. One of the natural ingredients that have anti-inflammatory activity is brown algae Padina sp. containing polysaccharides, PUFA, and fucoxanthin. The purpose of this research is to determine antiinflammatory effects of extract brown algae Padina sp. in mice. The research design is pretest and post test with control group design. Sample were 15 male mice weighing 14-35g. Mice were divided into three treatment groups (n=5. G1 (negative control NaCMC 1%, G2 (positive control sodium diclofenac 0.35mg/35g B/V, and G3 was extracted with methanol and Padina sp. dose 7mg/35g B/V. After 30 minutes of testing material was injected, peptone 1% (0.05ml is injected at subplantar area of mice left paw. Measurements were taken using plethysmometer. Data was analysis using repeated ANOVA test. The results showed that volume inflammation of the extract brown algae Padina sp. on V0=0.170ml, V1=0.164 ml, V2=0.120ml, V3=0.108ml, V4=0.138ml, respectively. Repeated ANOVA test obtained P value (<.05 in the Padina sp. group. In conclusion, extract brown algae Padina sp. has anti-inflammatory effects in mice.

  5. Brown Fat and Browning for the Treatment of Obesity and Related Metabolic Disorders

    Directory of Open Access Journals (Sweden)

    So Hun Kim

    2016-02-01

    Full Text Available Brown fat is a specialized fat depot that can increase energy expenditure and produce heat. After the recent discovery of the presence of active brown fat in human adults and novel transcription factors controlling brown adipocyte differentiation, the field of the study of brown fat has gained great interest and is rapidly growing. Brown fat expansion and/or activation results in increased energy expenditure and a negative energy balance in mice and limits weight gain. Brown fat is also able to utilize blood glucose and lipid and results in improved glucose metabolism and blood lipid independent of weight loss. Prolonged cold exposure and beta adrenergic agonists can induce browning of white adipose tissue. The inducible brown adipocyte, beige adipocyte evolving by thermogenic activation of white adipose tissue have different origin and molecular signature from classical brown adipocytes but share the characteristics of high mitochondria content, UCP1 expression and thermogenic capacity when activated. Increasing browning may also be an efficient way to increase whole brown fat activity. Recent human studies have shown possibilities that findings in mice can be reproduced in human, making brown fat a good candidate organ to treat obesity and its related disorders.

  6. Inherent plasticity of brown adipogenesis in white fat of mice allows for recovery from effects of post-natal malnutrition.

    Directory of Open Access Journals (Sweden)

    Leslie P Kozak

    Full Text Available Interscapular brown adipose tissue (iBAT is formed during fetal development and stable for the life span of the mouse. In addition, brown adipocytes also appear in white fat depots (wBAT between 10 and 21 days of age in mice maintained at a room temperature of 23 °C. However, this expression is transient. By 60 days of age the brown adipocytes have disappeared, but they can re-emerge if the adult mouse is exposed to the cold (5 °C or treated with β3-adrenergic agonists. Since the number of brown adipocytes that can be induced in white fat influences the capacity of the mouse to resist the obese state, we determined the effects of the nutritional conditions on post-natal development (birth to 21 days of wBAT and its long-term effects on diet-induced obesity (DIO. Under-nutrition caused essentially complete suppression of wBAT in inguinal fat at 21 days of age, as indicated by expression of Ucp1 and genes of mitochondrial structure and function based upon microarray and qRT-PCR analysis, whereas over-nutrition had no discernible effects on wBAT induction. Surprisingly, the suppression of wBAT at 21 days of age did not affect DIO in adult mice maintained at 23 °C, nor did it affect the reduction in obesity or cold tolerance when DIO mice were exposed to the cold at 5 °C for one week. Gene expression analysis indicated that mice raised under conditions that suppressed wBAT at 21 days of age were able to normally induce wBAT as adults. Therefore, neither severe hypoleptinemia nor hypoinsulinemia during suckling permanently impaired brown adipogenesis in white fat. In addition, energy balance studies of DIO mice exposed to cold indicates that mice with reduced adipose stores preferentially increased food intake, whereas those with larger adipose tissue depots preferred to utilize energy from their adipose stores.

  7. Maternal high-fat diet during lactation impairs thermogenic function of brown adipose tissue in offspring mice

    Science.gov (United States)

    Liang, Xingwei; Yang, Qiyuan; Zhang, Lupei; Maricelli, Joseph W; Rodgers, Buel D.; Zhu, Mei-Jun; Du, Min

    2016-01-01

    Maternal obesity and high-fat diet (HFD) predisposes offspring to obesity and metabolic diseases. Due to uncoupling, brown adipose tissue (BAT) dissipates energy via heat generation, mitigating obesity and diabetes. The lactation stage is a manageable period for improving the health of offspring of obese mothers, but the impact of maternal HFD during lactation on offspring BAT function is unknown. To determine, female mice were fed either a control or HFD during lactation. At weaning, HFD offspring gained more body weight and had greater body fat mass compared to the control, and these differences maintained into adulthood, which correlated with glucose intolerance and insulin resistance in HFD offspring. Adaptive thermogenesis of BAT was impaired in HFD offspring at weaning. In adulthood, HFD offspring BAT had lower Ucp1 expression and thermogenic activity. Mechanistically, maternal HFD feeding during lactation elevated peripheral serotonin, which decreased the sensitivity of BAT to sympathetic β3-adrenergic signaling. Importantly, early postnatal metformin administration decreased serotonin concentration and ameliorated the impairment of offspring BAT due to maternal HFD. Our data suggest that attenuation of BAT thermogenic function may be a key mechanism linking maternal HFD during lactation to persisted metabolic disorder in the offspring. PMID:27686741

  8. Xanthohumol improved cognitive flexibility in young mice.

    Science.gov (United States)

    Zamzow, Daniel R; Elias, Valerie; Legette, LeeCole L; Choi, Jaewoo; Stevens, J Fred; Magnusson, Kathy R

    2014-12-15

    The protein palmitoylation cycle has been shown to be important for protein signaling and synaptic plasticity. Data from our lab showed a change in the palmitoylation status of certain proteins with age. A greater percentage of the NMDA receptor subunits GluN2A and GluN2B, along with Fyn and PSD95 proteins, were palmitoylated in the old mice. The higher level of protein palmitoylation was also associated with poorer learning scores. Xanthohumol is a prenylated flavonoid that has been shown to increase beta-oxidation in the livers of rodents, decreasing circulating free fatty acids in the serum. What is not known is whether the application of xanthohumol could influence the palmitoylation status of proteins. In this study, young and old mice were fed a diet supplemented with xanthohumol for 8 weeks. Spatial memory was assessed with the Morris water maze and protein palmitoylation quantified. The young xanthohumol-treated mice showed a significant improvement in cognitive flexibility. However, this appeared to be associated with the young control mice, on a defined, phytoestrogen-deficient diet, performing as poorly as the old mice and xanthohumol reversing this effect. The old mice receiving xanthohumol did not significantly improve their learning scores. Xanthohumol treatment was unable to affect the palmitoylation of NMDA receptor subunits and associated proteins assessed in this study. This evidence suggests that xanthohumol may play a role in improving cognitive flexability in young animals, but it appears to be ineffective in adjusting the palmitoylation status of neuronal proteins in aged individuals.

  9. Ketone esters increase brown fat in mice and overcome insulin resistance in other tissues in the rat.

    Science.gov (United States)

    Veech, Richard L

    2013-10-01

    Brown adipose tissue (BAT) is classically activated by sympathetic nervous stimulation resulting from exposure to cold. Feeding a high-fat diet also induces development of brown fat, but is decreased by caloric restriction. Blood ketone bodies, which function as alternative energy substrates to glucose, are increased during caloric restriction. Here we discuss the unexpected observation that feeding an ester of ketone bodies to the mouse, which increases blood ketone body concentrations, results in an activation of brown fat. The mechanism of this activation of brown fat is similar to that occurring from cold exposure in that cyclic adenosine monophosphate (AMP) levels are increased as are levels of the transcription factor cyclic AMP-responsive element-binding protein, which is also increased by ketone ester feeding. Other effects of feeding ketone esters, in addition to their ability to induce brown fat, are discussed such as their ability to overcome certain aspects of insulin resistance and to ameliorate the accumulation of amyloid and phosphorylated tau protein in brain, and improve cognitive function, in a triple transgenic mouse model of Alzheimer's disease. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  10. Comparative analysis for performance of brown coal combustion in a vortex furnace with improved design

    Science.gov (United States)

    Krasinsky, D. V.

    2016-09-01

    Comparative study of 3D numerical simulation of fluid flow and coal-firing processes was applied for flame combustion of Kansk-Achinsk brown coal in a vortex furnace of improved design with bottom injection of secondary air. The analysis of engineering performance of this furnace was carried out for several operational modes as a function of coal grinding fineness and coal input rate. The preferable operational regime for furnace was found.

  11. Non-Invasive Quantification of White and Brown Adipose Tissues and Liver Fat Content by Computed Tomography in Mice

    Science.gov (United States)

    Lubura, Marko; Hesse, Deike; Neumann, Nancy; Scherneck, Stephan; Wiedmer, Petra; Schürmann, Annette

    2012-01-01

    Objectives Obesity and its distribution pattern are important factors for the prediction of the onset of diabetes in humans. Since several mouse models are suitable to study the pathophysiology of type 2 diabetes the aim was to validate a novel computed tomograph model (Aloka-Hitachi LCT-200) for the quantification of visceral, subcutaneous, brown and intrahepatic fat depots in mice. Methods Different lean and obese mouse models (C57BL/6, B6.V-Lepob, NZO) were used to determine the most adequate scanning parameters for the detection of the different fat depots. The data were compared with those obtained after preparation and weighing the fat depots. Liver fat content was determined by biochemical analysis. Results The correlations between weights of fat tissues on scale and weights determined by CT were significant for subcutaneous (r2 = 0.995), visceral (r2 = 0.990) and total white adipose tissue (r2 = 0.992). Moreover, scans in the abdominal region, between lumbar vertebrae L4 to L5 correlated with whole-body fat distribution allowing experimenters to reduce scanning time and animal exposure to radiation and anesthesia. Test-retest reliability and measurements conducted by different experimenters showed a high reproducibility in the obtained results. Intrahepatic fat content estimated by CT was linearly related to biochemical analysis (r2 = 0.915). Furthermore, brown fat mass correlated well with weighted brown fat depots (r2 = 0.952). In addition, short-term cold-expose (4°C, 4 hours) led to alterations in brown adipose tissue attributed to a reduction in triglyceride content that can be visualized as an increase in Hounsfield units by CT imaging. Conclusion The 3D imaging of fat by CT provides reliable results in the quantification of total, visceral, subcutaneous, brown and intrahepatic fat in mice. This non-invasive method allows the conduction of longitudinal studies of obesity in mice and therefore enables experimenters to investigate

  12. Exendin-4 improves fat metabolism of brown adipose tissue in high-fat diet-induced obese C57BL/6J mice%胰高血糖素样肽1受体激动剂exendin-4增加高脂喂养的C57BL/6J小鼠棕色脂肪脂代谢

    Institute of Scientific and Technical Information of China (English)

    魏琼; 陈济安; 孙玉香; 王少华; 李玲; 孙子林

    2015-01-01

    Objective To investigate the role of exendin-4 treatment on fat metabolism of brown adipose tissue in C57BL/6J mice induced with high-fat diet. Methods Thirty six-week-old C57BL/6J mice were randomly divided into 3 groups(10 mice in each group):control group, high-fat diet (HFD) group, and HFD group treated with exendin-4. After 16 weeks, the body weight, body fat composition, free fatty acids, leptin, triglycerides level of each group were measured. The mRNA and protein expression of glucose transporter type 4 (GLUT-4), peroxisome proliferative activated receptor γ2(PPAR-γ2), perilipin and uncoupling protein 1(UCP-1) in the scapular brown adipose tissue were detected with real-time quantitative polymerase chain reaction(PCR) and Western blotting methods. One-way ANOVA was used when data were compared among multiple groups and t analysis was applied for comparison between two groups. Results Compared with those in control group, the body weight, body fat composition, free fatty acids, leptin and triglyceride levels increased significantly in the HFD group (t=7.34, 6.11, 8.33, 10.51, 4.19, all P<0.05);the mRNA and protein expression of GLUT-4, PPAR-γ2, perilipin and UCP-1 in the scapular brown adipose tissue in HFD group decreased significantly when compared with those in control group (t=7.15-34.79, all P<0.05). Compared with those in the HFD group, the body weight, body fat composition, free fatty acids, leptin and triglyceride levels decreased significantly in the exendin-4-treating group(t=5.63, 4.04, 8.85, 6.06, 3.07, all P<0.05), while the mRNA and protein expression of GLUT-4, PPAR-γ2, perilipin and UCP-1 increased significantly in the scapular brown adipose tissue in the exendin-4-treating group(t=5.38-21.69, all P<0.05). Conclusion GLP-1 receptor agonist may reduce body weight via regulating lipid metabolism in brown fat.%目的:观察胰高血糖素样肽1(GLP-1)受体激动剂exendin-4干预对高脂饮食喂养的C57BL/6J小鼠棕色脂肪

  13. Metabolic activity of brown, "beige," and white adipose tissues in response to chronic adrenergic stimulation in male mice.

    Science.gov (United States)

    Labbé, Sébastien M; Caron, Alexandre; Chechi, Kanta; Laplante, Mathieu; Lecomte, Roger; Richard, Denis

    2016-07-01

    Classical brown adipocytes such as those found in interscapular brown adipose tissue (iBAT) represent energy-burning cells, which have been postulated to play a pivotal role in energy metabolism. Brown adipocytes can also be found in white adipose tissue (WAT) depots [e.g., inguinal WAT (iWAT)] following adrenergic stimulation, and they have been referred to as "beige" adipocytes. Whether the presence of these adipocytes, which gives iWAT a beige appearance, can confer a white depot with some thermogenic activity remains to be seen. In consequence, we designed the present study to investigate the metabolic activity of iBAT, iWAT, and epididymal white depots in mice. Mice were either 1) kept at thermoneutrality (30°C), 2) kept at 30°C and treated daily for 14 days with an adrenergic agonist [CL-316,243 (CL)], or 3) housed at 10°C for 14 days. Metabolic activity was assessed using positron emission tomography imaging with fluoro-[(18)F]deoxyglucose (glucose uptake), fluoro-[(18)F]thiaheptadecanoic acid (fatty acid uptake), and [(11)C]acetate (oxidative activity). In each group, substrate uptakes and oxidative activity were measured in anesthetized mice in response to acute CL. Our results revealed iBAT as a major site of metabolic activity, which exhibited enhanced glucose and nonesterified fatty acid uptakes and oxidative activity in response to chronic cold and CL. On the other hand, beige adipose tissue failed to exhibit appreciable increase in oxidative activity in response to chronic cold and CL. Altogether, our results suggest that the contribution of beige fat to acute-CL-induced metabolic activity is low compared with that of iBAT, even after sustained adrenergic stimulation.

  14. Bezafibrate administration improves behavioral deficits and tau pathology in P301S mice.

    Science.gov (United States)

    Dumont, Magali; Stack, Cliona; Elipenahli, Ceyhan; Jainuddin, Shari; Gerges, Meri; Starkova, Natalia; Calingasan, Noel Y; Yang, Lichuan; Tampellini, Davide; Starkov, Anatoly A; Chan, Robin B; Di Paolo, Gilbert; Pujol, Aurora; Beal, M Flint

    2012-12-01

    Peroxisome proliferator-activated receptors (PPARs) are ligand-mediated transcription factors, which control both lipid and energy metabolism and inflammation pathways. PPARγ agonists are effective in the treatment of metabolic diseases and, more recently, neurodegenerative diseases, in which they show promising neuroprotective effects. We studied the effects of the pan-PPAR agonist bezafibrate on tau pathology, inflammation, lipid metabolism and behavior in transgenic mice with the P301S human tau mutation, which causes familial frontotemporal lobar degeneration. Bezafibrate treatment significantly decreased tau hyperphosphorylation using AT8 staining and the number of MC1-positive neurons. Bezafibrate treatment also diminished microglial activation and expression of both inducible nitric oxide synthase and cyclooxygenase 2. Additionally, the drug differentially affected the brain and brown fat lipidome of control and P301S mice, preventing lipid vacuoles in brown fat. These effects were associated with behavioral improvement, as evidenced by reduced hyperactivity and disinhibition in the P301S mice. Bezafibrate therefore exerts neuroprotective effects in a mouse model of tauopathy, as shown by decreased tau pathology and behavioral improvement. Since bezafibrate was given to the mice before tau pathology had developed, our data suggest that bezafibrate exerts a preventive effect on both tau pathology and its behavioral consequences. Bezafibrate is therefore a promising agent for the treatment of neurodegenerative diseases associated with tau pathology.

  15. Metformin Prevents Fatty Liver and Improves Balance of White/Brown Adipose in an Obesity Mouse Model by Inducing FGF21.

    Science.gov (United States)

    Kim, Eun Kyung; Lee, Seung Hoon; Jhun, Joo Yeon; Byun, Jae Kyeong; Jeong, Jeong Hee; Lee, Seon-Young; Kim, Jae Kyung; Choi, Jong Young; Cho, Mi-La

    2016-01-01

    Obesity and its associated metabolic disorders are related to the onset of fatty liver and the balance of white adipose tissue (WAT) and brown adipose tissue (BAT). We hypothesized that metformin, an effective pharmacological treatment for type 2 diabetes, would inhibit white adipogenesis, fatty liver, and metabolic dysfunction. Metformin was treated daily for 14 weeks in a high-fat dieting C57BL/6J mice. Serum biomarkers were analyzed and protein level was assessed using confocal staining or flow cytometry. The development of lipid drops in the liver cells and white adipocyte was measured using hematoxylin and eosin or Oil Red O stains. Gene expressions were analyzed with quantitative real-time PCR. Metformin treatment decreased the body weight and improved the metabolic profile of obese mice. In obese mice, metformin also induced the expression of BAT-related markers and increased fibroblast growth factor (FGF) 21 expression in the liver and in white adipocyte. Metformin suppressed white adipocyte differentiation via induction of FGF21. Metformin improves Treg/Th17 balance in CD4+ T cells in mice with high-fat diet-induced obesity. Metformin also improves glucose metabolism and metabolic disorder. Interleukin-17 deficiency also decreases inflammation in mice. Therefore, metformin may be therapeutically useful for the treatment of obesity and metabolic dysfunction.

  16. A role for phosphodiesterase 3B in acquisition of brown fat characteristics by white adipose tissue in male mice.

    Science.gov (United States)

    Guirguis, Emilia; Hockman, Steven; Chung, Youn Wook; Ahmad, Faiyaz; Gavrilova, Oksana; Raghavachari, Nalini; Yang, Yanqin; Niu, Gang; Chen, Xiaoyuan; Yu, Zu Xi; Liu, Shiwei; Degerman, Eva; Manganiello, Vincent

    2013-09-01

    Obesity is linked to various diseases, including insulin resistance, diabetes, and cardiovascular disorders. The idea of inducing white adipose tissue (WAT) to assume characteristics of brown adipose tissue (BAT), and thus gearing it to fat burning instead of storage, is receiving serious consideration as potential treatment for obesity and related disorders. Phosphodiesterase 3B (PDE3B) links insulin- and cAMP-signaling networks in tissues associated with energy metabolism, including WAT. We used C57BL/6 PDE3B knockout (KO) mice to elucidate mechanisms involved in the formation of BAT in epididymal WAT (EWAT) depots. Examination of gene expression profiles in PDE3B KO EWAT revealed increased expression of several genes that block white and promote brown adipogenesis, such as C-terminal binding protein, bone morphogenetic protein 7, and PR domain containing 16, but a clear BAT-like phenotype was not completely induced. However, acute treatment of PDE3B KO mice with the β3-adrenergic agonist, CL316243, markedly increased the expression of cyclooxygenase-2, which catalyzes prostaglandin synthesis and is thought to be important in the formation of BAT in WAT and the elongation of very long-chain fatty acids 3, which is linked to BAT recruitment upon cold exposure, causing a clear shift toward fat burning and the induction of BAT in KO EWAT. These data provide insight into the mechanisms of BAT formation in mouse EWAT, suggesting that, in a C57BL/6 background, an increase in cAMP, caused by ablation of PDE3B and administration of CL316243, may promote differentiation of prostaglandin-responsive progenitor cells in the EWAT stromal vascular fraction into functional brown adipocytes.

  17. Estrogens increase expression of bone morphogenetic protein 8b in brown adipose tissue of mice

    NARCIS (Netherlands)

    A. Grefhorst (Aldo); J.C. van den Beukel (Anneke); A.F. van Houten (A.); J. Steenbergen (Jacobie); J.A. Visser (Jenny); A.P.N. Themmen (Axel)

    2015-01-01

    textabstractBackground: In mammals, white adipose tissue (WAT) stores fat and brown adipose tissue (BAT) dissipates fat to produce heat. Several studies showed that females have more active BAT. Members of the bone morphogenetic protein (BMP) and fibroblast growth factor (FGF) families are expressed

  18. Effects of epigallocatechin-3-gallate on thermogenesis and mitochondrial biogenesis in brown adipose tissues of diet-induced obese mice.

    Science.gov (United States)

    Lee, Mak-Soon; Shin, Yoonjin; Jung, Sunyoon; Kim, Yangha

    2017-01-01

    Background: Epigallocatechin-3-gallate (EGCG) is the major polyphenol in green tea and has been considered a natural agent that can help to reduce the risk of obesity. Objective: The aim of this study was to investigate the effects of EGCG on thermogenesis and mitochondrial biogenesis in brown adipose tissue (BAT) of diet-induced obese mice. Methods: Male C57BL/6J mice were provided a high-fat diet for 8 weeks to induce obesity, following which they were divided into two groups: one on a high-fat control diet and the other on a 0.2% EGCG (w/w)-supplemented high-fat diet for another 8 weeks. Results: The EGCG-supplemented group showed decreased body weight gain, and plasma and liver lipids. EGCG-fed mice exhibited higher body temperature and mitochondrial DNA (mtDNA) content in BAT. The messenger RNA levels of genes related to thermogenesis and mitochondrial biogenesis in BAT were increased by EGCG. Moreover, adenosine monophosphate-activated protein kinase (AMPK) activity in BAT was stimulated by EGCG. Conclusions: The results suggest that EGCG may have anti-obesity properties through BAT thermogenesis and mitochondria biogenesis, which are partially associated with the regulation of genes related to thermogenesis and mitochondria biogenesis, and the increase in mtDNA replication and AMPK activation in BAT of diet-induced obese mice.

  19. Anti-obesity effects of germinated brown rice extract through down-regulation of lipogenic genes in high fat diet-induced obese mice.

    Science.gov (United States)

    Ho, Jin-Nyoung; Son, Mi-Eun; Lim, Won-Chul; Lim, Seung-Taik; Cho, Hong-Yon

    2012-01-01

    Lipid accumulation using Oil Red O dye was measured in 3T3-L1 murine adipocytes to examine the anti-obesity effect of four types of germinated rice, including germinated brown rice (GBR), germinated waxy brown rice (GWBR), germinated black rice (GB-R), and germinated waxy black rice (GWB-R). GBR methanol extract exhibited the highest suppression of lipid accumulation in the 3T3-L1 cell line and also the anti-obesity effect of GBR on high fat induced-obese mice. The mice were divided into three groups and were administered: ND, a normal diet; HFD control, a high fat diet; and GBR, a high fat diet plus 0.15% GBR methanol extract for 7 weeks. GBR administration significantly decreased body weight gain and lipid accumulation in the liver and epididymal adipose tissue as compared to the HFD control group. In addition, serum triglycerides (TGs) and total cholesterol (TC) levels were significantly decreased by following GBR administration compared with those in the HFD control group, whereas the high-density lipoprotein (HDL) cholesterol level increased. Furthermore, the mRNA levels of adipogenic transcriptional factors, such as CCAAT enhancer binding protein (C/EBP)-α, sterol regulatory element-binding protein (SREBP)-1c, and peroxisome proliferator activated receptors (PPAR)-γ, and related genes (aP2, FAS), decreased significantly. Taken together, GBR administration suppressed body weight gain and lipid accumulation in the liver and epididymal adipocytes, and improved serum lipid profiles, in part, by controlling adipogenesis through a reduction in transcriptional factors. These results suggest that GBR is a potential agent against obesity.

  20. Resveratrol enhances brown adipocyte formation and function by activating AMP-activated protein kinase (AMPK) α1 in mice fed high-fat diet.

    Science.gov (United States)

    Wang, Songbo; Liang, Xingwei; Yang, Qiyuan; Fu, Xing; Zhu, Meijun; Rodgers, B D; Jiang, Qingyan; Dodson, Michael V; Du, Min

    2017-04-01

    Enhancing the formation and function of brown adipose tissue (BAT) increases thermogenesis and hence reduces obesity. Thus, we investigate the effects of resveratrol (Resv) on brown adipocyte formation and function in mouse interscapular BAT (iBAT). CD1 mice and stromal vascular cells (SVCs) isolated from iBAT were treated with Resv. Expression of brown adipogenic and thermogenic markers, and involvement of AMP-activated protein kinase (AMPK)α1 were assessed. In vivo, Resv-enhanced expression of brown adipogenic markers, PR domain-containing 16 (PRDM16) and thermogenic genes, uncoupling protein 1 (UCP1) and cytochrome C in iBAT, along with smaller lipid droplets, elevated AMPKα activity and increased oxygen consumption. Meanwhile, Resv promoted expression of PRDM16, UCP1, PGC1α, cytochrome C and pyruvate dehydrogenase (PDH) in differentiated iBAT SVCs, suggesting that Resv enhanced brown adipocyte formation and function in vitro. In addition, Resv stimulated AMPKα and oxygen consumption in differentiated iBAT SVCs. However, the promotional effects of Resv were diminished by AMPK inhibition or AMPKα1 knockout, implying the involvement of AMPKα1 in this process. Resv enhanced brown adipocyte formation and thermogenic function in mouse iBAT by promoting the expression of brown adipogenic markers via activating AMPKα1, which contributed to the anti-obesity effects of Resv. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. In vivo adeno-associated viral vector-mediated genetic engineering of white and brown adipose tissue in adult mice.

    Science.gov (United States)

    Jimenez, Veronica; Muñoz, Sergio; Casana, Estefania; Mallol, Cristina; Elias, Ivet; Jambrina, Claudia; Ribera, Albert; Ferre, Tura; Franckhauser, Sylvie; Bosch, Fatima

    2013-12-01

    Adipose tissue is pivotal in the regulation of energy homeostasis through the balance of energy storage and expenditure and as an endocrine organ. An inadequate mass and/or alterations in the metabolic and endocrine functions of adipose tissue underlie the development of obesity, insulin resistance, and type 2 diabetes. To fully understand the metabolic and molecular mechanism(s) involved in adipose dysfunction, in vivo genetic modification of adipocytes holds great potential. Here, we demonstrate that adeno-associated viral (AAV) vectors, especially serotypes 8 and 9, mediated efficient transduction of white (WAT) and brown adipose tissue (BAT) in adult lean and obese diabetic mice. The use of short versions of the adipocyte protein 2 or uncoupling protein-1 promoters or micro-RNA target sequences enabled highly specific, long-term AAV-mediated transgene expression in white or brown adipocytes. As proof of concept, delivery of AAV vectors encoding for hexokinase or vascular endothelial growth factor to WAT or BAT resulted in increased glucose uptake or increased vessel density in targeted depots. This method of gene transfer also enabled the secretion of stable high levels of the alkaline phosphatase marker protein into the bloodstream by transduced WAT. Therefore, AAV-mediated genetic engineering of adipose tissue represents a useful tool for the study of adipose pathophysiology and, likely, for the future development of new therapeutic strategies for obesity and diabetes.

  2. In Vivo Adeno-Associated Viral Vector–Mediated Genetic Engineering of White and Brown Adipose Tissue in Adult Mice

    Science.gov (United States)

    Jimenez, Veronica; Muñoz, Sergio; Casana, Estefania; Mallol, Cristina; Elias, Ivet; Jambrina, Claudia; Ribera, Albert; Ferre, Tura; Franckhauser, Sylvie; Bosch, Fatima

    2013-01-01

    Adipose tissue is pivotal in the regulation of energy homeostasis through the balance of energy storage and expenditure and as an endocrine organ. An inadequate mass and/or alterations in the metabolic and endocrine functions of adipose tissue underlie the development of obesity, insulin resistance, and type 2 diabetes. To fully understand the metabolic and molecular mechanism(s) involved in adipose dysfunction, in vivo genetic modification of adipocytes holds great potential. Here, we demonstrate that adeno-associated viral (AAV) vectors, especially serotypes 8 and 9, mediated efficient transduction of white (WAT) and brown adipose tissue (BAT) in adult lean and obese diabetic mice. The use of short versions of the adipocyte protein 2 or uncoupling protein-1 promoters or micro-RNA target sequences enabled highly specific, long-term AAV-mediated transgene expression in white or brown adipocytes. As proof of concept, delivery of AAV vectors encoding for hexokinase or vascular endothelial growth factor to WAT or BAT resulted in increased glucose uptake or increased vessel density in targeted depots. This method of gene transfer also enabled the secretion of stable high levels of the alkaline phosphatase marker protein into the bloodstream by transduced WAT. Therefore, AAV-mediated genetic engineering of adipose tissue represents a useful tool for the study of adipose pathophysiology and, likely, for the future development of new therapeutic strategies for obesity and diabetes. PMID:24043756

  3. Improved methane production from brown algae under high salinity by fed-batch acclimation.

    Science.gov (United States)

    Miura, Toyokazu; Kita, Akihisa; Okamura, Yoshiko; Aki, Tsunehiro; Matsumura, Yukihiko; Tajima, Takahisa; Kato, Junichi; Nakashimada, Yutaka

    2015-01-01

    Here, a methanogenic microbial community was developed from marine sediments to have improved methane productivity from brown algae under high salinity. Fed-batch cultivation was conducted by adding dry seaweed at 1wt% total solid (TS) based on the liquid weight of the NaCl-containing sediment per round of cultivation. The methane production rate and level of salinity increased 8-fold and 1.6-fold, respectively, at the 10th round of cultivation. Moreover, the rate of methane production remained high, even at the 10th round of cultivation, with accumulation of salts derived from 10wt% TS of seaweed. The salinity of the 10th-round culture was equivalent to 5% NaCl. The improved methane production was attributed to enhanced acetoclastic methanogenesis because acetate became rapidly converted to methane during cultivation. The family Fusobacteriaceae and the genus Methanosaeta, the acetoclastic methanogen, predominated in bacteria and archaea, respectively, after the cultivation.

  4. Increased norepinephrine by medium-chain triglyceride attributable to lipolysis in white and brown adipose tissue of C57BL/6J mice.

    Science.gov (United States)

    Liu, Ying-hua; Zhang, Yong; Xu, Qing; Yu, Xiao-ming; Zhang, Xin-sheng; Wang, Jin; Xue, Chao; Yang, Xue-yan; Zhang, Rong-xin; Xue, Chang-yong

    2012-01-01

    A further investigation of the lipolysis induced by medium-chain triglyceride (MCT) was conducted on C57BL/6J mice fed with a diet containing 2% MCT or 2% long-chain triglyceride (LCT). Blood norepinephrine, body fat and blood lipid variables, and the protein or mRNA expression of the genes relevant to lipolysis were measured and analyzed in the white and brown adipose tissue (WAT, BAT). Decreased body fat and improved blood lipid profiles attributable to MCT were confirmed. A higher level of blood norepinephrine was observed with the MCT diet. The adipose triglyceride lipase (ATGL) activity and its mRNA expression, the expression of protein and mRNA of the beta 3 adrenergic receptor (β3-AR) in both WAT and BAT, and the hormone-sensitive lipase (HSL) activity and its mRNA expression in BAT were significantly increased in the mice with MCT feeding. The lipolysis induced by MCT might be partially mediated by increasing norepinephrine, thereafter signaling the up-regulation of β3-AR, ATGL, and HSL in WAT and BAT.

  5. Quantitation of Brown Adipose Tissue Perfusion in Transgenic Mice Using Near-Infrared Fluorescence Imaging

    Directory of Open Access Journals (Sweden)

    Akira Nakayama

    2003-01-01

    Full Text Available Brown adipose tissue (BAT; brown fat is the principal site of adaptive thermogenesis in the human newborn and other small mammals. Of paramount importance for thermogenesis is vascular perfusion, which controls the flow of cool blood in, and warmed blood out, of BAT. We have developed an optical method for the quantitative imaging of BAT perfusion in the living, intact animal using the heptamethine indocyanine IR-786 and near-infrared (NIR fluorescent light. We present a detailed analysis of the physical, chemical, and cellular properties of IR-786, its biodistribution and pharmacokinetics, and its uptake into BAT. Using transgenic animals with homozygous deletion of Type II iodothyronine deiodinase, or homozygous deletion of uncoupling proteins (UCPs 1 and 2, we demonstrate that BAT perfusion can be measured noninvasively, accurately, and reproducibly. Using these techniques, we show that UCP 1/2 knockout animals, when compared to wild-type animals, have a higher baseline perfusion of BAT but a similar maximal response to β3-receptor agonist. These results suggest that compensation for UCP deletion is mediated, in part, by the control of BAT perfusion. Taken together, BAT perfusion can now be measured noninvasively using NIR fluorescent light, and pharmacological modulators of thermogenesis can be screened at relatively high throughput in living animals.

  6. Hubble Space Telescope astrometry of the closest brown dwarf binary system - I. Overview and improved orbit★

    Science.gov (United States)

    Bedin, L. R.; Pourbaix, D.; Apai, D.; Burgasser, A. J.; Buenzli, E.; Boffin, H. M. J.; Libralato, M.

    2017-09-01

    Located at 2 pc, the L7.5+T0.5 dwarfs system WISE J104915.57-531906.1 (Luhman 16 AB) is the third closest system known to Earth, making it a key benchmark for detailed investigation of brown dwarf atmospheric properties, thermal evolution, multiplicity, and planet-hosting frequency. In the first study of this series - based on a multicycle Hubble Space Telescope (HST) program - we provide an overview of the project and present improved estimates of positions, proper motions, annual parallax, mass ratio, and the current best assessment of the orbital parameters of the A-B pair. Our HST observations encompass the apparent periastron of the binary at 220.5 ± 0.2 mas at epoch 2016.402. Although our data seem to be inconsistent with recent ground-based astrometric measurements, we also exclude the presence of third bodies down to Neptune masses and periods longer than a year.

  7. Improving adsorption properties of semicoke from power and industrial processing of Kansk-Achinsk brown coal

    Energy Technology Data Exchange (ETDEWEB)

    Koz' min, G.V.; Lozhaeva, V.I.; Kim, S.T.; Kalyuzhnyi, V.V.; Nikolaeva, V.A.

    1981-09-01

    Possibility is investigated of improving adsorption properties of semicoke obtained by thermocontact coking from Irsha-Borodinsk brown coal in order to use it for cleaning industrial waste water. Parameters of the porous structures, physical, chemical and adsorption properties of the semicoke are given after subjection to progressive activation by steam at 500-850 C with combustion losses of 11-48 percent. Analysis of the parameters of the porous structure showed that the total volume of micro and mezopores increased from 135 x 10 /SUP/-/SUP/6 to 779 x 10 /SUP/-/SUP/6 m/SUP/3/kg. This is mainly due to the increase in mezopores. Maximum adsorption of iodine is obtained from semicoke activated at a combustion loss of 11 percent. (4 refs.) (In Russian)

  8. Inhibition of myostatin in mice improves insulin sensitivity via irisin-mediated cross talk between muscle and adipose tissues.

    Science.gov (United States)

    Dong, Jiangling; Dong, Yanjun; Dong, Yanlan; Chen, Fang; Mitch, William E; Zhang, Liping

    2016-03-01

    In mice, a high-fat diet (HFD) induces obesity, insulin resistance and myostatin production. We tested whether inhibition of myostatin in mice can reverse these HFD-induced abnormalities. C57BL/6 mice were fed a HFD for 16 weeks including the final 4 weeks some mice were treated with an anti-myostatin peptibody. Body composition, the respiratory exchange ratio plus glucose and insulin tolerance tests were examined. Myostatin knock down in C2C12 cells was performed using small hairpin RNA lentivirus. Adipose tissue-derived stem cells were cultured to measure their responses to conditioned media from C2C12 cells lacking myostatin, or to recombinant myostatin or irisin. Isolated peritoneal macrophages were treated with myostatin or irisin to determine whether myostatin or irisin induce inflammatory mechanisms. In HFD-fed mice, peptibody treatment stimulated muscle growth and improved insulin resistance. The improved glucose and insulin tolerances were confirmed when we found increased muscle expression of p-Akt and the glucose transporter, Glut4. In HFD-fed mice, the peptibody suppressed macrophage infiltration and the expression of proinflammatory cytokines in both the muscle and adipocytes. Inhibition of myostatin caused the conversion of white (WAT) to brown adipose tissue, whereas stimulating fatty acid oxidation and increasing energy expenditure. The related mechanism is a muscle-to-fat cross talk mediated by irisin. Myostatin inhibition increased peroxisome proliferator-activated receptor gamma, coactivator 1α expression and irisin production in the muscle. Irisin then stimulated WAT browning. Irisin also suppresses inflammation and stimulates macrophage polarization from M1 to M2 types. These results uncover a metabolic pathway from an increase in myostatin that suppresses irisin leading to the activation of inflammatory cytokines and insulin resistance. Thus, myostatin is a potential therapeutic target to treat insulin resistance of type II diabetes as well

  9. Metformin lowers plasma triglycerides by promoting vldl-triglyceride clearance by brown adipose tissue in mice

    NARCIS (Netherlands)

    Geerling, J.J.; Boon, M.R.; Zon, G.C. van der; Berg, S.A.A. van den; Hoek, A.M. van den; Lombès, M.; Princen, H.M.G.; Havekes, L.M.; Rensen, P.C.N.; Guigas, B.

    2014-01-01

    Metformin is the first-line drug for the treatment of type 2 diabetes. Besides its well-characterized antihyperglycemic properties, metformin also lowers plasma VLDL triglyceride (TG). In this study, we investigated the underlying mechanisms in APOE*3-Leiden.CETP mice, a well-established model for h

  10. Improvement of mount preparations in showing myenteric nerve plexus from intestines of mice

    Institute of Scientific and Technical Information of China (English)

    王红; 张远强; 孙岚; 王春杨; 尹岭

    2003-01-01

    Objective: The whole mount preparations of digestive tract is an effective experimental way to study the appearance and distribution of nerve plexus in digestive tract. Although myentric nerve plexus preparations technique was reported very early. But we have done experiment over and over during our research work in order to improve this traditional method and to meet the needs of our research work, we made some progresses in regular mount preparations after many experiments, which helped offer better situation in observing myentric nerve plexus. Methods: Five healthy male adult Kunming mice (20-30 g in weight) were used in this study. After intraperitoneal injection of muscle relaxant, with dislocation of cervical vertebra method, the abdominal cavity was exposed through abdominal median incision. After several steps of mount preparations the mucous layer and longitudinal muscle layer mount preparations with myentric nerve plexus were stripped under anatomical microscope. Immunohistochemical staining was also used in our study. Results: The mount preparation samples with myentric nerve plexus from intestines of mice showed positive SP immunoreaction. The positive cells were dark brown. Many of the cytons appeared circular and oval, while some appeared triangular or irregular. Conclusion: Our improved method is really a good method to show enteric nerve plexus. The method has many advantages and is particularly applied to small animals such as Kunming mice and BALB/c mice, weighing from 20 g to 30 g.

  11. Burn Induces Browning of the Subcutaneous White Adipose Tissue in Mice and Humans

    Directory of Open Access Journals (Sweden)

    David Patsouris

    2015-11-01

    Full Text Available Burn is accompanied by long-lasting immuno-metabolic alterations referred to as hypermetabolism that are characterized by a considerable increase in resting energy expenditure and substantial whole-body catabolism. In burned patients, the length and magnitude of the hypermetabolic state is the highest of all patients and associated with profoundly increased morbidity and mortality. Unfortunately, the mechanisms involved in hypermetabolism are essentially unknown. We hypothesized that the adipose tissue plays a central role for the induction and persistence of hypermetabolism post-burn injury. Here, we show that burn induces a switch in the phenotype of the subcutaneous fat from white to beige, with associated characteristics such as increased mitochondrial mass and UCP1 expression. Our results further demonstrate the significant role of catecholamines and interleukin-6 in this process. We conclude that subcutaneous fat remodeling and browning represent an underlying mechanism that explains the elevated energy expenditure in burn-induced hypermetabolism.

  12. Anti-obesity effects of Arctii Fructus (Arctium lappa) in white/brown adipocytes and high-fat diet-induced obese mice.

    Science.gov (United States)

    Han, Yo-Han; Kee, Ji-Ye; Kim, Dae-Seung; Park, Jinbong; Jeong, Mi-Young; Mun, Jung-Geon; Park, Sung-Joo; Lee, Jong-Hyun; Um, Jae-Young; Hong, Seung-Heon

    2016-12-07

    Arctii Fructus is traditionally used in oriental pharmacies as an anti-inflammatory medicine. Although several studies have shown its anti-inflammatory effects, there have been no reports on its use in obesity related studies. In this study, the anti-obesity effect of Arctii Fructus was investigated in high-fat diet (HFD)-induced obese mice, and the effect was confirmed in white and primary cultured brown adipocytes. Arctii Fructus inhibited weight gain and reduced the mass of white adipose tissue in HFD-induced obese mice. Serum levels of triglyceride and LDL-cholesterol were reduced, and HDL-cholesterol was increased in the Arctii Fructus treated group. In 3T3-L1 cells, a water extract (WAF) and 70% EtOH extract (EtAF) of Arctii Fructus significantly inhibited adipogenesis and suppressed the expression of proliferator-activated receptor gamma and CCAAT/enhancer-binding protein alpha. In particular, EtAF activated the phosphorylation of AMP-activated protein kinase. On the other hand, uncoupling protein 1 and peroxisome proliferator-activated receptor gamma coactivator 1-alpha, known as brown adipocytes specific genes, were increased in primary cultured brown adipocytes by WAF and EtAF. This study shows that Arctii Fructus prevents the development of obesity through the inhibition of white adipocyte differentiation and activation of brown adipocyte differentiation which suggests that Arctii Fructus could be an effective therapeutic for treating or preventing obesity.

  13. Adipocytes in both brown and white adipose tissue of adult mice are functionally connected via gap junctions: implications for Chagas disease.

    Science.gov (United States)

    Burke, Shoshana; Nagajyothi, Fnu; Thi, Mia M; Hanani, Menachem; Scherer, Philipp E; Tanowitz, Herbert B; Spray, David C

    2014-11-01

    Adipose tissue serves as a host reservoir for the protozoan Trypanosoma cruzi, the causative organism in Chagas disease. Gap junctions interconnect cells of most tissues, serving to synchronize cell activities including secretion in glandular tissue, and we have previously demonstrated that gap junctions are altered in various tissues and cells infected with T. cruzi. Herein, we examined the gap junction protein connexin 43 (Cx43) expression in infected adipose tissues. Adipose tissue is the largest endocrine organ of the body and is also involved in other physiological functions. In mammals, it is primarily composed of white adipocytes. Although gap junctions are a prominent feature of brown adipocytes, they have not been explored extensively in white adipocytes, especially in the setting of infection. Thus, we examined functional coupling in both white and brown adipocytes in mice. Injection of electrical current or the dye Lucifer Yellow into adipocytes within fat tissue spread to adjacent cells, which was reduced by treatment with agents known to block gap junctions. Moreover, Cx43 was detected in both brown and white fat tissue. At thirty and ninety days post-infection, Cx43 was downregulated in brown adipocytes and upregulated in white adipocytes. Gap junction-mediated intercellular communication likely contributes to hormone secretion and other functions in white adipose tissue and to nonshivering thermogenesis in brown fat, and modulation of the coupling by T. cruzi infection is expected to impact these functions. Copyright © 2014. Published by Elsevier Masson SAS.

  14. Insulin-independent reversal of type 1 diabetes in nonobese diabetic mice with brown adipose tissue transplant.

    Science.gov (United States)

    Gunawardana, Subhadra C; Piston, David W

    2015-06-15

    Traditional therapies for type 1 diabetes (T1D) involve insulin replacement or islet/pancreas transplantation and have numerous limitations. Our previous work demonstrated the ability of embryonic brown adipose tissue (BAT) transplants to establish normoglycemia without insulin in chemically induced models of insulin-deficient diabetes. The current study sought to extend the technique to an autoimmune-mediated T1D model and document the underlying mechanisms. In nonobese diabetic (NOD) mice, BAT transplants result in complete reversal of T1D associated with rapid and long-lasting euglycemia. In addition, BAT transplants placed prior to the onset of diabetes on NOD mice can prevent or significantly delay the onset of diabetes. As with streptozotocin (STZ)-diabetic models, euglycemia is independent of insulin and strongly correlates with decrease of inflammation and increase of adipokines. Plasma insulin-like growth factor-I (IGF-I) is the first hormone to increase following BAT transplants. Adipose tissue of transplant recipients consistently express IGF-I compared with little or no expression in controls, and plasma IGF-I levels show a direct negative correlation with glucose, glucagon, and inflammatory cytokines. Adipogenic and anti-inflammatory properties of IGF-I may stimulate regeneration of new healthy white adipose tissue, which in turn secretes hypoglycemic adipokines that substitute for insulin. IGF-I can also directly decrease blood glucose through activating insulin receptor. These data demonstrate the potential for insulin-independent reversal of autoimmune-induced T1D with BAT transplants and implicate IGF-I as a likely mediator in the resulting equilibrium. Copyright © 2015 the American Physiological Society.

  15. Altered white adipose tissue protein profile in C57BL/6J mice displaying delipidative, inflammatory, and browning characteristics after bitter melon seed oil treatment.

    Directory of Open Access Journals (Sweden)

    Cheng-Hsien Hsieh

    Full Text Available OBJECTIVE: We have previously shown that bitter melon seed oil (BMSO, which is rich in cis-9, trans-11, trans-13 conjugated linolenic acid, is more potent than soybean oil in attenuating body fat deposition in high-fat diet-induced obese C57BL/6J mice. The aim of this study was to obtain a comprehensive insight into how white adipose tissue (WAT is affected by BMSO administration and to explore the underlying mechanisms of the anti-adiposity effect of BMSO. METHODS AND RESULTS: A proteomic approach was used to identify proteins differentially expressed in the WAT of mice fed diets with or without BMSO for 11 wks. The WAT was also analyzed histologically for morphological changes. Two-dimensional gel electrophoresis (pH 4-7 revealed 32 spots showing a statistically significant difference (P2-fold change. Combined with histological evidence of macrophage infiltration and brown adipocyte recruitment, the proteomic and immunoblotting data showed that the WAT in mice subjected to long-term high dose BMSO administration was characterized by reduced caveolae formation, increased ROS insult, tissue remodeling/repair, mitochondria uncoupling, and stabilization of the actin cytoskeleton, this last change being putatively related to an increased inflammatory response. CONCLUSION: The anti-adiposity effect of BMSO is associated with WAT delipidation, inflammation, and browning. Some novel proteins participating in these processes were identified. In addition, the BMSO-mediated WAT browning may account for the increased inflammation without causing adverse metabolic effects.

  16. Up-regulation of mitochondrial activity and acquirement of brown adipose tissue-like property in the white adipose tissue of fsp27 deficient mice.

    Directory of Open Access Journals (Sweden)

    Shen Yon Toh

    Full Text Available Fsp27, a member of the Cide family proteins, was shown to localize to lipid droplet and promote lipid storage in adipocytes. We aimed to understand the biological role of Fsp27 in regulating adipose tissue differentiation, insulin sensitivity and energy balance. Fsp27(-/- mice and Fsp27/lep double deficient mice were generated and we examined the adiposity, whole body metabolism, BAT and WAT morphology, insulin sensitivity, mitochondrial activity, and gene expression changes in these mouse strains. Furthermore, we isolated mouse embryonic fibroblasts (MEFs from wildtype and Fsp27(-/- mice, followed by their differentiation into adipocytes in vitro. We found that Fsp27 is expressed in both brown adipose tissue (BAT and white adipose tissue (WAT and its levels were significantly elevated in the WAT and liver of leptin-deficient ob/ob mice. Fsp27(-/- mice had increased energy expenditure, lower levels of plasma triglycerides and free fatty acids. Furthermore, Fsp27(-/-and Fsp27/lep double-deficient mice are resistant to diet-induced obesity and display increased insulin sensitivity. Moreover, white adipocytes in Fsp27(-/- mice have reduced triglycerides accumulation and smaller lipid droplets, while levels of mitochondrial proteins, mitochondrial size and activity are dramatically increased. We further demonstrated that BAT-specific genes and key metabolic controlling factors such as FoxC2, PPAR and PGC1alpha were all markedly upregulated. In contrast, factors inhibiting BAT differentiation such as Rb, p107 and RIP140 were down-regulated in the WAT of Fsp27(-/- mice. Remarkably, Fsp27(-/- MEFs differentiated in vitro show many brown adipocyte characteristics in the presence of the thyroid hormone triiodothyronine (T3. Our data thus suggest that Fsp27 acts as a novel regulator in vivo to control WAT identity, mitochondrial activity and insulin sensitivity.

  17. An improved process for high nutrition of germinated brown rice production: Low-pressure plasma.

    Science.gov (United States)

    Chen, Hua Han; Chang, Hung Chia; Chen, Yu Kuo; Hung, Chien Lun; Lin, Su Yi; Chen, Yi Sheng

    2016-01-15

    Brown rice was exposed to low-pressure plasma ranging from 1 to 3kV for 10min. Treatment of brown rice in low-pressure plasma increases the germination percentage, seedling length, and water uptake in laboratory germination tests. Of the various treatments, 3-kV plasma exposure for 10min yielded the best results. In germinating brown rice, α-amylase activity was significantly higher in treated groups than in controls. The higher enzyme activity in plasma-treated brown rice likely triggers the rapid germination and earlier vigor of the seedlings. Low-pressure plasma also increased gamma-aminobutyric acid (GABA) levels from ∼19 to ∼28mg/100g. In addition, a marked increase in the antioxidant activity of brown rice was observed with plasma treatments compared to controls. The main finding of this study indicates that low-pressure plasma is effective at enhancing the growth and GABA accumulation of germinated brown rice, which can supply high nutrition to consumer.

  18. Irisin improves perivascular adipose tissue dysfunction via regulation of the heme oxygenase-1/adiponectin axis in diet-induced obese mice.

    Science.gov (United States)

    Hou, Ningning; Liu, Yihui; Han, Fang; Wang, Di; Hou, Xiaoshuang; Hou, Shuting; Sun, Xiaodong

    2016-10-01

    To determine whether irisin could improve perivascular adipose tissue (PVAT) dysfunction via regulation of the heme oxygenase-1 (HO-1)/adiponectin axis in obesity. C57BL/6 mice were given chow or a high-fat diet (HFD) with or without treatment with irisin. The concentration-dependent responses of the thoracic aorta with or without PVAT (PVAT+ or PVAT-) to phenylephrine were studied in an organ bath. Protein levels of HO-1 and adiponectin were determined by western blot. UCP-1, Cidea, and TNF-α gene expression in PVAT were analyzed by real-time PCR. Treatment of obese mice with irisin improved glucose and lipid metabolism, reduced plasma levels of TNF-α and malondialdehyde, and increased plasma adiponectin levels (Padiponectin receptor blocking peptide in irisin-treated HFD mice abolished the beneficial effects of irisin on PVAT function. The same results were also observed in HFD mice treated with irisin ex vivo. Treatment of HFD mice with irisin significantly enhanced protein levels of HO-1 and adiponectin, and reduced superoxide production and TNF-α expression in PVAT. Irisin treatment enhanced brown adipocyte markers UCP-1 and Cidea expression in PVAT from HFD mice. Irisin improved the anti-contractile properties of PVAT from the thoracic aorta in diet-induced obese mice. The mechanism for protective effects of irisin appeared to be related to upregulation of the HO-1/adiponectin axis in PVAT and browning of PVAT. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Refeeding-induced brown adipose tissue glycogen hyper-accumulation in mice is mediated by insulin and catecholamines.

    Directory of Open Access Journals (Sweden)

    Christopher M Carmean

    Full Text Available Brown adipose tissue (BAT generates heat during adaptive thermogenesis through a combination of oxidative metabolism and uncoupling protein 1-mediated electron transport chain uncoupling, using both free-fatty acids and glucose as substrate. Previous rat-based work in 1942 showed that prolonged partial fasting followed by refeeding led to a dramatic, transient increase in glycogen stores in multiple fat depots. In the present study, the protocol was replicated in male CD1 mice, resulting in a 2000-fold increase in interscapular BAT (IBAT glycogen levels within 4-12 hours (hr of refeeding, with IBAT glycogen stores reaching levels comparable to fed liver glycogen. Lesser effects occurred in white adipose tissues (WAT. Over the next 36 hr, glycogen levels dissipated and histological analysis revealed an over-accumulation of lipid droplets, suggesting a potential metabolic connection between glycogenolysis and lipid synthesis. 24 hr of total starvation followed by refeeding induced a robust and consistent glycogen over-accumulation similar in magnitude and time course to the prolonged partial fast. Experimentation demonstrated that hyperglycemia was not sufficient to drive glycogen accumulation in IBAT, but that elevated circulating insulin was sufficient. Additionally, pharmacological inhibition of catecholamine production reduced refeeding-induced IBAT glycogen storage, providing evidence of a contribution from the central nervous system. These findings highlight IBAT as a tissue that integrates both canonically-anabolic and catabolic stimulation for the promotion of glycogen storage during recovery from caloric deficit. The preservation of this robust response through many generations of animals not subjected to food deprivation suggests that the over-accumulation phenomenon plays a critical role in IBAT physiology.

  20. Improvement in shelf life of rough and brown rice using infrared radiation heating

    Science.gov (United States)

    The objective of this study was to investigate the effect of IR heating and tempering treatments on storage stability of rough and brown rice. Samples of freshly harvested medium grain rice variety M206 with initial moisture content of 25.03±0.21% (d.b.) were used. They were dried using infrared (IR...

  1. Exercise training improves liver steatosis in mice

    NARCIS (Netherlands)

    Alex, Sheril; Boss, Andreas; Heerschap, Arend; Kersten, Sander

    2015-01-01

    Abstract Background: Non-alcoholic fatty liver disease (NAFLD) is rapidly turning into the most common liver disorder worldwide. One of the strategies that has been shown to effectively improve NAFLD is regular exercise, which seems to lower steatosis partly independent of weight loss. However,

  2. Exercise training improves liver steatosis in mice

    NARCIS (Netherlands)

    Alex, S.; Boss, A.; Heerschap, A.; Kersten, S.

    2015-01-01

    BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is rapidly turning into the most common liver disorder worldwide. One of the strategies that has been shown to effectively improve NAFLD is regular exercise, which seems to lower steatosis partly independent of weight loss. However, limited data

  3. Brown and white adipose tissues: intrinsic differences in gene expression and response to cold exposure in mice.

    Science.gov (United States)

    Rosell, Meritxell; Kaforou, Myrsini; Frontini, Andrea; Okolo, Anthony; Chan, Yi-Wah; Nikolopoulou, Evanthia; Millership, Steven; Fenech, Matthew E; MacIntyre, David; Turner, Jeremy O; Moore, Jonathan D; Blackburn, Edith; Gullick, William J; Cinti, Saverio; Montana, Giovanni; Parker, Malcolm G; Christian, Mark

    2014-04-15

    Brown adipocytes dissipate energy, whereas white adipocytes are an energy storage site. We explored the plasticity of different white adipose tissue depots in acquiring a brown phenotype by cold exposure. By comparing cold-induced genes in white fat to those enriched in brown compared with white fat, at thermoneutrality we defined a "brite" transcription signature. We identified the genes, pathways, and promoter regulatory motifs associated with "browning," as these represent novel targets for understanding this process. For example, neuregulin 4 was more highly expressed in brown adipose tissue and upregulated in white fat upon cold exposure, and cell studies showed that it is a neurite outgrowth-promoting adipokine, indicative of a role in increasing adipose tissue innervation in response to cold. A cell culture system that allows us to reproduce the differential properties of the discrete adipose depots was developed to study depot-specific differences at an in vitro level. The key transcriptional events underpinning white adipose tissue to brown transition are important, as they represent an attractive proposition to overcome the detrimental effects associated with metabolic disorders, including obesity and type 2 diabetes.

  4. Quantifying Biochemical Alterations in Brown and Subcutaneous White Adipose Tissues of Mice Using Fourier Transform Infrared Widefield Imaging

    Directory of Open Access Journals (Sweden)

    Ebrahim Aboualizadeh

    2017-05-01

    Full Text Available Stimulating increased thermogenic activity in adipose tissue is an important biological target for obesity treatment, and label-free imaging techniques with the potential to quantify stimulation-associated biochemical changes to the adipose tissue are highly sought after. In this study, we used spatially resolved Fourier transform infrared (FTIR imaging to quantify biochemical changes caused by cold exposure in the brown and subcutaneous white adipose tissues (BAT and s-WAT of 6 week-old C57BL6 mice exposed to 30°C (N = 5, 24°C (N = 5, and 10°C (N = 5 conditions for 10 days. Fat exposed to colder temperatures demonstrated greater thermogenic activity as indicated by increased messenger RNA expression levels of a panel of thermogenic marker genes including uncoupling protein 1 (UCP-1 and Dio2. Protein to lipid ratio, calculated from the ratio of the integrated area from 1,600 to 1,700 cm−1 (amide I to the integrated area from 2,830 to 2,980 cm−1 (saturated lipids, was elevated in 10°C BAT and s-WAT compared to 24°C (p = 0.004 and p < 0.0001 and 30°C (p = 0.0033 and p < 0.0001. Greater protein to lipid ratio was associated with greater UCP-1 expression level in the BAT (p = 0.021 and s-WAT (p = 0.032 and greater Dio2 expression in s-WAT (p = 0.033. The degree of unsaturation, calculated from the ratio of the integrated area from 2,992 to 3,020 cm−1 (unsaturated lipids to the integrated area from 2,830 to 2,980 cm−1 (saturated lipids, showed stepwise decreases going from colder-exposed to warmer-exposed BAT. Complementary 1H NMR measurements confirmed the findings from this ratio in BAT. Principal component analysis applied to FTIR spectra revealed pronounced differences in overall spectral characteristics between 30, 24, and 10°C BAT and s-WAT. Spatially resolved FTIR imaging is a promising technique to quantify cold-induced biochemical changes in BAT and s-WAT in a label-free manner.

  5. Ketogenic diet improves core symptoms of autism in BTBR mice.

    Science.gov (United States)

    Ruskin, David N; Svedova, Julia; Cote, Jessica L; Sandau, Ursula; Rho, Jong M; Kawamura, Masahito; Boison, Detlev; Masino, Susan A

    2013-01-01

    Autism spectrum disorders share three core symptoms: impaired sociability, repetitive behaviors and communication deficits. Incidence is rising, and current treatments are inadequate. Seizures are a common comorbidity, and since the 1920's a high-fat, low-carbohydrate ketogenic diet has been used to treat epilepsy. Evidence suggests the ketogenic diet and analogous metabolic approaches may benefit diverse neurological disorders. Here we show that a ketogenic diet improves autistic behaviors in the BTBR mouse. Juvenile BTBR mice were fed standard or ketogenic diet for three weeks and tested for sociability, self-directed repetitive behavior, and communication. In separate experiments, spontaneous intrahippocampal EEGs and tests of seizure susceptibility (6 Hz corneal stimulation, flurothyl, SKF83822, pentylenetetrazole) were compared between BTBR and control (C57Bl/6) mice. Ketogenic diet-fed BTBR mice showed increased sociability in a three-chamber test, decreased self-directed repetitive behavior, and improved social communication of a food preference. Although seizures are a common comorbidity with autism, BTBR mice fed a standard diet exhibit neither spontaneous seizures nor abnormal EEG, and have increased seizure susceptibility in just one of four tests. Thus, behavioral improvements are dissociable from any antiseizure effect. Our results suggest that a ketogenic diet improves multiple autistic behaviors in the BTBR mouse model. Therefore, ketogenic diets or analogous metabolic strategies may offer novel opportunities to improve core behavioral symptoms of autism spectrum disorders.

  6. Ketogenic diet improves core symptoms of autism in BTBR mice.

    Directory of Open Access Journals (Sweden)

    David N Ruskin

    Full Text Available Autism spectrum disorders share three core symptoms: impaired sociability, repetitive behaviors and communication deficits. Incidence is rising, and current treatments are inadequate. Seizures are a common comorbidity, and since the 1920's a high-fat, low-carbohydrate ketogenic diet has been used to treat epilepsy. Evidence suggests the ketogenic diet and analogous metabolic approaches may benefit diverse neurological disorders. Here we show that a ketogenic diet improves autistic behaviors in the BTBR mouse. Juvenile BTBR mice were fed standard or ketogenic diet for three weeks and tested for sociability, self-directed repetitive behavior, and communication. In separate experiments, spontaneous intrahippocampal EEGs and tests of seizure susceptibility (6 Hz corneal stimulation, flurothyl, SKF83822, pentylenetetrazole were compared between BTBR and control (C57Bl/6 mice. Ketogenic diet-fed BTBR mice showed increased sociability in a three-chamber test, decreased self-directed repetitive behavior, and improved social communication of a food preference. Although seizures are a common comorbidity with autism, BTBR mice fed a standard diet exhibit neither spontaneous seizures nor abnormal EEG, and have increased seizure susceptibility in just one of four tests. Thus, behavioral improvements are dissociable from any antiseizure effect. Our results suggest that a ketogenic diet improves multiple autistic behaviors in the BTBR mouse model. Therefore, ketogenic diets or analogous metabolic strategies may offer novel opportunities to improve core behavioral symptoms of autism spectrum disorders.

  7. The suppression of hepatic glucose production improves metabolism and insulin sensitivity in subcutaneous adipose tissue in mice.

    Science.gov (United States)

    Casteras, Sylvie; Abdul-Wahed, Aya; Soty, Maud; Vulin, Fanny; Guillou, Hervé; Campana, Mélanie; Le Stunff, Hervé; Pirola, Luciano; Rajas, Fabienne; Mithieux, Gilles; Gautier-Stein, Amandine

    2016-12-01

    Despite the strong correlation between non-alcoholic fatty liver disease and insulin resistance, hepatic steatosis is associated with greater whole-body insulin sensitivity in several models. We previously reported that the inhibition of hepatic glucose production (HGP) protects against the development of obesity and diabetes despite severe steatosis, thanks to the secretion of specific hepatokines such as fibroblast growth factor 21 (FGF21) and angiopoietin-related growth factor. In this work, we focused on adipose tissue to assess whether liver metabolic fluxes might, by interorgan communication, control insulin signalling in lean animals. Insulin signalling was studied in the adipose tissue of mice lacking the catalytic subunit of glucose 6-phosphatase, the key enzyme in endogenous glucose production, in the liver (L-G6pc (-/-) mice). Morphological and metabolic changes in the adipose tissues were characterised by histological analyses, gene expression and protein content. Mice lacking HGP exhibited improved insulin sensitivity of the phosphoinositide 3-kinase/Akt pathway in the subcutaneous adipose tissue associated with a browning of adipocytes. The suppression of HGP increased FGF21 levels in lean animals, and increased FGF21 was responsible for the metabolic changes in the subcutaneous adipose tissue but not for its greater insulin sensitivity. The latter might be linked to an increase in the ratio of monounsaturated to saturated fatty acids released by the liver. Our work provides evidence that HGP controls subcutaneous adipose tissue browning and insulin sensitivity through two pathways: the release of beneficial hepatokines and changes in hepatic fatty acids profile.

  8. Rictor/mTORC2 Loss in the Myf5 Lineage Reprograms Brown Fat Metabolism and Protects Mice against Obesity and Metabolic Disease

    Directory of Open Access Journals (Sweden)

    Chien-Min Hung

    2014-07-01

    Full Text Available The in vivo functions of mechanistic target of rapamycin complex 2 (mTORC2 and the signaling mechanisms that control brown adipose tissue (BAT fuel utilization and activity are not well understood. Here, by conditionally deleting Rictor in the Myf5 lineage, we provide in vivo evidence that mTORC2 is dispensable for skeletal muscle development and regeneration but essential for BAT growth. Furthermore, deleting Rictor in Myf5 precursors shifts BAT metabolism to a more oxidative and less lipogenic state and protects mice from obesity and metabolic disease at thermoneutrality. We additionally find that Rictor is required for brown adipocyte differentiation in vitro and that the mechanism specifically requires AKT1 hydrophobic motif phosphorylation but is independent of pan-AKT signaling and is rescued with BMP7. Our findings provide insights into the signaling circuitry that regulates brown adipocytes and could have important implications for developing therapies aimed at increasing energy expenditure as a means to combat human obesity.

  9. Topiramate treatment improves hypothalamic insulin and leptin signaling and action and reduces obesity in mice.

    Science.gov (United States)

    Caricilli, Andrea M; Penteado, Erica; de Abreu, Lélia L; Quaresma, Paula G F; Santos, Andressa C; Guadagnini, Dioze; Razolli, Daniella; Mittestainer, Francine C; Carvalheira, Jose B; Velloso, Licio A; Saad, Mario J A; Prada, Patricia O

    2012-09-01

    Topiramate (TPM) treatment has been shown to reduce adiposity in humans and rodents. The reduction in adiposity is related to decreased food intake and increased energy expenditure. However, the molecular mechanisms through which TPM induces weight loss are contradictory and remain to be clarified. Whether TPM treatment alters hypothalamic insulin, or leptin signaling and action, is not well established. Thus, we investigate herein whether short-term TPM treatment alters energy balance by affecting insulin and leptin signaling, action, or neuropeptide expression in the hypothalamus of mice fed with a high-fat diet. As expected, short-term treatment with TPM diminished adiposity in obese mice mainly due to reduced food intake. TPM increased anorexigenic signaling by enhancing the leptin-induced leptin receptor/Janus kinase 2/signal transducer and activator of transcription 3 pathway and the insulin-induced insulin receptor substrate/Akt/forkhead box O1 pathway in parallel to reduced phosphatase protein expression in the hypothalamus of obese mice. These effects were independent of body weight. TPM also raised anorexigenic neuropeptides such as POMC, TRH, and CRH mRNA levels in obese mice. In addition, TPM increased the activation of the hypothalamic MAPK/ERK pathway induced by leptin, accompanied by an increase in peroxisome proliferator-activated receptor-coactivator α and uncoupling protein 1 protein levels in brown adipose tissue. Furthermore, TPM increased AMP-activated protein kinase and acetyl-coenzyme A carboxylase phosphorylation in peripheral tissues, which may help improve energy metabolism in these tissues. Together, these results provide novel insights into the molecular mechanisms through which TPM treatment reduces adiposity.

  10. Medium-Chain Triglyceride Activated Brown Adipose Tissue and Induced Reduction of Fat Mass in C57BL/6J Mice Fed High-fat Diet

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yong; XUE Chang Yong; XU Qing; LIU Ying Hua; ZHANG Xin Sheng; WANG Jin; YU Xiao Ming; ZHANG Rong Xin; XUE Chao; YANG Xue Yan

    2015-01-01

    Objective To investigate activation of brown adipose tissue (BAT) stimulated by medium-chain triglyceride (MCT). Methods 30 Male C57BL/6J obese mice induced by fed high fat diet (HFD) were divided into 2 groups, and fed another HFD with 2% MCT or long-chain triglyceride (LCT) respectively for 12 weeks. Body weight, blood biochemical variables, interscapular brown fat tissue (IBAT) mass, expressions of mRNA and protein of beta 3-adrenergic receptors (β3-AR), uncoupling protein-1 (UCP1), hormone sensitive lipase (HSL), protein kinase A (PKA), and adipose triglyceride lipase (ATGL) in IBAT were measured. Results Significant decrease in body weight and body fat mass was observed in MCT group as compared with LCT group (P<0.05) after 12 weeks. Greater increases in IBAT mass was observed in MCT group than in LCT group (P<0.05). Blood TG, TC, LDL-C in MCT group were decreased significantly, meanwhile blood HDL-C, ratio of HDL-C/LDL-C and norepinephrine were increased markedly. Expressions of mRNA and protein ofβ3-AR, UCP1, PKA, HSL, ATGL in BAT were greater in MCT group than in LCT group (P<0.05). Conclusion Our results suggest that MCT stimulated the activation of BAT, possible via norepinephrine pathway, which might partially contribute to reduction of the body fat mass in obese mice fed high fat diet.

  11. DHEAS improves learning and memory in aged SAMP8 mice but not in diabetic mice.

    Science.gov (United States)

    Farr, Susan A; Banks, William A; Uezu, Kayoko; Gaskin, F Spencer; Morley, John E

    2004-10-22

    Dehydroepiandrosterone sulfate (DHEAS) has been reported to improve memory in aged animals and suggested as a treatment for age-related dementias. The SAMP8 mouse, a model of Alzheimer's disease, has an age-related impairment in learning and memory and an increase in brain levels of amyloid precursor protein (APP) and amyloid beta protein (Abeta). Male SAMP8 mice also have a decrease in testosterone, to which DHEA is a precursor. Diabetes has been suggested as a model of aging and to be linked to Alzheimer's disease. Diabetics can have memory deficits and lower DHEAS levels. Here, we examined the effects of chronic oral DHEAS on acquisition and retention for T-maze footshock avoidance in 12 mo male SAMP8 mice and in CD-1 mice with streptozocin-induced diabetes. Learning and memory were improved in aged SAMP8 mice, but not in CD-1 mice with streptozocin-induced diabetes. These findings suggest that DHEAS is more effective in reversing the cognitive impairments associated with overexpression of Abeta than with diabetes.

  12. Locally applied Simvastatin improves fracture healing in mice

    Directory of Open Access Journals (Sweden)

    Aspenberg Per

    2007-09-01

    Full Text Available Abstract Background HMG-CoA reductase inhibitors, statins, are widely prescribed to lower cholesterol. High doses of orally administered simvastatin has previously been shown to improve fracture healing in a mouse femur fracture model. In this study, simvastatin was administered either subcutaneously or directly to the fracture area, with the goal of stimulating fracture repair at acceptable doses. Methods Femur fractures were produced in 70 mature male Balb-C mice and stabilized with marrow-nailing. Three experiments were performed. Firstly, 20 mice received subcutaneous injections of either simvastatin (20 mg or vehicle. Secondly, 30 mice were divided into three groups of 10 mice receiving continuous subcutaneous delivery of the vehicle substance, the vehicle with 5 mg or with 10 mg of simvastatin per kg bodyweight per day. Finally, in 20 mice, a silicone tube was led from an osmotic mini-pump to the fracture area. In this way, 10 mice received an approximate local dose of simvastatin of 0.1 mg per kg per day for the duration of the experiment and 10 mice received the vehicle compound. All treatments lasted until the end of the experiment. Bilateral femurs were harvested 14 days post-operative. Biomechanical tests were performed by way of three-point bending. Data was analysed with ANOVA, Scheffé's post-hoc test and Student's unpaired t-test. Results With daily simvastatin injections, no effects could be demonstrated for any of the parameters examined. Continuous systemic delivery resulted in a 160% larger force at failure. Continuous local delivery of simvastatin resulted in a 170% larger force at failure as well as a twofold larger energy uptake. Conclusion This study found a dramatic positive effect on biomechanical parameters of fracture healing by simvastatin treatment directly applied to the fracture area.

  13. Chronic leucine supplementation improves lipid metabolism in C57BL/6J mice fed with a high-fat/cholesterol diet

    Science.gov (United States)

    Jiao, Jun; Han, Shu-Fen; Zhang, Wei; Xu, Jia-Ying; Tong, Xing; Yin, Xue-Bin; Yuan, Lin-Xi; Qin, Li-Qiang

    2016-01-01

    Background Leucine supplementation has been reported to improve lipid metabolism. However, lipid metabolism in adipose tissues and liver has not been extensively studied for leucine supplementation in mice fed with a high-fat/cholesterol diet (HFCD). Design C57BL/6J mice were fed a chow diet, HFCD, HFCD supplemented with 1.5% leucine (HFCD+1.5% Leu group) or 3% leucine (HFCD+3% Leu group) for 24 weeks. The body weight, peritoneal adipose weight, total cholesterol (TC), triglyceride in serum and liver, and serum adipokines were analyzed. In addition, expression levels of proteins associated with hepatic lipogenesis, adipocyte lipolysis, and white adipose tissue (WAT) browning were determined. Results Mice in the HFCD group developed obesity and deteriorated lipid metabolism. Compared with HFCD, leucine supplementation lowered weight gain and TC levels in circulation and the liver without changing energy intake. The decrease in body fat was supported by histological examination in the WAT and liver. Furthermore, serum levels of proinflammatory adipokines, such as leptin, IL-6, and tumor necrosis factor-alpha, were significantly decreased by supplemented leucine. At the protein level, leucine potently decreased the hepatic lipogenic enzymes (fatty acid synthase and acetyl-coenzyme A carboxylase) and corresponding upstream proteins. In epididymal WAT, the reduced expression levels of two major lipases by HFCD, namely phosphorylated hormone-sensitive lipase and adipose triglyceride lipase, were reversed when leucine was supplemented. Uncoupling protein 1, β3 adrenergic receptors, peroxisome proliferator-activated receptor g coactivator-1α, and fibroblast growth factor 21 were involved in the thermogenic program and WAT browning. Leucine additionally upregulated their protein expression in both WAT and interscapular brown adipose tissue. Conclusion This study demonstrated that chronic leucine supplementation reduced the body weight and improved the lipid profile of

  14. Chronic leucine supplementation improves lipid metabolism in C57BL/6J mice fed with a high-fat/cholesterol diet

    Directory of Open Access Journals (Sweden)

    Jun Jiao

    2016-09-01

    Full Text Available Background: Leucine supplementation has been reported to improve lipid metabolism. However, lipid metabolism in adipose tissues and liver has not been extensively studied for leucine supplementation in mice fed with a high-fat/cholesterol diet (HFCD. Design: C57BL/6J mice were fed a chow diet, HFCD, HFCD supplemented with 1.5% leucine (HFCD+1.5% Leu group or 3% leucine (HFCD+3% Leu group for 24 weeks. The body weight, peritoneal adipose weight, total cholesterol (TC, triglyceride in serum and liver, and serum adipokines were analyzed. In addition, expression levels of proteins associated with hepatic lipogenesis, adipocyte lipolysis, and white adipose tissue (WAT browning were determined. Results: Mice in the HFCD group developed obesity and deteriorated lipid metabolism. Compared with HFCD, leucine supplementation lowered weight gain and TC levels in circulation and the liver without changing energy intake. The decrease in body fat was supported by histological examination in the WAT and liver. Furthermore, serum levels of proinflammatory adipokines, such as leptin, IL-6, and tumor necrosis factor-alpha, were significantly decreased by supplemented leucine. At the protein level, leucine potently decreased the hepatic lipogenic enzymes (fatty acid synthase and acetyl-coenzyme A carboxylase and corresponding upstream proteins. In epididymal WAT, the reduced expression levels of two major lipases by HFCD, namely phosphorylated hormone-sensitive lipase and adipose triglyceride lipase, were reversed when leucine was supplemented. Uncoupling protein 1, β3 adrenergic receptors, peroxisome proliferator-activated receptor g coactivator-1α, and fibroblast growth factor 21 were involved in the thermogenic program and WAT browning. Leucine additionally upregulated their protein expression in both WAT and interscapular brown adipose tissue. Conclusion: This study demonstrated that chronic leucine supplementation reduced the body weight and improved the

  15. Polyphenol-Rich Fraction of Ecklonia cava Improves Nonalcoholic Fatty Liver Disease in High Fat Diet-Fed Mice

    Directory of Open Access Journals (Sweden)

    Eun-Young Park

    2015-11-01

    Full Text Available Ecklonia cava (E. cava; CA is an edible brown alga with beneficial effects in diabetes via regulation of various metabolic processes such as lipogenesis, lipolysis, inflammation, and the antioxidant defense system in liver and adipose tissue. We investigated the effect of the polyphenol-rich fraction of E. cava produced from Gijang (G-CA on nonalcoholic fatty liver disease (NAFLD in high-fat diet (HFD-fed mice. C57BL6 mice were fed a HFD for six weeks and then the HFD group was administered 300 mg/kg of G-CA extracts by oral intubation for 10 weeks. Body weight, fat mass, and serum biochemical parameters were reduced by G-CA extract treatment. MRI/MRS analysis showed that liver fat and liver volume in HFD-induced obese mice were reduced by G-CA extract treatment. Further, we analyzed hepatic gene expression related to inflammation and lipid metabolism. The mRNA expression levels of inflammatory cytokines and hepatic lipogenesis-related genes were decreased in G-CA-treated HFD mice. The mRNA expression levels of cholesterol 7 alpha-hydroxylase 1 (CYP7A1, the key enzyme in bile acid synthesis, were dramatically increased by G-CA treatment in HFD mice. We suggest that G-CA treatment ameliorated hepatic steatosis by inhibiting inflammation and improving lipid metabolism.

  16. Improvement of aroma in transgenic potato as a consequence of impairing tuber browning.

    Directory of Open Access Journals (Sweden)

    Briardo Llorente

    Full Text Available Sensory analysis studies are critical in the development of quality enhanced crops, and may be an important component in the public acceptance of genetically modified foods. It has recently been established that odor preferences are shared between humans and mice, suggesting that odor exploration behavior in mice may be used to predict the effect of odors in humans. We have previously found that mice fed diets supplemented with engineered nonbrowning potatoes (-PPO consumed more potato than mice fed diets supplemented with wild-type potatoes (WT. This prompted us to explore a possible role of potato odor in mice preference for nonbrowning potatoes. Taking advantage of two well established neuroscience paradigms, the "open field test" and the "nose-poking preference test", we performed experiments where mice exploration behavior was monitored in preference assays on the basis of olfaction alone. No obvious preference was observed towards -PPO or WT lines when fresh potato samples were tested. However, when oxidized samples were tested, mice consistently investigated -PPO potatoes more times and for longer periods than WT potatoes. Congruently, humans discriminated WT from -PPO samples with a considerably better performance when oxidized samples were tested than when fresh samples were tested in blind olfactory experiments. Notably, even though participants ranked all samples with an intermediate level of pleasantness, there was a general consensus that the -PPO samples had a more intense odor and also evoked the sense-impression of a familiar vegetable more often than the WT samples. Taken together, these findings suggest that our previous observations might be influenced, at least in part, by differential odors that are accentuated among the lines once oxidative deterioration takes place. Additionally, our results suggest that nonbrowning potatoes, in addition to their extended shelf life, maintain their odor quality for longer periods of time

  17. Peripherally administered orexin improves survival of mice with endotoxin shock

    Science.gov (United States)

    Ogawa, Yasuhiro; Irukayama-Tomobe, Yoko; Murakoshi, Nobuyuki; Kiyama, Maiko; Ishikawa, Yui; Hosokawa, Naoto; Tominaga, Hiromu; Uchida, Shuntaro; Kimura, Saki; Kanuka, Mika; Morita, Miho; Hamada, Michito; Takahashi, Satoru; Hayashi, Yu; Yanagisawa, Masashi

    2016-01-01

    Sepsis is a systemic inflammatory response to infection, accounting for the most common cause of death in intensive care units. Here, we report that peripheral administration of the hypothalamic neuropeptide orexin improves the survival of mice with lipopolysaccharide (LPS) induced endotoxin shock, a well-studied septic shock model. The effect is accompanied by a suppression of excessive cytokine production and an increase of catecholamines and corticosterone. We found that peripherally administered orexin penetrates the blood-brain barrier under endotoxin shock, and that central administration of orexin also suppresses the cytokine production and improves the survival, indicating orexin’s direct action in the central nervous system (CNS). Orexin helps restore body temperature and potentiates cardiovascular function in LPS-injected mice. Pleiotropic modulation of inflammatory response by orexin through the CNS may constitute a novel therapeutic approach for septic shock. DOI: http://dx.doi.org/10.7554/eLife.21055.001 PMID:28035899

  18. Kaempferol and Chrysin Synergies to Improve Septic Mice Survival.

    Science.gov (United States)

    Harasstani, Omar A; Tham, Chau Ling; Israf, Daud A

    2017-01-06

    Previously, we reported the role of synergy between two flavonoids-namely, chrysin and kaempferol-in inhibiting the secretion of a few major proinflammatory mediators such as tumor necrosis factor-alpha (TNF-α), prostaglandin E₂ (PGE₂), and nitric oxide (NO) from lipopolysaccharide (LPS)-induced RAW 264.7 cells. The present study aims to evaluate the effects of this combination on a murine model of polymicrobial sepsis induced by cecal ligation and puncture (CLP). Severe sepsis was induced in male ICR mice (n = 7) via the CLP procedure. The effects of chrysin and kaempferol combination treatment on septic mice were investigated using a 7-day survival study. The levels of key proinflammatory mediators and markers-such as aspartate aminotransferase (AST), TNF-α, and NO-in the sera samples of the septic mice were determined via ELISA and fluorescence determination at different time point intervals post-CLP challenge. Liver tissue samples from septic mice were harvested to measure myeloperoxidase (MPO) levels using a spectrophotometer. Moreover, intraperitoneal fluid (IPF) bacterial clearance and total leukocyte count were also assessed to detect any antibacterial effects exerted by chrysin and kaempferol, individually and in combination. Kaempferol treatment improved the survival rate of CLP-challenged mice by up to 16%. During this treatment, kaempferol expressed antibacterial, antiapoptotic and antioxidant activities through the attenuation of bacterial forming units, AST and NO levels, and increased polymorphonuclear leukocyte (PMN) count in the IPF. On the other hand, the chrysin treatment significantly reduced serum TNF-α levels. However, it failed to significantly improve the survival rate of the CLP-challenged mice. Subsequently, the kaempferol/chrysin combination treatment significantly improved the overall 7-day survival rate by 2-fold-up to 29%. Kaempferol and chrysin revealed some synergistic effects by acting individually upon multiple

  19. Free fatty acids and IL-6 induce adipocyte galectin-3 which is increased in white and brown adipose tissues of obese mice.

    Science.gov (United States)

    Krautbauer, Sabrina; Eisinger, Kristina; Hader, Yvonne; Buechler, Christa

    2014-10-01

    Galectin-3 regulates immune cell function and clearance of advanced glycation end products. Galectin-3 is increased in serum of obese humans and mice and most studies suggest that this protein protects from inflammation in metabolic diseases. Current data show that galectin-3 is markedly elevated in the liver, subcutaneous and intra-abdominal fat depots of mice fed a high fat diet and ob/ob mice. Galectin-3 is also increased in brown adipose tissues of these animals and immunohistochemistry confirms higher levels in adipocytes. Raised galectin-3 in obese white adipocytes has been described in the literature and regulation of adipocyte galectin-3 by metabolites with a role in obesity has been analyzed. Galectin-3 is expressed in 3T3-L1 fibroblasts and human preadipocytes and is modestly induced in mature adipocytes. In 3T3-L1 adipocytes galectin-3 is localized in the cytoplasm and is also detected in cell supernatants. Glucose does not alter soluble galectin-3. Lipopolysaccharide has no effect while TNF reduces and IL-6 raises this lectin in cell supernatants. Palmitate and oleate modestly elevate soluble galectin-3. Differentiation of 3T3-L1 cells in the presence of 100 μM and 200 μM linoleate induces soluble galectin-3 and cellular levels are upregulated by the higher concentration. Current data suggest that free fatty acids and IL-6 increase galectin-3 in adipocytes and thereby may contribute to higher levels in obesity.

  20. Photodynamic therapy improves the ultraviolet-irradiated hairless mice skin

    Science.gov (United States)

    Jorge, Ana Elisa S.; Hamblin, Michael R.; Parizotto, Nivaldo A.; Kurachi, Cristina; Bagnato, Vanderlei S.

    2014-03-01

    Chronic exposure to ultraviolet (UV) sunlight causes premature skin aging. In light of this fact, photodynamic therapy (PDT) is an emerging modality for treating cancer and other skin conditions, however its response on photoaged skin has not been fully illustrated by means of histopathology. For this reason, the aim of this study was analyze whether PDT can play a role on a mouse model of photoaging. Hence, SKH-1 hairless mice were randomly allocated in two groups, UV and UV/PDT. The mice were daily exposed to an UV light source (280-400 nm: peak at 350 nm) for 8 weeks followed by a single PDT session using 20% 5-aminolevulinic acid (ALA) topically. After the proper photosensitizer accumulation within the tissue, a non-coherent red (635 nm) light was performed and, after 14 days, skin samples were excised and processed for light microscopy, and their sections were stained with hematoxylin-eosin (HE) and Masson's Trichrome. As a result, we observed a substantial epidermal thickening and an improvement in dermal collagen density by deposition of new collagen fibers on UV/PDT group. These findings strongly indicate epidermal and dermal restoration, and consequently skin restoration. In conclusion, this study provides suitable evidences that PDT improves the UV-irradiated hairless mice skin, supporting this technique as an efficient treatment for photoaged skin.

  1. Brahmi rasayana Improves Learning and Memory in Mice

    Directory of Open Access Journals (Sweden)

    Hanumanthachar Joshi

    2006-01-01

    Full Text Available Cure of cognitive disorders such as amnesia, attention deficit and Alzheimer's disease is still a nightmare in the field of medicine. Nootropic agents such as piracetam, aniracetam and choline esterase inhibitors like Donepezil® are being used to improve memory, mood and behavior, but the resulting side effects associated with these agents have made their use limited. The present study was undertaken to assess the potential of Brahmi rasayana (BR as a memory enhancer. BR (100 and 200 mg kg−1 p.o. was administered for eight successive days to both young and aged mice. Elevated plus maze and passive-avoidance paradigm were employed to evaluate learning and memory parameters. Scopolamine (0.4 mg kg−1 i.p. was used to induce amnesia in mice. The effect of BR on whole brain AChE activity was also assessed. Piracetam (200 mg kg−1 i.p. was used as a standard nootropic agent. BR significantly improved learning and memory in young mice and reversed the amnesia induced by both scopolamine (0.4 mg kg−1 i.p. and natural aging. BR significantly decreased whole brain acetyl cholinesterase activity. BR might prove to be a useful memory restorative agent in the treatment of dementia seen in elderly.

  2. Bofutsushosan ameliorates obesity in mice through modulating PGC-1α expression in brown adipose tissues and inhibiting inflammation in white adipose tissues.

    Science.gov (United States)

    Chen, Ying-Ying; Yan, Yan; Zhao, Zheng; Shi, Mei-Jing; Zhang, Yu-Bin

    2016-06-01

    The inducible co-activator PGC-1α plays a crucial role in adaptive thermogenesis and increases energy expenditure in brown adipose tissue (BAT). Meanwhile, chronic inflammation caused by infiltrated-macrophage in the white adipose tissue (WAT) is a target for the treatment of obesity. Bofutsushosan (BF), a traditional Chinese medicine composed of 17 crude drugs, has been widely used to treat obesity in China, Japan, and other Asia countries. However, the mechanism underlying anti-obesity remains to be elucidated. In the present study, we demonstrated that BF oral administration reduced the body weight of obese mice induced by high-fat diet (HFD) and alleviated the level of biochemical markers (P obesity was at least partially through increasing gene expression of PGC-1α and UCP1 for energy consumption in BAT and inhibiting inflammation in WAT.

  3. Tamoxifen affects glucose and lipid metabolism parameters, causes browning of subcutaneous adipose tissue and transient body composition changes in C57BL/6NTac mice

    Energy Technology Data Exchange (ETDEWEB)

    Hesselbarth, Nico; Pettinelli, Chiara [Department of Medicine, University of Leipzig, D-04103 Leipzig (Germany); Gericke, Martin [Institute of Anatomy, University of Leipzig, D-04103 Leipzig (Germany); Berger, Claudia [IFB Adiposity Disease, Core Unit Animal Models, University of Leipzig, D-04103 Leipzig (Germany); Kunath, Anne [German Center for Diabetes Research (DZD), Leipzig (Germany); Stumvoll, Michael; Blüher, Matthias [Department of Medicine, University of Leipzig, D-04103 Leipzig (Germany); Klöting, Nora, E-mail: nora.kloeting@medizin.uni-leipzig.de [IFB Adiposity Disease, Core Unit Animal Models, University of Leipzig, D-04103 Leipzig (Germany)

    2015-08-28

    Tamoxifen is a selective estrogen receptor (ER) modulator which is widely used to generate inducible conditional transgenic mouse models. Activation of ER signaling plays an important role in the regulation of adipose tissue (AT) metabolism. We therefore tested the hypothesis that tamoxifen administration causes changes in AT biology in vivo. 12 weeks old male C57BL/6NTac mice were treated with either tamoxifen (n = 18) or vehicle (n = 18) for 5 consecutive days. Tamoxifen treatment effects on body composition, energy homeostasis, parameters of AT biology, glucose and lipid metabolism were investigated up to an age of 18 weeks. We found that tamoxifen treatment causes: I) significantly increased HbA{sub 1c}, triglyceride and free fatty acid serum concentrations (p < 0.01), II) browning of subcutaneous AT and increased UCP-1 expression, III) increased AT proliferation marker Ki67 mRNA expression, IV) changes in adipocyte size distribution, and V) transient body composition changes. Tamoxifen may induce changes in body composition, whole body glucose and lipid metabolism and has significant effects on AT biology, which need to be considered when using Tamoxifen as a tool to induce conditional transgenic mouse models. Our data further suggest that tamoxifen-treated wildtype mice should be characterized in parallel to experimental transgenic models to control for tamoxifen administration effects. - Highlights: • Tamoxifen treatment causes significantly increased HbA{sub 1c}, triglyceride and free fatty acid serum concentrations. • Tamoxifen induces browning of subcutaneous AT and increased UCP-1 expression. • Tamoxifen changes adipocyte size distribution, and transient body composition.

  4. Bardoxolone Methyl Prevents Fat Deposition and Inflammation in Brown Adipose Tissue and Enhances Sympathetic Activity in Mice Fed a High-Fat Diet

    Science.gov (United States)

    Dinh, Chi H. L.; Szabo, Alexander; Yu, Yinghua; Camer, Danielle; Zhang, Qingsheng; Wang, Hongqin; Huang, Xu-Feng

    2015-01-01

    Obesity results in changes in brown adipose tissue (BAT) morphology, leading to fat deposition, inflammation, and alterations in sympathetic nerve activity. Bardoxolone methyl (BARD) has been extensively studied for the treatment of chronic diseases. We present for the first time the effects of oral BARD treatment on BAT morphology and associated changes in the brainstem. Three groups (n = 7) of C57BL/6J mice were fed either a high-fat diet (HFD), a high-fat diet supplemented with BARD (HFD/BARD), or a low-fat diet (LFD) for 21 weeks. BARD was administered daily in drinking water. Interscapular BAT, and ventrolateral medulla (VLM) and dorsal vagal complex (DVC) in the brainstem, were collected for analysis by histology, immunohistochemistry and Western blot. BARD prevented fat deposition in BAT, demonstrated by the decreased accumulation of lipid droplets. When administered BARD, HFD mice had lower numbers of F4/80 and CD11c macrophages in the BAT with an increased proportion of CD206 macrophages, suggesting an anti-inflammatory effect. BARD increased phosphorylation of tyrosine hydroxylase in BAT and VLM. In the VLM, BARD increased energy expenditure proteins, including beta 3-adrenergic receptor (β3-AR) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). Overall, oral BARD prevented fat deposition and inflammation in BAT, and stimulated sympathetic nerve activity. PMID:26066016

  5. Protective effect of brown Brazilian propolis against acute vaginal lesions caused by herpes simplex virus type 2 in mice: involvement of antioxidant and anti-inflammatory mechanisms.

    Science.gov (United States)

    Sartori, Gláubia; Pesarico, Ana Paula; Pinton, Simone; Dobrachinski, Fernando; Roman, Silvane Souza; Pauletto, Fernanda; Rodrigues, Luiz Carlos; Prigol, Marina

    2012-01-01

    Propolis has been highlighted for its antioxidant, anti-inflammatory and antiviral properties. The purpose of this study was to investigate if brown Brazilian hydroalcoholic propolis extract (HPE) protects against vaginal lesions caused by herpes simplex virus type 2 (HSV-2) in female BALB/c mice. The treatment was divided in 5 days of pre-treatment with HPE [50 mg · kg(-1), once a day, intragastric (i.g.)], HSV-2 infection [10 µl of a solution 1 × 10(2) plaque-forming unit (PFU · ml(-1) HSV-2), intravaginal inoculation at day 6] and post-treatment with HPE (50 mg · kg(-1)) for 5 days more. At day 11, the animals were killed, and the in vivo analysis (score of lesions) and ex vivo analysis [haematological and histological evaluation; superoxide dismutase (SOD), catalase (CAT) and myeloperoxidase (MPO) activities; reactive species (RS), tyrosine nitration levels, non-protein thiols (NPSH) and ascorbic acid (AA) levels] were carried out. HPE treatment reduced extravaginal lesions and the histological damage caused by HSV-2 infection in vaginal tissues of animals. HPE was able to decrease RS, tyrosine nitration, AA levels and MPO activity. Also, it protected against the inhibition of CAT activity in vaginal tissues of mice. HPE promoted protective effect on HSV-2 infected animals by acting on inflammatory and oxidative processes, and this effect probably is caused by its antioxidant and anti-inflammatory properties.

  6. C333H ameliorated insulin resistance through selectively modulating peroxisome proliferator-activated receptor γ in brown adipose tissue of db/db mice.

    Science.gov (United States)

    Zhang, Ning; Chen, Wei; Zhou, Xinbo; Zhou, Xiaolin; Xie, Xinni; Meng, Aimin; Li, Song; Wang, Lili

    2013-01-01

    Peroxisome proliferator-activated receptor γ (PPARγ) is a unique target for insulin sensitizer agents. These drugs have been used for the clinical treatment of type 2 diabetes for almost twenty years. However, serious safety issues are associated with the PPARγ agonist thiazolidinediones (TZDs). Selective PPARγ modulators (SPPARMs) which retain insulin sensitization without TZDs-like side effects are emerging as a promising new generation of insulin sensitizers. C333H is a novel structure compound synthesized by our laboratory. In diabetic rodent models, C333H has insulin-sensitizing and glucose-lowering activity comparable to that of TZDs, and causes no significant increase in body weight or adipose tissue weight in db/db mice. In diabetic db/db mice, C333H elevated circulating high molecular weight adiponectin isoforms, decreased PPARγ 273 serine phosphorylation in brown adipose tissue and selectively modulated the expression of a subset of PPARγ target genes in adipose tissue. In vitro, C333H weakly recruited coactivator and weakly dissociated corepressor activity. These findings suggest that C333H has similar properties to SPPARMs and may be a potential therapeutic agent for the treatment of type 2 diabetes.

  7. Bardoxolone Methyl Prevents Fat Deposition and Inflammation in Brown Adipose Tissue and Enhances Sympathetic Activity in Mice Fed a High-Fat Diet.

    Science.gov (United States)

    Dinh, Chi H L; Szabo, Alexander; Yu, Yinghua; Camer, Danielle; Zhang, Qingsheng; Wang, Hongqin; Huang, Xu-Feng

    2015-06-09

    Obesity results in changes in brown adipose tissue (BAT) morphology, leading to fat deposition, inflammation, and alterations in sympathetic nerve activity. Bardoxolone methyl (BARD) has been extensively studied for the treatment of chronic diseases. We present for the first time the effects of oral BARD treatment on BAT morphology and associated changes in the brainstem. Three groups (n = 7) of C57BL/6J mice were fed either a high-fat diet (HFD), a high-fat diet supplemented with BARD (HFD/BARD), or a low-fat diet (LFD) for 21 weeks. BARD was administered daily in drinking water. Interscapular BAT, and ventrolateral medulla (VLM) and dorsal vagal complex (DVC) in the brainstem, were collected for analysis by histology, immunohistochemistry and Western blot. BARD prevented fat deposition in BAT, demonstrated by the decreased accumulation of lipid droplets. When administered BARD, HFD mice had lower numbers of F4/80 and CD11c macrophages in the BAT with an increased proportion of CD206 macrophages, suggesting an anti-inflammatory effect. BARD increased phosphorylation of tyrosine hydroxylase in BAT and VLM. In the VLM, BARD increased energy expenditure proteins, including beta 3-adrenergic receptor (β3-AR) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). Overall, oral BARD prevented fat deposition and inflammation in BAT, and stimulated sympathetic nerve activity.

  8. Evaluation of the acute toxicity of dolabelladienotriol, a potential antiviral from the brown alga Dictyota pfaffii, in BALB/c mice

    Directory of Open Access Journals (Sweden)

    Valéria Garrido

    2011-04-01

    Full Text Available Dolabelladienotriol is a product extracted from the brown marine alga Dictyota pfaffii from Brazil that has been shown to have antiviral activity and low cytotoxicity. Our studies have evaluated the acute toxicity of dolabelladienotriol in BALB/c mice for ten days after administration of a single dose. Among the parameters considered were behavior, weight, biochemical and histological analyses of blood samples taken at three different times (Bs.0, Bs.1 and Bs.2 and optical microscopic examination of organs like liver, kidney, stomach and small intestine. Mice deaths were not observed at any dose during the ten day period. There were some changes in the biochemical analysis results for urea nitrogen (BUN and alanine aminotransferase (ALT, but the changes were not significantly different from the reference levels of the animals before administration of the substance. Histological analyses of tissues were very similar for all animals. The alterations in liver and kidney tissues did not affect the animals´ behavior at any concentration, not even at 50 mg/kg, where the most significant changes in tissues were seen. This study indicates that dolabelladienotriol has low toxicity in administered dose range.

  9. Metabolic response to various beta-adrenoceptor agonists in beta3-adrenoceptor knockout mice: evidence for a new beta-adrenergic receptor in brown adipose tissue.

    Science.gov (United States)

    Preitner, F; Muzzin, P; Revelli, J P; Seydoux, J; Galitzky, J; Berlan, M; Lafontan, M; Giacobino, J P

    1998-08-01

    The beta3-adrenoceptor plays an important role in the adrenergic response of brown and white adipose tissues (BAT and WAT). In this study, in vitro metabolic responses to beta-adrenoceptor stimulation were compared in adipose tissues of beta3-adrenoceptor knockout and wild type mice. The measured parameters were BAT fragment oxygen uptake (MO2) and isolated white adipocyte lipolysis. In BAT of wild type mice (-)-norepinephrine maximally stimulated MO2 4.1+/-0.8 fold. Similar maximal stimulations were obtained with beta1-, beta2- or beta3-adrenoceptor selective agonists (dobutamine 5.1+/-0.3, terbutaline 5.3+/-0.3 and CL 316,243 4.8+/-0.9 fold, respectively); in BAT of beta3-adrenoceptor knockout mice, the beta1- and beta2-responses were fully conserved. In BAT of wild type mice, the beta1/beta2-antagonist and beta3-partial agonist CGP 12177 elicited a maximal MO2 response (4.7+/-0.4 fold). In beta3-adrenoceptor knockout BAT, this response was fully conserved despite an absence of response to CL 316,243. This unexpected result suggests that an atypical beta-adrenoceptor, distinct from the beta1-, beta2- and beta3-subtypes and referred to as a putative beta4-adrenoceptor is present in BAT and that it can mediate in vitro a maximal MO2 stimulation. In isolated white adipocytes of wild type mice, (-)-epinephrine maximally stimulated lipolysis 12.1+/-2.6 fold. Similar maximal stimulations were obtained with beta1-, beta2- or beta3-adrenoceptor selective agonists (TO509 12+/-2, procaterol 11+/-3, CL 316,243 11+/-3 fold, respectively) or with CGP 12177 (7.1+/-1.5 fold). In isolated white adipocytes of beta3-adrenoceptor knockout mice, the lipolytic responses to (-)epinephrine, to the beta1-, beta2-, beta3-adrenoceptor selective agonists and to CGP 12177 were almost or totally depressed, whereas those to ACTH, forskolin and dibutyryl cyclic AMP were conserved.

  10. Metabolic response to various β-adrenoceptor agonists in β3-adrenoceptor knockout mice: Evidence for a new β-adrenergic receptor in brown adipose tissue

    Science.gov (United States)

    Preitner, Frédéric; Muzzin, Patrick; Revelli, Jean-Pierre; Seydoux, Josiane; Galitzky, Jean; Berlan, Michel; Lafontan, Max; Giacobino, Jean-Paul

    1998-01-01

    The β3-adrenoceptor plays an important role in the adrenergic response of brown and white adipose tissues (BAT and WAT). In this study, in vitro metabolic responses to β-adrenoceptor stimulation were compared in adipose tissues of β3-adrenoceptor knockout and wild type mice. The measured parameters were BAT fragment oxygen uptake (MO2) and isolated white adipocyte lipolysis. In BAT of wild type mice (−)-norepinephrine maximally stimulated MO2 4.1±0.8 fold. Similar maximal stimulations were obtained with β1-,β2- or β3-adrenoceptor selective agonists (dobutamine 5.1±0.3, terbutaline 5.3±0.3 and CL 316,243 4.8±0.9 fold, respectively); in BAT of β3-adrenoceptor knockout mice, the β1- and β2-responses were fully conserved. In BAT of wild type mice, the β1/β2-antagonist and β3-partial agonist CGP 12177 elicited a maximal MO2 response (4.7±0.4 fold). In β3-adrenoceptor knockout BAT, this response was fully conserved despite an absence of response to CL 316,243. This unexpected result suggests that an atypical β-adrenoceptor, distinct from the β1-, β2- and β3-subtypes and referred to as a putative β4-adrenoceptor is present in BAT and that it can mediate in vitro a maximal MO2 stimulation. In isolated white adipocytes of wild type mice, (−)-epinephrine maximally stimulated lipolysis 12.1±2.6 fold. Similar maximal stimulations were obtained with β1-, β2- or β3-adrenoceptor selective agonists (TO509 12±2, procaterol 11±3, CL 316,243 11±3 fold, respectively) or with CGP 12177 (7.1±1.5 fold). In isolated white adipocytes of β3-adrenoceptor knockout mice, the lipolytic responses to (−)epinephrine, to the β1-, β2-, β3-adrenoceptor selective agonists and to CGP 12177 were almost or totally depressed, whereas those to ACTH, forskolin and dibutyryl cyclic AMP were conserved. PMID:9756384

  11. The influence of the social thermoregulation on the cold-adaptive growth of BAT in hairless and furred mice.

    Science.gov (United States)

    Heldmaier, G

    1975-03-26

    When mice were living in groups they developed less brown adipose tissue (BAT) during cold adaptation as compared with single mice. This effect of social aggregation was more pronounced in genetically hairless mice than in furred mice. In both races of mice the most significant difference in BAT growth was found between single mice and pairs of mice, indicating that the formation of pairs causes the relatively most effective improvement of thermal balance.

  12. Dexmedetomidine improves early postoperative cognitive dysfunction in aged mice.

    Science.gov (United States)

    Qian, Xiao-Lan; Zhang, Wei; Liu, Ming-Zheng; Zhou, Yu-Bing; Zhang, Jing-Min; Han, Li; Peng, You-Mei; Jiang, Jin-hua; Wang, Qing-Duan

    2015-01-05

    Postoperative cognitive dysfunction (POCD) is a frequent complication following major surgery in the elderly. However, the exact pathogenic mechanisms are still unknown. Dexmedetomidine, a selective alpha 2 adrenal receptor agonist, was revealed anesthesia and brain protective role. The present study aimed to examine whether dexmedetomdine protects against POCD induced by major surgical trauma under general anesthesia in aged mice. In the present study, cognitive function was assessed by Y-maze. Proinflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor (TNF-α), apoptosis-related factor caspase-3 and Bax were detected by real-time PCR, Western blot or immunohistochemistry. The results showed that anesthesia alone caused weak cognitive dysfunction on the first day after general anesthesia. Cognitive function in mice with splenectomy under general anesthesia was significantly exacerbated at the first and third days after surgery, and was significantly improved by dexmedetomidine administration. Splenectomy increased the expression of IL-1β, TNF-α, Bax and caspase-3 in hippocampus. These changes were significantly inversed by dexmedetomidine. These results suggest that hippocampal inflammatory response and neuronal apoptosis may contribute to POCD, and selective alpha 2 adrenal receptor excitation play a protective role.

  13. Systemic administration of the neurotensin NTS₁-receptor agonist PD149163 improves performance on a memory task in naturally deficient male brown Norway rats.

    Science.gov (United States)

    Keiser, Ashley A; Matazel, Katelin S; Esser, Melissa K; Feifel, David; Prus, Adam J

    2014-12-01

    Agonists for the neurotensin NTS₁ receptor consistently exhibit antipsychotic effects in animal models without producing catalepsy, suggesting that NTS₁-receptor agonists may be a novel class of drugs to treat schizophrenia. Moreover, studies utilizing NTS₁ agonists have reported improvements in some aspects of cognitive functioning, including prepulse inhibition and learning procedures, which suggest an ability of NTS₁-receptor agonists to diminish neurocognitive deficits. The present study sought to assess both baseline delay-induced memory performance and the effects of NTS₁-receptor activation on learning and memory consolidation in male Long-Evans and Brown Norway rats using a delayed nonmatch-to-position task radial arm-maze task. In the absence of drugs, Brown Norway rats displayed a significant increase in spatial memory errors following 3-, 7-, and 24-hr delay, whereas Long-Evans rats exhibited an increase in spatial memory errors following only a 7-, and 24-hr delay. With Brown Norway rats, administration of PD149163 before or after an information trial significantly reduced errors during a retention trial after a 24 hr delay. Administration of the NTS(1/2)-receptor antagonist SR142948 prior to the information trial did not affect retention-trial errors. These data are consistent with previous findings that Brown Norway rats have natural cognitive deficits and that they may be useful for assessing putative antipsychotic drugs for cognitive efficacy. Moreover, the results of this study support previous findings suggesting that NTS₁-receptor agonists may improve some aspects of cognitive functioning.

  14. Effects of Portabella mushrooms on collagen-induced arthritis, inflammatory cytokines, and body composition in dilute brown non-agouti (DBA1 mice

    Directory of Open Access Journals (Sweden)

    Stanley A. Lightfoot

    2011-09-01

    Full Text Available Background:Exotic mushrooms have long been used in Asia for treatment and/or prevention of chronic diseases due to their immunomodulatory properties. However, the health benefits of portabella mushrooms (PM (brown Agaricus bisporous, on collagen-induced arthritis (CIA and associated complications, (i.e. loss of lean mass, increased fat mass and inflammatory cytokines, have not been previously investigated.Methods:We investigated CIA pathogenesis, body composition and plasma levels of IL- 6, TNF-α and sICAM1 in DBA1 female mice fed either the AIN76 diet or the same diet fortified with 5% lyophilized PM (n=19-20/group. Ten mice/group were immunized with 100 μg bovine collagen type II on day 42 of the protocol, followed by 50 μg lipopolysaccharides on day 62, and euthanized on day 73-74. Cytokines were measured by ELISA.Results:Compared to baseline diet, PM had: no protective effect from CIA since all collagen-immunized mice developed severe edema, bone erosion, and mononuclear cell infiltration in paws. In mice with and those without CIA, feeding a PM-fortified diet resulted in higher percent of body fat than feeding the baseline diet (p<0.05. After CIA induction, PM provided the followingFunctional Foods in Health and Disease 2011; 9:279-296beneficial effects: (a a smaller reduction in lean mass and absolute thymus weight; (b a higher fat mass loss; and (c lower plasma TNF-α levels (p <0.05. PM-fortification did not alter plasma IL-6 and sICAM1 regardless of CIA status; but it increased in vitro IL-6 secretion by mitogen-treated spleen cells.Conclusion:Our data suggest that PM may reduce plasma TNF-α, attenuate lean mass loss and thymus atrophy associated with arthritis, and protect spleen cell function assessed by IL-6 secretion. However, PM-fortification did not attenuate overall CIA pathogenesis which may be due to lack of effect on plasma IL-6. Decreased TNF-α without alterations in IL-6 may reduce the risk of other conditions

  15. Bofutsushosan ameliorates obesity in mice through modulating PGC-la expression in brown adipose tissues and inhibiting inflammation in white adipose tissues

    Institute of Scientific and Technical Information of China (English)

    CHEN Ying-Ying; YAN Yan; ZHAO Zheng; SHI Mei-Jing; ZHANG Yu-Bin

    2016-01-01

    The inducible co-activator PGC-1a plays a crucial role in adaptive thermogenesis and increases energy expenditure in brown adipose tissue (BAT).Meanwhile,chronic inflammation caused by infiltrated-macrophage in the white adipose tissue (WAT) is a target for the treatment of obesity.Bofutsushosan (BF),a traditional Chinese medicine composed of 17 crude drugs,has been widely used to treat obesity in China,Japan,and other Asia countries.However,the mechanism underlying anti-obesity remains to be elucidated.In the present study,we demonstrated that BF oral administration reduced the body weight of obese mice induced by high-fat diet (HFD) and alleviated the level of biochemical markers (P < 0.05),including blood glucose (Glu),total cholesterol (TC),triglyceride (TG),low density lipoprotein (LDL-C) and insulin.Our further results also indicated that oral BF administration increased the expression of PGC-1α and UCP1 in BAT.Moreover,BF also reduced the expression of inflammatory cytokines in WAT,such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6).These findings suggested that the mechanism of BF against obesity was at least partially through increasing gene expression of PGC-1α and UCP1 for energy consumption in BAT and inhibiting inflammation in WAT.

  16. 提高挤压膨化糙米粉的冲调分散性%Improving the dispersibility of extrusion brown rice powder

    Institute of Scientific and Technical Information of China (English)

    马涛; 卢镜竹

    2012-01-01

    挤压膨化糙米粉冲调后具有营养丰富,米香突出,口感细腻爽滑等特点,但糊液粘稠度高,分散性差等带来食用上的不便。测得挤压膨化糙米粉稳定性好,分散性差。通过正交实验得出:挤压膨化糙米粉60目及添加麦芽糊精15%,蔗糖酯0.12%,单甘酯0.55%,可明显提高挤压膨化糙米粉冲调的分散性,改善其冲调性能。%By extrusion,brown rice powder after reconstitution was rich in nutrition,while rice smell was outstanding with the characteristics of a smooth delicate taste.But the paste liquid viscosity was high.And the poor water dissolved dispersion brought edible inconvenience.The results showed that the extrusion brown rice powder had good stability and poor dispersibility.Through orthogonal experiment:expanded brown rice powder 60 meshes,maltodextrin 15%,sucrose ester 0.12%,monoglyceride 0.55%,which could evidently improve the water dissolved dispersion of expanded brown rice powder.

  17. Systemic treatment with telmisartan improves femur fracture healing in mice.

    Directory of Open Access Journals (Sweden)

    Xiong Zhao

    Full Text Available Recent clinical studies indicated that angiotensin receptor blockers (ARBs would decrease the risk of bone fractures in the elderly populations. There is little known about the role of the ARBs in the process of fracture healing. The purpose of the present study was to verify the hypothesis that systemic treatment with telmisartan has the ability to promote fracture healing. In this study, femur fractures were produced in 96 mature male BALB/c mice. Animals were treated with the ARBs telmisartan or vehicle. Fracture healing was analysed after 2, 5 and 10 weeks postoperatively using X-ray, biomechanical testing, histomorphometry, immunohistochemistry and micro-computed tomography (micro-CT. Radiological analysis showed the diameter of the callus in the telmisartan treated animals was significantly increased when compared with that of vehicle treated controls after two weeks of fracture healing. The radiologically observed promotion of callus formation was confirmed by histomorphometric analyses, which revealed a significantly increased amount of bone formation when compared with vehicle-treated controls. Biomechanical testing further showed a significantly greater peak torque at failure, and a higher torsional stiffness in telmisartan-treated animals compared with controls. There was an increased fraction of PCNA-positive cells and VEGF-positive cells in telmisartan-treated group compared with vehicle-treated controls. From the three-dimensional reconstruction of the bony callus, telmisartan-treated group significantly increased the values of BV/TV by 21.7% and CsAr by 26.0% compared to the vehicle-treated controls at 5 weeks post-fracture. In summary, we demonstrate in the current study that telmisartan could promote fracture healing in a mice model via increasing mechanical strength and improving microstructure. The most mechanism is probably by an increase of cell proliferation and neovascularization associated with a decreased VEGF expression

  18. Fucoidan from Fucus vesiculosus Fails to Improve Outcomes Following Intracerebral Hemorrhage in Mice.

    Science.gov (United States)

    Burchell, Sherrefa R; Iniaghe, Loretta O; Zhang, John H; Tang, Jiping

    2016-01-01

    Intracerebral hemorrhage (ICH) is the most fatal stroke subtype, with no effective therapies. Hematoma expansion and inflammation play major roles in the pathophysiology of ICH, contributing to primary and secondary brain injury, respectively. Fucoidan, a polysaccharide from the brown seaweed Fucus vesiculosus, has been reported to activate a platelet receptor that may function in limiting bleeding, and to exhibit anti-inflammatory effects. As such, the aim of the present study was to examine the effects of fucoidan on hemorrhaging and neurological outcomes after ICH. Male CD-1 mice were subjected to experimental ICH by infusion of bacterial collagenase. Animals were randomly divided into the following groups: sham, ICH + vehicle, ICH + 25 mg/kg fucoidan, ICH + 75 mg/kg fucoidan, and ICH + 100 mg/kg fucoidan. Brain water content, neurobehavioral outcomes, and hemoglobin content were evaluated at 24 h post ICH. Our findings show that fucoidan failed to attenuate the ICH-induced increase in BWC. The neurological deficits that result from ICH also did not differ in the treatment groups at all three doses. Finally, we found that fucoidan had no effect on the hemoglobin content after ICH. We postulate that fucoidan treatment did not improve the measured outcomes after ICH because we used crude fucoidan, which has a high molecular weight, in our study. High-molecular-weight fucoidans are reported to have less therapeutic potential than low molecular weight fucoidans. They have been shown to exhibit anti-coagulant and pro-apoptotic properties, which seem to outweigh their anti-inflammatory and potential procoagulant abilities. We propose that using a low-molecular-weight fucoidan, or fractionating the crude polysaccharide, may be effective in treating ICH. Future studies are needed to confirm this.

  19. Microbiota depletion promotes browning of white adipose tissue and reduces obesity.

    Science.gov (United States)

    Suárez-Zamorano, Nicolas; Fabbiano, Salvatore; Chevalier, Claire; Stojanović, Ozren; Colin, Didier J; Stevanović, Ana; Veyrat-Durebex, Christelle; Tarallo, Valentina; Rigo, Dorothée; Germain, Stéphane; Ilievska, Miroslava; Montet, Xavier; Seimbille, Yann; Hapfelmeier, Siegfried; Trajkovski, Mirko

    2015-12-01

    Brown adipose tissue (BAT) promotes a lean and healthy phenotype and improves insulin sensitivity. In response to cold or exercise, brown fat cells also emerge in the white adipose tissue (WAT; also known as beige cells), a process known as browning. Here we show that the development of functional beige fat in the inguinal subcutaneous adipose tissue (ingSAT) and perigonadal visceral adipose tissue (pgVAT) is promoted by the depletion of microbiota either by means of antibiotic treatment or in germ-free mice. This leads to improved glucose tolerance and insulin sensitivity and decreased white fat and adipocyte size in lean mice, obese leptin-deficient (ob/ob) mice and high-fat diet (HFD)-fed mice. Such metabolic improvements are mediated by eosinophil infiltration, enhanced type 2 cytokine signaling and M2 macrophage polarization in the subcutaneous white fat depots of microbiota-depleted animals. The metabolic phenotype and the browning of the subcutaneous fat are impaired by the suppression of type 2 cytokine signaling, and they are reversed by recolonization of the antibiotic-treated or germ-free mice with microbes. These results provide insight into the microbiota-fat signaling axis and beige-fat development in health and metabolic disease.

  20. Cardiomyocyte-specific expression of lamin a improves cardiac function in Lmna-/- mice.

    Directory of Open Access Journals (Sweden)

    Richard L Frock

    Full Text Available Lmna(-/- mice display multiple tissue defects and die by 6-8 weeks of age reportedly from dilated cardiomyopathy with associated conduction defects. We sought to determine whether restoration of lamin A in cardiomyocytes improves cardiac function and extends the survival of Lmna(-/- mice. We observed increased total desmin protein levels and disorganization of the cytoplasmic desmin network in ~20% of Lmna(-/- ventricular myocytes, rescued in a cell-autonomous manner in Lmna(-/- mice expressing a cardiac-specific lamin A transgene (Lmna(-/-; Tg. Lmna(-/-; Tg mice displayed significantly increased contractility and preservation of myocardial performance compared to Lmna(-/- mice. Lmna(-/-; Tg mice attenuated ERK1/2 phosphorylation relative to Lmna(-/- mice, potentially underlying the improved localization of connexin43 to the intercalated disc. Electrocardiographic recordings from Lmna(-/- mice revealed arrhythmic events and increased frequency of PR interval prolongation, which is partially rescued in Lmna(-/-; Tg mice. These findings support our observation that Lmna(-/-; Tg mice have a 12% median extension in lifespan compared to Lmna(-/- mice. While significant, Lmna(-/-; Tg mice only have modest improvement in cardiac function and survival likely stemming from the observation that only 40% of Lmna(-/-; Tg cardiomyocytes have detectable lamin A expression. Cardiomyocyte-specific restoration of lamin A in Lmna(-/- mice improves heart-specific pathology and extends lifespan, demonstrating that the cardiac pathology of Lmna(-/- mice limits survival. The expression of lamin A is sufficient to rescue certain cellular defects associated with loss of A-type lamins in cardiomyocytes in a cell-autonomous fashion.

  1. Comparison of brown and white adipose tissue fat fractions in ob, seipin, and Fsp27 gene knockout mice by chemical shift-selective imaging and (1)H-MR spectroscopy.

    Science.gov (United States)

    Peng, Xin-Gui; Ju, Shenghong; Fang, Fang; Wang, Yu; Fang, Ke; Cui, Xin; Liu, George; Li, Peng; Mao, Hui; Teng, Gao-Jun

    2013-01-15

    Brown adipose tissue (BAT) plays a key role in thermogenesis to protect the body from cold and obesity. White adipose tissue (WAT) stores excess energy in the form of triglycerides. To better understand the genetic effect on regulation of WAT and BAT, we investigated the fat fraction (FF) in two types of adipose tissues in ob/ob, human BSCL2/seipin gene knockout (SKO), Fsp27 gene knockout (Fsp27(-/-)), and wild-type (WT) mice in vivo using chemical shift selective imaging and (1)H-MR spectroscopy. We reported that the visceral fat volume in WAT was significantly larger in ob/ob mice, but visceral fat volumes were lower in SKO and Fsp27(-/-) mice compared with WT mice. BAT FF was significantly higher in ob/ob mice than the WT group and similar to that of WAT. In contrast, WAT FFs in SKO and Fsp27(-/-) mice were lower and similar to that of BAT. The adipocyte size of WAT in ob/ob mice and the BAT adipocyte size in ob/ob, SKO, and Fsp27 mice were significantly larger compared with WT mice. However, the WAT adipocyte size was significantly smaller in SKO mice than in WT mice. Positive correlations were observed between the adipocyte size and FFs of WAT and BAT. These results suggested that smaller adipocyte size correlates with lower FFs of WAT and BAT. In addition, the differences in FFs in WAT and BAT measured by MR methods in different mouse models were related to the different regulation effects of ob, seipin, or Fsp27 gene on developing WAT and BAT.

  2. Dissecting the Yale-Brown Obsessive-Compulsive Scale severity scale to understand the routes for symptomatic improvement in obsessive-compulsive disorder.

    Science.gov (United States)

    Costa, Daniel L da Conceição; Barbosa, Veronica S; Requena, Guaraci; Shavitt, Roseli G; Pereira, Carlos A de Bragança; Diniz, Juliana B

    2017-04-01

    We aimed to investigate which items of the Yale-Brown Obsessive-Compulsive Severity Scale best discriminate the reduction in total scores in obsessive-compulsive disorder patients after 4 and 12 weeks of pharmacological treatment. Data from 112 obsessive-compulsive disorder patients who received fluoxetine (⩽80 mg/day) for 12 weeks were included. Improvement indices were built for each Yale-Brown Obsessive-Compulsive Severity Scale item at two timeframes: from baseline to week 4 and from baseline to week 12. Indices for each item were correlated with the total scores for obsessions and compulsions and then ranked by correlation coefficient. A correlation coefficient ⩾0.7 was used to identify items that contributed significantly to reducing obsessive-compulsive disorder severity. At week 4, the distress items reached the threshold of 0.7 for improvement on the obsession and compulsion subscales although, contrary to our expectations, there was greater improvement in the control items than in the distress items. At week 12, there was greater improvement in the time, interference, and control items than in the distress items. The use of fluoxetine led first to reductions in distress and increases in control over symptoms before affecting the time spent on, and interference from, obsessions and compulsions. Resistance did not correlate with overall improvement. Understanding the pathway of improvement with pharmacological treatment in obsessive-compulsive disorder may provide clues about how to optimize the effects of medication.

  3. Rutin ameliorates obesity through brown fat activation.

    Science.gov (United States)

    Yuan, Xiaoxue; Wei, Gang; You, Yilin; Huang, Yuanyuan; Lee, Hyuek Jong; Dong, Meng; Lin, Jun; Hu, Tao; Zhang, Hanlin; Zhang, Chuanhai; Zhou, Huiqiao; Ye, Rongcai; Qi, Xiaolong; Zhai, Baiqiang; Huang, Weidong; Liu, Shunai; Xie, Wen; Liu, Qingsong; Liu, Xiaomeng; Cui, Chengbi; Li, Donghao; Zhan, Jicheng; Cheng, Jun; Yuan, Zengqiang; Jin, Wanzhu

    2017-01-01

    Increasing energy expenditure through activation of brown adipose tissue (BAT) is a critical approach to treating obesity and diabetes. In this study, rutin, a natural compound extracted from mulberry and a drug used as a capillary stabilizer clinically for many years without any side effects, regulated whole-body energy metabolism by enhancing BAT activity. Rutin treatment significantly reduced adiposity, increased energy expenditure, and improved glucose homeostasis in both genetically obese (Db/Db) and diet-induced obesity (DIO) mice. Rutin also induced brown-like adipocyte (beige) formation in subcutaneous adipose tissue in both obesity mouse models. Mechanistically, we found that rutin directly bound to and stabilized SIRT1, leading to hypoacetylation of peroxisome proliferator-activated receptor γ coactivator-1α protein, which stimulated Tfam transactivation and eventually augmented the number of mitochondria and UCP1 activity in BAT. These findings reveal that rutin is a novel small molecule that activates BAT and may provide a novel therapeutic approach to the treatment of metabolic disorders.-Yuan, X., Wei, G., You, Y., Huang, Y., Lee, H. J., Dong, M., Lin, J., Hu, T., Zhang, H., Zhang, C., Zhou, H., Ye, R., Qi, X., Zhai, B., Huang, W., Liu, S., Xie, W., Liu, Q., Liu, X., Cui, C., Li, D., Zhan, J., Cheng, J., Yuan, Z., Jin, W. Rutin ameliorates obesity through brown fat activation. © FASEB.

  4. Parasitic infection improves survival from septic peritonitis by enhancing mast cell responses to bacteria in mice.

    Directory of Open Access Journals (Sweden)

    Rachel E Sutherland

    Full Text Available Mammals are serially infected with a variety of microorganisms, including bacteria and parasites. Each infection reprograms the immune system's responses to re-exposure and potentially alters responses to first-time infection by different microorganisms. To examine whether infection with a metazoan parasite modulates host responses to subsequent bacterial infection, mice were infected with the hookworm-like intestinal nematode Nippostrongylus brasiliensis, followed in 2-4 weeks by peritoneal injection of the pathogenic bacterium Klebsiella pneumoniae. Survival from Klebsiella peritonitis two weeks after parasite infection was better in Nippostrongylus-infected animals than in unparasitized mice, with Nippostrongylus-infected mice having fewer peritoneal bacteria, more neutrophils, and higher levels of protective interleukin 6. The improved survival of Nippostrongylus-infected mice depends on IL-4 because the survival benefit is lost in mice lacking IL-4. Because mast cells protect mice from Klebsiella peritonitis, we examined responses in mast cell-deficient Kit(W-sh/Kit(W-sh mice, in which parasitosis failed to improve survival from Klebsiella peritonitis. However, adoptive transfer of cultured mast cells to Kit(W-sh/Kit(W-sh mice restored survival benefits of parasitosis. These results show that recent infection with Nippostrongylus brasiliensis protects mice from Klebsiella peritonitis by modulating mast cell contributions to host defense, and suggest more generally that parasitosis can yield survival advantages to a bacterially infected host.

  5. Adenosine activates brown adipose tissue and recruits beige adipocytes via A2A receptors

    DEFF Research Database (Denmark)

    Gnad, Thorsten; Scheibler, Saskia; von Kügelgen, Ivar

    2014-01-01

    hamster or rat. However, the role of adenosine in human BAT is unknown. Here we show that adenosine activates human and murine brown adipocytes at low nanomolar concentrations. Adenosine is released in BAT during stimulation of sympathetic nerves as well as from brown adipocytes. The adenosine A2A...... of A2A receptors or injection of lentiviral vectors expressing the A2A receptor into white fat induces brown-like cells-so-called beige adipocytes. Importantly, mice fed a high-fat diet and treated with an A2A agonist are leaner with improved glucose tolerance. Taken together, our results demonstrate...... that adenosine-A2A signalling plays an unexpected physiological role in sympathetic BAT activation and protects mice from diet-induced obesity. Those findings reveal new possibilities for developing novel obesity therapies....

  6. Salidroside improves glucose homeostasis in obese mice by repressing inflammation in white adipose tissues and improving leptin sensitivity in hypothalamus

    OpenAIRE

    Meihong Wang; Lan Luo; Lili Yao; Caiping Wang; Ketao Jiang; Xiaoyu Liu; Muchen Xu; Ningmei Shen; Shaodong Guo; Cheng Sun; Yumin Yang

    2016-01-01

    Salidroside is a functionally versatile natural compound from the perennial flowering plant Rhodiola rosea L. Here, we examined obese mice treated with salidroside at the dosage of 50?mg/kg/day for 48 days. Mice treated with salidroside showed slightly decreased food intake, body weight and hepatic triglyceride content. Importantly, salidroside treatment significantly improved glucose and insulin tolerance. It also increased insulin singling in both liver and epididymal white adipose tissue (...

  7. α/β-Hydrolase Domain 6 Deletion Induces Adipose Browning and Prevents Obesity and Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Shangang Zhao

    2016-03-01

    Full Text Available Suppression of α/β-domain hydrolase-6 (ABHD6, a monoacylglycerol (MAG hydrolase, promotes glucose-stimulated insulin secretion by pancreatic β cells. We report here that high-fat-diet-fed ABHD6-KO mice show modestly reduced food intake, decreased body weight gain and glycemia, improved glucose tolerance and insulin sensitivity, and enhanced locomotor activity. ABHD6-KO mice also show increased energy expenditure, cold-induced thermogenesis, brown adipose UCP1 expression, fatty acid oxidation, and white adipose browning. Adipose browning and cold-induced thermogenesis are replicated by the ABHD6 inhibitor WWL70 and by antisense oligonucleotides targeting ABHD6. Our evidence suggests that one mechanism by which the lipolysis derived 1-MAG signals intrinsic and cell-autonomous adipose browning is via PPARα and PPARγ activation, and that ABHD6 regulates adipose browning by controlling signal competent 1-MAG levels. Thus, ABHD6 regulates energy homeostasis, brown adipose function, and white adipose browning and is a potential therapeutic target for obesity and type 2 diabetes.

  8. Honokiol improves learning and memory impairments induced by scopolamine in mice.

    Science.gov (United States)

    Xian, Yan-Fang; Ip, Siu-Po; Mao, Qing-Qiu; Su, Zi-Ren; Chen, Jian-Nan; Lai, Xiao-Ping; Lin, Zhi-Xiu

    2015-08-01

    Honokiol, a lignan isolated from the bark of Magnolia officinalis, has been reported to ameliorate the learning and memory impairments in senesed (SAMP8) mice. However, whether honokiol could improve scopolamine (SCOP)-induced learning and memory deficits in mice is still unknown. In this study, we aimed to investigate whether honokiol could reverse the SCOP-induced learning and memory impairments in mice and to elucidate its underlying mechanisms of action. Mice were given daily intraperitoneal injection of honokiol (10 and 20mg/kg) for 21 consecutive days. The results showed that honokiol significantly improved spatial learning and memory function (as assessed by the Morris water maze test) in the SCOP-treated mice. In addition, treatment with honokiol significantly decreased the protein and mRNA levels of interleukin (IL)-1β and the activity of acetylcholinesterase (AChE), while significantly increased the protein and mRNA levels of IL-10, and the level of acetylcholine (Ach) in the brain of the SCOP-treated mice. Moreover, honokiol also significantly suppressed the production of prostaglandin E 2 (PGE2) and mRNA expression of cyclooxygenase-2 (COX-2) in the brain of the SCOP-treated mice. Mechanistic investigations revealed that honokiol could markedly reverse the amount of phosphorylated Akt and extracellular regulated kinases 1/2 (ERK1/2) changes in the brain of the SCOP-treated mice. These results amply demonstrated that honokiol could improve learning and memory impairments induced by SCOP in mice, and the protective action may be mediated, at least in part, by inhibition of AChE activity, and amelioration of the neuroinflammatory processes in the SCOP-treated mice.

  9. TEMPOL increases NAD+ and improves redox imbalance in obese mice

    Directory of Open Access Journals (Sweden)

    Mayumi Yamato

    2016-08-01

    Full Text Available Continuous energy conversion is controlled by reduction–oxidation (redox processes. NAD+ and NADH represent an important redox couple in energy metabolism. 4-Hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPOL is a redox-cycling nitroxide that promotes the scavenging of several reactive oxygen species (ROS and is reduced to hydroxylamine by NADH. TEMPOL is also involved in NAD+ production in the ascorbic acid–glutathione redox cycle. We utilized the chemical properties of TEMPOL to investigate the effects of antioxidants and NAD+/NADH modulators on the metabolic imbalance in obese mice. Increases in the NAD+/NADH ratio by TEMPOL ameliorated the metabolic imbalance when combined with a dietary intervention, changing from a high-fat diet to a normal diet. Plasma levels of the superoxide marker dihydroethidium were higher in mice receiving the dietary intervention compared with a control diet, but were normalized with TEMPOL consumption. These findings provide novel insights into redox regulation in obesity.

  10. Serotonin and noradrenaline reuptake inhibitors improve micturition control in mice.

    Directory of Open Access Journals (Sweden)

    Marco Redaelli

    Full Text Available Poor micturition control may cause profound distress, because proper voiding is mandatory for an active social life. Micturition results from the subtle interplay of central and peripheral components. It involves the coordination of autonomic and neuromuscular activity at the brainstem level, under the executive control of the prefrontal cortex. We tested the hypothesis that administration of molecules acting as reuptake inhibitors of serotonin, noradrenaline or both may exert a strong effect on the control of urine release, in a mouse model of overactive bladder. Mice were injected with cyclophosphamide (40 mg/kg, to increase micturition acts. Mice were then given one of four molecules: the serotonin reuptake inhibitor imipramine, its metabolite desipramine that acts on noradrenaline reuptake, the serotonin and noradrenaline reuptake inhibitor duloxetine or its active metabolite 4-hydroxy-duloxetine. Cyclophosphamide increased urine release without inducing overt toxicity or inflammation, except for increase in urothelium thickness. All the antidepressants were able to decrease the cyclophosphamide effects, as apparent from longer latency to the first micturition act, decreased number of urine spots and volume of released urine. These results suggest that serotonin and noradrenaline reuptake inhibitors exert a strong and effective modulatory effect on the control of urine release and prompt to additional studies on their central effects on brain areas involved in the social and behavioral control of micturition.

  11. Gomisin A improves scopolamine-induced memory impairment in mice.

    Science.gov (United States)

    Kim, Dong Hyun; Hung, Tran Manh; Bae, Ki Hwan; Jung, Ji Wook; Lee, Seungjoo; Yoon, Byung Hoon; Cheong, Jae Hoon; Ko, Kwang Ho; Ryu, Jong Hoon

    2006-08-07

    Gomisin A is a component of the fruits of Schizandra chinesis which are widely used as a tonic in traditional Chinese medicine. In the present study, we assessed the effect of gomisin A on the learning and memory impairments induced by scopolamine. The cognition-enhancing effect of gomisin A was investigated using a passive avoidance test, the Y-maze test, and the Morris water maze test in mice. Drug-induced amnesia was induced by treating animals with scopolamine (1 mg/kg, i.p.). Gomisin A (5 mg/kg, p.o.) administration significantly reversed scopolamine-induced cognitive impairments in mice by the passive avoidance test and the Y-maze test (Pgomisin A was found to inhibit acetylcholinesterase activity in a dose-dependent manner (IC50 value; 15.5 microM). These results suggest that gomisin A may be a useful cognitive impairment treatment, and its beneficial effects are mediated, in part, via enhancing the cholinergic nervous system.

  12. Improved method to raise polyclonal antibody using enhanced green fluorescent protein transgenic mice

    Institute of Scientific and Technical Information of China (English)

    Jianke Ren; Long Wang; Guoxiang Liu; Wen Zhang; Zhejin Sheng; Zhugang Wang; Jian Fei

    2008-01-01

    Recombinant fusion protein is widely used as an antigen to raise antibodies against the epitope of a target protein. However, the concomitant anticarrier antibody in resulting antiserum reduces the production of the desired antibody and brings about unwanted non-specific immune reactions. It is proposed that the carrier protein transgenic animal could be used to solve this problem. To validate this hypothesis, enhanced green fluorescent protein (EGFP) transgenic mice were produced. By immunizing the mice with fusion protein His6HAtag-EGFP, we showed that the antiserum from the transgenic mice had higher titer antibody against His6HA tag and lower titer antibody against EGFP compared with that from wild-type mice. Therefore, this report describes an improved method to raise high titer antipeptide polyclonal antibody using EGFP transgenic mice that could have application potential in antibodypreparation.

  13. Food quality and conspicuousness shape improvements in olfactory discrimination by mice.

    Science.gov (United States)

    Price, Catherine J; Banks, Peter B

    2017-01-25

    How animals locate nutritious but camouflaged prey items with increasing accuracy is not well understood. Olfactory foraging is common in vertebrates and the nutritional desirability of food should influence the salience of odour cues. We used signal detection analysis to test the effect of nutritional value relative to the conspicuousness of food patches on rates of foraging improvement of wild house mice Mus musculus searching for buried food (preferred peanuts or non-preferred barley). Olfactory cues were arranged to make food patches conspicuous or difficult to distinguish using a novel form of olfactory camouflage. Regardless of food type or abundance, mice searching for conspicuous food patches performed significantly better than mice searching for camouflaged patches. However, food type influenced how mice responded to different levels of conspicuousness. Mice searching for peanuts improved by similar rates regardless of whether food was easy or hard to find, but mice searching for barley showed significant differences, improving rapidly when food was conspicuous but declining in accuracy when food was camouflaged. Our results demonstrate a fundamental tenet of olfactory foraging that nutritional desirability influences rates of improvement in odour discrimination, enabling nutritious but camouflaged prey to be located with increasing efficiency.

  14. CART treatment improves memory and synaptic structure in APP/PS1 mice.

    Science.gov (United States)

    Jin, Jia-li; Liou, Anthony K F; Shi, Yejie; Yin, Kai-lin; Chen, Ling; Li, Ling-ling; Zhu, Xiao-lei; Qian, Lai; Yang, Rong; Chen, Jun; Xu, Yun

    2015-05-11

    Major characteristics of Alzheimer's disease (AD) include deposits of β-amyloid (Aβ) peptide in the brain, loss of synapses, and cognitive dysfunction. Cocaine- and amphetamine-regulated transcript (CART) has recently been reported to attenuate Aβ-induced toxicity. In this study, CART localization in APP/PS1 mice was characterized and the protective effects of exogenous CART treatment were examined. Compared to age-matched wild type mice, 8-month-old APP/PS1 mice had significantly greater CART immunoreactivity in the hippocampus and cortex. A strikingly similar pattern of Aβ plaque-associated CART immunoreactivity was observed in the cortex of AD cases. Treatment of APP/PS1 mice with exogenous CART ameliorated memory deficits; this effect was associated with improvements in synaptic ultrastructure and long-term potentiation, but not a reduction of the Aβ plaques. Exogenous CART treatment in APP/PS1 mice prevented depolarization of the mitochondrial membrane and stimulated mitochondrial complex I and II activities, resulting in an increase in ATP levels. CART treatment of APP/PS1 mice also reduced reactive oxygen species and 4-hydroxynonenal, and mitigated oxidative DNA damage. In summary, CART treatment reduced multiple neuropathological measures and improved memory in APP/PS1 mice, and may therefore be a promising and novel therapy for AD.

  15. CART treatment improves memory and synaptic structure in APP/PS1 mice

    Science.gov (United States)

    Jin, Jia-li; Liou, Anthony K.F.; Shi, Yejie; Yin, Kai-lin; Chen, Ling; Li, Ling-ling; Zhu, Xiao-lei; Qian, Lai; Yang, Rong; Chen, Jun; Xu, Yun

    2015-01-01

    Major characteristics of Alzheimer’s disease (AD) include deposits of β-amyloid (Aβ) peptide in the brain, loss of synapses, and cognitive dysfunction. Cocaine- and amphetamine-regulated transcript (CART) has recently been reported to attenuate Aβ-induced toxicity. In this study, CART localization in APP/PS1 mice was characterized and the protective effects of exogenous CART treatment were examined. Compared to age-matched wild type mice, 8-month-old APP/PS1 mice had significantly greater CART immunoreactivity in the hippocampus and cortex. A strikingly similar pattern of Aβ plaque-associated CART immunoreactivity was observed in the cortex of AD cases. Treatment of APP/PS1 mice with exogenous CART ameliorated memory deficits; this effect was associated with improvements in synaptic ultrastructure and long-term potentiation, but not a reduction of the Aβ plaques. Exogenous CART treatment in APP/PS1 mice prevented depolarization of the mitochondrial membrane and stimulated mitochondrial complex I and II activities, resulting in an increase in ATP levels. CART treatment of APP/PS1 mice also reduced reactive oxygen species and 4-hydroxynonenal, and mitigated oxidative DNA damage. In summary, CART treatment reduced multiple neuropathological measures and improved memory in APP/PS1 mice, and may therefore be a promising and novel therapy for AD. PMID:25959573

  16. Ageing Fxr deficient mice develop increased energy expenditure, improved glucose control and liver damage resembling NASH.

    Directory of Open Access Journals (Sweden)

    Mikael Bjursell

    Full Text Available Nuclear receptor subfamily 1, group H, member 4 (Nr1h4, FXR is a bile acid activated nuclear receptor mainly expressed in the liver, intestine, kidney and adrenal glands. Upon activation, the primary function is to suppress cholesterol 7 alpha-hydroxylase (Cyp7a1, the rate-limiting enzyme in the classic or neutral bile acid synthesis pathway. In the present study, a novel Fxr deficient mouse line was created and studied with respect to metabolism and liver function in ageing mice fed chow diet. The Fxr deficient mice were similar to wild type mice in terms of body weight, body composition, energy intake and expenditure as well as behaviours at a young age. However, from 15 weeks of age and onwards, the Fxr deficient mice had almost no body weight increase up to 39 weeks of age mainly because of lower body fat mass. The lower body weight gain was associated with increased energy expenditure that was not compensated by increased food intake. Fasting levels of glucose and insulin were lower and glucose tolerance was improved in old and lean Fxr deficient mice. However, the Fxr deficient mice displayed significantly increased liver weight, steatosis, hepatocyte ballooning degeneration and lobular inflammation together with elevated plasma levels of ALT, bilirubin and bile acids, findings compatible with non-alcoholic steatohepatitis (NASH and cholestasis. In conclusion, ageing Fxr deficient mice display late onset leanness associated with elevated energy expenditure and improved glucose control but develop severe NASH-like liver pathology.

  17. Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu-Kun Jennifer; Wu, Kai Connie; Liu, Jie; Klaassen, Curtis D., E-mail: cklaasse@kumc.edu

    2012-11-01

    Nrf2, a master regulator of intracellular redox homeostasis, is indicated to participate in fatty acid metabolism in liver. However, its role in diet-induced obesity remains controversial. In the current study, genetically engineered Nrf2-null, wild-type (WT), and Nrf2-activated, Keap1-knockdown (K1-KD) mice were fed either a control or a high-fat Western diet (HFD) for 12 weeks. The results indicate that the absence or enhancement of Nrf2 activity did not prevent diet-induced obesity, had limited effects on lipid metabolism, but affected blood glucose homeostasis. Whereas the Nrf2-null mice were resistant to HFD-induced glucose intolerance, the Nrf2-activated K1-KD mice exhibited prolonged elevation of circulating glucose during a glucose tolerance test even on the control diet. Feeding a HFD did not activate the Nrf2 signaling pathway in mouse livers. Fibroblast growth factor 21 (Fgf21) is a liver-derived anti-diabetic hormone that exerts glucose- and lipid-lowering effects. Fgf21 mRNA and protein were both elevated in livers of Nrf2-null mice, and Fgf21 protein was lower in K1-KD mice than WT mice. The inverse correlation between Nrf2 activity and hepatic expression of Fgf21 might explain the improved glucose tolerance in Nrf2-null mice. Furthermore, a more oxidative cellular environment in Nrf2-null mice could affect insulin signaling in liver. For example, mRNA of insulin-like growth factor binding protein 1, a gene repressed by insulin in hepatocytes, was markedly elevated in livers of Nrf2-null mice. In conclusion, genetic alteration of Nrf2 does not prevent diet-induced obesity in mice, but deficiency of Nrf2 improves glucose homeostasis, possibly through its effects on Fgf21 and/or insulin signaling. -- Highlights: ► Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet. ► The anti-diabetic hormone, Fgf21, is highly expressed in livers of Nrf2-null mice. ► The absence of Nrf2 increases the insulin-regulated Igfbp-1 mRNA in liver.

  18. The design and performance of an improved target for MICE

    CERN Document Server

    Booth, C N; Langlands, J; Overton, E; Robinson, M; Smith, P J; Barber, G; Long, K R; Shepherd, B; Capocci, E; MacWaters, C; Tarrant, J

    2016-01-01

    The linear motor driving the target for the Muon Ionisation Cooling Experiment has been redesigned to improve its reliability and performance. A new coil-winding technique is described which produces better magnetic alignment and improves heat transport out of the windings. Improved field-mapping has allowed the more precise construction to be demonstrated, and an enhanced controller exploits the full features of the hardware, enabling increased acceleration and precision. The new user interface is described and analysis of performance data to monitor friction is shown to allow quality control of bearings and a measure of the ageing of targets during use.

  19. Inducing Muscle Heat Shock Protein 70 Improves Insulin Sensitivity and Muscular Performance in Aged Mice.

    Science.gov (United States)

    Silverstein, Marnie G; Ordanes, Diane; Wylie, Ashley T; Files, D Clark; Milligan, Carol; Presley, Tennille D; Kavanagh, Kylie

    2015-07-01

    Heat shock proteins (HSPs) are molecular chaperones with roles in longevity and muscular preservation. We aimed to show elevating HSP70 improves indices of health span. Aged C57/BL6 mice acclimated to a western diet were randomized into: geranylgeranylacetone (GGA)-treated (100 mg/kg/d), biweekly heat therapy (HT), or control. The GGA and HT are well-known pharmacological and environmental inducers of HSP70, respectively. Assessments before and after 8 weeks of treatment included glycemic endpoints, body composition, and muscular endurance, power, and perfusion. An HT mice had more than threefold, and GGA mice had a twofold greater HSP70 compared with control. Despite comparable body compositions, both treatment groups had significantly better insulin sensitivity and insulin signaling capacity. Compared with baseline, HT mice ran 23% longer than at study start, which was significantly more than GGA or control. Hanging ability (muscular endurance) also tended to be best preserved in HT mice. Muscle power, contractile force, capillary perfusion, and innervation were not different. Heat treatment has a clear benefit on muscular endurance, whereas HT and GGA both improved insulin sensitivity. Different effects may relate to muscle HSP70 levels. An HSP induction could be a promising approach for improving health span in the aged mice. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Melatonin improves spermatogonial stem cells transplantation efficiency in azoospermic mice

    Directory of Open Access Journals (Sweden)

    Mohammadreza Gholami

    2014-02-01

    Conclusion: Administration of melatonin (20 mg/kg simultaneously with transplantation of spermatogonial stem cells in azoospermia mouse testis increases the efficiency of transplantation and improves structural properties of the testes tissue.

  1. Metformin Improves Ileal Epithelial Barrier Function in Interleukin-10 Deficient Mice.

    Science.gov (United States)

    Xue, Yansong; Zhang, Hanying; Sun, Xiaofei; Zhu, Mei-Jun

    2016-01-01

    The impairment of intestinal epithelial barrier is the main etiologic factor of inflammatory bowel disease. The proper intestinal epithelial proliferation and differentiation is crucial for maintaining intestinal integrity. Metformin is a common anti-diabetic drug. The objective is to evaluate the protective effects of metformin on ileal epithelial barrier integrity using interleukin-10 deficient (IL10KO) mice. Wild-type and IL10KO mice were fed with/without metformin for 6 weeks and then ileum was collected for analyses. The mediatory role of AMP-activated protein kinase (AMPK) was further examined by gain and loss of function study in vitro. Compared to wild-type mice, IL10KO mice had increased proliferation, reduced goblet cell and Paneth cell lineage differentiation in the ileum tissue, which was accompanied with increased crypt expansion. Metformin supplementation mitigated intestinal cell proliferation, restored villus/crypt ratio, increased goblet cell and Paneth cell differentiation and improved barrier function. In addition, metformin supplementation in IL10KO mice suppressed macrophage pro-inflammatory activity as indicated by reduced M1 macrophage abundance and decreased pro-inflammatory cytokine IL-1β, TNF-α and IFN-γ expressions. As a target of metformin, AMPK phosphorylation was enhanced in mice treated with metformin, regardless of mouse genotypes. In correlation, the mRNA level of differentiation regulator including bmp4, bmpr2 and math1 were also increased in IL10KO mice supplemented with metformin, which likely explains the enhanced epithelial differentiation in IL10KO mice with metformin. Consistently, in Caco-2 cells, metformin promoted claudin-3 and E-cadherin assembly and mitigated TNF-α-induced fragmentation of tight junction proteins. Gain and loss of function assay also demonstrated AMPK was correlated with epithelial differentiation and proliferation. Metformin supplementation promotes secretory cell lineage differentiation, suppresses

  2. Serotonin Improves High Fat Diet Induced Obesity in Mice.

    Directory of Open Access Journals (Sweden)

    Hitoshi Watanabe

    Full Text Available There are two independent serotonin (5-HT systems of organization: one in the central nervous system and the other in the periphery. 5-HT affects feeding behavior and obesity in the central nervous system. On the other hand, peripheral 5-HT also may play an important role in obesity, as it has been reported that 5-HT regulates glucose and lipid metabolism. Here we show that the intraperitoneal injection of 5-HT to mice inhibits weight gain, hyperglycemia and insulin resistance and completely prevented the enlargement of intra-abdominal adipocytes without having any effect on food intake when on a high fat diet, but not on a chow diet. 5-HT increased energy expenditure, O2 consumption and CO2 production. This novel metabolic effect of peripheral 5-HT is critically related to a shift in the profile of muscle fiber type from fast/glycolytic to slow/oxidative in soleus muscle. Additionally, 5-HT dramatically induced an increase in the mRNA expression of peroxisome proliferator-activated receptor coactivator 1α (PGC-1α-b and PGC-1α-c in soleus muscle. The elevation of these gene mRNA expressions by 5-HT injection was inhibited by treatment with 5-HT receptor (5HTR 2A or 7 antagonists. Our results demonstrate that peripheral 5-HT may play an important role in the relief of obesity and other metabolic disorders by accelerating energy consumption in skeletal muscle.

  3. Serotonin Improves High Fat Diet Induced Obesity in Mice.

    Science.gov (United States)

    Watanabe, Hitoshi; Nakano, Tatsuya; Saito, Ryo; Akasaka, Daisuke; Saito, Kazuki; Ogasawara, Hideki; Minashima, Takeshi; Miyazawa, Kohtaro; Kanaya, Takashi; Takakura, Ikuro; Inoue, Nao; Ikeda, Ikuo; Chen, Xiangning; Miyake, Masato; Kitazawa, Haruki; Shirakawa, Hitoshi; Sato, Kan; Tahara, Kohji; Nagasawa, Yuya; Rose, Michael T; Ohwada, Shyuichi; Watanabe, Kouichi; Aso, Hisashi

    2016-01-01

    There are two independent serotonin (5-HT) systems of organization: one in the central nervous system and the other in the periphery. 5-HT affects feeding behavior and obesity in the central nervous system. On the other hand, peripheral 5-HT also may play an important role in obesity, as it has been reported that 5-HT regulates glucose and lipid metabolism. Here we show that the intraperitoneal injection of 5-HT to mice inhibits weight gain, hyperglycemia and insulin resistance and completely prevented the enlargement of intra-abdominal adipocytes without having any effect on food intake when on a high fat diet, but not on a chow diet. 5-HT increased energy expenditure, O2 consumption and CO2 production. This novel metabolic effect of peripheral 5-HT is critically related to a shift in the profile of muscle fiber type from fast/glycolytic to slow/oxidative in soleus muscle. Additionally, 5-HT dramatically induced an increase in the mRNA expression of peroxisome proliferator-activated receptor coactivator 1α (PGC-1α)-b and PGC-1α-c in soleus muscle. The elevation of these gene mRNA expressions by 5-HT injection was inhibited by treatment with 5-HT receptor (5HTR) 2A or 7 antagonists. Our results demonstrate that peripheral 5-HT may play an important role in the relief of obesity and other metabolic disorders by accelerating energy consumption in skeletal muscle.

  4. Ghrelin improves delayed gastrointestinal transit in alloxan-induced diabetic mice

    Institute of Scientific and Technical Information of China (English)

    Wen-Cai Qiu; Zhi-Gang Wang; Ran Lv; Wei-Gang Wang; Xiao-Dong Han; Jun Yan; Yu Wang; Qi Zheng; Kai-Xing Ai

    2008-01-01

    AIM: To investigate the effects of ghrelin on delayed gastrointestinal transit in alloxan-induced diabetic mice.METHODS: A diabetic mouse model was established by intraperitoneal injection with alloxan.Mice were randomized into two main groups: normal mice group and diabetic mice group treated with ghrelin at doses of 0, 20, 50, 100 and 200 μg/kg ip.Gastric emptying (GE), intestinal transit (IT), and colonic transit (CT)were studied in mice after they had a phenol red meal following injection of ghrelin.Based on the most effective ghrelin dosage, atropine was given at 1 mg/kg 15 min before the ghrelin injection for each measurement.The mice in each group were sacrificed 20 min later and their stomachs, intestines, and colons were harvested immediately.The amount of phenol red was measured.Percentages of GE, IT, and CT were calculated.RESULTS: Percentages of GE, IT, and CT were significantly decreased in diabetic mice as compared to control mice (22.9±1.4 vs 28.1±1.3, 33.5±1.2 vs 43.2±1.9, 29.5±1.9 vs 36.3±1.6, P < 0.05).In the diabetic mice, ghrelin improved both GE and IT, but not CT.The most effective dose of ghrelin was 100 μg/kg and atropine blocked the prokinetic effects of ghrelin on GE and IT.CONCLUSION: Ghrelin accelerates delayed GE and IT but has no effect on CT in diabetic mice.Ghrelin may exert its prokinetic effects via the cholinergic pathway in the enteric nervous system, and therefore has therapeutic potential for diabetic patients with delayed upper gastrointestinal transit.

  5. Tribbles 3 inhibits brown adipocyte differentiation and function by suppressing insulin signaling

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Ha-Won; Choi, Ran Hee; McClellan, Jamie L. [Division of Applied Physiology, Department of Exercise Science, University of South Carolina, Columbia, SC 29208 (United States); Piroli, Gerardo G.; Frizzell, Norma [Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208 (United States); Tseng, Yu-Hua; Goodyear, Laurie J. [Research Division, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA 02215 (United States); Koh, Ho-Jin, E-mail: kohh@mailbox.sc.edu [Division of Applied Physiology, Department of Exercise Science, University of South Carolina, Columbia, SC 29208 (United States)

    2016-02-19

    Recent studies have demonstrated that adult humans have substantial amounts of functioning brown adipose tissue (BAT). Since BAT has been implicated as an anti-obese and anti-diabetic tissue, it is important to understand the signaling molecules that regulate BAT function. There has been a link between insulin signaling and BAT metabolism as deletion or pharmaceutical inhibition of insulin signaling impairs BAT differentiation and function. Tribbles 3 (TRB3) is a pseudo kinase that has been shown to regulate metabolism and insulin signaling in multiple tissues but the role of TRB3 in BAT has not been studied. In this study, we found that TRB3 expression was present in BAT and overexpression of TRB3 in brown preadipocytes impaired differentiation and decreased expression of BAT markers. Furthermore, TRB3 overexpression resulted in significantly lower oxygen consumption rates for basal and proton leakage, indicating decreased BAT activity. Based on previous studies showing that deletion or pharmaceutical inhibition of insulin signaling impairs BAT differentiation and function, we assessed insulin signaling in brown preadipocytes and BAT in vivo. Overexpression of TRB3 in cells impaired insulin-stimulated IRS1 and Akt phosphorylation, whereas TRB3KO mice displayed improved IRS1 and Akt phosphorylation. Finally, deletion of IRS1 abolished the function of TRB3 to regulate BAT differentiation and metabolism. These data demonstrate that TRB3 inhibits insulin signaling in BAT, resulting in impaired differentiation and function. - Highlights: • TRB3 is expressed in brown adipose tissue and its expression is increased during differentiation. • Overexpression of TRB3 inhibits differentiation and its activity. • Overexpression of TRB3 in brown preadipocytes inhibits insulin signaling. • TRB3KO mice displays improved insulin signaling in brown adipose tissue. • Insulin signaling is required for the effects of TRB3 to regulate brown adipose tissue differentiation and

  6. Diet enriched with korean pine nut oil improves mitochondrial oxidative metabolism in skeletal muscle and brown adipose tissue in diet-induced obesity.

    Science.gov (United States)

    Le, Ngoc Hoan; Shin, Sunhye; Tu, Thai Hien; Kim, Chu-Sook; Kang, Ji-Hye; Tsuyoshi, Goto; Teruo, Kawada; Han, Sung Nim; Yu, Rina

    2012-12-05

    In this study, we investigated effects of pine nut oil (PNO) on high-fat-diet (HFD)-induced obesity and metabolic dysfunction in skeletal muscle and brown adipose tissue (BAT). Male C57BL/6 mice were fed a HFD with 15% energy from lard and 30% energy from either soybean oil (SBO-HFD) or PNO (PNO-HFD) for 12 weeks. The PNO-HFD resulted in less weight gain and intramuscular lipid accumulation than the SBO-HFD and was accompanied by upregulation of transcripts and proteins related to oxidative metabolism and phosphorylation of AMP-activated protein kinase (AMPK), as well as molecules selectively expressed in type I and type IIa muscle fibers. In addition, uncoupling protein-1 was upregulated in BAT. These beneficial metabolic effects were partly associated with the dual ligand activity of pinolenic acid, which is abundant in PNO, for peroxisome proliferator-activated receptors α and δ. Our findings suggest that PNO may have potential as a dietary supplement for counteracting obesity and metabolic dysregulation.

  7. Pharmacological or genetic inactivation of the serotonin transporter improves reversal learning in mice.

    Science.gov (United States)

    Brigman, Jonathan L; Mathur, Poonam; Harvey-White, Judith; Izquierdo, Alicia; Saksida, Lisa M; Bussey, Timothy J; Fox, Stephanie; Deneris, Evan; Murphy, Dennis L; Holmes, Andrew

    2010-08-01

    Growing evidence supports a major contribution of cortical serotonin (5-hydroxytryptamine, 5-HT) to the modulation of cognitive flexibility and the cognitive inflexibility evident in neuropsychiatric disorders. The precise role of 5-HT and the influence of 5-HT gene variation in mediating this process is not fully understood. Using a touch screen-based operant system, we assessed reversal of a pairwise visual discrimination as an assay for cognitive flexibility. Effects of constitutive genetic or pharmacological inactivation of the 5-HT transporter (5-HTT) on reversal were examined by testing 5-HTT null mice and chronic fluoxetine-treated C57BL/6J mice, respectively. Effects of constitutive genetic loss or acute pharmacological depletion of 5-HT were assessed by testing Pet-1 null mice and para-chlorophenylalanine (PCPA)-treated C57BL/6J mice, respectively. Fluoxetine-treated C57BL/6J mice made fewer errors than controls during the early phase of reversal when perseverative behavior is relatively high. 5-HTT null mice made fewer errors than controls in completing the reversal task. However, reversal in Pet-1 null and PCPA-treated C57BL/6J mice was not different from controls. These data further support an important role for 5-HT in modulating reversal learning and provide novel evidence that inactivating the 5-HTT improves this process. These findings could have important implications for understanding and treating cognitive inflexibility in neuropsychiatric disease.

  8. Chronic intermittent fasting improves cognitive functions and brain structures in mice.

    Directory of Open Access Journals (Sweden)

    Liaoliao Li

    Full Text Available Obesity is a major health issue. Obesity started from teenagers has become a major health concern in recent years. Intermittent fasting increases the life span. However, it is not known whether obesity and intermittent fasting affect brain functions and structures before brain aging. Here, we subjected 7-week old CD-1 wild type male mice to intermittent (alternate-day fasting or high fat diet (45% caloric supplied by fat for 11 months. Mice on intermittent fasting had better learning and memory assessed by the Barnes maze and fear conditioning, thicker CA1 pyramidal cell layer, higher expression of drebrin, a dendritic protein, and lower oxidative stress than mice that had free access to regular diet (control mice. Mice fed with high fat diet was obese and with hyperlipidemia. They also had poorer exercise tolerance. However, these obese mice did not present significant learning and memory impairment or changes in brain structures or oxidative stress compared with control mice. These results suggest that intermittent fasting improves brain functions and structures and that high fat diet feeding started early in life does not cause significant changes in brain functions and structures in obese middle-aged animals.

  9. Chronic intermittent fasting improves cognitive functions and brain structures in mice.

    Science.gov (United States)

    Li, Liaoliao; Wang, Zhi; Zuo, Zhiyi

    2013-01-01

    Obesity is a major health issue. Obesity started from teenagers has become a major health concern in recent years. Intermittent fasting increases the life span. However, it is not known whether obesity and intermittent fasting affect brain functions and structures before brain aging. Here, we subjected 7-week old CD-1 wild type male mice to intermittent (alternate-day) fasting or high fat diet (45% caloric supplied by fat) for 11 months. Mice on intermittent fasting had better learning and memory assessed by the Barnes maze and fear conditioning, thicker CA1 pyramidal cell layer, higher expression of drebrin, a dendritic protein, and lower oxidative stress than mice that had free access to regular diet (control mice). Mice fed with high fat diet was obese and with hyperlipidemia. They also had poorer exercise tolerance. However, these obese mice did not present significant learning and memory impairment or changes in brain structures or oxidative stress compared with control mice. These results suggest that intermittent fasting improves brain functions and structures and that high fat diet feeding started early in life does not cause significant changes in brain functions and structures in obese middle-aged animals.

  10. Endurance Factors Improve Hippocampal Neurogenesis and Spatial Memory in Mice

    Science.gov (United States)

    Kobilo, Tali; Yuan, Chunyan; van Praag, Henriette

    2011-01-01

    Physical activity improves learning and hippocampal neurogenesis. It is unknown whether compounds that increase endurance in muscle also enhance cognition. We investigated the effects of endurance factors, peroxisome proliferator-activated receptor [delta] agonist GW501516 and AICAR, activator of AMP-activated protein kinase on memory and…

  11. Improvement of the antifungal activity of Litsea cubeba vapor by using a helium-neon (He-Ne) laser against Aspergillus flavus on brown rice snack bars.

    Science.gov (United States)

    Suhem, Kitiya; Matan, Narumol; Matan, Nirundorn; Danworaphong, Sorasak; Aewsiri, Tanong

    2015-12-23

    The aim of this study was to improve the antifungal activity of the volatile Litsea cubeba essential oil and its main components (citral and limonene) on brown rice snack bars by applying He-Ne laser treatment. Different volumes (50-200 μL) of L. cubeba, citral or limonene were absorbed into a filter paper and placed inside an oven (18 L). Ten brown rice snack bars (2 cm wide × 4 cm long × 0.5 cm deep) were put in an oven and heated at 180 °C for 20 min. The shelf-life of the treated snack bars at 30 °C was assessed and sensory testing was carried out to investigate their consumer acceptability. A count of total phenolic content (TPC) and Fourier transform infrared spectroscopy (FTIR) on the properties of essential oil, citral, and limonene before and after the laser treatment was studied for possible modes of action. It was found that the laser treatment improved the antifungal activity of the examined volatile L. cubeba and citral with Aspergillus flavus inhibition by 80% in comparison with those of the control not treated with the laser. L. cubeba vapor at 100 μL with the laser treatment was found to completely inhibit the growth of natural molds on the snack bars for at least 25 days; however, without essential oil vapor and laser treatment, naturally contaminating mold was observed in 3 days. Results from the sensory tests showed that the panelists were unable to detect flavor and aroma differences between essential oil treatment and the control. Laser treatment caused an increase in TPC of citral oil whereas the TPC in limonene showed a decrease after the laser treatment. These situations could result from the changing peak of the aliphatic hydrocarbons that was revealed by the FTIR spectra.

  12. Glucagon-like peptide-2-induced memory improvement and anxiolytic effects in mice.

    Science.gov (United States)

    Iwai, Takashi; Jin, Kazushi; Ohnuki, Tomoko; Sasaki-Hamada, Sachie; Nakamura, Minami; Saitoh, Akiyoshi; Sugiyama, Azusa; Ikeda, Masaatsu; Tanabe, Mitsuo; Oka, Jun-Ichiro

    2015-02-01

    We investigated the effectiveness of glucagon-like peptide-2 (GLP-2) on memory impairment in lipopolysaccharide (LPS)-treated mice, and anxiety-like behavior in adrenocorticotropic hormone (ACTH)-treated mice. In the Y-maze test, LPS (10 µg/mouse, i.c.v.) significantly decreased spontaneous alternation, which was prevented by pretreatment with GLP-2 (0.01-0.3 µg/mouse, i.c.v.). The GLP-2 treatment just before the Y-maze test also improved LPS-induced memory impairment. Continuous treatment with GLP-2 (3 µg/mouse, i.c.v.) had no effect on the open-field test in saline-treated or ACTH-treated mice. Chronic ACTH treatment did not cause anxiogenic effects in the elevated plus-maze test. GLP-2 showed weak anxiolytic-like effects in the elevated plus-maze test in ACTH-treated, but not saline-treated mice. Moreover, GLP-2 increased 5-HT, but not 5-HIAA and tryptophan hydroxylase 2 levels in the amygdala of ACTH-treated mice. Pharmacological depletion of 5-HT prevented the anxiolytic effects of GLP-2. These results suggest that GLP-2 protected and improved memory function in LPS-treated mice, and also had anxiolytic effects due to changes in the 5-HT system.

  13. High Intensity Interval Training (HIIT) improves physical performance and frailty in aged mice.

    Science.gov (United States)

    Seldeen, Kenneth Ladd; Lasky, Ginger; Leiker, Merced Maria; Pang, Manhui; Personius, Kirkwood Ely; Troen, Bruce Robert

    2017-06-17

    Sarcopenia and frailty are highly prevalent in older individuals, increasing the risk of disability and loss of independence. High intensity interval training (HIIT) may provide a robust intervention for both sarcopenia and frailty by achieving both strength and endurance benefits with lower time commitments than other exercise regimens. To better understand the impacts of HIIT during aging, we compared 24-month-old C57BL/6J sedentary mice with those that were administered 10-minute uphill treadmill HIIT sessions three times per week over 16 weeks. Baseline and endpoint assessments included body composition, physical performance, and frailty based upon criteria from the Fried physical frailty scale. HIIT trained mice demonstrated dramatic improvement in grip strength (HIIT 10.9% versus -3.9% in sedentary mice), treadmill endurance (32.6% versus -2.0%), and gait speed (107.0% versus 39.0%). Muscles from HIIT mice also exhibited greater mass, larger fiber size, and an increase in mitochondrial biomass. Furthermore, HIIT exercise showed dramatic reduction in frailty scores in 5 of 6 mice that were frail or pre-frail at baseline, with 4 ultimately becoming non-frail. The uphill treadmill HIIT exercise sessions were well tolerated by aged mice and led to dramatic performance gains, improvement in underlying muscle physiology, and reduction in frailty. Published by Oxford University Press on behalf of The Gerontological Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  14. The contribution of visceral fat to improved insulin signaling in Ames dwarf mice

    Science.gov (United States)

    Menon, Vinal; Zhi, Xu; Hossain, Tanvir; Bartke, Andrzej; Spong, Adam; Gesing, Adam; Masternak, Michal M

    2014-01-01

    Ames dwarf (Prop1df, df/df) mice are characterized by growth hormone (GH), prolactin, and thyrotropin deficiency, remarkable extension of longevity and increased insulin sensitivity with low levels of fasting insulin and glucose. Plasma levels of anti-inflammatory adiponectin are increased in df/df mice, while pro-inflammatory IL-6 is decreased in plasma and epididymal fat. This represents an important shift in the balance between pro- and anti-inflammatory adipokines in adipose tissue, which was not exposed to GH signals during development or adult life. To determine the role of adipose tissue in the control of insulin signaling in these long-living mutants, we examined the effects of surgical removal of visceral (epididymal and perinephric) adipose tissue. Comparison of the results obtained in df/df mice and their normal (N) siblings indicated different effects of visceral fat removal (VFR) on insulin sensitivity and glucose tolerance. The analysis of the expression of genes related to insulin signaling indicated that VFR improved insulin action in skeletal muscle in N mice. Interestingly, this surgical intervention did not improve insulin signaling in df/df mice skeletal muscle but caused suppression of the signal in subcutaneous fat. We conclude that altered profile of adipokines secreted by visceral fat of Ames dwarf mice may act as a key contributor to increased insulin sensitivity and extended longevity of these animals. PMID:24690289

  15. The contribution of visceral fat to improved insulin signaling in Ames dwarf mice.

    Science.gov (United States)

    Menon, Vinal; Zhi, Xu; Hossain, Tanvir; Bartke, Andrzej; Spong, Adam; Gesing, Adam; Masternak, Michal M

    2014-06-01

    Ames dwarf (Prop1(df), df/df) mice are characterized by growth hormone (GH), prolactin, and thyrotropin deficiency, remarkable extension of longevity and increased insulin sensitivity with low levels of fasting insulin and glucose. Plasma levels of anti-inflammatory adiponectin are increased in df/df mice, while pro-inflammatory IL-6 is decreased in plasma and epididymal fat. This represents an important shift in the balance between pro- and anti-inflammatory adipokines in adipose tissue, which was not exposed to GH signals during development or adult life. To determine the role of adipose tissue in the control of insulin signaling in these long-living mutants, we examined the effects of surgical removal of visceral (epididymal and perinephric) adipose tissue. Comparison of the results obtained in df/df mice and their normal (N) siblings indicated different effects of visceral fat removal (VFR) on insulin sensitivity and glucose tolerance. The analysis of the expression of genes related to insulin signaling indicated that VFR improved insulin action in skeletal muscle in N mice. Interestingly, this surgical intervention did not improve insulin signaling in df/df mice skeletal muscle but caused suppression of the signal in subcutaneous fat. We conclude that altered profile of adipokines secreted by visceral fat of Ames dwarf mice may act as a key contributor to increased insulin sensitivity and extended longevity of these animals. © 2014 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  16. Intermittent injections of osteocalcin improve glucose metabolism and prevent type 2 diabetes in mice.

    Science.gov (United States)

    Ferron, Mathieu; McKee, Marc D; Levine, Robert L; Ducy, Patricia; Karsenty, Gérard

    2012-02-01

    The uncarboxylated form of the osteoblast-specific secreted molecule osteocalcin is a hormone favoring glucose handling and increasing energy expenditure. As a result, the absence of osteocalcin leads to glucose intolerance in mice, while genetically modified mice with an increase in uncarboxylated osteocalcin are protected from type 2 diabetes and obesity. Here, we tested in the mouse the therapeutic potential of intermittent administration of osteocalcin. We found that daily injections of osteocalcin at either 3 or 30 ng/g/day significantly improved glucose tolerance and insulin sensitivity in mice fed a normal diet. This was attributable, in part, to an increase in both β-cell mass and insulin secretion. When mice were fed a high-fat diet (HFD), daily injections of osteocalcin partially restored insulin sensitivity and glucose tolerance. Moreover, mice treated with intermittent osteocalcin injections displayed additional mitochondria in their skeletal muscle, had increased energy expenditure and were protected from diet-induced obesity. Finally, the hepatic steatosis induced by the HFD was completely rescued in mice receiving osteocalcin daily. Overall, these results provide evidence that daily injections of osteocalcin can improve glucose handling and prevent the development of type 2 diabetes.

  17. Erythropoietin improves operant conditioning and stability of cognitive performance in mice

    Directory of Open Access Journals (Sweden)

    Ehrenreich Hannelore

    2009-07-01

    Full Text Available Abstract Background Executive functions, learning and attention are imperative facets of cognitive performance, affected in many neuropsychiatric disorders. Recently, we have shown that recombinant human erythropoietin improves cognitive functions in patients with chronic schizophrenia, and that it leads in healthy mice to enhanced hippocampal long-term potentiation, an electrophysiological correlate of learning and memory. To create an experimental basis for further mechanistic insight into erythropoietin-modulated cognitive processes, we employed the Five Choice Serial Reaction Time Task. This procedure allows the study of the effects of erythropoietin on discrete processes of learning and attention in a sequential fashion. Results Male mice were treated for 3 weeks with erythropoietin (5,000 IU/kg versus placebo intraperitoneally every other day, beginning at postnatal day 28. After termination of treatment, mice were started on the Five Choice Serial Reaction Time Task, with daily training and testing extending to about 3 months. Overall, a significantly higher proportion of erythropoietin-treated mice finished the task, that is, reached the criteria of adequately reacting to a 1.0 sec flash light out of five arbitrarily appearing choices. During acquisition of this capability, that is, over almost all sequential training phases, learning readouts (magazine training, operant and discriminant learning, stability of performance were superior in erythropoietin-treated versus control mice. Conclusion Early erythropoietin treatment leads to lasting improvement of cognitive performance in healthy mice. This finding should be exploited in novel treatment strategies for brain diseases.

  18. Effects of adipocyte lipoprotein lipase on de novo lipogenesis and white adipose tissue browning.

    Science.gov (United States)

    Bartelt, Alexander; Weigelt, Clara; Cherradi, M Lisa; Niemeier, Andreas; Tödter, Klaus; Heeren, Joerg; Scheja, Ludger

    2013-05-01

    Efficient storage of dietary and endogenous fatty acids is a prerequisite for a healthy adipose tissue function. Lipoprotein lipase (LPL) is the master regulator of fatty acid uptake from triglyceride-rich lipoproteins. In addition to LPL-mediated fatty acid uptake, adipocytes are able to synthesize fatty acids from non-lipid precursor, a process called de novo lipogenesis (DNL). As the physiological relevance of fatty acid uptake versus DNL for brown and white adipocyte function remains unclear, we studied the role of adipocyte LPL using adipocyte-specific LPL knockout animals (aLKO). ALKO mice displayed a profound increase in DNL-fatty acids, especially palmitoleate and myristoleate in brown adipose tissue (BAT) and white adipose tissue (WAT) depots while essential dietary fatty acids were markedly decreased. Consequently, we found increased expression in adipose tissues of genes encoding DNL enzymes (Fasn, Scd1, and Elovl6) as well as the lipogenic transcription factor carbohydrate response element binding protein-β. In a high-fat diet (HFD) study aLKO mice were characterized by reduced adiposity and improved plasma insulin and adipokines. However, neither glucose tolerance nor inflammatory markers were ameliorated in aLKO mice compared to controls. No signs of increased BAT activation or WAT browning were detected in aLKO mice either on HFD or after 1 week of β3-adrenergic stimulation using CL316,243. We conclude that despite a profound increase in DNL-derived fatty acids, proposed to be metabolically favorable, aLKO mice are not protected from metabolic disease per se. In addition, induction of DNL alone is not sufficient to promote browning of WAT. This article is part of a Special Issue entitled Brown and White Fat: From Signaling to Disease.

  19. Curcumin promotes browning of white adipose tissue in a norepinephrine-dependent way.

    Science.gov (United States)

    Wang, Shan; Wang, Xiuchao; Ye, Zichen; Xu, Chengming; Zhang, Ming; Ruan, Banjun; Wei, Ming; Jiang, Yinghao; Zhang, Ying; Wang, Li; Lei, Xiaoying; Lu, Zifan

    2015-10-16

    Brown adipose tissue converts energy from food into heat via the mitochondrial uncoupling protein UCP1, defending against cold. In some conditions, inducible 'brown-like' adipocytes, also known as beige adipocytes, can develop within white adipose tissue (WAT). These beige adipocytes have characteristics similar to classical brown adipocytes and thus can burn lipids to produce heat. In the current study, we demonstrated that curcumin (50 or 100 mg/kg/day) decreased bodyweight and fat mass without affecting food intake in mice. We further demonstrated that curcumin improves cold tolerance in mice. This effect was possibly mediated by the emergence of beige adipocytes and the increase of thermogenic gene expression and mitochondrial biogenesis in inguinal WAT. In addition, curcumin promotes β3AR gene expression in inguinal WAT and elevates the levels of plasma norepinephrine, a hormone that can induce WAT browning. Taken together, our data suggest that curcumin can potentially prevent obesity by inducing browning of inguinal WAT via the norepinephrine-β3AR pathway.

  20. Deletion of the gene encoding G0/G 1 switch protein 2 (G0s2) alleviates high-fat-diet-induced weight gain and insulin resistance, and promotes browning of white adipose tissue in mice.

    Science.gov (United States)

    El-Assaad, Wissal; El-Kouhen, Karim; Mohammad, Amro H; Yang, Jieyi; Morita, Masahiro; Gamache, Isabelle; Mamer, Orval; Avizonis, Daina; Hermance, Nicole; Kersten, Sander; Tremblay, Michel L; Kelliher, Michelle A; Teodoro, Jose G

    2015-01-01

    Obesity is a global epidemic resulting from increased energy intake, which alters energy homeostasis and results in an imbalance in fat storage and breakdown. G0/G1 switch gene 2 (G0s2) has been recently characterised in vitro as an inhibitor of adipose triglyceride lipase (ATGL), the rate-limiting step in fat catabolism. In the current study we aim to functionally characterise G0s2 within the physiological context of a mouse model. We generated a mouse model in which G0s2 was deleted. The homozygous G0s2 knockout (G0s2 (-/-)) mice were studied over a period of 22 weeks. Metabolic variables were measured including body weight and body composition, food intake, glucose and insulin tolerance tests, energy metabolism and thermogenesis. We report that G0s2 inhibits ATGL and regulates lipolysis and energy metabolism in vivo. G0s2 (-/-) mice are lean, resistant to weight gain induced by a high-fat diet and are glucose tolerant and insulin sensitive. The white adipose tissue of G0s2 (-/-) mice has enhanced lipase activity and adipocytes showed enhanced stimulated lipolysis. Energy metabolism in the G0s2 (-/-) mice is shifted towards enhanced lipid metabolism and increased thermogenesis. G0s2 (-/-) mice showed enhanced cold tolerance and increased expression of thermoregulatory and oxidation genes within white adipose tissue, suggesting enhanced 'browning' of the white adipose tissue. Our data show that G0s2 is a physiological regulator of adiposity and energy metabolism and is a potential target in the treatment of obesity and insulin resistance.

  1. Dietary L-glutamine supplementation improves pregnancy outcome in mice infected with type-2 porcine circovirus.

    Science.gov (United States)

    Ren, Wenkai; Luo, Wei; Wu, Miaomiao; Liu, Gang; Yu, Xinglong; Fang, Jun; Li, Teijun; Yin, Yulong; Wu, Guoyao

    2013-09-01

    Porcine circovirus type 2 (PCV2) causes reproductive failure in swine. As glutamine can enhance immune function in animals, this study was conducted with mice to test the hypothesis that dietary glutamine supplementation will improve pregnancy outcome in PCV2-infected dams. Beginning on day 0 of gestation, mice were fed a standard diet supplemented with 1.0% L-glutamine or 1.22% L-alanine (isonitrogenous control). All mice were infected with PCV2 (2000 TCID50) on day 10 of gestation. On day 17 of gestation, six mice from each group were euthanized to obtain maternal tissues and fetuses for hematology and histopathology tests. The remaining mice continued to receive their respective diets supplemented with 1.0% L-glutamine or 1.22% L-alanine through lactation. The PCV2 virus was present in maternal samples (serum and lung) of most mice in the control group but was not detected in the glutamine-supplemented mice. Dietary glutamine supplementation reduced abortion, decreased fetal deaths, and enhanced neonatal survival. The glutamine treatment also reduced concentrations of interleukin-6, while increasing concentrations of tumor necrosis factor-α and C-reactive protein, in the maternal serum of mice. Furthermore, glutamine supplementation attenuated microscopic lesions in maternal tissues (lung, spleen, and liver). Collectively, these results indicate that dietary glutamine supplementation is beneficial for ameliorating reproductive failure in virus-infected mice. The findings support the notion that gestating dams require adequate amounts of dietary glutamine for the optimal survival and growth of embryos, fetuses, and neonates, and have important implications for nutritional support of mammals (including swine and humans) during gestation and lactation.

  2. Enhanced insulin sensitivity mediated by adipose tissue browning perturbs islet morphology and hormone secretion in response to autonomic nervous activation in female mice.

    Science.gov (United States)

    Omar, Bilal A; Kvist-Reimer, Martina; Enerbäck, Sven; Ahrén, Bo

    2016-01-01

    Insulin resistance results in a compensatory increase in insulin secretion to maintain normoglycemia. Conversely, high insulin sensitivity results in reduced insulin secretion to prevent hypoglycemia. The mechanisms for this inverse adaptation are not well understood. We utilized highly insulin-sensitive mice, due to adipocyte-specific overexpression of the FOXC2 transcription factor, to study mechanisms of the reversed islet adaptation to increased insulin sensitivity. We found that Foxc2TG mice responded to mild hyperglycemia with insulin secretion significantly lower than that of wild-type mice; however, when severe hyperglycemia was induced, Foxc2TG mice demonstrated insulin secretion equal to or greater than that of wild-type mice. In response to autonomic nervous activation by 2-deoxyglucose, the acute suppression of insulin seen in wild-type mice was absent in Foxc2TG mice, suggesting impaired sympathetic signaling to the islet. Basal glucagon was increased in Foxc2TG mice, but they displayed severely impaired glucagon responses to cholinergic and autonomic nervous stimuli. These data suggest that the autonomic nerves contribute to the islet adaptation to high insulin sensitivity, which is compatible with a neuro-adipo regulation of islet function being instrumental for maintaining glucose regulation.

  3. Bacillus Coagulans GBI-30 (BC30 improves indices of Clostridium difficile-Induced colitis in mice

    Directory of Open Access Journals (Sweden)

    Fitzpatrick Leo R

    2011-10-01

    Full Text Available Abstract Background Probiotics have beneficial effects in rodent models of Clostridium difficile (C. diffiicle-induced colitis. The spore forming probiotic strain Bacillus Coagulans GBI-30, 6086 (BC30 has demonstrated anti-inflammatory and immune-modulating effects in vitro. Our goal was to determine if BC30 improved C. difficile-induced colitis in mice. Starting on study day 0, female C57BL/6 mice were dosed by oro-gastric gavage for 15 days with vehicle (saline or BC30 (2 × 109 CFU per day. Mice in the C. difficile groups received an antibiotic mixture (study days 5 to 8 in the drinking water, and clindamycin (10 mg/kg, i.p., on study day 10. The C. difficile strain VPI 10463 was given by gavage at 104 CFU to induce colitis on day 11. On day 16, stools and colons were collected for further analyses. Results All mice treated with BC30 survived on study day 13, while two mice treated with vehicle did not survive. On day 12, a significant difference (p = 0.0002 in the percentage of mice with normal stools (66.7% was found in the BC30/C. difficile group, as compared to the vehicle/C. diffcile group (13.0%. On study day 16, 23.8% of mice treated with BC30 had normal stools, while this value was 0% with vehicle treatment (p value = 0.0187. On this day, the stool consistency score for the BC30/C. difficile group (1.1 ± 0.2 was significantly lower (p C. difficile cohort (1.9 ± 0.2. BC30 modestly attenuated the colonic pathology (crypt damage, edema, leukocyte influx that was present following C. difficile infection. Colonic MIP-2 chemokine contents (pg/2 cm colon were: 10.2 ± 0.5 (vehicle/no C. difficile, 24.6 ± 9.5 (vehicle/C. difficile and 16.3 ± 4.3 (BC30/C. difficle. Conclusion The probiotic BC30 improved some parameters of C. difficile-induced colitis in mice. BC30 prolonged the survival of C. diffiicle infected mice. Particularly, this probiotic improved the stool consistency of mice, in this infectious colitis model.

  4. Schisandra N-butanol extract improves synaptic morphology and plasticity in ovarectomized mice

    Institute of Scientific and Technical Information of China (English)

    Meiyan Yang; Zhaolin Cai; Peng Xiao; Chuhua Li

    2012-01-01

    Preliminary work by our research team revealed that Schisandra, a renowned traditional Chinese medicine, causes learning and memory improvements in ovariectomized mice. This activity was attributed to active ingredients extracted with N-butyl alcohol, named Schisandra N-butanol extract. In this study, ovariectomized mice were pretreated with Schisandra N-butanol extract given by intragastric administration. This treatment led to the enhancement of learning, and an increase in hippocampal CA1 synaptic, surface and postsynaptic density. A decrease in the average size of the synaptic active zone was also observed. These experimental findings showing that Schisandra N-butanol extract improved synaptic morphology indicate an underlying mechanism by which the ability of learning is enhanced in ovariectomized mice.

  5. Salidroside improves glucose homeostasis in obese mice by repressing inflammation in white adipose tissues and improving leptin sensitivity in hypothalamus

    Science.gov (United States)

    Wang, Meihong; Luo, Lan; Yao, Lili; Wang, Caiping; Jiang, Ketao; Liu, Xiaoyu; Xu, Muchen; Shen, Ningmei; Guo, Shaodong; Sun, Cheng; Yang, Yumin

    2016-01-01

    Salidroside is a functionally versatile natural compound from the perennial flowering plant Rhodiola rosea L. Here, we examined obese mice treated with salidroside at the dosage of 50 mg/kg/day for 48 days. Mice treated with salidroside showed slightly decreased food intake, body weight and hepatic triglyceride content. Importantly, salidroside treatment significantly improved glucose and insulin tolerance. It also increased insulin singling in both liver and epididymal white adipose tissue (eWAT). In addition, salidroside markedly ameliorated hyperglycemia in treated mice, which is likely due to the suppression of gluconeogenesis by salidroside as the protein levels of a gluconeogenic enzyme G6Pase and a co-activator PGC-1α were all markedly decreased. Further analysis revealed that adipogenesis in eWAT was significantly decreased in salidroside treated mice. The infiltration of macrophages in eWAT and the productions of pro-inflammatory cytokines were also markedly suppressed by salidroside. Furthermore, the leptin signal transduction in hypothalamus was improved by salidroside. Taken together, these euglycemic effects of salidroside may due to repression of adipogenesis and inflammation in eWAT and stimulation of leptin signal transduction in hypothalamus. Thus, salidroside might be used as an effective anti-diabetic agent. PMID:27145908

  6. 提高发芽糙米得率的复合酶预处理工艺优化%Optimization of compound enzymes solution pretreatment for improving germinated brown rice yield

    Institute of Scientific and Technical Information of China (English)

    贾富国; 蒋龙伟; 张亚雄; 曹斌; 曾勇

    2016-01-01

    rice obtained a suitable water content to sprout in a much shorter time. By shortening the soak time, it could improve the efficiency of germinated brown rice production. Brown rice degraded some cortex during soaking, which thereby reduced the block of cortex to water. Compared with soaking methods, the new method not only reduced the soak time but also improved the germinated rate. Beyond that, a central composite rotatable orthogonal experimental design of response surface methodology with 4 factors and 5 levels was employed. Taking raw material of brown rice, the influences of the 4 parameters including enzyme treatment time, enzyme treatment temperature, concentration of compound enzyme solution, percentage of cellulase quality on the germinated brown rice yield as well as the optimal parameters of this process were investigated. Additionally, mathematical models for the influences of various parameters on the germinated brown rice yield were set up. As shown, the mathematical models for the germinated brown rice yield were extremely significant (P<0.01). Meanwhile, the optimum process parameters for maximizing the germinated brown rice yield were 0.57 g/L of enzyme concentration, 35℃ of enzyme treatment temperature, 135 min of enzyme treatment time and 1.86:1 of cellulose-to-xylanase mass ratio, respectively. Moreover, the germinated brown rice yield and the content ofγ-aminobutyric acid (GABA) under the optimum parameters were 3.90% and 3.86 mg/(100 g), which was higher than that of germinated brown rice produced by soaking method. Compared with conventional soaking method, compound enzyme pretreatment method significantly shortened the time of water absorption (135 min), in which soak time was reduced by 62.5%. As a result, it greatly improved the efficiency of germinated brown rice production. Through enzymatic soaking pretreatment, seed germination can be promoted. Brown rice has the characteristic of seed. Compound enzymatic soaking pretreatment will not

  7. CTRP2 overexpression improves insulin and lipid tolerance in diet-induced obese mice.

    Directory of Open Access Journals (Sweden)

    Jonathan M Peterson

    Full Text Available CTRP2 is a secreted plasma protein of the C1q family that enhances glycogen deposition and fat oxidation in cultured myotubes. Its in vivo metabolic function, however, has not been established. We show here that acute and chronic metabolic perturbations induced by fasting or high-fat feeding up-regulated the mRNA expression of Ctrp2 in white adipose tissue without affecting its circulating plasma levels. We generated a transgenic mouse model with elevated circulating levels of CTRP2 to determine its metabolic function in vivo. When fed a low-fat diet, wild-type and CTRP2 transgenic mice exhibited no metabolic phenotypes. When challenged with a high-fat diet to induce obesity, wild-type and CTRP2 transgenic mice had similar weight gain, adiposity, food intake, metabolic rate, and energy expenditure. Fasting serum lipid and adipokine profiles were also similar between the two groups of mice. However, while glucose and insulin levels in the fasted state were comparable between wild-type and CTRP2 transgenic mice, insulin levels in the fed state were consistently lower in transgenic mice. Notably, CTRP2 transgenic mice had improved insulin tolerance and a greater capacity to handle acute lipid challenge relative to littermate controls. Our results highlight, for the first time, the in vivo role of CTRP2 in modulating whole-body metabolism.

  8. Improved cerebral energetics and ketone body metabolism in db/db mice.

    Science.gov (United States)

    Andersen, Jens V; Christensen, Sofie K; Nissen, Jakob D; Waagepetersen, Helle S

    2017-03-01

    It is becoming evident that type 2 diabetes mellitus is affecting brain energy metabolism. The importance of alternative substrates for the brain in type 2 diabetes mellitus is poorly understood. The aim of this study was to investigate whether ketone bodies are relevant candidates to compensate for cerebral glucose hypometabolism and unravel the functionality of cerebral mitochondria in type 2 diabetes mellitus. Acutely isolated cerebral cortical and hippocampal slices of db/db mice were incubated in media containing [U-(13)C]glucose, [1,2-(13)C]acetate or [U-(13)C]β-hydroxybutyrate and tissue extracts were analysed by mass spectrometry. Oxygen consumption and ATP synthesis of brain mitochondria of db/db mice were assessed by Seahorse XFe96 and luciferin-luciferase assay, respectively. Glucose hypometabolism was observed for both cerebral cortical and hippocampal slices of db/db mice. Significant increased metabolism of [1,2-(13)C]acetate and [U-(13)C]β-hydroxybutyrate was observed for hippocampal slices of db/db mice. Furthermore, brain mitochondria of db/db mice exhibited elevated oxygen consumption and ATP synthesis rate. This study provides evidence of several changes in brain energy metabolism in type 2 diabetes mellitus. The increased hippocampal ketone body utilization and improved mitochondrial function in db/db mice, may act as adaptive mechanisms in order to maintain cerebral energetics during hampered glucose metabolism.

  9. Three new cool brown dwarfs discovered with the wide-field infrared survey explorer (WISE) and an improved spectrum of the Y0 dwarf wise J041022.71+150248.4

    Energy Technology Data Exchange (ETDEWEB)

    Cushing, Michael C. [Department of Physics and Astronomy, The University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606 (United States); Kirkpatrick, J. Davy; Gelino, Christopher R. [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Mace, Gregory N. [Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095 (United States); Skrutskie, Michael F. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Gould, Andrew, E-mail: michael.cushing@utoledo.edu [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States)

    2014-05-01

    As part of a larger search of Wide-field Infrared Survey Explorer (WISE) data for cool brown dwarfs with effective temperatures less than 1000 K, we present the discovery of three new cool brown dwarfs with spectral types later than T7. Using low-resolution, near-infrared spectra obtained with the NASA Infrared Telescope Facility and the Hubble Space Telescope, we derive spectral types of T9.5 for WISE J094305.98+360723.5, T8 for WISE J200050.19+362950.1, and Y0: for WISE J220905.73+271143.9. The identification of WISE J220905.73+271143.9 as a Y dwarf brings the total number of spectroscopically confirmed Y dwarfs to 17. In addition, we present an improved spectrum (i.e., higher signal-to-noise ratio) of the Y0 dwarf WISE J041022.71+150248.4 that confirms the Cushing et al. classification of Y0. Spectrophotometric distance estimates place all three new brown dwarfs at distances less than 12 pc, with WISE J200050.19+362950.1 lying at a distance of only 3.9-8.0 pc. Finally, we note that brown dwarfs like WISE J200050.19+362950.1 that lie in or near the Galactic plane offer an exciting opportunity to directly measure the mass of a brown dwarf via astrometric microlensing.

  10. Improved local and systemic anti-tumor efficacy for irreversible electroporation in immunocompetent versus immunodeficient mice.

    Directory of Open Access Journals (Sweden)

    Robert E Neal

    Full Text Available Irreversible electroporation (IRE is a non-thermal focal ablation technique that uses a series of brief but intense electric pulses delivered into a targeted region of tissue, killing the cells by irrecoverably disrupting cellular membrane integrity. This study investigates if there is an improved local anti-tumor response in immunocompetent (IC BALB/c versus immunodeficient (ID nude mice, including the potential for a systemic protective effect against rechallenge. Subcutaneous murine renal carcinoma tumors were treated with an IRE pulsing protocol that used 60% of the predicted voltage required to invoke complete regressions in the ID mice. Tumors were followed for 34 days following treatment for 11 treated mice from each strain, and 7 controls from each strain. Mouse survival based on tumor burden and the progression-free disease period was substantially longer in the treated IC mice relative to the treated ID mice and sham controls for both strains. Treated IC mice were rechallenged with the same cell line 18 days after treatment, where growth of the second tumors was shown to be significantly reduced or prevented entirely. There was robust CD3+ cell infiltration in some treated BALB/C mice, with immunocytes focused at the transition between viable and dead tumor. There was no difference in the low immunocyte presence for untreated tumors, nude mice, and matrigel-only injections in both strains. These findings suggest IRE therapy may have greater therapeutic efficacy in immunocompetent patients than what has been suggested by immunodeficient models, and that IRE may invoke a systemic response beyond the targeted ablation region.

  11. Improved Local and Systemic Anti-Tumor Efficacy for Irreversible Electroporation in Immunocompetent versus Immunodeficient Mice

    Science.gov (United States)

    Neal, Robert E.; Rossmeisl, John H.; Robertson, John L.; Arena, Christopher B.; Davis, Erica M.; Singh, Ravi N.; Stallings, Jonathan; Davalos, Rafael V.

    2013-01-01

    Irreversible electroporation (IRE) is a non-thermal focal ablation technique that uses a series of brief but intense electric pulses delivered into a targeted region of tissue, killing the cells by irrecoverably disrupting cellular membrane integrity. This study investigates if there is an improved local anti-tumor response in immunocompetent (IC) BALB/c versus immunodeficient (ID) nude mice, including the potential for a systemic protective effect against rechallenge. Subcutaneous murine renal carcinoma tumors were treated with an IRE pulsing protocol that used 60% of the predicted voltage required to invoke complete regressions in the ID mice. Tumors were followed for 34 days following treatment for 11 treated mice from each strain, and 7 controls from each strain. Mouse survival based on tumor burden and the progression-free disease period was substantially longer in the treated IC mice relative to the treated ID mice and sham controls for both strains. Treated IC mice were rechallenged with the same cell line 18 days after treatment, where growth of the second tumors was shown to be significantly reduced or prevented entirely. There was robust CD3+ cell infiltration in some treated BALB/C mice, with immunocytes focused at the transition between viable and dead tumor. There was no difference in the low immunocyte presence for untreated tumors, nude mice, and matrigel-only injections in both strains. These findings suggest IRE therapy may have greater therapeutic efficacy in immunocompetent patients than what has been suggested by immunodeficient models, and that IRE may invoke a systemic response beyond the targeted ablation region. PMID:23717630

  12. Bezafibrate Improves Insulin Sensitivity and Metabolic Flexibility in STZ-Induced Diabetic Mice.

    Science.gov (United States)

    Franko, Andras; Huypens, Peter; Neschen, Susanne; Irmler, Martin; Rozman, Jan; Rathkolb, Birgit; Neff, Frauke; Prehn, Cornelia; Dubois, Guillaume; Baumann, Martina; Massinger, Rebecca; Gradinger, Daniel; Przemeck, Gerhard K H; Repp, Birgit; Aichler, Michaela; Feuchtinger, Annette; Schommers, Philipp; Stöhr, Oliver; Sanchez-Lasheras, Carmen; Adamski, Jerzy; Peter, Andreas; Prokisch, Holger; Beckers, Johannes; Walch, Axel K; Fuchs, Helmut; Wolf, Eckhard; Schubert, Markus; Wiesner, Rudolf J; Hrabě de Angelis, Martin

    2016-09-01

    Bezafibrate (BEZ), a pan activator of peroxisome proliferator-activated receptors (PPARs), has been generally used to treat hyperlipidemia for decades. Clinical trials with type 2 diabetes patients indicated that BEZ also has beneficial effects on glucose metabolism, although the underlying mechanisms of these effects remain elusive. Even less is known about a potential role for BEZ in treating type 1 diabetes. Here we show that BEZ markedly improves hyperglycemia and glucose and insulin tolerance in mice with streptozotocin (STZ)-induced diabetes, an insulin-deficient mouse model of type 1 diabetes. BEZ treatment of STZ mice significantly suppressed the hepatic expression of genes that are annotated in inflammatory processes, whereas the expression of PPAR and insulin target gene transcripts was increased. Furthermore, BEZ-treated mice also exhibited improved metabolic flexibility as well as an enhanced mitochondrial mass and function in the liver. Finally, we show that the number of pancreatic islets and the area of insulin-positive cells tended to be higher in BEZ-treated mice. Our data suggest that BEZ may improve impaired glucose metabolism by augmenting hepatic mitochondrial performance, suppressing hepatic inflammatory pathways, and improving insulin sensitivity and metabolic flexibility. Thus, BEZ treatment might also be useful for patients with impaired glucose tolerance or diabetes. © 2016 by the American Diabetes Association.

  13. Amiloride Improves Endothelial Function and Reduces Vascular Stiffness in Female Mice Fed a Western Diet

    Directory of Open Access Journals (Sweden)

    Luis A. Martinez-Lemus

    2017-06-01

    Full Text Available Obese premenopausal women lose their sex related cardiovascular disease protection and develop greater arterial stiffening than age matched men. In female mice, we have shown that consumption of a Western diet (WD, high in fat and refined sugars, is associated with endothelial dysfunction and vascular stiffening, which occur via activation of mineralocorticoid receptors and associated increases in epithelial Na+ channel (ENaC activity on endothelial cells (EnNaC. Herein our aim was to determine the effect that reducing EnNaC activity with a very-low-dose of amiloride would have on decreasing endothelial and arterial stiffness in young female mice consuming a WD. To this end, we fed female mice either a WD or control diet and treated them with or without a very-low-dose of the ENaC-inhibitor amiloride (1 mg/kg/day in the drinking water for 20 weeks beginning at 4 weeks of age. Mice consuming a WD were heavier and had greater percent body fat, proteinuria, and aortic stiffness as assessed by pulse-wave velocity than those fed control diet. Treatment with amiloride did not affect body weight, body composition, blood pressure, urinary sodium excretion, or insulin sensitivity, but significantly reduced the development of endothelial and aortic stiffness, aortic fibrosis, aortic oxidative stress, and mesenteric resistance artery EnNaC abundance and proteinuria in WD-fed mice. Amiloride also improved endothelial-dependent vasodilatory responses in the resistance arteries of WD-fed mice. These results indicate that a very-low-dose of amiloride, not affecting blood pressure, is sufficient to improve endothelial function and reduce aortic stiffness in female mice fed a WD, and suggest that EnNaC-inhibition may be sufficient to ameliorate the pathological vascular stiffening effects of WD-induced obesity in females.

  14. Vitamin D improves immune function in immunosuppressant mice induced by glucocorticoid

    Science.gov (United States)

    Wang, Zongye; Wang, Ying; Xu, Bingxin; Liu, Junli; Ren, Ye; Dai, Zhuojie; Cui, Di; Su, Xiaoming; Si, Shaoyan; Song, Shu Jun

    2017-01-01

    Vitamin D is an essential fat-soluble vitamin with multiple functions. Vitamin D receptor has been shown to be expressed in several types of immune cells suggesting vitamin D may have immune regulatory roles. Vitamin D insufficiency has been suggested to increase the risk of autoimmune diseases. However, little is known regarding its immunomodulatory effects in the condition of immune suppression. The aim of the present study was to investigate the regulatory effects of vitamin D on immune function in immunosuppressant mice. An immunosuppressant mouse model was induced by intraperitoneal injection with glucocorticiod for 3 days. Immunosuppressant mice were intragastrically administered with 1,25-dihydroxy-vitamin D3 [1,25(OH)2D3; 0,4, 6 or 10 IU/g body weight] for 7 days. On day 8, the mice were decapitated. The body weight and the weights of thymus and spleen were measured. Thymus and spleen indexes were calculated. The ratio of CD4+/CD8+ T lymphocytes in the peripheral blood, proliferation and interleukin-2 (IL-2) production of spleen T lymphocytes was detected. Compared with the mice in the control group, the body weight, thymus and spleen indexes, the ratios of CD4+/CD8+ in peripheral blood and IL-2 production and proliferation of spleen T lymphocytes were decreased in immunosuppressant mice induced by glucocorticiod. However, in vitamin D-treated mice, the thymus indexes, the ratios of CD4+/CD8+, secretion of IL-2 and the proliferation index of spleen T lymphocytes were significantly increased (P2D3, 6 IU/g was most effective in improving the immune function. These results indicate that vitamin D supplementation can improve immune recovery in immunosuppressant mice by stimulating T-cell proliferation and elevating IL-2 production. PMID:28123720

  15. Behavioral improvement after chronic administration of coenzyme Q10 in P301S transgenic mice.

    Science.gov (United States)

    Elipenahli, Ceyhan; Stack, Cliona; Jainuddin, Shari; Gerges, Meri; Yang, Lichuan; Starkov, Anatoly; Beal, M Flint; Dumont, Magali

    2012-01-01

    Coenzyme Q10 is a key component of the electron transport chain which plays an essential role in ATP production and also has antioxidant effects. Neuroprotective effects of coenzyme Q10 have been reported in both in vitro and in vivo models of neurodegenerative diseases. However, its effects have not been studied in cells or in animals with tau induced pathology. In this report, we administered coenzyme Q10 to transgenic mice with the P301S tau mutation, which causes fronto-temporal dementia in man. These mice develop tau hyperphosphorylation and neurofibrillary tangles in the brain. Coenzyme Q10 improved survival and behavioral deficits in the P301S mice. There was a modest reduction in phosphorylated tau in the cortex of P301S mice. We also examined the effects of coenzyme Q10 treatment on the electron transport chain enzymes, the mitochondrial antioxidant enzymes, and the tricarboxylic acid cycle. There was a significant increase in complex I activity and protein levels, and a reduction in lipid peroxidation. Our data show that coenzyme Q10 significantly improved behavioral deficits and survival in transgenic mice with the P301S tau mutation, upregulated key enzymes of the electron transport chain, and reduced oxidative stress.

  16. Loss of the actin remodeler Eps8 causes intestinal defects and improved metabolic status in mice.

    Directory of Open Access Journals (Sweden)

    Arianna Tocchetti

    Full Text Available BACKGROUND: In a variety of organisms, including mammals, caloric restriction improves metabolic status and lowers the incidence of chronic-degenerative diseases, ultimately leading to increased lifespan. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that knockout mice for Eps8, a regulator of actin dynamics, display reduced body weight, partial resistance to age- or diet-induced obesity, and overall improved metabolic status. Alteration in the liver gene expression profile, in behavior and metabolism point to a calorie restriction-like phenotype in Eps8 knockout mice. Additionally, and consistent with a calorie restricted metabolism, Eps8 knockout mice show increased lifespan. The metabolic alterations in Eps8 knockout mice correlated with a significant reduction in intestinal fat absorption presumably caused by a 25% reduction in intestinal microvilli length. CONCLUSIONS/SIGNIFICANCE: Our findings implicate actin dynamics as a novel variable in the determination of longevity. Additionally, our observations suggest that subtle differences in energy balance can, over time, significantly affect bodyweight and metabolic status in mice.

  17. GLP-1受体激动剂对小鼠棕色脂肪细胞基因表达和细胞分化的研究%Research on glucagon-like peptide-1 receptor agonist on the function and differentiation of brown adipocytes in mice

    Institute of Scientific and Technical Information of China (English)

    沈山梅; 石欢; 毕艳; 冯文焕; 王维敏; 金玺; 韩小娟; 胡明玥; 朱大龙

    2013-01-01

    Objective To investigate the effects of glucagon-like peptide-1 (GLP-1) receptor agonist on the function and differentiation of brown adipocytes in mice.Methods Primary brown adipocytes in mice were cultivated in vitro.Before the induction,brown adipocytes were assigned to four groups:GLP-1 10-8mol/L group,GLP-1 10-9mol/L group,L-NAME 10-3 mol/L group,and control group.Finally,adipocytes were put under morphological observation.The expression levels of genes of brown adipocytes in different groups were detected by RT-PCR.The single factor analysis was used for data analysis.Results The lipid droplets of brown adipocytes in GLP-1 group increased significantly compared with the control group under morphological observation.The expressions of specific genes [uncoupling protein 1 (UCP1),cell death-inducing DFFA (DNA fragmentation factor a)-like effector a (Cidea),peroxisome proliferator-activated receptor γcoactive 1α (PGC1-α)],differentiation genes [PRD1-BF1-RIZ1 homologous domain containing 16 (PRDM16),peroxisome proliferators-activated receptor-γ(PPAR-γ)],nitric oxide pathway genes [endothelial nitric oxide synthase (eNOS),inducible nitric oxide synthase (iNOS)] in brown adipocytes in GLP-1 group were significantly increased as compared with the control group,F values were 17.36,29.57,66.76,13.78,4.14,105.47,346.57 respectively(all P<0.05).Conclusions GLP-1 receptor agonist may improve the differentiation and function of brown adipocytes in mice,thereby enhance the function and induce the differentiation of brown adipocytes,the effect is more evident in high concentration of GLP-1.%目的 研究胰升糖素样肽1(GLP-1)受体激动剂对小鼠棕色脂肪细胞功能基因表达和分化的作用.方法 体外培养小鼠棕色脂肪前体细胞,诱导分化前分4组:GLP-1(10-8 mol/L)组、GLP-1(10-9moL/L)组、L-NAME(一氧化氮合酶抑制剂,10-3mol/L)组和对照组.干预结束后对细胞进行形态学观察研究,应用荧光定量PCR检测棕色

  18. Inter-Alpha Inhibitor Protein (IAIP) Administration Improves Survival From Neonatal Sepsis In Mice

    OpenAIRE

    Singh, Kultar; Zhang, Ling Xiu; Bendelja, Kreso; Heath, Ryan; Murphy, Shaun; Sharma, Surendra; Padbury, James F.; Lim, Yow-Pin

    2010-01-01

    Inter-alpha Inhibitor proteins (IaIp) are serine proteases inhibitors which modulate endogenous protease activity and have been shown to improve survival in adult models of sepsis. We evaluated the effect of IaIp on survival and systemic responses to sepsis in neonatal mice. Sepsis was induced in 2-day-old mice with LPS, E. coli and Group B Streptococci. Sepsis was associated with 75% mortality. IaIp, given by intraperitoneal administration at doses between 15–45 mg/kg from 1–6 hours followin...

  19. Hot Water Extract of Leather Carp (Cyprinus carpio nudus) Improves Exercise Performance in Mice.

    Science.gov (United States)

    Lee, Gong-Hyeon; Harwanto, Dicky; Park, Sun-Mee; Choi, Jae-Suk; Kim, Mi-Ryung; Hong, Yong-Ki

    2015-12-01

    The hot water extract of leather carp (Cyprinus carpio nudus) has been used as a nourishing tonic soup and as an aid for recovery from physical fatigue. In this study, we investigated the effect of leather carp extract on exercise performance in mice. Swimming endurance and forelimb grip strength were assessed following oral administration of the extract (once per day for 7 days) at a dose of 0.5 mg/10 μL/g body weight. After 7 days, mice given the leather carp extract had significantly greater swimming endurance [105±18 s (Pleather carp extract can improve physical exercise performance and prevent oxidative stress caused by exhaustive workouts.

  20. Microbially produced glucagon-like peptide 1 improves glucose tolerance in mice

    DEFF Research Database (Denmark)

    Arora, Tulika; Wegmann, Udo; Bobhate, Anup

    2016-01-01

    OBJECTIVE: The enteroendocrine hormone glucagon-like peptide 1 (GLP-1) is an attractive anti-diabetic therapy. Here, we generated a recombinant Lactococcus lactis strain genetically modified to produce GLP-1 and investigated its ability to improve glucose tolerance in mice on chow or high-fat diet...... (HFD). METHODS: We transformed L. lactis FI5876 with either empty vector (pUK200) or murine GLP-1 expression vector to generate LL-UK200 and LL-GLP1, respectively, and determined their potential to induce insulin secretion by incubating primary islets from wild-type (WT) and GLP-1 receptor knockout...... (GLP1R-KO) mice with culture supernatant of these strains. In addition, we administered these strains to mice on chow or HFD. At the end of the study period, we measured plasma GLP-1 levels, performed intraperitoneal glucose tolerance and insulin tolerance tests, and determined hepatic expression...

  1. Making bread with sourdough improves iron bioavailability from reconstituted fortified wheat flour in mice.

    Science.gov (United States)

    Chaoui, Asmaa; Faid, Mohamed; Belahsen, Rekia

    2006-01-01

    This study aimed to evaluate the effect of a diet prepared with traditional sourdough (TS) on iron status. Levels of blood hemoglobin (Hb), Hematocrite (Ht), serum ferritin and serum iron as well as excreted iron were determined in three groups of mice fed with: TS bread (TS group), baking yeast bread (BY group) or bread with no starters (control group), respectively. The results show that the levels of Hb, Ht, ferritin and iron were significantly higher in the TS compared to the BY and control groups. Also a significant decrease in the excreted iron levels was observed in the mice fed with TS compared to the others dietary groups. In conclusion, the study results indicate an improvement of iron status indicators in mice when they were fed sourdough bread as compared to baking yeast bread and bread with no starters.

  2. Spray-dried plasma attenuates inflammation and improves pregnancy rate of mated female mice.

    Science.gov (United States)

    Song, M; Liu, Y; Lee, J J; Che, T M; Soares-Almeida, J A; Chun, J L; Campbell, J M; Polo, J; Crenshaw, J D; Seo, S W; Pettigrew, J E

    2015-01-01

    Three studies were conducted to test the hypothesis that dietary spray-dried plasma (SDP) might improve pregnancy rate by ameliorating inflammation, using mice in an experimental model that produces a low pregnancy rate. Mated female mice (C57BL/6 strain) were purchased and shipped from a vendor (Bar Harbor, ME) to the university facility (Urbana, IL) on the day the vaginal plug was found (gestation day [GD] 1), arriving at the laboratory on GD 3 after 2 d transport by air and ground. Mice (Exp. 1: n = 250, 16.0 ± 1.2 g BW; Exp. 2: n = 202, 16.2 ± 1.2 g BW; Exp. 3: n = 156, 16.4 ± 1.1 g BW) were housed in individual cages and randomly assigned to dietary treatments (Exp. 1: 0 [CON] and 8% SDP in the diet, ≥ 90 mice/diet; Exp. 2: 0, 1, 2, 4, and 8% SDP in the diet, ≥ 40 mice/diet; Exp. 3: 0, 1, and 8% SDP in the diet, 48 mice/diet) fed from arrival. In Exp. 1 and 2, pregnancy of each mouse was determined on GD 17 based on BW, shape of abdomen, and inspection postmortem, and maternal growth performance from GD 3 to 17 was measured. On GD 19, pregnant mice in Exp. 2 were euthanized to measure number of fetuses and fetal and placental weights. Pregnancy rates in CON were low in both Exp. 1 (11%) and Exp. 2 (7%). The SDP consistently and markedly increased (P pregnancy rates in both Exp. 1 (49%) and Exp. 2 (35-43%) compared with the CON. In Exp. 3, 12 randomly selected mice were euthanized immediately after they arrived as an initial group. From GD 4 to 7, randomly selected mice were also euthanized each day (12 mice/diet). After euthanasia, the abdominal cavity was opened to check pregnancy by uterine inspection and to collect blood and uterus samples for immune measurements. The SDP increased (P pregnancy rate compared with the CON. Concentrations of indicators of inflammation and stress (uterine TNF-α and IFN-γ, and serum TNF-α, C-reactive protein, and cortisol) were greatest (P decreased (P pregnancy rates in this model, apparently by attenuating

  3. Intermittent Moderate Energy Restriction Improves Weight Loss Efficiency in Diet-Induced Obese Mice

    Science.gov (United States)

    Seimon, Radhika V.; Shi, Yan-Chuan; Slack, Katy; Lee, Kailun; Fernando, Hamish A.; Nguyen, Amy D.; Zhang, Lei; Lin, Shu; Enriquez, Ronaldo F.; Lau, Jackie

    2016-01-01

    Background Intermittent severe energy restriction is popular for weight management. To investigate whether intermittent moderate energy restriction may improve this approach by enhancing weight loss efficiency, we conducted a study in mice, where energy intake can be controlled. Methods Male C57/Bl6 mice that had been rendered obese by an ad libitum diet high in fat and sugar for 22 weeks were then fed one of two energy-restricted normal chow diets for a 12-week weight loss phase. The continuous diet (CD) provided 82% of the energy intake of age-matched ad libitum chow-fed controls. The intermittent diet (ID) provided cycles of 82% of control intake for 5–6 consecutive days, and ad libitum intake for 1–3 days. Weight loss efficiency during this phase was calculated as (total weight change) ÷ [(total energy intake of mice on CD or ID)–(total average energy intake of controls)]. Subsets of mice then underwent a 3-week weight regain phase involving ad libitum re-feeding. Results Mice on the ID showed transient hyperphagia relative to controls during each 1–3-day ad libitum feeding period, and overall ate significantly more than CD mice (91.1±1.0 versus 82.2±0.5% of control intake respectively, n = 10, Pweight loss or weight regain phases with respect to body weight, fat mass, circulating glucose or insulin concentrations, or the insulin resistance index. Weight loss efficiency was significantly greater with ID than with CD (0.042±0.007 versus 0.018±0.001 g/kJ, n = 10, Pweight loss relative to energy deficit in mice. PMID:26784324

  4. Inhibition of class IIb histone deacetylase significantly improves cloning efficiency in mice.

    Science.gov (United States)

    Ono, Tetsuo; Li, Chong; Mizutani, Eiji; Terashita, Yukari; Yamagata, Kazuo; Wakayama, Teruhiko

    2010-12-01

    Since the first mouse clone was produced by somatic cell nuclear transfer, the success rate of cloning in mice has been extremely low. Some histone deacetylase inhibitors, such as trichostatin A and scriptaid, have improved the full-term development of mouse clones significantly, but the mechanisms allowing for this are unclear. Here, we found that two other specific inhibitors, suberoylanilide hydroxamic acid and oxamflatin, could also reduce the rate of apoptosis in blastocysts, improve the full-term development of cloned mice, and increase establishment of nuclear transfer-generated embryonic stem cell lines significantly without leading to obvious abnormalities. However, another inhibitor, valproic acid, could not improve cloning efficiency. Suberoylanilide hydroxamic acid, oxamflatin, trichostatin A, and scriptaid are inhibitors for classes I and IIa/b histone deacetylase, whereas valproic acid is an inhibitor for classes I and IIa, suggesting that inhibiting class IIb histone deacetylase is an important step for reprogramming mouse cloning efficiency.

  5. Zinc and glutamine improve brain development in suckling mice subjected to early postnatal malnutrition.

    Science.gov (United States)

    Ladd, Fernando V L; Ladd, Aliny A B L; Ribeiro, Antônio Augusto C M; Costa, Samuel B C; Coutinho, Bruna P; Feitosa, George André S; de Andrade, Geanne M; de Castro-Costa, Carlos Maurício; Magalhães, Carlos Emanuel C; Castro, Ibraim C; Oliveira, Bruna B; Guerrant, Richard L; Lima, Aldo Angelo M; Oriá, Reinaldo B

    2010-06-01

    The effect of zinc and glutamine on brain development was investigated during the lactation period in Swiss mice. Malnutrition was induced by clustering the litter size from 6-7 pups/dam (nourished control) to 12-14 pups/dam (undernourished control) following birth. Undernourished groups received daily supplementation with glutamine by subcutaneous injections starting at day 2 and continuing until day 14. Glutamine (100 mM, 40-80 microL) was used for morphological and behavioral studies. Zinc acetate was added in the drinking water (500 mg/L) to the lactating dams. Synaptophysin and myelin basic protein brain expressions were evaluated by immunoblot. Zinc serum and brain levels and hippocampal neurotransmitters were also evaluated. Zinc with or without glutamine improved weight gain as compared to untreated, undernourished controls. In addition, zinc supplementation improved cliff avoidance and head position during swim behaviors especially on days 9 and 10. Using design-based stereological methods, we found a significant increase in the volume of CA1 neuronal cells in undernourished control mice, which was not seen in mice receiving zinc or glutamine alone or in combination. Undernourished mice given glutamine showed increased CA1 layer volume as compared with the other groups, consistent with the trend toward increased number of neurons. Brain zinc levels were increased in the nourished and undernourished-glutamine treated mice as compared to the undernourished controls on day 7. Undernourished glutamine-treated mice showed increased hippocampal gamma-aminobutyric acid and synaptophysin levels on day 14. We conclude that glutamine or zinc protects against malnutrition-induced brain developmental impairments. Copyright 2010 Elsevier Inc. All rights reserved.

  6. ZINC AND GLUTAMINE IMPROVE BRAIN DEVELOPMENT IN SUCKLING MICE SUBJECTED TO EARLY POST-NATAL MALNUTRITION

    Science.gov (United States)

    Ladd, Fernando V.L.; Ladd, Aliny A.B.L.; Ribeiro, Antônio Augusto C.M.; Costa, Samuel B.C.; Coutinho, Bruna P.; Feitosa, George André S.; de Andrade, Geanne M.; de Castro-Costa, Carlos Maurício; Magalhães, Carlos Emanuel C.; Castro, Ibraim C.; Oliveira, Bruna B.; Guerrant, Richard L.; Lima, Aldo Ângelo M.; Oriá, Reinaldo B.

    2009-01-01

    Objective The effect of zinc and glutamine on brain development was investigated during the lactation period in Swiss mice. Methods Malnutrition was induced by clustering the litter size from 6–7 pups/dam (nourished control) to 12–14 pups/dam (undernourished control) following birth. Undernourished groups received daily supplementation with glutamine by subcutaneous injections starting at day 2 and continuing until day 14. Glutamine (100 mM, 40–80μl) was used for morphological and behavioral studies. Zinc acetate was added in the drinking water (500 mg/L) to the lactating dams. Synaptophysin (SYN) and myelin basic protein (MBP) brain expressions were evaluated by immunoblot. Zinc serum and brain levels and hippocampal neurotransmitters were also evaluated. Results Zinc with or without glutamine improved weight gain as compared to untreated, undernourished controls. In addition, zinc supplementation improved cliff avoidance and head position during swim behaviors especially on days 9 and 10. Using design-based stereological methods, we found a significant increase in the volume of CA1 neuronal cells in undernourished control mice, which was not seen in mice receiving zinc or glutamine alone or in combination. Undernourished mice given glutamine showed increased CA1 layer volume as compared with the other groups, consistent with the trend toward increased number of neurons. Brain zinc levels were increased in the nourished and undernourished-glutamine treated mice as compared to the undernourished controls on day 7. Undernourished glutamine-treated mice showed increased hippocampal GABA and SYN levels on day 14. Conclusion We conclude that glutamine or zinc protects against malnutrition-induced brain developmental impairments. PMID:20371167

  7. MicroRNA 34a inhibits beige and brown fat formation in obesity in part by suppressing adipocyte fibroblast growth factor 21 signaling and SIRT1 function.

    Science.gov (United States)

    Fu, Ting; Seok, Sunmi; Choi, Sunge; Huang, Zhang; Suino-Powell, Kelly; Xu, H Eric; Kemper, Byron; Kemper, Jongsook Kim

    2014-11-15

    Brown fat generates heat through uncoupled respiration, protecting against hypothermia and obesity. Adult humans have brown fat, but the amounts and activities are substantially decreased in obesity, by unknown mechanisms. Here we show that elevated microRNA 34a (miR-34a) in obesity inhibits fat browning in part by suppressing the browning activators fibroblast growth factor 21 (FGF21) and SIRT1. Lentivirus-mediated downregulation of miR-34a in mice with diet-induced obesity reduced adiposity, improved serum profiles, increased the mitochondrial DNA copy number, and increased oxidative function in adipose tissue in both BALB/c and C57BL/6 mice. Remarkably, downregulation of miR-34a increased coexpression of the beige fat-specific marker CD137 and the browning marker UCP1 in all types of white fat, including visceral fat, and promoted additional browning in brown fat. Mechanistically, downregulation of miR-34a increased expression of the FGF21 receptor components, FGFR1 and βKL, and also that of SIRT1, resulting in FGF21/SIRT1-dependent deacetylation of PGC-1α and induction of the browning genes Ucp1, Pgc-1α, and Prdm16. Importantly, anti-miR-34a-mediated beneficial effects, including decreased adiposity, are likely from multiple tissues, since downregulation of miR-34a also improves hepatic FGF21 signaling and lipid oxidation. This study identifies miR-34a as an inhibitor of beige and brown fat formation, providing a potential target for treating obesity-related diseases.

  8. RAGE Deficiency Improves Postinjury Sciatic Nerve Regeneration in Type 1 Diabetic Mice

    Science.gov (United States)

    Juranek, Judyta K.; Geddis, Matthew S.; Song, Fei; Zhang, Jinghua; Garcia, Jose; Rosario, Rosa; Yan, Shi Fang; Brannagan, Thomas H.; Schmidt, Ann Marie

    2013-01-01

    Peripheral neuropathy and insensate limbs and digits cause significant morbidity in diabetic individuals. Previous studies showed that deletion of the receptor for advanced end-glycation products (RAGE) in mice was protective in long-term diabetic neuropathy. Here, we tested the hypothesis that RAGE suppresses effective axonal regeneration in superimposed acute peripheral nerve injury attributable to tissue-damaging inflammatory responses. We report that deletion of RAGE, particularly in diabetic mice, resulted in significantly higher myelinated fiber densities and conduction velocities consequent to acute sciatic nerve crush compared with wild-type control animals. Consistent with key roles for RAGE-dependent inflammation, reconstitution of diabetic wild-type mice with RAGE-null versus wild-type bone marrow resulted in significantly improved axonal regeneration and restoration of function. Diabetic RAGE-null mice displayed higher numbers of invading macrophages in the nerve segments postcrush compared with wild-type animals, and these macrophages in diabetic RAGE-null mice displayed greater M2 polarization. In vitro, treatment of wild-type bone marrow–derived macrophages with advanced glycation end products (AGEs), which accumulate in diabetic nerve tissue, increased M1 and decreased M2 gene expression in a RAGE-dependent manner. Blockade of RAGE may be beneficial in the acute complications of diabetic neuropathy, at least in part, via upregulation of regeneration signals. PMID:23172920

  9. Cidea controls lipid droplet fusion and lipid storage in brown and white adipose tissue.

    Science.gov (United States)

    Wu, Lizhen; Zhou, Linkang; Chen, Cheng; Gong, Jingyi; Xu, Li; Ye, Jing; Li, De; Li, Peng

    2014-01-01

    Excess lipid storage in adipose tissue results in the development of obesity and other metabolic disorders including diabetes, fatty liver and cardiovascular diseases. The lipid droplet (LD) is an important subcellular organelle responsible for lipid storage. We previously observed that Fsp27, a member of the CIDE family proteins, is localized to LD-contact sites and promotes atypical LD fusion and growth. Cidea, a close homolog of Fsp27, is expressed at high levels in brown adipose tissue. However, the exact role of Cidea in promoting LD fusion and lipid storage in adipose tissue remains unknown. Here, we expressed Cidea in Fsp27-knockdown adipocytes and observed that Cidea has similar activity to Fsp27 in promoting lipid storage and LD fusion and growth. Next, we generated Cidea and Fsp27 double-deficient mice and observed that these animals had drastically reduced adipose tissue mass and a strong lean phenotype. In addition, Cidea/Fsp27 double-deficient mice had improved insulin sensitivity and were intolerant to cold. Furthermore, we observed that the brown and white adipose tissues of Cidea/Fsp27 double-deficient mice had significantly reduced lipid storage and contained smaller LDs compared to those of Cidea or Fsp27 single deficient mice. Overall, these data reveal an important role of Cidea in controlling lipid droplet fusion, lipid storage in brown and white adipose tissue, and the development of obesity.

  10. p38 MAPK Inhibition Improves Synaptic Plasticity and Memory in Angiotensin II-dependent Hypertensive Mice

    Science.gov (United States)

    Dai, Hai-long; Hu, Wei-yuan; Jiang, Li-hong; Li, Le; Gaung, Xue-feng; Xiao, Zhi-cheng

    2016-01-01

    The pathogenesis of hypertension-related cognitive impairment has not been sufficiently clarified, new molecular targets are needed. p38 MAPK pathway plays an important role in hypertensive target organ damage. Activated p38 MAPK was seen in AD brain tissue. In this study, we found that long-term potentiation (LTP) of hippocampal CA1 was decreased, the density of the dendritic spines on the CA1 pyramidal cells was reduced, the p-p38 protein expression in hippocampus was elevated, and cognitive function was impaired in angiotensin II-dependent hypertensive C57BL/6 mice. In vivo, using a p38 heterozygous knockdown mice (p38KI/+) model, we showed that knockdown of p38 MAPK in hippocampus leads to the improvement of cognitive function and hippocampal synaptic plasticity in angiotensin II-dependent p38KI/+ hypertensive mice. In vitro, LTP was improved in hippocampal slices from C57BL/6 hypertensive mice by treatment with p38MAPK inhibitor SKF86002. Our data demonstrated that p38 MAPK may be a potential therapeutic target for hypertension-related cognitive dysfunction. PMID:27283322

  11. Lycopene pretreatment improves hepatotoxicity induced by acetaminophen in C57BL/6 mice.

    Science.gov (United States)

    Bandeira, Ana Carla Balthar; da Silva, Rafaella Cecília; Rossoni, Joamyr Victor; Figueiredo, Vivian Paulino; Talvani, André; Cangussú, Silvia Dantas; Bezerra, Frank Silva; Costa, Daniela Caldeira

    2017-02-01

    Acetaminophen (APAP) is an antipyretic and analgesic drug that, in high doses, leads to severe liver injury and potentially death. Oxidative stress is an important event in APAP overdose. Researchers are looking for natural antioxidants with the potential to mitigate the harmful effects of reactive oxygen species in different models. Lycopene has been widely studied for its antioxidant properties. The aim of this study was to evaluate the antioxidant potential of lycopene pretreatment in APAP-induced liver injury in C57BL/6 mice. C57BL/6 male mice were divided into the following groups: control (C); sunflower oil (CO); acetaminophen 500mg/kg (APAP); acetaminophen 500mg/kg+lycopene 10mg/kg (APAP+L10), and acetaminophen 500mg/kg+lycopene 100mg/kg (APAP+L100). Mice were pretreated with lycopene for 14 consecutive days prior to APAP overdose. Analyses of blood serum and livers were performed. Lycopene was able to improve redox imbalance, decrease thiobarbituric acid reactive species level, and increase CAT and GSH levels. In addition, it decreased the IL-1β expression and the activity of MMP-2. This study revealed that preventive lycopene consumption in C57BL/6 mice can attenuate the effects of APAP-induced liver injury. Furthermore, by improving the redox state, and thus indicating its potential antioxidant effect, lycopene was also shown to have an influence on inflammatory events.

  12. Blockade of glucocorticoid receptors improves cutaneous wound healing in stressed mice.

    Science.gov (United States)

    de Almeida, Taís Fontoura; de Castro Pires, Taiza; Monte-Alto-Costa, Andréa

    2016-02-01

    Stress is an important condition of modern life. The successful wound healing requires the execution of three major overlapping phases: inflammation, proliferation, and remodeling, and stress can disturb this process. Chronic stress impairs wound healing through the activation of the hypothalamic-pituitary-adrenal axis, and the glucocorticoids (GCs) hormones have been shown to delay wound closure. Therefore, the aim of this study was to investigate the effects of a GC receptor antagonist (RU486) treatment on cutaneous healing in chronically stressed mice. Male mice were submitted to rotational stress, whereas control animals were not subjected to stress. Stressed and control animals were treated with RU486. A full-thickness excisional lesion was generated, and seven days later, lesions were recovered. The RU486 treatment improves wound healing since contraction takes place earlier in RU486-treated in comparison to non-treated mice, and the RU486 treatment also improves the angiogenesis in Stress+RU486 mice when compared to stressed animals. The Stress+RU486 group showed a decrease in inflammatory cell infiltration and in hypoxia-inducible factor-1α and inducible nitric oxide synthase expression; meanwhile, there was an increase in myofibroblasts quantity. In conclusion, blockade of GC receptors with RU486 partially ameliorates stress-impaired wound healing, suggesting that stress inhibits healing through more than one functional pathway. © 2016 by the Society for Experimental Biology and Medicine.

  13. Live attenuated S. Typhimurium vaccine with improved safety in immuno-compromised mice.

    Directory of Open Access Journals (Sweden)

    Balamurugan Periaswamy

    Full Text Available Live attenuated vaccines are of great value for preventing infectious diseases. They represent a delicate compromise between sufficient colonization-mediated adaptive immunity and minimizing the risk for infection by the vaccine strain itself. Immune defects can predispose to vaccine strain infections. It has remained unclear whether vaccine safety could be improved via mutations attenuating a vaccine in immune-deficient individuals without compromising the vaccine's performance in the normal host. We have addressed this hypothesis using a mouse model for Salmonella diarrhea and a live attenuated Salmonella Typhimurium strain (ssaV. Vaccination with this strain elicited protective immunity in wild type mice, but a fatal systemic infection in immune-deficient cybb(-/-nos2(-/- animals lacking NADPH oxidase and inducible NO synthase. In cybb(-/-nos2(-/- mice, we analyzed the attenuation of 35 ssaV strains carrying one additional mutation each. One strain, Z234 (ssaV SL1344_3093, was >1000-fold attenuated in cybb(-/-nos2(-/- mice and ≈100 fold attenuated in tnfr1(-/- animals. However, in wt mice, Z234 was as efficient as ssaV with respect to host colonization and the elicitation of a protective, O-antigen specific mucosal secretory IgA (sIgA response. These data suggest that it is possible to engineer live attenuated vaccines which are specifically attenuated in immuno-compromised hosts. This might help to improve vaccine safety.

  14. Alterations in regulatory T cells induced by specific oligosaccharides improve vaccine responsiveness in mice.

    Directory of Open Access Journals (Sweden)

    Marcel A Schijf

    Full Text Available Prophylactic vaccinations are generally performed to protect naïve individuals with or without suppressed immune responsiveness. In a mouse model for Influenza vaccinations the specific alterations of CD4(+CD25(+Foxp3(+ regulatory T-cells (Tregs in the immune modulation induced by orally supplied oligosaccharides containing scGOS/lcFOS/pAOS was assessed. This dietary intervention increased vaccine specific DTH responses. In addition, a significant increased percentage of T-bet(+ (Th1 activated CD69(+CD4(+ T cells (p<0.001 and reduced percentage of Gata-3(+ (Th2 activated CD69(+CD4(+T cells (p<0.001 was detected in the mesenteric lymph nodes (MLN of mice receiving scGOS/lcFOS/pAOS compared to control mice. Although no difference in the number or percentage of Tregs (CD4(+Foxp3(+ could be determined after scGOS/lcFOS/pAOS intervention, the percentage of CXCR3 (+ /T-bet(+ (Th1-Tregs was significantly reduced (p<0.05 in mice receiving scGOS/lcFOS/pAOS as compared to mice receiving placebo diets. Moreover, although no absolute difference in suppressive capacity could be detected, an alteration in cytokine profile suggests a regulatory T cell shift towards a reducing Th1 suppression profile, supporting an improved vaccination response.These data are indicative for improved vaccine responsiveness due to reduced Th1 suppressive capacity in the Treg population of mice fed the oligosaccharide specific diet, showing compartmentalization within the Treg population. The modulation of Tregs to control immune responses provides an additional arm of intervention using alternative strategies possibly leading to the development of improved vaccines.

  15. Curcumin improves learning and memory ability and its neuroprotective mechanism in mice

    Institute of Scientific and Technical Information of China (English)

    PAN Rui; QIU Sheng; LU Da-xiang; DONG Jun

    2008-01-01

    Background Increasing evidence suggests that many neurons may die through apoptosis in Alzheimer's disease (AD).Mitochondrial dysfunction has been implicated in this process of neuronal cell death. One promising approach for preventing AD is based upon anti-apoptosis to decrease death of nerve cells. In this study, we observed the memory improving properties of curcumin in mice and investigated the neuroprotective effect of curcumin in vitro and in vivo.Methods The mice were given AlCl3 orally and injections of D-galactose intraperitoneally for 90 days to establish the AD animal model. From day 45, the curcumin group was treated with curcumin for 45 days. Subsequently, the step-through test, neuropathological changes in the hippocampus and the expression of Bax and Bcl-2 were carried out to evaluate the effect of curcumin on the AD model mice. In cultured PC12 cells, AlCl3 exposure induced apoptosis. The MTT assay was used to measure cell viabilities; flow cytometric analysis to survey the rate of cell apoptosis; DNA-binding fluorochrome Hoechst 33258 to observe nuclei changes in apoptotic cells and Western blot analysis of Bax, Bcl-2 to investigate the mechanisms by which curcumin protects cells from toxicity.Results Curcumin significantly improved the memory ability of AD mice in the step-through test, as indicated by the reduced number of step-through errors (P 0.05). AlCl3 significantly reduced the viability of PC12 cells (P 0.05).Conclusions This study demonstrates that curcumin improves the memory ability of AD mice and inhibits apoptosis in cultured PC12 cells induced by AlCl3. Its mechanism may involve enhancing the level of Bcl-2.

  16. Hydroxysafflor Yellow A Improves Motor Dysfunction in the Rotenone-Induced Mice Model of Parkinson's Disease.

    Science.gov (United States)

    Wang, Tian; Wang, Lijie; Li, Cuiting; Han, Bing; Wang, Zhenhua; Li, Ji; Lv, Yan; Wang, Shuyun; Fu, Fenghua

    2017-01-17

    Dopamine D3 receptor (DRD3) is diminished in patients of Parkinson's disease (PD). Brain-derived neurotrophic factor (BDNF) is responsible for regulating expression of the DRD3 in the brain. Our previous study showed that hydroxysafflor yellow A (HSYA) could increase BDNF content in the striatum of PD mice. This experiment aimed to evaluate whether HSYA can improve the motor dysfunction induced by rotenone through regulating the BDNF/TrkB/DRD3 signaling pathway in mice. Male C57/BL6 mice were intraperitoneally treated with HSYA. Thirty minutes later, they were intragastrically administered with rotenone at a dose of 30 mg/kg. Pole, rotarod and open field tests were investigated at 28 d. Then, tyrosine hydroxylase (TH) in substantia nigra was observed by immunohistochemistry. Dopamine content was detected by high-performance liquid chromatography. The expressions of BDNF, phospho-tropomyosin-related kinase B (p-TrkB), tropomyosin-related kinase B (TrkB), phospho-phosphoinositide 3-kinase (p-PI3K), phosphoinositide 3-kinase (PI3K), phospho-protein kinase B (p-AKT), protein kinase B (AKT), and DRD3 were assayed by western blotting. Behavioral tests showed that rotenone-challenged mice displayed motor dysfunction. However, treatment with HSYA improved motor dysfunction induced by rotenone. HSYA treatment increased not only the number of TH-containing dopaminergic neurons in substantia nigra, but also the dopamine content in the striatum in PD mice. Moreover, the expressions of BDNF, p-TrkB/TrkB, DRD3, p-PI3K/PI3K, p-AKT/AKT were significantly increased in rotenone plus HSYA group. Our results indicated that HSYA improved motor dysfunction in rotenone-induced PD model and the pharmacological action of HSYA was related to regulating BDNF/TrkB/DRD3 signaling pathway, at least, in part.

  17. Glucose-responsive artificial promoter-mediated insulin gene transfer improves glucose control in diabetic mice

    Institute of Scientific and Technical Information of China (English)

    Jaeseok Han; Eung-Hwi Kim; Woohyuk Choi; Hee-Sook Jun

    2012-01-01

    AIM:To investigate the effect of insulin gene therapy using a glucose-responsive synthetic promoter in type 2 diabetic obese mice.METHODS:We employed a recently developed novel insulin gene therapy strategy using a synthetic promoter that regulates insulin gene expression in the liver in response to blood glucose level changes.We intravenously administered a recombinant adenovirus expressing furin-cleavable rat insulin under the control of the synthetic promoter (rAd-SP-rINSfur) into diabetic Leprdb/db mice.A recombinant adenovirus expressing β-galactosidase under the cytomegalovirus promoter was used as a control (rAd-CMV-βgal).Blood glucose levels and body weights were monitored for 50 d.Glucose and insulin tolerance tests were performed.Immunohistochemical staining was performed to investigate islet morphology and insulin content.RESULTS:Administration of rAd-SP-rINSfur lowered blood glucose levels and normoglycemia was maintained for 50 d,whereas the rAd-CMV-βgal control virus-injected mice remained hyperglycemic.Glucose tolerance tests showed that rAd-SP-rINSfur-treated mice cleared exogenous glucose from the blood more efficiently than control virus-injected mice at 4 wk [area under the curve (AUC):21 508.80 ± 2248.18 vs 62 640.00 ± 5014.28,P < 0.01] and at 6 wk (AUC:29 956.60 ± 1757.33 vs 60 016.60 ± 3794.47,P < 0.01).In addition,insulin sensitivity was also significantly improved in mice treated with rAd-SP-rINSfur compared with rAd-CMV-βgal-treated mice (AUC:9150.17±1007.78 vs 11 994.20 ± 474.40,P < 0.05).The islets from rAd-SP-rINSfur-injected mice appeared to be smaller and to contain a higher concentration of insulin than those from rAd-CMV-βgal-injected mice.CONCLUSION:Based on these results,we suggest that insulin gene therapy might be one therapeutic option for remission of type 2 diabetes.

  18. Intermittent Moderate Energy Restriction Improves Weight Loss Efficiency in Diet-Induced Obese Mice.

    Directory of Open Access Journals (Sweden)

    Radhika V Seimon

    Full Text Available Intermittent severe energy restriction is popular for weight management. To investigate whether intermittent moderate energy restriction may improve this approach by enhancing weight loss efficiency, we conducted a study in mice, where energy intake can be controlled.Male C57/Bl6 mice that had been rendered obese by an ad libitum diet high in fat and sugar for 22 weeks were then fed one of two energy-restricted normal chow diets for a 12-week weight loss phase. The continuous diet (CD provided 82% of the energy intake of age-matched ad libitum chow-fed controls. The intermittent diet (ID provided cycles of 82% of control intake for 5-6 consecutive days, and ad libitum intake for 1-3 days. Weight loss efficiency during this phase was calculated as (total weight change ÷ [(total energy intake of mice on CD or ID-(total average energy intake of controls]. Subsets of mice then underwent a 3-week weight regain phase involving ad libitum re-feeding.Mice on the ID showed transient hyperphagia relative to controls during each 1-3-day ad libitum feeding period, and overall ate significantly more than CD mice (91.1±1.0 versus 82.2±0.5% of control intake respectively, n = 10, P<0.05. There were no significant differences between CD and ID groups at the end of the weight loss or weight regain phases with respect to body weight, fat mass, circulating glucose or insulin concentrations, or the insulin resistance index. Weight loss efficiency was significantly greater with ID than with CD (0.042±0.007 versus 0.018±0.001 g/kJ, n = 10, P<0.01. Mice on the CD exhibited significantly greater hypothalamic mRNA expression of proopiomelanocortin (POMC relative to ID and control mice, with no differences in neuropeptide Y or agouti-related peptide mRNA expression between energy-restricted groups.Intermittent moderate energy restriction may offer an advantage over continuous moderate energy restriction, because it induces significantly greater weight loss relative

  19. NFIA co-localizes with PPARγ and transcriptionally controls the brown fat gene program

    DEFF Research Database (Denmark)

    Hiraike, Yuta; Waki, Hironori; Yu, Jing

    2017-01-01

    . NFIA and the master transcriptional regulator of adipogenesis, PPARγ, co-localize at the brown-fat-specific enhancers. Moreover, the binding of NFIA precedes and facilitates the binding of PPARγ, leading to increased chromatin accessibility and active transcription. Introduction of NFIA into myoblasts...... results in brown adipocyte differentiation. Conversely, the brown fat of NFIA-knockout mice displays impaired expression of the brown-fat-specific genes and reciprocal elevation of muscle genes. Finally, expression of NFIA and the brown-fat-specific genes is positively correlated in human brown fat......Brown fat dissipates energy as heat and protects against obesity. Here, we identified nuclear factor I-A (NFIA) as a transcriptional regulator of brown fat by a genome-wide open chromatin analysis of murine brown and white fat followed by motif analysis of brown-fat-specific open chromatin regions...

  20. Chronic l-menthol-induced browning of white adipose tissue hypothesis: A putative therapeutic regime for combating obesity and improving metabolic health.

    Science.gov (United States)

    Sakellariou, Paraskevi; Valente, Angelica; Carrillo, Andres E; Metsios, George S; Nadolnik, Liliya; Jamurtas, Athanasios Z; Koutedakis, Yiannis; Boguszewski, Cesar; Andrade, Cláudia Marlise Balbinotti; Svensson, Per-Arne; Kawashita, Nair Honda; Flouris, Andreas D

    2016-08-01

    Obesity constitutes a serious global health concern reaching pandemic prevalence rates. The existence of functional brown adipose tissue (BAT) in adult humans has provoked intense research interest in the role of this metabolically active tissue in whole-body energy balance and body weight regulation. A number of environmental, physiological, pathological, and pharmacological stimuli have been proposed to induce BAT-mediated thermogenesis and functional thermogenic BAT-like activity in white adipose tissue (WAT), opening new avenues for therapeutic strategies based on enhancing the number of beige adipocytes in WAT. Recent evidence support a role of l-menthol cooling, mediated by TRPM8 receptor, on UCP1-dependent thermogenesis and BAT-like activity in classical WAT depots along with the recruitment of BAT at specific anatomical sites. l-Menthol-induced BAT thermogenesis has been suggested to occur by a β-adrenergic-independent mechanism, avoiding potential side-effects due to extensive β-adrenergic stimulation mediated by available beta receptor agonists. l-Menthol has been also linked to the activation of the cold-gated ion channel TRPA1. However, its role in l-menthol-induced UCP1-dependent thermogenic activity in BAT and WAT remains undetermined. White adipose tissue plasticity has important clinical implications for obesity prevention and/or treatment because higher levels of UCP1-dependent thermogenesis can lead to enhanced energy expenditure at a considerable extent. We hypothesize that chronic dietary l-menthol treatment could induce TRPM8- and TRPA1-dependent WAT adaptations, resembling BAT-like activity, and overall improve whole-body metabolic health in obese and overweight individuals. The putative impact of chronic l-menthol dietary treatment on the stimulation of BAT-like activity in classical WAT depots in humans remains unknown. A detailed experimental design has been proposed to investigate the hypothesized l-menthol-induced browning of WAT. If

  1. Recurrent recruitment manoeuvres improve lung mechanics and minimize lung injury during mechanical ventilation of healthy mice.

    Directory of Open Access Journals (Sweden)

    Lucy Kathleen Reiss

    Full Text Available INTRODUCTION: Mechanical ventilation (MV of mice is increasingly required in experimental studies, but the conditions that allow stable ventilation of mice over several hours have not yet been fully defined. In addition, most previous studies documented vital parameters and lung mechanics only incompletely. The aim of the present study was to establish experimental conditions that keep these parameters within their physiological range over a period of 6 h. For this purpose, we also examined the effects of frequent short recruitment manoeuvres (RM in healthy mice. METHODS: Mice were ventilated at low tidal volume V(T = 8 mL/kg or high tidal volume V(T = 16 mL/kg and a positive end-expiratory pressure (PEEP of 2 or 6 cm H(2O. RM were performed every 5 min, 60 min or not at all. Lung mechanics were followed by the forced oscillation technique. Blood pressure (BP, electrocardiogram (ECG, heart frequency (HF, oxygen saturation and body temperature were monitored. Blood gases, neutrophil-recruitment, microvascular permeability and pro-inflammatory cytokines in bronchoalveolar lavage (BAL and blood serum as well as histopathology of the lung were examined. RESULTS: MV with repetitive RM every 5 min resulted in stable respiratory mechanics. Ventilation without RM worsened lung mechanics due to alveolar collapse, leading to impaired gas exchange. HF and BP were affected by anaesthesia, but not by ventilation. Microvascular permeability was highest in atelectatic lungs, whereas neutrophil-recruitment and structural changes were strongest in lungs ventilated with high tidal volume. The cytokines IL-6 and KC, but neither TNF nor IP-10, were elevated in the BAL and serum of all ventilated mice and were reduced by recurrent RM. Lung mechanics, oxygenation and pulmonary inflammation were improved by increased PEEP. CONCLUSIONS: Recurrent RM maintain lung mechanics in their physiological range during low tidal volume ventilation of healthy mice by

  2. Oral L-Arginine Stimulates GLP-1 Secretion to Improve Glucose Tolerance in Male Mice

    DEFF Research Database (Denmark)

    Clemmensen, Christoffer; Smajilovic, Sanela; Smith, Eric P

    2013-01-01

    -induced obesity, may provide an alternative therapeutic approach. Importantly, recent evidence suggests the amino acid l-arginine, a well-known insulin secretagogue, can also stimulate release of GLP-1 from isolated rat intestine. Here we tested the hypothesis that oral l-arginine acts as a GLP-1 secretagogue...... in vivo, to augment postprandial insulin secretion and improve glucose tolerance. To test this, we administered l-arginine or vehicle by oral gavage, immediately prior to an oral glucose tolerance test in lean and diet-induced obese mice. In both lean and obese mice oral l-arginine increased plasma GLP-1...... possibility that l-arginine-based nutritional and/or pharmaceutical therapies may benefit glucose tolerance by improving the postprandial GLP-1 response in obese individuals....

  3. Resveratrol Attenuates Neurodegeneration and Improves Neurological Outcomes after Intracerebral Hemorrhage in Mice

    Directory of Open Access Journals (Sweden)

    Frederick Bonsack

    2017-08-01

    Full Text Available Intracerebral hemorrhage (ICH is a devastating type of stroke with a substantial public health impact. Currently, there is no effective treatment for ICH. The purpose of the study was to evaluate whether the post-injury administration of Resveratrol confers neuroprotection in a pre-clinical model of ICH. To this end, ICH was induced in adult male CD1 mice by collagenase injection method. Resveratrol (10 mg/kg or vehicle was administered at 30 min post-induction of ICH and the neurobehavioral outcome, neurodegeneration, cerebral edema, hematoma resolution and neuroinflammation were assessed. The Resveratrol treatment significantly attenuated acute neurological deficits, neurodegeneration and cerebral edema after ICH in comparison to vehicle treated controls. Further, Resveratrol treated mice exhibited improved hematoma resolution with a concomitant reduction in the expression of proinflammatory cytokine, IL-1β after ICH. Altogether, the data suggest the efficacy of post-injury administration of Resveratrol in improving acute neurological function after ICH.

  4. Exercise-Mediated Improvements in Painful Neuropathy Associated with Pre-Diabetes in Mice

    OpenAIRE

    Groover, Anna L; Ryals, Janelle M.; Guilford, Brianne L.; Wilson, Natalie M.; Christianson, Julie A.; Wright, Doug E.

    2013-01-01

    Recent research suggests that exercise can be effective in reducing pain in animals and humans with neuropathic pain. To investigate mechanisms in which exercise may improve hyperalgesia associated with prediabetes, C57Bl/6 mice were fed either standard chow or a high-fat diet for 12 weeks and were provided access to running wheels (exercised) or without access (sedentary). The high-fat diet induced a number of prediabetic symptoms, including increased weight, blood glucose, and insulin level...

  5. Improved cerebral energetics and ketone body metabolism in db/db mice

    DEFF Research Database (Denmark)

    Andersen, Jens V; Christensen, Sofie K; Nissen, Jakob D

    2017-01-01

    It is becoming evident that type 2 diabetes mellitus is affecting brain energy metabolism. The importance of alternative substrates for the brain in type 2 diabetes mellitus is poorly understood. The aim of this study was to investigate whether ketone bodies are relevant candidates to compensate...... metabolism in type 2 diabetes mellitus. The increased hippocampal ketone body utilization and improved mitochondrial function in db/db mice, may act as adaptive mechanisms in order to maintain cerebral energetics during hampered glucose metabolism....

  6. Homeopathic Doses of Gelsemium sempervirens Improve the Behavior of Mice in Response to Novel Environments

    Directory of Open Access Journals (Sweden)

    Paolo Bellavite

    2011-01-01

    Full Text Available Gelsemium sempervirens is used in homeopathy for treating patients with anxiety related symptoms, however there have been few experimental studies evaluating its pharmacological activity. We have investigated the effects of homeopathic doses of G. sempervirens on mice, using validated behavioral models. Centesimal (CH dilutions/dynamizations of G. sempervirens, the reference drug diazepam (1 mg/kg body weight or a placebo (solvent vehicle were intraperitoneally delivered to groups of mice of CD1 strain during 8 days, then the effects were assessed by the Light-Dark (LD choice test and by the Open-Field (OF exploration test, in a fully blind manner. In the LD test, the mean time spent in the illuminated area by control and placebo-treated animals was 15.98%, for mice treated with diazepam it increased to 19.91% (P = .047, while with G. sempervirens 5 CH it was 18.11% (P = .341, non-significant. The number of transitions between the two compartments increased with diazepam from 6.19 to 9.64 (P < .001 but not with G. Sempervirens. In the OF test, G. sempervirens 5 CH significantly increased the time spent and the distance traveled in the central zone (P = .009 and P = .003, resp., while diazepam had no effect on these OF test parameters. In a subsequent series of experiments, G. sempervirens 7 and 30 CH also significantly improved the behavioral responses of mice in the OF test (P < .01 for all tested variables. Neither dilutions of G. sempervirens affected the total distance traveled, indicating that the behavioral effect was not due to unspecific changes in locomotor activity. In conclusion, homeopathic doses of G. sempervirens influence the emotional responses of mice to novel environments, suggesting an improvement in exploratory behavior and a diminution of thigmotaxis or neophobia.

  7. Rhinacanthus nasutus leaf improves metabolic abnormalities in high-fat diet-induced obese mice

    Institute of Scientific and Technical Information of China (English)

    Supaporn Wannasiri; Pritsana Piyabhan; Jarinyaporn Naowaboot

    2016-01-01

    Objective:To investigate the effect of Rhinacanthus nasutus(R.nasutus) leaf extract on impaired glucose and lipid metabolism in obese ICR mice.Methods:Obesity was induced in the male ICR mice by feeding them a high-fat diet(60 kcal%fat) for 12 weeks.After the first six weeks of the diet,the obese mice were administered with the water extract of R.nasutus leaves at 250 and 500 mg/kg per day for the next six weeks.Subsequently,the blood glucose,lipid profiles,insulin,leptin,and adiponectin levels were measured.The liver and adipose tissues were excised for histopathological examination and protein expression study.Results:After six weeks of the treatment,R.nasutus extract(at 250 and 500 mg/kg per day) was found to reduce the elevated blood glucose level,improve the insulin sensitivity,decrease the serum leptin,and increase the serum adiponectin levels.The obese mice treated with R.nasutus were found to have a reduction in the increased lipid concentrations in their serum and liver tissues.Moreover,treatment with R.nasutus reduced the fat accumulation in the liver and the large adipocyte size in the fat tissues.Interestingly,the administration with R.nasutus extract was marked by an increase in the hepatic peroxisome proliferators-activated receptor alpha,fat cell adiponectin,and glucose transporter 4 proteins.Conclusions:To the best of our knowledge,the present study is the first report on the impact of R.nasutus extract in improving the impaired glucose and lipid metabolism in high-fat diet-induced obesity in mice via stimulating the insulin sensitivity in the liver and adipose tissues.

  8. Rhinacanthus nasutus leaf improves metabolic abnormalities in high-fat diet-induced obese mice

    Institute of Scientific and Technical Information of China (English)

    Supaporn Wannasiri; Pritsana Piyabhan; Jarinyaporn Naowaboot

    2016-01-01

    Objective: To investigate the effect of Rhinacanthus nasutus (R. nasutus) leaf extract on impaired glucose and lipid metabolism in obese ICR mice. Methods: Obesity was induced in the male ICR mice by feeding them a high-fat diet (60 kcal% fat) for 12 weeks. After the first six weeks of the diet, the obese mice were administered with the water extract of R. nasutus leaves at 250 and 500 mg/kg per day for the next six weeks. Subsequently, the blood glucose, lipid profiles, insulin, leptin, and adiponectin levels were measured. The liver and adipose tissues were excised for his-topathological examination and protein expression study. Results: After six weeks of the treatment, R. nasutus extract (at 250 and 500 mg/kg per day) was found to reduce the elevated blood glucose level, improve the insulin sensitivity, decrease the serum leptin, and increase the serum adiponectin levels. The obese mice treated with R. nasutus were found to have a reduction in the increased lipid concen-trations in their serum and liver tissues. Moreover, treatment with R. nasutus reduced the fat accumulation in the liver and the large adipocyte size in the fat tissues. Interestingly, the administration with R. nasutus extract was marked by an increase in the hepatic peroxisome proliferators-activated receptor alpha, fat cell adiponectin, and glucose transporter 4 proteins. Conclusions: To the best of our knowledge, the present study is the first report on the impact of R. nasutus extract in improving the impaired glucose and lipid metabolism in high-fat diet-induced obesity in mice via stimulating the insulin sensitivity in the liver and adipose tissues.

  9. Gallic acid improves glucose tolerance and triglyceride concentration in diet-induced obesity mice.

    Science.gov (United States)

    Bak, Eun-Jung; Kim, Jinmoon; Jang, Sungil; Woo, Gye-Hyeong; Yoon, Ho-Geun; Yoo, Yun-Jung; Cha, Jeong-Heon

    2013-12-01

    Gallic acid, a phenolic phytochemical, has been shown to exert a variety of effects, including anti-oxidative, anti- carcinogenic, anti-allergic, and anti-inflammatory effects. In this study, we attempted to determine whether gallic acid affects metabolic syndrome such as obesity and diabetes. Diet-induced obesity mice were treated intraperitoneally once per day with gallic acid (10 mg/kg/day). After 2 weeks of treatment, the mice were sacrificed to collect the blood for metabolic parameter assessments, and the adipose tissues and liver to weigh and analyze. The triglyceride concentrations were significantly improved in the gallic acid group relative to those measured in the control group. And most importantly, the blood glucose concentrations in the gallic acid group were significantly improved. In the epididymal white adipose tissue of the gallic acid group, adipocyte size was reduced, PPARγ expression was induced, and the Akt signaling pathway was activated. Our results demonstrate that gallic acid improves glucose tolerance and lipid metabolism in the obesity mice, thereby showing evidence of anti-hyperglycemic activity. The findings of an upregulation of PPARγ expression and Akt activation also contribute to our current understanding of the mechanisms underlying the effects of gallic acid on glucose metabolism.

  10. Research on the Capsule of Ganoderma lucidum and Zizhiphi spinozae Improving the Sleep in Mice

    Directory of Open Access Journals (Sweden)

    Ya-Li Dang

    2014-03-01

    Full Text Available Nowadays, more and more people are suffering from insomnia with difficulty in initiating or maintaining sleep. Ganoderma lucidum (G. lucidum and Ziziphi spinosae (Z. Spinosae are conventional herbal drugs in traditional Chinese medicine and they have been used lonely for the treatment of insomnia. In the present study, G. lucidum and Z. spinosae were combined and the active fractions were extracted to make the capsule. Furthermore, their effect on improving sleep in mice was investigated. The functional compositions of the capsule were polysaccharide, total flavone, spinosin and triterpenoid, with the content being 12.08, 1.35, 0.67 and 1.50 g/100 g, respectively. The effect of the capsule on improving sleep in mice was studied. Results showed no effects on the sleep induced directly in mice assessed with the loss-of-righting reflex even at the high dose of 450, 1350 mg/kg/day. However, the capsule significantly decreased sleep latency and increased sleeping time and prolonged sleeping time induced by pentobarbital sodium at high doses. In conclusion, the capsule of G. lucidum and Z. spinozae combined had the function of improving sleep

  11. Erythropoietin combined with liposomal amphotericin b improves outcome during disseminated aspergillosis in mice

    Directory of Open Access Journals (Sweden)

    nathalie erousseau

    2014-10-01

    Full Text Available Disseminated aspergillosis is responsible for a high mortality rate despite the use of antifungal drugs. Adjuvant therapies are urgently needed to improve the outcome. The aim of this study was to demonstrate that the cytoprotective effect of erythropoietin combined to amphotericin b can reduce the mortality rate in a murine model of disseminated aspergillosis. After infection with Aspergillus fumigatus, neutropenic mice were randomized to receive vehicle or 7,5 mg/Kg of Liposomal Amphotericin B (LAmB or 7,5 mg/Kg of LAmB combined with 1000 IU/Kg of EPO (16 mice per group. Aspergillus galactomannan and organ cultures were performed to evaluate fungal burden at day 5. Cumulative long-term survival was analyzed at day 12 post-infection according to the Kaplan-Meier method. At day 5, fungal burden was similar between non-treated and treated groups. At day 12, mortality rates were 75 %, 62.5 % and 31 % in control group, LAmB group and EPO/LAmB group, respectively. We observed a significant decreased in mortality using EPO/LAmB combination compared to control group (p < 0.01. LAmB single treatment did not improve the survival rate compared to control group (p = 0.155.Our results provided the first evidence that erythropoietin improved the outcome of mice presenting disseminated aspergillosis when combined with amphotericin b.

  12. [Human brown adipose tissue].

    Science.gov (United States)

    Virtanen, Kirsi A; Nuutila, Pirjo

    2015-01-01

    Adult humans have heat-producing and energy-consuming brown adipose tissue in the clavicular region of the neck. There are two types of brown adipose cells, the so-called classic and beige adipose cells. Brown adipose cells produce heat by means of uncoupler protein 1 (UCP1) from fatty acids and sugar. By applying positron emission tomography (PET) measuring the utilization of sugar, the metabolism of brown fat has been shown to multiply in the cold, presumably influencing energy consumption. Active brown fat is most likely present in young adults, persons of normal weight and women, least likely in obese persons.

  13. Investigating the influence of selected texture-improved pretreatment techniques on storage stability of wholegrain brown rice: Involvement of processing-induced mineral changes with lipid degradation.

    Science.gov (United States)

    Xia, Qiang; Wang, Liping; Yu, Wenjuan; Li, Yunfei

    2017-09-01

    This work aimed at investigating the effects of emerging texture-improved processing techniques including high hydrostatic pressure (HHP; 150-450MPa/10min), high-intensity ultrasonication (HIU; 17.83W·cm(-2)/30min) and germination (37°C/36h) pretreatments on lipid hydrolysis and oxidation development of wholegrain brown rice (WBR) during storage, in an attempt to ascertain a possible link between lipid degradation and the underlying mechanisms. The results showed that HHP and HIU treatments enhanced lipid hydrolysis and oxidation as indicated by the formation of free fatty acids (FFA) and thiobarbituric acid reactive substances (TBARS) respectively, whereas an opposite pattern was observed for germination. Storage process rather than after immediate treatments observed an increase in lipid oxidation of HHP and HIU-processed samples, which was related to processing-induced liberation of minerals. Quantitative and qualitative characterization via inductively coupled plasma-optical emission spectrometry (ICP-OES) and micro X-ray fluorescence (μ-XRF) analysis confirmed the shifts of mineral distribution in WBR grains in response to different pretreatments. The WBR-derived lipase was activated by Ca(2+), and μ-XRF mapping indicated calcium enrichment in pericarp/aleurone layer and its mobilization to embryo during germination process where magnesium and manganese were significantly reduced. Multivariate analysis revealed a close relationship between increased lipid degradation and minerals including magnesium and manganese. This is the first time for reporting the effects of selected texture-improved techniques on lipid stability of WBR grains across storage process as well as validating the involvement of processing-induced mineral release in lipid degradation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Crocin Improves Damage Induced by Nicotine on A Number of Reproductive Parameters in Male Mice

    Science.gov (United States)

    Salahshoor, Mohammad Reza; Khazaei, Mozafar; Jalili, Cyrus; Keivan, Mona

    2016-01-01

    Background Crocin, a carotenoid isolated from Crocus sativus L. (saffron), is a pharmacologically active component of saffron. Nicotine consumption can decrease fertility in males through induction of oxidative stress and DNA damage. The aim of this study is to determine the effects of crocin on reproductive parameter damages in male mice exposed to nicotine. Materials and Methods In this experimental study, we divided 48 mice into 8 groups (n=6 per group): control (normal saline), nicotine (2.5 mg/kg), crocin (12.5, 25 and 50 mg/kg) and crocin (12.5, 25 and 50 mg/kg)+nicotine (2.5 mg/kg). Mice received once daily intraperitoneal injections of crocin, nicotine and crocin+nicotine for 4 weeks. Sperm parameters (count, motility, and viability), testis weight, seminiferous tube diameters, testosterone, and serum nitric oxide levels were analyzed and compared. Results Nicotine administration significantly decreased testosterone level; sperm count, viability, and motility; testis weight and seminiferous tubule diameters compared to the control group (P<0.05). However, increasing the dose of crocin in the crocin and crocin+nicotine groups significantly boosted sperm motility and viability; seminiferous tubule diameters; testis weight; and testosterone levels in all groups compared to the nicotine group (P<0.05). Conclusion Crocin improves nicotine-induced adverse effects on reproductive parameters in male mice. PMID:27123203

  15. Chloroquine improves left ventricle diastolic function in streptozotocin-induced diabetic mice

    Directory of Open Access Journals (Sweden)

    Yuan X

    2016-08-01

    Full Text Available Xun Yuan, Yi-Chuan Xiao, Gui-Ping Zhang, Ning Hou, Xiao-Qian Wu, Wen-Liang Chen, Jian-Dong Luo, Gen-Shui Zhang Department of Pharmacology, Guangzhou Medical University, Guangzhou, People’s Republic of China Abstract: Diabetes is a potent risk factor for heart failure with preserved ejection fraction (HFpEF. Autophagy can be activated under pathological conditions, including diabetic cardiomyopathy. The therapeutic effects of chloroquine (CQ, an autophagy inhibitor, on left ventricle function in streptozotocin (STZ-induced diabetic mice were investigated. The cardiac function, light chain 3 (LC3-II/LC3-I ratio, p62, beclin 1, reactive oxygen species, apoptosis, and fibrosis were measured 14 days after CQ (ip 60 mg/kg/d administration. In STZ-induced mice, cardiac diastolic function was decreased significantly with normal ejection fraction. CQ significantly ameliorated cardiac diastolic function in diabetic mice with HFpEF. In addition, CQ decreased the autophagolysosomes, cardiomyocyte apoptosis, and cardiac fibrosis but increased LC3-II and p62 expressions. These results suggested that CQ improved the cardiac diastolic function by inhibiting autophagy in STZ-induced HFpEF mice. Autophagic inhibitor CQ might be a potential therapeutic agent for HFpEF. Keywords: chloroquine, diastolic function, HFpEF, autophagy, diabetic cardiomyopathy, type 1 diabetes mellitus

  16. Apocynin Improves Insulin Resistance through Suppressing Inflammation in High-Fat Diet-Induced Obese Mice

    Directory of Open Access Journals (Sweden)

    Ran Meng

    2010-01-01

    Full Text Available We investigated the effects of apocynin on high-fat diet- (HFD- induced insulin resistance in C57BL/6 mice. After 12 weeks of HFD, the mice that exhibited insulin resistance then received 5 weeks of apocynin (2.4 g/L, in water. Following apocynin treatment, fasting glucose, insulin, and glucose tolerance test showed significant improvement in insulin sensitivity in HFD-fed mice. We demonstrated that serum levels of tumor necrosis factor-α (TNF-α, interleukin-6 (IL-6, and leptin were remarkably reduced with apocynin treatment. We also found that mRNA expression of TNF-α, IL-6, and monocyte chemoattractant protein-1 (MCP-1 in the liver and mRNA expression of TNF-α, IL-6, MCP-1, and leptin in adipose tissue were suppressed by apocynin. Furthermore, the activity of transcription factor NF-κB in the liver was significantly suppressed with apocynin treatment. These results suggest that apocynin may reduce inflammatory factors in the blood, liver, and adipose tissue, resulting in amelioration of insulin resistance in HFD-fed mice.

  17. Interleukin-2 improves amyloid pathology, synaptic failure and memory in Alzheimer's disease mice.

    Science.gov (United States)

    Alves, Sandro; Churlaud, Guillaume; Audrain, Mickael; Michaelsen-Preusse, Kristin; Fol, Romain; Souchet, Benoit; Braudeau, Jérôme; Korte, Martin; Klatzmann, David; Cartier, Nathalie

    2016-12-20

    Interleukin-2 (IL-2)-deficient mice have cytoarchitectural hippocampal modifications and impaired learning and memory ability reminiscent of Alzheimer's disease. IL-2 stimulates regulatory T cells whose role is to control inflammation. As neuroinflammation contributes to neurodegeneration, we investigated IL-2 in Alzheimer's disease. Therefore, we investigated IL-2 levels in hippocampal biopsies of patients with Alzheimer's disease relative to age-matched control individuals. We then treated APP/PS1ΔE9 mice having established Alzheimer's disease with IL-2 for 5 months using single administration of an AAV-IL-2 vector. We first found decreased IL-2 levels in hippocampal biopsies of patients with Alzheimer's disease. In mice, IL-2-induced systemic and brain regulatory T cells expansion and activation. In the hippocampus, IL-2 induced astrocytic activation and recruitment of astrocytes around amyloid plaques, decreased amyloid-β42/40 ratio and amyloid plaque load, improved synaptic plasticity and significantly rescued spine density. Of note, this tissue remodelling was associated with recovery of memory deficits, as assessed in the Morris water maze task. Altogether, our data strongly suggest that IL-2 can alleviate Alzheimer's disease hallmarks in APP/PS1ΔE9 mice with established pathology. Therefore, this should prompt the investigation of low-dose IL-2 in Alzheimer's disease and other neuroinflammatory/neurodegenerative disorders.

  18. Improved insulin sensitivity and islet function after PPARdelta activation in diabetic db/db mice.

    Science.gov (United States)

    Winzell, Maria Sörhede; Wulff, Erik Max; Olsen, Grith Skytte; Sauerberg, Per; Gotfredsen, Carsten F; Ahrén, Bo

    2010-01-25

    The peroxisome proliferator-activated receptors (PPARs) are transcription factors belonging to the nuclear receptor superfamily. Several reports have shown that PPARdelta is involved in lipid metabolism, increasing fat oxidation and depleting lipid accumulation. Whether PPARdelta is involved in the regulation of glucose metabolism is not completely understood. In this study, we examined effects of long-term PPARdelta activation on glycemic control, islet function and insulin sensitivity in diabetic db/db mice. Male db/db mice were administered orally once daily with a selective and partial PPARdelta agonist (NNC 61-5920, 30 mg/kg) for eight weeks; control mice received vehicle. Fasting and non-fasting plasma glucose were reduced, reflected in reduced hemoglobinA(1c) (3.6+/-1.6% vs. 5.4+/-1.8 in db/db controls, Pdiabetic db/db mice. This suggests that activation of PPARdelta improves glucose metabolism and may therefore potentially be target for treatment of type 2 diabetes.

  19. Marginal level dystrophin expression improves clinical outcome in a strain of dystrophin/utrophin double knockout mice.

    Directory of Open Access Journals (Sweden)

    Dejia Li

    Full Text Available Inactivation of all utrophin isoforms in dystrophin-deficient mdx mice results in a strain of utrophin knockout mdx (uko/mdx mice. Uko/mdx mice display severe clinical symptoms and die prematurely as in Duchenne muscular dystrophy (DMD patients. Here we tested the hypothesis that marginal level dystrophin expression may improve the clinical outcome of uko/mdx mice. It is well established that mdx3cv (3cv mice express a near-full length dystrophin protein at ∼5% of the normal level. We crossed utrophin-null mutation to the 3cv background. The resulting uko/3cv mice expressed the same level of dystrophin as 3cv mice but utrophin expression was completely eliminated. Surprisingly, uko/3cv mice showed a much milder phenotype. Compared to uko/mdx mice, uko/3cv mice had significantly higher body weight and stronger specific muscle force. Most importantly, uko/3cv outlived uko/mdx mice by several folds. Our results suggest that a threshold level dystrophin expression may provide vital clinical support in a severely affected DMD mouse model. This finding may hold clinical implications in developing novel DMD therapies.

  20. Fermented Brown Rice and Rice Bran with Aspergillus oryzae (FBRA Prevents Inflammation-Related Carcinogenesis in Mice, through Inhibition of Inflammatory Cell Infiltration

    Directory of Open Access Journals (Sweden)

    Kunishige Onuma

    2015-12-01

    Full Text Available We have established an inflammation-related carcinogenesis model in mouse, in which regressive QR-32 cells subcutaneously co-implanted with a foreign body—gelatin sponge—convert themselves into lethal tumors due to massive infiltration of inflammatory cells into the sponge. Animals were fed with a diet containing 5% or 10% fermented brown rice and rice bran with Aspergillus oryzae (FBRA. In 5% and 10% FBRA diet groups, tumor incidences were lower (35% and 20%, respectively than in the non-treated group (70%. We found that FBRA reduced the number of inflammatory cells infiltrating into the sponge. FBRA administration did not cause myelosuppression, which indicated that the anti-inflammatory effects of FBRA took place at the inflammatory lesion. FBRA did not have antitumor effects on the implanted QRsP-11 tumor cells, which is a tumorigenic cell line established from a tumor arisen after co-implantation of QR-32 cells with sponge. FBRA did not reduce formation of 8-hydroxy-2′-deoxyguanine adducts, a marker of oxidative DNA damage in the inflammatory lesion; however, it reduced expression of inflammation-related genes such as TNF-α, Mac-1, CCL3 and CXCL2. These results suggest that FBRA will be an effective chemopreventive agent against inflammation-related carcinogenesis that acts by inhibiting inflammatory cell infiltration into inflammatory lesions.

  1. Atmospheres of Brown Dwarfs

    CERN Document Server

    Helling, Christiane

    2014-01-01

    Brown Dwarfs are the coolest class of stellar objects known to date. Our present perception is that Brown Dwarfs follow the principles of star formation, and that Brown Dwarfs share many characteristics with planets. Being the darkest and lowest mass stars known makes Brown Dwarfs also the coolest stars known. This has profound implication for their spectral fingerprints. Brown Dwarfs cover a range of effective temperatures which cause brown dwarfs atmospheres to be a sequence that gradually changes from a M-dwarf-like spectrum into a planet-like spectrum. This further implies that below an effective temperature of < 2800K, clouds form already in atmospheres of objects marking the boundary between M-Dwarfs and brown dwarfs. Recent developments have sparked the interest in plasma processes in such very cool atmospheres: sporadic and quiescent radio emission has been observed in combination with decaying Xray-activity indicators across the fully convective boundary.

  2. Colonic inflammation in mice is improved by cigarette smoke through iNKT cells recruitment.

    Directory of Open Access Journals (Sweden)

    Muriel Montbarbon

    Full Text Available Cigarette smoke (CS protects against intestinal inflammation during ulcerative colitis. Immunoregulatory mechanisms sustaining this effect remain unknown. The aim of this study was to assess the effects of CS on experimental colitis and to characterize the intestinal inflammatory response at the cellular and molecular levels. Using the InExpose® System, a smoking device accurately reproducing human smoking habit, we pre-exposed C57BL/6 mice for 2 weeks to CS, and then we induced colitis by administration of dextran sodium sulfate (DSS. This system allowed us to demonstrate that CS exposure improved colonic inflammation (significant decrease in clinical score, body weight loss and weight/length colonic ratio. This improvement was associated with a significant decrease in colonic proinflammatory Th1/Th17 cytokine expression, as compared to unexposed mice (TNF (p=0.0169, IFNγ (p<0.0001, and IL-17 (p=0.0008. Smoke exposure also induced an increased expression of IL-10 mRNA (p=0.0035 and a marked recruitment of iNKT (invariant Natural Killer T; CD45+ TCRβ+ CD1d tetramer+ cells in the colon of DSS-untreated mice. Demonstration of the role of iNKT cells in CS-dependent colitis improvement was performed using two different strains of NKT cells deficient mice. Indeed, in Jα18KO and CD1dKO animals, CS exposure failed to induce significant regulation of DSS-induced colitis both at the clinical and molecular levels. Thus, our study demonstrates that iNKT cells are pivotal actors in the CS-dependent protection of the colon. These results highlight the role of intestinal iNKT lymphocytes and their responsiveness to environmental stimuli. Targeting iNKT cells would represent a new therapeutic way for inflammatory bowel diseases.

  3. Mice lacking pten in osteoblasts have improved intramembranous and late endochondral fracture healing.

    Directory of Open Access Journals (Sweden)

    Travis A Burgers

    Full Text Available The failure of an osseous fracture to heal (development of a non-union is a common and debilitating clinical problem. Mice lacking the tumor suppressor Pten in osteoblasts have dramatic and progressive increases in bone volume and density throughout life. Since fracture healing is a recapitulation of bone development, we investigated the process of fracture healing in mice lacking Pten in osteoblasts (Ocn-cre(tg/+;Pten(flox/flox . Mid-diaphyseal femoral fractures induced in wild-type and Ocn-cre(tg/+;Pten(flox/flox mice were studied via micro-computed tomography (µCT scans, biomechanical testing, histological and histomorphometric analysis, and protein expression analysis. Ocn-cre(tg/+;Pten(flox/flox mice had significantly stiffer and stronger intact bones relative to controls in all cohorts. They also had significantly stiffer healing bones at day 28 post-fracture (PF and significantly stronger healing bones at days 14, 21, and 28 PF. At day 7 PF, the proximal and distal ends of the Pten mutant calluses were more ossified. By day 28 PF, Pten mutants had larger and more mineralized calluses. Pten mutants had improved intramembranous bone formation during healing originating from the periosteum. They also had improved endochondral bone formation later in the healing process, after mature osteoblasts are present in the callus. Our results indicate that the inhibition of Pten can improve fracture healing and that the local or short-term use of commercially available Pten-inhibiting agents may have clinical application for enhancing fracture healing.

  4. Berberine activates thermogenesis in white and brown adipose tissue.

    Science.gov (United States)

    Zhang, Zhiguo; Zhang, Huizhi; Li, Bo; Meng, Xiangjian; Wang, Jiqiu; Zhang, Yifei; Yao, Shuangshuang; Ma, Qinyun; Jin, Lina; Yang, Jian; Wang, Weiqing; Ning, Guang

    2014-11-25

    Obesity develops when energy intake exceeds energy expenditure. Promoting brown adipose tissue formation and function increases energy expenditure and hence may counteract obesity. Berberine (BBR) is a compound derived from the Chinese medicinal plant Coptis chinensis. Here we show that BBR increases energy expenditure, limits weight gain, improves cold tolerance and enhances brown adipose tissue (BAT) activity in obese db/db mice. BBR markedly induces the development of brown-like adipocytes in inguinal, but not epididymal adipose depots. BBR also increases expression of UCP1 and other thermogenic genes in white and BAT and primary adipocytes via a mechanism involving AMPK and PGC-1α. BBR treatment also inhibits AMPK activity in the hypothalamus, but genetic activation of AMPK in the ventromedial nucleus of the hypothalamus does not prevent BBR-induced weight loss and activation of the thermogenic programme. Our findings establish a role for BBR in regulating organismal energy balance, which may have potential therapeutic implications for the treatment of obesity.

  5. Improved Human Erythropoiesis and Platelet Formation in Humanized NSGW41 Mice

    Directory of Open Access Journals (Sweden)

    Susann Rahmig

    2016-10-01

    Full Text Available Human erythro-megakaryopoiesis does not occur in humanized mouse models, preventing the in vivo analysis of human hematopoietic stem cell (HSC differentiation into these lineages in a surrogate host. Here we show that stably engrafted KIT-deficient NOD/SCID Il2rg−/− KitW41/W41 (NSGW41 mice support much improved human erythropoiesis and platelet formation compared with irradiated NSG recipients. Considerable numbers of human erythroblasts and mature thrombocytes are present in the bone marrow and blood, respectively. Morphology, composition, and enucleation capacity of de novo generated human erythroblasts in NSGW41 mice are comparable with those in human bone marrow. Overexpression of human erythropoietin showed no further improvement in human erythrocyte output, but depletion of macrophages led to the appearance of human erythrocytes in the blood. Human erythropoiesis up to normoblasts and platelet formation is fully supported in NSGW41 mice, allowing the analysis of human HSC differentiation into these lineages, the exploration of certain pathophysiologies, and the evaluation of gene therapeutic approaches.

  6. Inter-Alpha Inhibitor Protein (IAIP) Administration Improves Survival From Neonatal Sepsis In Mice

    Science.gov (United States)

    Singh, Kultar; Zhang, Ling Xiu; Bendelja, Kreso; Heath, Ryan; Murphy, Shaun; Sharma, Surendra; Padbury, James F.; Lim, Yow-Pin

    2010-01-01

    Inter-alpha Inhibitor proteins (IaIp) are serine proteases inhibitors which modulate endogenous protease activity and have been shown to improve survival in adult models of sepsis. We evaluated the effect of IaIp on survival and systemic responses to sepsis in neonatal mice. Sepsis was induced in 2-day-old mice with LPS, E. coli and Group B Streptococci. Sepsis was associated with 75% mortality. IaIp, given by intraperitoneal administration at doses between 15–45 mg/kg from 1–6 hours following the onset of sepsis improved survival to nearly 90% (p = 0.0159) in both LPS induced sepsis and with live bacterial infections. The greatest effect was on reversal of hemorrhagic pneumonitis. The effects were dose and time dependent. Systemic cytokine profile and tissue histology were examined. Survival was compared in interleukin 10 knock out animals. Systemic cytokine levels, including TNF-α and IL-10 were increased following induction of sepsis and modulated significantly following IaIp administration. Because the effect of IaIp was still demonstrable in IL-10 deficient mice, we conclude the beneficial effect(s) of IaIp is due to suppression of pro-inflammatory cytokines like TNF-α rather than augmentation of IL-10. IaIp may offer significant benefits as a therapeutic adjunct to treatment of sepsis in neonates and adults. PMID:20520583

  7. TRPV1 activation improves exercise endurance and energy metabolism through PGC-1α upregulation in mice

    Institute of Scientific and Technical Information of China (English)

    Zhidan Luo; Tingbing Cao; Daoyan Liu; Bernd Nilius; Yu Huang; Zhencheng Yan; Zhiming Zhu; Liqun Ma; Zhigang Zhao; Hongbo He; Dachun Yang; Xiaoli Feng; Shuangtao Ma; Xiaoping Chen; Tianqi Zhu

    2012-01-01

    Impaired aerobic exercise capacity and skeletal muscle dysfunction are associated with cardiometabolic diseases.Acute administration of capsaicin enhances exercise endurance in rodents,but the long-term effect of dietary capsaicin is unknown.The capsaicin receptor,the transient receptor potential vanilloid 1(TRPV1)cation channel has been detected in skeletal muscle,the role of which remains unclear.Here we report the function of TRPV1 in cultured C2C12 myocytes and the effect of TRPV1 activation by dietary capsaicin on energy metabolism and exercise endurance of skeletal muscles in mice.In vitro,capsaicin increased cytosolic free calcium and peroxisome proliferator-activated receptor-γ coactivator-1α(PGC-1α)expression in C2C12 myotubes through activating TRPV1.In vivo,PGC-1α in skeletal muscle was upregulated by capsaicin-induced TRPV1 activation or genetic overexpression of TRPV1 in mice.TRPV1 activation increased the expression of genes involved in fatty acid oxidation and mitochondrial respiration,promoted mitochondrial biogenesis,increased oxidative fibers,enhanced exercise endurance and prevented high-fat diet-induced metabolic disorders.Importantly,these effects of capsaicin were absent in TRPV1-deficient mice.We conclude that TRPV1 activation by dietary capsaicin improves energy metabolism and exercise endurance by upregulating PGC-1α in skeletal muscles.The present results indicate a novel therapeutic strategy for managing metabolic diseases and improving exercise endurance.

  8. Mild Staphylococcus aureus Skin Infection Improves the Course of Subsequent Endogenous S. aureus Bacteremia in Mice.

    Science.gov (United States)

    van den Berg, Sanne; de Vogel, Corné P; van Belkum, Alex; Bakker-Woudenberg, Irma A J M

    2015-01-01

    Staphylococcus aureus carriers with S. aureus bacteremia may have a reduced mortality risk compared to non-carriers. A role for the immune system is suggested. Here, we study in mice the effect of mild S. aureus skin infection prior to endogenous or exogenous S. aureus bacteremia, and evaluate protection in relation to anti-staphylococcal antibody levels. Skin infections once or twice by a clinical S. aureus isolate (isolate P) or S. aureus strain 8325-4 were induced in mice free of S. aureus and anti-staphylococcal antibodies. Five weeks later, immunoglobulin G (IgG) levels in blood against 25 S. aureus antigens were determined, and LD50 or LD100 bacteremia caused by S. aureus isolate P was induced. S. aureus skin infections led to elevated levels of anti-staphylococcal IgG in blood. One skin infection improved the course of subsequent severe endogenous bacteremia only. A second skin infection further improved animal survival rate, which was associated with increased pre-bacteremia IgG levels against Efb, IsaA, LukD, LukE, Nuc, PrsA and WTA. In conclusion, S. aureus isolate P skin infection in mice reduces the severity of subsequent endogenous S. aureus bacteremia only. Although cellular immune effects cannot be rules out, anti-staphylococcal IgG against specified antigens may contribute to this effect.

  9. Telmisartan improves insulin resistance and modulates adipose tissue macrophage polarization in high-fat-fed mice.

    Science.gov (United States)

    Fujisaka, Shiho; Usui, Isao; Kanatani, Yukiko; Ikutani, Masashi; Takasaki, Ichiro; Tsuneyama, Koichi; Tabuchi, Yoshiaki; Bukhari, Agussalim; Yamazaki, Yu; Suzuki, Hikari; Senda, Satoko; Aminuddin, Aminuddin; Nagai, Yoshinori; Takatsu, Kiyoshi; Kobayashi, Masashi; Tobe, Kazuyuki

    2011-05-01

    Diet-induced obesity is reported to induce a phenotypic switch in adipose tissue macrophages from an antiinflammatory M2 state to a proinflammatory M1 state. Telmisartan, an angiotensin II type 1 receptor blocker and a peroxisome proliferator-activated receptor-γ agonist, reportedly has more beneficial effects on insulin sensitivity than other angiotensin II type 1 receptor blockers. In this study, we studied the effects of telmisartan on the adipose tissue macrophage phenotype in high-fat-fed mice. Telmisartan was administered for 5 wk to high-fat-fed C57BL/6 mice. Insulin sensitivity, macrophage infiltration, and the gene expressions of M1 and M2 markers in visceral adipose tissues were then examined. An insulin- or a glucose-tolerance test showed that telmisartan treatment improved insulin resistance, decreasing the body weight gain, visceral fat weight, and adipocyte size without affecting the amount of energy intake. Telmisartan reduced the mRNA expression of CD11c and TNF-α, M1 macrophage markers, and significantly increased the expressions of M2 markers, such as CD163, CD209, and macrophage galactose N-acetyl-galactosamine specific lectin (Mgl2), in a quantitative RT-PCR analysis. A flow cytometry analysis showed that telmisartan decreased the number of M1 macrophages in visceral adipose tissues. In conclusion, telmisartan improves insulin sensitivity and modulates adipose tissue macrophage polarization to an antiinflammatory M2 state in high-fat-fed mice.

  10. Mild Staphylococcus aureus Skin Infection Improves the Course of Subsequent Endogenous S. aureus Bacteremia in Mice.

    Directory of Open Access Journals (Sweden)

    Sanne van den Berg

    Full Text Available Staphylococcus aureus carriers with S. aureus bacteremia may have a reduced mortality risk compared to non-carriers. A role for the immune system is suggested. Here, we study in mice the effect of mild S. aureus skin infection prior to endogenous or exogenous S. aureus bacteremia, and evaluate protection in relation to anti-staphylococcal antibody levels. Skin infections once or twice by a clinical S. aureus isolate (isolate P or S. aureus strain 8325-4 were induced in mice free of S. aureus and anti-staphylococcal antibodies. Five weeks later, immunoglobulin G (IgG levels in blood against 25 S. aureus antigens were determined, and LD50 or LD100 bacteremia caused by S. aureus isolate P was induced. S. aureus skin infections led to elevated levels of anti-staphylococcal IgG in blood. One skin infection improved the course of subsequent severe endogenous bacteremia only. A second skin infection further improved animal survival rate, which was associated with increased pre-bacteremia IgG levels against Efb, IsaA, LukD, LukE, Nuc, PrsA and WTA. In conclusion, S. aureus isolate P skin infection in mice reduces the severity of subsequent endogenous S. aureus bacteremia only. Although cellular immune effects cannot be rules out, anti-staphylococcal IgG against specified antigens may contribute to this effect.

  11. HBM Mice Have Altered Bone Matrix Composition and Improved Material Toughness.

    Science.gov (United States)

    Ross, Ryan D; Mashiatulla, Maleeha; Acerbo, Alvin S; Almer, Jonathan D; Miller, Lisa M; Johnson, Mark L; Sumner, D Rick

    2016-10-01

    The G171V mutation in the low-density lipoprotein receptor-related protein 5 (LRP5) leads to a high bone mass (HBM) phenotype. Studies using HBM transgenic mouse models have consistently found increased bone mass and whole-bone strength, but little attention has been paid to the composition of the bone matrix. The current study sought to determine if the cortical bone matrix composition differs in HBM and wild-type mice and to determine how much of the variance in bone material properties is explained by variance in matrix composition. Consistent with previous studies, HBM mice had greater cortical area, moment of inertia, ultimate force, bending stiffness, and energy to failure than wild-type animals. The increased energy to failure was primarily caused by a large increase in post-yield behavior, with no difference in pre-yield behavior. The HBM mice had increased mineral-to-matrix and collagen cross-link ratios, and decreased crystallinity, carbonate, and acid phosphate substitution as measured by Fourier transform infrared microspectroscopy, but no differences in crystal length, intra-fibular strains, and mineral spacing compared to wild-type controls, as measured by X-ray scattering. The largest between genotype difference in material properties was a twofold increase in the modulus of toughness in HBM mice. Step-wise regression analyses showed that the specific matrix compositional parameters most closely associated with material properties varied between the wild-type and HBM genotypes. Although the mechanisms controlling the paradoxical combination of more mineralized yet tougher bone in HBM mice remain to be fully explained, the findings suggest that LRP5 represents a target to not only build bone mass but also to improve bone quality.

  12. Tofogliflozin Improves Insulin Resistance in Skeletal Muscle and Accelerates Lipolysis in Adipose Tissue in Male Mice.

    Science.gov (United States)

    Obata, Atsushi; Kubota, Naoto; Kubota, Tetsuya; Iwamoto, Masahiko; Sato, Hiroyuki; Sakurai, Yoshitaka; Takamoto, Iseki; Katsuyama, Hisayuki; Suzuki, Yoshiyuki; Fukazawa, Masanori; Ikeda, Sachiya; Iwayama, Kaito; Tokuyama, Kumpei; Ueki, Kohjiro; Kadowaki, Takashi

    2016-03-01

    Sodium glucose cotransporter 2 inhibitors have attracted attention as they exert antidiabetic and antiobesity effects. In this study, we investigated the effects of tofogliflozin on glucose homeostasis and its metabolic consequences and clarified the underlying molecular mechanisms. C57BL/6 mice were fed normal chow containing tofogliflozin (0.005%) for 20 weeks or a high-fat diet containing tofogliflozin (0.005%) for 8 weeks ad libitum. In addition, the animals were pair-fed in relation to controls to exclude the influence of increased food intake. Tofogliflozin reduced the body weight gain, mainly because of fat mass reduction associated with a diminished adipocyte size. Glucose tolerance and insulin sensitivity were ameliorated. The serum levels of nonesterified fatty acid and ketone bodies were increased and the respiratory quotient was decreased in the tofogliflozin-treated mice, suggesting the acceleration of lipolysis in the white adipose tissue and hepatic β-oxidation. In fact, the phosphorylation of hormone-sensitive lipase and the adipose triglyceride lipase protein levels in the white adipose tissue as well as the gene expressions related to β-oxidation, such as Cpt1α in the liver, were significantly increased. The hepatic triglyceride contents and the expression levels of lipogenic genes were decreased. Pair-fed mice exhibited almost the same results as mice fed an high-fat diet ad libitum. Moreover, a hyperinsulinemic-euglycemic clamp revealed that tofogliflozin improved insulin resistance by increasing glucose uptake, especially in the skeletal muscle, in pair-fed mice. Taken together, these results suggest tofogliflozin ameliorates insulin resistance and obesity by increasing glucose uptake in skeletal muscle and lipolysis in adipose tissue.

  13. Perilipin overexpression in mice protects against diet-induced obesity

    Science.gov (United States)

    Miyoshi, Hideaki; Souza, Sandra C.; Endo, Mikiko; Sawada, Takashi; Perfield, James W.; Shimizu, Chikara; Stancheva, Zlatina; Nagai, So; Strissel, Katherine J.; Yoshioka, Narihito; Obin, Martin S.; Koike, Takao; Greenberg, Andrew S.

    2010-01-01

    Perilipin A is the most abundant phosphoprotein on adipocyte lipid droplets and is essential for lipid storage and lipolysis. Perilipin null mice exhibit diminished adipose tissue, elevated basal lipolysis, reduced catecholamine-stimulated lipolysis, and increased insulin resistance. To understand the physiological consequences of increased perilipin expression in vivo, we generated transgenic mice that overexpressed either human or mouse perilipin using the adipocyte-specific aP2 promoter/enhancer. Phenotypes of female transgenic and wild-type mice were characterized on chow and high-fat diets (HFDs). When challenged with an HFD, transgenic mice exhibited lower body weight, fat mass, and adipocyte size than wild-type mice. Expression of oxidative genes was increased and lipogenic genes decreased in brown adipose tissue of transgenic mice. Basal and catecholamine-stimulated lipolysis was decreased and glucose tolerance significantly improved in transgenic mice fed a HFD. Perilipin overexpression in adipose tissue protects against HFD-induced adipocyte hypertrophy, obesity, and glucose intolerance. Alterations in brown adipose tissue metabolism may mediate the effects of perilipin overexpression on body fat, although the mechanisms by which perilipin overexpression alters brown adipose tissue metabolism remain to be determined. Our findings demonstrate a novel role for perilipin expression in adipose tissue metabolism and regulation of obesity and its metabolic complications. PMID:19797618

  14. L-Arginine improves multiple physiological parameters in mice exposed to diet-induced metabolic disturbances

    DEFF Research Database (Denmark)

    Clemmensen, Christoffer; Madsen, Andreas Nygaard; Smajilovic, Sanela

    2012-01-01

    : -Arg supplementation to male C57BL/6 mice on an array of physiological parameters. L: -Arg supplemented mice were maintained on a low-protein diet and body composition, appetite regulation, glucose tolerance, insulin sensitivity and energy expenditure were evaluated. A significant reduction......L: -Arginine (L: -Arg) is a conditionally essential amino acid and a natural constituent of dietary proteins. Studies in obese rats and type 2 diabetic humans have indicated that dietary supplementation with L: -Arg can diminish gain in white adipose tissue (WAT) and improve insulin sensitivity....... However, the effects of L: -Arg on glucose homeostasis, body composition and energy metabolism remain unclear. In addition, no studies have, to our knowledge, examined whether L: -Arg has beneficial effects as a dietary supplement in the mouse model. In the present study, we investigated the effects of L...

  15. Basic fibroblast growth factor improves learning and memory functions in chronic stress mice

    Institute of Scientific and Technical Information of China (English)

    Xian Qu; Chunying Li; Hongchang Liu; Chang Su

    2011-01-01

    Four weeks of uncertain stress was used to establish an animal model of chronic stress.Basic fibroblast growth factor was injected daily for 15 days following stress induction.Cell morphology in the hippocampal CA3 region of chronic stress mice revealed cell damage.Nitric oxide content and calcium concentration were significantly increased in the hippocampus,and learning and memory functions were significantly decreased.After basic fibroblast growth factor intervention,Ca2+ overload was decreased and neuronal damage was relieved in hippocampal neurons,which improved learning and memory functions in chronic stress mice.Latency was prolonged and the number of errors was decreased in a passive avoidance test.

  16. An improved protocol for primary culture of cardiomyocyte from neonatal mice.

    Science.gov (United States)

    Sreejit, P; Kumar, Suresh; Verma, Rama S

    2008-01-01

    The primary culture of neonatal mice cardiomyocyte model enables researchers to study and understand the morphological, biochemical, and electrophysiological characteristics of the heart, besides being a valuable tool for pharmacological and toxicological studies. Because cardiomyocytes do not proliferate after birth, primary myocardial culture is recalcitrant. The present study describes an improved method for rapid isolation of cardiomyocytes from neonatal mice, as well as the maintenance and propagation of such cultures for the long term. Immunocytochemical and gene expression data also confirmed the presence of several cardiac markers in the beating cells during the long-term culture condition used in this protocol. The whole culture process can be effectively shortened by reducing the enzyme digestion period and the cardiomyocyte enrichment step.

  17. Transplantation of human spleen into immunodeficient NOD/SCID IL2Rγ(null) mice generates humanized mice that improve functional B cell development.

    Science.gov (United States)

    Chung, Yun Shin; Son, Jin Kyung; Choi, Bongkum; Park, Jae Berm; Chang, Jun; Kim, Sung Joo

    2015-12-01

    We previously generated humanized TB34N mice that received human fetal thymus (T), bone tissue (B) and fetal liver-derived (FL)-CD34(+) cells (34) in immunodeficient, NOD/SCID IL2Rγ(null) (N) mice. Although humanized TB34N mice had excellent hematopoiesis, here, we sought to further improve this model by additional transplantation of human spleen tissue (S) as a secondary hematopoietic tissue (TBS34N). The human spleen grafts were enlarged and differentiated into a similar morphology of adult humans, including follicular lymphoid structures with T- and B-cells. The TBS34N mice mimicked mature human immune system (HIS): mature T- and B-cells and follicular dendritic cells; activated germinal center B-cells expressing CD71, BR3(+) cells, memory B-cells and activation-induced cytidine deaminase(+) B-cells; CD138(+) plasma cells were enriched in the mouse spleen. HBsAg-specific hIgG antibodies were secreted into the sera of all TBS34N mice upon immunization with HBsAg. Taken together, the humanized TBS34N mice improved mature HIS and achieved adaptive antibody responses.

  18. Interferon Gamma, but not Calcitriol Improves the Osteopetrotic Phenotypes in ADO2 Mice.

    Science.gov (United States)

    Alam, Imranul; Gray, Amie K; Acton, Dena; Gerard-O'Riley, Rita L; Reilly, Austin M; Econs, Michael J

    2015-11-01

    ADO2 is a heritable osteosclerotic disorder that usually results from heterozygous missense dominant negative mutations in the chloride channel 7 gene (CLCN7). ADO2 is characterized by a wide range of features and severity, including multiple fractures, impaired vision due to secondary bony overgrowth and/or the lack of the optical canal enlargement with growth, and osteonecrosis/osteomyelitis. The disease is presently incurable, although anecdotal evidence suggests that calcitriol and interferon gamma-1b (IFN-G) may have some beneficial effects. To identify the role of these drugs for the treatment of ADO2, we utilized a knock-in (G213R mutation in Clcn7) ADO2 mouse model that resembles the human disease. Six-week-old ADO2 heterozygous mice were administered vehicle (PBS) or calcitriol or IFN-G 5 times per week for 8 weeks. We determined bone phenotypes using DXA and μCT, and analyzed serum biochemistry and bone resorption markers. ADO2 mice treated with all doses of IFN-G significantly (p<0.05) attenuated the increase of whole body aBMD and distal femur BV/TV gain in both male and female compared to the vehicle group. In contrast, mice treated with low and medium doses of calcitriol showed a trend of higher aBMD and BV/TV whereas high dose calcitriol significantly (p<0.05) increased bone mass compared to the vehicle group. The calcium and phosphorus levels did not differ between vehicle and IFN-G or calcitriol treated mice; however, we detected significantly (p<0.05) elevated levels of CTX/TRAP5b ratio in IFN-G treated mice. Our findings indicate that while IFN-G at all doses substantially improved the osteopetrotic phenotypes in ADO2 heterozygous mice, calcitriol treatment at any dose did not improve the phenotype and at high dose further increased bone mass. Thus, use of high dose calcitriol therapy in ADO2 patients merits serious reconsideration. Importantly, our data support the prospect of a clinical trial of IFN-G in ADO2 patients.

  19. Administration of visfatin during superovulation improves developmental competency of oocytes and fertility potential in aged female mice.

    Science.gov (United States)

    Choi, Kyoung-Hwa; Joo, Bo-Sun; Sun, Sheng-Ta; Park, Min-Jung; Son, Jung-Bin; Joo, Jong-Kil; Lee, Kyu-Sup

    2012-05-01

    To examine whether visfatin administration during superovulation improves ovarian response, developmental competence of oocytes, and fertility in aged female mice. Controlled experimental study. University hospital. Two groups of differently aged C57BL female mice (6-11 and 26-31 weeks). Female mice were coinjected intraperitoneally with 5 IU pregnant mare's serum gonadotropin (PMSG) and visfatin of various doses (0-500 ng/mL), followed by 5 IU human chorionic gonadotropin (hCG) injection 48 hours later. Then the mice were immediately mated with an individual male. After 18 hours zygotes were cultured, and expression of ovarian visfatin and vascular endothelial growth factor (VEGF) was examined. Potential pregnancies of visfatin-administered aged female mice were monitored for delivery of offspring. Number of zygotes retrieved, embryo developmental competency, fertility potential, ovarian visfatin and VEGF expression. Ovarian visfatin expression was significantly decreased in the aged mice group compared with the young. Visfatin administration significantly increased embryo developmental rate and ovarian visfatin and VEGF expressions in the aged mice. Visfatin-administered aged mice delivered significantly higher numbers of offspring than controls. This study suggests that visfatin administration during superovulation plays an important role in regulating oocyte quality and can improve oocyte quality and fertility of aged female mice. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  20. AMPD3-deficient mice exhibit increased erythrocyte ATP levels but anemia not improved due to PK deficiency.

    Science.gov (United States)

    Cheng, Jidong; Morisaki, Hiroko; Toyama, Keiko; Ikawa, Masahito; Okabe, Masaru; Morisaki, Takayuki

    2012-11-01

    AMP deaminase (AMPD) catalyzes AMP to IMP and plays an important role in energy charge and nucleotide metabolism. Human AMPD3 deficiency is a type of erythrocyte-specific enzyme deficiency found in individuals without clinical symptoms, although an increased level of ATP in erythrocytes has been reported. To better understand the physiological and pathological roles of AMPD3 deficiency, we established a line of AMPD3-deficient [A3(-/-)] mice. No AMPD activity and a high level of ATP were observed in erythrocytes of these mice, similar to human RBC-AMPD3 deficiency, while other characteristics were unremarkable. Next, we created AMPD3 and pyruvate kinase (PK) double-deficient [PKA(-/-,-/-)] mice by mating A3(-/-) mice with CBA-Pk-1slc/Pk-1slc mice [PK(-/-)], a spontaneous PK-deficient strain showing hemolytic anemia. In PKA(-/-,-/-) mice, the level of ATP in red blood cells was increased 1.5 times as compared to PK(-/-) mice, although hemolytic anemia in those animals was not improved. In addition, we observed osmotic fragility of erythrocytes in A3(-/-) mice under fasting conditions. In contrast, the ATP level in erythrocytes was elevated in A3(-/-) mice as compared to the control. In conclusion, AMPD3 deficiency increases the level of ATP in erythrocytes, but does not improve anemia due to PK deficiency and leads to erythrocyte dysfunction.

  1. Tamoxifen affects glucose and lipid metabolism parameters, causes browning of subcutaneous adipose tissue and transient body composition changes in C57BL/6NTac mice.

    Science.gov (United States)

    Hesselbarth, Nico; Pettinelli, Chiara; Gericke, Martin; Berger, Claudia; Kunath, Anne; Stumvoll, Michael; Blüher, Matthias; Klöting, Nora

    2015-08-28

    Tamoxifen is a selective estrogen receptor (ER) modulator which is widely used to generate inducible conditional transgenic mouse models. Activation of ER signaling plays an important role in the regulation of adipose tissue (AT) metabolism. We therefore tested the hypothesis that tamoxifen administration causes changes in AT biology in vivo. 12 weeks old male C57BL/6NTac mice were treated with either tamoxifen (n = 18) or vehicle (n = 18) for 5 consecutive days. Tamoxifen treatment effects on body composition, energy homeostasis, parameters of AT biology, glucose and lipid metabolism were investigated up to an age of 18 weeks. We found that tamoxifen treatment causes: I) significantly increased HbA1c, triglyceride and free fatty acid serum concentrations (p body composition changes. Tamoxifen may induce changes in body composition, whole body glucose and lipid metabolism and has significant effects on AT biology, which need to be considered when using Tamoxifen as a tool to induce conditional transgenic mouse models. Our data further suggest that tamoxifen-treated wildtype mice should be characterized in parallel to experimental transgenic models to control for tamoxifen administration effects.

  2. Brain natriuretic peptide improves long-term functional recovery after acute CNS injury in mice.

    Science.gov (United States)

    James, Michael L; Wang, Haichen; Venkatraman, Talaignair; Song, Pingping; Lascola, Christopher D; Laskowitz, Daniel T

    2010-01-01

    There is emerging evidence to suggest that brain natriuretic peptide (BNP) is elevated after acute brain injury, and that it may play an adaptive role in recovery through augmentation of cerebral blood flow (CBF). Through a series of experiments, we tested the hypothesis that the administration of BNP after different acute mechanisms of central nervous system (CNS) injury could improve functional recovery by improving CBF. C57 wild-type mice were exposed to either pneumatic-induced closed traumatic brain injury (TBI) or collagenase-induced intracerebral hemorrhage (ICH). After injury, either nesiritide (hBNP) (8 microg/kg) or normal saline were administered via tail vein injection at 30 min and 4 h. The mice then underwent functional neurological testing via rotorod latency over the following 5 days and neurocognitive testing via Morris water maze testing on days 24-28. Cerebral blood flow (CBF) was assessed by laser Doppler from 25 to 90 min after injury. After ICH, mRNA polymerase chain reaction (PCR) and histochemical staining were performed during the acute injury phase (<24 h) to determine the effects on inflammation. Following TBI and ICH, administration of hBNP was associated with improved functional performance as assessed by rotorod and Morris water maze latencies (p < 0.01). CBF was increased (p < 0.05), and inflammatory markers (TNF-alpha and IL-6; p < 0.05), activated microglial (F4/80; p < 0.05), and neuronal degeneration (Fluoro-Jade B; p < 0.05) were reduced in mice receiving hBNP. hBNP improves neurological function in murine models of TBI and ICH, and was associated with enhanced CBF and downregulation of neuroinflammatory responses. hBNP may represent a novel therapeutic strategy after acute CNS injury.

  3. Biotherapic T. cruzi 17DH when continuously used clinically improves mice infected with T. cruzi.

    Directory of Open Access Journals (Sweden)

    Silvana Marques de Araujo

    2011-09-01

    treatment ways using biotherapic T. cruzi 17DH showed differences in the clinical evolution. The treatment using biotherapic diluted in water initially shows hypothermia, with subsequent recovery of normal temperature (p=0.05 (Fig1. The weight curve shows a better evolution in mice treated with water compared to control groups (p=0.055 and the groups treated by gavage (p=0.0064. Feed and water intake did not differ among the groups. While the mice that were treated with biotherapic diluted in water showed a slight level of ruffled fur, the mice in control groups and the ones treated by gavage showed a more intense level of ruffled fur (p=0.00001. The difference in the evolution of mortality among the groups was significant (p=0.034, while in the group treated with biotherapic diluted with water, the mortality rate started later, reaching the maximum of 90%. This group showed a better clinical result, expressed by the smaller extent of ruffled fur, a better evolution of the temperature curve and higher gain of weight. This is an important result because the Y strain of T. cruzi has a mortality rate of 100% in mice, showing once again the good performance of biotherapic in this model of infection. Conclusion: The use of biotherapic T. cruzi 17DH for a long period causes clinical improvement of the infected mice with Trypanosoma cruzi. The clinical use of these results in human beings should consider the allometric medicine dosage which takes into account the metabolic rate of each organism.

  4. Sotagliflozin improves glycemic control in nonobese diabetes-prone mice with type 1 diabetes

    Directory of Open Access Journals (Sweden)

    Powell DR

    2015-02-01

    Full Text Available David R Powell, Deon Doree, Sabrina Jeter-Jones, Zhi-Ming Ding, Brian Zambrowicz, Arthur Sands Lexicon Pharmaceuticals, The Woodlands, TX, USA Purpose: Oral agents are needed that improve glycemic control without increasing hypoglycemic events in patients with type 1 diabetes (T1D. Sotagliflozin may meet this need, because this compound lowers blood glucose through the insulin-independent mechanisms of inhibiting kidney SGLT2 and intestinal SGLT1. We examined the effect of sotagliflozin on glycemic control and rate of hypoglycemia measurements in T1D mice maintained on a low daily insulin dose, and compared these results to those from mice maintained in better glycemic control with a higher daily insulin dose alone. Materials and methods: Nonobese diabetes-prone mice with cyclophosphamide-induced T1D were randomized to receive one of four daily treatments: 0.2 U insulin/vehicle, 0.05 U insulin/vehicle, 0.05 U insulin/2 mg/kg sotagliflozin or 0.05 U insulin/30 mg/kg sotagliflozin. Insulin was delivered subcutaneously by micro-osmotic pump; the day after pump implantation, mice received their first of 22 once-daily oral doses of sotagliflozin or vehicle. Glycemic control was monitored by measuring fed blood glucose and hemoglobin A1c levels. Results: Blood glucose levels decreased rapidly and comparably in the 0.05 U insulin/sotagliflozin-treated groups and the 0.2 U insulin/vehicle group compared to the 0.05 U insulin/vehicle group, which had significantly higher levels than the other three groups from day 2 through day 23. A1c levels were also significantly higher in the 0.05 U insulin/vehicle group compared to the other three groups on day 23. Importantly, the 0.2 U insulin/vehicle group had, out of 100 blood glucose measurements, 13 that were <70 mg/dL compared to one of 290 for the other three groups combined. Conclusion: Sotagliflozin significantly improved glycemic control, without increasing the rate of hypoglycemia measurements, in

  5. Inhibition of Notch signaling promotes browning of white adipose tissue and ameliorates obesity.

    Science.gov (United States)

    Bi, Pengpeng; Shan, Tizhong; Liu, Weiyi; Yue, Feng; Yang, Xin; Liang, Xin-Rong; Wang, Jinghua; Li, Jie; Carlesso, Nadia; Liu, Xiaoqi; Kuang, Shihuan

    2014-08-01

    Beige adipocytes in white adipose tissue (WAT) are similar to classical brown adipocytes in that they can burn lipids to produce heat. Thus, an increase in beige adipocyte content in WAT browning would raise energy expenditure and reduce adiposity. Here we report that adipose-specific inactivation of Notch1 or its signaling mediator Rbpj in mice results in browning of WAT and elevated expression of uncoupling protein 1 (Ucp1), a key regulator of thermogenesis. Consequently, as compared to wild-type mice, Notch mutants exhibit elevated energy expenditure, better glucose tolerance and improved insulin sensitivity and are more resistant to high fat diet-induced obesity. By contrast, adipose-specific activation of Notch1 leads to the opposite phenotypes. At the molecular level, constitutive activation of Notch signaling inhibits, whereas Notch inhibition induces, Ppargc1a and Prdm16 transcription in white adipocytes. Notably, pharmacological inhibition of Notch signaling in obese mice ameliorates obesity, reduces blood glucose and increases Ucp1 expression in white fat. Therefore, Notch signaling may be therapeutically targeted to treat obesity and type 2 diabetes.

  6. Novel nuances of human brown fat

    DEFF Research Database (Denmark)

    Scheele, Camilla; Larsen, Therese Juhlin; Nielsen, Søren

    2014-01-01

    There is a current debate in the literature on whether human fat derived from the supraclavicular region should be classified as brown, or as the white fat-derived less potent, brite/beige. This commentary addresses whether the existing classification defined in mice is sufficient to describe the......, the classification of adipocyte subtypes defined in mice may need reconsideration when applying to humans.......There is a current debate in the literature on whether human fat derived from the supraclavicular region should be classified as brown, or as the white fat-derived less potent, brite/beige. This commentary addresses whether the existing classification defined in mice is sufficient to describe...... the types of thermogenic adipocytes in humans. We recently published a contradictory mRNA expression signature of human supraclavicular fat defined by an upregulation of the brite marker TBX1 along with the classical brown markers ZIC1 and LHX8, as well as genes indicating brown fat activity including UCP1...

  7. Improved Glucose Homeostasis in Obese Mice Treated With Resveratrol Is Associated With Alterations in the Gut Microbiome.

    Science.gov (United States)

    Sung, Miranda M; Kim, Ty T; Denou, Emmanuel; Soltys, Carrie-Lynn M; Hamza, Shereen M; Byrne, Nikole J; Masson, Grant; Park, Heekuk; Wishart, David S; Madsen, Karen L; Schertzer, Jonathan D; Dyck, Jason R B

    2017-02-01

    Oral administration of resveratrol is able to improve glucose homeostasis in obese individuals. Herein we show that resveratrol ingestion produces taxonomic and predicted functional changes in the gut microbiome of obese mice. In particular, changes in the gut microbiome were characterized by a decreased relative abundance of Turicibacteraceae, Moryella, Lachnospiraceae, and Akkermansia and an increased relative abundance of Bacteroides and Parabacteroides Moreover, fecal transplantation from healthy resveratrol-fed donor mice is sufficient to improve glucose homeostasis in obese mice, suggesting that the resveratrol-mediated changes in the gut microbiome may play an important role in the mechanism of action of resveratrol. © 2017 by the American Diabetes Association.

  8. Human Prolactin Improves Engraftment and Reconstitution of Human Peripheral Blood Lymphocytes in SCID Mice

    Institute of Scientific and Technical Information of China (English)

    Rui Sun; Jian Zhang; Cai Zhang; Jianhua Zhang; Shujuan Liang; Anyuan Sun; Junfu Wang; Zhigang Tian

    2004-01-01

    Recombinant human prolactin (rhPRL) was administered to huPBL-SCID mice to determine its effects on human immunologic reconsfitution and function. The huPBL-SCID mice were given 10 μg I.p. Injection of rhPRL every other day for a total of 10 injections after huPBL were transferred. The results demonstrated that rhPRL improved the engraftment of lymphocytes into thymus, lymph nodes and spleens, showing that the cellularities of these organs increased although the cellularities tended to vary depending on the donor. The amounts of human T cells (HLA-ABC+/CD3+) increased greatly in thymus (14.2 folds), spleen (4.16 folds) and lymph nodes (40.18 folds) after rhPRL injections. The amounts of human B cells (HLA-ABC+/CD19+) also increased greatly in lymph nodes (42.5 folds) and spleen (5.78 folds). The lymph node cells from the rhPRL-treated huPBL-SCID mice were more sensitive to PHA stimulation ([3H] thymidine incorporation). The supernatant of PHA-stimulated PBL from rhPRL-treated huPBL/SCID chimerism contained more cytokines (IFN-γ and IL-2). The natural cytotoxicity against human sensitive target cells, K562 cells, from spleen and bone marrow of hPBL/SCID chimerism was significantly enhanced by rhPRL administration. The lymph node cells were stimulated with LPS in vitro for 3 days and the lymphocytes from the rhPRL-treated huPBL-SCID mice were more sensitive to mitogen stimulation. Both serum total IgG level and IgM level of rhPRL-treated huPBL/SCID chimerism were increased, and even without DT-rechallenge the base line of DT-specific IgG was elevated after rhPRL treatment in huPBL-SCID mice. Thus, rhPRL stimulation promotes reconstitution of human immune system in huPBL-SCID mice.

  9. Human Prolactin Improves Engraftment and Reconstitution of Human Peripheral Blood Lymphocytes in SCID Mice

    Institute of Scientific and Technical Information of China (English)

    RuiSun; JianZhang; CaiZhang; JianhuaZhang; ShujuanLiang; AnyuanSun; JunfuWang; ZhigangTian

    2004-01-01

    Recombinant human prolactin (rhPRL) was administered to huPBL-SCID mice to determine its effects on human immunologic reconstitution and function. The huPBL-SCID mice were given 10 μg i.p. injection of rhPRL every other day for a total of 10 injections after huPBL were transfered. The results demonstrated that rhPRL improved the engraftment of lymphocytes into thymus, lymph nodes and spleens, showing that the cellularities of these organs increased although the cellularities tended to vary depending on the donor. The amounts of human T cells (HLA-ABC+/CD3+) increased greatly in thymus (14.2 folds), spleen (4.16 folds) and lymph nodes (40.18 folds) after rhPRL injections. The amounts of human B cells (HLA-ABC+/CD19+) also increased greatly in lymph nodes (42.5 folds) and spleen (5.78 folds). The lymph node cells from the rhPRL-treated huPBL-SCID mice were more sensitive to PHA stimulation (〔3H〕thymidine incorporation). The supernatant of PHA-stimulated PBL from rhPRL-treated huPBL/SCID chimerism contained more cytokines (IFN-γ and IL-2). The natural cytotoxicity against human sensitive target cells, K562 cells, from spleen and bone marrow of hPBL/SCID chimerism was significantly enhanced by rhPRL administration. The lymph node cells were stimulated with LPS in vitro for 3 days and the lymphocytes from the rhPRL-treated huPBL-SCID mice were more sensitive to mitogen stimulation. Both serum total IgG level and IgM level of rhPRL-treated huPBL/SCID chimerism were increased, and even without DT-rechallenge the base line of DT-specific IgG was elevated after rhPRL treatment in huPBL-SCID mice. Thus, rhPRL stimulation promotes reconstitution of human immune system in huPBL-SCID mice. Cellular & Molecular Immunology. 2004;1(2):129-136.

  10. Improvement of skin wound healing in diabetic mice by kinin B2 receptor blockade.

    Science.gov (United States)

    Desposito, Dorinne; Chollet, Catherine; Taveau, Christopher; Descamps, Vincent; Alhenc-Gelas, François; Roussel, Ronan; Bouby, Nadine; Waeckel, Ludovic

    2016-01-01

    Impaired skin wound healing is a major medical problem in diabetic subjects. Kinins exert a number of vascular and other actions limiting organ damage in ischaemia or diabetes, but their role in skin injury is unknown. We investigated, through pharmacological manipulation of bradykinin B1 and B2 receptors (B1R and B2R respectively), the role of kinins in wound healing in non-diabetic and diabetic mice. Using two mouse models of diabetes (streptozotocin-induced and db/db mice) and non-diabetic mice, we assessed the effect of kinin receptor activation or inhibition by subtype-selective pharmacological agonists (B1R and B2R) and antagonist (B2R) on healing of experimental skin wounds. We also studied effects of agonists and antagonist on keratinocytes and fibroblasts in vitro. Levels of Bdkrb1 (encoding B1R) and Bdkrb2 (encoding B2R) mRNAs increased 1-2-fold in healthy and wounded diabetic skin compared with in non-diabetic skin. Diabetes delayed wound healing. The B1R agonist had no effect on wound healing. In contrast, the B2R agonist impaired wound repair in both non-diabetic and diabetic mice, inducing skin disorganization and epidermis thickening. In vitro, B2R activation unbalanced fibroblast/keratinocyte proliferation and increased keratinocyte migration. These effects were abolished by co-administration of B2R antagonist. Interestingly, in the two mouse models of diabetes, the B2R antagonist administered alone normalized wound healing. This effect was associated with the induction of Ccl2 (encoding monocyte chemoattractant protein 1)/Tnf (encoding tumour necrosis factor α) mRNAs. Thus stimulation of kinin B2 receptor impairs skin wound healing in mice. B2R activation occurs in the diabetic skin and delays wound healing. B2R blockade improves skin wound healing in diabetic mice and is a potential therapeutic approach to diabetic ulcers. © 2016 Authors; published by Portland Press Limited.

  11. Evaluation of Rett Syndrome Symptom Improvement by Metabolic Modulators in Mecp2-Mutant Mice.

    Science.gov (United States)

    Buchovecky, Christie M; Hill, Misty G; Borkey, Jennifer M; Kyle, Stephanie M; Justice, Monica J

    2013-12-19

    Mouse models recapitulate many symptoms of Rett Syndrome, an X-linked disorder caused by mutations in methyl-CpG-binding protein 2 (MECP2). The study of Mecp2-null male mice has provided insight into pathogenesis of the disorder-most recently, dysregulation of cholesterol and lipid metabolism. Perisymptomatic treatment with statin drugs successfully mitigates the effects of this metabolic syndrome, increases longevity, and improves motor function. Described here is a metabolic drug screening protocol and timeline for symptom evaluation in Mecp2-mutant mice. Specifically, mice are treated twice weekly with a compound of interest alongside subjective health assessments, bi-weekly body composition measurements, and blood chemistries. Throughout treatment, behavioral phenotyping tests are carried out at specific time points. This protocol is highly adaptable to other neurological diseases; however, the time for completion depends on the specific mutant model under study. The protocol highlights the use of techniques described in several different Current Protocols in Mouse Biology articles to carry out testing in a preclinical model. Curr. Protoc. Mouse Biol. 3:187-204 © 2013 by John Wiley & Sons, Inc.

  12. Hydroxytyrosol mildly improve cognitive function independent of APP processing in APP/PS1 mice.

    Science.gov (United States)

    Peng, Yunhua; Hou, Chen; Yang, Ziqi; Li, Caixia; Jia, Liyan; Liu, Jing; Tang, Ying; Shi, Le; Li, Yongqin; Long, Jiangang; Liu, Jiankang

    2016-11-01

    Olive products, the hallmark of Mediterranean diet, are associated with reduced risk of mild cognitive impairment and Alzheimer's disease (AD). We and other groups have shown that hydroxytyrosol (HT), a bioactive compound of olive products, ameliorates oxidative stress, mitochondrial dysfunction, and neural toxicity. However, whether HT in Mediterranean diet acts as a functional ingredient in delaying AD pathogenesis remains unclear. In the present study, APP/PS1 mice, an animal model of AD, were administrated for 6 months with 5 mg/kg/day of HT, a comparable level of HT in daily Mediterranean diet. HT improved electroencephalography activity and marginally benefited cognitive behavior of transgenic mice. In addition, HT treatment ameliorated mitochondrial dysfunction, reduced mitochondrial carbonyl protein, enhanced superoxide dismutase 2 expression, reversed the phase 2 enzyme system and reduced the levels of brain inflammatory markers, but had no effect on brain β-amyloid (Aβ) accumulation in APP/PS1 mice. These results suggest that HT may represent as a functional ingredient in Mediterranean diet in ameliorating AD-involved neuronal impairment via modulating mitochondrial oxidative stress, neuronal inflammation, and apoptosis without affecting APP processing. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Exendin-4 improves cardiac function in mice overexpressing monocyte chemoattractant protein-1 in cardiomyocytes.

    Science.gov (United States)

    Younce, Craig W; Niu, Jianli; Ayala, Jennifer; Burmeister, Melissa A; Smith, Layton H; Kolattukudy, Pappachan; Ayala, Julio E

    2014-11-01

    The incretin hormone glucagon-like peptide-1 (Glp1) is cardioprotective in models of ischemia-reperfusion injury, myocardial infarction and gluco/lipotoxicity. Inflammation is a factor in these models, yet it is unknown whether Glp1 receptor (Glp1r) agonists are protective against cardiac inflammation. We tested the hypothesis that the Glp1r agonist Exendin-4 (Ex4) is cardioprotective in mice with cardiac-specific monocyte chemoattractant protein-1 overexpression. These MHC-MCP1 mice exhibit increased cardiac monocyte infiltration, endoplasmic reticulum (ER) stress, apoptosis, fibrosis and left ventricular dysfunction. Ex4 treatment for 8 weeks improved cardiac function and reduced monocyte infiltration, fibrosis and apoptosis in MHC-MCP1 mice. Ex4 enhanced expression of the ER chaperone glucose-regulated protein-78 (GRP78), decreased expression of the pro-apoptotic ER stress marker CCAAT/-enhancer-binding protein homologous protein (CHOP) and increased expression of the ER calcium regulator Sarco/Endoplasmic Reticulum Calcium ATPase-2a (SERCA2a). These findings suggest that the Glp1r is a viable target for treating cardiomyopathies associated with stimulation of pro-inflammatory factors.

  14. Cannabidiol improves lung function and inflammation in mice submitted to LPS-induced acute lung injury.

    Science.gov (United States)

    Ribeiro, A; Almeida, V I; Costola-de-Souza, C; Ferraz-de-Paula, V; Pinheiro, M L; Vitoretti, L B; Gimenes-Junior, J A; Akamine, A T; Crippa, J A; Tavares-de-Lima, W; Palermo-Neto, J

    2015-02-01

    We have previously shown that the prophylactic treatment with cannabidiol (CBD) reduces inflammation in a model of acute lung injury (ALI). In this work we analyzed the effects of the therapeutic treatment with CBD in mice subjected to the model of lipopolysaccharide (LPS)-induced ALI on pulmonary mechanics and inflammation. CBD (20 and 80 mg/kg) was administered (i.p.) to mice 6 h after LPS-induced lung inflammation. One day (24 h) after the induction of inflammation the assessment of pulmonary mechanics and inflammation were analyzed. The results show that CBD decreased total lung resistance and elastance, leukocyte migration into the lungs, myeloperoxidase activity in the lung tissue, protein concentration and production of pro-inflammatory cytokines (TNF and IL-6) and chemokines (MCP-1 and MIP-2) in the bronchoalveolar lavage supernatant. Thus, we conclude that CBD administered therapeutically, i.e. during an ongoing inflammatory process, has a potent anti-inflammatory effect and also improves the lung function in mice submitted to LPS-induced ALI. Therefore the present and previous data suggest that in the future cannabidiol might become a useful therapeutic tool for the attenuation and treatment of inflammatory lung diseases.

  15. PEGylated dendritic nanoarchitechture improves mean survival time of BDF1mice bearing myelogenous k -562 leukemia

    Institute of Scientific and Technical Information of China (English)

    Ramadoss Karthikeyan; Pureti Madhu Kumar; Palanirajan Vijayaraj Kumar

    2013-01-01

    Objective:To developing and exploring the use ofPEGylated poly(propylene imine) dendritic architecture for the delivery of an anti leukemic activity ofPrednisolone.Methods:For this study,PEGylated poly(propylene imine) dendritic architecture was synthesized and loaded with Prednisolone and targeted to the ascetic form of myelogenous leukemia k-562 cellines in hybrid miceBDF1, was used as tumor model.Theantileukemic activity was assessed by use of the criterionT/C%, whereT was the mean survival time(MST, days) of the drug treated mice, bearing k-562 leukemia andC- the mean survival time(MST, days) of untreated control animals, bearing the same leukemia cellines.Results:An antileukemic activity of the studiedPrednisolone loaded PEGylatedPolypropyleneimine(PPI) dendrimer was found to have increasing the mean survival time of the k-562 myelogenous leukemia cellines bearingBDF1 mice.The criterion“increase of life span”(ILS%) reached maximally270.1% for the drug loaded dendrimer.Conclusion:The studied dendrimer withPrednisolone showed lower toxicity with improved antileukemic activity in comparison with freePrednisolone.The further experiments in this field are in progress, aiming to design better dendritic formulations, with potential clinical use.

  16. Tea Dietary Fiber Improves Serum and Hepatic Lipid Profiles in Mice Fed a High Cholesterol Diet.

    Science.gov (United States)

    Guo, Wenxin; Shu, Yang; Yang, Xiaoping

    2016-06-01

    Tea dietary fiber (TDF) was prepared from tea residues and modified to get cellulose-modified TDF (CTDF) by cellulase or micronized TDF (MTDF) by ultrafine grinding. The in vitro lipid-binding capacities of the three fibers and their effects on serum and hepatic lipid profiles in mice fed a high cholesterol diet were evaluated. The results showed that the three fibers had excellent lipid-binding capacities, and the cholesterol- and sodium cholate-binding capacities of CTDF and MTDF were significantly higher than those of TDF. Animal studies showed that, compared to model control, the three fibers significantly decreased mice average daily gain, gain: feed, and liver index, reduced total cholesterol (TC), triglyceride, and low density lipoprotein-cholesterol of serum and liver, increased serum and hepatic high density lipoprotein-cholesterol to TC ratio, and promoted the excretion of fecal lipids, and they also significantly increased the activities of superoxide dismutase and glutathione peroxidase of serum and liver, and decreased lipid peroxidation; moreover, the effects of CTDF and MTDF were better than that of TDF. It was concluded that the three fibers could improve serum and hepatic lipid profiles in mice fed a high cholesterol diet and the mechanism of action might be due to the promotion of fecal excretion of lipids through their lipid-binding ability and the inhibition of lipid peroxidation. These findings suggest that tea dietary fiber has the potential to be used as a functional ingredient to control cardiovascular disease.

  17. Phosphomimetic modulation of eNOS improves myocardial reperfusion and mimics cardiac postconditioning in mice.

    Directory of Open Access Journals (Sweden)

    Terrence Pong

    Full Text Available OBJECTIVE: Myocardial infarction resulting from ischemia-reperfusion injury can be reduced by cardiac postconditioning, in which blood flow is restored intermittently prior to full reperfusion. Although key molecular mechanisms and prosurvival pathways involved in postconditioning have been identified, a direct role for eNOS-derived NO in improving regional myocardial perfusion has not been shown. The objective of this study is to measure, with high temporal and spatial resolution, regional myocardial perfusion during ischemia-reperfusion and postconditioning, in order to determine the contribution of regional blood flow effects of NO to infarct size and protection. METHODS AND RESULTS: We used myocardial contrast echocardiography to measure regional myocardial blood flow in mice over time. Reperfusion after myocardial ischemia-reperfusion injury is improved by postconditioning, as well as by phosphomimetic eNOS modulation. Knock-in mice expressing a phosphomimetic S1176D form of eNOS showed improved myocardial reperfusion and significantly reduced infarct size. eNOS knock-out mice failed to show cardioprotection from postconditioning. The size of the no-reflow zone following ischemia-reperfusion is substantially reduced by postconditioning and by the phosphomimetic eNOS mutation. CONCLUSIONS AND SIGNIFICANCE: Using myocardial contrast echocardiography, we show that temporal dynamics of regional myocardial perfusion restoration contribute to reduced infarct size after postconditioning. eNOS has direct effects on myocardial blood flow following ischemia-reperfusion, with reduction in the size of the no-reflow zone. These results have important implications for ongoing clinical trials on cardioprotection, because the degree of protective benefit may be significantly influenced by the regional hemodynamic effects of eNOS-derived NO.

  18. Ketogenic Diet Reduces Midlife Mortality and Improves Memory in Aging Mice.

    Science.gov (United States)

    Newman, John C; Covarrubias, Anthony J; Zhao, Minghao; Yu, Xinxing; Gut, Philip; Ng, Che-Ping; Huang, Yu; Haldar, Saptarsi; Verdin, Eric

    2017-09-05

    Ketogenic diets recapitulate certain metabolic aspects of dietary restriction such as reliance on fatty acid metabolism and production of ketone bodies. We investigated whether an isoprotein ketogenic diet (KD) might, like dietary restriction, affect longevity and healthspan in C57BL/6 male mice. We find that Cyclic KD, KD alternated weekly with the Control diet to prevent obesity, reduces midlife mortality but does not affect maximum lifespan. A non-ketogenic high-fat diet (HF) fed similarly may have an intermediate effect on mortality. Cyclic KD improves memory performance in old age, while modestly improving composite healthspan measures. Gene expression analysis identifies downregulation of insulin, protein synthesis, and fatty acid synthesis pathways as mechanisms common to KD and HF. However, upregulation of PPARα target genes is unique to KD, consistent across tissues, and preserved in old age. In all, we show that a non-obesogenic ketogenic diet improves survival, memory, and healthspan in aging mice. Published by Elsevier Inc.

  19. Tetanus toxoid and CCL3 improve dendritic cell vaccines in mice and glioblastoma patients.

    Science.gov (United States)

    Mitchell, Duane A; Batich, Kristen A; Gunn, Michael D; Huang, Min-Nung; Sanchez-Perez, Luis; Nair, Smita K; Congdon, Kendra L; Reap, Elizabeth A; Archer, Gary E; Desjardins, Annick; Friedman, Allan H; Friedman, Henry S; Herndon, James E; Coan, April; McLendon, Roger E; Reardon, David A; Vredenburgh, James J; Bigner, Darell D; Sampson, John H

    2015-03-19

    After stimulation, dendritic cells (DCs) mature and migrate to draining lymph nodes to induce immune responses. As such, autologous DCs generated ex vivo have been pulsed with tumour antigens and injected back into patients as immunotherapy. While DC vaccines have shown limited promise in the treatment of patients with advanced cancers including glioblastoma, the factors dictating DC vaccine efficacy remain poorly understood. Here we show that pre-conditioning the vaccine site with a potent recall antigen such as tetanus/diphtheria (Td) toxoid can significantly improve the lymph node homing and efficacy of tumour-antigen-specific DCs. To assess the effect of vaccine site pre-conditioning in humans, we randomized patients with glioblastoma to pre-conditioning with either mature DCs or Td unilaterally before bilateral vaccination with DCs pulsed with Cytomegalovirus phosphoprotein 65 (pp65) RNA. We and other laboratories have shown that pp65 is expressed in more than 90% of glioblastoma specimens but not in surrounding normal brain, providing an unparalleled opportunity to subvert this viral protein as a tumour-specific target. Patients given Td had enhanced DC migration bilaterally and significantly improved survival. In mice, Td pre-conditioning also enhanced bilateral DC migration and suppressed tumour growth in a manner dependent on the chemokine CCL3. Our clinical studies and corroborating investigations in mice suggest that pre-conditioning with a potent recall antigen may represent a viable strategy to improve anti-tumour immunotherapy.

  20. Combining MRI with PET for partial volume correction improves image-derived input functions in mice

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Eleanor; Buonincontri, Guido [Wolfson Brain Imaging Centre, University of Cambridge, Cambridge (United Kingdom); Izquierdo, David [Athinoula A Martinos Centre, Harvard University, Cambridge, MA (United States); Methner, Carmen [Department of Medicine, University of Cambridge, Cambridge (United Kingdom); Hawkes, Rob C [Wolfson Brain Imaging Centre, University of Cambridge, Cambridge (United Kingdom); Ansorge, Richard E [Department of Physics, University of Cambridge, Cambridge (United Kingdom); Kreig, Thomas [Department of Medicine, University of Cambridge, Cambridge (United Kingdom); Carpenter, T Adrian [Wolfson Brain Imaging Centre, University of Cambridge, Cambridge (United Kingdom); Sawiak, Stephen J [Wolfson Brain Imaging Centre, University of Cambridge, Cambridge (United Kingdom); Behavioural and Clinical Neurosciences Institute, University of Cambridge, Cambridge (United Kingdom)

    2014-07-29

    Kinetic modelling in PET requires the arterial input function (AIF), defined as the time-activity curve (TAC) in plasma. This measure is challenging to obtain in mice due to low blood volumes, resulting in a reliance on image-based methods for AIF derivation. We present a comparison of PET- and MR-based region-of-interest (ROI) analysis to obtain image-derived AIFs from the left ventricle (LV) of a mouse model. ROI-based partial volume correction (PVC) was performed to improve quantification.

  1. MicroRNA-133 Controls Brown Adipose Determination in Skeletal Muscle Satellite Cells by Targeting Prdm16

    DEFF Research Database (Denmark)

    Yin, Hang; Pasut, Alessandra; Soleimani, Vahab D

    2013-01-01

    (satellite cells) have long been considered uniformly determined toward the myogenic lineage. Here, we report that adult satellite cells give rise to brown adipocytes and that microRNA-133 regulates the choice between myogenic and brown adipose determination by targeting the 3'UTR of Prdm16. Antagonism...... are downregulated in mice exposed to cold, resulting in de novo generation of satellite cell-derived brown adipocytes. Therefore, microRNA-133 represents an important therapeutic target for the treatment of obesity....... of microRNA-133 during muscle regeneration increases uncoupled respiration, glucose uptake, and thermogenesis in local treated muscle and augments whole-body energy expenditure, improves glucose tolerance, and impedes the development of diet-induced obesity. Finally, we demonstrate that miR-133 levels...

  2. Study on Extrusion Technological Parametersof Brown Rice

    Institute of Scientific and Technical Information of China (English)

    ZhuYongyi; ZhouXianqing; LingLizhong

    2001-01-01

    Abstract: Extrusion is an efficient measure to improve the texture and physic-chemical properties of brown rice. The polynomial degree two model of extrusiontechnological parameters and gelatinized degree, water absorption index, water solubleindex and moisture content of extruded matter was obtained by methods of single factorand response surface methodology, R2=0.9649, 0.8745, 0.9079, 0.8677. The optimaltechnoiogica! parameters of brown rice extrusion were figured out as follows:moisturecontent of brown rice, 11.42%, speed of screw, 30rpm, feeding speed, and 20rpm.

  3. 提高非膨化糙米粉的冲调稳定性研究%Improving the stability of unexpanded brown rice flour

    Institute of Scientific and Technical Information of China (English)

    马涛; 卢镜竹

    2012-01-01

    采用高压蒸、煮,焙炒3种方式熟制糙米粉,对其冲调稳定性进行研究。通过正交试验得出:高压蒸、煮糙米粉添加单甘脂0.50%,黄原胶0.50%,CMC-Na 0.40%,卡拉胶0.30%;焙炒糙米粉添加单甘脂0.55%,黄原胶0.50%,CMC-Na 0.20%、卡拉胶0.20%,可明显提高其冲调稳定性,最终得到食用品质较好的非膨化糙米粉。%Brown rice powder with high pressure steamed and high pressure boiled and roasted, then,study their stability. Through orthogonal test that the high pressure steamed, boilded brown rice powder with glyceryli monostearici 0.50%, xanthate gum 0.50%, CMC-Na 0.40%, carrageenan 0.30%; Roasted brown rice powder with glyceryli monostearici 0.55%, xanthan gum 0.50%, CMCNa 0.20%, carrageenan 0.20%, can obviously increase the stability, and ultimately get eat better quality of unexpanded brown rice flour.

  4. Proteasome inhibition slightly improves cardiac function in mice with hypertrophic cardiomyopathy.

    Science.gov (United States)

    Schlossarek, Saskia; Singh, Sonia R; Geertz, Birgit; Schulz, Herbert; Reischmann, Silke; Hübner, Norbert; Carrier, Lucie

    2014-01-01

    A growing line of evidence indicates a dysfunctional ubiquitin-proteasome system (UPS) in cardiac diseases. Anti-hypertrophic effects and improved cardiac function have been reported after treatment with proteasome inhibitors in experimental models of cardiac hypertrophy. Here we tested whether proteasome inhibition could also reverse the disease phenotype in a genetically-modified mouse model of hypertrophic cardiomyopathy (HCM), which carries a mutation in Mybpc3, encoding the myofilament protein cardiac myosin-binding protein C. At 7 weeks of age, homozygous mutant mice (KI) have 39% higher left ventricular mass-to-body-weight ratio and 29% lower fractional area shortening (FAS) than wild-type (WT) mice. Both groups were treated with epoxomicin (0.5 mg/kg/day) or vehicle for 1 week via osmotic minipumps. Epoxomicin inhibited the chymotrypsin-like activity by ~50% in both groups. All parameters of cardiac hypertrophy (including the fetal gene program) were not affected by epoxomicin treatment in both groups. In contrast, FAS was 12% and 35% higher in epoxomicin-treated than vehicle-treated WT and KI mice, respectively. To identify which genes or pathways could be involved in this positive effect, we performed a transcriptome analysis in KI and WT neonatal cardiac myocytes, treated or not with the proteasome inhibitor MG132 (1 μM, 24 h). This revealed 103 genes (four-fold difference; 5% FDR) which are commonly regulated in both KI and WT cardiac myocytes. Thus, even in genetically-modified mice with manifest HCM, proteasome inhibition showed beneficial effects, at least with regard to cardiac function. Targeting the UPS in cardiac diseases remains therefore a therapeutic option.

  5. An Amino Acids Mixture Improves the Hepatotoxicity Induced by Acetaminophen in Mice

    Directory of Open Access Journals (Sweden)

    Francesco Di Pierro

    2013-01-01

    Full Text Available Acetaminophen (APAP is a widely used analgesic and antipyretic drug, but at high dose it leads to undesirable side effects, such as hepatotoxicity and nephrotoxicity. The aim of this study was to evaluate the protective role of DDM-GSH, a mixture of L-cysteine, L-methionine, and L-serine in a weight ratio of 2 : 1 : 1, in comparison to N-acetylcysteine (NAC, against acetaminophen- (APAP- induced hepatotoxicity in mice. Toxicity was induced in mice by the intraperitoneal (ip administration of low dose (2 mmol/kg or high dose (8 mmol/kg of APAP. DDM-GSH (0.4 to 1.6 mmol/kg was given ip to mice 1 h before the APAP administration. The same was done with NAC (0.9 to 3.6 mmol/kg, the standard antidote of APAP toxicity. Mice were sacrificed 8 h after the APAP injection to determine liver weight, serum alanine aminotransferase (ALT, and total glutathione (GSH depletion and malondialdehyde (MDA accumulation in liver tissues. DDM-GSH improved mouse survival rates better than NAC against a high dose of APAP. Moreover, DDM-GSH significantly reduced in a dose-dependent manner not only APAP-induced increases of ALT but also APAP-induced hepatic GSH depletion and MDA accumulation. Our results suggest that DDM-GSH may be more potent than NAC in protecting the liver from APAP-induced liver injury.

  6. Improved Retroviral Vector Design Results in Sustained Expression after Adult Gene Therapy in Mucopolysaccharidosis I Mice

    Science.gov (United States)

    Herati, Ramin Sedaghat; Ma, Xiucui; Tittiger, Mindy; Ohlemiller, Kevin K; Kovacs, Attila; Ponder, Katherine P.

    2010-01-01

    Background Mucopolysaccharidosis I (MPS I) is a lysosomal storage disease due to α-L-iduronidase (IDUA) deficiency that results in the accumulation of glycosaminoglycans (GAG). Gene therapy can reduce most clinical manifestations, but mice that receive transfer as adults lose expression unless they receive immunosuppression. Increasing liver specificity of transgene expression has reduced immune responses to other genes. Methods A gamma retroviral vector was generated with a liver-specific human α1-antitrypsin promoter and the canine IDUA cDNA inverted relative to the retroviral long-terminal repeat. Adult MPS I mice received the vector intravenously at 6 weeks of age and were assessed for expression via serial serum IDUA assays. Functional testing and organ analysis were performed at 8 months. Results This vector resulted in high specificity of expression in liver, and serum IDUA activity was stable in 90% of animals. Although the average serum IDUA activity was relatively low at 12.6 ± 8.1 units/mL in mice with stable expression, a relatively high percentage of enzyme contained the mannose 6-phosphorylation necessary for uptake by other cells. At 6.5 months after transduction, most organs had high IDUA activity and normalized GAG levels. There was complete correction of hearing and vision abnormalities and significant improvements in bone, although the aorta was refractory to treatment. Conclusions Stable expression of IDUA in adult MPS I mice can be achieved without immunosuppression by modifying the vector to reduce expression in the spleen. This approach may be effective in patients with MPS I or other lysosomal storage diseases. PMID:18613275

  7. Exercise Improves Host Response to Influenza Viral Infection in Obese and Non-Obese Mice through Different Mechanisms

    Science.gov (United States)

    Warren, Kristi J.; Olson, Molly M.; Thompson, Nicholas J.; Cahill, Mackenzie L.; Wyatt, Todd A.; Yoon, Kyoungjin J.; Loiacono, Christina M.; Kohut, Marian L.

    2015-01-01

    Obesity has been associated with greater severity of influenza virus infection and impaired host defense. Exercise may confer health benefits even when weight loss is not achieved, but it has not been determined if regular exercise improves immune defense against influenza A virus (IAV) in the obese condition. In this study, diet-induced obese mice and lean control mice exercised for eight weeks followed by influenza viral infection. Exercise reduced disease severity in both obese and non-obese mice, but the mechanisms differed. Exercise reversed the obesity-associated delay in bronchoalveolar-lavage (BAL) cell infiltration, restored BAL cytokine and chemokine production, and increased ciliary beat frequency and IFNα-related gene expression. In non-obese mice, exercise treatment reduced lung viral load, increased Type-I-IFN-related gene expression early during infection, but reduced BAL inflammatory cytokines and chemokines. In both obese and non-obese mice, exercise increased serum anti-influenza virus specific IgG2c antibody, increased CD8+ T cell percentage in BAL, and reduced TNFα by influenza viral NP-peptide-responding CD8+ T cells. Overall, the results suggest that exercise “restores” the immune response of obese mice to a phenotype similar to non-obese mice by improving the delay in immune activation. In contrast, in non-obese mice exercise treatment results in an early reduction in lung viral load and limited inflammatory response. PMID:26110868

  8. Melatonin can improve insulin resistance and aging-induced pancreas alterations in senescence-accelerated prone male mice (SAMP8).

    Science.gov (United States)

    Cuesta, Sara; Kireev, Roman; García, Cruz; Rancan, Lisa; Vara, Elena; Tresguerres, Jesús A F

    2013-06-01

    The aim of the present study was to investigate the effect of aging on several parameters related to glucose homeostasis and insulin resistance in pancreas and how melatonin administration could affect these parameters. Pancreas samples were obtained from two types of male mice models: senescence-accelerated prone (SAMP8) and senescence-accelerated-resistant mice (SAMR1). Insulin levels in plasma were increased with aging in both SAMP8 and SAMR1 mice, whereas insulin content in pancreas was decreased with aging in SAMP8 and increased in SAMR1 mice. Expressions of glucagon and GLUT2 messenger RNAs (mRNAs) were increased with aging in SAMP8 mice, and no differences were observed in somatostatin and insulin mRNA expressions. Furthermore, aging decreased also the expressions of Pdx-1, FoxO 1, FoxO 3A and Sirt1 in pancreatic SAMP8 samples. Pdx-1 was decreased in SAMR1 mice, but no differences were observed in the rest of parameters on these mice strains. Treatment with melatonin was able to decrease plasma insulin levels and to increase its pancreatic content in SAMP8 mice. In SAMR1, insulin pancreatic content and plasma levels were decreased. HOMA-IR was decreased with melatonin treatment in both strains of animals. On the other hand, in SAMP8 mice, treatment decreased the expression of glucagon, GLUT2, somatostatin and insulin mRNA. Furthermore, it was also able to increase the expression of Sirt1, Pdx-1 and FoxO 3A. According to these results, aging is associated with significant alterations in the relative expression of pancreatic genes associated to glucose metabolism. This has been especially observed in SAMP8 mice. Melatonin administration was able to improve pancreatic function in old SAMP8 mice and to reduce HOMA-IR improving their insulin physiology and glucose metabolism.

  9. Modeling of pulverized coal combustion processes in a vortex furnace of improved design. Part 2: Combustion of brown coal from the Kansk-Achinsk Basin in a vortex furnace

    Science.gov (United States)

    Krasinsky, D. V.; Salomatov, V. V.; Anufriev, I. S.; Sharypov, O. V.; Shadrin, E. Yu.; Anikin, Yu. A.

    2015-03-01

    This paper continues with the description of study results for an improved-design steam boiler vortex furnace, for the full-scale configuration of which the numerical modeling of a three-dimensional turbulent two-phase reacting flow has been performed with allowance for all the principal heat and mass transfer processes in the torch combustion of pulverized Berezovsk brown coal from the Kansk-Achinsk Basin. The detailed distributions of velocity, temperature, concentration, and heat flux fields in different cross sections of the improved vortex furnace have been obtained. The principal thermoengineering and environmental characteristics of this furnace are given.

  10. A Small Insulinomimetic Molecule Also Improves Insulin Sensitivity in Diabetic Mice

    Science.gov (United States)

    Mukherjee, Sandip; Chattopadhyay, Mrittika; Bhattacharya, Sushmita; Dasgupta, Suman; Hussain, Sahid; Bharadwaj, Saitanya K.; Talukdar, Dhrubajyoti; Usmani, Abul; Pradhan, Bhola S; Majumdar, Subeer S; Chattopadhyay, Pronobesh; Mukhopadhyay, Satinath; Maity, Tushar K; Chaudhuri, Mihir K.; Bhattacharya, Samir

    2017-01-01

    Dramatic increase of diabetes over the globe is in tandem with the increase in insulin requirement. This is because destruction and dysfunction of pancreatic β-cells are of common occurrence in both Type1 diabetes and Type2 diabetes, and insulin injection becomes a compulsion. Because of several problems associated with insulin injection, orally active insulin mimetic compounds would be ideal substitute. Here we report a small molecule, a peroxyvanadate compound i.e. DmpzH[VO(O2)2(dmpz)], henceforth referred as dmp, which specifically binds to insulin receptor with considerable affinity (KD-1.17μM) thus activating insulin receptor tyrosine kinase and its downstream signaling molecules resulting increased uptake of [14C] 2 Deoxy-glucose. Oral administration of dmp to streptozotocin treated BALB/c mice lowers blood glucose level and markedly stimulates glucose and fatty acid uptake by skeletal muscle and adipose tissue respectively. In db/db mice, it greatly improves insulin sensitivity through excess expression of PPARγ and its target genes i.e. adiponectin, CD36 and aP2. Study on the underlying mechanism demonstrated that excess expression of Wnt3a decreased PPARγ whereas dmp suppression of Wnt3a gene increased PPARγ expression which subsequently augmented adiponectin. Increased production of adiponectin in db/db mice due to dmp effected lowering of circulatory TG and FFA levels, activates AMPK in skeletal muscle and this stimulates mitochondrial biogenesis and bioenergetics. Decrease of lipid load along with increased mitochondrial activity greatly improves energy homeostasis which has been found to be correlated with the increased insulin sensitivity. The results obtained with dmp, therefore, strongly indicate that dmp could be a potential candidate for insulin replacement therapy. PMID:28072841

  11. Imipramine treatment improves cognitive outcome associated with enhanced hippocampal neurogenesis after traumatic brain injury in mice.

    Science.gov (United States)

    Han, Xiaodi; Tong, Jing; Zhang, Jun; Farahvar, Arash; Wang, Ernest; Yang, Jiankai; Samadani, Uzma; Smith, Douglas H; Huang, Jason H

    2011-06-01

    Previous animal and human studies have demonstrated that chronic treatment with several different antidepressants can stimulate neurogenesis, neural remodeling, and synaptic plasticity in the normal hippocampus. Imipramine is a commonly used tricyclic antidepressant (TCA). We employed a controlled cortical impact (CCI) mouse model of traumatic brain injury (TBI) to assess the effect of imipramine on neurogenesis and cognitive and motor function recovery after TBI. Mice were given daily imipramine injections for either 2 or 4 weeks after injury. Bromodeoxyuridine (BrdU) was administered 3-7 days post-brain injury to label the cells that proliferated as a result of the injury. We assessed the effects of imipramine on post-traumatic motor function using a beam-walk test and an assessment of cognitive function: the novel object recognition test (NOR). Histological analyses were performed at 2 and 4 weeks after CCI. Brain-injured mice treated with imipramine showed significantly improved cognitive function compared to a saline-treated group (pimipramine-treated and saline-treated mice. Histological examination revealed increased preservation of proliferation of Ki-67- and BrdU-positive cells in the hippocampal dentate gyrus (DG) at 2 and 4 weeks after TBI. Immunofluorescence double-labeling with BrdU and neuron-specific markers at 4 weeks after injury showed that most progenitors became neurons in the DG and astrocytes in the hilus. Notably, treatment with imipramine increased preservation of the total number of newly-generated neurons. Our findings provide direct evidence that imipramine treatment contributes to cognitive improvement after TBI, perhaps by enhanced hippocampal neurogenesis.

  12. GIP-overexpressing mice demonstrate reduced diet-induced obesity and steatosis, and improved glucose homeostasis.

    Directory of Open Access Journals (Sweden)

    Su-Jin Kim

    Full Text Available Glucose-dependent insulinotropic polypeptide (GIP is a gastrointestinal hormone that potentiates glucose-stimulated insulin secretion during a meal. Since GIP has also been shown to exert β-cell prosurvival and adipocyte lipogenic effects in rodents, both GIP receptor agonists and antagonists have been considered as potential therapeutics in type 2 diabetes (T2DM. In the present study, we tested the hypothesis that chronically elevating GIP levels in a transgenic (Tg mouse model would increase adipose tissue expansion and exert beneficial effects on glucose homeostasis. In contrast, although GIP Tg mice demonstrated enhanced β-cell function, resulting in improved glucose tolerance and insulin sensitivity, they exhibited reduced diet-induced obesity. Adipose tissue macrophage infiltration and hepatic steatosis were both greatly reduced, and a number of genes involved in lipid metabolism/inflammatory signaling pathways were found to be down-regulated. Reduced adiposity in GIP Tg mice was associated with decreased energy intake, involving overexpression of hypothalamic GIP. Together, these studies suggest that, in the context of over-nutrition, transgenic GIP overexpression has the potential to improve hepatic and adipocyte function as well as glucose homeostasis.

  13. Using improved serial blood sampling method of mice to study pharmacokinetics and drug-drug interaction.

    Science.gov (United States)

    Watanabe, Ayahisa; Watari, Ryosuke; Ogawa, Keiko; Shimizu, Ryosuke; Tanaka, Yukari; Takai, Nozomi; Nezasa, Ken-ichi; Yamaguchi, Yoshitaka

    2015-03-01

    In pharmacokinetic evaluation of mice, using serial sampling methods rather than a terminal blood sampling method could reduce the number of animals needed and lead to more reliable data by excluding individual differences. In addition, using serial sampling methods can be valuable for evaluation of the drug-drug interaction (DDI) potential of drug candidates. In this study, we established an improved method for serially sampling the blood from one mouse by only one incision of the lateral tail vein, and investigated whether our method could be adapted to pharmacokinetic and DDI studies. After intravenous and oral administration of ibuprofen and fexofenadine (BCS class II and III), the plasma concentration and pharmacokinetic parameters were evaluated by our method and a terminal blood sampling method, with the result that both methods gave comparable results (ibuprofen: 63.8 ± 4.0% and 64.4%, fexofenadine: 6.5 ± 0.7% and 7.9%, respectively, in bioavailability). In addition, our method could be adapted to DDI study for cytochrome P450 and organic anion transporting polypeptide inhibition. These results demonstrate that our method can be useful for pharmacokinetic evaluation from the perspective of reliable data acquisition as well as easy handling and low stress to mice and improve the quality of pharmacokinetic and DDI studies. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  14. Father Brown, Selected sories

    NARCIS (Netherlands)

    Chesterton, G.K.

    2005-01-01

    Father Brown, a small, round Catholic priest with a remarkable understanding of the criminal mind, is one of literature's most unusual and endearing detectives, able to solve the strangest crimes in a most fascinating manner. This collection draws from all five Father Brown books, and within their r

  15. Bone marrow transplantation improves autoinflammation and inflammatory bone loss in SH3BP2 knock-in cherubism mice.

    Science.gov (United States)

    Yoshitaka, Teruhito; Kittaka, Mizuho; Ishida, Shu; Mizuno, Noriyoshi; Mukai, Tomoyuki; Ueki, Yasuyoshi

    2015-02-01

    Cherubism (OMIM#118400) is a genetic disorder in children characterized by excessive jawbone destruction with proliferation of fibro-osseous lesions containing a large number of osteoclasts. Mutations in the SH3-domain binding protein 2 (SH3BP2) are responsible for cherubism. Analysis of the knock-in (KI) mouse model of cherubism showed that homozygous cherubism mice (Sh3bp2(KI/KI)) spontaneously develop systemic autoinflammation and inflammatory bone loss and that cherubism is a TNF-α-dependent hematopoietic disorder. In this study, we investigated whether bone marrow transplantation (BMT) is effective for the treatment of inflammation and bone loss in Sh3bp2(KI/KI) mice. Bone marrow (BM) cells from wild-type (Sh3bp2(+/+)) mice were transplanted to 6-week-old Sh3bp2(KI/KI) mice with developing inflammation and to 10-week-old Sh3bp2(KI/KI) mice with established inflammation. Six-week-old Sh3bp2(KI/KI) mice transplanted with Sh3bp2(+/+) BM cells exhibited improved body weight loss, facial swelling, and survival rate. Inflammatory lesions in the liver and lung as well as bone loss in calvaria and mandibula were ameliorated at 10weeks after BMT compared to Sh3bp2(KI/KI) mice transplanted with Sh3bp2(KI/KI) BM cells. Elevation of serum TNF-α levels was not detected after BMT. BMT was effective for up to 20weeks in 6-week-old Sh3bp2(KI/KI) mice transplanted with Sh3bp2(+/+) BM cells. BMT also ameliorated the inflammation and bone loss in 10-week-old Sh3bp2(KI/KI) mice. Thus our study demonstrates that BMT improves the inflammation and bone loss in cherubism mice. BMT may be effective for the treatment of cherubism patients.

  16. Retroviral Vector-mediated Gene Therapy to Mucopolysaccharidosis I Mice Improves Sensorimotor Impairments and Other Behavior Deficits

    Science.gov (United States)

    Baldo, Guilherme; Wozniak, David F.; Ohlemiller, Kevin K.; Zhang, Yanming; Giugliani, Roberto; Ponder, Katherine P.

    2012-01-01

    Mucopolysaccharidosis I (MPS I) is a lysosomal storage disease due to α-L-iduronidase (IDUA) deficiency that results in the accumulation of glycosaminoglycans (GAG). Systemic gene therapy to MPS I mice can reduce lysosomal storage in the brain, but few data are available regarding the effect upon behavioral function. Here, we investigated the effect of gene therapy with a long-terminal repeat (LTR)-intact retroviral vector or a self-inactivating (SIN) vector on behavioral function in MPS I mice. The LTR vector was injected intravenously to 6 week-old MPS I mice, while the SIN vector was given to neonatal or 6 week-old mice. Adult-LTR, Neonatal-SIN, and Adult-SIN-treated mice achieved serum IDUA activity that was 235±20 (84-fold normal), 127±10, and 71±7 units/ml, respectively. All groups had reduction in histochemical evidence of lysosomal storage in the brain, with the Adult-LTR group showing the best response, while Adult-LTR mice had reductions in lysosomal storage in the cristae of the vestibular system. Behavioral evaluation was performed at 8 months. Untreated MPS I mice had a markedly reduced ability to hold onto an inverted screen or climb down a pole. LTR vector-treated mice had marked improvements on both of these tests, while Neonatal-SIN mice had improvements in the pole test. We conclude that both vectors can reduce brain disease in MPS I mice, with the LTR vector achieving higher serum IDUA levels and better correction. Vestibular abnormalities may contribute to mobility problems in patients with MPS I, and gene therapy may reduce symptoms. PMID:22983812

  17. Ampicillin-Improved Glucose Tolerance in Diet-Induced Obese C57BL/6NTac Mice Is Age Dependent

    DEFF Research Database (Denmark)

    Rune, I.; Hansen, C. H. F.; Ellekilde, M.

    2013-01-01

    at different ages or not at all. We found that both diet and Ampicillin significantly changed the gut microbiota composition in the animals. Furthermore, there was a significant improvement in glucose tolerance in Ampicillin-treated, five-week-old mice compared to nontreated mice in the control group. At study...... in high-fat diet mice, and a lower tolerogenic dendritic cell percentage was found both in relation to high-fat diet and late Ampicillin treatment. The results support our hypothesis that a "window" exists early in life in which an alteration of the gut microbiota affects glucose tolerance as well...

  18. Mangifera indica L. extract (Vimang improves the aversive memory in spinocerebellar ataxia type 2 transgenic mice.

    Directory of Open Access Journals (Sweden)

    Natasha Maurmann

    2014-06-01

    Full Text Available Context: The spinocerebellar ataxia type 2 (SCA-2 is a progressive neurodegenerative disorder without specific therapy identified, and it is related to the loss of function in the cerebellum, mitochondrial dysfunction, oxidative stress and neurotoxic processes. Scientific evidence indicates that Mangifera indica L. aqueous extract (MiE and its major constituent (mangiferin display antioxidant, anti-inflammatory and neuroprotective actions. Aims: To investigate the MiE and mangiferin effects on behavioral outcomes of neurological function in SCA-2 transgenic mice. Methods: The SCA-2 transgenic mice were daily and orally administered during 12 months with MiE (10, 50, and 100 mg/kg, mangiferin (10 mg/kg or vehicle. It was evaluated locomotion (open-field, aversive memory (inhibitory avoidance and declarative memory (object recognition. To explore possible cellular mechanisms underlying the in vivo effects was also evaluated their effects on nerve grow factor (NGF and tumor necrosis factor-α (TNF-α levels in the human glioblastoma cell line U138-MG supernatant. Results: MiE administration did not affect the object recognition memory, but mangiferin did. The natural extract improved selectively the aversive memory in SCA-2 mice, indicating that MiE can affect behavioral parameters regarding fear-related memory. MiE also induced a significant increase in supernatant levels of NGF and TNF-α in vitro in human U138-MG glioblastoma cells. Conclusions: The results suggest that MiE enhances the aversive memory through a mechanism that might involve an increase in neurotrophin and cytokine levels. These findings constitute the basis for the use of the natural extract in the prevention/treatment of memory deficits in SCA-2.

  19. Lupeol acetate ameliorates collagen-induced arthritis and osteoclastogenesis of mice through improvement of microenvironment.

    Science.gov (United States)

    Wang, Wei-Hsun; Chuang, Hui-Yen; Chen, Chien-Hui; Chen, Wun-Ke; Hwang, Jeng-Jong

    2016-04-01

    Lupeol has been shown with anti-inflammation and antitumor capability, however, the poor bioavailability limiting its applications in living subjects. Lupeol acetate (LA), a derivative of lupeol, shows similar biological activities as lupeol but with better bioavailability. Here RAW 264.7 cells and bone marrow-derived macrophages (BMDMs) stimulated by lipopolysaccharide (LPS) were treated with 0-80μM of LA, and assayed for TNF-α, IL-1β, COX-2, MCP-1 using Western blotting. Moreover, osteoclatogenesis was examined with reverse transcription PCR (RT-PCR) and tartrate-resistant acid phosphatase (TRAP) staining. For in vivo study, collagen-induced arthritis (CIA)-bearing DBA/1J mice were randomly separated into three groups: vehicle, LA-treated (50mg/kg) and curcumin-treated (100mg/kg). Therapeutic efficacies were assayed by the clinical score, expression levels of serum cytokines including TNF-α and IL-1β, (18)F-fluorodeoxyglucose ((18)F-FDG) microPET/CT and histopathology. The results showed that LA could inhibit the activation, migration, and formation of osteoclastogenesis of macrophages in a dose-dependent manner. In RA-bearing mice, the expressions of inflammation-related cytokines were suppressed, and clinical symptoms and bone erosion were ameliorated by LA. The accumulation of (18)F-FDG in the joints of RA-bearing mice was also significantly decreased by LA. The results indicate that LA significantly improves the symptoms of RA by down-regulating expressions of inflammatory cytokines and osteoclastogenesis.

  20. Olive oil improves the intestinal absorption and bioavailability of lutein in lutein-deficient mice.

    Science.gov (United States)

    Nidhi, Bhatiwada; Mamatha, Bangera Sheshappa; Baskaran, V

    2014-02-01

    To investigate the influence of olive (OO), groundnut (GNO), soybean (SBO), sunflower (SFO), rice bran (RBO), corn (CO), palm (PO) oil or mixed micelle (control) on absorption kinetics and bioavailability of lutein in lutein-deficient mice. Additional aim was to correlate the activity of intestinal triacylglycerol lipase with intestinal and plasma lutein levels. After induction of lutein deficiency, mice (n = 165) were divided into eight groups (OO, SFO, GNO, RBO, PO, CO, SBO and control; n = 20/group) and the remaining (n = 5) were used as baseline (0 h). Groups were further divided into four subgroups (n = 5/subgroup) and were intubated with lutein (200 μM) dispersed in different vegetable oils. Plasma and tissue (intestine, liver and eyes), lutein, triglycerides, intestinal triacylglycerol lipases and fatty acid profile of plasma and tissues were measured at different time intervals. The percentage area under the curve value for plasma lutein in OO and GNO was higher by 41.8 and 5.1 %, while it was lower in other groups (18.2-53.3 %), when compared to control. Similarly, the percentage area under the curve for eye lutein in OO and GNO groups was higher by 35.2 and 4.8 %, whereas in other groups it was lower (5.4-69 %) than in control. Results show that olive oil facilitates the lutein absorption more compared to other vegetable oils, which may be due to the difference in fatty acid composition and higher activity of intestinal triacylglycerol lipase. Dietary olive oil rich in oleic acid improves the bioavailability and accumulation of lutein in lutein-deficient mice by modifying the intestinal triacylglycerol lipase activity.

  1. Chronic activation of pattern recognition receptors suppresses brown adipogenesis of multipotent mesodermal stem cells and brown pre-adipocytes.

    Science.gov (United States)

    Bae, Jiyoung; Chen, Jiangang; Zhao, Ling

    2015-06-01

    Brown adipose tissue (BAT) holds promise to combat obesity through energy-spending, non-shivering thermogenesis. Understanding of regulation of BAT development can lead to novel strategies to increase BAT mass and function for obesity treatment and prevention. Here, we report the effects of chronic activation of PRR on brown adipogenesis of multipotent mesodermal stem C3H10T1/2 cells and immortalized brown pre-adipocytes from the classical interscapular BAT of mice. Activation of NOD1, TLR4, or TLR2 by their respective synthetic ligand suppressed brown marker gene expression and lipid accumulation during differentiation of brown-like adipocytes of C3H10T1/2. Activation of the PRR only during the commitment was sufficient to suppress the differentiation. PRR activation suppressed PGC-1α mRNA, but induced PRDM16 mRNA at the commitment. Consistently, PRR activation suppressed the differentiation of immortalized brown pre-adipocytes. Activation of PRR induced NF-κB activation in both cells, which correlated with their abilities to suppress PPARγ transactivation, a critical event for brown adipogenesis. Taken together, our results demonstrate that chronic PRR activation suppressed brown adipogenesis of multipotent mesodermal stem cells and brown pre-adipocytes, possibly through suppression of PPARγ transactivation. The results suggest that anti- inflammatory therapies targeting PRRs may be beneficial for the BAT development.

  2. Schwann cell coculture improves the therapeutic effect of bone marrow stromal cells on recovery in spinal cord-injured mice.

    Science.gov (United States)

    Xu, Xiaoyun; Geremia, Nicole; Bao, Feng; Pniak, Anna; Rossoni, Melissa; Brown, Arthur

    2011-01-01

    Studies of bone marrow stromal cells (MSCs) transplanted into the spinal cord-injured rat give mixed results: some groups report improved locomotor recovery while others only demonstrate improved histological appearance of the lesion. These studies show no clear correlation between neurological improvements and MSC survival. We examined whether MSC survival in the injured spinal cord could be enhanced by closely matching donor and recipient mice for genetic background and marker gene expression and whether exposure of MSCs to a neural environment (Schwann cells) prior to transplantation would improve their survival or therapeutic effects. Mice underwent a clip compression spinal cord injury at the fourth thoracic level and cell transplantation 7 days later. Despite genetic matching of donors and recipients, MSC survival in the injured spinal cord was very poor (∼1%). However, we noted improved locomotor recovery accompanied by improved histopathological appearance of the lesion in mice receiving MSC grafts. These mice had more white and gray matter sparing, laminin expression, Schwann cell infiltration, and preservation of neurofilament and 5-HT-positive fibers at and below the lesion. There was also decreased collagen and chondroitin sulphate proteoglycan deposition in the scar and macrophage activation in mice that received the MSC grafts. The Schwann cell cocultured MSCs had greater effects than untreated MSCs on all these indices of recovery. Analyses of chemokine and cytokine expression revealed that MSC/Schwann cell cocultures produced far less MCP-1 and IL-6 than MSCs or Schwann cells cultured alone. Thus, transplanted MSCs may improve recovery in spinal cord-injured mice through immunosuppressive effects that can be enhanced by a Schwann cell coculturing step. These results indicate that the temporary presence of MSCs in the injured cord is sufficient to alter the cascade of pathological events that normally occurs after spinal cord injury, generating a

  3. Abnormal joint and bone wound healing in hemophilia mice is improved by extending factor IX activity after hemarthrosis.

    Science.gov (United States)

    Sun, Junjiang; Hua, Baolai; Livingston, Eric W; Taves, Sarah; Johansen, Peter B; Hoffman, Maureane; Ezban, Mirella; Monroe, Dougald M; Bateman, Ted A; Monahan, Paul E

    2016-12-30

    Wound healing requires interactions between coagulation, inflammation, angiogenesis, cellular migration, and proliferation. Healing in dermal wounds of hemophilia B mice is delayed when compared to hemostatically normal wild type (WT) mice, with abnormal persistence of iron deposition, inflammation, and neovascularity. We observed healing following induced joint hemorrhage in WT and factor IX (FIX) knockout (FIX(-/-)) mice, examining also parameters previously studied in an excisional skin wound model. Hemostatically normal mice tolerated this joint bleeding challenge, cleared blood from the joint, and healed with minimal pathology, even if additional autologous blood was injected intra-articularly at the time of wounding. Following hemarthrosis, joint wound healing in hemophilia B mice was impaired and demonstrated similar abnormal histologic features as previously described in hemophilic dermal wounds. Therefore, studies of pathophysiology and therapy of hemophilic joint bleeding performed in hemostatically normal animals are not likely to accurately reflect the healing defect of hemophilia. We additionally explored the hypothesis that the use of a FIX replacement protein with extended circulating FIX activity could improve synovial and osteochondral wound healing in hemophilic mice, when compared to treatment with unmodified recombinant FIX (rFIX) in the established joint bleeding model. Significantly improved synovial wound healing and preservation of normal osteochondral architecture are achieved by extending FIX activity after hemarthrosis using glycoPEGylated FIX when compared to an equivalent dose of rFIX. These results suggest that treating joint bleeding only until hemostasis is achieved may not result in optimal joint healing, which is improved by extending factor activity.

  4. 17β-Estradiol suppresses visceral adipogenesis and activates brown adipose tissue-specific gene expression.

    Science.gov (United States)

    Al-Qahtani, Saad Misfer; Bryzgalova, Galyna; Valladolid-Acebes, Ismael; Korach-André, Marion; Dahlman-Wright, Karin; Efendić, Suad; Berggren, Per-Olof; Portwood, Neil

    2017-01-01

    Both functional ovaries and estrogen replacement therapy (ERT) reduce the risk of type 2 diabetes (T2D). Understanding the mechanisms underlying the antidiabetic effects of 17β-estradiol (E2) may permit the development of a molecular targeting strategy for the treatment of metabolic disease. This study examines how the promotion of insulin sensitivity and weight loss by E2 treatment in high-fat-diet (HFD)-fed mice involve several anti-adipogenic processes in the visceral adipose tissue. Magnetic resonance imaging (MRI) revealed specific reductions in visceral adipose tissue volume in HFD+E2 mice, compared with HFD mice. This loss of adiposity was associated with diminished visceral adipocyte size and reductions in expression of lipogenic genes, adipokines and of the nuclear receptor nr2c2/tr4. Meanwhile, expression levels of adipose triglyceride lipase/pnpla2 and leptin receptor were increased. As mRNA levels of stat3, a transcription factor involved in brown adipose tissue differentiation, were also increased in visceral adipose, the expression of other brown adipose-specific markers was assessed. Both expression and immunohistochemical staining of ucp-1 were increased, and mRNA levels of dio-2, and of adrβ3, a regulator of ucp-1 expression during the thermogenic response, were increased. Furthermore, expression of cpt-1b, a brown adipose-specific gene involved in fatty acid utilization, was also increased. Methylation studies demonstrated that the methylation status of both dio-2 and adrβ3 was significantly reduced. These results show that improved glycemic control and weight loss due to E2 involve anti-adipogenic mechanisms which include suppressed lipogenesis and augmented fatty acid utilization, and in addition, the activation of brown adipose tissue-specific gene expression in association with E2-dependent epigenetic modifications in these genes.

  5. Pharmacological Activation of Thyroid Hormone Receptors Elicits a Functional Conversion of White to Brown Fat

    Directory of Open Access Journals (Sweden)

    Jean Z. Lin

    2015-11-01

    Full Text Available The functional conversion of white adipose tissue (WAT into a tissue with brown adipose tissue (BAT-like activity, often referred to as “browning,” represents an intriguing strategy for combating obesity and metabolic disease. We demonstrate that thyroid hormone receptor (TR activation by a synthetic agonist markedly induces a program of adaptive thermogenesis in subcutaneous WAT that coincides with a restoration of cold tolerance to cold-intolerant mice. Distinct from most other browning agents, pharmacological TR activation dissociates the browning of WAT from activation of classical BAT. TR agonism also induces the browning of white adipocytes in vitro, indicating that TR-mediated browning is cell autonomous. These data establish TR agonists as a class of browning agents, implicate the TRs in the browning of WAT, and suggest a profound pharmacological potential of this action.

  6. Proteasome inhibition improves the muscle of laminin α2 chain-deficient mice.

    Science.gov (United States)

    Carmignac, Virginie; Quéré, Ronan; Durbeej, Madeleine

    2011-02-01

    Muscle atrophy, a significant characteristic of congenital muscular dystrophy with laminin α2 chain deficiency (also known as MDC1A), occurs by a change in the normal balance between protein synthesis and protein degradation. The ubiquitin-proteasome system (UPS) plays a key role in protein degradation in skeletal muscle cells. In order to identify new targets for drug therapy against MDC1A, we have investigated whether increased proteasomal degradation is a feature of MDC1A. Using the generated dy(3K)/dy(3K) mutant mouse model of MDC1A, we studied the expression of members of the ubiquitin-proteasome pathway in laminin α2 chain-deficient muscle, and we treated dy(3K)/dy(3K) mice with the proteasome inhibitor MG-132. We show that members of the UPS are upregulated and that the global ubiquitination of proteins is raised in dystrophic limb muscles. Also, phosphorylation of Akt is diminished in diseased muscles. Importantly, proteasome inhibition significantly improves the dystrophic dy(3K)/dy(3K) phenotype. Specifically, treatment with MG-132 increases lifespan, enhances locomotive activity, enlarges muscle fiber diameter, reduces fibrosis, restores Akt phosphorylation and decreases apoptosis. These studies promote better understanding of the disease process in mice and could lead to a drug therapy for MDC1A patients.

  7. Green tea infusion improves cyclophosphamide-induced damage on male mice reproductive system

    Directory of Open Access Journals (Sweden)

    Mariane Magalhães Zanchi

    2015-01-01

    Full Text Available Green tea presents catechins as its major components and it has a potential antioxidant activity. Cyclophosmamide (CP is an antineoplastic and immunosuppressive agent, known to reduce fertility. In the present study, we evaluated the effect of green tea infusion on cyclophosphamide-induced damage in male mice reproductive system. Mice received green tea infusion (250 mg/kg or vehicle by gavage for 14 days. Saline or CP were injected intraperitoneally at a single dose (100 mg/kg at the 14th day. Animals were euthanized 24 h after CP administration and testes and epididymis were removed for biochemical analysis and sperm evaluation. Catechins concentration in green tea infusion was evaluated by HPLC. CP increased lipid peroxidation, DNA damage and superoxide dismutase activity whereas sperm concentration, glutathione peroxidase (GPx, glutathione S-transferase (GST and 17β-hydroxysteroid (17β-HSD dehydrogenase activities were reduced in both tissues tested. Catalase activity and protein carbonyl levels were changed only in testes, after CP administration. Green tea pre-treatment reduced significantly lipid peroxidation, protein carbonylation, DNA damage and restored GPx and GST activity in testes. In epididymis, therapy significantly increased sperm concentration and restored GPx and 17β-HSD activity. Green tea improves CP-induced damage on reproductive system, probably due to their high catechins content.

  8. Low-intensity vibration improves angiogenesis and wound healing in diabetic mice.

    Science.gov (United States)

    Weinheimer-Haus, Eileen M; Judex, Stefan; Ennis, William J; Koh, Timothy J

    2014-01-01

    Chronic wounds represent a significant health problem, especially in diabetic patients. In the current study, we investigated a novel therapeutic approach to wound healing--whole body low-intensity vibration (LIV). LIV is anabolic for bone, by stimulating the release of growth factors, and modulating stem cell proliferation and differentiation. We hypothesized that LIV improves the delayed wound healing in diabetic mice by promoting a pro-healing wound environment. Diabetic db/db mice received excisional cutaneous wounds and were subjected to LIV (0.4 g at 45 Hz) for 30 min/d or a non-vibrated sham treatment (controls). Wound tissue was collected at 7 and 15 d post-wounding and wound healing, angiogenesis, growth factor levels and wound cell phenotypes were assessed. LIV increased angiogenesis and granulation tissue formation at day 7, and accelerated wound closure and re-epithelialization over days 7 and 15. LIV also reduced neutrophil accumulation and increased macrophage accumulation. In addition, LIV increased expression of pro-healing growth factors and chemokines (insulin-like growth factor-1, vascular endothelial growth factor and monocyte chemotactic protein-1) in wounds. Despite no evidence of a change in the phenotype of CD11b+ macrophages in wounds, LIV resulted in trends towards a less inflammatory phenotype in the CD11b- cells. Our findings indicate that LIV may exert beneficial effects on wound healing by enhancing angiogenesis and granulation tissue formation, and these changes are associated with increases in pro-angiogenic growth factors.

  9. Intracerebral neural stem cell transplantation improved the auditory of mice with presbycusis.

    Science.gov (United States)

    Ren, Hongmiao; Chen, Jichuan; Wang, Yinan; Zhang, Shichang; Zhang, Bo

    2013-01-01

    Stem cell-based regenerative therapy is a potential cellular therapeutic strategy for patients with incurable brain diseases. Embryonic neural stem cells (NSCs) represent an attractive cell source in regenerative medicine strategies in the treatment of diseased brains. Here, we assess the capability of intracerebral embryonic NSCs transplantation for C57BL/6J mice with presbycusis in vivo. Morphology analyses revealed that the neuronal rate of apoptosis was lower in the aged group (10 months of age) but not in the young group (2 months of age) after NSCs transplantation, while the electrophysiological data suggest that the Auditory Brain Stem Response (ABR) threshold was significantly decreased in the aged group at 2 weeks and 3 weeks after transplantation. By contrast, there was no difference in the aged group at 4 weeks post-transplantation or in the young group at any time post-transplantation. Furthermore, immunofluorescence experiments showed that NSCs differentiated into neurons that engrafted and migrated to the brain, even to sites of lesions. Together, our results demonstrate that NSCs transplantation improve the auditory of C57BL/6J mice with presbycusis.

  10. Astragalus membranaceus Improves Exercise Performance and Ameliorates Exercise-Induced Fatigue in Trained Mice

    Directory of Open Access Journals (Sweden)

    Tzu-Shao Yeh

    2014-03-01

    Full Text Available Astragalus membranaceus (AM is a popular “Qi-tonifying” herb with a long history of use as a Traditional Chinese Medicine with multiple biological functions. However, evidence for the effects of AM on exercise performance and physical fatigue is limited. We evaluated the potential beneficial effects of AM on ergogenic and anti-fatigue functions following physiological challenge. Male ICR strain mice were randomly assigned to four groups (n = 10 per group for treatment: (1 sedentary control and vehicle treatment (vehicle control; (2 exercise training with vehicle treatment (exercise control; and (3 exercise training with AM treatment at 0.615 g/kg/day (Ex-AM1 or (4 3.075 g/kg/day (Ex-AM5. Both the vehicle and AM were orally administered for 6 weeks. Exercise performance and anti-fatigue function were evaluated by forelimb grip strength, exhaustive swimming time, and levels of serum lactate, ammonia, glucose, and creatine kinase after 15-min swimming exercise. Exercise training combined with AM supplementation increased endurance exercise capacity and increased hepatic and muscle glycogen content. AM reduced exercise-induced accumulation of the byproducts blood lactate and ammonia with acute exercise challenge. Moreover, we found no deleterious effects from AM treatment. Therefore, AM supplementation improved exercise performance and had anti-fatigue effects in mice. It may be an effective ergogenic aid in exercise training.

  11. Cornu Cervi Pantotrichum Supplementation Improves Exercise Performance and Protects against Physical Fatigue in Mice

    Directory of Open Access Journals (Sweden)

    Chi-Chang Huang

    2014-04-01

    Full Text Available Cornu cervi pantotrichum (CCP is a well-known yang-invigorating agent used in traditional Chinese medicine that can nourish the blood, tonify qi, and invigorate bones and tendons with multifunctional bioactivities. However, evidence on the effects of CCP on exercise performance and physical fatigue is limited. We evaluated the potential beneficial effects of ethanolic extract from CCP on ergogenic and antifatigue functions following a physiological challenge. Male ICR mice from four groups (n = 8 per group were orally administered CCP for 14 days at 0, 2054, and 4108 mg/kg/day, and were respectively designated as the vehicle, CCP-1X, and CCP-2X groups. The physical performance and antifatigue function were evaluated using forelimb grip strength and exhaustive swimming time as well as serum levels of lactate, ammonia, glucose, and creatine kinase after a 15-min swimming exercise. The results indicated that CCP-1X supplementation significantly improved grip strength; reduced fatigue-associated biochemical indices, including lactate and ammonia levels; and ameliorated skeletal muscle injury induced by acute exercise challenge. A trend analysis revealed that CCP supplementation significantly increased grip strength and dose-dependently reduced serum alkaline phosphatase, uric acid, triacylglycerol, and glucose levels in healthy mice. Therefore, CCP is a potential agent with an antifatigue pharmacological effect.

  12. Angelica sinensis Improves Exercise Performance and Protects against Physical Fatigue in Trained Mice

    Directory of Open Access Journals (Sweden)

    Tzu-Shao Yeh

    2014-03-01

    Full Text Available Angelica sinensis (AS is a well-known medicinal herb and food material with antioxidative and multifunctional pharmacological activities. However, we lack evidence of the effect of AS on exercise performance and physical fatigue. We aimed to evaluate the potential beneficial effect of AS on ergogenic and anti-fatigue functions after physiological challenge. Male ICR strain mice were randomly assigned to four groups (n = 10 per group for treatment: (1 sedentary control and vehicle treatment (vehicle control; (2 exercise training with vehicle treatment (exercise control; (3 exercise training with AS treatment at 0.41 g/kg/day (Ex-AS1; and (4 2.05 g/kg/day (Ex-AS5; both the vehicle and AS were orally administered for 6 weeks. Exercise performance and anti-fatigue function were evaluated by forelimb grip strength, exhaustive swimming time, and levels of serum lactate, ammonia, glucose, and creatine kinase (CK after a 15-min swimming exercise. Trend analysis revealed that AS treatments significantly increased endurance swimming time and blood glucose level, and decreased serum lactate, ammonia and CK levels. Liver and muscle glycogen contents were higher for Ex-AS1 and Ex-AS5 groups than the exercise control. Therefore, AS supplementation improved exercise performance and had anti-fatigue properties in mice and may be an effective ergogenic aid in exercise training.

  13. Zinc finger protein 407 overexpression upregulates PPAR target gene expression and improves glucose homeostasis in mice.

    Science.gov (United States)

    Charrier, Alyssa; Wang, Li; Stephenson, Erin J; Ghanta, Siddharth V; Ko, Chih-Wei; Croniger, Colleen M; Bridges, Dave; Buchner, David A

    2016-11-01

    The peroxisome proliferator-activated receptor (PPAR) family of nuclear receptors is central to the pathophysiology and treatment of metabolic disease through the receptors' ability to regulate the expression of genes involved in glucose homeostasis, adipogenesis, and lipid metabolism. However, the mechanism by which PPAR is regulated remains incompletely understood. We generated a transgenic mouse strain (ZFP-TG) that overexpressed Zfp407 primarily in muscle and heart. Transcriptome analysis by RNA-Seq identified 1,300 differentially expressed genes in the muscle of ZFP-TG mice, among which PPAR target genes were significantly enriched. Among the physiologically important PPARγ target genes, Glucose transporter (Glut)-4 mRNA and protein levels were increased in heart and muscle. The increase in Glut4 and other transcriptional effects of Zfp407 overexpression together decreased body weight and lowered plasma glucose, insulin, and HOMA-IR scores relative to control littermates. When placed on high-fat diet, ZFP-TG mice remained more glucose tolerant than their wild-type counterparts. Cell-based assays demonstrated that Zfp407 synergistically increased the transcriptional activity of all PPAR subtypes, PPARα, PPARγ, and PPARδ. The increased PPAR activity was not associated with increased PPAR mRNA or protein levels, suggesting that Zfp407 posttranslationally regulates PPAR activity. Collectively, these results demonstrate that Zfp407 overexpression improved glucose homeostasis. Thus, Zfp407 represents a new drug target for treating metabolic disease. Copyright © 2016 the American Physiological Society.

  14. Increased sphingosine-1-phosphate improves muscle regeneration in acutely injured mdx mice

    Science.gov (United States)

    2013-01-01

    beneficial for muscle regeneration and functional gain in dystrophic mice, and that THI, or other pharmacological agents that raise S1P levels systemically, may be developed into an effective treatment for improving muscle function and reducing the pathology of DMD. PMID:23915702

  15. NAD⁺ repletion improves mitochondrial and stem cell function and enhances life span in mice.

    Science.gov (United States)

    Zhang, Hongbo; Ryu, Dongryeol; Wu, Yibo; Gariani, Karim; Wang, Xu; Luan, Peiling; D'Amico, Davide; Ropelle, Eduardo R; Lutolf, Matthias P; Aebersold, Ruedi; Schoonjans, Kristina; Menzies, Keir J; Auwerx, Johan

    2016-06-17

    Adult stem cells (SCs) are essential for tissue maintenance and regeneration yet are susceptible to senescence during aging. We demonstrate the importance of the amount of the oxidized form of cellular nicotinamide adenine dinucleotide (NAD(+)) and its effect on mitochondrial activity as a pivotal switch to modulate muscle SC (MuSC) senescence. Treatment with the NAD(+) precursor nicotinamide riboside (NR) induced the mitochondrial unfolded protein response and synthesis of prohibitin proteins, and this rejuvenated MuSCs in aged mice. NR also prevented MuSC senescence in the mdx (C57BL/10ScSn-Dmd(mdx)/J) mouse model of muscular dystrophy. We furthermore demonstrate that NR delays senescence of neural SCs and melanocyte SCs and increases mouse life span. Strategies that conserve cellular NAD(+) may reprogram dysfunctional SCs and improve life span in mammals.

  16. Browning attenuates murine white adipose tissue expansion during postnatal development.

    Science.gov (United States)

    Lasar, D; Julius, A; Fromme, T; Klingenspor, M

    2013-05-01

    During postnatal development of mice distinct white adipose tissue depots display a transient appearance of brown-like adipocytes. These brite (brown in white) adipocytes share characteristics with classical brown adipocytes including a multilocular appearance and the expression of the thermogenic protein uncoupling protein 1. In this study, we compared two inbred mouse strains 129S6sv/ev and C57BL6/N known for their different propensity to diet-induced obesity. We observed transient browning in retroperitoneal and inguinal adipose tissue depots of these two strains. From postnatal day 10 to 20 the increase in the abundance of multilocular adipocytes and uncoupling protein 1 expression was higher in 129S6sv/ev than in C57BL6/N pups. The parallel increase in the mass of the two fat depots was attenuated during this browning period. Conversely, epididymal white and interscapular brown adipose tissue displayed a steady increase in mass during the first 30 days of life. In this period, 129S6sv/ev mice developed a significantly higher total body fat mass than C57BL6/N. Thus, while on a local depot level a high number of brite cells is associated with the attenuation of adipose tissue expansion the strain comparison reveals no support for a systemic impact on energy balance. This article is part of a Special Issue entitled Brown and White Fat: From Signaling to Disease.

  17. ADAM12 overexpression does not improve outcome in mice with laminin alpha2-deficient muscular dystrophy

    DEFF Research Database (Denmark)

    Guo, Ling T; Shelton, G Diane; Wewer, Ulla M

    2005-01-01

    We have recently shown that overexpression of ADAM12 results in increased muscle regeneration and significantly reduced pathology in mdx, dystrophin deficient mice. In the present study, we tested the effect of overexpressing ADAM12 in dy(W) laminin-deficient mice. dy mice have a very severe clin...

  18. Monoacylglycerol lipase inhibitor JZL184 improves behavior and neural properties in Ts65Dn mice, a model of down syndrome.

    Directory of Open Access Journals (Sweden)

    Larisa V Lysenko

    Full Text Available Genetic alterations or pharmacological treatments affecting endocannabinoid signaling have profound effects on synaptic and neuronal properties and, under certain conditions, may improve higher brain functions. Down syndrome (DS, a developmental disorder caused by triplication of chromosome 21, is characterized by deficient cognition and inevitable development of the Alzheimer disease (AD type pathology during aging. Here we used JZL184, a selective inhibitor of monoacylglycerol lipase (MAGL, to examine the effects of chronic MAGL inhibition on the behavioral, biochemical, and synaptic properties of aged Ts65Dn mice, a genetic model of DS. In both Ts65Dn mice and their normosomic (2N controls, JZL184-treatment increased brain levels of 2-arachidonoylglycerol (2-AG and decreased levels of its metabolites such as arachidonic acid, prostaglandins PGD2, PGE2, PGFα, and PGJ2. Enhanced spontaneous locomotor activity of Ts65Dn mice was reduced by the JZL184-treatement to the levels observed in 2N animals. Deficient long-term memory was also improved, while short-term and working types of memory were unaffected. Furthermore, reduced hippocampal long-term potentiation (LTP was increased in the JZL184-treated Ts65Dn mice to the levels observed in 2N mice. Interestingly, changes in synaptic plasticity and behavior were not observed in the JZL184-treated 2N mice suggesting that the treatment specifically attenuated the defects in the trisomic animals. The JZL184-treatment also reduced the levels of Aβ40 and Aβ42, but had no effect on the levels of full length APP and BACE1 in both Ts65Dn and 2N mice. These data show that chronic MAGL inhibition improves the behavior and brain functions in a DS model suggesting that pharmacological targeting of MAGL may be considered as a perspective new approach for improving cognition in DS.

  19. Ampicillin-Improved Glucose Tolerance in Diet-Induced Obese C57BL/6NTac Mice Is Age Dependent

    Directory of Open Access Journals (Sweden)

    I. Rune

    2013-01-01

    Full Text Available Ampicillin has been shown to improve glucose tolerance in mice. We hypothesized that this effect is present only if treatment is initiated prior to weaning and that it disappears when treatment is terminated. High-fat fed C57BL/6NTac mice were divided into groups that received Ampicillin at different ages or not at all. We found that both diet and Ampicillin significantly changed the gut microbiota composition in the animals. Furthermore, there was a significant improvement in glucose tolerance in Ampicillin-treated, five-week-old mice compared to nontreated mice in the control group. At study termination, expressions of mRNA coding for tumor necrosis factor, serum amyloid A, and lactase were upregulated, while the expression of tumor necrosis factor (ligand superfamily member 15 was downregulated in the ileum of Ampicillin-treated mice. Higher dendritic cell percentages were found systemically in high-fat diet mice, and a lower tolerogenic dendritic cell percentage was found both in relation to high-fat diet and late Ampicillin treatment. The results support our hypothesis that a “window” exists early in life in which an alteration of the gut microbiota affects glucose tolerance as well as development of gut immunity and that this window may disappear after weaning.

  20. Global view of the mechanisms of improved learning and memory capability in mice with music-exposure by microarray.

    Science.gov (United States)

    Meng, Bo; Zhu, Shujia; Li, Shijia; Zeng, Qingwen; Mei, Bing

    2009-08-28

    Music has been proved beneficial to improve learning and memory in many species including human in previous research work. Although some genes have been identified to contribute to the mechanisms, it is believed that the effect of music is manifold, behind which must concern a complex regulation network. To further understand the mechanisms, we exposed the mice to classical music for one month. The subsequent behavioral experiments showed improvement of spatial learning capability and elevation of fear-motivated memory in the mice with music-exposure as compared to the naïve mice. Meanwhile, we applied the microarray to compare the gene expression profiles of the hippocampus and cortex between the mice with music-exposure and the naïve mice. The results showed approximately 454 genes in cortex (200 genes up-regulated and 254 genes down-regulated) and 437 genes in hippocampus (256 genes up-regulated and 181 genes down-regulated) were significantly affected in music-exposing mice, which mainly involved in ion channel activity and/or synaptic transmission, cytoskeleton, development, transcription, hormone activity. Our work may provide some hints for better understanding the effects of music on learning and memory.

  1. MicroRNAs are required for the feature maintenance and differentiation of brown adipocytes.

    Science.gov (United States)

    Kim, Hye-Jin; Cho, Hyunjii; Alexander, Ryan; Patterson, Heide Christine; Gu, Minxia; Lo, Kinyui Alice; Xu, Dan; Goh, Vera J; Nguyen, Long N; Chai, Xiaoran; Huang, Cher X; Kovalik, Jean-Paul; Ghosh, Sujoy; Trajkovski, Mirko; Silver, David L; Lodish, Harvey; Sun, Lei

    2014-12-01

    Brown adipose tissue (BAT) is specialized to burn lipids for heat generation as a natural defense against cold and obesity. Previous studies established microRNAs (miRNAs) as essential regulators of brown adipocyte differentiation, but whether miRNAs are required for the feature maintenance of mature brown adipocytes remains unknown. To address this question, we ablated Dgcr8, a key regulator of the miRNA biogenesis pathway, in mature brown as well as in white adipocytes. Adipose tissue-specific Dgcr8 knockout mice displayed enlarged but pale interscapular brown fat with decreased expression of genes characteristic of brown fat and were intolerant to cold exposure. Primary brown adipocyte cultures in vitro confirmed that miRNAs are required for marker gene expression in mature brown adipocytes. We also demonstrated that miRNAs are essential for the browning of subcutaneous white adipocytes in vitro and in vivo. Using this animal model, we performed miRNA expression profiling analysis and identified a set of BAT-specific miRNAs that are upregulated during brown adipocyte differentiation and enriched in brown fat compared with other organs. We identified miR-182 and miR-203 as new regulators of brown adipocyte development. Taken together, our study demonstrates an essential role of miRNAs in the maintenance as well as in the differentiation of brown adipocytes.

  2. MicroRNAs Are Required for the Feature Maintenance and Differentiation of Brown Adipocytes

    Science.gov (United States)

    Kim, Hye-Jin; Cho, Hyunjii; Alexander, Ryan; Patterson, Heide Christine; Gu, Minxia; Lo, Kinyui Alice; Xu, Dan; Goh, Vera J.; Nguyen, Long N.; Chai, Xiaoran; Huang, Cher X.; Kovalik, Jean-Paul; Ghosh, Sujoy; Trajkovski, Mirko; Silver, David L.; Lodish, Harvey

    2014-01-01

    Brown adipose tissue (BAT) is specialized to burn lipids for heat generation as a natural defense against cold and obesity. Previous studies established microRNAs (miRNAs) as essential regulators of brown adipocyte differentiation, but whether miRNAs are required for the feature maintenance of mature brown adipocytes remains unknown. To address this question, we ablated Dgcr8, a key regulator of the miRNA biogenesis pathway, in mature brown as well as in white adipocytes. Adipose tissue–specific Dgcr8 knockout mice displayed enlarged but pale interscapular brown fat with decreased expression of genes characteristic of brown fat and were intolerant to cold exposure. Primary brown adipocyte cultures in vitro confirmed that miRNAs are required for marker gene expression in mature brown adipocytes. We also demonstrated that miRNAs are essential for the browning of subcutaneous white adipocytes in vitro and in vivo. Using this animal model, we performed miRNA expression profiling analysis and identified a set of BAT-specific miRNAs that are upregulated during brown adipocyte differentiation and enriched in brown fat compared with other organs. We identified miR-182 and miR-203 as new regulators of brown adipocyte development. Taken together, our study demonstrates an essential role of miRNAs in the maintenance as well as in the differentiation of brown adipocytes. PMID:25008181

  3. Exercise training and antioxidant supplementation independently improve cognitive function in adult male and female GFAP-APOE mice

    Directory of Open Access Journals (Sweden)

    Kiran Chaudhari

    2014-09-01

    Conclusion: Exercise was the most effective treatment at improving cognitive function in both genotypes and sex, while antioxidants seemed to be effective only in the APOE4. In young adult mice only non-spatial learning and memory were improved. The combination of the two treatments did not yield further improvement in cognition, and there was no antagonistic action of the antioxidant supplementation on the beneficial effects of exercise.

  4. Bezafibrate ameliorates diabetes via reduced steatosis and improved hepatic insulin sensitivity in diabetic TallyHo mice.

    Science.gov (United States)

    Franko, Andras; Neschen, Susanne; Rozman, Jan; Rathkolb, Birgit; Aichler, Michaela; Feuchtinger, Annette; Brachthäuser, Laura; Neff, Frauke; Kovarova, Marketa; Wolf, Eckhard; Fuchs, Helmut; Häring, Hans-Ulrich; Peter, Andreas; Hrabě de Angelis, Martin

    2017-03-01

    Recently, we have shown that Bezafibrate (BEZ), the pan-PPAR (peroxisome proliferator-activated receptor) activator, ameliorated diabetes in insulin deficient streptozotocin treated diabetic mice. In order to study whether BEZ can also improve glucose metabolism in a mouse model for fatty liver and type 2 diabetes, the drug was applied to TallyHo mice. TallyHo mice were divided into an early (ED) and late (LD) diabetes progression group and both groups were treated with 0.5% BEZ (BEZ group) or standard diet (SD group) for 8 weeks. We analyzed plasma parameters, pancreatic beta-cell morphology, and mass as well as glucose metabolism of the BEZ-treated and control mice. Furthermore, liver fat content and composition as well as hepatic gluconeogenesis and mitochondrial mass were determined. Plasma lipid and glucose levels were markedly reduced upon BEZ treatment, which was accompanied by elevated insulin sensitivity index as well as glucose tolerance, respectively. BEZ increased islet area in the pancreas. Furthermore, BEZ treatment improved energy expenditure and metabolic flexibility. In the liver, BEZ ameliorated steatosis, modified lipid composition and increased mitochondrial mass, which was accompanied by reduced hepatic gluconeogenesis. Our data showed that BEZ ameliorates diabetes probably via reduced steatosis, enhanced hepatic mitochondrial mass, improved metabolic flexibility and elevated hepatic insulin sensitivity in TallyHo mice, suggesting that BEZ treatment could be beneficial for patients with NAFLD and impaired glucose metabolism.

  5. Addition of rapamycin to anti-CD3 antibody improves long-term glycaemia control in diabetic NOD mice.

    Directory of Open Access Journals (Sweden)

    Shira Perl

    Full Text Available AIMS/HYPOTHESIS: Non-Fc-binding Anti CD3 antibody has proven successful in reverting diabetes in the non-obese diabetes mouse model of type 1 diabetes and limited efficacy has been observed in human clinical trials. We hypothesized that addition of rapamycin, an mTOR inhibitor capable of inducing operational tolerance in allogeneic bone marrow transplantation, would result in improved diabetes reversal rates and overall glycemia. METHODS: Seventy hyperglycemic non-obese diabetic mice were randomized to either a single injection of anti CD3 alone or a single injection of anti CD3 followed by 14 days of intra-peritoneal rapamycin. Mice were monitored for hyperglycemia and metabolic control. RESULTS: Mice treated with the combination of anti CD3 and rapamycin had similar rates of diabetes reversal compared to anti CD3 alone (25/35 vs. 22/35. Mice treated with anti CD3 plus rapamycin had a significant improvement in glycemia control as exhibited by lower blood glucose levels in response to an intra-peritoneal glucose challenge; average peak blood glucose levels 30 min post intra-peritoneal injection of 2 gr/kg glucose were 6.9 mmol/L in the anti CD3 plus rapamycin group vs. 10 mmo/L in the anti CD3 alone (P<0.05. CONCLUSIONS/INTERPRETATION: The addition of rapamycin to anti CD3 results in significant improvement in glycaemia control in diabetic NOD mice.

  6. Brown Adipogenic Reprogramming Induced by a Small Molecule

    Directory of Open Access Journals (Sweden)

    Baoming Nie

    2017-01-01

    Full Text Available Brown adipose tissue (BAT has attracted considerable research interest because of its therapeutic potential to treat obesity and associated metabolic diseases. Augmentation of brown fat mass and/or its function may represent an attractive strategy to enhance energy expenditure. Using high-throughput phenotypic screening to induce brown adipocyte reprogramming in committed myoblasts, we identified a retinoid X receptor (RXR agonist, bexarotene (Bex, that efficiently converted myoblasts into brown adipocyte-like cells. Bex-treated mice exhibited enlarged BAT mass, enhanced BAT function, and a modest browning effect in subcutaneous white adipose tissue (WAT. Expression analysis showed that Bex initiated several “browning” pathways at an early stage during brown adipocyte reprogramming. Our findings suggest RXRs as new master regulators that control brown and beige fat development and activation, unlike the common adipogenic regulator PPARγ. Moreover, we demonstrated that selective RXR activation may potentially offer a therapeutic approach to manipulate brown/beige fat function in vivo.

  7. Geraniol improves endothelial function by inhibiting NOX-2 derived oxidative stress in high fat diet fed mice

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoyu; Zhao, Shiqi; Su, Mengqi; Sun, Li; Zhang, Song; Wang, Dingyu; Liu, Zhaorui; Yuan, Yue; Liu, Yang [Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, Heilongjiang Province (China); Li, Yue, E-mail: ly99ly@vip.163.com [Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, Heilongjiang Province (China); Key Laboratory of Cardiac Diseases and Heart Failure, Harbin Medical University, Harbin, 150001, Heilongjiang Province (China)

    2016-05-20

    Endothelial dysfunction occurs in obese patients and high-fat diet (HFD) fed experimental animals. While geraniol has been reported to ameliorate inflammation and oxidative stress, inhibit tumor cell proliferation, and improve atherosclerosis, its direct effect on endothelial function remains uncharacterized. The present study therefore investigated the effect of geraniol on endothelial function in HFD mice and its underlying mechanisms. C57 BL/6 mice were fed an HFD (n = 40) or a normal diet (n = 20) for 8 weeks. HFD fed mice then were randomized to intraperitoneal treatment with geraniol (n = 20) or vehicle (n = 20) for another 6 weeks. Acetylcholine (Ach)-induced endothelial dependent vasorelaxation was measured on wire myography; reactive oxygen species (ROS) generation was assessed by fluorescence imaging, and NADPH oxidases (NOXs) and adhesive molecules VCAM-1 and ICAM-1 protein expression by western blotting. Geraniol improved endothelial function in HFD fed mice, as evidenced by its: 1. restoring endothelial dependent vasorelaxation induced by Ach, and reversing increased VCAM-1 and ICAM-1 expression; 2. attenuating HFD induced increased serum TBARS and aortic ROS generation; and 3. downregulating aortic NOX-2 expression in both HFD fed mice and in palmitic acid treated endothelial cells. Geraniol therefore protects against endothelial dysfunction induced by HFD through reducing NOX-2 associated ROS generation. -- Highlights: •Geraniol improved endothelial dependent relaxation in high fat diet fed mice. •Geraniol alleviated vascular injury in high fat diet fed mice. •Geraniol inhibited ROS generation through downregulating NOX-2 expression.

  8. Hypoglycemic activities of lyophilized powder of Gynura divaricata by improving antioxidant potential and insulin signaling in type 2 diabetic mice

    Directory of Open Access Journals (Sweden)

    Bing-Qing Xu

    2015-12-01

    Full Text Available Background: Diabetes mellitus is a serious disease affecting about 5% of people worldwide. Although several studies have indicated hypoglycemic activities of Gynura divaricata (GD, the mechanisms by which GD improves the symptoms of diabetes remain unclear. Objective: The aim of this study was to investigate the potential hypoglycemic effects of GD. Design: The leaves and stems of GD were prepared and lyophilized into a powder, which was added to the diet of mice with type 2 diabetes induced by a high-fat diet in combination with streptozotocin for 4 weeks. During this period, fasting blood glucose (FBG levels and body weight of mice were measured. In addition, at the end of the experiment, a series of assays was performed. Results: GD administration effectively alleviates insulin resistance and induces a decrease in FBG by 59.54% in 1.2% (L GD-treated diabetic group and 56.13% in 4.8% (H GD-treated diabetic group after 4 weeks, respectively, relative to diabetic model mice. The antioxidant capacity was improved by increasing the activities of glutathione peroxidase (GSH-Px and total superoxide dismutase (T-SOD by 64.87% and 53.42% in treatment group H, compared to diabetic model mice, while GD treatment induced a significant decrease in malondialdehyde (MDA level by 50% in treatment group L, compared to the level in diabetic model mice. Furthermore, glucose metabolism was ameliorated by the increased glycogen synthesis in the livers of diabetic mice. In addition, we also demonstrated that the messenger RNA (mRNA and protein expression levels of AKT, PI3K and PDK-1, which are involved in insulin signaling, were significantly increased. Conclusions: Oral administration of the GD-lyophilized powder has been effectively hypoglycemic, which is done by activating insulin signaling and improving antioxidant capacity in mice with type 2 diabetes.

  9. Short-duration intermittent hypoxia enhances endurance capacity by improving muscle fatty acid metabolism in mice.

    Science.gov (United States)

    Suzuki, Junichi

    2016-04-01

    This study was designed to (1) investigate the effects of acute short-duration intermittent hypoxia on musclemRNAand microRNAexpression levels; and (2) clarify the mechanisms by which short-duration intermittent hypoxia improves endurance capacity. Experiment-1: Male mice were subjected to either acute 1-h hypoxia (12% O2), acute short-duration intermittent hypoxia (12% O2for 15 min, room air for 10 min, 4 times, Int-Hypo), or acute endurance exercise (Ex). The expression of vascular endothelial growth factor-AmRNAwas significantly greater than the control at 0 h post Ex and 6 h post Int-Hypo in the deep red region of the gastrocnemius muscle. miR-16 expression levels were significantly lower at 6 and 10 h post Int-Hypo. Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α)mRNAlevels were significantly greater than the control at 3 h post Ex and 6 h post Int-Hypo. miR-23a expression levels were lower than the control at 6-24 h post Int-Hypo. Experiment-2: Mice were subjected to normoxic exercise training with or without intermittent hypoxia for 3 weeks. Increases in maximal exercise capacity were significantly greater by training with short-duration intermittent hypoxia (IntTr) than without hypoxia. Both 3-Hydroxyacyl-CoA-dehydrogenase and total carnitine palmitoyl transferase activities were significantly enhanced in IntTr. Peroxisome proliferator-activated receptor delta andPGC-1α mRNAlevels were both significantly greater in IntTr than in the sedentary controls. These results suggest that exercise training under normoxic conditions with exposure to short-duration intermittent hypoxia represents a beneficial strategy for increasing endurance performance by enhancing fatty acid metabolism in skeletal muscle.

  10. Mildronate improves cognition and reduces amyloid-β pathology in transgenic Alzheimer's disease mice.

    Science.gov (United States)

    Beitnere, Ulrika; van Groen, Thomas; Kumar, Ashish; Jansone, Baiba; Klusa, Vija; Kadish, Inga

    2014-03-01

    Mildronate, a carnitine congener drug, previously has been shown to provide neuroprotection in an azidothymidine-induced mouse model of neurotoxicity and in a Parkinson's disease rat model. The aim of this study was to investigate the effects of mildronate treatment on cognition and pathology in Alzheimer's disease (AD) model mice (APP(SweDI)). Mildronate was administered i.p. daily at 50 or 100 mg/kg for 28 days. At the end of treatment, the animals were behaviorally and cognitively tested, and brains were assessed for AD-related pathology, inflammation, synaptic markers, and acetylcholinesterase (AChE). The data show that mildronate treatment significantly improved animal performance in water maze and social recognition tests, lowered amyloid-β deposition in the hippocampus, increased expression of the microglia marker Iba-1, and decreased AChE staining, although it did not alter expression of proteins involved in synaptic plasticity (GAP-43, synaptophysin, and GAD67). Taken together, these findings indicate mildronate's ability to improve cognition and reduce amyloid-β pathology in a mouse model of AD and its possible therapeutic utility as a disease-modifying drug in AD patients. Copyright © 2013 Wiley Periodicals, Inc.

  11. Repeated administration of histamine improves memory retrieval of inhibitory avoidance by lithium in mice.

    Science.gov (United States)

    Zarrindast, Mohammad Reza; Parsaei, Leila; Ahmadi, Shamseddin

    2008-01-01

    The influence of repeated administration of histamine on lithium-induced state dependency has been investigated. A single-trial step-down inhibitory avoidance task was used to assess memory in adult male NMRI mice. Intraperitoneal (i.p.) administration of lithium (10 mg/kg), immediately after training (post-training), impaired inhibitory avoidance memory on the test day. Pre-test administration of lithium reversed amnesia induced by the drug given after training, with the maximum response at a dose of 10 mg/kg. Repeated intracerebroventricular (i.c.v.) administration of histamine (20 microg/mouse) for 3 consecutive days followed by 5 days of no drug treatment improved memory retrieval of inhibitory avoidance by a pre-test lower dose (5 mg/kg i.p.) of lithium. In contrast, 3 days of i.c.v. injections of both the histamine H1 receptor antagonist pyrilamine (40 microg/mouse) and the histamine H2 receptor antagonist ranitidine (6.25 and 12.5 microg/mouse) prevented the improving effect of pre-test lithium (10 mg/kg i.p.) on memory retrieval. The results suggest that the repeated administration of histaminergic agents may induce a sensitization which affects the memory impairment induced by lithium.

  12. Electroporation markedly improves Sleeping Beauty transposon-induced tumorigenesis in mice.

    Science.gov (United States)

    Jung, S; Choi, H-J; Park, H-K; Jo, W; Jang, S; Ryu, J-E; Kim, W-J; Yu, E-S; Son, W-C

    2014-08-01

    The Sleeping Beauty (SB) transposon system is an important tool for genetic studies. It is used to insert a gene of interest into the host chromosome, thus enabling permanent gene expression. However, this system is less useful in higher eukaryotes because the transposition frequency is low. Efforts to improve the efficacy of the SB transposon system have focused on the method of gene delivery, but although electroporation has recently attracted much attention as an in vivo gene delivery tool, the simultaneous use of electroporation and the SB transposon system has not been studied for gene transfer in mice. In this study, electroporation was used in a model of SB transposon-induced insertional tumorigenesis. Electroporation increased the rate of tumor development to three times that of the control group. There was no difference in phenotype between tumors induced with the SB transposon system alone and those induced by the SB transposon and electroporation. Electroporation therefore may be an efficient means of improving the efficacy of gene transfer via the SB transposon system.

  13. Generalised Brown Clustering and Roll-up Feature Generation

    DEFF Research Database (Denmark)

    Derczynski, Leon; Chester, Sean

    2016-01-01

    Brown clustering is an established technique, used in hundreds of computational linguistics papers each year, to group word types that have similar distributional information. It is unsupervised and can be used to create powerful word representations for machine learning. Despite its improbable...... success relative to more complex methods, few have investigated whether Brown clustering has really been applied optimally. In this paper, we present a subtle but profound generalisation of Brown clustering to improve the overall quality by decoupling the number of output classes from the computational...... active set size. Moreover, the generalisation permits a novel approach to feature selection from Brown clusters: We show that the standard approach of shearing the Brown clustering output tree at arbitrary bitlengths is lossy and that features should be chosen instead by rolling up Generalised Brown...

  14. Inducible Deletion of Protein Kinase Map4k4 in Obese Mice Improves Insulin Sensitivity in Liver and Adipose Tissues.

    Science.gov (United States)

    Danai, Laura V; Flach, Rachel J Roth; Virbasius, Joseph V; Menendez, Lorena Garcia; Jung, Dae Young; Kim, Jong Hun; Kim, Jason K; Czech, Michael P

    2015-07-01

    Studies in vitro suggest that mitogen-activated protein kinase kinase kinase kinase 4 (Map4k4) attenuates insulin signaling, but confirmation in vivo is lacking since Map4k4 knockout is lethal during embryogenesis. We thus generated mice with floxed Map4k4 alleles and a tamoxifen-inducible Cre/ERT2 recombinase under the control of the ubiquitin C promoter to induce whole-body Map4k4 deletion after these animals reached maturity. Tamoxifen administration to these mice induced Map4k4 deletion in all tissues examined, causing decreased fasting blood glucose concentrations and enhanced insulin signaling to AKT in adipose tissue and liver but not in skeletal muscle. Surprisingly, however, mice generated with a conditional Map4k4 deletion in adiponectin-positive adipocytes or in albumin-positive hepatocytes displayed no detectable metabolic phenotypes. Instead, mice with Map4k4 deleted in Myf5-positive tissues, including all skeletal muscles tested, were protected from obesity-induced glucose intolerance and insulin resistance. Remarkably, these mice also showed increased insulin sensitivity in adipose tissue but not skeletal muscle, similar to the metabolic phenotypes observed in inducible whole-body knockout mice. Taken together, these results indicate that (i) Map4k4 controls a pathway in Myf5-positive cells that suppresses whole-body insulin sensitivity and (ii) Map4k4 is a potential therapeutic target for improving glucose tolerance and insulin sensitivity in type 2 diabetes.

  15. A Dietary Treatment Improves Cerebral Blood Flow and Brain Connectivity in Aging apoE4 Mice

    Directory of Open Access Journals (Sweden)

    Maximilian Wiesmann

    2016-01-01

    Full Text Available APOE ε4 (apoE4 polymorphism is the main genetic determinant of sporadic Alzheimer’s disease (AD. A dietary approach (Fortasyn including docosahexaenoic acid, eicosapentaenoic acid, uridine, choline, phospholipids, folic acid, vitamins B12, B6, C, and E, and selenium has been proposed for dietary management of AD. We hypothesize that the diet could inhibit AD-like pathologies in apoE4 mice, specifically cerebrovascular and connectivity impairment. Moreover, we evaluated the diet effect on cerebral blood flow (CBF, functional connectivity (FC, gray/white matter integrity, and postsynaptic density in aging apoE4 mice. At 10–12 months, apoE4 mice did not display prominent pathological differences compared to wild-type (WT mice. However, 16–18-month-old apoE4 mice revealed reduced CBF and accelerated synaptic loss. The diet increased cortical CBF and amount of synapses and improved white matter integrity and FC in both aging apoE4 and WT mice. We demonstrated that protective mechanisms on vascular and synapse health are enhanced by Fortasyn, independent of apoE genotype. We further showed the efficacy of a multimodal translational approach, including advanced MR neuroimaging, to study dietary intervention on brain structure and function in aging.

  16. A Dietary Treatment Improves Cerebral Blood Flow and Brain Connectivity in Aging apoE4 Mice.

    Science.gov (United States)

    Wiesmann, Maximilian; Zerbi, Valerio; Jansen, Diane; Haast, Roy; Lütjohann, Dieter; Broersen, Laus M; Heerschap, Arend; Kiliaan, Amanda J

    2016-01-01

    APOE ε4 (apoE4) polymorphism is the main genetic determinant of sporadic Alzheimer's disease (AD). A dietary approach (Fortasyn) including docosahexaenoic acid, eicosapentaenoic acid, uridine, choline, phospholipids, folic acid, vitamins B12, B6, C, and E, and selenium has been proposed for dietary management of AD. We hypothesize that the diet could inhibit AD-like pathologies in apoE4 mice, specifically cerebrovascular and connectivity impairment. Moreover, we evaluated the diet effect on cerebral blood flow (CBF), functional connectivity (FC), gray/white matter integrity, and postsynaptic density in aging apoE4 mice. At 10-12 months, apoE4 mice did not display prominent pathological differences compared to wild-type (WT) mice. However, 16-18-month-old apoE4 mice revealed reduced CBF and accelerated synaptic loss. The diet increased cortical CBF and amount of synapses and improved white matter integrity and FC in both aging apoE4 and WT mice. We demonstrated that protective mechanisms on vascular and synapse health are enhanced by Fortasyn, independent of apoE genotype. We further showed the efficacy of a multimodal translational approach, including advanced MR neuroimaging, to study dietary intervention on brain structure and function in aging.

  17. Efficacy of Spirulina platensis in improvement of the reproductive performance and easing teratogenicity in hyperglycemic albino mice

    Directory of Open Access Journals (Sweden)

    Pranay Punj Pankaj

    2015-01-01

    Full Text Available Objectives: The present study evaluates the therapeutic efficacy of cell suspension of Spirulina platensis (SP on estrous cycle, fetal development and embryopathy in alloxan (AXN induced hyperglycemic mice. Materials and Methods: Diabetes was induced by intra-peritoneal administration of AXN. Mice with blood glucose level above 200 mg/dl were divided into Group I (control, Group II (diabetic control, Group III (diabetic control mice fed with SP, and Group IV (control mice fed with SP. Litter counts, estrous cycles, percent survival of litter, and gestation length were recorded. Results: In hyperglycemic mice, a significant (P < 0.05 increase in duration of diestrus (14.48%, estrus (84.21%, and metestrus (164.15% with concomitant decrease in proestrus phase by 26.13% was recorded when compared with control. Reduction in litter count and survival of litter was 68.67% and 88.38%, respectively, whereas gestation length increased to 14.51% day in diabetic mice, but recovery in these parameters was observed (P < 0.05 when subjected to SP treatment. SP resulted in increased fertility rate from 77.5% to 82.5% and dropped off resorption of the fetus to 33.73% while the survival rate of offspring of diabetic mice went up to 88.89% from 83.61%. Conclusions: These findings suggest that SP is effective in improving the reproductive performance and easing teratogenic effects in diabetic mice and hence warrants further detailed dose-dependent studies to understand its mechanism of action.

  18. Efficacy of Spirulina platensis in improvement of the reproductive performance and easing teratogenicity in hyperglycemic albino mice

    Science.gov (United States)

    Pankaj, Pranay Punj

    2015-01-01

    Objectives: The present study evaluates the therapeutic efficacy of cell suspension of Spirulina platensis (SP) on estrous cycle, fetal development and embryopathy in alloxan (AXN) induced hyperglycemic mice. Materials and Methods: Diabetes was induced by intra-peritoneal administration of AXN. Mice with blood glucose level above 200 mg/dl were divided into Group I (control), Group II (diabetic control), Group III (diabetic control mice fed with SP), and Group IV (control mice fed with SP). Litter counts, estrous cycles, percent survival of litter, and gestation length were recorded. Results: In hyperglycemic mice, a significant (P < 0.05) increase in duration of diestrus (14.48%), estrus (84.21%), and metestrus (164.15%) with concomitant decrease in proestrus phase by 26.13% was recorded when compared with control. Reduction in litter count and survival of litter was 68.67% and 88.38%, respectively, whereas gestation length increased to 14.51% day in diabetic mice, but recovery in these parameters was observed (P < 0.05) when subjected to SP treatment. SP resulted in increased fertility rate from 77.5% to 82.5% and dropped off resorption of the fetus to 33.73% while the survival rate of offspring of diabetic mice went up to 88.89% from 83.61%. Conclusions: These findings suggest that SP is effective in improving the reproductive performance and easing teratogenic effects in diabetic mice and hence warrants further detailed dose-dependent studies to understand its mechanism of action. PMID:26285837

  19. Bezafibrate ameliorates diabetes via reduced steatosis and improved hepatic insulin sensitivity in diabetic TallyHo mice

    Directory of Open Access Journals (Sweden)

    Andras Franko

    2017-03-01

    Conclusions: Our data showed that BEZ ameliorates diabetes probably via reduced steatosis, enhanced hepatic mitochondrial mass, improved metabolic flexibility and elevated hepatic insulin sensitivity in TallyHo mice, suggesting that BEZ treatment could be beneficial for patients with NAFLD and impaired glucose metabolism.

  20. Substrate Deprivation Therapy to Reduce Glycosaminoglycan Synthesis Improves Aspects of Neurological and Skeletal Pathology in MPS I Mice

    Directory of Open Access Journals (Sweden)

    Ainslie L. K. Derrick-Roberts

    2017-02-01

    Full Text Available Mucopolysaccharidosis type I (MPS I is the most common form of the MPS group of genetic diseases. MPS I results from a deficiency in the lysosomal enzyme α-l-iduronidase, leading to accumulation of undegraded heparan and dermatan sulphate glycosaminoglycan (GAG chains in patient cells. MPS children suffer from multiple organ failure and die in their teens to early twenties. In particular, MPS I children also suffer from profound mental retardation and skeletal disease that restricts growth and movement. Neither brain nor skeletal disease is adequately treated by current therapy approaches. To overcome these barriers to effective therapy we have developed and tested a treatment called substrate deprivation therapy (SDT. MPS I knockout mice were treated with weekly intravenous injections of 1 mg/kg rhodamine B for six months to assess the efficacy of SDT. Mice were assessed using biochemistry, micro-CT and a battery of behaviour tests to determine the outcome of treatment. A reduction in female bodyweight gain was observed with the treatment as well as a decrease in lung GAG. Behavioural studies showed slight improvements in inverted grid and significant improvements in learning ability for female MPS I mice treated with rhodamine B. Skeletal disease also improved with a reduction in bone mineral volume observed. Overall, rhodamine B is safe to administer to MPS I knockout mice where it had an effect on improving aspects of neurological and skeletal disease symptoms and may therefore provide a potential therapy or adjunct therapy for MPS I patients.

  1. The use of protein hydrolysate improves the protein intestinal absorption in undernourished mice infected with Schistosoma mansoni

    Directory of Open Access Journals (Sweden)

    Coutinho Eridan M.

    2002-01-01

    Full Text Available Patients residing in endemic areas for schistosomiasis in Brazil are usually undernourished and when they develop the hepatosplenic clinical form of the disease should usually receive hospital care, many of them being in need of nutritional rehabilitation before specific treatment can be undertaken. In the mouse model, investigations carried out in our laboratory detected a reduced aminoacid uptake in undernourished animals which is aggravated by a superimposed infection with Schistosoma mansoni. However, in well-nourished infected mice no dysfunction occurs. In this study, we tried to improve the absorptive intestinal performance of undernourished mice infected with S. mansoni by feeding them with hydrolysed casein instead of whole casein. The values obtained for the coefficient of protein intestinal absorption (cpia among well-nourished mice were above 90% (either hydrolysed or whole protein. In undernourished infected mice, however, the cpia improved significantly after feeding them with hydrolysed casein, animals reaching values close to those obtained in well-nourished infected mice.

  2. Growth hormone can improve insulin resistance and differentiation in pancreas of senescence accelerated prone male mice (SAMP8).

    Science.gov (United States)

    Cuesta, Sara; Kireev, Roman; Forman, Katherine; García, Cruz; Acuña, Darío; Vara, Elena; Tresguerres, Jesús A F

    2011-04-01

    The aim of the present study was to investigate the effect of aging on several parameters related to glucose metabolism, proliferation and differentiation in the pancreas and how GH administration to old SAMP8 mice could affect these parameters. Pancreas samples were obtained from two types of male mice models: senescence-accelerated prone (SAMP8) and senescence-accelerated-resistant (SAMR1) mice SAMP8 and SAMR1 mice and the influence of exogenous administration of GH (2mgs.c./kg/day) on SAMP8 mice. RNA was isolated from pancreas samples of male mice using the kit RNeasy total RNA kit Ref. 50974104 (Qiagen). Insulin was measured in plasma by RIA kit and glucose was measured in plasma by an assay kit. Aging decreases the expression of differentiation in the pancreas of Pdx-1, FoxO 1 and FoxO 3A but not of Sirt 1 or of the expression of the proliferative genes PCNA and Sei1. The expression of glucagon and GLUT2 were increased with aging and no differences were observed in somatostatin and insulin expressions. Insulin levels in plasma were increased with aging in SAMP8 mice. IGF-1 expression was reduced with aging. The treatment with GH was able to increase the expression of Sirt 1, Pdx-1, FoxO 3A and IGF-1. On the other hand, the treatment decreased the expression of glucagon, GLUT2, somatostatin and insulin, furthermore GH was able to decrease the plasma levels of insulin in old male SAMP8 mice (p<0.0004). The present study has shown that aging is associated with significant alterations in the relative expression of pancreatic genes involved in insulin secretion as well as in the differentiation and in the intra islet glucose metabolism. According to our results, GH administration to old SAMP8 mice was able to improve the pancreatic function of the old SAMP8 mice and to decrease insulin and glucagon expressions in the pancreas improving instead insulin levels and glucose metabolism. Copyright © 2010 Growth Hormone Research Society. Published by Elsevier Ltd. All

  3. Cannabinoid 2 Receptor Agonist Improves Systemic Sensitivity to Insulin in High-Fat Diet/Streptozotocin-Induced Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Xiuyuan Zhang

    2016-12-01

    Full Text Available Background/Aims: The endocannabinoid signalling (ECS system has been known to regulate glucose homeostasis. Previous studies have suggested that the cannabinoid 2 (CB2 receptor may play a regulatory role on insulin secretion, immune modulation and insulin resistance. Given that diabetes and insulin resistance are attributable to elevated inflammatory tone, we investigated the role of CB2 receptor on glucose tolerance and insulin sensitivity in high-fat diet (HFD/streptozotocin (STZ-induced mice. Methods: Diabetes was induced in male ICR mice by HFD/STZ and exposed to a CB2 receptor agonist, SER601, for 2- or 4-weeks via subcutaneous implantation of osmotic minipumps. Glucose and insulin tolerance tests were performed at the end of treatment. Islets were isolated for assessment of β-cell function. Pancreases and skeletal muscles were also obtained for histological analyses. Results: Despite a lack of impact on glucose tolerance, substantial improvement on insulin sensitivity was observed in SER601-treated mice, which could partly be attributed to improved islet β-cell function, shown as increased glucose-induced insulin secretion and insulin content. No changes on islet macrophage infiltration or skeletal muscle fat deposition were detectable from SER601-treated mice. However, a major decrease in body weight was recorded at the end of 4-week SER601 exposure, accompanied by a lack of epididymal adipose mass in SER601-treated mice. Conclusion: Our data suggest a lipolytic role of SER601 in HFD/STZ-induced diabetic mice, which results in significant improvement of systemic insulin sensitivity. Thus, the CB2 receptor may be considered a promising target for therapeutic development against insulin resistance and obesity-related diabetes.

  4. Matrix metalloproteinase-9 inhibition improves proliferation and engraftment of myogenic cells in dystrophic muscle of mdx mice.

    Directory of Open Access Journals (Sweden)

    Sajedah M Hindi

    Full Text Available Duchenne muscular dystrophy (DMD caused by loss of cytoskeletal protein dystrophin is a devastating disorder of skeletal muscle. Primary deficiency of dystrophin leads to several secondary pathological changes including fiber degeneration and regeneration, extracellular matrix breakdown, inflammation, and fibrosis. Matrix metalloproteinases (MMPs are a group of extracellular proteases that are involved in tissue remodeling, inflammation, and development of interstitial fibrosis in many disease states. We have recently reported that the inhibition of MMP-9 improves myopathy and augments myofiber regeneration in mdx mice (a mouse model of DMD. However, the mechanisms by which MMP-9 regulates disease progression in mdx mice remain less understood. In this report, we demonstrate that the inhibition of MMP-9 augments the proliferation of satellite cells in dystrophic muscle. MMP-9 inhibition also causes significant reduction in percentage of M1 macrophages with concomitant increase in the proportion of promyogenic M2 macrophages in mdx mice. Moreover, inhibition of MMP-9 increases the expression of Notch ligands and receptors, and Notch target genes in skeletal muscle of mdx mice. Furthermore, our results show that while MMP-9 inhibition augments the expression of components of canonical Wnt signaling, it reduces the expression of genes whose products are involved in activation of non-canonical Wnt signaling in mdx mice. Finally, the inhibition of MMP-9 was found to dramatically improve the engraftment of transplanted myoblasts in skeletal muscle of mdx mice. Collectively, our study suggests that the inhibition of MMP-9 is a promising approach to stimulate myofiber regeneration and improving engraftment of muscle progenitor cells in dystrophic muscle.

  5. Methylene Blue Modulates β-Secretase, Reverses Cerebral Amyloidosis, and Improves Cognition in Transgenic Mice*

    Science.gov (United States)

    Mori, Takashi; Koyama, Naoki; Segawa, Tatsuya; Maeda, Masahiro; Maruyama, Nobuhiro; Kinoshita, Noriaki; Hou, Huayan; Tan, Jun; Town, Terrence

    2014-01-01

    Amyloid precursor protein (APP) proteolysis is required for production of amyloid-β (Aβ) peptides that comprise β-amyloid plaques in the brains of patients with Alzheimer disease (AD). Here, we tested whether the experimental agent methylene blue (MB), used for treatment of methemoglobinemia, might improve AD-like pathology and behavioral deficits. We orally administered MB to the aged transgenic PSAPP mouse model of cerebral amyloidosis and evaluated cognitive function and cerebral amyloid pathology. Beginning at 15 months of age, animals were gavaged with MB (3 mg/kg) or vehicle once daily for 3 months. MB treatment significantly prevented transgene-associated behavioral impairment, including hyperactivity, decreased object recognition, and defective spatial working and reference memory, but it did not alter nontransgenic mouse behavior. Moreover, brain parenchymal and cerebral vascular β-amyloid deposits as well as levels of various Aβ species, including oligomers, were mitigated in MB-treated PSAPP mice. These effects occurred with inhibition of amyloidogenic APP proteolysis. Specifically, β-carboxyl-terminal APP fragment and β-site APP cleaving enzyme 1 protein expression and activity were attenuated. Additionally, treatment of Chinese hamster ovary cells overexpressing human wild-type APP with MB significantly decreased Aβ production and amyloidogenic APP proteolysis. These results underscore the potential for oral MB treatment against AD-related cerebral amyloidosis by modulating the amyloidogenic pathway. PMID:25157105

  6. Fucoidan Supplementation Improves Exercise Performance and Exhibits Anti-Fatigue Action in Mice

    Directory of Open Access Journals (Sweden)

    Yi-Ming Chen

    2014-12-01

    Full Text Available Fucoidan (FCD is a well-known bioactive constituent of seaweed extract that possess a wide spectrum of activities in biological systems, including anti-cancer, anti-inflammation and modulation of immune systems. However, evidence on the effects of FCD on exercise performance and physical fatigue is limited. Therefore, we investigated the potential beneficial effects of FCD on ergogenic and anti-fatigue functions following physiological challenge. Male ICR mice from three groups (n = 8 per group were orally administered FCD for 21 days at 0, 310 and 620 mg/kg/day, which were, respectively, designated the vehicle, FCD-1X and FCD-2X groups. The results indicated that the FCD supplementations increased the grip strength (p = 0.0002 and endurance swimming time (p = 0.0195 in a dose-depend manner. FCD treatments also produced dose-dependent decreases in serum levels of lactate (p < 0.0001 and ammonia (p = 0.0025, and also an increase in glucose level (p < 0.0001 after the 15-min swimming test. In addition, FCD supplementation had few subchronic toxic effects. Therefore, we suggest that long-term supplementation with FCD can have a wide spectrum of bioactivities on health promotion, performance improvement and anti-fatigue.

  7. Lactobacillus plantarum TWK10 Supplementation Improves Exercise Performance and Increases Muscle Mass in Mice

    Directory of Open Access Journals (Sweden)

    Yi-Ming Chen

    2016-04-01

    Full Text Available Lactobacillus plantarum (L. plantarum is a well-known probiotic among the ingested-microorganism probiotics (i.e., ingested microorganisms associated with beneficial effects for the host. However, few studies have examined the effects of L. plantarum TWK10 (LP10 supplementation on exercise performance, physical fatigue, and gut microbial profile. Male Institute of Cancer Research (ICR strain mice were divided into three groups (n = 8 per group for oral administration of LP10 for six weeks at 0, 2.05 × 108, or 1.03 × 109 colony-forming units/kg/day, designated the vehicle, LP10-1X and LP10-5X groups, respectively. LP10 significantly decreased final body weight and increased relative muscle weight (%. LP10 supplementation dose-dependently increased grip strength (p < 0.0001 and endurance swimming time (p < 0.001 and decreased levels of serum lactate (p < 0.0001, ammonia (p < 0.0001, creatine kinase (p = 0.0118, and glucose (p = 0.0151 after acute exercise challenge. The number of type I fibers (slow muscle in gastrocnemius muscle significantly increased with LP10 treatment. In addition, serum levels of albumin, blood urea nitrogen, creatinine, and triacylglycerol significantly decreased with LP10 treatment. Long-term supplementation with LP10 may increase muscle mass, enhance energy harvesting, and have health-promotion, performance-improvement, and anti-fatigue effects.

  8. Curcumin Treatment Improves Motor Behavior in α-Synuclein Transgenic Mice.

    Directory of Open Access Journals (Sweden)

    Kateri J Spinelli

    Full Text Available The curry spice curcumin plays a protective role in mouse models of neurodegenerative diseases, and can also directly modulate aggregation of α-synuclein protein in vitro, yet no studies have described the interaction of curcumin and α-synuclein in genetic synucleinopathy mouse models. Here we examined the effect of chronic and acute curcumin treatment in the Syn-GFP mouse line, which overexpresses wild-type human α-synuclein protein. We discovered that curcumin diet intervention significantly improved gait impairments and resulted in an increase in phosphorylated forms of α-synuclein at cortical presynaptic terminals. Acute curcumin treatment also caused an increase in phosphorylated α-synuclein in terminals, but had no direct effect on α-synuclein aggregation, as measured by in vivo multiphoton imaging and Proteinase-K digestion. Using LC-MS/MS, we detected ~5 ng/mL and ~12 ng/mL free curcumin in the plasma of chronic or acutely treated mice, with a glucuronidation rate of 94% and 97%, respectively. Despite the low plasma levels and extensive metabolism of curcumin, these results show that dietary curcumin intervention correlates with significant behavioral and molecular changes in a genetic synucleinopathy mouse model that mimics human disease.

  9. Hepatic Cholesterol-25-Hydroxylase Overexpression Improves Systemic Insulin Sensitivity in Mice.

    Science.gov (United States)

    Noebauer, Britta; Jais, Alexander; Todoric, Jelena; Gossens, Klaus; Sutterlüty-Fall, Hedwig; Einwallner, Elisa

    2017-01-01

    Obesity is a major risk factor for several diseases including diabetes, heart disease, and some forms of cancer and due to its rapidly increasing prevalence it has become one of the biggest problems medicine is facing today. All the more surprising, a substantial percentage of obese patients are metabolically healthy when classified based on insulin resistance and systemic inflammation. Oxysterols are naturally occurring molecules that play important role in various metabolic and inflammatory processes and their levels are elevated in patients suffering from obesity and diabetes. 25-Hydroxycholesterol (25-OHC) is produced in cells from cholesterol by the enzyme cholesterol 25-hydroxylase (Ch25h) and is involved in lipid metabolism, inflammatory processes, and cell proliferation. Here, we investigated the role of hepatic Ch25h in the transition from metabolically healthy obesity to insulin resistance and diabetes. Using several different experimental approaches, we demonstrated the significance of Ch25h on the border of "healthy" and "diseased" states of obesity. Adenovirus-mediated Ch25h overexpression in mice improved glucose tolerance and insulin sensitivity and lowered HOMA-IR. Our data suggest that low hepatic Ch25h levels could be considered a risk marker for unhealthy obesity.

  10. Salubrinal improves mechanical properties of the femur in osteogenesis imperfecta mice.

    Science.gov (United States)

    Takigawa, Shinya; Frondorf, Brian; Liu, Shengzhi; Liu, Yang; Li, Baiyan; Sudo, Akihiro; Wallace, Joseph M; Yokota, Hiroki; Hamamura, Kazunori

    2016-10-01

    Salubrinal is an agent that reduces the stress to the endoplasmic reticulum by inhibiting de-phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α). We and others have previously shown that the elevated phosphorylation of eIF2α stimulates bone formation and attenuates bone resorption. In this study, we applied salubrinal to a mouse model of osteogenesis imperfecta (Oim), and examined whether it would improve Oim's mechanical property. We conducted in vitro experiments using RAW264.7 pre-osteoclasts and bone marrow derived cells (BMDCs), and performed in vivo administration of salubrinal to Oim (+/-) mice. The animal study included two control groups (wildtype and Oim placebo). The result revealed that salubrinal decreased expression of nuclear factor of activated T cells cytoplasmic 1 (NFATc1) and suppressed osteoclast maturation, and it stimulated mineralization of mesenchymal stem cells from BMDCs. Furthermore, daily injection of salubrinal at 2 mg/kg for 2 months made stiffness (N/mm) and elastic module (GPa) of the femur undistinguishable to those of the wildtype control. Collectively, this study supported salubrinal's beneficial role to Oim's femora. Unlike bisphosphonates, salubrinal stimulates bone formation. For juvenile OI patients who may favor strengthening bone without inactivating bone remodeling, salubrinal may present a novel therapeutic option. Copyright © 2016 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  11. Loganin improves learning and memory impairments induced by scopolamine in mice.

    Science.gov (United States)

    Kwon, Seung-Hwan; Kim, Hyoung-Chun; Lee, Seok-Yong; Jang, Choon-Gon

    2009-10-01

    Loganin is an iridoid glycoside found in the Flos lonicerae, Fruit cornus, and Strychonos nux vomica. We investigated the effect of loganin on learning and memory impairments induced by scopolamine (0.5mg/kg, i.p.), a muscarinic antagonist, using the Y-maze, passive avoidance, and the Morris water maze tests in mice. In the Y-maze test, loganin (40 mg/kg, p.o.) significantly improved the scopolamine-induced memory impairment. In addition, loganin (20 and 40 mg/kg, p.o.) significantly reversed scopolamine-induced impairments measured by the passive avoidance and the Morris water maze tests. A day after the last trial session of the Morris water maze test (probe trial session), loganin (20 and 40 mg/kg) dose-dependently increased the latency time in the target quadrant. Furthermore, loganin significantly inhibited acetylcholinesterase activity in the hippocampus and frontal cortex. Loganin may have anti-amnesic activity that may hold significant therapeutic value in alleviating certain memory impairments observed in Alzheimer's disease.

  12. Erythrocytes encapsulated with phenylalanine hydroxylase exhibit improved pharmacokinetics and lowered plasma phenylalanine levels in normal mice.

    Science.gov (United States)

    Yew, Nelson S; Dufour, Emmanuelle; Przybylska, Malgorzata; Putelat, Julie; Crawley, Cristin; Foster, Meta; Gentry, Sarah; Reczek, David; Kloss, Alla; Meyzaud, Aurélien; Horand, Françoise; Cheng, Seng H; Godfrin, Yann

    2013-08-01

    Enzyme replacement therapy is often hampered by the rapid clearance and degradation of the administered enzyme, limiting its efficacy and requiring frequent dosing. Encapsulation of therapeutic molecules into red blood cells (RBCs) is a clinically proven approach to improve the pharmacokinetics and efficacy of biologics and small molecule drugs. Here we evaluated the ability of RBCs encapsulated with phenylalanine hydroxylase (PAH) to metabolize phenylalanine (Phe) from the blood and confer sustained enzymatic activity in the circulation. Significant quantities of PAH were successfully encapsulated within murine RBCs (PAH-RBCs) with minimal loss of endogenous hemoglobin. While intravenously administered free PAH enzyme was rapidly eliminated from the blood within a few hours, PAH-RBCs persisted in the circulation for at least 10days. A single injection of PAH-RBCs was able to decrease Phe levels by nearly 80% in normal mice. These results demonstrate the ability of enzyme-loaded RBCs to metabolize circulating amino acids and highlight the potential to treat disorders of amino acid metabolism.

  13. CD28 deletion improves obesity-induced liver steatosis but increases adiposity in mice.

    Science.gov (United States)

    Poggi, M; Morin, S O; Bastelica, D; Govers, R; Canault, M; Bernot, D; Georgelin, O; Verdier, M; Burcelin, R; Olive, D; Alessi, M-C; Peiretti, F; Nunès, J A

    2015-06-01

    Lymphocytes have a critical role in visceral adipose tissue (AT) inflammation. The CD28 costimulatory molecule is required for lymphocyte activation and for the development of a functional regulatory T cells (Tregs) compartment; however, its role during obesity is unknown. During diet-induced obesity, we investigated the effects of selective interference with CD28 signaling using knockout mice (Cd28KO) and a CTLA4-Ig fusion protein inhibiting CD28-B7 interactions. Cd28 deficiency decreased pathogenic T cells and Treg content within AT without changing the macrophages number. Cd28KO epididymal but not subcutaneous fat was characterized by enlarged adipocytes, reduced levels of inflammatory cytokines and increased Glut4, adiponectin and lipogenic enzyme mRNA levels. This was associated with reduced inflammation, fat accumulation and enhanced glucose metabolism in liver. Weight gain and fasting glucose tolerance were not affected. CTLA4-Ig injections reduced the number of T cells in epididymal AT (epiAT) but not the inflammatory cytokines levels and failed to improve liver fat accumulation. Deletion of CD28 creates a new pro/anti-inflammatory balance in epiAT and liver and exerts a protective effect against hepatic steatosis.

  14. Hepatic Cholesterol-25-Hydroxylase Overexpression Improves Systemic Insulin Sensitivity in Mice

    Directory of Open Access Journals (Sweden)

    Britta Noebauer

    2017-01-01

    Full Text Available Obesity is a major risk factor for several diseases including diabetes, heart disease, and some forms of cancer and due to its rapidly increasing prevalence it has become one of the biggest problems medicine is facing today. All the more surprising, a substantial percentage of obese patients are metabolically healthy when classified based on insulin resistance and systemic inflammation. Oxysterols are naturally occurring molecules that play important role in various metabolic and inflammatory processes and their levels are elevated in patients suffering from obesity and diabetes. 25-Hydroxycholesterol (25-OHC is produced in cells from cholesterol by the enzyme cholesterol 25-hydroxylase (Ch25h and is involved in lipid metabolism, inflammatory processes, and cell proliferation. Here, we investigated the role of hepatic Ch25h in the transition from metabolically healthy obesity to insulin resistance and diabetes. Using several different experimental approaches, we demonstrated the significance of Ch25h on the border of “healthy” and “diseased” states of obesity. Adenovirus-mediated Ch25h overexpression in mice improved glucose tolerance and insulin sensitivity and lowered HOMA-IR. Our data suggest that low hepatic Ch25h levels could be considered a risk marker for unhealthy obesity.

  15. The inflammatory stimulus of a natural latex biomembrane improves healing in mice

    NARCIS (Netherlands)

    Andrade, T.A.M.; Iyer, A.; Das, P.K.; Foss, N.T.; Garcia, S.B.; Coutinho-Netto, J.; Jordão-Jr., A.A.; Frade, M.A.C.

    2011-01-01

    The aim of the present study was to compare healing obtained with biomembranes with the natural healing process (sham) using biochemical and immunohistological assays. C57BL/6 mice were divided into 4 groups of 15 mice each and received different subcutaneous implants: natural latex biomembrane

  16. The inflammatory stimulus of a natural latex biomembrane improves healing in mice

    NARCIS (Netherlands)

    Andrade, T.A.M.; Iyer, A.; Das, P.K.; Foss, N.T.; Garcia, S.B.; Coutinho-Netto, J.; Jordão-Jr., A.A.; Frade, M.A.C.

    2011-01-01

    The aim of the present study was to compare healing obtained with biomembranes with the natural healing process (sham) using biochemical and immunohistological assays. C57BL/6 mice were divided into 4 groups of 15 mice each and received different subcutaneous implants: natural latex biomembrane (NLB

  17. Oral 2-oleyl glyceryl ether improves glucose tolerance in mice through the GPR119 receptor

    DEFF Research Database (Denmark)

    Hassing, H A; Engelstoft, M S; Sichlau, R M

    2016-01-01

    abolished the hormone release. Similarly, in isolated primary colonic crypt cultures from WT mice, GPR119 was required for 2-OG-stimulated GLP-1 release while there was no response in crypts from KO mice. In vivo, gavage with 2-oleyl glyceryl ether ((2-OG ether), a stable 2-OG analog with a potency of 5.3 µ...

  18. Improved survival of TNF-deficient mice during the zymosan-induced multiple organ dysfunction syndrome.

    NARCIS (Netherlands)

    Volman, T.J.H.; Hendriks, T.; Verhofstad, A.A.J.; Kullberg, B.J.; Goris, R.J.A.

    2002-01-01

    The purpose of the study was to investigate the course of the zymosan-induced multiple organ dysfunction syndrome (MODS) in the absence of tumor necrosis factor (TNF) in a murine model. Tumor Necrosis Factor-alpha-lymphotoxin-a knockout (TNF/LT-/-) mice (n = 36) and wild-type (TNF/LT+/+) mice (n =

  19. Irradiated brown dwarfs

    CERN Document Server

    Casewell, S L; Lawrie, K A; Maxted, P F L; Dobbie, P D; Napiwotzki, R

    2014-01-01

    We have observed the post common envelope binary WD0137-349 in the near infrared $J$, $H$ and $K$ bands and have determined that the photometry varies on the system period (116 min). The amplitude of the variability increases with increasing wavelength, indicating that the brown dwarf in the system is likely being irradiated by its 16500 K white dwarf companion. The effect of the (primarily) UV irradiation on the brown dwarf atmosphere is unknown, but it is possible that stratospheric hazes are formed. It is also possible that the brown dwarf (an L-T transition object) itself is variable due to patchy cloud cover. Both these scenarios are discussed, and suggestions for further study are made.

  20. Capsaicin Supplementation Reduces Physical Fatigue and Improves Exercise Performance in Mice

    Science.gov (United States)

    Hsu, Yi-Ju; Huang, Wen-Ching; Chiu, Chien-Chao; Liu, Yan-Lin; Chiu, Wan-Chun; Chiu, Chun-Hui; Chiu, Yen-Shuo; Huang, Chi-Chang

    2016-01-01

    Chili pepper is used as a food, seasoning and has been revered for its medicinal and health claims. It is very popular and is the most common spice worldwide. Capsaicin (CAP) is a major pungent and bioactive phytochemical in chili peppers. CAP has been shown to improve mitochondrial biogenesis and adenosine triphosphate (ATP) production. However, there is limited evidence around the effects of CAP on physical fatigue and exercise performance. The purpose of this study was to evaluate the potential beneficial effects of CAP on anti-fatigue and ergogenic functions following physiological challenge. Female Institute of Cancer Research (ICR) mice from four groups (n = 8 per group) were orally administered CAP for 4 weeks at 0, 205, 410, and 1025 mg/kg/day, which were respectively designated the vehicle, CAP-1X, CAP-2X, and CAP-5X groups. The anti-fatigue activity and exercise performance was evaluated using forelimb grip strength, exhaustive swimming time, and levels of serum lactate, ammonia, glucose, BUN (blood urea nitrogen) and creatine kinase (CK) after a 15-min swimming exercise. The grip strength and exhaustive swimming time of the CAP-5X group were significantly higher than other groups. CAP supplementation dose-dependently reduced serum lactate, ammonia, BUN and CK levels, and increased glucose concentration after the 15-min swimming test. In addition, CAP also increased hepatic glycogen content, an important energy source for exercise. The possible mechanism was relevant to energy homeostasis and the physiological modulations by CAP supplementation. Therefore, our results suggest that CAP supplementation may have a wide spectrum of bioactivities for promoting health, performance improvement and fatigue amelioration. PMID:27775591

  1. Capsaicin Supplementation Reduces Physical Fatigue and Improves Exercise Performance in Mice.

    Science.gov (United States)

    Hsu, Yi-Ju; Huang, Wen-Ching; Chiu, Chien-Chao; Liu, Yan-Lin; Chiu, Wan-Chun; Chiu, Chun-Hui; Chiu, Yen-Shuo; Huang, Chi-Chang

    2016-10-20

    Chili pepper is used as a food, seasoning and has been revered for its medicinal and health claims. It is very popular and is the most common spice worldwide. Capsaicin (CAP) is a major pungent and bioactive phytochemical in chili peppers. CAP has been shown to improve mitochondrial biogenesis and adenosine triphosphate (ATP) production. However, there is limited evidence around the effects of CAP on physical fatigue and exercise performance. The purpose of this study was to evaluate the potential beneficial effects of CAP on anti-fatigue and ergogenic functions following physiological challenge. Female Institute of Cancer Research (ICR) mice from four groups (n = 8 per group) were orally administered CAP for 4 weeks at 0, 205, 410, and 1025 mg/kg/day, which were respectively designated the vehicle, CAP-1X, CAP-2X, and CAP-5X groups. The anti-fatigue activity and exercise performance was evaluated using forelimb grip strength, exhaustive swimming time, and levels of serum lactate, ammonia, glucose, BUN (blood urea nitrogen) and creatine kinase (CK) after a 15-min swimming exercise. The grip strength and exhaustive swimming time of the CAP-5X group were significantly higher than other groups. CAP supplementation dose-dependently reduced serum lactate, ammonia, BUN and CK levels, and increased glucose concentration after the 15-min swimming test. In addition, CAP also increased hepatic glycogen content, an important energy source for exercise. The possible mechanism was relevant to energy homeostasis and the physiological modulations by CAP supplementation. Therefore, our results suggest that CAP supplementation may have a wide spectrum of bioactivities for promoting health, performance improvement and fatigue amelioration.

  2. Capsaicin Supplementation Reduces Physical Fatigue and Improves Exercise Performance in Mice

    Directory of Open Access Journals (Sweden)

    Yi-Ju Hsu

    2016-10-01

    Full Text Available Chili pepper is used as a food, seasoning and has been revered for its medicinal and health claims. It is very popular and is the most common spice worldwide. Capsaicin (CAP is a major pungent and bioactive phytochemical in chili peppers. CAP has been shown to improve mitochondrial biogenesis and adenosine triphosphate (ATP production. However, there is limited evidence around the effects of CAP on physical fatigue and exercise performance. The purpose of this study was to evaluate the potential beneficial effects of CAP on anti-fatigue and ergogenic functions following physiological challenge. Female Institute of Cancer Research (ICR mice from four groups (n = 8 per group were orally administered CAP for 4 weeks at 0, 205, 410, and 1025 mg/kg/day, which were respectively designated the vehicle, CAP-1X, CAP-2X, and CAP-5X groups. The anti-fatigue activity and exercise performance was evaluated using forelimb grip strength, exhaustive swimming time, and levels of serum lactate, ammonia, glucose, BUN (blood urea nitrogen and creatine kinase (CK after a 15-min swimming exercise. The grip strength and exhaustive swimming time of the CAP-5X group were significantly higher than other groups. CAP supplementation dose-dependently reduced serum lactate, ammonia, BUN and CK levels, and increased glucose concentration after the 15-min swimming test. In addition, CAP also increased hepatic glycogen content, an important energy source for exercise. The possible mechanism was relevant to energy homeostasis and the physiological modulations by CAP supplementation. Therefore, our results suggest that CAP supplementation may have a wide spectrum of bioactivities for promoting health, performance improvement and fatigue amelioration.

  3. N-Acetylmannosamine improves sleep-wake quality in middle-aged mice: relevance to autonomic nervous function.

    Science.gov (United States)

    Kuwahara, Masayoshi; Ito, Koichi; Hayakawa, Koji; Yagi, Shintaro; Shiota, Kunio

    2015-01-01

    Aging is associated with a variety of physiological changes originating peripherally and centrally, including within the autonomic nervous system. Sleep-wake disturbances constitute reliable hallmarks of aging in several animal species and humans. Recent studies have been interested in N-acetylmannosamine (ManNAc) a potential therapeutic agent for improving quality of life, as well as preventing age-related cognitive decline. In this study, ManNAc (5.0 mg/ml) was administered in the drinking water of middle-aged male C57BL/6J mice (55 weeks old) for 7 days. Mice were housed under a 12:12 h light:dark cycle at 23-24 °C. We evaluated bio-behavioral activity using electrocardiogram, body temperature and locomotor activity recorded by an implanted telemetry transmitter. To estimate sleep-wake profile, surface electroencephalogram and electromyogram leads connected to a telemetry transmitter were also implanted in mice. Autonomic nervous activity was evaluated using power spectral analysis of heart rate variability. ManNAc-treated mice spent more time in a wakeful state and less time in slow wave sleep during the dark phase. Parasympathetic nervous activity was increased following ManNAc treatment, then the sympatho-vagal balance was shifted predominance of parasympathetic nervous system. Furthermore, improvement in sleep-wake pattern was associated with increased parasympathetic nervous activity. These results suggest that ManNAc treatment can improve bio-behavioral activity and sleep-wake quality in middle-aged mice. This may have implications for improving sleep patterns in elderly humans.

  4. Simvastatin improves cerebrovascular function and counters soluble amyloid-beta, inflammation and oxidative stress in aged APP mice.

    Science.gov (United States)

    Tong, Xin-Kang; Nicolakakis, Nektaria; Fernandes, Priscilla; Ongali, Brice; Brouillette, Jonathan; Quirion, Rémi; Hamel, Edith

    2009-09-01

    Cerebrovascular dysfunctions appear to contribute to Alzheimer's disease (AD) pathogenesis and the associated cognitive decline. Recently, it has been suggested that statins could be beneficial to AD patients independently from their cholesterol-lowering effects. Using 10 month-old amyloid precursor protein transgenic mice (APP mice), we sought to reverse cerebrovascular, neuronal and memory impairments with simvastatin (20 mg/kg/day, 8 weeks). Simvastatin improved reactivity of cerebral arteries, rescued the blood flow response to neuronal activation, attenuated oxidative stress and inflammation, and reduced cortical soluble amyloid-beta (Abeta) levels and the number of Abeta plaque-related dystrophic neurites. However, at such an advanced stage of the pathology, it failed to reduce Abeta plaque load and normalize cholinergic and memory deficits. These findings demonstrate that low-dose simvastatin treatment in aged APP mice largely salvages cerebrovascular function and has benefits on several AD landmarks, which could explain some of the positive effects of statins reported in AD patients.

  5. Ampicillin-Improved Glucose Tolerance in Diet-Induced Obese C57BL/6NTac Mice Is Age Dependent

    DEFF Research Database (Denmark)

    Rune, I.; Hansen, C. H. F.; Ellekilde, M.;

    2013-01-01

    at different ages or not at all. We found that both diet and Ampicillin significantly changed the gut microbiota composition in the animals. Furthermore, there was a significant improvement in glucose tolerance in Ampicillin-treated, five-week-old mice compared to nontreated mice in the control group. At study...... in high-fat diet mice, and a lower tolerogenic dendritic cell percentage was found both in relation to high-fat diet and late Ampicillin treatment. The results support our hypothesis that a "window" exists early in life in which an alteration of the gut microbiota affects glucose tolerance as well...... as development of gut immunity and that this window may disappear after weaning....

  6. Lentivirus-ABCG1 instillation reduces lipid accumulation and improves lung compliance in GM-CSF knock-out mice

    Energy Technology Data Exchange (ETDEWEB)

    Malur, Anagha; Huizar, Isham [Program in Lung Cell Biology and Translational Research, Division of Pulmonary, Critical Care and Sleep Medicine, East Carolina University, Greenville, NC (United States); Wells, Greg [Department of Microbiology and Immunology, East Carolina University, Greenville, NC (United States); Barna, Barbara P. [Program in Lung Cell Biology and Translational Research, Division of Pulmonary, Critical Care and Sleep Medicine, East Carolina University, Greenville, NC (United States); Malur, Achut G. [Department of Microbiology and Immunology, East Carolina University, Greenville, NC (United States); Thomassen, Mary Jane, E-mail: thomassenm@ecu.edu [Program in Lung Cell Biology and Translational Research, Division of Pulmonary, Critical Care and Sleep Medicine, East Carolina University, Greenville, NC (United States); Department of Microbiology and Immunology, East Carolina University, Greenville, NC (United States)

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Lentivirus-ABCG1 reduces lipid accumulation in lungs of GM-CSF knock-out mice. Black-Right-Pointing-Pointer Up-regulation of ABCG1 improves lung function. Black-Right-Pointing-Pointer Upregulation of ABCG1 improves surfactant metabolism. -- Abstract: We have shown decreased expression of the nuclear transcription factor, peroxisome proliferator-activated receptor-gamma (PPAR{gamma}) and the PPAR{gamma}-regulated ATP-binding cassette transporter G1 (ABCG1) in alveolar macrophages from patients with pulmonary alveolar proteinosis (PAP). PAP patients also exhibit neutralizing antibodies to granulocyte-macrophage colony stimulating factor (GM-CSF), an upregulator of PPAR{gamma}. In association with functional GM-CSF deficiency, PAP lung is characterized by surfactant-filled alveolar spaces and lipid-filled alveolar macrophages. Similar pathology characterizes GM-CSF knock-out (KO) mice. We reported previously that intratracheal instillation of a lentivirus (lenti)-PPAR{gamma} plasmid into GM-CSF KO animals elevated ABCG1 and reduced alveolar macrophage lipid accumulation. Here, we hypothesized that instillation of lenti-ABCG1 might be sufficient to decrease lipid accumulation and improve pulmonary function in GM-CSF KO mice. Animals received intratracheal instillation of lenti-ABCG1 or control lenti-enhanced Green Fluorescent Protein (eGFP) plasmids and alveolar macrophages were harvested 10 days later. Alveolar macrophage transduction efficiency was 79% as shown by lenti-eGFP fluorescence. Quantitative PCR analyses indicated a threefold (p = 0.0005) increase in ABCG1 expression with no change of PPAR{gamma} or ABCA1 in alveolar macrophages of lenti-ABCG1 treated mice. ABCG1 was unchanged in control lenti-eGFP and PBS-instilled groups. Oil Red O staining detected reduced intracellular neutral lipid in alveolar macrophages from lenti-ABCG1 treated mice. Extracellular cholesterol and phospholipids were also decreased as shown by

  7. The formation of brown adipose tissue induced by transgenic over-expression of PPARγ2.

    Science.gov (United States)

    Zhou, Ying; Yang, Jinzeng; Huang, Jinliang; Li, Ting; Xu, Dequan; Zuo, Bo; Hou, Liming; Wu, Wangjun; Zhang, Lin; Xia, Xiaoliang; Ma, Zhiyuan; Ren, Zhuqing; Xiong, Yuanzhu

    2014-04-18

    Brown adipose tissue (BAT) is specialized to dissipate energy as heat, therefore reducing fat deposition and counteracting obesity. Brown adipocytes arise from myoblastic progenitors during embryonic development by the action of transcription regulator PRDM16 binding to PPARγ, which promotes BAT-like phenotype in white adipose tissue. To investigate the capability of converting white adipose tissue to BAT or browning by PPARγ in vivo, we generated transgenic mice with over-expressed PPARγ2. The transgenic mice showed strong brown fat features in subcutaneous fat in morphology and histology. To provide molecular evidences on browning characteristics of the adipose tissue, we employed quantitative real-time PCR to determine BAT-specific gene expressions. The transgenic mice had remarkably elevated mRNA level of UCP1, Elovl3, PGC1α and Cebpα in subcutaneous fat. Compared with wild-type mice, UCP1 protein levels were increased significantly in transgenic mice. ATP concentration was slightly decreased in the subcutaneous fat of transgenic mice. Western blotting analysis also confirmed that phosphorylated AMPK and ACC proteins were significantly (P<0.01) increased in the transgenic mice. Therefore, this study demonstrated that over-expression of PPARγ2 in skeletal muscle can promote conversion of subcutaneous fat to brown fat formation, which can have beneficial effects on increasing energy metabolisms and combating obesity.

  8. Adjuvant TACE inhibitor treatment improves the outcome of TLR2-/- mice with experimental pneumococcal meningitis

    Directory of Open Access Journals (Sweden)

    Neumann Ulf

    2007-04-01

    Full Text Available Abstract Background Streptococcus (S. pneumoniae meningitis has a high lethality despite antibiotic treatment. Inflammation is a major pathogenetic factor, which is unresponsive to antibiotics. Therefore adjunctive therapies with antiinflammatory compounds have been developed. TNF484 is a TNF-alpha converting enzyme (TACE inhibitor and has been found efficacious in experimental meningitis. Toll-like receptor 2 (TLR2 contributes to host response in pneumococcal meningitis by enhancing bacterial clearing and downmodulating inflammation. In this study, TNF484 was applied in mice, which lacked TLR2 and exhibited a strong meningeal inflammation. Methods 103 CFU S. pneumoniae serotype 3 was inoculated subarachnoidally into C57BL/6 wild type (wt mice or TLR2-/-, CD14-/- and CD14-/-/TLR2-/- mice. Severity of disease and survival was followed over 9 days. Response to antibiotics (80 mg/kg ceftriaxone i.p. for 5 days and/or TACE inhibitor treatment (1 mg/kg s.c. twice daily for 4 days was evaluated. Animals were sacrificed after 12, 24, and 48 h for analysis of bacterial load in cerebrospinal fluid (CSF and brain and for TNF and leukocyte measurements in CSF. Results TLR2-/- mice were significantly sicker than the other mouse strains 24 h after infection. All knockout mice showed higher disease severity after 48 h and died earlier than wt mice. TNF release into CSF was significantly more elevated in TLR2-/- than in the other strains after 24 h. Brain bacterial numbers were significantly higher in all knockout than wt mice after 24 h. Modulation of outcome by antibiotic and TACE inhibitor treatment was evaluated. With antibiotic therapy all wt, CD14-/- and TLR2-/-/CD14-/- mice, but only 79% of TLR2-/- mice, were rescued. TACE inhibitor treatment alone did not rescue, but prolonged survival in wt mice, and in TLR2-/- and CD14-/- mice to the values observed in untreated wt mice. By combined antibiotic and TACE inhibitor treatment 95% of TLR2-/- mice were

  9. Myrciaria cauliflora extract improves diabetic nephropathy via suppression of oxidative stress and inflammation in streptozotocin-nicotinamide mice

    Directory of Open Access Journals (Sweden)

    Jeng-Dong Hsu

    2016-10-01

    Full Text Available Myrciaria cauliflora is a functional food rich in anthocyanins, possessing antioxidative and anti-inflammatory properties. Our previous results demonstrated M. cauliflora extract (MCE had beneficial effects in diabetic nephropathy (DN and via the inhibition of Ras/PI3K/Akt and kidney fibrosis-related proteins. The purpose of this study was to assess the benefit of MCE in diabetes associated with kidney inflammation and glycemic regulation in streptozotocin–nicotinamide (STZ/NA-induced diabetic mice. Compared with the untreated diabetic group, MCE significantly improved blood glucose and serum biochemical characteristic levels. Exposure to MCE increased antioxidative enzyme activity and diminished reactive oxygen synthesis. Mice receiving MCE supplementation had reduced intercellular adhesion molecule-1 (ICAM-1, vascular cell adhesion molecule-1 (VCAM-1, monocyte chemoattractant protein 1 (MCP-1, colony stimulating factor 1 (CSF-1, interleukin-1β (IL-1β, IL-6 and tumor necrosis factor α (TNF-α levels compared to the untreated diabetic mice. Inflammatory and fibrotic related proteins such as collagen IV, fibronectin, Janus kinase (JAK, phosphorylated signal transducer and activator of transcription 3 (STAT3, protein kinase C beta (PKC-β, and nuclear factor kappa B (NF-κB were also inhibited by MCE treatment in STZ/NA mice. These results suggest that MCE may be used as a hypoglycemic agent and antioxidant in Type 2 diabetic mice.

  10. Antioxidants Improve the Phenotypes of Dilated Cardiomyopathy and Muscle Fatigue in Mitochondrial Superoxide Dismutase-Deficient Mice

    Directory of Open Access Journals (Sweden)

    Takahiko Shimizu

    2013-01-01

    Full Text Available Redox imbalance elevates the reactive oxygen species (ROS level in cells and promotes age-related diseases. Superoxide dismutases (SODs are antioxidative enzymes that catalyze the degradation of ROS. There are three SOD isoforms: SOD1/CuZn-SOD, SOD2/Mn-SOD, and SOD3/EC-SOD. SOD2, which is localized in the mitochondria, is an essential enzyme required for mouse survival, and systemic knockout causes neonatal lethality in mice. To investigate the physiological function of SOD2 in adult mice, we generated a conditional Sod2 knockout mouse using a Cre-loxP system. When Sod2 was specifically deleted in the heart and muscle, all mice exhibited dilated cardiomyopathy (DCM and died by six months of age. On the other hand, when Sod2 was specifically deleted in the skeletal muscle, mice showed severe exercise disturbance without morphological abnormalities. These provide useful model of DCM and muscle fatigue. In this review, we summarize the impact of antioxidants, which were able to regulate mitochondrial superoxide generation and improve the phenotypes of the DCM and the muscle fatigue in mice.

  11. Histone deacetylase inhibitor, trichostatin A, improves learning and memory in high-fat diet-induced cognitive deficits in mice.

    Science.gov (United States)

    Sharma, Sorabh; Taliyan, Rajeev; Ramagiri, Shruti

    2015-05-01

    Metabolic syndrome is increasingly recognized for its effects on cognitive health. Recent studies have highlighted the role of histone deacetylases (HDACs) in metabolic syndrome and cognitive functions. The present study was designed to investigate the possible therapeutic role of a HDAC inhibitor, trichostatin A (TSA), in cognitive impairment associated with metabolic syndrome. To ascertain the mechanisms involved, we fed mice with high-fat diet (HFD) for 4 weeks and examined changes in behavioral and biochemical/oxidative stress markers. Mice subjected to HFD exhibited characteristic features of metabolic disorder, viz., hyperglycemia, hypertriglyceridemia, hypercholesterolemia, and lower high-density lipoprotein (HDL) cholesterol levels. Moreover, these mice showed severe deficits in learning and memory as assessed by the Morris water maze and passive avoidance tasks along with elevated oxidative stress and inflammatory markers in brain homogenates. The observed changes occurred concurrently with reduced brain-derived neurotrophic factor (BDNF). In contrast, the mice treated with the HDAC inhibitor, TSA (0.5 and 1 mg/kg, i.p.), showed a significant and dose-dependent reduction in serum glucose, triglycerides, and total cholesterol along with improvement in HDL-cholesterol levels and learning and memory performance. TSA treatment also results in alleviation of oxidative stress and neuroinflammatory markers. Moreover, TSA significantly augmented the BDNF levels in HFD-fed mice. Thus, based upon these observations, it may be suggested that HDAC inhibition could be a novel therapeutic strategy to combat cognitive impairment associated with metabolic syndrome.

  12. Endothelin-1 Overexpression Improves Renal Function in eNOS Knockout Mice

    Directory of Open Access Journals (Sweden)

    Oleg Tsuprykov

    2015-10-01

    Full Text Available Background/Aims: To investigate the renal phenotype under conditions of an activated renal ET-1 system in the status of nitric oxide deficiency, we compared kidney function and morphology in wild-type, ET-1 transgenic (ET+/+, endothelial nitric oxide synthase knockout (eNOS-/- and ET+/+eNOS-/- mice. Methods: We assessed blood pressure, parameters of renal morphology, plasma cystatin C, urinary protein excretion, expression of genes associated with glomerular filtration barrier and tissue remodeling, and plasma metabolites using metabolomics. Results: eNOS-/- and ET+/+eNOS-/- mice developed hypertension. Osteopontin, albumin and protein excretion were increased in eNOS-/- and restored in ET+/+eNOS-/- animals. All genetically modified mice developed renal interstitial fibrosis and glomerulosclerosis. Genes involved in tissue remodeling (serpine1, TIMP1, Col1a1, CCL2 were up-regulated in eNOS-/-, but not in ET+/+eNOS-/- mice. Plasma levels of free carnitine and acylcarnitines, amino acids, diacyl phosphatidylcholines, lysophosphatidylcholines and hexoses were descreased in eNOS-/- and were in the normal range in ET+/+eNOS-/- mice. Conclusion: eNOS-/- mice developed renal dysfunction, which was partially rescued by ET-1 overexpression in eNOS-/- mice. The metabolomics results suggest that ET-1 overexpression on top of eNOS knockout is associated with a functional recovery of mitochondria (rescue effect in β-oxidation of fatty acids and an increase in antioxidative properties (normalization of monounsaturated fatty acids levels.

  13. Ghrelin improves delayed gastrointestinal transit in alloxan-induced diabetic mice.

    Science.gov (United States)

    Qiu, Wen-Cai; Wang, Zhi-Gang; Lv, Ran; Wang, Wei-Gang; Han, Xiao-Dong; Yan, Jun; Wang, Yu; Zheng, Qi; Ai, Kai-Xing

    2008-04-28

    To investigate the effects of ghrelin on delayed gastrointestinal transit in alloxan-induced diabetic mice. A diabetic mouse model was established by intraperitoneal injection with alloxan. Mice were randomized into two main groups: normal mice group and diabetic mice group treated with ghrelin at doses of 0, 20, 50, 100 and 200 mug/kg ip. Gastric emptying (GE), intestinal transit (IT), and colonic transit (CT) were studied in mice after they had a phenol red meal following injection of ghrelin. Based on the most effective ghrelin dosage, atropine was given at 1 mg/kg 15 min before the ghrelin injection for each measurement. The mice in each group were sacrificed 20 min later and their stomachs, intestines, and colons were harvested immediately. The amount of phenol red was measured. Percentages of GE, IT, and CT were calculated. Percentages of GE, IT, and CT were significantly decreased in diabetic mice as compared to control mice (22.9 +/- 1.4 vs 28.1 +/- 1.3, 33.5 +/- 1.2 vs 43.2 +/- 1.9, 29.5 +/- 1.9 vs 36.3 +/- 1.6, P CT. The most effective dose of ghrelin was 100 mug/kg and atropine blocked the prokinetic effects of ghrelin on GE and IT. Ghrelin accelerates delayed GE and IT but has no effect on CT in diabetic mice. Ghrelin may exert its prokinetic effects via the cholinergic pathway in the enteric nervous system, and therefore has therapeutic potential for diabetic patients with delayed upper gastrointestinal transit.

  14. Faecalibacterium prausnitzii supernatant improves intestinal barrier function in mice DSS colitis.

    Science.gov (United States)

    Carlsson, Anders H; Yakymenko, Olena; Olivier, Isabelle; Håkansson, Fathima; Postma, Emily; Keita, Asa V; Söderholm, Johan D

    2013-10-01

    OBJECTIVE. The intestinal microbiota plays a substantial role in the pathogenesis of inflammatory bowel disease (IBD). Faecalibacterium prausnitzii (FP) is underrepresented in IBD patients and have been suggested to have anti-inflammatory effects in mice. Increased intestinal permeability is common in IBD but the relationship between FP and intestinal barrier function has not been investigated. Our aim was to study treatment with FP supernatant on intestinal barrier function in a dextran sodium sulfate (DSS) colitis mice model. MATERIAL AND METHODS. C57BL/6 mice received 3% DSS in tap water ad libitum during five days to induce colitis. From day 3 the mice received a daily gavage with FP supernatant or broth during seven days. Ileum and colon were mounted in Ussing chambers for permeability studies with (51)Cr-EDTA and Escherichia coli K-12. Colon was saved for Western blot analyses of tight junction proteins. RESULTS. DSS-treated mice showed significant weight loss and colon shortening. Gavage with FP supernatant resulted in a quicker recovery after DSS treatment and less extensive colonic shortening. Ileal mucosa of DSS mice showed a significant increase in (51)Cr-EDTA-passage compared to controls. (51)Cr-EDTA passage was significantly decreased in mice receiving FP supernatant. No significant differences were observed in passage of E. coli K12. Western blots showed a trend to increased claudin-1 and claudin-2 expressions in DSS mice. CONCLUSIONS. Supernatant of FP enhances the intestinal barrier function by affecting paracellular permeability, and may thereby attenuate the severity of DSS-induced colitis in mice. These findings suggest a potential role of FP in the treatment of IBD.

  15. New Breed of Mice May Improve Accuracy for Preclinical Testing of Cancer Drugs | Poster

    Science.gov (United States)

    A new breed of lab animals, dubbed “glowing head mice,” may do a better job than conventional mice in predicting the success of experimental cancer drugs—while also helping to meet an urgent need for more realistic preclinical animal models. The mice were developed to tolerate often-used light-emitting molecules, such as luciferase from fireflies and green fluorescent protein (GFP) from jellyfish. These “optical reporters” are useful for monitoring the effect of experimental therapies in live animals over time because they emit an immediate and easily detected light signal showing whether a tumor inside the animal’s body is shrinking as desired.

  16. Dihydrotestosterone ameliorates degeneration in muscle, axons and motoneurons and improves motor function in amyotrophic lateral sclerosis model mice.

    Directory of Open Access Journals (Sweden)

    Young-Eun Yoo

    Full Text Available Amyotrophic lateral sclerosis (ALS is a lethal disease characterized by a progressive loss of motoneurons. The clinical symptoms include skeletal muscle weakness and atrophy, which impairs motor performance and eventually leads to respiratory failure. We tested whether dihydrotestosterone (DHT, which has both anabolic effects on muscle and neuroprotective effects on axons and motoneurons, can ameliorate clinical symptoms in ALS. A silastic tube containing DHT crystals was implanted subcutaneously in SOD1-G93A mice at early symptomatic age when decreases in body weight and grip-strength were observed as compared to wild-type mice. DHT-treated SOD1-G93A mice demonstrated ameliorated muscle atrophy and increased body weight, which was associated with stronger grip-strength. DHT treatment increased the expression of insulin-like growth factor-1 in muscle, which can exert myotrophic as well as neurotrophic effects through retrograde transport. DHT treatment attenuated neuromuscular junction denervation, and axonal and motoneuron loss. DHT-treated SOD1-G93A mice demonstrated improvement in motor behavior as assessed by rota-rod and gait analyses, and an increased lifespan. Application of DHT is a relatively simple and non-invasive procedure, which may be translated into therapy to improve the quality of life for ALS patients.

  17. Dihydrotestosterone Ameliorates Degeneration in Muscle, Axons and Motoneurons and Improves Motor Function in Amyotrophic Lateral Sclerosis Model Mice

    Science.gov (United States)

    Yoo, Young-Eun; Ko, Chien-Ping

    2012-01-01

    Amyotrophic lateral sclerosis (ALS) is a lethal disease characterized by a progressive loss of motoneurons. The clinical symptoms include skeletal muscle weakness and atrophy, which impairs motor performance and eventually leads to respiratory failure. We tested whether dihydrotestosterone (DHT), which has both anabolic effects on muscle and neuroprotective effects on axons and motoneurons, can ameliorate clinical symptoms in ALS. A silastic tube containing DHT crystals was implanted subcutaneously in SOD1-G93A mice at early symptomatic age when decreases in body weight and grip-strength were observed as compared to wild-type mice. DHT-treated SOD1-G93A mice demonstrated ameliorated muscle atrophy and increased body weight, which was associated with stronger grip-strength. DHT treatment increased the expression of insulin-like growth factor-1 in muscle, which can exert myotrophic as well as neurotrophic effects through retrograde transport. DHT treatment attenuated neuromuscular junction denervation, and axonal and motoneuron loss. DHT-treated SOD1-G93A mice demonstrated improvement in motor behavior as assessed by rota-rod and gait analyses, and an increased lifespan. Application of DHT is a relatively simple and non-invasive procedure, which may be translated into therapy to improve the quality of life for ALS patients. PMID:22606355

  18. Enzyme replacement therapy rescues weakness and improves muscle pathology in mice with X-linked myotubular myopathy

    Science.gov (United States)

    Lawlor, Michael W.; Armstrong, Dustin; Viola, Marissa G.; Widrick, Jeffrey J.; Meng, Hui; Grange, Robert W.; Childers, Martin K.; Hsu, Cynthia P.; O'Callaghan, Michael; Pierson, Christopher R.; Buj-Bello, Anna; Beggs, Alan H.

    2013-01-01

    No effective treatment exists for patients with X-linked myotubular myopathy (XLMTM), a fatal congenital muscle disease caused by deficiency of the lipid phosphatase, myotubularin. The Mtm1δ4 and Mtm1 p.R69C mice model severely and moderately symptomatic XLMTM, respectively, due to differences in the degree of myotubularin deficiency. Contractile function of intact extensor digitorum longus (EDL) and soleus muscles from Mtm1δ4 mice, which produce no myotubularin, is markedly impaired. Contractile forces generated by chemically skinned single fiber preparations from Mtm1δ4 muscle were largely preserved, indicating that weakness was largely due to impaired excitation contraction coupling. Mtm1 p.R69C mice, which produce small amounts of myotubularin, showed impaired contractile function only in EDL muscles. Short-term replacement of myotubularin with a prototypical targeted protein replacement agent (3E10Fv-MTM1) in Mtm1δ4 mice improved contractile function and muscle pathology. These promising findings suggest that even low levels of myotubularin protein replacement can improve the muscle weakness and reverse the pathology that characterizes XLMTM. PMID:23307925

  19. The rho kinase inhibitor Y-27632 improves motor performance in male SOD1-G93A mice

    Directory of Open Access Journals (Sweden)

    Rene eGünther

    2014-10-01

    Full Text Available Disease progression in amyotrophic lateral sclerosis (ALS is characterized by degeneration of motoneurons and their axons which results in a progressive muscle weakness and ultimately death from respiratory failure. The only approved drug, riluzole, lacks clinical efficacy so that more potent treatment options are needed. We have identified rho kinase (ROCK as a target, which can be manipulated to beneficially influence disease progression in models of ALS. Here, we examined the therapeutic potential of the ROCK inhibitor Y-27632 in both an in vitro and in an in vivo paradigm of motoneuron disease. Application of Y-27632 to primary motoneurons in vitro increased survival and promoted neurite outgrowth. In vivo, SOD1G93A mice were orally treated with 2 or 30 mg/kg body weight of Y-27632. The 2 mg/kg group did not benefit from Y-27632 treatment, whereas treatment with 30 mg/kg resulted in improved motor function in male mice. Female mice showed only limited improvement and overall survival was not modified in both 2 and 30 mg/kg Y-27632 groups. In conclusion, we provide evidence that inhibition of ROCK by Y-27632 is neuroprotective in vitro but has limited beneficial effects in vivo being restricted to male mice. Therefore, the evaluation of ROCK inhibitors in preclinical models of ALS should always take gender differences into account.

  20. Intake of Wild Blueberry Powder Improves Episodic-Like and Working Memory during Normal Aging in Mice.

    Science.gov (United States)

    Beracochea, Daniel; Krazem, Ali; Henkouss, Nadia; Haccard, Guillaume; Roller, Marc; Fromentin, Emilie

    2016-08-01

    The number of Americans older than 65 years old is projected to more than double in the next 40 years. Cognitive changes associated to aging can affect an adult's day-to-day functioning. Among these cognitive changes, reasoning, episodic memory, working memory, and processing speed decline gradually over time. Early memory changes include a decline in both working and episodic memory. The aim of the present study was to determine whether chronic (up to 75 days) daily administration of wild blueberry extract or a wild blueberry full spectrum powder would help prevent memory failure associated with aging in tasks involving various forms of memory. Both blueberry ingredients were used in a study comparing young mice (6 months old) to aged mice (18 months old). At this age, mice exhibit memory decline due to aging, which is exacerbated first by a loss in working and contextual (episodic-like) memory. Contextual memory (episodic-like memory) was evaluated using the contextual serial discrimination test. Working and spatial memory were evaluated using the Morris-Water maze test and the sequential alternation test. Statistical analysis was performed using an ANOVA with the Bonferroni post-hoc test. Supplementation with wild blueberry full spectrum powder and wild blueberry extract resulted in significant improvement of contextual memory, while untreated aged mice experienced a decline in such memory. Only the wild blueberry full spectrum powder significantly contributed to an improvement of spatial and working memory versus untreated aged mice. These improvements of cognitive performance may be related to brain oxidative status, acetylcholinesterase activity, neuroprotection, or attenuation of immunoreactivity.

  1. Sclerostin antibody treatment improves the bone phenotype of Crtap−/− mice, a model of recessive Osteogenesis Imperfecta

    Science.gov (United States)

    Grafe, Ingo; Alexander, Stefanie; Yang, Tao; Lietman, Caressa; Homan, Erica P; Munivez, Elda; Chen, Yuqing; Jiang, Ming Ming; Bertin, Terry; Dawson, Brian; Asuncion, Franklin; Ke, Hua Zhu; Ominsky, Michael S; Lee, Brendan

    2016-01-01

    Osteogenesis Imperfecta (OI) is characterized by low bone mass, poor bone quality and fractures. Standard treatment for OI patients is limited to bisphosphonates, which only incompletely correct the bone phenotype, and seem to be less effective in adults. Sclerostin neutralizing antibodies (Scl-Ab) have been shown to be beneficial in animal models of osteoporosis, and dominant OI resulting from mutations in the genes encoding type I collagen. However, Scl-Ab treatment has not been studied in models of recessive OI. Cartilage associated protein (CRTAP) is involved in posttranslational type I collagen modification, and its loss of function results in recessive OI. In this study, we treated 1 and 6 week old Crtap−/− mice with Scl-Ab for 6 weeks (25 mg/kg, s.c., twice per week), to determine the effects on the bone phenotype in models of “pediatric” and “young adult” recessive OI. Vehicle treated Crtap−/− and wildtype (WT) mice served as controls. Compared with control Crtap−/− mice, microCT analyses showed significant increases in bone volume and improved trabecular microarchitecture in Scl-Ab treated Crtap−/− mice in both age cohorts, in both vertebrae and femurs. Additionally, Scl-Ab improved femoral cortical parameters in both age cohorts. Biomechanical testing showed that Scl-Ab improved parameters of whole bone strength in Crtap−/− mice, with more robust effects in the week 6–12 cohort, but did not affect the increased bone brittleness. Additionally, Scl-Ab normalized the increased osteoclast numbers, stimulated bone formation rate (week 6–12 cohort only), but did not affect osteocyte density. Overall, our findings suggest that Scl-Ab treatment may be beneficial in the treatment of recessive OI caused by defects in collagen post-translational modification. PMID:26716893

  2. Fucoidans from brown seaweeds

    DEFF Research Database (Denmark)

    Ale, Marcel Tutor; Meyer, Anne S.

    2013-01-01

    Fucoidan or fucoidans cover a family of sulfated fucose-rich polysaccharides, built of a backbone of L-fucose units, and characteristically found in brown seaweeds. Fucoidans have potential therapeutic properties, including anti-inflammatory and anti-coagulant activities, as well as anti...

  3. Activation of GPR30 improves exercise capacity and skeletal muscle strength in senescent female Fischer344 × Brown Norway rats.

    Science.gov (United States)

    Wang, Hao; Alencar, Allan; Lin, Marina; Sun, Xuming; Sudo, Roberto T; Zapata-Sudo, Gisele; Lowe, Dawn A; Groban, Leanne

    2016-06-17

    The molecular mechanisms of muscle weakness and sarcopenia in postmenopausal women are largely unknown. To determine the effect of a new estrogen receptor, GPR30, in the maintenance of exercise capacity and skeletal muscle function in females, the selective GPR30 agonist, G1 (100 μg/kg/day), or vehicle (V, soybean oil) was administered subcutaneously daily (n = 7 per group) to ovariectomized (OVX) 27-month-old Fischer 344 × Brown Norway (F344BN) female rats. Following 8 weeks of treatment, the exercise capacity (treadmill walk time to exhaustion) was reduced in OVX vs. sham rats (5.1 ± 1.4 vs. 11.0 ± 0.9 min, P exercise capacity (12.9 ± 1.2 min; P effects of estrogen loss on exercise capacity and skeletal muscle contractile function in old F344BN rats. The protective effects of GPR30 might be through its upregulation of heat shock proteins in skeletal muscle. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Lowering body weight in obese mice with diastolic heart failure improves cardiac insulin sensitivity and function: implications for the obesity paradox.

    Science.gov (United States)

    Sankaralingam, Sowndramalingam; Abo Alrob, Osama; Zhang, Liyan; Jaswal, Jagdip S; Wagg, Cory S; Fukushima, Arata; Padwal, Raj S; Johnstone, David E; Sharma, Arya M; Lopaschuk, Gary D

    2015-05-01

    Recent studies suggest improved outcomes and survival in obese heart failure patients (i.e., the obesity paradox), although obesity and heart failure unfavorably alter cardiac function and metabolism. We investigated the effects of weight loss on cardiac function and metabolism in obese heart failure mice. Obesity and heart failure were induced by feeding mice a high-fat (HF) diet (60% kcal from fat) for 4 weeks, following which an abdominal aortic constriction (AAC) was produced. Four weeks post-AAC, mice were switched to a low-fat (LF) diet (12% kcal from fat; HF AAC LF) or maintained on an HF (HF AAC HF) for a further 10 weeks. After 18 weeks, HF AAC LF mice weighed less than HF AAC HF mice. Diastolic function was improved in HF AAC LF mice, while cardiac hypertrophy was decreased and accompanied by decreased SIRT1 expression, increased FOXO1 acetylation, and increased atrogin-1 expression compared with HF AAC HF mice. Insulin-stimulated glucose oxidation was increased in hearts from HF AAC LF mice, compared with HF AAC HF mice. Thus lowering body weight by switching to LF diet in obese mice with heart failure is associated with decreased cardiac hypertrophy and improvements in both cardiac insulin sensitivity and diastolic function, suggesting that weight loss does not negatively impact heart function in the setting of obesity.

  5. In utero depletion of fetal hematopoietic stem cells improves engraftment after neonatal transplantation in mice

    OpenAIRE

    Derderian, S. Christopher; Togarrati, P. Priya; King, Charmin; Moradi, Patriss W.; Reynaud, Damien; Czechowicz, Agnieszka; Weissman, Irving L; MacKenzie, Tippi C.

    2014-01-01

    In utero injection of an antibody against the c-Kit receptor can effectively deplete host HSCs in mice.In utero depletion of host HSCs leads to significantly increased engraftment after neonatal congenic hematopoietic cell transplantation.

  6. Boron supplementation improves bone health of non-obese diabetic mice.

    Science.gov (United States)

    Dessordi, Renata; Spirlandeli, Adriano Levi; Zamarioli, Ariane; Volpon, José Batista; Navarro, Anderson Marliere

    2017-01-01

    Diabetes Mellitus is a condition that predisposes a higher risk for the development of osteoporosis. The objective of this study was to investigate the influence of boron supplementation on bone microstructure and strength in control and non-obese diabetic mice for 30days. The animals were supplemented with 40μg/0,5ml of boron solution and controls received 0,5ml of distilled water daily. We evaluated the biochemical parameters: total calcium, phosphorus, magnesium and boron; bone analysis: bone computed microtomography, and biomechanical assay with a three point test on the femur. This study consisted of 28 animals divided into four groups: Group water control - Ctrl (n=10), Group boron control - Ctrl±B (n=8), Group diabetic water - Diab (n=5) and Group diabetic boron - Diab±B (n=5). The results showed that cortical bone volume and the trabecular bone volume fraction were higher for Diab±B and Ctrl±B compared to the Diab and Ctrl groups (p≤0,05). The trabecular specific bone surface was greater for the Diab±B group, and the trabecular thickness and structure model index had the worst values for the Diab group. The boron serum concentrations were higher for the Diab±B group compared to non-supplemented groups. The magnesium concentration was lower for Diab and Diab±B compared with controls. The biomechanical test on the femur revealed maintenance of parameters of the bone strength in animals Diab±B compared to the Diab group and controls. The results suggest that boron supplementation improves parameters related to bone strength and microstructure of cortical and trabecular bone in diabetic animals and the controls that were supplemented. Copyright © 2016 Elsevier GmbH. All rights reserved.

  7. Taurine improves the wound healing process in cutaneous leishmaniasis in mice model, based on stereological parameters

    Directory of Open Access Journals (Sweden)

    Soheil Ashkani-Esfahani

    2014-01-01

    Full Text Available Background: Cutaneous Leishmaniasis is a self-limiting disease caused by protozoan parasites of the genus Leishmania, which affects the skin with full-thickness wounds, which are prone to scar formation even after treatment. Taurine (Tu is one of the most abundant amino acids that has antioxidant and anti-inflammatory effects, which play an important role in the process of wound healing. Herein, we have investigated the effects of Tu on cutaneous Leishmaniasis wounds and L. major promastigotes. Materials and Methods: Eighteen mice were induced with Leishmaniasis wounds (with L. Major on the base of their tails and divided into three groups, T1: Treated with Tu injection, T2: Treated with Tu gel, and C: No treatment. Treatments were carried out every 24 hours for 21 days. The volume densities of the collagen bundles and vessels, vessel′s length density and diameter, and fibroblast populations were estimated by stereological methods. Flow cytometry was used in order to investigate the direct Tu effect on parasites. The Mann-Whitney U test was used and P ≤ 0.05 was considered to be statistically significant. Results: The numerical density of the fibroblasts, volume density of the collagen bundles, and length densities of the vessels in groups T1 and T2 were significantly higher than in group C (P < 0.05. The fibroblast numerical density of group T1 was higher than that of group T2 (P = 0.02. Incidentally, Tu had no direct effect on L. major parasites according to the flow cytometry analysis. Conclusion: Tu showed the ability to improve the wound healing process and tissue regeneration although it had no direct anti-leishmaniasis effect.

  8. Matrine attenuates focal cerebral ischemic injury by improving antioxidant activity and inhibiting apoptosis in mice.

    Science.gov (United States)

    Zhao, Peng; Zhou, Ru; Zhu, Xiao-Yun; Hao, Yin-Ju; Li, Nan; Wang, Jie; Niu, Yang; Sun, Tao; Li, Yu-Xiang; Yu, Jian-Qiang

    2015-09-01

    Matrine, an active constituent of the Chinese herb, Sophora flavescens Ait., and it is known for its antioxidant, anti-inflammatory and antitumor activities. It has been demonstrated that matrine exerts protective effects against heart failure by decreasing the expression of caspase-3 and Bax, and increasing Bcl‑2 levels. In this study, we aimed to determine whether these protective effects of matrine can be applied to cerebral ischemia. Following 7 successive days of treatment with matrine (7.5, 15 and 30 mg/kg) and nimodipine (1 mg/kg) by intraperitoneal injection, male Institute of Cancer Research (ICR) mice were subjected to middle cerebral artery occlusion (MCAO). Following reperfusion, the neurobehavioral score and brain infarct volume were estimated, and morphological changes were analyzed by hematoxylin and eosin (H&E) staining and electron microscopy. The percentage of apoptotic neurons was determined by flow cytometry. The levels of oxidative stress were assessed by measuring the levels of malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT), and the total antioxidant capacity (T-AOC). Western blot analysis and immunofluorescence staining were used to examine the expression of the apoptosis-related proteins, caspase-3, Bax and Bcl-2. Our results revealed that pre-treatment with matrine significantly decreased the infarct volume and improved the neurological scores. Matrine also reduced the percentage of apoptotic neurons and relieved neuronal morphological damage. Furthermore, matrine markedly decreased the MDA levels, and increased SOD, GSH-Px and CAT activity, and T-AOC. Western blot analysis and immunofluorescence staining revealed a marked decrease in caspase-3 expression and an increase in the Bcl-2/Bax ratio in the group pre-treated with matrine (30 mg/kg) as compared with the vehicle-treated group. The findings of the present study demonstrate that matrine exerts neuroprotective effects against

  9. Long-term voluntary running improves diet-induced adiposity in young adult mice

    Science.gov (United States)

    The present study investigated the effects of long-term voluntary running on diet-induced adiposity in male C57BL/6 mice. Four-week old mice (n = 15 per group) were fed the AIN93G diet or a 45% high-fat diet (% kcal.) with or without access to in-cage activity wheels for 14 weeks. The high-fat die...

  10. Chronic Intermittent Fasting Improves Cognitive Functions and Brain Structures in Mice

    OpenAIRE

    Liaoliao Li; Zhi Wang; Zhiyi Zuo

    2013-01-01

    Obesity is a major health issue. Obesity started from teenagers has become a major health concern in recent years. Intermittent fasting increases the life span. However, it is not known whether obesity and intermittent fasting affect brain functions and structures before brain aging. Here, we subjected 7-week old CD-1 wild type male mice to intermittent (alternate-day) fasting or high fat diet (45% caloric supplied by fat) for 11 months. Mice on intermittent fasting had better learning and me...

  11. Attenuated traumatic axonal injury and improved functional outcome after traumatic brain injury in mice lacking Sarm1.

    Science.gov (United States)

    Henninger, Nils; Bouley, James; Sikoglu, Elif M; An, Jiyan; Moore, Constance M; King, Jean A; Bowser, Robert; Freeman, Marc R; Brown, Robert H

    2016-04-01

    Axonal degeneration is a critical, early event in many acute and chronic neurological disorders. It has been consistently observed after traumatic brain injury, but whether axon degeneration is a driver of traumatic brain injury remains unclear. Molecular pathways underlying the pathology of traumatic brain injury have not been defined, and there is no efficacious treatment for traumatic brain injury. Here we show that mice lacking the mouse Toll receptor adaptor Sarm1 (sterile α/Armadillo/Toll-Interleukin receptor homology domain protein) gene, a key mediator of Wallerian degeneration, demonstrate multiple improved traumatic brain injury-associated phenotypes after injury in a closed-head mild traumatic brain injury model. Sarm1(-/-) mice developed fewer β-amyloid precursor protein aggregates in axons of the corpus callosum after traumatic brain injury as compared to Sarm1(+/+) mice. Furthermore, mice lacking Sarm1 had reduced plasma concentrations of the phophorylated axonal neurofilament subunit H, indicating that axonal integrity is maintained after traumatic brain injury. Strikingly, whereas wild-type mice exibited a number of behavioural deficits after traumatic brain injury, we observed a strong, early preservation of neurological function in Sarm1(-/-) animals. Finally, using in vivo proton magnetic resonance spectroscopy we found tissue signatures consistent with substantially preserved neuronal energy metabolism in Sarm1(-/-) mice compared to controls immediately following traumatic brain injury. Our results indicate that the SARM1-mediated prodegenerative pathway promotes pathogenesis in traumatic brain injury and suggest that anti-SARM1 therapeutics are a viable approach for preserving neurological function after traumatic brain injury.

  12. Voluntary exercise and increased food intake after mild chronic stress improve social avoidance behavior in mice.

    Science.gov (United States)

    Otsuka, Airi; Shiuchi, Tetsuya; Chikahisa, Sachiko; Shimizu, Noriyuki; Séi, Hiroyoshi

    2015-11-01

    It is well-established that exercise can influence psychological conditions, cognitive function, and energy metabolism in peripheral tissues including the skeletal muscle. However, it is not clear whether exercise can influence social interaction with others and alleviate defeat stress. This study investigated the effect of voluntary wheel running on impaired social interaction induced by chronic social defeat stress (SDS) using the resident-intruder social defeat model. Mice were divided into three groups: control, stress alone, and stress+exercise. SDS was performed by exposing C57BL/6 mice to retired ICR mice for 2.5 min. The C57BL/6 mice were continuously defeated by these resident (aggressor) mice and, following 5 days of SDS, experienced 2 days of rest with no SDS. Mice in the stress+exercise group were allowed to voluntarily run on a wheel for 2h after every SDS exposure. Two weeks later, compared to the control group, the stress group showed a higher ratio of time spent in the corner zone of a social interaction paradigm even though SDS did not elicit depressive- and anxiety-like behaviors. We also observed that voluntary exercise, which did not affect muscle weight and gene expression, decreased social avoidance behavior of stressed mice without clear changes in brain monoamine levels. Interestingly, food intake in the stress+exercise group was the greatest among the three groups. To test the effect of the exercise-induced increase in food intake on social behavior, we set up a pair-fed group where food intake was restricted. We then compared these mice to mice in the stress alone group. We found that the ratio of time spent in the corner zone of the social interaction test was not different between ad libitum- and pair-fed groups, although pair-fed mice spent more time in the corner zone when an aggressor mouse was present than when it was absent. In addition, pair-feeding did not show exercise-induced reductions of adrenal gland weight and enhanced the

  13. Chronic Treatment with Anesthetic Propofol Improves Cognitive Function and Attenuates Caspase Activation in Both Aged and Alzheimer's Disease Transgenic Mice

    Science.gov (United States)

    Dong, Yuanlin; Yu, Buwei; Xia, Weiming; Xie, Zhongcong

    2014-01-01

    There is a need to seek new treatment(s) for Alzheimer's disease (AD). A recent study showed that AD patients may have decreased levels of functional GABA receptors. Propofol, a commonly used anesthetic, is a GABA receptor agonist. We therefore set out to perform a proof of concept study to determine whether chronic treatment with propofol (50 mg/kg/week) can improve cognitive function in both aged wild-type (WT) and AD transgenic (Tg) mice. Propofol was administrated to the WT and AD Tg mice once a week for 8 or 12 weeks, respectively. Morris water maze was used to assess the cognitive function of the mice following the propofol treatment. Activation of caspase-3, caspase-9, and caspase-8 was investigated using western blot analysis at the end of the propofol treatment. In the mechanistic studies, effects of propofol, amyloid-β protein (Aβ), and GABA receptor antagonist flumazenil on caspase-3 activation and opening of the mitochondrial permeability transition pore were assessed in H4 human neuroglioma and mouse neuroblastoma cells by western blot analysis and flow cytometry. Here we showed that the propofol treatment improved cognitive function and attenuated brain caspase-3 and caspase-9 activation in both aged WT and AD Tg mice. Propofol attenuated Aβ-induced caspase-3 activation and opening of the mitochondrial permeability transition pore in the cells, and flumazenil inhibited the propofol's effects. These results suggested that propofol might improve cognitive function via attenuating the Aβ-induced mitochondria dysfunction and caspase activation, which explored the potential that anesthetic propofol could improve cognitive function in elderly and AD patients. PMID:24643139

  14. Electro-acupuncture stimulation improves spontaneous locomotor hyperactivity in MPTP intoxicated mice.

    Directory of Open Access Journals (Sweden)

    Haomin Wang

    Full Text Available Bradykinesia is one of the major clinical symptoms of Parkinson`s disease (PD for which treatment is sought. In most mouse models of PD, decreased locomotor activity can be reflected in an open field behavioral test. Therefore the open field test provides a useful tool to study the clinic symptoms of PD patients. Our previous work demonstrated that 100 Hz electro-acupuncture (EA stimulation at ZUSANLI and SANYINJIAO protected the dopaminergic nigrostriatal system of C57BL/6 mice from MPTP toxicity, indicating that acupuncture might be an effective therapy for PD sufferers. In the present study, we investigated the effects of 100 Hz EA stimulation on the spontaneous locomotor activity in MPTP injured mice. Here we found that, in MPTP treated mice, the total movements significantly decreased and the movement time, velocity and distance dramatically increased, although the dopaminergic nigrostriatal system was devastated, revealed by immunohistochemistry and HPLC-ECD. After 12 sessions of 100 Hz EA stimulation, the total movements elevated and the movement time, velocity and distance decreased, in MPTP mice. 100 Hz EA increased striatal dopamine content in MPTP mice by 35.9%, but decreased its striatal dopamine turnover. We assumed that the injury of other regions in the brain, such as the A11 group in diencephalon, might be involved in the hypermotility in MPTP mice. The effects of 100 Hz EA on spontaneous locomotor activity in MPTP mice might not relate with the striatal dopamine, but with its neuroprotective and regulatory effects on motor circuits in the brain. Our study suggests that EA might be a promising treatment for neurological disorders including PD.

  15. Bisphosphonates improve trabecular bone mass and normalize cortical thickness in ovariectomized, osteoblast connexin43 deficient mice.

    Science.gov (United States)

    Watkins, Marcus P; Norris, Jin Yi; Grimston, Susan K; Zhang, Xiaowen; Phipps, Roger J; Ebetino, Frank H; Civitelli, Roberto

    2012-10-01

    The gap junction protein, connexin43 (Cx43) controls both bone formation and osteoclastogenesis via osteoblasts and/or osteocytes. Cx43 has also been proposed to mediate an anti-apoptotic effect of bisphosphonates, potent inhibitors of bone resorption. We studied whether bisphosphonates are effective in protecting mice with a conditional Cx43 gene deletion in osteoblasts and osteocytes (cKO) from the consequences of ovariectomy on bone mass and strength. Ovariectomy resulted in rapid loss of trabecular bone followed by a slight recovery in wild type (WT) mice, and a similar degree of trabecular bone loss, albeit slightly delayed, occurred in cKO mice. Treatment with either risedronate (20 μg/kg) or alendronate (40 μg/kg) prevented ovariectomy-induced bone loss in both genotypes. In basal conditions, bones of cKO mice have larger marrow area, higher endocortical osteoclast number, and lower cortical thickness and strength relative to WT. Ovariectomy increased endocortical osteoclast number in WT but not in cKO mice. Both bisphosphonates prevented these increases in WT mice, and normalized endocortical osteoclast number, cortical thickness and bone strength in cKO mice. Thus, lack of osteoblast/osteocyte Cx43 does not alter bisphosphonate action on bone mass and strength in estrogen deficiency. These results support the notion that one of the main functions of Cx43 in cortical bone is to restrain osteoblast and/or osteocytes from inducing osteoclastogenesis at the endocortical surface. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Mice with chimeric livers are an improved model for human lipoprotein metabolism.

    Directory of Open Access Journals (Sweden)

    Ewa C S Ellis

    Full Text Available OBJECTIVE: Rodents are poor model for human hyperlipidemias because total cholesterol and low density lipoprotein levels are very low on a normal diet. Lipoprotein metabolism is primarily regulated by hepatocytes and we therefore assessed whether chimeric mice extensively repopulated with human cells can model human lipid and bile acid metabolism. DESIGN: FRG [ F ah(-/- R ag2(-/-Il2r g (-/-] mice were repopulated with primary human hepatocytes. Serum lipoprotein lipid composition and distribution (VLDL, LDL, and HDL was analyzed by size exclusion chromatography. Bile was analyzed by LC-MS or by GC-MS. RNA expression levels were measured by quantitative RT-PCR. RESULTS: Chimeric mice displayed increased LDL and VLDL fractions and a lower HDL fraction compared to wild type, thus significantly shifting the ratio of LDL/HDL towards a human profile. Bile acid analysis revealed a human-like pattern with high amounts of cholic acid and deoxycholic acid (DCA. Control mice had only taurine-conjugated bile acids as expcted, but highly repopulated mice had glycine-conjugated cholic acid as found in human bile. RNA levels of human genes involved in bile acid synthesis including CYP7A1, and CYP27A1 were significantly upregulated as compared to human control liver. However, administration of recombinant hFGF19 restored human CYP7A1 levels to normal. CONCLUSION: Humanized-liver mice showed a typical human lipoprotein profile with LDL as the predominant lipoprotein fraction even on a normal diet. The bile acid profile confirmed presence of an intact enterohepatic circulation. Although bile acid synthesis was deregulated in this model, this could be fully normalized by FGF19 administration. Taken together these data indicate that chimeric FRG-mice are a useful new model for human lipoprotein and bile-acid metabolism.

  17. Melatonin improves inflammation processes in liver of senescence-accelerated prone male mice (SAMP8).

    Science.gov (United States)

    Cuesta, Sara; Kireev, Roman; Forman, Katherine; García, Cruz; Escames, Germaine; Ariznavarreta, Carmen; Vara, Elena; Tresguerres, Jesús A F

    2010-12-01

    Aging is associated with an increase in oxidative stress and inflammation. The aim of this study was to investigate the effect of aging on various physiological parameters related to inflammation in livers obtained from two types of male mice models: Senescence-accelerated prone (SAMP8) and senescence-accelerated-resistant (SAMR1) mice, and to study the influence of the administration of melatonin (1mg/kg/day) for one month on old SAMP8 mice on these parameters. The parameters studied have been the mRNA expression of TNF-α, iNOS, IL-1β, HO-1, HO-2, MCP1, NFkB1, NFkB2, NFkB protein or NKAP and IL-10. All have been measured by real-time reverse transcription polymerase chain reaction RT-PCR. Furthermore we analyzed the protein expression of TNF-α, iNOS, IL-1β, HO-1, HO-2, and IL-10 by Western-blot. Aging increased oxidative stress and inflammation especially in the liver of SAMP8 mice. Treatment with melatonin decreased the mRNA expression of TNF-α, IL-1β, HO (HO-1 and HO-2), iNOS, MCP1, NFκB1, NFκB2 and NKAP in old male mice. The protein expression of TNF-α, IL-1β was also decreased and IL-10 increased with melatonin treatment and no significant differences were observed in the rest of parameters analyzed. The present study showed that aging was related to inflammation in livers obtained from old male senescence prone mice (SAMP8) and old male senescence resistant mice (SAMR1) being the alterations more evident in the former. Exogenous administration of melatonin was able to reduce inflammation. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Lkb1 controls brown adipose tissue growth and thermogenesis by regulating the intracellular localization of CRTC3

    Science.gov (United States)

    Shan, Tizhong; Xiong, Yan; Zhang, Pengpeng; Li, Zhiguo; Jiang, Qingyang; Bi, Pengpeng; Yue, Feng; Yang, Gongshe; Wang, Yizhen; Liu, Xiaoqi; Kuang, Shihuan

    2016-01-01

    Brown adipose tissue (BAT) dissipates energy through Ucp1-mediated uncoupled respiration and its activation may represent a therapeutic strategy to combat obesity. Here we show that Lkb1 controls BAT expansion and UCP1 expression in mice. We generate adipocyte-specific Lkb1 knockout mice and show that, compared with wild-type littermates, these mice exhibit elevated UCP1 expression in BAT and subcutaneous white adipose tissue, have increased BAT mass and higher energy expenditure. Consequently, KO mice have improved glucose tolerance and insulin sensitivity, and are more resistant to high-fat diet (HFD)-induced obesity. Deletion of Lkb1 results in a cytoplasm to nuclear translocation of CRTC3 in brown adipocytes, where it recruits C/EBPβ to enhance Ucp1 transcription. In parallel, the absence of Lkb1 also suppresses AMPK activity, leading to activation of the mTOR signalling pathway and subsequent BAT expansion. These data suggest that inhibition of Lkb1 or its downstream signalling in adipocytes could be a novel strategy to increase energy expenditure in the context of obesity, diabetes and other metabolic diseases. PMID:27461402

  19. Chronic Angiotensin-(1-7) Improves Insulin Sensitivity in High-Fat Fed Mice Independent of Blood Pressure.

    Science.gov (United States)

    Williams, Ian M; Otero, Yolanda F; Bracy, Deanna P; Wasserman, David H; Biaggioni, Italo; Arnold, Amy C

    2016-05-01

    Angiotensin-(1-7) improves glycemic control in animal models of cardiometabolic syndrome. The tissue-specific sites of action and blood pressure dependence of these metabolic effects, however, remain unclear. We hypothesized that Ang-(1-7) improves insulin sensitivity by enhancing peripheral glucose delivery. Adult male C57BL/6J mice were placed on standard chow or 60% high-fat diet for 11 weeks. Ang-(1-7) (400 ng/kg per minute) or saline was infused subcutaneously during the last 3 weeks of diet, and hyperinsulinemic-euglycemic clamps were performed at the end of treatment. High-fat fed mice exhibited modest hypertension (systolic blood pressure: 137 ± 3 high fat versus 123 ± 5 mm Hg chow;P=0.001), which was not altered by Ang-(1-7) (141 ± 4 mm Hg;P=0.574). Ang-(1-7) did not alter body weight or fasting glucose and insulin in chow or high-fat fed mice. Ang-(1-7) increased the steady-state glucose infusion rate needed to maintain euglycemia in high-fat fed mice (31 ± 5 Ang-(1-7) versus 16 ± 1 mg/kg per minute vehicle;P=0.017) reflecting increased whole-body insulin sensitivity, with no effect in chow-fed mice. The improved insulin sensitivity in high-fat fed mice was because of an enhanced rate of glucose disappearance (34 ± 5 Ang-(1-7) versus 20 ± 2 mg/kg per minute vehicle;P=0.049). Ang-(1-7) enhanced glucose uptake specifically into skeletal muscle by increasing translocation of glucose transporter 4 to the sarcolemma. Our data suggest that Ang-(1-7) has direct insulin-sensitizing effects on skeletal muscle, independent of changes in blood pressure. These findings provide new insight into mechanisms by which Ang-(1-7) improves insulin action, and provide further support for targeting this peptide in cardiometabolic disease.

  20. The Sirt1 activator SRT3025 expands hematopoietic stem and progenitor cells and improves hematopoiesis in Fanconi anemia mice

    Directory of Open Access Journals (Sweden)

    Qing-Shuo Zhang

    2015-07-01

    Full Text Available Fanconi anemia is a genetic bone marrow failure syndrome. The current treatment options are suboptimal and do not prevent the eventual onset of aplastic anemia requiring bone marrow transplantation. We previously showed that resveratrol, an antioxidant and an activator of the protein deacetylase Sirt1, enhanced hematopoiesis in Fancd2 mutant mice and improved the impaired stem cell quiescence observed in this disease. Given that Sirt1 is important for the function of hematopoietic stem cells, we hypothesized that Sirt1 activation may improve hematopoiesis. Indeed, Fancd2−/− mice and wild-type mice treated with the selective Sirt1 activator SRT3025 had increased numbers of hematopoietic stem and progenitor cells, platelets and white blood cells. SRT3025 was also protective against acetaldehyde-induced hematopoietic damage. Unlike resveratrol, however, SRT3025 did not affect stem cell quiescence, suggesting distinct mechanisms of action. Conditional deletion of Sirt1 in hematopoietic cells did not abrogate the beneficial effects of SRT3025, indicating that the drug did not act by directly stimulating Sirt1 in stem cells, but must be acting indirectly via extra-hematopoietic effects. RNA-Seq transcriptome analysis revealed the down-regulation of Egr1–p21 expression, providing a potential mechanism for improved hematopoiesis. Overall, our data indicate that SRT3025 or related compounds may be beneficial in Fanconi anemia and other bone marrow failure syndromes.

  1. The Sirt1 activator SRT3025 expands hematopoietic stem and progenitor cells and improves hematopoiesis in Fanconi anemia mice.

    Science.gov (United States)

    Zhang, Qing-Shuo; Deater, Matthew; Schubert, Kathryn; Marquez-Loza, Laura; Pelz, Carl; Sinclair, David A; Grompe, Markus

    2015-07-01

    Fanconi anemia is a genetic bone marrow failure syndrome. The current treatment options are suboptimal and do not prevent the eventual onset of aplastic anemia requiring bone marrow transplantation. We previously showed that resveratrol, an antioxidant and an activator of the protein deacetylase Sirt1, enhanced hematopoiesis in Fancd2 mutant mice and improved the impaired stem cell quiescence observed in this disease. Given that Sirt1 is important for the function of hematopoietic stem cells, we hypothesized that Sirt1 activation may improve hematopoiesis. Indeed, Fancd2(-/-) mice and wild-type mice treated with the selective Sirt1 activator SRT3025 had increased numbers of hematopoietic stem and progenitor cells, platelets and white blood cells. SRT3025 was also protective against acetaldehyde-induced hematopoietic damage. Unlike resveratrol, however, SRT3025 did not affect stem cell quiescence, suggesting distinct mechanisms of action. Conditional deletion of Sirt1 in hematopoietic cells did not abrogate the beneficial effects of SRT3025, indicating that the drug did not act by directly stimulating Sirt1 in stem cells, but must be acting indirectly via extra-hematopoietic effects. RNA-Seq transcriptome analysis revealed the down-regulation of Egr1-p21 expression, providing a potential mechanism for improved hematopoiesis. Overall, our data indicate that SRT3025 or related compounds may be beneficial in Fanconi anemia and other bone marrow failure syndromes.

  2. The SIRT1 Activator SRT1720 Extends Lifespan and Improves Health of Mice Fed a Standard Diet

    Directory of Open Access Journals (Sweden)

    Sarah J. Mitchell

    2014-03-01

    Full Text Available The prevention or delay of the onset of age-related diseases prolongs survival and improves quality of life while reducing the burden on the health care system. Activation of sirtuin 1 (SIRT1, an NAD+-dependent deacetylase, improves metabolism and confers protection against physiological and cognitive disturbances in old age. SRT1720 is a specific SIRT1 activator that has health and lifespan benefits in adult mice fed a high-fat diet. We found extension in lifespan, delayed onset of age-related metabolic diseases, and improved general health in mice fed a standard diet after SRT1720 supplementation. Inhibition of proinflammatory gene expression in both liver and muscle of SRT1720-treated animals was noted. SRT1720 lowered the phosphorylation of NF-κB pathway regulators in vitro only when SIRT1 was functionally present. Combined with our previous work, the current study further supports the beneficial effects of SRT1720 on health across the lifespan in mice.

  3. Overexpression of human SOD1 improves survival of mice susceptible to endotoxic shock

    Directory of Open Access Journals (Sweden)

    Charchaflieh J

    2012-07-01

    Full Text Available Jean Charchaflieh,1,2 Georges I Labaze,1 Pulsar Li,1 Holly Van Remmen,3 Haekyung Lee,1 Helen Stutz,1 Arlan Richardson,3 Asher Emanuel,1 Ming Zhang1,41Department of Anesthesiology, State University of New York (SUNY Downstate Medical Center, New York, NY, USA; 2Department of Anesthesiology, Yale University School of Medicine, New Haven, CT, USA; 3Barshop Center for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; 4Department of Cell Biology, State University of New York (SUNY Downstate Medical Center, New York, NY, USABackground: Protective effects of the antioxidant enzyme Cu-Zn superoxide dismutase (SOD1 against endotoxic shock have not been demonstrated in animal models. We used a murine model to investigate whether overexpression of SOD1 protects against endotoxic shock, and whether the genetic background of SOD1 affects its effective protective effects and susceptibility to endotoxic shock.Methods: Transgenic (tg mice overexpressing human SOD1 and control mice were divided into four groups based on their genetic background: (1 tg mice with mixed genetic background (tg-JAX; (2 wild-type (WT littermates of tg-JAX strain (WT-JAX; (3 tg mice with C57BL/6J background (tg-TX; (4 WT littermates of tg-TX strain (WT-TX. Activity of SOD1 in the intestine, heart, and liver of tg and control mice was confirmed using a polyacrylamide activity gel. Endotoxic shock was induced by intraperitoneal injection of lipopolysaccharide. Survival rates over 120 hours (mean, 95% confidence interval were analyzed using Kaplan–Meier survival curves.Results: Human SOD1 enzymatic activities were significantly higher in the intestine, heart, and liver of both tg strains (tg-JAX and tg-TX compared with their WT littermates (WT-JAX and WT-TX, respectively. Interestingly, the endogenous SOD1 activities in tg-JAX mice were decreased compared with their WT littermates (WT-JAX, but such aberrant changes were not

  4. Switching harmful visceral fat to beneficial energy combustion improves metabolic dysfunctions.

    Science.gov (United States)

    Yang, Xiaoyan; Sui, Wenhai; Zhang, Meng; Dong, Mei; Lim, Sharon; Seki, Takahiro; Guo, Ziheng; Fischer, Carina; Lu, Huixia; Zhang, Cheng; Yang, Jianmin; Zhang, Meng; Wang, Yangang; Cao, Caixia; Gao, Yanyan; Zhao, Xingguo; Sun, Meili; Sun, Yuping; Zhuang, Rujie; Samani, Nilesh J; Zhang, Yun; Cao, Yihai

    2017-02-23

    Visceral fat is considered the genuine and harmful white adipose tissue (WAT) that is associated to development of metabolic disorders, cardiovascular disease, and cancer. Here, we present a new concept to turn the harmful visceral fat into a beneficial energy consumption depot, which is beneficial for improvement of metabolic dysfunctions in obese mice. We show that low temperature-dependent browning of visceral fat caused decreased adipose weight, total body weight, and body mass index, despite increased food intake. In high-fat diet-fed mice, low temperature exposure improved browning of visceral fat, global metabolism via nonshivering thermogenesis, insulin sensitivity, and hepatic steatosis. Genome-wide expression profiling showed upregulation of WAT browning-related genes including Cidea and Dio2. Conversely, Prdm16 was unchanged in healthy mice or was downregulated in obese mice. Surgical removal of visceral fat and genetic knockdown of UCP1 in epididymal fat largely ablated low temperature-increased global thermogenesis and resulted in the death of most mice. Thus, browning of visceral fat may be a compensatory heating mechanism that could provide a novel therapeutic strategy for treating visceral fat-associated obesity and diabetes.

  5. Anti-diabetic effects of brown algae derived phlorotannins, marine polyphenols through diverse mechanisms.

    Science.gov (United States)

    Lee, Seung-Hong; Jeon, You-Jin

    2013-04-01

    Marine algae are popular and abundant food ingredients mainly in Asian countries, and also well known for their health beneficial effects due to the presence of biologically active components. The marine algae have been studied for biologically active components and phlorotannins, marine polyphenols are among them. Among marine algae, brown algae have extensively studied for their potential anti-diabetic activities. Majority of the investigations on phlorotannins derived from brown algae have exhibited their various anti-diabetic mechanisms such as α-glucosidase and α-amylase inhibitory effect, glucose uptake effect in skeletal muscle, protein tyrosine phosphatase 1B (PTP 1B) enzyme inhibition, improvement of insulin sensitivity in type 2 diabetic db/db mice, and protective effect against diabetes complication. In this review, we have made an attempt to discuss the various anti-diabetic mechanisms associated with phlorotannins from brown algae that are confined to in vitro and in vivo. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Tumour-derived PTH-related protein triggers adipose tissue browning and cancer cachexia.

    Science.gov (United States)

    Kir, Serkan; White, James P; Kleiner, Sandra; Kazak, Lawrence; Cohen, Paul; Baracos, Vickie E; Spiegelman, Bruce M

    2014-09-04

    Cachexia is a wasting disorder of adipose and skeletal muscle tissues that leads to profound weight loss and frailty. About half of all cancer patients suffer from cachexia, which impairs quality of life, limits cancer therapy and decreases survival. One key characteristic of cachexia is higher resting energy expenditure levels than in healthy individuals, which has been linked to greater thermogenesis by brown fat. How tumours induce brown fat activity is unknown. Here, using a Lewis lung carcinoma model of cancer cachexia, we show that tumour-derived parathyroid-hormone-related protein (PTHrP) has an important role in wasting, through driving the expression of genes involved in thermogenesis in adipose tissues. Neutralization of PTHrP in tumour-bearing mice blocked adipose tissue browning and the loss of muscle mass and strength. Our results demonstrate that PTHrP mediates energy wasting in fat tissues and contributes to the broader aspects of cancer cachexia. Thus, neutralization of PTHrP might hold promise for ameliorating cancer cachexia and improving patient survival.

  7. Tribbles 3 inhibits brown adipocyte differentiation and function by suppressing insulin signaling.

    Science.gov (United States)

    Jeong, Ha-Won; Choi, Ran Hee; McClellan, Jamie L; Piroli, Gerardo G; Frizzell, Norma; Tseng, Yu-Hua; Goodyear, Laurie J; Koh, Ho-Jin

    2016-02-19

    Recent studies have demonstrated that adult humans have substantial amounts of functioning brown adipose tissue (BAT). Since BAT has been implicated as an anti-obese and anti-diabetic tissue, it is important to understand the signaling molecules that regulate BAT function. There has been a link between insulin signaling and BAT metabolism as deletion or pharmaceutical inhibition of insulin signaling impairs BAT differentiation and function. Tribbles 3 (TRB3) is a pseudo kinase that has been shown to regulate metabolism and insulin signaling in multiple tissues but the role of TRB3 in BAT has not been studied. In this study, we found that TRB3 expression was present in BAT and overexpression of TRB3 in brown preadipocytes impaired differentiation and decreased expression of BAT markers. Furthermore, TRB3 overexpression resulted in significantly lower oxygen consumption rates for basal and proton leakage, indicating decreased BAT activity. Based on previous studies showing that deletion or pharmaceutical inhibition of insulin signaling impairs BAT differentiation and function, we assessed insulin signaling in brown preadipocytes and BAT in vivo. Overexpression of TRB3 in cells impaired insulin-stimulated IRS1 and Akt phosphorylation, whereas TRB3KO mice displayed improved IRS1 and Akt phosphorylation. Finally, deletion of IRS1 abolished the function of TRB3 to regulate BAT differentiation and metabolism. These data demonstrate that TRB3 inhibits insulin signaling in BAT, resulting in impaired differentiation and function.

  8. Long-Term Mangiferin Extract Treatment Improves Central Pathology and Cognitive Deficits in APP/PS1 Mice.

    Science.gov (United States)

    Infante-Garcia, Carmen; Ramos-Rodriguez, Juan Jose; Delgado-Olmos, Irene; Gamero-Carrasco, Carlos; Fernandez-Ponce, Maria Teresa; Casas, Lourdes; Mantell, Casimiro; Garcia-Alloza, Monica

    2016-07-21

    Alzheimer's disease (AD) is the most common cause of dementia; however, available treatments have had limited success. Therefore AD patients are in tremendous need of new pharmacological approaches that may delay or slow the progression of the disease. In addition to the classical neuropathological features, immunological and inflammatory processes are also involved in AD pathogenesis. Naturally occurring compounds, such as Mangifera indica Linn (MGF) extracts have previously been shown to significantly reduce peripheral inflammatory processes. In order to explore the role of MGF in AD central pathology, we have orally treated APP/PS1 mice for 22 weeks. While MGF did not affect amyloid pathology, tau hyperphosphorylation was significantly reduced in the cortex and hippocampus. Also, inflammatory processes, measured by microglia and astrocyte burdens, were diminished in MGF-treated mice. Moreover, neuronal morphological alterations, such as abnormal neurite curvature and dystrophies, highly increased in APP/PS1 mice, were significantly ameliorated by long-term MGF treatment. Reduction of all these pathological features were accompanied by compelling improvements of episodic and spatial memory in APP/PS1 mice treated with MGF. Altogether our data suggest that MGF may provide a useful tool to target different aspects of AD pathology and could lead to more effective future therapeutic or preventive strategies.

  9. Xanthohumol improves dysfunctional glucose and lipid metabolism in diet-induced obese C57BL/6J mice.

    Science.gov (United States)

    Miranda, Cristobal L; Elias, Valerie D; Hay, Joshua J; Choi, Jaewoo; Reed, Ralph L; Stevens, Jan F

    2016-06-01

    Xanthohumol (XN) is a prenylated flavonoid found in hops (Humulus lupulus) and beer. The dose-dependent effects of XN on glucose and lipid metabolism in a preclinical model of metabolic syndrome were the focus of our study. Forty-eight male C57BL/6J mice, 9 weeks of age, were randomly divided into three XN dose groups of 16 animals. The mice were fed a high-fat diet (60% kcal as fat) supplemented with XN at dose levels of 0, 30, or 60 mg/kg body weight/day, for 12 weeks. Dietary XN caused a dose-dependent decrease in body weight gain. Plasma levels of glucose, total triglycerides, total cholesterol, and MCP-1 were significantly decreased in mice on the 60 mg/kg/day treatment regimen. Treatment with XN at 60 mg/kg/day resulted in reduced plasma LDL-cholesterol (LDL-C), IL-6, insulin and leptin levels by 80%, 78%, 42%, and 41%, respectively, compared to the vehicle control group. Proprotein Convertase Subtilisin Kexin 9 (PCSK-9) levels were 44% lower in the 60 mg/kg dose group compared to the vehicle control group (p ≤ 0.05) which may account for the LDL-C lowering activity of XN. Our results show that oral administration of XN improves markers of systemic inflammation and metabolic syndrome in diet-induced obese C57BL/6J mice.

  10. Growth hormone ameliorates adipose dysfunction during oxidative stress and inflammation and improves glucose tolerance in obese mice.

    Science.gov (United States)

    Fukushima, M; Okamoto, Y; Katsumata, H; Ishikawa, M; Ishii, S; Okamoto, M; Minami, S

    2014-08-01

    Patients with adult growth hormone deficiency exhibit visceral fat accumulation, which gives rise to a cluster of metabolic disorders such as impaired glucose tolerance and dyslipidemia. Plasma growth hormone levels are lower in obese patients with metabolic syndrome than in healthy subjects. Here we examined the hypothesis that exogenous growth hormone administration regulates function of adipose tissue to improve glucose tolerance in diet-induced obese mice. Twelve-week-old obese male C57BL/6 J mice received bovine growth hormone daily for 6 weeks. In epididymal fat, growth hormone treatment antagonized diet-induced changes in the gene expression of adiponectin, leptin, and monocyte chemoattractant protein-1, and significantly increased the gene expression of interleukin-10 and CD206. Growth hormone also suppressed the accumulation of oxidative stress marker, thiobarbituric acid-reactive substances, in the epididymal fat and enhanced the gene expression of anti-oxidant enzymes. Moreover, growth hormone significantly restored glucose tolerance in obese mice. In cultured 3T3-L1 adipocytes, growth hormone prevented the decline in adiponectin gene expression in the presence of hydrogen peroxide. These results suggest that growth hormone administration ameliorates glucose intolerance in obese mice presumably by decreasing adipose mass, oxidative stress, and chronic inflammation in the visceral fat.

  11. Umbilical Cord Blood-Derived Stem Cells Improve Heat Tolerance and Hypothalamic Damage in Heat Stressed Mice

    Directory of Open Access Journals (Sweden)

    Ling-Shu Tseng

    2014-01-01

    Full Text Available Heatstroke is characterized by excessive hyperthermia associated with systemic inflammatory responses, which leads to multiple organ failure, in which brain disorders predominate. This definition can be almost fulfilled by a mouse model of heatstroke used in the present study. Unanesthetized mice were exposed to whole body heating (41.2°C for 1 hour and then returned to room temperature (26°C for recovery. Immediately after termination of whole body heating, heated mice displayed excessive hyperthermia (body core temperature ~42.5°C. Four hours after termination of heat stress, heated mice displayed (i systemic inflammation; (ii ischemic, hypoxic, and oxidative damage to the hypothalamus; (iii hypothalamo-pituitary-adrenocortical axis impairment (reflected by plasma levels of both adrenocorticotrophic-hormone and corticosterone; (iv decreased fractional survival; and (v thermoregulatory deficits (e.g., they became hypothermia when they were exposed to room temperature. These heatstroke reactions can be significantly attenuated by human umbilical cord blood-derived CD34+ cells therapy. Our data suggest that human umbilical cord blood-derived stem cells therapy may improve outcomes of heatstroke in mice by reducing systemic inflammation as well as hypothalamo-pituitary-adrenocortical axis impairment.

  12. Ursolic acid increases skeletal muscle and brown fat and decreases diet-induced obesity, glucose intolerance and fatty liver disease.

    Directory of Open Access Journals (Sweden)

    Steven D Kunkel

    Full Text Available Skeletal muscle Akt activity stimulates muscle growth and imparts resistance to obesity, glucose intolerance and fatty liver disease. We recently found that ursolic acid increases skeletal muscle Akt activity and stimulates muscle growth in non-obese mice. Here, we tested the hypothesis that ursolic acid might increase skeletal muscle Akt activity in a mouse model of diet-induced obesity. We studied mice that consumed a high fat diet lacking or containing ursolic acid. In skeletal muscle, ursolic acid increased Akt activity, as well as downstream mRNAs that promote glucose utilization (hexokinase-II, blood vessel recruitment (Vegfa and autocrine/paracrine IGF-I signaling (Igf1. As a result, ursolic acid increased skeletal muscle mass, fast and slow muscle fiber size, grip strength and exercise capacity. Interestingly, ursolic acid also increased brown fat, a tissue that shares developmental origins with skeletal muscle. Consistent with increased skeletal muscle and brown fat, ursolic acid increased energy expenditure, leading to reduced obesity, improved glucose tolerance and decreased hepatic steatosis. These data support a model in which ursolic acid reduces obesity, glucose intolerance and fatty liver disease by increasing skeletal muscle and brown fat, and suggest ursolic acid as a potential therapeutic approach for obesity and obesity-related illness.

  13. BMP4-mediated brown fat-like changes in white adipose tissue alter glucose and energy homeostasis.

    Science.gov (United States)

    Qian, Shu-Wen; Tang, Yan; Li, Xi; Liu, Yuan; Zhang, You-You; Huang, Hai-Yan; Xue, Rui-Dan; Yu, Hao-Yong; Guo, Liang; Gao, Hui-Di; Liu, Yan; Sun, Xia; Li, Yi-Ming; Jia, Wei-Ping; Tang, Qi-Qun

    2013-02-26

    Expression of bone morphogenetic protein 4 (BMP4) in adipocytes of white adipose tissue (WAT) produces "white adipocytes" with characteristics of brown fat and leads to a reduction of adiposity and its metabolic complications. Although BMP4 is known to induce commitment of pluripotent stem cells to the adipocyte lineage by producing cells that possess the characteristics of preadipocytes, its effects on the mature white adipocyte phenotype and function were unknown. Forced expression of a BMP4 transgene in white adipocytes of mice gives rise to reduced WAT mass and white adipocyte size along with an increased number of a white adipocyte cell types with brown adipocyte characteristics comparable to those of beige or brite adipocytes. These changes correlate closely with increased energy expenditure, improved insulin sensitivity, and protection against diet-induced obesity and diabetes. Conversely, BMP4-deficient mice exhibit enlarged white adipocyte morphology and impaired insulin sensitivity. We identify peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC1α) as the target of BMP signaling required for these brown fat-like changes in WAT. This effect of BMP4 on WAT appears to extend to human adipose tissue, because the level of expression of BMP4 in WAT correlates inversely with body mass index. These findings provide a genetic and metabolic basis for BMP4's role in altering insulin sensitivity by affecting WAT development.

  14. Ursolic acid increases skeletal muscle and brown fat and decreases diet-induced obesity, glucose intolerance and fatty liver disease.

    Science.gov (United States)

    Kunkel, Steven D; Elmore, Christopher J; Bongers, Kale S; Ebert, Scott M; Fox, Daniel K; Dyle, Michael C; Bullard, Steven A; Adams, Christopher M

    2012-01-01

    Skeletal muscle Akt activity stimulates muscle growth and imparts resistance to obesity, glucose intolerance and fatty liver disease. We recently found that ursolic acid increases skeletal muscle Akt activity and stimulates muscle growth in non-obese mice. Here, we tested the hypothesis that ursolic acid might increase skeletal muscle Akt activity in a mouse model of diet-induced obesity. We studied mice that consumed a high fat diet lacking or containing ursolic acid. In skeletal muscle, ursolic acid increased Akt activity, as well as downstream mRNAs that promote glucose utilization (hexokinase-II), blood vessel recruitment (Vegfa) and autocrine/paracrine IGF-I signaling (Igf1). As a result, ursolic acid increased skeletal muscle mass, fast and slow muscle fiber size, grip strength and exercise capacity. Interestingly, ursolic acid also increased brown fat, a tissue that shares developmental origins with skeletal muscle. Consistent with increased skeletal muscle and brown fat, ursolic acid increased energy expenditure, leading to reduced obesity, improved glucose tolerance and decreased hepatic steatosis. These data support a model in which ursolic acid reduces obesity, glucose intolerance and fatty liver disease by increasing skeletal muscle and brown fat, and suggest ursolic acid as a potential therapeutic approach for obesity and obesity-related illness.

  15. Angiotensin AT2-receptor stimulation improves survival and neurological outcome after experimental stroke in mice

    DEFF Research Database (Denmark)

    Schwengel, Katja; Namsolleck, Pawel; Lucht, Kristin

    2016-01-01

    of C21 on neurological outcome, infarct size and expression of BDNF or GAP-43 in AT2-KO mice. From these data, it can be concluded that AT2R stimulation attenuates early mortality and neurological deficits after experimental stroke through neuroprotective mechanisms in an AT2R-specific way. Key message......This study investigated the effect of post-stroke, direct AT2-receptor (AT2R) stimulation with the non-peptide AT2R-agonist compound 21 (C21) on infarct size, survival and neurological outcome after middle cerebral artery occlusion (MCAO) in mice and looked for potential underlying mechanisms. C57...... • AT2R stimulation after MCAO in mice reduces mortality and neurological deficits.• AT2R stimulation increases BDNF synthesis and protects neurons from apoptosis.• The AT2R-agonist C21 acts protectively when applied post-stroke and peripherally....

  16. Lithium improves hippocampal neurogenesis, neuropathology and cognitive functions in APP mutant mice.

    Directory of Open Access Journals (Sweden)

    Anna Fiorentini

    Full Text Available BACKGROUND: Alzheimer's disease (AD is a neurodegenerative disorder characterized by progressive deterioration of cognitive functions, extracellular β-amyloid (Aβ plaques and intracellular neurofibrillary tangles within neocortex and hippocampus. Adult hippocampal neurogenesis plays an important role in learning and memory processes and its abnormal regulation might account for cognitive impairments associated with AD. METHODOLOGY/PRINCIPAL FINDINGS: The double transgenic (Tg CRND8 mice (overexpressing the Swedish and Indiana mutations in the human amyloid precursor protein, aged 2 and 6 months, were used to examine in vivo the effects of 5 weeks lithium treatment. BrdU labelling showed a decreased neurogenesis in the subgranular zone of Tg mice compared to non-Tg mice. The decrease of hippocampal neurogenesis was accompanied by behavioural deficits and worsened with age and pathology severity. The differentiation into neurons and maturation of the proliferating cells were also markedly impaired in the Tg mice. Lithium treatment to 2-month-old Tg mice significantly stimulated the proliferation and neuron fate specification of newborn cells and fully counteracted the transgene-induced impairments of cognitive functions. The drug, by the inhibition of GSK-3β and subsequent activation of Wnt/ß-catenin signalling promoted hippocampal neurogenesis. Finally, the data show that the lithium's ability to stimulate neurogenesis and cognitive functions was lost in the aged Tg mice, thus indicating that the lithium-induced facilitation of neurogenesis and cognitive functions declines as brain Aβ deposition and pathology increases. CONCLUSIONS: Lithium, when given on time, stimulates neurogenesis and counteracts AD-like pathology.

  17. Melatonin improves glucose homeostasis and endothelial vascular function in high-fat diet-fed insulin-resistant mice.

    Science.gov (United States)

    Sartori, Claudio; Dessen, Pierre; Mathieu, Caroline; Monney, Anita; Bloch, Jonathan; Nicod, Pascal; Scherrer, Urs; Duplain, Hervé

    2009-12-01

    Obesity and insulin resistance represent a problem of utmost clinical significance worldwide. Insulin-resistant states are characterized by the inability of insulin to induce proper signal transduction leading to defective glucose uptake in skeletal muscle tissue and impaired insulin-induced vasodilation. In various pathophysiological models, melatonin interacts with crucial molecules of the insulin signaling pathway, but its effects on glucose homeostasis are not known. In a diet-induced mouse model of insulin resistance and normal chow-fed control mice, we sought to assess the effects of an 8-wk oral treatment with melatonin on insulin and glucose tolerance and to understand underlying mechanisms. In high-fat diet-fed mice, but not in normal chow-fed control mice, melatonin significantly improved insulin sensitivity and glucose tolerance, as evidenced by a higher rate of glucose infusion to maintain euglycemia during hyperinsulinemic clamp studies and an attenuated hyperglycemic response to an ip glucose challenge. Regarding underlying mechanisms, we found that melatonin restored insulin-induced vasodilation to skeletal muscle, a major site of glucose utilization. This was due, at least in part, to the improvement of insulin signal transduction in the vasculature, as evidenced by increased insulin-induced phosphorylation of Akt and endoethelial nitric oxide synthase in aortas harvested from melatonin-treated high-fat diet-fed mice. In contrast, melatonin had no effect on the ability of insulin to promote glucose uptake in skeletal muscle tissue in vitro. These data demonstrate for the first time that in a diet-induced rodent model of insulin resistance, melatonin improves glucose homeostasis by restoring the vascular action of insulin.

  18. Coacervate whey protein improves inflammatory milieu in mice fed with high-fat diet

    OpenAIRE

    Moreno, Mayara Franzoi; Souza, Gabriel Inacio de Morais Honorato de [UNIFESP; Hachul, Ana Claudia Losinskas; Santos, Bruno dos [UNIFESP; Okuda, Marcos Hiromu [UNIFESP; Pinto Neto, Nelson Inacio [UNIFESP; Boldarine, Valter Tadeu; Esposito, Elisa; Ribeiro, Eliane Beraldi; Nascimento, Claudia Maria da Penha Oller do [UNIFESP; Ganen, Aline de Piano; Oyama, Lila Missae [UNIFESP

    2014-01-01

    Background: Functional foods with bioactive properties may help in treat obesity, as they can lead to a decreased risks of inflammatory diseases. the aim of this study was to investigate the effects of chitosan coacervate whey protein on the proinflammatory processes in mice fed with high-fat diet.Methods: Mice were divided into two groups receiving either a normolipidic or high-fat diet; the animals in each of the two diet groups were given a diet supplement of either coacervate (gavage, 36 ...

  19. Effects of ethyl acetate extract of Kaempferia parviflora on brown adipose tissue.

    Science.gov (United States)

    Kobayashi, Hiroko; Horiguchi-Babamoto, Emi; Suzuki, Mio; Makihara, Hiroko; Tomozawa, Hiroshi; Tsubata, Masahito; Shimada, Tsutomu; Sugiyama, Kiyoshi; Aburada, Masaki

    2016-01-01

    We have previously reported the effects of Kaempferia parviflora (KP), including anti-obesity, preventing various metabolic diseases, and regulating differentiation of white adipose cells. In this study we used Tsumura, Suzuki, Obese Diabetes (TSOD) mice--an animal model of spontaneous obese type II diabetes--and primary brown preadipocytes to examine the effects of the ethyl acetate extract of KP (KPE) on brown adipose tissue, which is one of the energy expenditure organs. TSOD mice were fed with MF mixed with either KPE 0.3 or 1% for 8 weeks. Computed tomography images showed that whitening of brown adipocytes was suppressed in the interscapular tissue of the KPE group. We also examined mRNA expression of uncoupling protein 1 (UCP-1) and β3-adrenalin receptor (β3AR) in brown adipose tissue. As a result, mRNA expression of UCP-1 significantly increased in the KPE 1% treatment group, indicating that KPE activated brown adipose tissue. We then evaluated the direct effects of KPE on brown adipocytes using primary brown preadipocytes isolated from interscapular brown adipocytes in ICR mice. Triacylglycerol (TG) accumulation in primary brown preadipocytes was increased by KPE in a dose-dependent manner. Each mRNA expression of peroxisome proliferator-activated receptor γ (PPARγ), UCP-1, and β3AR exhibited an upward trend compared with the control group. Moreover, some polymethoxyflavonoids (PMFs), the main compound in KP, also increased TG accumulation. This study therefore showed that KPE enhanced the thermogenesis effect of brown adipocytes as well as promoted the differentiation of brown adipocyte cells.

  20. Antioxidant Treatment Reduces Formation of Structural Cores and Improves Muscle Function in RYR1Y522S/WT Mice

    Directory of Open Access Journals (Sweden)

    Antonio Michelucci

    2017-01-01

    Full Text Available Central core disease (CCD is a congenital myopathy linked to mutations in the ryanodine receptor type 1 (RYR1, the sarcoplasmic reticulum Ca2+ release channel of skeletal muscle. CCD is characterized by formation of amorphous cores within muscle fibers, lacking mitochondrial activity. In skeletal muscle of RYR1Y522S/WT knock-in mice, carrying a human mutation in RYR1 linked to malignant hyperthermia (MH with cores, oxidative stress is elevated and fibers present severe mitochondrial damage and cores. We treated RYR1Y522S/WT mice with N-acetylcysteine (NAC, an antioxidant provided ad libitum in drinking water for either 2 or 6 months. Our results show that 2 months of NAC treatment starting at 2 months of age, when mitochondrial and fiber damage was still minimal, (i reduce formation of unstructured and contracture cores, (ii improve muscle function, and (iii decrease mitochondrial damage. The beneficial effect of NAC treatment is also evident following 6 months of treatment starting at 4 months of age, when structural damage was at an advanced stage. NAC exerts its protective effect likely by lowering oxidative stress, as supported by the reduction of 3-NT and SOD2 levels. This work suggests that NAC administration is beneficial to prevent mitochondrial damage and formation of cores and improve muscle function in RYR1Y522S/WT mice.

  1. Curcumin upregulates S100 expression and improves regeneration of the sciatic nerve following its complete amputation in mice

    Institute of Scientific and Technical Information of China (English)

    Guo-min Liu; Kun Xu; Juan Li; Yun-gang Luo

    2016-01-01

    The repair of peripheral nerve injury after complete amputation is dififcult, and even with anastomosis, the rapid recovery of nerve function remains challenging. Curcumin, extracted from plants of the genus Curcuma, has been shown to have anti-oxidant and anti-inlfammatory properties and to improve sciatic nerve crush injury in rats. Here, we determined whether curcumin had neuroprotective effects following com-plete peripheral nerve amputation injury. BALB/c mice underwent complete sciatic nerve amputation, followed by an immediate epineurium anastomosis. Mice were intragastrically administered curcumin at doses of 40 (high), 20 (moderate), and 10 mg/kg/d (low) for 1 week. We found that myelin in the mice of the high-and moderate-dose curcumin groups appeared with regular shape, uniform thickness, clear boundary, and little hyperplasia surrounding the myelin. High and moderate doses of curcumin markedly improved both action potential amplitude of the sciatic nerves and the conduction velocity of the corresponding motor neurons, and upregulated mRNA and protein ex-pression of S100, a marker for Schwann cell proliferation, in L4–6 spinal cord segments. These results suggest that curcumin is effective in promoting the repair of complete sciatic nerve amputation injury and that the underlying mechanism may be associated with upregulation of S100 expression.

  2. Resveratrol Decreases TXNIP mRNA and Protein Nuclear Expressions With an Arterial Function Improvement in Old Mice.

    Science.gov (United States)

    Bedarida, Tatiana; Baron, Stephanie; Vibert, Françoise; Ayer, Audrey; Henrion, Daniel; Thioulouse, Elizabeth; Marchiol, Carmen; Beaudeux, Jean-Louis; Cottart, Charles-Henry; Nivet-Antoine, Valerie

    2016-06-01

    Aging leads to a high prevalence of glucose intolerance and cardiovascular diseases, with oxidative stress playing a potential role. Resveratrol has shown promising effects on glucose tolerance and tends to improve endothelial function in elderly patients. Thioredoxin-interacting protein (TXNIP) was recently proposed as a potential link connecting glucose metabolism to oxidative stress. Here, we investigated the resveratrol-induced improvement of arterial aging phenotype in old mice and the expression of aortic TXNIP. Using an in vivo model of old mice with or without 3-month resveratrol treatment, we investigated the effects of resveratrol on age-related impairments from a cardiovascular Doppler analysis, to a molecular level, by studying inflammation and oxidative stress factors. We found a dual effect of resveratrol, with a decrease of age-related glucose intolerance and oxidative stress imbalance leading to reduced matrix remodeling that forestalls arterial aging phenotype in terms of intima-media thickness and arterial distensibility. These results provide the first evidence that aortic TXNIP mRNA and protein nuclear expressions are increased in the arterial aging and decreased by resveratrol treatment. In conclusion, we demonstrated that resveratrol helped to restore several aging impaired processes in old mice, with a decrease of aortic TXNIP mRNA and protein nuclear expressions.

  3. Kefir improves fatty liver syndrome by inhibiting the lipogenesis pathway in leptin-deficient ob/ob knockout mice.

    Science.gov (United States)

    Chen, H-L; Tung, Y-T; Tsai, C-L; Lai, C-W; Lai, Z-L; Tsai, H-C; Lin, Y-L; Wang, C-H; Chen, C-M

    2014-09-01

    Fatty liver disease is commonly associated with obesity, insulin resistance and diabetes. Severe fatty liver is sometimes accompanied by steatohepatitis and may lead to the development of hepatocellular carcinoma. At present, there is no effective treatment for non-alcoholic fatty liver disease (NAFLD); thus, recent investigations have focused on developing effective therapeutics to treat this condition. This study aimed to evaluate the effects of kefir on the hepatic lipid metabolism of ob/ob mice, which are commonly used to model fatty liver disease. In this study, we used leptin receptor-deficient ob/ob mice as an animal disease model of NAFLD. Six-week-old ob/ob mice were orally administered the dairy product kefir (140 mg kg(-1) of body weight (BW) per day) for 4 weeks. The data demonstrated that kefir improved fatty liver syndrome on BW, energy expenditure and basal metabolic rate by inhibiting serum glutamate oxaloacetate transaminase (GOT) and glutamate pyruvate transaminase (GPT) activities (Pkefir administration also significantly reduced the macrovesicular fat quantity in liver tissue. In addition, kefir markedly decreased the expression of the genes sterol regulatory element-binding protein 1 (SREBP1), fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC) (Pkefir improves NAFLD on BW, energy expenditure and basal metabolic rate by inhibiting the lipogenesis pathway and that kefir may have the potential for clinical application to the prevention or treatment of NAFLD.

  4. Communication Impairment in Ultrasonic Vocal Repertoire during the Suckling Period of Cd157 Knockout Mice: Transient Improvement by Oxytocin.

    Science.gov (United States)

    Lopatina, Olga L; Furuhara, Kazumi; Ishihara, Katsuhiko; Salmina, Alla B; Higashida, Haruhiro

    2017-01-01

    Communication consists of social interaction, recognition, and information transmission. Communication ability is the most affected component in children with autism spectrum disorder (ASD). Recently, we reported that the CD157/BST1 gene is associated with ASD, and that CD157 knockout (Cd157(-/-)) mice display severe impairments in social behavior that are improved by oxytocin (OXT) treatment. Here, we sought to determine whether Cd157(-/-) mice can be used as a suitable model for communication deficits by measuring ultrasonic vocalizations (USVs), especially in the early developmental stage. Call number produced in pups due to isolation from dams was higher at postnatal day (PND) 3 in knockout pups than wild-type mice, but was lower at PNDs 7 and 10. Pups of both genotypes had similarly limited voice repertoires at PND 3. Later on, at PNDs 7 and 10, while wild-type pups emitted USVs consisting of six different syllable types, knockout pups vocalized with only two types. This developmental impairment in USV emission was rescued within 30 min by intraperitoneal OXT treatment, but quickly returned to control levels after 120 min, showing a transient effect of OXT. USV impairment was partially observed in Cd157(+/-) heterozygous mice, but not in Cd157(-/-) adult male mice examined while under courtship. These results demonstrate that CD157 gene deletion results in social communication insufficiencies, and suggests that CD157 is likely involved in acoustic communication. This unique OXT-sensitive developmental delay in Cd157(-/-) pups may be a useful model of communicative interaction impairment in ASD.

  5. Communication Impairment in Ultrasonic Vocal Repertoire during the Suckling Period of Cd157 Knockout Mice: Transient Improvement by Oxytocin

    Directory of Open Access Journals (Sweden)

    Olga L. Lopatina

    2017-05-01

    Full Text Available Communication consists of social interaction, recognition, and information transmission. Communication ability is the most affected component in children with autism spectrum disorder (ASD. Recently, we reported that the CD157/BST1 gene is associated with ASD, and that CD157 knockout (Cd157−/− mice display severe impairments in social behavior that are improved by oxytocin (OXT treatment. Here, we sought to determine whether Cd157−/− mice can be used as a suitable model for communication deficits by measuring ultrasonic vocalizations (USVs, especially in the early developmental stage. Call number produced in pups due to isolation from dams was higher at postnatal day (PND 3 in knockout pups than wild-type mice, but was lower at PNDs 7 and 10. Pups of both genotypes had similarly limited voice repertoires at PND 3. Later on, at PNDs 7 and 10, while wild-type pups emitted USVs consisting of six different syllable types, knockout pups vocalized with only two types. This developmental impairment in USV emission was rescued within 30 min by intraperitoneal OXT treatment, but quickly returned to control levels after 120 min, showing a transient effect of OXT. USV impairment was partially observed in Cd157+/− heterozygous mice, but not in Cd157−/− adult male mice examined while under courtship. These results demonstrate that CD157 gene deletion results in social communication insufficiencies, and suggests that CD157 is likely involved in acoustic communication. This unique OXT-sensitive developmental delay in Cd157−/− pups may be a useful model of communicative interaction impairment in ASD.

  6. Astaxanthin improves behavioral disorder and oxidative stress in prenatal valproic acid-induced mice model of autism.

    Science.gov (United States)

    Al-Amin, Md Mamun; Rahman, Md Mahbubur; Khan, Fazlur Rahman; Zaman, Fahmida; Mahmud Reza, Hasan

    2015-06-01

    Prenatal exposure to valproic acid on gestational day 12.5 may lead to the impaired behavior in the offspring, which is similar to the human autistic symptoms. To the contrary, astaxanthin shows neuroprotective effect by its antioxidant mechanism. We aimed to (i) develop mice model of autism and (ii) investigate the effect of astaxanthin on such model animals. Valproic acid (600 mg/kg) was administered intraperitoneally to the pregnant mice on gestational day 12.5. Prenatal valproic acid-exposed mice were divided into 2 groups on postnatal day 25 and astaxanthin (2mg/kg) was given to the experimental group (VPA_AST, n=10) while saline was given to the control group (VPA, n=10) for 4 weeks. Behavioral test including social interaction, open field and hot-plate were conducted on postnatal day 25 and oxidative stress markers such as lipid peroxidation, advanced protein oxidation product, nitric oxide, glutathione, and activity of superoxide dismutase and catalase were estimated on postnatal day 26 to confirm mice model of autism and on postnatal day 56 to assess the effect of astaxanthin. On postnatal day 25, prenatal valproic acid-exposed mice exhibited (i) delayed eye opening (ii) longer latency to respond painful stimuli, (iii) poor sociability and social novelty and (iv) high level of anxiety. In addition, an increased level of oxidative stress was found by determining different oxidative stress markers. Treatment with astaxanthin significantly (pAstaxanthin improves the impaired behavior in animal model of autism presumably by its antioxidant activity.

  7. Parathyroid hormone administration improves bone marrow microenvironment and partially rescues haematopoietic defects in Bmi1-null mice.

    Directory of Open Access Journals (Sweden)

    Ruinan Lu

    Full Text Available The epigenetic regulator Bmi1 is key in haematopoietic stem cells, and its inactivation leads to defects in haematopoiesis. Parathyroid hormone (PTH, an important modulator of bone homeostasis, also regulates haematopoiesis, so we asked whether PTH administration improves bone marrow microenvironment and rescues the haematopoietic defects in Bmi1-null mice. The mice were treated with PTH1-34 (containing the first 34 residues of mature PTH, an anabolic drug currently used for treating osteoporosis, and compared with the vehicle-treated Bmi1-/- and wild-type littermates in terms of skeletal and haematopoietic phenotypes. We found that the administration significantly increased all parameters related to osteoblastic bone formation and significantly reduced the adipocyte number and PPARγ expression. The bone marrow cellularity, numbers of haematopoietic progenitors and stem cells in the femur, and numbers of lymphocytes and other white blood cells in the peripheral blood all increased significantly when compared to vehicle-treated Bmi1-/- mice. Moreover, the number of Jagged1-positive cells and percentage of Notch intracellular domain-positive bone marrow cells and protein expression levels of Jagged1 and NICD in bone tissue were also increased in Bmi1-/- mice upon PTH1-34 administration,whereas the up-regulation of PTH on both Notch1 and Jagged1 gene expression was blocked by the Notch inhibitor DAPT administration. These results thus indicate that PTH administration activates the notch pathway and partially rescues haematopoietic defects in Bmi1-null mice, further suggesting that haematopoietic defects in the animals are not only a result of reduced self-renewal of haematopoietic stem cells but also due to impaired bone marrow microenvironment.

  8. SERCA2a gene transfer improves electrocardiographic performance in aged mdx mice

    Directory of Open Access Journals (Sweden)

    Hajjar Roger

    2011-08-01

    Full Text Available Abstract Background Cardiomyocyte calcium overloading has been implicated in the pathogenesis of Duchenne muscular dystrophy (DMD heart disease. The cardiac isoform of sarcoplasmic reticulum calcium ATPase (SERCA2a plays a major role in removing cytosolic calcium during heart muscle relaxation. Here, we tested the hypothesis that SERCA2a over-expression may mitigate electrocardiography (ECG abnormalities in old female mdx mice, a murine model of DMD cardiomyopathy. Methods 1 × 1012 viral genome particles/mouse of adeno-associated virus serotype-9 (AAV-9 SERCA2a vector was delivered to 12-m-old female mdx mice (N = 5 via a single bolus tail vein injection. AAV transduction and the ECG profile were examined eight months later. Results The vector genome was detected in the hearts of all AAV-injected mdx mice. Immunofluorescence staining and western blot confirmed SERCA2a over-expression in the mdx heart. Untreated mdx mice showed characteristic tachycardia, PR interval reduction and QT interval prolongation. AAV-9 SERCA2a treatment corrected these ECG abnormalities. Conclusions Our results suggest that AAV SERCA2a therapy may hold great promise in treating dystrophin-deficient heart disease.

  9. Coupling of drug containing liposomes to microbubbles improves ultrasound triggered drug delivery in mice.

    Science.gov (United States)

    Cool, Steven K; Geers, Bart; Roels, Stefan; Stremersch, Stephan; Vanderperren, Katrien; Saunders, Jimmy H; De Smedt, Stefaan C; Demeester, Joseph; Sanders, Niek N

    2013-12-28

    Local extravasation and triggered drug delivery by use of ultrasound and microbubbles is a promising strategy to target drugs to their sites of action. In the past we have developed drug loaded microbubbles by coupling drug containing liposomes to the surface of microbubbles. Until now the advantages of this drug loading strategy have only been demonstrated in vitro. Therefore, in this paper, microbubbles with indocyanine green (ICG) containing liposomes at their surface or a mixture of ICG-liposomes and microbubbles was injected intravenously in mice. Immediately after injection the left hind leg was exposed to 1 MHz ultrasound and the ICG deposition was monitored 1, 4 and 7 days post-treatment by in vivo fluorescence imaging. In mice that received the ICG-liposome loaded microbubbles the local ICG deposition was, at each time point, about 2-fold higher than in mice that received ICG-liposomes mixed with microbubbles. We also showed that the perforations in the blood vessels allow the passage of ICG-liposomes up to 5h after microbubble and ultrasound treatment. An increase in tissue temperature to 41°C was observed in all ultrasound treated mice. However, ultrasound tissue heating was excluded to cause the local ICG deposition. We concluded that coupling of drug containing liposomes to microbubbles may increase ultrasound mediated drug delivery in vivo.

  10. Mild Staphylococcus aureus skin infection improves the course of subsequent endogenous S. aureus bacteremia in mice

    NARCIS (Netherlands)

    S. van den Berg (Sanne); C.P. de Vogel (Corné); A.F. van Belkum (Alex); I.A.J.M. Bakker-Woudenberg (Irma)

    2015-01-01

    textabstractStaphylococcus aureus carriers with S. aureus bacteremia may have a reduced mortality risk compared to non-carriers. A role for the immune system is suggested. Here, we study in mice the effect of mild S. aureus skin infection prior to endogenous or exogenous S. aureus bacteremia, and ev

  11. Mild Staphylococcus aureus skin infection improves the course of subsequent endogenous S. aureus bacteremia in mice

    NARCIS (Netherlands)

    S. van den Berg (Sanne); C.P. de Vogel (Corné); A.F. van Belkum (Alex); I.A.J.M. Bakker-Woudenberg (Irma)

    2015-01-01

    textabstractStaphylococcus aureus carriers with S. aureus bacteremia may have a reduced mortality risk compared to non-carriers. A role for the immune system is suggested. Here, we study in mice the effect of mild S. aureus skin infection prior to endogenous or exogenous S. aureus bacteremia, and

  12. Royal Jelly alleviates sperm toxicity and improves in vitro fertilization outcome in Stanozolol-treated mice.

    Science.gov (United States)

    Shalizar Jalali, Ali; Najafi, Gholamreza; Hosseinchi, Mohammadreza; Sedighnia, Ashkan

    2015-01-01

    Stanozolol (ST) is a synthetic anabolic-androgenic steroid often abused by athletes. An increasing body of evidence points towards the role of ST misuses in the pathogenesis of a wide range of adverse effects including reprotoxicity. The aim of this study was to analyze the possible reproprotective effect of royal jelly (RJ) as an efficient antioxidant in ST-treated mice. Adult male mice were divided into four groups (n=5). Two groups of mice received ST (4.6 mg/kg/day) via gavage for 35 days. RJ was given orally to one of these groups at the dose level of 100 mg/kg body weight per day synchronously. Untreated control group and RJ-only treated group were also included. Epididymal sperm characteristics and in vitro fertilizing capacity were evaluated after 35 days. ST treatment caused a significant (prepro-protective action against ST-induced reproductive toxicity in mice. However, clinical studies are warranted to investigate such an effect in human subjects.

  13. Pomegranate extract improves a depressive state and bone properties in menopausal syndrome model ovariectomized mice.

    Science.gov (United States)

    Mori-Okamoto, Junko; Otawara-Hamamoto, Yoko; Yamato, Hideyuki; Yoshimura, Hiroyuki

    2004-05-01

    Pomegranate is known to contain estrogens (estradiol, estrone, and estriol) and show estrogenic activities in mice. In this study, we investigated whether pomegranate extract is effective on experimental menopausal syndrome in ovariectomized mice. Prolongation of the immobility time in forced swimming test, an index of depression, was measured 14 days after ovariectomy. The bone mineral density (BMD) of the tibia was measured by X-ray absorptiometry and the structure and metabolism of bone were also analyzed by bone histomorphometry. Administration of pomegranate extract (juice and seed extract) for 2 weeks to ovariectomized mice prevented the loss of uterus weight and shortened the immobility time compared with 5% glucose-dosed mice (control). In addition, ovariectomy-induced decrease of BMD was normalized by administration of the pomegranate extract. The bone volume and the trabecular number were significantly increased and the trabecular separation was decreased in the pomegranate-dosed group compared with the control group. Some histological bone formation/resorption parameters were significantly increased by ovariectomy but were normalized by administration of the pomegranate extract. These changes suggest that the pomegranate extract inhibits ovariectomy-stimulated bone turnover. It is thus conceivable that pomegranate is clinically effective on a depressive state and bone loss in menopausal syndrome in women.

  14. c-Abl inhibition mitigates diet-induced obesity through improving insulin sensitivity of subcutaneous fat in mice.

    Science.gov (United States)

    Wu, Rong; Sun, Jian-Guang; Wang, Ji-Qiu; Li, Binhua; Liu, Qingsong; Ning, Guang; Jin, Wanzhu; Yuan, Zengqiang

    2017-05-01

    High-energy diets are among the main causes of the global epidemic of metabolic disorders, including obesity and type 2 diabetes. The mechanisms of high-energy-diet-induced metabolic disorders are complex and largely unknown. The non-receptor tyrosine kinase c-Abl plays an important role in adipogenesis in vitro but its role in vivo in the regulation of metabolism is still elusive. Hence, we sought to address the role of c-Abl in diet-induced obesity and obesity-associated insulin resistance. The expression of c-Abl in different fat tissues from obese humans or mice fed a high-fat diet (HFD) were first analysed by western blotting and quantitative PCR. We employed conditional deletion of the c-Abl gene (also known as Abl1) in adipose tissue using Fabp4-Cre and 6-week-old mice were fed with either a chow diet (CD) or an HFD. Age-matched wild-type mice were treated with the c-Abl inhibitor nilotinib or with vehicle and exposed to either CD or HFD, followed by analysis of body mass, fat mass, glucose and insulin tolerance. Histological staining, ELISA and biochemical analysis were used to clarify details of changes in physiology and molecular signalling. c-Abl was highly expressed in subcutaneous fat from obese humans and HFD-induced obese mice. Conditional knockout of c-Abl in adipose tissue improved insulin sensitivity and mitigated HFD-induced body mass gain, hyperglycaemia and hyperinsulinaemia. Consistently, treatment with nilotinib significantly reduced fat mass and improved insulin sensitivity in HFD-fed mice. Further biochemical analyses suggested that c-Abl inhibition improved whole-body insulin sensitivity by reducing HFD-triggered insulin resistance and increasing adiponectin in subcutaneous fat. Our findings define a new biological role for c-Abl in the regulation of diet-induced obesity through improving insulin sensitivity of subcutaneous fat. This suggests it may become a novel therapeutic target in the treatment of metabolic disorders.

  15. The proton pump inhibitor lansoprazole improves the skeletal phenotype in dystrophin deficient mdx mice.

    Directory of Open Access Journals (Sweden)

    Arpana Sali

    Full Text Available BACKGROUND: In Duchenne muscular dystrophy (DMD, loss of the membrane stabilizing protein dystrophin results in myofiber damage. Microinjury to dystrophic myofibers also causes secondary imbalances in sarcolemmic ion permeability and resting membrane potential, which modifies excitation-contraction coupling and increases proinflammatory/apoptotic signaling cascades. Although glucocorticoids remain the standard of care for the treatment of DMD, there is a need to investigate the efficacy of other pharmacological agents targeting the involvement of imbalances in ion flux on dystrophic pathology. METHODOLOGY/PRINCIPAL FINDINGS: We designed a preclinical trial to investigate the effects of lansoprazole (LANZO administration, a proton pump inhibitor, on the dystrophic muscle phenotype in dystrophin deficient (mdx mice. Eight to ten week-old female mice were assigned to one of four treatment groups (n = 12 per group: (1 vehicle control; (2 5 mg/kg/day LANZO; (3 5 mg/kg/day prednisolone; and (4 combined treatment of 5 mg/kg/day prednisolone (PRED and 5 mg/kg/day LANZO. Treatment was administered orally 5 d/wk for 3 months. At the end of the study, behavioral (Digiscan and functional outcomes (grip strength and Rotarod were assessed prior to sacrifice. After sacrifice, body, tissue and organ masses, muscle histology, in vitro muscle force, and creatine kinase levels were measured. Mice in the combined treatment groups displayed significant reductions in the number of degenerating muscle fibers and number of inflammatory foci per muscle field relative to vehicle control. Additionally, mice in the combined treatment group displayed less of a decline in normalized forelimb and hindlimb grip strength and declines in in vitro EDL force after repeated eccentric contractions. CONCLUSIONS/SIGNIFICANCE: Together our findings suggest that combined treatment of LANZO and prednisolone attenuates some components of dystrophic pathology in mdx mice. Our findings

  16. Over-expression of Follistatin-like 3 attenuates fat accumulation and improves insulin sensitivity in mice

    DEFF Research Database (Denmark)

    Brandt, Claus; Hansen, Rasmus Hvass; Hansen, Jakob Bondo

    2015-01-01

    -fat feeding. Body weight, food intake, fat accumulation by MR scanning, and glucose, insulin and glucagon tolerance were evaluated, as was the response in body weight and metabolic parameters to 24h fasting. Effects of fstl3 on pancreatic insulin and glucagon content, and pancreatic islet morphology were...... through systemic fstl3 over-expression protects against diet-induced obesity and insulin resistance. METHODS: Fstl3 was over-expressed by DNA electrotransfer in tibialis anterior, quadriceps and gastrocnemius muscles in female C57BL/C mice, and the mice were subsequently randomized to chow or high....../glucagon ratio. Accordingly, fstl3 transfection improved counter-regulation to 24h fasting. CONCLUSION: Fstl3 over-expression regulates insulin and glucagon sensitivities through increased muscular insulin action, as well as increased hepatic glucagon sensitivity and pancreatic glucagon content....

  17. Study on Dendrobium officinale O-Acetyl-glucomannan (Dendronan). 7. Improving Effects on Colonic Health of Mice.

    Science.gov (United States)

    Zhang, Guan-ya; Nie, Shao-ping; Huang, Xiao-jun; Hu, Jie-lun; Cui, Steve W; Xie, Ming-yong; Phillips, Glyn O

    2016-03-30

    This research was aimed to study the effect of Dendrobium officinale polysaccharide (Dendronan) on colonic health. Mice were fed Dendronan at doses of 40, 80, and 160 mg/kg body weight for 0, 10, 20, and 30 days, respectively. Results showed that Dendronan, which has a special structure formed by mannose and glucose, rich in O-acetyl groups, exhibited improving effects on colonic and fecal parameters of Balb/c mice. After Dendronan feeding, the content of short-chain fatty acids (SCFAs), colon length and index, and fecal moisture were increased, whereas colonic pH was decreased and defecation time was shortened. All of these changes were significantly different between polysaccharide-treated groups and the control group (p < 0.05). These findings suggested that an adequate intake of Dendronan is beneficial to the process of fermentation and regulation of colonic microenvironment, thus playing a role in the maintenance of colonic health.

  18. Effects of Wnt signaling on brown adipocyte differentiation and metabolism mediated by PGC-1alpha

    DEFF Research Database (Denmark)

    Kang, Sona; Bajnok, Laszlo; Longo, Kenneth A;

    2005-01-01

    expression of PGC-1alpha is required for activation of uncoupling protein 1 (UCP1). Wnt10b blocks brown adipose tissue development and expression of UCP1 when expressed from the fatty acid binding protein 4 promoter, even when mice are administered a beta3-agonist. In differentiated brown adipocytes......Activation of canonical Wnt signaling inhibits brown adipogenesis of cultured cells by impeding induction of PPARgamma and C/EBPalpha. Although enforced expression of these adipogenic transcription factors restores lipid accumulation and expression of FABP4 in Wnt-expressing cells, additional......, activation of Wnt signaling suppresses expression of UCP1 through repression of PGC-1alpha. Consistent with these in vitro observations, UCP1-Wnt10b transgenic mice, which express Wnt10b in interscapular tissue, lack functional brown adipose tissue. While interscapular tissue of UCP1-Wnt10b mice lacks...

  19. Over-expression of Follistatin-like 3 attenuates fat accumulation and improves insulin sensitivity in mice.

    Science.gov (United States)

    Brandt, Claus; Hansen, Rasmus Hvass; Hansen, Jakob Bondo; Olsen, Caroline Holkmann; Galle, Pia; Mandrup-Poulsen, Thomas; Gehl, Julie; Pedersen, Bente Klarlund; Hojman, Pernille

    2015-02-01

    Follistatin-like 3 (fstl3), a natural inhibitor of members of the TGF-β family, increases during resistance training in human plasma. Fstl3 primarily binds myostatin and activin A, and thereby inhibits their functions. We hypothesize that blocking myostatin and activin A signalling through systemic fstl3 over-expression protects against diet-induced obesity and insulin resistance. Fstl3 was over-expressed by DNA electrotransfer in tibialis anterior, quadriceps and gastrocnemius muscles in female C57BL/C mice, and the mice were subsequently randomized to chow or high-fat feeding. Body weight, food intake, fat accumulation by MR scanning, and glucose, insulin and glucagon tolerance were evaluated, as was the response in body weight and metabolic parameters to 24h fasting. Effects of fstl3 on pancreatic insulin and glucagon content, and pancreatic islet morphology were determined. Fstl3 over-expression reduced fat accumulation during high-fat feeding by 16%, and liver fat by 50%, as determined by MRI. No changes in body weight were observed, while the weight of the transfected muscles increased by 10%. No transcriptional changes were found in the subcutaneous adipose tissue. Fstl3 mice displayed improved insulin sensitivity and muscle insulin signalling. In contrast, glucose tolerance was impaired in high-fat fed fstl3 mice, which was explained by increased hepatic glucagon sensitivity and glucose output, as well as a decrease in the pancreatic insulin/glucagon ratio. Accordingly, fstl3 transfection improved counter-regulation to 24h fasting. Fstl3 over-expression regulates insulin and glucagon sensitivities through increased muscular insulin action, as well as increased hepatic glucagon sensitivity and pancreatic glucagon content. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Niclosamide reduces glucagon sensitivity via hepatic PKA inhibition in obese mice: Implications for glucose metabolism improvements in type 2 diabetes

    Science.gov (United States)

    Chowdhury, Md. Kamrul Hasan; Turner, Nigel; Bentley, Nicholas L.; Das, Abhirup; Wu, Lindsay E.; Richani, Dulama; Bustamante, Sonia; Gilchrist, Robert B.; Morris, Margaret J.; Shepherd, Peter R.; Smith, Greg C.

    2017-01-01

    Type 2 diabetes (T2D) is a global pandemic. Currently, the drugs used to treat T2D improve hyperglycemic symptom of the disease but the underlying mechanism causing the high blood glucose levels have not been fully resolved. Recently published data showed that salt form of niclosamide improved glucose metabolism in high fat fed mice via mitochondrial uncoupling. However, based on our previous work we hypothesised that niclosamide might also improve glucose metabolism via inhibition of the glucagon signalling in liver in vivo. In this study, mice were fed either a chow or high fat diet containing two different formulations of niclosamide (niclosamide ethanolamine salt - NENS or niclosamide - Nic) for 10 weeks. We identified both forms of niclosamide significantly improved whole body glucose metabolism without altering total body weight or body composition, energy expenditure or insulin secretion or sensitivity. Our study provides evidence that inhibition of the glucagon signalling pathway contributes to the beneficial effects of niclosamide (NENS or Nic) on whole body glucose metabolism. In conclusion, our results suggest that the niclosamide could be a useful adjunctive therapeutic strategy to treat T2D, as hepatic glucose output is elevated in people with T2D and current drugs do not redress this adequately. PMID:28054648

  1. Quercetin improves macrophage reverse cholesterol transport in apolipoprotein E-deficient mice fed a high-fat diet.

    Science.gov (United States)

    Cui, Yingjie; Hou, Pengbo; Li, Fahui; Liu, Qinghua; Qin, Shucun; Zhou, Guanghai; Xu, Xuelian; Si, Yanhong; Guo, Shoudong

    2017-01-14

    Quercetin, one of the most widely distributed flavonoids in plants, has been demonstrated to reduce hyperlipidaemia and atherosclerotic lesion formation. Reverse cholesterol transport (RCT) plays a crucial role in exporting cholesterol from peripheral cells, which is one mechanism utilized in the prevention and treatment of atherosclerosis. The aim of this study is to investigate whether quercetin reduces lipid accumulation by improving RCT in vivo. Apolipoprotein E-deficient mice fed a high-fat diet were used to investigate the effect of quercetin on RCT by an isotope tracing method, and the underlying mechanisms were clarified by molecular techniques. These novel results demonstrated that quercetin significantly improved [(3)H]-cholesterol transfer from [(3)H]-cholesterol-loaded macrophages to the plasma (approximately 34% increase), liver (30% increase), and bile (50% increase) and finally to the feces (approximately 40% increase) for excretion in apolipoprotein E-deficient mice fed a high-fat diet. Furthermore, quercetin markedly increased the cholesterol accepting ability of plasma and high-density lipoprotein (HDL) and dramatically decreased the content of malondialdehyde in plasma and oxidized phosphocholine carried by HDL. Therefore, the underlying mechanisms of quercetin in improving RCT may be partially due to the elevated cholesterol accepting ability of HDL, the increased expression levels of proteins related to RCT, such as ATP-binding cassettes (ABC) A1 and G1, and the improved antioxidant activity of HDL. Quercetin accelerates RCT in an atherosclerosis model, which is helpful in clarifying the lipid-lowering effect of quercetin.

  2. 非浸泡复合酶法预处理改善糙米碾米性能%Improving milling quality of brown rice with compound enzyme solution humidification

    Institute of Scientific and Technical Information of China (English)

    贾富国; 史宇菲; 韩燕龙; 王会; 姚丽娜; 曾勇; 蒋龙伟; 张强

    2015-01-01

    Generally, lots of broken rice is generated and high energy consumption occurs during the rice milling processing, which bring adverse effect to the economic benefits of rice milling enterprises. Therefore, milling quality improvement is of important significance in practice for rice processing industry. Moisture conditioning treatment for the brown rice, which is an advanced technology, can increase head rice yield and reduce the milling energy consumption to some extent. It reduces the maximum compressive strength and maximum tensile strength with the increase of moisture content and generated moisture gradient within the rice by gradual penetration from the exterior into the interior of kernels. However, it does not fundamentally solve the problem caused by the resistant cortex of brown rice. The brown rice’s tough cortex is mainly caused by the coarse fiber structure, whose major components are cellulose and araboxylan. This study proposes a new process with composite enzyme of cellulase and xylanase instead of the conventional humidifying method. This method substantially decreases broken rice in the milling process and reduces the milling energy consumption to improve milling quality. The humidification of compound enzyme solution selectively degrades the cortex of brown rice, which can not only reduce the hardness of brown rice kernel and decrease the whitening pressure, but also facilitate the moisture penetration, which would boost cortex softening and increase the grain’s toughness. Moreover, the synergy of compound enzyme can improve the efficiency of the enzymatic hydrolysis. A central composite rotatable orthogonal experimental design of response surface methodology with 4 factors and 5 levels was employed. Taking brown rice in storage with moisture content below 15%as raw material, the influences of the 4 parameters including cellulose-to-xylanase mass ratio, concentration of compound enzyme solution, adding liquid proportion and enzyme treating

  3. Pref-1 in brown adipose tissue: specific involvement in brown adipocyte differentiation and regulatory role of C/EBPδ.

    Science.gov (United States)

    Armengol, Jordi; Villena, Josep A; Hondares, Elayne; Carmona, María C; Sul, Hei Sook; Iglesias, Roser; Giralt, Marta; Villarroya, Francesc

    2012-05-01

    Pref-1 (pre-adipocyte factor-1) is known to play a central role in regulating white adipocyte differentiation, but the role of Pref-1 in BAT (brown adipose tissue) has not been analysed. In the present study we found that Pref-1 expression is high in fetal BAT and declines progressively after birth. However, Pref-1-null mice showed unaltered fetal development of BAT, but exhibited signs of over-activation of BAT thermogenesis in the post-natal period. In C/EBP (CCAAT/enhancer-binding protein) α-null mice, a rodent model of impaired fetal BAT differentiation, Pref-1 was dramatically overexpressed, in association with reduced expression of the Ucp1 (uncoupling protein 1) gene, a BAT-specific marker of thermogenic differentiation. In brown adipocyte cell culture models, Pref-1 was mostly expressed in pre-adipocytes and declined with brown adipocyte differentiation. The transcription factor C/EBPδ activated the Pref-1 gene transcription in brown adipocytes, through binding to the proximal promoter region. Accordingly, siRNA (small interfering RNA)-induced C/EBPδ knockdown led to reduced Pref-1 gene expression. This effect is consistent with the observed overexpression of C/EBPδ in C/EBPα-null BAT and high expression of C/EBPδ in brown pre-adipocytes. Dexamethasone treatment of brown pre-adipocytes suppressed Pref-1 down-regulation occurring throughout the brown adipocyte differentiation process, increased the expression of C/EBPδ and strongly impaired expression of the thermogenic markers UCP1 and PGC-1α [PPARγ (peroxisome-proliferator-activated receptor γ) co-activator-α]. However, it did not alter normal fat accumulation or expression of non-BAT-specific genes. Collectively, these results specifically implicate Pref-1 in controlling the thermogenic gene expression program in BAT, and identify C/EBPδ as a novel transcriptional regulator of Pref-1 gene expression that may be related to the specific role of glucocorticoids in BAT differentiation.

  4. Selective homocysteine lowering gene transfer improves infarct healing, attenuates remodelling, and enhances diastolic function after myocardial infarction in mice.

    Directory of Open Access Journals (Sweden)

    Ilayaraja Muthuramu

    Full Text Available BACKGROUND AND AIMS: Homocysteine levels predict heart failure incidence in prospective epidemiological studies and correlate with severity of heart failure in cross-sectional surveys. The objective of this study was to evaluate whether a selective homocysteine lowering intervention beneficially affects cardiac remodelling and cardiac function after myocardial infarction (MI in a murine model of combined hypercholesterolemia and hyperhomocysteinemia. METHODOLOGY AND PRINCIPAL FINDINGS: A selective homocysteine lowering gene transfer strategy was evaluated in female C57BL/6 low density lipoprotein receptor (Ldlr⁻/⁻ cystathionine-ß-synthase (Cbs⁺/⁻ deficient mice fed a hyperhomocysteinemic and high saturated fat/high cholesterol diet using an E1E3E4-deleted hepatocyte-specific adenoviral vector expressing Cbs (AdCBS. MI was induced by permanent ligation of the left anterior descending coronary artery 14 days after saline injection or gene transfer. AdCBS gene transfer resulted in a persistent more than 5-fold (p<0.01 decrease of plasma homocysteine levels and significantly improved endothelial progenitor cell function. Selective homocysteine lowering enhanced infarct healing as indicated by a 21% (p<0.01 reduction of infarct length at day 28 after MI and by an increased number of capillaries and increased collagen content in the infarct zone. Adverse remodelling was attenuated in AdCBS MI mice as evidenced by a 29% (p<0.05 reduction of left ventricular cavity area at day 28, by an increased capillary density in the remote myocardium, and by reduced interstitial collagen. The peak rate of isovolumetric relaxation was increased by 19% (p<0.05 and the time constant of left ventricular relaxation was reduced by 21% (p<0.05 in AdCBS MI mice compared to control MI mice, indicating improved diastolic function. CONCLUSION/SIGNIFICANCE: Selective homocysteine lowering gene transfer improves infarct healing, attenuates remodelling, and

  5. Searching for Brown Dwarf Outflows

    CERN Document Server

    Whelan, E T; Bacciotti, F; Randich, S; Natta, A

    2009-01-01

    As outflow activity in low mass protostars is strongly connected to ac- cretion it is reasonable to expect accreting brown dwarfs to also be driving out- flows. In the last three years we have searched for brown dwarf outflows using high quality optical spectra obtained with UVES on the VLT and the technique of spectro-astrometry. To date five brown dwarf outflows have been discovered. Here the method is discussed and the results to date outlined.

  6. Constitutive nitric oxide synthase inhibition combined with histamine and serotonin receptor blockade improves the initial ovalbumin-induced arterial hypotension but decreases the survival time in brown norway rats anaphylactic shock.

    Science.gov (United States)

    Bellou, Abdelouahab; Lambert, Henri; Gillois, Pierre; Montémont, Chantal; Gerard, Philippe; Vauthier, Eliane; Sainte-Laudy, Jean; Longrois, Dan; Guéant, Jean Louis; Mallié, Jean Pierre

    2003-01-01

    Anaphylactic shock accidents after allergen exposure are frequent. After immunization with ovalbumin (OVA), a common dietary constituent, we evaluated the efficacy of pretreatment with histamine-receptor or serotonin-receptor blockers administered alone or in combination with a nitric oxide synthase inhibitor (L-NAME) on OVA-induced anaphylactic shock in Brown Norway rats. Animals were allocated to the following groups (n = 6 each): control (0.9% saline); diphenydramine (15 mg kg(-1)); cimetidine (20 mg kg(-1)); diphenydramine + cimetidine; dihydroergotamine (50 microg kg(-1)); diphenydramine + cimetidine + dihydroergotamine; L-NAME (100 mg/kg) alone or associated with diphenydramine, cimetidine, diphenydramine + cimetidine, dihydroergotamine, or diphenydramine + cimetidine + dihydroergotamine. Mean arterial blood pressure (MABP), heart rate (HR), and survival time were monitored for 60 min following treatment. The shock was initiated with i.v. OVA. The MABP drop after i.v. OVA was worsened by diphenydramine and was modestly attenuated by cimetidine, dihydroergotamine, or both together. L-NAME potentiated slightly the effects of cimetidine and dihydroergotamine by lessening the initial MABP decrease, but this transient effect was not sufficient to prevent the final collapse or to improve survival time. Decreased vasodilatory (prostaglandins E2), increased vasoconstrictory (thromboxane B2) prostaglandins, and unchanged leukotriene C4 concentrations were contributory to the overall hemodynamic changes. Thus, the combined blockade of vasodilator mediators (histamine, serotonin, and nitric oxide) slowed the MABP drop in anaphylactic shock, but did not improve survival. More studies are needed to understand these discordant effects.

  7. Triterpenoid-Rich Extract from Antrodia camphorata Improves Physical Fatigue and Exercise Performance in Mice

    Directory of Open Access Journals (Sweden)

    Chi-Chang Huang

    2012-01-01

    Full Text Available Antrodia camphorata (AC is an endemic mushroom that grows in Taiwan. We investigated the fatigue-alleviating effects of AC on endurance capacity in swim-exercised and weight-loading mice. Male Institute of Cancer Research (ICR strain mice from 3 groups (n=10 per group in each test were orally administered AC fruiting body extract for 7 days at 0, 50, and 200 mg/kg/day, designated vehicle, AC-50, and AC-200, respectively. Trend analysis revealed that AC treatments increased grip strength. AC dose-dependently increased swim time, blood glucose, and muscular and hepatic glycogen levels and dose-dependently decreased plasma lactate and ammonia levels and creatine kinase activity. The increase in swimming endurance with AC administration was caused by an increase in liver and muscle glycogen deposition. A. camphorata may have potential for use in ergogenic and antifatigue activities.

  8. Ursolic acid improves domoic acid-induced cognitive deficits in mice

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Dong-mei [School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221008, Jiangsu Province (China); Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Xuzhou Normal University, Xuzhou 221116, Jiangsu Province (China); Lu, Jun, E-mail: lu-jun75@163.com [Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Xuzhou Normal University, Xuzhou 221116, Jiangsu Province (China); Zhang, Yan-qiu [School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221008, Jiangsu Province (China); Zheng, Yuan-lin, E-mail: ylzheng@xznu.edu.cn [Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Xuzhou Normal University, Xuzhou 221116, Jiangsu Province (China); Hu, Bin [Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Xuzhou Normal University, Xuzhou 221116, Jiangsu Province (China); Cheng, Wei [School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221008, Jiangsu Province (China); Zhang, Zi-feng; Li, Meng-qiu [Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Xuzhou Normal University, Xuzhou 221116, Jiangsu Province (China)

    2013-09-01

    Our previous findings suggest that mitochondrial dysfunction is the mechanism underlying cognitive deficits induced by domoic acid (DA). Ursolic acid (UA), a natural triterpenoid compound, possesses many important biological functions. Evidence shows that UA can activate PI3K/Akt signaling and suppress Forkhead box protein O1 (FoxO1) activity. FoxO1 is an important regulator of mitochondrial function. Here we investigate whether FoxO1 is involved in the oxidative stress-induced mitochondrial dysfunction in DA-treated mice and whether UA inhibits DA-induced mitochondrial dysfunction and cognitive deficits through regulating the PI3K/Akt and FoxO1 signaling pathways. Our results showed that FoxO1 knockdown reversed the mitochondrial abnormalities and cognitive deficits induced by DA in mice through decreasing HO-1 expression. Mechanistically, FoxO1 activation was associated with oxidative stress-induced JNK activation and decrease of Akt phosphorylation. Moreover, UA attenuated the mitochondrial dysfunction and cognitive deficits through promoting Akt phosphorylation and FoxO1 nuclear exclusion in the hippocampus of DA-treated mice. LY294002, an inhibitor of PI3K/Akt signaling, significantly decreased Akt phosphorylation in the hippocampus of DA/UA mice, which weakened UA actions. These results suggest that UA could be recommended as a possible candidate for the prevention and therapy of cognitive deficits in excitotoxic brain disorders. - Highlights: • Ursolic acid (UA) is a naturally triterpenoid compound. • UA attenuated the mitochondrial dysfunction and cognitive deficits. • Mechanistically, UA activates PI3K/Akt signaling and suppresses FoxO1 activity. • UA could be recommended as a possible candidate for anti-excitotoxic brain disorders.

  9. Syzygium jambolanum treatment improves survival in lethal sepsis induced in mice

    Directory of Open Access Journals (Sweden)

    Amaral Flávia MM

    2008-10-01

    Full Text Available Abstract Background The leaves and the fruits from Syzygium jambolanum DC.(Myrtaceae, a plant known in Brazil as sweet olive or 'jambolão', have been used by native people to treat infectious diseases, diabetes, and stomachache. Since the bactericidal activity of S. jambolanum has been confirmed in vitro, the aim of this work was to evaluate the effect of the prophylactic treatment with S. jambolanum on the in vivo polymicrobial infection induced by cecal ligation and puncture (CLP in mice. Methods C57Bl/6 mice were treated by the subcutaneous route with a hydroalcoholic extract from fresh leaves of S. jambolanum (HCE. After 6 h, a bacterial infection was induced in the peritoneum using the lethal CLP model. The mice were killed 12 h after the CLP induction to evaluate the cellular influx and local and systemic inflammatory mediators' production. Some animals were maintained alive to evaluate the survival rate. Results The prophylactic HCE treatment increased the mice survival, the neutrophil migration to infectious site, the spreading ability and the hydrogen peroxide release, but decreased the serum TNF and nitrite. Despite the increased migration and activation of peritoneal cells the HCE treatment did not decrease the number of CFU. The HCE treatment induced a significant decrease on the bone marrow cells number but did not alter the cell number of the spleen and lymph node. Conclusion We conclude that the treatment with S. jambolanum has a potent prophylactic anti-septic effect that is not associated to a direct microbicidal effect but it is associated to a recruitment of activated neutrophils to the infectious site and to a diminished systemic inflammatory response.

  10. The inflammatory stimulus of a natural latex biomembrane improves healing in mice

    Directory of Open Access Journals (Sweden)

    T.A.M. Andrade

    2011-10-01

    Full Text Available The aim of the present study was to compare healing obtained with biomembranes with the natural healing process (sham using biochemical and immunohistological assays. C57BL/6 mice were divided into 4 groups of 15 mice each and received different subcutaneous implants: natural latex biomembrane (NLB, denatured latex (DL, expanded polytetrafluorethylene (ePTFE, or sham. On the 2nd, 7th, and 14th days post-treatment, 5 mice per group were sacrificed and biopsied for the following measurements: oxidative stress based on malondialdehyde (MDA, myeloperoxidase (MPO and hydrogen peroxide by the method of ferrous oxidation-xylenol orange (FOX, as well as glutathione and total proteins; histological evaluation to enumerate inflammatory cells, fibroblasts, blood vessels, and collagen, and immunohistochemical staining for inducible nitric oxide synthase, interleukin-1β, vascular endothelial growth factor (VEGF, and transforming growth factor-β1 (TGF-β1. On day 2 post-treatment, NLB stimulated a dense inflammatory infiltrate mainly consisting of polymorphonuclear cells, as indicated by increased MPO (P < 0.05, but oxidative stress due to MDA was not observed until the 7th day (P < 0.05. The number of blood vessels was greater in NLB (P < 0.05 and DL (P < 0.05 mice compared to sham animals on day 14. NLB induced fibroplasia by day 14 (P < 0.05 with low expression of TGF-β1 and collagenesis. Thus, NLB significantly induced the inflammatory phase of healing mediated by oxidative stress, which appeared to influence the subsequent phases such as angiogenesis (with low expression of VEGF and fibroplasia (independent of TGF-β1 without influencing collagenesis.

  11. The inflammatory stimulus of a natural latex biomembrane improves healing in mice

    Directory of Open Access Journals (Sweden)

    T.A.M. Andrade

    2011-10-01

    Full Text Available The aim of the present study was to compare healing obtained with biomembranes with the natural healing process (sham using biochemical and immunohistological assays. C57BL/6 mice were divided into 4 groups of 15 mice each and received different subcutaneous implants: natural latex biomembrane (NLB, denatured latex (DL, expanded polytetrafluorethylene (ePTFE, or sham. On the 2nd, 7th, and 14th days post-treatment, 5 mice per group were sacrificed and biopsied for the following measurements: oxidative stress based on malondialdehyde (MDA, myeloperoxidase (MPO and hydrogen peroxide by the method of ferrous oxidation-xylenol orange (FOX, as well as glutathione and total proteins; histological evaluation to enumerate inflammatory cells, fibroblasts, blood vessels, and collagen, and immunohistochemical staining for inducible nitric oxide synthase, interleukin-1β, vascular endothelial growth factor (VEGF, and transforming growth factor-β1 (TGF-β1. On day 2 post-treatment, NLB stimulated a dense inflammatory infiltrate mainly consisting of polymorphonuclear cells, as indicated by increased MPO (P < 0.05, but oxidative stress due to MDA was not observed until the 7th day (P < 0.05. The number of blood vessels was greater in NLB (P < 0.05 and DL (P < 0.05 mice compared to sham animals on day 14. NLB induced fibroplasia by day 14 (P < 0.05 with low expression of TGF-β1 and collagenesis. Thus, NLB significantly induced the inflammatory phase of healing mediated by oxidative stress, which appeared to influence the subsequent phases such as angiogenesis (with low expression of VEGF and fibroplasia (independent of TGF-β1 without influencing collagenesis.

  12. Treadmill Exercise Improves Memory Function Depending on Circadian Rhythm Changes in Mice

    OpenAIRE

    Hwang, Dong Sup; Kwak, Hyo Bum; Ko, Il Gyu; Kim, Sung Eun; Jin, Jun Jang; Ji, Eun Sang; Choi, Hyun Hee; Kwon, Oh Young

    2016-01-01

    Purpose Exercise enhances memory function by increasing neurogenesis in the hippocampus, and circadian rhythms modulate synaptic plasticity in the hippocampus. The circadian rhythm-dependent effects of treadmill exercise on memory function in relation with neurogenesis were investigated using mice. Methods The step-down avoidance test was used to evaluate short-term memory, the 8-arm maze test was used to test spatial learning ability, and 5-bromo-2’-deoxyuridine immunofluorescence was used t...

  13. Confirmed dioestrus in pseudopregnant mice using vaginal exfoliative cytology improves embryo transfer implantation rate.

    Science.gov (United States)

    Mamrot, Jared; Pangestu, Mulyoto; Walker, David; Gardner, David K; Dickinson, Hayley

    2015-10-01

    Embryo transfer is a commonly performed surgical technique. In mice, protocols typically specify pairing recipient females with vasectomized males to induce a receptive uterine environment for embryo implantation. However, this induced receptive state is not always maintained until implantation occurs. The use of a well-characterized correlation between oestrous state and exfoliative vaginal cytology was therefore evaluated to assess uterine receptivity immediately before embryo transfer. Eight- to 12-week-old virgin female CD1 mice (n = 22) were paired overnight with vasectomized males and successfully mated, indicated by the presence of a vaginal plug. These dams underwent embryo transfer 3 days later with embryos obtained from superovulated 4-week-old F1 (C57BL/6 × CBA) females. Non-invasive vaginal lavage was conducted immediately before transfer. Dams were killed 6 days after transfer and the uterus collected for histological analysis. Embryo implantation rate in mice was 96% when cytological analysis of the lavage samples signified dioestrus (n = 6), whereas the implantation rate was cytology signified other stages of oestrous. This simple, quick, non-invasive measure of receptivity was accurate and easily adopted and, when applied prospectively, will avoid unnecessary surgery and subsequent culling of non-suitable recipients, while maximizing the implantation potential of each recipient female. Copyright © 2015 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  14. Tracheotomy improves experiment success rate in mice during urethane anesthesia and stereotaxic surgery.

    Science.gov (United States)

    Moldestad, Olve; Karlsen, Pernille; Molden, Sturla; Storm, Johan F

    2009-01-30

    Urethane anesthesia is frequently used for acute experiments on small rodents in physiology and neuroscience. Severe respiratory distress is a common side-effect of urethane anesthesia in many strains of mice. Associated complications interfere with completion of experiments, and as a consequence more animals must be sacrificed. During experiments with stereotaxic brain surgery, we found that intubation by means of tracheotomy is an efficient way to maintain patent airways in these animals. Artificial ventilation of the animals is not required. In this paper we describe a simple, fast and reliable method for intubation of mice in experiments that involve a stereotaxic instrument. The method proved considerably easier to learn and apply than conventional intubation through the oral route. The incidence of breathing problems decreased from 77% in untreated mice to 9% in those that underwent tracheotomy. In addition, the success rate for our acute electrophysiological experiments increased from 24 to 77%. We conclude that tracheotomy reduces the number of sacrificed animals, and saves time and labor.

  15. Mitochondria-Targeted Antioxidant SkQ1 Improves Dermal Wound Healing in Genetically Diabetic Mice.

    Science.gov (United States)

    Demyanenko, Ilya A; Zakharova, Vlada V; Ilyinskaya, Olga P; Vasilieva, Tamara V; Fedorov, Artem V; Manskikh, Vasily N; Zinovkin, Roman A; Pletjushkina, Olga Yu; Chernyak, Boris V; Skulachev, Vladimir P; Popova, Ekaterina N

    2017-01-01

    Oxidative stress is widely recognized as an important factor in the delayed wound healing in diabetes. However, the role of mitochondrial reactive oxygen species in this process is unknown. It was assumed that mitochondrial reactive oxygen species are involved in many wound-healing processes in both diabetic humans and animals. We have applied the mitochondria-targeted antioxidant 10-(6'-plastoquinonyl)decyltriphenylphosphonium (SkQ1) to explore the role of mitochondrial reactive oxygen species in the wound healing of genetically diabetic mice. Healing of full-thickness excisional dermal wounds in diabetic C57BL/KsJ-db(-)/db(-) mice was significantly enhanced after long-term (12 weeks) administration of SkQ1. SkQ1 accelerated wound closure and stimulated epithelization, granulation tissue formation, and vascularization. On the 7th day after wounding, SkQ1 treatment increased the number of α-smooth muscle actin-positive cells (myofibroblasts), reduced the number of neutrophils, and increased macrophage infiltration. SkQ1 lowered lipid peroxidation level but did not change the level of the circulatory IL-6 and TNF. SkQ1 pretreatment also stimulated cell migration in a scratch-wound assay in vitro under hyperglycemic condition. Thus, a mitochondria-targeted antioxidant normalized both inflammatory and regenerative phases of wound healing in diabetic mice. Our results pointed to nearly all the major steps of wound healing as the target of excessive mitochondrial reactive oxygen species production in type II diabetes.

  16. Experimental febrile seizures induce age-dependent structural plasticity and improve memory in mice.

    Science.gov (United States)

    Tao, K; Ichikawa, J; Matsuki, N; Ikegaya, Y; Koyama, R

    2016-03-24

    Population-based studies have demonstrated that children with a history of febrile seizure (FS) perform better than age-matched controls at hippocampus-dependent memory tasks. Here, we report that FSs induce two distinct structural reorganizations in the hippocampus and bidirectionally modify future learning abilities in an age-dependent manner. Compared with age-matched controls, adult mice that had experienced experimental FSs induced by hyperthermia (HT) on postnatal day 14 (P14-HT) performed better in a cognitive task that requires dentate granule cells (DGCs). The enhanced memory performance correlated with an FS-induced persistent increase in the density of large mossy fiber terminals (LMTs) of the DGCs. The memory enhancement was not observed in mice that had experienced HT-induced seizures at P11 which exhibited abnormally located DGCs in addition to the increased LMT density. The ectopic DGCs of the P11-HT mice were abolished by the diuretic bumetanide, and this pharmacological treatment unveiled the masked memory enhancement. Thus, this work provides a novel basis for age-dependent structural plasticity in which FSs influence future brain function. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis

    DEFF Research Database (Denmark)

    Boström, Pontus; Wu, Jun; Jedrychowski, Mark P

    2012-01-01

    Exercise benefits a variety of organ systems in mammals, and some of the best-recognized effects of exercise on muscle are mediated by the transcriptional co-activator PPAR-γ co-activator-1 α (PGC1-α). Here we show in mouse that PGC1-α expression in muscle stimulates an increase in expression...... of FNDC5, a membrane protein that is cleaved and secreted as a newly identified hormone, irisin. Irisin acts on white adipose cells in culture and in vivo to stimulate UCP1 expression and a broad program of brown-fat-like development. Irisin is induced with exercise in mice and humans, and mildly...... increased irisin levels in the blood cause an increase in energy expenditure in mice with no changes in movement or food intake. This results in improvements in obesity and glucose homeostasis. Irisin could be therapeutic for human metabolic disease and other disorders that are improved with exercise....

  18. Hot water extracts of Chlorella vulgaris improve immune function in protein-deficient weanling mice and immune cells.

    Science.gov (United States)

    An, Hyo-Jin; Rim, Hong-Kun; Jeong, Hyun-Ja; Hong, Seung-Heon; Um, Jae-Young; Kim, Hyung-Min

    2010-12-01

    The objective of this study was to investigate the effects of hot water extracts of Chlorella vulgaris (CVE) on a deteriorated immune function through utilization of a protein-energy malnutrition (PEM) diet. Unicellular algae, C. vulgaris, were used as biological response modifier. PEM is associated with decreased host immune defense. Male C57BL/6J mice, initially four weeks old, were fed for 8 days with standard diet or a PEM diet. Mice in the PEM diet group were orally administered 0.1 g/kg and 0.15 g/kg of CVE for the following week. Nutritional parameters such as the total protein, albumin, glucose, and interferon γ (IFN-γ) were increased in blood serum of the CVE-treated group compared with the non-treated group. The mononuclear cell numbers from spleen, superficial, and mesenteric lymph node were reduced in mice fed with PEM diet, but numbers from the spleen and superficial lymph node were increased by the CVE (0.1 and 0.15 g/kg) treatment. We also investigated the effect of CVE on the production of cytokines in human T-cell line, MOLT-4 cells, and primary cultured splenocytes. The CVE treatment significantly increased the production of both interleukin (IL)-2 and IL-4 compared with the media control, but did not affect the production of IFN-γ. These results suggest that CVE may be useful in improving the immune function.

  19. LY293111 Improves Efficacy of Gemcitabine Therapy on Pancreatic Cancer in a Fluorescent Orthotopic Model in Athymic Mice

    Directory of Open Access Journals (Sweden)

    Rene Hennig

    2005-04-01

    Full Text Available Pancreatic cancer has an abysmal prognosis because of late diagnosis and lack of effective therapeutics. New drugs are desperately needed. The present study determined the effect of the LTB4 receptor antagonist, LY293111, on tumor growth and metastases in a fluorescent orthotopic model of pancreatic cancer. Pancreatic cancer cells (S2-013 with stable expression of enhanced green fluorescent protein were implanted into the duodenal pancreatic lobe of athymic mice. Animals were allocated to four groups (eight mice per group: control (no treatment; LY293111; gemcitabine; and LY293111 + gemcitabine. Monitoring of the surgical procedure and follow-up examinations at 2, 3, and 4 weeks after implantation to monitor tumor growth and metastases were performed using a fluorescence microscope and the reversible skin-flap technique. A staging and scoring system was developed to evaluate tumor progression, based on the TNM classification. Control animals developed end-stage disease with invasive cancer, metastases, and cachexia. Tumor growth and incidence of metastases were significantly reduced in all treated mice. However, combined treatment with LY293111 and gemcitabine was most effective. LY293111 is a novel therapeutic agent for pancreatic cancer, which improves the efficacy of gemcitabine. It is well tolerated and can be administered orally and, therefore, provides a new hope for patients suffering from pancreatic adenocarcinoma.

  20. Chronic treatment with myo-inositol reduces white adipose tissue accretion and improves insulin sensitivity in female mice.

    Science.gov (United States)

    Croze, Marine L; Vella, Roxane E; Pillon, Nicolas J; Soula, Hédi A; Hadji, Lilas; Guichardant, Michel; Soulage, Christophe O

    2013-02-01

    Type 2 diabetes is a complex disease characterized by a state of insulin resistance in peripheral tissues such as skeletal muscle, adipose tissue or liver. Some inositol isomers have been reported to possess insulin-mimetic activity and to be efficient in lowering blood glucose level. The aim of the present study was to assess in mice the metabolic effects of a chronic treatment with myo-inositol, the most common stereoisomer of inositol. Mice given myo-inositol treatment (0.9 or 1.2 mg g(-1) day(-1), 15 days, orally or intraperitoneally) exhibited an improved glucose tolerance due to a greater insulin sensitivity. Mice treated with myo-inositol exhibited a decreased white adipose tissue accretion (-33%, Padipose tissue deposition was due to a decrease in adipose cell volume (-33%, Pinsulin-stimulated conditions, suggesting a synergistic action of myo-inositol treatment and insulin on proteins of the insulin signalling pathway. Myo-inositol could therefore constitute a viable nutritional strategy for the prevention and/or treatment of insulin resistance and type 2 diabetes. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Dipyridamole potentiated the trypanocidal effect of nifurtimox and improved the cardiac function in NMRI mice with acute chagasic myocarditis

    Directory of Open Access Journals (Sweden)

    Sonia Santeliz

    Full Text Available BACKGROUND As chronic Chagas disease does not have a definitive treatment, the development of alternative therapeutic protocols is a priority. Dipyridamole (DPY is an alternative to counteract the pathophysiological phenomena involved in Chagas cardiomyopathy. OBJECTIVE To evaluate the therapeutic efficacy of DPY associated with nifurtimox (Nfx in epimastigote axenic cultures and in mice with acute Chagas disease. METHODS NMRI adult male mice were divided into nine groups: three healthy and six Trypanosoma cruzi-infected groups. Mice received vehicle, Nfx or DPY, alone or combined. The doses assayed were Nfx 10 and 40 mg/kg and DPY 30 mg/kg. The treatment efficacy was evaluated by clinical, electrocardiographic, parasitological, biochemical and histopathological methods. FINDINGS In vitro, DPY and Nfx had a trypanocidal effect with IC50 values of 372 ± 52 and 21.53 ± 2.13 µM, respectively; DPY potentiated the Nfx effect. In vivo, Nfx (40 mg/kg with or without DPY had a therapeutic effect, which was reflected in the 84-92% survival rate and elimination of parasitaemia and heart tissue amastigotes. Nfx (10 mg/kg had a subtherapeutic effect with no survival and persistence of amastigotes, inflammation and fibrosis in heart tissue; adding DPY increased the survival rate to 85%, and all tested parameters were significantly improved. MAIN CONCLUSION DPY has a trypanocidal effect in vitro and enhances the Nfx therapeutic effect in an in vivo murine model.

  2. Hepcidin as a therapeutic tool to limit iron overload and improve anemia in β-thalassemic mice.

    Science.gov (United States)

    Gardenghi, Sara; Ramos, Pedro; Marongiu, Maria Franca; Melchiori, Luca; Breda, Laura; Guy, Ella; Muirhead, Kristen; Rao, Niva; Roy, Cindy N; Andrews, Nancy C; Nemeth, Elizabeta; Follenzi, Antonia; An, Xiuli; Mohandas, Narla; Ginzburg, Yelena; Rachmilewitz, Eliezer A; Giardina, Patricia J; Grady, Robert W; Rivella, Stefano

    2010-12-01

    Excessive iron absorption is one of the main features of β-thalassemia and can lead to severe morbidity and mortality. Serial analyses of β-thalassemic mice indicate that while hemoglobin levels decrease over time, the concentration of iron in the liver, spleen, and kidneys markedly increases. Iron overload is associated with low levels of hepcidin, a peptide that regulates iron metabolism by triggering degradation of ferroportin, an iron-transport protein localized on absorptive enterocytes as well as hepatocytes and macrophages. Patients with β-thalassemia also have low hepcidin levels. These observations led us to hypothesize that more iron is absorbed in β-thalassemia than is required for erythropoiesis and that increasing the concentration of hepcidin in the body of such patients might be therapeutic, limiting iron overload. Here we demonstrate that a moderate increase in expression of hepcidin in β-thalassemic mice limits iron overload, decreases formation of insoluble membrane-bound globins and reactive oxygen species, and improves anemia. Mice with increased hepcidin expression also demonstrated an increase in the lifespan of their red cells, reversal of ineffective erythropoiesis and splenomegaly, and an increase in total hemoglobin levels. These data led us to suggest that therapeutics that could increase hepcidin levels or act as hepcidin agonists might help treat the abnormal iron absorption in individuals with β-thalassemia and related disorders.

  3. Dietary intervention with AHP, a functional formula diet, improves both serum and hepatic lipids profile in dyslipidemia mice.

    Science.gov (United States)

    Luo, Yangchao; Chen, Gang; Li, Bo; Ji, Baoping; Xiao, Zhenlei; Yi, Guo; Tian, Fang

    2009-08-01

    Aurricularia aurricula, hawthorn (Crataegus pinnatifida), and Pueraria radix are well known for both traditional food and folk medicine. Each of the above 3 plants possesses a distinct pathway contributing to treat dyslipidemia. To develop a health-promoting diet against dyslipidemia, the polysaccharides from A. aurricula, polyphenol from hawthorn, and P. radix were combined to postulate as a functional formula diet (AHP) in the present study and its pharmaceutical effects and underlying mechanisms were elucidated in vivo. The dyslipidemia model associated with fatty liver was induced by cholesterol-enriched diet (CED) for up to 12 wk in male ICR mice. Mice were randomly divided into 5 groups, that is, regular diet (RD), CED, Xuezhikang treatment (positive control group, PG), low and high (150 or 450 mg/kg/d) of AHP treatment groups. Compared with the CED group, AHP groups maintained lipid profiles through lowering serum total cholesterol (TC) and low-density lipoprotein-cholesterol (LDL-C), inhibiting the accumulation of hepatic TC and triglyceride (TG). AHP could also improve both serum and hepatic biochemical activity profiles including antioxidant status, serum nitric oxide (NO), and hepatic 3-hydroxy-3-methylglutary CoA (HMG-CoA) reductase levels. Hepatic histopathological examinations showed markedly decreased fatty deposits in the liver of AHP-treated mice, illustrating the ability to reverse a condition of fatty liver. Our study indicated that this functional formula diet would be a potent alternative as a health-promoting diet, simultaneously targeting on the complexity and redundancy of dyslipidemia.

  4. Proliferative Activity of Liver Growth Factor is Associated with an Improvement of Cigarette Smoke-Induced Emphysema in Mice

    Science.gov (United States)

    Terrón-Expósito, Raúl; Díaz-Gil, Juan José; González-Mangado, Nicolás; Peces-Barba, Germán

    2014-01-01

    Cigarette smoke (CS)-induced emphysema is a major component of chronic obstructive pulmonary disease (COPD). COPD treatment is based on the administration of bronchodilators and corticosteroids to control symptoms and exacerbations, however, to date, there are no effective therapies to reverse disease progression. Liver growth factor (LGF) is an albumin-bilirubin complex with mitogenic properties, whose therapeutic effects have previously been reported in a model of emphysema and several rodent models of human disease. To approach the therapeutic effect of LGF in a model of previously established emphysema, morphometric and lung function parameters, matrix metalloproteinase (MMP) activity and the expression of several markers, such as VEGF, PCNA, 3NT and Nrf2, were assessed in air-exposed and CS-exposed C57BL/6J male mice with and without intraperitoneal (i.p.) injection of LGF. CS-exposed mice presented a significant enlargement of alveolar spaces, higher alveolar internal area and loss of lung function that correlated with higher MMP activity, higher expression of 3NT and lower expression of VEGF. CS-exposed mice injected with LGF, showed an amelioration of emphysema and improved lung function, which correlated with lower MMP activity and 3NT expression and higher levels of VEGF, PCNA and Nrf2. Taken together, this study suggests that LGF administration ameliorates CS-induced emphysema, highlights the ability of LGF to promote alveolar cell proliferation and may be a promising strategy to revert COPD progression. PMID:25401951

  5. Irbesartan increased PPAR{gamma} activity in vivo in white adipose tissue of atherosclerotic mice and improved adipose tissue dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Iwai, Masaru; Kanno, Harumi; Senba, Izumi; Nakaoka, Hirotomo; Moritani, Tomozo [Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Shitsukawa, Tohon, Ehime 791-0295 (Japan); Horiuchi, Masatsugu, E-mail: horiuchi@m.ehime-u.ac.jp [Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Shitsukawa, Tohon, Ehime 791-0295 (Japan)

    2011-03-04

    Research highlights: {yields} Atherosclerotic apolipoprotein E-deficient (ApoEKO) mice were treated with irbesartan. {yields} Irbesartan decreased white adipose tissue weight without affecting body weight. {yields} DNA-binding for PPAR{gamma} was increased in white adipose tissue in vivo by irbesartan. {yields} Irbesartan increased adipocyte number in white adipose tissue. {yields} Irbesatan increased the expression of adiponectin and leptin in white adipose tissue. -- Abstract: The effect of the PPAR{gamma} agonistic action of an AT{sub 1} receptor blocker, irbesartan, on adipose tissue dysfunction was explored using atherosclerotic model mice. Adult male apolipoprotein E-deficient (ApoEKO) mice at 9 weeks of age were treated with a high-cholesterol diet (HCD) with or without irbesartan at a dose of 50 mg/kg/day for 4 weeks. The weight of epididymal and retroperitoneal adipose tissue was decreased by irbesartan without changing food intake or body weight. Treatment with irbesartan increased the expression of PPAR{gamma} in white adipose tissue and the DNA-binding activity of PPAR{gamma} in nuclear extract prepared from adipose tissue. The expression of adiponectin, leptin and insulin receptor was also increased by irbesartan. These results suggest that irbesartan induced activation of PPAR{gamma} and improved adipose tissue dysfunction including insulin resistance.

  6. Antibody/doxycycline combined therapy for pulmonary ricinosis: Attenuation of inflammation improves survival of ricin-intoxicated mice

    Directory of Open Access Journals (Sweden)

    Yoav Gal

    2014-01-01

    Full Text Available Ricin, a highly toxic plant-derived toxin, is considered a potential weapon in biological warfare due to its high availability and ease of preparation. Pulmonary exposure to ricin results in the generation of an acute edematous inflammation followed by respiratory insufficiency and death. Passive immunization with polyclonal anti-ricin antibodies conferred protection against pulmonary ricinosis, however, at clinically-relevant time points for treatment, survival rates were limited. In this study, intranasal instillation of a lethal dose of ricin to mice, served as a lung challenge model for the evaluation and comparison of different therapeutic modalities against pulmonary ricinosis. We show that treatment with doxycycline resulted in a significant reduction of pro-inflammatory cytokines, markers of oxidative stress and capillary permeability in the lungs of the mice. Moreover, survival rates of mice intoxicated with ricin and treated 24 h later with anti-ricin antibody were significantly improved by co-administration of doxycycline. In contrast, co-administration of the steroid drug dexamethasone with anti-ricin antibodies did not increase survival rates when administered at late hours after intoxication, however dexamethasone did exert a positive effect on survival when applied in conjunction with the doxycycline treatment. These studies strongly suggest that combined therapy, comprised of neutralizing anti-ricin antibodies and an appropriate anti-inflammatory agent, can promote high-level protection against pulmonary ricinosis at clinically-relevant time points post-exposure.

  7. Erythropoietin inhibits gluconeogenesis and inflammation in the liver and improves glucose intolerance in high-fat diet-fed mice.

    Directory of Open Access Journals (Sweden)

    Ran Meng

    Full Text Available Erythropoietin (EPO has multiple biological functions, including the modulation of glucose metabolism. However, the mechanisms underlying the action of EPO are still obscure. This study is aimed at investigating the potential mechanisms by which EPO improves glucose tolerance in an animal model of type 2 diabetes. Male C57BL/6 mice were fed with high-fat diet (HFD for 12 weeks and then treated with EPO (HFD-EPO or vehicle saline (HFD-Con for two week. The levels of fasting blood glucose, serum insulin and glucose tolerance were measured and the relative levels of insulin-related phosphatidylinositol 3-kinase (PI3K/Akt, insulin receptor (IR and IR substrate 1 (IRS1 phosphorylation were determined. The levels of phosphoenolpyruvate carboxykinase (PEPCK, glucose-6- phosphatase (G6Pase, toll like receptor 4 (TLR4, tumor necrosis factor (TNF-α and IL-6 expression and nuclear factor-κB (NF-κB and c-Jun N-terminal kinase (JNK, extracellular-signal-regulated kinase (ERK and p38 MAPK activation in the liver were examined. EPO treatment significantly reduced the body weights and the levels of fasting blood glucose and serum insulin and improved the HFD-induced glucose intolerance in mice. EPO treatment significantly enhanced the levels of Akt, but not IR and IRS1, phosphorylation, accompanied by inhibiting the PEPCK and G6Pase expression in the liver. Furthermore, EPO treatment mitigated the HFD-induced inflammatory TNF-α and IL-6 production, TLR4 expression, NF-κB and JNK, but not ERK and p38 MAPK, phosphorylation in the liver. Therefore, our data indicated that EPO treatment improved glucose intolerance by inhibiting gluconeogenesis and inflammation in the livers of HFD-fed mice.

  8. Brown-fat paucity due to impaired BMP signalling induces compensatory browning of white fat.

    Science.gov (United States)

    Schulz, Tim J; Huang, Ping; Huang, Tian Lian; Xue, Ruidan; McDougall, Lindsay E; Townsend, Kristy L; Cypess, Aaron M; Mishina, Yuji; Gussoni, Emanuela; Tseng, Yu-Hua

    2013-03-21

    Maintenance of body temperature is essential for the survival of homeotherms. Brown adipose tissue (BAT) is a specialized fat tissue that is dedicated to thermoregulation. Owing to its remarkable capacity to dissipate stored energy and its demonstrated presence in adult humans, BAT holds great promise for the treatment of obesity and metabolic syndrome. Rodent data suggest the existence of two types of brown fat cells: constitutive BAT (cBAT), which is of embryonic origin and anatomically located in the interscapular region of mice; and recruitable BAT (rBAT), which resides within white adipose tissue (WAT) and skeletal muscle, and has alternatively been called beige, brite or inducible BAT. Bone morphogenetic proteins (BMPs) regulate the formation and thermogenic activity of BAT. Here we use mouse models to provide evidence for a systemically active regulatory mechanism that controls whole-body BAT activity for thermoregulation and energy homeostasis. Genetic ablation of the type 1A BMP receptor (Bmpr1a) in brown adipogenic progenitor cells leads to a severe paucity of cBAT. This in turn increases sympathetic input to WAT, thereby promoting the formation of rBAT within white fat depots. This previously unknown compensatory mechanism, aimed at restoring total brown-fat-mediated thermogenic capacity in the body, is sufficient to maintain normal temperature homeostasis and resistance to diet-induced obesity. These data suggest an important physiological cross-talk between constitutive and recruitable brown fat cells. This sophisticated regulatory mechanism of body temperature may participate in the control of energy balance and metabolic disease.

  9. Knock-down of IL-1Ra in obese mice decreases liver inflammation and improves insulin sensitivity.

    Directory of Open Access Journals (Sweden)

    Niclas Franck

    Full Text Available Interleukin 1 Receptor antagonist (IL-1Ra is highly elevated in obesity and is widely recognized as an anti-inflammatory cytokine. While the anti-inflammatory role of IL-1Ra in the pancreas is well established, the role of IL-1Ra in other insulin target tissues and the contribution of systemic IL-1Ra levels to the development of insulin resistance remains to be defined. Using antisense knock down of IL-1Ra in vivo, we show that normalization of IL-1Ra improved insulin sensitivity due to decreased inflammation in the liver and improved hepatic insulin sensitivity and these effects were independent of changes in body weight. A similar effect was observed in IL1-R1 KO mice, suggesting that at high concentrations of IL-1Ra typically observed in obesity, IL-1Ra can contribute to the development of insulin resistance in a mechanism independent of IL-1Ra binding to IL-1R1. These results demonstrate that normalization of plasma IL-1Ra concentration improves insulin sensitivity in diet- induced obese mice.

  10. Lectin from Crataeva tapia Bark Improves Tissue Damages and Plasma Hyperglycemia in Alloxan-Induced Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Amanda Alves da Rocha

    2013-01-01

    Full Text Available Crataeva tapia is a plant popularly used for diabetes treatment, in Brazil. Progressive decline in renal and hepatic functions has been described in patients with diabetes mellitus, and mortality rate is increased in patients with chronic liver and renal disease. This study aimed to evaluate whether Crataeva tapia bark lectin (CrataBL improves hyperglycemia and renal and hepatic damage in diabetic mice. CrataBL was purified by ion exchange chromatography on CM-cellulose, and intraperitoneal administration of CrataBL to alloxan-induced diabetic mice at dose of 10 mg/Kg/day and 20 mg/Kg/day for 10 days significantly reduced serum glucose levels by 14.9% and 55.9%, respectively. Serum urea, creatinine, aspartate aminotransferase, and alanine aminotransferase were also significantly reduced after treatment with both doses of CrataBL. Furthermore, histological analysis of liver, kidney, and pancreas revealed an improvement in the tissue morphology upon treatment with CrataBL. The results suggest that CrataBL has a beneficial hypoglycemic activity and improves the renal and hepatic complications of diabetes. Therefore, this lectin may be a promising agent for the treatment of diabetes, and this might be the basis for its use in the folk medicine as an alternative treatment to manage diabetes-related complications such as hyperglycemia and tissue damage.

  11. Hemin Improves Insulin Sensitivity and Lipid Metabolism in Cultured Hepatocytes and Mice Fed a High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Yi Luan

    2017-07-01

    Full Text Available Hemin is a breakdown product of hemoglobin. It has been reported that the injection of hemin improves lipid metabolism and insulin sensitivity in various genetic models. However, the effect of hemin supplementation in food on lipid metabolism and insulin sensitivity is still unclear, and whether hemin directly affects cellular insulin sensitivity is yet to be elucidated. Here we show that hemin enhances insulin-induced phosphorylation of insulin receptors, Akt, Gsk3β, FoxO1 and cytoplasmic translocation of FoxO1 in cultured primary hepatocytes under insulin-resistant conditions. Furthermore, hemin diminishes the accumulation of triglyceride and increases in free fatty acid content in primary hepatocytes induced by palmitate. Oral administration of hemin decreases body weight, energy intake, blood glucose and triglyceride levels, and improves insulin and glucose tolerance as well as hepatic insulin signaling and hepatic steatosis in male mice fed a high-fat diet. In addition, hemin treatment decreases the mRNA and protein levels of some hepatic genes involved in lipogenic regulation, fatty acid synthesis and storage, and increases the mRNA level and enzyme activity of CPT1 involved in fatty acid oxidation. These data demonstrate that hemin can improve lipid metabolism and insulin sensitivity in both cultured hepatocytes and mice fed a high-fat diet, and show the potential beneficial effects of hemin from food on lipid and glucose metabolism.

  12. Lectin from Crataeva tapia Bark Improves Tissue Damages and Plasma Hyperglycemia in Alloxan-Induced Diabetic Mice

    Science.gov (United States)

    da Rocha, Amanda Alves; Araújo, Tiago Ferreira da Silva; da Fonseca, Caíque Silveira Martins; da Mota, Diógenes Luís; de Medeiros, Paloma Lys; Paiva, Patrícia Maria Guedes; Coelho, Luana Cassandra Breitenbach Barroso; Correia, Maria Tereza dos Santos; Lima, Vera Lúcia de Menezes

    2013-01-01

    Crataeva tapia is a plant popularly used for diabetes treatment, in Brazil. Progressive decline in renal and hepatic functions has been described in patients with diabetes mellitus, and mortality rate is increased in patients with chronic liver and renal disease. This study aimed to evaluate whether Crataeva tapia bark lectin (CrataBL) improves hyperglycemia and renal and hepatic damage in diabetic mice. CrataBL was purified by ion exchange chromatography on CM-cellulose, and intraperitoneal administration of CrataBL to alloxan-induced diabetic mice at dose of 10 mg/Kg/day and 20 mg/Kg/day for 10 days significantly reduced serum glucose levels by 14.9% and 55.9%, respectively. Serum urea, creatinine, aspartate aminotransferase, and alanine aminotransferase were also significantly reduced after treatment with both doses of CrataBL. Furthermore, histological analysis of liver, kidney, and pancreas revealed an improvement in the tissue morphology upon treatment with CrataBL. The results suggest that CrataBL has a beneficial hypoglycemic activity and improves the renal and hepatic complications of diabetes. Therefore, this lectin may be a promising agent for the treatment of diabetes, and this might be the basis for its use in the folk medicine as an alternative treatment to manage diabetes-related complications such as hyperglycemia and tissue damage. PMID:24324521

  13. Melatonin Improves Outcomes of Heatstroke in Mice by Reducing Brain Inflammation and Oxidative Damage and Multiple Organ Dysfunction

    Directory of Open Access Journals (Sweden)

    Yu-Feng Tian

    2013-01-01

    Full Text Available We report here that when untreated mice underwent heat stress, they displayed thermoregulatory deficit (e.g., animals display hypothermia during room temperature exposure, brain (or hypothalamic inflammation, ischemia, oxidative damage, hypothalamic-pituitary-adrenal axis impairment (e.g., decreased plasma levels of both adrenocorticotrophic hormone and corticosterone during heat stress, multiple organ dysfunction or failure, and lethality. Melatonin therapy significantly reduced the thermoregulatory deficit, brain inflammation, ischemia, oxidative damage, hypothalamic-pituitary-adrenal axis impairment, multiple organ dysfunction, and lethality caused by heat stroke. Our data indicate that melatonin may improve outcomes of heat stroke by reducing brain inflammation, oxidative damage, and multiple organ dysfunction.

  14. Modulating the Gut Microbiota Improves Glucose Tolerance, Lipoprotein Profile and Atherosclerotic Plaque Development in ApoE-Deficient Mice.

    Directory of Open Access Journals (Sweden)

    Ida Rune

    Full Text Available The importance of the gut microbiota (GM in disease development has recently received increased attention, and numerous approaches have been made to better understand this important interplay. For example, metabolites derived from the GM have been shown to promote atherosclerosis, the underlying cause of cardiovascular disease (CVD, and to increase CVD risk factors. Popular interest in the role of the intestine in a variety of disease states has now resulted in a significant proportion of individuals without coeliac disease switching to gluten-free diets. The effect of gluten-free diets on atherosclerosis and cardiovascular risk factors is largely unknown. We therefore investigated the effect of a gluten-free high-fat cholesterol-rich diet, as compared to the same diet in which the gluten peptide gliadin had been added back, on atherosclerosis and several cardiovascular risk factors in apolipoprotein E-deficient (Apoe-/- mice. The gluten-free diet transiently altered GM composition in these mice, as compared to the gliadin-supplemented diet, but did not alter body weights, glucose tolerance, insulin levels, plasma lipids, or atherosclerosis. In parallel, other Apoe-/- mice fed the same diets were treated with ampicillin, a broad-spectrum antibiotic known to affect GM composition. Ampicillin-treatment had a marked and sustained effect on GM composition, as expected. Furthermore, although ampicillin-treated mice were slightly heavier than controls, ampicillin-treatment transiently improved glucose tolerance both in the absence or presence of gliadin, reduced plasma LDL and VLDL cholesterol levels, and reduced aortic atherosclerotic lesion area. These results demonstrate that a gluten-free diet does not seem to have beneficial effects on atherosclerosis or several CVD risk factors in this mouse model, but that sustained alteration of GM composition with a broad-spectrum antibiotic has beneficial effects on CVD risk factors and atherosclerosis

  15. Resveratrol treatment rescues neurovascular coupling in aged mice: role of improved cerebromicrovascular endothelial function and downregulation of NADPH oxidase.

    Science.gov (United States)

    Toth, Peter; Tarantini, Stefano; Tucsek, Zsuzsanna; Ashpole, Nicole M; Sosnowska, Danuta; Gautam, Tripti; Ballabh, Praveen; Koller, Akos; Sonntag, William E; Csiszar, Anna; Ungvari, Zoltan

    2014-02-01

    Moment-to-moment adjustment of cerebral blood flow (CBF) to neuronal activity via neurovascular coupling is essential for the maintenance of normal neuronal function. Increased oxidative stress that occurs with aging was shown to impair neurovascular coupling, which likely contributes to a significant age-related decline in higher cortical function, increasing the risk for vascular cognitive impairment. Resveratrol is a polyphenolic compound that exerts significant antiaging protective effects in large vessels, but its effects on the cerebromicrovasculature remain poorly defined. The present study was undertaken to investigate the capacity of resveratrol to improve neurovascular coupling in aging. In aged (24-mo-old) C57BL/6 mice N(ω)-nitro-l-arginine methyl ester-sensitive, nitric oxide-mediated CBF responses to whisker stimulation and to the endothelium-dependent dilator acethylcholine (ACh) were impaired compared with those in young (3-mo-old) mice. Treatment of aged mice with resveratrol rescued neurovascular coupling and ACh-induced responses, which was associated with downregulation of cortical expression of NADPH oxidase and decreased levels of biomarkers of oxidative/nitrative stress (3-nitrotyrosine, 8-isoprostanes). Resveratrol also attenuated age-related increases in reactive oxygen species (ROS) production in cultured cerebromicrovascular endothelial cells (DCF fluorescence, flow cytometry). In conclusion, treatment with resveratrol rescues cortical neurovascular coupling responses to increased neuronal activity in aged mice, likely by restoring cerebromicrovascular endothelial function via downregulation of NADPH oxidase-derived ROS production. Beneficial cerebromicrovascular effects of resveratrol may contribute to its protective effects on cognitive function in aging.

  16. Elicited soybean (Glycine max L.) extract improves regulatory T cell activity in high fat-fructose diet mice

    Science.gov (United States)

    Atho'illah, Mochammad Fitri; Widyarti, Sri; Rifa'i, Muhaimin

    2017-05-01

    Obesity is a metabolic disorder characterized by the central distribution of abdominal fat, hyperglycemia, hyperlipidemia, and hypertension. A high-fat diet can lead to overnutrition and directly trigger inflammation in adipose tissue. Regulatory T cells (Tregs) are essential negative regulators of inflammation. Soybean (Glycine max L.) has a variety of beneficial health. It contains isoflavones, particularly daidzein and genistein which can be transformed using microbial and physical stimuli to enhance bioactivity. The aim of this study was to analyze the effect of elicited soybean extract (ESE) on Treg activity in high fat-fructose (HFFD) mice. Twenty-eight female Balb/C mice were divided into seven groups: normal diet (ND) only, ND + ESE 104 mg/kg BW, HFFD only, HFFD + Simvastatin 2.8 mg/kg, HFFD + ESE 78 mg/kg BW, HFFD + ESE 104 mg/kg BW, and HFFD + ESE 130 mg/kg BW. The high fat-fructose diet was given over a period of 20 weeks, and ESE was administered orally per day after 20 weeks for four weeks. At week 24, the animals were sacrificed and the spleen was collected. Tregs were labeled as CD4+CD25+CD62L+ and the relative Treg number was measured using flow cytometry. The HFFD treatment significantly decreased Treg number (p < 0.05) compared to a normal diet. The ESE treatment in HFFD mice could improve Treg numbers compared to HFFD mice. Our results suggest that ESE has potential to be used as a supplement to suppress chronic inflammation via increased Treg number.

  17. Improving metabolic health in obese male mice via diet and exercise restores embryo development and fetal growth.

    Directory of Open Access Journals (Sweden)

    Nicole O McPherson

    Full Text Available Paternal obesity is now clearly associated with or causal of impaired embryo and fetal development and reduced pregnancy rates in humans and rodents. This appears to be a result of reduced blastocyst potential. Whether these adverse embryo and fetal outcomes can be ameliorated by interventions to reduce paternal obesity has not been established. Here, male mice fed a high fat diet (HFD to induce obesity were used, to determine if early embryo and fetal development is improved by interventions of diet (CD and/or exercise to reduce adiposity and improve metabolism. Exercise and to a lesser extent CD in obese males improved embryo development rates, with increased cell to cell contacts in the compacting embryo measured by E-cadherin in exercise interventions and subsequently, increased blastocyst trophectoderm (TE, inner cell mass (ICM and epiblast cell numbers. Implantation rates and fetal development from resulting blastocysts were also improved by exercise in obese males. Additionally, all interventions to obese males increased fetal weight, with CD alone and exercise alone, also increasing fetal crown-rump length. Measures of embryo and fetal development correlated with paternal measures of glycaemia, insulin action and serum lipids regardless of paternal adiposity or intervention, suggesting a link between paternal metabolic health and subsequent embryo and fetal development. This is the first study to show that improvements to metabolic health of obese males through diet and exercise can improve embryo and fetal development, suggesting such interventions are likely to improve offspring health.

  18. Vascular endothelial growth factor is important for brown adipose tissue development and maintenance.

    Science.gov (United States)

    Bagchi, Mandrita; Kim, Leo A; Boucher, Jeremie; Walshe, Tony E; Kahn, C Ronald; D'Amore, Patricia A

    2013-08-01

    Vascular endothelial growth factor (VEGF) is critical for angiogenesis, but also has pleiotropic effects on several nonvascular cells. Our aim was to investigate the role of VEGF in brown adipose tissue (BAT). We show that VEGF expression increases 2.5-fold during differentiation of cultured murine brown adipocytes and that VEGF receptor-2 is phosphorylated, indicating VEGF signaling. VEGF increased proliferation in brown preadipocytes in vitro by 70%, and blockade of VEGF signaling using anti-VEGFR2 antibody DC101 increased brown adipocyte apoptosis, as determined by cell number and activation of caspase 3. Systemic VEGF neutralization in mice, accomplished by adenoviral expression of soluble Flt1, resulted in 7-fold increase in brown adipocyte apoptosis, mitochondrial degeneration, and increased mitophagy compared to control mice expressing a null adenovirus. Absence of the heparan sulfate-binding VEGF isoforms, VEGF164 and VEGF188, resulted in abnormal BAT development in mice at E15.5, with fewer brown adipocytes and lower mitochondrial protein compared to wild-type littermates. These results suggest a role for VEGF in brown adipocytes and preadipocytes to promote survival, proliferation, and normal mitochondria and development.

  19. Minocycline improves postoperative cognitive impairment in aged mice by inhibiting astrocytic activation.

    Science.gov (United States)

    Jin, Wen-Jie; Feng, Shan-Wu; Feng, Zhou; Lu, Shun-Mei; Qi, Tao; Qian, Yan-Ning

    2014-01-08

    Astrocytes are proving to be critical for the development of cognitive functions. In addition, astrocytic activation contributes to cognitive impairment induced by chronic cerebral hypoperfusion. Minocycline has been shown to exhibit long-term neuroprotective effects in vascular cognitive impairment rat models through the inhibition of astrogliosis, and has demonstrated potential for the prevention and treatment of postoperative cognitive decline in elderly patients. This study aimed to examine the effect of minocycline on hippocampal astrocytes and long-term postoperative cognitive dysfunction in aged mice. Mice were intraperitoneally injected with 45 mg/kg minocycline once a day for 30 days after 70% hepatectomy. Hippocampus-dependent spatial memory ability was evaluated using the Morris water maze test. The expression levels of hippocampal glial fibrillary acidic protein (GFAP) and ionized calcium-binding adaptor molecule-1 were evaluated by western blotting, and the hippocampal mRNA relative expression levels of tumor necrosis factor-α, interleukin-1β, and interleukin-6 were tested using real-time PCR. The Morris water maze test showed that escape latency and swim distance were significantly prolonged by the surgery, but the extent of impairment was mitigated by minocycline treatment. Hippocampal GFAP levels and mRNA levels of tumor necrosis factor-α, interleukin-1β, and interleukin-6 showed corresponding changes that were consistent with the variations in spatial memory. Minocycline was able to alleviate hepatectomy-related long-term spatial memory impairment in aged mice, and was associated with reduced levels of hippocampal GFAP and proinflammatory cytokines resulting from astrocytic activation.

  20. Mitochondria-Targeted Antioxidant SkQ1 Improves Dermal Wound Healing in Genetically Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Ilya A. Demyanenko

    2017-01-01

    Full Text Available Oxidative stress is widely recognized as an important factor in the delayed wound healing in diabetes. However, the role of mitochondrial reactive oxygen species in this process is unknown. It was assumed that mitochondrial reactive oxygen species are involved in many wound-healing processes in both diabetic humans and animals. We have applied the mitochondria-targeted antioxidant 10-(6′-plastoquinonyldecyltriphenylphosphonium (SkQ1 to explore the role of mitochondrial reactive oxygen species in the wound healing of genetically diabetic mice. Healing of full-thickness excisional dermal wounds in diabetic C57BL/KsJ-db−/db− mice was significantly enhanced after long-term (12 weeks administration of SkQ1. SkQ1 accelerated wound closure and stimulated epithelization, granulation tissue formation, and vascularization. On the 7th day after wounding, SkQ1 treatment increased the number of α-smooth muscle actin-positive cells (myofibroblasts, reduced the number of neutrophils, and increased macrophage infiltration. SkQ1 lowered lipid peroxidation level but did not change the level of the circulatory IL-6 and TNF. SkQ1 pretreatment also stimulated cell migration in a scratch-wound assay in vitro under hyperglycemic condition. Thus, a mitochondria-targeted antioxidant normalized both inflammatory and regenerative phases of wound healing in diabetic mice. Our results pointed to nearly all the major steps of wound healing as the target of excessive mitochondrial reactive oxygen species production in type II diabetes.

    </