WorldWideScience

Sample records for mhz hollow cathode

  1. Compact lanthanum hexaboride hollow cathode.

    Science.gov (United States)

    Goebel, Dan M; Watkins, Ronald M

    2010-08-01

    A compact lanthanum hexaboride hollow cathode has been developed for space applications where size and mass are important and research and industrial applications where access for implementation might be limited. The cathode design features a refractory metal cathode tube that is easily manufactured, mechanically captured orifice and end plates to eliminate expensive e-beam welding, graphite sleeves to provide a diffusion boundary to protect the LaB6 insert from chemical reactions with the refractory metal tube, and several heater designs to provide long life. The compact LaB(6) hollow cathode assembly including emitter, support tube, heater, and keeper electrode is less than 2 cm in diameter and has been fabricated in lengths of 6-15 cm for different applications. The cathode has been operated continuously at discharge currents of 5-60 A in xenon. Slightly larger diameter versions of this design have operated at up to 100 A of discharge current.

  2. Hollow Cathode With Multiple Radial Orifices

    Science.gov (United States)

    Brophy, John R.

    1992-01-01

    Improved hollow cathode serving as source of electrons has multiple radial orifices instead of single axial orifice. Distributes ion current more smoothly, over larger area. Prototype of high-current cathodes for ion engines in spacecraft. On Earth, cathodes used in large-diameter ion sources for industrial processing of materials. Radial orientation of orifices in new design causes current to be dispersed radially in vicinity of cathode. Advantageous where desireable to produce plasma more nearly uniform over wider region around cathode.

  3. Sheet Plasma Produced by Hollow Cathode Discharge

    Institute of Scientific and Technical Information of China (English)

    张龙; 张厚先; 杨宣宗; 冯春华; 乔宾; 王龙

    2003-01-01

    A sheet plasma is produced by a hollow cathode discharge under an axial magnetic field.The plasma is about 40cm in length,4 cm in width and 1cm in thickness.The electron density is about 108cm-3.The hollow cathode is made to be shallow with a large opening,which is different from the ordinary deep hollow cathode.A Langmuir probe is used to detect the plasma.The electron density and the spatial distribution of the plasma change when voltage,pressure and the magnetic field vary.A peak and a data fluctuation at about 200 G-300 G are observed in the variation of electron density(or thickness of the sheet plasma)with the magnetic field.Our work will be helpful in characterizing the sheet plasma and will make the production of dense sheet plasma more controllable.

  4. Modification of W surfaces by exposure to hollow cathode plasmas

    Science.gov (United States)

    Stancu, C.; Stokker-Cheregi, F.; Moldovan, A.; Dinescu, M.; Grisolia, C.; Dinescu, G.

    2017-10-01

    In this work, we assess the surface modifications induced on W samples following exposure to He and He/H2 radiofrequency plasmas in hollow cathode discharge configuration. Our study addresses issues that relate to the use of W in next-generation fusion reactors and, therefore, the investigation of W surface degradation following exposure and heating by plasmas to temperatures above 1000 °C is of practical importance. For these experiments, we used commercially available tungsten samples having areas of 30 × 15 mm and 0.1 mm thickness. The hollow cathode plasma was produced using a radiofrequency (RF) generator (13.56 MHz) between parallel plate electrodes. The W samples were mounted as one of the electrodes. The He and He/H2 plasma discharges had a combined effect of heating and bombardment of the W surfaces. The surface modifications were studied for discharge powers between 200 and 300 W, which resulted in the heating of the samples to temperatures between 950 and 1230 °C, respectively. The samples were weighed prior and after plasma exposure, and loss of mass was measured following plasma exposure times up to 90 min. The analysis of changes in surface morphology was carried out by optical microscopy, scanning electron microscopy and atomic force microscopy. Additionally, optical emission spectra of the respective plasmas were recorded from the region localized inside the hollow cathode gap. We discuss the influence of experimental parameters on the changes in surface morphology.

  5. Hollow-Cathode Source Generates Plasma

    Science.gov (United States)

    Deininger, W. D.; Aston, G.; Pless, L. C.

    1989-01-01

    Device generates argon, krypton, or xenon plasma via thermionic emission and electrical discharge within hollow cathode and ejects plasma into surrounding vacuum. Goes from cold start up to full operation in less than 5 s after initial application of power. Exposed to moist air between operations without significant degradation of starting and running characteristics. Plasma generated by electrical discharge in cathode barrel sustained and aided by thermionic emission from emitter tube. Emitter tube does not depend on rare-earth oxides, making it vulnerable to contamination by exposure to atmosphere. Device modified for use as source of plasma in laboratory experiments or industrial processes.

  6. The Hollow Cathode Phase of Pseudospark Operation

    Science.gov (United States)

    1993-06-01

    THE HOLLOW CATHODE PHASE OF PSEUDOSPARK OPERATION L. Pitchford and J. P. Boeuf University Paul Sabatier, France V. Puech University De Paris-Sud...ORGANIZATION NAME(S) AND ADDRESS(ES) University Paul Sabatier, France 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME...Appl. Phys. 53, 1699 (1988). [9] A. Anders, S. Anders, and M. Gundersen, submitted to Phys. Rev. Lett. [10] J. P. Boeuf and L. Pitchford , IEEE

  7. High-pressure hollow cathode discharges

    Science.gov (United States)

    Schoenbach, Karl H.; El-Habachi, Ahmed; Shi, Wenhui; Ciocca, Marco

    1997-11-01

    Reducing the diameter of the cathode hole in a plane anode - hollow cathode geometry to 0963-0252/6/4/003/img1m has allowed us to generate direct current discharges in argon at atmospheric pressure. Up to pressure times cathode hole diameter (pD) values of approximately 5 Torr cm, and at sub-mA currents, glow discharges (predischarges) are observed with a shape which is determined by the vacuum electric field. In the same pD range, but at higher currents of up to approximately 4 mA, the discharges are of the hollow cathode discharge type. At pD values exceeding 5 Torr cm the predischarges turn into surface discharges along the mica spacer between the electrodes. At currents > 4 mA filamentary, pulsed discharges are observed. Qualitative information on the electron energy distribution in the microdischarges has been obtained by studying the VUV emission from ionized argon atoms and the argon excimer radiation at 130 nm. The results of the spectral measurements indicate the presence of a relatively large concentration of electrons with energies > 15 eV over the entire pressure range. The fact that the current - voltage characteristic of the microdischarges has a positive slope over much of the current range where excimer radiation is emitted indicates the possibility of forming arrays of these discharges and using them in flat panel excimer lamps.

  8. Improved Rare-Earth Emitter Hollow Cathode

    Science.gov (United States)

    Goebel, Dan M.

    2011-01-01

    An improvement has been made to the design of the hollow cathode geometry that was created for the rare-earth electron emitter described in Compact Rare Earth Emitter Hollow Cathode (NPO-44923), NASA Tech Briefs, Vol. 34, No. 3 (March 2010), p. 52. The original interior assembly was made entirely of graphite in order to be compatible with the LaB6 material, which cannot be touched by metals during operation due to boron diffusion causing embrittlement issues in high-temperature refractory materials. Also, the graphite tube was difficult to machine and was subject to vibration-induced fracturing. This innovation replaces the graphite tube with one made out of refractory metal that is relatively easy to manufacture. The cathode support tube is made of molybdenum or molybdenum-rhenium. This material is easily gun-bored to near the tolerances required, and finish machined with steps at each end that capture the orifice plate and the mounting flange. This provides the manufacturability and robustness needed for flight applications, and eliminates the need for expensive e-beam welding used in prior cathodes. The LaB6 insert is protected from direct contact with the refractory metal tube by thin, graphite sleeves in a cup-arrangement around the ends of the insert. The sleeves, insert, and orifice plate are held in place by a ceramic spacer and tungsten spring inserted inside the tube. To heat the cathode, an insulating tube is slipped around the refractory metal hollow tube, which can be made of high-temperature materials like boron nitride or aluminum nitride. A screw-shaped slot, or series of slots, is machined in the outside of the ceramic tube to constrain a refractory metal wire wound inside the slot that is used as the heater. The screw slot can hold a single heater wire that is then connected to the front of the cathode tube by tack-welding to complete the electrical circuit, or it can be a double slot that takes a bifilar wound heater with both leads coming out

  9. Barium depletion in hollow cathode emitters

    Energy Technology Data Exchange (ETDEWEB)

    Polk, James E., E-mail: james.e.polk@jpl.nasa.gov; Mikellides, Ioannis G.; Katz, Ira [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 (United States); Capece, Angela M. [Graduate Aerospace Laboratories, California Institute of Technology, Pasadena, California 91125 (United States)

    2016-01-14

    Dispenser hollow cathodes rely on a consumable supply of Ba released by BaO-CaO-Al{sub 2}O{sub 3} source material in the pores of a tungsten matrix to maintain a low work function surface. The examination of cathode emitters from long duration tests shows deposits of tungsten at the downstream end that appear to block the flow of Ba from the interior. In addition, a numerical model of Ba transport in the cathode plasma indicates that the Ba partial pressure in the insert may exceed the equilibrium vapor pressure of the dominant Ba-producing reaction, and it was postulated previously that this would suppress Ba loss in the upstream part of the emitter. New measurements of the Ba depletion depth from a cathode insert operated for 8200 h reveal that Ba loss is confined to a narrow region near the downstream end, confirming this hypothesis. The Ba transport model was modified to predict the depletion depth with time. A comparison of the calculated and measured depletion depths gives excellent qualitative agreement, and quantitative agreement was obtained assuming an insert temperature 70 °C lower than measured beginning-of-life values.

  10. Compact Rare Earth Emitter Hollow Cathode

    Science.gov (United States)

    Watkins, Ronald; Goebel, Dan; Hofer, Richard

    2010-01-01

    A compact, high-current, hollow cathode utilizing a lanthanum hexaboride (LaB6) thermionic electron emitter has been developed for use with high-power Hall thrusters and ion thrusters. LaB6 cathodes are being investigated due to their long life, high current capabilities, and less stringent xenon purity and handling requirements compared to conventional barium oxide (BaO) dispenser cathodes. The new cathode features a much smaller diameter than previously developed versions that permit it to be mounted on axis of a Hall thruster ( internally mounted ), as opposed to the conventional side-mount position external to the outer magnetic circuit ("externally mounted"). The cathode has also been reconfigured to be capable of surviving vibrational loads during launch and is designed to solve the significant heater and materials compatibility problems associated with the use of this emitter material. This has been accomplished in a compact design with the capability of high-emission current (10 to 60 A). The compact, high-current design has a keeper diameter that allows the cathode to be mounted on the centerline of a 6- kW Hall thruster, inside the iron core of the inner electromagnetic coil. Although designed for electric propulsion thrusters in spacecraft station- keeping, orbit transfer, and interplanetary applications, the LaB6 cathodes are applicable to the plasma processing industry in applications such as optical coatings and semiconductor processing where reactive gases are used. Where current electrical propulsion thrusters with BaO emitters have limited life and need extremely clean propellant feed systems at a significant cost, these LaB6 cathodes can run on the crudest-grade xenon propellant available without impact. Moreover, in a laboratory environment, LaB6 cathodes reduce testing costs because they do not require extended conditioning periods under hard vacuum. Alternative rare earth emitters, such as cerium hexaboride (CeB6) can be used in this

  11. Hollow cathode heater development for the Space Station plasma contactor

    Science.gov (United States)

    Soulas, George C.

    1993-01-01

    A hollow cathode-based plasma contactor has been selected for use on the Space Station. During the operation of the plasma contactor, the hollow cathode heater will endure approximately 12000 thermal cycles. Since a hollow cathode heater failure would result in a plasma contactor failure, a hollow cathode heater development program was established to produce a reliable heater design. The development program includes the heater design, process documents for both heater fabrication and assembly, and heater testing. The heater design was a modification of a sheathed ion thruster cathode heater. Three heaters have been tested to date using direct current power supplies. Performance testing was conducted to determine input current and power requirements for achieving activation and ignition temperatures, single unit operational repeatability, and unit-to-unit operational repeatability. Comparisons of performance testing data at the ignition input current level for the three heaters show the unit-to-unit repeatability of input power and tube temperature near the cathode tip to be within 3.5 W and 44 degrees C, respectively. Cyclic testing was then conducted to evaluate reliability under thermal cycling. The first heater, although damaged during assembly, completed 5985 ignition cycles before failing. Two additional heaters were subsequently fabricated and have completed 3178 cycles to date in an on-going test.

  12. Low-current hollow-cathode discharge in a trigger unit of a cold cathode thyratron

    OpenAIRE

    Landl, N. V.; Korolev, Yuriy Dmitrievich; Frants, O. B.; Geyman, V. G.; Bolotov, A. V.

    2015-01-01

    The paper deals with the investigations of the effect of cathode emissivity on the regimes of low-current hollow-cathode glow discharge. It is shown that an increase in the emissivity due to the so-called high-emissivity tablet allows the essential decrease in the discharge initiation voltage and the discharge burning voltage. The model of current sustaining for the hollow-cathode discharge, which takes into account the external emission current has been developed. On basis of the model, the ...

  13. Low-current hollow-cathode discharge in a trigger unit of a cold cathode thyratron

    Science.gov (United States)

    Landl, N. V.; Korolev, Y. D.; Frants, O. B.; Geyman, V. G.; Bolotov, A. V.

    2015-11-01

    The paper deals with the investigations of the effect of cathode emissivity on the regimes of low-current hollow-cathode glow discharge. It is shown that an increase in the emissivity due to the so-called high-emissivity tablet allows the essential decrease in the discharge initiation voltage and the discharge burning voltage. The model of current sustaining for the hollow-cathode discharge, which takes into account the external emission current has been developed. On basis of the model, the current-voltage characteristics of the discharge have been interpreted.

  14. Modeling High Pressure Micro Hollow Cathode Discharges

    Science.gov (United States)

    2007-11-02

    cathode discharge excimer lamps , Phys. Plasmas 7, 286 (2000). [3] RH Stark and KH Schoenbach, Direct high pressure glow discharges, J. Appl. Phys...temperature profiles in argon glow discharges, J. Appl. Phys. 88, 2234 (2000) [8] M. Moselhy, W. Shi, R. Stark, A flat glow discharge excimer radiation...MHCD acts as a plasma cathode for a third electrode (anode). Some experimental results in this geometry are available for argon and for air from the

  15. Study of the Discharge Mode in Micro-Hollow Cathode

    Institute of Scientific and Technical Information of China (English)

    HE Feng; HE Shoujie; ZHAO Xiaofei; GUO Bingang; OUYANG Jiting

    2012-01-01

    In this study, micro-hollow cathode discharge (MHCD) is investigated by a fluid model with drift-diffusion approximation. The MHC device is a cathode/dielectric/anode sandwich structure with one hole of a diameter D=200 um. The gas is a Ne/Xe mixture at a pressure p=50-500 Torr. The evolutions of the discharge show that there are two different discharge modes. At larger pD the discharge plasma and high density excited species expand along the cathode surface and, a ringed discharge mode is formed. At smaller pD, the discharge plasma and the excited species expand along the axis of the cathode aperture to form a columnar discharge.

  16. Modelling of local ion nitriding in a glow discharge with hollow cathode

    Science.gov (United States)

    Budilov, V.; Ramazanov, K.; Khusainov, Yu

    2017-05-01

    The paper presents the results of computer calculations of glow discharge plasma parameters in a hollow cathode zone and modeling of thermal and diffusion processes at local ion nitriding with a hollow cathode. The proposed model of a glow discharge with a hollow cathode with sufficient accuracy allowed to describe the distribution of plasma parameters in a cathode void. Values of plasma parameters in a cathode void formed by a mesh screen and cathode surface were obtained via the probe method. It was found that the use of hollow cathode effect allows to increase the concentration of ions near the treated surface by 1.5 times. The suggested computer model allows to predict the distribution of the temperature field and depth of a diffusion layer at local ion nitriding with a hollow cathode for various configurations and sizes.

  17. Cesiated hollow cathodes in the multicusp ion source

    Science.gov (United States)

    Belchenko, Yu. I.; Oka, Y.; Hamabe, M.; Kaneko, O.; Krivenko, A.; Takeiri, Y.; Tsumori, K.; Osakabe, M.; Ikeda, K.; Asano, E.; Kawamoto, T.

    2002-02-01

    A cesiated hydrogen hollow cathode (CHC) was tested for plasma injection in the multicusp negative ion source (MS). The CHC arc with hydrogen feed and cesium seeding through the CHC volume was explored. One cathode unit (40 mm length, 19 mm in diameter, emission opening area 1-3 mm2) with no special cooling provided the MS discharge operation with direct current up to 30 A, and up to 60 A in the long-pulse mode. High efficiency of negative ion production in the MS discharge, driven by a CHC plasma injection was recorded.

  18. High Pressure Micro-Slot Hollow Cathode Discharge

    Institute of Scientific and Technical Information of China (English)

    Wang Xinbing; Zhou Lina; Yao Xilin

    2005-01-01

    A direct current glow discharge source structure operating at high pressure based on the micro-slot hollow cathode is presented in this article. A 100 μm width slot cathode was fabricated of copper, and a stable DC glow discharge with an area of 0.5 mm2 was produced in noble gases (He, Ne) and air over a wide pressure range (kPa ~ 10 kPa). The current-voltage characteristics and the near UV radiation emission of the discharge were studied.

  19. Characteristics of Plasma Spraying Torch with a Hollow Cathode

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A kind of plasma spraying torch with a hollow cathode is described in this paper.The plasma torch can be used for axial powder injection in plasma spray studies. The arc characteristics of the plasma torch with various gas flowrates, different gas media, are presented. The mathematical modeling and computational method are developed for predicting the temperature and velocity field inside the plasma torch.

  20. Hollow nanoparticle cathode materials for sodium electrochemical cells and batteries

    Energy Technology Data Exchange (ETDEWEB)

    Shevchenko, Elena; Rajh, Tijana; Johnson, Christopher S.; Koo, Bonil

    2016-07-12

    A cathode comprises, in its discharged state, a layer of hollow .gamma.-Fe.sub.2O.sub.3 nanoparticles disposed between two layers of carbon nanotubes, and preferably including a metallic current collector in contact with one of the layers of carbon nanotubes. Individual particles of the hollow .gamma.-Fe.sub.2O.sub.3 nanoparticles comprise a crystalline shell of .gamma.-Fe.sub.2O.sub.3 including cation vacancies within the crystal structure of the shell (i.e., iron vacancies of anywhere between 3% to 90%, and preferably 44 to 77% of available octahedral iron sites). Sodium ions are intercalated within at least some of the cation vacancies within the crystalline shell of the hollow .gamma.-Fe.sub.2O.sub.3 nanoparticles.

  1. Note: Improved heater design for high-temperature hollow cathodes

    Science.gov (United States)

    McDonald, M. S.; Gallimore, A. D.; Goebel, D. M.

    2017-02-01

    We present an improved heater design for thermionic cathodes using a rhenium filament encased in a boron nitride ceramic sleeve. This heater is relatively simple to fabricate, yet has been successfully used to reliably and repeatably light a lanthanum hexaboride (LaB6) hollow cathode based on a previously published design without noticeable filament degradation over hundreds of hours of operation. The high decomposition temperature of boron nitride (2800 C for inert environments) and melting point for rhenium (3180 C) make this heater especially attractive for use with LaB6, which may require operating temperatures upwards of 1700 C. While boron nitride decomposes in air above 1000 C, the heater was used only at vacuum with an inert gas discharge, and no degradation was observed. Limitations of current state of the art cathode heaters are also discussed and compared with the rhenium-boron nitride combination.

  2. Hollow cathode modeling: II. Physical analysis and parametric study

    Science.gov (United States)

    Sary, Gaétan; Garrigues, Laurent; Boeuf, Jean-Pierre

    2017-05-01

    A numerical emissive hollow cathode model which couples plasma and thermal aspects of the NASA NSTAR cathode has been presented in a companion paper and simulation results obtained using the plasma model were compared to experimental data. We now compare simulation results with measurements using the full coupled model. Inside the cathode, the simulated plasma density profile agrees with the experimental data up to the ±50% experimental uncertainty while the simulated emitter temperature differs from measurements by at most 5 K. We then proceed to an analysis of the cathode discharge both inside the cathode where electron emission is dominant and outside in the near plume where electron transport instabilities are important. As observed previously in the literature, the total emitted electron current is much larger (34 {{A}}) than the set discharge current collected at the anode (13 {{A}}) while ionization plays a negligible role. Extracted electrons are emitted from a region much shorter than the full emitter (0.9 {{cm}} versus 2.5 {{cm}}). The influence of an applied axial magnetic field in the plume is also assessed and we observe that it leads to a 10-fold increase of the plasma density 1 cm downstream of the orifice entrance while the simulated discharge potential at the anode is increased from 10 {{V}} up to 35.5 {{V}}. Lastly, we perform a parametric study on both the operating point (discharge current, mass flow rate) and design (inner radius) of the cathode. The simulated useful operating envelope is shown to be limited at low discharge current mostly because of the probable ion sputtering of the emitter and at high discharge current because of emitter evaporation, plasma oscillations and sputtering of the keeper electrode. The behavior of the cathode is also analyzed w.r.t. its internal radius and simulation results show that the useful emitter length scales linearly with the cathode radius.

  3. Electron and ion kinetics in a micro hollow cathode discharge

    Energy Technology Data Exchange (ETDEWEB)

    Kim, G J; Iza, F; Lee, J K [Electronics and Electrical Engineering Department, Pohang University of Science and Technology, Pohang, 790-784 (Korea, Republic of)

    2006-10-21

    Electron and ion kinetics in a micro hollow cathode discharge are investigated by means of two-dimensional axisymmetric particle-in-cell Monte Carlo collision simulations. Argon discharges at 10 and 300 Torr are studied for various driving currents. Electron and ion energy probability functions (IEPF) are shown at various times and locations to study the spatio-temporal behaviour of the discharge. The electron energy probability function (EEPF) evolves from the Druyvesteyn type in the early stages of the discharge into a two (or three) temperature distribution when steady state is reached. In steady state, secondary electrons accelerated across the cathode fall populate the high energy tail of the EEPF while the low energy region is populated by trapped electrons. The IEPF evolves from a Maxwellian in the negative glow (bulk) to a two temperature distribution on the cathode surface. The overpopulation of low energy ions near the cathode surface is attributed to a larger collision cross section for low energy ions and ionization within the cathode fall.

  4. Emission characteristics of laser ablation-hollow cathode glow discharge spectral source

    Directory of Open Access Journals (Sweden)

    Karatodorov Stefan

    2014-11-01

    Full Text Available The emission characteristics of a scheme combining laser ablation as sample introduction source and hollow cathode discharge as excitation source are presented. The spatial separation of the sample material introduction by laser ablation and hollow cathode excitation is achieved by optimizing the gas pressure and the sample-cathode gap length. At these conditions the discharge current is maximized to enhance the analytical lines intensity.

  5. Two-dimensional, hybrid model of glow discharge in hollow cathode geometries

    Energy Technology Data Exchange (ETDEWEB)

    Fiala, A.; Pitchford, L.C.; Boeuf, J.P. [Universite Paul Sabatier, Toulouse (France)

    1995-12-31

    Low pressure glow discharges in plane-plane geometries have been studied extensively over the years and most of their features are known from experiments and numerical simulation. If a plane cathode is replaced by a cathode with some hollow structure, then, for a certain range of conditions, the negative glows of opposite (adjacent) cathode walls overlap and the discharge behaviour dramatically changes. The voltage is lower at a constant current and the current is even several orders of magnitude higher for a given voltage than for the plane cathode. At the same time, the intensity of the light emission from the discharge considerably increases. This effect is called the hollow cathode effect. There are several physical phenomena which could be responsible for the big efficiency of the hollow cathode discharges. The recent investigations based on the Monte Carlo simulation of the electron kinetics have shown that the trapping of energetic electrons in the hollow cathode cavity can explain the order of magnitude of the hollow cathode effect. The configuration of the discharge tube presented in fig. 1 is used here to study the behaviour of glow discharges in a hollow cathode means of numerical simulation.

  6. Atlas of uranium emission intensities in a hollow cathode discharge

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, B.A.; Keller, R.A.; Engleman, R. Jr.

    1980-07-01

    The uranium emission spectrum from a hollow cathode discharge is displayed from 11,000 to 26,000 cm/sup -1/. This atlas lists 4928 spectral lines of uranium; 3949 are classified to the neutral spectrum and 431 are classified to the singly ionized spectrum. Listed wavenumbers are accurate to +-0.003 cm/sup -1/ and the listed relative intensities to +-8%. The richness of the spectrum makes this atlas useful for wavenumber calibration of lasers, spectrographs, and monochromators to an accuracy of 1 part in 10/sup 7/. This atlas is also useful as a guide to the uranium spectrum, and relative oscillator strengths (gf values) can be calculated from the intensities to a precision of +-20%.

  7. Compact High Current Rare-Earth Emitter Hollow Cathode for Hall Effect Thrusters

    Science.gov (United States)

    Hofer, Richard R. (Inventor); Goebel, Dan M. (Inventor); Watkins, Ronnie M. (Inventor)

    2012-01-01

    An apparatus and method for achieving an efficient central cathode in a Hall effect thruster is disclosed. A hollow insert disposed inside the end of a hollow conductive cathode comprises a rare-earth element and energized to emit electrons from an inner surface. The cathode employs an end opening having an area at least as large as the internal cross sectional area of the rare earth insert to enhance throughput from the cathode end. In addition, the cathode employs a high aspect ratio geometry based on the cathode length to width which mitigates heat transfer from the end. A gas flow through the cathode and insert may be impinged by the emitted electrons to yield a plasma. One or more optional auxiliary gas feeds may also be employed between the cathode and keeper wall and external to the keeper near the outlet.

  8. Coronal and Local Thermodynamic Equilibriums in a Hollow Cathode Discharge

    Institute of Scientific and Technical Information of China (English)

    ZHENG Xu-Tao

    2005-01-01

    @@ A characteristic two-section profile of excited-state populations is observed in a hollow cathode discharge and is explained by coexistence of the coronal equilibrium (CE) and the local thermodynamic equilibrium (LTE).At helium pressure 0.1 Torr and cathode current 200-300 mA, vacuum ultraviolet radiations from He I 1snp 1 P (n = 2-16) and He Ⅱ np2P (n = 2-14) axe resolved with a 2.2-M McPherson spectrometer. Relative populations of these states are deduced from the discrete line intensities and are plotted against energy levels. For both the He Ⅰ and He Ⅱ series, as energy level increases, populations of high-n (n > 10) states are found to decrease much more quickly than low-n (n < 7) populations. While low-n populations are described with the CE dominated by direct electron-impact excitations, high-n populations are fitted with the LTE to calculate the population temperatures of gas atoms and ions. Validities of the CE and LTE in different n-ranges are considered on the competition between radiative decays of the excited states and their collisions with gas atoms.

  9. Mercury vapor hollow cathode component studies. [emissive materials for ion thruster requirements

    Science.gov (United States)

    Zuccaro, D. E.

    1973-01-01

    An experimental study of starting and operating characteristics of conventional hollow cathodes and of hollow cathodes without alkaline earth emissive materials demonstrated that the emissive mix is essential to obtain the desired cathode operation. Loss of the emissive mix by evaporation and chemical reaction was measured. New insert designs consisting of emissive mix supported on nickel and of barium impregnated porous tungsten were studied. Cathodes with a modified orifice geometry operated in a low voltage, 'spot' mode over a broad range of discharge current. Thermal degradation tests on cathode heaters showed the flame sprayed SERT II type to be the most durable at high temperatures. Thermal shock was observed to be a significant factor in limiting cathode heater life. A cathode having a barium impregnated porous tungsten tip and a heater which is potted in sintered alumina was found to have favorable operating characteristics.

  10. Mercury vapor hollow cathode component studies. [emissive materials for ion thruster requirements

    Science.gov (United States)

    Zuccaro, D. E.

    1973-01-01

    An experimental study of starting and operating characteristics of conventional hollow cathodes and of hollow cathodes without alkaline earth emissive materials demonstrated that the emissive mix is essential to obtain the desired cathode operation. Loss of the emissive mix by evaporation and chemical reaction was measured. New insert designs consisting of emissive mix supported on nickel and of barium impregnated porous tungsten were studied. Cathodes with a modified orifice geometry operated in a low voltage, 'spot' mode over a broad range of discharge current. Thermal degradation tests on cathode heaters showed the flame sprayed SERT II type to be the most durable at high temperatures. Thermal shock was observed to be a significant factor in limiting cathode heater life. A cathode having a barium impregnated porous tungsten tip and a heater which is potted in sintered alumina was found to have favorable operating characteristics.

  11. Ignition and extinction phenomena in helium micro hollow cathode discharges

    Energy Technology Data Exchange (ETDEWEB)

    Kulsreshath, M. K.; Schwaederle, L.; Dufour, T.; Lefaucheux, P.; Dussart, R. [GREMI, CNRS/Université d' Orléans (UMR7344), Orléans (France); Sadeghi, N. [LIPhy, CNRS and Universite Joseph Fourier (UMR5588), Grenoble (France); Overzet, L. J. [GREMI, CNRS/Université d' Orléans (UMR7344), Orléans (France); PSAL, UTDallas, Richardson, Texas 75080-3021 (United States)

    2013-12-28

    Micro hollow cathode discharges (MHCD) were produced using 250 μm thick dielectric layer of alumina sandwiched between two nickel electrodes of 8 μm thickness. A through cavity at the center of the chip was formed by laser drilling technique. MHCD with a diameter of few hundreds of micrometers allowed us to generate direct current discharges in helium at up to atmospheric pressure. A slowly varying ramped voltage generator was used to study the ignition and the extinction periods of the microdischarges. The analysis was performed by using electrical characterisation of the V-I behaviour and the measurement of He*({sup 3}S{sub 1}) metastable atoms density by tunable diode laser spectroscopy. At the ignition of the microdischarges, 2 μs long current peak as high as 24 mA was observed, sometimes followed by low amplitude damped oscillations. At helium pressure above 400 Torr, an oscillatory behaviour of the discharge current was observed just before the extinction of the microdischarges. The same type of instability in the extinction period at high pressure also appeared on the density of He*({sup 3}S{sub 1}) metastable atoms, but delayed by a few μs relative to the current oscillations. Metastable atoms thus cannot be at the origin of the generation of the observed instabilities.

  12. Ignition and extinction phenomena in helium micro hollow cathode discharges

    CERN Document Server

    Kulsreshath, M K; Schwaederle, L; Dufour, T; Overzet, L J; Lefaucheux, P; Dussart, R

    2016-01-01

    Micro hollow cathode discharges (MHCD) were produced using 250 m thick dielectric layer of alumina sandwiched between two nickel electrodes of 8 m thickness. A through cavity at the center of the chip was formed by laser drilling technique. MHCD with a diameter of few hundreds of micrometers allowed us to generate direct current discharges in helium at up to atmospheric pressure. A slowly varying ramped voltage generator was used to study the ignition and the extinction periods of the microdischarges. The analysis was performed by using electrical characterisation of the V-I behaviour and the measurement of He*(3S1) metastable atoms density by tunable diode laser spectroscopy. At the ignition of the microdischarges, 2 s long current peak as high as 24 mA was observed, sometimes followed by low amplitude damped oscillations. At helium pressure above 400 Torr, an oscillatory behaviour of the discharge current was observed just before the extinction of the microdischarges. The same type of instability in the ext...

  13. Life Cycle Tests on a Hollow Cathode Based Plasma Contactor

    Science.gov (United States)

    Vaughn, Jason A.; Schneider, Todd A.; Munafo, Paul (Technical Monitor)

    2001-01-01

    The propulsive Small Expendable Deployer System (ProSEDS) mission is designed to provide an on-orbit demonstration of the electrodynamic propulsion capabilities of tethers in space. The ProSEDS experiment will be a secondary payload on a Delta II unmanned expendable booster with a mission duration of 12 days. A 5-km conductive tether is attached to the Delta II second stage and collects current from the low Earth orbit (LEO) plasma, and a Hollow Cathode Plasma Contactor (HCPC) emits the collected electrons from the Delta II, completing the electrical circuit to the ambient plasma. The HCPC for the ProSEDS mission have made it necessary to turn off the HCPC once a minute throughout the entire mission. Because of the unusual operating requirements by the ProSEDS mission, an engineering development unit of the HCPC was built to demonstrate the HCPC design would start reliably for the life of the ProSEDS mission. During the life test the engineering unit cycled for over 10,000 on/off cycles without missing a single start, and during that same test the HCPC unit demonstrated the capability to emit 0 to 5 A electron emission current. The performance of the HCPC unit during this life test will be discussed.

  14. Hollow cathode lamp based Faraday anomalous dispersion optical filter.

    Science.gov (United States)

    Pan, Duo; Xue, Xiaobo; Shang, Haosen; Luo, Bin; Chen, Jingbiao; Guo, Hong

    2016-07-15

    The Faraday anomalous dispersion optical filter (FADOF), which has acquired wide applications, is mainly limited to some gaseous elements and low melting-point metals before, for the restriction of the attainable atomic density. In conventional FADOF systems a high atomic density is usually achieved by thermal equilibrium at the saturated vapor pressure, hence for elements with high melting-points a high temperature is required. To avoid this restriction, we propose a scheme of FADOF based on the hollow cathode lamp (HCL), instead of atomic vapor cells. Experimental results in strontium atoms verified this scheme, where a transmission peak corresponding to the (88)Sr (5s(2))(1)S0 - (5s5p)(1)P1 transition (461 nm) is obtained, with a maximum transmittance of 62.5% and a bandwith of 1.19 GHz. The dependence of transmission on magnetic field and HCL discharge current is also studied. Since the state-of-art commercial HCLs cover about 70 elements, this scheme can greatly expand the applications of FADOFs, and the abundant atomic transitions they provide bring the HCL based FADOFs potential applications for frequency stabilization.

  15. Uniqueness theorem for the non-local ionization source in glow discharge and hollow cathode

    CERN Document Server

    Gorin, Vladimir V

    2012-01-01

    The paper is devoted to the proof of the uniqueness theorem for solution of the equation for the non-local ionization source in a glow discharge and a hollow cathode in general 3D geometry. The theorem is applied to wide class of electric field configurations, and to the walls of discharge volume, which have a property of incomplete absorption of the electrons. Cathode is regarded as interior singular source, which is placed arbitrarily close to the wall. The existence of solution is considered also. During the proof of the theorem many of useful structure formulae are obtained. Elements of the proof structure, which have arisen, are found to have physical sense. It makes clear physical construction of non-local electron avalanche, which builds a source of ionization in glow discharge at low pressures. Last has decisive significance to understand the hollow cathode discharge configuration and the hollow cathode effect.

  16. Transition characteristics from radio-frequency discharge to arc in hollow cathode configuration

    Institute of Scientific and Technical Information of China (English)

    许建平; 巩春志; 吴明忠; 田修波

    2014-01-01

    The technique ofglow discharges in radio frequency configuration was applied to ignite hollow cathode vacuum arc discharge.The effect of discharge parameters on the building up of hollow cathode arc discharge was investigated.The emission spectrum during the vacuum arc ignition process was measured to disclose the discharge dynamics.There exists a threshold radio frequency power (300 W),beyond which hollow cathode is in γmode discharge status while radio frequency discharge changes into the arc discharge.With the increase of the radio frequency power,the plasma temperature and electronic density increase,and the discharge mode transits more rapidly.The ignition time ofhollow cathode vacuum arc discharge is less than 4 s with a radio frequency power of700 W.

  17. Experimental investigation of a capacitive blind hollow cathode discharge with central gas injection

    Science.gov (United States)

    Hoffmann, D.; Müller, M.; Petkow, D.; Herdrich, G.; Lein, S.

    2014-12-01

    The operating parameters and resulting plasma properties of a blind hollow cathode (BHC) discharge have been investigated. The hollow cathode was driven capacitively with a pulsed dc signal of 200 kHz in a power range between 50 and 100 W at an ambient pressure of about 10 Pa. The working gas was argon, which was introduced with a ceramic capillary at different positions of the longitudinal axis of the hollow cathode with flow rates of between 30 and 1000 sccm. The current-voltage characteristics were recorded. The pressure at the end of the BHC was measured with a miniaturized pressure transducer with varying volumetric flow rate and axial position of the capillary in the hollow cathode. To characterize the ignition behaviour of the system, the measured breakdown voltages were compared with phenomenological Paschen curves calculated from the pressure data. Optical emission spectroscopy was used to examine the origins of the light emission, comparing the glow mode and hollow cathode mode in particular. A high-speed camera recorded some plasma processes. A mounting with an indium tin oxide coated glass was used to observe the inner volume of the BHC along the longitudinal axis, while the plasma was operated with different parameters. The optical observations revealed an inhomogeneous plasma condition along the axis.

  18. Status of Hollow Cathode Heater Development for the Space Station Plasma Contactor

    Science.gov (United States)

    Soulas, George C.

    1994-01-01

    A hollow cathode-based plasma contactor has been selected for use on the Space Station. During the operation of the plasma contactor, the hollow cathode heater will endure approximately 12000 thermal cycles. Since a hollow cathode heater failure would result in a plasma contactor failure, a hollow cathode heater development program was established to produce a reliable heater. The development program includes the heater design, process documents for both heater fabrication and assembly, and heater testing. The heater design was a modification of a sheathed ion thruster cathode heater. Heater tests included testing of the heater unit alone and plasma contactor and ion thruster testing. To date, eight heaters have been or are being processed through heater unit testing, two through plasma contactor testing and three through ion thruster testing, all using direct current power supplies. Comparisons of data from heater unit performance tests before cyclic testing, plasma contactor tests, and ion thruster tests at the ignition input current level show the average deviation of input power and tube temperature near the cathode tip to be +/-0.9 W and +/- 21 C, respectively. Heater unit testing included cyclic testing to evaluate reliability under thermal cycling. The first heater, although damaged during assembly, completed 5985 ignition cycles before failing. Four additional heaters successfully completed 6300, 6300, 700, and 700 cycles. Heater unit testing is currently ongoing for three heaters which have to date accumulated greater than 7250, greater than 5500, and greater than 5500 cycles, respectively.

  19. Self-pulsing in a low-current hollow cathode discharge: From Townsend to glow discharge

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Yu [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081 (China); Xie, Kan, E-mail: xiekan@bit.edu.cn [School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081 (China); Zhang, Yu; Ouyang, Jiting [School of Physics, Beijing Institute of Technology, Beijing 100081 (China)

    2016-02-15

    We investigate the self-pulsing phenomenon of a low current cavity discharge in a cylindrical hollow cathode in pure argon. The waveforms of pulsed current and voltage are measured, and the time-averaged and time-resolved images of hollow cathode discharge are recorded by using high-speed intensified charge coupled device camera. The results show that the self-pulsing is a mode transition between low-current stage of Townsend discharge and high-current stage of glow discharge. During the self-pulsing, the current rising time relates to the dissipation of space charges, and the decay time relates to the reconstruction of the virtual anode by the accumulation of positive ions. Whether or not space charges can form and keep the virtual anode is responsible for the discharge mode and hence plays an important role in the self-pulsing phenomenon in low current hollow cathode discharge.

  20. Effect of the Hollow Cathode Heat Power on the Performance of an Hall-Effect Thruster

    Institute of Scientific and Technical Information of China (English)

    NING Zhongxi; YU Daren; LI Hong; YAN Guojun

    2009-01-01

    Effect of the hollow cathode heat power on the performance of a Hall-effect thruster is investigated. The variations in the Hall-effect thruster's performance (thrust, specific impulse and anode efficiency) with the hollow cathode heat power was obtained from the analysis of the experimental data. Through an analysis on the coupling relationship between the electrons emitted from the hollow cathode and the environmental plasma, it was found that the heat power would affect the electron emission of the emitter and the space potential of the coupling zone, which would lead to a change in the effective discharge voltage. The experimental data agree well with the results of calculation which can be used to explain the experimental phenomena.

  1. Influence of the floating potential on micro-hollow cathode operation

    Energy Technology Data Exchange (ETDEWEB)

    Levko, D. [Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712 (United States); Bliokh, Y. P.; Krasik, Ya. E. [Department of Physics, Technion, 32000 Haifa (Israel)

    2015-06-15

    The influence of a keeper electrode with a floating potential on the operation of a micro-hollow cathode is studied using the two-dimensional particle-in-cell Monte Carlo collisions model. The floating potential is determined self-consistently, taking into account the electron and ion charges collected by the keeper and the potential induced by the plasma non-compensated space charge. It is shown that the parameters of the micro-hollow cathode operation vary significantly, according to whether the keeper potential is floating or has a specified constant value.

  2. Modulation Transfer Spectroscopy of Ytterbium Atoms in a Hollow Cathode Lamp

    Institute of Scientific and Technical Information of China (English)

    WANG Wen-Li; XU Xin-Ye

    2011-01-01

    We present the experimental study of modulation transfer spectroscopy of ytterbium atoms in a hollow cathode lamp.The dependences of its linewidth, slope and magnitude on the various experimental parameters are measured and fitted by the well-known theoretical expressions. The experimental results are in good agreement with the theoretical prediction. We have observed the Dicke narrowing effect by increasing the current of the hollow cathode lamp. It is also found that there are the optimal current and laser power to generate the better modulation transfer spectroscopy signal, which can be employed for locking the laser frequency to the atomic transition.

  3. Characteristics of a toroidal planar hollow cathode and its use for the preparation of Bi nanoparticles

    Science.gov (United States)

    Perez, A.; Luna, A. T.; Muhl, S.

    2013-12-01

    Using ideas from the sputter deposition by gas flow hollow cathode (GFHC) we have designed a new version in the form of a toroidal planar hollow cathode. Here the flow of gas is used to entrain the sputtered atoms and nanoparticles formed by agglomeration in the gas phase, through the cathode central exit aperture towards the substrate. We have studied the characteristics of the deposit as a function of the applied pulsed dc electrical power, the argon gas pressure and flow. By varying the different operating parameters, such as pressure (6.7-267 Pa), power (40-120 W) and gas flow (20-140 sccm), it was possible to control the size of the nanoparticles (10-150 nm) and the deposition rate (0.4-4.0 nm min-1). We demonstrate that the nanoparticles are of crystalline bismuth, even though the cathode is made of graphite with small added pieces of bismuth.

  4. Development and Testing of High Current Hollow Cathodes for High Power Hall Thrusters

    Science.gov (United States)

    Kamhawi, Hani; Van Noord, Jonathan

    2012-01-01

    NASA's Office of the Chief Technologist In-Space Propulsion project is sponsoring the testing and development of high power Hall thrusters for implementation in NASA missions. As part of the project, NASA Glenn Research Center is developing and testing new high current hollow cathode assemblies that can meet and exceed the required discharge current and life-time requirements of high power Hall thrusters. This paper presents test results of three high current hollow cathode configurations. Test results indicated that two novel emitter configurations were able to attain lower peak emitter temperatures compared to state-of-the-art emitter configurations. One hollow cathode configuration attained a cathode orifice plate tip temperature of 1132 degC at a discharge current of 100 A. More specifically, test and analysis results indicated that a novel emitter configuration had minimal temperature gradient along its length. Future work will include cathode wear tests, and internal emitter temperature and plasma properties measurements along with detailed physics based modeling.

  5. Modeling of LaB6 hollow cathode performance and lifetime

    Science.gov (United States)

    Pedrini, Daniela; Albertoni, Riccardo; Paganucci, Fabrizio; Andrenucci, Mariano

    2015-01-01

    Thermionic hollow cathodes are currently used as sources of electrons in a variety of space applications, in particular as cathodes/neutralizers of electric thrusters (Hall effect and ion thrusters). Numerical tools are needed to guide the design of new devices before their manufacturing and testing, since multiple geometrical parameters influence the cathode performance. A reduced-order, numerical model was developed to assess the performance of orificed hollow cathodes, with a focus on the operational lifetime. The importance of the lifetime prediction is tied to its impact on the operational lifetime of the thruster to which the cathode is coupled. The cathode architecture consists of a refractory metal tube with an internal electron emitter made of lanthanum hexaboride (LaB6). The choice of LaB6 accounts for the reduced evaporation rate, the low sensitivity to poisoning and the absence of an activation procedure with respect to oxide cathodes. A LaB6 emitter is thus a valuable option for long-lasting cathodes, despite its relatively high work-function and reactivity with many refractory metals at high temperatures. The suggested reduced-order model self-consistently predicts the key parameters of the cathode operation, shedding light on the power deposition processes as well as on the main erosion mechanisms. Preliminary results showed good agreement with both the experimental data collected by Alta and data available from the literature for different operating conditions and power levels. Next developments will include further comparisons between theoretical and experimental data, considering cathodes of various size and operating conditions.

  6. Multiple Hollow Cathode Wear Testing for the Space Station Plasma Contactor

    Science.gov (United States)

    Soulas, George C.

    1994-01-01

    A wear test of four hollow cathodes was conducted to resolve issues associated with the Space Station plasma contactor. The objectives of this test were to evaluate unit-to-unit dispersions, verify the transportability of contamination control protocols developed by the project, and to evaluate cathode contamination control and activation procedures to enable simplification of the gas feed system and heater power processor. These objectives were achieved by wear testing four cathodes concurrently to 2000 hours. Test results showed maximum unit-to-unit deviations for discharge voltages and cathode tip temperatures to be +/-3 percent and +/-2 percent, respectively, of the nominal values. Cathodes utilizing contamination control procedures known to increase cathode lifetime showed no trends in their monitored parameters that would indicate a possible failure, demonstrating that contamination control procedures had been successfully transferred. Comparisons of cathodes utilizing and not utilizing a purifier or simplified activation procedure showed similar behavior during wear testing and pre- and post-test performance characterizations. This behavior indicates that use of simplified cathode systems and procedures is consistent with long cathode lifetimes.

  7. Operational Status of the International Space Station Plasma Contactor Hollow Cathode Assemblies July 2001 to May 2013

    Science.gov (United States)

    Kamhawi, Hani; Yim, John T.; Patterson, Michael J.; Dalton, Penni J.

    2013-01-01

    The International Space Station has onboard two Aerojet Rocketdyne developed plasma contactor units that perform the function of charge control. The plasma contactor units contain NASA Glenn Research Center developed hollow cathode assemblies. NASA Glenn Research Center monitors the on-orbit operation of the flight hollow cathode assemblies. As of May 31, 2013, HCA.001-F has been ignited and operated 123 times and has accumulated 8072 hours of operation, whereas, HCA.003-F has been ignited and operated 112 times and has accumulated 9664 hours of operation. Monitored hollow cathode ignition times and anode voltage magnitudes indicate that they continue to operate nominally.

  8. Operational Status of the International Space Station Plasma Contactor Hollow Cathode Assemblies from July 2011 to May 2013

    Science.gov (United States)

    Kamhawi, Hani; Yim, John T.; Patterson, Michael J.; Dalton, Penni J.

    2014-01-01

    The International Space Station has onboard two Aerojet Rocketdyne developed plasma contactor units that perform the function of charge control. The plasma contactor units contain NASA Glenn Research Center developed hollow cathode assemblies. NASA Glenn Research Center monitors the onorbit operation of the flight hollow cathode assemblies. As of May 31, 2013, HCA.001-F has been ignited and operated 123 times and has accumulated 8072 hours of operation, whereas, HCA.003-F has been ignited and operated 112 times and has accumulated 9664 hours of operation. Monitored hollow cathode ignition times and anode voltage magnitudes indicate that they continue to operate nominally.

  9. Hollow Carbon Nanofiber-Encapsulated Sulfur Cathodes for High Specific Capacity Rechargeable Lithium Batteries

    KAUST Repository

    Zheng, Guangyuan

    2011-10-12

    Sulfur has a high specific capacity of 1673 mAh/g as lithium battery cathodes, but its rapid capacity fading due to polysulfides dissolution presents a significant challenge for practical applications. Here we report a hollow carbon nanofiber-encapsulated sulfur cathode for effective trapping of polysulfides and demonstrate experimentally high specific capacity and excellent electrochemical cycling of the cells. The hollow carbon nanofiber arrays were fabricated using anodic aluminum oxide (AAO) templates, through thermal carbonization of polystyrene. The AAO template also facilitates sulfur infusion into the hollow fibers and prevents sulfur from coating onto the exterior carbon wall. The high aspect ratio of the carbon nanofibers provides an ideal structure for trapping polysulfides, and the thin carbon wall allows rapid transport of lithium ions. The small dimension of these nanofibers provides a large surface area per unit mass for Li2S deposition during cycling and reduces pulverization of electrode materials due to volumetric expansion. A high specific capacity of about 730 mAh/g was observed at C/5 rate after 150 cycles of charge/discharge. The introduction of LiNO3 additive to the electrolyte was shown to improve the Coulombic efficiency to over 99% at C/5. The results show that the hollow carbon nanofiber-encapsulated sulfur structure could be a promising cathode design for rechargeable Li/S batteries with high specific energy. © 2011 American Chemical Society.

  10. Gas-discharge sources with charged particle emission from the plasma of glow discharge with a hollow cathode

    CERN Document Server

    Semenov, A P

    2001-01-01

    One studied properties of a magnetron discharge with a cold hollow and uncooled rod cathodes. One demonstrated the dominant effect of thermoelectron emission of a rod cathode heated in a discharge on characteristics of discharge and on emission properties of a gas-discharge plasma and the possibility pf a smooth transition of glow discharge to diffusion mode of arc discharge combustion. Paper describes sources of ions and electrons with improved physical and generalized design and engineering parameters. One shows the promise of the electrode structure of a hollow cathode magnetron discharge to be used as a source, in particular, of the atomic hydrogen and of atom flow of a working rod cathode

  11. Operating modes of a hydrogen ion source based on a hollow-cathode pulsed Penning discharge

    Energy Technology Data Exchange (ETDEWEB)

    Oks, E. M. [Institute of High Current Electronics, Siberian Branch of Russian Academy of Science, Tomsk (Russian Federation); Tomsk State University of Control System and Radioelectronics, Tomsk (Russian Federation); Shandrikov, M. V., E-mail: shandrikov@opee.hcei.tsc.ru; Vizir, A. V. [Institute of High Current Electronics, Siberian Branch of Russian Academy of Science, Tomsk (Russian Federation)

    2016-02-15

    An ion source based on a hollow-cathode Penning discharge was switched to a high-current pulsed mode (tens of amperes and tens of microseconds) to produce an intense hydrogen ion beam. With molecular hydrogen (H{sub 2}), the ion beam contained three species: H{sup +}, H{sub 2}{sup +}, and H{sub 3}{sup +}. For all experimental conditions, the fraction of H{sub 2}{sup +} ions in the beam was about 10 ÷ 15% of the total ion beam current and varied little with ion source parameters. At the same time, the ratio of H{sup +} and H{sub 3}{sup +} depended strongly on the discharge current, particularly on its distribution in the gap between the hollow and planar cathodes. Increasing the discharge current increased the H{sup +} fraction in ion beam. The maximum fraction of H{sup +} reached 80% of the total ion beam current. Forced redistribution of the discharge current in the cathode gap for increasing the hollow cathode current could greatly increase the H{sub 3}{sup +} fraction in the beam. At optimum parameters, the fraction of H{sub 3}{sup +} ions reached 60% of the total ion beam current.

  12. Design and Manufacturing Processes of Long-Life Hollow Cathode Assemblies

    Science.gov (United States)

    Patterson, Michael J. (Inventor); Verhey, Timothy R. (Inventor); Soulas, George C. (Inventor)

    2002-01-01

    The design and manufacturing processes for Hollow Cathode Assemblies (HCA's) that operate over a broad range of emission currents up to 30 Amperes, at low potentials, with lifetimes in excess of 17,500 hours. The processes include contamination control procedures which cover hollow cathode component cleaning procedures, gas feed system designs and specifications, and hollow cathode activation and operating procedures to thereby produce cathode assemblies that have demonstrated stable and repeatable operating conditions, for both the discharge current and voltage. The HCA of this invention provides lifetimes of greater than 10,000 hours, and expected lifetimes of greater than 17,500 hours, whereas the present state-of-the-art is less than 500 hours at emission currents in excess of 1 Ampere. Stable operation is provided over a large range of operating emission currents, up to a 6:1 ratio, and this HCA can emit electron currents of up to 30 Amperes in magnitude to an external anode that simulates the current drawn to a space plasma at voltages of less than 20 Volts.

  13. Facile Synthesis of V2O5 Hollow Spheres as Advanced Cathodes for High-Performance Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Xingyuan Zhang

    2017-01-01

    Full Text Available Three-dimensional V2O5 hollow structures have been prepared through a simple synthesis strategy combining solvothermal treatment and a subsequent thermal annealing. The V2O5 materials are composed of microspheres 2–3 μm in diameter and with a distinct hollow interior. The as-synthesized V2O5 hollow microspheres, when evaluated as a cathode material for lithium-ion batteries, can deliver a specific capacity as high as 273 mAh·g−1 at 0.2 C. Benefiting from the hollow structures that afford fast electrolyte transport and volume accommodation, the V2O5 cathode also exhibits a superior rate capability and excellent cycling stability. The good Li-ion storage performance demonstrates the great potential of this unique V2O5 hollow material as a high-performance cathode for lithium-ion batteries.

  14. Facile Synthesis of V₂O₅ Hollow Spheres as Advanced Cathodes for High-Performance Lithium-Ion Batteries.

    Science.gov (United States)

    Zhang, Xingyuan; Wang, Jian-Gan; Liu, Huanyan; Liu, Hongzhen; Wei, Bingqing

    2017-01-18

    Three-dimensional V₂O₅ hollow structures have been prepared through a simple synthesis strategy combining solvothermal treatment and a subsequent thermal annealing. The V₂O₅ materials are composed of microspheres 2-3 μm in diameter and with a distinct hollow interior. The as-synthesized V₂O₅ hollow microspheres, when evaluated as a cathode material for lithium-ion batteries, can deliver a specific capacity as high as 273 mAh·g(-1) at 0.2 C. Benefiting from the hollow structures that afford fast electrolyte transport and volume accommodation, the V₂O₅ cathode also exhibits a superior rate capability and excellent cycling stability. The good Li-ion storage performance demonstrates the great potential of this unique V₂O₅ hollow material as a high-performance cathode for lithium-ion batteries.

  15. Auxiliary glow discharge in the trigger unit of a hollow-cathode thyratron

    Energy Technology Data Exchange (ETDEWEB)

    Korolev, Yu. D.; Landl, N. V., E-mail: landl@lnp.hcei.tsc.ru; Geyman, V. G.; Frants, O. B.; Shemyakin, I. A.; Nekhoroshev, V. O. [Russian Academy of Sciences, Institute of High-Current Electronics, Siberian Branch (Russian Federation)

    2016-08-15

    Results from studies of a low-current glow discharge with a hollow cathode are presented. A specific feature of the discharge conditions was that a highly emissive tablet containing cesium carbonate was placed in the cathode cavity. In the absence of a tablet, the discharge ignition voltage was typically ≥3.5 kV, while the burning voltage was in the range of 500–600 V. The use of the tablet made it possible to decrease the ignition voltage to 280 V and maintain the discharge burning voltage at a level of about 130 V. A model of the current sustainment in a hollow-cathode discharge is proposed. Instead of the conventional secondary emission yield, the model uses a generalized emission yield that takes into account not only ion bombardment of the cathode, but also the emission current from an external source. The model is used to interpret the observed current−voltage characteristics. The results of calculations agree well with the experimental data. It is shown that, in some discharge modes, the external emission current from the cathode can reach 25% of the total discharge current.

  16. Auxiliary glow discharge in the trigger unit of a hollow-cathode thyratron

    Science.gov (United States)

    Korolev, Yu. D.; Landl, N. V.; Geyman, V. G.; Frants, O. B.; Shemyakin, I. A.; Nekhoroshev, V. O.

    2016-08-01

    Results from studies of a low-current glow discharge with a hollow cathode are presented. A specific feature of the discharge conditions was that a highly emissive tablet containing cesium carbonate was placed in the cathode cavity. In the absence of a tablet, the discharge ignition voltage was typically ≥3.5 kV, while the burning voltage was in the range of 500-600 V. The use of the tablet made it possible to decrease the ignition voltage to 280 V and maintain the discharge burning voltage at a level of about 130 V. A model of the current sustainment in a hollow-cathode discharge is proposed. Instead of the conventional secondary emission yield, the model uses a generalized emission yield that takes into account not only ion bombardment of the cathode, but also the emission current from an external source. The model is used to interpret the observed current-voltage characteristics. The results of calculations agree well with the experimental data. It is shown that, in some discharge modes, the external emission current from the cathode can reach 25% of the total discharge current.

  17. Atlas of the Spectrum of a Platinum/Neon Hollow-Cathode Lamp in the Region 1130-4330 Å

    Science.gov (United States)

    SRD 112 Atlas of the Spectrum of a Platinum/Neon Hollow-Cathode Lamp in the Region 1130-4330 Å (Web, free access)   Atlas of the Spectrum of a Platinum/Neon Hollow-Cathode Lamp in the Region 1130-4330 Å contains wavelengths and intensities for about 5600 lines in the region 4330 Å. An atlas plot of the spectrum is given, with the spectral lines marked and their intensities, wavelengths, and classifications listed.

  18. Ion Nitriding of Titanium Alloys with a Hollow Cathode Effect Application

    Directory of Open Access Journals (Sweden)

    V.V. Budilov

    2015-09-01

    Full Text Available The method of ion nitriding the titanium VT6 alloy in glow discharge with the hollow cathode effect (HCE was investigated. Probe measurements of glow discharge plasma under HCE conditions and without it were performed; ion densities near the cathode surface were measured. The effect of HCE on microstructure, microhardness and wear resistance of VT6 alloy was determined. The technology of ion nitriding titanium alloys, based on phase modification of the surface layer in glow discharge with HCE, was developed.

  19. Influence of the Iron Anisothermal Sintering on the Characteristic of the Hollow Cathode Discharge

    Institute of Scientific and Technical Information of China (English)

    BRUNATTO; Silvio Francisco; MUZART; Joel Louis Rene

    2004-01-01

    This work studies the influence of anisothermal iron sintering process on hollow cathode discharge characteristics. Two independent cathodes form an annular discharge. The pressed cylindrical iron powder sample, acting as central cathode, was placed concentrically in the interior of an external cathode. The external cathode, machined from an AISI 3 l0 steel bar, besides acting to confine the geometry of the plasma, can also acts as a source of alloying elements. The sample heating is a function of the ion bombardment energy and, so, of the discharge electrical parameters: current (or current density) and the effective potential applied to the cathode. Successive anisothermal sintering is performed in a same sample until the reproducibility of the electrical parameters being obtained. The heating experiments up to 1250 ℃, in a gas mixture of 80% Ar + 20% H2, at pressure of 133 Pa, at flow of 2xl0-6 m3s-1, with an inter-cathode radial space of 5.8 mm,were carried out. It was verified the metallurgical evolution of the iron sample sintering process influences the current-ton(time switched-on of the pulse) characteristics of the discharge.

  20. Formation of Ti-N graded bioceramic layer by DC hollow-cathode plasma nitriding

    Institute of Scientific and Technical Information of China (English)

    ZHENG Chuan-lin

    2004-01-01

    Ti-N graded ceramic layer was formed on titanium by using DC hollow-cathode plasma nitriding technique. The structure of Ti-N layer was analyzed using X-ray diffractometry(XRD) with Cu Kα radiation, and the microhardness( HV0.1) was measured from the surface to inner along the cross section of Ti-N layer. The results indicate that the Ti-N graded layer is composed of ε-Ti2 N, δ-TiN and α-Ti(N) phases. Mechanism discussion shows that hollow-cathode discharge can intensify gas ionization, increase current density and enhance the nitriding potential, which directly increases the thickness of the diffusion coatings compared with traditional nitriding methods.

  1. Broadband microwave characteristics of a novel coaxial gridded hollow cathode argon plasma

    Science.gov (United States)

    Gao, Ruilin; Yuan, Chengxun; Li, Hui; Jia, Jieshu; Zhou, Zhong-Xiang; Wang, Ying; Wang, Xiaoou; Wu, Jian

    2016-08-01

    The interaction between microwave and large area plasma is crucially important for space communication. Gas pressure, input power, and plasma volume are critical to both the microwave electromagnetic wave phase shift and electron density. This paper presents a novel type of large coaxial gridded hollow cathode plasma having a 50 cm diameter and a 40 cm thickness. Microwave characteristics are studied using a microwave measurement system that includes two broadband antennae in the range from 2 GHz to 18 GHz. The phase shift under varying gas pressure and input power is shown. In addition, the electron density ne, which varies from 1.2 × 1016 m-3 to 8.7 × 1016 m-3 under different discharge conditions, is diagnosed by the microwave system. The measured results accord well with those acquired by Langmuir Probe measurement and show that the microwave properties in the large volume hollow cathode discharge significantly depend on the input power and gas pressure.

  2. Optogalvanic effect and laser-induced current oscillations in hollow-cathode lamps

    Science.gov (United States)

    Eldakli, Mohsan S. A.; Ivković, Saša S.; Obradović, Bratislav M.

    2017-03-01

    This paper presents a study of two commercial hollow-cathode lamps (HCLs) with the intention of demonstrating different phenomena in gas discharges. The optogalvanic effect in both HCLs is produced by a laser diode radiated at the wavelength that corresponds to neon transition 1s2–2p2 at 659.89 nm. The voltage–current characteristics of the lamps are explained using a classical theory of hollow-cathode discharge, while the optogalvanic signal is treated as a small perturbation of the discharge current. For certain values of voltage self-sustained current oscillations are observed in one of the HCLs. In the same HCL laser-induced optogalvanic dumped oscillations are detected. A phenomenological model that includes the effective circuit parameters of the discharge is used to explain the oscillation characteristics.

  3. Design of triode extraction system for a dual hollow cathode ion source

    Institute of Scientific and Technical Information of China (English)

    WANG Jing-Hui; ZHU Kun; ZHAO Wei-Jiang; LIU Ke-Xin

    2011-01-01

    A triode extraction system is designed for a dual hollow cathode ion source being developed at the Institute of Heavy Ion Physics,Peking University.Basic parameters of the plasma are selected after examining the operation principle of the ion source,then the triode extraction system is designed and optimized by using software PBGUNS (for Particle Beam GUN Simulations).The physical design of the system is given in this paper.

  4. Laser optogalvanic wavelength calibration with a commercial hollow cathode iron - neon discharge lamp

    Science.gov (United States)

    Zhu, Xinming; Nur, Abdullahi H.; Misra, Prabhakar

    1994-01-01

    351 optogalvanic transitions have been observed in the 337 - 598 nm wavelength region using an iron - neon hollow cathode discharge lamp and a pulsed tunable dye laser. 223 of these have been identified as transitions associated with neon energy levels. These optogalvanic transitions have allowed, in conjunction with interference fringes recorded concomitantly with an etalon, the calibration of the dye laser wavelength with 0.3/cm accuracy.

  5. Low-Temperature Nitriding of Pure Titanium by using Hollow Cathode RF-DC Plasma

    Science.gov (United States)

    Windajanti, J. M.; S, D. J. Djoko H.; Abdurrouf

    2017-05-01

    Pure titanium is widely used for the structures and mechanical parts due to its high strength, low density, and high corrosion resistance. Unfortunately, titanium products suffer from low hardness and low wear resistance. Titanium’s surface can be modified by nitriding process to overcome such problems, which is commonly conducted at high temperature. Here, we report the low-temperature plasma nitriding process, where pure titanium was utilized by high-density RF-DC plasma combined with hollow cathode device. To this end, a pure titanium plate was set inside a hollow tube placed on the cathode plate. After heating to 450 °C, a pre-sputtering process was conducted for 1 hour to remove the oxide layer and activate the surface for nitriding. Plasma nitriding using N2/H2 gasses was performed in 4 and 8 hours with the RF voltage of 250 V, DC bias of -500 to -600 V, and gas pressure of 75 to 30 Pa. To study the nitriding mechanism as well as the role of hollow cathode, the nitrided specimen was characterized by SEM, EDX, XRD, and micro-hardness equipment. The TiN compound was obtained with the diffusion zone of nitrogen until 5 μm thickness for 4 hours nitriding process, and 8 μm for 8 hours process. The average hardness also increased from 300 HV in the untreated specimen to 624 HV and 792 HV for 4 and 8 hours nitriding, respectively.

  6. Plasma-Surface Interactions in Hollow Cathode Discharges for Electric Propulsion

    Science.gov (United States)

    Capece, Angela Maria

    Electric thrusters generate high exhaust velocities and can achieve specific impulses in excess of 1000 s. The low thrust generation and high specific impulse make electric propulsion ideal for interplanetary missions, spacecraft station keeping, and orbit raising maneuvers. Consequently, these devices have been used on a variety of space missions including Deep Space 1, Dawn, and hundreds of commercial spacecraft in Earth orbit. In order to provide the required total impulses, thruster burn time can often exceed 10,000 hours, making thruster lifetime essential. One of the main life-limiting components on ion engines is the hollow cathode, which serves as the electron source for ionization of the xenon propellant gas. Reactive contaminants such as oxygen can modify the cathode surface morphology and degrade the electron emission properties. Hollow cathodes that operate with reactive impurities in the propellant will experience higher operating temperatures, which increase evaporation of the emission materials and reduce cathode life. A deeper understanding of the mechanisms initiating cathode failure will improve thruster operation, increase lifetime, and ultimately reduce cost. A significant amount of work has been done previously to understand the effects of oxygen poisoning on vacuum cathodes; however, the xenon plasma adds complexity, and its role during cathode poisoning is not completely understood. The work presented here represents the first attempt at understanding how oxygen impurities in the xenon discharge plasma alter the emitter surface and affect operation of a 4:1:1 BaO-CaO-Al2O3 hollow cathode. A combination of experimentation and modeling was used to investigate how oxygen impurities in the discharge plasma alter the emitter surface and reduce the electron emission capability. The experimental effort involved operating a 4:1:1 hollow cathode at various conditions with oxygen impurities in the xenon flow. Since direct measurements of the emitter

  7. Measurement of electric fields in a helium micro-hollow cathode discharge by forbidden transitions

    Science.gov (United States)

    Namba, Shinichi; Maki, Daisuke; Takiyama, Ken

    2013-09-01

    Micro-hollow cathode discharges operated at high pressure has been attracting a great deal of interest for various application, such as, excimer light sources, medical/biological fields and microchemical reactor. In the plasmas, the electric (E) field in the sheath region plays an important role to generate and sustain the plasmas. In order to determine the E field in the He microplasma, the emissions of allowed (He I 2P-4D: 492.19 nm) and forbidden (2P-4F: 492.06 nm) lines were observed. The cathode and anode were both made of brass, and ceramic disks were used to electrically insulate the electrodes. The cathode disk had inner hole diameter of 1.0 mm (length: 2.0 mm). The gas with a flow rate was 1.0 L/min. The discharge was operated at voltages of 250 V, currents of 8 mA and gas pressures up to 100 kPa. The plasmas in the cathode opening were observed using a visible spectrometer. The forbidden line associated with the level mixing of upper levels was observed in the cathode surface, indicating that the high E field was formed. As the intensity ratio of forbidden to the allowed lines is a function of the E field which is calculated by perturtabation theory, we derived the field strength of 18 kV/cm at 1.0 mm cathode surface.

  8. Heater Validation for the NEXT-C Hollow Cathodes

    Science.gov (United States)

    Verhey, Timothy R.; Soulas, George C.; Mackey, Jonathan Ar.

    2017-01-01

    Swaged cathode heaters whose design was successfully demonstrated under a prior flight project are to be provided by the NASA Glenn Research Center for the NEXT-C ion thruster being fabricated by Aerojet Rocketdyne. Extensive requalification activities were performed to validate process controls that had to be re-established or revised because systemic changes prevented reuse of the past approaches. A development batch of heaters was successfully fabricated based on the new process controls. Acceptance and cyclic life testing of multiple discharge and neutralizer sized heaters extracted from the development batch was initiated in August, 2016, with the last heater completing testing in April, 2017. Cyclic life testing results substantially exceeded the NEXT-C thruster requirement as well as all past experience for GRC fabricated units. The heaters demonstrated ultimate cyclic life capability of 19050 to 33500 cycles. A qualification batch of heaters is now being fabricated using the finalized process controls. A set of six heaters will be acceptance and cyclic tested to verify conformance to the behavior observed with the development heaters. The heaters for flight use will be then be provided to the contractor. This paper summarizes the fabrication process control activities and the acceptance and life testing of the development heater units.

  9. Design and Manufacturing Processes of Long-Life Hollow Cathode Assembles

    Science.gov (United States)

    Patterson, Michael J. (Inventor); Verhey, Timothy R. (Inventor); Soulas, George C. (Inventor)

    2004-01-01

    A process for testing an impregnated insert of a Hollow Cathode Assembly (HCA) subsequent to every exposure of the HCA to air, and prior to ignition, using a heater and an oil-free assembly having a base pressure of less than 5.0 x 10(exp -6) torr. The process comprises the steps of: installing the HCA in a vacuum; energizing the heater to a particular current level; de-energizing the heater after one-half hour; again energizing the heater to a particular current level; and de-energizing the heater for at least one-half hour.

  10. Emission of excimer radiation from direct current, high-pressure hollow cathode discharges

    Science.gov (United States)

    El-Habachi, Ahmed; Schoenbach, Karl H.

    1998-01-01

    A novel, nonequilibrium, high-pressure, direct current discharge, the microhollow cathode discharge, has been found to be an intense source of xenon and argon excimer radiation peaking at wavelengths of 170 and 130 nm, respectively. In argon discharges with a 100 μm diam hollow cathode, the intensity of the excimer radiation increased by a factor of 5 over the pressure range from 100 to 800 mbar. In xenon discharges, the intensity at 170 nm increased by two orders of magnitude when the pressure was raised from 250 mbar to 1 bar. Sustaining voltages were 200 V for argon and 400 V for xenon discharges, at current levels on the order of mA. The resistive current-voltage characteristics of the microdischarges indicate the possibility to form arrays for direct current, flat panel excimer lamps.

  11. Characterization of the NEXT Hollow Cathode Inserts After Long-Duration Testing

    Science.gov (United States)

    Mackey, J.; Shastry, R.; Soulas, G.

    2017-01-01

    Hollow dispenser cathode inserts are a critical element of electric propulsion systems, and should therefore be well understood during long term operation to ensure reliable system performance. This work destructively investigated cathode inserts from the NEXT long-duration test which demonstrated 51,184 hours of high-voltage operation, 918 kg of propellant throughput, and 35.5 MN-s of total impulse. The characterization methods used include scanning electron microscopy with energy dispersive spectroscopy and X-ray diffraction. Microscopy analysis has been performed on fractured surfaces, emission surfaces, and metallographically polished cross-sections of post-test inserts and unused inserts. Impregnate distribution, etch region thickness, impregnate chemical content, emission surface topography, and emission surface phase identification are the primary factors investigated.

  12. Experimental measurements of the hollow cathode DC glow discharge parameters in Ar and He plasmas

    Science.gov (United States)

    Omrani, M.; Amrollahi, R.; Iraji, D.

    2016-12-01

    In this article, we focus on some of the fundamental parameters of SS316L hollow cathode glow discharge. Four SS316L samples are placed at different locations on the cathode surface and the current passed through them is measured in Ar and He glow discharge plasmas. The wall current densities of Ar and He are in the range of 8-25 µA cm-2 and 8-35 µA cm-2, respectively. Results also show that with decreasing working pressure, the ion flux and current density distribution on the wall surface becomes more uniform. The ion flux of the Ar and He is in the range of 1013 to 1014 ~\\text{ion} \\text{c}{{\\text{m}}-2} . Total energy losses of Ar and He are measured at the pressure range of 1.4-5.5  ×  10-2 torr and 3.2-7.1  ×  10-1, respectively. In both Ar and He, total energy losses decreased with increasing pressure. The secondary electron emission coefficients of Ar and He, which are evaluated for the hallow cathode configuration, are about 0.42 and 0.26, respectively, and are higher in comparison with the plate cathode configuration.

  13. Surface Charging Controlling of the Chinese Space Station with Hollow Cathode Plasma Contactor

    Science.gov (United States)

    Jiang, Kai; Wang, Xianrong; Qin, Xiaogang; Yang, Shengsheng; Yang, Wei; Zhao, Chengxuan; Chen, Yifeng; Shi, Liang; Tang, Daotan; Xie, Kan

    2016-07-01

    A highly charged manned spacecraft threatens the life of an astronaut and extravehicular activity, which can be effectively reduced by controlling the spacecraft surface charging. In this article, the controlling of surface charging on Chinese Space Station (CSS) is investigated, and a method to reduce the negative potential to the CSS is the emission electron with a hollow cathode plasma contactor. The analysis is obtained that the high voltage (HV) solar array of the CSS collecting electron current can reach 4.5 A, which can be eliminated by emitting an adequate electron current on the CSS. The theoretical analysis and experimental results are addressed, when the minimum xenon flow rate of the hollow cathode is 4.0 sccm, the emission electron current can neutralize the collected electron current, which ensures that the potential of the CSS can be controlled in a range of less than 21 V, satisfied with safety voltage. The results can provide a significant reference value to define a flow rate to the potential controlling programme for CSS.

  14. Prediction of the cathodic arc root behaviour in a hollow cathode thermal plasma torch

    Energy Technology Data Exchange (ETDEWEB)

    Freton, Pierre; Gonzalez, Jean-Jacques; Escalier, Gaelle, E-mail: pierre.freton@laplace.univ-tlse.f [Universite de Toulouse, UPS, INPT, LAPLACE (Laboratoire Plasma et Conversion d' Energie), 118 route de Narbonne, F-31062 Toulouse cedex 9 (France)

    2009-10-07

    The upper part of a well type cathode (WTC) plasma torch is modelled for several conditions in an air medium in the presence of an electric arc. The plasma flow created by the electric arc is described and the results compared with the data from the literature. Special attention is paid to the description of arc root attachment and to its movement due to the balance of forces. A fine description of the magnetic field produced by the external solenoid is reported. The model is based on the Fluent software implemented with specific developments to be adapted to the thermal plasma domain. The paper shows the necessity to provide an accurate description of the external magnetic field due to the strong influence of the radial magnetic field component. Overall, we propose an original approach for arc root movement description which contributes to the understanding of the flow behaviour in the WTC torch.

  15. Hollow cathode sustained plasma microjets: Characterization and application to diamond deposition

    Science.gov (United States)

    Sankaran, R. Mohan; Giapis, Konstantinos P.

    2002-09-01

    Extending the principle of operation of hollow cathode microdischarges to a tube geometry has allowed the formation of stable, high-pressure plasma microjets in a variety of gases including Ar, He, and H2. Direct current discharges are ignited between stainless steel capillary tubes (d=178 mum) which are operated as the cathode and a metal grid or plate that serves as the anode. Argon plasma microjets can be sustained in ambient air with plasma voltages as low as 260 V for cathode-anode gaps of 0.5 mm. At larger operating voltage, this gap can be extended up to several millimeters. Using a heated molybdenum substrate as the anode, plasma microjets in CH4/H2 mixtures have been used to deposit diamond crystals and polycrystalline films. Micro-Raman spectroscopy of these films shows mainly sp3 carbon content with slight shifting of the diamond peak due to internal stresses. Optical emission spectroscopy of the discharges used in the diamond growth experiments confirms the presence of atomic hydrogen and CH radicals.

  16. Hollow spherical carbonized polypyrrole/sulfur composite cathode materials for lithium/sulfur cells with long cycle life

    Science.gov (United States)

    Wang, Zhongbao; Zhang, Shichao; Zhang, Lan; Lin, Ruoxu; Wu, Xiaomeng; Fang, Hua; Ren, Yanbiao

    2014-02-01

    Hollow carbonized polypyrrole (PPy) spheres are synthesized using poly(methyl methacrylate-ethyl acrylate-acrylic acid) latex spheres as sacrificial templates. The hollow spherical carbonized PPy/sulfur composite cathode materials are prepared by heating the mixture of hollow carbonized PPy spheres and element sulfur at 155 °C for 24 h. Scanning electron microscope (SEM) and transmission electron microscope (TEM) observations show the hollow structures of the carbonized PPy spheres and the homogeneous distribution of sulfur on the carbonized PPy shells. The hollow spherical carbonized PPy/sulfur composite with 60.9 wt.% S shows high specific capacity and excellent cycling stability when used as the cathode materials in lithium/sulfur cells, whose initial specific discharge capacity reaches as high as 1320 mA h g-1 and the reversible discharge capacity retains 758 mA h g-1 after 400 cycles at 0.2C. The excellent electrochemical properties benefit from the hollow structures and the flexible shells of the carbonized PPy spheres.

  17. Plasma Treatment of Polyethylene Powder Particles in Hollow Cathode Glow Discharge

    Science.gov (United States)

    Wolter, Matthias; Quitzau, Meike; Bornholdt, Sven; Kersten, Holger

    2008-09-01

    Polyethylen (PE) is widely used in the production of foils, insulators, packaging materials, plastic bottles etc. Untreated PE is hydrophobic due to its unpolar surface. Therefore, it is hard to print or glue PE and the surface has to be modified before converting. In the present experiments a hollow cathode glow discharge is used as plasma source which is mounted in a spiral conveyor in order to ensure a combines transport of PE powder particles. With this set-up a homogeneous surface treatment of the powder is possible while passing the glow discharge. The plasma treatment causes a remarkable enhancement of the hydrophilicity of the PE powder which can be verified by contact angle measurements and X-ray photoelectron spectroscopy.

  18. Diamond-Like Carbon Film Deposition Using DC Ion Source with Cold Hollow Cathode

    Directory of Open Access Journals (Sweden)

    E. F. Shevchenko

    2014-01-01

    Full Text Available Carbon diamond-like thin films on a silicon substrate were deposited by direct reactive ion beam method with an ion source based on Penning direct-current discharge system with cold hollow cathode. Deposition was performed under various conditions. The pressure (12–200 mPa and the plasma-forming gas composition consisting of different organic compounds and hydrogen (C3H8, CH4, Si(CH32Cl2, H2, the voltage of accelerating gap in the range 0.5–5 kV, and the substrate temperature in the range 20–850°C were varied. Synthesized films were researched using nanoindentation, Raman, and FTIR spectroscopy methods. Analysis of the experimental results was made in accordance with a developed model describing processes of growth of the amorphous and crystalline carbon materials.

  19. Broadband microwave measurement of electron temperature of a large coaxial gridded hollow cathode helium plasma

    Science.gov (United States)

    Gao, Ruilin; Yuan, Chengxun; Jia, Jieshu; Zhou, Zhong-Xiang; Wang, Ying; Wang, Xiaoou; Li, Hui; Wu, Jian

    2016-10-01

    This paper reports a new kind of large coaxial gridded hollow cathode discharge at low pressure in a helium atmosphere. A method is presented to determine the electron temperature by measuring the broadband microwave properties; typically, the frequency band extends from 2 to 12 GHz. The method involves positioning the discharge device between the two antenna ports to measure the scattering parameter using a network analyzer. For a weak ionized plasma, this method is stable over the entire frequency range. A microwave signal loss of 0.27-37.83 dB was measured within the frequency range. Based on the measured attenuation of the microwaves, the electron temperature was estimated to range from 1.6-4.6 eV under different conditions, which showed good agreements with the results of Langmuir Probe measurements.

  20. Towards a reduced chemistry module of a He-Ar-Cu hollow cathode discharge

    Science.gov (United States)

    Mihailova, D.; van Dijk, J.; Grozeva, M.; Degrez, G.; van der Mullen, J. J. A. M.

    2011-05-01

    This study is aimed at finding a reduced chemistry module for a hollow cathode discharge (HCD) excited in a He-Ar-Cu mixture. This enables us to construct lean and reliable models that can be used as a part of the design tool of HCDs. To this end estimative calculations and numerical simulations are performed under optimal conditions for lasing. An analysis of the species behaviour and reactions is made and as a result the model is simplified by means of reducing the number of species and reactions. The consequences of these reductions are justified by comparing the results of the simplified models with those of a more complete one. This study delivers a model that is chemically lean and thus, much less time consuming. It can be used in optimization studies to find the optimum in the plasma control parameter set of HCDs. The technique developed in this study for HCDs can be applied to glow discharges in general.

  1. C3 as the dominant carbon cluster in high pressure discharges in graphite hollow cathodes

    Science.gov (United States)

    Janjua, Sohail Ahmad; Ahmad, Mashkoor; Khan, Sabih-ud-Din; Khalid, Rahila; Aleem, Abid; Ahmad, Shoaib

    2007-03-01

    Results are presented that have been obtained while operating the graphite hollow cathode duoplasmatron ion source in dual mode under constant discharge current. This dual mode operation enabled us to obtain the mass and emission spectra simultaneously. In mass spectra C3 is the main feature but C4 and C5 are also prominent, whereas in emission spectra C2 is also there and its presence shows that it is in an excited state rather than in an ionic state. These facts provide evidence that C3 is produced due to the regeneration of a soot forming sequence and leave it in ionic state. C3 is a stable molecule and the only dominant species among the carbon clusters that survives in a regenerative sooting environment at high-pressure discharges.

  2. Modelling of low-current self-generated oscillations in a hollow cathode discharge

    CERN Document Server

    Donko, Z

    1999-01-01

    Low-current self-generated oscillations in a rectangular hollow cathode discharge in helium gas were investigated experimentally and by means of a two-dimensional self-consistent hybrid model. The model combines Monte Carlo simulation of the motion of fast electrons and a fluid description of slow electrons and positive ions. The low-frequency (<=20 kHz) oscillations were found to arise as an effect of the interaction of the gas discharge and the external electric circuit - consisting of a stable voltage source, a series resistor and a capacitor formed by the discharge electrodes. Good agreement was found between the experimentally observed and calculated oscillation frequency and current wave forms. Beside these characteristics the modelling also made it possible to calculate the time dependence of numerous other discharge characteristics (e.g. electron multiplication, ion density, potential distribution) and provided detailed insight into the mechanism of oscillations. The advantage of the present model ...

  3. The analysis of high amplitude of potential oscillations near the hollow cathode of ion thruster

    Science.gov (United States)

    Qin, Yu; Xie, Kan; Guo, Ning; Zhang, Zun; Zhang, Cen; Gu, Zengjie; Zhang, Yu; Jiang, Zhaorui; Ouyang, Jiting

    2017-05-01

    The influence of gas flow, current level, and different shapes of anode on the oscillation amplitude and the characteristics of the hollow cathode discharge were investigated. The average plasma potential, temporal measurements of plasma potential, ion density, the electron temperature, as well as waveforms of plasma potential for test conditions were measured. At the same time, the time-resolved images of the plasma plume were also recorded. The results show that the potential oscillations appear at high discharge current or low flow rate. The potential oscillation boundaries, the position of maximum amplitude of plasma potential, and the position where the highest ion density was observed, were found. Both of the positions are affected by different shapes of anode configurations. This high amplitude of potential oscillations is ionization-like instabilities. The xenon ions ionized in space was analyzed for the fast potential rise and spatial dissipation of the space xenon ions was the reason for the gradual potential delay.

  4. Non-Monotonicity of Excited State Populations Observed in a Cu-He Hollow Cathode Discharge

    Institute of Scientific and Technical Information of China (English)

    ZHENG Xu-Tao

    2005-01-01

    @@ An interesting non-monotonic structure in the distribution of excited state populations is observed in a Cu-He hollow cathode discharge, and this is explained by l-changing collisions of the excited states with background gas atoms. At helium pressure of 0.1 Torr and cathode current of 200-300mA, relative populations of He I 1snp 1p (n = 2-16) states are measured with the corresponding VUV radiation intensities, and are plotted against excitation energies. As energy levels increase, populations of high-n (n > 10) states are found to decrease much more quickly than low-n (n < 7) populations. For intermediate states (n = 7-10), the declining tendency is interfered by population transfers from 1sns 1 S states due to l-changing collisions, and an obvious non-monotonic structure is formed at relatively low electric current. Measurements have also been carried out for He Ⅱ np 2 p (n = 2-14) series, in which the l-changing collisions are overwhelmed by Stark quenching of the n2S states and thus population interference does not occur.

  5. Tungsten and Barium Transport in the Internal Plasma of Hollow Cathodes

    Science.gov (United States)

    Polk, James E.; Mikellides, Ioannis G.; Katz, Ira; Capece, Angela M.

    2008-01-01

    The effect of tungsten erosion, transport and redeposition on the operation of dispenser hollow cathodes was investigated in detailed examinations of the discharge cathode inserts from an 8200 hour and a 30,352 hour ion engine wear test. Erosion and subsequent re-deposition of tungsten in the electron emission zone at the downstream end of the insert reduces the porosity of the tungsten matrix, preventing the flow of barium from the interior. This inhibits the interfacial reactions of the barium-calcium-aluminate impregnant with the tungsten in the pores. A numerical model of barium transport in the internal xenon discharge plasma shows that the barium required to reduce the work function in the emission zone can be supplied from upstream through the gas phase. Barium that flows out of the pores of the tungsten insert is rapidly ionized in the xenon discharge and pushedback to the emitter surface by the electric field and drag from the xenon ion flow. Thisbarium ion flux is sufficient to maintain a barium surface coverage at the downstream endgreater than 0.6, even if local barium production at that point is inhibited by tungsten deposits. The model also shows that the neutral barium pressure exceeds the equilibrium vapor pressure of the impregnant decomposition reaction over much of the insert length,so the reactions are suppressed. Only a small region upstream of the zone blocked by tungsten deposits is active and supplies the required barium. These results indicate that hollowcathode failure models based on barium depletion rates in vacuum dispenser cathodes are very conservative.

  6. Low pressure arc discharges with hollow cathodes and their using in plasma generators and charged particle sources

    CERN Document Server

    Vintizenko, L G; Koval, N N; Tolkachev, V S; Lopatin, I V; Shchanin, P M

    2001-01-01

    Paper presents the results of investigation into arc discharges with a hollow cathode generating 10 sup 1 sup 0 -10 sup 1 sup 2 concentration gas-discharge plasma in essential (approx 1 m sup 3) volumes at low (10 sup - sup 2 -1 Pa) pressures and up to 200 A discharge currents. One studied design of discharge systems with heated and cold cathodes their peculiar features, presented the parameters of plasma generators and of charged particle sources based on arc discharges and discussed, as well, the problems of more rational application of those systems in the processes for surface modification of solids

  7. The effect of atomic oxygen for the hollow-cathode in a 20 mN class ion thruster

    OpenAIRE

    長野, 寛; 早川, 幸男; 稲永, 康隆; 尾崎, 敏之; 首藤, 和雄; NAGANO, Hiroshi; Hayakawa, Yukio; Inanaga, Yasutaka; Ozaki, Toshiyuki; Shuto, Kazuo

    2014-01-01

    The super-low earth orbits under the altitude of 250 km are very attractive for earth and atmospheric observation. JAXA plans to launch the first test satellite in super-low altitude called SLATS. Such satellites use ion thrusters to compensate for air drag and keep their altitude. However, there are a lot of atomic oxygen in super-low earth orbit. The dispenser cathodes generally show degradation by oxidation. Therefore, the effect of atomic oxygen for the hollow-cathode was evaluated here. ...

  8. Electrical conduction and dielectric relaxation properties of AlN thin films grown by hollow-cathode plasma-assisted atomic layer deposition

    Science.gov (United States)

    Altuntas, Halit; Bayrak, Turkan; Kizir, Seda; Haider, Ali; Biyikli, Necmi

    2016-07-01

    In this study, aluminum nitride (AlN) thin films were deposited at 200 °C, on p-type silicon substrates utilizing a capacitively coupled hollow-cathode plasma source integrated atomic layer deposition (ALD) reactor. The structural properties of AlN were characterized by grazing incidence x-ray diffraction, by which we confirmed the hexagonal wurtzite single-phase crystalline structure. The films exhibited an optical band edge around ˜5.7 eV. The refractive index and extinction coefficient of the AlN films were measured via a spectroscopic ellipsometer. In addition, to investigate the electrical conduction mechanisms and dielectric properties, Al/AlN/p-Si metal-insulator-semiconductor capacitor structures were fabricated, and current density-voltage and frequency dependent (7 kHz-5 MHz) dielectric constant measurements (within the strong accumulation region) were performed. A peak of dielectric loss was observed at a frequency of 3 MHz and the Cole-Davidson empirical formula was used to determine the relaxation time. It was concluded that the native point defects such as nitrogen vacancies and DX centers formed with the involvement of Si atoms into the AlN layers might have influenced the electrical conduction and dielectric relaxation properties of the plasma-assisted ALD grown AlN films.

  9. 离子发动机空心阴极寿命预测%Lifetime forecast of hollow cathode for ion engine

    Institute of Scientific and Technical Information of China (English)

    郭宁; 江豪成; 顾佐

    2009-01-01

    To verify the lifetime of the hollow cathode for ion enging,a mathematic model was developed according to the characteristics of evaperation loss of the LaBs emitter in hollow cathode to forecast the lifetime of the hollow cathode.The results showed that the lifetime of the hollow cathode developed by the Lanzhou Institute of Physics (LIP) can over 40000hr with the rated thermionic current (5.00A).After a 3500hr lifetime test for the hollow cathode,of which the results were analyzed,the mathematic model for forecasting the lifetime of the hollow cathode was verified basically correct.%为验证空心阴极的寿命,本文根据空心阴极LaB6发射体的损耗特点,采用数学建模方法对空心阴极的寿命进行了预测.预测结果表明兰州物理研究所研制的空心阴极工作在额定状态下(发射电流5.00 A),其寿命可达到40000 h以上.3500 h寿命试验后空心阴极解剖分析结果初步验证了预测模型的正确性.

  10. Process for thermal imaging scanning of a swaged heater for an anode subassembly of a hollow cathode assembly

    Science.gov (United States)

    Patterson, Michael J. (Inventor); Verhey, Timothy R. R. (Inventor); Soulas, George C. (Inventor)

    2004-01-01

    A process for thermal imaging scanning of a swaged heater of an anode subassembly of a hollow cathode assembly, comprising scanning a swaged heater with a thermal imaging radiometer to measure a temperature distribution of the heater; raising the current in a power supply to increase the temperature of the swaged heater; and measuring the swaged heater temperature using the radiometer, whereupon the temperature distribution along the length of the heater shall be less than plus or minus 5 degrees C.

  11. Life Testing of the Hollow Cathode Plasma Contactor for the ProSEDS Mission

    Science.gov (United States)

    Vaughn, Jason A.; Schneider, Todd A.; Finckenor, Miria M.; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    The Propulsive Small Expendable Deployer System (ProSEDS) mission is designed to provide an on-orbit demonstration of the electrodynamic propulsion capabilities of tethers in space. The ProSEDS experiment will be a secondary payload on a Delta 11 unmanned expendable booster. A 5-km conductive tether is attached to the Delta 11 second stage and collects current from the low Earth orbit (LEO) plasma. A hollow cathode plasma contactor emits the collected electrons from the Delta II, completing the electrical circuit with the ambient plasma. The current flowing through the tether generates thrust based on the Lorentz Force Law. The thrust will be generated opposite to the velocity vector, slowing down the spacecraft and causing it to de-orbit in approximately 14 days compared to the normal 6 months. A 10-km non-conductive tether is between the conductive tether and an endmass containing several scientific instruments. The ProSEDS mission lifetime was set at I day because most of the primary objectives can be met in that time. The extended ProSEDS mission will be for as many days as possible, until the Delta 11 second stage burns up or the tether is severed by a micrometeoroid or space debris particle. The Hollow Cathode Plasma Contactor (HCPC) unit has been designed for a 12-day mission. Because of the science requirements to measure the background ambient plasma, the HCPC must operate on a duty cycle. Later in the ProSEDS mission, the HCPC is operated in a manner to allow charging of the secondary battery. Due to the unusual operating requirements by the ProSEDS mission, a development unit of the HCPC was built for thorough testing. This developmental unit was tested for a simulated ProSEDS mission, with measurements of the ability to start and stop during the duty cycle. These tests also provided valuable data for the ProSEDS software requirements. Qualification tests of the HCPC flight hardware are also discussed.

  12. Ion energy distributions for the identification of active species and processes in low pressure hollow cathode discharges

    Energy Technology Data Exchange (ETDEWEB)

    Tanarro, I; Herrero, V J [Instituto de Estructura de la Materia, CSIC, Serrano 123, 28006 Madrid (Spain)], E-mail: itanarro@iem.cfmac.csic.es

    2009-08-15

    Energy distributions of ions generated in hollow cathode low pressures dc discharges of different gases and gas mixtures containing Ar, H{sub 2}, N{sub 2}, O{sub 2} or CH{sub 4} are studied by quadrupole mass spectrometry. The ions are sampled through a small diaphragm in the grounded cathode. The measured distributions are mostly determined by the acceleration of ions in the sheath region between the negative glow and the cathode, displaying in general a narrow peak centred at energies close to the anode potential, but with specific features for the distinct ions. It is shown that information about ion production and sheath collision processes can be derived from the shapes of the different energy distributions. In some cases these distributions are used for the estimation of the relative abundance of ions with the same mass/charge ratio but different compositions in complex gas mixtures.

  13. First results on Ge resonant laser photoionization in hollow cathode lamp

    Energy Technology Data Exchange (ETDEWEB)

    Scarpa, Daniele, E-mail: daniele.scarpa@lnl.infn.it; Andrighetto, Alberto [INFN-LNL, Viale Universita’ 2, Legnaro, 35020 Padova (Italy); Barzakh, Anatoly; Fedorov, Dmitry [Petersburg Nuclear Physics Institute (PNPI), NRC Kurchatov Institute, Gatchina 188300 (Russian Federation); Mariotti, Emilio [CNISM, University of Siena DSFTA, 53100 Siena (Italy); Nicolosi, Piergiorgio [Department Information Engineering, University of Padova, IFN-CNR UOF Padova, 35122 Padova (Italy); Tomaselli, Alessandra [Department of Electrical, Computer, and Biomedical Engineering, University of Pavia, 27100 Pavia (Italy)

    2016-02-15

    In the framework of the research and development activities of the SPES project regarding the optimization of the radioactive beam production, a dedicated experimental study has been recently started in order to investigate the possibility of in-source ionization of germanium using a set of tunable dye lasers. Germanium is one of the beams to be accelerated by the SPES ISOL facility, which is under construction at Legnaro INFN Laboratories. The three-step, two color ionization schemes have been tested using a Ge hollow cathode lamp. The slow and the fast optogalvanic signals were detected and averaged by an oscilloscope as a proof of the laser ionization inside the lamp. As a result, several wavelength scans across the resonances of ionization schemes were collected with the fast optogalvanic signal. Some comparisons of ionization efficiency for different ionization schemes were made. Furthermore, saturation curves of the first excitation transitions have been obtained. This investigation method and the setup built in the laser laboratory of the SPES project can be applied for the photo-ionization scheme studies also for the other possible radioactive elements.

  14. [Determination of soil available nutrient contents using multi-element hollow cathode lamp].

    Science.gov (United States)

    Lu, Shao-kun; He, Dong-xian; Hu, Juan-xiu; Wang, Yu-chang

    2011-07-01

    The soil available nutrient determination based on atomic absorption spectrometry using multi-element hollow cathode lamp (HCL) is improved from the instrument using single-element HCLs via modifying the software and hardware. As a test, available Cu, Fe, Zn, Mg and Ca contents of 30 fluvo-aquic soil samples measured by atomic absorption spectrometry using a multi-element HCL were compared with that measured by using single-element HCLs for 3 replications. A significant linear relationship with the slope close to 1 was found in soil available Cu, Fe, Zn and Ca contents measured by using multi-element HCL and single-element HCLs. The linear correlation coefficient of 0.86 and the slope of 0.85 were found in soil available Mg content. No significant difference was revealed from the above comparison data via analysis of variance. Therefore, the soil available nutrient determination based on atomic absorption spectrometry using multi-element HCL has the same measurement accuracy and is 50%-60% time-saving compared to that by using single-element HCLs.

  15. Preparation and photoluminescence of ZnO with nanostructure by hollow-cathode discharge

    Institute of Scientific and Technical Information of China (English)

    Xin-chao BIAN; Chun-qing HUO; Yue-fei ZHANG; Qiang CHEN

    2008-01-01

    Without the use of a metal catalyst in the pro-cess, ZnO with nanostructures was successfully prepared on Si (100) substrate by simple chemical vapor-deposition method. In our work, Ar was used as the plasma forming gas, O2 was the reactive gas and metal zinc powder (99.99% purity) vaporized by cylinder hollow-cathode dis-charge (HCD) acted as the zinc source. The crystal struc-tures of the as-synthesized ZnO nanostructures were characterized by X-ray diffraction (XRD); the ZnO sam-ple growing on the wall of the crucible showed a 'comb-like' nanostructure, while the other one at the bottom of the crucible showed a 'rod-like' structure, which can be attributed to the difference of the oxygen content. The measurement on the photoluminescence (PL) perform-ance of the ZnO nanostructures was carried out at room temperature. The results indicated that the 'comb-shape' ZnO nanomaterial possessed a remarkably strong ultra-violet emission peak centered at 388 nm, while ZnO nanorods, except better ultraviolet emission, also had relatively strong blue-green emission ranging from 470 to 600 nm due to the existence of oxygen vacancies. The growth mechanism of ZnO with nanostructures is also discussed in this paper.

  16. Three-dimensional interconnected cobalt oxide-carbon hollow spheres arrays as cathode materials for hybrid batteries

    Institute of Scientific and Technical Information of China (English)

    Jiye Zhan; Xinhui Xia n; Yu Zhong; Xiuli Wang; Jiangping Tu n

    2016-01-01

    Hierarchical porous metal oxides arrays is critical for development of advanced energy storage devices. Herein, we report a facile template-assisted electro-deposition plus glucose decomposition method for synthesis of multilayer CoO/C hollow spheres arrays. The CoO/C arrays consist of multilayer inter-connected hollow composite spheres with diameters of ∼350 nm as well as thin walls of ∼20 nm. Hierarchical hollow spheres architecture with 3D porous networks are achieved. As cathode of high-rate hybrid batteries, the multilayer CoO/C hollow sphere arrays exhibit impressive enhanced performances with a high capacity (73.5 mAh g?1 at 2 A g?1), and stable high-rate cycling life (70 mAh g?1 after 12,500 cycles at 2 A g?1). The improved electrochemical performance is owing to the composite hollow-sphere architecture with high contact area between the active materials and electrolyte as well as fast ion/electron transportation path.

  17. Electronic Transition Spectra of Thiophenoxy and Phenoxy Radicals in Hollow Cathode Discharges

    Science.gov (United States)

    Araki, Mitsunori; Wako, Hiromichi; Niwayama, Kei; Tsukiyama, Koichi

    2014-06-01

    Diffuse interstellar bands (DIBs) still remain the longest standing unsolved problem in spectroscopy and astrochemistry, although several hundreds of DIBs have been already detected. It is expected that identifications of DIBs can give us crucial information for extraterrestrial organic molecule. One of the best approaches to identify carrier molecules of DIBs is a measurement of DIB candidate molecule produced in the laboratory to compare their absorption spectra with astronomically observed DIB spectra. Radical in a gas phase is a potential DIB candidate molecule. The electronic transitions of polyaromatic hydrocarbon radicals result in optical absorption. However, because radicals are unstable, their electronic transitions are difficult to observe using a laboratory spectrometer system. To solve this difficulty, we have developed a glow-discharge cell using a hollow cathode in which radicals can be effectively produced as a high-density plasma. The radicals produced were measured by using the cavity ringdown (CRD) spectrometer and the discharge emission spectrometer. The CRD spectrometer, which consists of a tunable pulse laser system, an optical cavity and a discharge device, is an apparatus to observe an high-resolution optical absorption spectrum. The electronic transition of the thiophenoxy radical C6H5OS was observed in the discharge emission of thiophenol C6H5OH. The electronic transition frequency of the thiophenoxy radical was measured. A optical discharge emission was examined by using a HORIBA Jobin Yvon iHR320 monochromator. We detected the phenoxy radical C6H5O in the discharge of phenol C6H5OH. The band observed at 6107 Å in the discharge was assigned to the electronic transition of the phenoxy radical on the basis of the sample gas dependences and the reported low resolution spectrum. The electronic transition frequency of the phenoxy radical was measured. Comparison studies of the thiophenoxy and phenoxy radicals were made with known DIB spectra

  18. A simplified 461-nm laser system using blue laser diodes and a hollow cathode lamp for laser cooling of Sr

    CERN Document Server

    Shimada, Yosuke; Ohtsubo, Nozomi; Aoki, Takatoshi; Torii, Yoshio

    2013-01-01

    We develop a simplified light source at 461 nm for laser cooling of Sr without frequency-doubling crystals but with blue laser diodes. An anti-reflection coated blue laser diode in an external cavity (Littrow) configuration provides an output power of 40 mW at 461 nm. Another blue laser diode is used to amplify the laser power up to 110 mW by injection locking. For frequency stabilization, we demonstrate modulation-free polarization spectroscopy of Sr in a hollow cathode lamp. The simplification of the laser system achieved in this work is of great importance for the construction of transportable optical lattice clocks.

  19. A simplified 461-nm laser system using blue laser diodes and a hollow cathode lamp for laser cooling of Sr.

    Science.gov (United States)

    Shimada, Yosuke; Chida, Yuko; Ohtsubo, Nozomi; Aoki, Takatoshi; Takeuchi, Makoto; Kuga, Takahiro; Torii, Yoshio

    2013-06-01

    We develop a simplified light source at 461 nm for laser cooling of Sr without frequency-doubling crystals but with blue laser diodes. An anti-reflection coated blue laser diode in an external cavity (Littrow) configuration provides an output power of 40 mW at 461 nm. Another blue laser diode is used to amplify the laser power up to 110 mW by injection locking. For frequency stabilization, we demonstrate modulation-free polarization spectroscopy of Sr in a hollow cathode lamp. The simplification of the laser system achieved in this work is of great importance for the construction of transportable optical lattice clocks.

  20. Assessments of Hollow Cathode Wear in the Xenon Ion Propulsion System (XIPs(c)) by Numerical Analyses and Wear Tests

    Science.gov (United States)

    Mikellides, Ioannis G.; Katz, Ira; Goebel, Dan M.; Polk, James E.

    2008-01-01

    The standard approach presently followed by NASA to qualify electric propulsion for the required mission throughput has been based largely on life tests, which can be costly and time consuming. Revised electric propulsion lifequalification approaches are being formulated that combine analytical and/or computational methods with (shorter-duration) wear tests. As a model case, a wear test is being performed at JPL to assess the lifetime of the discharge hollow cathode in the Xenon Ion Propulsion System (XIPS(c)), a 25-cm ion engine developed by L-3 Communications Electron Technologies, Inc. for commercial applications. Wear and plasma data accumulated throughout this life-assessment program are being used to validate the existing 2-D hollow cathode code OrCa2D. We find that the OrCa2D steady-state solution predicts very well the time-averaged plasma data and the keeper voltage after 5500 hrs of operation in high-power mode. When the wave motion that occurs naturally in these devices is accounted for, based on an estimate of the maximum wave amplitude, the molybdenum-keeper erosion profile observed in the XIPS(c) discharge cathode is also reproduced within a factor of two of the observation. When the same model is applied to predict the erosion of a tantalum keeper we find that erosion is reduced by more than two orders of magnitude compared to the molybdenum keeper due the significantly lower sputtering yield of tantalum. A tantalum keeper would therefore allow keeper lifetimes that greatly exceed the present requirements for deep-space robotic missions considered by NASA. Moreover, such large reduction of the erosion renders the largest uncertainties in the models, which are associated with the wave amplitude estimates and the electron transport model, negligible.

  1. Hollow-spherical Co/N-C nanoparticle as an efficient electrocatalyst used in air cathode microbial fuel cell.

    Science.gov (United States)

    Yang, Tingting; Li, Kexun; Pu, Liangtao; Liu, Ziqi; Ge, Baochao; Pan, Yajun; Liu, Ying

    2016-12-15

    The hollow-spherical Co/N-C nanoparticle, which is synthesized via a simple hydrothermal reaction followed by heat treatment, is firstly used as electrocatalyst for oxygen reduction reaction (ORR) in air-cathode microbial fuel cell (MFC). The maximum power density of MFC with 10% Co/N-C air-cathode is as high as 2514±59mWm(-2), which is almost 174% higher than the control. The exchange current density (i0) of cathode equipped with 10% Co/N-C is 238% higher than that of untreated AC. While the total resistance of treated samples decreases from 13.017 to 10.255Ω. The intensity ratio of Raman D to G band (ID/IG) decreases from 0.93 (N-C) to 0.73 (Co/N-C), indicating the catalyst forms graphite structure. Both XRD and XPS testify that Co is bonded to N within graphitic sheets and serves as the active sites in ORR. The four-electron pathway of the Co/N-C also plays a crucial role in electrochemical catalytic activity. As a result, it can be expected that the as-synthesized Co/N-C, with extraordinary electro-catalytic performance towards ORR, will be a promising alternative to the state-of-the-art non-precious metal ORR electro-catalysts for electrochemical energy applications.

  2. A hollow cathode ion source for production of primary ions for the BNL electron beam ion source.

    Science.gov (United States)

    Alessi, James; Beebe, Edward; Carlson, Charles; McCafferty, Daniel; Pikin, Alexander; Ritter, John

    2014-02-01

    A hollow cathode ion source, based on one developed at Saclay, has been modified significantly and used for several years to produce all primary 1+ ions injected into the Relativistic Heavy Ion Collider Electron Beam Ion Source (EBIS) at Brookhaven. Currents of tens to hundreds of microamperes have been produced for 1+ ions of He, C, O, Ne, Si, Ar, Ti, Fe, Cu, Kr, Xe, Ta, Au, and U. The source is very simple, relying on a glow discharge using a noble gas, between anode and a solid cathode containing the desired species. Ions of both the working gas and ionized sputtered cathode material are extracted, and then the desired species is selected using an ExB filter before being transported into the EBIS trap for charge breeding. The source operates pulsed with long life and excellent stability for most species. Reliable ignition of the discharge at low gas pressure is facilitated by the use of capacitive coupling from a simple toy plasma globe. The source design, and operating experience for the various species, is presented.

  3. A hollow cathode ion source for production of primary ions for the BNL electron beam ion source

    Energy Technology Data Exchange (ETDEWEB)

    Alessi, James, E-mail: alessi@bnl.gov; Beebe, Edward; Carlson, Charles; McCafferty, Daniel; Pikin, Alexander; Ritter, John [Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973 (United States)

    2014-02-15

    A hollow cathode ion source, based on one developed at Saclay, has been modified significantly and used for several years to produce all primary 1+ ions injected into the Relativistic Heavy Ion Collider Electron Beam Ion Source (EBIS) at Brookhaven. Currents of tens to hundreds of microamperes have been produced for 1+ ions of He, C, O, Ne, Si, Ar, Ti, Fe, Cu, Kr, Xe, Ta, Au, and U. The source is very simple, relying on a glow discharge using a noble gas, between anode and a solid cathode containing the desired species. Ions of both the working gas and ionized sputtered cathode material are extracted, and then the desired species is selected using an ExB filter before being transported into the EBIS trap for charge breeding. The source operates pulsed with long life and excellent stability for most species. Reliable ignition of the discharge at low gas pressure is facilitated by the use of capacitive coupling from a simple toy plasma globe. The source design, and operating experience for the various species, is presented.

  4. Biochemistry-directed hollow porous microspheres: bottom-up self-assembled polyanion-based cathodes for sodium ion batteries.

    Science.gov (United States)

    Lin, Bo; Li, Qiufeng; Liu, Baodong; Zhang, Sen; Deng, Chao

    2016-04-21

    Biochemistry-directed synthesis of functional nanomaterials has attracted great interest in energy storage, catalysis and other applications. The unique ability of biological systems to guide molecule self-assembling facilitates the construction of distinctive architectures with desirable physicochemical characteristics. Herein, we report a biochemistry-directed "bottom-up" approach to construct hollow porous microspheres of polyanion materials for sodium ion batteries. Two kinds of polyanions, i.e. Na3V2(PO4)3 and Na3.12Fe2.44(P2O7)2, are employed as cases in this study. The microalgae cell realizes the formation of a spherical "bottom" bio-precursor. Its tiny core is subjected to destruction and its tough shell tends to carbonize upon calcination, resulting in the hollow porous microspheres for the "top" product. The nanoscale crystals of the polyanion materials are tightly enwrapped by the highly-conductive framework in the hollow microsphere, resulting in the hierarchical nano-microstructure. The whole formation process is disclosed as a "bottom-up" mechanism. Moreover, the biochemistry-directed self-assembly process is confirmed to play a crucial role in the construction of the final architecture. Taking advantage of the well-defined hollow-microsphere architecture, the abundant interior voids and the highly-conductive framework, polyanion materials show favourable sodium-intercalation kinetics. Both materials are capable of high-rate long-term cycling. After five hundred cycles at 20 C and 10 C, Na3V2(PO4)3 and Na(3.12)Fe2.44(P2O7)2 retain 96.2% and 93.1% of the initial capacity, respectively. Therefore, the biochemistry-directed technique provides a low-cost, highly-efficient and widely applicable strategy to produce high-performance polyanion-based cathodes for sodium ion batteries.

  5. Scalable synthesis of Na3V2(PO4)(3)/C porous hollow spheres as a cathode for Na-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Mao, JF; Luo, C; Gao, T; Fan, XL; Wang, CS

    2015-01-01

    Na3V2(PO4)(3) (NVP) has been considered as a very promising cathode material for sodium-ion batteries (SIBs) due to its typical NASICON structure, which provides an open and three dimensional (3D) framework for Na+ migration. However, the low electronic conductivity of NVP limits its rate capability and cycling ability. In this study, carbon coated hollow structured NVP/C composites are synthesized via a template-free and scalable ultrasonic spray pyrolysis process, where the carbon coated NVP particles are uniformly decorated on the inner and outer surfaces of the porous hollow carbon spheres. When evaluated as a cathode material for SIBs, the unique NVP/C porous hollow sphere cathode delivers an initial discharge capacity of 99.2 mA h g(-1) and retains 89.3 mA h g(-1) after 300 charge/discharge cycles with a very low degradation rate of 0.035% per cycle. For comparison, the NVP/C composite, prepared by the traditional sol-gel method, delivers a lower initial discharge capacity of 97.4 mA h g(-1) and decreases significantly to 71.5 mA h g(-1) after 300 cycles. The superior electrochemical performance of NVP/C porous hollow spheres is attributed to their unique porous, hollow and spherical structures, as well as the carbon-coating layer, which provides a high contact area between electrode/electrolyte, high electronic conductivity, and high mechanical strength.

  6. Hollow-cathode electrode for high-power, high-pressure discharge devices

    Science.gov (United States)

    Chang, J.J.; Alger, T.W.

    1995-08-22

    Several different cold cathode configurations are disclosed for a gas discharge device each having a plurality of grooves of selected spacing, depth and width to improve the emission of electrons in a gas discharge device. Each of the cold cathode configurations can be machined from a single piece of a selected material. Several of the configurations can be assembled with individual elements which is easily seen from the various figures. 8 figs.

  7. C{sub 3} as the dominant carbon cluster in high pressure discharges in graphite hollow cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Janjua, Sohail Ahmad; Ahmad, Mashkoor; Khan, Sabih-ud-Din; Khalid, Rahila; Aleem, Abid; Ahmad, Shoaib [Carbon Based Nanotechnology and Accelerator Laboratory, PINSTECH, PO Box Nilore, Islamabad (Pakistan)

    2007-03-07

    Results are presented that have been obtained while operating the graphite hollow cathode duoplasmatron ion source in dual mode under constant discharge current. This dual mode operation enabled us to obtain the mass and emission spectra simultaneously. In mass spectra C{sub 3} is the main feature but C{sub 4} and C{sub 5} are also prominent, whereas in emission spectra C{sub 2} is also there and its presence shows that it is in an excited state rather than in an ionic state. These facts provide evidence that C{sub 3} is produced due to the regeneration of a soot forming sequence and leave it in ionic state. C{sub 3} is a stable molecule and the only dominant species among the carbon clusters that survives in a regenerative sooting environment at high-pressure discharges.

  8. A N2 Plasma Light Source Generated in Hollow Cathode Discharge and Its Application in Lithographic Plate Making

    Institute of Scientific and Technical Information of China (English)

    LI Chao-yang; CHEN Qiang; ZHANG Guang-qiu

    2007-01-01

    Computer to conventional plate (CTCP) technology is getting more and more attention in printing industries.In this paper we report a nitrogen plasma light source generated in hollow cathode discharge (HCD),which is used for pre-sensitivity (PS) plate exposure.The N2 molecule emits abundant spectrum ranging from 350 nm to 460 nm.With the voltage of 580 V,current of 1.8 A and pressure of 70 Pa in the discharge an optical power density of 0.46 mW/cm2 is obtained.The optical power density could be further increased with optimizing the lens system.The phototonus efficiency of this source is discussed in detail based upon the chemical principle and the FTIR analysis on the coating material.

  9. Biochemistry-directed hollow porous microspheres: bottom-up self-assembled polyanion-based cathodes for sodium ion batteries

    Science.gov (United States)

    Lin, Bo; Li, Qiufeng; Liu, Baodong; Zhang, Sen; Deng, Chao

    2016-04-01

    Biochemistry-directed synthesis of functional nanomaterials has attracted great interest in energy storage, catalysis and other applications. The unique ability of biological systems to guide molecule self-assembling facilitates the construction of distinctive architectures with desirable physicochemical characteristics. Herein, we report a biochemistry-directed ``bottom-up'' approach to construct hollow porous microspheres of polyanion materials for sodium ion batteries. Two kinds of polyanions, i.e. Na3V2(PO4)3 and Na3.12Fe2.44(P2O7)2, are employed as cases in this study. The microalgae cell realizes the formation of a spherical ``bottom'' bio-precursor. Its tiny core is subjected to destruction and its tough shell tends to carbonize upon calcination, resulting in the hollow porous microspheres for the ``top'' product. The nanoscale crystals of the polyanion materials are tightly enwrapped by the highly-conductive framework in the hollow microsphere, resulting in the hierarchical nano-microstructure. The whole formation process is disclosed as a ``bottom-up'' mechanism. Moreover, the biochemistry-directed self-assembly process is confirmed to play a crucial role in the construction of the final architecture. Taking advantage of the well-defined hollow-microsphere architecture, the abundant interior voids and the highly-conductive framework, polyanion materials show favourable sodium-intercalation kinetics. Both materials are capable of high-rate long-term cycling. After five hundred cycles at 20 C and 10 C, Na3V2(PO4)3 and Na3.12Fe2.44(P2O7)2 retain 96.2% and 93.1% of the initial capacity, respectively. Therefore, the biochemistry-directed technique provides a low-cost, highly-efficient and widely applicable strategy to produce high-performance polyanion-based cathodes for sodium ion batteries.Biochemistry-directed synthesis of functional nanomaterials has attracted great interest in energy storage, catalysis and other applications. The unique ability of

  10. Sulfur/graphitic hollow carbon sphere nano-composite as a cathode material for high-power lithium-sulfur battery.

    Science.gov (United States)

    Shin, Eon Sung; Kim, Min-Seop; Cho, Won Il; Oh, Si Hyoung

    2013-08-03

    The intrinsic low conductivity of sulfur which leads to a low performance at a high current rate is one of the most limiting factors for the commercialization of lithium-sulfur battery. Here, we present an easy and convenient method to synthesize a mono-dispersed hollow carbon sphere with a thin graphitic wall which can be utilized as a support with a good electrical conductivity for the preparation of sulfur/carbon nano-composite cathode. The hollow carbon sphere was prepared from the pyrolysis of the homogenous mixture of the mono-dispersed spherical silica and Fe-phthalocyanine powder in elevated temperature. The composite cathode was manufactured by infiltrating sulfur melt into the inner side of the graphitic wall. The electrochemical cycling shows a capacity of 425 mAh g-1 at 3 C current rate which is more than five times larger than that for the sulfur/carbon black nano-composite prepared by simple ball milling.

  11. Continuous calibration of a vacuum ultraviolet system from 65 to 125 nm by a cascade arc and comparison with the calibrated line radiation of a hollow cathode.

    Science.gov (United States)

    Frost, R M; Awakowicz, P

    1997-03-20

    A high-power stationary helium cascade arc has been developed as a standard source for continuum radiation in the VUV spectral range from 65 to 125 nm. The calibration of the VUV system response was based on the calculated and measured continuum radiation of a 2-mmphi pure He arc. Diagnostics of the arc plasma in partial thermal equilibrium yielded the electron density and the temperature that were inserted in the calculations of the continuous radiation. The results were compared with the helium, argon, and krypton radiation lines of a high-current hollow cathode lamp. This lamp was built according to the construction drawings of a hollow cathode, which was calibrated by means of the electron synchrotron radiation at the Physikalisch Technische Bundesanstalt Berlin.

  12. Synthesis and Electrochemical Property of LiMn2O4 Porous Hollow Nanofiber as Cathode for Lithium-Ion Batteries

    Science.gov (United States)

    Duan, Lianfeng; Zhang, Xueyu; Yue, Kaiqiang; Wu, Yue; Zhuang, Jian; Lü, Wei

    2017-02-01

    The LiMn2O4 hollow nanofibers with a porous structure have been synthesized by modified electrospinning techniques and subsequent thermal treatment. The precursors were electrospun directly onto the fluorine-doped tin oxide (FTO) glass. The heating rate and FTO as substrate play key roles on preparing porous hollow nanofiber. As cathode materials for lithium-ion batteries (LIBs), LiMn2O4 hollow nanofibers showed the high specific capacity of 125.9 mAh/g at 0.1 C and a stable cycling performance, 105.2 mAh/g after 400 cycles. This unique structure could relieve the structure expansion effectively and provide more reaction sites as well as shorten the diffusion path for Li+ for improving electrochemical performance for LIBs.

  13. Synthesis and Electrochemical Property of LiMn2O4 Porous Hollow Nanofiber as Cathode for Lithium-Ion Batteries.

    Science.gov (United States)

    Duan, Lianfeng; Zhang, Xueyu; Yue, Kaiqiang; Wu, Yue; Zhuang, Jian; Lü, Wei

    2017-12-01

    The LiMn2O4 hollow nanofibers with a porous structure have been synthesized by modified electrospinning techniques and subsequent thermal treatment. The precursors were electrospun directly onto the fluorine-doped tin oxide (FTO) glass. The heating rate and FTO as substrate play key roles on preparing porous hollow nanofiber. As cathode materials for lithium-ion batteries (LIBs), LiMn2O4 hollow nanofibers showed the high specific capacity of 125.9 mAh/g at 0.1 C and a stable cycling performance, 105.2 mAh/g after 400 cycles. This unique structure could relieve the structure expansion effectively and provide more reaction sites as well as shorten the diffusion path for Li(+) for improving electrochemical performance for LIBs.

  14. A comparison between micro hollow cathode discharges and atmospheric pressure plasma jets in Ar/O2 gas mixtures

    Science.gov (United States)

    Lazzaroni, C.; Chabert, P.

    2016-12-01

    Using global models, micro hollow cathode discharges (MHCDs) are compared to radiofrequency atmospheric pressure plasma jets (APPJs) in terms of reactive oxygen species (ROS) production. Ar/O2 gas mixtures are investigated, typically with a small percentage of oxygen in argon. The same chemical reaction set, involving 17 species and 128 chemical reactions in the gas phase, is used for both devices, operated in the typical geometries previously published; the APPJ is driven by a radiofrequency voltage across a 1 mm gap, at atmospheric pressure, while the MHCD is driven by a DC voltage source, at 100 Torr and in a 400 μm hole. The MHCD may be operated either in the self-pulsing or in the normal (stationary) regime, depending on the driving voltage. The comparison shows that in both regimes, the MHCD produces larger amounts of \\text{O}2\\ast , while the APPJ produces predominantly reactive oxygen ground state species, \\text{O} and {{\\text{O}}3} . These large differences in ROS composition are mostly due to the higher plasma density produced in the MHCD. The difference in operating pressure is a second order effect.

  15. Global model of a micro hollow cathode discharge in Ar/N2 used for nitride synthesis

    Science.gov (United States)

    Lazzaroni, Claudia; Kasri, Salima

    2016-09-01

    A global model of a Micro Hollow Cathode Discharge (MHCD) in argon (Ar) with an admixture of nitrogen (N2) , working at several hundreds of Torr, is presented. MHCDs allow high electron densities and therefore high dissociation degree of nitrogen to be reached which is particularly suited for nitride deposition given the high bond energy of molecular nitrogen. The global model is based on the numerical resolution of the particle balance equations and the power balance equation. The model is run until the steady state is reached and we obtain the plasma parameters that are the species densities and the electron temperature. A particular focus is given to the atomic nitrogen density, a key parameter for the deposition and growth of nitride films. A parametric study is done varying the gas pressure and the N2 fraction in Ar. Despite being fed by a DC power supply, MHCDs operate in steady state and in self-pulsed mode, both captured by the model. The effect of the MHCD mode (steady or self-pulsed) on the plasma parameters is also presented.

  16. The effects of a realistic hollow cathode plasma contactor model on the simulation of bare electrodynamic tether systems

    Science.gov (United States)

    Blash, Derek M.

    The region known as Low-Earth Orbit (LEO) has become populated with artificial satellites and space debris since humanities initial venture into the region. This has turned LEO into a hazardous region. Since LEO is very valuable to many different countries, there has been a push to prevent further buildup and talk of even deorbiting spent satellites and debris already in LEO. One of the more attractive concepts available for deorbiting debris and spent satellites is a Bare Electrodynamic Tether (BET). A BET is a propellantless propulsion technique in which two objects are joined together by a thin conducting material. When these tethered objects are placed in LEO, the tether sweeps across the magnetic field lines of the Earth and induces an electromotive force (emf) along the tether. Current from the space plasma is collected on the bare tether under the action of the induced emf, and this current interacts with the Earth's magnetic field to create a drag force that can be used to deorbit spent satellites and space debris. A Plasma Contactor (PC) is used to close the electrical circuit between the BET and the ionospheric plasma. The PC requires a voltage and, depending on the device, a gas flow to emit electrons through a plasma bridge to the ionospheric plasma. The PC also can require a plasma discharge electrode and a heater to condition the PC for operation. These parameters as well as the PC performance are required to build an accurate simulation of a PC and, therefore, a BET deorbiting system. This thesis focuses on the development, validation, and implementation of a simulation tool to model the effects of a realistic hollow cathode PC system model on a BET deorbit system.

  17. [The comparative assessment of the wound-healing effects of the treatment with the use of Bioptron, Minitag, Orion+ apparatuses and hollow cathode lamps (experimental study)].

    Science.gov (United States)

    Sharipova, M M; Voronova, S N; Rukin, E M; Vasilenko, A M

    2011-01-01

    The objective of the present experimental study was the comparative assessment of the wound-healing effects of radiation emitted from Bioptron, Minitag, Orion+ apparatuses and hollow cathode lamps (HCL). The emitters of any type were shown to be equally efficacious in that they accelerated wound epithelization by 30% on the average compared with control. Based on the difference between spectral and power characteristics of different sources of radiation and dynamics of their wound-healing efficacy (including that of two types of HCL), the authors arrived at the conclusion that the further development of the proposed approach to wound healing is a promising line of research in the field of spectral phototherapy.

  18. Efficient small molecular organic light emitting diode with graphene cathode covered by a Sm layer with nano-hollows and n-doped by Bphen:Cs2CO3 in the hollows.

    Science.gov (United States)

    Yao, Li; Li, Lei; Qin, Laixiang; Ma, Yaoguang; Wang, Wei; Meng, Hu; Jin, Weifeng; Wang, Yilun; Xu, Wanjin; Ran, Guangzhao; You, Liping; Qin, Guogang

    2017-03-10

    Graphene is a favorable candidate for electrodes of organic light emitting diodes (OLEDs). Graphene has quite a high work function of ∼4.5 eV, and has been extensively studied when used as anodes of OLEDs. In order to use graphene as a cathode, the electron injection barrier between the graphene cathode and the electron transport layer has to be low enough. Using 4,7-diphenyl-1,10-phenanthroline (Bphen):Cs2CO3 to n-dope graphene is a very good method, but the electron injection barrier between the n-doped graphene and Bphen:Cs2CO3 is still too high to be ∼1.0 eV. In this work, in order to further reduce the electron injection barrier, a novel method is suggested. On the graphene cathode, a Sm layer with a lot of nano-hollows, and subsequently a layer of Bphen:Cs2CO3, are deposited. The Bphen:Cs2CO3 can n-dope graphene in the nano-hollows, and the Fermi level of the graphene rises. The nano Sm layer is very easily oxidized. Oxygen adsorbed on the surface of graphene may react with Sm to form an O(-)-Sm(+) dipole layer. On the areas of the Sm oxide dipole layer without nano-hollows, the electron injection barrier can be further lowered by the dipole layer. Electrons tend to mainly inject through the lower electron barrier where the dipole layer exists. Based on this idea, an effective inverted small molecular OLED with the structure of graphene/1 nm Sm layer with a lot of nano-hollows/Bphen:Cs2CO3/Alq3:C545T/NPB/MoO3/Al is presented. The maximum current efficiency and maximum power efficiency of the OLED with a 1 nm Sm layer are about two and three times of those of the reference OLED without any Sm layer, respectively.

  19. Efficient small molecular organic light emitting diode with graphene cathode covered by a Sm layer with nano-hollows and n-doped by Bphen:Cs2CO3 in the hollows

    Science.gov (United States)

    Yao, Li; Li, Lei; Qin, Laixiang; Ma, Yaoguang; Wang, Wei; Meng, Hu; Jin, Weifeng; Wang, Yilun; Xu, Wanjin; Ran, Guangzhao; You, Liping; Qin, Guogang

    2017-03-01

    Graphene is a favorable candidate for electrodes of organic light emitting diodes (OLEDs). Graphene has quite a high work function of ∼4.5 eV, and has been extensively studied when used as anodes of OLEDs. In order to use graphene as a cathode, the electron injection barrier between the graphene cathode and the electron transport layer has to be low enough. Using 4,7-diphenyl-1,10-phenanthroline (Bphen):Cs2CO3 to n-dope graphene is a very good method, but the electron injection barrier between the n-doped graphene and Bphen:Cs2CO3 is still too high to be ∼1.0 eV. In this work, in order to further reduce the electron injection barrier, a novel method is suggested. On the graphene cathode, a Sm layer with a lot of nano-hollows, and subsequently a layer of Bphen:Cs2CO3, are deposited. The Bphen:Cs2CO3 can n-dope graphene in the nano-hollows, and the Fermi level of the graphene rises. The nano Sm layer is very easily oxidized. Oxygen adsorbed on the surface of graphene may react with Sm to form an O‑–Sm+ dipole layer. On the areas of the Sm oxide dipole layer without nano-hollows, the electron injection barrier can be further lowered by the dipole layer. Electrons tend to mainly inject through the lower electron barrier where the dipole layer exists. Based on this idea, an effective inverted small molecular OLED with the structure of graphene/1 nm Sm layer with a lot of nano-hollows/Bphen:Cs2CO3/Alq3:C545T/NPB/MoO3/Al is presented. The maximum current efficiency and maximum power efficiency of the OLED with a 1 nm Sm layer are about two and three times of those of the reference OLED without any Sm layer, respectively.

  20. Performance of the FOS and GHRS Pt/(Cr)-Ne Hollow-cathode Lamps after their Return from Space and Comparison with Archival Data

    Science.gov (United States)

    Kerber, Florian; Lindler, Don; Bristow, Paul; Lembke, Dominik; Nave, Gillian; Reader, Joseph; Sansonetti, Craig J.; Heap, Sara R.; Rosa, Michael R.; Wood, H. John

    2006-01-01

    The Space Telescope European Coordinating Facility (ST-ECF) and National Institute of Standards and Technology (NIST) are collaborating to study hollow cathode calibration lamps as used onboard the Hubble Space Telescope (HST). As part of the STIS Calibration Enhancement (STIS-CE) Project we are trying to improve our understanding of the performance of hollow cathode lamps and the physical processes involved in their long term operation. The original flight lamps from the Faint Object Spectrograph (FOS) and the Goddard High Resolution Spectrograph (GHRS) are the only lamps that have ever been returned to Earth after extended operation in space. We have taken spectra of all four lamps using NIST s 10.7-m normal-incidence spectrograph and Fourier transform spectrometer (FTS) optimized for use in the ultraviolet (UV). These spectra, together with spectra archived from six years of on-orbit operations and pre-launch spectra, provide a unique data set - covering a period of about 20 years - for studying aging effects in these lamps. Our findings represent important lessons for the choice and design of calibration sources and their operation in future UV and optical spectrographs in space.

  1. Spectroscopic determination of highly nonequilibrium velocity spectra of hydrogen atoms in H{sub 2} + Ne, Ar, Kr hollow-cathode discharges

    Energy Technology Data Exchange (ETDEWEB)

    Lavrov, B.P.; Mel`nikov, A.S. [St. Petersburg State Univ., Peterhof (Russian Federation)

    1995-12-01

    Energy distribution functions of excited (into the state with principal quantum number n = 3) and normal hydrogen atoms in plasma of a hollow-cathode discharge in an H{sub 2} + Ar mixture are determined in the range of 0-120 eV from Doppler profiles of spectral lines of the Balmer series. The distribution functions are found to be substantially nonequilibrium. The analysis of spectral profiles of H{sub {alpha}}lines in plasma of a high-volt-age hollow-cathode discharge in pure hydrogen shows that a part of the high-velocity excited hydrogen atoms is formed through charge exchange of negative H{sup {minus}} ions. Estimates show that the concentration of high-velocity H{sup {minus}} ions does not exceed several percent of the concentration of positive ions and increases with hydrogen pressure. Estimates of relative cross sections for excitation of hydrogen atoms to levels with n = 3, 4, and 5 in collisions of H atorns with H{sub 2} molecules are made. 18 refs., 3 figs., 1 tab.

  2. Solvothermal synthesis of monodisperse LiFePO4 micro hollow spheres as high performance cathode material for lithium ion batteries.

    Science.gov (United States)

    Yang, Shiliu; Hu, Mingjun; Xi, Liujiang; Ma, Ruguang; Dong, Yucheng; Chung, C Y

    2013-09-25

    A microspherical, hollow LiFePO4 (LFP) cathode material with polycrystal structure was simply synthesized by a solvothermal method using spherical Li3PO4 as the self-sacrificed template and FeCl2·4H2O as the Fe(2+) source. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) show that the LFP micro hollow spheres have a quite uniform size of ~1 μm consisting of aggregated nanoparticles. The influences of solvent and Fe(2+) source on the phase and morphology of the final product were chiefly investigated, and a direct ion exchange reaction between spherical Li3PO4 templates and Fe(2+) ions was firstly proposed on the basis of the X-ray powder diffraction (XRD) transformation of the products. The LFP nanoparticles in the micro hollow spheres could finely coat a uniform carbon layer ~3.5 nm by a glucose solution impregnating-drying-sintering process. The electrochemical measurements show that the carbon coated LFP materials could exhibit high charge-discharge capacities of 158, 144, 125, 101, and even 72 mAh g(-1) at 0.1, 1, 5, 20, and 50 C, respectively. It could also maintain 80% of the initial discharge capacity after cycling for 2000 times at 20 C.

  3. Substrate temperature influence on the properties of GaN thin films grown by hollow-cathode plasma-assisted atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Alevli, Mustafa, E-mail: mustafaalevli@marmara.edu.tr; Gungor, Neşe [Department of Physics, Faculty of Arts and Sciences, Marmara University, Goztepe, 34722 Istanbul (Turkey); Haider, Ali; Kizir, Seda; Leghari, Shahid A.; Biyikli, Necmi, E-mail: biyikli@unam.bilkent.edu.tr [Institute of Materials Science and Nanotechnology, Bilkent University, Bilkent, 06800 Ankara, Turkey and National Nanotechnology Research Center (UNAM), Bilkent University, Bilkent, 06800 Ankara (Turkey)

    2016-01-15

    Gallium nitride films were grown by hollow cathode plasma-assisted atomic layer deposition using triethylgallium and N{sub 2}/H{sub 2} plasma. An optimized recipe for GaN film was developed, and the effect of substrate temperature was studied in both self-limiting growth window and thermal decomposition-limited growth region. With increased substrate temperature, film crystallinity improved, and the optical band edge decreased from 3.60 to 3.52 eV. The refractive index and reflectivity in Reststrahlen band increased with the substrate temperature. Compressive strain is observed for both samples, and the surface roughness is observed to increase with the substrate temperature. Despite these temperature dependent material properties, the chemical composition, E{sub 1}(TO), phonon position, and crystalline phases present in the GaN film were relatively independent from growth temperature.

  4. Generation of uniform low-temperature plasma in a pulsed non-self-sustained glow discharge with a large-area hollow cathode

    Science.gov (United States)

    Akhmadeev, Yu. H.; Denisov, V. V.; Koval, N. N.; Kovalsky, S. S.; Lopatin, I. V.; Schanin, P. M.; Yakovlev, V. V.

    2017-01-01

    Generation of plasma in a pulsed non-self-sustained glow discharge with a hollow cathode with an area of ≥2 m2 at gas pressures of 0.4-1 Pa was studied experimentally. At an auxiliary arc-discharge current of 100 A and a main discharge voltage of 240 V, a pulse-periodic glow discharge with a current amplitude of 370 A, pulse duration of 340 μs, and repetition rate of 1 kHz was obtained. The possibility of creating a uniform gas-discharge plasma with a density of up to 1012 cm-3 and an electron temperature of 1 eV in a volume of >0.2 m3 was demonstrated. Such plasma can be efficiently used to treat material surfaces and generate pulsed ion beams with a current density of up to 15 mA/cm2.

  5. Graphene-coated hollow fiber membrane as the cathode in anaerobic electrochemical membrane bioreactors – Effect of configuration and applied voltage on performance and membrane fouling

    KAUST Repository

    Werner, Craig M.

    2015-12-22

    Electrically conductive, graphene-coated hollow-fiber porous membranes were used as cathodes in anaerobic electrochemical membrane bioreactors (AnEMBRs) operated at different applied voltages (0.7 V and 0.9 V) using a new rectangular reactor configuration, compared to a previous tubular design (0.7 V). The onset of biofouling was delayed and minimized in rectangular reactors operated at 0.9 V, compared to those at 0.7 V due to higher rates of hydrogen production. Maximum transmembrane pressures for the rectangular reactor were only 0.10 bar (0.7 V) or 0.05 bar (0.9 V) after 56 days of operation, compared to 0.46 bar (0.7 V) for the tubular reactor after 52 days. The thickness of the membrane biofouling layer was approximately 0.4 µm for rectangular reactors and 4 µm for the tubular reactor. Higher permeate quality (TSS = 0.05 mg/L) was achieved in the rectangular AnEMBR than the tubular AnEMBR (TSS = 17 mg/L), likely due to higher current densities that minimized the accumulation of cells in suspension. These results show that the new rectangular reactor design, which had increased rates of hydrogen production, successfully delayed the onset of cathode biofouling and improved reactor performance.

  6. High-energy lithium-ion hybrid supercapacitors composed of hierarchical urchin-like WO3/C anodes and MOF-derived polyhedral hollow carbon cathodes.

    Science.gov (United States)

    Xu, Juan; Li, Yuanyuan; Wang, Lei; Cai, Qifa; Li, Qingwei; Gao, Biao; Zhang, Xuming; Huo, Kaifu; Chu, Paul K

    2016-09-22

    A lithium-ion hybrid supercapacitor (Li-HSC) comprising a Li-ion battery type anode and an electrochemical double layer capacitance (EDLC) type cathode has attracted much interest because it accomplishes a large energy density without compromising the power density. In this work, hierarchical carbon coated WO3 (WO3/C) with a unique mesoporous structure and metal-organic framework derived nitrogen-doped carbon hollow polyhedra (MOF-NC) are prepared and adopted as the anode and the cathode for Li-HSCs. The hierarchical mesoporous WO3/C microspheres assembled by radially oriented WO3/C nanorods along the (001) plane enable effective Li(+) insertion, thus exhibit high capacity, excellent rate performance and a long cycling life due to their high Li(+) conductivity, electronic conductivity and structural robustness. The WO3/C structure shows a reversible specific capacity of 508 mA h g(-1) at a 0.1 C rate (1 C = 696 mA h g(-1)) after 160 discharging-charging cycles with excellent rate capability. The MOF-NC achieved the specific capacity of 269.9 F g(-1) at a current density of 0.2 A g(-1). At a high current density of 6 A g(-1), 92.4% of the initial capacity could be retained after 2000 discharging-charging cycles, suggesting excellent cycle stability. The Li-HSC comprising a WO3/C anode and a MOF-NC cathode boasts a large energy density of 159.97 W h kg(-1) at a power density of 173.6 W kg(-1) and 88.3% of the capacity is retained at a current density of 5 A g(-1) after 3000 charging-discharging cycles, which are better than those previously reported for Li-HSCs. The high energy and power densities of the Li-HSCs of WO3/C//MOF-NC render large potential in energy storage.

  7. Interfacial Reaction Dependent Performance of Hollow Carbon NanoSphere – Sulfur composite as a cathode for Li-S battery

    Directory of Open Access Journals (Sweden)

    Jianming eZheng

    2015-05-01

    Full Text Available Lithium-sulfur (Li-S battery is a promising energy storage system due to its high energy density, cost effectiveness and environmental friendliness of sulfur. However, there are still a number of technical challenges, such as low Coulombic efficiency and poor long-term cycle life, impeding the commercialization of Li-S battery. The electrochemical performance of Li-S battery is closely related with the interfacial reactions occurring between hosting substrate and active sulfur species which are poorly conducting at fully oxidized and reduced states. Here, we correlate the relationship between the performance and interfacial reactions in the Li-S battery system, using a hollow carbon nanosphere (HCNS with highly graphitic character as hosting substrate for sulfur. With an appropriate amount of sulfur loading, HCNS/S composite exhibits excellent electrochemical performance because of the fast interfacial reactions between HCNS and the polysulfides. However, further increase of sulfur loading leads to increased formation of highly resistive insoluble reaction products (Li2S2/Li2S which limits the reversibility of the interfacial reactions and results in poor electrochemical performances. These findings demonstrate the importance of the interfacial reaction reversibility in the whole electrode system on achieving high capacity and long cycle life of sulfur cathode for Li-S batteries.

  8. [High current microsecond pulsed hollow cathode lamp excited ionic fluorescence spectrometry of alkaline earth elements in inductively coupled plasma with a Fassel-torch].

    Science.gov (United States)

    Zhang, Shao-Yu; Gong, Zhen-Bin; Huang, Ben-Li

    2006-02-01

    High current microsecond pulsed hollow cathode lamp (HCMP-HCL) excited ionic fluorescence spectrometry (IFS) of alkaline earth elements in inductively coupled plasma (ICP) with a Fassel-torch has been investigated. In wide condition ranges only IFS was observed, whilst atomic fluorescence spectrometry (AFS) was not detectable. More intense ionic fluorescence signal was observed at lower observation heights and at lower incident RF powers. Without introduction of any reduction organic gases into the ICP, the limit of detection (LOD, 3sigma) of Ba was improved by 50-fold over that of a conventional pulsed (CP) HCL with the Baird sleeve-extended torch. For Ca and Sr, the LODs by HCMP-HCL-ICP-IFS and CP-HCL-ICP-AFS show no significant difference. Relative standard deviations were 0.6%-1.4% (0.1-0.2 microg x mL(-1), n = 10) for 5 ionic fluorescence lines. Preliminary studies showed that the intensity of ionic fluorescence could be depressed in the presence of K, Al and P.

  9. The Infrared Spectrum of Uranium Hollow Cathode Lamps from 850 nm to 4000 nm: Wavenumbers and Line Identifications from Fourier Transform Spectra

    CERN Document Server

    Redman, Stephen L; Nave, Gillian; Ramsey, Lawrence W; Mahadevan, Suvrath

    2011-01-01

    We provide new measurements of wavenumbers and line identifications of 10 100 UI and UII near-infrared (NIR) emission lines between 2500 cm-1 and 12 000 cm-1 (4000 nm to 850 nm) using archival FTS spectra from the National Solar Observatory (NSO). This line list includes isolated uranium lines in the Y, J, H, K, and L bands (0.9 {\\mu}m to 1.1 {\\mu}m, 1.2 {\\mu}m to 1.35 {\\mu}m, 1.5 {\\mu}m to 1.65 {\\mu}m, 2.0 {\\mu}m to 2.4 {\\mu}m, and 3.0 {\\mu}m to 4.0 {\\mu}m, respectively), and provides six times as many calibration lines as thorium in the NIR spectral range. The line lists we provide enable inexpensive, commercially-available uranium hollow-cathode lamps to be used for high-precision wavelength calibration of existing and future high-resolution NIR spectrographs.

  10. Development of realtime monitoring technology for laser photoreaction product - Study on spectroscopy of rare earth elements by using diode laser and hollow cathode glow discharge

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Chun [Kyungnam University, Masan (Korea); Lee, Gea Ho [Chungnam National University, Taejon (Korea); Lee, Yong Il [Changwon National University, Changwon (Korea); Kim, Hyo Jin [Dongduk Women' s University, Seoul (Korea); Huh, Yong Dck [Dankook University, Seoul (Korea)

    1998-05-01

    Currently, fast and precise analysis of rare earth and actinide elements are much concerned and required for the safe treatments and storage of nuclear wastes generated by nuclear power plants. However, current technology is still far from the requirements for accurate realtime monitoring and measurement of radioactive elements. This project is of development of new technology of realtime monitoring and analysis of rare earth elements by using glow discharge and diode laser spectroscopy, and the study of spectroscopic characteristics of rare earth elements in glow discharge plasma. And, saturated absorption spectroscopy of rare earth elements was investigated with diode lasers. A see-through hollow cathode glow discharge (st-HCGD) cell was developed for the purpose of a portable atomizer and and its characteristics were investigated. High resolution spectroscopy was achieved with diode laser assisted saturated absorption spectroscopy. it is considered for major improvement of radioactive isotope detection technology. We expect a portable high resolution spectrometry with a see-through HCGD atomizer and diode lasers in near future. (Author). 63 refs., 39 figs., 7 tabs.

  11. Reservoir Cathode for Electric Space Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a hollow reservoir cathode to improve performance in ion and Hall thrusters. We will adapt our existing reservoir cathode technology to this purpose....

  12. Study of the use of an electric discharge for hollow cathodes used as optical excitation sources in the spectrographic measurement of fluorine in thorium, uranium and plutonium; Etude de l'utilisation de la decharge electrique en cathode creuse comme source d'excitation optique pour le dosage spectrographique du fluor dans le thorium, l'uranium et le plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Bufpereau, M.; Crehange, G.; Poublan, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    Previous works and phenomena concerned with a hollow cathode excitation are reviewed. Experiments aimed specially on the determination of the best conditions for an analysis of fluorine in oxides-metals and solutions. In that purpose, several factors have been pointed out. One started some researches about others elements that fluorine. Carrying fluorine into discharge and excitation have been more specially studied. A quantitative analysis method is given. The analysis limit is 45 ppm about but the detection limit is 5 ppm about. As a conclusion, various ways for optical excitation of fluorine are reviewed as other analytical possibilities a hollow cathode discharge offers. (authors) [French] On rappelle les travaux effectues jusqu'alors ainsi que les phenomenes mis en jeu dans l'excitation cathode creuse. Les experiences effectuees ont eu pour but essentiel la determination des conditions optima du dosage du fluor dans les oxydes, metaux et solutions. Pour cela de nombreux facteurs ont ete mis en evidence. Certaines etudes concernant d'autres elements que le fluor ont ete amorcees. Le passage du fluor dans la decharge et son excitation ont ete plus particulierement etudies. Une methode d'analyse quantitative est degagee, la limite de dosage est de l'ordre de 45 ppm, la limite de detection de 5 ppm. En conclusion, on passe en revue les differentes methodes d'excitation optique du fluor ainsi que les autres possibilites analytiques que peut offrir la cathode creuse. (auteurs)

  13. Synthesis and characterization hollow spherical La0.7Sr0.2Ca0.1Co0.9Fe0.1O3–δ (LSCCT for cathode of solid oxide fuel cell (SOFC

    Directory of Open Access Journals (Sweden)

    H. H. Yu

    2016-10-01

    Full Text Available Hollow spheres structures of La0.7Sr0.2Ca0.1Co0.9Fe0.1O3–δ (LSCCT have been synthesized via hydrothermal method using carbon spheres as template. The structure and electrical conductivity of obtained samples are characterized by X-ray diffraction (XRD, scanning electron microscope (SEM, transmission electron microscope (TEM and direct current (DC four-probe method respectively. The results show that hollow spheres structures of LSCCT with the mean particle size of 0,9 - 1,2 μm is single perovskite. The electrical conductivity of the samples is higher than 100 S/cm from 600 to 800 ℃ and can meet the demand of the electrical properties for the cathode materials.

  14. Comparison of trimethylgallium and triethylgallium as “Ga” source materials for the growth of ultrathin GaN films on Si (100) substrates via hollow-cathode plasma-assisted atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Alevli, Mustafa, E-mail: mustafaalevli@marmara.edu.tr [Department of Physics, Marmara University, Göztepe Kadıköy, 34722 İstanbul (Turkey); Haider, Ali; Kizir, Seda; Leghari, Shahid A.; Biyikli, Necmi, E-mail: biyikli@unam.bilkent.edu.tr [Institute of Materials Science and Nanotechnology, Bilkent University, Bilkent, 06800 Ankara, Turkey and National Nanotechnology Research Center (UNAM), Bilkent University, Bilkent, 06800 Ankara (Turkey)

    2016-01-15

    GaN films grown by hollow cathode plasma-assisted atomic layer deposition using trimethylgallium (TMG) and triethylgallium (TEG) as gallium precursors are compared. Optimized and saturated TMG/TEG pulse widths were used in order to study the effect of group-III precursors. The films were characterized by grazing incidence x-ray diffraction, atomic force microscopy, x-ray photoelectron spectroscopy, and spectroscopic ellipsometry. Refractive index follows the same trend of crystalline quality, mean grain, and crystallite sizes. GaN layers grown using TMG precursor exhibited improved structural and optical properties when compared to GaN films grown with TEG precursor.

  15. Research of Hollow Cathode Remote Plasma Polymerization on Surface of Secondary Battery Separator%电池隔膜表面空心阴极等离子体接枝聚合研究

    Institute of Scientific and Technical Information of China (English)

    温贻芳; 陈新; 芮延年; 王红卫

    2012-01-01

    The surface of non-woven polypropylene secondary battery separator was modified by hollow cathode remote plasma polymerizatioa The polymerization mechanism was analyzed, and the effects of working parameters (such as discharge power, working gas flow rate, sample position etc. ) on the polymerization rate were studied systematically. The IR and SEM were used to analyze the chemical composition and the surface morphology. The results show that the hydrophilic group was imported on the surface of polypropylene after hollow cathode remote plasma modification, so that the wettability of the non-woven polypropylene secondary battery separator was greatly improved.%应用自制的空心阴极等离子体装置,引发丙烯酸在丙纶表面的接枝聚合,研究了等离子体接枝聚合作用机理,分析了等离子体接枝聚合各参数(放电功率、气体流量、丙烯酸蒸气流量、样品位置等)对聚合速率的影响.通过红外光谱、扫描电镜等对丙纶接枝聚合膜表面的化学组成和形态结构等进行了表征分析,证明了亲水基团的引入,改善了丙纶隔膜的亲水性能.

  16. Investiagtion of Nanoscale Carbon Nitride Thin Films Grown Using DC HCD Hollow Cathode Discharge%用直流中空阴极放电方法(DC HCD)生长的纳米级碳的氮化物薄膜研究

    Institute of Scientific and Technical Information of China (English)

    YAN Y.H.; SHI Y.C.; YANG P.; TANG X.L.; FENG P.X.

    2005-01-01

    There is growing interest in the underlying physical processes in optoelectronic devices based on thin-film multilayer structures. Recently, many investigators have made great efforts on synthesizing the ultra - hard nanoscale carbon nitride thin films. Considering low cost and simple configuration, we used DC hollow cathode discharge (HCD) for deposition of nanoscale carbon nitride thin films.

  17. Optical characteristics of nanocrystalline Al{sub x}Ga{sub 1−x}N thin films deposited by hollow cathode plasma-assisted atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Goldenberg, Eda, E-mail: goldenberg@unam.bilkent.edu.tr [UNAM – National Nanotechnology Research Center, Bilkent University, Ankara 06800 (Turkey); Ozgit-Akgun, Cagla; Biyikli, Necmi [Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800 (Turkey); Kemal Okyay, Ali [Department of Electrical and Electronics Engineering, Bilkent University, Ankara 06800 (Turkey)

    2014-05-15

    Gallium nitride (GaN), aluminum nitride (AlN), and Al{sub x}Ga{sub 1−x}N films have been deposited by hollow cathode plasma-assisted atomic layer deposition at 200 °C on c-plane sapphire and Si substrates. The dependence of film structure, absorption edge, and refractive index on postdeposition annealing were examined by x-ray diffraction, spectrophotometry, and spectroscopic ellipsometry measurements, respectively. Well-adhered, uniform, and polycrystalline wurtzite (hexagonal) GaN, AlN, and Al{sub x}Ga{sub 1−x}N films were prepared at low deposition temperature. As revealed by the x-ray diffraction analyses, crystallite sizes of the films were between 11.7 and 25.2 nm. The crystallite size of as-deposited GaN film increased from 11.7 to 12.1 and 14.4 nm when the annealing duration increased from 30 min to 2 h (800 °C). For all films, the average optical transmission was ∼85% in the visible (VIS) and near infrared spectrum. The refractive indices of AlN and Al{sub x}Ga{sub 1−x}N were lower compared to GaN thin films. The refractive index of as-deposited films decreased from 2.33 to 2.02 (λ = 550 nm) with the increased Al content x (0 ≤ x ≤ 1), while the extinction coefficients (k) were approximately zero in the VIS spectrum (>400 nm). Postdeposition annealing at 900 °C for 2 h considerably lowered the refractive index value of GaN films (2.33–1.92), indicating a significant phase change. The optical bandgap of as-deposited GaN film was found to be 3.95 eV, and it decreased to 3.90 eV for films annealed at 800 °C for 30 min and 2 h. On the other hand, this value increased to 4.1 eV for GaN films annealed at 900 °C for 2 h. This might be caused by Ga{sub 2}O{sub 3} formation and following phase change. The optical bandgap value of as-deposited Al{sub x}Ga{sub 1−x}N films decreased from 5.75 to 5.25 eV when the x values decreased from 1 to 0.68. Furthermore, postdeposition annealing did not

  18. Direct fabrication of metal-free hollow graphene balls with a self-supporting structure as efficient cathode catalysts of fuel cell

    Science.gov (United States)

    Lu, Yanqi; Liu, Mingda; Nie, Huagui; Gu, Cancan; Liu, Ming; Yang, Zhi; Yang, Keqin; Chen, Xi'an; Huang, Shaoming

    2016-06-01

    Despite the good progress in developing carbon catalysts for oxygen reduction reaction (ORR), the current metal-free carbon catalysts are still far from satisfactory for large-scale applications of fuel cell. Developing hollow graphene balls with a self-supporting structure is considered to be an ideal method to inhibit graphene stacking and improve their catalytic performance. Herein, we fabricated metal-free hollow graphene balls with a self-supporting structure, through using a new strategy that involves direct metal-free catalytic growth from assembly of SiO2 spheres. To our knowledge, although much researches involving the synthesis of graphene balls have been reported, investigations into the direct metal-free catalytic growth of hollow graphene balls are rare. Furthermore, the electrocatalytic performance shows that the resulting hollow graphene balls have significantly high catalytic activity. More importantly, such catalysts also possess much improved stability and better methanol tolerance in alkaline media during the ORR compared with commercial Pt/C catalysts. The outstanding performances coupled with an easy and inexpensive preparing method indicated the great potential of the hollow graphene balls with a self-supporting structure in large-scale applications of fuel cell.

  19. A Microfiltration Polymer-Based Hollow-Fiber Cathode as a Promising Advanced Material for Simultaneous Recovery of Energy and Water

    KAUST Repository

    Katuri, Krishna

    2016-09-12

    A novel electrocatalytic and microfiltration polymeric hollow fiber is fabricated for simultaneous recovery of energy (H2) and clean fresh water from wastewater, hence addressing two grand challenges facing society in the current century (i.e., providing adequate supplies of clean fresh water and energy as the world\\'s population increases).

  20. Hierarchical LiMn2O4 Hollow Cubes with Exposed {111} Planes as High-Power Cathodes for Lithium-Ion Batteries.

    Science.gov (United States)

    Wu, Yu; Cao, Chuanbao; Zhang, Junting; Wang, Lin; Ma, Xilan; Xu, Xingyan

    2016-08-01

    Hierarchical LiMn2O4 hollow cubes with exposed {111} planes have been synthesized using cube-shaped MnCO3 precursors, which are fabricated through a facile co-precipitation reaction. Without surface modification, the as-prepared LiMn2O4 exhibits excellent cyclability and superior rate capability. Surprisingly, even over 70% of primal discharge capacity can be maintained for up to 1000 cycles at 50 C, and with only about 72 s of discharge time the as-prepared materials can deliver initial discharge capacity of 96.5 mA h g(-1). What is more, the materials have 98.4% and 90.7% capacity retentions for up to 100 cycles at 5 C under the temperatures of 25 and 60 °C, respectively. The superior electrochemical performance can be attributed to the unique hierarchical and interior hollow structure, exposed {111} planes, and high-quality crystallinity.

  1. Cauliflower-like SnO2 hollow microspheres as anode and carbon fiber as cathode for high performance quantum dot and dye-sensitized solar cells

    Science.gov (United States)

    Ganapathy, Veerappan; Kong, Eui-Hyun; Park, Yoon-Cheol; Jang, Hyun Myung; Rhee, Shi-Woo

    2014-02-01

    Cauliflower-like tin oxide (SnO2) hollow microspheres (HMS) sensitized with multilayer quantum dots (QDs) as photoanode and alternative stable, low-cost counter electrode are employed for the first time in QD-sensitized solar cells (QDSCs). Cauliflower-like SnO2 hollow spheres mainly consist of 50 nm-sized agglomerated nanoparticles; they possess a high internal surface area and light scattering in between the microspheres and shell layers. This makes them promising photoanode material for both QDSCs and dye-sensitized solar cells (DSCs). Successive ionic layer adsorption and reaction (SILAR) method and chemical bath deposition (CBD) are used for QD-sensitizing the SnO2 microspheres. Additionally, carbon-nanofiber (CNF) with a unique structure is used as an alternative counter electrode (CE) and compared with the standard platinum (Pt) CE. Their electrocatalytic properties are measured using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and Tafel-polarization. Under 1 sun illumination, solar cells made with hollow SnO2 photoanode sandwiched with the stable CNF CE showed a power conversion efficiency of 2.5% in QDSCs and 3.0% for DSCs, which is quite promising with the standard Pt CE (QDSCs: 2.1%, and DSCs: 3.6%).Cauliflower-like tin oxide (SnO2) hollow microspheres (HMS) sensitized with multilayer quantum dots (QDs) as photoanode and alternative stable, low-cost counter electrode are employed for the first time in QD-sensitized solar cells (QDSCs). Cauliflower-like SnO2 hollow spheres mainly consist of 50 nm-sized agglomerated nanoparticles; they possess a high internal surface area and light scattering in between the microspheres and shell layers. This makes them promising photoanode material for both QDSCs and dye-sensitized solar cells (DSCs). Successive ionic layer adsorption and reaction (SILAR) method and chemical bath deposition (CBD) are used for QD-sensitizing the SnO2 microspheres. Additionally, carbon-nanofiber (CNF) with a

  2. Role of hydrogen diffusion in temperature-induced transformation of carbon nanostructures deposited on metallic substrates by using a specially designed fused hollow cathode cold atmospheric pressure plasma source

    Science.gov (United States)

    Sharma, Bikash; Kar, R.; Pal, Arup R.; Shilpa, R. K.; Dusane, R. O.; Patil, D. S.; Suryawanshi, S. R.; More, M. A.; Sinha, S.

    2017-04-01

    Carbon nanofibers (CNFs) and carbon nanotubes (CNTs) are grown on inconel substrates under two different experimental conditions using atmospheric pressure glow discharge radio-frequency (RF) PECVD process. A specially designed hollow cathode is used for this plasma generation. The growth is carried out at 610 and 660 °C substrate temperatures on inconel substrates. Our results show that CNFs and CNTs could be synthesized at 610 and 660 °C respectively irrespective of pre-treatment methods in either set. HRTEM results indicate that a temperature-induced transformation of CNFs into CNTs occur when the growth temperature is raised from 610 to 660 °C. With the help of characterization results and a schematic model, it is shown how an increase in hydrogen diffusion (~44% increase) plays a pivotal role in this transformation by providing a sink for hydrogen atoms. Field emission results show that most defective CNFs contribute to the maximum emission current density. This better field emission behavior is explained on the basis that the outer surfaces of CNFs are more defective due to the presence of the open edges of the graphene planes, which results in better field emission from the outer surfaces of the CNFs.

  3. Highly Durable Supportless Pt Hollow Spheres Designed for Enhanced Oxygen Transport in Cathode Catalyst Layers of Proton Exchange Membrane Fuel Cells.

    Science.gov (United States)

    Dogan, Didem C; Cho, Seonghun; Hwang, Sun-Mi; Kim, Young-Min; Guim, Hwanuk; Yang, Tae-Hyun; Park, Seok-Hee; Park, Gu-Gon; Yim, Sung-Dae

    2016-10-10

    Supportless Pt catalysts have several advantages over conventional carbon-supported Pt catalysts in that they are not susceptible to carbon corrosion. However, the need for high Pt loadings in membrane electrode assemblies (MEAs) to achieve state-of-the-art fuel cell performance has limited their application in proton exchange membrane fuel cells. Herein, we report a new approach to the design of a supportless Pt catalyst in terms of catalyst layer architecture, which is crucial for fuel cell performance as it affects water management and oxygen transport in the catalyst layers. Large Pt hollow spheres (PtHSs) 100 nm in size were designed and prepared using a carbon template method. Despite their large size, the unique structure of the PtHSs, which are composed of a thin-layered shell of Pt nanoparticles (ca. 7 nm thick), exhibited a high surface area comparable to that of commercial Pt black (PtB). The PtHS structure also exhibited twice the durability of PtB after 2000 potential cycles (0-1.3 V, 50 mV/s). A MEA fabricated with PtHSs showed significant improvement in fuel cell performance compared to PtB-based MEAs at high current densities (>800 mA/cm(2)). This was mainly due to the 2.7 times lower mass transport resistance in the PtHS-based catalyst layers compared to that in PtB, owing to the formation of macropores between the PtHSs and high porosity (90%) in the PtHS catalyst layers. The present study demonstrates a successful example of catalyst design in terms of catalyst layer architecture, which may be applied to a real fuel cell system.

  4. A High Performance Cathode Heater for Hall Thrusters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — High current hollow cathodes are the baseline electron source for next generation high power Hall thrusters. Currently for electron sources providing current levels...

  5. Microhollow cathode discharge excimer lamps

    Science.gov (United States)

    Schoenbach, Karl H.; El-Habachi, Ahmed; Moselhy, Mohamed M.; Shi, Wenhui; Stark, Robert H.

    2000-05-01

    Microhollow cathode discharges are high-pressure, nonequilibrium gas discharges between a hollow cathode and a planar or hollow anode with electrode dimensions in the 100 μm range. The large concentration of high-energy electrons, in combination with the high-gas density favors excimer formation. Excimer emission was observed in xenon and argon, at wavelengths of 128 and 172 nm, respectively, and in argon fluoride and xenon chloride, at 193 and 308 nm. The radiant emittance of the excimer radiation was found to increase monotonically with pressure. However, due to the decrease in source size with pressure, the efficiency (ratio of excimer radiant power to input electrical power), has for xenon and argon fluoride a maximum at ˜400 Torr. The maximum efficiency is between 6% and 9% for xenon, and ˜2% for argon fluoride.

  6. Experimental Study on RF Hollow Cathode Discharge

    Institute of Scientific and Technical Information of China (English)

    甘肇强; 吴雪梅; 姚伟国

    2001-01-01

    By using a longitudinal static magnetic field, we have shown that it is possible to excite an intensive plasma in a simple stainless steel tube which is connected with a RF power supply. Under certain conditions, the very bright Ar Ⅱ lines were excited. The emission intensities of Ar Ⅱ lines were increased with the increase in RF power, magnetic field, and the decrease in argon pressure. As the plasma-sheath boundary oscillating under the RF voltage, the plasma column is periodically compressed by the oscillating boundary.``

  7. Cathodic arcs

    OpenAIRE

    Anders, Andre

    2003-01-01

    Cathodic arc plasma deposition has become the technology of choice for hard, wear and corrosion resistant coatings for a variety of applications. The history, basic physics of cathodic arc operation, the infamous macroparticle problem and common filter solutions, and emerging high-tech applications are briefly reviewed. Cathodic arc plasmas stand out due to their high degree of ionization, with important consequences for film nucleation, growth, and efficient utilization of substrate bia...

  8. Tunable frequency-stabilization of UV laser using a Hallow-Cathode Lamp of atomic thallium

    CERN Document Server

    Chen, Tzu-Ling; Shy, Jow-Tsong; Liu, Yi-Wei

    2013-01-01

    A frequency-stabilized ultraviolet laser system, locked to the thallium resonant transition of 377.5 nm, was demonstrated using a novel bichromatic spectroscopy technique for tuning the zero-crossing laser-lock point. The atomic thallium system is a promising candidate in atomic parity violation and permanent electric dipole moment experiments, and its 377.5 nm 6P1/2->7S1/2 transition is important for thallium laser cooling and trapping experiment. The pressure shift, owing to the high pressure bu?er gas of the hollow-cathode lamp, was observed using an atomic beam resonance as reference. Such a shift was corrected by adjusting the peak ratio of the two Doppler-free saturation pro?les resulted from two pumping beams with a 130 MHz frequency di?erence. The resulted frequency stability of the ultraviolet laser is ?0.5 MHz at 0.1 sec integration time. This scheme is compact and versatile for stabilizing UV laser systems, which acquire a sub-MHz stability and frequency tunability.

  9. Cathodic arcs

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Andre

    2003-10-29

    Cathodic arc plasma deposition has become the technology of choice for hard, wear and corrosion resistant coatings for a variety of applications. The history, basic physics of cathodic arc operation, the infamous macroparticle problem and common filter solutions, and emerging high-tech applications are briefly reviewed. Cathodic arc plasmas standout due to their high degree of ionization, with important consequences for film nucleation, growth, and efficient utilization of substrate bias. Industrial processes often use cathodic arc plasma in reactive mode. In contrast, the science of arcs has focused on the case of vacuum arcs. Future research directions include closing the knowledge gap for reactive mode, large area coating, linear sources and filters, metal plasma immersion process, with application in high-tech and biomedical fields.

  10. Analysis of cathode geometry to minimize cathode erosion in direct current microplasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Causa, Federica [Dipartimento di Scienze dell' Ambiente, della Sicurezza, del Territorio, degli Alimenti e della Salute, Universita degli studi di Messina, 98122 Messina (Italy); Ghezzi, Francesco; Caniello, Roberto; Grosso, Giovanni [Istituto di Fisica del Plasma, Consiglio Nazionale delle Ricerche, EURATOM-ENEA-CNR Association, Via R. Cozzi 53, 20125 Milano (Italy); Dellasega, David [Istituto di Fisica del Plasma, Consiglio Nazionale delle Ricerche, EURATOM-ENEA-CNR Association, Via R. Cozzi 53, 20125 Milano (Italy); Dipartimento di Energia, Politecnico di Milano, Via Ponzio 34/3, 20133 Milano (Italy)

    2012-12-15

    Microplasma jets are now widely used for deposition, etching, and materials processing. The present study focuses on the investigation of the influence of cathode geometry on deposition quality, for microplasma jet deposition systems in low vacuum. The interest here is understanding the influence of hydrogen on sputtering and/or evaporation of the electrodes. Samples obtained with two cathode geometries with tapered and rectangular cross-sections have been investigated experimentally by scanning electron microscopy and energy dispersion X-ray spectroscopy. Samples obtained with a tapered-geometry cathode present heavy contamination, demonstrating cathode erosion, while samples obtained with a rectangular-cross-section cathode are free from contamination. These experimental characteristics were explained by modelling results showing a larger radial component of the electric field at the cathode inner wall of the tapered cathode. As a result, ion acceleration is larger, explaining the observed cathode erosion in this case. Results from the present investigation also show that the ratio of radial to axial field components is larger for the rectangular geometry case, thus, qualitatively explaining the presence of micro-hollow cathode discharge over a wide range of currents observed in this case. In the light of the above findings, the rectangular cathode geometry is considered to be more effective to achieve cleaner deposition.

  11. Microhollow Cathode Discharge Excimer Lamps

    Science.gov (United States)

    Schoenbach, K. H.

    1999-11-01

    character. Reducing the diameter of the cathode hole in a hollow cathode discharge geometry to values on the order of 100 μm has allowed us to extend the pressure range of stable, direct current hollow cathode gas discharges up to atmospheric pressure. The large concentration of high-energy electrons generated in the cathode fall, in combination with the high neutral gas density favors three-body processes such as excimer formation. Excimer emission in xenon discharges peaking at 172 nm, was observed with efficiencies between 6% and 9% at pressures of several hundred Torr. Typical forward voltages are 200 V at dc currents up to 8 mA. Pulsed operation allowed us to extend the current range to 80 mA with corresponding linear increase in optical power. Spatially resolved measurements showed that the source of the excimer radiation at atmospheric pressure and currents of less than 8 mA is confined to the cathode opening. The radiative emittance at 8 mA and atmospheric pressure is approximately 20 W/cm^2. With reduced pressure and increased current, respectively, the excimer source extends into the area outside the cathode hole. Besides in xenon, excimer emission in argon at a peak wavelength of 128 nm has been recorded. In addition to operating the discharge in rare gases, we have also explored its use as rare gas-halide excimer source. In a gas mixture containing 1% ArF we were able to generate stable dc discharges in flowing gas at pressures ranging from 100 Torr to atmospheric pressure. The spectra of the high-pressure ArF discharges are dominated by excimer radiation peaking at 193 nm. The excimer emission of a single ArF discharge at 700 Torr was measured as 150 mW at an efficiency of 3%. Parallel operation of these discharges by means of a resistive anode, which has recently been demonstrated for argon discharges, offers the possibility to use microhollow cathode discharge arrays as dc-excimer lamps, with estimated power densities exceeding 10 W/cm^2. abstract

  12. Alkali Absorption Property of Polypropylene Non-woven Fabrics Surface Modified by Hollow Cathode Remote Plasma Polymerization%空心阴极远区等离子体接枝聚合表面改性丙纶无纺布的吸碱性能

    Institute of Scientific and Technical Information of China (English)

    温贻芳; 陈新; 王士喜; 芮延年; 王红卫

    2011-01-01

    利用空心阴极远区等离子体改性技术对丙纶无纺布表面进行了改性处理,研究了等离子体处理参数对丙纶无纺布吸碱性能的影响;采用红外光谱、扫描电镜等对丙纶无纺布表面的化学组成和形态等进行了表征。结果表明:等离子体处理时间、放电功率、气体流量等对丙纶无纺布的吸碱性能有很大的影响,而且试样距丙烯酸喂气管的距离对处理效果的影响也很明显;通过空心阴极远区等离子体接枝聚合表面改性处理,在丙纶无纺布的表面引入了亲水性羧基基团,改善了其浸润性,显著提高了其吸碱率和吸碱速率,达到了国外进1:7电池隔膜的指标。%The surface of polypropylene non-woven fabrics was modified by hollow cathode remote plasma modification technology. The effect of the plasma treatment parameters on the property of polypropylene non-woven fabrics was studied. The FTIR and SEM were used to analyze the chemical composition and morphology. The results show that plasma treatment time, discharge power, gas flow had a great influence on the alkali absorption property, and the effect of the distance between the sample and acrylic acid feeding tube on treatment results was obvious. The invasion property of the polypropylene non-woven fabrics was improved due to the import of hydrophilic group by hollow cathode remote plasma surface modification. The alkali absorption capacity and rate were raised obviously, and the alkali absorption performance reached the level of foreign battery separator.

  13. NMR at 900 MHz

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ An important factor in the development of solutionstate NMR has always been th e ability to produce stable and homogeneous magnetic fields. As higher and higher field strengths are reached the pressure is growing on manufacturers to produce NMR systems with greatly improved spectral resolution and signal to noise ratio. The introduction of the Varian 900 MHz INOVA system in August 2000 featuring Oxford Instruments 21.1 T magnet represents the latest pioneering development in NMR technology.

  14. Characterization of a radio frequency hollow electrode discharge at low gas pressures

    Science.gov (United States)

    Ahadi, Amir Mohammad; Trottenberg, Thomas; Rehders, Stefan; Strunskus, Thomas; Kersten, Holger; Faupel, Franz

    2015-08-01

    A radio frequency (RF) hollow discharge configuration is presented, which makes use of a combination of RF plasma generation and the hollow cathode effect. The system was especially designed for the treatment of nanoparticles, plasma polymerization, and nanocomposite fabrication. The process gas streams through the plasma in the inner of the cylindrical electrode system. In the here presented measurements, pure argon and argon with oxygen admixtures are exemplarily used. The discharge is characterized by probe measurements in the effluent, electrical measurements of the discharge parameters, and visual observations of the plasma glow. It is found that the RF fluctuations of the plasma potential are weak. The plasma potential resembles the one of a DC hollow cathode discharge, the RF hollow electrode acts as a cathode due to the self-bias, and a high voltage sheath forms in its inner cylinder.

  15. Hollow microporous organic capsules

    National Research Council Canada - National Science Library

    Li, Buyi; Yang, Xinjia; Xia, Lingling; Majeed, Muhammad Irfan; Tan, Bien

    2013-01-01

    Fabrication of hollow microporous organic capsules (HMOCs) could be very useful because of their hollow and porous morphology, which combines the advantages of both microporous organic polymers and non-porous nanocapsules...

  16. Development of plasma cathode electron guns

    Science.gov (United States)

    Oks, Efim M.; Schanin, Peter M.

    1999-05-01

    The status of experimental research and ongoing development of plasma cathode electron guns in recent years is reviewed, including some novel upgrades and applications to various technological fields. The attractiveness of this kind of e-gun is due to its capability of creating high current, broad or focused beams, both in pulsed and steady-state modes of operation. An important characteristic of the plasma cathode electron gun is the absence of a thermionic cathode, a feature which leads to long lifetime and reliable operation even in the presence of aggressive background gas media and at fore-vacuum gas pressure ranges such as achieved by mechanical pumps. Depending on the required beam parameters, different kinds of plasma discharge systems can be used in plasma cathode electron guns, such as vacuum arcs, constricted gaseous arcs, hollow cathode glows, and two kinds of discharges in crossed E×B fields: Penning and magnetron. At the present time, plasma cathode electron guns provide beams with transverse dimension from fractional millimeter up to about one meter, beam current from microamperes to kiloamperes, beam current density up to about 100 A/cm2, pulse duration from nanoseconds to dc, and electron energy from several keV to hundreds of keV. Applications include electron beam melting and welding, surface treatment, plasma chemistry, radiation technologies, laser pumping, microwave generation, and more.

  17. Microhollow cathode discharges

    Science.gov (United States)

    Schoenbach, K. H.; Moselhy, M.; Shi, W.; Bentley, R.

    2003-07-01

    By reducing the dimensions of hollow cathodes into the hundred micrometer range, stable, direct current, high (atmospheric) pressure glow discharges in rare gases, rare gas-halide mixtures and in air could be generated. The electron energy distribution in these microdischarges is non-Maxwellian, with a pronounced high-energy tail. The high electron energy together with the high gas density, which favors three-body collisions, is the reason for an efficient excimer generation in these microplasmas. Excimer efficiencies from 1% to 9% have been measured for argon, xenon, argon fluoride, and xenon chloride direct current excimer emitters, with a radiant excimer emittance of up to 2 W/cm2 for xenon. Adding small amounts of oxygen to argon has allowed us to generate vacuum ultraviolet line radiation at 130.5 nm with an efficiency approaching 1%. Pulsing xenon discharges with nanosecond electrical pulses has led to an increase in intensity to 15 W/cm2 and to a simultaneous increase in efficiency to more than 20%. Operating the discharges in an abnormal glow mode has allowed us to generate microdischarge arrays without individual ballast. Applications of these plasma arrays are excimer lamps and plasma reactors.

  18. Hollow dimension of modules

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    In this paper, we are interested in the following general question: Given a module Mwhich has finite hollow dimension and which has a finite collection of submodules Ki (1≤i≤n) such that M=K1+... +Kn, can we find an expression for the hollow dimension of Min terms of hollow dimensions of modules built up in some way from K1 Kn? We prove the following theorem:Let Mbe an amply supplemented module having finite hollow dimension and let Ki (1≤i≤n) be a finite collection of submodules of Msuch that M=K1+...+Kn. Then the hollow dimension h(M) of Mis the sum of the hollow dimensions of Ki (1≤i≤n) ifand only if Ki is a supplement of K1+...+Ki-1+Ki+1+...+Kn in Mfor each 1≤i≤n.

  19. Multipacting simulation and test results of BNL 704 MHz SRF gun

    Energy Technology Data Exchange (ETDEWEB)

    Xu W.; Belomestnykh, S.; Ben-Zvi, I.; Cullen, C. et al

    2012-05-20

    The BNL 704MHz SRF gun has a grooved choke joint to support the photo-cathode. Due to the distortion of grooves at the choke joint during the BCP for the choke joint, several multipacting barriers showed up when it was tested with Nb cathode stalk at JLab. We built a setup to use the spare large grain SRF cavity to test and condition the multipacting at BNL with various power sources up to 50kW. The test is carried out in three stages: testing the cavity performance without cathode, testing the cavity with the Nb cathode stalk that was used at Jlab, and testing the cavity with a copper cathode stalk that is based on the design for the SRF gun. This paper summarizes the results of multipacting simulation, and presents the large grain cavity test setup and the test results.

  20. Nanotube cathodes.

    Energy Technology Data Exchange (ETDEWEB)

    Overmyer, Donald L.; Lockner, Thomas Ramsbeck; Siegal, Michael P.; Miller, Paul Albert

    2006-11-01

    Carbon nanotubes have shown promise for applications in many diverse areas of technology. In this report we describe our efforts to develop high-current cathodes from a variety of nanotubes deposited under a variety of conditions. Our goal was to develop a one-inch-diameter cathode capable of emitting 10 amperes of electron current for one second with an applied potential of 50 kV. This combination of current and pulse duration significantly exceeds previously reported nanotube-cathode performance. This project was planned for two years duration. In the first year, we tested the electron-emission characteristics of nanotube arrays fabricated under a variety of conditions. In the second year, we planned to select the best processing conditions, to fabricate larger cathode samples, and to test them on a high-power relativistic electron beam generator. In the first year, much effort was made to control nanotube arrays in terms of nanotube diameter and average spacing apart. When the project began, we believed that nanotubes approximately 10 nm in diameter would yield sufficient electron emission properties, based on the work of others in the field. Therefore, much of our focus was placed on measured field emission from such nanotubes grown on a variety of metallized surfaces and with varying average spacing between individual nanotubes. We easily reproduced the field emission properties typically measured by others from multi-wall carbon nanotube arrays. Interestingly, we did this without having the helpful vertical alignment to enhance emission; our nanotubes were randomly oriented. The good emission was most likely possible due to the improved crystallinity, and therefore, electrical conductivity, of our nanotubes compared to those in the literature. However, toward the end of the project, we learned that while these 10-nm-diameter CNTs had superior crystalline structure to the work of others studying field emission from multi-wall CNT arrays, these nanotubes still

  1. Hollow metal target magnetron sputter type radio frequency ion source

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, N., E-mail: mwada@mail.doshisha.ac.jp; Kasuya, T.; Wada, M. [Graduate School of Science and Engineering, Doshisha University, Kyoto 610–0321 (Japan); Tsubouchi, N. [Kansai Institute, Advanced Industrial Science and Technology, Osaka 563–8577 (Japan)

    2014-02-15

    A 70 mm diameter 70 mm long compact ion source equipped with a hollow sputtering target has been designed and tested. The hollow sputtering target serves as the radio frequency (RF) plasma excitation electrode at 13.56 MHz. A stable beam of Cu{sup +} has been extracted when Ar was used as the discharge support gas. In the extracted beam, Cu{sup +} had occupied more than 85% of the total ion current. Further increase in Cu{sup +} ions in the beam is anticipated by increasing the RF power and Ar pressure.

  2. Investigation of cold cathodes of plasma sources generating of hydrogen ion beams

    CERN Document Server

    Veresov, L P; Dzkuya, M I; Zhukov, Y N; Kuznetsov, G V; Tsekvava, I A

    2001-01-01

    Designs of a hollow cellular cathode (HCC) and of an inverse cylindrical multichamber magnetronic cathode (ICMMC), used as cold cathodes in duoplasmatron for hydrogen ion beam generation, are described. Their service characteristics are compared. It is ascertained that emission ability of both HCC and ICMMC is approximately the same. However, duoplasmatron with ICMMC features a three times higher gas effectiveness compared with HCC. Service life of duoplasmatron with both types of cathodes amounts to several thousand hours. On the basis of test results the choice is made in favour of ICMMC

  3. Verification of high efficient broad beam cold cathode ion source

    Science.gov (United States)

    Abdel Reheem, A. M.; Ahmed, M. M.; Abdelhamid, M. M.; Ashour, A. H.

    2016-08-01

    An improved form of cold cathode ion source has been designed and constructed. It consists of stainless steel hollow cylinder anode and stainless steel cathode disc, which are separated by a Teflon flange. The electrical discharge and output characteristics have been measured at different pressures using argon, nitrogen, and oxygen gases. The ion exit aperture shape and optimum distance between ion collector plate and cathode disc are studied. The stable discharge current and maximum output ion beam current have been obtained using grid exit aperture. It was found that the optimum distance between ion collector plate and ion exit aperture is equal to 6.25 cm. The cold cathode ion source is used to deposit aluminum coating layer on AZ31 magnesium alloy using argon ion beam current which equals 600 μA. Scanning electron microscope and X-ray diffraction techniques used for characterizing samples before and after aluminum deposition.

  4. Experimental and simulational result multipactors in 112 MHz QWR injector

    Energy Technology Data Exchange (ETDEWEB)

    Xin, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ben-Zvi, I. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States); Belomestnykh, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States); Brutus, J. C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Skaritka, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wu, Q. [Brookhaven National Lab. (BNL), Upton, NY (United States); Xiao, B. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    The first RF commissioning of 112 MHz QWR superconducting electron gun was done in late 2014. The coaxial Fundamental Power Coupler (FPC) and Cathode Stalk (stalk) were installed and tested for the first time. During this experiment, we observed several multipacting barriers at different gun voltage levels. The simulation work was done within the same range. The comparison between the experimental observation and the simulation results are presented in this paper. The observations during the test are consisted with the simulation predictions. We were able to overcome most of the multipacting barriers and reach 1.8 MV gun voltage under pulsed mode after several round of conditioning processes.

  5. Pulsar average waveforms and hollow cone beam models

    Science.gov (United States)

    Backer, D. C.

    1975-01-01

    An analysis of pulsar average waveforms at radio frequencies from 40 MHz to 15 GHz is presented. The analysis is based on the hypothesis that the observer sees one cut of a hollow-cone beam pattern and that stationary properties of the emission vary over the cone. The distributions of apparent cone widths for different observed forms of the average pulse profiles (single, double/unresolved, double/resolved, triple and multiple) are in modest agreement with a model of a circular hollow-cone beam with random observer-spin axis orientation, a random cone axis-spin axis alignment, and a small range of physical hollow-cone parameters for all objects.

  6. Engineering Stable Hollow Capsules

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    @@ Scientists at the CAS Institute of Chemistry have been succeeded in fabricating stable hollow capsules by extending covalent layer-by-layer self-assembly(CSA)technique from 2-dimensional to 3-dimensional systems.

  7. Hollow-Fiber Clinostat

    Science.gov (United States)

    Rhodes, Percy H.; Miller, Teresa Y.; Snyder, Robert S.

    1990-01-01

    Hollow-fiber clinostat, is bioreactor used to study growth and other behavior of cells in simulated microgravity. Cells under study contained in porous hollow fiber immersed in culture medium inside vessel. Bores in hollow fiber allow exchange of gases, nutrients, and metabolic waste products between living cells and external culture media. Hollow fiber lies on axis of vessel, rotated by motor equipped with torque and speed controls. Desired temperature maintained by operating clinostat in standard tissue-culture incubator. Axis of rotation made horizontal or vertical. Designed for use with conventional methods of sterilization and sanitation to prevent contamination of specimen. Also designed for asepsis in assembly, injection of specimen, and exchange of medium.

  8. A miniature origami biofuel cell based on a consumed cathode.

    Science.gov (United States)

    Yu, You; Han, Yujie; Lou, Baohua; Zhang, Lingling; Han, Lei; Dong, Shaojun

    2016-11-10

    Considerable interest has been focused on miniature biofuel cells (BFCs) because of their portability and possibility to be implantable. Origami devices with hollow channels will provide novel insight into the assembly methods of miniature BFCs. Herein a miniature origami BFC has been fabricated from a MnO2-graphite flake consumed solid-state cathode. For further practical applications, miniature origami BFCs can directly generate energy from soft drinks.

  9. Study of electron current extraction from a radio frequency plasma cathode designed as a neutralizer for ion source applications

    Energy Technology Data Exchange (ETDEWEB)

    Jahanbakhsh, Sina, E-mail: sinajahanbakhsh@gmail.com; Satir, Mert; Celik, Murat [Department of Mechanical Engineering, Bogazici University, Istanbul 34342 (Turkey)

    2016-02-15

    Plasma cathodes are insert free devices that are developed to be employed as electron sources in electric propulsion and ion source applications as practical alternatives to more commonly used hollow cathodes. Inductively coupled plasma cathodes, or Radio Frequency (RF) plasma cathodes, are introduced in recent years. Because of its compact geometry, and simple and efficient plasma generation, RF plasma source is considered to be suitable for plasma cathode applications. In this study, numerous RF plasma cathodes have been designed and manufactured. Experimental measurements have been conducted to study the effects of geometric and operational parameters. Experimental results of this study show that the plasma generation and electron extraction characteristics of the RF plasma cathode device strongly depend on the geometric parameters such as chamber diameter, chamber length, orifice diameter, orifice length, as well as the operational parameters such as RF power and gas mass flow rate.

  10. 805 MHz and 201 MHz RF cavity development for MUCOOL

    Energy Technology Data Exchange (ETDEWEB)

    Li, Derun [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Corlett, J [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Ladran, A [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); MacGill, R [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Wallig, J [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Zisman, M [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Moretti, A [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Rowe, A [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Qian, Z B [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Wu, V [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Rimmer, R A [Jefferson Lab, Newport News, VA 23606 (United States); Norem, J [Argonne National Laboratory, Argonne, IL 60439 (United States); Summers, D [University of Mississippi at Oxford, MS 38677 (United States); Torun, Y [Illinois Institute of Technology, Chicago, IL 60616 (United States)

    2003-08-01

    A muon cooling channel calls for very high accelerating gradient RF structures to restore the energy lost by muons in the absorbers. The RF structures have to be operated in a strong magnetic field and thus the use of superconducting RF cavities is excluded. To achieve a high shunt impedance while maintaining a large enough aperture to accommodate a large transverse emittance muon beam, the cavity design adopted is a pillbox-like geometry with thin Be foils to terminate the electromagnetic field at the cavity iris. The possibility of using grids of thin-walled metallic tubes for the termination is also being explored. Many of the RF-related issues for muon cooling channels are being studied both theoretically and experimentally using an 805 MHz cavity that has a pillbox-like geometry with thin Be windows to terminate the cavity aperture. The design and performance of this cavity are reported here. High-power RF tests of the 805 MHz cavity are in progress at Lab G in Fermilab. The cavity has exceeded its design gradient of 30 MV m{sup -1}, reaching 34 MV m{sup -1} without external magnetic field. No surface damage was observed at this gradient. The cavity is currently under conditioning at Lab G with an external magnetic field of 2.5 T. We also present here a 201 MHz cavity design for muon cooling channels. The proposed cavity design is also suitable for use in a proof-of-principle muon ionization cooling experiment.

  11. Planar-Focusing Cathodes

    CERN Document Server

    Lewellen, J W

    2005-01-01

    Conventional pi-mode rf photoinjectors typically use magnetic solenoids for emittance compensation. This provides independent focusing strength, but can complicate rf power feed placement, introduce asymmetries (due to coil crossovers), and greatly increase the cost of the photoinjector. Cathode-region focusing can also provide for a form of emittance compensation. Typically this method strongly couples focusing strength to the field gradient on the cathode, however, and also requires altering the longitudinal position of the cathode to change the focusing. We propose a new method for achieving cathode-region variable-strength focusing for emittance compensation. The new method reduces the coupling to the gradient on the cathode, and does not require a change in the longitudinal position of the cathode. Expected performance for an S-band system is similar to conventional solenoid-based designs. This paper presents the results of rf cavity and beam dynamics simulations of the new design.

  12. Cathodic Protection Model Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Performs Navy design and engineering of ship and submarine impressed current cathodic protection (ICCP) systems for underwater hull corrosion control and...

  13. Hollow-Core Fiber Lamp

    Science.gov (United States)

    Yi, Lin (Inventor); Tjoelker, Robert L. (Inventor); Burt, Eric A. (Inventor); Huang, Shouhua (Inventor)

    2016-01-01

    Hollow-core capillary discharge lamps on the millimeter or sub-millimeter scale are provided. The hollow-core capillary discharge lamps achieve an increased light intensity ratio between 194 millimeters (useful) and 254 millimeters (useless) light than conventional lamps. The capillary discharge lamps may include a cone to increase light output. Hollow-core photonic crystal fiber (HCPCF) may also be used.

  14. Development of hollow anode penning ion source for laboratory application

    Science.gov (United States)

    Das, B. K.; Shyam, A.; Das, R.; Rao, A. D. P.

    2012-03-01

    The research work presented here focuses for the development of miniature penning type ion source. One hollow anode penning type ion source was developed in our laboratory. The size of the ion source is 38 mm diameter and 55 mm length. The ion source consists of two cathodes, a hollow anode and one piece of rare earth permanent magnet. The plasma was created in the plasma region between cathodes and the hollow anode. The J × B force in the region helps for efficient ionization of the gas even in the high vacuum region˜1×10 -5 Torr. The ions were extracted in the axial direction with help of the potential difference between the electrodes and the geometry of the extraction angle. The effect of the extraction electrode geometry for efficient extraction of the ions from the plasma region was examined. This ion source is a self extracted ion source. The self extracted phenomena reduce the cost and the size of the ion source. The extracted ion current was measured by a graphite probe. An ion current of more than 200 μA was observed at the probe placed 70 mm apart from the extraction electrode. In this paper, the structure of the ion source, effect of operating pressure, potential difference and the magnetic field on the extracted ion current is reported.

  15. 805 MHz and 201 MHz RF cavity development for MUCOOL

    Energy Technology Data Exchange (ETDEWEB)

    Li, Derun; Corlett, J.; Ladran, Tony; MacGill, R.; Wallig, J.; S. Zisman, Michael; Moretti, Alfred; Rowe, A; Qian, Zubao; Wu, Vincent; Rimmer, Robert; Norem, J.; Norem, Jim; Summers, Donald; Torun, Yagmur

    2003-08-01

    A muon cooling channel calls for very high accelerating gradient RF structures to restore the energy lost by muons in the absorbers. The RF structures have to be operated in a strong magnetic field and thus the use of superconducting RF cavities is excluded. To achieve a high shunt impedance while maintaining a large enough aperture to accommodate a large transverse emittance muon beam, the cavity design adopted is a pillbox-like geometry with thin Be foils to terminate the electromagnetic field at the cavity iris. The possibility of using grids of thin-walled metallic tubes for the termination is also being explored. Many of the RF-related issues for muon cooling channels are being studied both theoretically and experimentally using an 805 MHz cavity that has a pillbox-like geometry with thin Be windows to terminate the cavity aperture. The design and performance of this cavity are reported here. High-power RF tests of the 805 MHz cavity are in progress at Lab G in Fermilab. The cavit

  16. A multiple gap plasma cathode electron gun and its electron beam analysis in self and trigger breakdown modes

    Science.gov (United States)

    Kumar, Niraj; Pal, Dharmendra Kumar; Jadon, Arvind Singh; Pal, Udit Narayan; Rahaman, Hasibur; Prakash, Ram

    2016-03-01

    In the present paper, a pseudospark discharge based multiple gap plasma cathode electron gun is reported which has been operated separately in self and trigger breakdown modes using two different gases, namely, argon and hydrogen. The beam current and beam energy have been analyzed using a concentric ring diagnostic arrangement. Two distinct electron beams are clearly seen with hollow cathode and conductive phases. The hollow cathode phase has been observed for ˜50 ns where the obtained electron beam is having low beam current density and high energy. While in conductive phase it is high current density and low energy electron beam. It is inferred that in the hollow cathode phase the beam energy is more for the self breakdown case whereas the current density is more for the trigger breakdown case. The tailor made operation of the hollow cathode phase electron beam can play an important role in microwave generation. Up to 30% variation in the electron beam energy has been achieved keeping the same gas and by varying the breakdown mode operations. Also, up to 32% variation in the beam current density has been achieved for the trigger breakdown mode at optimized trigger position by varying the gas type.

  17. Self-pulsing of a micro thin cathode discharge

    CERN Document Server

    Gebhardt, Markus; Hemke, Torben; Brinkmann, Ralf Peter; Mussenbrock, Thomas

    2011-01-01

    Microplasmas operated at atmospheric pressure show a number of peculiar dynamic phenomena. One of these phenomena is self-pulsing, which is characterized by intrinsic pulsing behavior of a DC driven plasma discharge. This work focuses on the numerical simulation of self-pulsing in a micro thin cathode discharge operated in atmospheric pressure argon. By means of a hybrid plasma model we show self-pulsing of the discharge in the expected MHz frequency range and described its actual origin.

  18. An improved reservoir oxide cathode

    Science.gov (United States)

    Wang, Xiaoxia; Liao, Xianheng; Luo, Jirun; Zhao, Qinglan

    2005-09-01

    A new type of reservoir oxide cathode has been developed in IECAS. The emission characteristics of the cathode are tested. The results show the new cathode has higher emission current density and better resistance to poisoning at same operating condition compared with those of conventional reservoir oxide cathode.

  19. have a hollow leg

    Institute of Scientific and Technical Information of China (English)

    周立

    2003-01-01

    英语对话 A:We must prevent our family members from getting involved with drugs, really. B:That’s a sure thing.We must make sure that they never involve them- selves with that. A:By the way,does your husband drink a lot? B:Yeah.That’s the only thing that keeps worrying me.And he often boasts that he has a hollow leg and nobody can drink him under the ta- ble.

  20. Nanostructured sulfur cathodes

    KAUST Repository

    Yang, Yuan

    2013-01-01

    Rechargeable Li/S batteries have attracted significant attention lately due to their high specific energy and low cost. They are promising candidates for applications, including portable electronics, electric vehicles and grid-level energy storage. However, poor cycle life and low power capability are major technical obstacles. Various nanostructured sulfur cathodes have been developed to address these issues, as they provide greater resistance to pulverization, faster reaction kinetics and better trapping of soluble polysulfides. In this review, recent developments on nanostructured sulfur cathodes and mechanisms behind their operation are presented and discussed. Moreover, progress on novel characterization of sulfur cathodes is also summarized, as it has deepened the understanding of sulfur cathodes and will guide further rational design of sulfur electrodes. © 2013 The Royal Society of Chemistry.

  1. Cathodic hydrodimerization of nitroolefins

    OpenAIRE

    Michael Weßling; Hans J. Schäfer

    2015-01-01

    Nitroalkenes are easily accessible in high variety by condensation of aldehydes with aliphatic nitroalkanes. They belong to the group of activated alkenes that can be hydrodimerized by cathodic reduction. There are many olefins with different electron withdrawing groups used for cathodic hydrodimerization, but not much is known about the behaviour of the nitro group. Synthetic applications of this group could profit from the easy access to nitroolefins in large variety, the C–C bond formation...

  2. RF-dressed Rydberg atoms in hollow-core fibres

    CERN Document Server

    Veit, Christian; Kübler, Harald; Euser, Tijmen G; Russell, Philip St J; Löw, Robert

    2016-01-01

    The giant electro-optical response of Rydberg atoms manifests itself in the emergence of sidebands in the Rydberg excitation spectrum if the atom is exposed to a radio-frequency (RF) electric field. Here we report on the study of RF-dressed Rydberg atoms inside hollow-core photonic crystal fibres (HC-PCF), a system that enables the use of low modulation voltages and offers the prospect of miniaturised vapour-based electro-optical devices. Narrow spectroscopic features caused by the RF field are observed for modulation frequencies up to 500 MHz.

  3. Cathode materials review

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, Claus, E-mail: danielc@ornl.gov; Mohanty, Debasish, E-mail: danielc@ornl.gov; Li, Jianlin, E-mail: danielc@ornl.gov; Wood, David L., E-mail: danielc@ornl.gov [Oak Ridge National Laboratory, 1 Bethel Valley Road, MS6472 Oak Ridge, TN 37831-6472 (United States)

    2014-06-16

    The electrochemical potential of cathode materials defines the positive side of the terminal voltage of a battery. Traditionally, cathode materials are the energy-limiting or voltage-limiting electrode. One of the first electrochemical batteries, the voltaic pile invented by Alessandro Volta in 1800 (Phil. Trans. Roy. Soc. 90, 403-431) had a copper-zinc galvanic element with a terminal voltage of 0.76 V. Since then, the research community has increased capacity and voltage for primary (nonrechargeable) batteries and round-trip efficiency for secondary (rechargeable) batteries. Successful secondary batteries have been the lead-acid with a lead oxide cathode and a terminal voltage of 2.1 V and later the NiCd with a nickel(III) oxide-hydroxide cathode and a 1.2 V terminal voltage. The relatively low voltage of those aqueous systems and the low round-trip efficiency due to activation energies in the conversion reactions limited their use. In 1976, Wittingham (J. Electrochem. Soc., 123, 315) and Besenhard (J. Power Sources 1(3), 267) finally enabled highly reversible redox reactions by intercalation of lithium ions instead of by chemical conversion. In 1980, Goodenough and Mizushima (Mater. Res. Bull. 15, 783-789) demonstrated a high-energy and high-power LiCoO{sub 2} cathode, allowing for an increase of terminal voltage far beyond 3 V. Over the past four decades, the international research community has further developed cathode materials of many varieties. Current state-of-the-art cathodes demonstrate voltages beyond any known electrolyte stability window, bringing electrolyte research once again to the forefront of battery research.

  4. Cathode materials review

    Science.gov (United States)

    Daniel, Claus; Mohanty, Debasish; Li, Jianlin; Wood, David L.

    2014-06-01

    The electrochemical potential of cathode materials defines the positive side of the terminal voltage of a battery. Traditionally, cathode materials are the energy-limiting or voltage-limiting electrode. One of the first electrochemical batteries, the voltaic pile invented by Alessandro Volta in 1800 (Phil. Trans. Roy. Soc. 90, 403-431) had a copper-zinc galvanic element with a terminal voltage of 0.76 V. Since then, the research community has increased capacity and voltage for primary (nonrechargeable) batteries and round-trip efficiency for secondary (rechargeable) batteries. Successful secondary batteries have been the lead-acid with a lead oxide cathode and a terminal voltage of 2.1 V and later the NiCd with a nickel(III) oxide-hydroxide cathode and a 1.2 V terminal voltage. The relatively low voltage of those aqueous systems and the low round-trip efficiency due to activation energies in the conversion reactions limited their use. In 1976, Wittingham (J. Electrochem. Soc., 123, 315) and Besenhard (J. Power Sources 1(3), 267) finally enabled highly reversible redox reactions by intercalation of lithium ions instead of by chemical conversion. In 1980, Goodenough and Mizushima (Mater. Res. Bull. 15, 783-789) demonstrated a high-energy and high-power LiCoO2 cathode, allowing for an increase of terminal voltage far beyond 3 V. Over the past four decades, the international research community has further developed cathode materials of many varieties. Current state-of-the-art cathodes demonstrate voltages beyond any known electrolyte stability window, bringing electrolyte research once again to the forefront of battery research.

  5. Mercury - the hollow planet

    Science.gov (United States)

    Rothery, D. A.

    2012-04-01

    Mercury is turning out to be a planet characterized by various kinds of endogenous hole (discounting impact craters), which are compared here. These include volcanic vents and collapse features on horizontal scales of tens of km, and smaller scale depressions ('hollows') associated with bright crater-floor deposits (BCFD). The BCFD hollows are tens of metres deep and kilometres or less across and are characteristically flat-floored, with steep, scalloped walls. Their form suggests that they most likely result from removal of surface material by some kind of mass-wasting process, probably associated with volume-loss caused by removal (via sublimation?) of a volatile component. These do not appear to be primarily a result of undermining. Determining the composition of the high-albedo bluish surface coating in BCFDs will be a key goal for BepiColombo instruments such as MIXS (Mercury Imaging Xray Spectrometer). In contrast, collapse features are non-circular rimless pits, typically on crater floors (pit-floor craters), whose morphology suggests collapse into void spaces left by magma withdrawal. This could be by drainage of either erupted lava (or impact melt) or of shallowly-intruded magma. Unlike the much smaller-scale BCFD hollows, these 'collapse pit' features tend to lack extensive flat floors and instead tend to be close to triangular in cross-section with inward slopes near to the critical angle of repose. The different scale and morphology of BCFD hollows and collapse pits argues for quite different modes of origin. However, BCFD hollows adjacent to and within the collapse pit inside Scarlatti crater suggest that the volatile material whose loss was responsible for the growth of the hollows may have been emplaced in association with the magma whose drainage caused the main collapse. Another kind of volcanic collapse can be seen within a 25 km-wide volcanic vent outside the southern rim of the Caloris basin (22.5° N, 146.1° E), on a 28 m/pixel MDIS NAC image

  6. Hollow Polyimide Microspheres

    Science.gov (United States)

    Weiser, Erik S. (Inventor); St.Clair, Terry L. (Inventor); Echigo, Yoshiaki (Inventor); Kaneshiro, Hisayasu (Inventor)

    2001-01-01

    A shaped article composed of an aromatic polyimide has a hollow, essentially spherical structure and a particle size of about 100 to about 1500 micrometers, a density of about 1 to about 6 pounds/cubic foot and a volume change of 1 to about 20% by a pressure treatment of 30 psi for 10 minutes at room temperature. A syntactic foam, made of a multiplicity of the shaped articles which are bonded together by a matrix resin to form an integral composite structure, has a density of about 3 to about 30 pounds/cubic feet and a compression strength of about 100 to about 1400 pounds/sq inch.

  7. Birefringent hollow core fibers

    DEFF Research Database (Denmark)

    Roberts, John

    2007-01-01

    Hollow core photonic crystal fiber (HC-PCF), fabricated according to a nominally non-birefringent design, shows a degree of un-controlled birefringence or polarization mode dispersion far in excess of conventional non polarization maintaining fibers. This can degrade the output pulse in many...... and an increased overlap between the polarization modes at the glass interfaces. The interplay between these effects leads to a wavelength for optimum polarization maintenance, lambda(PM), which is detuned from the wavelength of highest birefringence. By a suitable fiber design involving antiresonance of the core...

  8. Birefringent hollow core fibers

    DEFF Research Database (Denmark)

    Roberts, John

    2007-01-01

    Hollow core photonic crystal fiber (HC-PCF), fabricated according to a nominally non-birefringent design, shows a degree of un-controlled birefringence or polarization mode dispersion far in excess of conventional non polarization maintaining fibers. This can degrade the output pulse in many...... and an increased overlap between the polarization modes at the glass interfaces. The interplay between these effects leads to a wavelength for optimum polarization maintenance, lambda(PM), which is detuned from the wavelength of highest birefringence. By a suitable fiber design involving antiresonance of the core...

  9. Development of potassium ion conducting hollow glass fibers. [potassium sulfur battery

    Science.gov (United States)

    Tsang, F. Y.

    1974-01-01

    Potassium ion conducting glasses, chemically resistant to potassium, potassium sulfide and sulfur, were made and their possible utility as the membrane material for a potassium/sulfur battery was evaluated. At least one satisfactory candidate was found. It possesses an electrical resistance which makes it usable as a membrane in the form of a fine hollow fiber. It's chemical and electrochemical resistances are excellent. The other aspects of the possible potassium sulfur battery utilizing such fine hollow fibers, including the header (or tube sheet) and a cathode current collector were studied. Several cathode materials were found to be satisfactory. None of the tube sheet materials studied possessed all the desired properties. Multi-fiber cells had very limited life-time due to physical failure of fibers at the fiber/tube sheet junctions.

  10. Filtered cathodic arc source

    Science.gov (United States)

    Falabella, Steven; Sanders, David M.

    1994-01-01

    A continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45.degree. to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles.

  11. Study of electrodepositing Au on hollow polystyrene microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Jin Rong [Research Center of Laser Fusion, China Academy of Engineering Physics, P.O. Box 919-987, Mianyang 621900 (China); School of Material Science and Engineering, Xihua University, Chengdu 610039 (China); Zhang Yunwang [Research Center of Laser Fusion, China Academy of Engineering Physics, P.O. Box 919-987, Mianyang 621900 (China); Zhang Lin, E-mail: zhlmy@sina.com [Research Center of Laser Fusion, China Academy of Engineering Physics, P.O. Box 919-987, Mianyang 621900 (China); Wei Chengfu, E-mail: wcf@mail.xhu.edu.cn [School of Material Science and Engineering, Xihua University, Chengdu 610039 (China); Guo Jianjun [School of Material Science and Engineering, Xihua University, Chengdu 610039 (China)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer The gold is electrodeposited on hollow polystyrene microspheres by self-designed setup in this paper. Black-Right-Pointing-Pointer The Au electrodeposit is finer and more uniform on account of the microspheres freely move on the cathode. Black-Right-Pointing-Pointer The morphology, thickness and roughness of Au electrodeposits were analyzed using Scanning Electron Microscopy, X-ray diffraction and Atomic Force Microscope, respectively. - Abstract: The electrodeposited Au film on hollow polystyrene microspheres is successfully prepared by a set of self-designed device. The film is more compact and uniform on account of the microspheres freely moving on the cathode. These experiments mainly focus on the analysis of spherical symmetry, thickness and roughness of electrodeposited Au film. Under conditions of current density 1.5-3 mA cm{sup -2}, the temperature 25 Degree-Sign C, and the stirring rate 150 rpm, the electrodeposited microsphere is coated with a considerably orbicular film. The morphology, thickness and roughness of Au electrodeposits are studied by Scanning Electron Microscopy (SEM), X-ray diffraction (XRD) and Atomic Force Microscope (AFM), respectively.

  12. Excimer Emission from Direct Current Microhollow Cathode Discharges

    Science.gov (United States)

    Stark, R. H.; El-Habachi, A.; Shi, W.; Schoenbach, K. H.

    1997-10-01

    Reducing the dimensions of the cathode hole to less than 200 micrometer has allowed us to operate argon discharges in a hollow cathode discharge mode, dc, up to pressures of one atmosphere. Spectral measurements in the VUV have shown that the microdischarges are strong sources of argon excimer radiation at 128 nm. This points to a nonthermal electron energy distribution where a considerable part of the electrons have energies exceeding the ionization potential of argon. Whereas the discharges in argon were dc up to atmospheric pressure, discharges in xenon became unstable at pressures exceeding 300 Torr, and current spikes were observed. The xenon excimer emission at 172 nm, however, was found to increase, independent of the mode, dc or pulsed, when the pressure was increased to one atmosphere. The microdischarges have resistive current-voltage characteristics. This has allowed us to generate simple arrays of these discharges, with possible applications as flat panel excimer lamps.

  13. Advanced Cathode Electrolyzer (ACE) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is a static, cathode-fed, 2000 psi, balanced-pressure Advanced Cathode Electrolyzer (ACE) based on PEM electrolysis technology. It...

  14. Advanced Cathode Electrolyzer (ACE) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is a static, cathode-fed, 2000 psi, balanced-pressure Advanced Cathode Electrolyzer (ACE) based on PEM electrolysis technology. It...

  15. Highly Efficient Micro Cathode Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek Company, Inc. proposes to develop a micro thermionic cathode that requires extremely low power and provides long lifetime. The basis for the cathode is a...

  16. Miniaturized cathodic arc plasma source

    Science.gov (United States)

    Anders, Andre; MacGill, Robert A.

    2003-04-15

    A cathodic arc plasma source has an anode formed of a plurality of spaced baffles which extend beyond the active cathode surface of the cathode. With the open baffle structure of the anode, most macroparticles pass through the gaps between the baffles and reflect off the baffles out of the plasma stream that enters a filter. Thus the anode not only has an electrical function but serves as a prefilter. The cathode has a small diameter, e.g. a rod of about 1/4 inch (6.25 mm) diameter. Thus the plasma source output is well localized, even with cathode spot movement which is limited in area, so that it effectively couples into a miniaturized filter. With a small area cathode, the material eroded from the cathode needs to be replaced to maintain plasma production. Therefore, the source includes a cathode advancement or feed mechanism coupled to cathode rod. The cathode also requires a cooling mechanism. The movable cathode rod is housed in a cooled metal shield or tube which serves as both a current conductor, thus reducing ohmic heat produced in the cathode, and as the heat sink for heat generated at or near the cathode. Cooling of the cathode housing tube is done by contact with coolant at a place remote from the active cathode surface. The source is operated in pulsed mode at relatively high currents, about 1 kA. The high arc current can also be used to operate the magnetic filter. A cathodic arc plasma deposition system using this source can be used for the deposition of ultrathin amorphous hard carbon (a-C) films for the magnetic storage industry.

  17. Cathode material for lithium batteries

    Science.gov (United States)

    Park, Sang-Ho; Amine, Khalil

    2013-07-23

    A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

  18. Electrochemical cells and cathode materials

    Energy Technology Data Exchange (ETDEWEB)

    Skarstad, P.M.; Untereker, D.F.; Meritt, D.R.

    1988-08-02

    This patent describes an electrochemical cell comprising anode and cathode means in operative relationship. The cathode means comprising a cathode material comprised of, at least in part: a halogen component selected from the group consisting of iodine, bromine, iodine bromide and mixtures thereof, and poly(ethylene oxide), at least in part.

  19. SOFC Cathode Mechanisms

    DEFF Research Database (Denmark)

    Jacobsen, Torben; Zachau-Christiansen, Birgit; Bay, Lasse

    1996-01-01

    The transient response of SOFC oxygen cathodes shows a characteristic inductive hysteresis and correspondingly the impedance diagram combines one or two capacitive arcs with a low frequency inductive arc. These features are discussed on the basis of a three step reaction sequence taken from...

  20. Smart cathodic protection systems

    NARCIS (Netherlands)

    Polder, R.B.; Leggedoor, J.; Schuten, G.; Sajna, S.; Kranjc, A.

    2010-01-01

    Cathodic protection delivers corrosion protection in concrete structures exposed to aggressive environments, e.g. in de-icing salt and marine climates. Working lives of a large number of CP systems are at least more than 13 years and probably more than 25 years, provided a minimum level of maintenan

  1. Electromagnetically induced transparency in Rb-filled coated hollow-core photonic crystal fiber

    Science.gov (United States)

    Light, P. S.; Benabid, F.; Couny, F.; Maric, M.; Luiten, A. N.

    2007-05-01

    We report the observation of lambda-configuration electromagnetically induced transparency as well as optical pumping in rubidium-filled kagome-structure hollow-coated-core photonic crystal fiber. We show that a polydimethylsiloxane coating of the fiber core reduces the linewidth of the transparency below that which could be expected for an uncoated fiber. The measured 6 MHz linewidth was dominated by optical broadening.

  2. Invited article: physical and chemical analyses of impregnated cathodes operated in a plasma environment.

    Science.gov (United States)

    Sengupta, Anita; Kulleck, James; Hill, Norm; Ohlinger, Wayne

    2008-11-01

    Destructive analyses of impregnated-cathode assemblies from an ion thruster life test were performed to characterize erosion and degradation after 30,472 h of operation. Post-test inspection of each cathode included examination of the emitter (insert), orifice plate, cathode tube, heater, anode assembly, insulator, and propellant isolator. The discharge-cathode assembly experienced significant erosion due to ion sputtering from the discharge plasma. The keeper electrode plate was removed and the heater and orifice plate were heavily eroded at the conclusion of the test. Had the test continued, these processes would likely have led to cathode failure. The discharge cathode insert experienced significant tungsten transport and temperature dependent barium oxide depletion within the matrix. Using barium depletion semiempirical relations developed by Palluel and Shroff, it is estimated that 25,000 h of operation remained in the discharge insert at the conclusion of the test. In contrast, the neutralizer insert exhibited significantly less tungsten transport and barium oxide depletion consistent with its lower current operation. The neutralizer was estimated to have 140,000 h of insert life remaining at the conclusion of the test. Neither insert had evidence of tungstate or oxide layer formation, previously known to have impeded cathode ignition and operation in similar long duration hollow-cathode tests. The neutralizer cathode was in excellent condition at the conclusion of the test with the exception of keeper tube erosion from direct plume-ion impingement, a previously underappreciated life-limiting mechanism. The most critical finding from the test was a power dependent deposition process within the neutralizer-cathode orifice. The process manifested at low-power operation and led to the production of energetic ions in the neutralizer plume, a potential life-limiting process for the neutralizer. Subsequent return of the engine and neutralizer operation to full

  3. Cathodic Cage Plasma Nitriding of Ti6Al4V Alloy

    OpenAIRE

    Ossowski, Maciej (OPI); Borowski, Tomasz; Michal TARNOWSKI; Tadeusz WIERZCHON

    2016-01-01

    Glow discharge nitriding is being used increasingly more often for modifying the properties of titanium and its alloys with the aim to increase their frictional wear resistance, fatigue strength, and, in the case of medical applications, to eliminate the metallosis effect. Unlike PVD methods, ion nitriding ensures the formation of diffusive layers with very good adhesion to the substrate, but which still have some disadvanteges such as the “edge effect” or “hollow cathode effect” which hinder...

  4. Understanding the role of different conductive polymers in improving the nanostructured sulfur cathode performance.

    Science.gov (United States)

    Li, Weiyang; Zhang, Qianfan; Zheng, Guangyuan; Seh, Zhi Wei; Yao, Hongbin; Cui, Yi

    2013-01-01

    Lithium sulfur batteries have brought significant advancement to the current state-of-art battery technologies because of their high theoretical specific energy, but their wide-scale implementation has been impeded by a series of challenges, especially the dissolution of intermediate polysulfides species into the electrolyte. Conductive polymers in combination with nanostructured sulfur have attracted great interest as promising matrices for the confinement of lithium polysulfides. However, the roles of different conductive polymers on the electrochemical performances of sulfur electrode remain elusive and poorly understood due to the vastly different structural configurations of conductive polymer-sulfur composites employed in previous studies. In this work, we systematically investigate the influence of different conductive polymers on the sulfur cathode based on conductive polymer-coated hollow sulfur nanospheres with high uniformity. Three of the most well-known conductive polymers, polyaniline (PANI), polypyrrole (PPY), and poly(3,4-ethylenedioxythiophene) (PEDOT), were coated, respectively, onto monodisperse hollow sulfur nanopsheres through a facile, versatile, and scalable polymerization process. The sulfur cathodes made from these well-defined sulfur nanoparticles act as ideal platforms to study and compare how coating thickness, chemical bonding, and the conductivity of the polymers affected the sulfur cathode performances from both experimental observations and theoretical simulations. We found that the capability of these three polymers in improving long-term cycling stability and high-rate performance of the sulfur cathode decreased in the order of PEDOT > PPY > PANI. High specific capacities and excellent cycle life were demonstrated for sulfur cathodes made from these conductive polymer-coated hollow sulfur nanospheres.

  5. RAYLEIGH WAVE STUDIES OF CATHODIC H-CHARGING OF Fe

    OpenAIRE

    Lunarska, E.; Fiore, N.

    1981-01-01

    The attenuation of 2-6 MHz Rayleigh waves /RW/ was measured in sheet samples of Fe which were undergoing electrolytic charging with H. The cathodic polarization and As2O3 addition into electrolyte were found to effect the attenuation and velocity of the surface waves. The attenuation changes were retarded by the deposition of a thin /2µm/ layer of Cu on the Fe surface, with the Cu acting as a H-permeation barrier. The decrease in attenuation was caused by the entry of H into solid solution at...

  6. Switching a Nanocluster Core from Hollow to Non-hollow

    KAUST Repository

    Bootharaju, Megalamane Siddaramappa

    2016-03-24

    Modulating the structure-property relationship in atomically precise nanoclusters (NCs) is vital for developing novel NC materials and advancing their applications. While promising biphasic ligand-exchange (LE) strategies have been developed primarily to attain novel NCs, understanding the mechanistic aspects involved in tuning the core and the ligand-shell of NCs in such biphasic processes is challenging. Here, we design a single phase LE process that enabled us to elucidate the mechanism of how a hollow NC (e.g., [Ag44(SR)30]4-, -SR: thiolate) converts into a non-hollow NC (e.g., [Ag25(SR)18]-), and vice versa. Our study reveals that the complete LE of the hollow [Ag44(SPhF)30]4- NCs (–SPhF: 4-fluorobenzenethiolate) with incoming 2,4-dimethylbenzenethiol (HSPhMe2) induced distortions in the Ag44 structure forming the non-hollow [Ag25(SPhMe2)18]- by a disproportionation mechanism. While the reverse reaction of [Ag25(SPhMe2)18]- with HSPhF prompted an unusual dimerization of Ag25, followed by a rearrangement step that reproduces the original [Ag44(SPhF)30]4-. Remarkably, both the forward and the backward reactions proceed through similar size intermediates that seem to be governed by the boundary conditions set by the thermodynamic and electronic stability of the hollow and non-hollow metal cores. Furthermore, the resizing of NCs highlights the surprisingly long-range effect of the ligands which are felt by atoms far deep in the metal core, thus opening a new path for controlling the structural evolution of nanoparticles.

  7. A 50 MHz System for GMRT

    CERN Document Server

    Shankar, N Udaya; Amiri, Shahram; Somashekar, R; Girish, B S; Laus, Wences; Nayak, Arvind

    2009-01-01

    This paper describes a 50 MHz system being developed for GMRT to provide imaging capability in the frequency range 30-90MHz. Due to its larger collecting area and higher antenna efficiency, the low frequency GMRT system will be several times more sensitive than the present 74 MHz VLA system and is likely to remain a competitive instrument in this frequency band. In the first phase of this project, receiver systems consisting of V-dipole feeds and front-ends have been installed on four of the thirty GMRT antennas. Test observations were carried out on a number of bright 3C sources. The initial results are encouraging. This paper will also describe results of simultaneous observations carried out using the existing GMRT correlator, the new GMRT software correlator and a system employing digitization and direct recording of signals at two antenna bases.

  8. Analyses of 476 MHz and 952 MHz Crab Cavities for JLAB Electron Ion Collider

    Energy Technology Data Exchange (ETDEWEB)

    Park, HyeKyoung [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Old Dominion Univ., Norfolk, VA (United States); Castilla, Alejandro [Old Dominion Univ., Norfolk, VA (United States); Delayen, Jean R. [Old Dominion Univ., Norfolk, VA (United States); De Silva, Subashini U. [Old Dominion Univ., Norfolk, VA (United States); Morozov, Vasiliy [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-05-01

    The Center for Accelerator Science at Old Dominion University has designed, fabricated and successfully tested a crab cavity for Electron Ion Collider at Jefferson Lab (JLEIC) [1]. This proof-of-principle cavity was based on the earlier MEIC design which used 748.5 MHz RF system. The updated JLEIC (called MEIC earlier) design [2] utilizes the components from PEP-II. It results in the change on the bunch repetition rate of stored beam to 476.3 MHz. The ion ring collider will eventually require 952.6 MHz crab cavities. This paper will present the analyses of crab cavities of both 476 MHz and 952 MHz options. It compares advantages and disadvantages of the options which provide the JLEIC design team important technical information for a system down selection.

  9. Quartz antenna with hollow conductor

    Science.gov (United States)

    Leung, Ka-Ngo; Benabou, Elie

    2002-01-01

    A radio frequency (RF) antenna for plasma ion sources is formed of a hollow metal conductor tube disposed within a glass tube. The hollow metal tubular conductor has an internal flow channel so that there will be no coolant leakage if the outer glass tube of the antenna breaks. A portion of the RF antenna is formed into a coil; the antenna is used for inductively coupling RF power to a plasma in an ion source chamber. The antenna is made by first inserting the metal tube inside the glass tube, and then forming the glass/metal composite tube into the desired coil shape.

  10. Hollow waveguide for urology treatment

    Science.gov (United States)

    Jelínková, H.; Němec, M.; Koranda, P.; Pokorný, J.; Kőhler, O.; Drlík, P.; Miyagi, M.; Iwai, K.; Matsuura, Y.

    2010-02-01

    The aim of our work was the application of the special sealed hollow waveguide system for the urology treatment - In our experimental study we have compared the effects of Ho:YAG (wavelength 2100 nm) and Er:YAG (wavelength 2940 nm) laser radiation both on human urinary stones (or compressed plaster samples which serve as a model) fragmentation and soft ureter tissue incision in vitro. Cyclic Olefin Polymer - coated silver (COP/Ag) hollow glass waveguides with inner and outer diameters 700 and 850 μm, respectively, were used for the experiment. To prevent any liquid to diminish and stop the transmission, the waveguide termination was utilized.

  11. Controlled synthesis of double-wall a-FePO4 nanotubes and their LIB cathode properties.

    Science.gov (United States)

    Cai, Ren; Liu, Hai; Zhang, Wenyu; Tan, Huiteng; Yang, Dan; Huang, Yizhong; Hng, Huey Hoon; Lim, Tuti Mariana; Yan, Qingyu

    2013-04-08

    Double-wall amorphous FePO4 nanotubes are prepared by an oil-phase chemical route. The inward diffusion of vacancies and outward diffusion of ions through passivation layers result in double-wall nanotubes with thin walls. Such a process can be extended to prepare hollow polydedral nanocrystals and hollow ellipsoids. The double-wall FePO4 nanotubes show interesting cathode performance in Li ion batteries. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Cesium telluride cathodes for the next generation of high-average current high-brightness photoinjectors

    Energy Technology Data Exchange (ETDEWEB)

    Filippetto, D., E-mail: dfilippetto@lbl.gov; Qian, H.; Sannibale, F. [Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, California 94720 (United States)

    2015-07-27

    We report on the performances of a Cs{sub 2}Te photocathode under extreme conditions of high peak time-dependent accelerating fields, continuous wave operations, and MHz pulse extraction with up to 0.3 mA average current. The measurements, performed in a normal conducting cavity, show extended lifetime and robustness, elucidate the main mechanisms for cathode degradation, and set the required system vacuum performance for compatibility with the operations of a high average power X-ray free electron laser user facility, opening the doors to the next generation of MHz-scale ultrafast scientific instruments.

  13. Waarde verlenging 2100 MHz-vergunningen

    NARCIS (Netherlands)

    M. Kerste; W. Rougoor; J. Poort

    2015-01-01

    Op 31 december 2016 lopen de huidige 2100 MHz-vergunningen van KPN, Vodafone en T-Mobile af. Deze vergunningen worden verlengd, in beginsel tot 1 januari 2021. Op grond van het geldende reguleringskader is de vergunninghouder bij verlenging van een vergunning een vergoeding aan de Staat verschuldigd

  14. 47 CFR 15.245 - Operation within the bands 902-928 MHz, 2435-2465 MHz, 5785-5815 MHz, 10500-10550 MHz, and 24075...

    Science.gov (United States)

    2010-10-01

    ... limited to intentional radiators used as field disturbance sensors, excluding perimeter protection systems... field disturbance sensors operating in the 24075-24175 MHz band and for other field disturbance sensors... disturbance sensors, 7.5 mV/m. (iii) Field disturbance sensors designed to be used in motor vehicles...

  15. BLAZAR SPECTRAL PROPERTIES AT 74 MHz

    Energy Technology Data Exchange (ETDEWEB)

    Massaro, F.; Funk, S. [SLAC National Laboratory and Kavli Institute for Particle Astrophysics and Cosmology, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Giroletti, M. [INAF Istituto di Radioastronomia, via Gobetti 101, I-40129 Bologna (Italy); Paggi, A.; D' Abrusco, R. [Harvard-Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Tosti, G. [Dipartimento di Fisica, Università degli Studi di Perugia, I-06123 Perugia (Italy)

    2013-10-01

    Blazars are the most extreme class of active galactic nuclei. Despite a previous investigation at 102 MHz for a small sample of BL Lac objects and our recent analysis of blazars detected in the Westerbork Northern Sky Survey, a systematic study of the blazar spectral properties at frequencies below 100 MHz has been never carried out. In this paper, we present the first analysis of the radio spectral behavior of blazars based on the recent Very Large Array Low-frequency Sky Survey (VLSS) at 74 MHz. We search for blazar counterparts in the VLSS catalog, confirming that they are detected at 74 MHz. We then show that blazars present radio-flat spectra (i.e., radio spectral indices of ∼0.5) when evaluated, which also about an order of magnitude in frequency lower than previous analyses. Finally, we discuss the implications of our findings in the context of the blazars-radio galaxies connection since the low-frequency radio data provide a new diagnostic tool to verify the expectations of the unification scenario for radio-loud active galaxies.

  16. Design of 162 MHz RF Experimental Cavity

    Institute of Scientific and Technical Information of China (English)

    YIN; Zhi-guo; CAO; Xue-long; GUO; Juan-juan; JI; Bin; FU; Xiao-liang; WEI; Jun-yi

    2015-01-01

    In this paper,a 162MHz RF experimental cavity is designed to study the multipacting multiplier effect of the medium and the metal electrode and its relationship with the plate surface characteristics,and to find out the method for inhibiting multipacting multiplier effects.The

  17. Nanostructured lanthanum manganate composite cathode

    DEFF Research Database (Denmark)

    Wang, Wei Guo; Liu, Yi-Lin; Barfod, Rasmus

    2005-01-01

    that the (La1-xSrx)(y)MnO3 +/-delta (LSM) composite cathodes consist of a network of homogenously distributed LSM, yttria-stabilized zirconia (YSZ), and pores. The individual grain size of LSM or YSZ is approximately 100 nm. The degree of contact between cathode and electrolyte is 39% on average. (c) 2005...

  18. Cathodic hydrodimerization of nitroolefins

    Directory of Open Access Journals (Sweden)

    Michael Weßling

    2015-07-01

    Full Text Available Nitroalkenes are easily accessible in high variety by condensation of aldehydes with aliphatic nitroalkanes. They belong to the group of activated alkenes that can be hydrodimerized by cathodic reduction. There are many olefins with different electron withdrawing groups used for cathodic hydrodimerization, but not much is known about the behaviour of the nitro group. Synthetic applications of this group could profit from the easy access to nitroolefins in large variety, the C–C bond formation with the introduction of two nitro groups in a 1,4-distance and the conversions of the nitro group by reduction to oximes and amines, the conversion into aldehydes and ketones via the Nef reaction and base catalyzed condensations at the acidic CH bond. Eight 1-aryl-2-nitro-1-propenes have been electrolyzed in an undivided electrolysis cell to afford 2,5-dinitro-3,4-diaryl hexanes in high yield. The 4-methoxy-, 4-trifluoromethyl-, 2-chloro- and 2,6-difluorophenyl group and furthermore the 2-furyl and 2-pyrrolyl group have been applied. The reaction is chemoselective as only the double bond but not the nitro group undergoes reaction, is regioselective as a ß,ß-coupling with regard to the nitro group and forms preferentially two out of six possible diastereomers as major products.

  19. Cathodic hydrodimerization of nitroolefins.

    Science.gov (United States)

    Weßling, Michael; Schäfer, Hans J

    2015-01-01

    Nitroalkenes are easily accessible in high variety by condensation of aldehydes with aliphatic nitroalkanes. They belong to the group of activated alkenes that can be hydrodimerized by cathodic reduction. There are many olefins with different electron withdrawing groups used for cathodic hydrodimerization, but not much is known about the behaviour of the nitro group. Synthetic applications of this group could profit from the easy access to nitroolefins in large variety, the C-C bond formation with the introduction of two nitro groups in a 1,4-distance and the conversions of the nitro group by reduction to oximes and amines, the conversion into aldehydes and ketones via the Nef reaction and base catalyzed condensations at the acidic CH bond. Eight 1-aryl-2-nitro-1-propenes have been electrolyzed in an undivided electrolysis cell to afford 2,5-dinitro-3,4-diaryl hexanes in high yield. The 4-methoxy-, 4-trifluoromethyl-, 2-chloro- and 2,6-difluorophenyl group and furthermore the 2-furyl and 2-pyrrolyl group have been applied. The reaction is chemoselective as only the double bond but not the nitro group undergoes reaction, is regioselective as a ß,ß-coupling with regard to the nitro group and forms preferentially two out of six possible diastereomers as major products.

  20. Hollow Porous Hierarchical-Structured 0.5Li2MnO3·0.5LiMn0.4Co0.3Ni0.3O2 as a High-Performance Cathode Material for Lithium-Ion Batteries.

    Science.gov (United States)

    Fu, Fang; Tang, Jiayu; Yao, Yuze; Shao, Minhua

    2016-10-05

    We report a novel hollow porous hierarchical-architectured 0.5Li2MnO3·0.5LiMn0.4Co0.3Ni0.3O2 (LLO) for lithium-ion batteries (LIBs). The obtained lithium-rich layered oxides possess a large inner cavity, a permeable porous shell, and excellent structural robustness. In LIBs, such unique features are favorable for fast Li(+) transportation and can provide sufficient contact between active materials and electrolytes, accommodate more Li(+), and improve the kinetics of the electrochemical reaction. The as-prepared LLO displays an extremely high initial discharge capacity (296.5 mAh g(-1) at 0.2 C), high rate capability (162.6 mAh g(-1) at 10 C), and excellent cycling stability (237.6 mAh g(-1) after 100 cycles at 0.5 C and 153.8 mAh g(-1) after 200 cycles at 10 C). These values are superior to most literature data.

  1. Preparation and electrochemical properties of carbon-coated LiFePO4 hollow nanofibers

    Science.gov (United States)

    Wei, Bin-bin; Wu, Yan-bo; Yu, Fang-yuan; Zhou, Ya-nan

    2016-04-01

    Carbon-coated LiFePO4 hollow nanofibers as cathode materials for Li-ion batteries were obtained by coaxial electrospinning. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Brunauer-Emmett-Teller specific surface area analysis, galvanostatic charge-discharge, and electrochemical impedance spectroscopy (EIS) were employed to investigate the crystalline structure, morphology, and electrochemical performance of the as-prepared hollow nanofibers. The results indicate that the carbon-coated LiFePO4 hollow nanofibers have good long-term cycling performance and good rate capability: at a current density of 0.2C (1.0C = 170 mA·g-1) in the voltage range of 2.5-4.2 V, the cathode materials achieve an initial discharge specific capacity of 153.16 mAh·g-1 with a first charge-discharge coulombic efficiency of more than 97%, as well as a high capacity retention of 99% after 10 cycles; moreover, the materials can retain a specific capacity of 135.68 mAh·g-1, even at 2C.

  2. Preparation and electrochemical properties of carbon-coated LiFePO4 hollow nanofibers

    Institute of Scientific and Technical Information of China (English)

    Bin-bin Wei; Yan-bo Wu; Fang-yuan Yu; Ya-nan Zhou

    2016-01-01

    Carbon-coated LiFePO4 hollow nanofibers as cathode materials for Li-ion batteries were obtained by coaxial electrospinning. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Brunauer–Emmett–Teller specific surface area analysis, galvanostatic charge–discharge, and electrochemical impedance spectroscopy (EIS) were employed to investigate the crystalline structure, morphology, and electrochemical performance of the as-prepared hollow nanofibers. The results indicate that the carbon-coated LiFePO4 hollow nanofibers have good long-term cycling performance and good rate capability:at a current density of 0.2C (1.0C=170 mA·g−1) in the voltage range of 2.5–4.2 V, the cathode materials achieve an initial discharge specific capacity of 153.16 mAh·g−1 with a first charge–discharge coulombic efficiency of more than 97%, as well as a high capacity retention of 99%after 10 cycles;moreover, the materi-als can retain a specific capacity of 135.68 mAh·g−1, even at 2C.

  3. 78 FR 51559 - Commercial Operations in the 1695-1710 MHz, 1755-1780 MHz, and 2155-2180 MHz Bands

    Science.gov (United States)

    2013-08-20

    ... shared channels used heavily for BAS, LTTS, and CARS. ] According to SBE, ``there is simply not enough residual spectrum available between 2025 MHz and 2095 MHz to permit [Electronic News Gathering] to continue..., and channel prioritization for the majority of Federal operations in the 1755-1850 MHz band to...

  4. Hollow waveguide cavity ringdown spectroscopy

    Science.gov (United States)

    Dreyer, Chris (Inventor); Mungas, Greg S. (Inventor)

    2012-01-01

    Laser light is confined in a hollow waveguide between two highly reflective mirrors. This waveguide cavity is used to conduct Cavity Ringdown Absorption Spectroscopy of loss mechanisms in the cavity including absorption or scattering by gases, liquid, solids, and/or optical elements.

  5. Erythrocyte-like hollow carbon capsules and their application in proton exchange membrane fuel cells.

    Science.gov (United States)

    Kim, Jung Ho; Yu, Jong-Sung

    2010-12-14

    Hierarchical nanostructured erythrocyte-like hollow carbon (EHC) with a hollow hemispherical macroporous core of ca. 230 nm in diameter and 30-40 nm thick mesoporous shell was synthesized and explored as a cathode catalyst support in a proton exchange membrane fuel cell (PEMFC). The morphology control of EHC was successfully achieved using solid core/mesoporous shell (SCMS) silica template and different styrene/furfuryl alcohol mixture compositions by a nanocasting method. The EHC-supported Pt (20 wt%) cathodes prepared have demonstrated markedly enhanced catalytic activity towards oxygen reduction reactions (ORRs) and greatly improved PEMFC polarization performance compared to carbon black Vulcan XC-72 (VC)-supported ones, probably due to the superb structural characteristics of the EHC such as uniform size, well-developed porosity, large specific surface area and pore volume. In particular, Pt/EHC cathodes exhibited ca. 30-60% higher ORR activity than a commercial Johnson Matthey Pt catalyst at a low catalyst loading of 0.2 mg Pt cm(-2).

  6. Materials characterization of impregnated W and W–Ir cathodes after oxygen poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Polk, James E., E-mail: james.e.polk@jpl.nasa.gov [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109 (United States); Capece, Angela M. [California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States)

    2015-05-30

    Highlights: • Impregnated W and W–Ir cathodes were operated with 100 ppm of oxygen in Xe gas. • High concentrations of oxygen accelerated the formation of tungstate layers. • The W–Ir emitter exhibited less erosion and redeposition at the upstream end. • Tungsten was preferentially transported in the insert plasma of the W–Ir cathode. - Abstract: Electric thrusters use hollow cathodes as the electron source for generating the plasma discharge and for beam neutralization. These cathodes contain porous tungsten emitters impregnated with BaO material to achieve a lower surface work function and are operated with xenon propellant. Oxygen contaminants in the xenon plasma can poison the emitter surface, resulting in a higher work function and increased operating temperature. This could lead directly to cathode failure by preventing discharge ignition or could accelerate evaporation of the BaO material. Exposures over hundreds of hours to very high levels of oxygen can result in increased temperatures, oxidation of the tungsten substrate, and the formation of surface layers of barium tungstates. In this work, we present results of a cathode test in which impregnated tungsten and tungsten–iridium emitters were operated with 100 ppm of oxygen in the xenon plasma for several hundred hours. The chemical and morphological changes were studied using scanning electron microscopy, energy dispersive spectroscopy, and laser profilometry. The results provide strong evidence that high concentrations of oxygen accelerate the formation of tungstate layers in both types of emitters, a phenomenon not inherent to normal cathode operation. Deposits of pure tungsten were observed on the W–Ir emitter, indicating that tungsten is preferentially removed from the surface and transported in the insert plasma. A W–Ir cathode surface will therefore evolve to a pure W composition, eliminating the work function benefit of W–Ir. However, the W–Ir emitter exhibited less erosion

  7. Hollow melon-seed-shaped lithium iron phosphate micro- and sub-micrometer plates for lithium-ion batteries.

    Science.gov (United States)

    Yang, Xian-Feng; Yang, Jin-Hua; Zhong, Yu Lin; Gariepy, Vincent; Trudeau, Michel L; Zaghib, Karim; Ying, Jackie Y

    2014-06-01

    Melon-seed-shaped LiFePO4 hollow micro- and sub-micrometer plates have been synthesized via a polyol-assisted hydrothermal method. The as-prepared LiFePO4 hollow materials were new with regard to their single-crystalline shells with large ac surfaces. Based on the detailed analysis of time-dependent studies, a possible growth mechanism was proposed involving nucleation, anisotropic growth, selective etching, and reversed recrystallization. The effects of polyol concentration, reaction temperature, and feeding sequence of precursors on the growth of LiFePO4 materials were investigated. The electrochemical properties of as-prepared LiFePO4 hollow materials were examined as cathode materials.

  8. The NATO III 5 MHz Distribution System

    Science.gov (United States)

    Vulcan, A.; Bloch, M.

    1981-01-01

    A high performance 5 MHz distribution system is described which has extremely low phase noise and jitter characteristics and provides multiple buffered outputs. The system is completely redundant with automatic switchover and is self-testing. Since the 5 MHz reference signals distributed by the NATO III distribution system are used for up-conversion and multiplicative functions, a high degree of phase stability and isolation between outputs is necessary. Unique circuit design and packaging concepts insure that the isolation between outputs is sufficient to quarantee a phase perturbation of less than 0.0016 deg when other outputs are open circuited, short circuited or terminated in 50 ohms. Circuit design techniques include high isolation cascode amplifiers. Negative feedback stabilizes system gain and minimizes circuit phase noise contributions. Balanced lines, in lieu of single ended coaxial transmission media, minimize pickup.

  9. Industrial application, 1MHz, quasi resonant converter

    OpenAIRE

    Carrasco Solís, Juan Manuel; Pérez Ridao, Francisco; Quero Reboul, José Manuel; Janer Jiménez, Carlos; García Franquelo, Leopoldo

    1993-01-01

    An industrial multi-output QRC converter is presented. Its main designing constraints are low cost, small in size, reduced EMI and EMC, high efficiency and severe dynamic behaviour in all outputs. Accomplishing this last restriction proved to be a difficult task. This has been done by means of a classical controller and cross regulation. The actual performance was tested on a 1MHz prototype rated at 50W. The low cost developed converter is characterized by its simplicity of design and operati...

  10. Efficient Overall Water-Splitting Electrocatalysis Using Lepidocrocite VOOH Hollow Nanospheres

    KAUST Repository

    Shi, Huanhuan

    2016-11-29

    Herein we report the control synthesis of lepidocrocite VOOH hollow nanospheres and further their applications in electrocatalytic water splitting for the first time. By tuning the surface area of the nanospheres, the optimal performance can be achieved with low overpotentials of 270 mV for the oxygen evolution reaction (OER) and 164 mV for the hydrogen evolution reaction (HER) at 10 mA cm-2 in 1 m KOH, respectively. Furthermore, when used as both the anode and cathode for overall water splitting, a low cell voltage of 1.62 V is required to reach the current density of 10 mA cm-2 , making the VOOH hollow nanospheres an efficient alternative to water splitting.

  11. Electrochemically Active Polymeric Hollow Fibers based on Poly(ether- b -amide)/Carbon Nanotubes

    KAUST Repository

    Cuevas, Carolina

    2017-09-18

    A simple and effective method to incorporate catalytic activity to a hollow fiber membrane is reported. Polyetherimide hollow fiber membranes were coated with a solution containing carboxyl-functionalized multi-walled carbon nanotubes and poly(ether-b-amide). Electron microscopy images confirmed the presence of a layer of percolating carbon nanotubes on the surface of the membranes. Cyclic voltammetry and linear swept voltammetry experiments showed that these membranes are able to drive the reactions of hydrogen evolution, and oxygen reduction, making them a cheaper, and greener substitute for platinum based cathodes in microbial bioelectrochemical systems. Water flux and molecular weight cut off experiments indicated that the electrochemically active coating layer does not affect the ultrafiltration performance of the membrane.

  12. Cathodic Cage Plasma Nitriding of Ti6Al4V Alloy

    Directory of Open Access Journals (Sweden)

    Maciej OSSOWSKI

    2016-05-01

    Full Text Available Glow discharge nitriding is being used increasingly more often for modifying the properties of titanium and its alloys with the aim to increase their frictional wear resistance, fatigue strength, and, in the case of medical applications, to eliminate the metallosis effect. Unlike PVD methods, ion nitriding ensures the formation of diffusive layers with very good adhesion to the substrate, but which still have some disadvanteges such as the “edge effect” or “hollow cathode effect” which hinders treatment of complex workpieces. The paper compares nitrided layers produced on Ti6Al4V alloy using two different types of nitriding processes. The first process is conventional dc plasma nitriding (DCPN where the samples were placed at the cathode potential, while the second one is a new method of cathodic cage plasma nitriding (CCPN process, where the substrate is insulated from the cathode and anode. The experiments have shown that the treatment conducted in a cathodic cage can be alternative for conventional ion nitriding, especially when used for small parts with complicated shapes used in the space or medical industry. DOI: http://dx.doi.org/10.5755/j01.ms.22.1.7343

  13. 78 FR 60271 - Hollow Dam Power Company; Ampersand Hollow Dam Hydro, LLC; Notice of Application for Transfer of...

    Science.gov (United States)

    2013-10-01

    ... Federal Energy Regulatory Commission Hollow Dam Power Company; Ampersand Hollow Dam Hydro, LLC; Notice of..., Hollow Dam Power Company (transferor) and Ampersand Hollow Dam Hydro, LLC (transferee) filed an application for transfer of license for the Hollow Dam Project, FERC No. 6972, located on the West Branch...

  14. Hollow chain-like beams

    CERN Document Server

    Cherepko, Dmitriy; Popkov, Ivan

    2012-01-01

    To generate hollow chain-like beams the diffraction of the first order Bessel beam by zone plate with two odd open Fresnel zone has been investigated. It has been shown that the capsules size is influenced by the number of the second odd open Fresnel zone and by the zone plate focal length. A hollow chain-like beam has been experimentally generated as a result of the first order Bessel beam diffraction by zone plate with the first and the ninth open Fresnel zones. The orbital angular momentum presence has been proved experimentally. The main features of the beam have been investigated. Sufficiently good agreement between experimental and numerically calculated results has been demonstrated.

  15. Fabrication of Metallic Hollow Nanoparticles

    Science.gov (United States)

    Kim, Jae-Woo (Inventor); Choi, Sr., Sang H. (Inventor); Lillehei, Peter T. (Inventor); Chu, Sang-Hyon (Inventor); Park, Yeonjoon (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)

    2016-01-01

    Metal and semiconductor nanoshells, particularly transition metal nanoshells, are fabricated using dendrimer molecules. Metallic colloids, metallic ions or semiconductors are attached to amine groups on the dendrimer surface in stabilized solution for the surface seeding method and the surface seedless method, respectively. Subsequently, the process is repeated with additional metallic ions or semiconductor, a stabilizer, and NaBH.sub.4 to increase the wall thickness of the metallic or semiconductor lining on the dendrimer surface. Metallic or semiconductor ions are automatically reduced on the metallic or semiconductor nanoparticles causing the formation of hollow metallic or semiconductor nanoparticles. The void size of the formed hollow nanoparticles depends on the dendrimer generation. The thickness of the metallic or semiconductor thin film around the dendrimer depends on the repetition times and the size of initial metallic or semiconductor seeds.

  16. Purification of nanoparticles by hollow fiber diafiltration

    Science.gov (United States)

    Veeken, J.

    2012-09-01

    Hollow Fiber Diafiltration (Hollow Fiber Tangential Flow Filtration) is an efficient and rapid alternative to traditional methods of nanoparticle purification such as ultracentrifugation, stirred cell filtration, dialysis or chromatography. Hollow Fiber Diafiltration can be used to purify a wide range of nanoparticles including liposomes, colloids, magnetic particles and nanotubes. Hollow Fiber Diafiltration is a membrane based method where pore size determines the retention or transmission of solution components. It is a flow process where the sample is gently circulated through a tubular membrane. With controlled replacement of the permeate or (dialysate), pure nanoparticles can be attained. Hollow Fiber Diafiltration can be directly scaled up from R&D volumes to production. By adding more membrane fibers and maintaining the operating parameters, large volumes can be processed in the same time with the same pressure, and flow dynamics as bench-scale volumes. Keywords: hollow fiber, Diafiltration, filtration, purification, tangential flow filtration.

  17. Hollow-core grating fiber

    Science.gov (United States)

    Barillé, R.; Tajalli, P.; Roy, P.; Ahmadi-kandjani, S.; Kucharski, S.; Ortyl, E.

    2012-02-01

    We propose a new type of hollow-core fiber where the propagation is ensured by a photoinduced self-pattern acting as a surface relief grating (SRG). The SRG is written by launching a suitable laser beam with proper polarization in a capillary glass fiber with the inner surface previously coated with an azopolymer thin film. Such a grating acts as a wavelength/angle dependant reflective mirror and enhances the confinement and the propagation of the light.

  18. High-power picosecond pulse delivery through hollow core photonic band gap fibers

    Science.gov (United States)

    Michieletto, Mattia; Johansen, Mette M.; Lyngsø, Jens K.; Lægsgaard, Jesper; Bang, Ole; Alkeskjold, Thomas T.

    2016-03-01

    We demonstrated robust and bend insensitive fiber delivery of high power laser with diffraction limited beam quality for two different kinds of hollow core band gap fibers. The light source for this experiment consists of ytterbium-doped double clad fiber aeroGAIN-ROD-PM85 in a high power amplifier setup. It provided 22ps pulses with a maximum average power of 95W, 40MHz repetition rate at 1032nm (~2.4μJ pulse energy), with M2 bend sensitivity. The fibers were coiled on 8 centimeters radius spools and even lower bending radii were present. In addition, stimulated rotational Raman scattering arising from nitrogen molecules was measured through a 42m long 19 cell hollow core fiber.

  19. Cyclodextrin purification with hollow fibers

    Energy Technology Data Exchange (ETDEWEB)

    Berthod, A. (Univ. de Lyon 1, Villeubranne Cedex (France)); Jin, Heng Liang,; Armstrong, D.W. (Univ. of Missouri, Rolla (USA))

    1991-01-01

    Cyclodextrins are cyclic 1-4 linked oligomers of {alpha}-D-glucopyranose prepared from starch hydrolysis through enzymatic reactions. Mixtures of the three main cyclodextrins (CD), {alpha}-, {beta}-, and {gamma}-CDs, are always produced. A possible facile purification process is proposed. Permeation through hollow fibers made of a perfluorinated ionomer membrane. Nafion type, is shown to be an effective way to separate {alpha}-CD from {beta}- and {gamma}-CD. {Alpha}-CD with 95% purity was obtained after permeation through a Nafion hollow fiber of an equimolar 0.02 M solution of the three CDs. The fiber had a 56 cm{sup 2}/cm{sup 3} surface area per volume ratio. Kinetic studies and continuous extraction experiments with a 2-m coiled fiber showed that it is possible to obtain a 11.5 g {alpha}-CD solution with 92.4% purity or a 0.6 g {alpha}-CD solution with 97.2% purity, depending on the flow rate. The transport of CDs through the membrane could be due to moving water pools inside the ionomer. The small {alpha}-CD fits easily in such pools when the large {beta}- and {gamma}-CDs are excluded by steric hindrance. Temperature raises increased the permeation rates while decreasing the selectivity. The process could be scaled-up associating hollow fibers in bundle.

  20. Space Charge Mitigation With Longitudinally Hollow Bunches

    CERN Multimedia

    Oeftiger, Adrian; Rumolo, Giovanni

    2016-01-01

    Hollow longitudinal phase space distributions have a flat profile and hence reduce the impact of transverse space charge. Dipolar parametric excitation with the phase loop feedback systems provides such hollow distributions under reproducible conditions. We present a procedure to create hollow bunches during the acceleration ramp of CERN’s PS Booster machine with minimal changes to the operational cycle. The improvements during the injection plateau of the downstream Proton Synchrotron are assessed in comparison to standard parabolic bunches.

  1. Space Charge Mitigation With Longitudinally Hollow Bunches

    CERN Document Server

    Oeftiger, Adrian; Rumolo, Giovanni; CERN. Geneva. ATS Department

    2016-01-01

    Suitably, hollow longitudinal phase space distributions have a flat profile and hence reduce the impact of transverse space charge. Dipolar parametric excitation with the phase loop feedback systems provides such hollow distributions under reproducible conditions. We present a procedure to create hollow bunches during the acceleration ramp of CERN’s PS Booster machine with minimal changes to the operational cycle. The improvements during the injection plateau of the downstream Proton Synchrotron are assessed in comparison to standard parabolic bunches.

  2. 47 CFR 15.242 - Operation in the bands 174-216 MHz and 470-668 MHz.

    Science.gov (United States)

    2010-10-01

    ... bands 174-216 MHz and 470-668 MHz. (a) The marketing and operation of intentional radiators under the... implementation of the digital television services. The operating frequencies of the part 15 devices may need...

  3. Liquid cathode primary batteries

    Science.gov (United States)

    Schlaikjer, Carl R.

    1985-03-01

    Lithium/liquid cathode/carbon primary batteries offer from 3 to 6 times the volumetric energy density of zinc/alkaline manganese cells, improved stability during elevated temperature storage, satisfactory operation at temperatures from -40 to +150 °C, and efficient discharge at moderate rates. he lithium/sulfur dioxide cell is the most efficient system at temperatures below 0 °C. Although chemical reactions leading to electrolyte degradation and lithium corrosion are known, the rates of these reactions are slow. While the normal temperature cell reaction produces lithium dithionite, discharge at 60 °C leads to a reduction in capacity due to side reactions involving sulfur dioxide and discharge intermediates. Lithium/thionyl chloride and lithium/sulfuryl chloride cells have the highest practical gravimetric and volumetric energy densities when compared with aqueous and most other nonaqueous systems. For thionyl chloride, discharge proceeds through a series of intermediates to sulfur, sulfur dioxide and lithium chloride. Catalysis, leading to improved rate capability and capacity, has been achieved. The causes of rapid reactions leading to thermal runaway are thought to be chemical in nature. Lithium/sulfuryl chloride cells, which produce sulfur dioxide and lithium chloride on discharge, experience more extensive anode corrosion. An inorganic cosolvent and suitable salt are capable of alleviating this corrosion. Calcium/oxyhalide cells have been studied because of their promise of increased safety without substantial sacrifice of energy density relative to lithium cells. Anode corrosion, particularly during discharge, has delayed practical development.

  4. Liquid cathode primary batteries

    Energy Technology Data Exchange (ETDEWEB)

    Schlaikjer, C.R.

    1985-01-15

    Lithium/liquid cathode/carbon primary batteries offer from 3 to 6 times the volumetric energy density of zinc/alkaline manganese cells, improved stability during elevated temperature storage, satisfactory operation at temperatures from -40 to +150/sup 0/C, and efficient discharge at moderate rates. The lithium/sulfur dioxide cell is the most efficient system at temperatures below 0/sup 0/C. Although chemical reactions leading to electrolyte degradation and lithium corrosion are known, the rates of these reactions are slow. While the normal temperature cell reaction produces lithium dithionite, discharge at 60/sup 0/C leads to a reduction in capacity due to side reactions involving sulfur dioxide and discharge intermediates. Lithium/thionyl chloride and lithium/sulfuryl chloride cells have the highest practical gravimetric and volumetric energy densities when compared with aqueous and most other nonaqueous systems. For thionyl chloride, discharge proceeds through a series of intermediates to sulfur, sulfur dioxide and lithium chloride. Catalysis, leading to improved rate capability and capacity, has been achieved. The causes of rapid reactions leading to thermal runaway are thought to be chemical in nature. Lithium/sulfuryl chloride cells, which produce sulfur dioxide and lithium chloride on discharge, experience more extensive anode corrosion. An inorganic cosolvent and suitable salt are capable of alleviating this corrosion. Calcium/oxyhalide cells have been studied because of their promise of increased safety without substantial sacrifice of energy density relative to lithium cells. Anode corrosion, particularly during discharge, has delayed practical development.

  5. Hollow fibers for compact infrared gas sensors

    Science.gov (United States)

    Lambrecht, A.; Hartwig, S.; Herbst, J.; Wöllenstein, J.

    2008-02-01

    Hollow fibers can be used for compact infrared gas sensors. The guided light is absorbed by the gas introduced into the hollow core. High sensitivity and a very small sampling volume can be achieved depending on fiber parameters i.e. attenuation, flexibility, and gas exchange rates. Different types of infrared hollow fibers including photonic bandgap fibers were characterized using quantum cascade lasers and thermal radiation sources. Obtained data are compared with available product specifications. Measurements with a compact fiber based ethanol sensor are compared with a system simulation. First results on the detection of trace amounts of the explosive material TATP using hollow fibers and QCL will be shown.

  6. BNl 703 MHz superconducting RF cavity testing

    Energy Technology Data Exchange (ETDEWEB)

    Sheehy, B.; Altinbas, Z.; Burrill, A.; Ben-Zvi, I.; Gassner, D.; Hahn, H.; Hammons, L.; Jamilkowski, J.; Kayran, D.; Kewisch, J.; Laloudakis, N.; Lederle, D.; Litvinenko, V.; McIntyre, G.; Pate, D.; Phillips, D.; Schultheiss, C.; Seda,T.; Than, R.; Xu, W.; Zaltsman, A.; Schultheiss, T.

    2011-03-28

    The BNL 5-cell, 703 MHz superconducting accelerating cavity has been installed in the high-current ERL experiment. This experiment will function as a proving ground for the development of high-current machines in general and is particularly targeted at beam development for an electron-ion collider (eRHIC). The cavity performed well in vertical tests, demonstrating gradients of 20 MV/m and a Q{sub 0} of 1e10. Here we will present its performance in the horizontal tests, and discuss technical issues involved in its implementation in the ERL.

  7. Experimental investigations of the nonlinear dynamics of a complex space-charge configuration inside and around a grid cathode with hole

    Science.gov (United States)

    Teodorescu-Soare, C. T.; Dimitriu, D. G.; Ionita, C.; Schrittwieser, R. W.

    2016-03-01

    By negatively biasing a metallic grid with a small hole, down to a critical value of the applied potential a complex space-charge structure appears inside and around the grid cathode. The static current-voltage characteristic of the discharge shows one or two current jumps (the number of current jumps depending on the working gas pressure), one of them being of hysteretic type. Electrical probe measurements show a positive potential inside the grid cathode with respect to the potential applied on it. This is interpreted as being due to the hollow cathode effect. Thus, the inner fireball appears around the virtual anode inside the grid cathode. For more negative potentials, the electrons inside the cathode reach sufficient energy to penetrate the inner sheath near the cathode, passing through the hole and giving rise to a second fireball-like structure located outside the cathode. This second structure interacts with the negative glow of the discharge. The recorded time series of the discharge current oscillations reveal strongly nonlinear dynamics of the complex space-charge structure: by changing the negative potential applied on the grid cathode, the structure passes through different dynamic states involving chaos, quasi-periodicity, intermittency and period-doubling bifurcations, appearing like a competition of different routes to chaos.

  8. Hollow system with fin. Transient Green function method combination for two hollow cylinders

    Directory of Open Access Journals (Sweden)

    Buikis Andris

    2017-01-01

    Full Text Available In this paper we develop mathematical model for three dimensional heat equation for the system with hollow wall and fin and construct its analytical solution for two hollow cylindrical sample. The method of solution is based on Green function method for one hollow cylinder. On the conjugation conditions between both hollow cylinders we construct solution for system wall with fin. As result we come to integral equation on the surface between both hollow cylinders. Solution is obtained in the form of second kind Fredholm integral equation. The generalizing of Green function method allows us to use Green function method for regular non-canonical domains.

  9. Small-size plasma diode with a transparent internal cathode for neutron generation

    Science.gov (United States)

    Shikanov, A. E.; Vovchenko, E. D.; Kozlovskii, K. I.; Shatokhin, V. L.

    2015-01-01

    A discharge plasma system for neutron generation based on the concept of inertial electrostatic confinement is considered. The system is made in the form of a gas-filled (1-60 Pa) diode with a composite hollow cathode placed at its center symmetrically to an embracing hollow cylindrical anode. Preionization of the discharge gap and an original design of the electrode system with a transparent central part make it possible to initiate a pulse high-voltage (100-150 kV) volume discharge in the ion oscillation mode. Estimates of the neutron emission in such a deuterium-filled diode show the feasibility of generating a pulse with a neutron yield on the order of 105 in the reaction D( d, n)3He, which is confirmed in experiments with an optimized geometry of the electrodes.

  10. Frequency Arrangement For 700 MHz Band

    Directory of Open Access Journals (Sweden)

    Ancans G.

    2015-02-01

    Full Text Available The 694-790 MHz (700 MHz band was allocated by the 2012 World Radiocommunication Conference (WRC-12 in ITU Region 1 (Europe included, to the mobile service on a co-primary basis with other services to which this band was allocated on the primary basis and identified for the International Mobile Telecommunications (IMT. At the same time, the countries of Region 1 will be able also to continue using these frequencies for their broadcasting services if necessary. This allocation will be effective immediately after 2015 World Radiocommunication Conference (WRC-15. In order to make the best possible use of this frequency band for mobile service, a worldwide harmonized frequency arrangement is to be prepared to allow for large economies of scale and international roaming as well as utilizing the available spectrum in the best possible way, minimizing possible interference between services, facilitating deployment and cross-border coordination. The authors analyze different possible frequency arrangements and conclude on the frequency arrangement most suitable for Europe.

  11. TEM Cell Testing of Cable Noise Reduction Techniques from 2 MHz to 200 MHz -- Part 2

    Science.gov (United States)

    Bradley, Arthur T.; Evans, William C.; Reed, Joshua L.; Shimp, Samuel K., III; Fitzpatrick, Fred D.

    2008-01-01

    This paper presents empirical results of cable noise reduction techniques as demonstrated in a TEM cell operating with radiated fields from 2 - 200 MHz. It is the second part of a two-paper series. The first paper discussed cable types and shield connections. In this second paper, the effects of load and source resistances and chassis connections are examined. For each topic, well established theories are compared to data from a real-world physical system. Finally, recommendations for minimizing cable susceptibility (and thus cable emissions) are presented. There are numerous papers and textbooks that present theoretical analyses of cable noise reduction techniques. However, empirical data is often targeted to low frequencies (e.g. 100 MHz). Additionally, a comprehensive study showing the relative effects of various noise reduction techniques is needed. These include the use of dedicated return wires, twisted wiring, cable shielding, shield connections, changing load or source impedances, and implementing load- or source-to-chassis isolation. We have created an experimental setup that emulates a real-world electrical system, while still allowing us to independently vary a host of parameters. The goal of the experiment was to determine the relative effectiveness of various noise reduction techniques when the cable is in the presence of radiated emissions from 2 MHz to 200 MHz.

  12. Analisis Kualitas Jaringan 2G Pada Frekuensi 900MHz Dan 1800MHz Di Area Purwokerto

    Directory of Open Access Journals (Sweden)

    Alfin Hikmaturokhman

    2013-11-01

    Full Text Available Teknologi 2G GSM masih banyak digunakan untuk komunikasi selular pada layanan suara maupun data. Performansi jaringan sangat berpengaruh terhadap layanan komunikasi yang digunakan. Drive test merupakan salah satu metode yang digunakan untuk mengamati performansi jaringan dari sisi penerima. Penelitian ini membahas tentang bagaimana cara pengamatan performasi jaringan dengan metode drive test single site. Parameter yang diamati untuk mengetahui performansi suatu jaringan 2G adalah Rx Level, Rx Qual, SQI dan Throughput. Rx Level yaitu digunakan untuk pengamatan level sinyal penerima dari BTS. Rx Qual digunakan untuk menentukan kualitas sinyal penerima. SQI merupakan nilai indikator dari kualitas layanan suara. Throughput menampilkan nilai pengamatan layanan data hasil download dan upload. Hasil pengamatan dari drive test single site ini memperoleh nilai level sinyal atau Rx Level ? -85 dBm dapat mencapai 80% untuk frekuensi 900 MHz sedangkan pada frekuensi 1800 MHz memperoleh 74,95%, Rx Qual dari range 0-3 memperoleh 26,58% pada frekuensi 900 MHz dan 33,81% pada frekuensi 1800 MHz. Nilai throughput maksimum dapat mencapai target 60 Kbps pada penggunaan download GPRS dan 90 Kbps untuk penggunaan download EDGE, sedangkan nilai throughput upload dapat mencapai 30 Kbps pada GPRS dan 60 Kbps pada EDGE. Nilai maksimum throughput download maupun upload pada jaringan 2G di BTS Teluk masih dalam keadaan normal dengan melihat hasil nilai maksimum throughput berdasarkan Key Performance Indicator (KPI.

  13. Traumatic and nontraumatic perforation of hollow viscera.

    Science.gov (United States)

    Espinoza, R; Rodríguez, A

    1997-12-01

    Hollow viscus injuries are usually managed with few complications. However, if their diagnosis is delayed, or if reparative suture closure should fail, the patient is placed at risk of multiple organ failure. This article presents diagnostic approaches, emphasizing imaging modalities, and therapeutic strategies for three clinical scenarios of hollow viscus perforation: 1) acute appendicitis, 2) gastroduodenal peptic ulcer disease, and 3) trauma.

  14. Adsorption characteristics of activated carbon hollow fibers

    OpenAIRE

    2009-01-01

    Carbon hollow fibers were prepared with regenerated cellulose or polysulfone hollow fibers by chemical activation using sodium phosphate dibasic followed by the carbonization process. The activation process increases the adsorption properties of fibers which is more prominent for active carbone fibers obtained from the cellulose precursor. Chemical activation with sodium phosphate dibasic produces an active carbon material with both mesopores and micropores.

  15. 47 CFR 101.69 - Transition of the 1850-1990 MHz, 2110-2150 MHz, and 2160-2200 MHz bands from the fixed microwave...

    Science.gov (United States)

    2010-10-01

    ..., and 2160-2200 MHz bands from the fixed microwave services to personal communications services and...) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Applications and Licenses License Transfers... MHz bands from the fixed microwave services to personal communications services and...

  16. Current self-limitation in a transverse nanosecond discharge with a slotted cathode

    Science.gov (United States)

    N, A. ASHURBEKOV; K, O. IMINOV; O, A. POPOV; G, S. SHAKHSINOV

    2017-03-01

    A high-voltage transverse pulsed nanosecond discharge with a slotted hollow cathode was found to be a source of high-energy (few kV) ribbon electron beams. Conditions for the formation and extinction of electron beams were experimentally studied in discharges in helium at pressures of 1–100 Torr. It was found that interaction of fast electrons with a non-uniform electric field near the slotted cathode led to limitation of the magnitude of the discharge current. A physical model was developed to describe the discharge current self-limitation that was in satisfactory agreement with the experimental results. Some technical solutions that are expected to increase the upper current limits in transverse nanosecond discharge are discussed.

  17. Reservoir Cathode for Electric Space Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a reservoir cathode to improve performance in both ion and Hall-effect thrusters. We propose to adapt our existing reservoir cathode technology to this...

  18. High-current-density, high brightness cathodes for free electron laser applications

    Energy Technology Data Exchange (ETDEWEB)

    Green, M.C. (Varian Associates, Palo Alto, CA (USA). Palo Alto Microwave Tube Div.)

    1987-06-01

    This report discusses the following topics: brightness and emittance of electron beams and cathodes; general requirements for cathodes in high brightness electron guns; candidate cathode types; plasma and field emission cathodes; true field emission cathodes; oxide cathodes; lanthanum hexaborides cathodes; laser driven thermionic cathodes; laser driven photocathodes; impregnated porous tungsten dispenser cathodes; and choice of best performing cathode types.

  19. Compact Miniaturized Antenna for 210 MHz RFID

    Science.gov (United States)

    Lee, Richard Q.; Chun, Kue

    2008-01-01

    This paper describes the design and simulation of a miniaturized square-ring antenna. The miniaturized antenna, with overall dimensions of approximately one tenth of a wavelength (0.1 ), was designed to operate at around 210 MHz, and was intended for radio-frequency identification (RFID) application. One unique feature of the design is the use of a parasitic element to improve the performance and impedance matching of the antenna. The use of parasitic elements to enhance the gain and bandwidth of patch antennas has been demonstrated and reported in the literature, but such use has never been applied to miniaturized antennas. In this work, we will present simulation results and discuss design parameters and their impact on the antenna performance.

  20. Mechanistic Enhancement of SOFC Cathode Durability

    Energy Technology Data Exchange (ETDEWEB)

    Wachsman, Eric [Univ. of Maryland, College Park, MD (United States)

    2016-02-01

    Durability of solid oxide fuel cells (SOFC) under “real world” conditions is an issue for commercial deployment. In particular cathode exposure to moisture, CO2, Cr vapor (from interconnects and BOP), and particulates results in long-term performance degradation issues. Here, we have conducted a multi-faceted fundamental investigation of the effect of these contaminants on cathode performance degradation mechanisms in order to establish cathode composition/structures and operational conditions to enhance cathode durability.

  1. Fabrication of functional hollow carbon spheres with large hollow interior as active colloidal catalysts

    Institute of Scientific and Technical Information of China (English)

    Qiang Sun; Guanghui Wang; Wencui Li; Xiangqian Zhang; Anhui Lu

    2012-01-01

    In this study,we have established a facile method to synthesize functional hollow carbon spheres with large hollow interior,which can act as active colloidal catalysts.The method includes the following steps:first,hollow polymer spheres with large hollow interior were prepared using sodium oleate as the hollow core generator,and 2,4-dihydroxybenzoic acid and hexamethylene tetramine (HMT) as the polymer precursors under hydrothermal conditions; Fe3+ or Ag+ cations were then introduced into the as-prepared hollow polymer spheres through the carboxyl groups; finally,the hollow polymer spheres can be pseudomorphically converted to hollow carbon spheres during pyrolysis process,meanwhile iron or silver nanoparticles can also be formed in the carbon shell simultaneously.The structures of the obtained functional hollow carbon spheres were characterized by TEM,XRD,and TG.As an example,Ag-doped hollow carbon spheres were used as colloid catalysts which showed high catalytic activity in 4-nitrophenol reduction reaction.

  2. Novel Cathodes Prepared by Impregnation Procedures

    Energy Technology Data Exchange (ETDEWEB)

    Eduardo Paz

    2006-09-30

    (1) We showed that similar results were obtained when using various LSM precursors to produce LSM-YSZ cathodes. (2) We showed that enhanced performance could be achieved by adding LSCo to LSMYSZ cathodes. (3) We have preliminary results showing that there is a slow deactivation with LSFYSZ cathodes.

  3. POROUS WALL, HOLLOW GLASS MICROSPHERES

    Energy Technology Data Exchange (ETDEWEB)

    Sexton, W.

    2012-06-30

    Hollow Glass Microspheres (HGM) is not a new technology. All one has to do is go to the internet and Google{trademark} HGM. Anyone can buy HGM and they have a wide variety of uses. HGM are usually between 1 to 100 microns in diameter, although their size can range from 100 nanometers to 5 millimeters in diameter. HGM are used as lightweight filler in composite materials such as syntactic foam and lightweight concrete. In 1968 a patent was issued to W. Beck of the 3M{trademark} Company for 'Glass Bubbles Prepared by Reheating Solid Glass Particles'. In 1983 P. Howell was issued a patent for 'Glass Bubbles of Increased Collapse Strength' and in 1988 H. Marshall was issued a patent for 'Glass Microbubbles'. Now Google{trademark}, Porous Wall, Hollow Glass Microspheres (PW-HGMs), the key words here are Porous Wall. Almost every article has its beginning with the research done at the Savannah River National Laboratory (SRNL). The Savannah River Site (SRS) where SRNL is located has a long and successful history of working with hydrogen and its isotopes for national security, energy, waste management and environmental remediation applications. This includes more than 30 years of experience developing, processing, and implementing special ceramics, including glasses for a variety of Department of Energy (DOE) missions. In the case of glasses, SRS and SRNL have been involved in both the science and engineering of vitreous or glass based systems. As a part of this glass experience and expertise, SRNL has developed a number of niches in the glass arena, one of which is the development of porous glass systems for a variety of applications. These porous glass systems include sol gel glasses, which include both xerogels and aerogels, as well as phase separated glass compositions, that can be subsequently treated to produce another unique type of porosity within the glass forms. The porous glasses can increase the surface area compared to &apos

  4. Hollow Micro-/Nanostructures: Synthesis and Applications

    KAUST Repository

    Lou, Xiong Wen (David)

    2008-11-03

    Hollow micro-nanostructures are of great interest in many current and emerging areas of technology. Perhaps the best-known example of the former is the use of fly-ash hollow particles generated from coal power plants as partial replacement for Portland cement, to produce concrete with enhanced strength and durability. This review is devoted to the progress made in the last decade in synthesis and applications of hollow micro-nanostructures. We present a comprehensive overview of synthetic strategies for hollow structures. These strategies are broadly categorized into four themes, which include well-established approaches, such as conventional hard-templating and soft-templating methods, as well as newly emerging methods based on sacrificial templating and template-free synthesis. Success in each has inspired multiple variations that continue to drive the rapid evolution of the field. The Review therefore focuses on the fundamentals of each process, pointing out advantages and disadvantages where appropriate. Strategies for generating more complex hollow structures, such as rattle-type and nonspherical hollow structures, are also discussed. Applications of hollow structures in lithium batteries, catalysis and sensing, and biomedical applications are reviewed. © 2008 WILEY-VCH Verlag GmbH & Co. KGaA,.

  5. TEM Cell Testing of Cable Noise Reduction Techniques From 2 MHz to 200 MHz - Part 1

    Science.gov (United States)

    Bradley, Arthur T.; Evans, William C.; Reed, Joshua L.; Shimp, Samuel K.; Fitzpatrick, Fred D.

    2008-01-01

    This paper presents empirical results of cable noise reduction techniques as demonstrated in a TEM cell operating with radiated fields from 2 - 200 MHz. It is the first part of a two-paper series. This first paper discusses cable types and shield connections. In the second paper, the effects of load and source resistances and chassis connections are examined. For each topic, well established theories are compared to data from a real-world physical system. Finally, recommendations for minimizing cable susceptibility (and thus cable emissions) are presented. There are numerous papers and textbooks that present theoretical analyses of cable noise reduction techniques. However, empirical data is often targeted to low frequencies (e.g. 100 MHz). Additionally, a comprehensive study showing the relative effects of various noise reduction techniques is needed. These include the use of dedicated return wires, twisted wiring, cable shielding, shield connections, changing load or source impedances, and implementing load- or source-to-chassis isolation. We have created an experimental setup that emulates a real-world electrical system, while still allowing us to independently vary a host of parameters. The goal of the experiment was to determine the relative effectiveness of various noise reduction techniques when the cable is in the presence of radiated emissions from 2 MHz to 200 MHz. The electronic system (Fig. 1) consisted of two Hammond shielded electrical enclosures, one containing the source resistance, and the other containing the load resistance. The boxes were mounted on a large aluminium plate acting as the chassis. Cables connecting the two boxes measured 81 cm in length and were attached to the boxes using standard D38999 military-style connectors. The test setup is shown in Fig. 2. Electromagnetic fields were created using an HP8657B signal generator, MiniCircuits ZHL-42W-SMA amplifier, and an EMCO 5103 TEM cell. Measurements were taken using an Agilent E4401B

  6. Potential GPRS 900/180-MHz and WCDMA 1900-MHz interference to medical devices.

    Science.gov (United States)

    Iskra, Steve; Thomas, Barry W; McKenzie, Ray; Rowley, Jack

    2007-10-01

    This study compared the potential for interference to medical devices from radio frequency (RF) fields radiated by GSM 900/1800-MHz, general packet radio service (GPRS) 900/1800-MHz, and wideband code division multiple access (WCDMA) 1900-MHz handsets. The study used a balanced half-wave dipole antenna, which was energized with a signal at the standard power level for each technology, and then brought towards the medical device while noting the distance at which interference became apparent. Additional testing was performed with signals that comply with the requirements of the international immunity standard to RF fields, IEC 61000-4-3. The testing provides a sense of the overall interference impact that GPRS and WCDMA (frequency division duplex) may have, relative to current mobile technologies, and to the internationally recognized standard for radiated RF immunity. Ten medical devices were tested: two pulse oximeters, a blood pressure monitor, a patient monitor, a humidifier, three models of cardiac defibrillator, and two models of infusion pump. Our conclusion from this and a related study on consumer devices is that WCDMA handsets are unlikely to be a significant interference threat to medical electronics at typical separation distances.

  7. Chromium:forsterite laser frequency comb stabilization and development of portable frequency references inside a hollow optical fiber

    Science.gov (United States)

    Thapa, Rajesh

    We have made significant accomplishments in the development of portable frequency standard inside hollow optical fibers. Such standards will improve portable optical frequency references available to the telecommunications industry. Our approach relies on the development of a stabilized Cr:forsterite laser to generate the frequency comb in the near-IR region. This laser is self referenced and locked to a CW laser which in turn is stabilized to a sub-Doppler feature of a molecular transition. The molecular transition is realized using a hollow core fiber filled with acetylene gas. We finally measured the absolute frequency of these molecular transitions to characterize the references. In this thesis, the major ideas, techniques and experimental results for the development and absolute frequency measurement of the portable frequency references are presented. A prism-based Cr:forsterite frequency comb is stabilized. We have effectively used the prism modulation along with power modulation inside the cavity in order to actively stabilize the frequency comb. We have also studied the carrier-envelope-offset frequency (f0) dynamics of the laser and its effect on laser stabilization. A reduction of f0 linewidth from ˜2 MHz to ˜20 kHz has also been observed. Both our in-loop and out-of-loop measurements of the comb stability showed that the comb is stable within a part in 1011 at 1-s gate time and is currently limited by our reference signal. In order to develop this portable frequency standard, saturated absorption spectroscopy is performed on the acetylene v1 + v3 band near 1532 nm inside different kinds of hollow optical fibers. The observed linewidths are a factor 2 narrower in the 20 mum fiber as compared to 10 mum fiber, and vary from 20-40 MHz depending on pressure and power. The 70 mum kagome fiber shows a further reduction in linewidth to less than 10 MHz. In order to seal the gas inside the hollow optical fiber, we have also developed a technique of splicing the

  8. Designing hollow nano gold golf balls.

    Science.gov (United States)

    Landon, Preston B; Mo, Alexander H; Zhang, Chen; Emerson, Chris D; Printz, Adam D; Gomez, Alan F; DeLaTorre, Christopher J; Colburn, David A M; Anzenberg, Paula; Eliceiri, Matthew; O'Connell, Connor; Lal, Ratnesh

    2014-07-09

    Hollow/porous nanoparticles, including nanocarriers, nanoshells, and mesoporous materials have applications in catalysis, photonics, biosensing, and delivery of theranostic agents. Using a hierarchical template synthesis scheme, we have synthesized a nanocarrier mimicking a golf ball, consisting of (i) solid silica core with a pitted gold surface and (ii) a hollow/porous gold shell without silica. The template consisted of 100 nm polystyrene beads attached to a larger silica core. Selective gold plating of the core followed by removal of the polystyrene beads produced a golf ball-like nanostructure with 100 nm pits. Dissolution of the silica core produced a hollow/porous golf ball-like nanostructure.

  9. Hollow Core, Whispering Gallery Resonator Sensors

    CERN Document Server

    Ward, Jonathan M; Chormaic, Síle Nic

    2014-01-01

    A review of hollow core whispering gallery resonators (WGRs)is given. After a short introduction to the topic of whispering gallery resonators we provide a description of whispering gallery modes in hollow or liquid core WGRs. Next, whispering gallery mode (WGM) sensing mechanisms are outlined and some fabrication methods for microbubbles, microcapillaries and other tubular WGM devices are discussed. We then focus on the most common applications of hollow core WGRs, namely refractive index and temperature sensing, gas sensing, force sensing, biosensing, and lasing. The review highlights some of the key papers in this field and gives the reader a general overview of the current state-of-the-art.

  10. Analysis of MESSENGER high-resolution images of Mercury's hollows and implications for hollow formation

    Science.gov (United States)

    Blewett, David T.; Stadermann, Amanda C.; Susorney, Hannah C.; Ernst, Carolyn M.; Xiao, Zhiyong; Chabot, Nancy L.; Denevi, Brett W.; Murchie, Scott L.; McCubbin, Francis M.; Kinczyk, Mallory J.; Gillis-Davis, Jeffrey J.; Solomon, Sean C.

    2016-09-01

    High-resolution images from MESSENGER provide morphological information on the nature and origin of Mercury's hollows, small depressions that likely formed when a volatile constituent was lost from the surface. Because graphite may be a component of the low-reflectance material that hosts hollows, we suggest that loss of carbon by ion sputtering or conversion to methane by proton irradiation could contribute to hollows formation. Measurements of widespread hollows in 565 images with pixel scales <20 m indicate that the average depth of hollows is 24 ± 16 m. We propose that hollows cease to increase in depth when a volatile-depleted lag deposit becomes sufficiently thick to protect the underlying surface. The difficulty of developing a lag on steep topography may account for the common occurrence of hollows on crater central peaks and walls. Disruption of the lag, e.g., by secondary cratering, could restart growth of hollows in a location that had been dormant. Images at extremely high resolution (~3 m/pixel) show that the edges of hollows are straight, as expected if the margins formed by scarp retreat. These highest-resolution images reveal no superposed impact craters, implying that hollows are very young. The width of hollows within rayed crater Balanchine suggests that the maximum time for lateral growth by 1 cm is ~10,000 yr. A process other than entrainment of dust by gases evolved in a steady-state sublimation-like process is likely required to explain the high-reflectance haloes that surround many hollows.

  11. Fabricating a hollow bulb obturator

    Directory of Open Access Journals (Sweden)

    Fatih Sari

    2012-01-01

    Full Text Available

    Obturators are generally used in the rehabilitation of the maxillectomy defects. Ideally, obturators should be light, properly fit and construction should be made easily. By decreasing the weight of the prosthesis, the retention and stability may be optimized to allow the obturator for function comfortably during mastication, phonation, and deglutition. In this case, a 65-year-old male patient underwent surgical removal of left part of the maxilla due to the squamous cell carcinoma. In this technique fabrication of a hollow bulb obturator prosthesis as a single unit in heat-cured acrylic resin using a single-step flasking procedure was described. The patient’s functional and esthetic expectations were satisfied.

  12. Hollow-core tapered coupler for large inner diameter hollow-core optical fibers

    Institute of Scientific and Technical Information of China (English)

    Guiyao Zhou(周桂耀); Zhiyun Hou(侯峙云); Lantian Hou(侯蓝田); Jigang Liu(刘继刚)

    2003-01-01

    A novel hollow-core tapered coupler has been theoretically designed and fabricated by fiber drawing machine. The coupler's inner wall is coated with a polycrystalline GeO2 film. The coupling loss of hollow-core tapered coupler is about 0.2 dB. Hollow-core tapered coupler reduces the transmission loss of hollow-core optical fiber (HCOF) by 0.5 dB/m, therefore the coupler is suitable for coupling high power CO2 laser in industrial application.

  13. Hollow Alveolus-Like Nanovesicle Assembly with Metal-Encapsulated Hollow Zeolite Nanocrystals.

    Science.gov (United States)

    Dai, Chengyi; Zhang, Anfeng; Liu, Min; Gu, Lin; Guo, Xinwen; Song, Chunshan

    2016-08-23

    Inspired by the vesicular structure of alveolus which has a porous nanovesicle structure facilitating the transport of oxygen and carbon dioxide, we designed a hollow nanovesicle assembly with metal-encapsulated hollow zeolite that would enhance diffusion of reactants/products and inhibit sintering and leaching of active metals. This zeolitic nanovesicle has been successfully synthesized by a strategy which involves a one-pot hydrothermal synthesis of hollow assembly of metal-containing solid zeolite crystals without a structural template and a selective desilication-recrystallization accompanied by leaching-hydrolysis to convert the metal-containing solid crystals into metal-encapsulated hollow crystals. We demonstrate the strategy in synthesizing a hollow nanovesicle assembly of Fe2O3-encapsulated hollow crystals of ZSM-5 zeolite. This material possesses a microporous (0.4-0.6 nm) wall of hollow crystals and a mesoporous (5-17 nm) shell of nanovesicle with macropores (about 350 nm) in the core. This hierarchical structure enables excellent Fe2O3 dispersion (3-4 nm) and resistance to sintering even at 800 °C; facilitates the transport of reactant/products; and exhibits superior activity and resistance to leaching in phenol degradation. Hollow nanovesicle assembly of Fe-Pt bimetal-encapsulated hollow ZSM-5 crystals was also prepared.

  14. Monitoring of polymeric membrane fouling in hollow fiber module using ultrasonic nondestructive testing

    Institute of Scientific and Technical Information of China (English)

    LIU Jing-xia; LI Jian-xin; CHEN Xue-mei; ZHANG Yu-zhong

    2006-01-01

    This study describes the development of novel protocols extending the real-time ultrasonic reflectometry(UTDR) for the detection of membrane fouling in hollow fiber module during ultrafiltration(UF) of oily water treatment. A specially designed acoustic sensor with a frequency of 2.5 MHz was used. The hollow fiber membranes used were polysulphone(PSf) UF membranes with MWCO 40 kDa. The wastewaters with three different oily concentrations of 100,500 and 1 000 mg/L were investigated. Diesel oil was utilized as the primary foulant. The results show that the permeate flux declines with operation time and its value becomes lower with the increase of the oily concentration in wastewater. It is found that ultrasonic measurement can detect the fouling and cleaning processes. A new signal analysis protocol-ultrasonic reflected energy was developed. Ultrasonic reflected energy obtained indicates the deposition of oily layer as a function of operation time and its removal after cleaning. The overall flux decline is reasonably correlated with the changes in ultrasonic reflected energy. This research provides the evidence that the ultrasonic reflectometry technique is capable of monitoring membrane fouling and cleaning in hollow fiber modules.

  15. A Flexible Arrayed Eddy Current Sensor for Inspection of Hollow Axle Inner Surfaces

    Directory of Open Access Journals (Sweden)

    Zhenguo Sun

    2016-06-01

    Full Text Available A reliable and accurate inspection of the hollow axle inner surface is important for the safe operation of high-speed trains. In order to improve the reliability of the inspection, a flexible arrayed eddy current sensor for non-destructive testing of the hollow axle inner surface was designed, fabricated and characterized. The sensor, consisting of two excitation traces and 28 sensing traces, was developed by using the flexible printed circuit board (FPCB technique to conform the geometric features of the inner surfaces of the hollow axles. The main innovative aspect of the sensor was the new arrangement of excitation/sensing traces to achieve a differential configuration. Finite element model was established to analyze sensor responses and to determine the optimal excitation frequency. Experimental validations were conducted on a specimen with several artificial defects. Results from experiments and simulations were consistent with each other, with the maximum relative error less than 4%. Both results proved that the sensor was capable of detecting longitudinal and transverse defects with the depth of 0.5 mm under the optimal excitation frequency of 0.9 MHz.

  16. CERN Developments for 704 MHz Superconducting Cavities

    CERN Document Server

    Capatina, O; Aviles Santillana, I; Arnau Izquierdo, G; Bonomi, R; Calatroni, S; Chambrillon, J; Gerigk, F; Garoby, R; Guinchard, M; Junginger, T; Malabaila, M; Marques Antunes Ferreira, L; Mikulas, S; Parma, V; Pillon, F; Renaglia, T; Schirm, K; Tardy, T; Therasse, M; Vacca, A; Valverde Alonso, N; Vande Craen, A

    2013-01-01

    The Superconducting Proton Linac (SPL) is an R&D effort coordinated by CERN in partnership with other international laboratories. It is aiming at developing key technologies for the construction of a multi-megawatt proton linac based on state-of-the-art RF superconducting technology, which would serve as a driver in new physics facilities for neutrinos and/or Radioactive Ion Beam (RIB). Amongst the main objectives of this R&D effort, is the development of 704 MHz bulk niobium beta=1 elliptical cavities, operating at 2 K with a maximum accelerating gradient of 25 MV/m, and the testing of a string of cavities integrated in a machine-type cryomodule. The cavity together with its helium tank had to be carefully designed in coherence with the innovative design of the cryomodule. New fabrication methods have also been explored. Five such niobium cavities and two copper cavities are in fabrication. The key design aspects are discussed, the results of the alternative fabrication methods presented and the stat...

  17. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    Energy Technology Data Exchange (ETDEWEB)

    Harlan U. Anderson; Fatih Dogan; Vladimir Petrovsky

    2002-03-31

    This project has three main goals: Thin Films Studies, Preparation of Graded Porous Substrates and Basic Electrical Characterization and testing of Planar Single Cells. This period has continued to address the problem of making dense 1/2 to 5 {micro}m thick dense layers on porous substrates (the cathode LSM). Our current status is that we are making structures of 2-5 cm{sup 2} in area, which consist of either dense YSZ or CGO infiltrated into a 2-5 {micro}m thick 50% porous layer made of either nanoncrystalline CGO or YSZ powder. This composite structure coats a macroporous cathode or anode; which serves as the structural element of the bi-layer structure. These structures are being tested as SOFC elements. A number of structures have been evaluated both as symmetrical and as button cell configuration. Results of this testing indicates that the cathodes contribute the most to cell losses for temperatures below 750 C. In this investigation different cathode materials were studied using impedance spectroscopy of symmetric cells and IV characteristics of anode supported fuel cells. Cathode materials studied included La{sub 0.8}Sr{sub 0.2}Co{sub 0.2}Fe{sub 0.8}O{sub 3} (LSCF), La{sub 0.7}Sr{sub 0.2}MnO{sub 3} (LSM), Pr{sub 0.8}Sr{sub 0.2}Fe{sub 0.8}O{sub 3} (PSCF), Sm{sub 0.8}Sr{sub 0.2}Co{sub 0.2}Fe{sub 0.8}O{sub 3} (SSCF), and Yb{sub .8}Sr{sub 0.2}Co{sub 0.2}Fe{sub 0.8}O{sub 3} (SSCF). A new technique for filtering the Fourier transform of impedance data was used to increase the sensitivity of impedance analysis. By creating a filter specifically for impedance spectroscopy the resolution was increased. The filter was tailored to look for specific circuit elements like R//C, Warburg, or constant phase elements. As many as four peaks can be resolved using the filtering technique on symmetric cells. It may be possible to relate the different peaks to material parameters, like the oxygen exchange coefficient. The cathode grouped in order from lowest to highest ASR is

  18. Hollow rhodoliths increase Svalbard's shelf biodiversity

    Science.gov (United States)

    Teichert, Sebastian

    2014-11-01

    Rhodoliths are coralline red algal assemblages that commonly occur in marine habitats from the tropics to polar latitudes. They form rigid structures of high-magnesium calcite and have a good fossil record. Here I show that rhodoliths are ecosystem engineers in a high Arctic environment that increase local biodiversity by providing habitat. Gouged by boring mussels, originally solid rhodoliths become hollow ecospheres intensely colonised by benthic organisms. In the examined shelf areas, biodiversity in rhodolith-bearing habitats is significantly greater than in habitats without rhodoliths and hollow rhodoliths yield a greater biodiversity than solid ones. This biodiversity, however, is threatened because hollow rhodoliths take a long time to form and are susceptible to global change and anthropogenic impacts such as trawl net fisheries that can destroy hollow rhodoliths. Rhodoliths and other forms of coralline red algae play a key role in a plurality of environments and need improved management and protection plans.

  19. optimizing compressive strength characteristics of hollow building ...

    African Journals Online (AJOL)

    eobe

    This paper evaluates the compressive strength of sandcrete hollow building blocks when its sand fraction is partially replaced ... defines sandcrete blocks as composite materials made .... industry as well as the economy of Nigeria, if there is no.

  20. BOX-DEATH HOLLOW ROADLESS AREA, UTAH.

    Science.gov (United States)

    Weir, Gordon W.; Lane, Michael

    1984-01-01

    Geologic mapping, geochemical sampling, and a search for prospects and mineralized rock in the Box-Death Hollow Roadless Area, Utah indicate that there is little promise for the occurrence of mineral or energy resources in the area. Additional exploratory drilling by industry seems warranted if wells elsewhere in the region find oil or gas in strata as yet untested in the Box-Death Hollow Roadless Area.

  1. Mode characteristics of hollow core Bragg fiber

    Institute of Scientific and Technical Information of China (English)

    Minning Ji; Zhidong Shi; Qiang Guo

    2005-01-01

    Analytical expression to calculate propagation constant and mode field of the hollow core Bragg fiber is derived. Numerical results are presented. It is shown that the fundamental mode of the hollow core Bragg fiber is circularly symmetric TE01 mode with no polarization degeneracy, while the higher order mode may be HE11, TM01, or TE02 etc.. This property is different from conventional optical fiber that its fundamental mode is the linearly polarized HE11 mode and is polarization degeneracy.

  2. Preliminary Design Study of the Hollow Electron Lens for LHC

    CERN Document Server

    Perini, Diego; CERN. Geneva. ATS Department

    2017-01-01

    A Hollow Electron Lens (HEL) has been proposed in order to improve performance of halo control and collimation in the Large Hadron Collider in view of its High Luminosity upgrade (HL-LHC). The concept is based on a beam of electrons that travels around the protons for a few meters. The electron beam is produced by a cathode and then guided by a strong magnetic field generated by a set of superconducting solenoids. The first step of the design is the definition of the magnetic fields that drive the electron trajectories. The estimation of such trajectories by means of a dedicated MATLAB® tool is presented. The influence of the main geometrical and electrical parameters are analysed and discussed. Then, the main mechanical design choices for the solenoids, cryostats gun and collector are described. The aim of this paper is to provide an overview of the preliminary design of the Electron Lens for LHC. The methods used in this study also serve as examples for future mechanical and integration designs of similar ...

  3. Raman spectroscopy system with hollow fiber probes

    Science.gov (United States)

    Liu, Bing-hong; Shi, Yi-Wei

    2012-11-01

    A Raman remote spectroscopy system was realized using flexible hollow optical fiber as laser emittion and signal collection probes. A silver-coated hollow fiber has low-loss property and flat transmission characteristics in the visible wavelength regions. Compared with conventional silica optical fiber, little background fluorescence noise was observed with optical fiber as the probe, which would be of great advantages to the detection in low frequency Raman shift region. The complex filtering and focusing system was thus unnecessary. The Raman spectra of CaCO3 and PE were obtained by using the system and a reasonable signal to noise ratio was attained without any lens. Experiments with probes made of conventional silica optical fibers were also conducted for comparisons. Furthermore, a silver-coated hollow glass waveguide was used as sample cell to detect liquid phase sample. We used a 6 cm-long hollow fiber as the liquid cell and Butt-couplings with emitting and collecting fibers. Experiment results show that the system obtained high signal to noise ratio because of the longer optical length between sample and laser light. We also give the elementary theoretical analysis for the hollow fiber sample cell. The parameters of the fiber which would affect the system were discussed. Hollow fiber has shown to be a potential fiber probe or sample cell for Raman spectroscopy.

  4. Characterization of multicapillary dielectric cathodes

    Science.gov (United States)

    Gleizer, J. Z.; Hadas, Y.; Yarmolich, D.; Felsteiner, J.; Krasik, Ya. E.

    2007-04-01

    Parameters of the plasma and electron beam produced by a multicapillary cathode in a diode powered by a ˜200kV, ˜300ns pulse are presented. It was found that the source of electrons is the plasma ejected from the capillaries. Inside the capillaries this plasma obtains electron density and temperature of ˜8×1015cm-3 and ˜5eV, respectively. In the vicinity of the cathode, the density and temperature of the plasma electrons were found to be 2×1014cm-3 and 4.5eV, respectively, for electron current density of ˜40A/cm2. It was shown that the plasma expansion velocity is in the range of (1-2)×106cm/s for current density of >12A/cm2.

  5. Two-stage plasma gun based on a gas discharge with a self-heating hollow emitter.

    Science.gov (United States)

    Vizir, A V; Tyunkov, A V; Shandrikov, M V; Oks, E M

    2010-02-01

    The paper presents the results of tests of a new compact two-stage bulk gas plasma gun. The plasma gun is based on a nonself-sustained gas discharge with an electron emitter based on a discharge with a self-heating hollow cathode. The operating characteristics of the plasma gun are investigated. The discharge system makes it possible to produce uniform and stable gas plasma in the dc mode with a plasma density up to 3x10(9) cm(-3) at an operating gas pressure in the vacuum chamber of less than 2x10(-2) Pa. The device features high power efficiency, design simplicity, and compactness.

  6. Performance evaluation of wearable wireless body area networks during walking motions in 444.5 MHz and 2450 MHz.

    Science.gov (United States)

    Takizawa, Kenichi; Watanabe, Katsuhiro; Kumazawa, Masaki; Hamada, Yusuke; Ikegami, Tetsushi; Hamaguchi, Kiyoshi

    2010-01-01

    This paper gives performance evaluation of wearable wireless body area networks (WBANs) during walking motion. In order to evaluate the performance, received signal strength (RSS), packet error rate (PER), and bit error rate (BER) are measured in an anechoic chamber and an office room. This measurement is conducted in the frequency band of 444.5 and 2450 MHz by using GFSK signal with symbol rate of 1 MHz. The results show that in the anechoic chamber the WBAN using the 444.5 MHz enables to provide error-free communication, on the other hand, the WBAN operated in the 2450 MHz faces packet errors. Measurement results in the office room give comparable performance between these frequencies. From these observations, the use of 2450 MHz for wearable WBANs needs reflection waves in order to compensate a shadowing effect caused by the human body using the WBAN.

  7. Ion energy distributions in bipolar pulsed-dc discharges of methane measured at the biased cathode

    Energy Technology Data Exchange (ETDEWEB)

    Corbella, C; Rubio-Roy, M; Bertran, E; Portal, S; Pascual, E; Polo, M C; Andujar, J L, E-mail: corbella@ub.edu [FEMAN Group, IN2UB, Departament de Fisica Aplicada i Optica, Universitat de Barcelona, c/ MartI i Franques 1, 08028 Barcelona (Spain)

    2011-02-15

    The ion fluxes and ion energy distributions (IED) corresponding to discharges in methane (CH{sub 4}) were measured in time-averaged mode with a compact retarding field energy analyser (RFEA). The RFEA was placed on a biased electrode at room temperature, which was powered by either radiofrequency (13.56 MHz) or asymmetric bipolar pulsed-dc (250 kHz) signals. The shape of the resulting IED showed the relevant populations of ions bombarding the cathode at discharge parameters typical in the material processing technology: working pressures ranging from 1 to 10 Pa and cathode bias voltages between 100 and 200 V. High-energy peaks in the IED were detected at low pressures, whereas low-energy populations became progressively dominant at higher pressures. This effect is attributed to the transition from collisionless to collisional regimes of the cathode sheath as the pressure increases. On the other hand, pulsed-dc plasmas showed broader IED than RF discharges. This fact is connected to the different working frequencies and the intense peak voltages (up to 450 V) driven by the pulsed power supply. This work improves our understanding in plasma processes at the cathode level, which are of crucial importance for the growth and processing of materials requiring controlled ion bombardment. Examples of industrial applications with these requirements are plasma cleaning, ion etching processes during fabrication of microelectronic devices and plasma-enhanced chemical vapour deposition of hard coatings (diamond-like carbon, carbides and nitrides).

  8. A sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium-sulfur batteries

    Science.gov (United States)

    Li, Zhen; Zhang, Jintao; Guan, Buyuan; Wang, Da; Liu, Li-Min; Lou, Xiong Wen (David)

    2016-10-01

    Lithium-sulfur batteries show advantages for next-generation electrical energy storage due to their high energy density and cost effectiveness. Enhancing the conductivity of the sulfur cathode and moderating the dissolution of lithium polysulfides are two key factors for the success of lithium-sulfur batteries. Here we report a sulfur host that overcomes both obstacles at once. With inherent metallic conductivity and strong adsorption capability for lithium-polysulfides, titanium monoxide@carbon hollow nanospheres can not only generate sufficient electrical contact to the insulating sulfur for high capacity, but also effectively confine lithium-polysulfides for prolonged cycle life. Additionally, the designed composite cathode further maximizes the lithium-polysulfide restriction capability by using the polar shells to prevent their outward diffusion, which avoids the need for chemically bonding all lithium-polysulfides on the surfaces of polar particles.

  9. Deactivating bacteria with RF Driven Hollow Slot Microplasmas in Open Air at Atmospheric Pressure

    Science.gov (United States)

    Yu, Zengqi; Pruden, Amy; Sharma, Ashish; Collins, George

    2003-10-01

    A hollow slot discharge operating in open air at atmospheric pressure has demonstrated its ability to deactivate bacterial growth on nearby surfaces exposed to the RF driven plasma. The cold plasma exits from a hollow slot with a width of 0.2 mm and variable length of 1-35 cm. An internal electrode was powered by 13.56 MHz radio-frequency power at a voltage below 200 V. External electrically grounded slots face the work piece. The plasma plume extends millimeters to centimeter beyond the hollow slot toward the work piece to be irradiated. Argon-Oxygen gas mixtures, at 33 liters per minute flow, were passed through the electrodes and the downstream plasma was employed for the process, with treatment exposure time varied from 0.06 to 0.18 seconds. Bacterial cultures were fixed to 0.22 micron cellulose filter membranes and passed under the plasma at a controlled rate at a distance of about 5-10 millimeters from the grounded slot electrode. Preliminary studies on the effectiveness of the plasma for sterilization were carried out on E. coli. Cultures were grown overnight on the membranes after exposure and the resulting colony forming units (cfu) were determined in treated and untreated groups. In the plasma treated group, a 98.2% kill rate was observed with the lowest exposure time, and increased to 99.8% when the exposure time was tripled. These studies clearly demonstrate the ability of the RF-driven hollow slot atmospheric plasma to inhibit bacterial growth on surfaces.

  10. Origin of microplasma instabilities during DC operation of silicon based microhollow cathode devices

    Science.gov (United States)

    Felix, Valentin; Lefaucheux, Philippe; Aubry, Olivier; Golda, Judith; Schulz-von der Gathen, Volker; Overzet, Lawrence J.; Dussart, Rémi

    2016-04-01

    The failure mechanisms of micro hollow cathode discharges (MHCD) in silicon have been investigated using their I-V characteristics, high speed photography and scanning electron microscopy. Experiments were carried out in helium. We observed I-V instabilities in the form of rapid voltage decreases associated with current spikes. The current spikes can reach values more than 100 times greater than the average MHCD current. (The peaks can be more than 1 Ampere for a few 10’s of nanoseconds.) These current spikes are correlated in time with 3-10 μm diameter optical flashes that occur inside the cavities. The SEM characterizations indicated that blister-like structures form on the Si surface during plasma operation. Thin Si layers detach from the surface in localized regions. We theorize that shallow helium implantation occurs and forms the ‘blisters’ whenever the Si is biased as the cathode. These blisters ‘explode’ when the helium pressure inside them becomes too large leading to the transient micro-arcs seen in both the optical emission and the I-V characteristics. We noted that blisters were never found on the metal counter electrode, even when it was biased as the cathode (and the Si as the anode). This observation led to a few suggestions for delaying the failure of Si MHCDs. One may coat the Si cathode (cavities) with blister resistant material; design the MHCD array to operate with the Si as the anode rather than as the cathode; or use a gas additive to prevent surface damage. Regarding the latter, tests using SF6 as the gas additive successfully prevented blister formation through rapid etching. The result was an enhanced MHCD lifetime.

  11. Analysis of XeC1 Emission in a Hollow Cathode Discharge.

    Science.gov (United States)

    1981-06-01

    excited homopolar molecule, e.g., Xe2 , Hg2 The term exciplex refers to an electronically excited heteropolar complex, e.g., KrF , XeOH , XeCl , which...frequently overlooked and both homopolar and heteropolar systems are commonly referred to as excimers, Excimers are formed by the interaction between two...mode and a non-scanning mode. Scanning is performed using a 1 rpm motor and produces plots of in- tensity versus wavelength. The non-scanning mode is

  12. Computer Simulation of Intense Electron Beam Generation in a Hollow Cathode Diode.

    Science.gov (United States)

    1980-09-05

    Phys. Rev. Lett. 40, 1504 (1978).I ’ 9. Robert K. Parker, Technical Report AFWL-TR-73-92, USAF Weapons Lab., Albuquerque, New Mexico (1973). , 12 .% xv...t C. Bruno (1 copy) J. Barbaro (. copy) Ecole Polytechnique ft Labo, PMI 91128 Palaiseau Cedex France Attn: 11. Doucet (1 copy) J. M. Buzzi (1 copy

  13. Reflective article having a sacrificial cathodic layer

    Energy Technology Data Exchange (ETDEWEB)

    Kabagambe, Benjamin; Buchanan, Michael J.; Scott, Matthew S.; Rearick, Brian K.; Medwick, Paul A.; McCamy, James W.

    2017-09-12

    The present invention relates to reflective articles, such as solar mirrors, that include a sacrificial cathodic layer. The reflective article, more particularly includes a substrate, such as glass, having a multi-layered coating thereon that includes a lead-free sacrificial cathodic layer. The sacrificial cathodic layer includes at least one transition metal, such as a particulate transition metal, which can be in the form of flakes (e.g., zinc flakes). The sacrificial cathodic layer can include an inorganic matrix formed from one or more organo-titanates. Alternatively, the sacrificial cathodic layer can include an organic polymer matrix (e.g., a crosslinked organic polymer matrix formed from an organic polymer and an aminoplast crosslinking agent). The reflective article also includes an outer organic polymer coating, that can be electrodeposited over the sacrificial cathodic layer.

  14. A pulsed cathodic arc spacecraft propulsion system

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, P R C; Bilek, M M M; Tarrant, R N; McKenzie, D R [School of Physics, University of Sydney, NSW 2006 Australia (Australia)

    2009-11-15

    We investigate the use of a centre-triggered cathodic arc as a spacecraft propulsion system that uses an inert solid as a source of plasma. The cathodic vacuum arc produces almost fully ionized plasma with a high exhaust velocity (>10{sup 4} m s{sup -1}), giving a specific impulse competitive with other plasma or ion thrusters. A centre trigger design is employed that enables efficient use of cathode material and a high pulse-to-pulse repeatability. We compare three anode geometries, two pulse current profiles and two pulse durations for their effects on impulse generation, energy and cathode material usage efficiency. Impulse measurement is achieved through the use of a free-swinging pendulum target constructed from a polymer material. Measurements show that impulse is accurately controlled by varying cathode current. The cylindrical anode gave the highest energy efficiency. Cathode usage is optimized by choosing a sawtooth current profile. There is no requirement for an exhaust charge neutralization system.

  15. Evaluation Of Electromagnetic Fields For Frequencies 900 MHz-1 800 MHz In Tirana

    Directory of Open Access Journals (Sweden)

    Kuqi Dhurata

    2015-07-01

    Full Text Available Abstract The massive use of mobile phone as a communication tool nowadays is accompanied the ever increasing interest of the public and researchers for the possibly impact on human health as a result of exposure to the electromagnetic fields that accompany these devices. Therefore knowing the level of exposure electromagnetic fields of this electronic equipment has been and will be in the future interest object to the public and the subject of study for the researchers. In this paper are presents the results of measurements of electromagnetic fields for the frequencies 900 MHz - 1800 MHz used in mobile telephone in Tirana. These frequencies are included in the area radio frequency RF and Microwave MW 300 Hz - 300 GHz in the spectrum of electromagnetic waves and belong to non-ionizing radiation. The measurements were performed in different areas of Tirana. The purpose is to assess the level of exposure electromagnetic fields especially near areas where mobile antennas are mounted construction of dynamic digital mapping and comparison with the permitted levels of the exposure defined by the International Commission of Non Ionizing Radiation Protection ICNIRP. Through this publication the aim of the authors is to provide real information and reliable for the population.

  16. Sun powers Libya cathodic-protection system

    Energy Technology Data Exchange (ETDEWEB)

    Currer, G.W.

    1982-03-22

    Well castings and part of the main 300-mile-long, 32-in diameter pipeline from Sarir to Tobruk are cathodically protected by solar power, which prevents galvanic action by applying an electric direct current of appropriate magnitude and polarity to the steel structures. They then act as cathodes and become the recipients of metallic ions. At each cathodic-protection station, the solar-generaor system consists of solar-panel arrays, electronic controls, and batteries.

  17. Preventing Corrosion by Controlling Cathodic Reaction Kinetics

    Science.gov (United States)

    2016-03-25

    Preventing corrosion by controlling cathodic reaction kinetics Progress Report for Period: 1 SEP 2015-31 MAR 2016 John Keith Department of...25 March 2016 Preventing corrosion by controlling cathodic reaction kinetics Annual Summary Report: FY16 PI: John Keith, 412-624-7016,jakeith...dominate the metal’s cathodic behavior. Within an alkaline environment, we expect the following reduction reactions to be catalyzed on the oxide

  18. Hollow glass for insulating layers

    Science.gov (United States)

    Merticaru, Andreea R.; Moagar-Poladian, Gabriel

    1999-03-01

    Common porous materials, some of which will be considered in the chapters of this book, include concrete, paper, ceramics, clays, porous semiconductors, chromotography materials, and natural materials like coral, bone, sponges, rocks and shells. Porous materials can also be reactive, such as in charcoal gasification, acid rock dissolution, catalyst deactivation and concrete. This study continues the investigations about the properties of, so-called, hollow glass. In this paper is presented a computer simulation approach in which the thermo-mechanical behavior of a 3D microstructure is directly computed. In this paper a computer modeling approach of porous glass is presented. One way to test the accuracy of the reconstructed microstructures is to computed their physical properties and compare to experimental measurement on equivalent systems. In this view, we imagine a new type of porous type of glass designed as buffer layer in multilayered printed boards in ICs. Our glass is a variable material with a variable pore size and surface area. The porosity could be tailored early from the deposition phases that permitting us to keep in a reasonable balance the dielectric constant and thermal conductivity.

  19. Modelling effects of current distributions on performance of micro-tubular hollow fibre solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Doraswami, U.; Droushiotis, N. [Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Kelsall, G.H., E-mail: g.kelsall@imperial.ac.u [Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom)

    2010-04-15

    A three-dimensional model, considering mass, momentum, energy and charge conservation, was developed and the equations solved to describe the physico-chemical phenomena occurring within a single, micro-tubular hollow fibre solid oxide fuel cell (HF-SOFC). The model was used to investigate the spatial distributions of potential, current and reactants in a 10 mm long HF-SOFC. The predicted effects of location of current collectors, electrode conductivities, cathode thickness and porosity were analysed to minimise the ranges of current density distributions and maximise performance by judicious design. To decrease the computational load, azimuthal symmetry was assumed to model 50 and 100 mm long reactors in 2-D. With connectors at the same end of the HF-SOFC operating at a cell voltage of 0.5 V and a mean 5 kA m{sup -2}, axial potential drops of ca. 0.14 V in the cathode were predicted, comparable to the cathode activation overpotential. Those potential drops caused average current densities to decrease from ca. 6.5 to ca.1 kA m{sup -2} as HF-SOFC length increased from 10 to 100 mm, at which much of the length was inactive. Peak power densities were predicted to vary from 3.8 to <2.5 kW m{sup -2}, depending on the location of the current collectors; performance increased with increasing cathode thickness and decreasing porosity.

  20. Simultaneous Observations of Giant Pulses from Pulsar PSR B0950+08 at 42 MHz and 74 MHz

    CERN Document Server

    Tsai, Jr-Wei; Akukwe, Bernadine; Bear, Brandon; Gough, Jonathan D; Shawhan, Peter; Kavic, Michael

    2016-01-01

    We report the detection of giant pulse emission from PSR~B0950+08 in 12 hours of observations made simultaneously at 42~MHz and 74~MHz, using the first station of the Long Wavelength Array, LWA1. We detected 275 giant pulses (in 0.16\\% of the pulse periods) and 465 giant pulses (0.27\\%) at 42 and 74~MHz, respectively. The pulsar is weaker and produces less frequent giant pulses than at 100~MHz. Here, giant pulses are taken as having $\\geq$ 10 times the flux density of an average pulse; their cumulative distribution of pulse strength follows a power law, with a index of $-$4.1 at 42~MHz and $-$5.1 at 74~MHz, which is much less steep than would be expected if we were observing the tail of a Gaussian distribution of normal pulses. We detected no other transient pulses in a wide dispersion measure range from 1 to 5000~pc~cm$^{-3}$. There were 128 giant pulses detected within in the same periods from both 42 and 74~MHz, which means more than half of them are not generated in a wide band. We use CLEAN-based algorit...

  1. Simultaneous Observations of Giant Pulses from Pulsar PSR B0031-07 at 38 MHz and 74 MHz

    CERN Document Server

    Tsai, Jr-Wei; Bear, Brandon; Gough, Jonathan D; Newton, Joseph R; Kavic, Michael

    2016-01-01

    The first station of the Long Wavelength Array (LWA1) was used to study PSR~B0031-07 with simultaneous observations at 38 and 74~MHz. We found that 158 (0.35\\%) of the observed pulses at 38~MHz and 221 (0.49\\%) of the observed pulses at 74~MHz qualified as giant pulses in a total of 12 hours of observations. Giant pulses are defined as having flux densities of a factor of $\\geq$ 90 times that of an average pulse at 38~MHz and $\\geq$ 80 times that of an average pulse at 74~MHz. The cumulative distribution of pulse strength follows a power law, with an index of $-$4.2 at 38~MHz and $-$4.9 at 74~MHz. This distribution has a much more gradual slope than would be expected if observing the tail of a Gaussian distribution of normal pulses. The dispersion measure value which resulted in the largest signal-to-noise for dedispersed pulses was DM $=10.9$~pc~cm$^{-3}$. No other transient pulses were detected in the data in the wide dispersion measure range from 1 to 5000~pc~cm$^{-3}$. There were 12 giant pulses detected ...

  2. Cell death induced by GSM 900-MHz and DCS 1800-MHz mobile telephony radiation.

    Science.gov (United States)

    Panagopoulos, Dimitris J; Chavdoula, Evangelia D; Nezis, Ioannis P; Margaritis, Lukas H

    2007-01-10

    In the present study, the TUNEL (Terminal deoxynucleotide transferase dUTP Nick End Labeling) assay--a well known technique widely used for detecting fragmented DNA in various types of cells--was used to detect cell death (DNA fragmentation) in a biological model, the early and mid stages of oogenesis of the insect Drosophila melanogaster. The flies were exposed in vivo to either GSM 900-MHz (Global System for Mobile telecommunications) or DCS 1800-MHz (Digital Cellular System) radiation from a common digital mobile phone, for few minutes per day during the first 6 days of their adult life. The exposure conditions were similar to those to which a mobile phone user is exposed, and were determined according to previous studies of ours [D.J. Panagopoulos, A. Karabarbounis, L.H. Margaritis, Effect of GSM 900-MHz mobile phone radiation on the reproductive capacity of D. melanogaster, Electromagn. Biol. Med. 23 (1) (2004) 29-43; D.J. Panagopoulos, N. Messini, A. Karabarbounis, A.L. Philippetis, L.H. Margaritis, Radio frequency electromagnetic radiation within "safety levels" alters the physiological function of insects, in: P. Kostarakis, P. Stavroulakis (Eds.), Proceedings of the Millennium International Workshop on Biological Effects of Electromagnetic Fields, Heraklion, Crete, Greece, October 17-20, 2000, pp. 169-175, ISBN: 960-86733-0-5; D.J. Panagopoulos, L.H. Margaritis, Effects of electromagnetic fields on the reproductive capacity of D. melanogaster, in: P. Stavroulakis (Ed.), Biological Effects of Electromagnetic Fields, Springer, 2003, pp. 545-578], which had shown a large decrease in the oviposition of the same insect caused by GSM radiation. Our present results suggest that the decrease in oviposition previously reported, is due to degeneration of large numbers of egg chambers after DNA fragmentation of their constituent cells, induced by both types of mobile telephony radiation. Induced cell death is recorded for the first time, in all types of cells

  3. Preparation of hollow spherical carbon nanocages

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, C.-K.; Kang, H. Y.; Hong, C.-I; Huang, C.-H.; Chang, F.-C.; Wang, H. Paul, E-mail: wanghp@mail.ncku.edu.tw [National Cheng Kung University, Department of Environmental Engineering, Taiwan (China)

    2012-12-15

    This study presents a new and simple method for the synthesis of hollow carbon spheres possessing nanocage sizes of 7.1, 14, and 20 nm in diameter. The core-shell (i.e., Cu-C) nanoparticles prepared by carbonization of the Cu{sup 2+}-cyclodextrin (CD) complexes at 573 K for 2 h was etched with HCl (6N) to yield the hollow carbon spheres. The carbon-shell of the hollow carbon nanospheres, which consisted of mainly diamond-like and graphite carbons, is not perturbed during etching. In addition to the nanocages, the hollow carbon nanospheres also possess micropores with an opening of 0.45 nm, allowing small molecules to diffuse in and out through the carbon-shell. Many elements (such as Zn{sup 2+} or Cu{sup 2+}) can therefore be filled into the nanocages of the hollow carbon nanospheres. With these unique properties, for instance, designable active species such as Cu and ZnO encapsulated in the carbon-shell can act as Cu-ZnO-C yolk-shell nanoreactors which are found very effective in the catalytic decomposition of methanol.

  4. Method for the production of fabricated hollow microspheroids

    Energy Technology Data Exchange (ETDEWEB)

    Wickramanayake, Shan; Luebke, David R.

    2015-06-09

    The method relates to the fabrication of a polymer microspheres comprised of an asymmetric layer surrounding a hollow interior. The fabricated hollow microsphere is generated from a nascent hollow microsphere comprised of an inner core of core fluid surrounded by a dope layer of polymer dope, where the thickness of the dope layer is at least 10% and less than 50% of the diameter of the inner core. The nascent hollow microsphere is exposed to a gaseous environment, generating a vitrified hollow microsphere, which is subsequently immersed in a coagulation bath. Solvent exchange produces a fabricated hollow microsphere comprised of a densified outer skin surrounding a macroporous inner layer, which surrounds a hollow interior. In an embodiment, the polymer is a polyimide or a polyamide-imide, and the non-solvent in the core fluid and the coagulation bath is water. The fabricated hollow microspheres are particularly suited as solvent supports for gas separation processes.

  5. A 45-MHz continuum survey of the northern hemisphere

    Science.gov (United States)

    Maeda, K.; Alvarez, H.; Aparici, J.; May, J.; Reich, P.

    We present a 45-MHz continuum survey in the declination range of +5 to +65 degrees in sets of maps in galactic and equatorial coordinates (epoch 1950). The observations were made at 46.5 MHz with a circular filled array of the Japanese Middle and Upper Atmosphere Radar (MU Radar) located at Shigaraki, Japan. The radar array consists of 475 crossed 3-element Yagis arranged within a circle of 103 m diameter, with a the half-power beam width of 3.6 degrees. In order to calibrate the data from the MU radar we used the Chilean 45-MHz survey which was made with an array of size comparable with that of the MU radar. The data processing was performed at the Maipu Radio Observatory, University of Chile, and this process brought the data to 45 MHz. The final maps were obtained at the Max-Plank-Institut fur Radioastronomie, Germany, using of the NOD2 program package.

  6. 26. 13-MHz absorption line toward Cassiopeia A

    Energy Technology Data Exchange (ETDEWEB)

    Konovalenko, A.A.; Sodin, L.G.

    1981-07-01

    New observations confirm that the 26.13-MHz absorption line previously detected in the direction toward the radio source Cas A represents a carbon recombination line, not a hyperfine-structure nitrogen line. Some relevant implications are discussed.

  7. Cathode materials: A personal perspective

    Energy Technology Data Exchange (ETDEWEB)

    Goodenough, John B. [Texas Materials Institute, University of Texas at Austin, ETC 9.102, 1 University Station, Austin, TX 78712-1063 (United States)

    2007-12-06

    A thermodynamically stable rechargeable battery has a voltage limited by the window of the electrolyte. An aqueous electrolyte has a window of 1.2 eV, which prevents achieving the high energy density desired for many applications. A non-aqueous electrolyte with a window of 5 eV requires Li{sup +} rather than H{sup +} as the working ion. Early experiments with Li{sub x}TiS{sub 2} cathodes showed competitive capacity and rate capability, but problems with a lithium anode made the voltage of a safe cell based on a sulfide cathode too low to be competitive with a nickel/metal-hydride battery. Transition-metal oxides can give voltages of 4.5 V versus Li{sup +}/Li{sup 0}. However, the challenge with oxides has been to obtain a competitive capacity and rate capability while retaining a high voltage with low-cost, environmentally friendly cathode materials. Comparisons will be made between layered Li{sub 1-x}MO{sub 2}, spinels Li{sub 1-x}[M{sub 2}]O{sub 4}, and olivines Li{sub 1-x}MPO{sub 4} having 0 < x < 1. Although higher capacities can be obtained with layered Li{sub 1-x}MO{sub 2} compounds, which have enabled the wireless revolution, their metastability makes them unlikely to be used in power applications. The spinel and olivine framework structures have been shown to be capable of charge/discharge rates of over 10C with a suitable temperature range for plug-in hybrid vehicles. (author)

  8. Real-Time, Polyphase-FFT, 640-MHz Spectrum Analyzer

    Science.gov (United States)

    Zimmerman, George A.; Garyantes, Michael F.; Grimm, Michael J.; Charny, Bentsian; Brown, Randy D.; Wilck, Helmut C.

    1994-01-01

    Real-time polyphase-fast-Fourier-transform, polyphase-FFT, spectrum analyzer designed to aid in detection of multigigahertz radio signals in two 320-MHz-wide polarization channels. Spectrum analyzer divides total spectrum of 640 MHz into 33,554,432 frequency channels of about 20 Hz each. Size and cost of polyphase-coefficient memory substantially reduced and much of processing loss of windowed FFTs eliminated.

  9. Transmission properties of hollow-core photonic bandgap fibers

    DEFF Research Database (Denmark)

    Falk, Charlotte Ijeoma; Hald, Jan; Petersen, Jan C.

    2010-01-01

    Variations in optical transmission of four types of hollow-core photonic bandgap fibers are measured as a function of laser frequency. These variations influence the potential accuracy of gas sensors based on molecular spectroscopy in hollow-core fibers.......Variations in optical transmission of four types of hollow-core photonic bandgap fibers are measured as a function of laser frequency. These variations influence the potential accuracy of gas sensors based on molecular spectroscopy in hollow-core fibers....

  10. Pulse dispersion in hollow optical waveguides

    Science.gov (United States)

    Ben-David, M.; Ilev, Ilko K.; Waynant, Ronald W.; Gannot, Israel

    2005-09-01

    A study of laser (near- and mid-infrared) pulse dispersion in hollow waveguides is presented. We developed an analytical model to describe the pulse dispersion in hollow waveguides and compared our theoretical calculations with measurements done by us and also by two other groups. The pulse dispersion was experimentally measured for a short Q-switched Er:YAG laser in the nanosecond range and for femtosecond Ti:sapphire laser pulses transmitted by hollow optical waveguides. For analytical calculation of the pulse dispersion in these waveguides, a refined ray tracing program was developed. This approach took into account roughness of the internal reflecting and refracting inner layers. A comparison analysis between the measurements and calculations conducted at identical parameters demonstrates good correlation between theoretical and experimental results.

  11. Hollow glass waveguides for broadband infrared transmission.

    Science.gov (United States)

    Abel, T; Hirsch, J; Harrington, J A

    1994-07-15

    Broadband hollow glass waveguides have been fabricated with losses as low as 0.15 dB/m at 10.6 microm. We make these hollow glass waveguides by coating the inside of polyimide-coated silica-glass tubing with a metallic layer followed by a thin dielectric coating of a metal halide. The bore sizes of the guides range from 320 to 700 microm, and we have made lengths as long as 3 m. The bending radii of the waveguides are less than 5 cm for bore sizes less than 500 microm. We have used these waveguides to deliver greater than 80 W of CO(2) laser power and 5 W of Er:YAG laser power. The hollow glass guides are inexpensive, robust, and quite flexible and therefore a good infrared fiber for power and sensor applications.

  12. Generation of a hollow laser beam by a multimode fiber

    Institute of Scientific and Technical Information of China (English)

    Hongyu Ma; Huadong Cheng; Wenzhuo Zhang; Liang Liu; Yuzhu Wang

    2007-01-01

    A simple method to generate a hollow laser beam by multimode fiber is reported. A dark hollow laser beam is generated from a multimode fiber and the dependence of the output beam profile on the incident angle of laser beam is analyzed. The results show that this hollow laser beam can be used to trap and guide cold atoms.

  13. Fabrication of polypyrrole/vanadium oxide nanotube composite with enhanced electrochemical performance as cathode in rechargeable batteries

    Science.gov (United States)

    Zhou, Xiaowei; Chen, Xu; He, Taoling; Bi, Qinsong; Sun, Li; Liu, Zhu

    2017-05-01

    Vanadium oxide nanotubes (VOxNTs) with hollow as well as multi-walled features were fabricated under hydrothermal condition by soft-template method. This novel VOxNTs can be used as cathode material for lithium ion batteries (LIBs), but displaying low specific capacity and poor cycling performance owing to the residual of a mass of soft-template (C12H27N) and intrinsic low conductivity of VOx. Cation exchange technique and oxidative polymerization process of pyrrole monomers were conducted to wipe off partial soft-template without electrochemical activity within VOxNTs and simultaneously form polypyrrole coating on VOxNTs, respectively. The resulting polypyrrole/VOxNTs nanocomposite delivers much improved capacity and cyclic stability. Further optimizations, such as complete elimination of organic template and enhancing the crystallinity, can make this unique nanostructure a promising cathode for LIBs.

  14. The 136 MHz/400 MHz earth station antenna-noise temperature prediction program documentation for RAE-B

    Science.gov (United States)

    Chin, M.

    1972-01-01

    A simulation study to determine the 136 MHz and 400 MHz noise temperature of the ground network antennas which will track the RAE-B satellite during data transmission periods is described. Since the noise temperature of the antenna effectively sets the signal-to-noise ratio (SNR) of the received signal, a knowledge of SNR will be helpful in locating the optimum time windows for data transmission during low-noise periods. Antenna-noise temperatures at 136 MHz and 400 MHz will be predicted for selected earth-based ground stations which will support RAE-B. The antenna-noise temperature predictions will include the effects of galactic-brightness temperature, the sun, and the brightest radio stars. Predictions will cover the ten-month period from March 1, 1973 to December 31, 1973. The RAE-B mission will be expecially susceptible to SNR degradation during the two eclipses of the Sun occurring in this period.

  15. The 136 MHZ/400 MHz earth station antenna-noise temperature prediction program for RAE-B

    Science.gov (United States)

    Taylor, R. E.; Fee, J. J.; Chin, M.

    1972-01-01

    A simulation study was undertaken to determine the 136 MHz and 400 MHz noise temperature of the ground network antennas which will track the RAE-B satellite during data transmission periods. Since the noise temperature of the antenna effectively sets the signal-to-noise ratio of the received signal, a knowledge of SNR will be helpful in locating the optimum time windows for data transmission during low noise periods. Antenna noise temperatures will be predicted for selected earth-based ground stations which will support RAE-B. Telemetry data acquisition will be at 400 MHz; tracking support at 136 MHz will be provided by the Goddard Range and Range Rate (RARR) stations. The antenna-noise temperature predictions will include the effects of galactic-brightness temperature, the sun, and the brightest radio stars. Predictions will cover the ten-month period from March 1, 1973 to December 31, 1973.

  16. Adiabatic Rearrangement of Hollow PV Towers

    Directory of Open Access Journals (Sweden)

    Eric A Hendricks

    2010-10-01

    Full Text Available Diabatic heating from deep moist convection in the hurricane eyewall produces a towering annular structure of elevated potential vorticity (PV. This structure has been referred to as a hollow PV tower. The sign reversal of the radial gradient of PV satisfies the Charney-Stern necessary condition for combined barotropic-baroclinic instability. For thin enough annular structures, small perturbations grow exponentially, extract energy from the mean flow, and lead to hollow tower breakdown, with significant vortex structural and intensity change. The three-dimensional adiabatic rearrangements of two prototypical hurricane-like hollow PV towers (one thick and one thin are examined in an idealized framework. For both hollow towers, dynamic instability causes air parcels with high PV to be mixed into the eye preferentially at lower levels, where unstable PV wave growth rates are the largest. Little or no mixing is found to occur at upper levels. The mixing at lower and middle levels is most rapid for the breakdown of the thin hollow tower, consistent with previous barotropic results. For both hollow towers, this advective rearrangement of PV affects the tropical cyclone structure and intensity in a number of ways. First, the minimum central pressure and maximum azimuthal mean velocity simultaneously decrease, consistent with previous barotropic results. Secondly, isosurfaces of absolute angular momentum preferentially shift inward at low levels, implying an adiabatic mechanism by which hurricane eyewall tilt can form. Thirdly, a PV bridge, similar to that previously found in full-physics hurricane simulations, develops as a result of mixing at the isentropic levels where unstable PV waves grow most rapidly. Finally, the balanced mass field resulting from the PV rearrangement is warmer in the eye between 900 and 700 hPa. The location of this warming is consistent with observed warm anomalies in the eye, indicating that in certain instances the hurricane

  17. Preliminary Results of Field Emission Cathode Tests

    Science.gov (United States)

    Sovey, James S.; Kovaleski, Scott D.

    2001-01-01

    Preliminary screening tests of field emission cathodes such as chemical vapor deposited (CVD) diamond, textured pyrolytic graphite, and textured copper were conducted at background pressures typical of electric thruster test facilities to assess cathode performance and stability. Very low power electric thrusters which provide tens to hundreds micronewtons of thrust may need field emission neutralizers that have a capability of tens to hundreds of microamperes. From current voltage characteristics, it was found that the CVD diamond and textured metals cathodes clearly satisfied the Fowler-Nordheim emission relation. The CVD diamond and a textured copper cathode had average current densities of 270 and 380 mA/sq cm, respectively, at the beginning-of-life. After a few hours of operation the cathode emission currents degraded by 40 to 75% at background pressures in the 10(exp -5) Pa to 10(exp -4) Pa range. The textured pyrolytic graphite had a modest current density at beginning-of-life of 84 mA/sq cm, but this cathode was the most stable of all. Extended testing of the most promising cathodes is warranted to determine if current degradation is a burn-in effect or whether it is a long-term degradation process. Preliminary experiments with ferroelectric emission cathodes, which are ceramics with spontaneous electric polarization, were conducted. Peak current densities of 30 to 120 mA/sq cm were obtained for pulse durations of about 500 ns in the 10(exp -4) Pa pressure range.

  18. Hollow electrode loose plate SOFC design

    Energy Technology Data Exchange (ETDEWEB)

    Jaspers, B.C.; Dongen, B.A.M. van; Monaster, G.A. [Seed Capital Investments B.V., Utrecht (Netherlands); Roosmalen, J.A.M. van; Plaisier, K.H.; Schoonman, J. [Delft Univ. of Technology (Netherlands). Lab. for Applied Inorganic Chemistry

    1995-12-31

    A novel planar SOFC design is presented, based on the loose stacking of hollow electrode elements, conventional plate type electrolytes and interconnectors. This facilitates free thermal expansion during operation, and thermal cycling, thereby significantly improving prospects for reliable SOFC operation in power generation practice. Each individual element only consists of one material, eliminating the need for sealing and for matching thermal expansion coefficients of fuel cell components. Application of hollow electrodes results in an inherent manifolding of the gas streams eliminating the need for seals at the fuel cell stack itself. The design has been tested at laboratory scale and a small working prototype fuel cell has been successfully tested.

  19. Scaffold Characteristics for Functional Hollow Organ Regeneration

    Directory of Open Access Journals (Sweden)

    Daniel Eberli

    2010-01-01

    Full Text Available Many medical conditions require surgical reconstruction of hollow organs. Tissue engineering of organs and tissues is a promising new technique without harvest site morbidity. An ideal biomaterial should be biocompatible, support tissue formation and provide adequate structural support. It should degrade gradually and provide an environment allowing for cell-cell interaction, adhesion, proliferation, migration, and differentiation. Although tissue formation is feasible, functionality has never been demonstrated. Mainly the lack of proper innervation and vascularisation are hindering contractility and normal function. In this chapter we critically review the current state of engineering hollow organs with a special focus on innervation and vascularisation.

  20. Field emission from entangled carbon nanotubes coated on/in a hollow metallic tube

    CERN Document Server

    Tokura, Y; Ohigashi, N; Akita, S; Nakayama, Y; Imasaki, K; Mima, K; Nakai, S

    2001-01-01

    Field emission properties of entangled carbon nanotubes were studied for an electron beam source of Cherenkov or Smith-Purcell free electron laser. The cathode was made of carbon nanotubes which were mixed with a very small amount of resin and coated on/in a hollow metallic tube with outer diameter of 0.5 mm. The emission current was as high as 2.2 mA with a fluctuation of <4%. It seems that some entangled nanotubes were frayed under the high electric field and then electrons were emitted mainly from their tips. Reduction of the work function of the carbon nanotubes was observed with the degradation of vacuum pressure in the experimental apparatus.

  1. Novel co-extruded electrolyte-anode hollow fibres for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Droushiotis, Nicolas; Othman, Mohd Hafiz Dzarfan; Doraswami, Uttam; Wu, Zhentao; Kelsall, Geoff; Li, Kang [Department of Chemical Engineering, Imperial College London, London SW7 2AZ (United Kingdom)

    2009-09-15

    Novel CGO/NiO-CGO dual-layer hollow fibres (HFs) have been fabricated in a single-step co-extrusion and co-sintering process. LSCF-CGO cathodes layers were then deposited onto the dual-layer HFs to construct micro-tubular SOFCs. The NiO in the micro-tubular HF-SOFCs was reduced at 550 C using hydrogen gas to form Ni anodes. Scanning electron microscope images showed that the dual-layer HFs have porous anodes and dense electrolyte layers. Preliminary measurements with a HF-SOFC fed with H{sub 2} and atmospheric oxygen, produced maximum power densities of 420 W m{sup -2} and 800 W m{sup -2} at 450 C and 550 C, respectively. (author)

  2. Vacuum arc on the polycrystalline silica cathode

    Directory of Open Access Journals (Sweden)

    D. V. Duhopel'nikov

    2014-01-01

    Full Text Available Thin films of silica and its compounds are used in modern technology to produce Li-ion batteries, wear-resistant and protective coatings, thin-films insulators, etc. This coating is produced with CVD methods, with magnetron sputtering systems or with electron-beam evaporation. The vacuum arc evaporation method, presently, is not used.The paper demonstrates a possibility for a long-term operation of vacuum arc evaporator with polycrystalline silica-aluminum alloy (90% of silica cathode and with magnetic system to create a variable form of arch-like magnetic field on the cathode surface. It was shown that archlike configuration of magnetic field provides a stable discharge and uniform cathode spots moving with the velocities up to 5 m/s with magnetic fields induction about 10 mT. Thus, there is no local melting of the cathode, and this provides its long-term work without chips, cracks and destruction. Cathodes spots move over the cathode surface leaving t big craters with melted edges on its surface. The craters size was 150-450μm. The cathode spot movement character and the craters on the cathode surface were like the spots movement, when working on the copper or aluminum cathodes. With the magnetic field induction less than 1 mT, the cathode spots movement was the same as that of on the silica mono-crystal without magnetic field. Thus, the discharge volt-ampere characteristics for different values of magnetic fields were obtained. Voltampere characteristics were increasing and were shifted to the higher voltage with increasing magnetic field. The voltage was 18.7-26.5 V for the arc current 30-140 A.So, it was confirmed that vacuum arc evaporation method could be used for effective evaporation of silica and silica-based alloys and for thin films deposition of this materials.

  3. The Hollow-Face Illusion in Infancy: Do Infants See a Screen Based Rotating Hollow Mask as Hollow?

    Directory of Open Access Journals (Sweden)

    Aki Tsuruhara

    2011-06-01

    Full Text Available We investigated whether infants experience the hollow-face illusion using a screen-based presentation of a rotating hollow mask. In experiment 1 we examined preferential looking between rotating convex and concave faces. Adults looked more at the concave—illusory convex—face which appears to counter rotate. Infants of 7- to 8-month-old infants preferred the convex face, and 5- to 6-month-olds showed no preference. While older infants discriminate, their preference differed from that of adults possibly because they don't experience the illusion or counter rotation. In experiment 2 we tested preference in 7- to 8-month-olds for angled convex and concave static faces both before and after habituation to the stimuli shown in experiment 1. The infants showed a novelty preference for the static shape opposite to the habituation stimulus, together with a general preference for the static convex face. This shows that they discriminate between convex and concave faces and that habituation to either transfers across a change in view. Seven- to eight-month-olds have been shown to discriminate direction of rigid rotation on the basis of perspective changes. Our results suggest that this, perhaps together with a weaker bias to perceive faces as convex, allows these infants to see the screen-based hollow face as hollow even though adults perceive it as convex.

  4. Design and Development of DSP Controlled Filament Power Supply for 1 MW, 352.2 MHz Klystron

    Directory of Open Access Journals (Sweden)

    Akhilesh Tripathi# , M. K. Badapanda and P. R. Hannurkar

    2013-04-01

    Full Text Available A digitally controlled current regulated 20 V, 25 A dc power supply employing IGBT based chopper is developed as the filament power supply for 1 MW, 352.2 MHz, Thales make TH 2089 klystron amplifier. The filament of this klystron is floating at cathode voltage of -100 kV dc, hence this power supply is kept on a floated platform and isolated through a suitable HV isolation transformer. Control and protection of this power supply is implemented through Texas make TMS320F2812 digital signal processor (DSP and fibre optics based optical communication is adopted. Detailed simulation is carried out and a close match between simulated and experimental results was obtained, which are presented in this paper. The long term output current stability and peak to peak output current ripple of this power supply are found to be below 0.5 %

  5. A test resonator for Kagome Hollow-core Photonic Crystal Fibers for resonant rotation sensing

    Science.gov (United States)

    Fsaifes, Ihsan; Feugnet, Gilles; Ravaille, Alexia; Debord, Benoït; Gérôme, Frédéric; Baz, Assaad; Humbert, Georges; Benabid, Fetah; Schwartz, Sylvain; Bretenaker, Fabien

    2017-01-01

    We build ring resonators to assess the potentialities of Kagome Hollow-Core Photonic Crystal Fibers for future applications to resonant rotation sensing. The large mode diameter of Kagome fibers permits to reduce the free space fiber-to-fiber coupling losses, leading to cavities with finesses of about 30 for a diameter equal to 15 cm. Resonance linewidths of 3.2 MHz with contrasts as large as 89% are obtained. Comparison with 7-cell photonic band gap (PBG) fiber leads to better finesse and contrast with Kagome fiber. Resonators based on such fibers are compatible with the angular random walk required for medium to high performance rotation sensing. The small amount of light propagating in silica should also permit to further reduce the Kerr-induced non-reciprocity by at least three orders of magnitudes in 7-cell Kagome fiber compared with 7-cell PBG fiber.

  6. Differential high-resolution stimulated CW Raman spectroscopy of hydrogen in a hollow-core fiber

    CERN Document Server

    Westergaard, Philip G; Petersen, Jan C

    2015-01-01

    We demonstrate sensitive high-resolution stimulated Raman measurements of hydrogen using a hollow-core photonic crystal fiber (HC-PCF). The Raman transition is pumped by a narrow linewidth (<50 kHz) 1064 nm continuous-wave (CW) fiber laser. The probe light is produced by a homebuilt CW optical parametric oscillator (OPO), tunable from around 800 nm to 1300 nm (linewidth ~ 5 MHz). These narrow linewidth lasers allow for an excellent spectral resolution of approximately 10^-4 cm^(-1). The setup employs a differential measurement technique for noise rejection in the probe beam, which also eliminates background signals from the fiber. With the high sensitivity obtained, Raman signals were observed with only a few mW of optical power in both the pump and probe beams. This demonstration allows for high resolution Raman identification of molecules and quantification of Raman signal strengths.

  7. Hall-effect thruster--Cathode coupling: The effect of cathode position and magnetic field topology

    Science.gov (United States)

    Sommerville, Jason D.

    2009-12-01

    Hall-effect thruster (HET) cathodes are responsible for the generation of the free electrons necessary to initiate and sustain the main plasma discharge and to neutralize the ion beam. The position of the cathode relative to the thruster strongly affects the efficiency of thrust generation. However, the mechanisms by which the position affects the efficiency are not well understood. This dissertation explores the effect of cathode position on HET efficiency. Magnetic field topology is shown to play an important role in the coupling between the cathode plasma and the main discharge plasma. The position of the cathode within the magnetic field affects the ion beam and the plasma properties of the near-field plume, which explains the changes in efficiency of the thruster. Several experiments were conducted which explored the changes of efficiency arising from changes in cathode coupling. In each experiment, the thrust, discharge current, and cathode coupling voltage were monitored while changes in the independent variables of cathode position, cathode mass flow and magnetic field topology were made. From the telemetry data, the efficiency of the HET thrust generation was calculated. Furthermore, several ion beam and plasma properties were measured including ion energy distribution, beam current density profile, near-field plasma potential, electron temperature, and electron density. The ion beam data show how the independent variables affected the quality of ion beam and therefore the efficiency of thrust generation. The measurements of near-field plasma properties partially explain how the changes in ion beam quality arise. The results of the experiments show that cathode position, mass flow, and field topology affect several aspects of the HET operation, especially beam divergence and voltage utilization efficiencies. Furthermore, the experiments show that magnetic field topology is important in the cathode coupling process. In particular, the magnetic field

  8. Template engaged synthesis of hollow ceria-based composites

    Science.gov (United States)

    Chen, Guozhu; Rosei, Federico; Ma, Dongling

    2015-03-01

    Hollow ceria-based composites, which consist of noble metal nanoparticles or metal oxides as a secondary component, are being studied extensively for potential applications in heterogeneous catalysis. This is due to their unique features, which exhibit the advantages of a hollow structure (e.g. high surface area and low weight), and also integrate the properties of ceria and noble metals/metal oxides. More importantly, the synergistic effect between constituents in hollow ceria-based composites has been demonstrated in various catalytic reactions. In this feature article, we summarize the state-of-the-art in the synthesis of hollow ceria-based composites, including traditional hard-templates and more recently, sacrificial-template engaged strategies, highlighting the key role of selected templates in the formation of hollow composites. In addition, the catalytic applications of hollow ceria-based composites are briefly surveyed. Finally, challenges and perspectives on future advances of hollow ceria-based composites are outlined.

  9. Evidence of fire resistance of hollow-core slabs

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl; Sørensen, Lars Schiøtt; Giuliani, Luisa

    Hollow-core slabs have during the past 50 years comprised a variety of different structures with different cross-sections and reinforcement. At present the extruded hollow-core slabs without cross-reinforcement in the bottom flange and usually round or oval longitudinal channels (holes...... is therefore going on in the Netherlands about the fire resistance of hollow-core slabs. In 2014 the producers of hollow-core slabs have published a report of a project called Holcofire containing a collection of 162 fire tests on hollow-core slabs giving for the first time an overview of the fire tests made....... The present paper analyses the evidence now available for assessment of the fire resistance of extruded hollow-core slabs. The 162 fire tests from the Holcofire report are compared against the requirements for testing from the product standard for hollow-core slabs EN1168 and knowledge about the possible...

  10. Hollow-atom probing of surfaces

    NARCIS (Netherlands)

    Limburg, J.

    1997-01-01

    This paper discusses the mechanisms governing the formation and decay of hollow atoms in front of (semi) conducting and insulating surfaces. First, the primary neutralization of the highly charged ions is treated in terms of the classical overbarrier model. Different views are presented. Then the mo

  11. Galvanic Synthesis of Hollow Gold Nanoshells

    Science.gov (United States)

    2015-02-01

    pulses in the NIR.2 The advantage of hollow nanoshells over solid gold (Au) or silver (Ag) nanoparticles , or alloys thereof,3 is that the...Karna SP. Synthesis of gold and silver nanoparticles and characterization of structural, optical, and electronic properties. Aberdeen Proving Ground...

  12. New approaches for high energy density lithium-sulfur battery cathodes.

    Science.gov (United States)

    Evers, Scott; Nazar, Linda F

    2013-05-21

    The goal of replacing combustion engines or reducing their use presents a daunting problem for society. Current lithium-ion technologies provide a stepping stone for this dramatic but inevitable change. However, the theoretical gravimetric capacity (∼300 mA h g(-1)) is too low to overcome the problems of limited range in electric vehicles, and their cost is too high to sustain the commercial viability of electrified transportation. Sulfur is the one of the most promising next generation cathode materials. Since the 1960s, researchers have studied sulfur as a cathode, but only recently have great strides been made in preparing viable composites that can be used commercially. Sulfur batteries implement inexpensive, earth-abundant elements at the cathode while offering up to a five-fold increase in energy density compared with present Li-ion batteries. Over the past few years, researchers have come closer to solving the challenges associated with the sulfur cathode. Using carbon or conducting polymers, researchers have wired up sulfur, an excellent insulator, successfully. These conductive hosts also function to encapsulate the active sulfur mass upon reduction/oxidation when highly soluble lithium polysulfides are formed. These soluble discharge products remain a crux of the Li-S cell and need to be contained in order to increase cycle life and capacity retention. The use of mesoporous carbons and tailored designs featuring porous carbon hollow spheres have led to highly stable discharge capacities greater than 900 mA h g(-1) over 100 cycles. In an attempt to fully limit polysulfide dissolution, methods that rely on coating carbon/sulfur composites with polymers have led to surprisingly stable capacities (∼90% of initial capacity retained). Additives will also play an important role in sulfur electrode design. For example, small fractions (> 3 wt%) of porous silica or titania effectively act as polysulfide reservoirs, decreasing their concentration in the

  13. Development of disposable membrane hydrophones for a frequency range from 1MHz to 10MHz.

    Science.gov (United States)

    Lee, Jae-Wan; Ohm, Won-Suk; Kim, Yong-Tae

    2017-11-01

    A method for fabricating disposable membrane hydrophones is presented. The disposable hydrophones are intended for onetime use in such damaging environments as chemically contaminating fluids and high-amplitude (peak amplitude ∼100MPa) shock wave fields, where the use of commercial membrane hydrophones is not recommended. Fabrication of a hydrophone is done using only off-the-shelf components and hand tools, which translates into ease of fabrication and orders-of-magnitude reduction in unit cost. In particular, poling and sputtering, the two processes that are chiefly responsible for the cost and difficulty associated with the conventional fabrication method, are replaced with the use of pre-poled polyvinylidene fluoride (PVDF) films and polyethylene terephthalate (PET)-coated aluminum foils, respectively. Despite the seemingly crude construction, these disposable hydrophones can exhibit voltage sensitivity response that compares favorably with that of commercial hydrophones. For example, one prototype having a 2mm×2mm active element shows the end-of-cable voltage sensitivity of -270 (±1.9) dB re 1V/μPa over the frequency range of 1-10MHz. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Mesoporous hollow carbon spheres for lithium–sulfur batteries: distribution of sulfur and electrochemical performance

    Directory of Open Access Journals (Sweden)

    Anika C. Juhl

    2016-08-01

    Full Text Available Hollow carbon spheres (HCS with a nanoporous shell are promising for the use in lithium–sulfur batteries because of the large internal void offering space for sulfur and polysulfide storage and confinement. However, there is an ongoing discussion whether the cavity is accessible for sulfur. Yet no valid proof of cavity filling has been presented, mostly due to application of unsuitable high-vacuum methods for the analysis of sulfur distribution. Here we describe the distribution of sulfur in hollow carbon spheres by powder X-ray diffraction and Raman spectroscopy along with results from scanning electron microscopy and nitrogen physisorption. The results of these methods lead to the conclusion that the cavity is not accessible for sulfur infiltration. Nevertheless, HCS/sulfur composite cathodes with areal sulfur loadings of 2.0 mg·cm−2 were investigated electrochemically, showing stable cycling performance with specific capacities of about 500 mAh·g−1 based on the mass of sulfur over 500 cycles.

  15. Development of vertical electropolishing process applied on 1300 and 704 MHz superconducting niobium resonators

    Directory of Open Access Journals (Sweden)

    F. Eozénou

    2014-08-01

    Full Text Available An advanced setup for vertical electropolishing of superconducting radio-frequency niobium elliptical cavities has been installed at CEA Saclay. Cavities are vertically electropolished with circulating standard HF-HF-H_{2}SO_{4} electrolytes. Parameters such as voltage, cathode shape, acid flow, and temperature have been investigated. A low voltage (between 6 and 10 V depending on the cavity geometry, a high acid flow (25  L/min, and a low acid temperature (20° C are considered as promising parameters. Such a recipe has been tested on single-cell and nine-cell International Linear Collider (ILC as well as 704 MHz five-cell Super Proton Linac (SPL cavities. Single-cell cavities showed similar performances at 1.6 K being either vertically or horizontally electropolished. The applied baking process provides similar benefit. An asymmetric removal is observed with faster removal in the upper half-cells. Multicell cavities (nine-cell ILC and five-cell SPL cavities exhibit a standard Q_{0} value at low and medium accelerating fields though limited by power losses due to field emitted electrons.

  16. In-situ synthesis of sulfur-TiO2 hollow shell materials for high-performance lithium-sulfur batteries

    Science.gov (United States)

    Hai, Bo; Ma, Litong; Yan, Hui; Wei, Hang

    2017-05-01

    Lithium-sulfur batteries with higher energy density are highly attractive, but the practical applications have been greatly affected by their poor cycle performance. Despite much effort has been devoted to design the structure of sulfur cathode to suppress polysulfide dissolution, relatively little emphasis has been placed on in-situ immobilizing the sulfur atoms. Herein, we demonstrate a new approach of in-situ immobilizing the sulfur atoms into the TiO2 host, in which, the polysulphides can localized in the cathode side and efficiently reused during cycling due to the novel S-TiO2 hollow shell structure. The battery based on the well-designed S-TiO2 cathode can deliver a discharge capacity of 601 mA h g-1 at 0.5 C after 100 cycles. The good electrochemical performance could be attributed to the homogeneous dispersing of sulfur in the TiO2 host in the in-situ formation process, and the hollow structure of the S-TiO2 materials. The economical and simple strategy to overcome the polysulfide dissolution issues provides a commercially feasible way for the construction of lithium-sulfur batteries.

  17. Cathode heating mechanisms in pseudospark plasma switches

    Science.gov (United States)

    Sommerer, Timothy J.; Pak, Hoyoung; Kushner, Mark J.

    1992-10-01

    Pseudosparks, and the back-lighted thyratron (BLT) in particular, are finding increasing application as pulse power switches. An attractive feature of BLTs is that high current densities (≥ tens of kA cm-2) can be sustained from metal cathodes without auxiliary heating. The source of this current is believed to be electric-field-enhanced thermionic emission resulting from heating of the cathode by ion bombardment during commutation which ultimately melts the surface of the cathode. It is proposed that a photon-driven ionization mechanism in the interelectrode gap of the BLT is responsible for initiating the observed patterns of cathode surface melting and electron emission. A 21/2-dimensional computer model is presented that incorporates a photo-induced ionization mechanism to spread the plasma into the interelectrode gap. It predicts a melting of the cathode in a pattern similar to that which is experimentally observed, and predicts a rate of field-enhanced thermionic electron emission that is sufficient to explain the high BLT conduction current density. In the absence of these mechanisms, the model does not predict the observed large-area melting of the face of the cathode. The cathode heating rate during the BLT switching phase is maximum for operating parameters that are very close to the limit for which the switch will close (that is, the smallest possible pressure-electrode spacing product and smallest possible electrode holes).

  18. Fabrication of AlN/BN bishell hollow nanofibers by electrospinning and atomic layer deposition

    Directory of Open Access Journals (Sweden)

    Ali Haider

    2014-09-01

    Full Text Available Aluminum nitride (AlN/boron nitride (BN bishell hollow nanofibers (HNFs have been fabricated by successive atomic layer deposition (ALD of AlN and sequential chemical vapor deposition (CVD of BN on electrospun polymeric nanofibrous template. A four-step fabrication process was utilized: (i fabrication of polymeric (nylon 6,6 nanofibers via electrospinning, (ii hollow cathode plasma-assisted ALD of AlN at 100 °C onto electrospun polymeric nanofibers, (iii calcination at 500 °C for 2 h in order to remove the polymeric template, and (iv sequential CVD growth of BN at 450 °C. AlN/BN HNFs have been characterized for their chemical composition, surface morphology, crystal structure, and internal nanostructure using X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, and selected area electron diffraction. Measurements confirmed the presence of crystalline hexagonal BN and AlN within the three dimensional (3D network of bishell HNFs with relatively low impurity content. In contrast to the smooth surface of the inner AlN layer, outer BN coating showed a highly rough 3D morphology in the form of BN nano-needle crystallites. It is shown that the combination of electrospinning and plasma-assisted low-temperature ALD/CVD can produce highly controlled multi-layered bishell nitride ceramic hollow nanostructures. While electrospinning enables easy fabrication of nanofibrous template, self-limiting reactions of plasma-assisted ALD and sequential CVD provide control over the wall thicknesses of AlN and BN layers with sub-nanometer accuracy.

  19. Batteries: Overview of Battery Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Doeff, Marca M

    2010-07-12

    The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as

  20. Batteries: Overview of Battery Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Doeff, Marca M

    2010-07-12

    The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as

  1. 120 MW, 800 MHz Magnicon for a Future Muon Collider

    Energy Technology Data Exchange (ETDEWEB)

    Jay L. Hirshfield

    2005-12-15

    Development of a pulsed magnicon at 800 MHz was carried out for the muon collider application, based on experience with similar amplifiers in the frequency range between 915 MHz and 34.3 GHz. Numerical simulations using proven computer codes were employed for the conceptual design, while established design technologies were incorporated into the engineering design. A cohesive design for the 800 MHz magnicon amplifier was carried out, including design of a 200 MW diode electron gun, design of the magnet system, optimization of beam dynamics including space charge effects in the transient and steady-state regimes, design of the drive, gain, and output cavities including an rf choke in the beam exit aperture, analysis of parasitic oscillations and design means to eliminate them, and design of the beam collector capable of 20 kW average power operation.

  2. Electrochemical Impedance Studies of SOFC Cathodes

    DEFF Research Database (Denmark)

    Hjelm, Johan; Søgaard, Martin; Wandel, Marie

    2007-01-01

    impedance of the cathode at intermediate operating temperatures. The perovskite is of the La-Sr-Co-Fe type. The EIS response of symmetrical cells with a thick (similar to 200 mu m) gadolinia doped ceria electrolyte was compared with the impedance contribution of the cathode of a full anode supported cell....... The full cells had a Ni-YSZ anode and anode support, a thin YSZ electrolyte, and a CGO barrier layer. The symmetric and full cell cathode responses were compared at open-circuit voltage. Humidified hydrogen was used as the fuel in the full cell measurements. Differential analysis of the impedance data...

  3. Plasma distribution of cathodic ARC deposition system

    Energy Technology Data Exchange (ETDEWEB)

    Anders, S.; Raoux, S.; Krishnan, K.; MacGill, R.A.; Brown, I.G. [Lawrence Berkeley National Lab., CA (United States)

    1996-08-01

    The plasma distribution using a cathodic arc plasma source with and without magnetic macroparticle filter has been determined by depositing on a transparent plastic substrate and measuring the film absorption. It was found that the width of the distribution depends on the arc current, and it also depends on the cathode material which leads to a spatial separation of the elements when an alloy cathode is used. By applying a magnetic multicusp field near the exit of the magnetic filter, it was possible to modify the plasma distribution and obtain a flat plasma profile with a constant and homogeneous elemental distribution.

  4. Design aspects of 13.56MHz, 1kW, CW-RF oscillator for plasma production

    Science.gov (United States)

    Kumar, Sunil; Kadia, Bhavesh; Singh, Raj; Varia, Atul; Srinivas, Y. S. S.; Kulkarni, S. V.; ICRH-RF Group

    2010-02-01

    RF produced plasma has many applications in plasma processing and also it is useful in studying the fundamental characteristics of the plasma. A 1KW RF Hartley oscillator is designed and tested at 13.56 MHz. This has been built at RF section of Institute for Plasma Research by using EIMAC (3CX1200A7) triode tube. The RF source is operated in the grounded cathode mode. Triode 3CX1200A7 is operated in class AB and the feedback is Cathode grounded. The tube has sufficient margin in terms of plate dissipation and Grid dissipation that makes it suitable to withstand momentarily load mismatch. To optimize the RF source along with HVDC power supply many mechanical and electrical aspects have been thought of to enhance the overall quality of the system. This source mainly has three sections (The RF section, HVDC Power supply and soft start Filament Power supply). The system is compact and is housed in a 80 cm × 60 cm × 1800 cm aluminum panel. This paper describes the specifications, design criteria, circuit used, operating parameters of 1KW Oscillator along with HVDC power supply with necessary interlocks, tests conducted and results obtained of this 1 KW grounded grid Hartley Oscillator on 50 ohm dummy load. This system has been tested for 8 hours of continuous operation without any appreciable deterioration of the RF output power.

  5. Characteristics of capacitively coupled RF helium/neon discharges in a hollow fiber

    Science.gov (United States)

    Duan, Lian; Wang, Xinbing; Zuo, Duluo

    2016-11-01

    Capacitively coupled radio-frequency microplasmas are produced in hollow fibers with an inner diameter of hundreds of micrometers powered by an 80-MHz power supply. Considering the narrow space of the hollow core, optical emission spectrometry is used to obtain the spatially resolved characteristics of the microplasmas. The rotational temperature, excitation temperature, and electron density of microplasmas are determined based on the second positive band of nitrogen, the atomic spectra of bulk neutral particles of plasmas, and the Hβ line of the hydrogen Balmer series, respectively. In our experiments, the rotational temperature, excitation temperature, and electron density of typical inert gases helium and neon are in the ranges of 300-500 K, 7000-9500 K, and 1013 cm-3, respectively. The results obtained with different external parameters of power and pressure show that the light emission intensity increases with power and pressure. The distributions of the rotational temperature, excitation temperature, and electron density of the microplasmas are almost constant over the gap between the electrodes. These distributions are mostly insensitive to the change of power and pressure in single-component plasmas. The characteristics of mixed plasmas are also investigated. The plasma with a larger helium content possesses higher excitation temperature and lower rotational temperature and electron density than those of the plasma with a lower helium content.

  6. MHz Gravitational Waves from Short-term Anisotropic Inflation

    CERN Document Server

    Ito, Asuka

    2016-01-01

    We reveal the universality of short-term anisotropic inflation. As a demonstration, we study inflation with an exponential type gauge kinetic function which is ubiquitous in models obtained by dimensional reduction from higher dimensional fundamental theory. It turns out that an anisotropic inflation universally takes place in the later stage of conventional inflation. Remarkably, we find that primordial gravitational waves with a peak amplitude around $10^{-26}$ ~ $10^{-27}$ are copiously produced in high-frequency bands 10MHz~100MHz. If we could detect such gravitational waves in future, we would be able to probe higher dimensional fundamental theory.

  7. Calibrating an interferometric laser frequency stabilization to MHz precision

    CERN Document Server

    Brachmann, Johannes F S; Dieckmann, Kai; 10.1364/AO.51.005517

    2012-01-01

    We report on a calibration procedure that enhances the precision of an interferometer based frequency stabilization by several orders of magnitude. For this purpose the frequency deviations of the stabilization are measured precisely by means of a frequency comb. This allows to implement several calibration steps that compensate different systematic errors. The resulting frequency deviation is shown to be less than $5.7 $MHz (rms $1.6 $MHz) in the whole wavelength interval $750 - 795 $nm. Wide tuning of a stabilized laser at this exceptional precision is demonstrated.

  8. Advances in Thermionic Cathode of Tungsten and Molybdenum

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Several kinds of tungsten thermonic cathodes have been introduced. As a promising alternative for thoriated tungsten, rare earth doped molybdenum cathode has been studied. Compared with the traditional thoriated tungsten, La-Mo cathode has higher emission current density at lower temperature, but it has poor emission stability. In order to improve the emission stability, systematical study on the emission mechanism of La-Mo cathode has been carried out. The life of La-Mo cathode has been improved and has achieved 1400 h, which exceeds the minimum life for practical uses (1000 h). As another alternative for thoriated tungsten cathode, Y-Mo cathode has shown better performance. The thermionic emission capability of Y-Mo cathode is between that of La-Mo cathode and Th-W cathode.

  9. Brute-Force Mapmaking with Compact Interferometers: A MITEoR Northern Sky Map from 128 MHz to 175 MHz

    CERN Document Server

    Zheng, H; Dillon, J; Liu, A; Neben, A R; Tribiano, S; Bradley, R; Buza, V; Ewall-Wice, A; Gharibyan, H; Hickish, J; Kunz, E; Losh, J; Lutomirski, A; Morgan, E; Morrison, S; Narayanan, S; Perko, A; Rosner, D; Sanchez, N; Schutz, K; Valdez, M; Villasenor, J; Yang, H; Zarb-Adami, K; Zelko, I; Zheng, K

    2016-01-01

    We present a new method for interferometric imaging that is ideal for the large fields of view and compact arrays common in 21~cm cosmology. We first demonstrate the method with simulations for two very different low frequency interferometers, the Murchison Widefield Array (MWA) and the MIT Epoch of Reionization (MITEoR) Experiment. We then apply the method to the MITEoR data set collected in July 2013 to obtain the first northern sky map from 128 MHz to 175 MHz at about 2 degree resolution, and find an overall spectral index of -2.73+/-0.11. The success of this imaging method bodes well for upcoming compact redundant low-frequency arrays such as HERA. Both the MITEoR interferometric data and the 150 MHz sky map are publicly available at http://space.mit.edu/home/tegmark/omniscope.html.

  10. High current density cathode for electrorefining in molten electrolyte

    Science.gov (United States)

    Li, Shelly X.

    2010-06-29

    A high current density cathode for electrorefining in a molten electrolyte for the continuous production and collection of loose dendritic or powdery deposits. The high current density cathode eliminates the requirement for mechanical scraping and electrochemical stripping of the deposits from the cathode in an anode/cathode module. The high current density cathode comprises a perforated electrical insulated material coating such that the current density is up to 3 A/cm.sup.2.

  11. Characteristics of Left-Right Spiral Hollow Cylindrical Roller

    Institute of Scientific and Technical Information of China (English)

    Liming Lu; Qiping Chen; Yujiang Qin

    2015-01-01

    Based on new rolling⁃sliding compound bearings, the wear between the one⁃way spiral hollow cylindrical roller and the ribs of the inner and outer ring of rolling⁃sliding compound bearings is reduced by innovational structural design. A new left⁃right spiral hollow cylindrical roller is proposed to replace the one⁃way spiral hollow cylindrical roller. The finite element analysis models of ordinary cylindrical rollers, one⁃way spiral hollow cylindrical rollers and left⁃right spiral hollow cylindrical rollers are respectively established by ABAQUS. The axial displacement of their center mass and the stress distribution of left⁃right spiral hollow cylindrical rollers are compared and analyzed. Theoretical study results show that this new left⁃right spiral hollow cylindrical roller not only inherits the advantages of one⁃way spiral hollow cylindrical rollers, but also avoids the axial offset and the serious wear of the one⁃way spiral hollow cylindrical roller. And the theory research conclusion is verified by the experiment. The left⁃right spiral hollow cylindrical roller has the advantages to overcome boundary stress concentration like logarithmic convex roller. The rolling⁃sliding compound bearings equipped with the new rollers can be better to adapt to the impact of vibration load.

  12. RF Electron Gun with Driven Plasma Cathode

    CERN Document Server

    Khodak, Igor

    2005-01-01

    It's known that RF guns with plasma cathodes based on solid-state dielectrics are able to generate an intense electron beam. In this paper we describe results of experimental investigation of the single cavity S-band RF gun with driven plasma cathode. The experimental sample of the cathode based on ferroelectric ceramics has been designed. Special design of the cathode permits to separate spatially processes of plasma development and electron acceleration. It has been obtained at RF gun output electron beam with particle energy ~500 keV, pulse current of 4 A and pulse duration of 80 ns. Results of experimental study of beam parameters are referred in. The gun is purposed to be applied as the intense electron beam source for electron linacs.

  13. Reservoir Scandate Cathode for Electric Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to combine two revolutionary cathode technologies into a single device for use in electric space propulsion. This will overcome problems that both...

  14. MnO2 Nanofilms on Nitrogen-Doped Hollow Graphene Spheres as a High-Performance Electrocatalyst for Oxygen Reduction Reaction.

    Science.gov (United States)

    Yu, Qiangmin; Xu, Jiaoxing; Wu, Chuxin; Zhang, Jianshuo; Guan, Lunhui

    2016-12-28

    Platinum is commonly chosen as an electrocatalyst used for oxygen reduction reaction (ORR). In this study, we report an active catalyst composed of MnO2 nanofilms grown directly on nitrogen-doped hollow graphene spheres, which exhibits high activity toward ORR with positive onset potential (0.94 V vs RHE), large current density (5.2 mA cm(-2)), and perfect stability. Significantly, when it was used as catalyst for air electrode, a zinc-air battery exhibited a high power density (82 mW cm(-2)) and specific capacities (744 mA h g(-1)) comparable to that with Pt/C (20 wt %) as air cathode. The enhanced activity is ascribed to the synergistic interaction between MnO2 and the doped hollow carbon nanomaterials. This easy and cheap method paves a way of synthesizing high-performance electrocatalysts for ORR.

  15. Novel fabrication technique of hollow fibre support for micro-tubular solid oxide fuel cells

    Science.gov (United States)

    Othman, Mohd Hafiz Dzarfan; Droushiotis, Nicolas; Wu, Zhentao; Kelsall, Geoff; Li, K.

    In this work, a cerium-gadolinium oxide (CGO)/nickel (Ni)-CGO hollow fibre (HF) for micro-tubular solid oxide fuel cells (SOFCs), which consists of a fully gas-tight outer electrolyte layer supported on a porous inner composite anode layer, has been developed via a novel single-step co-extrusion/co-sintering technique, followed by an easy reduction process. After depositing a multi-layers cathode layer and applying current collectors on both anode and cathode, a micro-tubular SOFC is developed with the maximum power densities of 440-1000 W m -2 at 450-580 °C. Efforts have been made in enhancing the performance of the cell by reducing the co-sintering temperature and improving the cathode layer and current collection from inner (anode) wall. The improved cell produces maximum power densities of 3400-6800 W m -2 at 550-600 °C, almost fivefold higher than the previous cell. Further improvement has been carried out by reducing thickness of the electrolyte layer. Uniform and defect-free outer electrolyte layer as thin as 10 μm can be achieved when the extrusion rate of the outer layer is controlled. The highest power output of 11,100 W m -2 is obtained for the cell of 10 μm electrolyte layer at 600 °C. This result further highlights the potential of co-extrusion technique in producing high quality dual-layer HF support for micro-tubular SOFC.

  16. Dual-Confined Sulfur Nanoparticles Encapsulated in Hollow TiO2 Spheres Wrapped with Graphene for Lithium-Sulfur Batteries.

    Science.gov (United States)

    Fan, Haining; Tang, Qunli; Chen, Xiaohua; Fan, Binbin; Chen, Shanliang; Hu, Aiping

    2016-10-20

    Lithium-sulfur (Li-S) batteries are attractive owing to their higher energy density and lower cost compared with the universally used lithium-ion batteries (LIBs), but there are some problems that stop their practical use, such as low utilization and rapid capacity-fading of the sulfur cathode, which is mainly caused by the shuttle effect, and the uncontrollable deposition of lithium sulfide species. Herein, we report the design and fabrication of dual-confined sulfur nanoparticles that were encapsulated inside hollow TiO2 spheres; the encapsulated nanoparticles were prepared by a facile hydrolysis process combined with acid etching, followed by "wrapping" with graphene (G-TiO2 @S). In this unique composite architecture, the hollow TiO2 spheres acted as effective sulfur carriers by confining the polysulfides and buffering volume changes during the charge-discharge processes by means of physical force from the hollow spheres and chemical binding between TiO2 and the polysulfides. Moreover, the graphene-wrapped skin provided an effective 3D conductive network to improve the electronic conductivity of the sulfur cathode and, at the same time, to further suppress the dissolution of the polysulfides. As results, the G-TiO2 @S hybrids exhibited a high and stable discharge capacity of up to 853.4 mA h g(-1) over 200 cycles at 0.5 C (1 C=1675 mA g(-1) ) and an excellent rate capability of 675 mA h g(-1) at a current rate of 2 C; thus, G-TiO2 @S holds great promise as a cathode material for Li-S batteries.

  17. Pulsar polarisation below 200 MHz: Average profiles and propagation effects

    NARCIS (Netherlands)

    Noutsos, A.; Sobey, C.; Kondratiev, V.I.; Weltevrede, P.; Verbiest, J.P.W.; Karastergiou, A.; Kramer, M.; Kuniyoshi, M.; Alexov, A.; Breton, R.P.; Bilous, A.V.; Cooper, S.; Falcke, H.; Grießmeier, J.M.; Hassall, T.E.; Hessels, J.W.T.; Keane, E.F.; Osłowski, S.; Pilia, M.; Serylak, M.; Stappers, B.W.; ter Veen, S.; van Leeuwen, J.; Zagkouris, K.; Anderson, K.; Bähren, L.; Bell, M.; Broderick, J.; Carbone, D.; Cendes, Y.; Coenen, T.; Corbel, S.; Eislöffel, J.; Fender, R.; Garsden, H.; Jonker, P.; Law, C.; Markoff, S.; Masters, J.; Miller-Jones, J.; Molenaar, G.; Osten, R.; Pietka, M.; Rol, E.; Rowlinson, A.; Scheers, B.; Spreeuw, H.; Staley, T.; Stewart, A.; Swinbank, J.; Wijers, R.; Wijnands, R.; Wise, M.; Zarka, P.; van der Horst, A.

    2015-01-01

    Aims. We present the highest-quality polarisation profiles to date of 16 non-recycled pulsars and four millisecond pulsars, observed below 200 MHz with the LOFAR high-band antennas. Based on the observed profiles, we perform an initial investigation of expected observational effects resulting from t

  18. Simulation on the Final Stage of 44 MHz Transmitter

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>The 44 MHz transmitter will be used to power the 1:1 scale 100 MeV metal proctortype cavity. To improve the stability of the final stage amplifier and to obtain more output power, it is necessary to

  19. MEMS Tunable Antennas to Address LTE 600 MHz-bands

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Morris, Art; Pedersen, Gert Frølund

    2015-01-01

    The broadcast television spectrum around 600 MHz has been freed in the united states and will be put for auction to wireless carriers in 2015. The newest generation of mobile communication standards will be deployed on these newly available bands, to provide mobile device users with an enhanced c...

  20. Experiences with the Fermilab HINS 325 MHz RFQ

    CERN Document Server

    Webber, R C; Madrak, R; Romanov, G; Scarpine, V; Steimel, J; Wildman, D

    2012-01-01

    The Fermilab High Intensity Neutrino Source program has built and commissioned a pulsed 325 MHz RFQ. The RFQ has successfully accelerated a proton beam at the RFQ design RF power. Experiences encountered during RFQ conditioning, including the symptoms and cause of a run-away detuning problem, and the first beam results are first reported.

  1. Pulsar polarisation below 200 MHz: Average profiles and propagation effects

    NARCIS (Netherlands)

    Noutsos, A.; Sobey, C.; Kondratiev, V.I.; Weltevrede, P.; Verbiest, J.P.W.; Karastergiou, A.; Kramer, M.; Kuniyoshi, M.; Alexov, A.; Breton, R.P.; Bilous, A.V.; Cooper, S.; Falcke, H.; Griessmeier, J.-M.; Hassall, T.E.; Hessels, J.W.T.; Keane, E.F.; Oslowski, S.; Pilia, M.; Serylak, M.; Stappers, B.W.; Veen, S. ter; Leeuwen, J. van; Zagkouris, K.; Anderson, K.; Baehren, L.; Bell, M.E.; Broderick, J.; Carbone, D.; Cendes, Y.; Coenen, T.; Corbel, S.; Eisloeffel, J.; Fender, R.P.; Garsden, H.; Jonker, P.; Law, C.J.; Markoff, S.; Masters, J.; Miller-Jones, J.C.A.; Molenaar, G.; Osten, R.; Pietka, M.; Rol, E.; Rowlinson, A.; Scheers, L.H.A.; Spreeuw, H.; Staley, T.; Stewart, A.; Swinbank, J.; Wijers, R.A.M.J.; Wijnands, R.; Wise, M.W.; Zarka, P.; Horst, A. van der

    2015-01-01

    Aims: We present the highest-quality polarisation profiles to date of 16 non-recycled pulsars and four millisecond pulsars, observed below 200 MHz with the LOFAR high-band antennas. Based on the observed profiles, we perform an initial investigation of expected observational effects resulting from t

  2. Hollow antiresonant fibers with reduced attenuation.

    Science.gov (United States)

    Belardi, Walter; Knight, Jonathan C

    2014-04-01

    An improved design for hollow antiresonant fibers (HAFs) is presented. It consists of adding extra antiresonant glass elements within the air cladding region of an antiresonant hollow-core fiber. We use numerical simulations to compare fiber structures with and without the additional cladding elements in the near- and mid-IR regimes. We show that realizable fiber structures can provide greatly improved performance in terms of leakage and bending losses compared to previously reported antiresonant fibers. At mid-IR wavelengths, the adoption of this novel fiber design will lead to HAFs with reduced bending losses. In the near-IR, this design could lead to the fabrication of HAFs with very low attenuation.

  3. Experimental evaluation of a hollow glass fiber.

    Science.gov (United States)

    Bornstein, A; Croitoru, N

    1986-02-01

    Very high interest in making a low-loss fiber for the infrared has been stimulated by important applications in optical communication, surgery, cutting, welding, and heat treatment. The leaky waveguide is one of the most promising types of future fiber in the infrared region where low-loss materials are not available or not suitable for making fibers (i.e., CO2 laser light lambda = 10.6 microm). In this paper a comparative model of a He-Ne laser beam and an oxide glass leaky hollow fiber for a CO2 laser light beam and a chalcogenide glass leaky hollow fiber are studied. Measurements of attenuation, dependence of output power on diameter and angle, and the angular dependence of output angle vs input angle were made. The experimental data were compared with theoretical calculations, and the critical value of the wall thickness for minimum attenuation is given.

  4. Space Charge Mitigation by Hollow Bunches

    CERN Multimedia

    Oeftiger, AO

    2014-01-01

    To satisfy the requirements of the HL-LHC (High Luminosity Large Hadron Collider), the LHC injector chain will need to supply a higher brightness, i.e. deliver the same transverse beam emittances \\epsilon_{x,y} while providing a higher intensity N. However, a larger number of particles per bunch enhances space charge effects. One approach to mitigate the impact of space charge is to change the longitudinal phase space distribution: hollow bunches feature a depleted bunch centre and a densely populated periphery. Thus, the spatial line density maximum is depressed which ultimately decreases the tune spread imposed by space charge. Therefore, a higher intensity can be accepted while keeping the same overall space charge tune shift. 3 different methods to create hollow bunches in the PSBooster are simulated.

  5. Surface functionalized hollow silica particles and composites

    KAUST Repository

    Rodionov, Valentin

    2017-05-26

    Composition comprising hollow spherical silica particles having outside particle walls and inside particle walls, wherein the particles have an average particle size of about 10 nm to about 500 nm and an average wall thickness of about 10 nm to about 50 nm; and wherein the particles are functionalized with at least one organic functional group on the outside particle wall, on the inside particle wall, or on both the outside and inside particle walls, wherein the organic functional group is in a reacted or unreacted form. The organic functional group can be epoxy. The particles can be mixed with polymer precursor or a polymer material such as epoxy to form a prepreg or a nanocomposite. Lightweight but strong materials can be formed. Low loadings of hollow particles can be used.

  6. Characterizing the elasticity of hollow metal nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Ji Changjiang; Park, Harold S [Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235 (United States)

    2007-03-21

    We have performed atomistic simulations on solid and hollow copper nanowires to quantify the elastic properties of hollow nanowires (nanoboxes). We analyse variations in the modulus, yield stress and strain for <100> and <110> nanoboxes by varying the amount of bulk material that is removed to create the nanoboxes. We find that, while <100> nanoboxes show no improvement in elastic properties as compared to solid <100>nanowires, <110> nanoboxes can show enhanced elastic properties as compared to solid <110> nanowires. The simulations reveal that the elastic properties of the nanoboxes are strongly dependent on the relative strength of the bulk material that has been removed, as well as the total surface area of the nanoboxes, and indicate the potential of ultralight, high-strength nanomaterials such as nanoboxes.

  7. Hollow Sucker Rod Applied in Production Engineering

    Institute of Scientific and Technical Information of China (English)

    Wang Tongbin; Liu Liandong; Hu Daoming; Jia Yanshan

    1997-01-01

    @@ Working Principle A positive cycle system or a working channel can be formed by means of hollow sucker rod and its mating parts in the oil tube ofa well, through which heat carriers (such as hot water,hot oil and steam), chemicals and heating cable can be pumped or put into the well so as to lower the viscosity of crude, dissolve the paraffin building-up and open the conduit, thus leading to the smooth oil flow out of well.

  8. Hollow Cone Spray Characterization and Integral Modeling

    OpenAIRE

    Bollweg, Peter

    2013-01-01

    The thesis presents a computationally efficient spray model for hollow cone sprays suitable for engine system simulation of direct injecting gasoline internal combustion engines. The model describes the transient evolution of the spray as a two-phase jet. Spatial gradients are resolved along the main injection direction. Momentum exchange, droplet heat-up, and fuel evaporation are accounted for. Diffusive transport of momentum, energy, and fuel species mass between the dense spray zone an...

  9. Chalcogenide glass hollow core microstructured optical fibers

    Science.gov (United States)

    Shiryaev, Vladimir S.

    2015-03-01

    The recent developments on chalcogenide glass hollow core microstructured optical fibers (HC-MOFs) are presented. The comparative analysis of simulated optical properties for chalcogenide HC-MOFs of negative-curvature with different size and number of capillaries is given. The technique for the manufacture of microstructured chalcogenide preforms, which includes the assembly of the substrate glass tube and 8-10 capillaries, is described. Further trends to improve the optical transmission in chalcogenide NCHCFs are considered.

  10. Passively mode-locked fiber laser based on a hollow-core photonic crystal fiber filled with few-layered graphene oxide solution.

    Science.gov (United States)

    Liu, Zhi-Bo; He, Xiaoying; Wang, D N

    2011-08-15

    We demonstrate a nanosecond-pulse erbium-doped fiber laser that is passively mode locked by a hollow-core photonic crystal fiber filled with few-layered graphene oxide solution. Owing to the good solution processing capability of few-layered graphene oxide, which can be filled into the core of a hollow-core photonic crystal fiber through a selective hole filling process, a graphene saturable absorber can be successfully fabricated. The output pulses obtained have a center wavelength, pulse width, and repetition rate of 1561.2 nm, 4.85 ns, and 7.68 MHz, respectively. This method provides a simple and efficient approach to integrate the graphene into the optical fiber system.

  11. Formation of hollow atoms above a surface

    Science.gov (United States)

    Briand, Jean Pierre; Phaneuf, Ronald; Terracol, Stephane; Xie, Zuqi

    2012-06-01

    Slow highly stripped ions approaching or penetrating surfaces are known to capture electrons into outer shells of the ions, leaving the innermost shells empty, and forming hollow atoms. Electron capture occurs above and below the surfaces. The existence of hollow atoms below surfaces e.g. Ar atoms whose K and L shells are empty, with all electrons lying in the M and N shells, was demonstrated in 1990 [1]. At nm above surfaces, the excited ions may not have enough time to decay before hitting the surfaces, and the formation of hollow atoms above surfaces has even been questioned [2]. To observe it, one must increase the time above the surface by decelerating the ions. We have for the first time decelerated O^7+ ions to energies as low as 1 eV/q, below the minimum energy gained by the ions due to the acceleration by their image charge. As expected, no ion backscattering (trampoline effect) above dielectric (Ge) was observed and at the lowest ion kinetic energies, most of the observed x-rays were found to be emitted by the ions after surface contact. [4pt] [1] J. P. Briand et al., Phys.Rev.Lett. 65(1990)159.[0pt] [2] J.P. Briand, AIP Conference Proceedings 215 (1990) 513.

  12. Space Charge MitigationWith Longitudinally Hollow Bunches

    CERN Document Server

    Oeftiger, Adrian; Rumolo, Giovanni; CERN. Geneva. ATS Department

    2016-01-01

    Suitably, hollow longitudinal phase space distributions have a flat profile and hence reduce the impact of transverse space charge. Dipolar parametric excitation with the phase loop feedback systems provides such hollow distributions under reproducible conditions. We present a procedure to create hollow bunches during the acceleration ramp of CERN’s PS Booster machine with minimal changes to the operational cycle. The improvements during the injection plateau of the downstream Proton Synchrotron are assessed in comparison to standard parabolic bunches.

  13. Interference Assembly and Fretting Wear Analysis of Hollow Shaft

    OpenAIRE

    Chuanjun Han; Jie Zhang

    2014-01-01

    Fretting damage phenomenon often appears in the interference fit assembly. The finite element model of hollow shaft and shaft sleeve was established, and the equivalent stress and contact stress were computed after interference assembly. The assembly body of hollow shaft and shaft sleeve was in whirling bending load, and the contact status (sticking, sliding, and opening) and the distribution of stress along one typical contact line were computed under different loads, interferences, hollow d...

  14. Preparation of Nanocrystalline MoS2 Hollow Spheres

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Nanocrystalline MoS2 with hollow spherical morphology has been prepared by the hydrothermal method. The products are characterized by means of X-ray powder diffraction, transmission electron microscopy and high-resolution transmission electron microscopy. The experimental results give the evidence that the sample is consists of hollow spheres 400~600 nm in diameter, and there is much whisker on the surface of MoS2 hollow sphere.

  15. Generation of a Dark Hollow Beam inside a Cavity

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lei; LU Xuan-Hui; CHEN Xu-Min; HE Sai-Ling

    2004-01-01

    @@ A new method is introduced to generate a hollow beam inside a cavity. Using a matrix eigenvalue method, the laser resonator with optical diffraction elements is theoretically analysed and simulated. The hollow beam can be obtained theoretically by controlling the parameters of the diffraction functions. After designed the diffraction components in the cavity, a hollow beam of good quality is realized experimentally using a YAG solid state laser.

  16. Optical properties of hollow calcium aluminate glass waveguides.

    Science.gov (United States)

    Abel, T; Harrington, J A; Foy, P R

    1994-06-20

    Calcium aluminate glass has a refractive index less than 1 at 10.6 µ, and therefore it is a good candidate for a hollow fiber for the transmission of CO(2) laser energy. We have drawn hollow calcium aluminate glass fibers with inner diameters ranging from 380 to 500 µ. The loss for our 500-µm inner-diameter hollow glass fibers measured at 10.6 µm is 8.6 dB/m.

  17. Review of Synthetic Methods to Form Hollow Polymer Nanocapsules

    Energy Technology Data Exchange (ETDEWEB)

    Barker, Madeline T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-03-13

    Syntactic foams have grown in interest due to the widened range of applications because of their mechanical strength and high damage tolerance. In the past, hollow glass or ceramic particles were used to create the pores. This paper reviews literature focused on the controlled synthesis of hollow polymer spheres with diameters ranging from 100 –200 nm. By using hollow polymer spheres, syntactic foams could reach ultra-low densities.

  18. Silica hollow spheres with nano-macroholes like diatomaceous earth.

    Science.gov (United States)

    Fujiwara, Masahiro; Shiokawa, Kumi; Sakakura, Ikuko; Nakahara, Yoshiko

    2006-12-01

    Artificial synthesis of hollow cell walls of diatoms is an ultimate target of nanomaterial science. The addition of some water-soluble polymers such as sodium polymethacrylate to a solution of water/oil/water emulsion system, which is an essential step of the simple synthetic procedure of silica hollow spheres (microcapsules), led to the formation of silica hollow spheres with nano-macroholes (>100 nm) in their shell walls, the morphologies of which are analogous to those of diatom earth.

  19. 76 FR 11681 - Improving Public Safety Communications in the 800 MHz Band; New 800 MHz Band Plan for Puerto Rico...

    Science.gov (United States)

    2011-03-03

    ... for inspection and copying during normal business hours in the FCC Reference Information Center... reconfigured the 800 MHz band to eliminate interference to public safety and other land mobile communication... on March 20, 2012. The Bureau also extended the filing freeze on new applications in the USVI...

  20. Complex Hollow Nanostructures: Synthesis and Energy-Related Applications.

    Science.gov (United States)

    Yu, Le; Hu, Han; Wu, Hao Bin; Lou, Xiong Wen David

    2017-04-01

    Hollow nanostructures offer promising potential for advanced energy storage and conversion applications. In the past decade, considerable research efforts have been devoted to the design and synthesis of hollow nanostructures with high complexity by manipulating their geometric morphology, chemical composition, and building block and interior architecture to boost their electrochemical performance, fulfilling the increasing global demand for renewable and sustainable energy sources. In this Review, we present a comprehensive overview of the synthesis and energy-related applications of complex hollow nanostructures. After a brief classification, the design and synthesis of complex hollow nanostructures are described in detail, which include hierarchical hollow spheres, hierarchical tubular structures, hollow polyhedra, and multi-shelled hollow structures, as well as their hybrids with nanocarbon materials. Thereafter, we discuss their niche applications as electrode materials for lithium-ion batteries and hybrid supercapacitors, sulfur hosts for lithium-sulfur batteries, and electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. The potential superiorities of complex hollow nanostructures for these applications are particularly highlighted. Finally, we conclude this Review with urgent challenges and further research directions of complex hollow nanostructures for energy-related applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Manufacturing hollow obturator with resilient denture liner on post hemimaxillectomy

    Directory of Open Access Journals (Sweden)

    Michael Josef Kridanto Kamadjaja

    2006-03-01

    Full Text Available A resilient denture liner is placed in the part of the hollow obturator base that contacts to post hemimaxillectomy mucosa. Replacing the resilient denture liner can makes the hollow obturator has an intimate contact with the mucosa, so it can prevents the mouth liquid enter to the cavum nasi and sinus, also eliminates painful because of using the hollow obturator. Resilient denture liner is a soft and resilient material that applied to the fitting surface of a denture in order to allow a more distribution of load. A case was reported about using the hollow obturator with resilient denture liner on post hemimaxillectomy to overcome these problems.

  2. Evidence of fire resistance of hollow-core slabs

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl; Sørensen, Lars Schiøtt; Giuliani, Luisa

    Hollow-core slabs have during the past 50 years comprised a variety of different structures with different cross-sections and reinforcement. At present the extruded hollow-core slabs without cross-reinforcement in the bottom flange and usually round or oval longitudinal channels (holes) are predo......Hollow-core slabs have during the past 50 years comprised a variety of different structures with different cross-sections and reinforcement. At present the extruded hollow-core slabs without cross-reinforcement in the bottom flange and usually round or oval longitudinal channels (holes...

  3. 2013 Estorm - Invited Paper - Cathode Materials Review

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, Claus [ORNL; Mohanty, Debasish [ORNL; Li, Jianlin [ORNL; Wood III, David L [ORNL

    2014-01-01

    The electrochemical potential of cathode materials defines the positive side of the terminal voltage of a battery. Traditionally, cathode materials are the energy-limiting or voltage-limiting electrode. One of the first electrochemical batteries, the voltaic pile invented by Alessandro Volta in 1800 (Phil. Trans. Roy. Soc. 90, 403 431) had a copper-zinc galvanic element with a terminal voltage of 0.76 V. Since then, the research community has increased capacity and voltage for primary (nonrechargeable) batteries and round-trip efficiency for secondary (rechargeable) batteries. Successful secondary batteries have been the lead acid with a lead oxide cathode and a terminal voltage of 2.1 V and later the NiCd with a nickel(III) oxide hydroxide cathode and a 1.2 V terminal voltage. The relatively low voltage of those aqueous systems and the low round-trip efficiency due to activation energies in the conversion reactions limited their use. In 1976, Wittingham (J. Electrochem. Soc., 123, 315) and Besenhard (J Power Sources 1(3), 267) finally enabled highly reversible redox reactions by intercalation of lithium ions instead of by chemical conversion. In 1980, Goodenough and Mizushima (Mater. Res. Bull. 15, 783 789) demonstrated a high-energy and high-power LiCoO2 cathode, allowing for an increase of terminal voltage far beyond 3 V. Over the past four decades, the international research community has further developed cathode materials of many varieties. Current state-of-the-art cathodes demonstrate voltages beyond any known electrolyte stability window, bringing electrolyte research once again to the forefront of battery research.

  4. Improved cathode materials for microbial electrosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, T; Nie, HR; Bain, TS; Lu, HY; Cui, MM; Snoeyenbos-West, OL; Franks, AE; Nevin, KP; Russell, TP; Lovley, DR

    2013-01-01

    Microbial electrosynthesis is a promising strategy for the microbial conversion of carbon dioxide to transportation fuels and other organic commodities, but optimization of this process is required for commercialization. Cathodes which enhance electrode-microbe electron transfer might improve rates of product formation. To evaluate this possibility, biofilms of Sporomusa ovata, which are effective in acetate electrosynthesis, were grown on a range of cathode materials and acetate production was monitored over time. Modifications of carbon cloth that resulted in a positive-charge enhanced microbial electrosynthesis. Functionalization with chitosan or cyanuric chloride increased acetate production rates 6-7 fold and modification with 3-aminopropyltriethoxysilane gave rates 3-fold higher than untreated controls. A 3-fold increase in electrosynthesis over untreated carbon cloth cathodes was also achieved with polyaniline cathodes. However, not all strategies to provide positively charged surfaces were successful, as treatment of carbon cloth with melamine or ammonia gas did not stimulate acetate electrosynthesis. Treating carbon cloth with metal, in particular gold, palladium, or nickel nanoparticles, also promoted electrosynthesis, yielding electrosynthesis rates that were 6-,4.7- or 4.5-fold faster than the untreated control, respectively. Cathodes comprised of cotton or polyester fabric treated with carbon nanotubes yielded cathodes that supported acetate electrosynthesis rates that were similar to 3-fold higher than carbon cloth controls. Recovery of electrons consumed in acetate was similar to 80% for all materials. The results demonstrate that one approach to increase rates of carbon dioxide reduction in microbial electrosynthesis is to modify cathode surfaces to improve microbe-electrode interactions.

  5. Multiple cathodic reaction mechanisms in seawater cathodic biofilms operating in sediment microbial fuel cells.

    Science.gov (United States)

    Babauta, Jerome T; Hsu, Lewis; Atci, Erhan; Kagan, Jeff; Chadwick, Bart; Beyenal, Haluk

    2014-10-01

    In this study, multiple reaction mechanisms in cathodes of sediment microbial fuel cells (SMFCs) were characterized by using cyclic voltammetry and microelectrode measurements of dissolved oxygen and pH. The cathodes were acclimated in SMFCs with sediment and seawater from San Diego Bay. Two limiting current regions were observed with onset potentials of approximately +400 mVAg/AgCl for limiting current I and -120 mVAg/AgCl for limiting current II. The appearance of two catalytic waves suggests that multiple cathodic reaction mechanisms influence cathodic performance. Microscale oxygen concentration measurements showed a zero surface concentration at the electrode surface for limiting current II but not for limiting current I, which allowed us to distinguish limiting current II as the conventional oxygen reduction reaction and limiting current I as a currently unidentified cathodic reaction mechanism. Microscale pH measurements further confirmed these results.

  6. Core-shell Au-Pd nanoparticles as cathode catalysts for microbial fuel cell applications

    Science.gov (United States)

    Yang, Gaixiu; Chen, Dong; Lv, Pengmei; Kong, Xiaoying; Sun, Yongming; Wang, Zhongming; Yuan, Zhenhong; Liu, Hui; Yang, Jun

    2016-01-01

    Bimetallic nanoparticles with core-shell structures usually display enhanced catalytic properties due to the lattice strain created between the core and shell regions. In this study, we demonstrate the application of bimetallic Au-Pd nanoparticles with an Au core and a thin Pd shell as cathode catalysts in microbial fuel cells, which represent a promising technology for wastewater treatment, while directly generating electrical energy. In specific, in comparison with the hollow structured Pt nanoparticles, a benchmark for the electrocatalysis, the bimetallic core-shell Au-Pd nanoparticles are found to have superior activity and stability for oxygen reduction reaction in a neutral condition due to the strong electronic interaction and lattice strain effect between the Au core and the Pd shell domains. The maximum power density generated in a membraneless single-chamber microbial fuel cell running on wastewater with core-shell Au-Pd as cathode catalysts is ca. 16.0 W m−3 and remains stable over 150 days, clearly illustrating the potential of core-shell nanostructures in the applications of microbial fuel cells. PMID:27734945

  7. Core-shell Au-Pd nanoparticles as cathode catalysts for microbial fuel cell applications

    Science.gov (United States)

    Yang, Gaixiu; Chen, Dong; Lv, Pengmei; Kong, Xiaoying; Sun, Yongming; Wang, Zhongming; Yuan, Zhenhong; Liu, Hui; Yang, Jun

    2016-10-01

    Bimetallic nanoparticles with core-shell structures usually display enhanced catalytic properties due to the lattice strain created between the core and shell regions. In this study, we demonstrate the application of bimetallic Au-Pd nanoparticles with an Au core and a thin Pd shell as cathode catalysts in microbial fuel cells, which represent a promising technology for wastewater treatment, while directly generating electrical energy. In specific, in comparison with the hollow structured Pt nanoparticles, a benchmark for the electrocatalysis, the bimetallic core-shell Au-Pd nanoparticles are found to have superior activity and stability for oxygen reduction reaction in a neutral condition due to the strong electronic interaction and lattice strain effect between the Au core and the Pd shell domains. The maximum power density generated in a membraneless single-chamber microbial fuel cell running on wastewater with core-shell Au-Pd as cathode catalysts is ca. 16.0 W m‑3 and remains stable over 150 days, clearly illustrating the potential of core-shell nanostructures in the applications of microbial fuel cells.

  8. Preparation of nanocomposite thoriated tungsten cathode by swaging technique

    Institute of Scientific and Technical Information of China (English)

    王发展; 诸葛飞; 张晖; 丁秉钧

    2002-01-01

    By using the high energy ball milling method,the nanosized ThO2 powders were obtained.Through mixing powders,sintering and hot swaging processing,a nanocomposite thoriated tungsten cathode was fabricated.The relative density of the nanocomposite material is near 100%.The microstructure of nanocomposite cathode is quite different from that of conventional thoriated tungsten cathode.Most of thoria particles are less than 100 nm in diameter,and distribute on the boundaries of tungsten grains.The nanocomposite cathode shows a much lower arc starting field than that of conventional cathode,which will improve the performance of the cathode significantly.

  9. A novel anaerobic electrochemical membrane bioreactor (AnEMBR) with conductive hollow-fiber membrane for treatment of low-organic strength solutions

    KAUST Repository

    Katuri, Krishna

    2014-11-04

    A new anaerobic treatment system that combined a microbial electrolysis cell (MEC) with membrane filtration using electrically conductive, porous, nickel-based hollow-fiber membranes (Ni-HFMs) was developed to treat low organic strength solution and recover energy in the form of biogas. This new system is called an anaerobic electrochemical membrane bioreactor (AnEMBR). The Ni-HFM served the dual function as the cathode for hydrogen evolution reaction (HER) and the membrane for filtration of the effluent. The AnEMBR system was operated for 70 days with synthetic acetate solution having a chemical oxygen demand (COD) of 320 mg/L. Removal of COD was >95% at all applied voltages tested. Up to 71% of the substrate energy was recovered at an applied voltage of 0.7 V as methane rich biogas (83% CH4; < 1% H2) due to biological conversion of the hydrogen evolved at the cathode to methane. A combination of factors (hydrogen bubble formation, low cathode potential and localized high pH at the cathode surface) contributed to reduced membrane fouling in the AnEMBR compared to the control reactor (open circuit voltage). The net energy required to operate the AnEMBR system at an applied voltage of 0.7 V was significantly less (0.27 kWh/m3) than that typically needed for wastewater treatment using aerobic membrane bioreactors (1-2 kWh/m3).

  10. Fine-sized LiNi 0.8Co 0.15Mn 0.05O 2 cathode powders prepared by combined process of gas-phase reaction and solid-state reaction methods

    Science.gov (United States)

    Ju, Seo Hee; Kang, Yun Chan

    The Ni-rich precursor powders with spherical shape and filled morphologies were prepared by spray pyrolysis from the spray solution with citric acid, ethylene glycol and a drying control chemical additive. The precursor powders with controlled morphologies formed the LiNi 0.8Co 0.15Mn 0.05O 2 cathode powders with spherical shape and fine size by solid-state reaction with lithium hydroxide. However, the cathode powders prepared from the spray solution without additives had irregular morphologies and were large in size. The precursor powders with hollow and porous morphologies formed cathode powders with irregular and aggregated morphologies. The composition ratios of the nickel, cobalt and manganese components were maintained in the as-prepared, precursor and cathode powders. The initial discharge capacity of the LiNi 0.8Co 0.15Mn 0.05O 2 cathode powders with spherical shape and fine size tested at a temperature of 55 °C under a constant current density of 0.5 C was 215 mAh g -1. The discharge capacity of the LiNi 0.8Co 0.15Mn 0.05O 2 cathode powders decreased to 81% of the initial value after 30 cycles.

  11. The influence of cathode excavation of cathodic arc evaporator on thickness uniformity and erosion products angle distribution

    Directory of Open Access Journals (Sweden)

    D. V. Duhopel'nikov

    2014-01-01

    Full Text Available Cathodic arc evaporators are used for coating with functional films. Prolonged or buttend evaporators may be used for this purposes. In butt-end evaporator the cathode spots move continuously on the cathode work surface and evaporate cathode material. High depth excavation profile forms on the cathode work surface while the thick coating precipitation (tens or hundreds of microns. The cathode excavation profile is shaped like a “cup” with high walls for electrostatic discharge stabilization systems with axial magnetic fields. Cathode spots move on the bottom of the “cup”. It is very likely that high “cup” walls are formed as a result of lasting work time influence on the uniformity of precipitated films.In the present work the influence of excavation profile walls height on the uniformity of precipitated coating was carried out. The high profile walls are formed due to lasting work of DC vacuum arc evaporator. The cathode material used for tests was 3003 aluminum alloy. The extended substrate was placed parallel to the cathode work surface. Thickness distribution along the substrate length with the new cathode was obtained after 6 hours and after 12 hours of continuous operation.The thickness distribution of precipitated coating showed that the cathode excavation has an influence on the angular distribution of the matter escaping the cathode. It can be clearly seen from the normalized dependence coating thickness vs the distance from the substrate center. Also the angular distribution of the matter flow from the cathode depending on the cathode working time was obtained. It was shown that matter flow from the cathode differs from the LambertKnudsen law. The more the cathode excavation the more this difference.So, cathode excavation profile has an influence on the uniformity of precipitated coating and it is necessary to take in account the cathode excavation profile while coating the thick films.

  12. Parallel Operation of Microhollow Cathode Discharges

    Science.gov (United States)

    Stark, Robert H.; Shi, Wenhui; Schoenbach, Karl H.

    1998-10-01

    The dc current-voltage characteristics of microhollow cathode discharges has, in certain ranges of the discharge current, a positive slope [1]. In these current ranges it should be possible to operate multiple discharges in parallel without individual ballast, and be used as flat panel excimer lamps [2] or large area plasma cathodes. In order to verify this hypothesis we have studied the parallel operation of two microhollow cathode discharges of 100 micrometer hole diameter in argon at pressures from 100 Torr to 800 Torr. Stable dc operation of the two discharges, without individual ballast, was obtained if the voltage-current characteristics of the individual discharges had a positive slope greater than 10 V/mA over a voltage range of more than 5 to obtain parallel operation over the entire current range of the microhollow cathode discharges, which includes regions of negative differential conductivity, we have replaced the metal anode by a semi-insulating semiconductor, which serves as distributed resistive ballast. With this method, we were able to ignite and sustain an array of dc microhollow cathode discharges over a wide range of pressure and discharge current. [1] K.H.Schoenbach et al. Appl. Phys. Lett. 68, 13 (1996). [2] A.El-Habachi and K.H.Schoenbach, APL. 72, 1 (1998). This work was funded by the Department of Energy, Advanced Energy Division, and by the Air Force Office of Scientific Research (AFOSR) in cooperation with the DDR&E Air Plasma Ramparts MURI Program.

  13. R&D of BEPCII 500 MHz superconducting cavity

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Beijing Electron-Positron Collider Upgrade (BEPCII) adopts two 500 MHz superconducting cavities (SCCs) in each ring for higher accelerated gradient, higher Q and lower impedance (Wang et al. The proceedings of SRF’07). There’s no spare cavity due to the limited time and funding during BEPCII construction. If any serious trouble happened on either one of the two cavities and could not be recovered in a short time, the operation of BEPCII facility will be affected. Therefore, since 2009 three spare cavities have been fabricated in China to ensure reliable operation, and two of them have been successfully vertically tested in January and July 2011. This paper will briefly present the manufacture, post-process and vertical test performance of the 500 MHz spare cavities.

  14. Design of a 325 MHz ladder - type RFQ for FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Schuett, Maximilian; Brodhage, Robert; Almomani, Ali; Ratzinger, Ulrich [Institut fuer Angewandte Physik, Goethe-Universitaet Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt am Main (Germany)

    2014-07-01

    For the research program with cooled antiprotons at FAIR a dedicated 70 MeV, 70 mA proton injector is required. The first rf accelerator element is a 325 MHz RFQ accelerating from 95 keV to 3.0 MeV. RFQ's beyond 300 MHz were realized in 4-Vane-type geometry so far. At IAP there is a tradition in 4-Rod-type RFQ development. This RFQ-type is dominating at lower frequencies. Very promising results have been reached with a ladder type-RFQ, which has been investigated during 2013. We show most recent 3D simulations of the general layout and of a whole cavity demonstrating the power of a ladder type RFQ. An RFQ layout for the new FAIR proton injector is presented. In comparison with a traditional 4-Rod RFQ approach the geometry is more convenient at high frequencies.

  15. Dicke's Superradiance in Astrophysics. II -- The OH 1612 MHz Line

    CERN Document Server

    Rajabi, Fereshteh

    2016-01-01

    We apply the concept of superradiance introduced by Dicke in 1954 to the OH molecule 1612 MHz spectral line often used for the detection of masers in circumstellar envelopes of evolved stars. As the detection of 1612 MHz OH masers in the outer shells of envelopes of these stars implies the existence of a population inversion and a high level of velocity coherence, and that these are two necessary requirements for superradiance, we investigate whether superradiance can also happen in these regions. Superradiance is characterized by high intensity, spatially compact, burst-like features taking place over time-scales on the order of seconds to years, depending on the size and physical conditions present in the regions harboring such sources of radiation. Our analysis suggests that superradiance provides a valid explanation for previous observations of intensity flares detected in that spectral line for the U Orionis Mira star and the IRAS18276-1431 pre-planetary nebula.

  16. Coaxial HOM coupler for the 500 MHz RF damped cavity

    CERN Document Server

    Koseki, T; Takahashi, T; Kamiya, Yu; Satoh, K; Ogata, H

    2001-01-01

    We have developed a new higher-order modes (HOMs) coupler of coaxial waveguide type for the 500 MHz damped cavity. An SiC ceramics is adopted as microwave absorber. Two prototype models of the HOM coupler have been fabricated and tested. The detailed design of the coupler is described in this paper. The results of RF characteristics measurement and high power conditioning are also presented.

  17. A design for an 802 MHz ERL Cavity

    CERN Document Server

    Calaga, Rama

    2015-01-01

    A low to medium energy recovery linac facility from 150-450-900 MeV in several stages is under study at CERN for validating important beam dynamics aspects and superconducting RF technology. A five-cell cavity design at 802MHz is proposed as a basic structure of the accelerating module. Aspects related to the cavity shape optimization of are described along some comments on the RF power.

  18. Prototype 350 MHz niobium spoke-loaded cavities.

    Energy Technology Data Exchange (ETDEWEB)

    Delayen, J. R.; Kedzie, M.; Mammosser, J.; Piller, C.; Shepard, K. W.

    1999-05-10

    This paper reports the development of 350 MHz superconducting cavities of a spoke-loaded geometry, intended for the velocity range 0.2 < v/c < 0.6. Two prototype single-cell cavities have been designed, one optimized for velocity v/c = 0.4, and the other for v/c = 0.29. Construction of the prototype niobium cavities is nearly complete. Details of the design and construction are discussed, along with the results of cold tests.

  19. delta. t tuneup procedure for the LAMPF 805-MHz linac

    Energy Technology Data Exchange (ETDEWEB)

    Crandall, K.R.

    1976-05-01

    An important part of tuning the LAMPF accelerator is the adjustment of the phases and amplitudes in the 805-MHz linac. The technique used is called the ..delta..t procedure because of the time-of-flight measurements that are required. The theory behind the ..delta..t procedure, a brief description of the hardware, and a description of the many computer programs that have been written to implement the procedure are presented.

  20. [Biological action of electromagnetic fields of 4 MHz decametric waves].

    Science.gov (United States)

    Bezdol'naia, I S

    2000-01-01

    Exposure to the amplitude-modulated electromagnetic field, 4 MHZ, 400, 200, and 100 V/m over two months for 16 hours a day was found out to bring low the adaptation potential of a number of bodily physiological systems in animals (non-linebred rats). Changes in the brain functional activity, cell-bound, and humoral immunity were ascertained to be the structural-and-functional basis of reorganization of physiological prosesses.

  1. The LANSCE 805 MHZ RF System History and Status

    CERN Document Server

    Lynch, Michael; Tallerico, Paul J

    2005-01-01

    The Los Alamos Neutron Science Center (LANSCE) linear accelerator runs at 201.25 MHz for acceleration to 100 MeV. The remainder of the acceleration to 800 MeV is at 805 MHz. This is done with 44 accelerator cavity stages driven by 805 MHz klystrons. Each klystron has a peak power capability of 1.25 MeV. Originally, 97 klystrons were purchased, which was 70 from Varian/CPI and 27 from Litton. The 44 RF systems are laid out in sectors with either 6 or 7 klystrons per sector. The klystrons in each sector are powered from a common HV sytem. The current arrangement uses the Varian/CPI klystrons in 6 of the 7 sectors and Litton klystrons in the remaining sector. With that arrangement there are 38 CPI klystrons installed and 1 spare klystron per sector and 6 Litton klystrons installed in the final sector with 2 spares. The current average life of all of the operating and spare klystrons (52 total) is >112,000 filament hours and >93,000 HV hours. That is three times the typical klystron lifetime today f...

  2. Hydrogen Plasma Generation with 200 MHz RF Ion Source

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeongtae; Park, Kwangmook; Seo, Dong Hyuk; Kim, Han-Sung; Kwon, Hyeok-Jung; Cho, Yong-Sub [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    The ion source for the system is required to be rugged with 2000 hours maintenance free operation time because it is installed in the vessel filled with SF6 gas at the pressure of 10 bar. A 200 MHz RF ion source is considered as an ion source. It is a simple construction and provides long life operation. The specifications of the ion source are 5 kV extraction voltage and 1 mA beam current referenced to the proton. RF ion source has been developed and undergone a performance test. Results of the test are presented. 200 MHz RF ion source is designated and manufactured. First of all test stand test of ion source are set up for a performance test of ion source. It includes a RF ion source, a 200-MHz RF system, beam extraction system, vacuum system, beam extraction system, and beam diagnostic system. At pressure of 1.2E-5 torr, hydrogen plasma is generated with net RF power 70 W. Pyrex tube surrounded by an inductive coil takes the role of vessel and discharge is enhanced with field of permanent magnets.

  3. DC SQUID RF magnetometer with 200 MHz bandwidth

    Science.gov (United States)

    Talanov, Vladimir; Lettsome, Nesco; Orozco, Antonio; Cawthorne, Alfred; Borzenets, Valery

    2012-02-01

    Because of periodic flux-to-voltage transfer function, Superconducting QUantum Interference Device (SQUID) magnetometers operate in a closed-loop regime [1], which linearizes the response, and increases the dynamic range and sensitivity. However, a transmission line delay between the SQUID and electronics fundamentally limits the closed-loop bandwidth at 20 MHz [1], although the intrinsic bandwidth of SQUIDs is in gigahertz range. We designed a DC SQUID based RF magnetometer capable of wideband sensing coherent magnetic fields up to 200 MHz. To overcome the closed-loop bandwidth limitation, we utilized a low-frequency flux-modulated closed-loop to simultaneously lock the quasi-static magnetic flux and provide AC bias for the RF flux. The SQUID RF voltage is processed by RF electronics based on a double lock-in technique. This yields a signal proportional to the amplitude and phase of the RF magnetic flux, with more than four decades of a linear response. For YBaCuO SQUID on bi-crystal SrTiO substrate at 77 K we achieved a flux noise density of 4 μφ0/Hz at 190 MHz, which is similar to that measured at kHz frequencies with conventional flux-locked loop. [1] D. Drung, et al., Supercond. Sci. Technol. 19, S235 (2006).

  4. An Automated 476 MHz RF Cavity Processing Facility at SLAC

    CERN Document Server

    McIntosh, P; Schwarz, H

    2003-01-01

    The 476 MHz accelerating cavities currently used at SLAC are those installed on the PEP-II B-Factory collider accelerator. They are designed to operate at a maximum accelerating voltage of 1 MV and are routinely utilized on PEP-II at voltages up to 750 kV. During the summer of 2003, SPEAR3 will undergo a substantial upgrade, part of which will be to replace the existing 358.54 MHz RF system with essentially a PEP-II high energy ring (HER) RF station operating at 476.3 MHz and 3.2 MV (or 800 kV/cavity). Prior to installation, cavity RF processing is required to prepare them for use. A dedicated high power test facility is employed at SLAC to provide the capability of conditioning each cavity up to the required accelerating voltage. An automated LabVIEW based interface controls and monitors various cavity and test stand parameters, increasing the RF fields accordingly such that stable operation is finally achieved. This paper describes the high power RF cavity processing facility, highlighting the features of t...

  5. MHz Gravitational Wave Constraints with Decameter Michelson Interferometers

    CERN Document Server

    Chou, Aaron S; Hogan, Craig; Kamai, Brittany; Lanza, Robert; Larson, Shane L; McCuller, Lee; Meyer, Stephan S; Richardson, Jonathan; Stoughton, Chris; Tomlin, Raymond; Weiss, Rainer

    2016-01-01

    A new detector, the Fermilab Holometer, consists of separate yet identical 39-meter Michelson interferometers. Strain sensitivity achieved is better than $10^{-21} /{\\sqrt{\\rm{Hz}}}$ between 1 to 13 MHz from a 130-hr dataset. This measurement exceeds the sensitivity and frequency range made from previous high frequency gravitational wave experiments by many orders of magnitude. Constraints are placed on a stochastic background at 382 Hz resolution. The 3$\\sigma$ upper limit on $\\Omega_{\\rm{GW}}$, the gravitational wave energy density normalized to the closure density, ranges from $5.6 \\times 10^{12}$ at 1 MHz to $8.4 \\times 10^{15}$ at 13 MHz. Another result from the same dataset is a search for nearby primordial black hole binaries (PBHB). There are no detectable monochromatic PBHBs in the mass range $0.83$ - $3.5 \\times 10^{21}$g between the earth and the moon. Projections for a chirp search with the same dataset increases the mass range to $0.59 - 2.5 \\times 10^{25}$g and distances out to Jupiter. This res...

  6. Detection of 610-MHz radio emission from hot magnetic stars

    Science.gov (United States)

    Chandra, P.; Wade, G. A.; Sundqvist, J. O.; Oberoi, D.; Grunhut, J. H.; ud-Doula, A.; Petit, V.; Cohen, D. H.; Oksala, M. E.; David-Uraz, A.

    2015-09-01

    We have carried out a study of radio emission from a small sample of magnetic O- and B-type stars using the Giant Metrewave Radio Telescope, with the goal of investigating their magnetospheres at low frequencies. These are the lowest frequency radio measurements ever obtained of hot magnetic stars. The observations were taken at random rotational phases in the 1390 and the 610 MHz bands. Out of the eight stars, we detect five B-type stars in both the 1390 and the 610 MHz bands. The three O-type stars were observed only in the 1390 MHz band, and no detections were obtained. We explain this result as a consequence of free-free absorption by the free-flowing stellar wind exterior to the confined magnetosphere. We also study the variability of individual stars. One star - HD 133880 - exhibits remarkably strong and rapid variability of its low-frequency flux density. We discuss the possibility of this emission being coherent emission as reported for CU Vir by Trigilio et al.

  7. Metrology in arc plasmas - A new cathode

    Science.gov (United States)

    Croche, R.

    1980-02-01

    A new radiating source consisting of an electric arc under argon pressure is described, with power varying between about 0.2 and 1.5 kW, and with the plasma furnishing a continuous spectrum between 115 and 350 nm. The arc functions from 5 to 50 A, with a voltage varying between 30 and 35 V. The cathode of the transfer arc is described in detail, including such advantages as easy igniting of the arc and the possibility of re-sharpening the tip of the cathode. Most important, the new 'knife-shaped' form of the tungsten cathode has improved the stability and reproducibility of the ultraviolet continuum emitted by the plasma of the arc, which is used at the French National Institute of Metrology as a transfer standard of spectral radiance in the vacuum ultraviolet.

  8. Filtered cathodic arc deposition apparatus and method

    Science.gov (United States)

    Krauss, Alan R.

    1999-01-01

    A filtered cathodic arc deposition method and apparatus for the production of highly dense, wear resistant coatings which are free from macro particles. The filtered cathodic arc deposition apparatus includes a cross shaped vacuum chamber which houses a cathode target having an evaporable surface comprised of the coating material, means for generating a stream of plasma, means for generating a transverse magnetic field, and a macro particle deflector. The transverse magnetic field bends the generated stream of plasma in the direction of a substrate. Macro particles are effectively filtered from the stream of plasma by traveling, unaffected by the transverse magnetic field, along the initial path of the plasma stream to a macro particle deflector. The macro particle deflector has a preformed surface which deflects macro particles away from the substrate.

  9. On the role of secondary electrons in beam plasma generation inside a dielectric flask by fore-vacuum plasma-cathode electron source

    Science.gov (United States)

    Zolotukhin, D. B.; Burdovitsin, V. A.; Oks, E. M.

    2017-09-01

    The paper presents the results of experimental research and numerical simulation, demonstrating a considerable influence of secondary electrons on parameters of the beam-produced plasma generated at a pressure range of 1-13 Pa by injection of a continuous (with current of tens mA) electron beam into a dielectric (quartz) flask. An electron beam was formed by a fore-vacuum plasma-cathode electron source based on a hollow cathode discharge. The secondary electrons were emitted as a result of high-energy (3-8 keV) electron beam bombardment mainly a bottom end of the flask. These electrons provide an additional contribution to the ionization of the gas and also affect on the longitudinal distribution of the plasma density along the flask.

  10. Synchrotron Investigations of SOFC Cathode Degradation

    Energy Technology Data Exchange (ETDEWEB)

    Idzerda, Yves

    2013-09-30

    The atomic variations occurring in cathode/electrolyte interface regions of La{sub 1-x}Sr{sub x}Co{sub y}Fe{sub 1-y}O{sub 3-δ} (LSCF) cathodes and other SOFC related materials have been investigated and characterized using soft X-ray Absorption Spectroscopy (XAS) and diffuse soft X-ray Resonant Scattering (XRS). X-ray Absorption Spectroscopy in the soft X-ray region (soft XAS) is shown to be a sensitive technique to quantify the disruption that occurs and can be used to suggest a concrete mechanism for the degradation. For LSC, LSF, and LSCF films, a significant degradation mechanism is shown to be Sr out-diffusion. By using the XAS spectra of hexavalent Cr in SrCrO4 and trivalent Cr in Cr2O3, the driving factor for Sr segregation was identified to be the oxygen vacancy concentration at the anode and cathode side of of symmetric LSCF/GDC/LSCF heterostructures. This is direct evidence of vacancy induced cation diffusion and is shown to be a significant indicator of cathode/electrolyte interfacial degradation. X-ray absorption spectroscopy is used to identify the occupation of the A-sites and B-sites for LSC, LSF, and LSCF cathodes doped with other transition metals, including doping induced migration of Sr to the anti-site for Sr, a significant cathode degradation indicator. By using spatially resolved valence mapping of Co, a complete picture of the surface electrochemistry can be determined. This is especially important in identifying degradation phenomena where the degradation is spatially localized to the extremities of the electrochemistry and not the average. For samples that have electrochemical parameters that are measured to be spatially uniform, the Co valence modifications were correlated to the effects of current density, overpotential, and humidity.

  11. Review on MIEC Cathode Materials for Solid Oxide Fuel Cells

    Science.gov (United States)

    Burnwal, Suman Kumar; Bharadwaj, S.; Kistaiah, P.

    2016-11-01

    The cathode is one of the most important components of solid oxide fuel cells (SOFCs). The reduction of oxygen at the cathode (traditional cathodes like LSM, LSGM, etc.) is the slow step in the cell reaction at intermediate temperature (600-800∘C) which is one of the key obstacles to the development of SOFCs. The mixed ionic and electronic conducting cathode (MIEC) like LSCF, BSCF, etc., has recently been proposed as a promising cathode material for SOFC due to the improvement of the kinetic of the cathode reaction. The MIEC materials provide not only the electrons for the reduction of oxygen, but also the ionic conduction required to ensure the transport of the formed oxygen ions and thereby improves the overall electrochemical performance of SOFC system. The characteristics of MIEC cathode materials and its comparison with other traditional cathode materials is studied and presented in the paper.

  12. Nano-Particle Scandate Cathode for Space Communications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose an improved cathode based on our novel theory of the role of scandium oxide in enhancing emission in tungsten impregnate cathodes. Recent results have...

  13. Long Life Cold Cathodes for Hall effect Thrusters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An electron source incorporating long life, high current density cold cathodes inside a microchannel plate for use with ion thrusters is proposed. Cathode lifetime...

  14. Klystron Amplifier Utilizing Scandate Cathode and Electrostatic Focusing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to build an electrostatically focused klystron that exploits recent breakthroughs in scandate cathode technology. We have built cathodes with greater than...

  15. Fabrication of Closed Hollow Bulb Obturator Using Thermoplastic Resin Material

    Directory of Open Access Journals (Sweden)

    Bidhan Shrestha

    2015-01-01

    Full Text Available Purpose. Closed hollow bulb obturators are used for the rehabilitation of postmaxillectomy patients. However, the time consuming process, complexity of fabrication, water leakage, and discoloration are notable disadvantages of this technique. This paper describes a clinical report of fabricating closed hollow bulb obturator using a single flask and one time processing method for an acquired maxillary defect. Hard thermoplastic resin sheet has been used for the fabrication of hollow bulb part of the obturator. Method. After fabrication of master cast conventionally, bulb and lid part of the defect were formed separately and joined by autopolymerizing acrylic resin to form one sized smaller hollow body. During packing procedure, the defect area was loaded with heat polymerizing acrylic resin and then previously fabricated smaller hollow body was adapted over it. The whole area was then loaded with heat cure acrylic. Further processes were carried out conventionally. Conclusion. This technique uses single flask which reduces laboratory time and makes the procedure simple. The thickness of hollow bulb can be controlled and light weight closed hollow bulb prosthesis can be fabricated. It also minimizes the disadvantages of closed hollow bulb obturator such as water leakage, bacterial infection, and discoloration.

  16. Porous-wall hollow glass microspheres as carriers for biomolecules

    Science.gov (United States)

    Li, Shuyi; Dynan, William S; Wicks, George; Serkiz, Steven

    2013-09-17

    The present invention includes compositions of porous-wall hollow glass microspheres and one or more biomolecules, wherein the one or more biomolecules are positioned within a void location within the hollow glass microsphere, and the use of such compositions for the diagnostic and/or therapeutic delivery of biomolecules.

  17. Preparation of spherical hollow alumina particles by thermal plasma

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Wonkyung [Department of Chemical Engineering, INHA University, 253 Yonghyun-dong, Nam-gu, Incheon 402‐751 (Korea, Republic of); Regional Innovation Center for Environmental Technology of Thermal Plasma (RIC-ETTP), INHA University, 253 Yonghyun-dong, Nam-gu, Incheon 402‐751 (Korea, Republic of); Choi, Sooseok [Center for Advance Research in Fusion Reactor Engineering, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151‐742 (Korea, Republic of); Oh, Seung-Min [Daejoo Electronic Materials Co., 1236‐10 Jeongwang-dong, Siheung-si, Kyunggi-do 429‐848 (Korea, Republic of); Park, Dong-Wha, E-mail: dwpark@inha.ac.kr [Department of Chemical Engineering, INHA University, 253 Yonghyun-dong, Nam-gu, Incheon 402‐751 (Korea, Republic of); Regional Innovation Center for Environmental Technology of Thermal Plasma (RIC-ETTP), INHA University, 253 Yonghyun-dong, Nam-gu, Incheon 402‐751 (Korea, Republic of)

    2013-02-01

    Spherical hollow particles were prepared from solid alumina powders using DC arc thermal plasma, and then spray coating was performed with the as-prepared particles. Operating variables for the hollow particle preparation process were additional plasma gas, input power, and carrier gas flow rate. The spherical hollow alumina particles were produced in the case of using additive gas of H{sub 2} or N{sub 2}, while alumina surface was hardly molten in the pure argon thermal plasma. In addition, the hollow particles were well produced in high power and low carrier gas conditions due to high melting point of alumina. Hollow structure was confirmed by focused ion beam-scanning electron microscopy analysis. Morphology and size distribution of the prepared particles that were examined by field emission-scanning electron microscopy and phase composition of the particles was characterized by X-ray diffraction. In the spray coating process, the as-prepared hollow particles showed higher deposition rate. - Highlights: ► Spherical hollow alumina powder was prepared by non-transferred DC arc plasma. ► Diatomic gasses were added in Ar plasma for high power. ► Prepared hollow alumina powder was efficient for the plasma spray coating.

  18. Fabrication of Closed Hollow Bulb Obturator Using Thermoplastic Resin Material.

    Science.gov (United States)

    Shrestha, Bidhan; Hughes, E Richard; Kumar Singh, Raj; Suwal, Pramita; Parajuli, Prakash Kumar; Shrestha, Pragya; Sharma, Arati; Adhikari, Galav

    2015-01-01

    Purpose. Closed hollow bulb obturators are used for the rehabilitation of postmaxillectomy patients. However, the time consuming process, complexity of fabrication, water leakage, and discoloration are notable disadvantages of this technique. This paper describes a clinical report of fabricating closed hollow bulb obturator using a single flask and one time processing method for an acquired maxillary defect. Hard thermoplastic resin sheet has been used for the fabrication of hollow bulb part of the obturator. Method. After fabrication of master cast conventionally, bulb and lid part of the defect were formed separately and joined by autopolymerizing acrylic resin to form one sized smaller hollow body. During packing procedure, the defect area was loaded with heat polymerizing acrylic resin and then previously fabricated smaller hollow body was adapted over it. The whole area was then loaded with heat cure acrylic. Further processes were carried out conventionally. Conclusion. This technique uses single flask which reduces laboratory time and makes the procedure simple. The thickness of hollow bulb can be controlled and light weight closed hollow bulb prosthesis can be fabricated. It also minimizes the disadvantages of closed hollow bulb obturator such as water leakage, bacterial infection, and discoloration.

  19. Photoluminescence of hollow gold-silver bimetallic nanoparticles

    OpenAIRE

    Weon-Sik Chae; Hee-Ok Lee; Seung-Lim Oh

    2011-01-01

    Hollow gold nanoparticles including silver were prepared by the galvanic replacement reaction of silver nanoparticles by gold. The resulting hollow gold-silver bimetallic nanoparticles show notable blue-green emissions, which are studied using steady-state and time-resolved spectroscopy.

  20. Wet spinning of asymmetric hollow fibre membranes for gas separation

    NARCIS (Netherlands)

    Hof, van 't Jacob Adriaan

    1988-01-01

    This thesis describes the spinning and characterizatin of hollow fibre membranes for gas separation. The type of fibres studied here are made by a wet spinning process. A homogeneous solution is prepared, consisting of a polymer in a suitable organic solvent, and extruded as a hollow fibre. Both the

  1. Wet spinning of asymmetric hollow fibre membranes for gas separation

    NARCIS (Netherlands)

    van 't Hof, Jacob Adriaan

    1988-01-01

    This thesis describes the spinning and characterizatin of hollow fibre membranes for gas separation. The type of fibres studied here are made by a wet spinning process. A homogeneous solution is prepared, consisting of a polymer in a suitable organic solvent, and extruded as a hollow fibre. Both the

  2. Simple Spinning of Heterogeneous Hollow Microfibers on Chip.

    Science.gov (United States)

    Yu, Yue; Wei, Wenbo; Wang, Yaqing; Xu, Cong; Guo, Yaqiong; Qin, Jianhua

    2016-08-01

    A novel and simple chip-based microfluidic strategy is proposed for continuously controlled spinning of desirable hollow microfibers. These fabricated fiber-shaped materials exhibit extraordinary morphological and structural complexity, as well as a heterogeneous composition. The resulting specific hollow microfibers have potential applications in numerous chemical and biomedical fields.

  3. Photoluminescence of hollow gold-silver bimetallic nanoparticles

    Directory of Open Access Journals (Sweden)

    Weon-Sik Chae

    2011-12-01

    Full Text Available Hollow gold nanoparticles including silver were prepared by the galvanic replacement reaction of silver nanoparticles by gold. The resulting hollow gold-silver bimetallic nanoparticles show notable blue-green emissions, which are studied using steady-state and time-resolved spectroscopy.

  4. Biodegradable hollow fibres for the controlled release of hormones

    NARCIS (Netherlands)

    Eenink, M.J.D.; Feijen, Jan; Olijslager, J.; Albers, J.H.M.; Rieke, J.C.; Greidanus, P.J.

    1987-01-01

    Poly(l-lactide), (PLLA), hollow fibres were prepared using a dry-wet phase inversion spinning process. The effect of several spinning parameters (i.e. bore medium flow rate, spinning dope extrusion rate, fibre take-up rate, and spinning height) on the hollow fibre dimensions is reported. The use of

  5. Biodegradable hollow fibres for the controlled release of hormones

    NARCIS (Netherlands)

    Eenink, M.J.D.; Feijen, J.; Olijslager, J.; Albers, J.H.M.; Rieke, J.C.; Greidanus, P.J.

    1987-01-01

    Poly(l-lactide), (PLLA), hollow fibres were prepared using a dry-wet phase inversion spinning process. The effect of several spinning parameters (i.e. bore medium flow rate, spinning dope extrusion rate, fibre take-up rate, and spinning height) on the hollow fibre dimensions is reported. The use of

  6. DARHT 2 kA Cathode Development

    Energy Technology Data Exchange (ETDEWEB)

    Henestroza, E.; Houck, T.; Kwan, J.W.; Leitner, M.; Miram, G.; Prichard, B.; Roy, P.K.; Waldron, W.; Westenskow, G.; Yu, S.; Bieniosek, F.M.

    2009-03-09

    In the campaign to achieve 2 kA of electron beam current, we have made several changes to the DARHT-II injector during 2006-2007. These changes resulted in a significant increase in the beam current, achieving the 2 kA milestone. Until recently (before 2007), the maximum beam current that was produced from the 6.5-inch diameter (612M) cathode was about 1300 A when the cathode was operating at a maximum temperature of 1140 C. At this temperature level, the heat loss was dominated by radiation which is proportional to temperature to the fourth power. The maximum operating temperature was limited by the damage threshold of the potted filament and the capacity of the filament heater power supply, as well as the shortening of the cathode life time. There were also signs of overheating at other components in the cathode assembly. Thus it was clear that our approach to increase beam current could not be simply trying to run at a higher temperature and the preferred way was to operate with a cathode that has a lower work function. The dispenser cathode initially used was the type 612M made by SpectraMat. According to the manufacturer's bulletin, this cathode should be able to produce more than 10 A/cm{sup 2} of current density (corresponding to 2 kA of total beam current) at our operating conditions. Instead the measured emission (space charge limited) was 6 A/cm{sup 2}. The result was similar even after we had revised the activation and handling procedures to adhere more closely to the recommend steps (taking longer time and nonstop to do the out-gassing). Vacuum was a major concern in considering the cathode's performance. Although the vacuum gauges at the injector vessel indicated 10{sup -8} Torr, the actual vacuum condition near the cathode in the central region of the vessel, where there might be significant out-gassing from the heater region, was never determined. Poor vacuum at the surface of the cathode degraded the emission (by raising the work function

  7. A Novel Cathode Material for Cathodic Dehalogenation of 1,1-Dibromo Cyclopropane Derivatives.

    Science.gov (United States)

    Gütz, Christoph; Selt, Maximilian; Bänziger, Markus; Bucher, Christoph; Römelt, Christina; Hecken, Nadine; Gallou, Fabrice; Galvão, Tomás R; Waldvogel, Siegfried R

    2015-09-28

    Leaded bronze turned out to be an excellent cathode material for the dehalogenation reaction of cyclopropanes without affecting the strained molecular entity. With this particular alloy, beneficial properties of lead cathodes are conserved, whereas the corrosion of cathode is efficiently suppressed. The solvent in the electrolyte determines whether a complete debromination reaction is achieved or if the process can be selectively stopped at the monobromo cyclopropane intermediate. The electroorganic conversion tolerates a variety of functional groups and can be conducted at rather complex substrates like cyclosporine A. This approach allows the sustainable preparation of cyclopropane derivatives.

  8. NATURAL FREQUENCIES OF SUBMERGED PIEZOCERAMIC HOLLOW SPHERES

    Institute of Scientific and Technical Information of China (English)

    Cai Jinbiao; Chen Weiqiu; Ye Guiru; Ding Haojiang

    2000-01-01

    An exact 3D analysis of free vibration of a piezoceramic hollow sphere submerged in a compressible fluid is presented in this paper.A separation method is adopted to simplify the basic equations for spherically isotropic piezoelasticity.It is shown that there are two independent classes of vibration.The first one is independent of the fluid medium as well as the electric field,while the second is associated with both the fluid parameter and the piezoelectric effect.Exact frequency equations are derived and numerical results are obtained.

  9. Hollow micro string based calorimeter device

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a micron-scale calorimeter and a calorimetry method utilizing the micron-scale calorimeter. In accordance with the invention, there is provided a micron-scale calorimeter comprising a micro-channel string, being restrained at at least two longitudinally distanced...... positions so as to form a free released double clamped string in-between said two longitudinally distanced positions said micro-channel string comprising a microfluidic channel having a closed cross section and extending in the longitudinal direction of the hollow string, acoustical means adapted...

  10. Nonlinear sequential laminates reproducing hollow sphere assemblages

    Science.gov (United States)

    Idiart, Martín I.

    2007-07-01

    A special class of nonlinear porous materials with isotropic 'sequentially laminated' microstructures is found to reproduce exactly the hydrostatic behavior of 'hollow sphere assemblages'. It is then argued that this result supports the conjecture that Gurson's approximate criterion for plastic porous materials, and its viscoplastic extension of Leblond et al. (1994), may actually yield rigorous upper bounds for the hydrostatic flow stress of porous materials containing an isotropic, but otherwise arbitrary, distribution of porosity. To cite this article: M.I. Idiart, C. R. Mecanique 335 (2007).

  11. Anti-resonant hexagram hollow core fibers.

    Science.gov (United States)

    Hayes, John R; Poletti, Francesco; Abokhamis, Mousavi S; Wheeler, Natalie V; Baddela, Naveen K; Richardson, David J

    2015-01-26

    Various simple anti-resonant, single cladding layer, hollow core fiber structures are examined. We show that the spacing between core and jacket glass and the shape of the support struts can be used to optimize confinement loss. We demonstrate the detrimental effect on confinement loss of thick nodes at the strut intersections and present a fabricated hexagram fiber that mitigates this effect in both straight and bent condition by presenting thin and radially elongated nodes. This fiber has loss comparable to published results for a first generation, multi-cladding ring, Kagome fiber with negative core curvature and has tolerable bend loss for many practical applications.

  12. Hollow ballistic pendulum for plasma momentum measurements

    Science.gov (United States)

    Goncharov, S. F.; Pashinin, P. P.; Perov, V. Y.; Serov, R. V.; Yanovsky, V. P.

    1988-05-01

    A novel pendulum design—hollow ballistic pendulum—is suggested for plasma momentum measurements. It has an advantage over the pendula used earlier in laser plasma experiments of being insensitive to a momentum of matter evaporated and scattered by the pendulum wall exposed to the plasma, which usually exceeds plasma momentum to be measured. Simple expressions describing pendulum performance are derived, and requirements of shape and size are established. Using this kind of pendulum in experiments on laser acceleration of thin foils made it possible to measure the momentum of accelerated foil with an accuracy of about 10%.

  13. Uniform large-area thermionic cathode for SCALPEL

    Science.gov (United States)

    Katsap, Victor; Sewell, Peter B.; Waskiewicz, Warren K.; Zhu, Wei

    1999-11-01

    An electron beam lithography tool, which employs the SCALPEL technique, requires an extremely uniform beam to illuminate the scattering Mask, with the cathode operating in the temperature limited mode. It has been previously shown that LaB6 cathodes are not stable in this mode of operation. We have explored the possibility of implementing refined Tantalum-based emitters in the SCALPEL source cathode, and have developed large-area flat cathodes featuring suitably high emission uniformity under temperature limited operation.

  14. PREPARATION OF HOLLOW LATEX PARTICLES BY ALKALI-ACID TREATMENT

    Institute of Scientific and Technical Information of China (English)

    郝冬梅; 王新灵; 朱卫华; 唐小真; 刘成岑; 施凯

    2001-01-01

    Hollow polymer latex particles were prepared by seeded emulsion polymerization. A seed latex consisting of styrene (St), butyl acrylate(BA) copolymer was first prepared, and seeded terpolymerization of St-BA-MA(methacrylic acid) were then carried out in the absence of surfactant. Final latex was treated by a two-step treatment under alkaline and acidic conditions, thus, the particles with hollow structure were obtained. We discussed the effects of pH value, temperature and time in alkali and acid treatment processes on hollow structure within the polymer latex particles and amount of carboxylic group on particle surface. The results show that the hollow polymer latex particles with the largest hollow size can be obtained under a certain condition (pH12.5, 90°C, 3 h in alkali treatment stage and pH2.5, 85°C, 3 h in acid treatment stage).

  15. Anomalous Hollow Electron Beams in a Storage Ring

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y.K.

    2005-04-12

    This paper reports the first observations of an anomalous hollow electron beam in the Duke storage ring. Created by exciting the single bunch beam in a lattice with a negative chromaticity, the hollow beam consists of a solid core inside and a large ring outside. We report the detailed measurements of the hollow beam phenomenon, including its distinct image pattern, spectrum signature, and its evolution with time. By capturing the post-instability bursting beam, the hollow beam is a unique model system for studying the transverse instabilities, in particular, the interplay of the wake field and the lattice nonlinearity. In addition, the hollow beam can be used as a powerful tool to study the linear and nonlinear particle dynamics in the storage ring.

  16. Size-dependent deformation mechanisms in hollow silicon nanoparticles

    Directory of Open Access Journals (Sweden)

    L. Yang

    2015-07-01

    Full Text Available Even inherently brittle hollow silicon nanoparticles (NPs can withstand larger strain to failure than solid NPs. However, the influence of wall thickness on the mechanical behavior of hollow Si NPs is not fully understood. Using molecular dynamics simulations, we investigate the compressive behavior of hollow Si NPs. Three distinct failure mechanisms of hollow NPs are uncovered, and their strength and deformability are analyzed quantitatively. For extra-thick-walled NPs, dislocations will nucleate below the contact area and cut through the particles till failure. For mid-thick-walled NPs, however, dislocations will emit from the inner surface and slip towards the outer surface. For thin-walled NPs, elastic buckling is the cause of failure. Compared to solid NPs, hollow NPs with wall thickness being around half of its outer radius can achieve significant improvement in both strength and deformability.

  17. Hollow fiber bioreactor technology for tissue engineering applications.

    Science.gov (United States)

    Eghbali, Hadis; Nava, Michele M; Mohebbi-Kalhori, Davod; Raimondi, Manuela T

    2016-01-01

    Hollow fiber bioreactors are the focus of scientific research aiming to mimic physiological vascular networks and engineer organs and tissues in vitro. The reason for this lies in the interesting features of this bioreactor type, including excellent mass transport properties. Indeed, hollow fiber bioreactors allow limitations to be overcome in nutrient transport by diffusion, which is often an obstacle to engineer sizable constructs in vitro. This work reviews the existing literature relevant to hollow fiber bioreactors in organ and tissue engineering applications. To this purpose, we first classify the hollow fiber bioreactors into 2 categories: cylindrical and rectangular. For each category, we summarize their main applications both at the tissue and at the organ level, focusing on experimental models and computational studies as predictive tools for designing innovative, dynamic culture systems. Finally, we discuss future perspectives on hollow fiber bioreactors as in vitro models for tissue and organ engineering applications.

  18. Self-templated chemically stable hollow spherical covalent organic framework

    Science.gov (United States)

    Kandambeth, Sharath; Venkatesh, V.; Shinde, Digambar B.; Kumari, Sushma; Halder, Arjun; Verma, Sandeep; Banerjee, Rahul

    2015-04-01

    Covalent organic frameworks are a family of crystalline porous materials with promising applications. Although active research on the design and synthesis of covalent organic frameworks has been ongoing for almost a decade, the mechanisms of formation of covalent organic frameworks crystallites remain poorly understood. Here we report the synthesis of a hollow spherical covalent organic framework with mesoporous walls in a single-step template-free method. A detailed time-dependent study of hollow sphere formation reveals that an inside-out Ostwald ripening process is responsible for the hollow sphere formation. The synthesized covalent organic framework hollow spheres are highly porous (surface area ~1,500 m2 g-1), crystalline and chemically stable, due to the presence of strong intramolecular hydrogen bonding. These mesoporous hollow sphere covalent organic frameworks are used for a trypsin immobilization study, which shows an uptake of 15.5 μmol g-1 of trypsin.

  19. An Atomic Lens Using a Focusing Hollow Beam

    Institute of Scientific and Technical Information of China (English)

    夏勇; 印建平; 王育竹

    2003-01-01

    We propose a new method to generate a focused hollow laser beam by using an azimuthally distributed 2π-phase plate and a convergent thin lens, and calculate the intensity distribution of the focused hollow beam in free propagation space. The relationship between the waist w0 of the incident collimated Gaussian beam and the dark spot size of the focused hollow beam at the focal point, and the relationship between the focal length f of the thin lens and the dark spot size are studied respectively. The optical potential of the blue-detuned focused hollow beam for 85Rb atoms is calculated. Our study shows that when the larger waist w of the incident Gaussian beam and the shorter focal length f of the lens are chosen, we can obtain an extremely small dark spot size of the focused hollow beam, which can be used to form an atomic lens with a resolution of several angstroms.

  20. Optical properties of lamps with cold emission cathode

    Science.gov (United States)

    Kalenik, Jerzy; Czerwosz, ElŻbieta; Biernacki, Krzysztof; Rymarczyk, Joanna; Stepińska, Izabela

    2016-12-01

    A luminescent lamp was constructed and tested. Phosphor excited by electrons is the source of light. The source of electrons is field emission cathode. The cathode is covered with nickel-carbon layer containing carbon nanotubes that enhance electron emission from the cathode. Results of luminance measurements are presented. Luminance is high enough for lighting application.

  1. Long-term evaluation of hollow screw and hollow cylinder dental implants : Clinical and radiographic results after 10 years

    NARCIS (Netherlands)

    Telleman, Gerdien; Meijer, Henny J. A.; Raghoebar, Gerry M.

    Background: In 1988, an implant manufacturer offered a new dental implant system, with a wide choice of hollow cylinder (HC) and hollow screw (HS) implants. The purpose of this retrospective study of HS and HC implants was to evaluate clinical and radiographic parameters of peri-implant tissue and

  2. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    Energy Technology Data Exchange (ETDEWEB)

    Harlan U. Anderson

    2000-03-31

    . However, they have the potential of being useful as an interface on the anode side of the electrolyte. NexTech has focused much of its effort during the past few months on establishing tape casting methods for porous LSM substrates. This work, performed under a separate DOE-funded program, involved tape casting formulations comprising LSM powders with bi-modal particle size distributions and fugitive pore forming additives. Sintered LSM substrates with porosities in the 30 to 40 vol% range, and pore sizes of 10 {approx} 20 microns have been prepared. In addition, tape casting formulations involving composite mixtures of LSM and Sm-doped ceria (SDC) have been evaluated. The LSM/SDC cathode substrates are expected to provide better performance at low temperatures. Characterization of these materials is currently underway.

  3. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    Energy Technology Data Exchange (ETDEWEB)

    Harlan U. Anderson; Wayne Huebner; Igor Kosacki

    2001-09-30

    This project has three main goals: Thin Films Studies, Preparation of Graded Porous Substrates and Basic Electrical Characterization and testing of Planar Single Cells. In this portion of study we have focused on producing YSZ films on porous LSM substrates. When using the polymer precursor there are a number of obstacles to overcome in order to form dense electrolyte layers on porous substrates (cathode or anode). Probably the most difficult problems are: (1) Extreme penetration of the polymer into the substrate must be prevented. (2) Shrinkage cracking must be avoided. (3) Film thickness in the 1 to 5{micro}m range must be achieved. We have demonstrated that cracking due to shrinkage involved during the elimination of solvents and organic matter and densification of the remaining oxide is not a problem as long as the resulting oxide film is < {approx} 0.15 {micro}m in thickness. We have also shown that we can make thicker films by making multiple depositions if the substrate is smooth (roughness {le} 0.1 {micro}m) and contains no surface pores > 0.2 {micro}m. The penetration of the polymer into the porous substrate can be minimized by increasing the viscosity of the polymer and reducing the largest pore at the surface of the substrate to {le} 0.2 {micro}m. We have shown that this can be done, but we have also shown that it is difficult to make dense films that are defect free with areas > 1 cm{sup 2}. This is because of the roughness of the substrate and the difficulty in making a substrate which does not have surface voids > 0.2 {micro}m. Thus the process works well for dense, smooth substrates for films < 1 {micro}m thick, but is difficult to apply to rough, porous surfaces and to make film thickness > 1 {micro}m. As a result of these problems, we have been addressing the issue of how to make dense films in the thickness range of 1 to 5 {micro}m on sintered porous substrates without introducing cracks and holes due to shrinkage and surface voids? These

  4. The double sheath on cathodes of discharges burning in cathode vapour

    Energy Technology Data Exchange (ETDEWEB)

    Benilov, M S; Benilova, L G [Departamento de Fisica, Universidade da Madeira, Largo do MunicIpio, 9000 Funchal (Portugal)

    2010-09-01

    The model of a collisionless near-cathode space-charge sheath with ionization of atoms emitted by the cathode surface is considered. Numerical calculations showed that the mathematical problem is solvable and its solution is unique. In the framework of this model, the sheath represents a double layer with a potential maximum, with the ions which are produced before the maximum returning to the cathode surface and those produced after the maximum escaping into the plasma. Numerical results are given in a form to be readily applicable in analysis of discharges burning in cathode vapour, such as vacuum arcs. In particular, the results indicate that the ion backflow coefficient in such discharges exceeds 0.5, in agreement with values extracted from the experiment.

  5. Metal-Matrix/Hollow-Ceramic-Sphere Composites

    Science.gov (United States)

    Baker, Dean M.

    2011-01-01

    A family of metal/ceramic composite materials has been developed that are relatively inexpensive, lightweight alternatives to structural materials that are typified by beryllium, aluminum, and graphite/epoxy composites. These metal/ceramic composites were originally intended to replace beryllium (which is toxic and expensive) as a structural material for lightweight mirrors for aerospace applications. These materials also have potential utility in automotive and many other terrestrial applications in which there are requirements for lightweight materials that have high strengths and other tailorable properties as described below. The ceramic component of a material in this family consists of hollow ceramic spheres that have been formulated to be lightweight (0.5 g/cm3) and have high crush strength [40.80 ksi (.276.552 MPa)]. The hollow spheres are coated with a metal to enhance a specific performance . such as shielding against radiation (cosmic rays or x rays) or against electromagnetic interference at radio and lower frequencies, or a material to reduce the coefficient of thermal expansion (CTE) of the final composite material, and/or materials to mitigate any mismatch between the spheres and the matrix metal. Because of the high crush strength of the spheres, the initial composite workpiece can be forged or extruded into a high-strength part. The total time taken in processing from the raw ingredients to a finished part is typically 10 to 14 days depending on machining required.

  6. Hollow Pollen Shells to Enhance Drug Delivery

    Directory of Open Access Journals (Sweden)

    Alberto Diego-Taboada

    2014-03-01

    Full Text Available Pollen grain and spore shells are natural microcapsules designed to protect the genetic material of the plant from external damage. The shell is made up of two layers, the inner layer (intine, made largely of cellulose, and the outer layer (exine, composed mainly of sporopollenin. The relative proportion of each varies according to the plant species. The structure of sporopollenin has not been fully characterised but different studies suggest the presence of conjugated phenols, which provide antioxidant properties to the microcapsule and UV (ultraviolet protection to the material inside it. These microcapsule shells have many advantageous properties, such as homogeneity in size, resilience to both alkalis and acids, and the ability to withstand temperatures up to 250 °C. These hollow microcapsules have the ability to encapsulate and release actives in a controlled manner. Their mucoadhesion to intestinal tissues may contribute to the extended contact of the sporopollenin with the intestinal mucosa leading to an increased efficiency of delivery of nutraceuticals and drugs. The hollow microcapsules can be filled with a solution of the active or active in a liquid form by simply mixing both together, and in some cases operating a vacuum. The active payload can be released in the human body depending on pressure on the microcapsule, solubility and/or pH factors. Active release can be controlled by adding a coating on the shell, or co-encapsulation with the active inside the shell.

  7. ME1/1 Cathode Strip Chambers

    CERN Document Server

    Erchov, Yu V; Kamenev, Alexey; Karjavin, Vladimir; Khabarov, Serguei; Moissenz, P V; Moissenz, K P; Movchan, Sergey; Perelygin, Victor; Vassiliev, S E; Zarubin, Anatoli; Tchekhovski, V A

    2008-01-01

    The 76 innermost ME1/1 cathode strip chambers (CSC) of the CMS Experiment were designed and produced in Dubna. The chambers have been installed in the detector and commissioning has been completed. This paper describes the design of the CSCs, their main mechanical parameters and read-out electronics, and the results of tests with cosmic-ray muons.

  8. Air Separation Using Hollow Fiber Membranes

    Science.gov (United States)

    Huang, Stephen E.

    2004-01-01

    The NASA Glenn Research Center in partnership with the Ohio Aerospace Institute provides internship programs for high school and college students in the areas of science, engineering, professional administrative, and other technical areas. During the summer of 2004, I worked with Dr. Clarence T. Chang at NASA Glenn Research Center s combustion branch on air separation using hollow fiber membrane technology. . In light of the accident of Trans World Airline s flight 800, FAA has mandated that a suitable solution be created to prevent the ignition of fuel tanks in aircrafts. In order for any type of fuel to ignite, three important things are needed: fuel vapor, oxygen, and an energy source. Two different ways to make fuel tanks less likely to ignite are reformulating the fuel to obtain a lower vapor pressure for the fuel and or using an On Board Inert Gas Generating System (OBIGGS) to inert the Central Wing Tank. goal is to accomplish the mission, which means that the Air Separation Module (ASM) tends to be bulky and heavy. The primary goal for commercial aviation companies is to transport as much as they can with the least amount of cost and fuel per person, therefore the ASM must be compact and light as possible. The plan is to take bleed air from the aircraft s engines to pass air through a filter first to remove particulates and then pass the air through the ASM containing hollow fiber membranes. In the lab, there will be a heating element provided to simulate the temperature of the bleed air that will be entering the ASM and analysis of the separated air will be analyzed by a Gas Chromatograph/Mass Spectrometer (GC/MS). The GUMS will separate the different compounds in the exit streams of the ASM and provide information on the performance of hollow fiber membranes. Hopefully I can develop ways to improve efficiency of the ASM. different types of jet fuel were analyzed and data was well represented on SAE Paper 982485. Data consisted of the concentrations of over

  9. The selection of small forest hollows for pollen analysis in boreal and temperate forest regions

    DEFF Research Database (Denmark)

    Overballe-Petersen, Mette V; Bradshaw, Richard H.W.

    2011-01-01

    Small forest hollows represent a specialised site type for pollen analysis, since they mainly record the vegetation within an approximate radius of 20-100 m from the hollow. We discuss how to choose the most appropriate small forest hollow for pollen analysis. Hollow size, site topography, location...

  10. BNL 56 MHz HOM Damper Prototype Fabrication at JLab

    Energy Technology Data Exchange (ETDEWEB)

    Huque, Naeem A. [Jefferson Lab., Newport News, VA (United States); Daly, Edward F. [Jefferson Lab., Newport News, VA (United States); Clemens, William A. [Jefferson Lab., Newport News, VA (United States); McIntyre, Gary T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wu, Qiong [Brookhaven National Lab. (BNL), Upton, NY (United States); Seberg, Scott [Brookhaven National Lab. (BNL), Upton, NY (United States); Bellavia, Steve [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-09-01

    A prototype Higher-Order Mode (HOM) Damper was fabricated at JLab for the Relativistic Heavy-Ion Collider's (RHIC) 56 MHz cavity at Brookhaven National Laboratory (BNL). Primarily constructed from high RRR Niobium and Sapphire, the coaxial damper presented significant challenges in electron-beam welding (EBW), brazing and machining via acid etching. The results of the prototype operation brought about changes in the damper design, due to overheating braze alloys and possible multi-pacting. Five production HOM dampers are currently being fabricated at JLab. This paper outlines the challenges faced in the fabrication process, and the solutions put in place.

  11. Power sources for search and rescue 406 MHz beacons

    Science.gov (United States)

    Attia, Alan I.; Perrone, David E.

    1987-01-01

    The results of a study directed at the selection of a commercially available, safe, low cost, light weight and long storage life battery for search and rescue (Sarsat) 406 MHz emergency beacons are presented. In the course of this work, five electrochemical systems (lithium-manganese dioxide, lithium-carbon monofluoride, lithium-silver vanadium oxide, alkaline cells, and cadmium-mercuric oxide) were selected for limited experimental studies to determine their suitability for this application. Two safe, commercially available batteries (lithium-manganese dioxide and lithium-carbon monofluoride) which meet the near term requirements and several alternatives for the long term were identified.

  12. 2250-MHz High Efficiency Microwave Power Amplifier (HEMPA)

    Science.gov (United States)

    Sims, W. Herbert; Bell, Joseph L. (Technical Monitor)

    2001-01-01

    Tnis paper will focus on developing an exotic switching technique that enhances the DC-to-RF conversion efficiency of microwave power amplifiers. For years, switching techniques implemented in the 10 kHz to 30 MHz region have resulted in DC-to-RF conversion efficiencies of 90-95-percent. Currently amplifier conversion efficiency, in the 2-3 GHz region approaches, 10-20-percent. Using a combination of analytical modeling and hardware testing, a High Efficiency Microwave Power Amplifier was built that demonstrated conversion efficiencies four to five times higher than current state of the art.

  13. MHz gravitational waves from short-term anisotropic inflation

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Asuka; Soda, Jiro [Department of Physics, Kobe University,Kobe 657-8501 (Japan)

    2016-04-18

    We reveal the universality of short-term anisotropic inflation. As a demonstration, we study inflation with an exponential type gauge kinetic function which is ubiquitous in models obtained by dimensional reduction from higher dimensional fundamental theory. It turns out that an anisotropic inflation universally takes place in the later stage of conventional inflation. Remarkably, we find that primordial gravitational waves with a peak amplitude around 10{sup −26}∼10{sup −27} are copiously produced in high-frequency bands 10 MHz∼100 MHz. If we could detect such gravitational waves in future, we would be able to probe higher dimensional fundamental theory.

  14. BNL 56 MHz HOM damper prototype fabrication at JLAB

    Energy Technology Data Exchange (ETDEWEB)

    Huque, N.; McIntyre, G.; Daly, E. F.; Clemens, W.; Wu, Q.; Seberg, S.; Bellavia, S.

    2015-05-03

    A prototype Higher-Order Mode (HOM) Damper was fabricated at JLab for the Relativistic Heavy-Ion Collider’s (RHIC) 56 MHz cavity at Brookhaven National Laboratory (BNL). Primarily constructed from high RRR Niobium and Sapphire, the coaxial damper presented significant challenges in electron-beam welding (EBW), brazing and machining via acid etching. The results of the prototype operation brought about changes in the damper design, due to overheating braze alloys and possible multi-pacting. Five production HOM dampers are currently being fabricated at JLab. This paper outlines the challenges faced in the fabrication process, and the solutions put in place.

  15. Cathode depth sensing in CZT detectors

    Science.gov (United States)

    Hong, JaeSub; Bellm, Eric C.; Grindlay, Jonathan E.; Narita, Tomohiko

    2004-02-01

    Measuring the depth of interaction in thick Cadmium-Zinc-Telluride (CZT) detectors allows improved imaging and spectroscopy for hard X-ray imaging above 100 keV. The Energetic X-ray Imaging Survey Telescope (EXIST) will employ relatively thick (5 - 10 mm) CZT detectors, which are required to perform the broad energy-band sky survey. Interaction depth information is needed to correct events to the detector "focal plane" for correct imaging and can be used to improve the energy resolution of the detector at high energies by allowing event-based corrections for incomplete charge collection. Background rejection is also improved by allowing low energy events from the rear and sides of the detector to be rejected. We present experimental results of intereaction depth sensing in a 5 mm thick pixellated Au-contact IMARAD CZT detector. The depth sensing was done by making simultaneous measurements of cathode and anode signals, where the interaction depth at a given energy is proportional to the ratio of cathode/anode signals. We demonstrate how a simple empirical formula describing the event distributions in the cathode/anode signal space can dramatically improve the energy resolution. We also estimate the energy and depth resolution of the detector as a function of the energy and the interaction depth. We also show a depth-sensing prototype system currently under development for EXIST in which cathode signals from 8, 16 or 32 crystals can be read-out by a small multi-channel ASIC board that is vertically edge-mounted on the cathode electrode along every second CZT crystal boundary. This allows CZT crystals to be tiled contiguously with minimum impact on throughput of incoming photons. The robust packaging is crucial in EXIST, which will employ very large area imaging CZT detector arrays.

  16. Progress of air-breathing cathode in microbial fuel cells

    Science.gov (United States)

    Wang, Zejie; Mahadevan, Gurumurthy Dummi; Wu, Yicheng; Zhao, Feng

    2017-07-01

    Microbial fuel cell (MFC) is an emerging technology to produce green energy and vanquish the effects of environmental contaminants. Cathodic reactions are vital for high electrical power density generated from MFCs. Recently tremendous attentions were paid towards developing high performance air-breathing cathodes. A typical air-breathing cathode comprises of electrode substrate, catalyst layer, and air-diffusion layer. Prior researches demonstrated that each component influenced the performance of air-breathing cathode MFCs. This review summarized the progress in development of the individual component and elaborated main factors to the performance of air-breathing cathode.

  17. Design method of coaxial reflex hollow beam generator

    Science.gov (United States)

    Wang, Jiake; Xu, Jia; Fu, Yuegang; He, Wenjun; Zhu, Qifan

    2016-10-01

    In view of the light energy loss in central obscuration of coaxial reflex optical system, the design method of a kind of hollow beam generator is introduced. First of all, according to the geometrical parameter and obscuration ratio of front-end coaxial reflex optical system, calculate the required physical dimension of hollow beam, and get the beam expanding rate of the hollow beam generator according to the parameters of the light source. Choose the better enlargement ratio of initial expanding system using the relational expression of beam expanding rate and beam expanding rate of initial system; the traditional design method of the reflex optical system is used to design the initial optical system, and then the position of rotation axis of the hollow beam generator can be obtained through the rotation axis translation formula. Intercept the initial system bus bar using the rotation axis after the translation, and rotate the bus bar around the rotation axis for 360°, so that two working faces of the hollow beam generator can be got. The hollow beam generator designed by this method can get the hollow beam that matches the front-end coaxial reflex optical system, improving the energy utilization ratio of beam and effectively reducing the back scattering of transmission system.

  18. Experimental study on hollow structural component by explosive welding

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Mianjun, E-mail: dmjwl@163.com [PLA University of Science and Technology, Nanjing 210007 (China); Wei, Ling, E-mail: 386006087@qq.com [Tongda College, Nanjing University of Posts and Telecommunication, Nanjing 210007 (China); Hong, Jin [PLA University of Science and Technology, Nanjing 210007 (China); Ran, Hong [Southwestern Institute of Physics, Chengdu 610041 (China); Ma, Rui; Wang, Yaohua [PLA University of Science and Technology, Nanjing 210007 (China)

    2014-12-15

    Highlights: • This paper relates to a study on a thin double-layers hollow structural component by using an explosive welding technology. • This thin double-layer hollow structural component is an indispensable component required for certain core equipment of thermonuclear experimental reactor. • An adjusted explosive welding technology for manufacturing an inconel625 hollow structural component was developed which cannot be made by common technology. • The result shows that a metallurgical bonding was realized by the ribs and slabs of the hollow sheet. • The shearing strength of bonding interface exceeds that of the parent metal. - Abstract: A large thin-walled hollow structural component with sealed channels is required for the vacuum chamber of a thermonuclear experimental reactor, with inconel625 as its fabrication material. This hollow structural component is rarely manufactured by normal machining method, and its manufacture is also problematic in the field of explosive welding. With this in mind, we developed an adjusted explosive welding technology which involves a two-step design, setting and annealing technology. The joints were evaluated using optical microscope and scanning electron microscope, and a mechanical experiment was conducted, involving micro-hardness test, cold helium leak test and hydraulic pressure test. The results showed that a metallurgical bonding was realized by the ribs and slabs, and the shearing strength of the bonding interface exceeded that of the parent metal. Hence, the hollow structural component has a good comprehensive mechanical performance and sealing property.

  19. Energy efficient engine shroudless, hollow fan blade technology report

    Science.gov (United States)

    Michael, C. J.

    1981-01-01

    The Shroudless, Hollow Fan Blade Technology program was structured to support the design, fabrication, and subsequent evaluation of advanced hollow and shroudless blades for the Energy Efficient Engine fan component. Rockwell International was initially selected to produce hollow airfoil specimens employing the superplastic forming/diffusion bonding (SPF/DB) fabrication technique. Rockwell demonstrated that a titanium hollow structure could be fabricated utilizing SPF/DB manufacturing methods. However, some problems such as sharp internal cavity radii and unsatisfactory secondary bonding of the edge and root details prevented production of the required quantity of fatigue test specimens. Subsequently, TRW was selected to (1) produce hollow airfoil test specimens utilizing a laminate-core/hot isostatic press/diffusion bond approach, and (2) manufacture full-size hollow prototype fan blades utilizing the technology that evolved from the specimen fabrication effort. TRW established elements of blade design and defined laminate-core/hot isostatic press/diffusion bonding fabrication techniques to produce test specimens. This fabrication technology was utilized to produce full size hollow fan blades in which the HIP'ed parts were cambered/twisted/isothermally forged, finish machined, and delivered to Pratt & Whitney Aircraft and NASA for further evaluation.

  20. Polymer coatings as separator layers for microbial fuel cell cathodes

    KAUST Repository

    Watson, Valerie J.

    2011-03-01

    Membrane separators reduce oxygen flux from the cathode into the anolyte in microbial fuel cells (MFCs), but water accumulation and pH gradients between the separator and cathode reduces performance. Air cathodes were spray-coated (water-facing side) with anion exchange, cation exchange, and neutral polymer coatings of different thicknesses to incorporate the separator into the cathode. The anion exchange polymer coating resulted in greater power density (1167 ± 135 mW m-2) than a cation exchange coating (439 ± 2 mW m-2). This power output was similar to that produced by a Nafion-coated cathode (1114 ± 174 mW m-2), and slightly lower than the uncoated cathode (1384 ± 82 mW m-2). Thicker coatings reduced oxygen diffusion into the electrolyte and increased coulombic efficiency (CE = 56-64%) relative to an uncoated cathode (29 ± 8%), but decreased power production (255-574 mW m-2). Electrochemical characterization of the cathodes ex situ to the MFC showed that the cathodes with the lowest charge transfer resistance and the highest oxygen reduction activity produced the most power in MFC tests. The results on hydrophilic cathode separator layers revealed a trade off between power and CE. Cathodes coated with a thin coating of anion exchange polymer show promise for controlling oxygen transfer while minimally affecting power production. © 2010 Elsevier B.V. All rights reserved.

  1. Synthesis of TiO2 hollow nanofibers by co-axial electrospinning and its superior lithium storage capability in full-cell assembly with olivine phosphate.

    Science.gov (United States)

    Zhang, X; Aravindan, V; Kumar, P Suresh; Liu, H; Sundaramurthy, J; Ramakrishna, S; Madhavi, S

    2013-07-07

    We report the formation and extraordinary Li-storage properties of TiO2 hollow nanofibers by co-axial electrospinning in both the half-cell and full-cell configurations. Li-insertion properties are first evaluated as anodes in the half-cell configuration (Li/TiO2 hollow nanofibers) and we found that reversible insertion of ~0.45 moles is feasible at a current density of 100 mA g(-1). The half-cell displayed a good cyclability and retained 84% of its initial reversible capacity after 300 galvanostatic cycles. The full-cell is fabricated with a commercially available olivine phase LiFePO4 cathode under optimized mass loading. The LiFePO4/TiO2 hollow nanofiber cell delivered a reversible capacity of 103 mA h g(-1) at a current density of 100 mA g(-1) with an operating potential of ~1.4 V. Excellent cyclability is noted for the full-cell configuration, irrespective of the applied current densities, and it retained 88% of reversible capacity after 300 cycles in ambient conditions at a current density of 100 mA g(-1).

  2. Cathode R&D for Future Light Sources

    Energy Technology Data Exchange (ETDEWEB)

    Dowell, D.H.; /SLAC; Bazarov, I.; Dunham, B.; /Cornell U., CLASSE; Harkay, K.; /Argonne; Hernandez-Garcia; /Jefferson Lab; Legg, R.; /Wisconsin U., SRC; Padmore, H.; /LBL, Berkeley; Rao, T.; Smedley, J.; /Brookhaven; Wan, W.; /LBL, Berkeley

    2010-05-26

    This paper reviews the requirements and current status of cathodes for accelerator applications, and proposes a research and development plan for advancing cathode technology. Accelerator cathodes need to have long operational lifetimes and produce electron beams with a very low emittance. The two principal emission processes to be considered are thermionic and photoemission with the photocathodes being further subdivided into metal and semi-conductors. Field emission cathodes are not included in this analysis. The thermal emittance is derived and the formulas used to compare the various cathode materials. To date, there is no cathode which provides all the requirements needed for the proposed future light sources. Therefore a three part research plan is described to develop cathodes for these future light source applications.

  3. Design of ANSYS-based Cathode with Complex Groove

    Institute of Scientific and Technical Information of China (English)

    范植坚; 赵刚刚; 张丽娟

    2012-01-01

    The profile of cathode with complex groove needs to be modified time after time during design of electrochemical machining (ECM) cathode.A design scheme using finite element method (FEM) for cathode with complex profile is put forward to shorten the period of cathode design.Based on Laplace equation,the potential distribution on parameter-transformation model was calculated by using ANSYS,which is compared to the potential distribution calculated by substituting conductivity and current efficiency into Laplace equation.According to the difference between the results calculated and simulated by ANSYS,the cathode profile was modified by adjusting the cathode boundary.The experiments show that the dimensions and shape of workpiece machined by numerically simulated cathode conform well with the blueprint.

  4. Virtual cathode microwave generator having annular anode slit

    Science.gov (United States)

    Kwan, Thomas J. T.; Snell, Charles M.

    1988-01-01

    A microwave generator is provided for generating microwaves substantially from virtual cathode oscillation. Electrons are emitted from a cathode and accelerated to an anode which is spaced apart from the cathode. The anode has an annular slit therethrough effective to form the virtual cathode. The anode is at least one range thickness relative to electrons reflecting from the virtual cathode. A magnet is provided to produce an optimum magnetic field having the field strength effective to form an annular beam from the emitted electrons in substantial alignment with the annular anode slit. The magnetic field, however, does permit the reflected electrons to axially diverge from the annular beam. The reflected electrons are absorbed by the anode in returning to the real cathode, such that substantially no reflexing electrons occur. The resulting microwaves are produced with a single dominant mode and are substantially monochromatic relative to conventional virtual cathode microwave generators.

  5. Microwave generation enhancement of X-band CRBWO by use of coaxial dual annular cathodes

    Directory of Open Access Journals (Sweden)

    Yan Teng

    2013-07-01

    Full Text Available This paper presents an approach that greatly enhances both the output power and the conversion efficiency of the coaxial relativistic backward wave oscillator (CRBWO by using coaxial dual annular cathodes, which increases the diode current rather than the diode voltage. The reasons for the maladjustment of CRBWO under a high diode voltage are analyzed theoretically. It is found that by optimization of the diode structure, the shielding effect of the space charge of the outer beams on the inner cathode can be alleviated effectively and dual annular beams with the same kinetic energy can be explosively emitted in parallel. The coaxial reflector can enhance the conversion efficiency by improving the premodulation of the beams. The electron dump on the inner conductor ensures that the electron beams continue to provide kinetic energy to the microwave output until they vanish. Particle-in-cell (PIC simulation results show that generation can be enhanced up to an output power level of 3.63 GW and conversion efficiency of 45% at 8.97 GHz under a diode voltage of 659 kV and current of 12.27 kA. The conversion efficiency remains above 40% and the output frequency variation is less than 100 MHz over a voltage range of more than 150 kV. Also, the application of the coaxial dual annular cathodes means that the diode impedance is matched to that of the transmission line of the accelerators. This impedance matching can effectively eliminate power reflection at the diode, and thus increase the energy efficiency of the entire system.

  6. A fast integrated readout system for a cathode pad photon detector

    Science.gov (United States)

    French, M.; Lovell, M.; Chesi, E.; Racz, A.; Seguinot, J.; Ypsilantis, T.; Arnold, R.; Guyonnet, J. L.; Egger, J.; Gabathuler, K.

    1994-04-01

    A fast integrated electronic chain is presented to read out the cathode pad array of a multiwire photon detector for a fast RICH counter. Two VLSI circuits have been designed and produced. An analog eight channel, low noise, fast, bipolar, current preamplifier and discriminator chip serves as front-end electronics. It has an rms equivalent noise current of 10 nA (2000 e -), 50 MHz bandwidth with 10 mW of power consumption per channel. Two analogue chips are coupled to a digital 16 channels CMOS readout chip, operating at 20 MHz, that provides a pipelined delay of 1.3 μs and zero suppression with a power consumption of about 6 mW per channel. Readout of a 4000 pad sector requires 3-4 μs depending on the number of hit pads. The full RICH counter is made up of many of such sectors (the prototype has three fully equipped sectors), read out in parallel [1,2]. The minimum time to separate successive hits on the same pad is about 70 ns. The time skew of the full chain is about 15 ns.

  7. Investigation on High Performance of 10m Semi Anechoic Chamber by using Open-Top Hollow Pyramidal Hybrid EM Wave Absorber

    Science.gov (United States)

    Kurihara, Hiroshi; Saito, Toshifumi; Suzuki, Yoshikazu; Nishikata, Atsuhiro; Hashimoto, Osamu

    The emission radiated from electric and electronic equipments is evaluated through OATS. Recently, it is not fully prepared the environment for OATS because of a variety of communication radiation sources (e.g., digital television broadcast and cellular phone station). Therefore, the EM anechoic chambers are becoming more and more important as EMI test site. On the other hand, the EM anechoic chambers are needed high performance in order to cut down EMI countermeasure cost and calculate the antenna factor. The objective of this paper is mainly to present the EM wave absorber design in order to obtain within ±2dB against the theoretical site attenuation values in the 10m semi anechoic chamber at 30MHz to 300MHz. We get the necessary reflectivity of EM wave absorber by the basic site attenuation equation. We design the open-top hollow pyramidal new hybrid EM wave absorber consisted of 180cm long dielectric loss foam and ferrite tiles. Then, we design the 10m semi anechoic chamber by using the ray-tracing simulation and construct it in the size of L24m×W15.2m×H11.2m. More over, we measure the site attenuation of the constructed 10m semi anechoic chamber by using the broadband calculable dipole antennas. As the result, we confirm the validity of the designed open-top hollow pyramidal new hybrid EM wave absorber.

  8. Experimental Limits on Gravitational Waves in the MHz frequency Range

    Energy Technology Data Exchange (ETDEWEB)

    Lanza, Robert Jr. [Univ. of Chicago, IL (United States)

    2015-03-01

    This thesis presents the results of a search for gravitational waves in the 1-11MHz frequency range using dual power-recycled Michelson laser interferometers at Fermi National Accelerator Laboratory. An unprecedented level of sensitivity to gravitational waves in this frequency range has been achieved by cross-correlating the output fluctuations of two identical and colocated 40m long interferometers. This technique produces sensitivities better than two orders of magnitude below the quantum shot-noise limit, within integration times of less than 1 hour. 95% confidence level upper limits are placed on the strain amplitude of MHz frequency gravitational waves at the 10-21 Hz-1/2 level, constituting the best direct limits to date at these frequencies. For gravitational wave power distributed over this frequency range, a broadband upper limit of 2.4 x 10-21Hz-1/2 at 95% confidence level is also obtained. This thesis covers the detector technology, the commissioning and calibration of the instrument, the statistical data analysis, and the gravitational wave limit results. Particular attention is paid to the end-to-end calibration of the instrument’s sensitivity to differential arm length motion, and so to gravitational wave strain. A detailed statistical analysis of the data is presented as well.

  9. Imaging Jupiter's radiation belts down to 127 MHz with LOFAR

    CERN Document Server

    Girard, J N; Tasse, C; Hess, S; de Pater, I; Santos-Costa, D; Nenon, Q; Sicard, A; Bourdarie, S; Anderson, J; Asgekar, A; Bell, M E; van Bemmel, I; Bentum, M J; Bernardi, G; Best, P; Bonafede, A; Breitling, F; Breton, R P; Broderick, J W; Brouw, W N; Brüggen, M; Ciardi, B; Corbel, S; Corstanje, A; de Gasperin, F; de Geus, E; Deller, A; Duscha, S; Eislöffel, J; Falcke, H; Frieswijk, W; Garrett, M A; Grießmeier, J; Gunst, A W; Hessels, J W T; Hoeft, M; Hörandel, J; Iacobelli, M; Juette, E; Kondratiev, V I; Kuniyoshi, M; Kuper, G; van Leeuwen, J; Loose, M; Maat, P; Mann, G; Markov, S; McFadden, R; McKay-Bukowski, D; Moldon, J; Munk, H; Nelles, A; Norden, M J; Orru, E; Paas, H; Pandey-Pommier, M; Pizzo, R; Polatidis, A G; Reich, W; Röttgering, H; Rowlinson, A; Schwarz, D; Smirnov, O; Steinmetz, M; Swinbank, J; Tagger, M; Thoudam, S; Toribio, M C; Vermeulen, R; Vocks, C; van Weeren, R J; Wijers, R A M J; Wucknitz, O

    2015-01-01

    Context. Observing Jupiter's synchrotron emission from the Earth remains today the sole method to scrutinize the distribution and dynamical behavior of the ultra energetic electrons magnetically trapped around the planet (because in-situ particle data are limited in the inner magnetosphere). Aims. We perform the first resolved and low-frequency imaging of the synchrotron emission with LOFAR at 127 MHz. The radiation comes from low energy electrons (~1-30 MeV) which map a broad region of Jupiter's inner magnetosphere. Methods (see article for complete abstract) Results. The first resolved images of Jupiter's radiation belts at 127-172 MHz are obtained along with total integrated flux densities. They are compared with previous observations at higher frequencies and show a larger extent of the synchrotron emission source (>=4 $R_J$). The asymmetry and the dynamic of east-west emission peaks are measured and the presence of a hot spot at lambda_III=230 {\\deg} $\\pm$ 25 {\\deg}. Spectral flux density measurements ar...

  10. Constraints on the FRB rate at 700-900 MHz

    CERN Document Server

    Connor, Liam; Masui, Kiyoshi; Oppermann, Niels; Pen, Ue-Li; Peterson, Jeffrey B; Roman, Alexander; Sievers, Jonathan

    2016-01-01

    Estimating the all-sky rate of fast radio bursts (FRBs) has been difficult due to small-number statistics and the fact that they are seen by disparate surveys in different regions of the sky. In this paper we provide limits for the FRB rate at 800 MHz based on the only burst detected at frequencies below L-band, FRB 110523. We discuss the difficulties in rate estimation, particularly in providing an all-sky rate above a single fluence threshold. We find an implied rate between 700-900 MHz that is consistent with the rate at 1.4 GHz, scaling to $8.9^{+40.7}_{-6.7} \\times 10^3$\\,sky$^{-1}$\\,day$^{-1}$ for an HTRU-like survey. This is promising for upcoming experiments below L-band like CHIME and UTMOST, for which we forecast detection rates. Given 110523's discovery at 32$\\sigma$ with nothing weaker detected, down to the threshold of 9$\\sigma$, we find consistency with a Euclidean flux distribution but disfavour steep distributions.

  11. Cellular neoplastic transformation induced by 916 MHz microwave radiation.

    Science.gov (United States)

    Yang, Lei; Hao, Dongmei; Wang, Minglian; Zeng, Yi; Wu, Shuicai; Zeng, Yanjun

    2012-08-01

    There has been growing concern about the possibility of adverse health effects resulting from exposure to microwave radiations, such as those emitted by mobile phones. The purpose of this study was to investigate the cellular neoplastic transformation effects of electromagnetic fields. 916 MHz continuous microwave was employed in our study to simulate the electromagnetic radiation of mobile phone. NIH/3T3 cells were adopted in our experiment due to their sensitivity to carcinogen or cancer promoter in environment. They were divided randomly into one control group and three microwave groups. The three microwave groups were exposed to 916 MHz EMF for 2 h per day with power density of 10, 50, and 90 w/m(2), respectively, in which 10 w/m(2) was close to intensity near the antenna of mobile phone. The morphology and proliferation of NIH/3T3 cells were examined and furthermore soft agar culture and animal carcinogenesis assay were carried out to determine the neoplastic promotion. Our experiments showed NIH/3T3 cells changed in morphology and proliferation after 5-8 weeks exposure and formed clone in soft agar culture after another 3-4 weeks depending on the exposure intensity. In the animal carcinogenesis study, lumps developed on the back of SCID mice after being inoculated into exposed NIH/3T3 cells for more than 4 weeks. The results indicate that microwave radiation can promote neoplastic transformation of NIH/3T3cells.

  12. Formation of hollow nanocrystals through the nanoscale kirkendall effect

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Yadong; Rioux, Robert M.; Erdonmez, Can K.; Hughes, Steven; Somorjai, Gabor A.; Alivisatos, A. Paul

    2004-03-11

    We demonstrate that hollow nanocrystals can be synthesized through a mechanism analogous to the Kirkendall Effect, in which pores form due to the difference in diffusion rates between two components in a diffusion couple. Cobalt nanocrystals are chosen as a primary example to show that their reaction in solution with oxygen, sulfur or selenium leads to the formation of hollow nanocrystals of the resulting oxide and chalcogenides. This process provides a general route to the synthesis of hollow nanostructures of large numbers of compounds. A simple extension of this process yields platinum-cobalt oxide yolk-shell nanostructures which may serve as nanoscale reactors in catalytic applications.

  13. Hollow Gaussian Schell-model beam and its propagation

    CERN Document Server

    Wang, Li-Gang

    2007-01-01

    In this paper, we present a new model, hollow Gaussian-Schell model beams (HGSMBs), to describe the practical dark hollow beams. An analytical propagation formula for HGSMBs passing through a paraxial first-order optical system is derived based on the theory of coherence. Based on the derived formula, an application example showing the influence of spatial coherence on the propagation of beams is illustrated. It is found that the beam propagating properties of HGSMBs will be greatly affected by their spatial coherence. Our model provides a very convenient way for analyzing the propagation properties of partially coherent dark hollow beams.

  14. A NOVEL METHOD TO PREPARE CROSSLINKED POLYETHYLENEIMINE HOLLOW NANOSPHERES

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A novel method to prepare crosslinked polyethyleneimine (CPEI) hollow nanospheres was reported.Uniform silica nanospheres were used as templates,3-aminopropyl trimethoxysilane (APS) was immobilized on the surface of silica nanospheres as couple agent.Aziridine was initiated ring-opening polymerization with the amino groups in APS to form polyethyleneimine (PEI) shell layer.1,4-Butanediol diacrylate was utilized to crosslink PEI polymeric shell.The silica nanospheres in core were etched by hydrofluoric acid to obtain hollow CPEI nanospheres.The hollow nanospheres were characterized by X-ray photoelectron spectroscopy (XPS),transmission electron microscopy (TEM),and thermogravimetric analysis (TGA).

  15. The Romantic Prototype of The Legend of Sleepy Hollow

    Institute of Scientific and Technical Information of China (English)

    冯育军; 王艳

    2016-01-01

    "The Legend of Sleepy Hollow" is a short story of speculative fiction by American author Washington Irving, con-tained in his collection of 34 essays and short stories entitled The Sketch Book of Geoffrey Crayon, Gent. Written while Irving was living abroad in Birmingham, England,"The Legend of Sleepy Hollow"was first published in 1820. Along with Irving's com-panion piece"Rip Van Winkle","The Legend of Sleepy Hollow"is among the earliest examples of American fiction with endur-ing popularity, especially during the Halloween season.

  16. Hollow infrared fibers fabricated by glass-drawing technique.

    Science.gov (United States)

    Matsuura, Yuji; Kasahara, Ryosuke; Katagiri, Takashi; Miyagi, Mitsunobu

    2002-06-17

    Hollow glass fibers for delivery of mid-infrared lasers are drawn from a glass-tube preform to produce a long and flexible hollow fiber at low cost. To utilize the interference effect of the thin glass wall, the wall thickness is controlled by the drawing speed. A Pyrex-glass hollow fiber with an inner diameter of 280 microm and a wall thickness of 9.92 microm shows a low loss at 2.94 microm of the Er:YAG laser wavelength when coated with a silver film on the outer surface.

  17. New cobweb-structure hollow Bragg optical fibers

    Institute of Scientific and Technical Information of China (English)

    YU Rong-jin; ZHANG Yong-qiang; ZHANG Bing; WANG Chao-ran; WU Chang-qi

    2007-01-01

    A new type of Bragg fibers,i.e. hollow-core cobweb-structured optical fibers,which can be used to the low-loss transmission from visible to near infrared region (0.65 μm-1.55 μm),terahertz wave (200 μm-480 μm) and circular-polarization-maintaining single-mode transmission are investigated. Results show that the hollow-core cobweb-structured fibers have less loss than other hollow-core Bragg fibers. The fibers can be constituted by using the plastics or glasses with large absorption losses.

  18. Development of hollow electron beams for proton and ion collimation

    CERN Document Server

    Stancari, G.; Kuznetsov, G.; Shiltsev, V.; Still, D.A.; Valishev, A.; Vorobiev, L.G.; Assmann, R.; Kabantsev, A.

    2010-01-01

    Magnetically confined hollow electron beams for controlled halo removal in high-energy colliders such as the Tevatron or the LHC may extend traditional collimation systems beyond the intensity limits imposed by tolerable material damage. They may also improve collimation performance by suppressing loss spikes due to beam jitter and by increasing capture efficiency. A hollow electron gun was designed and built. Its performance and stability were measured at the Fermilab test stand. The gun will be installed in one of the existing Tevatron electron lenses for preliminary tests of the hollow-beam collimator concept, addressing critical issues such as alignment and instabilities of the overlapping proton and electron beams

  19. Hollow Electron Beam Collimator: R&D Status Report

    CERN Document Server

    Stancari, G; Kuznetsov, G; Shiltsev, V; Valishev, A; Kabantsev, A; Vorobiev, L

    2012-01-01

    Magnetically confined hollow electron beams for controlled halo removal in high-energy colliders such as the Tevatron or the LHC may extend traditional collimation systems beyond the intensity limits imposed by tolerable material damage. They may also improve collimation performance by suppressing loss spikes due to beam jitter and by increasing capture efficiency. A hollow electron gun was designed and built. Its performance and stability were measured at the Fermilab test stand. The gun will be installed in one of the existing Tevatron electron lenses for preliminary tests of the hollow-beam collimator concept, addressing critical issues such as alignment and instabilities of the overlapping proton and electron beams.

  20. Development of hollow electron beams for proton and ion collimation

    CERN Document Server

    Stancari, G; Kuznetsov, G; Shiltsev, V; Still, D A; Valishev, A; Vorobiev, L G; Assmann, R; Kabantsev, A

    2012-01-01

    Magnetically confined hollow electron beams for controlled halo removal in high-energy colliders such as the Tevatron or the LHC may extend traditional collimation systems beyond the intensity limits imposed by tolerable material damage. They may also improve collimation performance by suppressing loss spikes due to beam jitter and by increasing capture efficiency. A hollow electron gun was designed and built. Its performance and stability were measured at the Fermilab test stand. The gun will be installed in one of the existing Tevatron electron lenses for preliminary tests of the hollow-beam collimator concept, addressing critical issues such as alignment and instabilities of the overlapping proton and electron beams.

  1. Axisymmetric Vibration of Piezo-Lemv Composite Hollow Multilayer Cylinder

    Directory of Open Access Journals (Sweden)

    E. S. Nehru

    2012-01-01

    Full Text Available Axisymmetric vibration of an infinite piezolaminated multilayer hollow cylinder made of piezoelectric layers of 6 mm class and an isotropic LEMV (Linear Elastic Materials with Voids layers is studied. The frequency equations are obtained for the traction free outer surface with continuity conditions at the interfaces. Numerical results are carried out for the inner, middle, and outer hollow piezoelectric layers bonded by LEMV (It is hypothetical material layers and the dispersion curves are compared with that of a similar 3-layer model and of 3 and 5 layer models with inner, middle, and outer hollow piezoelectric layers bonded by CFRP (Carbon fiber reinforced plastics.

  2. Preparation of hollow microspheres of Ce3+ doped NiCo ferrite with high microwave absorbing performance

    Science.gov (United States)

    Duan, Hong-zhen; Zhou, Fang-ling; Cheng, Xia; Chen, Guo-hong; Li, Qiao-ling

    2017-02-01

    Hollow microspheres of Ce3+ doped NiCo-ferrites were synthesized by template-based-deposition and surface reaction method with carbon sphere as the template. The phase structure, morphology, magnetic properties and wave absorbing properties of the sample were characterized by X-ray powder diffraction(XRD), Scanning electronic microscopy(SEM), Vibration sample magnetometer (VSM) and a network vector analyzer (NVA), respectively. The results indicated that the particle size of the carbon sphere sample prepared by hydrothermal method was about 0.5 μm and the particle size of the Ni0.5Co0.5Fe2O4 sample prepared by template-based method was about 300 nm. The influence of the amount of rare earth element on the magnetic and absorbing properties of sample was studied. The saturation magnetization and coercivity decreased gradually with the increase of the content of Ce. When the content of Ce was 0.02, the maximal saturation magnetization value and coercivity was 75.72 emu•g-1 and 789.88 Oe, respectively. The associated ferrite hollow spheres have good absorbing performance, and the return loss value was -18.8 dB at 5500 MHz.

  3. Erosion behaviour of composite Al-Cr cathodes in cathodic arc plasmas in inert and reactive atmospheres

    CERN Document Server

    Franz, Robert; Hawranek, Gerhard; Polcik, Peter

    2015-01-01

    Al$_{x}$Cr$_{1-x}$ composite cathodes with Al contents of x = 0.75, 0.5 and 0.25 were exposed to cathodic arc plasmas in Ar, N$_2$ and O$_2$ atmospheres and their erosion behaviour was studied. Cross-sectional analysis of the elemental distribution of the near-surface zone in the cathodes by scanning electron microscopy revealed the formation of a modified layer for all cathodes and atmospheres. Due to intermixing of Al and Cr in the heat-affected zone, intermetallic Al-Cr phases formed as evidenced by X-ray diffraction analysis. Cathode poisoning effects in the reactive N$_2$ and O$_2$ atmospheres were non-uniform as a result of the applied magnetic field configuration. With the exception of oxide islands on Al-rich cathodes, reactive layers were absent in the circular erosion zone, while nitrides and oxides formed in the less eroded centre region of the cathodes.

  4. Molecular motor transport through hollow nanowires

    DEFF Research Database (Denmark)

    Lard, Mercy; Ten Siethoff, Lasse; Generosi, Johanna;

    2014-01-01

    Biomolecular motors offer self-propelled, directed transport in designed microscale networks and can potentially replace pump-driven nanofluidics. However, in existing systems, transportation is limited to the two-dimensional plane. Here we demonstrate fully one-dimensional (1D) myosin-driven mot......Biomolecular motors offer self-propelled, directed transport in designed microscale networks and can potentially replace pump-driven nanofluidics. However, in existing systems, transportation is limited to the two-dimensional plane. Here we demonstrate fully one-dimensional (1D) myosin......-driven motion of fluorescent probes (actin filaments) through 80 nm wide, Al2O 3 hollow nanowires of micrometer length. The motor-driven transport is orders of magnitude faster than would be possible by passive diffusion. The system represents a necessary element for advanced devices based on gliding assays...

  5. Dual-core antiresonant hollow core fibers.

    Science.gov (United States)

    Liu, Xuesong; Fan, Zhongwei; Shi, Zhaohui; Ma, Yunfeng; Yu, Jin; Zhang, Jing

    2016-07-25

    In this work, dual-core antiresonant hollow core fibers (AR-HCFs) are numerically demonstrated, based on our knowledge, for the first time. Two fiber structures are proposed. One is a composite of two single-core nested nodeless AR-HCFs, exhibiting low confinement loss and a circular mode profile in each core. The other has a relatively simple structure, with a whole elliptical outer jacket, presenting a uniform and wide transmission band. The modal couplings of the dual-core AR-HCFs rely on a unique mechanism that transfers power through the air. The core separation and the gap between the two cores influence the modal coupling strength. With proper designs, both of the dual-core fibers can have low phase birefringence and short modal coupling lengths of several centimeters.

  6. Permeability of Hollow Microspherical Membranes to Helium

    Science.gov (United States)

    Zinoviev, V. N.; Kazanin, I. V.; Pak, A. Yu.; Vereshchagin, A. S.; Lebiga, V. A.; Fomin, V. M.

    2016-01-01

    This work is devoted to the study of the sorption characteristics of various hollow microspherical membranes to reveal particles most suitable for application in the membrane-sorption technologies of helium extraction from a natural gas. The permeability of the investigated sorbents to helium and their impermeability to air and methane are shown experimentally. The sorption-desorption dependences of the studied sorbents have been obtained, from which the parameters of their specific permeability to helium are calculated. It has been established that the physicochemical modification of the original particles exerts a great influence on the coefficient of the permeability of a sorbent to helium. Specially treated cenospheres have displayed high efficiency as membranes for selective extraction of helium.

  7. Chalcogenide glass hollow core photonic crystal fibers

    Science.gov (United States)

    Désévédavy, Frédéric; Renversez, Gilles; Troles, Johann; Houizot, Patrick; Brilland, Laurent; Vasilief, Ion; Coulombier, Quentin; Traynor, Nicholas; Smektala, Frédéric; Adam, Jean-Luc

    2010-09-01

    We report the first hollow core photonic crystal fibers (HC PCF) in chalcogenide glass. To design the required HC PCF profiles for such high index glass, we use both band diagram analysis to define the required photonic bandgap and numerical simulations of finite size HC PCFs to compute the guiding losses. The material losses have also been taken into account to compute the overall losses of the HC PCF profiles. These fibers were fabricated by the stack and draw technique from TeAsSe (TAS) glass. The fibers we drew in this work are composed of six rings of holes and regular microstructures. Two profiles are presented, one is known as a kagome lattice and the other one corresponds to a triangular lattice. Geometrical parameters are compared to the expected parameters obtained by computation. Applications of such fibers include power delivery or fiber sensors among others.

  8. Nonparaxial Dark-Hollow Gaussian Beams

    Institute of Scientific and Technical Information of China (English)

    GAO Zeng-Hui; L(U) Bai-Da

    2006-01-01

    The concept of nonparaxial dark-hollow Gaussian beams (DHGBs) is introduced. By using the Rayleigh-Sommerfeld diffraction integral, the analytical propagation equation of DHGBs in free space is derived. The on-axis intensity, far-field equation and, in particular, paraxial expressions are given and treated as special cases of our result. It is shown that the parameter f = 1/kw0 with k being the wave number and w0 being the waist width determines the nonparaxiality of DHGBs. However, the parameter range, within which the paraxial approach is valid, depends on the propagation distance. The beam order affects the beam profile and position of maximum on-axis intensity.

  9. Two-piece hollow bulb obturator

    Directory of Open Access Journals (Sweden)

    Subramaniam Elangovan

    2011-01-01

    Full Text Available There are various types of obturator fabrication achievable by prosthodontist. Maxillectomy, which is a term used by head and neck surgeons and prosthodontists to describe the partial or total removal of the maxilla in patients suffering from benign or malignant neoplasms is a defect for which to provide an effective obturator is a difficult task for the maxillofacial prosthodontist. Multidisciplinary treatment planning is essential to achieve adequate retention and function for the prosthesis. Speech is often unintelligible as a result of the marked defects in articulation and nasal resonance. This paper describes how to achieve the goal for esthetics and phonetics and also describes the fabrication of a hollow obturator by two piece method, which is simple and maybe used as definitive obturator for maximum comfort of the patient.

  10. Fabrication by Co-extrusion and electrochemical characterization of micro-tubular hollow fibre solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Droushiotis, Nicolas; Doraswami, Uttam; Othman, Mohd Hafiz Dzarfan; Li, Kang; Kelsall, Geoff [Department of Chemical Engineering, Imperial College London, London SW7 2AZ (United Kingdom); Ivey, Douglas [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta (Canada)

    2010-06-15

    A phase inversion process was used to co-extrude cerium-gadolinium oxide (Ce{sub 0.9}Gd{sub 0.1}O{sub 1.95})/NiO-CGO dual-layer hollow fibres (HF), which were then sintered to form, respectively, the electrolyte and high porosity anode precursor of a solid oxide fuel cell (SOFC) with anode inner diameter of 0.8 mm. Graded CGO-lanthanum strontium cobalt ferrite (La{sub 0.6}Sr{sub 0.4}Fe{sub 0.8}Co{sub 0.2}O{sub 3}) cathode layers were then painted onto the CGO electrolyte to form a micro-tubular HF-SOFC. With a carefully designed anode current collector, this produced maximum power densities of 1186-5864 W m{sup -} {sup 2} at 450-570 C. High magnification imaging analysis revealed large three-phase boundary regions within the anode, a dense electrolyte layer and clearly highlighted the multiple CGO-LSCF cermet and pure LSCF cathode layers. The performance of the HF-SOFC with a twenty millimetre active length showed no degradation after four thermal cycles between 300 C and 570 C. (author)

  11. Frequency stabilization of a 2.05 μm laser using hollow-core fiber CO2 frequency reference cell

    Science.gov (United States)

    Meras, Patrick; Poberezhskiy, Ilya Y.; Chang, Daniel H.; Spiers, Gary D.

    2010-04-01

    We have designed and built a hollow-core fiber frequency reference cell, filled it with CO2, and used it to demonstrate frequency stabilization of a 2.05 μm Tm:Ho:YLF laser using frequency modulation (FM) spectroscopy technique. The frequency reference cell is housed in a compact and robust hermetic package that contains a several meter long hollow-core photonic crystal fiber optically coupled to index-guiding fibers with a fusion splice on one end and a mechanical splice on the other end. The package has connectorized fiber pigtails and a valve used to evacuate, refill it, or adjust the gas pressure. We have demonstrated laser frequency standard deviation decreasing from >450MHz (free-running) to hollow-core fiber reference cell. This approach enables all-fiber implementation of the optical portion of laser frequency stabilization system, thus making it dramatically more lightweight, compact, and robust than the traditional free-space version that utilizes glass or metal gas cells. It can also provide much longer interaction length of light with gas and does not require any alignment. The demonstrated frequency reference cell is particularly attractive for use in aircraft and space coherent lidar instruments for measuring atmospheric CO2 profile.

  12. Confined selenium within metal-organic frameworks derived porous carbon microcubes as cathode for rechargeable lithium-selenium batteries

    Science.gov (United States)

    Liu, Ting; Jia, Min; Zhang, Yan; Han, Jin; Li, Yi; Bao, ShuJuan; Liu, Dingyu; Jiang, Jian; Xu, Maowen

    2017-02-01

    Unique hierarchically porous carbon microcubes (CMCs) consists of irregular bubbles derived from metal organic frameworks (MOFs) have been prepared via simple hydrothermal synthesis method and carbonization treatment. Selenium nanoparticles are uniformly dispersed in the hierarchical porous structure of CMCs by a typical melt-diffusion process, and the yielding Se/CMCs composite is enabled as a cathode material for lithium-selenium rechargeable batteries. In the carbonate-based electrolyte, with Se loading of nearly ∼50 wt%, the Se/CMCs composite exhibits an ultrahigh initial discharge specific capacity of 780.4 mAh g-1 and still retains a reversible capacity of 425.2 mAh g-1 after 100 cycles at 0.2 C. Specially, these hollow structure CMCs with high conductivity contribute to the outstanding electrochemical properties by effectively decreasing the charge transfer resistance and suppressing polyselenides dissolution in carbonate electrolyte.

  13. Cathode-less gridded ion thrusters for small satellites

    Science.gov (United States)

    Aanesland, Ane

    2016-10-01

    Electric space propulsion is now a mature technology for commercial satellites and space missions that requires thrust in the order of hundreds of mN, and with available electric power in the order of kW. Developing electric propulsion for SmallSats (1 to 500 kg satellites) are challenging due to the small space and limited available electric power (in the worst case close to 10 W). One of the challenges in downscaling ion and Hall thrusters is the need to neutralize the positive ion beam to prevent beam stalling. This neutralization is achieved by feeding electrons into the downstream space. In most cases hollow cathodes are used for this purpose, but they are fragile and difficult to implement, and in particular for small systems they are difficult to downscale, both in size and electron current. We describe here a new alternative ion thruster that can provide thrust and specific impulse suitable for mission control of satellites as small as 3 kg. The originality of our thruster lies in the acceleration principles and propellant handling. Continuous ion acceleration is achieved by biasing a set of grids with Radio Frequency voltages (RF) via a blocking capacitor. Due to the different mobility of ions and electrons, the blocking capacitor charges up and rectifies the RF voltage. Thus, the ions are accelerated by the self-bias DC voltage. Moreover, due to the RF oscillations, the electrons escape the thruster across the grids during brief instants in the RF period ensuring a full space charge neutralization of the positive ion beam. Due to the RF nature of this system, the space charge limited current increases by almost a factor of 2 compared to classical DC biased grids, which translates into a specific thrust two times higher than for a similar DC system. This new thruster is called Neptune and operates with only one RF power supply for plasma generation, ion acceleration and electron neutralization. We will present the downscaling of this thruster to a 3cm

  14. 40 MHz high-frequency ultrafast ultrasound imaging.

    Science.gov (United States)

    Huang, Chih-Chung; Chen, Pei-Yu; Peng, Po-Hsun; Lee, Po-Yang

    2017-06-01

    Ultrafast high-frame-rate ultrasound imaging based on coherent-plane-wave compounding has been developed for many biomedical applications. Most coherent-plane-wave compounding systems typically operate at 3-15 MHz, and the image resolution for this frequency range is not sufficient for visualizing microstructure tissues. Therefore, the purpose of this study was to implement a high-frequency ultrafast ultrasound imaging operating at 40 MHz. The plane-wave compounding imaging and conventional multifocus B-mode imaging were performed using the Field II toolbox of MATLAB in simulation study. In experiments, plane-wave compounding images were obtained from a 256 channel ultrasound research platform with a 40 MHz array transducer. All images were produced by point-spread functions and cyst phantoms. The in vivo experiment was performed from zebrafish. Since high-frequency ultrasound exhibits a lower penetration, chirp excitation was applied to increase the imaging depth in simulation. The simulation results showed that a lateral resolution of up to 66.93 μm and a contrast of up to 56.41 dB were achieved when using 75-angles plane waves in compounding imaging. The experimental results showed that a lateral resolution of up to 74.83 μm and a contrast of up to 44.62 dB were achieved when using 75-angles plane waves in compounding imaging. The dead zone and compounding noise are about 1.2 mm and 2.0 mm in depth for experimental compounding imaging, respectively. The structure of zebrafish heart was observed clearly using plane-wave compounding imaging. The use of fewer than 23 angles for compounding allowed a frame rate higher than 1000 frames per second. However, the compounding imaging exhibits a similar lateral resolution of about 72 μm as the angle of plane wave is higher than 10 angles. This study shows the highest operational frequency for ultrafast high-frame-rate ultrasound imaging. © 2017 American Association of Physicists in Medicine.

  15. Hollow porous-wall glass microspheres for hydrogen storage

    Science.gov (United States)

    Heung, Leung K.; Schumacher, Ray F.; Wicks, George G.

    2010-02-23

    A porous wall hollow glass microsphere is provided having a diameter range of between 1 to 200 microns, a density of between 1.0 to 2.0 gm/cc, a porous-wall structure having wall openings defining an average pore size of between 10 to 1000 angstroms, and which contains therein a hydrogen storage material. The porous-wall structure facilitates the introduction of a hydrogen storage material into the interior of the porous wall hollow glass microsphere. In this manner, the resulting hollow glass microsphere can provide a membrane for the selective transport of hydrogen through the porous walls of the microsphere, the small pore size preventing gaseous or liquid contaminants from entering the interior of the hollow glass microsphere.

  16. Biomimetic synthesis of calcium-strontium apatite hollow nanospheres

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this work,calcium-strontium apatite (Sr-HA) hollow nanospheres were synthesized by a facile biomimetic method.The structure and property of Sr-HA were characterized by FESEM,TEM,HRTEM,XRD and FT-IR spectroscopy.The influences of different ratios of calcium and strontium on the morphologies of the Sr-HA products were investigated.The experimental results revealed that the hollow spherical Sr-HA,with a size of 30-120 nm in diameter,could be synthesized when the molar ratio of Ca/Sr was 1:1.The possible formation mechanism of the hollow Sr-HA was proposed.The drug release experiments indicated that the hollow spherical Sr-HA had the property of sustained release.

  17. Highly efficient fluorescence sensing with hollow core photonic crystal fibers

    OpenAIRE

    Smolka, Stephan; Barth, Michael; Benson, Oliver

    2008-01-01

    We investigate hollow core photonic crystal fibers for ultra-sensitive fluorescence detection by selectively infiltrating the central hole with fluorophores. Dye concentrations down to 10(-9) M can be detected using only nanoliter sample volumes.

  18. Helly-type Theorems for Hollow Axis-aligned Boxes

    CERN Document Server

    Swanepoel, Konrad J

    2009-01-01

    A hollow axis-aligned box is the boundary of the cartesian product of $d$ compact intervals in R^d. We show that for d\\geq 3, if any 2^d of a collection of hollow axis-aligned boxes have non-empty intersection, then the whole collection has non-empty intersection; and if any 5 of a collection of hollow axis-aligned rectangles in R^2 have non-empty intersection, then the whole collection has non-empty intersection. The values 2^d for d\\geq 3 and 5 for d=2 are the best possible in general. We also characterize the collections of hollow boxes which would be counterexamples if 2^d were lowered to 2^d-1, and 5 to 4, respectively.

  19. Manufacture of hollow ingots using centrifugal casting machines

    Science.gov (United States)

    Pomeshchikov, A. G.; Greneva, T. S.; Baidachenko, V. I.; Berezin, V. I.

    2010-12-01

    Centrifugal machines are proposed for the foundry created at the Almalyk Mining and Smelting Factory in order to produce hollow ingots of a liquid metal made by remelting of consumable electrodes in a refractory accumulating crucible.

  20. Synthesis, characterization and properties of hollow nickel phosphide nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Ni Yonghong; Tao Ali; Hu Guangzhi; Cao Xiaofeng; Wei Xianwen; Yang Zhousheng [College of Chemistry and Materials Science, Anhui Key Laboratory of Functional Molecular Solids, Anhui Normal University, Wuhu 241000 (China)

    2006-10-14

    Nickel phosphide (Ni{sub 12}P{sub 5}) hollow nanospheres with a mean diameter of 100 nm and a shell thickness of 15-20 nm have been successfully prepared by a hydrothermal-microemulsion route, using NaH{sub 2}PO{sub 2} as a phosphorus source. XRD, EDS (HR)TEM, SEM and the SAED pattern were used to characterize the final product. Experiments showed that the as-prepared nickel phosphide hollow nanospheres could selectively catalytically degrade some organic dyes such as methyl red and Safranine T under 254 nm UV light irradiation. At the same time, the nickel phosphide hollow nanospheres showed a stronger ability to promote electron transfer between the glass-carbon electrode and adrenalin than nickel phosphide honeycomb-like particles prepared by a simple hydrothermal route. A possible formation process for nickel phosphide hollow nanospheres was suggested based on the experimental results.