Chatterjee, Dipankar; Amiroudine, Sakir
2011-02-01
A comprehensive non-isothermal Lattice Boltzmann (LB) algorithm is proposed in this article to simulate the thermofluidic transport phenomena encountered in a direct-current (DC) magnetohydrodynamic (MHD) micropump. Inside the pump, an electrically conducting fluid is transported through the microchannel by the action of an electromagnetic Lorentz force evolved out as a consequence of the interaction between applied electric and magnetic fields. The fluid flow and thermal characteristics of the MHD micropump depend on several factors such as the channel geometry, electromagnetic field strength and electrical property of the conducting fluid. An involved analysis is carried out following the LB technique to understand the significant influences of the aforementioned controlling parameters on the overall transport phenomena. In the LB framework, the hydrodynamics is simulated by a distribution function, which obeys a single scalar kinetic equation associated with an externally imposed electromagnetic force field. The thermal history is monitored by a separate temperature distribution function through another scalar kinetic equation incorporating the Joule heating effect. Agreement with analytical, experimental and other available numerical results is found to be quantitative.
Toth, G.; Daldorff, L. K. S.; Jia, X.; Gombosi, T. I.; Lapenta, G.
2014-12-01
We have recently developed a new modeling capability to embed theimplicit Particle-in-Cell (PIC) model iPIC3D into the BATS-R-USmagnetohydrodynamic model. The PIC domain can cover the regions wherekinetic effects are most important, such as reconnection sites. TheBATS-R-US code, on the other hand, can efficiently handle the rest ofthe computational domain where the MHD or Hall MHD description issufficient. As one of the very first applications of the MHD-EPICalgorithm (Daldorff et al. 2014, JCP, 268, 236) we simulate theinteraction between Jupiter's magnetospheric plasma with Ganymede'smagnetosphere, where the separation of kinetic and global scalesappears less severe than for the Earth's magnetosphere. Because theexternal Jovian magnetic field remains in an anti-parallel orientationwith respect to Ganymede's intrinsic magnetic field, magneticreconnection is believed to be the major process that couples the twomagnetospheres. As the PIC model is able to describe self-consistentlythe electron behavior, our coupled MHD-EPIC model is well suited forinvestigating the nature of magnetic reconnection in thisreconnection-driven mini-magnetosphere. We will compare the MHD-EPICsimulations with pure Hall MHD simulations and compare both modelresults with Galileo plasma and magnetic field measurements to assess therelative importance of ion and electron kinetics in controlling theconfiguration and dynamics of Ganymede's magnetosphere.
MAGNETOHYDRODYNAMIC EQUATIONS (MHD GENERATION CODE
Francisco Frutos Alfaro
2017-04-01
Full Text Available A program to generate codes in Fortran and C of the full magnetohydrodynamic equations is shown. The program uses the free computer algebra system software REDUCE. This software has a package called EXCALC, which is an exterior calculus program. The advantage of this program is that it can be modified to include another complex metric or spacetime. The output of this program is modified by means of a LINUX script which creates a new REDUCE program to manipulate the magnetohydrodynamic equations to obtain a code that can be used as a seed for a magnetohydrodynamic code for numerical applications. As an example, we present part of the output of our programs for Cartesian coordinates and how to do the discretization.
Magnetohydrodynamic (MHD) channel corner seal
Spurrier, Francis R.
1980-01-01
A corner seal for an MHD duct includes a compressible portion which contacts the duct walls and an insulating portion which contacts the electrodes, sidewall bars and insulators. The compressible portion may be a pneumatic or hydraulic gasket or an open-cell foam rubber. The insulating portion is segmented into a plurality of pieces of the same thickness as the electrodes, insulators and sidewall bars and aligned therewith, the pieces aligned with the insulator being of a different size from the pieces aligned with the electrodes and sidewall bars to create a stepped configuration along the corners of the MHD channel.
Magnetohydrodynamic (MHD) driven droplet mixer
Lee, Abraham P.; Lemoff, Asuncion V.; Miles, Robin R.
2004-05-11
A magnetohydrodynamic fluidic system mixes a first substance and a second substance. A first substrate section includes a first flow channel and a first plurality of pairs of spaced electrodes operatively connected to the first flow channel. A second substrate section includes a second flow channel and a second plurality of pairs of spaced electrodes operatively connected to the second flow channel. A third substrate section includes a third flow channel and a third plurality of pairs of spaced electrodes operatively connected to the third flow channel. A magnetic section and a control section are operatively connected to the spaced electrodes. The first substrate section, the second substrate section, the third substrate section, the first plurality of pairs of spaced electrodes, the second plurality of pairs of spaced electrodes, the third plurality of pairs of spaced electrodes, the magnetic section, and the control section are operated to move the first substance through the first flow channel, the second substance through the second flow channel, and both the first substance and the second substance into the third flow channel where they are mixed.
Magnetohydrodynamics simulations on graphics processing units
Wong, Hon-Cheng; Feng, Xueshang; Tang, Zesheng
2009-01-01
Magnetohydrodynamics (MHD) simulations based on the ideal MHD equations have become a powerful tool for modeling phenomena in a wide range of applications including laboratory, astrophysical, and space plasmas. In general, high-resolution methods for solving the ideal MHD equations are computationally expensive and Beowulf clusters or even supercomputers are often used to run the codes that implemented these methods. With the advent of the Compute Unified Device Architecture (CUDA), modern graphics processing units (GPUs) provide an alternative approach to parallel computing for scientific simulations. In this paper we present, to the authors' knowledge, the first implementation to accelerate computation of MHD simulations on GPUs. Numerical tests have been performed to validate the correctness of our GPU MHD code. Performance measurements show that our GPU-based implementation achieves speedups of 2 (1D problem with 2048 grids), 106 (2D problem with 1024^2 grids), and 43 (3D problem with 128^3 grids), respec...
A high current density DC magnetohydrodynamic (MHD) micropump
Homsy, Alexandra; Koster, Sander; Eijkel, Jan C.T.; Berg, van den Albert; Lucklum, F.; Verpoorte, E.; Rooij, de Nico F.
2005-01-01
This paper describes the working principle of a DC magnetohydrodynamic (MHD) micropump that can be operated at high DC current densities (J) in 75-µm-deep microfluidic channels without introducing gas bubbles into the pumping channel. The main design feature for current generation is a micromachined
A high current density DC magnetohydrodynamic (MHD) micropump
Homsy, A; Koster, Sander; Eijkel, JCT; van den Berg, A; Lucklum, F; Verpoorte, E; de Rooij, NF
2005-01-01
This paper describes the working principle of a DC magnetohydrodynamic (MHD) micropump that can be operated at high DC current densities (J) in 75-mu m-deep microfluidic channels without introducing gas bubbles into the pumping channel. The main design feature for current generation is a micromachin
Pseudo-reconnection in MHD numerical simulation
无
2000-01-01
A class of pseudo-reconnections caused by a shifted mesh in magnetohydrodynamics (MHD) simulations is reported. In terms of this mesh system, some non-physical results may be obtained in certain circumstances, e.g. magnetic reconnection occurs without resistivity. After comparison, another kind of mesh is strongly recommended.
Explosively-driven magnetohydrodynamic (MHD) generator studies
Agee, F.J.; Lehr, F.M. [Phillips Lab., Kirtland AFB, NM (United States); Vigil, M.; Kaye, R. [Sandia National Labs., Albuquerque, NM (United States); Gaudet, J.; Shiffler, D. [New Mexico Univ., Albuquerque, NM (United States)
1995-08-01
Plasma jet generators have been designed and tested which used an explosive driver and shocktube with a rectangular cross section that optimize the flow velocity and electrical conductivity. The latest in a series of designs has been tested using a reactive load to diagnose the electrical properties of the MHD generator/electromagnet combination. The results of these tests indicate that the plasma jet/MHD generator design does generate a flow velocity greater than 25 km/s and produces several gigawatts of pulsed power in a very small package size. A larger, new generator design is also presented.
Magnetohydrodynamic Simulation Code CANS+: Assessments and Applications
Matsumoto, Yosuke; Kudoh, Yuki; Kawashima, Tomohisa; Matsumoto, Jin; Takahashi, Hiroyuki R; Minoshima, Takashi; Zenitani, Seiji; Miyoshi, Takahiro; Matsumoto, Ryoji
2016-01-01
We present a new magnetohydrodynamic (MHD) simulation code with the aim of providing accurate numerical solutions to astrophysical phenomena where discontinuities, shock waves, and turbulence are inherently important. The code implements the HLLD approximate Riemann solver, the fifth-order-monotonicity-preserving interpolation scheme, and the hyperbolic divergence cleaning method for a magnetic field. This choice of schemes significantly improved numerical accuracy and stability, and saved computational costs in multidimensional problems. Numerical tests of one- and two-dimensional problems showed the advantages of using the high-order scheme by comparing with results from a standard second-order TVD scheme. The present code enabled us to explore long-term evolution of a three-dimensional global accretion disk, in which compressible MHD turbulence saturated at much higher levels via the magneto-rotational instability than that given by the second-order scheme owing to the adoption of the high-resolution, nume...
Efficient magnetohydrodynamic simulations on graphics processing units with CUDA
Wong, Hon-Cheng; Wong, Un-Hong; Feng, Xueshang; Tang, Zesheng
2011-10-01
Magnetohydrodynamic (MHD) simulations based on the ideal MHD equations have become a powerful tool for modeling phenomena in a wide range of applications including laboratory, astrophysical, and space plasmas. In general, high-resolution methods for solving the ideal MHD equations are computationally expensive and Beowulf clusters or even supercomputers are often used to run the codes that implemented these methods. With the advent of the Compute Unified Device Architecture (CUDA), modern graphics processing units (GPUs) provide an alternative approach to parallel computing for scientific simulations. In this paper we present, to the best of the author's knowledge, the first implementation of MHD simulations entirely on GPUs with CUDA, named GPU-MHD, to accelerate the simulation process. GPU-MHD supports both single and double precision computations. A series of numerical tests have been performed to validate the correctness of our code. Accuracy evaluation by comparing single and double precision computation results is also given. Performance measurements of both single and double precision are conducted on both the NVIDIA GeForce GTX 295 (GT200 architecture) and GTX 480 (Fermi architecture) graphics cards. These measurements show that our GPU-based implementation achieves between one and two orders of magnitude of improvement depending on the graphics card used, the problem size, and the precision when comparing to the original serial CPU MHD implementation. In addition, we extend GPU-MHD to support the visualization of the simulation results and thus the whole MHD simulation and visualization process can be performed entirely on GPUs.
M. Schüssler
Full Text Available Two aspects of solar MHD are discussed in relation to the work of the MHD simulation group at KIS. Photospheric magneto-convection, the nonlinear interaction of magnetic field and convection in a strongly stratified, radiating fluid, is a key process of general astrophysical relevance. Comprehensive numerical simulations including radiative transfer have significantly improved our understanding of the processes and have become an important tool for the interpretation of observational data. Examples of field intensification in the solar photosphere ('convective collapse' are shown. The second line of research is concerned with the dynamics of flux tubes in the convection zone, which has far-reaching implications for our understanding of the solar dynamo. Simulations indicate that the field strength in the region where the flux is stored before erupting to form sunspot groups is of the order of 10^{5} G, an order of magnitude larger than previous estimates based on equipartition with the kinetic energy of convective flows.
Key words. Solar physics · astrophysics and astronomy (photosphere and chromosphere; stellar interiors and dynamo theory; numerical simulation studies.
Magneto-hydrodynamics Simulation in Astrophysics
Pang, Bijia
2011-08-01
Magnetohydrodynamics (MHD) studies the dynamics of an electrically conducting fluid under the influence of a magnetic field. Many astrophysical phenomena are related to MHD, and computer simulations are used to model these dynamics. In this thesis, we conduct MHD simulations of non-radiative black hole accretion as well as fast magnetic reconnection. By performing large scale three dimensional parallel MHD simulations on supercomputers and using a deformed-mesh algorithm, we were able to conduct very high dynamical range simulations of black hole accretion of Sgr A* at the Galactic Center. We find a generic set of solutions, and make specific predictions for currently feasible observations of rotation measure (RM). The magnetized accretion flow is subsonic and lacks outward convection flux, making the accretion rate very small and having a density slope of around -1. There is no tendency for the flows to become rotationally supported, and the slow time variability of th! e RM is a key quantitative signature of this accretion flow. We also provide a constructive numerical example of fast magnetic reconnection in a three-dimensional periodic box. Reconnection is initiated by a strong, localized perturbation to the field lines and the solution is intrinsically three-dimensional. Approximately 30% of the magnetic energy is released in an event which lasts about one Alfvén time, but only after a delay during which the field lines evolve into a critical configuration. In the co-moving frame of the reconnection regions, reconnection occurs through an X-like point, analogous to the Petschek reconnection. The dynamics appear to be driven by global flows rather than local processes. In addition to issues pertaining to physics, we present results on the acceleration of MHD simulations using heterogeneous computing systems te{shan2006heterogeneous}. We have implemented the MHD code on a variety of heterogeneous and multi-core architectures (multi-core x86, Cell, Nvidia and
The analysis of the influence of the ferromagnetic rod in an annular magnetohydrodynamic (MHD pump
Bergoug Nassima
2012-01-01
Full Text Available This paper deals with the 2D modelisation of an annular induction magnetohydrodynamic (MHD pump using finite volume method in cylindrical coordinates and taking into consideration the saturation of the ferromagnetic material. The influence of the ferromagnetic rod on the different characteristics, in the channel of the MHD pump was studied in the paper.
MHD Simulations of Magnetospheric Accretion, Ejection and Plasma-field Interaction
Romanova M. M.
2014-01-01
Full Text Available We review recent axisymmetric and three-dimensional (3D magnetohydrodynamic (MHD numerical simulations of magnetospheric accretion, plasma-field interaction and outflows from the disk-magnetosphere boundary.
Using high performance Fortran for magnetohydrodynamic simulations
Keppens, R.; Toth, G.
2000-01-01
Two scientific application programs, the Versatile Advection Code (VAC) and the HEating by Resonant Absorption (HERA) code are adapted to parallel computer platforms. Both programs can solve the time-dependent nonlinear partial differential equations of magnetohydrodynamics (MHD) with different nume
Lattice kinetic simulations in three-dimensional magnetohydrodynamics.
Breyiannis, G; Valougeorgis, D
2004-06-01
A lattice kinetic algorithm to simulate three-dimensional (3D) incompressible magnetohydrodynamics is presented. The fluid is monitored by a distribution function, which obeys a scalar kinetic equation, subject to an external force due to the imposed magnetic field. Following the work of J. Comput. Phys. 179, 95 (2002)], the magnetic field is represented by a different three-component vector distribution function, which obeys a corresponding vector kinetic equation. Discretization of the 3D phase space is based on a 19-bit scheme for the hydrodynamic part and on a 7-bit scheme for the magnetic part. Numerical results for magnetohydrodynamic (MHD) flow in a rectangular duct with insulating and conducting walls provide excellent agreement with corresponding analytical solutions. The scheme maintains in all cases tested the MHD constraint inverted Delta.B=0 within machine round-off error.
1987-06-01
This report presents a study of the nuclear weapons magnetohydrodynamic (MHD) effects on submarine communications cables. The study consisted of the analysis and interpretation of currently available data on submarine cable systems TAT-4, TAT-6, and TAT-7. The primary result of the study is that decrease of the effective resistivity with frequency over the available experimental range, coupled with the model results, leads to quite small effective resistivities at the MHD characteristic frequencies, and hence small earth potential differences. Thus, it appears that submarine cable systems are less susceptible to an MHD threat than their land-based counter-parts.
Numerical Simulations and Diagnostics in Astrophysics:. a Few Magnetohydrodynamics Examples
Peres, Giovanni; Bonito, Rosaria; Orlando, Salvatore; Reale, Fabio
2007-12-01
We discuss some issues related to numerical simulations in Astrophysics and, in particular, to their use both as a theoretical tool and as a diagnostic tool, to gain insight into the physical phenomena at work. We make our point presenting some examples of Magneto-hydro-dynamic (MHD) simulations of astrophysical plasmas and illustrating their use. In particular we show the need for appropriate tools to interpret, visualize and present results in an adequate form, and the importance of spectral synthesis for a direct comparison with observations.
Lectures in magnetohydrodynamics. With an appendix on extended MHD
Schnack, Dalton D. [Wisconsin Univ., Madison, WI (United States). Dept. Physics
2009-07-01
This concise and self-contained primer is based on class-tested notes for an advanced graduate course in MHD. The broad areas chosen for presentation are the derivation and properties of the fundamental equations, equilibrium, waves and instabilities, self-organization, turbulence, and dynamos. The latter topics require the inclusion of the effects of resistivity and nonlinearity. Together, these span the range of MHD issues that have proven to be important for understanding magnetically confined plasmas as well as in some space and astrophysical applications. The combined length and style of the thirty-eight lectures are appropriate for complete presentation in a single semester. An extensive appendix on extended MHD is included as further reading. (orig.)
Momentum Transport in DIII-D Discharges with and Without Magnetohydrodynamics (MHD) Activity
REN Qilong; J.M.PARK; J.S.DEGRASSIE; M.S.CHU; L.L.LAO; H.St.JOHN; R.LAHAYE; Y.M.JEON; ZHANG Cheng; ZHOU Deng; LI Guoqiang
2009-01-01
Two phases of a DIII-D discharge with and without magnetohydrodynamics(MHD)activity are analysed using ONETWO code.The toroidal momentum flux is extracted from experimental data and compared with the predictions by neoclassical theory,Gyro-Landau fluid transport model (GLF23) and Multi-Mode model(MMM95). It iS found that without MHD activities GLF23 and MMM95 provide a reasonable description while with MHD activity no model alone can fully describe the experimental momentum flux.For the phase with MHD activity a simple model of resonant magnetic drag is tested and it cannot fully explain the plasma slowing down observed in experiment.
Magnetohydrodynamic (MHD) modelling of solar active phenomena via numerical methods
Wu, S. T.
1988-01-01
Numerical ideal MHD models for the study of solar active phenomena are summarized. Particular attention is given to the following physical phenomena: (1) local heating of a coronal loop in an isothermal and stratified atmosphere, and (2) the coronal dynamic responses due to magnetic field movement. The results suggest that local heating of a magnetic loop will lead to the enhancement of the density of the neighboring loops through MHD wave compression. It is noted that field lines can be pinched off and may form a self-contained magnetized plasma blob that may move outward into interplanetary space.
Lattice Boltzmann Large Eddy Simulation Model of MHD
Flint, Christopher
2016-01-01
The work of Ansumali \\textit{et al.}\\cite{Ansumali} is extended to Two Dimensional Magnetohydrodynamic (MHD) turbulence in which energy is cascaded to small spatial scales and thus requires subgrid modeling. Applying large eddy simulation (LES) modeling of the macroscopic fluid equations results in the need to apply ad-hoc closure schemes. LES is applied to a suitable mesoscopic lattice Boltzmann representation from which one can recover the MHD equations in the long wavelength, long time scale Chapman-Enskog limit (i.e., the Knudsen limit). Thus on first performing filter width expansions on the lattice Boltzmann equations followed by the standard small Knudsen expansion on the filtered lattice Boltzmann system results in a closed set of MHD turbulence equations provided we enforce the physical constraint that the subgrid effects first enter the dynamics at the transport time scales. In particular, a multi-time relaxation collision operator is considered for the density distribution function and a single rel...
Global MHD simulations of Neptune's magnetosphere
Mejnertsen, L.; Eastwood, J. P.; Chittenden, J. P.; Masters, A.
2016-08-01
A global magnetohydrodynamic (MHD) simulation has been performed in order to investigate the outer boundaries of Neptune's magnetosphere at the time of Voyager 2's flyby in 1989 and to better understand the dynamics of magnetospheres formed by highly inclined planetary dipoles. Using the MHD code Gorgon, we have implemented a precessing dipole to mimic Neptune's tilted magnetic field and rotation axes. By using the solar wind parameters measured by Voyager 2, the simulation is verified by finding good agreement with Voyager 2 magnetometer observations. Overall, there is a large-scale reconfiguration of magnetic topology and plasma distribution. During the "pole-on" magnetospheric configuration, there only exists one tail current sheet, contained between a rarefied lobe region which extends outward from the dayside cusp, and a lobe region attached to the nightside cusp. It is found that the tail current always closes to the magnetopause current system, rather than closing in on itself, as suggested by other models. The bow shock position and shape is found to be dependent on Neptune's daily rotation, with maximum standoff being during the pole-on case. Reconnection is found on the magnetopause but is highly modulated by the interplanetary magnetic field (IMF) and time of day, turning "off" and "on" when the magnetic shear between the IMF and planetary fields is large enough. The simulation shows that the most likely location for reconnection to occur during Voyager 2's flyby was far from the spacecraft trajectory, which may explain the relative lack of associated signatures in the observations.
MHD (Magnetohydrodynamic) Simulation of a Comet Magnetosphere.
1984-04-12
University Code 2628 (20 copies) New York, New York 10027 DTIC (2 copies) ATTN: R. Taussig R.A. Cross University of Alaska Geophysical Institute...Technology Croup Temerin, Michael Space Science Dept. Space Science Lab. Building 1-1, Room 1170 University of California One Space Park Berkeley...Minneapolis, MN 55455 Schulz, Michael Aerospace Corp. A6/2451, P.O. lox 92957 Los Angeles, California 90009 Shavhan, Stanley Dept. of Physics
Benyo, Theresa L.
2010-01-01
This paper describes the preliminary results of a thermodynamic cycle analysis of a supersonic turbojet engine with a magnetohydrodynamic (MHD) energy bypass system that explores a wide range of MHD enthalpy extraction parameters. Through the analysis described here, it is shown that applying a magnetic field to a flow path in the Mach 2.0 to 3.5 range can increase the specific thrust of the turbojet engine up to as much as 420 N/(kg/s) provided that the magnitude of the magnetic field is in the range of 1 to 5 Tesla. The MHD energy bypass can also increase the operating Mach number range for a supersonic turbojet engine into the hypersonic flight regime. In this case, the Mach number range is shown to be extended to Mach 7.0.
Direct numerical simulations of helical dynamo action: MHD and beyond
D. O. Gómez
2004-01-01
Full Text Available Magnetohydrodynamic dynamo action is often invoked to explain the existence of magnetic fields in several astronomical objects. In this work, we present direct numerical simulations of MHD helical dynamos, to study the exponential growth and saturation of magnetic fields. Simulations are made within the framework of incompressible flows and using periodic boundary conditions. The statistical properties of the flow are studied, and it is found that its helicity displays strong spatial fluctuations. Regions with large kinetic helicity are also strongly concentrated in space, forming elongated structures. In dynamo simulations using these flows, we found that the growth rate and the saturation level of magnetic energy and magnetic helicity reach an asymptotic value as the Reynolds number is increased. Finally, extensions of the MHD theory to include kinetic effects relevant in astrophysical environments are discussed.
MHD (magnetohydrodynamic) undersea propulsion: A novel concept with renewed interest
Doss, E.D.; Geyer, H.K. (Argonne National Lab., IL (USA)); Roy, G.D. (Office of Naval Research, Arlington, VA (USA))
1990-01-01
This paper discusses the reasons for the national and international renewed interest in the concept of MHD seawater propulsion. The main advantages of this concept are presented, together with some of the technical challenges that need to be overcome to achieve reliability, performance, and stealth. The paper discusses in more detail some of the technical issues and loss mechanisms influencing the thruster performance in terms of its electrical efficiency. Among the issues discussed are the jet losses and nozzle efficiency. Ohmic losses and frictional losses inside the thruster. Also discussed are the electrical end losses caused by the fringing magnetic field near the end of the electrodes. It has been shown that the frictional and end losses can have strong adverse effects on the thruster performance. Furthermore, a parametric study has been performed to investigate the effects of several parameters on the performance of the MHD thrusters. Those parameters include the magnetic field, thruster diameter, all roughness, flow velocity, and electrical load factor. The results of the parametric study indicate that the thruster efficiency increases with the strength of the magnetic field and thruster diameter, and decreases with the wall roughness and the flow velocity. 8 refs., 8 figs.
WhiskyMHD: Numerical Code for General Relativistic Magnetohydrodynamics
Baiotti, Luca; Giacomazzo, Bruno; Hawke, Ian; et al.
2010-10-01
Whisky is a code to evolve the equations of general relativistic hydrodynamics (GRHD) and magnetohydrodynamics (GRMHD) in 3D Cartesian coordinates on a curved dynamical background. It was originally developed by and for members of the EU Network on Sources of Gravitational Radiation and is based on the Cactus Computational Toolkit. Whisky can also implement adaptive mesh refinement (AMR) if compiled together with Carpet. Whisky has grown from earlier codes such as GR3D and GRAstro_Hydro, but has been rewritten to take advantage of some of the latest research performed here in the EU. The motivation behind Whisky is to compute gravitational radiation waveforms for systems that involve matter. Examples would include the merger of a binary system containing a neutron star, which are expected to be reasonably common in the universe and expected to produce substantial amounts of radiation. Other possible sources are given in the projects list.
Formation and collimation of relativistic MHD jets - simulations and radio maps
Fendt, Christian; Sheikhnezami, Somayeh
2013-01-01
We present results of magnetohydrodynamic (MHD) simulations of jet formation and propagation, discussing a variety of astrophysical setups. In the first approach we consider simulations of relativistic MHD jet formation, considering jets launched from the surface of a Keplerian disk, demonstrating numerically - for the first time - the self-collimating ability of relativistic MHD jets. We obtain Lorentz factors up to about 10 while acquiring a high degree of collimation of about 1 degree. We then present synchrotron maps calculated from the intrinsic jet structure derived from the MHD jet formation simulation. We finally present (non-relativistic) MHD simulations of jet lauching, treating the transition between accretion and ejection. These setups include a physical magnetic diffusivity which is essential for loading the accretion material onto the outflow. We find relatively high mass fluxes in the outflow, of the order of 20-40 % of the accretion rate.
Smoothed Particle Magnetohydrodynamics Simulations of Protostellar Jets and Turbulent Dynamos
Tricco, Terrence S; Federrath, Christoph; Bate, Matthew R
2013-01-01
We presents results from Smoothed Particle Magnetohydrodynamics simulations of collapsing molecular cloud cores, and dynamo amplification of the magnetic field in the presence of Mach 10 magnetised turbulence. Our star formation simulations have produced, for the first time ever, highly collimated magnetised protostellar jets from the first hydrostatic core phase. Up to 40% of the initial core mass may be ejected through this outflow. The primary difficulty in performing these simulations is maintaining the divergence free constraint of the magnetic field, and to address this issue, we have developed a new divergence cleaning method which has allowed us to stably follow the evolution of these protostellar jets for long periods. The simulations performed of supersonic MHD turbulence are able to exponentially amplify magnetic energy by up to 10 orders of magnitude via turbulent dynamo. To reduce numerical dissipation, a new shock detection algorithm is utilised which is able to track magnetic shocks throughout ...
3D MHD simulation of polarized emission in SN 1006
Schneiter, E M; Reynoso, E M; Esquivel, A; De Colle, F
2015-01-01
We use three dimensional magnetohydrodynamic (MHD) simulations to model the supernova remnant SN 1006. From our numerical results, we have carried out a polarization study, obtaining synthetic maps of the polarized intensity, the Stokes parameter $Q$, and the polar-referenced angle, which can be compared with observational results. Synthetic maps were computed considering two possible particle acceleration mechanisms: quasi-parallel and quasi-perpendicular. The comparison of synthetic maps of the Stokes parameter $Q$ maps with observations proves to be a valuable tool to discern unambiguously which mechanism is taking place in the remnant of SN 1006, giving strong support to the quasi-parallel model.
3D MHD disruptions simulations of tokamaks plasmas
Paccagnella, Roberto; Strauss, Hank; Breslau, Joshua
2008-11-01
Tokamaks Vertical Displacement Events (VDEs) and disruptions simulations in toroidal geometry by means of a single fluid visco-resistive magneto-hydro-dynamic (MHD) model are presented in this paper. The plasma model, implemented in the M3D code [1], is completed with the presence of a 2D homogeneous wall with finite resistivity. This allows the study of the relatively slowly growing magneto-hydro-dynamical perturbation, the resistive wall mode (RWM), which is, in this work, the main drive of the disruptions. Amplitudes and asymmetries of the halo currents pattern at the wall are also calculated and comparisons with tokamak experimental databases and predictions for ITER are given. [1] W. Park, E.V. Belova, G.Y. Fu, X.Z. Tang, H.R. Strauss, L.E. Sugiyama, Phys. Plasmas 6 (1999) 1796.
Divergence-free MHD Simulations with the HERACLES Code
Vides J.
2013-12-01
Full Text Available Numerical simulations of the magnetohydrodynamics (MHD equations have played a significant role in plasma research over the years. The need of obtaining physical and stable solutions to these equations has led to the development of several schemes, all requiring to satisfy and preserve the divergence constraint of the magnetic field numerically. In this paper, we aim to show the importance of maintaining this constraint numerically. We investigate in particular the hyperbolic divergence cleaning technique applied to the ideal MHD equations on a collocated grid and compare it to the constrained transport technique that uses a staggered grid to maintain the property. The methods are implemented in the software HERACLES and several numerical tests are presented, where the robustness and accuracy of the different schemes can be directly compared.
Comparisons of Cosmological MHD Galaxy Cluster Simulations to Radio Observations
Xu, Hao; Murgia, Matteo; Li, Hui; Collins, David C; Norman, Michael L; Cen, Renyue; Feretti, Luigina; Giovannini, Gabriele
2012-01-01
Radio observations of galaxy clusters show that there are $\\mu$G magnetic fields permeating the intra-cluster medium (ICM), but it is hard to accurately constrain the strength and structure of the magnetic fields without the help of advanced computer simulations. We present qualitative comparisons of synthetic VLA observations of simulated galaxy clusters to radio observations of Faraday Rotation Measure (RM) and radio halos. The cluster formation is modeled using adaptive mesh refinement (AMR) magneto-hydrodynamic (MHD) simulations with the assumption that the initial magnetic fields are injected into the ICM by active galactic nuclei (AGNs) at high redshift. In addition to simulated clusters in Xu et al. (2010, 2011), we present a new simulation with magnetic field injections from multiple AGNs. We find that the cluster with multiple injection sources is magnetized to a similar level as in previous simulations with a single AGN. The RM profiles from simulated clusters, both $|RM|$ and the dispersion of RM (...
Coupled neoclassical-magnetohydrodynamic simulations of axisymmetric plasmas
Lyons, Brendan C.
2014-10-01
Neoclassical effects (e.g., the bootstrap current and neoclassical toroidal viscosity [NTV]) have a profound impact on many magnetohydrodynamic (MHD) instabilities, including tearing modes, edge-localized modes (ELMs), and resistive wall modes. High-fidelity simulations of such phenomena require a multiphysics code that self-consistently couples the kinetic and fluid models. We present the first results of the DK4D code, a dynamic drift-kinetic equation (DKE) solver being developed for this application. In this study, DK4D solves a set of time-dependent, axisymmetric DKEs for the non-Maxwellian part of the electron and ion distribution functions (fNM) with linearized Fokker-Planck-Landau collision operators. The plasma is formally assumed to be in the low- to finite-collisionality regimes. The form of the DKEs used were derived in a Chapman-Enskog-like fashion, ensuring that fNM carries no density, momentum, or temperature. Rather, these quantities are contained within the background Maxwellian and are evolved by an appropriate set of extended MHD equations. We will discuss computational methods used and benchmarks to other neoclassical models and codes. Furthermore, DK4D has been coupled to a reduced, transport-timescale MHD code, allowing for self-consistent simulations of the dynamic formation of the ohmic and bootstrap currents. Several applications of this hybrid code will be presented, including an ELM-like pressure collapse. We will also discuss plans for coupling to the spatially three-dimensional, extended MHD code M3D-C1 and generalizing to nonaxisymmetric geometries, with the goal of performing self-consistent hybrid simulations of tokamak instabilities and calculations of NTV torque. This work supported by the U.S. Department of Energy (DOE) under Grant Numbers DE-FC02-08ER54969 and DE-AC02-09CH11466.
MHD simulation studies of z-pinch shear flow stabilization
Paraschiv, I.; Bauer, B. S.; Sotnikov, V. I.; Makhin, V.; Siemon, R. E.
2003-10-01
The development of the m=0 instability in a z-pinch in the presence of sheared plasma flows is investigated with the aid of a two-dimensional magnetohydrodynamic (MHD) simulation code (MHRDR). The linear growth rates are compared to the results obtained by solving the ideal MHD linearized equations [1] and to the results obtained using a 3D hybrid simulation code [2]. The instability development is followed into the nonlinear regime where its growth and saturation are examined. [1] V.I. Sotnikov, I. Paraschiv, V. Makhin, B.S. Bauer, J.-N. Leboeuf, and J.M. Dawson, "Linear analysis of sheared flow stabilization of global magnetohydrodynamic instabilities based on the Hall fluid mode", Phys. Plasmas 9, 913 (2002). [2] V.I. Sotnikov, V. Makhin, B.S. Bauer, P. Hellinger, P. Travnicek, V. Fiala, J.-N. Leboeuf, "Hybrid Simulations of Current-Carrying Instabilities in Z-pinch Plasmas with Sheared Axial Flow", AIP Conference Proceedings, Volume 651, Dense Z-Pinches: 5th International Conference on Dense Z-Pinches, edited by J. Davis et al., page 396, June 2002.
Global and Kinetic MHD Simulation by the Gpic-MHD Code
Hiroshi NAITOU; Yusuke YAMADA; Kenji KAJIWARA; Wei-li LEE; Shinji TOKUDA; Masatoshi YAGI
2011-01-01
In order to implement large-scale and high-beta tokamak simulation, a new algorithm of the electromagnetic gyrokinetic PIC （particle-in-cell） code was proposed and installed on the Gpic-MHD code [Gyrokinetic PIC code for magnetohydrodynamic （MHD） simulation]. In the new algorithm, the vorticity equation and the generalized Ohm＇s law along the magnetic field are derived from the basic equations of the gyrokinetic Vlasov, Poisson, and Ampere system and are used to describe the spatio-temporal evolution of the field quantities of the electrostatic potential φ and the longitudinal component of the vector potential Az. The basic algorithm is equivalent to solving the reduced-MHD-type equations with kinetic corrections, in which MHD physics related to Alfven modes are well described. The estimation of perturbed electron pressure from particle dynamics is dominant, while the effects of other moments are negligible. Another advantage of the algorithm is that the longitudinal induced electric field, ETz = -δAz/δt, is explicitly estimated by the generalized Ohm＇s law and used in the equations of motion. Furthermore, the particle velocities along the magnetic field are used （vz-formulation） instead of generalized momentums （pz-formulation）, hence there is no problem of ＇cancellation＇, which would otherwise appear when Az is estimated from the Ampere＇s law in the pz-formulation. The successful simulation of the collisionless internal kink mode by the new Gpic-MHD with realistic values of the large-scale and high-beta tokamaks revealed the usefulness of the new algorithm.
Simulations and Transport Models for Imbalanced Magnetohydrodynamic Turbulence
Ng, Chung-Sang; Dennis, T.
2016-10-01
We present results from a series of three-dimensional simulations of magnetohydrodynamic (MHD) turbulence based on reduced MHD equations. Alfven waves are launched from both ends of a long tube along the background uniform magnetic field so that turbulence develops due to collision between counter propagating Alfven waves in the interior region. Waves are launched randomly with specified correlation time Tc such that the length of the tube, L, is greater than (but of the same order of) VA *Tc such that turbulence can fill most of the tube. While waves at both ends are launched with equal power, turbulence generated is imbalanced in general, with normalized cross-helicity gets close to -1 at one end and 1 at the other end. This simulation setup allows easier comparison of turbulence properties with one-dimensional turbulence transport models, which have been applied rather successfully in modeling solar wind turbulence. However, direct comparison of such models with full simulations of solar wind turbulence is difficult due to much higher level of complexity involved. We will present our latest simulations at different resolutions with decreasing dissipation (resistivity and viscosity) levels and compare with model outputs from turbulence transport models. This work is supported by a NASA Grant NNX15AU61G.
A new framework for magnetohydrodynamic simulations with anisotropic pressure
Hirabayashi, Kota; Amano, Takanobu
2016-01-01
We describe a new theoretical and numerical framework of the magnetohydrodynamic simulation incorporated with an anisotropic pressure tensor, which can play an important role in a collisionless plasma. A classical approach to handle the anisotropy is based on the double adiabatic approximation assuming that a pressure tensor is well described only by the components parallel and perpendicular to the local magnetic field. This gyrotropic assumption, however, fails around a magnetically neutral region, where the cyclotron period may get comparable to or even longer than a dynamical time in a system, and causes a singularity in the mathematical expression. In this paper, we demonstrate that this singularity can be completely removed away by the combination of direct use of the 2nd-moment of the Vlasov equation and an ingenious gyrotropization model. Numerical tests also verify that the present model properly reduces to the standard MHD or the double adiabatic formulation in an asymptotic manner under an appropria...
Nonlinear tearing mode study using the almost ideal magnetohydrodynamics (MHD) constraint
Ren, C.; Callen, J.D. [Univ. of Wisconsin, Madison, WI (United States); Jensen, T.H. [General Atomics, San Diego, CA (United States)
1998-12-31
The tearing mode is an important resistive magnetohydrodynamics (MHD) mode. It perturbs the initial equilibrium magnetic flux surfaces through magnetic field line reconnection to form new flux surfaces with magnetic islands. In the study of the tearing mode, usually the initial equilibria are one dimensional with two ignorable coordinates and the perturbed equilibria are two dimensional with one ignorable coordinate. The tearing mode can be linearly unstable and its growth saturates at a fine amplitude. The neoclassical tearing mode theory shows that the mode can be nonlinearly driven by the bootstrap current even when it is linearly stable to the classical tearing mode. It is important to study the nonlinear behavior of the tearing mode. As an intrinsically nonlinear approach, the use of the almost ideal MHD constraint is suited to study the nonlinear properties of the tearing mode. In this paper, as a validation of the method, the authors study two characteristics of the tearing mode using the almost ideal MHD constraint: (1) the linear stability condition for the initial one dimensional equilibrium; and (2) the final saturation level for the unstable case. In this work, they only consider the simplest case where no gradient of pressure or current density exists at the mode resonant surface.
Resistive MHD jet simulations with large resistivity
Cemeljic, Miljenko; Vlahakis, Nektarios; Tsinganos, Kanaris
2009-01-01
Axisymmetric resistive MHD simulations for radially self-similar initial conditions are performed, using the NIRVANA code. The magnetic diffusivity could occur in outflows above an accretion disk, being transferred from the underlying disk into the disk corona by MHD turbulence (anomalous turbulent diffusivity), or as a result of ambipolar diffusion in partially ionized flows. We introduce, in addition to the classical magnetic Reynolds number Rm, which measures the importance of resistive effects in the induction equation, a new number Rb, which measures the importance of the resistive effects in the energy equation. We find two distinct regimes of solutions in our simulations. One is the low-resistivity regime, in which results do not differ much from ideal-MHD solutions. In the high-resistivity regime, results seem to show some periodicity in time-evolution, and depart significantly from the ideal-MHD case. Whether this departure is caused by numerical or physical reasons is of considerable interest for nu...
Simulated annealing applied to two-dimensional low-beta reduced magnetohydrodynamics
Chikasue, Y., E-mail: chikasue@ppl.k.u-tokyo.ac.jp [Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8561 (Japan); Furukawa, M., E-mail: furukawa@damp.tottori-u.ac.jp [Graduate School of Engineering, Tottori University, Minami 4-101, Koyama-cho, Tottori-shi, Tottori 680-8552 (Japan)
2015-02-15
The simulated annealing (SA) method is applied to two-dimensional (2D) low-beta reduced magnetohydrodynamics (R-MHD). We have successfully obtained stationary states of the system numerically by the SA method with Casimir invariants preserved. Since the 2D low-beta R-MHD has two fields, the relaxation process becomes complex compared to a single field system such as 2D Euler flow. The obtained stationary state can have fine structure. We have found that the fine structure appears because the relaxation processes are different between kinetic energy and magnetic energy.
EVIDENCE OF ACTIVE MHD INSTABILITY IN EULAG-MHD SIMULATIONS OF SOLAR CONVECTION
Lawson, Nicolas; Strugarek, Antoine; Charbonneau, Paul, E-mail: nicolas.laws@gmail.ca, E-mail: strugarek@astro.umontreal.ca, E-mail: paulchar@astro.umontreal.ca [Département de Physique, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Qc H3C 3J7 (Canada)
2015-11-10
We investigate the possible development of magnetohydrodynamical instabilities in the EULAG-MHD “millennium simulation” of Passos and Charbonneau. This simulation sustains a large-scale magnetic cycle characterized by solar-like polarity reversals taking place on a regular multidecadal cadence, and in which zonally oriented bands of strong magnetic fields accumulate below the convective layers, in response to turbulent pumping from above in successive magnetic half-cycles. Key aspects of this simulation include low numerical dissipation and a strongly sub-adiabatic fluid layer underlying the convectively unstable layers corresponding to the modeled solar convection zone. These properties are conducive to the growth and development of two-dimensional instabilities that are otherwise suppressed by stronger dissipation. We find evidence for the action of a non-axisymmetric magnetoshear instability operating in the upper portions of the stably stratified fluid layers. We also investigate the possibility that the Tayler instability may be contributing to the destabilization of the large-scale axisymmetric magnetic component at high latitudes. On the basis of our analyses, we propose a global dynamo scenario whereby the magnetic cycle is driven primarily by turbulent dynamo action in the convecting layers, but MHD instabilities accelerate the dissipation of the magnetic field pumped down into the overshoot and stable layers, thus perhaps significantly influencing the magnetic cycle period. Support for this scenario is found in the distinct global dynamo behaviors observed in an otherwise identical EULAG-MHD simulations, using a different degree of sub-adiabaticity in the stable fluid layers underlying the convection zone.
Rosenberg, D.; Pouquet, A.; Germaschewski, K.; Ng, C. S.; Bhattacharjee, A.
2006-10-01
A recently developed spectral-element adaptive refinement incompressible magnetohydrodynamic (MHD) code is applied to simulate the problem of island coalescence instability (ICI) in 2D. The MHD solver is explicit, and uses the Elsasser formulation on high-order elements. It automatically takes advantage of the adaptive grid mechanics that have been described in [Rosenberg, Fournier, Fischer, Pouquet, J. Comp. Phys., 215, 59-80 (2006)], allowing both statically refined and dynamically refined grids. ICI is a MHD process that can produce strong current sheets and subsequent reconnection and heating in a high-Lundquist number plasma such as the solar corona [cf., Ng and Bhattacharjee, Phys. Plasmas, 5, 4028 (1998)]. Thus, it is desirable to use adaptive refinement grids to increase resolution, and to maintain accuracy at the same time. Results are compared with simulations using finite difference method with the same refinement grid, as well as pesudo-spectral simulations using uniform grid.
Simulation of wave interactions with MHD
Batchelor, D; Bernholdt, D; Berry, L; Elwasif, W; Jaeger, E; Keyes, D; Klasky, S [Oak Ridge National Laboratory, Oak Ridge, TN 37331 (United States); Alba, C; Choi, M [General Atomics, San Diego, CA 92186 (United States); Bateman, G [Lehigh University, Bethlehem, PA 18015 (United States); Bonoli, P [Plasma Science and Fusion Center, MTT, Cambridge, MA 02139 (United States); Bramley, R [Indiana University, Bloomington, IN 47405 (United States); Breslau, J; Chance, M; Chen, J; Fu, G; Jardin, S [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Harvey, R [CompX, Del Mar, CA 92014 (United States); Jenkins, T [University of Wisconsin, Madison, WI 53706 (United States); Kruger, S [Tech-X, Boulder, CO 80303 (United States)], E-mail: batchelordb@ornl.gov (and others)
2008-07-15
The broad scientific objectives of the SWIM (Simulation 01 Wave Interaction with MHD) project are twofold: (1) improve our understanding of interactions that both radio frequency (RF) wave and particle sources have on extended-MHD phenomena, and to substantially improve our capability for predicting and optimizing the performance of burning plasmas in devices such as ITER: and (2) develop an integrated computational system for treating multiphysics phenomena with the required flexibility and extensibility to serve as a prototype for the Fusion Simulation Project. The Integrated Plasma Simulator (IPS) has been implemented. Presented here are initial physics results on RP effects on MHD instabilities in tokamaks as well as simulation results for tokamak discharge evolution using the IPS.
Simulation of wave interactions with MHD
Batchelor, Donald B [ORNL; Abla, G [General Atomics, San Diego; Bateman, Glenn [Lehigh University, Bethlehem, PA; Bernholdt, David E [ORNL; Berry, Lee A [ORNL; Bonoli, P. [Massachusetts Institute of Technology (MIT); Bramley, R [Indiana University; Breslau, J. [Princeton Plasma Physics Laboratory (PPPL); Chance, M. [Princeton Plasma Physics Laboratory (PPPL); Chen, J. [Princeton Plasma Physics Laboratory (PPPL); Choi, M. [General Atomics; Elwasif, Wael R [ORNL; Fu, GuoYong [Princeton Plasma Physics Laboratory (PPPL); Harvey, R. W. [CompX, Del Mar, CA; Jaeger, Erwin Frederick [ORNL; Jardin, S. C. [Princeton Plasma Physics Laboratory (PPPL); Jenkins, T [University of Wisconsin; Keyes, David E [Columbia University; Klasky, Scott A [ORNL; Kruger, Scott [Tech-X Corporation; Ku, Long-Poe [Princeton Plasma Physics Laboratory (PPPL); Lynch, Vickie E [ORNL; McCune, Douglas [Princeton Plasma Physics Laboratory (PPPL); Ramos, J. [Massachusetts Institute of Technology (MIT); Schissel, D. [General Atomics; Schnack, [University of Wisconsin; Wright, J. [Massachusetts Institute of Technology (MIT)
2008-07-01
The broad scientific objectives of the SWIM (Simulation of Wave Interaction with MHD) project are twofold: (1) improve our understanding of interactions that both radio frequency (RF) wave and particle sources have on extended-MHD phenomena, and to substantially improve our capability for predicting and optimizing the performance of burning plasmas in devices such as ITER: and (2) develop an integrated computational system for treating multiphysics phenomena with the required flexibility and extensibility to serve as a prototype for the Fusion Simulation Project. The Integrated Plasma Simulator (IPS) has been implemented. Presented here are initial physics results on RF effects on MHD instabilities in tokamaks as well as simulation results for tokamak discharge evolution using the IPS.
Spectral magnetohydrodynamic simulations of the sun and stars
Brun, A. S.
The purpose of this lecture is two fold: first, to describe a powerful numerical technic, namely the spectral method, to solve the compressible (anelastic) magnetohydrodynamic (MHD) equations in spherical geometry and then to discuss some recent numerical applications to study stellar dynamics and magnetism. We thus start by describing the semi-implicit, anelastic spherical harmonic (ASH) code. In this code, the main field variables are projected into spherical harmonics for their horizontal dimensions and into Chebyshev polynomials for their radial direction. We then present, high resolution 3 D MHD simulations of the convective region of A- and G-type stars in spherical shells. We have chosen to model A and G-type stars because they represent good proxies to study and understand stellar dynamics and magnetism given their strikingly different internal “up-side-down” structure and magnetic activity level. In particular, we discuss the nonlinear interactions between turbulent convection, rotation and magnetic fields and the possibility for such flows and fields to lead to dynamo action. We find that both core and envelope turbulent convective zones are efficient at inducing strong mostly non-axisymmetric fields near equipartition but at the expense of damping the differential rotation present in the purely hydrodynamic progenitor solutions.
Cosmic-ray pitch-angle scattering in imbalanced MHD turbulence simulations
Weidl, Martin S; Teaca, Bogdan; Schlickeiser, Reinhard
2015-01-01
Pitch-angle scattering rates for cosmic-ray particles in magnetohydrodynamic (MHD) simulations with imbalanced turbulence are calculated for fully evolving electromagnetic turbulence. We compare with theoretical predictions derived from the quasilinear theory of cosmic-ray diffusion for an idealized slab spectrum and demonstrate how cross helicity affects the shape of the pitch-angle diffusion coefficient. Additional simulations in evolving magnetic fields or static field configurations provide evidence that the scattering anisotropy in imbalanced turbulence is not primarily due to coherence with propagating Alfven waves, but an effect of the spatial structure of electric fields in cross-helical MHD turbulence.
Zaliznyak, Yu A; Goedbloed, J P; Zaliznyak, Yu.
2003-01-01
We present a numerical study of an idealized magnetohydrodynamic (MHD) configuration consisting of a planar wake flow embedded into a three-dimensional (3D) sheared magnetic field. Our simulations investigate the possibility for in-situ development of large-scale compressive disturbances at cospatial current sheet -- velocity shear regions in the heliosphere. Using a linear MHD solver, we first systematically chart the destabilized wavenumbers, corresponding growth rates, and physical parameter ranges for dominant 3D sinuous-type instabilities in an equilibrium wake--current sheet system. Wakes bounded by sufficiently supersonic (Mach number $M_s > 2.6$) flow streams are found to support dominant fully 3D sinuous instabilities when the plasma beta is of order unity. Fully nonlinear, compressible 2.5D and 3D MHD simulations show the self-consistent formation of shock fronts of fast magnetosonic type. They carry density perturbations far away from the wake's center. Shock formation conditions are identified in ...
One year in the Earth's magnetosphere: A global MHD simulation and spacecraft measurements
Facsko, G; Zivkovic, T; Palin, L; Kallio, E; Agren, K; Opgenoorth, H; Tanskanen, E I; Milan, S E
2016-01-01
The response of the Earth's magnetosphere to changing solar wind conditions are studied with a 3D Magnetohydrodynamic (MHD) model. One full year (155 Cluster orbits) of the Earth's magnetosphere is simulated using Grand Unified Magnetosphere Ionosphere Coupling simulation (GUMICS-4) magnetohydrodynamic code. Real solar wind measurements are given to the code as input to create the longest lasting global magnetohydrodynamics simulation to date. The applicability of the results of the simulation depends critically on the input parameters used in the model. Therefore, the validity and the variance of the OMNIWeb data is first investigated thoroughly using Cluster measurement close to the bow shock. The OMNIWeb and the Cluster data were found to correlate very well before the bow shock. The solar wind magnetic field and plasma parameters are not changed significantly from the $L_1$ Lagrange point to the foreshock, therefore the OMNIWeb data is appropriate input to the GUMICS-4. The Cluster SC3 footprints are dete...
Lattice kinetic simulation of nonisothermal magnetohydrodynamics.
Chatterjee, Dipankar; Amiroudine, Sakir
2010-06-01
In this paper, a lattice kinetic algorithm is presented to simulate nonisothermal magnetohydrodynamics in the low-Mach number incompressible limit. The flow and thermal fields are described by two separate distribution functions through respective scalar kinetic equations and the magnetic field is governed by a vector distribution function through a vector kinetic equation. The distribution functions are only coupled via the macroscopic density, momentum, magnetic field, and temperature computed at the lattice points. The novelty of the work is the computation of the thermal field in conjunction with the hydromagnetic fields in the lattice Boltzmann framework. A 9-bit two-dimensional (2D) lattice scheme is used for the numerical computation of the hydrodynamic and thermal fields, whereas the magnetic field is simulated in a 5-bit 2D lattice. Simulation of Hartmann flow in a channel provides excellent agreement with corresponding analytical results.
Three-Dimensional Magnetohydrodynamic Simulations of the Crab Nebula
Porth, Oliver; Keppens, Rony
2013-01-01
In this paper we give a detailed account of the first 3D relativistic magnetohydrodynamic (MHD) simulations of Pulsar Wind Nebulae (PWN), with parameters most suitable for the Crab Nebula. In order to clarify the new features specific to 3D models, reference 2D simulations have been carried out as well. Compared to the previous 2D simulations, we considered pulsar winds with much stronger magnetisation, up to \\sigma=3, and accounted more accurately for the anticipated magnetic dissipation in the striped zone of these winds. While the 3D models preserve the separation of the post termination shock flow into the equatorial and polar components, their relative strength and significance differ. Whereas the highly magnetised 2D models produce highly coherent and well collimated polar jets capable of efficient "drilling" through the supernova shell, in the corresponding 3D models the jets are disrupted by the kink mode current driven instability and "dissolve" into the main body of PWN after propagation of several ...
Simulation of three-dimensional nonideal MHD flow at high magnetic Reynolds number
无
2010-01-01
A conservative TVD scheme is adopted to solve the equations governing the three-dimensional flow of a nonideal compressible conducting fluid in a magnetic field.The eight-wave equations for magnetohydrodynamics(MHD) are proved to be a non-strict hyperbolic system,therefore it is difficult to develop its eigenstructure.Powell developed a new set of equations which cannot be numerically simulated by conservative TVD scheme directly due to its non-conservative form.A conservative TVD scheme augmented with a new set of eigenvectors is proposed in the paper.To validate this scheme,1-D MHD shock tube,unsteady MHD Rayleigh problem and steady MHD Hartmann problem for different flow conditions are simulated.The simulated results are in good agreement with the existing analytical results.So this scheme can be used to effectively simulate high-conductivity fluids such as cosmic MHD problem and hypersonic MHD flow over a blunt body,etc.
Flux canceling in three-dimensional radiative magnetohydrodynamic simulations
Thaler, Irina; Spruit, H. C.
2017-05-01
We aim to study the processes involved in the disappearance of magnetic flux between regions of opposite polarity on the solar surface using realistic three-dimensional (3D) magnetohydrodynamic (MHD) simulations. "Retraction" below the surface driven by magnetic forces is found to be a very effective mechanism of flux canceling of opposite polarities. The speed at which flux disappears increases strongly with initial mean flux density. In agreement with existing inferences from observations we suggest that this is a key process of flux disappearance within active complexes. Intrinsic kG strength concentrations connect the surface to deeper layers by magnetic forces, and therefore the influence of deeper layers on the flux canceling process is studied. We do this by comparing simulations extending to different depths. For average flux densities of 50 G, and on length scales on the order of 3 Mm in the horizontal and 10 Mm in depth, deeper layers appear to have only a mild influence on the effective rate of diffusion.
General relativistic magnetohydrodynamic simulations of collapsars: Rotating black hole cases
Mizuno, Y. [Kyoto Univ., Kyoto (Japan). Department of Astronomy; Yamada, S. [Waseda Univ., Tokyo (Japan). Science and Engineering; Koide, S. [Toyama Univ., Toyama (Japan). Department of Engineering; Shibata, K. [Kyoto Univ., Kyoto (Japan). Kwasan and Hida Observatory
2005-06-01
We have performed 2.5-dimensional general relativistic magnetohydrodynamic (MHD) simulations of coIIapsars including a rotating black hole. InitiaIIy, we assume that the care collapse has failed in this star. A rotating black hole of a few solar masses is inserted by hand into the calculation. The simulation results show the formation of a diskIike structure and the generation of a jetIike outflow near the central black hole. The jetIike outflow propagates and accelerated mainly by the magnetic field. The total jet velocity is {approx} 0.3c. When the rotation of the black hole is faster, the magnetic field is twisted strongly owing to the frame-dragging effect. The magnetic energy stored by the twisting magnetic field is directly converted to kinetic energy of the jet rather than propagating as an Alfven wave. Thus, as the rotation of the black hole becomes faster, the poloidal velocity of the jet becomes faster.
3D MHD Simulations of Tokamak Disruptions
Woodruff, Simon; Stuber, James
2014-10-01
Two disruption scenarios are modeled numerically by use of the CORSICA 2D equilibrium and NIMROD 3D MHD codes. The work follows the simulations of pressure-driven modes in DIII-D and VDEs in ITER. The aim of the work is to provide starting points for simulation of tokamak disruption mitigation techniques currently in the CDR phase for ITER. Pressure-driven instability growth rates previously observed in simulations of DIIID are verified; Halo and Hiro currents produced during vertical displacements are observed in simulations of ITER with implementation of resistive walls in NIMROD. We discuss plans to exercise new code capabilities and validation.
Numerical Simulation of 2D Supersonic Magnetohydrodynamic Channel and Study on Hall Effect
ZHENG Xiaomei; LU Haoyu; XU Dajun; CAI Guobiao
2011-01-01
In this research effort, numerical simulation of two-dimensional magnetohydrodynamic (MHD) channel is performed and Hall effect is studied.The computational model consists of the Navier-Stokes (N-S) equations coupled with electrical-magnetic source terms, Maxwell equations and the generalized Ohm's law.Boundary conditions for the electrical potential equation considering Hall effect are derived.To start with, the MHD channel with single-pair electrodes is studied and flow of the electric current is in accordance with physical principle.Then the MHD channel with five-pair electrodes is numerically simulated.The results show that the electrical current concentrates on the downstream of the anode and the upstream of the cathode due to Hall effect, and the flow field becomes asymmetrical.At the current value of the magnetic interaction parameter, the electrical-magnetic force affects the flow remarkably, decreasing the outlet Mach number and increasing the outlet pressure; what's more, the flow structure in the channel becomes extremely complex.Performances of MHD channels with continual electrodes and segmented electrodes are compared.The results show that performance of the MHD channel with segmented electrodes is better than that with continual electrodes with the increase of Hall parameter.
Resistive Magnetohydrodynamic Simulations of Relativistic Magnetic Reconnection
Zenitani, Seiji; Hesse, Michael; Klimas, Alex
2010-01-01
Resistive relativistic magnetohydrodynamic (RRMHD) simulations are applied to investigate the system evolution of relativistic magnetic reconnection. A time-split Harten-Lan-van Leer method is employed. Under a localized resistivity, the system exhibits a fast reconnection jet with an Alfv enic Lorentz factor inside a narrow Petschek-type exhaust. Various shock structures are resolved in and around the plasmoid such as the post-plasmoid vertical shocks and the "diamond-chain" structure due to multiple shock reflections. Under a uniform resistivity, Sweet-Parker-type reconnection slowly evolves. Under a current-dependent resistivity, plasmoids are repeatedly formed in an elongated current sheet. It is concluded that the resistivity model is of critical importance for RRMHD modeling of relativistic magnetic reconnection.
Resistive Magnetohydrodynamic Simulations of Relativistic Magnetic Reconnection
Zenitani, Seiji; Klimas, Alex
2010-01-01
Resistive relativistic magnetohydrodynamic (RRMHD) simulations are applied to investigate the system evolution of relativistic magnetic reconnection. A time-split Harten--Lan--van Leer (HLL) method is employed. Under a localized resistivity, the system exhibits a fast reconnection jet with an Alfv\\'{e}nic Lorentz factor inside a narrow Petschek-type exhaust. Various shock structures are resolved in and around the plasmoid such as the post-plasmoid vertical shocks and the "diamond--chain" structure due to multiple shock reflections. Under a uniform resistivity, Sweet--Parker-type reconnection slowly evolves. Under a current-dependent resistivity, plasmoids are repeatedly formed in an elongated current sheet. It is concluded that the resistivity model is of critical importance for RRMHD modeling of relativistic magnetic reconnection.
Computer simulation of a magnetohydrodynamic dynamo. II
Kageyama, Akira; Sato, Tetsuya; Complexity Simulation Group
1995-05-01
A computer simulation of a magnetohydrodynamic dynamo in a rapidly rotating spherical shell is performed. Extensive parameter runs are carried out changing electrical resistivity. When resistivity is sufficiently small, total magnetic energy can grow more than ten times larger than total kinetic energy of convection motion which is driven by an unlimited external energy source. When resistivity is relatively large and magnetic energy is comparable or smaller than kinetic energy, the convection motion maintains its well-organized structure. However, when resistivity is small and magnetic energy becomes larger than kinetic energy, the well-organized convection motion is highly irregular. The magnetic field is organized in two ways. One is the concentration of component parallel to the rotation axis and the other is the concentration of perpendicular component. The parallel component tends to be confined inside anticyclonic columnar convection cells, while the perpendicular component is confined outside convection cells.
Chang, S.L.; Lottes, S.A.; Bouillard, J.X.; Petrick, M.
1997-11-01
This report covers application of Argonne National Laboratory`s (ANL`s) computer codes to simulation and analysis of components of the magnetohydrodynamic (MHD) power train system at the Component Development and Integration Facility (CDIF). Major components of the system include a 50-MWt coal-fired, two-stage combustor and an MHD channel. The combustor, designed and built by TRW, includes a deswirl section between the first and the second-stage combustor and a converging nozzle following the second-stage combustor, which connects to the MHD channel. ANL used computer codes to simulate and analyze flow characteristics in various components of the MHD system. The first-stage swirl combustor was deemed a mature technology and, therefore, was not included in the computer simulation. Several versions of the ICOMFLO computer code were used for the deswirl section and second-stage combustor. The MGMHD code, upgraded with a slag current leakage submodel, was used for the MHD channel. Whenever possible data from the test facilities were used to aid in calibrating parameters in the computer code, to validate the computer code, or to set base-case operating conditions for computations with the computer code. Extensive sensitivity and parametric studies were done on cold-flow mixing in the second-stage combustor, reacting flow in the second-stage combustor and converging nozzle, and particle-laden flow in the deswirl zone of the first-stage combustor, the second-stage combustor, and the converging nozzle. These simulations with subsequent analysis were able to show clearly in flow patterns and various computable measures of performance a number of sensitive and problematical areas in the design of the power train. The simulations of upstream components also provided inlet parameter profiles for simulation of the MHD power generating channel. 86 figs., 18 tabs.
Inductive ionospheric solver for magnetospheric MHD simulations
H. Vanhamäki
2011-01-01
Full Text Available We present a new scheme for solving the ionospheric boundary conditions required in magnetospheric MHD simulations. In contrast to the electrostatic ionospheric solvers currently in use, the new solver takes ionospheric induction into account by solving Faraday's law simultaneously with Ohm's law and current continuity. From the viewpoint of an MHD simulation, the new inductive solver is similar to the electrostatic solvers, as the same input data is used (field-aligned current [FAC] and ionospheric conductances and similar output is produced (ionospheric electric field. The inductive solver is tested using realistic, databased models of an omega-band and westward traveling surge. Although the tests were performed with local models and MHD simulations require a global ionospheric solution, we may nevertheless conclude that the new solution scheme is feasible also in practice. In the test cases the difference between static and electrodynamic solutions is up to ~10 V km^{−1} in certain locations, or up to 20-40% of the total electric field. This is in agreement with previous estimates. It should also be noted that if FAC is replaced by the ground magnetic field (or ionospheric equivalent current in the input data set, exactly the same formalism can be used to construct an inductive version of the KRM method originally developed by Kamide et al. (1981.
Inductive ionospheric solver for magnetospheric MHD simulations
Vanhamäki, H.
2011-01-01
We present a new scheme for solving the ionospheric boundary conditions required in magnetospheric MHD simulations. In contrast to the electrostatic ionospheric solvers currently in use, the new solver takes ionospheric induction into account by solving Faraday's law simultaneously with Ohm's law and current continuity. From the viewpoint of an MHD simulation, the new inductive solver is similar to the electrostatic solvers, as the same input data is used (field-aligned current [FAC] and ionospheric conductances) and similar output is produced (ionospheric electric field). The inductive solver is tested using realistic, databased models of an omega-band and westward traveling surge. Although the tests were performed with local models and MHD simulations require a global ionospheric solution, we may nevertheless conclude that the new solution scheme is feasible also in practice. In the test cases the difference between static and electrodynamic solutions is up to ~10 V km-1 in certain locations, or up to 20-40% of the total electric field. This is in agreement with previous estimates. It should also be noted that if FAC is replaced by the ground magnetic field (or ionospheric equivalent current) in the input data set, exactly the same formalism can be used to construct an inductive version of the KRM method originally developed by Kamide et al. (1981).
Time-dependent magnetohydrodynamic simulations of the inner heliosphere
Merkin, V. G.; Lyon, J. G.; Lario, D.; Arge, C. N.; Henney, C. J.
2016-04-01
This paper presents results from a simulation study exploring heliospheric consequences of time-dependent changes at the Sun. We selected a 2 month period in the beginning of year 2008 that was characterized by very low solar activity. The heliosphere in the equatorial region was dominated by two coronal holes whose changing structure created temporal variations distorting the classical steady state picture of the heliosphere. We used the Air Force Data Assimilate Photospheric Flux Transport (ADAPT) model to obtain daily updated photospheric magnetograms and drive the Wang-Sheeley-Arge (WSA) model of the corona. This leads to a formulation of a time-dependent boundary condition for our three-dimensional (3-D) magnetohydrodynamic (MHD) model, LFM-helio, which is the heliospheric adaptation of the Lyon-Fedder-Mobarry MHD simulation code. The time-dependent coronal conditions were propagated throughout the inner heliosphere, and the simulation results were compared with the spacecraft located near 1 astronomical unit (AU) heliocentric distance: Advanced Composition Explorer (ACE), Solar Terrestrial Relations Observatory (STEREO-A and STEREO-B), and the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft that was in cruise phase measuring the heliospheric magnetic field between 0.35 and 0.6 AU. In addition, during the selected interval MESSENGER and ACE aligned radially allowing minimization of the effects of temporal variation at the Sun versus radial evolution of structures. Our simulations show that time-dependent simulationsreproduce the gross-scale structure of the heliosphere with higher fidelity, while on smaller spatial and faster time scales (e.g., 1 day) they provide important insights for interpretation of the data. The simulations suggest that moving boundaries of slow-fast wind transitions at 0.1 AU may result in the formation of inverted magnetic fields near pseudostreamers which is an intrinsically time-dependent process
NIMROD Resistive Magnetohydrodynamic Simulations of Spheromak Physics
Hooper, E B; Cohen, B I; McLean, H S; Wood, R D; Romero-Talamas, C A; Sovinec, C R
2007-12-11
The physics of spheromak plasmas is addressed by time-dependent, three-dimensional, resistive magneto-hydrodynamic simulations with the NIMROD code. Included in some detail are the formation of a spheromak driven electrostatically by a coaxial plasma gun with a flux-conserver geometry and power systems that accurately model the Sustained Spheromak Physics Experiment (SSPX) (R. D. Wood, et al., Nucl. Fusion 45, 1582 (2005)). The controlled decay of the spheromak plasma over several milliseconds is also modeled as the programmable current and voltage relax, resulting in simulations of entire experimental pulses. Reconnection phenomena and the effects of current profile evolution on the growth of symmetry-breaking toroidal modes are diagnosed; these in turn affect the quality of magnetic surfaces and the energy confinement. The sensitivity of the simulation results address variations in both physical and numerical parameters, including spatial resolution. There are significant points of agreement between the simulations and the observed experimental behavior, e.g., in the evolution of the magnetics and the sensitivity of the energy confinement to the presence of symmetry-breaking magnetic fluctuations.
Numerical simulation study of disk MHD generator for nonequilibrium plasma (NPG) system
Tsunoda, Kazumi [Shibaura Institute of Technology, Tokyo (Japan); Harada, Nob [Nagaoka Univ. of Technology (Japan)
1995-12-31
Design and performance prediction of a disk-shaped magnetohydrodynamic (MHD) generator, which is applied to the nonequilibrium plasma generator (NPG) system, have been carried out by means of a quasi-one-dimensional numerical simulation. The calculations have been performed for generator with constant height which is planned to be used for NPG-MHD disk generator pulse power demonstration. A maximum enthalpy extraction ratio obtained from the present calculation reached up to 20%, and, in this case, the electron temperature of working plasma fluctuated in the unstable regime against ionization instability. Taking into account this phenomenon, in order to obtain much higher generator performance, the MHD channel, in which electron temperature was kept at 5000 K, was designed. With this channel, enthalpy extraction ratio of 40% and output power of 7.2 MW were achieved without major modification of the supersonic nozzle, the inlet swirl vanes and the configuration of magnet system.
Understanding Accretion Disks through Three Dimensional Radiation MHD Simulations
Jiang, Yan-Fei
I study the structures and thermal properties of black hole accretion disks in the radiation pressure dominated regime. Angular momentum transfer in the disk is provided by the turbulence generated by the magneto-rotational instability (MRI), which is calculated self-consistently with a recently developed 3D radiation magneto-hydrodynamics (MHD) code based on Athena. This code, developed by my collaborators and myself, couples both the radiation momentum and energy source terms with the ideal MHD equations by modifying the standard Godunov method to handle the stiff radiation source terms. We solve the two momentum equations of the radiation transfer equations with a variable Eddington tensor (VET), which is calculated with a time independent short characteristic module. This code is well tested and accurate in both optically thin and optically thick regimes. It is also accurate for both radiation pressure and gas pressure dominated flows. With this code, I find that when photon viscosity becomes significant, the ratio between Maxwell stress and Reynolds stress from the MRI turbulence can increase significantly with radiation pressure. The thermal instability of the radiation pressure dominated disk is then studied with vertically stratified shearing box simulations. Unlike the previous results claiming that the radiation pressure dominated disk with MRI turbulence can reach a steady state without showing any unstable behavior, I find that the radiation pressure dominated disks always either collapse or expand until we have to stop the simulations. During the thermal runaway, the heating and cooling rates from the simulations are consistent with the general criterion of thermal instability. However, details of the thermal runaway are different from the predictions of the standard alpha disk model, as many assumptions in that model are not satisfied in the simulations. We also identify the key reasons why previous simulations do not find the instability. The thermal
Nabert, Christian; Othmer, Carsten; Glassmeier, Karl-Heinz
2017-05-01
The interaction of the solar wind with a planetary magnetic field causes electrical currents that modify the magnetic field distribution around the planet. We present an approach to estimating the planetary magnetic field from in situ spacecraft data using a magnetohydrodynamic (MHD) simulation approach. The method is developed with respect to the upcoming BepiColombo mission to planet Mercury aimed at determining the planet's magnetic field and its interior electrical conductivity distribution. In contrast to the widely used empirical models, global MHD simulations allow the calculation of the strongly time-dependent interaction process of the solar wind with the planet. As a first approach, we use a simple MHD simulation code that includes time-dependent solar wind and magnetic field parameters. The planetary parameters are estimated by minimizing the misfit of spacecraft data and simulation results with a gradient-based optimization. As the calculation of gradients with respect to many parameters is usually very time-consuming, we investigate the application of an adjoint MHD model. This adjoint MHD model is generated by an automatic differentiation tool to compute the gradients efficiently. The computational cost for determining the gradient with an adjoint approach is nearly independent of the number of parameters. Our method is validated by application to THEMIS (Time History of Events and Macroscale Interactions during Substorms) magnetosheath data to estimate Earth's dipole moment.
Simulation of three-dimensional nonideal MHD flow at low magnetic Reynolds number
LU HaoYu; LEE ChunHian
2009-01-01
A numerical procedure based on a five-wave model associated with non-ideal,low magnetic Reynolds number magnetohydrodynamic(MHD)flows was developed.It is composed of an entropy conditioned scheme for solving the non-homogeneous Navier-Stokes equations,in conjunction with an SOR method for solving the elliptic equation governing the electrical potential of flow field.To validate the developed procedure,two different test cases were used which included MHD Rayleigh problem and MHD Hartmann problem.The simulations were performed under the assumption of low magnetic Reynolds number.The simulated results were found to be in good agreement with the closed form analytical solutions deduced in the present study,showing that the present algorithm could simulate engineering MHD flow at low magnetic Reynolds number effectively.In the end,a flow field between a pair of segmented electrodes in a three dimensional MHD channel was simulated using the present algorithm with and without including Hall effects.Without the introduction of Hall effects,no distortion was observed in the current and potential lines.By taking the Hall effects into account,the potential lines distorted and clustered at the upstream and downstream edges of the cathode and anode,respectively.
High fidelity studies of exploding foil initiator bridges, Part 3: ALEGRA MHD simulations
Neal, William; Garasi, Christopher
2017-01-01
Simulations of high voltage detonators, such as Exploding Bridgewire (EBW) and Exploding Foil Initiators (EFI), have historically been simple, often empirical, one-dimensional models capable of predicting parameters such as current, voltage, and in the case of EFIs, flyer velocity. Experimental methods have correspondingly generally been limited to the same parameters. With the advent of complex, first principles magnetohydrodynamic codes such as ALEGRA and ALE-MHD, it is now possible to simulate these components in three dimensions, and predict a much greater range of parameters than before. A significant improvement in experimental capability was therefore required to ensure these simulations could be adequately verified. In this third paper of a three part study, the experimental results presented in part 2 are compared against 3-dimensional MHD simulations. This improved experimental capability, along with advanced simulations, offer an opportunity to gain a greater understanding of the processes behind the functioning of EBW and EFI detonators.
Proga, Daniel
2007-05-15
I present results from magnetohydrodynamic (MHD) simulations of a gaseous envelope collapsing onto a black hole (BH). These results support the notion that the collapsar model is one of the most promising scenarios to explain the huge release of energy in a matter of seconds associated with gamma-ray bursts (GRBs). Additionally, the MHD simulations show that at late times, when the mass supply rate is expected to decrease, the region in the vicinity of the BH can play an important role in determining the rate of accretion, its time behaviour and ultimately the energy output. In particular, the magnetic flux accumulated around the BH can repeatedly stop and then restart the energy release. As proposed by Proga & Zhang, the episode or episodes of reoccurrence of accretion processes can correspond to X-ray flares discovered recently in a number of GRBs.
A new lattice Boltzmann model for incompressible magnetohydrodynamics
Chen Xing-Wang; Shi Bao-Chang
2005-01-01
Most of the existing lattice Boltzmann magnetohydrodynamics (MHD) models can be viewed as compressible schemes to simulate incompressible MHD flows. The compressible effect might lead to some undesired errors in numerical simulations. In this paper a new incompressible lattice Boltzmann MHD model without compressible effect is presented for simulating incompressible MHD flows. Numerical simulations of the Hartmann flow are performed. We do numerous tests and make comparison with Dellar's model in detail. The numerical results are in good agreement with the analytical error.
Modelling interplanetary CMEs using magnetohydrodynamic simulations
P. J. Cargill
Full Text Available The dynamics of Interplanetary Coronal Mass Ejections (ICMEs are discussed from the viewpoint of numerical modelling. Hydrodynamic models are shown to give a good zero-order picture of the plasma properties of ICMEs, but they cannot model the important magnetic field effects. Results from MHD simulations are shown for a number of cases of interest. It is demonstrated that the strong interaction of the ICME with the solar wind leads to the ICME and solar wind velocities being close to each other at 1 AU, despite their having very different speeds near the Sun. It is also pointed out that this interaction leads to a distortion of the ICME geometry, making cylindrical symmetry a dubious assumption for the CME field at 1 AU. In the presence of a significant solar wind magnetic field, the magnetic fields of the ICME and solar wind can reconnect with each other, leading to an ICME that has solar wind-like field lines. This effect is especially important when an ICME with the right sense of rotation propagates down the heliospheric current sheet. It is also noted that a lack of knowledge of the coronal magnetic field makes such simulations of little use in space weather forecasts that require knowledge of the ICME magnetic field strength.
Key words. Interplanetary physics (interplanetary magnetic fields Solar physics, astrophysics, and astronomy (flares and mass ejections Space plasma physics (numerical simulation studies
无
2000-01-01
Two dimensional Magnetohydrodynamic (MHD) equations with and without the momentum addi-tion respectively have been used to simulate the solar wind structure on the meridian plane. The results show that far away from the sun it isn't solar magnetic field that induces the concave solar wind speed. Instead, there may be the fast speed streamer driven by the momentum addition and an interface between high and low speed streamers. The interaction between high and low speed streamers causes the sharp division.
MHD simulations of radiative jets from young stellar objects: Halpha emission
De Colle, F; Colle, Fabio De; Raga, Alejandro
2005-01-01
We study the H$\\alpha$ emission from jets using two-dimensional axisymmetrical simulations. We compare the emission obtained from hydrodynamic (HD) simulations with that obtained from magnetohydrodynamics (MHD) simulations. The magnetic field is supposed to be present in the jet only, and with a toroidal configuration. The simulations have time-dependent ejection velocities and different intensities for the initial magnetic field. The results show an increase in the H$\\alpha$ emission along the jet for the magnetized cases with respect to the HD case. The increase in the emission is due to a better collimation of the jet in the MHD case, and to a small increase in the shock velocity. These results could have important implications for the interpretation of the observations of jets from young stellar objects.
Magnetic fields in protoplanetary disks: from MHD simulations to ALMA observations
Bertrang, Gesa H -M; Wolf, Sebastian
2016-01-01
Magnetic fields significantly influence the evolution of protoplanetary disks and the formation of planets, following the predictions of numerous magnetohydrodynamic (MHD) simulations. However, these predictions are yet observationally unconstrained. To validate the predictions on the influence of magnetic fields on protoplanetary disks, we apply 3D radiative transfer simulations of the polarized emission of aligned aspherical dust grains that directly link 3D global non-ideal MHD simulations to ALMA observations. Our simulations show that it is feasible to observe the predicted toroidal large-scale magnetic field structures, not only in the ideal observations but also with high-angular resolution ALMA observations. Our results show further that high angular resolution observations by ALMA are able to identify vortices embedded in outer magnetized disk regions.
Magnetic fields in protoplanetary discs: from MHD simulations to ALMA observations
Bertrang, G. H.-M.; Flock, M.; Wolf, S.
2017-01-01
Magnetic fields significantly influence the evolution of protoplanetary discs and the formation of planets, following the predictions of numerous magnetohydrodynamic (MHD) simulations. However, these predictions are yet observationally unconstrained. To validate the predictions on the influence of magnetic fields on protoplanetary discs, we apply 3D radiative transfer simulations of the polarized emission of aligned aspherical dust grains that directly link 3D global non-ideal MHD simulations to Atacama Large Millimeter/submillimeter Array (ALMA) observations. Our simulations show that it is feasible to observe the predicted toroidal large-scale magnetic field structures, not only in the ideal observations but also with high-angular resolution ALMA observations. Our results show further that high-angular resolution observations by ALMA are able to identify vortices embedded in outer magnetized disc regions.
Forced Reconnection in the Near Magnetotail: Onset and Energy Conversion in PIC and MHD Simulations
Birn, J.; Hesse, Michael
2014-01-01
Using two-dimensional particle-in-cell (PIC) together with magnetohydrodynamic (MHD) Q1 simulations of magnetotail dynamics, we investigate the evolution toward onset of reconnection and the subsequent energy transfer and conversion. In either case, reconnection onset is preceded by a driven phase, during which magnetic flux is added to the tail at the high-latitude boundaries, followed by a relaxation phase, during which the configuration continues to respond to the driving. The boundary deformation leads to the formation of thin embedded current sheets, which are bifurcated in the near tail, converging to a single sheet farther out in the MHD simulations. The thin current sheets in the PIC simulation are carried by electrons and are associated with a strong perpendicular electrostatic field, which may provide a connection to parallel potentials and auroral arcs and an ionospheric signal even prior to the onset of reconnection. The PIC simulation very well satisfies integral entropy conservation (intrinsic to ideal MHD) during this phase, supporting ideal ballooning stability. Eventually, the current intensification leads to the onset of reconnection, the formation and ejection of a plasmoid, and a collapse of the inner tail. The earthward flow shows the characteristics of a dipolarization front: enhancement of Bz, associated with a thin vertical electron current sheet in the PIC simulation. Both MHD and PIC simulations show a dominance of energy conversion from incoming Poynting flux to outgoing enthalpy flux, resulting in heating of the inner tail. Localized Joule dissipation plays only a minor role.
A.S. Idowu
2015-03-01
Full Text Available Radiation on magnetohydrodynamic (MHD boundary layer flow of a viscous fluid over an exponentially stretching sheet was considered together with it’s effects. The new technique of homotopy analysis method (nHAM was used to obtain the convergent series expressions for velocity and temperature, where the governig system of partial differential equations has been transformed into ordinary differential equations. The interpretation to these expressions is shown physically through graphs. We observed that the effects of Prandtl and Magnetic number acts in opposite to each other on the temperature.
Simulations of MHD flows with moving interfaces
Gerbeau, J F; Le Bris, C
2003-01-01
We report on the numerical simulation of a two-fluid magnetohydrodynamics problem arising in the industrial production of aluminium. The motion of the two non-miscible fluids is modeled through the incompressible Navier-Stokes equations coupled with the Maxwell equations. Stabilized finite elements techniques and an arbitrary Lagrangian-Eulerian formulation (for the motion of the interface separating the two fluids) are used in the numerical simulation. With a view to justifying our strategy, details on the numerical analysis of the problem, with a special emphasis on conservation and stability properties and on the surface tension discretization, as well as results on tests cases are provided. Examples of numerical simulations of the industrial case are eventually presented.
Direct numerical simulation of dynamo transition for nonhelical MHD
Nath, Dinesh; Verma, Mahendra K [Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Lessinnes, Thomas; Carati, Daniele [Physique Statistique et Plasmas, Universite Libre de Bruxellers, B-1050 Bruxelles (Belgium); Sarris, Ioannis [Department of Mechanical and Industrial Engineering, University of Thessaly, Volos (Greece)
2010-02-01
Pseudospectral Direct Numerical Simulation (DNS) has been performed to simulate dynamo transition for nonhelical magnetohydrodynamics turbulence. The numerical results are compared with a recent low-dimensional model [Verma et al. [13
MAGNETOHYDRODYNAMIC WAVES AND CORONAL HEATING: UNIFYING EMPIRICAL AND MHD TURBULENCE MODELS
Sokolov, Igor V.; Van der Holst, Bart; Oran, Rona; Jin, Meng; Manchester, Ward B. IV; Gombosi, Tamas I. [Department of AOSS, University of Michigan, 2455 Hayward Street, Ann Arbor, MI 48109 (United States); Downs, Cooper [Predictive Science Inc., 9990 Mesa Rim Road, Suite 170, San Diego, CA 92121 (United States); Roussev, Ilia I. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Evans, Rebekah M., E-mail: igorsok@umich.edu [NASA Goddard Space Flight Center, Space Weather Lab, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States)
2013-02-10
We present a new global model of the solar corona, including the low corona, the transition region, and the top of the chromosphere. The realistic three-dimensional magnetic field is simulated using the data from the photospheric magnetic field measurements. The distinctive feature of the new model is incorporating MHD Alfven wave turbulence. We assume this turbulence and its nonlinear dissipation to be the only momentum and energy source for heating the coronal plasma and driving the solar wind. The difference between the turbulence dissipation efficiency in coronal holes and that in closed field regions is because the nonlinear cascade rate degrades in strongly anisotropic (imbalanced) turbulence in coronal holes (no inward propagating wave), thus resulting in colder coronal holes, from which the fast solar wind originates. The detailed presentation of the theoretical model is illustrated with the synthetic images for multi-wavelength EUV emission compared with the observations from SDO AIA and STEREO EUVI instruments for the Carrington rotation 2107.
Wang, A. H.; Wu, S. T.; Liu, Yang; Hathaway, D.
2008-01-01
We introduce a numerical simulation method for recovering the photospheric velocity field from the vector magnetograms. The traditional method is local correlation tracking (LCT) which is based on measuring the relative displacements of features in blocks of pixels between successive white-light images or magnetograms. Within this method, there are a variety of implementations. One of recently developed implementations is induction local correlation tracking (ILCT) as described by Welsch et al. (2004). They employ the normal component of magnetic induction equation as a constraint to assure consistent solutions. Our numerical method uses the fully three-dimensional MHD equations to recover the photospheric velocity field with individual vector magnetograms. We compare our method to the ILCT method using NOAA AR8210 as an example. The differences and similarities are discussed in detail.
SOLAR WIND TURBULENCE FROM MHD TO SUB-ION SCALES: HIGH-RESOLUTION HYBRID SIMULATIONS
Franci, Luca; Verdini, Andrea; Landi, Simone [Dipartimento di Fisica e Astronomia, Università di Firenze, Largo E. Fermi 2, I-50125 Firenze (Italy); Matteini, Lorenzo [Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom); Hellinger, Petr [Astronomical Institute, AS CR, Bocni II/1401, CZ-14100 Prague (Czech Republic)
2015-05-10
We present results from a high-resolution and large-scale hybrid (fluid electrons and particle-in-cell protons) two-dimensional numerical simulation of decaying turbulence. Two distinct spectral regions (separated by a smooth break at proton scales) develop with clear power-law scaling, each one occupying about a decade in wavenumbers. The simulation results simultaneously exhibit several properties of the observed solar wind fluctuations: spectral indices of the magnetic, kinetic, and residual energy spectra in the magnetohydrodynamic (MHD) inertial range along with a flattening of the electric field spectrum, an increase in magnetic compressibility, and a strong coupling of the cascade with the density and the parallel component of the magnetic fluctuations at sub-proton scales. Our findings support the interpretation that in the solar wind, large-scale MHD fluctuations naturally evolve beyond proton scales into a turbulent regime that is governed by the generalized Ohm’s law.
3D simulations of fluctuation spectra in the hall-MHD plasma.
Shaikh, Dastgeer; Shukla, P K
2009-01-30
Turbulent spectral cascades are investigated by means of fully three-dimensional (3D) simulations of a compressible Hall-magnetohydrodynamic (H-MHD) plasma in order to understand the observed spectral break in the solar wind turbulence spectra in the regime where the characteristic length scales associated with electromagnetic fluctuations are smaller than the ion gyroradius. In this regime, the results of our 3D simulations exhibit that turbulent spectral cascades in the presence of a mean magnetic field follow an omnidirectional anisotropic inertial-range spectrum close to k(-7/3). The latter is associated with the Hall current arising from nonequal electron and ion fluid velocities in our 3D H-MHD plasma model.
Gas Core Reactor Numerical Simulation Using a Coupled MHD-MCNP Model
Kazeminezhad, F.; Anghaie, S.
2008-01-01
Analysis is provided in this report of using two head-on magnetohydrodynamic (MHD) shocks to achieve supercritical nuclear fission in an axially elongated cylinder filled with UF4 gas as an energy source for deep space missions. The motivation for each aspect of the design is explained and supported by theory and numerical simulations. A subsequent report will provide detail on relevant experimental work to validate the concept. Here the focus is on the theory of and simulations for the proposed gas core reactor conceptual design from the onset of shock generations to the supercritical state achieved when the shocks collide. The MHD model is coupled to a standard nuclear code (MCNP) to observe the neutron flux and fission power attributed to the supercritical state brought about by the shock collisions. Throughout the modeling, realistic parameters are used for the initial ambient gaseous state and currents to ensure a resulting supercritical state upon shock collisions.
Linear simulations of the cylindrical Richtmyer-Meshkov instability in magnetohydrodynamics
Bakhsh, Abeer
2016-03-09
Numerical simulations and analysis indicate that the Richtmyer-Meshkov instability(RMI) is suppressed in ideal magnetohydrodynamics(MHD) in Cartesian slab geometry. Motivated by the presence of hydrodynamic instabilities in inertial confinement fusion and suppression by means of a magnetic field, we investigate the RMI via linear MHD simulations in cylindrical geometry. The physical setup is that of a Chisnell-type converging shock interacting with a density interface with either axial or azimuthal (2D) perturbations. The linear stability is examined in the context of an initial value problem (with a time-varying base state) wherein the linearized ideal MHD equations are solved with an upwind numerical method. Linear simulations in the absence of a magnetic field indicate that RMI growth rate during the early time period is similar to that observed in Cartesian geometry. However, this RMI phase is short-lived and followed by a Rayleigh-Taylor instability phase with an accompanied exponential increase in the perturbation amplitude. We examine several strengths of the magnetic field (characterized by β=2p/B^2_r) and observe a significant suppression of the instability for β ≤ 4. The suppression of the instability is attributed to the transport of vorticity away from the interface by Alfvén fronts.
Yuan, Xingqiu; Trichtchenko, Larisa; Boteler, David
Propagation of coronal mass ejections from solar surface to the Earth magnetosphere is strongly influenced by the conditions in solar corona and ambient solar wind. Thus, reliable simulation of the background solar wind is the primary task toward the development of numerical model for the transient events. In this paper we introduce a new numerical model which has been specifically designed for numerical study of the solar corona and ambient solar wind. This model is based on our recently developed three-dimensional Spherical Coordinate Adaptive Magneto-Hydro-Dynamic (MHD) code (SCA-MHD-3D) [Yuan et al., 2009]. Modifications has been done to include the observed magnetic field at the photosphere as inner boundary conditions. The energy source term together with reduced plasma gamma are used in the nonlinear MHD equations in order to simulate the solar wind acceleration from subsonic speed at solar surface to supersonic speed at the inter-heliosphere region, and the absorbing boundary conditions are used at the solar surface. This model has been applied to simulate the background solar wind condition for several different solar rotations, and comparison between the observation and model output have shown that it reproduces many features of solar wind, including open and closed magnetic fields, fast and slow solar wind speed, sector boundaries, etc.
Liu, Wei; Li, Hui; Li, Shengtai; Lynn, Alan G
2008-01-01
Nonlinear ideal magnetohydrodynamic (MHD) simulations of the propagation and expansion of a magnetic "bubble" plasma into a lower density, weakly-magnetized background plasma are presented. These simulations mimic the geometry and parameters of the Plasma Bubble Expansion Experiment (PBEX) [A. G. Lynn, Y. Zhang, S. C. Hsu, H. Li, W. Liu, M. Gilmore, and C. Watts, Bull. Amer. Phys. Soc. {\\bf 52}, 53 (2007)], which is studying magnetic bubble expansion as a model for extra-galactic radio lobes. The simulations predict several key features of the bubble evolution. First, the direction of bubble expansion depends on the ratio of the bubble toroidal to poloidal magnetic field, with a higher ratio leading to expansion predominantly in the direction of propagation and a lower ratio leading to expansion predominantly normal to the direction of propagation. Second, an MHD shock and a trailing slow-mode compressible MHD wavefront are formed ahead of the bubble as it propagates into the background plasma. Third, the bub...
3D MHD VDE and disruptions simulations of tokamaks plasmas including some ITER scenarios
Paccagnella, R.; Strauss, H. R.; Breslau, J.
2009-03-01
Tokamaks vertical displacement events (VDEs) and disruptions simulations in toroidal geometry by means of a single fluid visco-resistive magneto-hydro-dynamic (MHD) model are presented in this paper. The plasma model is completed with the presence of a 2D wall with finite resistivity which allows the study of the relatively slowly growing magnetic perturbation, the resistive wall mode (RWM), which is, in this paper, the main drive of the disruption evolution. Amplitudes and asymmetries of the halo currents pattern at the wall are also calculated and comparisons with tokamak experimental databases and predictions for ITER are given.
Inertial Current Generators of Poynting Flux in MHD Simulations of Black Hole Ergospheres
Punsly, B
2005-01-01
This Letter investigates the physics that is responsible for creating the current system that supports the outgoing Poynting flux emanating from the ergosphere of a rotating black hole in the limit that the magnetic energy density greatly exceeds the plasma rest mass density (magnetically dominated limit). The underlying physics is derived from published three-dimensional simulations that obey the general relativistic equations of perfect magnetohydrodynamics (MHD). It is found that the majority of the Poynting flux emitted from the magnetically dominated regions of the ergosphere has a source associated with inertial effects outside of the event horizon.
Beidler, M. T.; Cassak, P. A.; Jardin, S. C.; Ferraro, N. M.
2017-02-01
We diagnose local properties of magnetic reconnection during a sawtooth crash employing the three-dimensional toroidal, extended-magnetohydrodynamic (MHD) code M3D-C1. To do so, we sample simulation data in the plane in which reconnection occurs, the plane perpendicular to the helical (m,n)=(1,1) mode at the q = 1 surface, where m and n are the poloidal and toroidal mode numbers and q is the safety factor. We study the nonlinear evolution of a particular test equilibrium in a non-reduced field representation using both resistive-MHD and extended-MHD models. We find growth rates for the extended-MHD reconnection process exhibit a nonlinear acceleration and greatly exceed that of the resistive-MHD model, as is expected from previous experimental, theoretical, and computational work. We compare the properties of reconnection in the two simulations, revealing the reconnecting current sheets are locally different in the two models and we present the first observation of the quadrupole out-of-plane Hall magnetic field that appears during extended-MHD reconnection in a 3D toroidal simulation (but not in resistive-MHD). We also explore the dependence on toroidal angle of the properties of reconnection as viewed in the plane perpendicular to the helical magnetic field, finding qualitative and quantitative effects due to changes in the symmetry of the reconnection process. This study is potentially important for a wide range of magnetically confined fusion applications, from confirming simulations with extended-MHD effects are sufficiently resolved to describe reconnection, to quantifying local reconnection rates for purposes of understanding and predicting transport, not only at the q = 1 rational surface for sawteeth, but also at higher order rational surfaces that play a role in disruptions and edge-confinement degradation.
Depletion of nonlinearity in magnetohydrodynamic turbulence: Insights from analysis and simulations.
Gibbon, J D; Gupta, A; Krstulovic, G; Pandit, R; Politano, H; Ponty, Y; Pouquet, A; Sahoo, G; Stawarz, J
2016-04-01
It is shown how suitably scaled, order-m moments, D_{m}^{±}, of the Elsässer vorticity fields in three-dimensional magnetohydrodynamics (MHD) can be used to identify three possible regimes for solutions of the MHD equations with magnetic Prandtl number P_{M}=1. These vorticity fields are defined by ω^{±}=curlz^{±}=ω±j, where z^{±} are Elsässer variables, and where ω and j are, respectively, the fluid vorticity and current density. This study follows recent developments in the study of three-dimensional Navier-Stokes fluid turbulence [Gibbon et al., Nonlinearity 27, 2605 (2014)NONLE50951-771510.1088/0951-7715/27/10/2605]. Our mathematical results are then compared with those from a variety of direct numerical simulations, which demonstrate that all solutions that have been investigated remain in only one of these regimes which has depleted nonlinearity. The exponents q^{±} that characterize the inertial range power-law dependencies of the z^{±} energy spectra, E^{±}(k), are then examined, and bounds are obtained. Comments are also made on (a) the generalization of our results to the case P_{M}≠1 and (b) the relation between D_{m}^{±} and the order-m moments of gradients of magnetohydrodynamic fields, which are used to characterize intermittency in turbulent flows.
Akcay, Cihan
A comparative study of 3-D pressureless resistive (single-fluid) magnetohydrodynamic (rMHD) and 3-D pressureless two-fluid magnetohydrodynamic (2fl-MHD) models of the Helicity Injected Torus experiment (HIT-SI) is presented. HIT-SI is a spheromak current-drive experiment that uses two geometrically asymmetric helicity injectors to generate and sustain toroidal plasmas. The goal of the experiment is to demonstrate that steady inductive helicity injection (SIHI) is a viable method for driving and sustaining a magnetized plasma for the eventual purpose of electricity production with magnetic fusion power. The experiment has achieved sustainment of nearly 100 kA of plasma current for ˜1~ms. Fusion power plants are expected to sustain a burning plasma for many minutes to hours with more than 10~MA of plasma current. The purpose of project is to determine the validity of the single-fluid and two-fluid MHD models of HIT-SI. The comparable size of the collisionless ion skin depth to the diameter of the injectors and resistive skin depth predicates the importance of two-fluid effects. The simulations are run with NIMROD (non-ideal magnetohydrodynamics code with rotation-open discussion), an initial-value, 3-D extended MHD code. A constant and uniform plasma density and temperature are assumed. The helicity injectors are modeled as oscillating normal magnetic and parallel electric field boundary conditions. The simulations use parameters that closely match those of the experiment. The simulation output is compared to the formation time, plasma current, and internal and surface magnetic fields. Results of the study indicate 2fl-MHD shows quantitative agreement with the experiment while rMHD only captures the qualitative features. The validity of each model is assessed based on how accurately it reproduces the global quantities as well as the temporal and spatial dependence of the measured magnetic fields. 2fl-MHD produces the current amplification and formation time
Magnetohydrodynamics with Embedded Particle-in-Cell Simulation of Mercury's Magnetosphere
Chen, Y.; Toth, G.; Jia, X.; Gombosi, T. I.; Markidis, S.
2015-12-01
Mercury's magnetosphere is much more dynamic than other planetary magnetospheres because of Mercury's weak intrinsic magnetic field and its proximity to the Sun. Magnetic reconnection and Kelvin-Helmholtz phenomena occur in Mercury's magnetopause and magnetotail at higher frequencies than in other planetary magnetosphere. For instance, chains of flux transfer events (FTEs) on the magnetopause, have been frequentlyobserved by the the MErcury Surface, Space ENvironment, GEochemistry and Ranging (MESSENGER) spacecraft (Slavin et al., 2012). Because ion Larmor radius is comparable to typical spatial scales in Mercury's magnetosphere, finite Larmor radius effects need to be accounted for. In addition, it is important to take in account non-ideal dissipation mechanisms to accurately describe magnetic reconnection. A kinetic approach allows us to model these phenomena accurately. However, kinetic global simulations, even for small-size magnetospheres like Mercury's, are currently unfeasible because of the high computational cost. In this work, we carry out global simulations of Mercury's magnetosphere with the recently developed MHD-EPIC model, which is a two-way coupling of the extended magnetohydrodynamic (XMHD) code BATS-R-US with the implicit Particle-in-Cell (PIC) model iPIC3D. The PIC model can cover the regions where kinetic effects are most important, such as reconnection sites. The BATS-R-US code, on the other hand, can efficiently handle the rest of the computational domain where the MHD or Hall MHD description is sufficient. We will present our preliminary results and comparison with MESSENGER observations.
Lattice Bhatnagar-Gross-Krook Simulations in 2-D Incompressible Magnetohydrodynamics
无
2005-01-01
Lattice Boltzmann Method is recently developed within numerical schemes for simulating a variety of physical systems. In this paper a new lattice Bhatnagar-Gross-Krook (LBGK) model for two-dimensional incompressible magnetohydrodynamics (IMHD) is presented. The model is an extension of a hydrodynamics lattice BGK model with 9 velocities on a square lattice, resulting in a model with 17 velocities. Most of the existing LBGK models for MHD can be viewed as compressible schemes to simulate incompressible flows. The compressible effect might lead to some undesirable errors in numerical simulations. In our model the compressible effect has been overcome successfully. The model is then applied to the Hartmann flow, giving reasonable results.
Rayleigh-Taylor instability in Magnetohydrodynamic Simulations of the Crab Nebula
Porth, Oliver; Keppens, Rony
2014-01-01
In this paper we discuss the development of Rayleigh-Taylor filaments in axisymmetric simulations of Pulsar wind nebulae (PWN). High-resolution adaptive mesh refinement magnetohydrodynamic (MHD) simulations are used to resolve the non-linear evolution of the instability. The typical separation of filaments is mediated by the turbulent flow in the nebula and hierarchical growth of the filaments. The strong magnetic dissipation and field-randomization found in recent global three-dimensional simulations of PWN suggests that magnetic tension is not strong enough to suppress the growth of RT filaments, in agreement with the observations of prominent filaments in the Crab nebula. The long-term axisymmetric results presented here confirm this finding.
Rigo, H. S.; Bercaw, R. W.; Burkhart, J. A.; Mroz, T. S.; Bents, D. J.; Hatch, A. M.
1981-01-01
A description and the design requirements for the 200 MWe (nominal) net output MHD Engineering Test Facility (ETF) Conceptual Design, are presented. Performance requirements for the plant are identified and process conditions are indicated at interface stations between the major systems comprising the plant. Also included are the description, functions, interfaces and requirements for each of these major systems. The lastest information (1980-1981) from the MHD technology program are integrated with elements of a conventional steam electric power generating plant.
MHD Simulations of the Plasma Flow in the Magnetic Nozzle
Smith, T. E. R.; Keidar, M.; Sankaran, K.; olzin, K. A.
2013-01-01
The magnetohydrodynamic (MHD) flow of plasma through a magnetic nozzle is simulated by solving the governing equations for the plasma flow in the presence of an static magnetic field representing the applied nozzle. This work will numerically investigate the flow and behavior of the plasma as the inlet plasma conditions and magnetic nozzle field strength are varied. The MHD simulations are useful for addressing issues such as plasma detachment and to can be used to gain insight into the physical processes present in plasma flows found in thrusters that use magnetic nozzles. In the model, the MHD equations for a plasma, with separate temperatures calculated for the electrons and ions, are integrated over a finite cell volume with flux through each face computed for each of the conserved variables (mass, momentum, magnetic flux, energy) [1]. Stokes theorem is used to convert the area integrals over the faces of each cell into line integrals around the boundaries of each face. The state of the plasma is described using models of the ionization level, ratio of specific heats, thermal conductivity, and plasma resistivity. Anisotropies in current conduction due to Hall effect are included, and the system is closed using a real-gas equation of state to describe the relationship between the plasma density, temperature, and pressure.A separate magnetostatic solver is used to calculate the applied magnetic field, which is assumed constant for these calculations. The total magnetic field is obtained through superposition of the solution for the applied magnetic field and the self-consistently computed induced magnetic fields that arise as the flowing plasma reacts to the presence of the applied field. A solution for the applied magnetic field is represented in Fig. 1 (from Ref. [2]), exhibiting the classic converging-diverging field pattern. Previous research was able to demonstrate effects such as back-emf at a super-Alfvenic flow, which significantly alters the shape of the
Mohammad H. Yazdi
2011-12-01
Full Text Available This paper presents a new design of open parallel microchannels embedded within a permeable continuous moving surface due to reduction of exergy losses in magnetohydrodynamic (MHD flow at a prescribed surface temperature (PST. The entropy generation number is formulated by an integral of the local rate of entropy generation along the width of the surface based on an equal number of microchannels and no-slip gaps interspersed between those microchannels. The velocity, the temperature, the velocity gradient and the temperature gradient adjacent to the wall are substituted into this equation resulting from the momentum and energy equations obtained numerically by an explicit Runge-Kutta (4, 5 formula, the Dormand-Prince pair and shooting method. The entropy generation number, as well as the Bejan number, for various values of the involved parameters of the problem are also presented and discussed in detail.
Simulation of MHD collimation from differential rotation
Carey, Christopher
2005-10-01
Recent observations indicate that astrophysical outflows from active galactic nuclei are permeated with helical magnetic fields[1]. The most promising theory for the formation of the magnetic configurations in these magnetically driven jets is the coiling of an initial seed field by the differential rotation of the accretion disk surrounding the central object. We have begun simulations that are relevant to these Poynting jets using the NIMROD code[2]. To simulate dynamics on length scales that are significantly larger than the accretion disk, the non-relativistic MHD equations are evolved on a hemispherical logarithmic mesh. The accretion disk is treated as a condition on the lower boundary by applying a Keplerian velocity to the azimuthal component of the fluid velocity and a prescribed flux of mass through the boundary. The magnetic field configuration is initialized to a dipole like field. Formation of a jet outflow is observed later in time. The initial field is coiled up and collimated, driving a large current density on the axis of symmetry. Slipping of magnetic field lines due to non-ideal effects has been investigated. 1. Asada K. et. al., Pub. of the Astr. Soc. of Japan, 54, L39-L43, 2002 2. Sovinec C. et. al., J. Comp. Phys., 195, 355-386, 2004
Depletion of Nonlinearity in Magnetohydrodynamic Turbulence: Insights from Analysis and Simulations
Gibbon, J; Krstulovic, G; Pandit, R; Politano, H; Ponty, Y; Pouquet, A; Sahoo, G; Stawarz, J
2015-01-01
We build on recent developments in the study of fluid turbulence [Gibbon \\textit{et al.} Nonlinearity 27, 2605 (2014)] to define suitably scaled, order-$m$ moments, $D_m^{\\pm}$, of $\\omega^\\pm= \\omega \\pm j$, where $\\omega$ and $j$ are, respectively, the vorticity and current density in three-dimensional magnetohydrodynamics (MHD). We show by mathematical analysis, for unit magnetic Prandtl number $P_M$, how these moments can be used to identify three possible regimes for solutions of the MHD equations; these regimes are specified by inequalities for $D_m^{\\pm}$ and $D_1^{\\pm}$. We then compare our mathematical results with those from our direct numerical simulations (DNSs) and thus demonstrate that 3D MHD turbulence is like its fluid-turbulence counterpart insofar as all solutions, which we have investigated, remain in \\textit{only one of these regimes}; this regime has depleted nonlinearity. We examine the implications of our results for the exponents $q^{\\pm}$ that characterize the power-law dependences of...
Le Chat, G.; Cohen, O. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Kasper, J. C. [Atmospheric, Oceanic and Space Sciences Department, University of Michigan, Ann Arbor, MI (United States); Spangler, S. R., E-mail: gaetan.lechat@obspm.fr [Department of Physics and Astronomy, University of Iowa, Iowa City, IA (United States)
2014-07-10
Polarized natural radio sources passing behind the Sun experience Faraday rotation as a consequence of the electron density and magnetic field strength in coronal plasma. Since Faraday rotation is proportional to the product of the density and the component of the magnetic field along the line of sight of the observer, a model is required to interpret the observations and infer coronal structures. Faraday rotation observations have been compared with relatively ad hoc models of the corona. Here for the first time we compare these observations with magnetohydrodynamic (MHD) models of the solar corona driven by measurements of the photospheric magnetic field. We use observations made with the NRAO Very Large Array of 34 polarized radio sources occulted by the solar corona between 5 and 14 solar radii. The measurements were made during 1997 May, and 2005 March and April. We compare the observed Faraday rotation values with values extracted from MHD steady-state simulations of the solar corona. We find that (1) using a synoptic map of the solar magnetic field just one Carrington rotation off produces poorer agreements, meaning that the outer corona changes in the course of one month, even in solar minimum; (2) global MHD models of the solar corona driven by photospheric magnetic field measurements are generally able to reproduce Faraday rotation observations; and (3) some sources show significant disagreement between the model and the observations, which appears to be a function of the proximity of the line of sight to the large-scale heliospheric current sheet.
Multispectral Emission of the Sun during the First Whole Sun Month: Magnetohydrodynamic Simulations
Lionello, Roberto; Linker, Jon A.; Mikic, Zoran
2008-01-01
We demonstrate that a three-dimensional magnetohydrodynamic (MHD) simulation of the corona can model its global plasma density and temperature structure with sufficient accuracy to reproduce many of the multispectral properties of the corona observed in extreme ultraviolet (EW) and X-ray emission. The key ingredient to this new type of global MHD model is the inclusion of energy transport processes (coronal heating, anisotropic thermal conduction, and radiative losses) in the energy equation. The calculation of these processes has previously been confined to one-dimensional loop models, idealized two-dimensional computations, and three-dimensional active region models. We refer to this as the thermodynamic MHD model, and we apply it to the time period of Carrington rotation 1913 (1996 August 22 to September 18). The form of the coronal heating term strongly affects the plasma density and temperature of the solutions. We perform our calculation for three different empirical heating models: (1) a heating function exponentially decreasing in radius; (2) the model of Schrijver et al.; and (3) a model reproducing the heating properties of the quiet Sun and active regions. We produce synthetic emission images from the density and temperature calculated with these three heating functions and quantitatively compare them with observations from E W Imaging Telescope on the Solar and Heliospheric Observatory and the soft X-ray telescope on Yohkoh. Although none of the heating models provide a perfect match, heating models 2 and 3 provide a reasonable match to the observations.
Broderick, Avery E
2010-01-01
For the first time it has become possible to compare global 3D general relativistic magnetohydrodynamic (GRMHD) jet formation simulations directly to very-long baseline interferometric multi-frequency polarization observations of the pc-scale structure of active galactic nucleus (AGN) jets. Unlike the jet emission, which requires post hoc modeling of the non-thermal electrons, the Faraday rotation measures (RMs) depend primarily upon simulated quantities and thus provide a robust way in which to confront simulations with observations. We compute RM distributions of 3D global GRMHD jet formation simulations, with which we explore the dependence upon model and observational parameters, emphasizing the signatures of structures generic to the theory of MHD jets. With typical parameters, we find that it is possible to reproduce the observed magnitudes and many of the structures found in AGN jet RMs, including the presence of transverse RM gradients. In our simulations the RMs are generated within a smooth extensio...
Majid, M. F. M. A.; Apandi, Muhamad Al-Hakim Md; Sabri, M.; Shahril, K.
2016-02-01
As increasing of agricultural and industrial activities each year has led to an increasing in demand for energy. Possibility in the future, the country was not able to offer a lot of energy and power demand. This means that we need to focus on renewable energy to supply the demand for energy. Energy harvesting is among a method that can contribute on the renewable energy. MHD power generator is a new way to harvest the energy especially Ocean wave energy. An experimental investigation was conducted to explore performance of MHD generator. The effect of intensity of NaCl Solution (Sea Water), flow rate of NaCl solution, magnetic strength and magnet position to the current produce was analyzed. The result shows that each factor is give a significant effect to the current produce, because of that each factor need to consider on develop of MHD generator to harvest the wave energy as an alternative way to support the demand for energy.
Takasao, Shinsuke; Nakamura, Naoki; Shibata, Kazunari [Kwasan and Hida Observatories, Kyoto University, Yamashina, Kyoto 607-8471 (Japan); Matsumoto, Takuma, E-mail: takasao@kwasan.kyoto-u.ac.jp [Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), 3-1-1 Yoshinodai, Sagamihara, Kanagawa 252-5210 (Japan)
2015-06-01
Solar flares are an explosive phenomenon where super-sonic flows and shocks are expected in and above the post-flare loops. To understand the dynamics of post-flare loops, a two-dimensional magnetohydrodynamic (2D MHD) simulation of a solar flare has been carried out. We found new shock structures in and above the post-flare loops, which were not resolved in the previous work by Yokoyama and Shibata. To study the dynamics of flows along the reconnected magnetic field, the kinematics and energetics of the plasma are investigated along selected field lines. It is found that shocks are crucial to determine the thermal and flow structures in the post-flare loops. On the basis of the 2D MHD simulation, we developed a new post-flare loop model, which we defined as the pseudo-2D MHD model. The model is based on the one-dimensional (1D) MHD equations, where all variables depend on one space dimension, and all the three components of the magnetic and velocity fields are considered. Our pseudo-2D model includes many features of the multi-dimensional MHD processes related to magnetic reconnection (particularly MHD shocks), which the previous 1D hydrodynamic models are not able to include. We compared the shock formation and energetics of a specific field line in the 2D calculation with those in our pseudo-2D MHD model, and found that they give similar results. This model will allow us to study the evolution of the post-flare loops in a wide parameter space without expensive computational cost or neglecting important physics associated with magnetic reconnection.
Large-Eddy Simulations of Magnetohydrodynamic Turbulence in Heliophysics and Astrophysics
Miesch, Mark; Matthaeus, William; Brandenburg, Axel; Petrosyan, Arakel; Pouquet, Annick; Cambon, Claude; Jenko, Frank; Uzdensky, Dmitri; Stone, James; Tobias, Steve; Toomre, Juri; Velli, Marco
2015-11-01
We live in an age in which high-performance computing is transforming the way we do science. Previously intractable problems are now becoming accessible by means of increasingly realistic numerical simulations. One of the most enduring and most challenging of these problems is turbulence. Yet, despite these advances, the extreme parameter regimes encountered in space physics and astrophysics (as in atmospheric and oceanic physics) still preclude direct numerical simulation. Numerical models must take a Large Eddy Simulation (LES) approach, explicitly computing only a fraction of the active dynamical scales. The success of such an approach hinges on how well the model can represent the subgrid-scales (SGS) that are not explicitly resolved. In addition to the parameter regime, heliophysical and astrophysical applications must also face an equally daunting challenge: magnetism. The presence of magnetic fields in a turbulent, electrically conducting fluid flow can dramatically alter the coupling between large and small scales, with potentially profound implications for LES/SGS modeling. In this review article, we summarize the state of the art in LES modeling of turbulent magnetohydrodynamic (MHD) flows. After discussing the nature of MHD turbulence and the small-scale processes that give rise to energy dissipation, plasma heating, and magnetic reconnection, we consider how these processes may best be captured within an LES/SGS framework. We then consider several specific applications in heliophysics and astrophysics, assessing triumphs, challenges, and future directions.
Wang, Peng; Abel, Tom; /KIPAC, Menlo Park /Santa Barbara, KITP
2007-12-18
Using magnetohydrodynamic (MHD) adaptive mesh refinement simulations, we study the formation and early evolution of disk galaxies with a magnetized interstellar medium. For a 10{sup 10} M{sub {circle_dot}} halo with initial NFW dark matter and gas profiles, we impose a uniform 10{sup -9} G magnetic field and follow its collapse, disk formation and evolution up to 1 Gyr. Comparing to a purely hydrodynamic simulation with the same initial condition, we find that a protogalactic field of this strength does not significantly influence the global disk properties. At the same time, the initial magnetic fields are quickly amplified by the differentially rotating turbulent disk. After the initial rapid amplification lasting {approx} 500 Myr, subsequent field amplification appears self-regulated. As a result, highly magnetized material begin to form above and below the disk. Interestingly, the field strengths in the self-regulated regime agrees well with the observed fields in the Milky Way galaxy both in the warm and the cold HI phase and do not change appreciably with time. Most of the cold phase shows a dispersion of order ten in the magnetic field strength. The global azimuthal magnetic fields reverse at different radii and the amplitude declines as a function of radius of the disk. By comparing the estimated star formation rate (SFR) in hydrodynamic and MHD simulations, we find that after the magnetic field strength saturates, magnetic forces provide further support in the cold gas and lead to a decline of the SFR.
Wang, Peng; Abel, Tom; /KIPAC, Menlo Park /Santa Barbara, KITP
2007-12-18
Using magnetohydrodynamic (MHD) adaptive mesh refinement simulations, we study the formation and early evolution of disk galaxies with a magnetized interstellar medium. For a 10{sup 10} M{sub {circle_dot}} halo with initial NFW dark matter and gas profiles, we impose a uniform 10{sup -9} G magnetic field and follow its collapse, disk formation and evolution up to 1 Gyr. Comparing to a purely hydrodynamic simulation with the same initial condition, we find that a protogalactic field of this strength does not significantly influence the global disk properties. At the same time, the initial magnetic fields are quickly amplified by the differentially rotating turbulent disk. After the initial rapid amplification lasting {approx} 500 Myr, subsequent field amplification appears self-regulated. As a result, highly magnetized material begin to form above and below the disk. Interestingly, the field strengths in the self-regulated regime agrees well with the observed fields in the Milky Way galaxy both in the warm and the cold HI phase and do not change appreciably with time. Most of the cold phase shows a dispersion of order ten in the magnetic field strength. The global azimuthal magnetic fields reverse at different radii and the amplitude declines as a function of radius of the disk. By comparing the estimated star formation rate (SFR) in hydrodynamic and MHD simulations, we find that after the magnetic field strength saturates, magnetic forces provide further support in the cold gas and lead to a decline of the SFR.
Sovinec, C.R.
1995-12-31
Numerical computation is used to investigate resistive magnetohydrodynamic (MHD) fluctuations in the reversed-field pinch (RFP) and in tokamak-like configurations driven solely by direct current (DC) helicity injection. A Lundquist number (S) scan of RFP turbulence without plasma pressure produces the weak scaling of S{sup -0.18} for the root-mean-square magnetic fluctuation level for 2.5x10{sup 3}{le}S{le}4x10{sup 4}. The temporal behavior of fluctuations and the reversal parameter becomes more regular as S is increased, acquiring a {open_quotes}sawtooth{close_quotes} shape at the largest value of S. Simulations with plasma pressure and anisotropic thermal conduction demonstrate energy transport resulting from parallel heat fluctuations. To investigate means of improving RFP energy confinement, three forms of current profile modification are tested. Radio frequency (RF) current drive is modeled with an auxiliary electron force, and linear stability calculations are used.
Sovinec, Carl R. [Univ. of Wisconsin, Madison, WI (United States)
1995-11-01
Numerical computation is used to investigate resistive magnetohydrodynamic (MHD) fluctuations in the reversed-field pinch (RFP) and in tokamak-like configurations driven solely by direct current (DC) helicity injection. A Lundquist number (S) scan of RFP turbulence without plasma pressure produces the weak scaling of S^{-0.18} for the root-mean-square magnetic fluctuation level for 2.5x10^{3}≤S≤4x10^{4}. The temporal behavior of fluctuations and the reversal parameter becomes more regular as S is increased, acquiring a "sawtooth" shape at the largest value of S. Simulations with plasma pressure and anisotropic thermal conduction demonstrate energy transport resulting from parallel heat fluctuations. To investigate means of improving RFP energy confinement, three forms of current profile modification are tested. Radio frequency (RF) current drive is modeled with an auxiliary electron force, and linear stability calculations are used.
3D simulations of disc-winds extending radially self-similar MHD models
Stute, Matthias; Vlahakis, Nektarios; Tsinganos, Kanaris; Mignone, Andrea; Massaglia, Silvano
2014-01-01
Disc-winds originating from the inner parts of accretion discs are considered as the basic component of magnetically collimated outflows. The only available analytical MHD solutions to describe disc-driven jets are those characterized by the symmetry of radial self-similarity. However, radially self-similar MHD jet models, in general, have three geometrical shortcomings, (i) a singularity at the jet axis, (ii) the necessary assumption of axisymmetry, and (iii) the non-existence of an intrinsic radial scale, i.e. the jets formally extend to radial infinity. Hence, numerical simulations are necessary to extend the analytical solutions towards the axis, by solving the full three-dimensional equations of MHD and impose a termination radius at finite radial distance. We focus here on studying the effects of relaxing the (ii) assumption of axisymmetry, i.e. of performing full 3D numerical simulations of a disc-wind crossing all magnetohydrodynamic critical surfaces. We compare the results of these runs with previou...
Angular Momentum Transport by Acoustic Modes Generated in the Boundary Layer II: MHD Simulations
Belyaev, Mikhail A; Stone, James M
2013-01-01
We perform global unstratified 3D magnetohydrodynamic simulations of an astrophysical boundary layer (BL) -- an interface region between an accretion disk and a weakly magnetized accreting object such as a white dwarf -- with the goal of understanding the effects of magnetic field on the BL. We use cylindrical coordinates with an isothermal equation of state and investigate a number of initial field geometries including toroidal, vertical, and vertical with zero net flux. Our initial setup consists of a Keplerian disk attached to a non-rotating star. In a previous work, we found that in hydrodynamical simulations, sound waves excited by shear in the BL were able to efficiently transport angular momentum and drive mass accretion onto the star. Here we confirm that in MHD simulations, waves serve as an efficient means of angular momentum transport in the vicinity of the BL, despite the magnetorotational instability (MRI) operating in the disk. In particular, the angular momentum current due to waves is at times...
Experiments in Magnetohydrodynamics
Rayner, J. P.
1970-01-01
Describes three student experiments in magnetohydrodynamics (MHD). In these experiments, it was found that the electrical conductivity of the local water supply was sufficient to demonstrate effectively some of the features of MHD flowmeters, generators, and pumps. (LC)
Makwana, K D; Li, H; Daughton, W; Cattaneo, F
2014-01-01
Simulations of decaying magnetohydrodynamic (MHD) turbulence are performed with a fluid and a kinetic code. The initial condition is an ensemble of long-wavelength, counter-propagating, shear-Alfv\\'{e}n waves, which interfere and rapidly generate strong MHD turbulence. The total energy is conserved and the rate of turbulent energy decay is very similar in both codes, although the fluid code has numerical dissipation whereas the kinetic code has kinetic dissipation. The inertial range power spectrum index is similar in both the codes. The fluid code shows a perpendicular wavenumber spectral slope of $k_{\\perp}^{-1.3}$. The kinetic code shows a spectral slope of $k_{\\perp}^{-1.5}$ for smaller simulation domain, and $k_{\\perp}^{-1.3}$ for larger domain. We estimate that collisionless damping mechanisms in the kinetic code can account for the dissipation of the observed nonlinear energy cascade. Current sheets are geometrically characterized. Their lengths and widths are in good agreement between the two codes. T...
Andrew N. Guarendi
2013-01-01
Full Text Available Numerical simulations of magnetohydrodynamic (MHD hypersonic flow over a cylinder are presented for axial- and transverse-oriented dipoles with different strengths. ANSYS CFX is used to carry out calculations for steady, laminar flows at a Mach number of 6.1, with a model for electrical conductivity as a function of temperature and pressure. The low magnetic Reynolds number (≪1 calculated based on the velocity and length scales in this problem justifies the quasistatic approximation, which assumes negligible effect of velocity on magnetic fields. Therefore, the governing equations employed in the simulations are the compressible Navier-Stokes and the energy equations with MHD-related source terms such as Lorentz force and Joule dissipation. The results demonstrate the ability of the magnetic field to affect the flowfield around the cylinder, which results in an increase in shock stand-off distance and reduction in overall temperature. Also, it is observed that there is a noticeable decrease in drag with the addition of the magnetic field.
Zhang, Haocheng; Li, Hui; Guo, Fan; Taylor, Greg
2017-02-01
Kink instabilities are likely to occur in the current-carrying magnetized plasma jets. Recent observations of the blazar radiation and polarization signatures suggest that the blazar emission region may be considerably magnetized. While the kink instability has been studied with first-principle magnetohydrodynamic (MHD) simulations, the corresponding time-dependent radiation and polarization signatures have not been investigated. In this paper, we perform comprehensive polarization-dependent radiation modeling of the kink instability in the blazar emission region based on relativistic MHD (RMHD) simulations. We find that the kink instability may give rise to strong flares with polarization angle (PA) swings or weak flares with polarization fluctuations, depending on the initial magnetic topology and magnetization. These findings are consistent with observations. Compared with the shock model, the kink model generates polarization signatures that are in better agreement with the general polarization observations. Therefore, we suggest that kink instabilities may widely exist in the jet environment and provide an efficient way to convert the magnetic energy and produce multiwavelength flares and polarization variations.
Guarendi, Andrew N; Chandy, Abhilash J
2013-01-01
Numerical simulations of magnetohydrodynamic (MHD) hypersonic flow over a cylinder are presented for axial- and transverse-oriented dipoles with different strengths. ANSYS CFX is used to carry out calculations for steady, laminar flows at a Mach number of 6.1, with a model for electrical conductivity as a function of temperature and pressure. The low magnetic Reynolds number (<1) calculated based on the velocity and length scales in this problem justifies the quasistatic approximation, which assumes negligible effect of velocity on magnetic fields. Therefore, the governing equations employed in the simulations are the compressible Navier-Stokes and the energy equations with MHD-related source terms such as Lorentz force and Joule dissipation. The results demonstrate the ability of the magnetic field to affect the flowfield around the cylinder, which results in an increase in shock stand-off distance and reduction in overall temperature. Also, it is observed that there is a noticeable decrease in drag with the addition of the magnetic field.
Application of ADER Scheme in MHD Simulation
ZHANG Yanyan; FENG Xueshang; JIANG Chaowei; ZHOU Yufen
2012-01-01
The Arbitrary accuracy Derivatives Riemann problem method（ADER） scheme is a new high order numerical scheme based on the concept of finite volume integration,and it is very easy to be extended up to any order of space and time accuracy by using a Taylor time expansion at the cell interface position.So far the approach has been applied successfully to flow mechanics problems.Our objective here is to carry out the extension of multidimensional ADER schemes to multidimensional MHD systems of conservation laws by calculating several MHD problems in one and two dimensions： （ⅰ） Brio-Wu shock tube problem,（ⅱ） Dai-Woodward shock tube problem,（ⅲ） Orszag-Tang MHD vortex problem.The numerical results prove that the ADER scheme possesses the ability to solve MHD problem,remains high order accuracy both in space and time,keeps precise in capturing the shock.Meanwhile,the compared tests show that the ADER scheme can restrain the oscillation and obtain the high order non-oscillatory result.
You’re Cut Off: HD and MHD Simulations of Truncated Accretion Disks
Hogg, J. Drew; Reynolds, Christopher S.
2017-01-01
Truncated accretion disks are commonly invoked to explain the spectro-temporal variability from accreting black holes in both small systems, i.e. state transitions in galactic black hole binaries (GBHBs), and large systems, i.e. low-luminosity active galactic nuclei (LLAGNs). In the canonical truncated disk model of moderately low accretion rate systems, gas in the inner region of the accretion disk occupies a hot, radiatively inefficient phase, which leads to a geometrically thick disk, while the gas in the outer region occupies a cooler, radiatively efficient phase that resides in the standard geometrically thin disk. Observationally, there is strong empirical evidence to support this phenomenological model, but a detailed understanding of the disk behavior is lacking. We present well-resolved hydrodynamic (HD) and magnetohydrodynamic (MHD) numerical models that use a toy cooling prescription to produce the first sustained truncated accretion disks. Using these simulations, we study the dynamics, angular momentum transport, and energetics of a truncated disk in the two different regimes. We compare the behaviors of the HD and MHD disks and emphasize the need to incorporate a full MHD treatment in any discussion of truncated accretion disk evolution.
A Resistive MHD Simulation of the Shear Flow Effects on the Structure of Reconnection Layer
SUN Xiaoxia; WANG Chunhua; LIN Yu; WANG Xiaogang
2007-01-01
By using a one-dimensional resistive magnetohydrodynamic (MHD) model, the Rie-mann problem is solved numerically for the structure of the reconnection layer under a sheared flow along the anti-parallel magnetic field components. The simulation is carried out for general cases with symmetric or asymmetric plasma densities and magnetic fields on the two sides of the initial current sheet, and cases with or without a guide magnetic field, as in various space and fusion plasmas. The generation of MHD discontinuities in the reconnection layer is discussed, including time-dependent intermediate shocks, intermediate shocks, slow shocks, slow expansion waves, and the contact discontinuity. It is shown that the structure of the reconnection layer is significantly affected by the presence of the shear flow. For an initial symmetric current sheet, the symmetry condition is altered due to the shear flow. For cases with an asymmetric initial current sheet, as at the Earth's magnetopause, the strengths of MHD discontinuities change significantly with the shear flow speed. Moreover, the general results for the reconnection layers in the outflow regions on either side of the X line are discussed systematically for the first time.
Lorenzo, Maibys Sierra; Domingues, Margarete Oliveira; Mecías, Angela León; Menconi, Varlei Everton; Mendes, Odim
2016-12-01
A global magnetohydrodynamic (MHD) model describes the solar-terrestrial system and the physical processes that live in it. Information obtained from satellites provides input to MHD model to compose a more realistic initial state for the equations and, therefore, more accurate simulations. However, the use of high resolution in time data can produce numerical instabilities that quickly interrupt the simulations. Moreover, satellite time series may have gaps which could be a problem in this context. In order to contribute to the overcoming of such challenges, we propose in this work a methodology based on a variant of the continuous wavelet transform to introduce environmental satellite data on the global resistive MHD model originally developed by Prof. Ogino at the University of Nagoya. Our methodology uses a simplified time-scale version of the original data that preserves the most important spectral features of the phenomena of interest. Then, we can do a long-term integration using this MHD model without any computational instability, while preserving the main time-scale features of the original data set and even overcome possible occurrence of gaps on the satellite data. This methodology also contributes to keeping more realistic physical results.
Stil, J M; Ouyed, R; Taylor, A R
2008-01-01
We present three-dimensional magnetohydrodynamic (MHD) simulations of superbubbles, to study the importance of MHD effects in the interpretation of images from recent surveys of the Galactic plane. These simulations focus mainly on atmospheres defined by an exponential density distribution and the Dickey & Lockman (1990) density distribution. In each case, the magnetic field is parallel to the Galactic plane and we investigate cases with either infinite scale height (constant magnetic field) or a constant ratio of gas pressure to magnetic pressure. The three-dimensional structure of superbubbles in these simulations is discussed with emphasis on the axial ratio of the cavity as a function of magnetic field strength and the age of the bubble. We investigate systematic errors in the age of the bubble and scale height of the surrounding medium that may be introduced by modeling the data with purely hydrodynamic models. Age estimates derived with symmetric hydrodynamic models fitted to an asymmetric magnetize...
Hayek, W; Carlsson, M; Trampedach, R; Collet, R; Gudiksen, B V; Hansteen, V H; Leenaarts, J
2010-01-01
We present the implementation of a radiative transfer solver with coherent scattering in the new BIFROST code for radiative magneto-hydrodynamical (MHD) simulations of stellar surface convection. The code is fully parallelized using MPI domain decomposition, which allows for large grid sizes and improved resolution of hydrodynamical structures. We apply the code to simulate the surface granulation in a solar-type star, ignoring magnetic fields, and investigate the importance of coherent scattering for the atmospheric structure. A scattering term is added to the radiative transfer equation, requiring an iterative computation of the radiation field. We use a short-characteristics-based Gauss-Seidel acceleration scheme to compute radiative flux divergences for the energy equation. The effects of coherent scattering are tested by comparing the temperature stratification of three 3D time-dependent hydrodynamical atmosphere models of a solar-type star: without scattering, with continuum scattering only, and with bo...
Investigating Magnetic Activity in the Galactic Centre by Global MHD Simulation
Suzuki, Takeru K; Torii, Kazufumi; Machida, Mami; Matsumoto, Ryoji; Kakiuchi, Kensuke
2016-01-01
By performing a global magnetohydrodynamical (MHD) simulation for the Milky Way with an axisymmetric gravitational potential, we propose that spatially dependent amplification of magnetic fields possibly explains the observed noncircular motion of the gas in the Galactic centre (GC) region. The radial distribution of the rotation frequency in the bulge region is not monotonic in general. The amplification of the magnetic field is enhanced in regions with stronger differential rotation, because magnetorotational instability and field-line stretching are more effective. The strength of the amplified magnetic field reaches >~ 0.5 mG, and radial flows of the gas are excited by the inhomogeneous transport of angular momentum through turbulent magnetic field that is amplified in a spatially dependent manner. As a result, the simulated position-velocity diagram exhibits a time-dependent asymmetric parallelogram-shape owing to the intermittency of the magnetic turbulence; the present model provides a viable alternati...
Self-consistent hybrid neoclassical-magnetohydrodynamic simulations of axisymmetric plasmas
Lyons, Brendan Carrick
Neoclassical effects (e.g., conductivity reduction and bootstrap currents) have a profound impact on many magnetohydrodynamic (MHD) instabilities in toroidally-confined plasmas, including tearing modes, edge-localized modes, and resistive wall modes. High-fidelity simulations of such phenomena require a multiphysics code that self-consistently couples the kinetic and fluid models. We review a hybrid formulation from the recent literatureAB that is appropriate for such studies. In particular, the formulation uses a set of time-dependent drift-kinetic equations (DKEs) to advance the non-Maxwellian part of the electron and ion distribution functions (fNM) with linearized Fokker-Planck-Landau collision operators. The form of the DKEs used were derived in a Chapman-Enskog-like fashion, ensuring that fNM carries no density, momentum, or temperature. Rather, these quantities are contained within the background Maxwellian and are evolved by a set of MHD equations which are closed by moments of fNM . We then present two DKE solvers based upon this formulation in axisymmetric toroidal geometries. The Neoclassical Ion-Electron Solver (NIES) solves the steady-state DKEs in the low-collisionality limit. Convergence and benchmark studies are discussed, providing a proof-of-principle that this new formulation can accurately reproduce results from the literature in the limit considered. We then present the DK4D code which evolves the finite-collisionality DKEs time-dependently. Computational methods used and successful benchmarks to other neoclassical models and codes are discussed. Furthermore, we couple DK4D to a reduced, transport-timescale MHD code. The resulting hybrid code is used to simulate the evolution of the current density in a large-aspect-ratio plasma in the presence of several different time-dependent pressure profiles. These simulations demonstrate the self-consistent, dynamic formation of the ohmic and bootstrap currents. In the slowly-evolving plasmas considered
Observations of "wisps" in magnetohydrodynamic simulations of the Crab Nebula
Camus, N F; Buccantini, N; Hughes, P A
2009-01-01
In this letter, we describe results of new high-resolution axisymmetric relativistic MHD simulations of Pulsar Wind Nebulae. The simulations reveal strong breakdown of the equatorial symmetry and highly variable structure of the pulsar wind termination shock. The synthetic synchrotron maps, constructed using a new more accurate approach, show striking similarity with the well known images of the Crab Nebula obtained by Chandra, and the Hubble Space Telescope. In addition to the \\textit{jet-torus} structure, these maps reproduce the Crab's famous moving wisps whose speed and rateof production agree with the observations. The variability is then analyzed using various statistical methods, including the method of structure function and wavelet transform. The results point towards the quasi-periodic behaviour with the periods of 1.5-3yr and MHD turbulence on scales below 1yr. The full account of this study will be presented in a follow up paper.
MHD simulations on an unstructured mesh
Strauss, H.R. [New York Univ., NY (United States); Park, W.; Belova, E.; Fu, G.Y. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Longcope, D.W. [Univ. of Montana, Missoula, MT (United States); Sugiyama, L.E. [Massachusetts Inst. of Tech., Cambridge, MA (United States)
1998-12-31
Two reasons for using an unstructured computational mesh are adaptivity, and alignment with arbitrarily shaped boundaries. Two codes which use finite element discretization on an unstructured mesh are described. FEM3D solves 2D and 3D RMHD using an adaptive grid. MH3D++, which incorporates methods of FEM3D into the MH3D generalized MHD code, can be used with shaped boundaries, which might be 3D.
Advances in Simulation of Wave Interactions with Extended MHD Phenomena
Batchelor, Donald B [ORNL; D' Azevedo, Eduardo [ORNL; Bateman, Glenn [ORNL; Bernholdt, David E [ORNL; Bonoli, P. [Massachusetts Institute of Technology (MIT); Bramley, Randall B [ORNL; Breslau, Joshua [ORNL; Elwasif, Wael R [ORNL; Foley, S. [Indiana University; Jaeger, Erwin Frederick [ORNL; Jardin, S. C. [Princeton Plasma Physics Laboratory (PPPL); Klasky, Scott A [ORNL; Kruger, Scott E [ORNL; Ku, Long-Poe [ORNL; McCune, Douglas [Princeton Plasma Physics Laboratory (PPPL); Ramos, J. [Massachusetts Institute of Technology (MIT); Schissel, David P [ORNL; Schnack, Dalton D [ORNL
2009-01-01
The Integrated Plasma Simulator (IPS) provides a framework within which some of the most advanced, massively-parallel fusion modeling codes can be interoperated to provide a detailed picture of the multi-physics processes involved in fusion experiments. The presentation will cover four topics: (1) recent improvements to the IPS, (2) application of the IPS for very high resolution simulations of ITER scenarios, (3) studies of resistive and ideal MHD stability in tokamak discharges using IPS facilities, and (4) the application of RF power in the electron cyclotron range of frequencies to control slowly growing MHD modes in tokamaks and initial evaluations of optimized location for RF power deposition.
Advances in Simulation of Wave Interaction with Extended MHD Phenomena
Batchelor, Donald B [ORNL; Abla, Gheni [ORNL; D' Azevedo, Ed F [ORNL; Bateman, Glenn [Lehigh University, Bethlehem, PA; Bernholdt, David E [ORNL; Berry, Lee A [ORNL; Bonoli, P. [Massachusetts Institute of Technology (MIT); Bramley, R [Indiana University; Breslau, Joshua [ORNL; Chance, M. [Princeton Plasma Physics Laboratory (PPPL); Chen, J. [Princeton Plasma Physics Laboratory (PPPL); Choi, M. [General Atomics; Elwasif, Wael R [ORNL; Foley, S. [Indiana University; Fu, GuoYong [Princeton Plasma Physics Laboratory (PPPL); Harvey, R. W. [CompX, Del Mar, CA; Jaeger, Erwin Frederick [ORNL; Jardin, S. C. [Princeton Plasma Physics Laboratory (PPPL); Jenkins, T [University of Wisconsin; Keyes, David E [Columbia University; Klasky, Scott A [ORNL; Kruger, Scott [Tech-X Corporation; Ku, Long-Poe [Princeton Plasma Physics Laboratory (PPPL); Lynch, Vickie E [ORNL; McCune, Douglas [Princeton Plasma Physics Laboratory (PPPL); Ramos, J. [Massachusetts Institute of Technology (MIT); Schissel, D. [General Atomics; Schnack, [University of Wisconsin; Wright, J. [Massachusetts Institute of Technology (MIT)
2009-01-01
The Integrated Plasma Simulator (IPS) provides a framework within which some of the most advanced, massively-parallel fusion modeling codes can be interoperated to provide a detailed picture of the multi-physics processes involved in fusion experiments. The presentation will cover four topics: 1) recent improvements to the IPS, 2) application of the IPS for very high resolution simulations of ITER scenarios, 3) studies of resistive and ideal MHD stability in tokamk discharges using IPS facilities, and 4) the application of RF power in the electron cyclotron range of frequencies to control slowly growing MHD modes in tokamaks and initial evaluations of optimized location for RF power deposition.
Advances in simulation of wave interactions with extended MHD phenomena
Batchelor, D; D' Azevedo, E; Bernholdt, D E; Berry, L; Elwasif, W; Jaeger, E [Oak Ridge National Laboratory (United States); Abla, G; Choi, M [General Atomics (United States); Bateman, G [Lehigh University (United States); Bonoli, P [Plasma Science and Fusion Center, Massachusetts Institute of Technology (United States); Bramley, R; Foley, S [Indiana University (United States); Breslau, J; Chance, M; Chen, J; Fu, G; Jardin, S [Princeton Plasma Physics Laboratory (United States); Harvey, R [CompX International (United States); Jenkins, T [University of Wisconsin (United States); Keyes, D, E-mail: batchelordb@ornl.go [Columbia University (United States)
2009-07-01
The Integrated Plasma Simulator (IPS) provides a framework within which some of the most advanced, massively-parallel fusion modeling codes can be interoperated to provide a detailed picture of the multi-physics processes involved in fusion experiments. The presentation will cover four topics: 1) recent improvements to the IPS, 2) application of the IPS for very high resolution simulations of ITER scenarios, 3) studies of resistive and ideal MHD stability in tokamk discharges using IPS facilities, and 4) the application of RF power in the electron cyclotron range of frequencies to control slowly growing MHD modes in tokamaks and initial evaluations of optimized location for RF power deposition.
3-D Simulations of MHD Jets - The Stability Problem
Nakamura, M; Nakamura, Masanori; Meier, David L.
2003-01-01
Non-relativistic three-dimensional magnetohydrodynamic simulations of Poynting-flux-dominated (PFD) jets are presented. Our study focuses on the propagation of strongly magnetized hypersonic but sub-Alfv\\'enic flow ($C_{\\rm s}^2 1$), driven in large part by the radial component of the Lorentz force.
Wong, Un-Hong; Aoki, Takayuki; Wong, Hon-Cheng
2014-07-01
Modern graphics processing units (GPUs) have been widely utilized in magnetohydrodynamic (MHD) simulations in recent years. Due to the limited memory of a single GPU, distributed multi-GPU systems are needed to be explored for large-scale MHD simulations. However, the data transfer between GPUs bottlenecks the efficiency of the simulations on such systems. In this paper we propose a novel GPU Direct-MPI hybrid approach to address this problem for overall performance enhancement. Our approach consists of two strategies: (1) We exploit GPU Direct 2.0 to speedup the data transfers between multiple GPUs in a single node and reduce the total number of message passing interface (MPI) communications; (2) We design Compute Unified Device Architecture (CUDA) kernels instead of using memory copy to speedup the fragmented data exchange in the three-dimensional (3D) decomposition. 3D decomposition is usually not preferable for distributed multi-GPU systems due to its low efficiency of the fragmented data exchange. Our approach has made a breakthrough to make 3D decomposition available on distributed multi-GPU systems. As a result, it can reduce the memory usage and computation time of each partition of the computational domain. Experiment results show twice the FLOPS comparing to common 2D decomposition MPI-only implementation method. The proposed approach has been developed in an efficient implementation for MHD simulations on distributed multi-GPU systems, called MGPU-MHD code. The code realizes the GPU parallelization of a total variation diminishing (TVD) algorithm for solving the multidimensional ideal MHD equations, extending our work from single GPU computation (Wong et al., 2011) to multiple GPUs. Numerical tests and performance measurements are conducted on the TSUBAME 2.0 supercomputer at the Tokyo Institute of Technology. Our code achieves 2 TFLOPS in double precision for the problem with 12003 grid points using 216 GPUs.
Magnetohydrodynamic Turbulence and the Geodynamo
Shebalin, John V.
2016-01-01
Recent research results concerning forced, dissipative, rotating magnetohydrodynamic (MHD) turbulence will be discussed. In particular, we present new results from long-time Fourier method (periodic box) simulations in which forcing contains varying amounts of magnetic and kinetic helicity. Numerical results indicate that if MHD turbulence is forced so as to produce a state of relatively constant energy, then the largest-scale components are dominant and quasistationary, and in fact, have an effective dipole moment vector that aligns closely with the rotation axis. The relationship of this work to established results in ideal MHD turbulence, as well as to models of MHD turbulence in a spherical shell will also be presented. These results appear to be very pertinent to understanding the Geodynamo and the origin of its dominant dipole component. Our conclusion is that MHD turbulence, per se, may well contain the origin of the Earth's dipole magnetic field.
Magnetohydrodynamic (MHD) flow of Cu-water nanofluid due to a rotating disk with partial slip
Hayat, Tasawar [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Nonlinear Analysis and Applied Mathematics Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Rashid, Madiha; Imtiaz, Maria, E-mail: mi-qau@yahoo.com [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Alsaedi, Ahmed [Nonlinear Analysis and Applied Mathematics Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)
2015-06-15
This paper investigates MHD steady flow of viscous nanofluid due to a rotating disk. Water is treated as a base fluid and copper as nanoparticle. Nanofluid fills the porous medium. Effects of partial slip, viscous dissipation and thermal radiation are also considered. Similarity transformations reduce the nonlinear partial differential equations to ordinary differential equations. Flow and heat transfer characteristics are computed by HAM solutions. Also computations for skin friction coefficient and Nusselt number are presented and examined for pertinent parameters. It is noted that higher velocity slip parameter decreases the radial and azimuthal velocities while temperature decreases for larger values of the thermal slip parameter. Also the rate of heat transfer enhances when the nanoparticle volume fraction increases.
Global MHD modeling of resonant ULF waves: Simulations with and without a plasmasphere
Claudepierre, S. G.; Toffoletto, F. R.; Wiltberger, M.
2016-01-01
We investigate the plasmaspheric influence on the resonant mode coupling of magnetospheric ultralow frequency (ULF) waves using the Lyon-Fedder-Mobarry (LFM) global magnetohydrodynamic (MHD) model. We present results from two different versions of the model, both driven by the same solar wind conditions: one version that contains a plasmasphere (the LFM coupled to the Rice Convection Model, where the Gallagher plasmasphere model is also included) and another that does not (the stand-alone LFM). We find that the inclusion of a cold, dense plasmasphere has a significant impact on the nature of the simulated ULF waves. For example, the inclusion of a plasmasphere leads to a deeper (more earthward) penetration of the compressional (azimuthal) electric field fluctuations, due to a shift in the location of the wave turning points. Consequently, the locations where the compressional electric field oscillations resonantly couple their energy into local toroidal mode field line resonances also shift earthward. We also find, in both simulations, that higher-frequency compressional (azimuthal) electric field oscillations penetrate deeper than lower frequency oscillations. In addition, the compressional wave mode structure in the simulations is consistent with a radial standing wave oscillation pattern, characteristic of a resonant waveguide. The incorporation of a plasmasphere into the LFM global MHD model represents an advance in the state of the art in regard to ULF wave modeling with such simulations. We offer a brief discussion of the implications for radiation belt modeling techniques that use the electric and magnetic field outputs from global MHD simulations to drive particle dynamics.
Global MHD modeling of resonant ULF waves: Simulations with and without a plasmasphere.
Claudepierre, S G; Toffoletto, F R; Wiltberger, M
2016-01-01
We investigate the plasmaspheric influence on the resonant mode coupling of magnetospheric ultralow frequency (ULF) waves using the Lyon-Fedder-Mobarry (LFM) global magnetohydrodynamic (MHD) model. We present results from two different versions of the model, both driven by the same solar wind conditions: one version that contains a plasmasphere (the LFM coupled to the Rice Convection Model, where the Gallagher plasmasphere model is also included) and another that does not (the stand-alone LFM). We find that the inclusion of a cold, dense plasmasphere has a significant impact on the nature of the simulated ULF waves. For example, the inclusion of a plasmasphere leads to a deeper (more earthward) penetration of the compressional (azimuthal) electric field fluctuations, due to a shift in the location of the wave turning points. Consequently, the locations where the compressional electric field oscillations resonantly couple their energy into local toroidal mode field line resonances also shift earthward. We also find, in both simulations, that higher-frequency compressional (azimuthal) electric field oscillations penetrate deeper than lower frequency oscillations. In addition, the compressional wave mode structure in the simulations is consistent with a radial standing wave oscillation pattern, characteristic of a resonant waveguide. The incorporation of a plasmasphere into the LFM global MHD model represents an advance in the state of the art in regard to ULF wave modeling with such simulations. We offer a brief discussion of the implications for radiation belt modeling techniques that use the electric and magnetic field outputs from global MHD simulations to drive particle dynamics.
An innovative demonstration of high power density in a compact MHD (magnetohydrodynamic) generator
Schmidt, H.J.; Lineberry, J.T.; Chapman, J.N.
1990-06-01
The present program was conducted by the University of Tennessee Space Institute (UTSI). It was by its nature a high risk experimental program to demonstrate the feasibility of high power density operation in a laboratory scale combustion driven MHD generator. Maximization of specific energy was not a consideration for the present program, but the results have implications in this regard by virtue of high energy fuel used. The power density is the ratio of the electrical energy output to the internal volume of the generator channel. The MHD process is a volumetric process and the power density is therefore a direct measure of the compactness of the system. Specific energy, is the ratio of the electrical energy output to consumable energy used for its production. The two parameters are conceptually interrelated. To achieve high power density and implied commensurate low system volume and weight, it was necessary to use an energetic fuel. The high energy fuel of choice was a mixture of powdered aluminum and carbon seeded with potassium carbonate and burned with gaseous oxygen. The solid fuel was burned in a hybrid combustion scheme wherein the fuel was cast within a cylindrical combustor in analogy with a solid propellant rocket motor. Experimental data is limited to gross channel output current and voltage, magnetic field strength, fuel and oxidizer flow rates, flow train external temperatures and combustor pressure. Similarly, while instantaneous oxidizer flow rates were measured, only average fuel consumption based on pre and post test component weights and dimensions was possible. 4 refs., 60 figs., 9 tabs.
Kawasaki, Akira; Kubota, Kenichi; Funaki, Ikkoh; Okuno, Yoshihiro
2016-09-01
Steady-state and self-field magnetoplasmadynamic (MPD) thruster, which utilizes high-intensity direct-current (DC) discharge, is one of the prospective candidates of future high-power electric propulsion devices. In order to accurately assess the thrust performance and the electrode temperature, input electric power and wall heat flux must correctly be evaluated where electrostatic sheaths formed in close proximity of the electrodes affect these quantities. Conventional model simulates only plasma flows occurring in MPD thrusters with the absence of electrostatic sheath consideration. Therefore, this study extends the conventional model to a coupled magnetohydrodynamic (MHD) and thermal model by incorporating the phenomena relevant to the electrostatic sheaths. The sheaths are implemented as boundary condition of the MHD model on the walls. This model simulated the operation of the 100-kW-class thruster at discharge current ranging from 6 to 10 kA with argon propellant. The extended model reproduced the discharge voltages and wall heat load which are consistent with past experimental results. In addition, the simulation results indicated that cathode sheath voltages account for approximately 5-7 V subject to approximately 20 V of discharge voltages applied between the electrodes. This work was supported by JSPS KAKENHI Grant Numbers 26289328 and 15J10821.
A discontinuous Galerkin method for solving the fluid and MHD equations in astrophysical simulations
Mocz, Philip; Sijacki, Debora; Hernquist, Lars
2013-01-01
A discontinuous Galerkin (DG) method suitable for large-scale astrophysical simulations on Cartesian meshes as well as arbitrary static and moving Voronoi meshes is presented. Most major astrophysical fluid dynamics codes use a finite volume (FV) approach. We demonstrate that the DG technique offers distinct advantages over FV formulations on both static and moving meshes. The DG method is also easily generalized to higher than second-order accuracy without requiring the use of extended stencils to estimate derivatives (thereby making the scheme highly parallelizable). We implement the technique in the AREPO code for solving the fluid and the magnetohydrodynamic (MHD) equations. By examining various test problems, we show that our new formulation provides improved accuracy over FV approaches of the same order, and reduces post-shock oscillations and artificial diffusion of angular momentum. In addition, the DG method makes it possible to represent magnetic fields in a locally divergence-free way, improving th...
Extension of the MURaM Radiative MHD Code for Coronal Simulations
Rempel, M.
2017-01-01
We present a new version of the MURaM radiative magnetohydrodynamics (MHD) code that allows for simulations spanning from the upper convection zone into the solar corona. We implement the relevant coronal physics in terms of optically thin radiative loss, field aligned heat conduction, and an equilibrium ionization equation of state. We artificially limit the coronal Alfvén and heat conduction speeds to computationally manageable values using an approximation to semi-relativistic MHD with an artificially reduced speed of light (Boris correction). We present example solutions ranging from quiet to active Sun in order to verify the validity of our approach. We quantify the role of numerical diffusivity for the effective coronal heating. We find that the (numerical) magnetic Prandtl number determines the ratio of resistive to viscous heating and that owing to the very large magnetic Prandtl number of the solar corona, heating is expected to happen predominantly through viscous dissipation. We find that reasonable solutions can be obtained with values of the reduced speed of light just marginally larger than the maximum sound speed. Overall this leads to a fully explicit code that can compute the time evolution of the solar corona in response to photospheric driving using numerical time steps not much smaller than 0.1 s. Numerical simulations of the coronal response to flux emergence covering a time span of a few days are well within reach using this approach.
FLASH MHD simulations of experiments that study shock-generated magnetic fields
Tzeferacos, P.; Fatenejad, M.; Flocke, N.; Graziani, C.; Gregori, G.; Lamb, D. Q.; Lee, D.; Meinecke, J.; Scopatz, A.; Weide, K.
2015-12-01
We summarize recent additions and improvements to the high energy density physics capabilities in FLASH, highlighting new non-ideal magneto-hydrodynamic (MHD) capabilities. We then describe 3D Cartesian and 2D cylindrical FLASH MHD simulations that have helped to design and analyze experiments conducted at the Vulcan laser facility. In these experiments, a laser illuminates a carbon rod target placed in a gas-filled chamber. A magnetic field diagnostic (called a Bdot) employing three very small induction coils is used to measure all three components of the magnetic field at a chosen point in space. The simulations have revealed that many fascinating physical processes occur in the experiments. These include megagauss magnetic fields generated by the interaction of the laser with the target via the Biermann battery mechanism, which are advected outward by the vaporized target material but decrease in strength due to expansion and resistivity; magnetic fields generated by an outward expanding shock via the Biermann battery mechanism; and a breakout shock that overtakes the first wave, the contact discontinuity between the target material and the gas, and then the initial expanding shock. Finally, we discuss the validation and predictive science we have done for this experiment with FLASH.
Zhang, Haocheng; Li, Hui; Taylor, Gregory B.
2017-08-01
In addition to multiwavelength variability, blazar polarization signatures are highly variable. Optical polarimetry has shown two distinct features: first, in both quiescent and flaring states, blazar polarization degree generally stays around 10% to 30%; second, after major polarization variations, such as polarization angle swings, the polarization degree quickly restores to its initial state. We have performed integrated relativistic magnetohydrodynamic (MHD) + radiation and polarization simulations of the blazar emission region. Our approach evolves the magnetic fields and flows using the first principles, so we can calculate the spatial and temporal dependent polarization signatures and compare them with observations.Our results show that the above two observational trends indicate the blazar flaring region should be strongly magnetized with the magnetic energy density higher than the plasma rest mass energy density. In such an environment, the 3D kink instability may trigger magnetic reconnection to accelerate particles and give rise to flares. In view of future high-energy polarimetry, this integrated MHD+polarization simulation technique will deliver new constraints on jet’s physical conditions and particle acceleration mechanisms.
MHD simulations of Plasma Jets and Plasma-surface interactions in Coaxial Plasma Accelerators
Subramaniam, Vivek; Raja, Laxminarayan
2016-10-01
Coaxial plasma accelerators belong to a class of electromagnetic acceleration devices which utilize a self-induced Lorentz force to accelerate magnetized thermal plasma to large velocities ( 40 Km/s). The plasma jet generated as a result, due to its high energy density, can be used to mimic the plasma-surface interactions at the walls of thermonuclear fusion reactors during an Edge Localized Mode (ELM) disruption event. We present the development of a Magnetohydrodynamics (MHD) simulation tool to describe the plasma acceleration and jet formation processes in coaxial plasma accelerators. The MHD model is used to study the plasma-surface impact interaction generated by the impingement of the jet on a target material plate. The study will characterize the extreme conditions generated on the target material surface by resolving the magnetized shock boundary layer interaction and the viscous/thermal diffusion effects. Additionally, since the plasma accelerator is operated in vacuum conditions, a novel plasma-vacuum interface tracking algorithm is developed to simulate the expansion of the high density plasma into a vacuum background in a physically consistent manner.
Borissov, A.; Kontar, E. P.; Threlfall, J.; Neukirch, T.
2017-09-01
The conversion of magnetic energy into other forms (such as plasma heating, bulk plasma flows, and non-thermal particles) during solar flares is one of the outstanding open problems in solar physics. It is generally accepted that magnetic reconnection plays a crucial role in these conversion processes. In order to achieve the rapid energy release required in solar flares, an anomalous resistivity, which is orders of magnitude higher than the Spitzer resistivity, is often used in magnetohydrodynamic (MHD) simulations of reconnection in the corona. The origin of Spitzer resistivity is based on Coulomb scattering, which becomes negligible at the high energies achieved by accelerated particles. As a result, simulations of particle acceleration in reconnection events are often performed in the absence of any interaction between accelerated particles and any background plasma. This need not be the case for scattering associated with anomalous resistivity caused by turbulence within solar flares, as the higher resistivity implies an elevated scattering rate. We present results of test particle calculations, with and without pitch angle scattering, subject to fields derived from MHD simulations of two-dimensional (2D) X-point reconnection. Scattering rates proportional to the ratio of the anomalous resistivity to the local Spitzer resistivity, as well as at fixed values, are considered. Pitch angle scattering, which is independent of the anomalous resistivity, causes higher maximum energies in comparison to those obtained without scattering. Scattering rates which are dependent on the local anomalous resistivity tend to produce fewer highly energised particles due to weaker scattering in the separatrices, even though scattering in the current sheet may be stronger when compared to resistivity-independent scattering. Strong scattering also causes an increase in the number of particles exiting the computational box in the reconnection outflow region, as opposed to along the
Tsai, T. C.; Yu, H.-S.; Hsieh, M.-S.; Lai, S. H.; Yang, Y.-H.
2015-11-01
Nowadays most of supercomputers are based on the frame of PC cluster; therefore, the efficiency of parallel computing is of importance especially with the increasing computing scale. This paper proposes a high-order implicit predictor-corrector central finite difference (iPCCFD) scheme and demonstrates its high efficiency in parallel computing. Of special interests are the large scale numerical studies such as the magnetohydrodynamic (MHD) simulations in the planetary magnetosphere. An iPCCFD scheme is developed based on fifth-order central finite difference method and fourth-order implicit predictor-corrector method in combination with elimination-of-the-round-off-errors (ERE) technique. We examine several numerical studies such as one-dimensional Brio-Wu shock tube problem, two-dimensional Orszag-Tang vortex system, vortex type K-H instability, kink type K-H instability, field loop advection, and blast wave. All the simulation results are consistent with many literatures. iPCCFD can minimize the numerical instabilities and noises along with the additional diffusion terms. All of our studies present relatively small numerical errors without employing any divergence-free reconstruction. In particular, we obtain fairly stable results in the two-dimensional Brio-Wu shock tube problem which well conserves ∇ ṡ B = 0 throughout the simulation. The ERE technique removes the accumulation of roundoff errors in the uniform or non-disturbed system. We have also shown that iPCCFD is characterized by the high order of accuracy and the low numerical dissipation in the circularly polarized Alfvén wave tests. The proposed iPCCFD scheme is a parallel-efficient and high precision numerical scheme for solving the MHD equations in hyperbolic conservation systems.
Subramaniam, Vivek; Raja, Laxminarayan L.
2017-06-01
Recent experiments by Loebner et al. [IEEE Trans. Plasma Sci. 44, 1534 (2016)] studied the effect of a hypervelocity jet emanating from a coaxial plasma accelerator incident on target surfaces in an effort to mimic the transient loading created during edge localized mode disruption events in fusion plasmas. In this paper, we present a magnetohydrodynamic (MHD) numerical model to simulate plasma jet formation and plasma-surface contact in this coaxial plasma accelerator experiment. The MHD system of equations is spatially discretized using a cell-centered finite volume formulation. The temporal discretization is performed using a fully implicit backward Euler scheme and the resultant stiff system of nonlinear equations is solved using the Newton method. The numerical model is employed to obtain some key insights into the physical processes responsible for the generation of extreme stagnation conditions on the target surfaces. Simulations of the plume (without the target plate) are performed to isolate and study phenomena such as the magnetic pinch effect that is responsible for launching pressure pulses into the jet free stream. The simulations also yield insights into the incipient conditions responsible for producing the pinch, such as the formation of conductive channels. The jet-target impact studies indicate the existence of two distinct stages involved in the plasma-surface interaction. A fast transient stage characterized by a thin normal shock transitions into a pseudo-steady stage that exhibits an extended oblique shock structure. A quadratic scaling of the pinch and stagnation conditions with the total current discharged between the electrodes is in qualitative agreement with the results obtained in the experiments. This also illustrates the dominant contribution of the magnetic pressure term in determining the magnitude of the quantities of interest.
Magnetohydrodynamic simulation of reconnection in turbulent astrophysical plasmas
Widmer, Fabien
2016-07-19
Turbulence is ubiquitous at large-Reynolds-number astrophysical plasmas like in the Solar corona. In such environments, the turbulence is thought to enhance the energy conversion rate by magnetic reconnection above the classical model predictions. Since turbulence cannot be simulated together with the large scale behaviour of the plasma, magnetic reconnection is studied through the average properties of turbulence. A Reynolds-averaged turbulence model is explored in which turbulence is self-sustained and -generated by the large scales (mean-) field inhomogeneities. Employing that model, the influence of turbulence is investigated by large-scale MHD numerical simulations solving evolution equations of the energy and cross-helicity of the turbulence together with the MHD equations. Magnetic reconnection is found to be either rapidly enhanced or suppressed by turbulence depending on the turbulence timescale. If the turbulence timescale is self-consistently calculated, reconnection is always strongly enhanced. Since the solar corona bears strong guide magnetic fields perpendicular to the reconnecting magnetic fields, the influences of a strong guide field on turbulent reconnection is separately investigated. A slow down of reconnection, obtained in the presence of a finite guide field, can be understood by a finite residual helicity working against the enhancement of reconnection by the turbulence. The influence of turbulence on magnetic reconnection is further studied by means of high resolution simulations of plasmoid-unstable current sheets. These simulations revealed the importance of turbulence for reaching fast reconnection.
Hayashi, K.; Hoeksema, J. T.; Liu, Y.; Bobra, M. G.; Sun, X. D.; Norton, A. A.
2015-05-01
Time-dependent three-dimensional magnetohydrodynamics (MHD) simulation modules are implemented at the Joint Science Operation Center (JSOC) of the Solar Dynamics Observatory (SDO). The modules regularly produce three-dimensional data of the time-relaxed minimum-energy state of the solar corona using global solar-surface magnetic-field maps created from Helioseismic and Magnetic Imager (HMI) full-disk magnetogram data. With the assumption of a polytropic gas with specific-heat ratio of 1.05, three types of simulation products are currently generated: i) simulation data with medium spatial resolution using the definitive calibrated synoptic map of the magnetic field with a cadence of one Carrington rotation, ii) data with low spatial resolution using the definitive version of the synchronic frame format of the magnetic field, with a cadence of one day, and iii) low-resolution data using near-real-time (NRT) synchronic format of the magnetic field on a daily basis. The MHD data available in the JSOC database are three-dimensional, covering heliocentric distances from 1.025 to 4.975 solar radii, and contain all eight MHD variables: the plasma density, temperature, and three components of motion velocity, and three components of the magnetic field. This article describes details of the MHD simulations as well as the production of the input magnetic-field maps, and details of the products available at the JSOC database interface. To assess the merits and limits of the model, we show the simulated data in early 2011 and compare with the actual coronal features observed by the Atmospheric Imaging Assembly (AIA) and the near-Earth in-situ data.
Hayashi, K; Hoeksema, J T; Liu, Y; Bobra, M G; Sun, X D; Norton, A A
Time-dependent three-dimensional magnetohydrodynamics (MHD) simulation modules are implemented at the Joint Science Operation Center (JSOC) of the Solar Dynamics Observatory (SDO). The modules regularly produce three-dimensional data of the time-relaxed minimum-energy state of the solar corona using global solar-surface magnetic-field maps created from Helioseismic and Magnetic Imager (HMI) full-disk magnetogram data. With the assumption of a polytropic gas with specific-heat ratio of 1.05, three types of simulation products are currently generated: i) simulation data with medium spatial resolution using the definitive calibrated synoptic map of the magnetic field with a cadence of one Carrington rotation, ii) data with low spatial resolution using the definitive version of the synchronic frame format of the magnetic field, with a cadence of one day, and iii) low-resolution data using near-real-time (NRT) synchronic format of the magnetic field on a daily basis. The MHD data available in the JSOC database are three-dimensional, covering heliocentric distances from 1.025 to 4.975 solar radii, and contain all eight MHD variables: the plasma density, temperature, and three components of motion velocity, and three components of the magnetic field. This article describes details of the MHD simulations as well as the production of the input magnetic-field maps, and details of the products available at the JSOC database interface. To assess the merits and limits of the model, we show the simulated data in early 2011 and compare with the actual coronal features observed by the Atmospheric Imaging Assembly (AIA) and the near-Earth in-situ data.
Magnetohydrodynamically generated velocities in confined plasma
Morales, Jorge A.; Bos, Wouter J. T.; Schneider, Kai; Montgomery, David C.
2015-04-01
We investigate by numerical simulation the rotational flows in a toroid confining a conducting magnetofluid in which a current is driven by the application of externally supported electric and magnetic fields. The computation involves no microscopic instabilities and is purely magnetohydrodynamic (MHD). We show how the properties and intensity of the rotations are regulated by dimensionless numbers (Lundquist and viscous Lundquist) that contain the resistivity and viscosity of the magnetofluid. At the magnetohydrodynamic level (uniform mass density and incompressible magnetofluids), rotational flows appear in toroidal, driven MHD. The evolution of these flows with the transport coefficients, geometry, and safety factor are described.
Resistive magnetohydrodynamic simulations of X-line retreat during magnetic reconnection
Murphy, N A
2010-01-01
To investigate the impact of current sheet motion on the reconnection process, we perform resistive magnetohydrodynamic (MHD) simulations of two closely located reconnection sites which move apart from each other as reconnection develops. This simulation develops less quickly than an otherwise equivalent single perturbation simulation but eventually exhibits a higher reconnection rate. The unobstructed outflow jets are faster and longer than the outflow jets directed towards the magnetic island that forms between the two current sheets. The X-line and flow stagnation point are located near the trailing end of each current sheet very close to the obstructed exit. The speed of X-line retreat ranges from ~0.02-0.06 while the speed of stagnation point retreat ranges from ~0.03-0.07, in units of the initial upstream Alfven velocity. Early in time, the flow stagnation point is located closer to the center of the current sheet than the X-line, but later on the relative positions of these two points switch. Consequen...
Sub-Alfvenic Non-Ideal MHD Turbulence Simulations with Ambipolar Diffusion: I. Turbulence Statistics
Klein, R I; Li, P S; McKee, C F; Fisher, R
2008-04-10
Most numerical investigations on the role of magnetic fields in turbulent molecular clouds (MCs) are based on ideal magneto-hydrodynamics (MHD). However, MCs are weakly ionized, so that the time scale required for the magnetic field to diffuse through the neutral component of the plasma by ambipolar diffusion (AD) can be comparable to the dynamical time scale. We have performed a series of 256{sup 3} and 512{sup 3} simulations on supersonic but sub-Alfvenic turbulent systems with AD using the Heavy-Ion Approximation developed in Li et al. (2006). Our calculations are based on the assumption that the number of ions is conserved, but we show that these results approximately apply to the case of time-dependent ionization in molecular clouds as well. Convergence studies allow us to determine the optimal value of the ionization mass fraction when using the heavy-ion approximation for low Mach number, sub-Alfvenic turbulent systems. We find that ambipolar diffusion steepens the velocity and magnetic power spectra compared to the ideal MHD case. Changes in the density PDF, total magnetic energy, and ionization fraction are determined as a function of the AD Reynolds number. The power spectra for the neutral gas properties of a strongly magnetized medium with a low AD Reynolds number are similar to those for a weakly magnetized medium; in particular, the power spectrum of the neutral velocity is close to that for Burgers turbulence.
Alexakis, A.
2009-04-01
Most astrophysical and planetary systems e.g., solar convection and stellar winds, are in a turbulent state and coupled to magnetic fields. Understanding and quantifying the statistical properties of magneto-hydro-dynamic (MHD) turbulence is crucial to explain the involved physical processes. Although the phenomenological theory of hydro-dynamic (HD) turbulence has been verified up to small corrections, a similar statement cannot be made for MHD turbulence. Since the phenomenological description of Hydrodynamic turbulence by Kolmogorov in 1941 there have been many attempts to derive a similar description for turbulence in conducting fluids (i.e Magneto-Hydrodynamic turbulence). However such a description is going to be based inevitably on strong assumptions (typically borrowed from hydrodynamics) that do not however necessarily apply to the MHD case. In this talk I will discuss some of the properties and differences of the energy and helicity cascades in turbulent MHD and HD flows. The investigation is going to be based on the analysis of direct numerical simulations. The cascades in MHD turbulence appear to be a more non-local process (in scale space) than in Hydrodynamics. Some implications of these results to turbulent modeling will be discussed
Keppens, R
2002-01-01
We present numerical magnetohydrodynamic (MHD) simulations of a magnetized accretion disk launching trans-Alfvenic jets. These simulations, performed in a 2.5 dimensional time-dependent polytropic resistive MHD framework, model a resistive accretion disk threaded by an initial vertical magnetic field. The resistivity is only important inside the disk, and is prescribed as eta = alpha_m V_AH exp(-2Z^2/H^2), where V_A stands for Alfven speed, H is the disk scale height and the coefficient alpha_m is smaller than unity. By performing the simulations over several tens of dynamical disk timescales, we show that the launching of a collimated outflow occurs self-consistently and the ejection of matter is continuous and quasi-stationary. These are the first ever simulations of resistive accretion disks launching non-transient ideal MHD jets. Roughly 15% of accreted mass is persistently ejected. This outflow is safely characterized as a jet since the flow becomes super-fastmagnetosonic, well-collimated and reaches a q...
Xiong, Ming; Wang, Yuming; Wang, Shui; 10.1029/2005JA011593
2009-01-01
Numerical studies have been performed to interpret the observed "shock overtaking magnetic cloud (MC)" event by a 2.5 dimensional magnetohydrodynamic (MHD) model in heliospheric meridional plane. Results of an individual MC simulation show that the MC travels with a constant bulk flow speed. The MC is injected with very strong inherent magnetic field over that in the ambient flow and expands rapidly in size initially. Consequently, the diameter of MC increases in an asymptotic speed while its angular width contracts gradually. Meanwhile, simulations of MC-shock interaction are also presented, in which both a typical MC and a strong fast shock emerge from the inner boundary and propagate along heliospheric equator, separated by an appropriate interval. The results show that the shock firstly catches up with the preceding MC, then penetrates through the MC, and finally merges with the MC-driven shock into a stronger compound shock. The morphologies of shock front in interplanetary space and MC body behave as a ...
Wang, Peng
2007-01-01
Using magnetohydrodynamic (MHD) adaptive mesh refinement simulations, we study the formation and early evolution of disk galaxies with a magnetized interstellar medium. For a $10^{10}$ \\msun halo with initial NFW dark matter and gas profiles, we impose a uniform $10^{-9}$ G magnetic field and follow its collapse, disk formation and evolution up to 1 Gyr. Comparing to a purely hydrodynamic simulation with the same initial condition, we find that a protogalactic field of this strength does not significantly influence the global disk properties. At the same time, the initial magnetic fields are quickly amplified by the differentially rotating turbulent disk. After the initial rapid amplification lasting $\\sim500$ Myr, subsequent field amplification appears self-regulated. As a result, highly magnetized material begin to form above and below the disk. Interestingly, the field strengths in the self-regulated regime agrees well with the observed fields in the Milky Way galaxy both in the warm and the cold HI phase ...
Rubin, M.; Jia, X.; Altwegg, K.; Combi, M. R.; Daldorff, L. K. S.; Gombosi, T. I.; Khurana, K. K.; Kivelson, M.; Tenishev, V.; Toth, G.; van der Holst, B.; Wurz, P.
2015-12-01
Jupiter's moon Europa is believed to contain a subsurface water ocean whose finite electrical conductance imposes clear induction signatures on the magnetic field in its surroundings. The evidence rests heavily on measurements performed by the magnetometer on board the Galileo spacecraft during multiple flybys of the moon. Europa's interaction with the Jovian magnetosphere has become a major target of research in planetary science, partly because of the potential of a salty ocean to harbor life outside our own planet. Thus it is of considerable interest to develop numerical simulations of the Europa-Jupiter interaction that can be compared with data in order to refine our knowledge of Europa's subsurface structure. In this presentation we show aspects of Europa's interaction with the Jovian magnetosphere extracted from a multifluid magnetohydrodynamics (MHD) code BATS-R-US recently developed at the University of Michigan. The model dynamically separates magnetospheric and pick-up ions and is capable of capturing some of the physics previously accessible only to kinetic approaches. The model utilizes an adaptive grid to maintain the high spatial resolution on the surface required to resolve the portion of Europa's neutral atmosphere with a scale height of a few tens of kilometers that is in thermal equilibrium. The model also derives the electron temperature, which is crucial to obtain the local electron impact ionization rates and hence the plasma mass loading in Europa's atmosphere. We compare our results with observations made by the plasma particles and fields instruments on the Galileo spacecraft to validate our model. We will show that multifluid MHD is able to reproduce the basic features of the plasma moments and magnetic field observations obtained during the Galileo E4 and E26 flybys at Europa.
无
2009-01-01
An asynchronous and parallel time-marching method for three-dimensional (3D) time-dependent magnetohydrodynamic (MHD) simulation is used for large-scale solar wind simulation. It uses different local time steps in the corona and the heliosphere according to the local Courant-Friedrichs-Levy (CFL) conditions. The solar wind background with observed solar photospheric magnetic field as input is first presented. The simulation time for the background solar wind by using the asynchronous method is <1/6 of that by using the normal synchronous time-marching method with the same computation precision. Then, we choose the coronal mass ejection (CME) event of 13 November, 2003 as a test case. The time-dependent variations of the pressure and the velocity configured from a CME model at the inner boundary are applied to generate transient structures in order to study the dynamical interaction of a CME with the background solar wind flow between 1 and 230 Rs. This time-marching method is very effective in terms of computation time for large-scale 3D time-dependent numerical MHD problem. In this validation study, we find that this 3D MHD model, with the asynchronous and parallel time-marching method, provides a relatively satisfactory comparison with the ACE spacecraft obser- vations at L1 point.
COMPARISONS OF COSMOLOGICAL MAGNETOHYDRODYNAMIC GALAXY CLUSTER SIMULATIONS TO RADIO OBSERVATIONS
Xu Hao; Li Hui; Collins, David C. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Govoni, Federica; Murgia, Matteo [INAF-Osservatorio Astronomico di Cagliari, Poggio dei Pini, Strada 54, I-09012 Capoterra (Italy); Norman, Michael L. [Center for Astrophysics and Space Science, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (United States); Cen Renyue [Department of Astrophysical Science, Princeton University, Princeton, NJ 08544 (United States); Feretti, Luigina; Giovannini, Gabriele, E-mail: hao_xu@lanl.gov, E-mail: hli@lanl.gov, E-mail: dccollins@lanl.gov, E-mail: mlnorman@ucsd.edu, E-mail: fgovoni@oa-cagliari.inaf.it, E-mail: matteo@oa-cagliari.inaf.it, E-mail: cen@astro.princeton.edu, E-mail: lferetti@ira.inaf.it, E-mail: ggiovann@ira.inaf.it [INAF-Istituto di Radioastronomia, Via P.Gobetti 101, I-40129 Bologna (Italy)
2012-11-01
Radio observations of galaxy clusters show that there are {mu}G magnetic fields permeating the intracluster medium (ICM), but it is hard to accurately constrain the strength and structure of the magnetic fields without the help of advanced computer simulations. We present qualitative comparisons of synthetic Very Large Array observations of simulated galaxy clusters to radio observations of Faraday rotation measure (RM) and radio halos. The cluster formation is modeled using adaptive mesh refinement magnetohydrodynamic simulations with the assumption that the initial magnetic fields are injected into the ICM by active galactic nuclei (AGNs) at high redshift. In addition to simulated clusters in Xu et al., we present a new simulation with magnetic field injections from multiple AGNs. We find that the cluster with multiple injection sources is magnetized to a similar level as in previous simulations with a single AGN. The RM profiles from simulated clusters, both |RM| and the dispersion of RM ({sigma}{sub RM}), are consistent at a first order with the radial distribution from observations. The correlations between the {sigma}{sub RM} and X-ray surface brightness from simulations are in a broad agreement with the observations, although there is an indication that the simulated clusters could be slightly overdense and less magnetized with respect to those in the observed sample. In addition, the simulated radio halos agree with the observed correlations between the radio power versus the cluster X-ray luminosity and between the radio power versus the radio halo size. These studies show that the cluster-wide magnetic fields that originate from AGNs and are then amplified by the ICM turbulence match observations of magnetic fields in galaxy clusters.
Grete, P; Schmidt, W; Schleicher, D R G
2016-01-01
Even though compressible plasma turbulence is encountered in many astrophysical phenomena, its effect is often not well understood. Furthermore, direct numerical simulations are typically not able to reach the extreme parameters of these processes. For this reason, large-eddy simulations (LES), which only simulate large and intermediate scales directly, are employed. The smallest, unresolved scales and the interactions between small and large scales are introduced by means of a subgrid-scale (SGS) model. We propose and verify a new set of nonlinear SGS closures for future application as an SGS model in LES of compressible magnetohydrodynamics (MHD). We use 15 simulations (without explicit SGS model) of forced, isotropic, homogeneous turbulence with varying sonic Mach number $\\mathrm{M_s} = 0.2$ to $20$ as reference data for the most extensive \\textit{a priori} tests performed so far in literature. In these tests we explicitly filter the reference data and compare the performance of the new closures against th...
Mikellides, Ioannis G; Yorke, Harold W
2010-01-01
We present results from numerical simulations of the cooling-core cluster A2199 produced by the two-dimensional (2-D) resistive magnetohydrodynamics (MHD) code MACH2. In our simulations we explore the effect of anisotropic thermal conduction on the energy balance of the system. The results from idealized cases in 2-D axisymmetric geometry underscore the importance of the initial plasma density in ICM simulations, especially the near-core values since the radiation cooling rate is proportional to ${n_e}^2$. Heat conduction is found to be non-effective in preventing catastrophic cooling in this cluster. In addition we performed 2-D planar MHD simulations starting from initial conditions deliberately violating both thermal balance and hydrostatic equilibrium in the ICM, to assess contributions of the convective terms in the energy balance of the system against anisotropic thermal conduction. We find that in this case work done by the pressure on the plasma can dominate the early evolution of the internal energy ...
Comparison of magnetic island stabilization strategies from magneto-hydrodynamic simulations
Février, O.; Maget, P.; Lütjens, H.; Beyer, P.
2017-04-01
The degradation of plasma confinement in tokamaks caused by magnetic islands motivates to better understand their possible suppression using electron cyclotron current drive (ECCD) and to investigate the various strategies relevant for this purpose. In this work, we evaluate the efficiency of several control methods through nonlinear simulations of this process with the toroidal magneto-hydro-dynamic (MHD) code XTOR-2F (Lütjens and Luciani 2010 J. Comput. Phys. 229 8130–43), which has been extended to incorporate in Ohm’s law a source term modeling the driven current resulting from the interaction of the EC waves with the plasma. A basic control system has been implemented in the code, allowing testing of advanced strategies that require feedback on island position or phase. We focus in particular on the robustness of the control strategies towards uncertainties that apply to the control and ECCD systems, such as the risk of misalignment of the current deposition or the possible inability to generate narrow current deposition.
Masson, S.
2010-10-15
Solar activity manifests itself through highly dynamical events, such as flares and coronal mass ejections, which result in energy release by magnetic reconnection. This thesis focuses on two manifestations of this energy release: solar energetic particles and dynamics of magnetic reconnection. The first part of my work consists in the detailed temporal analysis of several electromagnetic signatures, produced by energetic particles in the solar atmosphere, with respect to the energetic particle flux at Earth. Using multi-instrument observations, I highlighted that particles can be accelerated by the flare to relativistic energies during a specific episode of acceleration in the impulsive phase. This showed that particles traveled a longer path length than the theoretical length generally assumed. Using in-situ measurements of magnetic field and plasma, I identified the interplanetary magnetic field for 10 particle events, and performing a velocity dispersion analysis I obtained the interplanetary length traveled by particles. I showed that the magnetic structure of the interplanetary medium play a crucial role in the association of the particle flux at Earth and the acceleration signatures of particles at the Sun. The second part of my work focuses on the dynamics of magnetic reconnection. Observationally, the best evidence for magnetic reconnection is the appearance of brightnesses at the solar surface. Performing the first data-driven 3 dimensional magneto-hydrodynamic (MHD) simulation of an observed event, I discovered that the evolution of brightnesses can be explained by the succession of two different reconnection regimes, induced by a new topological association where null-point separatrix lines are embedded in quasi-separatrix layers. This new topological association induces a change of field line connectivity, but also a continuous reconnection process, leading to an apparent slipping motion of reconnected field lines. From a MHD simulation I showed that
Hayashi, Keiji; Liu, Yang; Bobra, Monica G; Sun, Xudong D; Norton, Aimee A
2015-01-01
Time-dependent three-dimensional magnetohydrodynamics (MHD) simulation modules are implemented at the Joint Science Operation Center (JSOC) of Solar Dynamics Observatory (SDO). The modules regularly produce three-dimensional data of the time-relaxed minimum-energy state of the solar corona using global solar-surface magnetic-field maps created from Helioseismic Magnetic Imager (HMI) full-disk magnetogram data. With the assumption of polytropic gas with specific heat ratio of 1.05, three types of simulation products are currently generated: i) simulation data with medium spatial resolution using the definitive calibrated synoptic map of the magnetic field with a cadence of one Carrington rotation, ii) data with low spatial resolution using the definitive version of the synchronic frame format of the magnetic field, with a cadence of one day, and iii) low-resolution data using near-real-time (NRT) synchronic format of the magnetic field on daily basis. The MHD data available in the JSOC database are three-dimen...
Observations and Simulations of Magnetohydrodynamic Turbulence in the Solar Wind
Goldstein, M. L.
2006-12-01
Alfvénic fluctuations are a ubiquitous component of the solar wind. Evidence from many spacecraft indicates that the fluctuations are convected out of the solar corona with relatively flat power spectra and constitute a source of free energy for a turbulent cascade of magnetic and kinetic energy to high wave numbers. Observations and simulations support the conclusion that the cascade evolves most rapidly in the vicinity of velocity shears and current sheets. Numerical solutions of the magnetohydrodynamic equations have elucidated the role of expansion on the evolution of the turbulence. Such studies are clarifying not only how a turbulent cascade develops, but also the nature of the symmetries of the turbulence. Of particular interest is the origin of the two-component correlation function of magnetic fluctuations that was deduced from ISEE-3 data. A central issue to be resolved is whether the correlation function indicates the existence of a quasi-two- dimensional component of the turbulence, or reflects another origin, such as pressure-balanced structures or small velocity shears. In our efforts to simulate solar wind turbulence we have included a tilted rotating current heliospheric sheet as well as variety of waves (e.g., Alfvénic, quasi-two-dimensional, pressure balance structures) and microstreams. These simulations have replicated many of the observations, but challenges remain.
3D MHD Simulations of Spheromak Compression
Stuber, James E.; Woodruff, Simon; O'Bryan, John; Romero-Talamas, Carlos A.; Darpa Spheromak Team
2015-11-01
The adiabatic compression of compact tori could lead to a compact and hence low cost fusion energy system. The critical scientific issues in spheromak compression relate both to confinement properties and to the stability of the configuration undergoing compression. We present results from the NIMROD code modified with the addition of magnetic field coils that allow us to examine the role of rotation on the stability and confinement of the spheromak (extending prior work for the FRC). We present results from a scan in initial rotation, from 0 to 100km/s. We show that strong rotational shear (10km/s over 1cm) occurs. We compare the simulation results with analytic scaling relations for adiabatic compression. Work performed under DARPA grant N66001-14-1-4044.
Data-driven MHD simulation of a solar eruption observed in NOAA Active Region 12158
Lee, Hwanhee; Magara, Tetsuya; Kang, Jihye
2017-08-01
We present a data-driven magnetohydrodynamic (MHD) simulation of a solar eruption where the dynamics of a background solar wind is incorporated. The background solar wind exists in the real solar atmosphere, which continuously transports magnetized plasma toward the interplanetary space. This suggests that it may play a role in producing a solar eruption. We perform a simulation for NOAA AR 12158 accompanied with X1.6-class flare and CME on 2014 September 10. We construct a magnetohydrostatic state used as the initial state of data-driven simulation, which is composed of a nonlinear force-free field (NLFFF) derived from observation data of photospheric vector magnetic field and a hydrostatic atmosphere with prescribed distributions of temperature and gravity. We then reduce the gas pressure well above the solar surface to drive a solar wind. As a result, a magnetic field gradually evolves during an early phase, and eventually eruption is observed. To figure out what causes the transition from gradual evolution to eruption, we analyze the temporal development of force distribution and geometrical shape of magnetic field lines. The result suggests that the curvature and the scale height of a coronal magnetic field play an important role in determining its dynamic state.
Kessar, M.; Balarac, G.; Plunian, F.
2016-10-01
In this work, the accuracy of various models used in large-eddy simulations (LES) of incompressible magnetohydrodynamic (MHD) turbulence is evaluated. Particular attention is devoted to the capabilities of models to reproduce the transfers between resolved grid- and subgrid-scales. The exact global balance of MHD turbulent flows is first evaluated from direct numerical simulation (DNS) database. This balance is controlled by the transfers between scales and between kinetic and magnetic energies. Two cases of forced homogeneous isotropic MHD turbulent flows are considered, with and without injecting large scale helicity. The strong helical case leads to domination of the magnetic energy due to an inverse cascade [A. Brandenburg, Astrophys. J. 550(2), 824 (2001); N. E. Haugen et al., Phys. Rev. E 70(1), 016308 (2004)]. The energy transfers predicted by various models are then compared with the transfer extracted from DNS results. This allows to discriminate models classically used for LES of MHD turbulence. In the non-helical case, the Smagorinsky-like model [M. L. Theobald et al., Phys. Plasmas 1, 3016 (1994)] and a mixed model are able to perform stable LES, but the helical case is a more demanding test and all the models lead to unstable simulations.
Intensity contrast from MHD simulations and from HINODE observations
Afram, N; Solanki, S K; Schuessler, M; Lagg, A; Voegler, A
2010-01-01
Changes in the solar surface area covered by small-scale magnetic elements are thought to cause long-term changes in the solar spectral irradiance, which are important for determining the impact on Earth's climate. To study the effect of small-scale magnetic elements on total and spectral irradiance, we derive their contrasts from 3-D MHD simulations of the solar atmosphere. Such calculations are necessary since measurements of small-scale flux tube contrasts are confined to a few wavelengths and suffer from scattered light and instrument defocus, even for space observations. To test the contrast calculations, we compare rms contrasts from simulations with those obtained with the broad-band filter imager mounted on the Solar Optical Telescope (SOT) onboard the Hinode satellite and also analyse centre-to-limb variations (CLV). The 3-D MHD simulations include the interaction between convection and magnetic flux tubes. They have been run with non-grey radiative transfer using the MURaM code. Simulations have an ...
Global simulations of protoplanetary disks with net magnetic flux. I. Non-ideal MHD case
Béthune, William; Lesur, Geoffroy; Ferreira, Jonathan
2017-04-01
Context. The planet-forming region of protoplanetary disks is cold, dense, and therefore weakly ionized. For this reason, magnetohydrodynamic (MHD) turbulence is thought to be mostly absent, and another mechanism has to be found to explain gas accretion. It has been proposed that magnetized winds, launched from the ionized disk surface, could drive accretion in the presence of a large-scale magnetic field. Aims: The efficiency and the impact of these surface winds on the disk structure is still highly uncertain. We present the first global simulations of a weakly ionized disk that exhibits large-scale magnetized winds. We also study the impact of self-organization, which was previously demonstrated only in non-stratified models. Methods: We perform numerical simulations of stratified disks with the PLUTO code. We compute the ionization fraction dynamically, and account for all three non-ideal MHD effects: ohmic and ambipolar diffusions, and the Hall drift. Simplified heating and cooling due to non-thermal radiation is also taken into account in the disk atmosphere. Results: We find that disks can be accreting or not, depending on the configuration of the large-scale magnetic field. Magnetothermal winds, driven both by magnetic acceleration and heating of the atmosphere, are obtained in the accreting case. In some cases, these winds are asymmetric, ejecting predominantly on one side of the disk. The wind mass loss rate depends primarily on the average ratio of magnetic to thermal pressure in the disk midplane. The non-accreting case is characterized by a meridional circulation, with accretion layers at the disk surface and decretion in the midplane. Finally, we observe self-organization, resulting in axisymmetric rings of density and associated pressure "bumps". The underlying mechanism and its impact on observable structures are discussed.
SOLAR WIND COLLISIONAL AGE FROM A GLOBAL MAGNETOHYDRODYNAMICS SIMULATION
Chhiber, R; Usmanov, AV; Matthaeus, WH [Department of Physics and Astronomy and Bartol Research Institute, University of Delaware, Newark, DE 19716 (United States); Goldstein, ML [NASA Goddard Space Flight Center, Greenbelt MD 20771 (United States)
2016-04-10
Simple estimates of the number of Coulomb collisions experienced by the interplanetary plasma to the point of observation, i.e., the “collisional age”, can be usefully employed in the study of non-thermal features of the solar wind. Usually these estimates are based on local plasma properties at the point of observation. Here we improve the method of estimation of the collisional age by employing solutions obtained from global three-dimensional magnetohydrodynamics simulations. This enables evaluation of the complete analytical expression for the collisional age without using approximations. The improved estimation of the collisional timescale is compared with turbulence and expansion timescales to assess the relative importance of collisions. The collisional age computed using the approximate formula employed in previous work is compared with the improved simulation-based calculations to examine the validity of the simplified formula. We also develop an analytical expression for the evaluation of the collisional age and we find good agreement between the numerical and analytical results. Finally, we briefly discuss the implications for an improved estimation of collisionality along spacecraft trajectories, including Solar Probe Plus.
Inoue, S; Magara, T; Choe, G S; Park, Y D
2014-01-01
We performed a magnetohydrodynamic (MHD) simulation using a nonlinear force-free field (NLFFF) in solar active region 11158 to clarify the dynamics of an X2.2-class solar flare. We found that the NLFFF never shows the drastic dynamics seen in observations, i.e., it is in stable state against the perturbations. On the other hand, the MHD simulation shows that when the strongly twisted lines are formed at close to the neutral line, which are produced via tether-cutting reconnection in the twisted lines of the NLFFF, consequently they erupt away from the solar surface via the complicated reconnection. This result supports the argument that the strongly twisted lines formed in NLFFF via tether-cutting reconnection are responsible for breaking the force balance condition of the magnetic fields in the lower solar corona. In addition to this the dynamical evolution of these field lines reveals that at the initial stage the spatial pattern of the footpoints caused by the reconnection of the twisted lines appropriatel...
Yuan, Xuefei
2012-07-01
Numerical simulations of the four-field extended magnetohydrodynamics (MHD) equations with hyper-resistivity terms present a difficult challenge because of demanding spatial resolution requirements. A time-dependent sequence of . r-refinement adaptive grids obtained from solving a single Monge-Ampère (MA) equation addresses the high-resolution requirements near the . x-point for numerical simulation of the magnetic reconnection problem. The MHD equations are transformed from Cartesian coordinates to solution-defined curvilinear coordinates. After the application of an implicit scheme to the time-dependent problem, the parallel Newton-Krylov-Schwarz (NKS) algorithm is used to solve the system at each time step. Convergence and accuracy studies show that the curvilinear solution requires less computational effort than a pure Cartesian treatment. This is due both to the more optimal placement of the grid points and to the improved convergence of the implicit solver, nonlinearly and linearly. The latter effect, which is significant (more than an order of magnitude in number of inner linear iterations for equivalent accuracy), does not yet seem to be widely appreciated. © 2012 Elsevier Inc.
Investigating Magnetic Activity in the Galactic Centre by Global MHD Simulation
Suzuki, Takeru K.; Fukui, Yasuo; Torii, Kazufumi; Machida, Mami; Matsumoto, Ryoji; Kakiuchi, Kensuke
2017-01-01
By performing a global magnetohydrodynamical (MHD) simulation for the Milky Way with an axisymmetric gravitational potential, we propose that spatially dependent amplification of magnetic fields possibly explains the observed noncircular motion of the gas in the Galactic centre (GC) region. The radial distribution of the rotation frequency in the bulge region is not monotonic in general. The amplification of the magnetic field is enhanced in regions with stronger differential rotation, because magnetorotational instability and field-line stretching are more effective. The strength of the amplified magnetic field reaches >~ 0.5 mG, and radial flows of the gas are excited by the inhomogeneous transport of angular momentum through turbulent magnetic field that is amplified in a spatially dependent manner. As a result, the simulated position-velocity diagram exhibits a time-dependent asymmetric parallelogram-shape owing to the intermittency of the magnetic turbulence; the present model provides a viable alternative to the bar-potential-driven model for the parallelogram shape of the central molecular zone. In addition, Parker instability (magnetic buoyancy) creates vertical magnetic structure, which would correspond to observed molecular loops, and frequently excited vertical flows. Furthermore, the time-averaged net gas flow is directed outward, whereas the flows are highly time dependent, which would contribute to the outflow from the bulge.
Benyo, Theresa Louise
Historically, the National Aeronautics and Space Administration (NASA) has used rocket-powered vehicles as launch vehicles for access to space. A familiar example is the Space Shuttle launch system. These vehicles carry both fuel and oxidizer onboard. If an external oxidizer (such as the Earth's atmosphere) is utilized, the need to carry an onboard oxidizer is eliminated, and future launch vehicles could carry a larger payload into orbit at a fraction of the total fuel expenditure. For this reason, NASA is currently researching the use of air-breathing engines to power the first stage of two-stage-to-orbit hypersonic launch systems. Removing the need to carry an onboard oxidizer leads also to reductions in total vehicle weight at liftoff. This in turn reduces the total mass of propellant required, and thus decreases the cost of carrying a specific payload into orbit or beyond. However, achieving hypersonic flight with air-breathing jet engines has several technical challenges. These challenges, such as the mode transition from supersonic to hypersonic engine operation, are under study in NASA's Fundamental Aeronautics Program. One propulsion concept that is being explored is a magnetohydrodynamic (MHD) energy- bypass generator coupled with an off-the-shelf turbojet/turbofan. It is anticipated that this engine will be capable of operation from takeoff to Mach 7 in a single flowpath without mode transition. The MHD energy bypass consists of an MHD generator placed directly upstream of the engine, and converts a portion of the enthalpy of the inlet flow through the engine into electrical current. This reduction in flow enthalpy corresponds to a reduced Mach number at the turbojet inlet so that the engine stays within its design constraints. Furthermore, the generated electrical current may then be used to power aircraft systems or an MHD accelerator positioned downstream of the turbojet. The MHD accelerator operates in reverse of the MHD generator, re-accelerating the
Magnetohydrodynamical simulations of a tidal disruption in general relativity
Sadowski, A; Gafton, E; Rosswog, S; Abarca, D
2015-01-01
We perform hydro- and magnetohydrodynamical general relativistic simulations of a tidal disruption of a $0.1\\,M_\\odot$ red dwarf approaching a $10^5\\,M_\\odot$ non-rotating massive black hole on a close (impact parameter $\\beta=10$) elliptical (eccentricity $e=0.97$) orbit. We track the debris self-interaction, circularization, and the accompanying accretion through the black hole horizon. We find that the relativistic precession leads to the formation of a self-crossing shock. The dissipated kinetic energy heats up the incoming debris and efficiently generates a quasi-spherical outflow. The self-interaction is modulated because of the feedback exerted by the flow on itself. The debris quickly forms a thick, almost marginally bound disc that remains turbulent for many orbital periods. Initially, the accretion through the black hole horizon results from the self-interaction, while in the later stages it is dominated by the debris originally ejected in the shocked region, as it gradually falls back towards the h...
Magnetohydrodynamic simulation of the inverse-pinch plasma discharge
Esaulov, A.; Bauer, B. S.; Lindemuth, I. R.; Makhin, V.; Presura, R.; Ryutov, D. D.; Sheehey, P. T.; Siemon, R. E.; Sotnikov, V. I.
2004-04-01
A wall confined plasma in an inverse-pinch configuration holds potential as a plasma target for Magnetized Target Fusion (MTF) as well as a simple geometry to study wall-confined plasma. An experiment is planned to study the inverse-pinch configuration using the Zebra Z pinch [B. S. Bauer et al., AIP Conference Proceedings Vol. 409 (American Institute of Physics, Melville, 1997), p. 153] of the Nevada Terawatt Facility at the University of Nevada, Reno (UNR). The dynamics of the discharge formation have been analyzed using analytic models and numerical methods. Strong heating occurs by thermalization of directed energy when an outward moving current sheet (the inverse pinch effect) collides with the outer wall of the experimental chamber. Two-dimensional magnetohydrodynamic simulations show Rayleigh-Taylor and Richtmyer-Meshkov like modes of instability, as expected because of the shock acceleration during plasma formation phase. The instabilities are not disruptive, but give rise to a mild level of turbulence. The conclusion from this work is that an interesting experiment relevant to wall confinement for MTF could be done using existing equipment at UNR.
Boquist, Carl W.; Marchant, David D.
1978-01-01
A ceramic-metal composite suitable for use in a high-temperature environment consists of a refractory ceramic matrix containing 10 to 50 volume percent of a continuous high-temperature metal reinforcement. In a specific application of the composite, as an electrode in a magnetohydrodynamic generator, the one surface of the electrode which contacts the MHD fluid may have a layer of varying thickness of nonreinforced refractory ceramic for electrode temperature control. The side walls of the electrode may be coated with a refractory ceramic insulator. Also described is an electrode-insulator system for a MHD channel.
On the characterization of magnetic reconnection in global MHD simulations
T. V. Laitinen
2006-11-01
Full Text Available The conventional definition of reconnection rate as the electric field parallel to an x-line is problematic in global MHD simulations for several reasons: the x-line itself may be hard to find in a non-trivial geometry such as at the magnetopause, and the lack of realistic resistivity modelling leaves us without reliable non-convective electric field. In this article we describe reconnection characterization methods that avoid those problems and are practical to apply in global MHD simulations. We propose that the reconnection separator line can be identified as the region where magnetic field lines of different topological properties meet, rather than by local considerations. The global convection associated with reconnection is then quantified by calculating the transfer of mass, energy or magnetic field across the boundary of closed and open field line regions. The extent of the diffusion region is determined from the destruction of electromagnetic energy, given by the divergence of the Poynting vector. Integrals of this energy conversion provide a way to estimate the total reconnection efficiency.
Coupled simulation of kinetic pedestal growth and MHD ELM crash
Park, G [Courant Institute of Mathematical Sciences, New York University (United States); Cummings, J [California Institute of Technology (United States); Chang, C S [Courant Institute of Mathematical Sciences, New York University (United States); Podhorszki, N [Univ. California at Davis (United States); Klasky, S [ORNL (United States); Ku, S [Courant Institute of Mathematical Sciences, New York University (United States); Pankin, A [Lehigh Univ. (United States); Samtaney, R [Princeton Plasma Physics Laboratory (United States); Shoshani, A [LBNL (United States); Snyder, P [General Atomics (United States); Strauss, H [Courant Institute of Mathematical Sciences, New York University (United States); Sugiyama, L [MIT (United States)
2007-07-15
Edge pedestal height and the accompanying ELM crash are critical elements of ITER physics yet to be understood and predicted through high performance computing. An entirely self-consistent first principles simulation is being pursued as a long term research goal, and the plan is planned for completion in time for ITER operation. However, a proof-of-principle work has already been established using a computational tool that employs the best first principles physics available at the present time. A kinetic edge equilibrium code XGC0, which can simulate the neoclassically dominant pedestal growth from neutral ionization (using a phenomenological residual turbulence diffusion motion superposed upon the neoclassical particle motion) is coupled to an extended MHD code M3D, which can perform the nonlinear ELM crash. The stability boundary of the pedestal is checked by an ideal MHD linear peeling-ballooning code, which has been validated against many experimental data sets for the large scale (type I) ELMs onset boundary. The coupling workflow and scientific results to be enabled by it are described.
McKinney, Jonathan C.; Tchekhovskoy, Alexander; Blandford, Roger D.
2012-04-26
Black hole (BH) accretion flows and jets are qualitatively affected by the presence of ordered magnetic fields. We study fully three-dimensional global general relativistic magnetohydrodynamic (MHD) simulations of radially extended and thick (height H to cylindrical radius R ratio of |H/R| {approx} 0.2-1) accretion flows around BHs with various dimensionless spins (a/M, with BH mass M) and with initially toroidally-dominated ({phi}-directed) and poloidally-dominated (R-z directed) magnetic fields. Firstly, for toroidal field models and BHs with high enough |a/M|, coherent large-scale (i.e. >> H) dipolar poloidal magnetic flux patches emerge, thread the BH, and generate transient relativistic jets. Secondly, for poloidal field models, poloidal magnetic flux readily accretes through the disk from large radii and builds-up to a natural saturation point near the BH. While models with |H/R| {approx} 1 and |a/M| {le} 0.5 do not launch jets due to quenching by mass infall, for sufficiently high |a/M| or low |H/R| the polar magnetic field compresses the inflow into a geometrically thin highly non-axisymmetric 'magnetically choked accretion flow' (MCAF) within which the standard linear magneto-rotational instability is suppressed. The condition of a highly-magnetized state over most of the horizon is optimal for the Blandford-Znajek mechanism that generates persistent relativistic jets with and 100% efficiency for |a/M| {approx}> 0.9. A magnetic Rayleigh-Taylor and Kelvin-Helmholtz unstable magnetospheric interface forms between the compressed inflow and bulging jet magnetosphere, which drives a new jet-disk oscillation (JDO) type of quasi-periodic oscillation (QPO) mechanism. The high-frequency QPO has spherical harmonic |m| = 1 mode period of {tau} {approx} 70GM/c{sup 3} for a/M {approx} 0.9 with coherence quality factors Q {approx}> 10. Overall, our models are qualitatively distinct from most prior MHD simulations (typically, |H/R| << 1 and poloidal flux is
M. Palmroth
2005-09-01
Full Text Available We investigate the Northern Hemisphere Joule heating from several observational and computational sources with the purpose of calibrating a previously identified functional dependence between solar wind parameters and ionospheric total energy consumption computed from a global magnetohydrodynamic (MHD simulation (Grand Unified Magnetosphere Ionosphere Coupling Simulation, GUMICS-4. In this paper, the calibration focuses on determining the amount and temporal characteristics of Northern Hemisphere Joule heating. Joule heating during a substorm is estimated from global observations, including electric fields provided by Super Dual Auroral Network (SuperDARN and Pedersen conductances given by the ultraviolet (UV and X-ray imagers on board the Polar satellite. Furthermore, Joule heating is assessed from several activity index proxies, large statistical surveys, assimilative data methods (AMIE, and the global MHD simulation GUMICS-4. We show that the temporal and spatial variation of the Joule heating computed from the GUMICS-4 simulation is consistent with observational and statistical methods. However, the different observational methods do not give a consistent estimate for the magnitude of the global Joule heating. We suggest that multiplying the GUMICS-4 total Joule heating by a factor of 10 approximates the observed Joule heating reasonably well. The lesser amount of Joule heating in GUMICS-4 is essentially caused by weaker Region 2 currents and polar cap potentials. We also show by theoretical arguments that multiplying independent measurements of averaged electric fields and Pedersen conductances yields an overestimation of Joule heating.
Keywords. Ionosphere (Auroral ionosphere; Modeling and forecasting; Electric fields and currents
Palmroth, M.; Janhunen, P.; Pulkkinen, T. I.; Aksnes, A.; Lu, G.; Østgaard, N.; Watermann, J.; Reeves, G. D.; Germany, G. A.
2005-09-01
We investigate the Northern Hemisphere Joule heating from several observational and computational sources with the purpose of calibrating a previously identified functional dependence between solar wind parameters and ionospheric total energy consumption computed from a global magnetohydrodynamic (MHD) simulation (Grand Unified Magnetosphere Ionosphere Coupling Simulation, GUMICS-4). In this paper, the calibration focuses on determining the amount and temporal characteristics of Northern Hemisphere Joule heating. Joule heating during a substorm is estimated from global observations, including electric fields provided by Super Dual Auroral Network (SuperDARN) and Pedersen conductances given by the ultraviolet (UV) and X-ray imagers on board the Polar satellite. Furthermore, Joule heating is assessed from several activity index proxies, large statistical surveys, assimilative data methods (AMIE), and the global MHD simulation GUMICS-4. We show that the temporal and spatial variation of the Joule heating computed from the GUMICS-4 simulation is consistent with observational and statistical methods. However, the different observational methods do not give a consistent estimate for the magnitude of the global Joule heating. We suggest that multiplying the GUMICS-4 total Joule heating by a factor of 10 approximates the observed Joule heating reasonably well. The lesser amount of Joule heating in GUMICS-4 is essentially caused by weaker Region 2 currents and polar cap potentials. We also show by theoretical arguments that multiplying independent measurements of averaged electric fields and Pedersen conductances yields an overestimation of Joule heating. Keywords. Ionosphere (Auroral ionosphere; Modeling and forecasting; Electric fields and currents)
Evolutionary Conditions in the Dissipative MHD System Revisited
Inoue, Tsuyoshi
2007-01-01
The evolutionary conditions for the dissipative continuous magnetohydrodynamic (MHD) shocks are studied. We modify Hada's approach in the stability analysis of the MHD shock waves. The matching conditions between perturbed shock structure and asymptotic wave modes shows that all types of the MHD shocks, including the intermediate shocks, are evolutionary and perturbed solutions are uniquely defined. We also adopt our formalism to the MHD shocks in the system with resistivity without viscosity, which is often used in numerical simulation, and show that all types of shocks that are found in the system satisfy the evolutionary condition and perturbed solutions are uniquely defined. These results suggest that the intermediate shocks may appear in reality.
MHD Simulations of Core Collapse Supernovae with Cosmos++
Akiyama, Shizuka
2010-01-01
We performed 2D, axisymmetric, MHD simulations with Cosmos++ in order to examine the growth of the magnetorotational instability (MRI) in core--collapse supernovae. We have initialized a non--rotating 15 solar mass progenitor, infused with differential rotation and poloidal magnetic fields. The collapse of the iron core is simulated with the Shen EOS, and the parametric Ye and entropy evolution. The wavelength of the unstable mode in the post--collapse environment is expected to be only ~ 200 m. In order to achieve the fine spatial resolution requirement, we employed remapping technique after the iron core has collapsed and bounced. The MRI unstable region appears near the equator and angular momentum and entropy are transported outward. Higher resolution remap run display more vigorous overturns and stronger transport of angular momentum and entropy. Our results are in agreement with the earlier work by Akiyama et al. (2003) and Obergaulinger et al. (2009).
2-D viscous magnetohydrodynamics simulation of plasma armatures with the CE/SE method
LI Xin; WENG ChunSheng
2009-01-01
A possible two-dimensional viscous magnetohydrodynamics (MHD) model is applied to investigating the plasma armature in a railgun. The space-time conservation element and solution element (CE/SE) method for solving the coupled Navier-Stokes equations and Maxwell equations was devised. The dis-tributions of physical parameters of the plasma may thus be evaluated. The results show that extremely high pressure can always be observed ahead of the projectile, and the Lorentz force is the main pro-puIsion. The distribution of temperature is in a good agreement with the results predicted by the law of radiation at the boundaries. Due to convection, the circulation patterns of velocity are evident in both the cases considering inviscid and viscous effect. Furthermore, the velocity and acceleration oscillate over time until a new steady state is achieved. This model efficiently captures the salient features of the physical phenomena, and contributes to further studies of MHD problems in plasma armature.
Sub-Alfvenic Non-Ideal MHD Turbulence Simulations with Ambipolar Diffusion: I. Turbulence Statistics
Li, Pak Shing; Klein, Richard I; Fisher, Robert T
2008-01-01
Most numerical investigations on the role of magnetic fields in turbulent molecular clouds (MCs) are based on ideal magneto-hydrodynamics (MHD). However, MCs are weakly ionized, so that the time scale required for the magnetic field to diffuse through the neutral component of the plasma by ambipolar diffusion (AD) can be comparable to the dynamical time scale. We have performed a series of 256^3 and 512^3 simulations on supersonic but sub-Alfvenic turbulent systems with AD using the Heavy-Ion Approximation developed in Li, McKee, & Klein (2006). Our calculations are based on the assumption that the number of ions is conserved, but we show that these results approximately apply to the case of time-dependent ionization in molecular clouds as well. Convergence studies allow us to determine the optimal value of the ionization mass fraction when using the heavy-ion approximation for low Mach number, sub-Alfvenic turbulent systems. We find that ambipolar diffusion steepens the velocity and magnetic power spectr...
Final Report: "Large-Eddy Simulation of Anisotropic MHD Turbulence"
Zikanov, Oleg
2008-06-23
To acquire better understanding of turbulence in flows of liquid metals and other electrically conducting fluids in the presence of steady magnetic fields and to develop an accurate and physically adequate LES (large-eddy simulation) model for such flows. The scientific objectives formulated in the project proposal have been fully completed. Several new directions were initiated and advanced in the course of work. Particular achievements include a detailed study of transformation of turbulence caused by the imposed magnetic field, development of an LES model that accurately reproduces this transformation, and solution of several fundamental questions of the interaction between the magnetic field and fluid flows. Eight papers have been published in respected peer-reviewed journals, with two more papers currently undergoing review, and one in preparation for submission. A post-doctoral researcher and a graduate student have been trained in the areas of MHD, turbulence research, and computational methods. Close collaboration ties have been established with the MHD research centers in Germany and Belgium.
Sunspot Modeling: From Simplified Models to Radiative MHD Simulations
Rolf Schlichenmaier
2011-09-01
Full Text Available We review our current understanding of sunspots from the scales of their fine structure to their large scale (global structure including the processes of their formation and decay. Recently, sunspot models have undergone a dramatic change. In the past, several aspects of sunspot structure have been addressed by static MHD models with parametrized energy transport. Models of sunspot fine structure have been relying heavily on strong assumptions about flow and field geometry (e.g., flux-tubes, "gaps", convective rolls, which were motivated in part by the observed filamentary structure of penumbrae or the necessity of explaining the substantial energy transport required to maintain the penumbral brightness. However, none of these models could self-consistently explain all aspects of penumbral structure (energy transport, filamentation, Evershed flow. In recent years, 3D radiative MHD simulations have been advanced dramatically to the point at which models of complete sunspots with sufficient resolution to capture sunspot fine structure are feasible. Here overturning convection is the central element responsible for energy transport, filamentation leading to fine-structure and the driving of strong outflows. On the larger scale these models are also in the progress of addressing the subsurface structure of sunspots as well as sunspot formation. With this shift in modeling capabilities and the recent advances in high resolution observations, the future research will be guided by comparing observation and theory.
MHD Simulation of the Inner-Heliospheric Magnetic Field
Wiengarten, T; Fichtner, H; Cameron, R; Jiang, J; Kissmann, R; Scherer, K; 10.1029/2012JA018089
2013-01-01
Maps of the radial magnetic field at a heliocentric distance of ten solar radii are used as boundary conditions in the MHD code CRONOS to simulate a 3D inner-heliospheric solar wind emanating from the rotating Sun out to 1 AU. The input data for the magnetic field are the result of solar surface flux transport modelling using observational data of sunspot groups coupled with a current sheet source surface model. Amongst several advancements, this allows for higher angular resolution than that of comparable observational data from synoptic magnetograms. The required initial conditions for the other MHD quantities are obtained following an empirical approach using an inverse relation between flux tube expansion and radial solar wind speed. The computations are performed for representative solar minimum and maximum conditions, and the corresponding state of the solar wind up to the Earths orbit is obtained. After a successful comparison of the latter with observational data, they can be used to drive outer-helio...
Numerical Simulations of Driven Supersonic Relativistic MHD Turbulence
Zrake, Jonathan; 10.1063/1.3621748
2011-01-01
Models for GRB outflows invoke turbulence in relativistically hot magnetized fluids. In order to investigate these conditions we have performed high-resolution three-dimensional numerical simulations of relativistic magneto-hydrodynamical (RMHD) turbulence. We find that magnetic energy is amplified to several percent of the total energy density by turbulent twisting and folding of magnetic field lines. Values of epsilon_B near 1% are thus naturally expected. We study the dependence of saturated magnetic field energy fraction as a function of Mach number and relativistic temperature. We then present power spectra of the turbulent kinetic and magnetic energies. We also present solenoidal (curl-like) and dilatational (divergence-like) power spectra of kinetic energy. We propose that relativistic effects introduce novel couplings between these spectral components. The case we explore in most detail is for equal amounts of thermal and rest mass energy, corresponding to conditions after collisions of shells with re...
Winters, Andrew R.; Derigs, Dominik; Gassner, Gregor J.; Walch, Stefanie
2017-03-01
We describe a unique averaging procedure to design an entropy stable dissipation operator for the ideal magnetohydrodynamic (MHD) and compressible Euler equations. Often in the derivation of an entropy conservative numerical flux function much care is taken in the design and averaging of the entropy conservative numerical flux. We demonstrate in this work that if the discrete dissipation operator is not carefully chosen as well it can have deleterious effects on the numerical approximation. This is particularly true for very strong shocks or high Mach number flows present, for example, in astrophysical simulations. We present the underlying technique of how to construct a unique averaging technique for the discrete dissipation operator. We also demonstrate numerically the increased robustness of the approximation.
Kang, Jihye
2014-01-01
Force-freeness of a solar magnetic field is a key to reconstructing invisible coronal magnetic structure of an emerging flux region on the Sun where active phenomena such as flares and coronal mass ejections frequently occur. We have performed magnetohydrodynamic (MHD) simulations which are adjusted to investigate force-freeness of an emerging magnetic field by using the virial theorem. Our focus is on how the force-free range of an emerging flux region develops and how it depends on the twist of a pre-emerged magnetic field. As an emerging flux region evolves, the upper limit of the force-free range continuously increases while the lower limit is asymptotically reduced to the order of a photospheric pressure scale height above the solar surface. As the twist becomes small the lower limit increases and then seems to be saturated. We also discuss the applicability of the virial theorem to an evolving magnetic structure on the Sun.
Zhang, Weiqun; Wang, Peng
2008-01-01
Magnetic field strengths inferred for relativistic outflows including gamma-ray bursts (GRB) and active galactic nuclei (AGN) are larger than naively expected by orders of magnitude. We present three-dimensional relativistic magnetohydrodynamics (MHD) simulations demonstrating amplification and saturation of magnetic field by a macroscopic turbulent dynamo triggered by the Kelvin-Helmholtz shear instability. We find rapid growth of electromagnetic energy due to the stretching and folding of field lines in the turbulent velocity field resulting from non-linear development of the instability. Using conditions relevant for GRB internal shocks and late phases of GRB afterglow, we obtain amplification of the electromagnetic energy fraction to $\\epsilon_B \\sim 5 \\times 10^{-3}$. This value decays slowly after the shear is dissipated and appears to be largely independent of the initial field strength. The conditions required for operation of the dynamo are the presence of velocity shear and some seed magnetization b...
MHD Remote Numerical Simulations: Evolution of Coronal Mass Ejections
Hernandez-Cervantes, L; Gonzalez-Ponce, A R
2008-01-01
Coronal mass ejections (CMEs) are solar eruptions into interplanetary space of as much as a few billion tons of plasma, with embedded magnetic fields from the Sun's corona. These perturbations play a very important role in solar--terrestrial relations, in particular in the spaceweather. In this work we present some preliminary results of the software development at the Universidad Nacional Autonoma de Mexico to perform Remote MHD Numerical Simulations. This is done to study the evolution of the CMEs in the interplanetary medium through a Web-based interface and the results are store into a database. The new astrophysical computational tool is called the Mexican Virtual Solar Observatory (MVSO) and is aimed to create theoretical models that may be helpful in the interpretation of observational solar data.
MHD simulations with resistive wall and magnetic separatrix
Strauss, H. R.; Pletzer, A.; Park, W.; Jardin, S.; Breslau, J.; Sugiyama, L.
2004-12-01
A number of problems in resistive MHD magnetic fusion simulations describe plasmas with three regions: the core, the halo region, and the resistive boundary. Treating these problems requires maintenance of an adequate resistivity contrast between the core and halo. This can be helped by the presence of a magnetic separatrix, which in any case is required for reasons of realistic modeling. An appropriate mesh generation capability is also needed to include the halo region when a separatrix is present. Finally a resistive wall boundary condition is required, to allow both two dimensional and three dimensional magnetic perturbations to penetrate the wall. Preliminary work is presented on halo current simulations in ITER. The first step is the study of VDE (vertical displacement event) instabilities. The growth rate is consistent with scaling inversely proportional to the resistive wall penetration time. The simulations have resistivity proportional to the -3/2 power of the temperature. Simulations have been done with resistivity contrast between the plasma core and wall of 1000 times, to model the vacuum region between the core and resistive shell. Some 3D simulations are shown of disruptions competing with VDEs. Toroidal peaking factors are up to about 3.
Realistic radiative MHD simulation of a solar flare
Rempel, Matthias D.; Cheung, Mark; Chintzoglou, Georgios; Chen, Feng; Testa, Paola; Martinez-Sykora, Juan; Sainz Dalda, Alberto; DeRosa, Marc L.; Viktorovna Malanushenko, Anna; Hansteen, Viggo H.; De Pontieu, Bart; Carlsson, Mats; Gudiksen, Boris; McIntosh, Scott W.
2017-08-01
We present a recently developed version of the MURaM radiative MHD code that includes coronal physics in terms of optically thin radiative loss and field aligned heat conduction. The code employs the "Boris correction" (semi-relativistic MHD with a reduced speed of light) and a hyperbolic treatment of heat conduction, which allow for efficient simulations of the photosphere/corona system by avoiding the severe time-step constraints arising from Alfven wave propagation and heat conduction. We demonstrate that this approach can be used even in dynamic phases such as a flare. We consider a setup in which a flare is triggered by flux emergence into a pre-existing bipolar active region. After the coronal energy release, efficient transport of energy along field lines leads to the formation of flare ribbons within seconds. In the flare ribbons we find downflows for temperatures lower than ~5 MK and upflows at higher temperatures. The resulting soft X-ray emission shows a fast rise and slow decay, reaching a peak corresponding to a mid C-class flare. The post reconnection energy release in the corona leads to average particle energies reaching 50 keV (500 MK under the assumption of a thermal plasma). We show that hard X-ray emission from the corona computed under the assumption of thermal bremsstrahlung can produce a power-law spectrum due to the multi-thermal nature of the plasma. The electron energy flux into the flare ribbons (classic heat conduction with free streaming limit) is highly inhomogeneous and reaches peak values of about 3x1011 erg/cm2/s in a small fraction of the ribbons, indicating regions that could potentially produce hard X-ray footpoint sources. We demonstrate that these findings are robust by comparing simulations computed with different values of the saturation heat flux as well as the "reduced speed of light".
Magnetohydrodynamics on Heterogeneous architectures: a performance comparison
Pang, Bijia; Perrone, Michael
2010-01-01
We present magneto-hydrodynamic simulation results for heterogeneous systems. Heterogeneous architectures combine high floating point performance many-core units hosted in conventional server nodes. Examples include Graphics Processing Units (GPU's) and Cell. They have potentially large gains in performance, at modest power and monetary cost. We implemented a magneto-hydrodynamic (MHD) simulation code on a variety of heterogeneous and multi-core architectures --- multi-core x86, Cell, Nvidia and ATI GPU --- in different languages, FORTRAN, C, Cell, CUDA and OpenCL. We present initial performance results for these systems. To our knowledge, this is the widest comparison of heterogeneous systems for MHD simulations. We review the different challenges faced in each architecture, and potential bottlenecks. We conclude that substantial gains in performance over traditional systems are possible, and in particular that is possible to extract a greater percentage of peak theoretical performance from some systems when...
Tanuma, S; Kudoh, T; Shibata, K; Tanuma, Syuniti; Yokoyama, Takaaki; Kudoh, Takahiro; Shibata, Kazunari
2001-01-01
We examine the magnetic reconnection triggered by a supernova (or a point explosion) in interstellar medium, by performing two-dimensional resistive magnetohydrodynamic (MHD) numerical simulations with high spatial resolution. We found that the magnetic reconnection starts long after a supernova shock (fast-mode MHD shock) passes a current sheet. The current sheet evolves as follows: (i) Tearing-mode instability is excited by the supernova shock, and the current sheet becomes thin in its nonlinear stage. (ii) The current-sheet thinning is saturated when the current-sheet thickness becomes comparable to that of Sweet-Parker current sheet. After that, Sweet-Parker type reconnection starts, and the current-sheet length increases. (iii) ``Secondary tearing-mode instability'' occurs in the thin Sweet-Parker current sheet. (iv) As a result, further current-sheet thinning occurs and anomalous resistivity sets in, because gas density decreases in the current sheet. Petschek type reconnection starts and heats interste...
1988-03-15
This progress report of the Space Power MHD System project presents the accomplishments during 1 November 1987 through 31 January 1988. The scope of work covered encompasses the definition of an MHD power system conceptual design and development plan (Task 1). Progress included the following: Subcontracts were issued to the MIT Plasma Fusion Center and the Westinghouse R and D Center. The performance of the 100 MW 500 sec. power system was optimized and the design concept finalized, including mass and energy balances. Mass and cost estimates were prepared. A design review was held at DOE/PETC. This also included the review of the technical issues definition and of the R and D Plan. Following the review, a final iteration on the conceptual design was initiated. Formulation of the R and D Plan was continued. Preparation of the Task 1 R and D Report was initiated. 12 figs.
Cessenat, M.; Genta, P.
1996-12-31
We use a method based on a separation of variables for solving a system of first order partial differential equations, in a very simple modelling of MHD. The method consists in introducing three unknown variables {phi}1, {phi}2, {phi}3 in addition of the time variable {tau} and then searching a solution which is separated with respect to {phi}1 and {tau} only. This is allowed by a very simple relation, called a `metric separation equation`, which governs the type of solutions with respect to time. The families of solutions for the system of equations thus obtained, correspond to a radial evolution of the fluid. Solving the MHD equations is then reduced to find the transverse component H{sub {Sigma}} of the magnetic field on the unit sphere {Sigma} by solving a non linear partial differential equation on {Sigma}. Thus we generalize ideas due to Courant-Friedrichs and to Sedov on dimensional analysis and self-similar solutions. (authors).
Lattice Boltzmann model for resistive relativistic magnetohydrodynamics
Mohseni, F; Succi, S; Herrmann, H J
2015-01-01
In this paper, we develop a lattice Boltzmann model for relativistic magnetohydrodynamics (MHD). Even though the model is derived for resistive MHD, it is shown that it is numerically robust even in the high conductivity (ideal MHD) limit. In order to validate the numerical method, test simulations are carried out for both ideal and resistive limits, namely the propagation of Alfv\\'en waves in the ideal MHD and the evolution of current sheets in the resistive regime, where very good agreement is observed comparing to the analytical results. Additionally, two-dimensional magnetic reconnection driven by Kelvin-Helmholtz instability is studied and the effects of different parameters on the reconnection rate are investigated. It is shown that the density ratio has negligible effect on the magnetic reconnection rate, while an increase in shear velocity decreases the reconnection rate. Additionally, it is found that the reconnection rate is proportional to $\\sigma^{-\\frac{1}{2}}$, $\\sigma$ being the conductivity, w...
LEE; ChunHian
2010-01-01
Direct numerical simulation (DNS) of incompressible magnetohydrodynamic (MHD) turbulent channel flow has been performed under the low magnetic Reynolds number assumption.The velocity-electric field and electric-electric field correlations were studied in the present work for different magnetic field orientations.The Kenjeres-Hanjalic (K-H) model was validated with the DNS data in a term by term manner.The numerical results showed that the K-H model makes good predictions for most components of the velocity-electric field correlations.The mechanisms of turbulence suppression were also analyzed for different magnetic field orientations utilizing the DNS data and the K-H model.The results revealed that the dissipative MHD source term is responsible for the turbulence suppression for the case of streamwise and spanwise magnetic orientation,while the Lorentz force which speeds up the near-wall fluid and decreases the production term is responsible for the turbulence suppression for the case of the wall normal magnetic orientation.
Large plasmoids in global MHD simulations: Solar wind dependence and ionospheric mapping
Honkonen, Ilja; Palmroth, Minna; Pulkkinen, T.; Janhunen, Pekka
The energy from the solar wind drives magnetospheric dynamics. An important, but the most difficult to measure, factor is the energy released in plasmoids. Plasmoids are large magnetic structures that form in the Earth's magnetotail during substorms, which are the main mecha-nism of extracting and releasing solar wind energy from the magnetosphere. During plasmoid formation the 3-d structure of the magnetotail becomes complicated, with spatially alternating closed and open magnetic topologies. While the formation and the release of plasmoids are unresolved, they are classically thought to detach from the magnetotail at the substorm onset. Using our global magnetohydrodynamic (MHD) simulation GUMICS-4, we investigate how different parameters of the solar wind affect the formation of plasmoids. Specifically we con-centrate on the role of the solar wind magnetic field parameters. We also investigate the solar wind dependence of plasmoid foot points, which are the end points of the plasmoid magnetic field in the ionosphere. Preliminary results suggest that plasmoid formation and plasmoid foot point location in the ionosphere strongly depend on the solar wind magnetic field param-eters. Our work may be of importance when interpreting some observed, but unexplained, ionospheric phenomena. We also present an operational definition of plasmoids, which enables their automatic detection in simulations. The project has received funding from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013) / ERC Starting Grant agree-ment number 200141-QuESpace. The work of IH and MP is supported by the Academy of Finland.
Lectures on magnetohydrodynamical drives
Loigom, Villem
The paper deals with nonconventional types of electrical machines and drives - magnetohydrodynamical (MHD) machines and drives. In cardinal it is based on the research conducted with participation of the author in Tallinn Technical University at the Institute of Electrical Drives and Power Electronics, where the use of magnetohydrodynamical motors and drives in the metallurgical and casting industries have been studied for a long time. Major research interests include the qualities and applications of the induction MHD-drives for set in the motion (pumping, turning, dosing, mixing, etc.) non-ferrous molten metals like Al, Mg, Sn, Pb, Na, K, and their alloys. The first part of the paper describes induction MHD motors and their electrohydraulical qualities. In the second part energy conversion problems are described. Also, on the basis of the analogy between electromechanical and electrohydraulical phenomenas, static and dynamic qualities of MHD drives with induction MHD machines are discussed.
MHD Simulations of a Moving Subclump with Heat Conduction
Asai, N; Matsumoto, R; Asai, Naoki; Fukuda, Naoya; Matsumoto, Ryoji
2004-01-01
High resolution observations of cluster of galaxies by Chandra have revealed the existence of an X-ray emitting comet-like galaxy C153 in the core of cluster of galaxies A2125. The galaxy C153 moving fast in the cluster core has a distinct X-ray tail on one side, obviously due to ram pressure stripping, since the galaxy C153 crossed the central region of A2125. The X-ray emitting plasma in the tail is substantially cooler than the ambient plasma. We present results of two-dimensional magnetohydrodynamic simulations of the time evolution of a subclump like C153 moving in magnetized intergalactic matter. Anisotropic heat conduction is included. We found that the magnetic fields are essential for the existence of the cool X-ray tail, because in non-magnetized plasma the cooler subclump tail is heated up by isotropic heat conduction from the hot ambient plasma and does not form such a comet-like tail.
Nonlinear evolution of parallel propagating Alfven waves: Vlasov - MHD simulation
Nariyuki, Y; Kumashiro, T; Hada, T
2009-01-01
Nonlinear evolution of circularly polarized Alfv\\'en waves are discussed by using the recently developed Vlasov-MHD code, which is a generalized Landau-fluid model. The numerical results indicate that as far as the nonlinearity in the system is not so large, the Vlasov-MHD model can validly solve time evolution of the Alfv\\'enic turbulence both in the linear and nonlinear stages. The present Vlasov-MHD model is proper to discuss the solar coronal heating and solar wind acceleration by Alfve\\'n waves propagating from the photosphere.
Simulated annealing for three-dimensional low-beta reduced MHD equilibria in cylindrical geometry
Furukawa, M
2016-01-01
Simulated annealing (SA) is applied for three-dimensional (3D) equilibrium calculation of ideal, low-beta reduced MHD in cylindrical geometry. The SA is based on the theory of Hamiltonian mechanics. The dynamical equation of the original system, low-beta reduced MHD in this study, is modified so that the energy changes monotonically while preserving the Casimir invariants in the artificial dynamics. An equilibrium of the system is given by an extremum of the energy, therefore SA can be used as a method for calculating ideal MHD equilibrium. Previous studies demonstrated that the SA succeeds to lead to various MHD equilibria in two dimensional rectangular domain. In this paper, the theory is applied to 3D equilibrium of ideal, low-beta reduced MHD. An example of equilibrium with magnetic islands, obtained as a lower energy state, is shown. Several versions of the artificial dynamics are developed that can effect smoothing.
Wu, S. T.; Guo, W. P.
1997-01-01
We present results for an investigation of the interaction of a helmet streamer arcade and a helical flux-rope emerging from the sub-photosphere. These results are obtained by using a three-dimensional axisymmetric, time-dependent ideal magnetohydrodynamic (MHD) model. Because of the physical nature of the flux-rope, we investigate two types of flux-ropes; (1) high density flux-rope (i.e. flux-rope without cavity), and (2) low density flux rope (i.e. flux-rope with cavity). When the streamer is disrupted by the flux-rope, it will evolve into a configuration resembling the typical observed loop-like Coronal Mass Ejection (CMES) for both cases. The streamer-flux rope system with cavity is easier to be disrupted and the propagation speed of the CME is faster than the streamer-flux rope system without cavity. Our results demonstrate that magnetic buoyancy force plays an important role in disrupting the streamer.
The MHD simulations of 3D magnetic reconnection near null point of magnetic configurations
Bulanov, S.V. [Institute of General Physics, Russian Academy of Sciences, Moscow (Russian Federation); Echkina, E.Yu; Inovenkov, I.N.; Pichushkin, V.V. [Moscow State University, Moscow (Russian Federation); Pegoraro, F. [Dipartimento di Fisica dell' Universit' a di Pisa and INFM (Italy)
2000-07-01
We investigate 3D plasma flow in the vicinities of critical points of magnetic configurations. The study is based on the analysis of exact self-similar solution of the MHD equations and 3D computer simulations. Both the analytical solution and 3D MHD simulations demonstrate appearance of singular distribution of the electric current density near the magnetic field separatrix surfaces of the form of the current and vortex sheets. (author)
M.M. Bhatti
2016-09-01
Full Text Available In this article, combine effects of Magnetohydrodynamics and partial slip on Blood flow of Ree–Eyring fluid through a porous medium have been investigated. The walls of the non-uniform porous channel are considered as compliant. The governing equation of Ree–Eyring fluid for blood flow are simplified using long wavelength and low Reynolds number approximation. The obtained resulting equation are solved analytically and exact solution has been obtained. The impact of different physical parameters such as Hartmann number, slip parameter, porous parameter, wall rigidity parameter, wall tension and mass characterization parameter are taken into account. It is found that velocity distribution increases due to slip effects while its behavior is opposite for Hartmann number. Trapping mechanism has also taken under consideration by drawing contour streamlines.
Current systems of coronal loops in 3D MHD simulations
Warnecke, Jörn; Bingert, Sven; Peter, Hardi
2016-01-01
We study the magnetic field and current structure associated with a coronal loop. Through this we investigate to what extent the assumptions of a force-free magnetic field break down. We analyse a three-dimensional MHD model of the solar corona in an emerging active region with the focus on the structure of the forming coronal loops. The lower boundary of this simulation is taken from a model of an emerging active region. As a consequence of the emerging magnetic flux a coronal loop formes self-consistently. We investigate the current density along magnetic field lines inside (and outside) this loop and study the magnetic and plasma properties in and around this loop. The loop is defined as the bundle of field lines that coincides with enhanced emission in extreme UV. We find that the total current along the emerging loop changes its sign from being antiparallel to parallel to the magnetic field. Around the loop the currents form a complex non-force-free helical structure. This is directly related to a bipola...
Relativistic MHD Simulations of Poynting Flux-Driven Jets
Guan, Xiaoyue; Li, Shengtai
2013-01-01
Relativistic, magnetized jets are observed to propagate to very large distances in many Active Galactic Nuclei (AGN). We use 3D relativistic MHD (RMHD) simulations to study the propagation of Poynting flux-driven jets in AGN. These jets are assumed already being launched from the vicinity ($\\sim 10^3$ gravitational radii) of supermassive black holes. Jet injections are characterized by a model described in Li et al. (2006) and we follow the propagation of these jets to ~ parsec scales. We find that these current-carrying jets are always collimated and mildly relativistic. When $\\alpha$, the ratio of toroidal-to-poloidal magnetic flux injection, is large the jet is subject to non-axisymmetric current-driven instabilities (CDI) which lead to substantial dissipation and reduced jet speed. However, even with the presence of instabilities, the jet is not disrupted and will continue to propagate to large distances. We suggest that the relatively weak impact by the instability is due to the nature of the instability...
Global 3D MHD Simulations of Waves in Accretion Discs
Romanova M.M.
2013-04-01
Full Text Available We discuss results of the first global 3D MHD simulations of warp and density waves in accretion disks excited by a rotating star with a misaligned dipole magnetic field. A wide range of cases are considered. We find for example that if the star’s magnetosphere corotates approximately with the inner disk, then a strong one-arm bending wave or warp forms. The warp corotates with the star and has a maximum amplitude (|zw|/r ~ 0.3 between the corotation radius and the radius of the vertical resonance. If the magnetosphere rotates more slowly than the inner disk, then a bending wave is excited at the disk-magnetosphere boundary, but it does not form a large-scale warp. In this case the angular rotation of the disk [Ω(r] has a maximum as a function of r so that there is an inner region where dΩ/dr > 0. In this region we observe radially trapped density waves in approximate agreement with the theoretical prediction of a Rossby wave instability in this region.
Shen, Fang; Zhang, Jie; Hess, Phillip; Wang, Yuming; Feng, Xueshang; Cheng, Hongze; Yang, Yi
2015-01-01
The dynamic process of coronal mass ejections (CMEs) in the heliosphere provides us the key information for evaluating CMEs' geo-effectiveness and improving the accurate prediction of CME induced Shock Arrival Time (SAT) at the Earth. We present a data constrained three dimensional (3D) magnetohydrodynamic (MHD) simulation of the evolution of the CME in a realistic ambient solar wind for the July 12-16, 2012 event by using the 3D COIN-TVD MHD code. A detailed comparison of the kinematic evolution of the CME between the observations and the simulation is carried out, including the usage of the time-elongation maps from the perspectives of both Stereo A and Stereo B. In this case study, we find that our 3D COIN-TVD MHD model, with the magnetized plasma blob as the driver, is able to re-produce relatively well the real 3D nature of the CME in morphology and their evolution from the Sun to Earth. The simulation also provides a relatively satisfactory comparison with the in-situ plasma data from the Wind spacecraf...
Plasma Relaxation in Hall Magnetohydrodynamics
Shivamoggi, B K
2011-01-01
Parker's formulation of isotopological plasma relaxation process in magnetohydrodynamics (MHD) is extended to Hall MHD. The torsion coefficient alpha in the Hall MHD Beltrami condition turns out now to be proportional to the "potential vorticity." The Hall MHD Beltrami condition becomes equivalent to the "potential vorticity" conservation equation in two-dimensional hydrodynamics if the Hall MHD Lagrange multiplier beta is taken to be proportional to the "potential vorticity" as well. The winding pattern of the magnetic field lines in Hall MHD then appears to evolve in the same way as "potential vorticity" lines in 2D hydrodynamics.
2012-02-28
Engineering, 2010. 8 Roth, T., “ Modeling and Numerical Simulations of Pulse Detonation Engines with MHD Thrust Augmentation”, M.S. thesis, Department of...throat, at time 2.3ms. Results are shown for the PDE (blow-down model ) with and without MHD generation in the region between 0.4 and 0.8m from the...down model ) for different values of the exit- to-throat area ratio and for different altitudes, without MHD generation and without the presence of the
Merkin, V. G.; Lyon, J.; Claudepierre, S. G.
2013-12-01
The Kelvin-Helmholtz Instability (KHI) has long been suggested to operate on the magnetospheric boundary, where the magnetosheath plasma streams past the magnetosphere. The instability is thought to be responsible for inducing various wave populations in the magnetosphere and for mass, momentum and energy transport across the magnetospheric boundary. Waves attributed to the KHI have been observed at the Earth's magnetosphere flanks as well as at Saturn and Mercury during spacecraft crossings, and remotely at boundaries of Coronal Mass Ejections (CMEs). Recent high-resolution global 3D magnetohydrodynamic (MHD) simulations of the magnetosphere confirm the existence of pronounced perturbations of the magnetospheric boundary, which are thought to be due to KHI. Such global simulations had been challenging in the past because of the need to encompass the entire magnetosphere, while sufficiently resolving the boundary layer. Here we present results of such a high-resolution simulation of the magnetosphere, using the Lyon-Fedder-Mobarry (LFM) model, under steady northward Interplanetary Magnetic Field (IMF) conditions. We find the magnetospheric boundary to be globally unstable, including the high-latitude boundary layer (meridional plane), where magnetic tension is apparently not sufficient to stabilize the growth of oscillations. Roughly beyond the terminator, global modes, coupled into the surface modes, become apparent, so that the entire body of the magnetosphere is engaged in an oscillatory motion. The wave vector of the surface oscillations has a component perpendicular to the background flow and tangential to the shear layer (in the equatorial plane, k_z component of the wave vector), which is consistent with the generation of field-aligned currents that flow on closed field lines between the inner portion of the boundary layer and the ionosphere. We calculate the distribution of wave power in the equatorial plane and find it consistent with the existence of a
Deng, Wei; Li, Hui; Zhang, Bing; Li, Shengtai
2015-06-01
We perform 3D relativistic ideal magnetohydrodynamics (MHD) simulations to study the collisions between high-σ (Poynting-flux-dominated (PFD)) blobs which contain both poloidal and toroidal magnetic field components. This is meant to mimic the interactions inside a highly variable PFD jet. We discover a significant electromagnetic field (EMF) energy dissipation with an Alfvénic rate with the efficiency around 35%. Detailed analyses show that this dissipation is mostly facilitated by the collision-induced magnetic reconnection. Additional resolution and parameter studies show a robust result that the relative EMF energy dissipation efficiency is nearly independent of the numerical resolution or most physical parameters in the relevant parameter range. The reconnection outflows in our simulation can potentially form the multi-orientation relativistic mini jets as needed for several analytical models. We also find a linear relationship between the σ values before and after the major EMF energy dissipation process. Our results give support to the proposed astrophysical models that invoke significant magnetic energy dissipation in PFD jets, such as the internal collision-induced magnetic reconnection and turbulence model for gamma-ray bursts, and reconnection triggered mini jets model for active galactic nuclei. The simulation movies are shown in http://www.physics.unlv.edu/∼deng/simulation1.html.
Review of magnetohydrodynamic pump applications
Al-Habahbeh, O.M; Al-Saqqa, M; Safi, M; Abo Khater, T
2016-01-01
Magneto-hydrodynamic (MHD) principle is an important interdisciplinary field. One of the most important applications of this effect is pumping of materials that are hard to pump using conventional pumps...
Data assimilation for magnetohydrodynamics systems
Mendoza, O. Barrero; de Moor, B.; Bernstein, D. S.
2006-05-01
Prediction of solar storms has become a very important issue due to the fact that they can affect dramatically the telecommunication and electrical power systems at the earth. As a result, a lot of research is being done in this direction, space weather forecast. Magnetohydrodynamics systems are being studied in order to analyse the space plasma dynamics, and techniques which have been broadly used in the prediction of earth environmental variables like the Kalman filter (KF), the ensemble Kalman filter (EnKF), the extended Kalman filter (EKF), etc., are being studied and adapted to this new framework. The assimilation of a wide range of space environment data into first-principles-based global numerical models will improve our understanding of the physics of the geospace environment and the forecasting of its behaviour. Therefore, the aim of this paper is to study the performance of nonlinear observers in magnetohydrodynamics systems, namely, the EnKF.The EnKF is based on a Monte Carlo simulation approach for propagation of process and measurement errors. In this paper, the EnKF for a nonlinear two-dimensional magnetohydrodynamic (2D-MHD) system is considered. For its implementation, two software packages are merged, namely, the Versatile Advection Code (VAC) written in Fortran and Matlab of Mathworks. The 2D-MHD is simulated with the VAC code while the EnKF is computed in Matlab. In order to study the performance of the EnKF in MHD systems, different number of measurement points as well as ensemble members are set.
Mininni, P; Dmitruk, P; Odier, P; Pinton, J-F; Plihon, N; Verhille, G; Volk, R; Bourgoin, M
2014-05-01
We analyze time series stemming from experiments and direct numerical simulations of hydrodynamic and magnetohydrodynamic turbulence. Simulations are done in periodic boxes, but with a volumetric forcing chosen to mimic the geometry of the flow in the experiments, the von Kármán swirling flow between two counterrotating impellers. Parameters in the simulations are chosen to (within computational limitations) allow comparisons between the experiments and the numerical results. Conducting fluids are considered in all cases. Two different configurations are considered: a case with a weak externally imposed magnetic field and a case with self-sustained magnetic fields. Evidence of long-term memory and 1/f noise is observed in experiments and simulations, in the case with weak magnetic field associated with the hydrodynamic behavior of the shear layer in the von Kármán flow, and in the dynamo case associated with slow magnetohydrodynamic behavior of the large-scale magnetic field.
Mininni, Pablo; Odier, Philippe; Pinton, Jean-François; Plihon, Nicolas; Verhille, Gautier; Volk, Romain; Bourgoin, Mickael
2014-01-01
We analyze time series stemming from experiments and direct numerical simulations of hydrodynamic and magnetohydrodynamic turbulence. Simulations are done in periodic boxes, but with a volumetric forcing chosen to mimic the geometry of the flow in the experiments, the von K\\'arm\\'an swirling flow between two counter-rotating impellers. Parameters in the simulations are chosen to (within computational limitations) allow comparisons between the experiments and the numerical results. Conducting fluids are considered in all cases. Two different configurations are considered: a case with a weak externally imposed magnetic field, and a case with self-sustained magnetic fields. Evidence of long-term memory and $1/f$ noise is observed in experiments and simulations, in the case with weak magnetic field associated with the hydrodynamic behavior of the shear layer in the von K\\'arm\\'an flow, and in the dynamo case associated with slow magnetohydrodynamic behavior of the large scale magnetic field.
Large-eddy simulations of fluid and magnetohydrodynamic turbulence using renormalized parameters
Mahendra K Verma; Shishir Kumar
2004-09-01
In this paper a procedure for large-eddy simulation (LES) has been devised for fluid and magnetohydrodynamic turbulence in Fourier space using the renormalized parameters; The parameters calculated using field theory have been taken from recent papers by Verma [1, 2]. We have carried out LES on 643 grid. These results match quite well with direct numerical simulations of 1283. We show that proper choice of parameter is necessary in LES.
Scale locality of magnetohydrodynamic turbulence.
Aluie, Hussein; Eyink, Gregory L
2010-02-26
We investigate the scale locality of cascades of conserved invariants at high kinetic and magnetic Reynold's numbers in the "inertial-inductive range" of magnetohydrodynamic (MHD) turbulence, where velocity and magnetic field increments exhibit suitable power-law scaling. We prove that fluxes of total energy and cross helicity-or, equivalently, fluxes of Elsässer energies-are dominated by the contributions of local triads. Flux of magnetic helicity may be dominated by nonlocal triads. The magnetic stretching term may also be dominated by nonlocal triads, but we prove that it can convert energy only between velocity and magnetic modes at comparable scales. We explain the disagreement with numerical studies that have claimed conversion nonlocally between disparate scales. We present supporting data from a 1024{3} simulation of forced MHD turbulence.
Magnetohydrodynamic fluidic system
Lee, Abraham P.; Bachman, Mark G.
2004-08-24
A magnetohydrodynamic fluidic system includes a reagent source containing a reagent fluid and a sample source containing a sample fluid that includes a constituent. A reactor is operatively connected to the supply reagent source and the sample source. MHD pumps utilize a magnetohydrodynamic drive to move the reagent fluid and the sample fluid in a flow such that the reagent fluid and the sample fluid form an interface causing the constituent to be separated from the sample fluid.
MHD Effect of Liquid Metal Film Flows as Plasma-Facing Components
ZHANG Xiujie; XU Zengyu; PAN Chuanjie
2008-01-01
Stability of liquid metal film flow under gradient magnetic field is investigated. Three dimensional numerical simulations on magnetohydrodynamics (MHD) effect of free surface film flow were carried out, with emphasis on the film thickness variation and its surface stability. Three different MHD phenomena of film flow were observed in the experiment, namely, retardant, rivulet and flat film flow. From our experiment and numerical simulation it can be concluded that flat film flow is a good choice for plasma-facing components (PFCs)
Toward 3D MHD modeling of neoclassical tearing mode suppression by ECCD
Westerhof E.
2012-09-01
Full Text Available We propose a framework to extend the magnetohydrodynamic (MHD equations to include electron cyclotron current drive (ECCD and discuss previous models proposed by Giruzzi et al. [2] and by Hegna and Callen [3]. To model neoclassical tearing mode (NTM instabilities and study the growth of magnetic islands as NTMs evolve, we employ the nonlinear reduced-MHD simulation JOREK. We present tearing-mode growth-rate calculations from JOREK simulations.
McKinney, Jonathan C; Sadowski, Aleksander; Narayan, Ramesh
2013-01-01
Black hole (BH) accretion flows and jets are dynamic hot relativistic magnetized plasma flows whose radiative opacity can significantly affect flow structure and behavior. We describe a numerical scheme, tests, and an astrophysically relevant application using the M1 radiation closure within a new three-dimensional (3D) general relativistic (GR) radiation (R) magnetohydrodynamics (MHD) massively parallel code called HARMRAD. Our 3D GRRMHD simulation of super-Eddington accretion (about $20$ times Eddington) onto a rapidly rotating BH (dimensionless spin $j=0.9375$) shows sustained non-axisymmemtric disk turbulence, a persistent electromagnetic jet driven by the Blandford-Znajek effect, and a total radiative output consistently near the Eddington rate. The total accretion efficiency is of order $20\\%$, the large-scale electromagnetic jet efficiency is of order $10\\%$, and the total radiative efficiency that reaches large distances remains low at only order $1\\%$. However, the radiation jet and the electromagnet...
Test particle acceleration in explosive magnetohydrodynamic reconnection
Ripperda, Bart; Xia, Chun; Keppens, Rony
2016-01-01
Magnetic reconnection is the mechanism behind many violent phenomena in the universe. We demonstrate that energy released during reconnection can lead to non-thermal particle distribution functions. We use a method in which we combine resistive magnetohydrodynamics (MHD) with relativistic test particle dynamics. Using our open-source grid-adaptive MPI-AMRVAC software, we simulate global MHD evolution combined with test particle treatments in MHD snapshots. This approach is used to evaluate particle acceleration in explosive reconnection. The reconnection is triggered by an ideal tilt instability in two-and-a-half dimensional (2.5D) scenarios and by a combination of ideal tilt and kink instabilities in three-dimensional (3D) scenarios. These instabilities occur in a system with two parallel, adjacent, repelling current channels in an initially force-free equilibrium, as a simplified representation of flux ropes in a stellar magnetosphere. The current channels undergo a rotation and a separation on Alfv\\'enic t...
Simard, C; Dube, C
2016-01-01
We perform a mean-field analysis of the EULAG-MHD millenium simulation of global magnetohydrodynamical convection presented in Passos et al. 2014. The turbulent electromotive force operating in the simulation is assumed to be linearly related to the cyclic axisymmetric mean magnetic field and its first spatial derivatives. At every grid point in the simulation's meridional plane, this assumed relationship involves 27 independent tensorial coefficients. Expanding on Racine et al. 2011, we extract these coefficients from the simulation data through a least-squares minimization procedure based on singular value decomposition. The reconstructed alpha-tensor shows good agreement with that obtained by Racine et al. 2011, who did not include derivatives of the mean-field in their fit, as well as with the alpha-tensor extracted by Augustson et al. 2015 from a distinct ASH MHD simulation. The isotropic part of the turbulent magnetic diffusivity tensor beta is positive definite and reaches values of 5.0x10^7 m2s-1 in t...
Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics
Adams, Mark F.
2010-09-01
Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations so-called "textbook" multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss-Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field, which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations. (C) 2010 Elsevier Inc. All rights reserved.
Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics
Adams, Mark F. [Columbia Univ., New York, NY (United States); Samtaney, Ravi [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Brandt, Achi [Weizmann Inst. of Science, Rehovot (Israel)
2013-12-14
Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations – so-called “textbook” multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss-Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field, which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations.
Comparison of solar photospheric bright points between SUNRISE observations and MHD simulations
Riethmüller, T L; Berdyugina, S V; Schüssler, M; Pillet, V Mart\\'\\inez; Feller, A; Gandorfer, A; Hirzberger, J
2014-01-01
Bright points (BPs) in the solar photosphere are radiative signatures of magnetic elements described by slender flux tubes located in the darker intergranular lanes. They contribute to the ultraviolet (UV) flux variations over the solar cycle and hence may influence the Earth's climate. Here we combine high-resolution UV and spectro-polarimetric observations of BPs by the SUNRISE observatory with 3D radiation MHD simulations. Full spectral line syntheses are performed with the MHD data and a careful degradation is applied to take into account all relevant instrumental effects of the observations. It is demonstrated that the MHD simulations reproduce the measured distributions of intensity at multiple wavelengths, line-of-sight velocity, spectral line width, and polarization degree rather well. Furthermore, the properties of observed BPs are compared with synthetic ones. These match also relatively well, except that the observations display a tail of large and strongly polarized BPs not found in the simulation...
Integrated Physics Advances in Simulation of Wave Interactions with Extended MHD Phenomena
Batchelor, Donald B [ORNL; D' Azevedo, Eduardo [ORNL; Bateman, Glenn [Lehigh University, Bethlehem, PA; Bernholdt, David E [ORNL; Berry, Lee A [ORNL; Bonoli, P. [Massachusetts Institute of Technology (MIT); Bramley, R [Indiana University; Breslau, J. [Princeton Plasma Physics Laboratory (PPPL); Chance, M. [Princeton Plasma Physics Laboratory (PPPL); Chen, J. [Princeton Plasma Physics Laboratory (PPPL); Choi, M. [General Atomics; Elwasif, Wael R [ORNL; Fu, GuoYong [Princeton Plasma Physics Laboratory (PPPL); Harvey, R. W. [CompX, Del Mar, CA; Houlberg, Wayne A [ORNL; Jaeger, Erwin Frederick [ORNL; Jardin, S. C. [Princeton Plasma Physics Laboratory (PPPL); Keyes, David E [Columbia University; Klasky, Scott A [ORNL; Kruger, Scott [Tech-X Corporation; Ku, Long-Poe [Princeton Plasma Physics Laboratory (PPPL); McCune, Douglas [Princeton Plasma Physics Laboratory (PPPL); Schissel, D. [General Atomics; Schnack, D. [University of Wisconsin; Wright, J. C. [Massachusetts Institute of Technology (MIT)
2007-06-01
The broad scientific objectives of the SWIM (Simulation of Wave Interaction with MHD) project are: (A) To improve our understanding of interactions that both RF wave and particle sources have on extended-MHD phenomena, and to substantially improve our capability for predicting and optimizing the performance of burning plasmas in devices such as ITER: and (B) To develop an integrated computational system for treating multi-physics phenomena with the required flexibility and extensibility to serve as a prototype for the Fusion Simulation Project (FSP).
Integrated physics advances in simulation of wave interactions with extended MHD phenomena
Batchelor, D B [ORNL (United States); D' Azevedo, E [ORNL (United States); Bateman, G [Lehigh (United States)] (and others)
2007-07-15
The broad scientific objectives of the SWIM (Simulation of Wave Interaction with MHD) project are: (A) To improve our understanding of interactions that both RF wave and particle sources have on extended-MHD phenomena, and to substantially improve our capability for predicting and optimizing the performance of burning plasmas in devices such as ITER: and (B) To develop an integrated computational system for treating multi-physics phenomena with the required flexibility and extensibility to serve as a prototype for the Fusion Simulation Project (FSP)
Dynamic multiscaling in magnetohydrodynamic turbulence
Ray, Samriddhi Sankar; Pandit, Rahul
2016-01-01
We present the first study of the multiscaling of time-dependent velocity and magnetic-field structure functions in homogeneous, isotropic magnetohydrodynamic (MHD) turbulence in three dimensions. We generalize the formalism that has been developed for analogous studies of time-dependent structure functions in fluid turbulence to MHD. By carrying out detailed numerical studies of such time-dependent structure functions in a shell model for three-dimensional MHD turbulence, we obtain both equal-time and dynamic scaling exponents.
Dynamic multiscaling in magnetohydrodynamic turbulence.
Ray, Samriddhi Sankar; Sahoo, Ganapati; Pandit, Rahul
2016-11-01
We present a study of the multiscaling of time-dependent velocity and magnetic-field structure functions in homogeneous, isotropic magnetohydrodynamic (MHD) turbulence in three dimensions. We generalize the formalism that has been developed for analogous studies of time-dependent structure functions in fluid turbulence to MHD. By carrying out detailed numerical studies of such time-dependent structure functions in a shell model for three-dimensional MHD turbulence, we obtain both equal-time and dynamic scaling exponents.
三维磁流体强化超燃冲压发动机数值模拟%Simulation of three-dimensional magnetohydrodynamic enhanced scramjet
郑小梅; 杨兴宇
2012-01-01
Simulation model of the three-dimensional magnetohydrodynamic(MHD) enhanced scramjet viscous inner flow field was established.Geometry of a scramjet applied both MHD controlled inlet and MHD energy bypass was designed at Ma=6.Numerical simulation was performed,and three-dimensional flow field structure,distribution pattern of the electric parameters,and characteristics of energy transformation were analyzed.The results show when flight Ma=8,MHD controlled inlet can be used to draw the compressive shock waves back to the cowl lip,the separation zone disappears,and the flow field of the inner inlet recovers to the design condition.The MHD energy bypass can decrease Ma of the flow before combustor efficiently,so as to improve engine performance.In the MHD generator,distributions of flow and electric parameters are comparatively ideal to make efficient effect,while the MHD accelerator needs large amount of energy input to make a significant acceleration.In the MHD accelerator,Joule heating dissipation is severe near the electrodes,which results in local high temperature,flow field complication and performance deterioration of the MHD accelerator.%建立了三维磁流体强化超燃冲压发动机内部黏性流场的求解模型.针对马赫数为6设计了联合应用磁控进气道和磁流体能量旁路的磁流体强化超燃冲压发动机模型.针对该模型进行了数值模拟研究，分析其中的三维流场结构、电参数分布规律以及能量转换特性.结果表明：当飞行马赫数为8时，磁控进气道的应用能够使头部压缩激波回到唇口，使分离区消失，内进气道中的流动恢复到设计状态.磁流体能量旁路可有效降低燃烧室入口处的马赫数，从而改善发动机性能.其中发生器中的流动参数和电参数的分布比较理想，效果显著；而加速器要取得显著的加速效果则需要人量的能量输入.在加速器中，电极附近焦耳耗散严重，导致局部高温
Jenkins, Thomas G. [Tech–X Corporation, 5621 Arapahoe Avenue, Boulder, CO, 80303; Kruger, Scott E. [Tech–X Corporation, 5621 Arapahoe Avenue, Boulder, CO, 80303
2013-03-25
Work carried out by Tech-X Corporation for the DoE SciDAC Center for Simulation of RF Wave Interactions with Magnetohydrodynamics (SWIM; U.S. DoE Office of Science Award Number DE-FC02-06ER54899) is summarized and is shown to fulfil the project objectives. The Tech-X portion of the SWIM work focused on the development of analytic and computational approaches to study neoclassical tearing modes and their interaction with injected electron cyclotron current drive. Using formalism developed by Hegna, Callen, and Ramos [Phys. Plasmas 16, 112501 (2009); Phys. Plasmas 17, 082502 (2010); Phys. Plasmas 18, 102506 (2011)], analytic approximations for the RF interaction were derived and the numerical methods needed to implement these interactions in the NIMROD extended MHD code were developed. Using the SWIM IPS framework, NIMROD has successfully coupled to GENRAY, an RF ray tracing code; additionally, a numerical control system to trigger the RF injection, adjustment, and shutdown in response to tearing mode activity has been developed. We discuss these accomplishments, as well as prospects for ongoing future research that this work has enabled (which continue in a limited fashion under the SciDAC Center for Extended Magnetohydrodynamic Modeling (CEMM) project and under a baseline theory grant). Associated conference presentations, published articles, and publications in progress are also listed.
Fragile, P. Christopher Christopher; Etheridge, Sarina Marie; Anninos, Peter; Mishra, Bhupendra
2017-01-01
Many analytic, semi-analytic, and even some numerical treatments of black hole accretion parametrize the stresses within the disk as an effective viscosity, even though the true source of stresses is likely to be turbulence driven by the magneto-rotational instability. Despite some attempts to quantify the differences between these treatments, it remains unclear exactly what the consequences of a viscous treatment are, especially in the context of the temporal and spatial variability of global disk parameters. We use the astrophysics code, Cosmos++, to create two accretion disk simulations using alpha-viscosity, one thin and one thick. These simulations are then compared to similar work done using MHD in order to analyze the extent of the validity of the alpha-model. One expected result, which we, nevertheless, demonstrate is the greater spatial and temporal variability of MHD.
Muhammad Mubashir Bhatti
2016-05-01
Full Text Available In this article, entropy generation with radiation on non-Newtonian Carreau nanofluid towards a shrinking sheet is investigated numerically. The effects of magnetohydrodynamics (MHD are also taken into account. Firstly, the governing flow problem is simplified into ordinary differential equations from partial differential equations with the help of similarity variables. The solution of the resulting nonlinear differential equations is solved numerically with the help of the successive linearization method and Chebyshev spectral collocation method. The influence of all the emerging parameters is discussed with the help of graphs and tables. It is observed that the influence of magnetic field and fluid parameters oppose the flow. It is also analyzed that thermal radiation effects and the Prandtl number show opposite behavior on temperature profile. Furthermore, it is also observed that entropy profile increases for all the physical parameters.
Morphology and dynamics of solar prominences from 3D MHD simulations
Terradas, J; Luna, M; Oliver, R; Ballester, J L
2014-01-01
In this paper we present a numerical study of the time evolution of solar prominences embedded in sheared magnetic arcades. The prominence is represented by a density enhancement in a background stratified atmosphere and is connected to the photosphere through the magnetic field. By solving the ideal magnetohydrodynamic (MHD) equations in three dimensions we study the dynamics for a range of parameters representative of real prominences. Depending on the parameters considered, we find prominences that are suspended above the photosphere, i.e., detached prominences, but also configurations resembling curtain or hedgerow prominences whose material continuously connects to the photosphere. The plasma$-\\beta$ is an important parameter that determines the shape of the structure. In many cases magnetic Rayleigh-Taylor (MRT) instabilities and oscillatory phenomena develop. Fingers and plumes are generated, affecting the whole prominence body and producing vertical structures in an essentially horizontal magnetic fie...
Tchekhovskoy, Alexander
2015-01-01
Active galactic nuclei jets are thought to form in the immediate vicinity of the event horizons of supermassive black holes. Therefore, jets could be excellent probes of general relativity. However, in practice, using jets to infer near-black hole physics is not straightforward since the cause of their most basic morphological features is not understood. For instance, there is no agreement on the cause of the well-known Fanaroff-Riley (FR) morphological dichotomy of jets, with FRI jets being shorter and wiggly and FRII jets being longer and more stable. Here, we carry out 3D relativistic magnetohydrodynamic (MHD) simulations of relativistic jets propagating through the ambient medium. Because in flat density cores of galaxies ($n \\propto r^{-\\alpha}$ with $\\alpha < 2$) the mass per unit distance ahead of the jets increases with distance, the jets slow down and collimate into smaller opening angles. This makes the jets more vulnerable to the 3D magnetic kink ("corkscrew") instability, which develops faster ...
Wu, Chin-Chun; Liou, Kan; Wu, S. T.; Dryer, Murray; Plunkett, Simon
2016-03-01
We study an unusual solar energetic particle (SEP) event that was associated with the coronal mass ejection (CME) on March 15, 2013. Enhancements of the SEP fluxes were first detected by the ACE spacecraft at 14:00 UT, ˜7 hours after the onset of the CME (07:00 UT), and the SEP's peak intensities were recorded ˜36 hours after the onset of the CME. Our recent study showed that the CME-driven shock Mach number, based on a global three-dimensional (3-D) magnetohydrodynamic (MHD) simulation, is well correlated with the time-intensity of 10-30 MeV and 30-80 MeV protons. Here we focus on the radial dependence (r-α) of 4He (3.43-41.2 MeV/n) and O (7.30-89.8 MeV/n) energetic particles from ACE/SIS. It is found that the scaling factor (α) ranges between 2 and 4 for most of the energy channels. We also found that the correlation coefficients tend to increase with SEP energies.
Ade, P A R; Alves, M I R; Aniano, G; Armitage-Caplan, C; Arnaud, M; Arzoumanian, D; Ashdown, M; Atrio-Barandela, F; Aumont, J; Baccigalupi, C; Banday, A J; Barreiro, R B; Battaner, E; Benabed, K; Benoit-Lévy, A; Bernard, J -P; Bersanelli, M; Bielewicz, P; Bond, J R; Borrill, J; Bouchet, F R; Boulanger, F; Bracco, A; Burigana, C; Cardoso, J -F; Catalano, A; Chamballu, A; Chiang, H C; Christensen, P R; Colombi, S; Colombo, L P L; Combet, C; Couchot, F; Coulais, A; Crill, B P; Curto, A; Cuttaia, F; Danese, L; Davies, R D; Davis, R J; de Bernardis, P; de Rosa, A; de Zotti, G; Delabrouille, J; Dickinson, C; Diego, J M; Donzelli, S; Doré, O; Douspis, M; Dupac, X; Enßlin, T A; Eriksen, H K; Falgarone, E; Fanciullo, L; Ferrière, K; Finelli, F; Forni, O; Frailis, M; Fraisse, A A; Franceschi, E; Galeotta, S; Ganga, K; Ghosh, T; Giard, M; Giraud-Héraud, Y; González-Nuevo, J; Górski, K M; Gregorio, A; Gruppuso, A; Guillet, V; Hansen, F K; Harrison, D L; Helou, G; Hernández-Monteagudo, C; Hildebrandt, S R; Hivon, E; Hobson, M; Holmes, W A; Hornstrup, A; Huffenberger, K M; Jaffe, A H; Jaffe, T R; Jones, W C; Juvela, M; Keihänen, E; Keskitalo, R; Kisner, T S; Kneissl, R; Knoche, J; Kunz, M; Kurki-Suonio, H; Lagache, G; Lamarre, J -M; Lasenby, A; Lawrence, C R; Leonardi, R; Levrier, F; Liguori, M; Lilje, P B; Linden-Vørnle, M; López-Caniego, M; Lubin, P M; Macías-Pérez, J F; Maino, D; Mandolesi, N; Maris, M; Marshall, D J; Martin, P G; Martínez-González, E; Masi, S; Matarrese, S; Mazzotta, P; Melchiorri, A; Mendes, L; Mennella, A; Migliaccio, M; Miville-Deschênes, M -A; Moneti, A; Montier, L; Morgante, G; Mortlock, D; Munshi, D; Murphy, J A; Naselsky, P; Nati, F; Natoli, P; Netterfield, C B; Noviello, F; Novikov, D; Novikov, I; Oxborrow, C A; Pagano, L; Pajot, F; Paoletti, D; Pasian, F; Pelkonen, V -M; Perdereau, O; Perotto, L; Perrotta, F; Piacentini, F; Piat, M; Pietrobon, D; Plaszczynski, S; Pointecouteau, E; Polenta, G; Popa, L; Pratt, G W; Prunet, S; Puget, J -L; Rachen, J P; Reinecke, M; Remazeilles, M; Renault, C; Ricciardi, S; Riller, T; Ristorcelli, I; Rocha, G; Rosset, C; Roudier, G; Rusholme, B; Sandri, M; Scott, D; Soler, J D; Spencer, L D; Stolyarov, V; Stompor, R; Sudiwala, R; Sutton, D; Suur-Uski, A -S; Sygnet, J -F; Tauber, J A; Terenzi, L; Toffolatti, L; Tomasi, M; Tristram, M; Tucci, M; Umana, G; Valenziano, L; Valiviita, J; Van Tent, B; Vielva, P; Villa, F; Wade, L A; Wandelt, B D; Zonca, A
2014-01-01
Polarized emission observed by Planck HFI at 353 GHz towards a sample of nearby fields is presented, focusing on the statistics of polarization fractions $p$ and angles $\\psi$. The polarization fractions and column densities in these nearby fields are representative of the range of values obtained over the whole sky. We find that: (i) the largest polarization fractions are reached in the most diffuse fields; (ii) the maximum polarization fraction $p_\\mathrm{max}$ decreases with column density $N_\\mathrm{H}$ in the more opaque fields with $N_\\mathrm{H} > 10^{21}\\,\\mathrm{cm}^{-2}$; and (iii) the polarization fraction along a given line of sight is correlated with the local spatial coherence of the polarization angle. These observations are compared to polarized emission maps computed in simulations of anisotropic magnetohydrodynamical (MHD) turbulence in which we assume a uniform intrinsic polarization fraction of the dust grains. We find that an estimate of this parameter may be recovered from the maximum pol...
Haverkort, J. W.; de Blank, H. J.; Huysmans, G. T. A.; Pratt, J.; Koren, B.
2016-01-01
Numerical simulations form an indispensable tool to understand the behavior of a hot plasma that is created inside a tokamak for providing nuclear fusion energy. Various aspects of tokamak plasmas have been successfully studied through the reduced magnetohydrodynamic (MHD) model. The need for more c
Multifluid magnetohydrodynamic turbulent decay
Downes, Turlough P
2011-01-01
It is generally believed that turbulence has a significant impact on the dynamics and evolution of molecular clouds and the star formation which occurs within them. Non-ideal magnetohydrodynamic effects are known to influence the nature of this turbulence. We present the results of a suite of 512-cubed resolution simulations of the decay of initially super-Alfvenic and supersonic fully multifluid MHD turbulence. We find that ambipolar diffusion increases the rate of decay of the turbulence while the Hall effect has virtually no impact. The decay of the kinetic energy can be fitted as a power-law in time and the exponent is found to be -1.34 for fully multifluid MHD turbulence. The power spectra of density, velocity and magnetic field are all steepened significantly by the inclusion of non-ideal terms. The dominant reason for this steepening is ambipolar diffusion with the Hall effect again playing a minimal role except at short length scales where it creates extra structure in the magnetic field. Interestingl...
Spontaneous chiral symmetry breaking of Hall magnetohydrodynamic turbulence.
Meyrand, Romain; Galtier, Sébastien
2012-11-01
Hall magnetohydrodynamics (MHD) is investigated through three-dimensional direct numerical simulations. We show that the Hall effect induces a spontaneous chiral symmetry breaking of the turbulent dynamics. The normalized magnetic polarization is introduced to separate the right- (R) and left-handed (L) fluctuations. A classical k(-7/3) spectrum is found at small scales for R magnetic fluctuations which corresponds to the electron MHD prediction. A spectrum compatible with k(-11/3) is obtained at large-scales for the L magnetic fluctuations; we call this regime the ion MHD. These results are explained heuristically by rewriting the Hall MHD equations in a succinct vortex dynamical form. Applications to solar wind turbulence are discussed.
Magnetohydrodynamic Modeling of the Jovian Magnetosphere
Walker, Raymond
2005-01-01
Under this grant we have undertaken a series of magnetohydrodynamic (MHD) simulation and data analysis studies to help better understand the configuration and dynamics of Jupiter's magnetosphere. We approached our studies of Jupiter's magnetosphere in two ways. First we carried out a number of studies using our existing MHD code. We carried out simulation studies of Jupiter s magnetospheric boundaries and their dependence on solar wind parameters, we studied the current systems which give the Jovian magnetosphere its unique configuration and we modeled the dynamics of Jupiter s magnetosphere following a northward turning of the interplanetary magnetic field (IMF). Second we worked to develop a new simulation code for studies of outer planet magnetospheres.
The intensity contrast of solar granulation: comparing Hinode SP results with MHD simulations
Danilovic, S.; Gandorfer, A.; Lagg, A.; SchÜssler, M.; Solanki, S.K.; Vögler, A.; Katsukawa, Y.; Tsuneta, S.
2008-01-01
Context. The contrast of granulation is an important quantity characterizing solar surface convection. Aims. We compare the intensity contrast at 630 nm, observed using the Spectro-Polarimeter (SP) aboard the Hinode satellite, with the 3D radiative MHD simulations of Vögler & Schüssler (2007, A&A, 4
Three-Dimensional Magnetohydrodynamic Simulation of Slapper Initiation Systems
Christensen, J S; Hrousis, C A
2010-03-09
Although useful information can be gleaned from 2D and even 1D simulations of slapper type initiation systems, these systems are inherently three-dimensional and therefore require full 3D representation to model all relevant details. Further, such representation provides additional insight into optimizing the design of such devices from a first-principles perspective and can thereby reduce experimental costs. We discuss in this paper several ongoing efforts in modeling these systems, our pursuit of validation, and extension of these methods to other systems. Our results show the substantial dependence upon highly accurate global equations of state and resistivity models in these analyses.
Fragile, P Chris
2008-01-01
(Abridged) We present one of the first physically-motivated two-dimensional general relativistic magnetohydrodynamic (GRMHD) numerical simulations of a radiatively-cooled black-hole accretion disk. The fiducial simulation combines a total-energy-conserving formulation with a radiative cooling function, which includes bremsstrahlung, synchrotron, and Compton effects. By comparison with other simulations we show that in optically thin advection-dominated accretion flows, radiative cooling can significantly affect the structure, without necessarily leading to an optically thick, geometrically thin accretion disk. We further compare the results of our radiatively-cooled simulation to the predictions of a previously developed analytic model for such flows. For the very low stress parameter and accretion rate found in our simulated disk, we closely match a state called the "transition" solution between an outer advection-dominated accretion flow and what would be a magnetically-dominated accretion flow (MDAF) in th...
Comparison of empirical magnetic field models and global MHD simulations: The near-tail currents
Pulkkinen, T. I.; Baker, D. N.; Walker, R. J.; Raeder, J.; Ashour-Abdalla, M.
1995-01-01
The tail currents predicted by empirical magnetic field models and global MHD simulations are compared. It is shown that the near-Earth currents obtained from the MHD simulations are much weaker than the currents predicted by the Tsyganenko models, primarily because the ring current is not properly represented in the simulations. On the other hand, in the mid-tail and distant tail the lobe field strength predicted by the simulations is comparable to what is observed at about 50 R(sub E) distance, significantly larger than the very low lobe field values predicted by the Tsyganenko models at that distance. Ways to improve these complementary approaches to model the actual magnetospheric configuration are discussed.
Protostellar collapse and fragmentation using an MHD GADGET
Bürzle, Florian; Stasyszyn, Federico; Greif, Thomas; Dolag, Klaus; Klessen, Ralf S; Nielaba, Peter
2010-01-01
Although the influence of magnetic fields is regarded as vital in the star formation process, only a few magnetohydrodynamics (MHD) simulations have been performed on this subject within the smoothed particle hydrodynamics (SPH) method. This is largely due to the unsatisfactory treatment of non-vanishing divergence of the magnetic field. Recently smoothed particle magnetohydrodynamics (SPMHD) simulations based on Euler potentials have proven to be successful in treating MHD collapse and fragmentation problems, however these methods are known to have some intrinsical difficulties. We have performed SPMHD simulations based on a traditional approach evolving the magnetic field itself using the induction equation. To account for the numerical divergence, we have chosen an approach that subtracts the effects of numerical divergence from the force equation, and additionally we employ artificial magnetic dissipation as a regularization scheme. We apply this realization of SPMHD to a widely known setup, a variation o...
Relativistic MHD with Adaptive Mesh Refinement
Anderson, M; Liebling, S L; Neilsen, D; Anderson, Matthew; Hirschmann, Eric; Liebling, Steven L.; Neilsen, David
2006-01-01
We solve the relativistic magnetohydrodynamics (MHD) equations using a finite difference Convex ENO method (CENO) in 3+1 dimensions within a distributed parallel adaptive mesh refinement (AMR) infrastructure. In flat space we examine a Balsara blast wave problem along with a spherical blast wave and a relativistic rotor test both with unigrid and AMR simulations. The AMR simulations substantially improve performance while reproducing the resolution equivalent unigrid simulation results. We also investigate the impact of hyperbolic divergence cleaning for the spherical blast wave and relativistic rotor. We include unigrid and mesh refinement parallel performance measurements for the spherical blast wave.
Magnetohydrodynamic Origin of Jets from Accretion Disks
Lovelace, R V E; Koldoba, A V
1999-01-01
A review is made of recent magnetohydrodynamic (MHD) theory and simulations of origin of jets from accretion disks. Many compact astrophysical objects emit powerful, highly-collimated, oppositely directed jets. Included are the extra galactic radio jets of active galaxies and quasars, and old compact stars in binaries, and emission line jets in young stellar objects. It is widely thought that these different jets arise from rotating, conducting accretion disks threaded by an ordered magnetic field. The twisting of the magnetic field by the rotation of the disk drives the jets by magnetically extracting matter, angular momentum, and energy from the accretion disk. Two main regimes have been discussed theoretically, hydromagnetic winds which have a significant mass flux, and Poynting flux jets where the mass flux is negligible. Over the past several years, exciting new developments on models of jets have come from progress in MHD simulations which now allow the study of the origin - the acceleration and collima...
Dipole Alignment in Rotating MHD Turbulence
Shebalin, John V.; Fu, Terry; Morin, Lee
2012-01-01
We present numerical results from long-term CPU and GPU simulations of rotating, homogeneous, magnetohydrodynamic (MHD) turbulence, and discuss their connection to the spherically bounded case. We compare our numerical results with a statistical theory of geodynamo action that has evolved from the absolute equilibrium ensemble theory of ideal MHD turbulence, which is based on the ideal MHD invariants are energy, cross helicity and magnetic helicity. However, for rotating MHD turbulence, the cross helicity is no longer an exact invariant, although rms cross helicity becomes quasistationary during an ideal MHD simulation. This and the anisotropy imposed by rotation suggests an ansatz in which an effective, nonzero value of cross helicity is assigned to axisymmetric modes and zero cross helicity to non-axisymmetric modes. This hybrid statistics predicts a large-scale quasistationary magnetic field due to broken ergodicity , as well as dipole vector alignment with the rotation axis, both of which are observed numerically. We find that only a relatively small value of effective cross helicity leads to the prediction of a dipole moment vector that is closely aligned (less than 10 degrees) with the rotation axis. We also discuss the effect of initial conditions, dissipation and grid size on the numerical simulations and statistical theory.
Nonlinear electron-magnetohydrodynamic simulations of three dimensional current shear instability
Jain, Neeraj [Max Planck Institute for Solar System Research, Max-Planck-Str. 2, 37191 Katlenburg-Lindau (Germany); Das, Amita; Sengupta, Sudip; Kaw, Predhiman [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)
2012-09-15
This paper deals with detailed nonlinear electron-magnetohydrodynamic simulations of a three dimensional current shear driven instability in slab geometry. The simulations show the development of the instability in the current shear layer in the linear regime leading to the generation of electromagnetic turbulence in the nonlinear regime. The electromagnetic turbulence is first generated in the unstable shear layer and then spreads into the stable regions. The turbulence spectrum shows a new kind of anisotropy in which power transfer towards shorter scales occurs preferentially in the direction perpendicular to the electron flow. Results of the present three dimensional simulations of the current shear instability are compared with those of our earlier two dimensional simulations of sausage instability. It is found that the flattening of the mean velocity profile and thus reduction in the electron current due to generation of electromagnetic turbulence in the three dimensional case is more effective as compared to that in the two dimensional case.
Cyclic thermal signature in a global MHD simulation of solar convection
Cossette, J.; Charbonneau, P.; Smolarkiewicz, P. K.
2013-12-01
Space-based observations have clearly established that total solar irradiance (TSI) varies on time scales from minutes to days and months as well as on the longer time scale of the 11-year solar cycle. The most conspicuous of these variations is arguably the slight increase of TSI (0.1%) at solar maxima relative to solar minima. Models that include contributions from surface solar magnetism alone (i.e. sunspots, faculae and magnetic network) have been very successful at reproducing the observed TSI fluctuations on time scales shorter than a year, but leave some doubts as to the origin of the longer decadal fluctuations. In particular, one school of thought argues that surface magnetism alone can explain the entire TSI variance; see (Lean & al. 1998, ApJ, 492, 390), whereas; the other emphasizes on taking into account the effect of a global modulation of solar thermal structure by magnetic activity; see (Li & al. 2003, ApJ, 591, 1267). Observationally, the potential for the occurrence of magnetically-modulated global structural changes is supported by a positive correlation between p-mode oscillation frequencies and the TSI cycle as well as by recent evidence for a long-term trend in the TSI record that is not seen in indicators of surface magnetism; see (Bhatnagar & al. 1999, ApJ, 521, 885; Fröhlich 2013, Space Sci Rev,176, 237). Additionally, 1D structural solar models have demonstrated that the inclusion of a magnetically-modulated turbulent mechanism could explain the observed p-mode oscillation frequency changes with great accuracy. However, these models relied upon an ad-hoc parametrization of the alleged process and therefore obtaining a complete physical picture of the modulating mechanism requires solving the equations governing the self-consistent evolution of the solar plasma. Here we present a global magnetohydrodynamical (MHD) simulation of solar convection extending over more than a millennium that produces large-scale solar-like axisymmetric magnetic
Hoelzl, M.; Huijsmans, G. T. A.; Merkel, P.; Atanasiu, C.; Lackner, K.; Nardon, E.; Aleynikova, K.; Liu, F.; Strumberger, E.; McAdams, R.; Chapman, I.; Fil, A.
2014-11-01
The dynamics of large scale plasma instabilities can be strongly influenced by the mutual interaction with currents flowing in conducting vessel structures. Especially eddy currents caused by time-varying magnetic perturbations and halo currents flowing directly from the plasma into the walls are important. The relevance of a resistive wall model is directly evident for Resistive Wall Modes (RWMs) or Vertical Displacement Events (VDEs). However, also the linear and non-linear properties of most other large-scale instabilities may be influenced significantly by the interaction with currents in conducting structures near the plasma. The understanding of halo currents arising during disruptions and VDEs, which are a serious concern for ITER as they may lead to strong asymmetric forces on vessel structures, could also benefit strongly from these non-linear modeling capabilities. Modeling the plasma dynamics and its interaction with wall currents requires solving the magneto-hydrodynamic (MHD) equations in realistic toroidal X-point geometry consistently coupled with a model for the vacuum region and the resistive conducting structures. With this in mind, the non-linear finite element MHD code JOREK [1, 2] has been coupled [3] with the resistive wall code STARWALL [4], which allows us to include the effects of eddy currents in 3D conducting structures in non-linear MHD simulations. This article summarizes the capabilities of the coupled JOREK-STARWALL system and presents benchmark results as well as first applications to non-linear simulations of RWMs, VDEs, disruptions triggered by massive gas injection, and Quiescent H-Mode. As an outlook, the perspectives for extending the model to halo currents are described.
Numerical Hydrodynamics and Magnetohydrodynamics in General Relativity
Font José A.
2008-09-01
Full Text Available This article presents a comprehensive overview of numerical hydrodynamics and magnetohydrodynamics (MHD in general relativity. Some significant additions have been incorporated with respect to the previous two versions of this review (2000, 2003, most notably the coverage of general-relativistic MHD, a field in which remarkable activity and progress has occurred in the last few years. Correspondingly, the discussion of astrophysical simulations in general-relativistic hydrodynamics is enlarged to account for recent relevant advances, while those dealing with general-relativistic MHD are amply covered in this review for the first time. The basic outline of this article is nevertheless similar to its earlier versions, save for the addition of MHD-related issues throughout. Hence, different formulations of both the hydrodynamics and MHD equations are presented, with special mention of conservative and hyperbolic formulations well adapted to advanced numerical methods. A large sample of numerical approaches for solving such hyperbolic systems of equations is discussed, paying particular attention to solution procedures based on schemes exploiting the characteristic structure of the equations through linearized Riemann solvers. As previously stated, a comprehensive summary of astrophysical simulations in strong gravitational fields is also presented. These are detailed in three basic sections, namely gravitational collapse, black-hole accretion, and neutron-star evolutions; despite the boundaries, these sections may (and in fact do overlap throughout the discussion. The material contained in these sections highlights the numerical challenges of various representative simulations. It also follows, to some extent, the chronological development of the field, concerning advances in the formulation of the gravitational field, hydrodynamics and MHD equations and the numerical methodology designed to solve them. To keep the length of this article reasonable
MHD simulations of three-dimensional Resistive Reconnection in a cylindrical plasma column
Striani, Edoardo; Vaidya, Bhargav; Bodo, Gianluigi; Ferrari, Attilio
2016-01-01
Magnetic reconnection is a plasma phenomenon where a topological rearrangement of magnetic field lines with opposite polarity results in dissipation of magnetic energy into heat, kinetic energy and particle acceleration. Such a phenomenon is considered as an efficient mechanism for energy release in laboratory and astrophysical plasmas. An important question is how to make the process fast enough to account for observed explosive energy releases. The classical model for steady state magnetic reconnection predicts reconnection times scaling as $S^{1/2}$ (where $S$ is the Lundquist number) and yields times scales several order of magnitude larger than the observed ones. Earlier two-dimensional MHD simulations showed that for large Lundquist number the reconnection time becomes independent of $S$ ("fast reconnection" regime) due to the presence of the secondary tearing instability that takes place for $S \\gtrsim 1 \\times 10^4$. We report on our 3D MHD simulations of magnetic reconnection in a magnetically confin...
Three-dimensional Magnetohydrodynamic Simulations of Buoyant Bubbles in Galaxy Clusters
O'Neill, S M; Jones, T W
2009-01-01
We report results of 3D MHD simulations of the dynamics of buoyant bubbles in magnetized galaxy cluster media. The simulations are three dimensional extensions of two dimensional calculations reported by Jones & De Young (2005). Initially spherical bubbles and briefly inflated spherical bubbles all with radii a few times smaller than the intracluster medium (ICM) scale height were followed as they rose through several ICM scale heights. Such bubbles quickly evolve into a toroidal form that, in the absence of magnetic influences, is stable against fragmentation in our simulations. This ring formation results from (commonly used) initial conditions that cause ICM material below the bubbles to drive upwards through the bubble, creating a vortex ring; that is, hydrostatic bubbles develop into "smoke rings", if they are initially not very much smaller or very much larger than the ICM scale height. Even modest ICM magnetic fields with beta = P_gas/P_mag ~ 10^3 can influence the dynamics of the bubbles, provided...
Lattice Boltzmann model for resistive relativistic magnetohydrodynamics.
Mohseni, F; Mendoza, M; Succi, S; Herrmann, H J
2015-08-01
In this paper, we develop a lattice Boltzmann model for relativistic magnetohydrodynamics (MHD). Even though the model is derived for resistive MHD, it is shown that it is numerically robust even in the high conductivity (ideal MHD) limit. In order to validate the numerical method, test simulations are carried out for both ideal and resistive limits, namely the propagation of Alfvén waves in the ideal MHD and the evolution of current sheets in the resistive regime, where very good agreement is observed comparing to the analytical results. Additionally, two-dimensional magnetic reconnection driven by Kelvin-Helmholtz instability is studied and the effects of different parameters on the reconnection rate are investigated. It is shown that the density ratio has a negligible effect on the magnetic reconnection rate, while an increase in shear velocity decreases the reconnection rate. Additionally, it is found that the reconnection rate is proportional to σ-1/2, σ being the conductivity, which is in agreement with the scaling law of the Sweet-Parker model. Finally, the numerical model is used to study the magnetic reconnection in a stellar flare. Three-dimensional simulation suggests that the reconnection between the background and flux rope magnetic lines in a stellar flare can take place as a result of a shear velocity in the photosphere.
Liu, Wei
2010-01-01
We present results from three-dimensional ideal magnetohydrodynamic simulations of unmagnetized dense plasma jet injection into a hot strongly magnetized plasma, with the aim of providing insight into core fueling of a tokamak with parameters relevant for ITER (International Thermonuclear Experimental Reactor) and NSTX (National Spherical Torus Experiment). Unmagnetized jet injection is similar to compact toroid injection but with higher possible injection density and total mass, as well as a potentially smaller footprint for the injector hardware. Our simulation results show that the unmagnetized dense jet is quickly magnetized upon injection. The penetration depth of the jet into the tokamak plasma is mostly dependent on the jet's initial kinetic energy while the jet's magnetic field determines its interior evolution. A key requirement for spatially precise fueling is for the jet's slowing-down time to be less than the time for the perturbed tokamak magnetic flux to relax due to magnetic reconnection. Thus ...
Reconnection-Driven Magnetohydrodynamic Turbulence in a Simulated Coronal-Hole Jet
Uritsky, Vadim M; DeVore, C Richard; Karpen, Judith T
2016-01-01
Extreme-ultraviolet and X-ray jets occur frequently in magnetically open coronal holes on the Sun, especially at high solar latitudes. Some of these jets are observed by white-light coronagraphs as they propagate through the outer corona toward the inner heliosphere, and it has been proposed that they give rise to microstreams and torsional Alfv\\'{e}n waves detected in situ in the solar wind. To predict and understand the signatures of coronal-hole jets, we have performed a detailed statistical analysis of such a jet simulated with an adaptively refined magnetohydrodynamics model. The results confirm the generation and persistence of three-dimensional, reconnectiondriven magnetic turbulence in the simulation. We calculate the spatial correlations of magnetic fluctuations within the jet and find that they agree best with the M\\"{u}ller - Biskamp scaling model including intermittent current sheets of various sizes coupled via hydrodynamic turbulent cascade. The anisotropy of the magnetic fluctuations and the sp...
Onofri, M; Malara, F; Veltri, P
2010-11-19
A compressible magnetohydrodynamics simulation of the reversed-field pinch is performed including anisotropic thermal conductivity. When the thermal conductivity is much larger in the direction parallel to the magnetic field than in the perpendicular direction, magnetic field lines become isothermal. As a consequence, as long as magnetic surfaces exist, a temperature distribution is observed displaying a hotter confined region, while an almost uniform temperature is produced when the magnetic field lines become chaotic. To include this effect in the numerical simulation, we use a multiple-time-scale analysis, which allows us to reproduce the effect of a large parallel thermal conductivity. The resulting temperature distribution is related to the existence of closed magnetic surfaces, as observed in experiments. The magnetic field is also affected by the presence of an anisotropic thermal conductivity.
PROPERTIES OF UMBRAL DOTS AS MEASURED FROM THE NEW SOLAR TELESCOPE DATA AND MHD SIMULATIONS
Kilcik, A.; Yurchyshyn, V. B.; Abramenko, V.; Goode, P. R.; Cao, W. [Big Bear Solar Observatory, Big Bear City, CA 92314 (United States); Rempel, M. [High Altitude Observatory, NCAR, Boulder, CO 80307-3000 (United States); Kitai, R.; Watanabe, H. [Kwasan and Hida Observatories, Kyoto University, Kyoto 607-8417 (Japan)
2012-02-01
We studied bright umbral dots (UDs) detected in a moderate size sunspot and compared their statistical properties to recent MHD models. The study is based on high-resolution data recorded by the New Solar Telescope at the Big Bear Solar Observatory and three-dimensional (3D) MHD simulations of sunspots. Observed UDs, living longer than 150 s, were detected and tracked in a 46 minute long data set, using an automatic detection code. A total of 1553 (620) UDs were detected in the photospheric (low chromospheric) data. Our main findings are (1) none of the analyzed UDs is precisely circular, (2) the diameter-intensity relationship only holds in bright umbral areas, and (3) UD velocities are inversely related to their lifetime. While nearly all photospheric UDs can be identified in the low chromospheric images, some small closely spaced UDs appear in the low chromosphere as a single cluster. Slow-moving and long-living UDs seem to exist in both the low chromosphere and photosphere, while fast-moving and short-living UDs are mainly detected in the photospheric images. Comparison to the 3D MHD simulations showed that both types of UDs display, on average, very similar statistical characteristics. However, (1) the average number of observed UDs per unit area is smaller than that of the model UDs, and (2) on average, the diameter of model UDs is slightly larger than that of observed ones.
Adventures in magnetohydrodynamics
Johnson, John L.
1988-03-01
The material in the report was presented in a series of three lectures presented on two days, October 29 and 30, 1987, at Nagoya University. A survey of magnetohydrodynamic theory was given as it applies to toroidal confinement. The material was broken down into four sections: (1) the derivation and justification of the MHD equations; (2) the equilibrium problem; (3) linearized stability; and (4) comments on nonlinear evolution, magnetic islands and transport theory.
Extension of the MURaM radiative MHD code for coronal simulations
Rempel, Matthias
2016-01-01
We present a new version of the MURaM radiative MHD code that allows for simulations spanning from the upper convection zone into the solar corona. We implemented the relevant coronal physics in terms of optically thin radiative loss, field aligned heat conduction and an equilibrium ionization equation of state. We artificially limit the coronal Alfv{\\'e}n and heat conduction speeds to computationally manageable values using an approximation to semi-relativistic MHD with an artificially reduced speed of light (Boris correction). We present example solutions ranging from quiet to active Sun in order to verify the validity of our approach. We quantify the role of numerical diffusivity for the effective coronal heating. We find that the (numerical) magnetic Prandtl number determines the ratio of resistive to viscous heating and that owing to the very large magnetic Prandtl number of the solar corona, heating is expected to happen predominantly through viscous dissipation. We find that reasonable solutions can be...
FTE Dependence on IMF Orientation and Presence of Hall Physics in Global MHD Simulations
Maynard, K. M.; Germaschewski, K.; Lin, L.; Raeder, J.
2013-12-01
Flux Transfer Events (FTEs) are poleward traveling flux ropes that form in the dayside magnetopause and represent significant coupling of the solar wind to the magnetosphere during times of southward IMF. In the 35 years since their discovery, FTEs have been extensively observed and modeled; however, there is still no consensus on their generation mechanism. Previous modeling efforts have shown that FTE occurrence and size depend on the resistivity model that is used in simulations and the structure of X-lines in the magnetopause. We use Hall OpenGGCM, a global Hall-MHD code, to study the formation and propagation of FTEs in the dayside magnetopause using synthetic solar wind conditions. We examine large scale FTE structure and nearby magnetic separators for a range of IMF clock angles and dipole tilts. In addition, we investigate how FTE formation and recurrence rate depends on the presence of the Hall term in the generalized Ohm's law compared with resistive MHD.
Linear Simulations of the Cylindrical Richtmyer-Meshkov Instability in Hydrodynamics and MHD
Gao, Song
2013-05-01
The Richtmyer-Meshkov instability occurs when density-stratified interfaces are impulsively accelerated, typically by a shock wave. We present a numerical method to simulate the Richtmyer-Meshkov instability in cylindrical geometry. The ideal MHD equations are linearized about a time-dependent base state to yield linear partial differential equations governing the perturbed quantities. Convergence tests demonstrate that second order accuracy is achieved for smooth flows, and the order of accuracy is between first and second order for flows with discontinuities. Numerical results are presented for cases of interfaces with positive Atwood number and purely azimuthal perturbations. In hydrodynamics, the Richtmyer-Meshkov instability growth of perturbations is followed by a Rayleigh-Taylor growth phase. In MHD, numerical results indicate that the perturbations can be suppressed for sufficiently large perturbation wavenumbers and magnetic fields.
Comparison of helioseismic cut-off frequency formulations by the means of MHD simulation results
Bourdin, Philippe-A.; Thaler, Irina; Roth, Markus
2017-04-01
The discussion of helioseismic wave phenomena requires a self-consistent description of the plasma pressure. Magnetically active regions on the Sun are observed to have distinct wave phenomena as compared to quiet regions. With better helioseismologic diagnostics near active regions one may also better understand not only the chromospheric energy budget, but also halo formation and running penumbral waves. The line formation height (with respect to the beta=1 level) and the magnetic field inclination near the solar surface are in the same time difficult to measure and important to correctly interpret observations. With the help of a large-scale 3D magneto-hydrodynamic (MHD) model, that features an active region as bottom boundary and has shown good agreement to various observations, we may compute values for theoretically derived formulations of cut-off frequencies from the model plasma parameters. Our results show strongly varying vertical atmospheric profiles and we give estimates of their influence on the expected cut-off frequencies.
A General Relativistic Magnetohydrodynamics Simulation of Jet Formation with a State Transition
Nishikawa, K. I.; Richardson, G.; Koide, S.; Shibata, K.; Kudoh, T.; Hardee, P.; Fushman, G. J.
2004-01-01
We have performed the first fully three-dimensional general relativistic magnetohydrodynamic (GRMHD) simulation of jet formation from a thin accretion disk around a Schwarzschild black hole with a free-falling corona. The initial simulation results show that a bipolar jet (velocity sim 0.3c) is created as shown by previous two-dimensional axisymmetric simulations with mirror symmetry at the equator. The 3-D simulation ran over one hundred light-crossing time units which is considerably longer than the previous simulations. We show that the jet is initially formed as predicted due in part to magnetic pressure from the twisting the initially uniform magnetic field and from gas pressure associated with shock formation. At later times, the accretion disk becomes thick and the jet fades resulting in a wind that is ejected from the surface of the thickened (torus-like) disk. It should be noted that no streaming matter from a donor is included at the outer boundary in the simulation (an isolated black hole not binary black hole). The wind flows outwards with a wider angle than the initial jet. The widening of the jet is consistent with the outward moving shock wave. This evolution of jet-disk coupling suggests that the low/hard state of the jet system may switch to the high/soft state with a wind, as the accretion rate diminishes.
MHD Equilibria and Triggers for Prominence Eruption
Fan, Yuhong
2015-01-01
Magneto-hydrodynamic (MHD) simulations of the emergence of twisted magnetic flux tubes from the solar interior into the corona are discussed to illustrate how twisted and sheared coronal magnetic structures (with free magnetic energy), capable of driving filament eruptions, can form in the corona in emerging active regions. Several basic mechanisms that can disrupt the quasi-equilibrium coronal structures and trigger the release of the stored free magnetic energy are discussed. These include both ideal processes such as the onset of the helical kink instability and the torus instability of a twisted coronal flux rope structure and the non-ideal process of the onset of fast magnetic reconnections in current sheets. Representative MHD simulations of the non-linear evolution involving these mechanisms are presented.
A comparative study on 3-D solar wind structure observed by Ulysses and MHD simulation
FENG Xueshang; XIANG Changqing; ZHONG Dingkun; FAN Quanlin
2005-01-01
During Ulysses' first rapid pole-to-pole transit from September 1994 to June 1995, its observations showed that middle- or high-speed solar winds covered all latitudes except those between -20° and +20° near the ecliptic plane,where the velocity was 300-450 km/s. At poleward 40°,however, only fast solar winds at the speed of 700-870 km/s were observed. In addition, the transitions from low-speed wind to high-speed wind or vice versa were abrupt. In this paper, the large-scale structure of solar wind observed by Ulysses near solar minimum is simulated by using the three-dimensional numerical MHD model. The model combines TVD Lax-Friedrich scheme and MacCormack Ⅱ scheme and decomposes the calculation region into two regions: one from 1 to 22 Rs and the other from 18 Rs to 1 AU.Based on the observations of the solar photospheric magnetic field and an addition of the volumetric heating to MHD equations, the large-scale solar wind structure mentioned above is reproduced by using the three-dimensional MHD model and the numerical results are roughly consistent with Ulysses' observations. Our simulation shows that the initial magnetic field topology and the addition of volume heating may govern the bimodal structure of solar wind observed by Ulysses and also demonstrates that the three-dimensional MHD numerical model used here is efficient in modeling the large-scale solar wind structure.
Scaling properties of small-scale fluctuations in magnetohydrodynamic turbulence
Perez, J C; Boldyrev, S; Cattaneo, F
2014-01-01
Magnetohydrodynamic (MHD) turbulence in the majority of natural systems, including the interstellar medium, the solar corona, and the solar wind, has Reynolds numbers far exceeding the Reynolds numbers achievable in numerical experiments. Much attention is therefore drawn to the universal scaling properties of small-scale fluctuations, which can be reliably measured in the simulations and then extrapolated to astrophysical scales. However, in contrast with hydrodynamic turbulence, where the universal structure of the inertial and dissipation intervals is described by the Kolmogorov self-similarity, the scaling for MHD turbulence cannot be established based solely on dimensional arguments due to the presence of an intrinsic velocity scale -- the Alfven velocity. In this Letter, we demonstrate that the Kolmogorov first self-similarity hypothesis cannot be formulated for MHD turbulence in the same way it is formulated for the hydrodynamic case. Besides profound consequences for the analytical consideration, this...
Van der Swaluw, E
2003-01-01
Magnetohydrodynamical simulations are presented of a magnetized pulsar wind interacting directly with the interstellar medium, or, in the case of a surrounding supernova remnant, with the associated freely expanding ejecta of the progenitor star. In both cases the simulations show that the pulsar wind nebula will be elongated due to the dynamical influence of the toroidal magnetic fields, which confirm predictions from a semi-analytical model presented by Begelman & Li. The simulations follow the expansion of the pulsar wind nebula when the latter is bounded by a strong shock and show that the expansion can be modeled with a standard power-law expansion rate. By performing different simulations with different magnetization parameters, I show that the latter weakly correlates with the elongation of the pulsar wind nebula. The results from the simulations are applied to determine the nature of the expansion rate of the pulsar wind nebula 3C58. It is shown that there is both observational and theoretical evi...
Liu, Wei [Los Alamos National Laboratory; Hsu, Scott [Los Alamos National Laboratory; Li, Hui [Los Alamos National Laboratory
2009-01-01
We present results from three-dimensional ideal magnetohydrodynamic simulations of low {beta} compact toroid (CT) injection into a hot strongly magnetized plasma, with the aim of providing insight into CT fueling of a tokamak with parameters relevant for ITER (International Thermonuclear Experimental Reactor). A regime is identified in terms of CT injection speed and CT-to-background magnetic field ratio that appears promising for precise core fueling. Shock-dominated regimes, which are probably unfavorable for tokamak fueling, are also identified. The CT penetration depth is proportional to the CT injection speed and density. The entire CT evolution can be divided into three stages: (1) initial penetration, (2) compression in the direction of propagation and reconnection, and (3) coming to rest and spreading in the direction perpendicular to injection. Tilting of the CT is not observed due to the fast transit time of the CT across the background plasma.
Large-scale magnetic fields at high Reynolds numbers in magnetohydrodynamic simulations.
Hotta, H; Rempel, M; Yokoyama, T
2016-03-25
The 11-year solar magnetic cycle shows a high degree of coherence in spite of the turbulent nature of the solar convection zone. It has been found in recent high-resolution magnetohydrodynamics simulations that the maintenance of a large-scale coherent magnetic field is difficult with small viscosity and magnetic diffusivity (≲10 (12) square centimenters per second). We reproduced previous findings that indicate a reduction of the energy in the large-scale magnetic field for lower diffusivities and demonstrate the recovery of the global-scale magnetic field using unprecedentedly high resolution. We found an efficient small-scale dynamo that suppresses small-scale flows, which mimics the properties of large diffusivity. As a result, the global-scale magnetic field is maintained even in the regime of small diffusivities-that is, large Reynolds numbers.
Cosmological MHD simulations of cluster formation with anisotropic thermal conduction
Ruszkowski, M; Bruggen, M; Parrish, I; Oh, S Peng
2010-01-01
(abridged) The ICM has been suggested to be buoyantly unstable in the presence of magnetic field and anisotropic thermal conduction. We perform first cosmological simulations of galaxy cluster formation that simultaneously include magnetic fields, radiative cooling and anisotropic thermal conduction. In isolated and idealized cluster models, the magnetothermal instability (MTI) tends to reorient the magnetic fields radially. Using cosmological simulations of the Santa Barbara cluster we detect radial bias in the velocity and magnetic fields. Such radial bias is consistent with either the inhomogeneous radial gas flows due to substructures or residual MTI-driven field rearangements that are expected even in the presence of turbulence. Although disentangling the two scenarios is challenging, we do not detect excess bias in the runs that include anisotropic thermal conduction. The anisotropy effect is potentially detectable via radio polarization measurements with LOFAR and SKA and future X-ray spectroscopic stu...
Xiong, Ming; Wang, Yuming; Wang, Shui; 10.1029/2006JA011901
2009-01-01
Numerical studies of the interplanetary "shock overtaking magnetic cloud (MC)" event are continued by a 2.5 dimensional magnetohydrodynamic (MHD) model in heliospheric meridional plane. Interplanetary direct collision (DC)/oblique collision (OC) between an MC and a shock results from their same/different initial propagation orientations. For radially erupted MC and shock in solar corona, the orientations are only determined respectively by their heliographic locations. OC is investigated in contrast with the results in DC \\citep{Xiong2006}. The shock front behaves as a smooth arc. The cannibalized part of MC is highly compressed by the shock front along its normal. As the shock propagates gradually into the preceding MC body, the most violent interaction is transferred sideways with an accompanying significant narrowing of the MC's angular width. The opposite deflections of MC body and shock aphelion in OC occur simultaneously through the process of the shock penetrating the MC. After the shock's passage, the...
VisAn MHD: a toolbox in Matlab for MHD computer model data visualisation and analysis
P. Daum
2007-03-01
Full Text Available Among the many challenges facing modern space physics today is the need for a visualisation and analysis package which can examine the results from the diversity of numerical and empirical computer models as well as observational data. Magnetohydrodynamic (MHD models represent the latest numerical models of the complex Earth's space environment and have the unique ability to span the enormous distances present in the magnetosphere from several hundred kilometres to several thousand kilometres above the Earth surface. This feature enables scientist to study complex structures of processes where otherwise only point measurements from satellites or ground-based instruments are available. Only by combining these observational data and the MHD simulations it is possible to enlarge the scope of the point-to-point observations and to fill the gaps left by measurements in order to get a full 3-D representation of the processes in our geospace environment. In this paper we introduce the VisAn MHD toolbox for Matlab as a tool for the visualisation and analysis of observational data and MHD simulations. We have created an easy to use tool which is capable of highly sophisticated visualisations and data analysis of the results from a diverse set of MHD models in combination with in situ measurements from satellites and ground-based instruments. The toolbox is being released under an open-source licensing agreement to facilitate and encourage community use and contribution.
Constrained Transport vs. Divergence Cleanser Options in Astrophysical MHD Simulations
Lindner, Christopher C.; Fragile, P.
2009-01-01
In previous work, we presented results from global numerical simulations of the evolution of black hole accretion disks using the Cosmos++ GRMHD code. In those simulations we solved the magnetic induction equation using an advection-split form, which is known not to satisfy the divergence-free constraint. To minimize the build-up of divergence error, we used a hyperbolic cleanser function that simultaneously damped the error and propagated it off the grid. We have since found that this method produces qualitatively and quantitatively different behavior in high magnetic field regions than results published by other research groups, particularly in the evacuated funnels of black-hole accretion disks where Poynting-flux jets are reported to form. The main difference between our earlier work and that of our competitors is their use of constrained-transport schemes to preserve a divergence-free magnetic field. Therefore, to study these differences directly, we have implemented a constrained transport scheme into Cosmos++. Because Cosmos++ uses a zone-centered, finite-volume method, we can not use the traditional staggered-mesh constrained transport scheme of Evans & Hawley. Instead we must implement a more general scheme; we chose the Flux-CT scheme as described by Toth. Here we present comparisons of results using the divergence-cleanser and constrained transport options in Cosmos++.
Multi-region relaxed magnetohydrodynamics with flow
Dennis, G R; Dewar, R L; Hole, M J
2014-01-01
We present an extension of the multi-region relaxed magnetohydrodynamics (MRxMHD) equilibrium model that includes plasma flow. This new model is a generalization of Woltjer's model of relaxed magnetohydrodynamics equilibria with flow. We prove that as the number of plasma regions becomes infinite our extension of MRxMHD reduces to ideal MHD with flow. We also prove that some solutions to MRxMHD with flow are not time-independent in the laboratory frame, and instead have 3D structure which rotates in the toroidal direction with fixed angular velocity. This capability gives MRxMHD potential application to describing rotating 3D MHD structures such as 'snakes' and long-lived modes.
Multi-region relaxed magnetohydrodynamics with flow
Dennis, G. R., E-mail: graham.dennis@anu.edu.au; Dewar, R. L.; Hole, M. J. [Research School of Physics and Engineering, Australian National University, ACT 0200 (Australia); Hudson, S. R. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, New Jersey 08543 (United States)
2014-04-15
We present an extension of the multi-region relaxed magnetohydrodynamics (MRxMHD) equilibrium model that includes plasma flow. This new model is a generalization of Woltjer's model of relaxed magnetohydrodynamics equilibria with flow. We prove that as the number of plasma regions becomes infinite, our extension of MRxMHD reduces to ideal MHD with flow. We also prove that some solutions to MRxMHD with flow are not time-independent in the laboratory frame, and instead have 3D structure which rotates in the toroidal direction with fixed angular velocity. This capability gives MRxMHD potential application to describing rotating 3D MHD structures such as 'snakes' and long-lived modes.
Yang, H.; Bhattacharjee, A.; Forbes, T. G.
2008-12-01
It has long been suggested that eruptive phenomena such as coronal mass ejections, prominence eruptions, and large flares might be caused by a loss of equilibrium in a coronal flux rope (Van Tend and Kuperus, 1978). Forbes et al. (1994) developed an analytical two-dimensional model in which eruptions occur due to a catastrophic loss of equilibrium and relaxation to a lower-energy state containing a thin current sheet. Magnetic reconnection then intervenes dynamically, leading to the release of magnetic energy and expulsion of a plasmoid. We have carried out high-Lundquist-number simulations to test the loss-of equilibrium mechanism, and demonstrated that it does indeed occur in the quasi-ideal limit. We have studied the subsequent dynamical evolution of the system in resistive and Hall MHD models for single as well as multiple arcades. The typical parallel electric fields are super-Dreicer, which makes it necessary to include collisionless effects via a generalized Ohm's law. It is shown that the nature of the local dissipation mechanism has a significant effect on the global geometry and dynamics of the magnetic configuration. The presence of Hall currents is shown to alter the length of the current sheet and the jets emerging from the reconnection site, directed towards the chromosphere. Furthermore, Hall MHD effects break certain symmetries of resistive MHD dynamics, and we explore their observational consequences.
Laser-Plasma Modeling Using PERSEUS Extended-MHD Simulation Code for HED Plasmas
Hamlin, Nathaniel; Seyler, Charles
2016-10-01
We discuss the use of the PERSEUS extended-MHD simulation code for high-energy-density (HED) plasmas in modeling laser-plasma interactions in relativistic and nonrelativistic regimes. By formulating the fluid equations as a relaxation system in which the current is semi-implicitly time-advanced using the Generalized Ohm's Law, PERSEUS enables modeling of two-fluid phenomena in dense plasmas without the need to resolve the smallest electron length and time scales. For relativistic and nonrelativistic laser-target interactions, we have validated a cycle-averaged absorption (CAA) laser driver model against the direct approach of driving the electromagnetic fields. The CAA model refers to driving the radiation energy and flux rather than the fields, and using hyperbolic radiative transport, coupled to the plasma equations via energy source terms, to model absorption and propagation of the radiation. CAA has the advantage of not requiring adequate grid resolution of each laser wavelength, so that the system can span many wavelengths without requiring prohibitive CPU time. For several laser-target problems, we compare existing MHD results to extended-MHD results generated using PERSEUS with the CAA model, and examine effects arising from Hall physics. This work is supported by the National Nuclear Security Administration stewardship sciences academic program under Department of Energy cooperative agreements DE-FOA-0001153 and DE-NA0001836.
Klimas, A. J.; Uritsky, V.; Vassiliadis, D.; Baker, D. N.
2005-01-01
Loading and consequent unloading of magnetic flux is an essential element of the substorm cycle in Earth's magnetotail. We are unaware of an available global MHD magnetospheric simulation model that includes a loading- unloading cycle in its behavior. Given the central role that MHD models presently play in the development of our understanding of magnetospheric dynamics, and given the present plans for the central role that these models will play in ongoing space weather prediction programs, it is clear that this failure must be corrected. A 2-dimensional numerical driven current-sheet model has been developed that incorporates an idealized current- driven instability with a resistive MHD system. Under steady loading, the model exhibits a global loading- unloading cycle. The specific mechanism for producing the loading-unloading cycle will be discussed. It will be shown that scale-free avalanching of electromagnetic energy through the model, from loading to unloading, is carried by repetitive bursts of localized reconnection. Each burst leads, somewhat later, to a field configuration that is capable of exciting a reconnection burst again. This process repeats itself in an intermittent manner while the total field energy in the system falls. At the end of an unloading interval, the total field energy is reduced to well below that necessary to initiate the next unloading event and, thus, a loading-unloading cycle results. It will be shown that, in this model, it is the topology of bursty localized reconnection that is responsible for the appearance of the loading-unloading cycle.
Extragalactic jets with helical magnetic fields: relativistic MHD simulations
Keppens, R; van der Holst, B; Casse, F
2008-01-01
Extragalactic jets are inferred to harbor dynamically important, organized magnetic fields which presumably aid in the collimation of the relativistic jet flows. We here explore by means of grid-adaptive, high resolution numerical simulations the morphology of AGN jets pervaded by helical field and flow topologies. We concentrate on morphological features of the bow shock and the jet beam behind the Mach disk, for various jet Lorentz factors and magnetic field helicities. We investigate the influence of helical magnetic fields on jet beam propagation in overdense external medium. We use the AMRVAC code, employing a novel hybrid block-based AMR strategy, to compute ideal plasma dynamics in special relativity. The helicity of the beam magnetic field is effectively transported down the beam, with compression zones in between diagonal internal cross-shocks showing stronger toroidal field regions. In comparison with equivalent low-relativistic jets which get surrounded by cocoons with vortical backflows filled by ...
Photon Scattering in 3D Radiative MHD Simulations
Hayek, Wolfgang
2009-09-01
Recent results from 3D time-dependent radiative hydrodynamic simulations of stellar atmospheres are presented, which include the effects of coherent scattering in the radiative transfer treatment. Rayleigh scattering and electron scattering are accounted for in the source function, requiring an iterative solution of the transfer equation. Opacities and scattering coefficients are treated in the multigroup opacity approximation. The impact of scattering on the horizontal mean temperature structure is investigated, which is an important diagnostic for model atmospheres, with implications for line formation and stellar abundance measurements. We find that continuum scattering is not important for the atmosphere of a metal-poor Sun with metailicity [Fe/H] = -3.0, similar to the previously investigated photosphere at solar metallicity.
Small-scale behavior of Hall magnetohydrodynamic turbulence.
Stawarz, Julia E; Pouquet, Annick
2015-12-01
Decaying Hall magnetohydrodynamic (HMHD) turbulence is studied using three-dimensional (3D) direct numerical simulations with grids up to 768(3) points and two different types of initial conditions. Results are compared to analogous magnetohydrodynamic (MHD) runs and both Laplacian and Laplacian-squared dissipative operators are examined. At scales below the ion inertial length, the ratio of magnetic to kinetic energy as a function of wave number transitions to a magnetically dominated state. The transition in behavior is associated with the advection term in the momentum equation becoming subdominant to dissipation. Examination of autocorrelation functions reveals that, while current and vorticity structures are similarly sized in MHD, HMHD current structures are narrower and vorticity structures are wider. The electric field autocorrelation function is significantly narrower in HMHD than in MHD and is similar to the HMHD current autocorrelation function at small separations. HMHD current structures are found to be significantly more intense than in MHD and appear to have an enhanced association with strong alignment between the current and magnetic field, which may be important in collisionless plasmas where field-aligned currents can be unstable. When hyperdiffusivity is used, a longer region consistent with a k(-7/3) scaling is present for right-polarized fluctuations when compared to Laplacian dissipation runs.
Introduction to magnetohydrodynamics
Thompson, Ian
2016-01-01
Magnetohydrodynamics (MHD) plays a crucial role in astrophysics, planetary magnetism, engineering and controlled nuclear fusion. This comprehensive textbook emphasizes physical ideas, rather than mathematical detail, making it accessible to a broad audience. Starting from elementary chapters on fluid mechanics and electromagnetism, it takes the reader all the way through to the latest ideas in more advanced topics, including planetary dynamos, stellar magnetism, fusion plasmas and engineering applications. With the new edition, readers will benefit from additional material on MHD instabilities, planetary dynamos and applications in astrophysics, as well as a whole new chapter on fusion plasma MHD. The development of the material from first principles and its pedagogical style makes this an ideal companion for both undergraduate students and postgraduate students in physics, applied mathematics and engineering. Elementary knowledge of vector calculus is the only prerequisite.
Introduction to modern magnetohydrodynamics
Galtier, Sébastien
2016-01-01
Ninety-nine percent of ordinary matter in the Universe is in the form of ionized fluids, or plasmas. The study of the magnetic properties of such electrically conducting fluids, magnetohydrodynamics (MHD), has become a central theory in astrophysics, as well as in areas such as engineering and geophysics. This textbook offers a comprehensive introduction to MHD and its recent applications, in nature and in laboratory plasmas; from the machinery of the Sun and galaxies, to the cooling of nuclear reactors and the geodynamo. It exposes advanced undergraduate and graduate students to both classical and modern concepts, making them aware of current research and the ever-widening scope of MHD. Rigorous derivations within the text, supplemented by over 100 illustrations and followed by exercises and worked solutions at the end of each chapter, provide an engaging and practical introduction to the subject and an accessible route into this wide-ranging field.
Penna, Robert F; Sadowski, Aleksander
2013-01-01
Recently it has been observed that the scaling of jet power with black hole spin in galactic X-ray binaries is consistent with the predictions of the Blandford-Znajek (BZ) jet model. These observations motivate us to revisit the BZ model using general relativistic magnetohydrodynamic simulations of magnetized jets from accreting (h/r ~ 0.3), spinning (0 < a_* < 0.98) black holes. We have three main results. First, we quantify the discrepancies between the BZ jet power and our simulations: assuming maximum efficiency and uniform fields on the horizon leads to a ~10% overestimate of jet power, while ignoring the accretion disk leads to a further ~50% overestimate. Simply reducing the standard BZ jet power prediction by 60% gives a good fit to our simulation data. Our second result is to show that the membrane formulation of the BZ model correctly describes the physics underlying simulated jets: torques, dissipation, and electromagnetic fields on the horizon. This provides intuitive yet rigorous pictures f...
MRI-driven Accretion onto Magnetized stars: Axisymmetric MHD Simulations
Romanova, Marina M; Koldoba, Alexander V; Lovelace, Richard V E
2011-01-01
We present the first results of a global axisymmetric simulation of accretion onto rotating magnetized stars from a turbulent, MRI-driven disk. The angular momentum is transported outward by the magnetic stress of the turbulent flow with a rate corresponding to a Shakura-Sunyaev viscosity parameter alpha\\approx 0.01-0.04. The result of the disk-magnetosphere interaction depends on the orientation of the poloidal field in the disk relative to that of the star at the disk-magnetosphere boundary. If fields have the same polarity, then the magnetic flux is accumulated at the boundary and blocks the accretion which leads to the accumulation of matter at the boundary. Subsequently, this matter accretes to the star in outburst before accumulating again. Hence, the cycling, `bursty' accretion is observed. If the disc and stellar fields have opposite polarity, then the field reconnection enhances the penetration of the disk matter towards the deeper field lines of the magnetosphere. However, the magnetic stress at the...
The impact of non-ideal magnetohydrodynamics on binary star formation
Wurster, James; Price, Daniel J.; Bate, Matthew R.
2017-04-01
We investigate the effect of non-ideal magnetohydrodynamics (MHD) on the formation of binary stars using a suite of three-dimensional smoothed particle magnetohydrodynamics simulations of the gravitational collapse of 1 M⊙, rotating, perturbed molecular-cloud cores. Alongside the role of Ohmic resistivity, ambipolar diffusion and the Hall effect, we also examine the effects of magnetic field strength, orientation and amplitude of the density perturbation. When modelling sub-critical cores, ideal MHD models do not collapse whereas non-ideal MHD models collapse to form single protostars. In supercritical ideal MHD models, increasing the magnetic field strength or decreasing the initial-density perturbation amplitude decreases the initial binary separation. Strong magnetic fields initially perpendicular to the rotation axis suppress the formation of binaries and yield discs with magnetic fields ˜10 times stronger than if the magnetic field was initially aligned with the rotation axis. When non-ideal MHD is included, the resulting discs are larger and more massive, and the binary forms on a wider orbit. Small differences in the supercritical cores caused by non-ideal MHD effects are amplified by the binary interaction near periastron. Overall, the non-ideal effects have only a small impact on binary formation and early evolution, with the initial conditions playing the dominant role.
Parallel magnetohydrodynamics on the Cray T3D
Meijer, P. M.; Poedts, S.; Goedbloed, J. P.
1996-01-01
The equations of magnetohydrodynamics (MHD) are discussed in the framework of parallel computing. Both linear and nonlinear MHD models are addressed. Special attention is given to the parallellisation of the kernels of the existing sequential MHD codes. These kernels involve matrix-vector multiplica
MHD simulation of solar wind and multiple coronal mass ejections with internal magnetic flux ropes
Shiota, Daiko
2017-08-01
Solar wind and CMEs are the main drivers of various types of space weather disturbance. The profile of IMF Bz is the most important parameter for space weather forecasts because various magnetospheric disturbances are caused by the southward IMF brought on the Earth. Recently, we have developed MHD simulation of the solar wind, including a series of multiple CMEs with internal spheromak-type magnetic fields on the basis of observations of photospheric magnetic fields and coronal images. The MHD simulation is therefore capable of predicting the time profile of the IMF at the Earth, in relation to the passage of a magnetic cloud within a CME. In order to evaluate the current ability of our simulation, we demonstrate a test case: the propagation and interaction process of multiple CMEs associated with the highly complex active region NOAA 10486 in October to November 2003. The results of a simulation successfully reproduced the arrival at the Earth’s position of a large amount of southward magnetic flux, which is capable of causing an intense magnetic storm, and provided an implication of the observed complex time profile of the solar wind parameters at the Earth as a result of the interaction of a few specific CMEs.
Coupled Kinetic-MHD Simulations of Divertor Heat Load with ELM Perturbations
Cummings, Julian; Chang, C. S.; Park, Gunyoung; Sugiyama, Linda; Pankin, Alexei; Klasky, Scott; Podhorszki, Norbert; Docan, Ciprian; Parashar, Manish
2010-11-01
The effect of Type-I ELM activity on divertor plate heat load is a key component of the DOE OFES Joint Research Target milestones for this year. In this talk, we present simulations of kinetic edge physics, ELM activity, and the associated divertor heat loads in which we couple the discrete guiding-center neoclassical transport code XGC0 with the nonlinear extended MHD code M3D using the End-to-end Framework for Fusion Integrated Simulations, or EFFIS. In these coupled simulations, the kinetic code and the MHD code run concurrently on the same massively parallel platform and periodic data exchanges are performed using a memory-to-memory coupling technology provided by EFFIS. The M3D code models the fast ELM event and sends frequent updates of the magnetic field perturbations and electrostatic potential to XGC0, which in turn tracks particle dynamics under the influence of these perturbations and collects divertor particle and energy flux statistics. We describe here how EFFIS technologies facilitate these coupled simulations and discuss results for DIII-D, NSTX and Alcator C-Mod tokamak discharges.
MAGNETOHYDRODYNAMIC MODELING FOR FUSION PLASMAS
Keppens, R.; Goedbloed, J. P.; Blokland, J. W. S.
2010-01-01
The magnetohydrodynamic model for fusion plasma dynamics governs the large-scale equilibrium properties, and sets the most stringent constraints on the parameter space accessible without violent disruptions. In conjunction with linear stability analysis in the complex tokamak geometry, the MHD parad
MHD simulations reveal crucial differences between solar and very-cool star magnetic structures
Beeck, Benjamin; Reiners, Ansgar
2011-01-01
We carried out 3D radiative magnetohydrodynamic simulations of the convective and magnetic structure in the surface layers (uppermost part of the convection zone and photosphere) of main-sequence stars of spectral types F3 to M2. The simulation results were analyzed in terms of sizes and properties of the convection cells (granules) and magnetic flux concentrations as well as velocity, pressure, density, and temperature profiles. Our numerical simulations show for the first time a qualitative difference in the magneto-convection between solar-like stars and M dwarfs. Owing to higher surface gravity, lower opacity (resulting in higher density at optical depth unity), and more stable downflows, small-scale magnetic structures concentrate into pore-like configurations of reduced intensity. This implies that in very cool stars magnetic surface structures like plage regions and starspots significantly differ from the solar example. Such a difference would have major impact on the interpretation of Doppler imaging ...
Wexler, David B.; Hollweg, Joseph V.; Jensen, Elizabeth; Lionello, Roberto; Macneice, Peter J.; Coster, Anthea J.
2017-08-01
Study of coronal MHD wave energetics relies upon accurate representation of plasma particle number densities (ne) and magnetic field strengths. In the lower corona, these parameters are obtained indirectly, and typically presented as empirical equations as a function of heliocentric radial distance (solar offset, SO). The development of coronal global models using synoptic solar surface magnetogram inputs has provided refined characterization of the coronal plasma organization and magnetic field. We present a cross-analysis between a MHD thermodynamic simulation and Faraday rotation (FR) observations over SO 1.63-1.89 solar radii (Rs) near solar minimum. MESSENGER spacecraft radio signals with a line of sight (LOS) passing through the lower corona were recorded in dual polarization using the Green Bank Telescope in November 2009. Polarization position angle changes were obtained from Stokes parameters. The magnetic field vector (B) and ne along the LOS were obtained from a MHD thermodynamic simulation provided by the Community Coordinated Modeling Center. The modeled FR was computed as the integrated product of ne and LOS-aligned B component. The observations over the given SO range yielded an FR change of 7 radians. The simulation reproduced this change when the modeled ne was scaled up by 2.8x, close to values obtained using the Allen-Baumbach equation. No scaling of B from the model was necessary. A refined fit to the observations was obtained when the observationally based total electron content (TEC) curves were introduced. Changes in LOS TEC were determined from radio frequency shifts as the signal passed to successively lower electron concentrations during egress. A good fit to the observations was achieved with an offset of 7e21 m-2 added. Back-calculating ne along the LOS from the TEC curves, we found that the equivalent ne scaling compared to the model output was higher by a factor of 3. The combination of solar surface magnetogram-based MHD coronal
Relativistic modeling capabilities in PERSEUS extended MHD simulation code for HED plasmas
Hamlin, Nathaniel D., E-mail: nh322@cornell.edu [438 Rhodes Hall, Cornell University, Ithaca, NY, 14853 (United States); Seyler, Charles E., E-mail: ces7@cornell.edu [Cornell University, Ithaca, NY, 14853 (United States)
2014-12-15
We discuss the incorporation of relativistic modeling capabilities into the PERSEUS extended MHD simulation code for high-energy-density (HED) plasmas, and present the latest hybrid X-pinch simulation results. The use of fully relativistic equations enables the model to remain self-consistent in simulations of such relativistic phenomena as X-pinches and laser-plasma interactions. By suitable formulation of the relativistic generalized Ohm’s law as an evolution equation, we have reduced the recovery of primitive variables, a major technical challenge in relativistic codes, to a straightforward algebraic computation. Our code recovers expected results in the non-relativistic limit, and reveals new physics in the modeling of electron beam acceleration following an X-pinch. Through the use of a relaxation scheme, relativistic PERSEUS is able to handle nine orders of magnitude in density variation, making it the first fluid code, to our knowledge, that can simulate relativistic HED plasmas.
Cosmic ray transport in MHD turbulence
Yan, Huirong
2007-01-01
Numerical simulations shed light onto earlier not trackable problem of magnetohydrodynamic (MHD) turbulence. They allowed to test the predictions of different models and choose the correct ones. Inevitably, this progress calls for revisions in the picture of cosmic ray (CR) transport. It also shed light on the problems with the present day numerical modeling of CR. In this paper we focus on the analytical way of describing CR propagation and scattering, which should be used in synergy with the numerical studies. In particular, we use recently established scaling laws for MHD modes to obtain the transport properties for CRs. We include nonlinear effects arising from large scale trapping, to remove the 90 degree divergence. We determine how the efficiency of the scattering and CR mean free path depend on the characteristics of ionized media, e.g. plasma $\\beta$, Coulomb collisional mean free path. Implications for particle transport in interstellar medium and solar corona are discussed. We also examine the perp...
MHD simulations of three-dimensional resistive reconnection in a cylindrical plasma column
Striani, E.; Mignone, A.; Vaidya, B.; Bodo, G.; Ferrari, A.
2016-11-01
Magnetic reconnection is a plasma phenomenon where a topological rearrangement of magnetic field lines with opposite polarity results in dissipation of magnetic energy into heat, kinetic energy and particle acceleration. Such a phenomenon is considered as an efficient mechanism for energy release in laboratory and astrophysical plasmas. An important question is how to make the process fast enough to account for observed explosive energy releases. The classical model for steady state magnetic reconnection predicts reconnection times scaling as S1/2 (where S is the Lundquist number) and yields time-scales several order of magnitude larger than the observed ones. Earlier two-dimensional MHD simulations showed that for large Lundquist number the reconnection time becomes independent of S (`fast reconnection' regime) due to the presence of the secondary tearing instability that takes place for S ≳ 1 × 104. We report on our 3D MHD simulations of magnetic reconnection in a magnetically confined cylindrical plasma column under either a pressure balanced or a force-free equilibrium and compare the results with 2D simulations of a circular current sheet. We find that the 3D instabilities acting on these configurations result in a fragmentation of the initial current sheet in small filaments, leading to enhanced dissipation rate that becomes independent of the Lundquist number already at S ≃ 1 × 103.
Mizuno, Yosuke; Lyubarsky, Yuri; ishikawa, Ken-Ichi; Hardee, Philip E.
2010-01-01
We have investigated the development of current-driven (CD) kink instability through three-dimensional relativistic MHD simulations. A static force-free equilibrium helical magnetic configuration is considered in order to study the influence of the initial configuration on the linear and nonlinear evolution of the instability. We found that the initial configuration is strongly distorted but not disrupted by the kink instability. The instability develops as predicted by linear theory. In the non-linear regime the kink amplitude continues to increase up to the terminal simulation time, albeit at different rates, for all but one simulation. The growth rate and nonlinear evolution of the CD kink instability depends moderately on the density profile and strongly on the magnetic pitch profile. The growth rate of the kink mode is reduced in the linear regime by an increase in the magnetic pitch with radius and the non-linear regime is reached at a later time than for constant helical pitch. On the other hand, the growth rate of the kink mode is increased in the linear regime by a decrease in the magnetic pitch with radius and reaches the non-linear regime sooner than the case with constant magnetic pitch. Kink amplitude growth in the non-linear regime for decreasing magnetic pitch leads to a slender helically twisted column wrapped by magnetic field. On the other hand, kink amplitude growth in the non-linear regime nearly ceases for increasing magnetic pitch.
Magnetohydrodynamic-based Laboratories on a Chip for Analysis of Biomolecules Project
National Aeronautics and Space Administration — A laboratory-on-a-chip design based on magnetohydrodynamic (MHD) microfluidics and integrated microelectrochemical detection is proposed. The proposed device is...
Endrizzi, A.; Ciolfi, R.; Giacomazzo, B.; Kastaun, W.; Kawamura, T.
2016-08-01
We present new results of fully general relativistic magnetohydrodynamic simulations of binary neutron star (BNS) mergers performed with the Whisky code. All the models use a piecewise polytropic approximation of the APR4 equation of state for cold matter, together with a ‘hybrid’ part to incorporate thermal effects during the evolution. We consider both equal and unequal-mass models, with total masses such that either a supramassive NS or a black hole is formed after merger. Each model is evolved with and without a magnetic field initially confined to the stellar interior. We present the different gravitational wave (GW) signals as well as a detailed description of the matter dynamics (magnetic field evolution, ejected mass, post-merger remnant/disk properties). Our simulations provide new insights into BNS mergers, the associated GW emission and the possible connection with the engine of short gamma-ray bursts (both in the ‘standard’ and in the ‘time-reversal’ scenarios) and other electromagnetic counterparts.
Endrizzi, Andrea; Giacomazzo, Bruno; Kastaun, Wolfgang; Kawamura, Takumu
2016-01-01
We present new results of fully general relativistic magnetohydrodynamic (GRMHD) simulations of binary neutron star (BNS) mergers performed with the Whisky code. All the models use a piecewise polytropic approximation of the APR4 equation of state (EOS) for cold matter, together with a "hybrid" part to incorporate thermal effects during the evolution. We consider both equal and unequal-mass models, with total masses such that either a supramassive NS or a black hole (BH) is formed after merger. Each model is evolved with and without a magnetic field initially confined to the stellar interior. We present the different gravitational wave (GW) signals as well as a detailed description of the matter dynamics (magnetic field evolution, ejected mass, post-merger remnant/disk properties). Our simulations provide new insights into BNS mergers, the associated GW emission and the possible connection with the engine of short gamma-ray bursts (both in the "standard" and in the "time-reversal" scenarios) and other electro...
MHD Flows in Compact Astrophysical Objects Accretion, Winds and Jets
Beskin, Vasily S
2010-01-01
Accretion flows, winds and jets of compact astrophysical objects and stars are generally described within the framework of hydrodynamical and magnetohydrodynamical (MHD) flows. Analytical analysis of the problem provides profound physical insights, which are essential for interpreting and understanding the results of numerical simulations. Providing such a physical understanding of MHD Flows in Compact Astrophysical Objects is the main goal of this book, which is an updated translation of a successful Russian graduate textbook. The book provides the first detailed introduction into the method of the Grad-Shafranov equation, describing analytically the very broad class of hydrodynamical and MHD flows. It starts with the classical examples of hydrodynamical accretion onto relativistic and nonrelativistic objects. The force-free limit of the Grad-Shafranov equation allows us to analyze in detail the physics of the magnetospheres of radio pulsars and black holes, including the Blandford-Znajek process of energy e...
Sondak, David; Oberai, Assad A; Pawlowski, Roger P; Cyr, Eric C; Smith, Tom M
2014-01-01
New large eddy simulation (LES) turbulence models for incompressible magnetohydrodynamics (MHD) derived from the variational multiscale (VMS) formulation for finite element simulations are introduced. The new models include the variational multiscale formulation, a residual-based eddy viscosity model, and a mixed model that combines both of these component models. Each model contains terms that are proportional to the residual of the incompressible MHD equations and is therefore numerically consistent. Moreover, each model is also dynamic, in that its effect vanishes when this residual is small. The new models are tested on the decaying MHD Taylor Green vortex at low and high Reynolds numbers. The evaluation of the models is based on comparisons with available data from direct numerical simulations (DNS) of the time evolution of energies as well as energy spectra at various discrete times. A numerical study, on a sequence of meshes, is presented that demonstrates that the large eddy simulation approaches the ...
Ju, Wenhua; Zhu, Zhaohuan
2016-01-01
We present results from the first global 3D MHD simulations of accretion disks in Cataclysmic Variable (CV) systems in order to investigate the relative importance of angular momentum transport via turbulence driven by the magnetorotational instability (MRI) compared to that driven by spiral shock waves. Remarkably, we find that even with vigorous MRI turbulence, spiral shocks are an important component to the overall angular momentum budget, at least when temperatures in the disk are high (so that Mach numbers are low). In order to understand the excitation, propagation, and damping of spiral density waves in our simulations more carefully, we perform a series of 2D global hydrodynamical simulations with various equation of states and both with and without mass inflow via the Lagrangian point (L1). Compared with previous similar studies, we find the following new results. 1) Linear wave dispersion relation fits the pitch angles of spiral density waves very well. 2) We demonstrate explicitly that mass accreti...
Small scale magnetosphere: Laboratory experiment, physical model and Hall MHD simulation
Shaikhislamov, I F; Zakharov, Yu P; Boyarintsev, E L; Melekhov, A V; Posukh, V G; Ponomarenko, A G
2011-01-01
A problem of magnetosphere formation on ion inertia scale around weakly magnetized bodies is investigated by means of laboratory experiment, analytical analysis and 2.5D Hall MHD simulation. Experimental evidence of specific magnetic field generated by the Hall term is presented. Direct comparison of regimes with small and large ion inertia length revealed striking differences in measured magnetopause position and plasma stand off distance. Analytical model is presented, which explains such basic features of mini-magnetosphere observed in previous kinetic simulations as disappearance of bow shock and plasma stopping at Stoermer particle limit instead of pressure balance distance. Numerical simulation is found to be in a good agreement with experiments and analytical model. It gives detailed spatial structure of Hall field and reveals that while ions penetrate deep inside mini-magnetosphere electrons overflow around it along magnetopause boundary.
Kitiashvili, I N; Goode, P R; Kosovichev, A G; Lele, S K; Mansour, N N; Wray, A A; Yurchyshyn, V B
2012-01-01
Turbulent properties of the quiet Sun represent the basic state of surface conditions, and a background for various processes of solar activity. Therefore understanding of properties and dynamics of this `basic' state is important for investigation of more complex phenomena, formation and development of observed phenomena in the photosphere and atmosphere. For characterization of the turbulent properties we compare kinetic energy spectra on granular and sub-granular scales obtained from infrared TiO observations with the New Solar Telescope (Big Bear Solar Observatory) and from 3D radiative MHD numerical simulations ('SolarBox' code). We find that the numerical simulations require a high spatial resolution with 10 - 25 km grid-step in order to reproduce the inertial (Kolmogorov) turbulence range. The observational data require an averaging procedure to remove noise and potential instrumental artifacts. The resulting kinetic energy spectra show a good agreement between the simulations and observations, opening...
A New MHD-assisted Stokes Inversion Technique
Riethmüller, T. L.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; van Noort, M.; Blanco Rodríguez, J.; Del Toro Iniesta, J. C.; Orozco Suárez, D.; Schmidt, W.; Martínez Pillet, V.; Knölker, M.
2017-03-01
We present a new method of Stokes inversion of spectropolarimetric data and evaluate it by taking the example of a Sunrise/IMaX observation. An archive of synthetic Stokes profiles is obtained by the spectral synthesis of state-of-the-art magnetohydrodynamics (MHD) simulations and a realistic degradation to the level of the observed data. The definition of a merit function allows the archive to be searched for the synthetic Stokes profiles that best match the observed profiles. In contrast to traditional Stokes inversion codes, which solve the Unno-Rachkovsky equations for the polarized radiative transfer numerically and fit the Stokes profiles iteratively, the new technique provides the full set of atmospheric parameters. This gives us the ability to start an MHD simulation that takes the inversion result as an initial condition. After a relaxation process of half an hour solar time we obtain physically consistent MHD data sets with a target similar to the observation. The new MHD simulation is used to repeat the method in a second iteration, which further improves the match between observation and simulation, resulting in a factor of 2.2 lower mean {χ }2 value. One advantage of the new technique is that it provides the physical parameters on a geometrical height scale. It constitutes a first step toward inversions that give results consistent with the MHD equations.
A 3D MHD simulation of SN 1006: a polarized emission study for the turbulent case
Velázquez, P. F.; Schneiter, E. M.; Reynoso, E. M.; Esquivel, A.; De Colle, F.; Toledo-Roy, J. C.; Gómez, D. O.; Sieyra, M. V.; Moranchel-Basurto, A.
2017-01-01
Three dimensional magnetohydrodynamical simulations were carried out in order to perform a new polarization study of the radio emission of the supernova remnant SN 1006. These simulations consider that the remnant expands into a turbulent interstellar medium (including both magnetic field and figuredensity perturbations). Based on the referenced-polar angle technique, a statistical study was done on observational and numerical magnetic field position-angle distributions. Our results show that a turbulent medium with an adiabatic index of 1.3 can reproduce the polarization properties of the SN 1006 remnant. This statistical study reveals itself as a useful tool for obtaining the orientation of the ambient magnetic field, previous to be swept up by the main supernova remnant shock.
Radiation-MHD simulations for the development of a spark discharge channel.
Niederhaus, John Henry; Jorgenson, Roy E.; Warne, Larry K.; Chen, Kenneth C.
2017-04-01
The growth of a cylindrical s park discharge channel in water and Lexan is studied using a series of one - dimensional simulations with the finite - element radiation - magnetohydrodynamics code ALEGRA. Computed solutions are analyzed in order to characterize the rate of growth and dynamics of the spark c hannels during the rising - current phase of the drive pulse. The current ramp rate is varied between 0.2 and 3.0 kA/ns, and values of the mechanical coupling coefficient K p are extracted for each case. The simulations predict spark channel expansion veloc ities primarily in the range of 2000 to 3500 m/s, channel pressures primarily in the range 10 - 40 GPa, and K p values primarily between 1.1 and 1.4. When Lexan is preheated, slightly larger expansion velocities and smaller K p values are predicted , but the o verall behavior is unchanged.
Simard, Corinne; Charbonneau, Paul; Dubé, Caroline
2016-10-01
We perform a mean-field analysis of the EULAG-MHD millenium simulation of global magnetohydrodynamical convection presented in Passos and Charbonneau (2014). The turbulent electromotive force (emf) operating in the simulation is assumed to be linearly related to the cyclic axisymmetric mean magnetic field and its first spatial derivatives. At every grid point in the simulation's meridional plane, this assumed relationship involves 27 independent tensorial coefficients. Expanding on Racine et al. (2011), we extract these coefficients from the simulation data through a least-squares minimization procedure based on singular value decomposition. The reconstructed α -tensor shows good agreement with that obtained by Racine et al. (2011), who did not include derivatives of the mean-field in their fit, as well as with the α -tensor extracted by Augustson et al. (2015) from a distinct ASH MHD simulation. The isotropic part of the turbulent magnetic diffusivity tensor β is positive definite and reaches values of 5.0 ×107 m2 s-1 in the middle of the convecting fluid layers. The spatial variations of both αϕϕ and βϕϕ component are well reproduced by expressions obtained under the Second Order Correlation Approximation, with a good matching of amplitude requiring a turbulent correlation time about five times smaller than the estimated turnover time of the small-scale turbulent flow. By segmenting the simulation data into epochs of magnetic cycle minima and maxima, we also measure α - and β -quenching. We find the magnetic quenching of the α -effect to be driven primarily by a reduction of the small-scale flow's kinetic helicity, with variations of the current helicity playing a lesser role in most locations in the simulation domain. Our measurements of turbulent diffusivity quenching are restricted to the βϕϕ component, but indicate a weaker quenching, by a factor of ≃ 1.36, than of the α -effect, which in our simulation drops by a factor of three between
Alignment of Velocity and Magnetic Fluctuations in Simulations of Anisotropic MHD Turbulence
Ng, C. S.; Bhattacharjee, A.
2007-11-01
There has been recent theoretical interest in the effect of the alignment of velocity and magnetic fluctuations in three-dimensional (3D) MHD turbulence with a large-scale magnetic field [Boldyrev 2005, 2006]. This theory predicts that the angle θ between the velocity and magnetic fluctuation vectors has a scaling of θ&1/4circ;, where λ is the spatial scale of the fluctuations. There have also been simulations on 3D forced MHD turbulence that supports this prediction [Mason et al. 2006, 2007]. The scaling has also been tested against observations of solar wind turbulence [Podesta et al. 2007]. We report here simulation results based on decaying 2D turbulence. The scaling of θ&1/4circ; and Iroshnikov-Kraichnan scaling has also been observed within a range of time interval and spatial scales, despite the fact that Boldyrev's theory was developed for fully 3D turbulence in the presence of a strong external field. As the external field is reduced in magnitude and becomes comparable to the magnitude of magnetic fluctuations or lower, the scale-dependent alignment is weakened. Implications for observations of solar wind turbulence will be discussed.
HIDENEK: An implicit particle simulation of kinetic-MHD phenomena in three-dimensional plasmas
Tanaka, Motohiko
1993-05-01
An advanced 'kinetic-MHD' simulation method and its applications to plasma physics are given in this lecture. This method is quite stable for studying strong nonlinear, kinetic processes associated with large space-scale, low-frequency electromagnetic phenomena of plasmas. A full set of the Maxwell equations, and the Newton-Lorentz equations of motion for particle ions and guiding-center electrons are adopted. In order to retain only the low-frquency waves and instabilities, implicit particle-field equations are derived. The present implicit-particle method is proved to reproduce the MHD eigenmodes such as Alfven, magnetosonic and kinetic Alfven waves in a thermally near-equilibrium plasma. In the second part of the lecture, several physics applications are shown. These include not only the growth of the instabilities of beam ions against the background plasmas and helical link of the current, but they also demonstrate nonlinear results such as pitch-angle scattering of the ions. Recent progress in the simulation of the Kelvin-Helmholtz instability is also presented with a special emphasis on the mixing of the plasma particles.
Jiang, Yan-Fei; Stone, James M.; Davis, Shane W.
2014-12-01
We study super-Eddington accretion flows onto black holes using a global three-dimensional radiation magneto-hydrodynamical simulation. We solve the time-dependent radiative transfer equation for the specific intensities to accurately calculate the angular distribution of the emitted radiation. Turbulence generated by the magneto-rotational instability provides self-consistent angular momentum transfer. The simulation reaches inflow equilibrium with an accretion rate ~220 L Edd/c 2 and forms a radiation-driven outflow along the rotation axis. The mechanical energy flux carried by the outflow is ~20% of the radiative energy flux. The total mass flux lost in the outflow is about 29% of the net accretion rate. The radiative luminosity of this flow is ~10 L Edd. This yields a radiative efficiency ~4.5%, which is comparable to the value in a standard thin disk model. In our simulation, vertical advection of radiation caused by magnetic buoyancy transports energy faster than photon diffusion, allowing a significant fraction of the photons to escape from the surface of the disk before being advected into the black hole. We contrast our results with the lower radiative efficiencies inferred in most models, such as the slim disk model, which neglect vertical advection. Our inferred radiative efficiencies also exceed published results from previous global numerical simulations, which did not attribute a significant role to vertical advection. We briefly discuss the implications for the growth of supermassive black holes in the early universe and describe how these results provided a basis for explaining the spectrum and population statistics of ultraluminous X-ray sources.
Jiang, Yan-Fei [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Stone, James M. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Davis, Shane W. [Canadian Institute for Theoretical Astrophysics. Toronto, ON M5S3H4 (Canada)
2014-12-01
We study super-Eddington accretion flows onto black holes using a global three-dimensional radiation magneto-hydrodynamical simulation. We solve the time-dependent radiative transfer equation for the specific intensities to accurately calculate the angular distribution of the emitted radiation. Turbulence generated by the magneto-rotational instability provides self-consistent angular momentum transfer. The simulation reaches inflow equilibrium with an accretion rate ∼220 L {sub Edd}/c {sup 2} and forms a radiation-driven outflow along the rotation axis. The mechanical energy flux carried by the outflow is ∼20% of the radiative energy flux. The total mass flux lost in the outflow is about 29% of the net accretion rate. The radiative luminosity of this flow is ∼10 L {sub Edd}. This yields a radiative efficiency ∼4.5%, which is comparable to the value in a standard thin disk model. In our simulation, vertical advection of radiation caused by magnetic buoyancy transports energy faster than photon diffusion, allowing a significant fraction of the photons to escape from the surface of the disk before being advected into the black hole. We contrast our results with the lower radiative efficiencies inferred in most models, such as the slim disk model, which neglect vertical advection. Our inferred radiative efficiencies also exceed published results from previous global numerical simulations, which did not attribute a significant role to vertical advection. We briefly discuss the implications for the growth of supermassive black holes in the early universe and describe how these results provided a basis for explaining the spectrum and population statistics of ultraluminous X-ray sources.
Benyo, Theresa L.
2011-01-01
Flow matching has been successfully achieved for an MHD energy bypass system on a supersonic turbojet engine. The Numerical Propulsion System Simulation (NPSS) environment helped perform a thermodynamic cycle analysis to properly match the flows from an inlet employing a MHD energy bypass system (consisting of an MHD generator and MHD accelerator) on a supersonic turbojet engine. Working with various operating conditions (such as the applied magnetic field, MHD generator length and flow conductivity), interfacing studies were conducted between the MHD generator, the turbojet engine, and the MHD accelerator. This paper briefly describes the NPSS environment used in this analysis. This paper further describes the analysis of a supersonic turbojet engine with an MHD generator/accelerator energy bypass system. Results from this study have shown that using MHD energy bypass in the flow path of a supersonic turbojet engine increases the useful Mach number operating range from 0 to 3.0 Mach (not using MHD) to a range of 0 to 7.0 Mach with specific net thrust range of 740 N-s/kg (at ambient Mach = 3.25) to 70 N-s/kg (at ambient Mach = 7). These results were achieved with an applied magnetic field of 2.5 Tesla and conductivity levels in a range from 2 mhos/m (ambient Mach = 7) to 5.5 mhos/m (ambient Mach = 3.5) for an MHD generator length of 3 m.
Cardoso, J. F.; Delabrouille, J.; Ganga, K.
2015-01-01
with the local spatial coherence of the polarization angle. These observations are compared to polarized emission maps computed in simulations of anisotropic magnetohydrodynamical turbulence in which we assume a uniform intrinsic polarization fraction of the dust grains. We find that an estimate...
Shiokawa, Hotaka; Dolence, Joshua C.; Gammie, Charles F. [Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States); Noble, Scott C. [Center for Computational Relativity and Gravitation, School of Mathematical Sciences, Rochester Institute of Technology, Rochester, NY 14623 (United States)
2012-01-10
Global, general relativistic magnetohydrodynamic (GRMHD) simulations of non-radiative, magnetized disks are widely used to model accreting black holes. We have performed a convergence study of GRMHD models computed with HARM3D. The models span a factor of four in linear resolution, from 96 Multiplication-Sign 96 Multiplication-Sign 64 to 384 Multiplication-Sign 384 Multiplication-Sign 256. We consider three diagnostics of convergence: (1) dimensionless shell-averaged quantities such as plasma {beta}; (2) the azimuthal correlation length of fluid variables; and (3) synthetic spectra of the source including synchrotron emission, absorption, and Compton scattering. Shell-averaged temperature is, except for the lowest resolution run, nearly independent of resolution; shell-averaged plasma {beta} decreases steadily with resolution but shows signs of convergence. The azimuthal correlation lengths of density, internal energy, and temperature decrease steadily with resolution but show signs of convergence. In contrast, the azimuthal correlation length of magnetic field decreases nearly linearly with grid size. We argue by analogy with local models, however, that convergence should be achieved with another factor of two in resolution. Synthetic spectra are, except for the lowest resolution run, nearly independent of resolution. The convergence behavior is consistent with that of higher physical resolution local model ({sup s}hearing box{sup )} calculations and with the recent non-relativistic global convergence studies of Hawley et al.
Multi-ion, multi-fluid 3-D magnetohydrodynamic simulation of the outer heliosphere
Prested, Christina; Toth, Gabor
2012-01-01
Data from the Voyager probes and the Interstellar Boundary Explorer have revealed the importance of pick-up ions (PUIs) in understanding the character and behavior of the outer heliosphere, the region of interaction between the solar wind and the interstellar medium. In the outer heliosphere PUIs carry a large fraction of the thermal pressure, which effects the nature of the termination shock, and they are a dominate component of pressure in the heliosheath. This paper describes the development of a new multi-ion, multi-fluid 3-D magnetohydrodynamic model of the outer heliosphere. This model has the added capability of tracking the individual fluid properties of multiple ion populations. For this initial study two ion populations are modeled: the thermal solar wind ions and PUIs produced in the supersonic solar wind. The model also includes 4 neutral fluids that interact through charge-exchange with the ion fluids. The new multi-ion simulation reproduces the significant heating of PUIs at the termination shoc...
Resistivity profile effects in numerical magnetohydrodynamic simulations of the reversed-field pinch
Sätherblom, H.-E.; Mazur, S.; Nordlund, P.
1996-12-01
The influence of the resistivity profile on reversed-field pinch (RFP) dynamics is investigated numerically using a three-dimensional resistive magnetohydrodynamic code. This investigation is motivated by experimental observations on the EXTRAP-T1 RFP (Nordlund P et al 1994 Int. Conf. Plasma Physics and Controlled Nuclear Fusion Research IAEA-CN-60/A6/C-P-6). Two cases with profiles mainly differing in the edge region, i.e. in the region outside the reversal surface, are simulated. It is found that increasing the resistivity in this region results in a factor of two increase in magnetic fluctuation energy and an equal amount in the fluctuation-induced electric field. In spite of this, the parallel current decreases in the edge region, resulting in a factor two reduction of the field reversal ratio. The dynamics become more irregular and the characteristic timescale is reduced. The final state is characterized by a higher loop voltage, slightly lower values of the total (fluctuating plus mean part) magnetic energy and the magnetic helicity, but almost unchanged Taylor relaxation ratio. The results indicate that the edge region can be important for RFP confinement since cooling of the plasma in this region can lead to an increased fluctuation level and degraded performance.
Magnetohydrodynamic Simulations of A Rotating Massive Star Collapsing to A Black Hole
Fujimoto, S; Kotake, K; Sato, K; Yamada, S; Fujimoto, Shin-ichiro; Hashimoto, Masa-aki; Kotake, Kei; Sato, Katsuhiko; Yamada, Shoichi
2006-01-01
We perform two-dimensional, axisymmetric, magnetohydrodynamic simulations of the collapse of a rotating star of 40 Msun and in the light of the collapsar model of gamma-ray burst. Considering two distributions of angular momentum, up to \\sim 10^{17} cm^2/s, and the uniform vertical magnetic field, we investigate the formation of an accretion disk around a black hole and the jet production near the hole. After material reaches to the black hole with the high angular momentum, the disk is formed inside a surface of weak shock. The disk becomes in a quasi-steady state for stars whose magnetic field is less than 10^{10} G before the collapse. We find that the jet can be driven by the magnetic fields even if the central core does not rotate as rapidly as previously assumed and outer layers of the star has sufficiently high angular momentum. The magnetic fields are chiefly amplified inside the disk due to the compression and the wrapping of the field. The fields inside the disk propagate to the polar region along t...
Magnetohydrodynamic simulation of solid-deuterium-initiated Z-pinch experiments
Sheehey, Peter Trogdon [Univ. of California, Los Angeles, CA (United States)
1994-02-01
Solid-deuterium-initiated Z-pinch experiments are numerically simulated using a two-dimensional resistive magnetohydrodynamic model, which includes many important experimental details, such as ``cold-start`` initial conditions, thermal conduction, radiative energy loss, actual discharge current vs. time, and grids of sufficient size and resolution to allow realistic development of the plasma. The alternating-direction-implicit numerical technique used meets the substantial demands presented by such a computational task. Simulations of fiber-initiated experiments show that when the fiber becomes fully ionized rapidly developing m=0 instabilities, which originated in the coronal plasma generated from the ablating fiber, drive intense non-uniform heating and rapid expansion of the plasma column. The possibility that inclusion of additional physical effects would improve stability is explored. Finite-Larmor-radius-ordered Hall and diamagnetic pressure terms in the magnetic field evolution equation, corresponding energy equation terms, and separate ion and electron energy equations are included; these do not change the basic results. Model diagnostics, such as shadowgrams and interferograms, generated from simulation results, are in good agreement with experiment. Two alternative experimental approaches are explored: high-current magnetic implosion of hollow cylindrical deuterium shells, and ``plasma-on-wire`` (POW) implosion of low-density plasma onto a central deuterium fiber. By minimizing instability problems, these techniques may allow attainment of higher temperatures and densities than possible with bare fiber-initiated Z-pinches. Conditions for significant D-D or D-T fusion neutron production may be realizable with these implosion-based approaches.
VizieR Online Data Catalog: Solar wind 3D magnetohydrodynamic simulation (Chhiber+, 2017)
Chhiber, R.; Subedi, P.; Usmanov, A. V.; Matthaeus, W. H.; Ruffolo, D.; Goldstein, M. L.; Parashar, T. N.
2017-08-01
We use a three-dimensional magnetohydrodynamic simulation of the solar wind to calculate cosmic-ray diffusion coefficients throughout the inner heliosphere (2Rȯ-3au). The simulation resolves large-scale solar wind flow, which is coupled to small-scale fluctuations through a turbulence model. Simulation results specify background solar wind fields and turbulence parameters, which are used to compute diffusion coefficients and study their behavior in the inner heliosphere. The parallel mean free path (mfp) is evaluated using quasi-linear theory, while the perpendicular mfp is determined from nonlinear guiding center theory with the random ballistic interpretation. Several runs examine varying turbulent energy and different solar source dipole tilts. We find that for most of the inner heliosphere, the radial mfp is dominated by diffusion parallel to the mean magnetic field; the parallel mfp remains at least an order of magnitude larger than the perpendicular mfp, except in the heliospheric current sheet, where the perpendicular mfp may be a few times larger than the parallel mfp. In the ecliptic region, the perpendicular mfp may influence the radial mfp at heliocentric distances larger than 1.5au; our estimations of the parallel mfp in the ecliptic region at 1 au agree well with the Palmer "consensus" range of 0.08-0.3au. Solar activity increases perpendicular diffusion and reduces parallel diffusion. The parallel mfp mostly varies with rigidity (P) as P.33, and the perpendicular mfp is weakly dependent on P. The mfps are weakly influenced by the choice of long-wavelength power spectra. (2 data files).
Magnetohydrodynamic simulations of mechanical stellar feedback in a sheet-like molecular cloud
Wareing, C. J.; Pittard, J. M.; Falle, S. A. E. G.
2017-03-01
We have used the adaptive-mesh-refinement hydrodynamic code, MG, to perform 3D magnetohydrodynamic simulations with self-gravity of stellar feedback in a sheet-like molecular cloud formed through the action of the thermal instability. We simulate the interaction of the mechanical energy input from a 15 star and a 40 M⊙ star into a 100 pc-diameter 17 000 M⊙ cloud with a corrugated sheet morphology that in projection appears filamentary. The stellar winds are introduced using appropriate Geneva stellar evolution models. In the 15 M⊙ star case, the wind forms a narrow bipolar cavity with minimal effect on the parent cloud. In the 40 M⊙ star case, the more powerful stellar wind creates a large cylindrical cavity through the centre of the cloud. After 12.5 and 4.97 Myr, respectively, the massive stars explode as supernovae (SNe). In the 15 M⊙ star case, the SN material and energy is primarily deposited into the molecular cloud surroundings over ∼105 yr before the SN remnant escapes the cloud. In the 40 M⊙ star case, a significant fraction of the SN material and energy rapidly escapes the molecular cloud along the wind cavity in a few tens of kiloyears. Both SN events compress the molecular cloud material around them to higher densities (so may trigger further star formation), and strengthen the magnetic field, typically by factors of 2-3 but up to a factor of 10. Our simulations are relevant to observations of bubbles in flattened ring-like molecular clouds and bipolar H II regions.
Three Dimensional MHD Simulation of Circumbinary Accretion Disks -2. Net Accretion Rate
Shi, Ji-Ming
2015-01-01
When an accretion disk surrounds a binary rotating in the same sense, the binary exerts strong torques on the gas. Analytic work in the 1D approximation indicated that these torques sharply diminish or even eliminate accretion from the disk onto the binary. However, recent 2D and 3D simulational work has shown at most modest diminution. We present new MHD simulations demonstrating that for binaries with mass ratios of 1 and 0.1 there is essentially no difference between the accretion rate at large radius in the disk and the accretion rate onto the binary. To resolve the discrepancy with earlier analytic estimates, we identify the small subset of gas trajectories traveling from the inner edge of the disk to the binary and show how the full accretion rate is concentrated onto them.
Murphy, G C; Pelletier, Guy
2008-01-01
Magnetic reconnection plays a critical role in many astrophysical processes where high energy emission is observed, e.g. particle acceleration, relativistic accretion powered outflows, pulsar winds and probably in dissipation of Poynting flux in GRBs. The magnetic field acts as a reservoir of energy and can dissipate its energy to thermal and kinetic energy via the tearing mode instability. We have performed 3d nonlinear MHD simulations of the tearing mode instability in a current sheet. Results from a temporal stability analysis in both the linear regime and weakly nonlinear (Rutherford) regime are compared to the numerical simulations. We observe magnetic island formation, island merging and oscillation once the instability has saturated. The growth in the linear regime is exponential in agreement with linear theory. In the second, Rutherford regime the island width grows linearly with time. We find that thermal energy produced in the current sheet strongly dominates the kinetic energy. Finally preliminary ...
Nonlinear excitation of low-n harmonics in reduced MHD simulations of edge-localized modes
Krebs, Isabel; Lackner, Karl; Guenter, Sibylle
2013-01-01
Nonlinear simulations of the early ELMphase based on a typical type-I ELMy ASDEX Upgrade discharge have been carried out using the reduced MHD code JOREK. The analysis is focused on the evolution of the toroidal Fourier spectrum. It is found that during the nonlinear evolution, linearly subdominant low-n Fourier components, in particular the n = 1, grow to energies comparable with linearly dominant harmonics. A simple model is developed, based on the idea that energy is transferred among the toroidal harmonics via second order nonlinear interaction. The simple model reproduces and explains very well the early nonlinear evolution of the toroidal spectrum in the JOREK simulations. Furthermore, it is shown for the n = 1 harmonic, that its spatial structure changes significantly during the transition from linear to nonlinearly driven growth. The rigidly growing structure of the linearly barely unstable n = 1 reaches far into the plasma core. In contrast, the nonlinearly driven n = 1 has a rigidly growing structur...
Graham, Jonathan Pietarila; Mininni, Pablo D; Pouquet, Annick
2005-10-01
We present direct numerical simulations and Lagrangian averaged (also known as alpha model) simulations of forced and free decaying magnetohydrodynamic turbulence in two dimensions. The statistics of sign cancellations of the current at small scales is studied using both the cancellation exponent and the fractal dimension of the structures. The alpha model is found to have the same scaling behavior between positive and negative contributions as the direct numerical simulations. The alpha model is also able to reproduce the time evolution of these quantities in free decaying turbulence. At large Reynolds numbers, an independence of the cancellation exponent with the Reynolds numbers is observed.
Proposal of a brand-new gyrokinetic algorithm for global MHD simulation
Naitou, Hiroshi; Kobayashi, Kenichi; Hashimoto, Hiroki; Andachi, Takehisa; Lee, Wei-Li; Tokuda, Shinji; Yagi, Masatoshi
2009-11-01
A new algorithm for the gyrokinetic PIC code is proposed. The basic equations are energy conserving and composed of (1) the gyrokinetic Vlasov (GKV) equation, (2) the Vortex equation, and (3) the generalized Ohm's law along the magnetic field. Equation (2) is used to advance electrostatic potential in time. Equation (3) is used to advance longitudinal component of vector potential in time as well as estimating longitudinal induced electric field to accelerate charged particles. The particle information is used to estimate pressure terms in equation (3). The idea was obtained in the process of reviewing the split-weight-scheme formalism. This algorithm was incorporated in the Gpic-MHD code. Preliminary results for the m=1/n=1 internal kink mode simulation in the cylindrical geometry indicate good energy conservation, quite low noise due to particle discreteness, and applicability to larger spatial scale and higher beta regimes. The advantage of new Gpic-MHD is that the lower order moments of the GKV equation are estimated by the moment equation while the particle information is used to evaluate the second order moment.
Three-dimensional MHD simulation for the solar wind structure observed by Ulysses
无
2001-01-01
Ulysses has been the first spacecraft to explore the high latitudinal regions of the heliosphere till now. During its first rapid pole-to-pole transit from September 1994to June 1995, Ulysses observed a fast speed flow with magnitude reaching 700-800 km/s at high latitudinal region except + 20° area near the ecliptic plane where the velocity is 300-400 km/s. The observations also showed a sudden jump of the velocity across the two regions. In this note,based on the characteristic and representative observations of the solar magnetic field and K-coronal polarized brightness, the large-scale solar wind structure mentioned above is reproduced by using a three-dimensional MHD model. The numerical results are basically consistent with those of Ulysses observations. Our results also show that the distributions of magnetic field and plasma number density on the solar source surface play an important role in governing this structure. Furthermore, the three-dimensional MHD model used here has a robust ability to simulate this kind of large-scale wind structure.
Kanki, Takashi; Nagata, Masayoshi; Kagei, Yasuhiro
2011-10-01
The dynamics of structures of magnetic field, current density, and plasma flow generated during multi-pulsed coaxial helicity injection in spherical torus is investigated by 3-D nonlinear MHD simulations. During the driven phase, the flux and current amplifications occur due to the merging and magnetic reconnection between the preexisting plasma in the confinement region and the ejected plasma from the gun region involving the n = 1 helical kink distortion of the central open flux column (COFC). Interestingly, the diamagnetic poloidal flow which tends toward the gun region is then observed due to the steep pressure gradients of the COFC generated by ohmic heating through an injection current winding around the inboard field lines, resulting in the formation of the strong poloidal flow shear at the interface between the COFC and the core region. This result is consistent with the flow shear observed in the HIST. During the decay phase, the configuration approaches the axisymmetric MHD equilibrium state without flow because of the dissipation of magnetic fluctuation energy to increase the closed flux surfaces, suggesting the generation of ordered magnetic field structure. The parallel current density λ concentrated in the COFC then diffuses to the core region so as to reduce the gradient in λ, relaxing in the direction of the Taylor state.
3D Relativistic MHD Simulation of a Tilted Accretion Disk Around a Rapidly Rotating Black Hole
Fragile, P Chris; Blaes, Omer M; Salmonson, Jay D
2016-01-01
We posit that accreting compact objects, including stellar mass black holes and neutron stars as well as supermassive black holes, may undergo extended periods of accretion during which the angular momentum of the disk at large scales is misaligned with that of the compact object. In such a scenario, Lense-Thirring precession caused by the rotating compact object can dramatically affect the disk. In this presentation we describe results from a three-dimensional relativistic magnetohydrodynamic simulation of an MRI turbulent disk accreting onto a tilted rapidly rotating black hole. For this case, the disk does not achieve the commonly described Bardeen-Petterson configuration; rather, it remains nearly planar, undergoing a slow global precession. Accretion from the disk onto the hole occurs predominantly through two opposing plunging streams that start from high latitudes with respect to both the black-hole and disk midplanes. This is a consequence of the non-sphericity of the gravitational spacetime of the bl...
Cosmological MHD Simulations of Galaxy Cluster Radio Relics: Insights and Warnings for Observations
Skillman, Samuel W; Hallman, Eric J; O'Shea, Brian W; Burns, Jack O; Li, Hui; Collins, David C; Norman, Michael L
2012-01-01
Non-thermal radio emission from cosmic ray electrons in the vicinity of merging galaxy clusters is an important tracer of cluster merger activity, and is the result of complex physical processes that involve magnetic fields, particle acceleration, gas dynamics, and radiation. In particular, objects known as radio relics are thought to be the result of shock-accelerated electrons that, when embedded in a magnetic field, emit synchrotron radiation in the radio wavelengths. In order to properly model this emission, we utilize the adaptive mesh refinement simulation of the magnetohydrodynamic evolution of a galaxy cluster from cosmological initial conditions. We locate shock fronts and apply models of cosmic ray electron acceleration that are then input into radio emission models. We have determined the thermodynamic properties of this radio-emitting plasma and constructed synthetic radio observations to compare to observed galaxy clusters. We find a significant dependence of the observed morphology and radio rel...
Relativistic MHD simulations of core-collapse GRB jets: 3D instabilities and magnetic dissipation
Bromberg, Omer
2015-01-01
Relativistic jets naturally occur in astrophysical systems that involve accretion onto compact objects, such as core collapse of massive stars in gamma-ray bursts (GRBs) and accretion onto supermassive black holes in active galactic nuclei (AGN). It is generally accepted that these jets are powered electromagnetically, by the magnetised rotation of a central compact object. However, how they produce the observed emission and survive the propagation for many orders of magnitude in distance without being disrupted by current-driven non-axisymmetric instabilities is the subject of active debate. We carry out time-dependent 3D relativistic magnetohydrodynamic simulations of relativistic, Poynting flux dominated jets. The jets are launched self-consistently by the rotation of a strongly magnetised central compact object. This determines the natural degree of azimuthal magnetic field winding, a crucial factor that controls jet stability. We find that the jets are susceptible to two types of instability: (i) a globa...
A moving mesh unstaggered constrained transport scheme for magnetohydrodynamics
Mocz, Philip; Springel, Volker; Vogelsberger, Mark; Marinacci, Federico; Hernquist, Lars
2016-01-01
We present a constrained transport (CT) algorithm for solving the 3D ideal magnetohydrodynamic (MHD) equations on a moving mesh, which maintains the divergence-free condition on the magnetic field to machine-precision. Our CT scheme uses an unstructured representation of the magnetic vector potential, making the numerical method simple and computationally efficient. The scheme is implemented in the moving mesh code Arepo. We demonstrate the performance of the approach with simulations of driven MHD turbulence, a magnetized disc galaxy, and a cosmological volume with primordial magnetic field. We compare the outcomes of these experiments to those obtained with a previously implemented Powell divergence-cleaning scheme. While CT and the Powell technique yield similar results in idealized test problems, some differences are seen in situations more representative of astrophysical flows. In the turbulence simulations, the Powell cleaning scheme artificially grows the mean magnetic field, while CT maintains this co...
Nonlinear closures for scale separation in supersonic magnetohydrodynamic turbulence
Grete, Philipp; Schmidt, Wolfram; Schleicher, Dominik R G; Federrath, Christoph
2015-01-01
Turbulence in compressible plasma plays a key role in many areas of astrophysics and engineering. The extreme plasma parameters in these environments, e.g. high Reynolds numbers, supersonic and super-Alfvenic flows, however, make direct numerical simulations computationally intractable even for the simplest treatment -- magnetohydrodynamics (MHD). To overcome this problem one can use subgrid-scale (SGS) closures -- models for the influence of unresolved, subgrid-scales on the resolved ones. In this work we propose and validate a set of constant coefficient closures for the resolved, compressible, ideal MHD equations. The subgrid-scale energies are modeled by Smagorinsky-like equilibrium closures. The turbulent stresses and the electromotive force (EMF) are described by expressions that are nonlinear in terms of large scale velocity and magnetic field gradients. To verify the closures we conduct a priori tests over 137 simulation snapshots from two different codes with varying ratios of thermal to magnetic pre...
On the energy spectrum of strong magnetohydrodynamic turbulence
Perez, Jean Carlos; Boldyrev, Stanislav; Cattaneo, Fausto
2012-01-01
The energy spectrum of magnetohydrodynamic turbulence attracts interest due to its fundamental importance and its relevance for interpreting astrophysical data. Here we present measurements of the energy spectra from a series of high-resolution direct numerical simulations of MHD turbulence with a strong guide field and for increasing Reynolds number. The presented simulations, with numerical resolutions up to 2048^3 mesh points and statistics accumulated over 30 to 150 eddy turnover times, constitute, to the best of our knowledge, the largest statistical sample of steady state MHD turbulence to date. We study both the balanced case, where the energies associated with Alfv\\'en modes propagating in opposite directions along the guide field, E^+ and $E^-, are equal, and the imbalanced case where the energies are different. In the balanced case, we find that the energy spectrum converges to a power law with exponent -3/2 as the Reynolds number is increased, consistent with phenomenological models that include sc...
Wareing, C. J.; Pittard, J. M.; Falle, S. A. E. G.; Van Loo, S.
2016-06-01
We have used the adaptive mesh refinement hydrodynamic code, MG, to perform idealized 3D magnetohydrodynamical simulations of the formation of clumpy and filamentary structure in a thermally unstable medium without turbulence. A stationary thermally unstable spherical diffuse atomic cloud with uniform density in pressure equilibrium with low density surroundings was seeded with random density variations and allowed to evolve. A range of magnetic field strengths threading the cloud have been explored, from β = 0.1 to 1.0 to the zero magnetic field case (β = ∞), where β is the ratio of thermal pressure to magnetic pressure. Once the density inhomogeneities had developed to the point where gravity started to become important, self-gravity was introduced to the simulation. With no magnetic field, clouds and clumps form within the cloud with aspect ratios of around unity, whereas in the presence of a relatively strong field (β = 0.1) these become filaments, then evolve into interconnected corrugated sheets that are predominantly perpendicular to the magnetic field. With magnetic and thermal pressure equality (β = 1.0), filaments, clouds and clumps are formed. At any particular instant, the projection of the 3D structure on to a plane parallel to the magnetic field, i.e. a line of sight perpendicular to the magnetic field, resembles the appearance of filamentary molecular clouds. The filament densities, widths, velocity dispersions and temperatures resemble those observed in molecular clouds. In contrast, in the strong field case β = 0.1, projection of the 3D structure along a line of sight parallel to the magnetic field reveals a remarkably uniform structure.
Skillman, Samuel W.; Hallman, Eric J.; Burns, Jack O. [Center for Astrophysics and Space Astronomy, Department of Astrophysical and Planetary Science, University of Colorado, Boulder, CO 80309 (United States); Xu, Hao; Li, Hui; Collins, David C. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); O' Shea, Brian W. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Norman, Michael L., E-mail: samuel.skillman@colorado.edu [Center for Astrophysics and Space Sciences, University of California at San Diego, La Jolla, CA 92093 (United States)
2013-03-01
Non-thermal radio emission from cosmic-ray electrons in the vicinity of merging galaxy clusters is an important tracer of cluster merger activity, and is the result of complex physical processes that involve magnetic fields, particle acceleration, gas dynamics, and radiation. In particular, objects known as radio relics are thought to be the result of shock-accelerated electrons that, when embedded in a magnetic field, emit synchrotron radiation in the radio wavelengths. In order to properly model this emission, we utilize the adaptive mesh refinement simulation of the magnetohydrodynamic evolution of a galaxy cluster from cosmological initial conditions. We locate shock fronts and apply models of cosmic-ray electron acceleration that are then input into radio emission models. We have determined the thermodynamic properties of this radio-emitting plasma and constructed synthetic radio observations to compare observed galaxy clusters. We find a significant dependence of the observed morphology and radio relic properties on the viewing angle of the cluster, raising concerns regarding the interpretation of observed radio features in clusters. We also find that a given shock should not be characterized by a single Mach number. We find that the bulk of the radio emission comes from gas with T > 5 Multiplication-Sign 10{sup 7} K, {rho} {approx} 10{sup -28}-10{sup -27} g cm{sup -3}, with magnetic field strengths of 0.1-1.0 {mu}G, and shock Mach numbers of M {approx} 3-6. We present an analysis of the radio spectral index which suggests that the spatial variation of the spectral index can mimic synchrotron aging. Finally, we examine the polarization fraction and position angle of the simulated radio features, and compare to observations.
Yue Ji
2015-12-01
Full Text Available The magnetohydrodynamics angular rate sensor (MHD ARS has received much attention for its ultra-low noise in ultra-broad bandwidth and its impact resistance in harsh environments; however, its poor performance at low frequency hinders its work in long time duration. The paper presents a modified MHD ARS combining Coriolis with MHD effect to extend the measurement scope throughout the whole bandwidth, in which an appropriate radial flow velocity should be provided to satisfy simplified model of the modified MHD ARS. A method that can generate radial velocity by an MHD pump in MHD ARS is proposed. A device is designed to study the radial flow velocity generated by the MHD pump. The influence of structure and physical parameters are studied by numerical simulation and experiment of the device. The analytic expression of the velocity generated by the energized current drawn from simulation and experiment are consistent, which demonstrates the effectiveness of the method generating radial velocity. The study can be applied to generate and control radial velocity in modified MHD ARS, which is essential for the two effects combination throughout the whole bandwidth.
Ji, Yue; Li, Xingfei; Wu, Tengfei; Chen, Cheng
2015-12-15
The magnetohydrodynamics angular rate sensor (MHD ARS) has received much attention for its ultra-low noise in ultra-broad bandwidth and its impact resistance in harsh environments; however, its poor performance at low frequency hinders its work in long time duration. The paper presents a modified MHD ARS combining Coriolis with MHD effect to extend the measurement scope throughout the whole bandwidth, in which an appropriate radial flow velocity should be provided to satisfy simplified model of the modified MHD ARS. A method that can generate radial velocity by an MHD pump in MHD ARS is proposed. A device is designed to study the radial flow velocity generated by the MHD pump. The influence of structure and physical parameters are studied by numerical simulation and experiment of the device. The analytic expression of the velocity generated by the energized current drawn from simulation and experiment are consistent, which demonstrates the effectiveness of the method generating radial velocity. The study can be applied to generate and control radial velocity in modified MHD ARS, which is essential for the two effects combination throughout the whole bandwidth.
Ji, Yue; Li, Xingfei; Wu, Tengfei; Chen, Cheng
2015-01-01
The magnetohydrodynamics angular rate sensor (MHD ARS) has received much attention for its ultra-low noise in ultra-broad bandwidth and its impact resistance in harsh environments; however, its poor performance at low frequency hinders its work in long time duration. The paper presents a modified MHD ARS combining Coriolis with MHD effect to extend the measurement scope throughout the whole bandwidth, in which an appropriate radial flow velocity should be provided to satisfy simplified model of the modified MHD ARS. A method that can generate radial velocity by an MHD pump in MHD ARS is proposed. A device is designed to study the radial flow velocity generated by the MHD pump. The influence of structure and physical parameters are studied by numerical simulation and experiment of the device. The analytic expression of the velocity generated by the energized current drawn from simulation and experiment are consistent, which demonstrates the effectiveness of the method generating radial velocity. The study can be applied to generate and control radial velocity in modified MHD ARS, which is essential for the two effects combination throughout the whole bandwidth. PMID:26694393
Finite dissipation and intermittency in magnetohydrodynamics.
Mininni, P D; Pouquet, A
2009-08-01
We present an analysis of data stemming from numerical simulations of decaying magnetohydrodynamic (MHD) turbulence up to grid resolution of 1536(3) points and up to Taylor Reynolds number of approximately 1200 . The initial conditions are such that the initial velocity and magnetic fields are helical and in equipartition, while their correlation is negligible. Analyzing the data at the peak of dissipation, we show that the dissipation in MHD seems to asymptote to a constant as the Reynolds number increases, thereby strengthening the possibility of fast reconnection events in the solar environment for very large Reynolds numbers. Furthermore, intermittency of MHD flows, as determined by the spectrum of anomalous exponents of structure functions of the velocity and the magnetic field, is stronger than that of fluids, confirming earlier results; however, we also find that there is a measurable difference between the exponents of the velocity and those of the magnetic field, reminiscent of recent solar wind observations. Finally, we discuss the spectral scaling laws that arise in this flow.
Benyo, Theresa L.
2010-01-01
Preliminary flow matching has been demonstrated for a MHD energy bypass system on a supersonic turbojet engine. The Numerical Propulsion System Simulation (NPSS) environment was used to perform a thermodynamic cycle analysis to properly match the flows from an inlet to a MHD generator and from the exit of a supersonic turbojet to a MHD accelerator. Working with various operating conditions such as the enthalpy extraction ratio and isentropic efficiency of the MHD generator and MHD accelerator, interfacing studies were conducted between the pre-ionizers, the MHD generator, the turbojet engine, and the MHD accelerator. This paper briefly describes the NPSS environment used in this analysis and describes the NPSS analysis of a supersonic turbojet engine with a MHD generator/accelerator energy bypass system. Results from this study have shown that using MHD energy bypass in the flow path of a supersonic turbojet engine increases the useful Mach number operating range from 0 to 3.0 Mach (not using MHD) to an explored and desired range of 0 to 7.0 Mach.
MHD Simulations of AGN Jets in a Dynamic Galaxy Cluster Medium
Mendygral, Peter; Dolag, Klaus
2012-01-01
We present a pair of 3-d magnetohydrodynamical simulations of intermittent jets from a central active galactic nucleus (AGN) in a galaxy cluster extracted from a high resolution cosmological simulation. The selected cluster was chosen as an apparently relatively relaxed system, not having undergone a major merger in almost 7 Gyr. Despite this characterization and history, the intra-cluster medium (ICM) contains quite active "weather". We explore the effects of this ICM weather on the morphological evolution of the AGN jets and lobes. The orientation of the jets is different in the two simulations so that they probe different aspects of the ICM structure and dynamics. We find that even for this cluster that can be characterized as relaxed by an observational standard, the large-scale, bulk ICM motions can significantly distort the jets and lobes. Synthetic X-ray observations of the simulations show that the jets produce complex cavity systems, while synthetic radio observations reveal bending of the jets and l...
Coronal Mass Ejections and Dimmings: A Comparative Study using MHD Simulations and SDO Observations
Jin, Meng; Cheung, Mark; DeRosa, Marc L.; Nitta, Nariaki; Schrijver, Karel
2017-08-01
Solar coronal dimmings have been observed extensively in the past two decades. Due to their close association with coronal mass ejections (CMEs), there is a critical need to improve our understanding of the physical processes that cause dimmings and determine their relationship with CMEs. In this study, we investigate coronal dimmings by combining simulation and observational efforts. By utilizing a data-driven global magnetohydrodynamics model (AWSoM: Alfven-wave Solar Model), we simulate coronal dimmings resulting from different CME energetics and flux rope configurations. We synthesize the emissions of different EUV spectral bands/lines and compare with SDO/AIA and EVE observations. A detailed analysis of simulation and observation data suggests that the “core” dimming is mainly caused by the mass loss from the CME, while the “remote” dimming could have a different origin (e.g., plasma heating). Moreover, the interaction between the erupting flux rope with different orientations and the global solar corona could significantly influence the coronal dimming patterns. Using metrics such as dimming depth, dimming slope, and recovery time, we investigate the relationship between dimmings and CME properties (e.g., CME mass, CME speed) in the simulation. Our result suggests that coronal dimmings encode important information about CMEs. We also discuss how our knowledge about solar coronal dimmings could be extended to the study of stellar CMEs.
The Modified Magnetohydrodynamical Equations
EvangelosChaliasos
2003-01-01
After finding the really self-consistent electromagnetic equations for a plasma, we proceed in a similar fashion to find how the magnetohydrodynamical equations have to be modified accordingly. Substantially this is done by replacing the "Lorentz" force equation by the correct (in our case) force equation. Formally we have to use the vector potential instead of the magnetic field intensity. The appearance of the formulae presented is the one of classical vector analysis. We thus find a set of eight equations in eight unknowns, as previously known concerning the traditional MHD equations.
Astrophysical Weighted Particle Magnetohydrodynamics
Gaburov, Evghenii
2010-01-01
This paper presents applications of weighted meshless scheme for conservation laws to the Euler equations and the equations of ideal magnetohydrodynamics. The divergence constraint of the latter is maintained to the truncation error by a new meshless divergence cleaning procedure. The physics of the interaction between the particles is described by an one-dimensional Riemann problem in a moving frame. As a result, necessary diffusion which is required to treat dissipative processes is added automatically. As a result, our scheme has no free parameters that controls the physics of inter-particle interaction, with the exception of the number of the interacting neighbours which control the resolution and accuracy. The resulting equations have the form similar to SPH equations, and therefore existing SPH codes can be used to implement the weighed particle scheme. The scheme is validated in several hydrodynamic and MHD test cases. In particular, we demonstrate for the first time the ability of a meshless MHD schem...
Self-organisation in protoplanetary disks: global, non-stratified Hall-MHD simulations
Béthune, William; Ferreira, Jonathan
2016-01-01
Recent observations revealed organised structures in protoplanetary disks, such as axisymmetric rings or horseshoe concen- trations evocative of large-scale vortices. These structures are often interpreted as the result of planet-disc interactions. However, these disks are also known to be unstable to the magneto-rotational instability (MRI) which is believed to be one of the dominant angular momentum transport mechanism in these objects. It is therefore natural to ask if the MRI itself could produce these structures without invoking planets. The nonlinear evolution of the MRI is strongly affected by the low ionisation fraction in protoplanetary disks. The Hall effect in particular, which is dominant in dense and weakly ionised parts of these objects, has been shown to spontaneously drive self- organising flows in shearing box simulations. Here, we investigate the behaviour of global MRI-unstable disc models dominated by the Hall effect and characterise their dynamics. We perform 3D unstratified Hall-MHD simu...
Unstable Disk Accretion to Magnetized Stars: First Global 3D MHD Simulations
Romanova, Marina M; Lovelace, Richard V E
2007-01-01
We report the first global three-dimensional (3D) MHD simulations of disk accretion onto a rotating magnetized star through the Rayleigh-Taylor instability. In this regime, the accreting matter typically forms 2 to 7 vertically elongated "tongues" which penetrate deep into the magnetosphere, until they are stopped by the strong field. Subsequently, the matter is channeled along the field lines to the surface of the star, forming hot spots. The number, position and shape of the hot spots vary with time, so that the light-curves associated with the hot spots are stochastic. A magnetized star may be in the stable (with funnel streams) or unstable (with random tongues) regime of accretion, and consequently have significantly different observational properties. A star may switch between these two regimes depending on the accretion rate.
Testa, Paola; Martinez-Sykora, Juan; Hansteen, Viggo; Carlsson, Mats
2012-01-01
Determining the temperature distribution of coronal plasmas can provide stringent constraints on coronal heating. Current observations with the Extreme ultraviolet Imaging Spectrograph onboard Hinode and the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory provide diagnostics of the emission measure distribution (EMD) of the coronal plasma. Here we test the reliability of temperature diagnostics using 3D radiative MHD simulations. We produce synthetic observables from the models, and apply the Monte Carlo Markov chain EMD diagnostic. By comparing the derived EMDs with the "true" distributions from the model we assess the limitations of the diagnostics, as a function of the plasma parameters and of the signal-to-noise of the data. We find that EMDs derived from EIS synthetic data reproduce some general characteristics of the true distributions, but usually show differences from the true EMDs that are much larger than the estimated uncertainties suggest, especially when structures with signif...
Cheung, M. C.; Schüssler, M.; Moreno-Insertis, F.; Tarbell, T. D.
2007-12-01
With high angular resolution, high temporal cadence and a stable point spread function, the Solar Optical Telescope (SOT) onboard the Hinode satellite is the ideal instrument for the study of magnetic flux emergence and its manifestations on the solar surface. In this presentation, we focus on the development of ephemeral regions and small active regions. In many instances, SOT has been able to capture the entire emergence process from beginning to end: i.e. from the initial stages of flux appearance in granule interiors, through the intermediate stages of G-band bright point formation, and finally to the coalescence of small vertical flux elements to form pores. To investigate the physics of the flux emergence process, we performed 3D numerical MHD simulations with the MURaM code. The models are able to reproduce, and help us explain, various observational signatures of magnetic flux emergence.
3D-MHD simulations of the evolution of magnetic fields in FR II radio sources
Huarte-Espinosa, Martin; Alexander, Paul
2010-01-01
3D-MHD numerical simulations of bipolar, hypersonic, weakly magnetized jets and synthetic synchrotron observations are presented to study the structure and evolution of magnetic fields in FR II radio sources. The magnetic field setup in the jet is initially random. The power of the jets as well as the observational viewing angle are investigated. We find that synthetic polarization maps agree with observations and show that magnetic fields inside the sources are shaped by the jets' backflow. Polarimetry statistics correlates with time, the viewing angle and the jet-to-ambient density contrast. The magnetic structure inside thin elongated sources is more uniform than for ones with fatter cocoons. Jets increase the magnetic energy in cocoons, in proportion to the jet velocity. Both, filaments in synthetic emission maps and 3D magnetic power spectra suggest that turbulence develops in evolved sources.
MHD Turbulence and Magnetic Dynamos
Shebalin, John V
2014-01-01
Incompressible magnetohydrodynamic (MHD) turbulence and magnetic dynamos, which occur in magnetofluids with large fluid and magnetic Reynolds numbers, will be discussed. When Reynolds numbers are large and energy decays slowly, the distribution of energy with respect to length scale becomes quasi-stationary and MHD turbulence can be described statistically. In the limit of infinite Reynolds numbers, viscosity and resistivity become zero and if these values are used in the MHD equations ab initio, a model system called ideal MHD turbulence results. This model system is typically confined in simple geometries with some form of homogeneous boundary conditions, allowing for velocity and magnetic field to be represented by orthogonal function expansions. One advantage to this is that the coefficients of the expansions form a set of nonlinearly interacting variables whose behavior can be described by equilibrium statistical mechanics, i.e., by a canonical ensemble theory based on the global invariants (energy, cross helicity and magnetic helicity) of ideal MHD turbulence. Another advantage is that truncated expansions provide a finite dynamical system whose time evolution can be numerically simulated to test the predictions of the associated statistical mechanics. If ensemble predictions are the same as time averages, then the system is said to be ergodic; if not, the system is nonergodic. Although it had been implicitly assumed in the early days of ideal MHD statistical theory development that these finite dynamical systems were ergodic, numerical simulations provided sufficient evidence that they were, in fact, nonergodic. Specifically, while canonical ensemble theory predicted that expansion coefficients would be (i) zero-mean random variables with (ii) energy that decreased with length scale, it was found that although (ii) was correct, (i) was not and the expected ergodicity was broken. The exact cause of this broken ergodicity was explained, after much
Collisionless magnetic reconnection under anisotropic MHD approximation
Hirabayashi, Kota; Hoshino, Masahiro
We study the formation of slow-mode shocks in collisionless magnetic reconnection by using one- and two-dimensional collisionless magneto-hydro-dynamic (MHD) simulations based on the double adiabatic approximation, which is an important step to bridge the gap between the Petschek-type MHD reconnection model accompanied by a pair of slow shocks and the observational evidence of the rare occasion of in-situ slow shock observation. According to our results, a pair of slow shocks does form in the reconnection layer. The resultant shock waves, however, are quite weak compared with those in an isotropic MHD from the point of view of the plasma compression and the amount of the magnetic energy released across the shock. Once the slow shock forms, the downstream plasma are heated in highly anisotropic manner and a firehose-sense (P_{||}>P_{⊥}) pressure anisotropy arises. The maximum anisotropy is limited by the marginal firehose criterion, 1-(P_{||}-P_{⊥})/B(2) =0. In spite of the weakness of the shocks, the resultant reconnection rate is kept at the same level compared with that in the corresponding ordinary MHD simulations. It is also revealed that the sequential order of propagation of the slow shock and the rotational discontinuity, which appears when the guide field component exists, changes depending on the magnitude of the guide field. Especially, when no guide field exists, the rotational discontinuity degenerates with the contact discontinuity remaining at the position of the initial current sheet, while with the slow shock in the isotropic MHD. Our result implies that the slow shock does not necessarily play an important role in the energy conversion in the reconnection system and is consistent with the satellite observation in the Earth's magnetosphere.
Matsumoto, Jin; Masada, Youhei; Asano, Eiji; Shibata, Kazunari
2011-06-01
The nonlinear dynamics of the outflow driven by magnetic explosion on the surface of compact object is investigated through special relativistic magnetohydrodynamic simulations. We adopt, as an initial equilibrium state, a spherical stellar object embedded in the hydrostatic plasma which has a density ρ(r) ~ r-α and is threaded by a dipole magnetic field. The injection of magnetic energy at the surface of compact star breaks the dynamical equilibrium and triggers two-component outflow. At the early evolutionary stage, the magnetic pressure increases rapidly in time around the stellar surface, initiating a magnetically driven outflow. Then it excites a strong forward shock, shock driven outflow. The expansion velocity of the magnetically driven outflow is characterized by the Alfvén velocity on the stellar surface, and follows a simple scaling relation υmag ~ υA1/2. When the initial density profile declines steeply with radius, the strong shock is accelerated self-similarly to relativistic velocity ahead of the magnetically driven component. We find that the evolution of the strong forward shock can be described by a self-similar relation Γsh ~ rsh, where Γsh is the Lorentz factor of the plasma measured at the shock surface rsh. It should be stressed that the pure hydrodynamic process is responsible for the acceleration of the shock driven outflow. Our two-component outflow model, which is the natural outcome of the magnetic explosion, would deepen the understanding of the magnetic active phenomena on various magnetized stellar objects.
The role of magnetohydrodynamics in heliospheric space plasma physics research
Dryer, Murray; Smith, Zdenka Kopal; Wu, Shi Tsan
1988-01-01
Magnetohydrodynamics (MHD) is a fairly recent extension of the field of fluid mechanics. While much remains to be done, it has successfully been applied to the contemporary field of heliospheric space plasma research to evaluate the 'macroscopic picture' of some vital topics via the use of conducting fluid equations and numerical modeling and simulations. Some representative examples from solar and interplanetary physics are described to demonstrate that the continuum approach to global problems (while keeping in mind the assumptions and limitations therein) can be very successful in providing insight and large scale interpretations of otherwise intractable problems in space physics.
Magnetohydrodynamic dynamo: global flow generation in plasma turbulence
Yokoi, Nobumitsu; Yoshizawa, Akira [Tokyo Univ. (Japan). Inst. of Industrial Science; Itoh, Kimitaka; Itoh, Sanae-I.
1999-07-01
Generation mechanism of the spontaneous plasma rotation observed in an improved confinement mode in tokamak's is examined from the viewpoint of the turbulent magnetohydrodynamic (MHD) dynamo. A dynamo model, where the concept of cross helicity (velocity/magnetic-field correlation) plays a key role, is applied to the reversed shear (RS) modes. The concave electric-current profile occurred in the RS modes is shown to be a cause of the global plasma rotation through a numerical simulation of the cross-helicity turbulence model. (author)
Generalized reduced magnetohydrodynamic equations
Kruger, S.E.
1999-02-01
A new derivation of reduced magnetohydrodynamic (MHD) equations is presented. A multiple-time-scale expansion is employed. It has the advantage of clearly separating the three time scales of the problem associated with (1) MHD equilibrium, (2) fluctuations whose wave vector is aligned perpendicular to the magnetic field, and (3) those aligned parallel to the magnetic field. The derivation is carried out without relying on a large aspect ratio assumption; therefore this model can be applied to any general configuration. By accounting for the MHD equilibrium and constraints to eliminate the fast perpendicular waves, equations are derived to evolve scalar potential quantities on a time scale associated with the parallel wave vector (shear-Alfven wave time scale), which is the time scale of interest for MHD instability studies. Careful attention is given in the derivation to satisfy energy conservation and to have manifestly divergence-free magnetic fields to all orders in the expansion parameter. Additionally, neoclassical closures and equilibrium shear flow effects are easily accounted for in this model. Equations for the inner resistive layer are derived which reproduce the linear ideal and resistive stability criterion of Glasser, Greene, and Johnson. The equations have been programmed into a spectral initial value code and run with shear flow that is consistent with the equilibrium input into the code. Linear results of tearing modes with shear flow are presented which differentiate the effects of shear flow gradients in the layer with the effects of the shear flow decoupling multiple harmonics.
Dissipation of Molecular Cloud Turbulence by Magnetohydrodynamic Shockwaves
Lehmann, Andrew; Wardle, Mark
2015-08-01
The character of star formation is intimately related to the supersonic magnetohydrodynamic (MHD) turbulent dynamics of the giant molecular clouds in which stars form. A significant amount of the turbulent energy dissipates in low velocity shock waves. These shocks cause molecular line cooling of the compressed and heated gas, and so their radiative signatures probe the nature of the turbulence. In MHD fluids the three distinct families of shocks—fast, intermediate and slow—differ in how they compress and heat the molecular gas, and so observational differences between them may also distinguish driving modes of turbulent regions.Here we use a two-fluid model to compare the characteristics of one-dimensional fast and slow MHD shocks. Fast MHD shocks are magnetically driven, forcing ion species to stream through the neutral gas ahead of the shock front. This magnetic precursor heats the gas sufficiently to create a large, warm transition zone where all the fluid variables only weakly change in the shock front. In contrast, slow MHD shocks are driven by gas pressure where neutral species collide with ion species in a thin hot slab that closely resembles an ordinary gas dynamic shock.We computed observational diagnostics for fast and slow shocks at velocities vs = 2-4 km/s and preshock Hydrogen nuclei densities n(H) = 102-4 cm-3. We followed the abundances of molecules relevant for a simple oxygen chemistry and include cooling by CO, H2 and H2O. Estimates of intensities of CO rotational lines show that high-J lines, above J = 6→5, are more strongly excited in slow MHD shocks. We discuss how these shocks could help interpret recently observed anomalously strong mid- and high-J CO lines emitted by warm gas in the Milky Way and external galaxies, and implications for simulations of MHD turbulence.
Two-dimensional behavior of three-dimensional magnetohydrodynamic flow with a strong guiding field.
Alexakis, Alexandros
2011-11-01
The magnetohydrodynamic (MHD) equations in the presence of a guiding magnetic field are investigated by means of direct numerical simulations. The basis of the investigation consists of nine runs forced at the small scales. The results demonstrate that for a large enough uniform magnetic field the large scale flow behaves as a two-dimensional (2D) (non-MHD) fluid exhibiting an inverse cascade of energy in the direction perpendicular to the magnetic field, while the small scales behave like a three-dimensional (3D) MHD fluid cascading the energy forwards. The amplitude of the inverse cascade is sensitive to the magnetic field amplitude, the domain size, the forcing mechanism, and the forcing scale. All these dependences are demonstrated by the varying parameters of the simulations. Furthermore, in the case that the system is forced anisotropically in the small parallel scales an inverse cascade in the parallel direction is observed that is feeding the 2D modes k(//)=0.
3-D MHD disk wind simulations of jets and outflows from high-mass protostars
Staff, Jan E.; Tanaka, Kei; Tan, Jonathan C.; Zhang, Yichen; Liu, Mengyao
2017-01-01
We present the results of a series of nested, large scale, three-dimensional magnetohydrodynamics simulations of disk winds with a Blandford-Payne like magnetic field configuration, resolving scales from the stellar surface to beyond the core. The goal is to understand the structure of massive protostellar cores at various stages of their formation as the protostellar mass grows from a massive core. At each stage of a given protostellar mass, first, we study how jets and winds develop from the inner accretion disk to ~100 AU scales. We use the results from these simulations to dictate the inner boundary condition of a set of simulation extending to the core boundary at ~10,000 AU of an initially 60 solar mass core. We run separate simulations where the protostellar mass is 1, 2, 4, 8, 12, 16, and 24 Msun, and we are working on making a small grid of models in the context of the Turbulent Core Model with three different core masses and three different core surface densities. The wind is blown into the simulation box with properties derived from the previous jet simulations. We examine the opening angle of the outflow cavity and thus the star formation efficiency from the core due to outflow feedback. We find that the opening angle increases as the protostellar mass grows, but it is always less than 10 degrees, which is surprisingly small compared with previous analytic models. This is caused by the core which confines the outflow. Finally, we use our simulation results as input to a radiative transfer calculation, to compare with observations made by the SOMA survey.
Solar Flares: Magnetohydrodynamic Processes
Kazunari Shibata
2011-12-01
Full Text Available This paper outlines the current understanding of solar flares, mainly focused on magnetohydrodynamic (MHD processes responsible for producing a flare. Observations show that flares are one of the most explosive phenomena in the atmosphere of the Sun, releasing a huge amount of energy up to about 10^32 erg on the timescale of hours. Flares involve the heating of plasma, mass ejection, and particle acceleration that generates high-energy particles. The key physical processes for producing a flare are: the emergence of magnetic field from the solar interior to the solar atmosphere (flux emergence, local enhancement of electric current in the corona (formation of a current sheet, and rapid dissipation of electric current (magnetic reconnection that causes shock heating, mass ejection, and particle acceleration. The evolution toward the onset of a flare is rather quasi-static when free energy is accumulated in the form of coronal electric current (field-aligned current, more precisely, while the dissipation of coronal current proceeds rapidly, producing various dynamic events that affect lower atmospheres such as the chromosphere and photosphere. Flares manifest such rapid dissipation of coronal current, and their theoretical modeling has been developed in accordance with observations, in which numerical simulations proved to be a strong tool reproducing the time-dependent, nonlinear evolution of a flare. We review the models proposed to explain the physical mechanism of flares, giving an comprehensive explanation of the key processes mentioned above. We start with basic properties of flares, then go into the details of energy build-up, release and transport in flares where magnetic reconnection works as the central engine to produce a flare.
3D MHD Simulations of accreting neutron stars: evidence of QPO emission from the surface
Bachetti, Matteo; Kulkarni, Akshay; Burderi, Luciano; di Salvo, Tiziana; .,
2009-01-01
3D Magnetohydrodynamic simulations show that when matter accretes onto neutron stars, in particular if the misalignment angle is small, it does not constantly fall at a fixed spot. Instead, the location at which matter reaches the star moves. These moving hot spots can be produced both during stable accretion, where matter falls near the magnetic poles of the star, and unstable accretion, characterized by the presence of several tongues of matter which fall on the star near the equator, due to Rayleigh-Taylor instabilities. Precise modeling with Monte Carlo simulations shows that those movements could be observed as high frequency Quasi Periodic Oscillations. We performed a number of new simulation runs with a much wider set of parameters, focusing on neutron stars with a small misalignment angle. In most cases we observe oscillations whose frequency is correlated with the mass accretion rate $\\dot{M}$. Moreover, in some cases double QPOs appear, each of them showing the same correlation with $\\dot{M}$.
NON-EQUILIBRIUM HELIUM IONIZATION IN AN MHD SIMULATION OF THE SOLAR ATMOSPHERE
Golding, Thomas Peter; Carlsson, Mats [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo (Norway); Leenaarts, Jorrit, E-mail: thomas.golding@astro.uio.no, E-mail: mats.carlsson@astro.uio.no, E-mail: jorrit.leenaarts@astro.su.se [Institute for Solar Physics, Department of Astronomy, Stockholm University, AlbaNova University Centre, SE-106 91 Stockholm (Sweden)
2016-02-01
The ionization state of the gas in the dynamic solar chromosphere can depart strongly from the instantaneous statistical equilibrium commonly assumed in numerical modeling. We improve on earlier simulations of the solar atmosphere that only included non-equilibrium hydrogen ionization by performing a 2D radiation-magnetohydrodynamics simulation featuring non-equilibrium ionization of both hydrogen and helium. The simulation includes the effect of hydrogen Lyα and the EUV radiation from the corona on the ionization and heating of the atmosphere. Details on code implementation are given. We obtain helium ion fractions that are far from their equilibrium values. Comparison with models with local thermodynamic equilibrium (LTE) ionization shows that non-equilibrium helium ionization leads to higher temperatures in wavefronts and lower temperatures in the gas between shocks. Assuming LTE ionization results in a thermostat-like behavior with matter accumulating around the temperatures where the LTE ionization fractions change rapidly. Comparison of DEM curves computed from our models shows that non-equilibrium ionization leads to more radiating material in the temperature range 11–18 kK, compared to models with LTE helium ionization. We conclude that non-equilibrium helium ionization is important for the dynamics and thermal structure of the upper chromosphere and transition region. It might also help resolve the problem that intensities of chromospheric lines computed from current models are smaller than those observed.
Cheung, M. C. M.; Schüssler, M.; Moreno-Insertis, F.
2007-05-01
Aims:We study the emergence of magnetic flux from the near-surface layers of the solar convection zone into the photosphere. Methods: To model magnetic flux emergence, we carried out a set of numerical radiative magnetohydrodynamics simulations. Our simulations take into account the effects of compressibility, energy exchange via radiative transfer, and partial ionization in the equation of state. All these physical ingredients are essential for a proper treatment of the problem. Furthermore, the inclusion of radiative transfer allows us to directly compare the simulation results with actual observations of emerging flux. Results: We find that the interaction between the magnetic flux tube and the external flow field has an important influence on the emergent morphology of the magnetic field. Depending on the initial properties of the flux tube (e.g. field strength, twist, entropy etc.), the emergence process can also modify the local granulation pattern. The emergence of magnetic flux tubes with a flux of 1019 Mx disturbs the granulation and leads to the transient appearance of a dark lane, which is coincident with upflowing material. These results are consistent with observed properties of emerging magnetic flux. Movies are only available in electronic form at http://www.aanda.org
Viscosity and Vorticity in Reduced Magneto-Hydrodynamics
Joseph, Ilon [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2015-08-12
Magneto-hydrodynamics (MHD) critically relies on viscous forces in order for an accurate determination of the electric eld. For each charged particle species, the Braginskii viscous tensor for a magnetized plasma has the decomposition into matrices with special symmetries.
3D Radiation Nonideal Magnetohydrodynamical Simulations of the Inner Rim in Protoplanetary Disks
Flock, M.; Fromang, S.; Turner, N. J.; Benisty, M.
2017-02-01
Many planets orbit within 1 au of their stars, raising questions about their origins. Particularly puzzling are the planets found near the silicate sublimation front. We investigate conditions near the front in the protostellar disk around a young intermediate-mass star, using the first global 3D radiation nonideal MHD simulations in this context. We treat the starlight heating; the silicate grains’ sublimation and deposition at the local, time-varying temperature and density; temperature-dependent ohmic dissipation; and various initial magnetic fields. The results show magnetorotational turbulence around the sublimation front at 0.5 au. The disk interior to 0.8 au is turbulent, with velocities exceeding 10% of the sound speed. Beyond 0.8 au is the dead zone, cooler than 1000 K and with turbulence orders of magnitude weaker. A local pressure maximum just inside the dead zone concentrates solid particles, favoring their growth. Over many orbits, a vortex develops at the dead zone’s inner edge, increasing the disk’s thickness locally by around 10%. We synthetically observe the results using Monte Carlo transfer calculations, finding that the sublimation front is near-infrared bright. The models with net vertical magnetic fields develop extended, magnetically supported atmospheres that reprocess extra starlight, raising the near-infrared flux 20%. The vortex throws a nonaxisymmetric shadow on the outer disk. At wavelengths > 2 μ {{m}}, the flux varies several percent on monthly timescales. The variations are more regular when the vortex is present. The vortex is directly visible as an arc at ultraviolet through near-infrared wavelengths, given sub-au spatial resolution.
A Two-dimensional Magnetohydrodynamics Scheme for General Unstructured Grids
Livne, Eli; Dessart, Luc; Burrows, Adam; Meakin, Casey A.
2007-05-01
We report a new finite-difference scheme for two-dimensional magnetohydrodynamics (MHD) simulations, with and without rotation, in unstructured grids with quadrilateral cells. The new scheme is implemented within the code VULCAN/2D, which already includes radiation hydrodynamics in various approximations and can be used with arbitrarily moving meshes (ALEs). The MHD scheme, which consists of cell-centered magnetic field variables, preserves the nodal finite difference representation of divB by construction, and therefore any initially divergence-free field remains divergence-free through the simulation. In this paper, we describe the new scheme in detail and present comparisons of VULCAN/2D results with those of the code ZEUS/2D for several one-dimensional and two-dimensional test problems. The code now enables two-dimensional simulations of the collapse and explosion of the rotating, magnetic cores of massive stars. Moreover, it can be used to simulate the very wide variety of astrophysical problems for which multidimensional radiation magnetohydrodynamics (RMHD) is relevant.
Radiation-driven MHD systems for space applications
Lee, J. H.; Jalufka, N. W.
High-power radiation such as concentrated solar or high-power laser radiation is considered as a driver for magnetohydrodynamic (MHD) systems which could be developed for efficient power generation and propulsion in space. Eight different systems are conceivable since the MHD systems can be classified in two: plasma and liquid-metal MHD's. Each of these systems is reviewed and solar- (or laser-) driven MHD thrusters are proposed.
Temporal intermittency of energy dissipation in magnetohydrodynamic turbulence.
Zhdankin, Vladimir; Uzdensky, Dmitri A; Boldyrev, Stanislav
2015-02-13
Energy dissipation in magnetohydrodynamic (MHD) turbulence is known to be highly intermittent in space, being concentrated in sheetlike coherent structures. Much less is known about intermittency in time, another fundamental aspect of turbulence which has great importance for observations of solar flares and other space or astrophysical phenomena. In this Letter, we investigate the temporal intermittency of energy dissipation in numerical simulations of MHD turbulence. We consider four-dimensional spatiotemporal structures, "flare events," responsible for a large fraction of the energy dissipation. We find that although the flare events are often highly complex, they exhibit robust power-law distributions and scaling relations. We find that the probability distribution of dissipated energy has a power-law index close to α≈1.75, similar to observations of solar flares, indicating that intense dissipative events dominate the heating of the system. We also discuss the temporal asymmetry of flare events as a signature of the turbulent cascade.
Magnetohydrodynamic turbulent cascade of coronal loop magnetic fields.
Rappazzo, A F; Velli, M
2011-06-01
The Parker model for coronal heating is investigated through a high resolution simulation. An inertial range is resolved where fluctuating magnetic energy EMk[Please see symbol]) [Please see symbol] k[Please see symbol](-2.7) exceeds kinetic energy EK(k[Please see symbol])[Please see symbol]k[Please see symbol](-0.6). Increments scale as δbℓ ~/= ℓ(-0.85) and δuℓ ~/= ℓ(+0.2) with velocity increasing at small scales, indicating that magnetic reconnection plays a prime role in this turbulent system. We show that spectral energy transport is akin to standard magnetohydrodynamic (MHD) turbulence even for a system of reconnecting current sheets sustained by the boundary. In this new MHD turbulent cascade, kinetic energy flows are negligible while cross-field flows are enhanced, and through a series of "reflections" between the two fields, cascade more than half of the total spectral energy flow.
Can non-ideal magnetohydrodynamics solve the magnetic braking catastrophe?
Wurster, James; Bate, Matthew R
2015-01-01
We investigate whether or not the low ionisation fractions in molecular cloud cores can solve the `magnetic braking catastrophe', where magnetic fields prevent the formation of circumstellar discs around young stars. We perform three-dimensional smoothed particle non-ideal magnetohydrodynamics (MHD) simulations of the gravitational collapse of one solar mass molecular cloud cores, incorporating the effects of ambipolar diffusion, Ohmic resistivity and the Hall effect alongside a self-consistent calculation of the ionisation chemistry assuming 0.1 micron grains. When including only ambipolar diffusion or Ohmic resistivity, discs do not form in the presence of strong magnetic fields, similar to the cases using ideal MHD. With the Hall effect included, disc formation depends on the direction of the magnetic field with respect to the rotation vector of the gas cloud. When the vectors are aligned, strong magnetic braking occurs and no disc is formed. When the vectors are anti-aligned, a disc with radius of 13AU ca...
An AC magnetohydrodynamic micropump: towards a true integrated microfluidic system
Lee, A P; Lemoff, A V; McConaghy, C F; Miles, R R
1999-03-01
An AC Magnetohydrodynamic (MHD) micropump has been demonstrated in which the Lorentz force is used to propel an electrolytic solution along a microchannel etched in silicon. This micropump has no moving parts, produces a continuous (not pulsatile) flow, and is compatible with solutions containing biological specimens. micropump, using the Lorentz force as the pumping mechanism for biological analysis. The AC Magnetohydrodynamic (MHD) micropump investigated produces a continuous flow and allows for complex microchannel design.
Computational Methods for Ideal Magnetohydrodynamics
Kercher, Andrew D.
Numerical schemes for the ideal magnetohydrodynamics (MHD) are widely used for modeling space weather and astrophysical flows. They are designed to resolve the different waves that propagate through a magnetohydro fluid, namely, the fast, Alfven, slow, and entropy waves. Numerical schemes for ideal magnetohydrodynamics that are based on the standard finite volume (FV) discretization exhibit pseudo-convergence in which non-regular waves no longer exist only after heavy grid refinement. A method is described for obtaining solutions for coplanar and near coplanar cases that consist of only regular waves, independent of grid refinement. The method, referred to as Compound Wave Modification (CWM), involves removing the flux associated with non-regular structures and can be used for simulations in two- and three-dimensions because it does not require explicitly tracking an Alfven wave. For a near coplanar case, and for grids with 213 points or less, we find root-mean-square-errors (RMSEs) that are as much as 6 times smaller. For the coplanar case, in which non-regular structures will exist at all levels of grid refinement for standard FV schemes, the RMSE is as much as 25 times smaller. A multidimensional ideal MHD code has been implemented for simulations on graphics processing units (GPUs). Performance measurements were conducted for both the NVIDIA GeForce GTX Titan and Intel Xeon E5645 processor. The GPU is shown to perform one to two orders of magnitude greater than the CPU when using a single core, and two to three times greater than when run in parallel with OpenMP. Performance comparisons are made for two methods of storing data on the GPU. The first approach stores data as an Array of Structures (AoS), e.g., a point coordinate array of size 3 x n is iterated over. The second approach stores data as a Structure of Arrays (SoA), e.g. three separate arrays of size n are iterated over simultaneously. For an AoS, coalescing does not occur, reducing memory efficiency
Flux Emergence In The Solar Photosphere - Diagnostics Based On 3-D Rradiation-MHD Simulations
Yelles Chaouche, L.; Cheung, M.; Lagg, A.; Solanki, S.
2006-08-01
We investigate flux tube emergence in the solar photosphere using a diagnostic procedure based on analyzing Stokes signals from different spectral lines calculated in 3-D radiation-MHD simulations. The simulations include the effects of radiative transport and partial ionization and cover layers both above and below the solar surface. The simulations consider the emergence of a twisted magnetic flux tube through the solar surface. We consider different stages in the emergence process, starting from the early appearance of the flux tube at the solar surface, and following the emergence process until the emerged flux looks similar to a normal bipolar region. At every stage we compute line profiles by numerically solving the Unno-Rachkovsky equations at every horizontal grid point. Then, following observational practice, we apply Milne-Eddington-type inversions to the synthetic spectra in order to retrieve different atmospheric parameters. We include the influence of spatial smearing on the deduced atmospheric parameters to identify signatures of different stages of flux emergence in the solar photosphere.
Time-dependent simulation of oblique MHD cosmic-ray shocks using the two-fluid model
Frank, Adam; Jones, T. W.; Ryu, Dongsu
1995-01-01
Using a new, second-order accurate numerical method we present dynamical simulations of oblique MHD cosmic-ray (CR)-modified plane shock evolution. Most of the calculations are done with a two-fluid model for diffusive shock acceleration, but we provide also comparisons between a typical shock computed that way against calculations carried out using the more complete, momentum-dependent, diffusion-advection equation. We also illustrate a test showing that these simulations evolve to dynamical equilibria consistent with previously published steady state analytic calculations for such shocks. In order to improve understanding of the dynamical role of magnetic fields in shocks modified by CR pressure we have explored for time asymptotic states the parameter space of upstream fast mode Mach number, M(sub f), and plasma beta. We compile the results into maps of dynamical steady state CR acceleration efficiency, epsilon(sub c). We have run simulations using constant, and nonisotropic, obliquity (and hence spatially) dependent forms of the diffusion coefficient kappa. Comparison of the results shows that while the final steady states achieved are the same in each case, the history of CR-MHD shocks can be strongly modified by variations in kappa and, therefore, in the acceleration timescale. Also, the coupling of CR and MHD in low beta, oblique shocks substantially influences the transient density spike that forms in strongly CR-modified shocks. We find that inside the density spike a MHD slow mode wave can be generated that eventually steepens into a shock. A strong layer develops within the density spike, driven by MHD stresses. We conjecture that currents in the shear layer could, in nonplanar flows, results in enhanced particle accretion through drift acceleration.
Light Curves from an MHD Simulation of a Black Hole Accretion Disk
Schnittman, J D; Hawley, J F; Schnittman, Jeremy D.; Krolik, Julian H.; Hawley, John F.
2006-01-01
We use a relativistic ray-tracing code to calculate the light curves observed from a global general relativistic magneto-hydrodynamic simulation of an accretion flow onto a Schwarzschild black hole. We apply three basic emission models to sample different properties of the time-dependent accretion disk. With one of these models, which assumes thermal blackbody emission and free-free absorption, we can predict qualitative features of the high-frequency power spectrum from stellar-mass black holes in the "Thermal Dominant" state. The simulated power spectrum is characterized by a power law of index Gamma ~ 3 and total rms fractional variance of ~ 1 % near the orbital frequency at the inner-most stable orbit. Initial results indicate the existence of transient QPO peaks with frequency ratios of nearly 2:3 at a 99.9% confidence limit, but they are not generic features because at any given time they are seen only from certain observer directions. Additionally, we present detailed analysis of the azimuthal structur...
Light Curves from an MHD Simulation of a Black Hole Accretion Disk
Schnittman, Jeremy D.; Krolik, Julian H.; Hawley, John F.
2006-11-01
We use a relativistic ray-tracing code to calculate the light curves observed from a global, general relativistic, magnetohydrodynamic simulation of an accretion flow onto a Schwarzschild black hole. We apply three basic emission models to sample different properties of the time-dependent accretion disk. With one of these models, which assumes thermal blackbody emission and free-free absorption, we can predict qualitative features of the high-frequency power spectrum from stellar-mass black holes in the ``thermal dominant'' state. The simulated power spectrum is characterized by a power law of index Γ~3 and total rms fractional variance of ~1% near the orbital frequency at the innermost stable orbit. Initial results indicate the existence of transient QPO peaks with frequency ratios of nearly 2:3 at a 99.9% confidence limit, but they are not generic features, because at any given time they are seen only from certain observer directions. In addition, we present detailed analysis of the azimuthal structure of the accretion disk and the evolution of density perturbations in the inner disk. These ``hot-spot'' structures appear to be roughly self-similar over a range of disk radii, with a single characteristic size δφ=25deg and δr/r=0.3, and typical lifetimes Tl~0.3Torb.
Seismic Halos Around Active Regions: An MHD Theory
Hanasoge, Shravan M
2007-01-01
Comprehending the manner in which magnetic fields affect propagating waves is a first step toward the helioseismic construction of accurate models of active region sub-surface structure and dynamics. Here, we present a numerical method to compute the linear interaction of waves with magnetic fields embedded in a solar-like stratified background. The ideal Magneto-Hydrodynamic (MHD) equations are solved in a 3-dimensional box that straddles the solar photosphere, extending from 35 Mm within to 1.2 Mm into the atmosphere. One of the challenges in performing these simulations involves generating a Magneto-Hydro-Static (MHS) state wherein the stratification assumes horizontal inhomogeneity in addition to the strong vertical stratification associated with the near-surface layers. Keeping in mind that the aim of this effort is to understand and characterize linear MHD interactions, we discuss a means of computing statically consistent background states. Results from a simulation of waves interacting with a flux tub...
Synchrotron radiation of self-collimating relativistic MHD jets
Porth, Oliver; Meliani, Zakaria; Vaidya, Bhargav
2011-01-01
The goal of this paper is to derive signatures of synchrotron radiation from state-of-the-art simulation models of collimating relativistic magnetohydrodynamic (MHD) jets featuring a large-scale helical magnetic field. We perform axisymmetric special relativistic MHD simulations of the jet acceleration region using the PLUTO code. The computational domain extends from the slow magnetosonic launching surface of the disk up to 6000^2 Schwarzschild radii allowing to reach highly relativistic Lorentz factors. The Poynting dominated disk wind develops into a jet with Lorentz factors of 8 and is collimated to 1 degree. In addition to the disk jet, we evolve a thermally driven spine jet, emanating from a hypothetical black hole corona. Solving the linearly polarized synchrotron radiation transport within the jet, we derive VLBI radio and (sub-) mm diagnostics such as core shift, polarization structure, intensity maps, spectra and Faraday rotation measure (RM), directly from the Stokes parameters. We also investigate...
Striations in molecular clouds: Streamers or MHD waves?
Tritsis, A
2016-01-01
Dust continuum and molecular observations of the low column density parts of molecular clouds have revealed the presence of elongated structures which appear to be well aligned with the magnetic field. These so-called striations are usually assumed to be streams that flow towards or away from denser regions. We perform ideal magnetohydrodynamic (MHD) simulations adopting four models that could account for the formation of such structures. In the first two models striations are created by velocity gradients between ambient, parallel streamlines along magnetic field lines. In the third model striations are formed as a result of a Kelvin-Helmholtz instability perpendicular to field lines. Finally, in the fourth model striations are formed from the nonlinear coupling of MHD waves due to density inhomogeneities. We assess the validity of each scenario by comparing the results from our simulations with previous observational studies and results obtained from the analysis of CO (J = 1 - 0) observations from the Taur...
Energy interactions in homogeneously sheared magnetohydrodynamic flows
Collard, Diane; Praturi, Divya Sri; Girimaji, Sharath
2016-11-01
We investigate the behavior of homogeneously sheared magnetohydrodynamic (MHD) flows subject to perturbations in various directions. We perform rapid distortion theory (RDT) analysis and direct numerical simulations (DNS) to examine the interplay between magnetic, kinetic, and internal energies. For perturbation wavevectors oriented along the spanwise direction, RDT analysis shows that the magnetic and velocity fields are decoupled. In the case of streamwise wavevectors, the magnetic and velocity fields are tightly coupled. The coupling is "harmonic" in nature. DNS is then used to confirm the RDT findings. Computations of spanwise perturbations indeed exhibit behavior that is impervious to the magnetic field. Computed streamwise perturbations exhibit oscillatory evolution of kinetic and magnetic energies for low magnetic field strength. As the strength of magnetic field increases, the oscillatory behavior intensifies even as the energy magnitude decays, indicating strong stabilization.
Relabeling symmetries in hydrodynamics and magnetohydrodynamics
Padhye, N.; Morrison, P.J.
1996-04-01
Lagrangian symmetries and concomitant generalized Bianchi identities associated with the relabeling of fluid elements are found for hydrodynamics and magnetohydrodynamics (MHD). In hydrodynamics relabeling results in Ertel`s theorem of conservation of potential vorticity, while in MHD it yields the conservation of cross helicity. The symmetries of the reduction from Lagrangian (material) to Eulerian variables are used to construct the Casimir invariants of the Hamiltonian formalism.
A Fast MHD Code for Gravitationally Stratified Media using Graphical Processing Units: SMAUG
M. K. Griffiths; V. Fedun; R.Erdélyi
2015-03-01
Parallelization techniques have been exploited most successfully by the gaming/graphics industry with the adoption of graphical processing units (GPUs), possessing hundreds of processor cores. The opportunity has been recognized by the computational sciences and engineering communities, who have recently harnessed successfully the numerical performance of GPUs. For example, parallel magnetohydrodynamic (MHD) algorithms are important for numerical modelling of highly inhomogeneous solar, astrophysical and geophysical plasmas. Here, we describe the implementation of SMAUG, the Sheffield Magnetohydrodynamics Algorithm Using GPUs. SMAUG is a 1–3D MHD code capable of modelling magnetized and gravitationally stratified plasma. The objective of this paper is to present the numerical methods and techniques used for porting the code to this novel and highly parallel compute architecture. The methods employed are justified by the performance benchmarks and validation results demonstrating that the code successfully simulates the physics for a range of test scenarios including a full 3D realistic model of wave propagation in the solar atmosphere.
Attempts to Simulate Anisotropies of Solar Wind Fluctuations Using MHD with a Turning Magnetic Field
Ghosh, Sanjoy; Roberts, D. Aaron
2010-01-01
We examine a "two-component" model of the solar wind to see if any of the observed anisotropies of the fields can be explained in light of the need for various quantities, such as the magnetic minimum variance direction, to turn along with the Parker spiral. Previous results used a 3-D MHD spectral code to show that neither Q2D nor slab-wave components will turn their wave vectors in a turning Parker-like field, and that nonlinear interactions between the components are required to reproduce observations. In these new simulations we use higher resolution in both decaying and driven cases, and with and without a turning background field, to see what, if any, conditions lead to variance anisotropies similar to observations. We focus especially on the middle spectral range, and not the energy-containing scales, of the simulation for comparison with the solar wind. Preliminary results have shown that it is very difficult to produce the required variances with a turbulent cascade.
MHD Simulations of the ISM: The Importance of the Galactic Magnetic Field on the ISM "Phases"
D'Avillez, M A
2003-01-01
We have carried out 1.25 pc resolution MHD simulations of the ISM, on a Cartesian grid of $0 \\leq (x,y) \\leq 1$ kpc size in the galactic plane and $-10 \\leq z \\leq 10$ kpc into the halo, thus being able to fully trace the time-dependent evolution of the galactic fountain. The simulations show that large scale gas streams emerge, driven by SN explosions, which are responsible for the formation and destruction of shocked compressed layers. The shocked gas can have densities as high as 800 cm$^{-3}$ and lifetimes up to 15 Myr. The cold gas is distributed into filaments which tend to show a preferred orientation due to the anisotropy of the flow induced by the galactic magnetic field. Ram pressure dominates the flow in the unstable branch $10^{2}<$T$\\leq 10^{3.9}$ K, while for T$\\leq 100$ K (stable branch) magnetic pressure takes over. Near supernovae thermal and ram pressures determine the dynamics of the flow. Up to 80% of the mass in the disk is concentrated in the thermally unstable regime $10^{2}<$T$\\l...
Spicule-like structures observed in 3D realistic MHD simulations
Martinez-Sykora, J; De Pontieu, B; Carlsson, M
2009-01-01
We analyze features that resemble type i spicules in two different 3D numerical simulations in which we include horizontal magnetic flux emergence in a computational domain spanning the upper layers of the convection zone to the lower corona. The two simulations differ mainly in the preexisting ambient magnetic field strength and in the properties of the inserted flux tube. We use the Oslo Staggered Code (OSC) to solve the full MHD equations with non-grey and non-LTE radiative transfer and thermal conduction along the magnetic field lines. We find a multitude of features that show a spatiotemporal evolution that is similar to that observed in type i spicules, which are characterized by parabolic height vs. time profiles, and are dominated by rapid upward motion at speeds of 10-30 km/s, followed by downward motion at similar velocities. We measured the parameters of the parabolic profile of the spicules and find similar correlations between the parameters as those found in observations. The values for height (...
Wareing, C J; Falle, S A E G; Van Loo, S
2016-01-01
We have used the AMR hydrodynamic code, MG, to perform 3D MHD simulations of the formation of clumpy and filamentary structure in a thermally unstable medium. A stationary thermally unstable spherical diffuse cloud with uniform density in pressure equilibrium with low density surroundings was seeded with random density variations and allowed to evolve. A range of magnetic field strengths threading the cloud have been explored, from beta=0.1 to beta=1.0 to the zero magnetic field case (beta=infinity), where beta is the ratio of thermal pressure to magnetic pressure. Once the density inhomogeneities had developed to the point where gravity started to become important, self-gravity was introduced to the simulation. With no magnetic field, clumps form within the cloud with aspect ratios of around unity, whereas in the presence of a relatively strong field (beta=0.1) these become filaments, then evolve into interconnected corrugated sheets that are predominantly perpendicular to the magnetic field. With magnetic a...
3D MHD Simulations of Laser Plasma Guiding in Curved Magnetic Field
Roupassov, S.; Rankin, R.; Tsui, Y.; Capjack, C.; Fedosejevs, R.
1999-11-01
The guiding and confinement of laser produced plasma in a curved magnetic field has been investigated numerically. These studies were motivated by experiments on pulsed laser deposition of diamond-like films [1] in which a 1kG magnetic field in a curved solenoid geometry was utilized to steer a carbon plasma around a curved trajectory and thus to separate it from unwanted macroparticles produced by the laser ablation. The purpose of the modeling was to characterize the plasma dynamics during the propagation through the magnetic guide field and to investigate the effect of different magnetic field configurations. A 3D curvilinear ADI code developed on the basis of an existing Cartesian code [2] was employed to simulate the underlying resistive one-fluid MHD model. Issues such as large regions of low background density and nonreflective boundary conditions were addressed. Results of the simulations in a curved guide field will be presented and compared to experimental results. [1] Y.Y. Tsui, D. Vick and R. Fedosejevs, Appl. Phys. Lett. 70 (15), pp. 1953-57, 1997. [2] R. Rankin, and I. Voronkov, in "High Performance Computing Systems and Applications", pp. 59-69, Kluwer AP, 1998.
MHD simulations of protostellar jets: formation and stability of shock diamonds
Ustamujic, Sabina
2016-07-01
The early stages of a star birth are characterised by a variety of mass ejection phenomena, including outflows and collimated jets, that are strongly related with the accretion process developed in the context of the star-disc interaction. After been ejected, jets move through the ambient medium, interacting and producing shocks and complex structures that are observed at different wavelength bands. In particular, X-ray observations show evidence of strong shocks heating the plasma up to temperatures of a few million degrees. In some cases, the shocked features appear to be stationary and have been interpreted as shock diamonds. We aim at investigating the physical properties of the shocked plasma and the role of the magnetic field on the collimation performing 2.5D MHD simulations, including the effects of the thermal conduction and the radiative losses. We modelled the propagation of a jet ramming with a supersonic speed into an initially isothermal and homogeneous magnetized medium. We studied the physics that guides the formation of a stationary shock (for instance a shock diamond) and compared the results with observations, via the emission measure distribution vs. temperature and the luminosity synthesised from the simulations.
MHD control in burning plasmas MHD control in burning plasmas
Donné, Tony; Liang, Yunfeng
2012-07-01
Fusion physics focuses on the complex behaviour of hot plasmas confined by magnetic fields with the ultimate aim to develop a fusion power plant. In the future generation of tokamaks like ITER, the power generated by the fusion reactions substantially exceeds the external input power (Pfusion}/Pin >= 10). When this occurs one speaks of a burning plasma. Twenty per cent of the generated fusion power in a burning plasma is carried by the charged alpha particles, which transfer their energy to the ambient plasma in collisions, a process called thermalization. A new phenomenon in burning plasmas is that the alpha particles, which form a minority but carry a large fraction of the plasma kinetic energy, can collectively drive certain types of magneto-hydrodynamic (MHD) modes, while they can suppress other MHD modes. Both types of MHD modes can have desirable effects on the plasma, as well as be detrimental to the plasma. For example, the so-called sawtooth instability, on the one hand, is largely responsible for the transport of the thermalized alpha particles out of the core, but, on the other hand, may result in the loss of the energetic alphas before they have fully thermalized. A further undesirable effect of the sawtooth instability is that it may trigger other MHD modes such as neoclassical tearing modes (NTMs). These NTMs, in turn, are detrimental to the plasma confinement and in some cases may even lead to disruptive termination of the plasma. At the edge of the plasma, finally, so-called edge localized modes or ELMs occur, which result in extremely high transient heat and particle loads on the plasma-facing components of a reactor. In order to balance the desired and detrimental effects of these modes, active feedback control is required. An additional complication occurs in a burning plasma as the external heating power, which is nowadays generally used for plasma control, is small compared to the heating power of the alpha particles. The scientific challenge
Mumford, S J; Erdélyi, R
2013-01-01
Aims. Recent ground- and space-based observations reveal the presence of small-scale motions between convection cells in the solar photosphere. In these regions small-scale magnetic flux tubes are generated due to the interaction of granulation motion and background magnetic field. This paper aims to study the effects of these motions, in regions of enhanced magnetic field, on magnetohydrodynamic wave excitation, propagation and energy flux from the solar photosphere up towards the solar corona. Methods. Numerical experiments of magnetohydrodynamic wave propagation in a realistic gravitationally stratified solar atmosphere from five different modelled photospheric drivers are performed. Horizontal and vertical drivers to mimic granular buffeting and solar global oscillations, a uniform torsional driver, an Archimedean spiral and a logarithmic spiral to mimic observed torsional motions in the solar photosphere are investigated. The numerical results are analysed using a novel method for extracting the parallel...
A new MHD-assisted Stokes inversion technique
Riethmüller, T L; Barthol, P; Gandorfer, A; Gizon, L; Hirzberger, J; van Noort, M; Rodríguez, J Blanco; Iniesta, J C Del Toro; Suárez, D Orozco; Schmidt, W; Pillet, V Martínez; Knölker, M
2016-01-01
We present a new method of Stokes inversion of spectropolarimetric data and evaluate it by taking the example of a SUNRISE/IMaX observation. An archive of synthetic Stokes profiles is obtained by the spectral synthesis of state-of-the-art magnetohydrodynamics (MHD) simulations and a realistic degradation to the level of the observed data. The definition of a merit function allows the archive to be searched for the synthetic Stokes profiles that match the observed profiles best. In contrast to traditional Stokes inversion codes, which solve the Unno-Rachkovsky equations for the polarized radiative transfer numerically and fit the Stokes profiles iteratively, the new technique provides the full set of atmospheric parameters. This gives us the ability to start an MHD simulation that takes the inversion result as initial condition. After a relaxation process of half an hour solar time we obtain physically consistent MHD data sets with a target similar to the observation. The new MHD simulation is used to repeat t...
On the 2D behavior of 3D MHD with a strong guiding field
Alexakis, Alexandros
2011-01-01
The Magneto-hydrodynamic (MHD) equations in the presence of a guiding magnetic field are investigated by means of direct numerical simulations. The basis of the investigation consists of 9 runs forced at the small scales. The results demonstrate that for a large enough uniform magnetic field the large scale flow behaves as a two dimensional (non-MHD) fluid exhibiting an inverse cascade of energy in the direction perpendicular to the magnetic field, while the small scales behave like a three dimensional MHD-fluid cascading the energy forwards. The amplitude of the inverse cascade is sensitive to the magnetic field amplitude, the domain size, the forcing mechanism, and the forcing scale. All these dependencies are demonstrated by the varying parameters of simulations. Furthermore, in the case that the system is forced anisotropically in the small parallel scales an inverse cascade in the parallel direction is observed that is feeding the 2D modes.
Relativistic particle transport in extragalactic jets: I. Coupling MHD and kinetic theory
Casse, F
2003-01-01
Multidimensional magneto-hydrodynamical (MHD) simulations coupled with stochastic differential equations (SDEs) adapted to test particle acceleration and transport in complex astrophysical flows are presented. The numerical scheme allows the investigation of shock acceleration, adiabatic and radiative losses as well as diffusive spatial transport in various diffusion regimes. The applicability of SDEs to astrophysics is first discussed in regards to the different regimes and the MHD code spatial resolution. The procedure is then applied to 2.5D MHD-SDE simulations of kilo-parsec scale extragalactic jets. The ability of SDE to reproduce analytical solutions of the diffusion-convection equation for electrons is tested through the incorporation of an increasing number of effects: shock acceleration, spatially dependent diffusion coefficients and synchrotron losses. The SDEs prove to be efficient in various shock configuration occurring in the inner jet during the development of the Kelvin-Helmholtz instability. ...
Friedrich, J; Schäfer, T; Grauer, R
2016-01-01
We investigate the scaling behavior of longitudinal and transverse structure functions in homogeneous and isotropic magneto-hydrodynamic (MHD) turbulence by means of an exact hierarchy of structure function equations as well as by direct numerical simulations of two- and three-dimensional MHD turbulence. In particular, rescaling relations between longitudinal and transverse structure functions are derived and utilized in order to compare different scaling behavior in the inertial range. It is found that there are no substantial differences between longitudinal and transverse structure functions in MHD turbulence. This finding stands in contrast to the case of hydrodynamic turbulence which shows persistent differences even at high Reynolds numbers. We propose a physical picture that is based on an effective reduction of pressure contributions due to local regions of same magnitude and alignment of velocity and magnetic field fluctuations. Finally, our findings underline the importance of the pressure term for ...
Ali, M. M.; Alim, M. A.; Maleque, M. A.; Ahmed, Syed Sabbir
2017-06-01
A numerical study has been carried out to analyze the flow and heat transfer characteristics due to the effects of magnetohydrodynamic free convection flow in a differentially heated enclosure having a hot tilted square block. The vertical and horizontal walls of the cavity are non-uniformly heated while the walls of the tilted block are uniformly heated. The basic partial differential equations of the physical problem are solved numerically using finite element technique along with Galerkin's weighted residual simulation. Calculations have been performed for different values of buoyancy parameter (102 ≤ Ra ≤ 105) and magnetic field parameter (0 ≤ Ha ≤ 60) and obtained results are illustrated in terms of streamlines, isotherms, average Nusselt number and average temperature. The results show that the flow pattern and temperature distributions affected noticeably for the effect of aforementioned parameters. In addition, an increase in average Nusselt number is found for the whole range of Rayleigh number and average temperature decreased for increasing Rayleigh number. Comparison between the obtained results and the previously published results on the basis of special case is a good agreement.
X-Ray Spectra from MHD Simulations of Accreting Black Holes
Schnittman, Jeremy D.; Krolik, Julian H.; Noble, Scott C.
2012-01-01
We present the results of a new global radiation transport code coupled to a general relativistic magneto-hydrodynamic simulation of an accreting, nonrotating black hole. For the first time, we are able to explain from first principles in a self-consistent way the X-ray spectra observed from stellar-mass black holes, including a thermal peak, Compton reflection hump, power-law tail, and broad iron line. Varying only the mass accretion rate, we are able to reproduce the low/hard, steep power-law, and thermal-dominant states seen in most galactic black hole sources. The temperature in the corona is T(sub e) 10 keV in a boundary layer near the disk and rises smoothly to T(sub e) greater than or approximately 100 keV in low-density regions far above the disk. Even as the disk's reflection edge varies from the horizon out to approximately equal to 6M as the accretion rate decreases, we find that the shape of the Fe Ka line is remarkably constant. This is because photons emitted from the plunging region are strongly beamed into the horizon and never reach the observer. We have also carried out a basic timing analysis of the spectra and find that the fractional variability increases with photon energy and viewer inclination angle, consistent with the coronal hot spot model for X-ray fluctuations.
MHD thrust vectoring of a rocket engine
Labaune, Julien; Packan, Denis; Tholin, Fabien; Chemartin, Laurent; Stillace, Thierry; Masson, Frederic
2016-09-01
In this work, the possibility to use MagnetoHydroDynamics (MHD) to vectorize the thrust of a solid propellant rocket engine exhaust is investigated. Using a magnetic field for vectoring offers a mass gain and a reusability advantage compared to standard gimbaled, elastomer-joint systems. Analytical and numerical models were used to evaluate the flow deviation with a 1 Tesla magnetic field inside the nozzle. The fluid flow in the resistive MHD approximation is calculated using the KRONOS code from ONERA, coupling the hypersonic CFD platform CEDRE and the electrical code SATURNE from EDF. A critical parameter of these simulations is the electrical conductivity, which was evaluated using a set of equilibrium calculations with 25 species. Two models were used: local thermodynamic equilibrium and frozen flow. In both cases, chlorine captures a large fraction of free electrons, limiting the electrical conductivity to a value inadequate for thrust vectoring applications. However, when using chlorine-free propergols with 1% in mass of alkali, an MHD thrust vectoring of several degrees was obtained.
Reuter, K.; Jenko, F.; Forest, C. B.; Bayliss, R. A.
2008-08-01
A parallel implementation of a nonlinear pseudo-spectral MHD code for the simulation of turbulent dynamos in spherical geometry is reported. It employs a dual domain decomposition technique in both real and spectral space. It is shown that this method shows nearly ideal scaling going up to 128 CPUs on Beowulf-type clusters with fast interconnect. Furthermore, the potential of exploiting single precision arithmetic on standard x86 processors is examined. It is pointed out that the MHD code thereby achieves a maximum speedup of 1.7, whereas the validity of the computations is still granted. The combination of both measures will allow for the direct numerical simulation of highly turbulent cases ( 1500
Magnetic discontinuities in magnetohydrodynamic turbulence and in the solar wind.
Zhdankin, Vladimir; Boldyrev, Stanislav; Mason, Joanne; Perez, Jean Carlos
2012-04-27
Recent measurements of solar wind turbulence report the presence of intermittent, exponentially distributed angular discontinuities in the magnetic field. In this Letter, we study whether such discontinuities can be produced by magnetohydrodynamic (MHD) turbulence. We detect the discontinuities by measuring the fluctuations of the magnetic field direction, Δθ, across fixed spatial increments Δx in direct numerical simulations of MHD turbulence with an imposed uniform guide field B(0). A large region of the probability density function (pdf) for Δθ is found to follow an exponential decay, proportional to exp(-Δθ/θ(*)), with characteristic angle θ(*)≈(14°)(b(rms)/B(0))(0.65) for a broad range of guide-field strengths. We find that discontinuities observed in the solar wind can be reproduced by MHD turbulence with reasonable ratios of b(rms)/B(0). We also observe an excess of small angular discontinuities when Δx becomes small, possibly indicating an increasing statistical significance of dissipation-scale structures. The structure of the pdf in this case closely resembles the two-population pdf seen in the solar wind. We thus propose that strong discontinuities are associated with inertial-range MHD turbulence, while weak discontinuities emerge from dissipation-range turbulence. In addition, we find that the structure functions of the magnetic field direction exhibit anomalous scaling exponents, which indicates the existence of intermittent structures.
Approximate Riemann solvers for the cosmic ray magnetohydrodynamical equations
Kudoh, Yuki; Hanawa, Tomoyuki
2016-11-01
We analyse the cosmic ray magnetohydrodynamic (CR MHD) equations to improve the numerical simulations. We propose to solve them in the fully conservation form, which is equivalent to the conventional CR MHD equations. In the fully conservation form, the CR energy equation is replaced with the CR `number' conservation, where the CR number density is defined as the three-fourths power of the CR energy density. The former contains an extra source term, while latter does not. An approximate Riemann solver is derived from the CR MHD equations in the fully conservation form. Based on the analysis, we propose a numerical scheme of which solutions satisfy the Rankine-Hugoniot relation at any shock. We demonstrate that it reproduces the Riemann solution derived by Pfrommer et al. for a 1D CR hydrodynamic shock tube problem. We compare the solution with those obtained by solving the CR energy equation. The latter solutions deviate from the Riemann solution seriously, when the CR pressure dominates over the gas pressure in the post-shocked gas. The former solutions converge to the Riemann solution and are of the second-order accuracy in space and time. Our numerical examples include an expansion of high-pressure sphere in a magnetized medium. Fast and slow shocks are sharply resolved in the example. We also discuss possible extension of the CR MHD equations to evaluate the average CR energy.
MHD Turbulence in Accretion Disk Boundary Layers
Chan, Chi-kwan
2012-01-01
The physical modeling of the accretion disk boundary layer, the region where the disk meets the surface of the accreting star, usually relies on the assumption that angular momentum transport is opposite to the radial angular frequency gradient of the disk. The standard model for turbulent shear viscosity, widely adopted in astrophysics, satisfies this assumption by construction. However, this behavior is not supported by numerical simulations of turbulent magnetohydrodynamic (MHD) accretion disks, which show that angular momentum transport driven by the magnetorotational instability is inefficient in this inner disk region. I will discuss the results of a recent study on the generation of hydromagnetic stresses and energy density in the boundary layer around a weakly magnetized star. Our findings suggest that although magnetic energy density can be significantly amplified in this region, angular momentum transport is rather inefficient. This seems consistent with the results obtained in numerical simulations...
Drag reduction in turbulent MHD pipe flows
Orlandi, P.
1996-01-01
This is a preliminary study devoted to verifying whether or not direct simulations of turbulent Magneto-Hydro-Dynamic (MHD) flows in liquid metals reproduce experimental observations of drag reduction. Two different cases have been simulated by a finite difference scheme which is second order accurate in space and time. In the first case, an external azimuthal magnetic field is imposed. In this case, the magnetic field acts on the mean axial velocity and complete laminarization of the flow at N(sub a) = 30 has been achieved. In the second case, an axial magnetic field is imposed which affects only fluctuating velocities, and thus the action is less efficient. This second case is more practical, but comparison between numerical and experimental results is only qualitative.
Proceedings of the workshop on nonlinear MHD and extended MHD
NONE
1998-12-01
Nonlinear MHD simulations have proven their value in interpreting experimental results over the years. As magnetic fusion experiments reach higher performance regimes, more sophisticated experimental diagnostics coupled with ever expanding computer capabilities have increased both the need for and the feasibility of nonlinear global simulations using models more realistic than regular ideal and resistive MHD. Such extended-MHD nonlinear simulations have already begun to produce useful results. These studies are expected to lead to ever more comprehensive simulation models in the future and to play a vital role in fully understanding fusion plasmas. Topics include the following: (1) current state of nonlinear MHD and extended-MHD simulations; (2) comparisons to experimental data; (3) discussions between experimentalists and theorists; (4) /equations for extended-MHD models, kinetic-based closures; and (5) paths toward more comprehensive simulation models, etc. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.
Comparison of three artificial models of the magnetohydrodynamic effect on the electrocardiogram.
Oster, Julien; Llinares, Raul; Payne, Stephen; Tse, Zion Tsz Ho; Schmidt, Ehud Jeruham; Clifford, Gari D
2015-01-01
The electrocardiogram (ECG) is often acquired during magnetic resonance imaging (MRI), but its analysis is restricted by the presence of a strong artefact, called magnetohydrodynamic (MHD) effect. MHD effect is induced by the flow of electrically charged particles in the blood perpendicular to the static magnetic field, which creates a potential of the order of magnitude of the ECG and temporally coincident with the repolarisation period. In this study, a new MHD model is proposed by using MRI-based 4D blood flow measurements made across the aortic arch. The model is extended to several cardiac cycles to allow the simulation of a realistic ECG acquisition during MRI examination and the quality assessment of MHD suppression techniques. A comparison of two existing models, based, respectively, on an analytical solution and on a numerical method-based solution of the fluids dynamics problem, is made with the proposed model and with an estimate of the MHD voltage observed during a real MRI scan. Results indicate a moderate agreement between the proposed model and the estimated MHD model for most leads, with an average correlation factor of 0.47. However, the results demonstrate that the proposed model provides a closer approximation to the observed MHD effects and a better depiction of the complexity of the MHD effect compared with the previously published models, with an improved correlation (+5%), coefficient of determination (+22%) and fraction of energy (+1%) compared with the best previous model. The source code will be made freely available under an open source licence to facilitate collaboration and allow more rapid development of more accurate models of the MHD effect.
Local conservative regularizations of compressible magnetohydrodynamic and neutral flows
Krishnaswami, Govind S.; Sachdev, Sonakshi; Thyagaraja, A.
2016-02-01
Ideal systems like magnetohydrodynamics (MHD) and Euler flow may develop singularities in vorticity ( w =∇×v ). Viscosity and resistivity provide dissipative regularizations of the singularities. In this paper, we propose a minimal, local, conservative, nonlinear, dispersive regularization of compressible flow and ideal MHD, in analogy with the KdV regularization of the 1D kinematic wave equation. This work extends and significantly generalizes earlier work on incompressible Euler and ideal MHD. It involves a micro-scale cutoff length λ which is a function of density, unlike in the incompressible case. In MHD, it can be taken to be of order the electron collisionless skin depth c/ωpe. Our regularization preserves the symmetries of the original systems and, with appropriate boundary conditions, leads to associated conservation laws. Energy and enstrophy are subject to a priori bounds determined by initial data in contrast to the unregularized systems. A Hamiltonian and Poisson bracket formulation is developed and applied to generalize the constitutive relation to bound higher moments of vorticity. A "swirl" velocity field is identified, and shown to transport w/ρ and B/ρ, generalizing the Kelvin-Helmholtz and Alfvén theorems. The steady regularized equations are used to model a rotating vortex, MHD pinch, and a plane vortex sheet. The proposed regularization could facilitate numerical simulations of fluid/MHD equations and provide a consistent statistical mechanics of vortices/current filaments in 3D, without blowup of enstrophy. Implications for detailed analyses of fluid and plasma dynamic systems arising from our work are briefly discussed.
ZHANG XianGuo; PU ZuYin; MA ZhiWei; ZHOU XuZhi
2008-01-01
A three-dimensional (3-D) Hall MHD simulation is carried out to study the roles of initial current carrier in the topology of magnetic field,the generation and distribuering the contribution of ions to the initial current,the topology of the obtained magnetic field turns to be more complex. In some cases,it is found that not only the traditional By quadrupole structure but also a reversal By quadrupole structure appears in the simulation box. This can explain the observational features near the diffusion region,which are inconsistent with the Hall MHD theory with the total initial current carried by electrons. Several other interesting features are also emerged. First,motions of electrons and ions are decoupled from each other in the small plasma region (Hall effect region) with a scale less than or comparable with the ion inertial length or ion skin depth di=c/ωp. In the non-Hall effect region,the global magnetic structure is shifted in +y direction under the influence of ions with initial y directional motion. However,in the Hall effect region,magnetic field lines are bent in -y direction,mainly controlled by the motion of electrons,then By is generated. Second,FACs emerge as a result of the appearance of By. Compared with the prior Hall MHD simulation results,the generated FACs shift in +y direction,
Analysis of Voyager Observed High-Energy Electron Fluxes in the Heliosheath Using MHD Simulations
Washimi, Haruichi; Webber, W. R.; Zank, Gary P.; Hu, Qiang; Florinski, Vladimir; Adams, James; Kubo, Yuki
2011-01-01
The Voyager spacecraft (V1 and V2) observed electrons of 6-14 MeV in the heliosheath which showed several incidences of flux variation relative to a background of gradually increasing flux with distance from the Sun. The increasing flux of background electrons is thought to result from inward radial diffusion. We compare the temporal electron flux variation with dynamical phenomena in the heliosheath that are obtained from our MHD simulations. Because our simulation is based on V2 observed plasma data before V2 crossed the termination shock, this analysis is effective up to late 2008, i.e., about a year after the V2-crossing, during which disturbances, driven prior to the crossing time, survived in the heliosheath. Several electron flux variations correspond to times directly associated with interplanetary shock events. One noteworthy example corresponds to various times associated with the March 2006 interplanetary shock, these being the collision with the termination shock, the passage past the V1 spacecraft, and the collision with the region near the heliopause, as identified by W.R. Webber et al. for proton/helium of 7-200 MeV. Our simulations indicate that all other electron flux variations, except one, correspond well to the times when a shock-driven magneto-sonic pulse and its reflection in the heliosheath either passed across V1/V2, or collided with the termination shock or with the plasma sheet near the heliopause. This result suggests that variation in the electron flux should be due to either direct or indirect effects of magnetosonic pulses in the heliosheath driven by interplanetary shocks
Blanket-relevant liquid metal MHD channel flows: Data base and optimization simulation development
Evtushenko, I.A.; Kirillov, I.R.; Sidorenkov, S.I. [D.V. Efremov Inst. of Electrophysical Apparatus, St Petersburg (Russian Federation)
1995-12-31
The problems of generalization and integration of test, theoretical and design data relevant to liquid metal (LM) blanket are discussed in present work. First results on MHD data base and LM blanket optimization codes are presented.
Effect of the Interplanetary Electric Field on the Magnetopause From Global MHD Simulations
HUANG Zhaohui; DING Kai; WANG Chi
2012-01-01
The north-south component B_z of the Interplanetary Magnetic Field（IMF） and solar wind dynamic pressure P_d are generally treated as the two main factors in the solar wind that determine the geometry of the magnetosphere.By using the 3D global MHD simulations,we investigate the effect of the Interplanetary Electric Field（IEF） on the size and shape of magnetopause quantitatively. Our numerical experiments confirm that the geometry of the magnetopause are mainly determined by P_d and B_z,as expected.However,the dawn-dusk IEFs have great impact on the magnetopause erosion because of the magnetic reconnection,thus affecting the size and shape of the magnetopause.Higher solar wind speed with the same B_z will lead to bigger dawn-dusk IEFs,which means the higher reconnection rate,and then results in more magnetic flux removal from the dayside. Consequently,the dayside magnetopause moves inward and flank magnetopause moves outward.
Constraints on particle acceleration sites in the Crab Nebula from relativistic MHD simulations
Olmi, Barbara; Amato, Elena; Bucciantini, Niccolò
2015-01-01
The Crab Nebula is one of the most efficient accelerators in the Galaxy and the only galactic source showing direct evidence of PeV particles. In spite of this, the physical process behind such effective acceleration is still a deep mystery. While particle acceleration, at least at the highest energies, is commonly thought to occur at the pulsar wind termination shock, the properties of the upstream flow are thought to be non-uniform along the shock surface, and important constraints on the mechanism at work come from exact knowledge of where along this surface particles are being accelerated. Here we use axisymmetric relativistic MHD simulations to obtain constraints on the acceleration site(s) of particles of different energies in the Crab Nebula. Various scenarios are considered for the injection of particles responsible for synchrotron radiation in the different frequency bands, radio, optical and X-rays. The resulting emission properties are compared with available data on the multi wavelength time varia...
Parchevsky, K; Khomenko, E; Olshevsky, V; Collados, M
2010-01-01
We present comparison of numerical simulations of propagation of MHD waves,excited by subphotospheric perturbations, in two different ("deep" and "shallow") magnetostatic models of the sunspots. The "deep" sunspot model distorts both the shape of the wavefront and its amplitude stronger than the "shallow" model. For both sunspot models, the surface gravity waves (f-mode) are affected by the sunspots stronger than the acoustic p-modes. The wave amplitude inside the sunspot depends on the photospheric strength of the magnetic field and the distance of the source from the sunspot axis. For the source located at 9 Mm from the center of the sunspot, the wave amplitude increases when the wavefront passes through the central part of the sunspot. For the source distance of 12 Mm, the wave amplitude inside the sunspot is always smaller than outside. For the same source distance from the sunspot center but for the models with different strength of the magnetic field, the wave amplitude inside the sunspot increases with...
MHD simulations of near-surface convection in cool main-sequence stars
Beeck, Benjamin; Reiners, Ansgar
2014-01-01
The solar photospheric magnetic field is highly structured owing to its interaction with the convective flows. Its local structure has a strong influence on the profiles of spectral lines not only by virtue of the Zeeman effect, but also through the modification of the thermodynamical structure (e.g. line weakening in hot small-scale magnetic structures). Many stars harbor surface magnetic fields comparable to or larger than the Sun at solar maximum. Therefore, a strong influence of the field on the surface convection and on spectral line profiles can be expected. We carried out 3D local-box MHD simulations of unipolar magnetized regions (average fields of 20, 100, and 500G) with parameters corresponding to six main-sequence stars (spectral types F3V to M2V). The influence of the magnetic field on the convection and the local thermodynamical structure were analyzed in detail. For three spectral lines, we determined the impact of the magnetic field on the disc-integrated Stokes-I profiles. Line weakening has i...
Shell Models of Magnetohydrodynamic Turbulence
Plunian, Franck; Frick, Peter
2012-01-01
Shell models of hydrodynamic turbulence originated in the seventies. Their main aim was to describe the statistics of homogeneous and isotropic turbulence in spectral space, using a simple set of ordinary differential equations. In the eighties, shell models of magnetohydrodynamic (MHD) turbulence emerged based on the same principles as their hydrodynamic counter-part but also incorporating interactions between magnetic and velocity fields. In recent years, significant improvements have been made such as the inclusion of non-local interactions and appropriate definitions for helicities. Though shell models cannot account for the spatial complexity of MHD turbulence, their dynamics are not over simplified and do reflect those of real MHD turbulence including intermittency or chaotic reversals of large-scale modes. Furthermore, these models use realistic values for dimensionless parameters (high kinetic and magnetic Reynolds numbers, low or high magnetic Prandtl number) allowing extended inertial range and accu...
Magnetohydrodynamic turbulence: Observation and experiment
Brown, M. R.; Schaffner, D. A.; Weck, P. J. [Department of Physics and Astronomy, Swarthmore College, 500 College Avenue, Swarthmore, Pennsylvania 19081 (United States)
2015-05-15
We provide a tutorial on the paradigms and tools of magnetohydrodynamic (MHD) turbulence. The principal paradigm is that of a turbulent cascade from large scales to small, resulting in power law behavior for the frequency power spectrum for magnetic fluctuations E{sub B}(f). We will describe five useful statistical tools for MHD turbulence in the time domain: the temporal autocorrelation function, the frequency power spectrum, the probability distribution function of temporal increments, the temporal structure function, and the permutation entropy. Each of these tools will be illustrated with an example taken from MHD fluctuations in the solar wind. A single dataset from the Wind satellite will be used to illustrate all five temporal statistical tools.
Introduction to Magneto-Hydrodynamics
Pelletier, Guy
Magneto-Hydrodynamics (hereafter MHD) describes plasmas on large scales and more generally electrically conducting fluids. This description does not discriminate between the various fluids that constitute the medium. In laboratory, it allows to globally describe a plasma machine, for instance a toroidal nuclear fusion reactor like a Tokamak. In astrophysics it plays an essential role in the description of cosmic objects and their environments, as well as the media, such as the interstellar or the intergalactic medium. A set of phenomena are specific to MHD description. Some of them will be presented in this lecture such as the tension effect, confinement, magnetic diffusivity, magnetic field freezing, Alfvén waves, magneto-sonic waves, reconnection. A celebrated phenomenon of MHD will not be introduced in this brief lecture, namely the dynamo effect.
Fairfield, Donald H.; Otto, A.
1999-01-01
On March 24, 1995 the Geotail spacecraft observed large fluctuations of the magnetic field and plasma properties in the Low Latitude Boundary Layer (LLBL) about 15 R(sub E) tailward of the dusk meridian. Although the magnetospheric and the magnetosheath field were strongly northward, the B(sub z) component showed strong short duration fluctuations in which B(sub z) could even reach negative values. We have used two-dimensional magnetohydrodynamic simulations with magnetospheric and magnetosheath input parameters specifically chosen for this. Geotail event to identify the processes which cause the observed boundary properties. It is shown that these fluctuations can be explained by the Kelvin-Helmholtz instability if the k vector of the instability has a component along the magnetic field direction. The simulation results show many of the characteristic properties of the Geotail observations. In particular, the quasi-periodic strong fluctuations are well explained by satellite crossings through the Kelvin-Helmholtz vortices. It is illustrated how the interior structure of the Kelvin-Helmholtz vortices leads to the rapid fluctuations in the Geotail observations. Our results suggest an average Kelvin-Helmholtz wavelength of about 5 R(sub E) with a vortex size of close to 2 R(sub E) for an average repetition time of 2.5 minutes. The growth time for these waves implies a source region of about 10 to 16 R(sub E) upstream from the location of the Geotail spacecraft (i.e., near the dusk meridian). The results also indicate a considerable mass transport of magnetosheath material into the magnetosphere by magnetic reconnection in the Kelvin-Helmholtz vortices.
Quasi-isotropic cascade in MHD turbulence with mean field
Grappin, Roland; Gürcan, Özgür
2012-01-01
We propose a phenomenological theory of incompressible magnetohydrodynamic turbulence in the presence of a strong large-scale magnetic field, which establishes a link between the known anisotropic models of strong and weak MHD turbulence We argue that the Iroshnikov-Kraichnan isotropic cascade develops naturally within the plane perpendicular to the mean field, while oblique-parallel cascades with weaker amplitudes can develop, triggered by the perpendicular cascade, with a reduced flux resulting from a quasi-resonance condition. The resulting energy spectrum $E(k_\\parallel,k_\\bot)$ has the same slope in all directions. The ratio between the extents of the inertial range in the parallel and perpendicular directions is equal to $b_{rms}/B_0$. These properties match those found in recent 3D MHD simulations with isotropic forcing reported in [R. Grappin and W.-C. M\\"uller, Phys. Rev. E \\textbf{82}, 26406 (2010)].
Frutos-Alfaro, Francisco; Carboni-Mendez, Rodrigo
2015-01-01
A program to generate codes in Fortran and C of the full Magnetohydrodynamic equations is shown. The program used the free computer algebra system software REDUCE. This software has a package called EXCALC, which is an exterior calculus program. The advantage of this program is that it can be modified to include another complex metric or spacetime. The output of this program is modified by means of a LINUX script which creates a new REDUCE program to manipulate the MHD equations to obtain a c...
Frutos-Alfaro, Francisco
2015-01-01
A program to generate codes in Fortran and C of the full Magnetohydrodynamic equations is shown. The program used the free computer algebra system software REDUCE. This software has a package called EXCALC, which is an exterior calculus program. The advantage of this program is that it can be modified to include another complex metric or spacetime. The output of this program is modified by means of a LINUX script which creates a new REDUCE program to manipulate the MHD equations to obtain a code that can be used as a seed for a MHD code for numerical applications. As an example, we present part of output of our programs for Cartesian coordinates and how to do the discretization.
Dynamic grid adaptation for computational magnetohydrodynamics
Keppens, R.; Nool, M.; Zegeling, P. A.; Goedbloed, J. P.; Bubak, M.; Williams, R.; Afsarmanesh, H.; Hertzberger, B.
2000-01-01
In many plasma physical and astrophysical problems, both linear and nonlinear effects can lead to global dynamics that induce, or occur simultaneously with, local phenomena. For example, a magnetically confined plasma column can potentially posses global magnetohydrodynamic (MHD) eigenmodes with an
Aharonov–Bohm effects in magnetohydrodynamics
Yahalom, Asher, E-mail: asya@ariel.ac.il [Isaac Newton Institute for Mathematical Sciences, 20 Clarkson Road, Cambridge CB3 0EH (United Kingdom); Ariel University, Ariel 40700 (Israel)
2013-10-30
It is shown that an Aharonov–Bohm (AB) effect exists in magnetohydrodynamics (MHD). This effect is best described in terms of the MHD variational variables (Kats, 2004; Yahalom and Lynden-Bell, 2008; Yahalom, 2010) [1,10,12]. If a MHD flow has a non-trivial topology some of the functions appearing in the MHD Lagrangian are non-single-valued. These functions have properties similar to the phases in the AB celebrated effect (Aharonov and Bohm, 1959; van Oudenaarden et al., 1998) [2,3]. While the manifestation of the quantum AB effect is in interference fringe patterns (Tonomura et al., 1982) [4], the manifestation of the MHD Aharonov–Bohm effects are through new dynamical conservation laws.
Symmetry transforms for ideal magnetohydrodynamics equilibria.
Bogoyavlenskij, Oleg I
2002-11-01
A method for constructing ideal magnetohydrodynamics (MHD) equilibria is introduced. The method consists of the application of symmetry transforms to any known MHD equilibrium [ O. I. Bogoyavlenskij, Phys. Rev. E. 62, 8616, (2000)]. The transforms break the geometrical symmetries of the field-aligned solutions and produce continuous families of the nonsymmetric MHD equilibria. The method of symmetry transforms also allows to obtain MHD equilibria with current sheets and exact solutions with noncollinear vector fields B and V. A model of the nonsymmetric astrophysical jets outside of their accretion disks is developed. The total magnetic and kinetic energy of the jet is finite in any layer c(1)
Radiation magnetohydrodynamic simulation of plasma formed on a surface by a megagauss field.
Esaulov, A A; Bauer, B S; Makhin, V; Siemon, R E; Lindemuth, I R; Awe, T J; Reinovsky, R E; Struve, K W; Desjarlais, M P; Mehlhorn, T A
2008-03-01
Radiation magnetohydrodynamic modeling is used to study the plasma formed on the surface of a cylindrical metallic load, driven by megagauss magnetic field at the 1MA Zebra generator (University of Nevada, Reno). An ionized aluminum plasma is used to represent the "core-corona" behavior in which a heterogeneous Z-pinch consists of a hot low-density corona surrounding a dense low-temperature core. The radiation dynamics model included simultaneously a self-consistent treatment of both the opaque and transparent plasma regions in a corona. For the parameters of this experiment, the boundary of the opaque plasma region emits the major radiation power with Planckian black-body spectrum in the extreme ultraviolet corresponding to an equilibrium temperature of 16 eV. The radiation heat transport significantly exceeds the electron and ion kinetic heat transport in the outer layers of the opaque plasma. Electromagnetic field energy is partly radiated (13%) and partly deposited into inner corona and core regions (87%). Surface temperature estimates are sensitive to the radiation effects, but the surface motion in response to pressure and magnetic forces is not. The general results of the present investigation are applicable to the liner compression experiments at multi-MA long-pulse current accelerators such as Atlas and Shiva Star. Also the radiation magnetohydrodynamic model discussed in the paper may be useful for understanding key effects of wire array implosion dynamics.
MHD Energy Bypass Scramjet Engine
Mehta, Unmeel B.; Bogdanoff, David W.; Park, Chul; Arnold, Jim (Technical Monitor)
2001-01-01
Revolutionary rather than evolutionary changes in propulsion systems are most likely to decrease cost of space transportation and to provide a global range capability. Hypersonic air-breathing propulsion is a revolutionary propulsion system. The performance of scramjet engines can be improved by the AJAX energy management concept. A magneto-hydro-dynamics (MHD) generator controls the flow and extracts flow energy in the engine inlet and a MHD accelerator downstream of the combustor accelerates the nozzle flow. A progress report toward developing the MHD technology is presented herein. Recent theoretical efforts are reviewed and ongoing experimental efforts are discussed. The latter efforts also include an ongoing collaboration between NASA, the US Air Force Research Laboratory, US industry, and Russian scientific organizations. Two of the critical technologies, the ionization of the air and the MHD accelerator, are briefly discussed. Examples of limiting the combustor entrance Mach number to a low supersonic value with a MHD energy bypass scheme are presented, demonstrating an improvement in scramjet performance. The results for a simplified design of an aerospace plane show that the specific impulse of the MHD-bypass system is better than the non-MHD system and typical rocket over a narrow region of flight speeds and design parameters. Equilibrium ionization and non-equilibrium ionization are discussed. The thermodynamic condition of air at the entrance of the engine inlet determines the method of ionization. The required external power for non-equilibrium ionization is computed. There have been many experiments in which electrical power generation has successfully been achieved by magneto-hydrodynamic (MHD) means. However, relatively few experiments have been made to date for the reverse case of achieving gas acceleration by the MHD means. An experiment in a shock tunnel is described in which MHD acceleration is investigated experimentally. MHD has several
Computational algorithms for multiphase magnetohydrodynamics and applications to accelerator targets
R.V. Samulyak
2010-01-01
Full Text Available An interface-tracking numerical algorithm for the simulation of magnetohydrodynamic multiphase/free surface flows in the low-magnetic-Reynolds-number approximation of (Samulyak R., Du J., Glimm J., Xu Z., J. Comp. Phys., 2007, 226, 1532 is described. The algorithm has been implemented in multi-physics code FronTier and used for the simulation of MHD processes in liquids and weakly ionized plasmas. In this paper, numerical simulations of a liquid mercury jet entering strong and nonuniform magnetic field and interacting with a powerful proton pulse have been performed and compared with experiments. Such a mercury jet is a prototype of the proposed Muon Collider/Neutrino Factory, a future particle accelerator. Simulations demonstrate the elliptic distortion of the mercury jet as it enters the magnetic solenoid at a small angle to the magnetic axis, jet-surface instabilities (filamentation induced by the interaction with proton pulses, and the stabilizing effect of the magnetic field.
Test-field method for mean-field coefficients with MHD background
Rheinhardt, M
2010-01-01
Aims: The test-field method for computing turbulent transport coefficients from simulations of hydromagnetic flows is extended to the regime with a magnetohydrodynamic (MHD) background. Methods: A generalized set of test equations is derived using both the induction equation and a modified momentum equation. By employing an additional set of auxiliary equations, we derive linear equations describing the response of the system to a set of prescribed test fields. Purely magnetic and MHD backgrounds are emulated by applying an electromotive force in the induction equation analogously to the ponderomotive force in the momentum equation. Both forces are chosen to have Roberts flow-like geometry. Results: Examples with an MHD background are studied where the previously used quasi-kinematic test-field method breaks down. In cases with homogeneous mean fields it is shown that the generalized test-field method produces the same results as the imposed-field method, where the field-aligned component of the actual electr...
Statistical Theory of the Ideal MHD Geodynamo
Shebalin, J. V.
2012-01-01
A statistical theory of geodynamo action is developed, using a mathematical model of the geodynamo as a rotating outer core containing an ideal (i.e., no dissipation), incompressible, turbulent, convecting magnetofluid. On the concentric inner and outer spherical bounding surfaces the normal components of the velocity, magnetic field, vorticity and electric current are zero, as is the temperature fluctuation. This allows the use of a set of Galerkin expansion functions that are common to both velocity and magnetic field, as well as vorticity, current and the temperature fluctuation. The resulting dynamical system, based on the Boussinesq form of the magnetohydrodynamic (MHD) equations, represents MHD turbulence in a spherical domain. These basic equations (minus the temperature equation) and boundary conditions have been used previously in numerical simulations of forced, decaying MHD turbulence inside a sphere [1,2]. Here, the ideal case is studied through statistical analysis and leads to a prediction that an ideal coherent structure will be found in the form of a large-scale quasistationary magnetic field that results from broken ergodicity, an effect that has been previously studied both analytically and numerically for homogeneous MHD turbulence [3,4]. The axial dipole component becomes prominent when there is a relatively large magnetic helicity (proportional to the global correlation of magnetic vector potential and magnetic field) and a stationary, nonzero cross helicity (proportional to the global correlation of velocity and magnetic field). The expected angle of the dipole moment vector with respect to the rotation axis is found to decrease to a minimum as the average cross helicity increases for a fixed value of magnetic helicity and then to increase again when average cross helicity approaches its maximum possible value. Only a relatively small value of cross helicity is needed to produce a dipole moment vector that is aligned at approx.10deg with the
Using Two-Ribbon Flare Observations and MHD Simulations to Constrain Flare Properties
Kazachenko, Maria D.; Lynch, Benjamin J.; Welsch, Brian
2016-05-01
Flare ribbons are emission structures that are frequently observed during flares in transition-region and chromospheric radiation. These typically straddle a polarity inversion line (PIL) of the radial magnetic field at the photosphere, and move apart as the flare progresses. The ribbon flux - the amount of unsigned photospheric magnetic flux swept out by flare ribbons - is thought to be related to the amount coronal magnetic reconnection, and hence provides a key diagnostic tool for understanding the physical processes at work in flares and CMEs. Previous measurements of the magnetic flux swept out by flare ribbons required time-consuming co-alignment between magnetograph and intensity data from different instruments, explaining why those studies only analyzed, at most, a few events. The launch of the Helioseismic and Magnetic Imager (HMI) and the Atmospheric Imaging Assembly (AIA), both aboard the Solar Dynamics Observatory (SDO), presented a rare opportunity to compile a much larger sample of flare-ribbon events than could readily be assembled before. We created a dataset of 363 events of both flare ribbon positions and fluxes, as a function of time, for all C9.-class and greater flares within 45 degrees of disk center observed by SDO from June 2010 till April 2015. For this purpose, we used vector magnetograms (2D magnetic field maps) from HMI and UV images from AIA. A critical problem with using unprocessed AIA data is the existence of spurious intensities in AIA data associated with strong flare emission, most notably "blooming" (spurious smearing of saturated signal into neighboring pixels, often in streaks). To overcome this difficulty, we have developed an algorithmic procedure that effectively excludes artifacts like blooming. We present our database and compare statistical properties of flare ribbons, e.g. evolutions of ribbon reconnection fluxes, reconnection flux rates and vertical currents with the properties from MHD simulations.
Global MHD Models of the Solar Corona
Suess, S. T.; Rose, Franklin (Technical Monitor)
2001-01-01
Global magnetohydrodynamic (MHD) models of the solar corona are computationally intensive, numerically complex simulations that have produced important new results over the past few years. After a brief overview of how these models usually work, I will address three topics: (1) How these models are now routinely used to predict the morphology of the corona and analyze Earth and space-based remote observations of the Sun; (2) The direct application of these models to the analysis of physical processes in the corona and chromosphere and to the interpretation of in situ solar wind observations; and (3) The use of results from global models to validate the approximations used to make detailed studies of physical processes in the corona that are not otherwise possible using the global models themselves.
A moving mesh unstaggered constrained transport scheme for magnetohydrodynamics
Mocz, Philip; Pakmor, Rüdiger; Springel, Volker; Vogelsberger, Mark; Marinacci, Federico; Hernquist, Lars
2016-11-01
We present a constrained transport (CT) algorithm for solving the 3D ideal magnetohydrodynamic (MHD) equations on a moving mesh, which maintains the divergence-free condition on the magnetic field to machine-precision. Our CT scheme uses an unstructured representation of the magnetic vector potential, making the numerical method simple and computationally efficient. The scheme is implemented in the moving mesh code AREPO. We demonstrate the performance of the approach with simulations of driven MHD turbulence, a magnetized disc galaxy, and a cosmological volume with primordial magnetic field. We compare the outcomes of these experiments to those obtained with a previously implemented Powell divergence-cleaning scheme. While CT and the Powell technique yield similar results in idealized test problems, some differences are seen in situations more representative of astrophysical flows. In the turbulence simulations, the Powell cleaning scheme artificially grows the mean magnetic field, while CT maintains this conserved quantity of ideal MHD. In the disc simulation, CT gives slower magnetic field growth rate and saturates to equipartition between the turbulent kinetic energy and magnetic energy, whereas Powell cleaning produces a dynamically dominant magnetic field. Such difference has been observed in adaptive-mesh refinement codes with CT and smoothed-particle hydrodynamics codes with divergence-cleaning. In the cosmological simulation, both approaches give similar magnetic amplification, but Powell exhibits more cell-level noise. CT methods in general are more accurate than divergence-cleaning techniques, and, when coupled to a moving mesh can exploit the advantages of automatic spatial/temporal adaptivity and reduced advection errors, allowing for improved astrophysical MHD simulations.
Malapaka, Shiva Kumar; Mueller, Wolf-Christian [Max-Planck Institute for Plasma Physics, Boltzmannstrasse 2, D-85748 Garching bei Muenchen (Germany)
2013-09-01
Statistical properties of the Sun's photospheric turbulent magnetic field, especially those of the active regions (ARs), have been studied using the line-of-sight data from magnetograms taken by the Solar and Heliospheric Observatory and several other instruments. This includes structure functions and their exponents, flatness curves, and correlation functions. In these works, the dependence of structure function exponents ({zeta}{sub p}) of the order of the structure functions (p) was modeled using a non-intermittent K41 model. It is now well known that the ARs are highly turbulent and are associated with strong intermittent events. In this paper, we compare some of the observations from Abramenko et al. with the log-Poisson model used for modeling intermittent MHD turbulent flows. Next, we analyze the structure function data obtained from the direct numerical simulations (DNS) of homogeneous, incompressible 3D-MHD turbulence in three cases: sustained by forcing, freely decaying, and a flow initially driven and later allowed to decay (case 3). The respective DNS replicate the properties seen in the plots of {zeta}{sub p} against p of ARs. We also reproduce the trends and changes observed in intermittency in flatness and correlation functions of ARs. It is suggested from this analysis that an AR in the onset phase of a flare can be treated as a forced 3D-MHD turbulent system in its simplest form and that the flaring stage is representative of decaying 3D-MHD turbulence. It is also inferred that significant changes in intermittency from the initial onset phase of a flare to its final peak flaring phase are related to the time taken by the system to reach the initial onset phase.
Nishida, Keisuke; Shibata, Kazunari [Kwasan and Hida Observatories, Kyoto University, Yamashina, Kyoto 607-8471 (Japan); Nishizuka, Naoto, E-mail: nishida@kwasan.kyoto-u.ac.jp [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan)
2013-10-01
We investigated the dynamic evolution of a three-dimensional (3D) flux rope eruption and magnetic reconnection process in a solar flare by simply extending the two-dimensional (2D) resistive magnetohydrodynamic simulation model of solar flares with low β plasma to a 3D model. We succeeded in reproducing a current sheet and bi-directional reconnection outflows just below the flux rope during the eruption in our 3D simulations. We calculated four cases of a strongly twisted flux rope and a weakly twisted flux rope in 2D and 3D simulations. The time evolution of a weakly twisted flux rope in the 3D simulation shows behaviors similar to those of the 2D simulation, while a strongly twisted flux rope in the 3D simulation clearly shows a different time evolution from the 2D simulation except for the initial phase evolution. The ejection speeds of both strongly and weakly twisted flux ropes in 3D simulations are larger than in the 2D simulations, and the reconnection rates in 3D cases are also larger than in the 2D cases. This indicates positive feedback between the ejection speed of a flux rope and the reconnection rate even in the 3D simulation, and we conclude that the plasmoid-induced reconnection model can be applied to 3D. We also found that small-scale plasmoids are formed inside a current sheet and make it turbulent. These small-scale plasmoid ejections have a role in locally increasing the reconnection rate intermittently as observed in solar flares, coupled with a global eruption of a flux rope.
Magnetohydrodynamic Shearing Waves
Johnson, B M
2006-01-01
I consider the nonaxisymmetric linear theory of an isothermal magnetohydrodynamic (MHD) shear flow. The analysis is performed in the shearing box, a local model appropriate for a thin disk geometry. Linear perturbations in this model can be decomposed in terms of shearing waves (shwaves), which appear spatially as plane waves in a frame comoving with the shear. The time dependence of these waves cannot in general be expressed in terms of a frequency eigenvalue as in a normal mode decomposition, and numerical integration of a set of first-order amplitude equations is required for a complete characterization of their behavior. Their generic time dependence, however, is oscillatory with slowly-varying frequency and amplitude, and one can construct accurate analytic solutions by applying the Wentzel-Kramers-Brillouin method to the full set of amplitude equations. For the bulk of wavenumber space, therefore, the shwaves are well-approximated as modes with time-dependent frequencies and amplitudes. The incompressiv...
Stationary MHD equilibria describing azimuthal rotations in symmetric plasmas
da Silva, Sidney T.; Viana, Ricardo L.
2016-12-01
We consider the stationary magnetohydrodynamical (MHD) equilibrium equation for an axisymmetric plasma undergoing azimuthal rotations. The case of cylindrical symmetry is treated, and we present two semi-analytical solutions for the stationary MHD equilibrium equations, from which a number of physical properties of the magnetically confined plasma are derived.
Superconducting magnet system for an experimental disk MHD facility
Knoopers, H.G.; Kate, ten H.H.J.; Klundert, van de L.J.M.
1991-01-01
A predesign of a split-pair magnet for a magnetohydrodynamic (MHD) facility for testing a 10-MW open-cycle disk or a 5-MW closed-cycle disk generator is presented. The magnet system consists of a NbTi and a Nb 3Sn section, which provide a magnetic field of 9 T in the active area of the MHD channel.
2008-01-01
A three-dimensional (3-D) Hall MHD simulation is carried out to study the roles of initial current carrier in the topology of magnetic field, the generation and distribu- tion of field aligned currents (FACs), and the appearance of Alfvén waves. Consid- ering the contribution of ions to the initial current, the topology of the obtained magnetic field turns to be more complex. In some cases, it is found that not only the traditional By quadrupole structure but also a reversal By quadrupole structure appears in the simulation box. This can explain the observational features near the diffusion region, which are inconsistent with the Hall MHD theory with the total ini- tial current carried by electrons. Several other interesting features are also emerged. First, motions of electrons and ions are decoupled from each other in the small plasma region (Hall effect region) with a scale less than or comparable with the ion inertial length or ion skin depth di=c/ωp. In the non-Hall effect region, the global magnetic structure is shifted in +y direction under the influence of ions with initial y directional motion. However, in the Hall effect region, magnetic field lines are bent in ?y direction, mainly controlled by the motion of electrons, then By is generated. Second, FACs emerge as a result of the appearance of By. Compared with the prior Hall MHD simulation results, the generated FACs shift in +y direction, and hence the dawn-dusk symmetry is broken. Third, the Walén relation in our simulations is consistent with the Walén relation in Hall plasma, thus the presence of Alfvén wave is confirmed.
An advanced implicit solver for MHD
Udrea, Bogdan
A new implicit algorithm has been developed for the solution of the time-dependent, viscous and resistive single fluid magnetohydrodynamic (MHD) equations. The algorithm is based on an approximate Riemann solver for the hyperbolic fluxes and central differencing applied on a staggered grid for the parabolic fluxes. The algorithm employs a locally aligned coordinate system that allows the solution to the Riemann problems to be solved in a natural direction, normal to cell interfaces. The result is an original scheme that is robust and reduces the complexity of the flux formulas. The evaluation of the parabolic fluxes is also implemented using a locally aligned coordinate system, this time on the staggered grid. The implicit formulation employed by WARP3 is a two level scheme that was applied for the first time to the single fluid MHD model. The flux Jacobians that appear in the implicit scheme are evaluated numerically. The linear system that results from the implicit discretization is solved using a robust symmetric Gauss-Seidel method. The code has an explicit mode capability so that implementation and test of new algorithms or new physics can be performed in this simpler mode. Last but not least the code was designed and written to run on parallel computers so that complex, high resolution runs can be per formed in hours rather than days. The code has been benchmarked against analytical and experimental gas dynamics and MHD results. The benchmarks consisted of one-dimensional Riemann problems and diffusion dominated problems, two-dimensional supersonic flow over a wedge, axisymmetric magnetoplasmadynamic (MPD) thruster simulation and three-dimensional supersonic flow over intersecting wedges and spheromak stability simulation. The code has been proven to be robust and the results of the simulations showed excellent agreement with analytical and experimental results. Parallel performance studies showed that the code performs as expected when run on parallel
Large Scale Earth’s Bow Shock with Northern IMF as Simulated by PIC Code in Parallel with MHD Model
Suleiman Baraka
2016-06-01
In this paper, we propose a 3D kinetic model (particle-in-cell, PIC) for the description of the large scale Earth’s bow shock. The proposed version is stable and does not require huge or extensive computer resources. Because PIC simulations work with scaled plasma and field parameters, we also propose to validate our code by comparing its results with the available MHD simulations under same scaled solar wind (SW) and (IMF) conditions. We report new results from the two models. In both codes the Earth’s bow shock position is found to be $\\approx 14.8 R_{{\\rm E}}$ along the Sun–Earth line, and $\\approx 29 R_{{\\rm E}}$ on the dusk side. Those findings are consistent with past in situ observations. Both simulations reproduce the theoretical jump conditions at the shock. However, the PIC code density and temperature distributions are inflated and slightly shifted sunward when compared to the MHD results. Kinetic electron motions and reflected ions upstream may cause this sunward shift. Species distributions in the foreshock region are depicted within the transition of the shock (measured $\\approx$2$c/\\omega_{pi}$ for $ \\Theta_{Bn}=90^{\\circ}$ and $M_{{\\rm MS}} = 4.7 $) and in the downstream. The size of the foot jump in the magnetic field at the shock is measured to be ($1.7 c/ \\omega_{pi} $). In the foreshocked region, the thermal velocity is found equal to 213 km $s^{−1}$ at $15R_{{\\rm E}}$ and is equal to $63 km s^{-1}$ at $12 R_{{\\rm E}}$ (magnetosheath region). Despite the large cell size of the current version of the PIC code, it is powerful to retain macrostructure of planets magnetospheres in very short time, thus it can be used for pedagogical test purposes. It is also likely complementary with MHD to deepen our understanding of the large scale magnetosphere.
On the performance of exponential integrators for problems in magnetohydrodynamics
Einkemmer, Lukas; Tokman, Mayya; Loffeld, John
2017-02-01
Exponential integrators have been introduced as an efficient alternative to explicit and implicit methods for integrating large stiff systems of differential equations. Over the past decades these methods have been studied theoretically and their performance was evaluated using a range of test problems. While the results of these investigations showed that exponential integrators can provide significant computational savings, the research on validating this hypothesis for large scale systems and understanding what classes of problems can particularly benefit from the use of the new techniques is in its initial stages. Resistive magnetohydrodynamic (MHD) modeling is widely used in studying large scale behavior of laboratory and astrophysical plasmas. In many problems numerical solution of MHD equations is a challenging task due to the temporal stiffness of this system in the parameter regimes of interest. In this paper we evaluate the performance of exponential integrators on large MHD problems and compare them to a state-of-the-art implicit time integrator. Both the variable and constant time step exponential methods of EPIRK-type are used to simulate magnetic reconnection and the Kevin-Helmholtz instability in plasma. Performance of these methods, which are part of the EPIC software package, is compared to the variable time step variable order BDF scheme included in the CVODE (part of SUNDIALS) library. We study performance of the methods on parallel architectures and with respect to magnitudes of important parameters such as Reynolds, Lundquist, and Prandtl numbers. We find that the exponential integrators provide superior or equal performance in most circumstances and conclude that further development of exponential methods for MHD problems is warranted and can lead to significant computational advantages for large scale stiff systems of differential equations such as MHD.
Magnetohydrodynamic flow and turbulence: a report on the fifth Beer-Sheva seminar
Branover, H.; Moffatt, H.K.; Mond, M.; Pierson, E.S.; Sulem, P.S.; Yakhot, A.
1988-03-01
This paper is a summary of the Fifth Beer-Sheva Seminar on Magnetohydrodynamic (MHD) Flows and Turbulence, held in Jerusalem during 2-6 March 1987, with 99 participants from 12 countries. Reviews and research papers were presented on general problems of turbulence. MHD turbulence, fundamental MHD, two-phase flows with and without magnetic fields, and on different applications of liquid-metal MHD, especially in power generation nuclear fission and fusion, and in metallurgy.
Haverkort, J.W. [Centrum Wiskunde & Informatica, P.O. Box 94079, 1090 GB Amsterdam (Netherlands); Dutch Institute for Fundamental Energy Research, P.O. Box 6336, 5600 HH Eindhoven (Netherlands); Blank, H.J. de [Dutch Institute for Fundamental Energy Research, P.O. Box 6336, 5600 HH Eindhoven (Netherlands); Huysmans, G.T.A. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Pratt, J. [Dutch Institute for Fundamental Energy Research, P.O. Box 6336, 5600 HH Eindhoven (Netherlands); Koren, B., E-mail: b.koren@tue.nl [Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands)
2016-07-01
Numerical simulations form an indispensable tool to understand the behavior of a hot plasma that is created inside a tokamak for providing nuclear fusion energy. Various aspects of tokamak plasmas have been successfully studied through the reduced magnetohydrodynamic (MHD) model. The need for more complete modeling through the full MHD equations is addressed here. Our computational method is presented along with measures against possible problems regarding pollution, stability, and regularity. The problem of ensuring continuity of solutions in the center of a polar grid is addressed in the context of a finite element discretization of the full MHD equations. A rigorous and generally applicable solution is proposed here. Useful analytical test cases are devised to verify the correct implementation of the momentum and induction equation, the hyperdiffusive terms, and the accuracy with which highly anisotropic diffusion can be simulated. A striking observation is that highly anisotropic diffusion can be treated with the same order of accuracy as isotropic diffusion, even on non-aligned grids, as long as these grids are generated with sufficient care. This property is shown to be associated with our use of a magnetic vector potential to describe the magnetic field. Several well-known instabilities are simulated to demonstrate the capabilities of the new method. The linear growth rate of an internal kink mode and a tearing mode are benchmarked against the results of a linear MHD code. The evolution of a tearing mode and the resulting magnetic islands are simulated well into the nonlinear regime. The results are compared with predictions from the reduced MHD model. Finally, a simulation of a ballooning mode illustrates the possibility to use our method as an ideal MHD method without the need to add any physical dissipation.
Hayashi, K.; Hmi Team
2010-12-01
We will report results of the MHD simulation of the solar corona and solar wind using the HMI magnetic field data, especially focusing on a simulated eruption of a coronal streamer that reasonably corresponds to a large-scale coronal eruption event observed on August 1, 2010. The pre-event coronal situation is prepared through the time-relaxation MHD simulation using the synoptic map data of the solar surface magnetic field for a period of the Carrington Rotation 2098. Then, the global magnetic field evolutions from CR 2098 to 2099 are introduced in the simulation by means of a boundary model we recently developed, which enable to trace the sub-Alfvenic MHD responses of the corona numerically. The simulated coronal features include the formation of the two twisted coronal magnetic field structures along the magnetically inversion lines at the lowermost corona (coinciding the two observed filaments at west-north part of the solar disk) and the large-scale outward motions and decay of the closed-field streamer above the two twisted-field regions. Our MHD simulation model did not include the triggering event directly, and our simulations were done in somewhat low resolution in space. However, the reasonable success in reproducing coronal features relating a specific event in a well-known manner (using the synoptic map format data and the MHD simulation model) shows that the new dataset from HMI will be useful for the models, such as the MHD and the potential field models, as the previous dataset by SOHO/MDI.
Alfven Wave Tomography for Cold MHD Plasmas
I.Y. Dodin; N.J. Fisch
2001-09-07
Alfven waves propagation in slightly nonuniform cold plasmas is studied by means of ideal magnetohydrodynamics (MHD) nonlinear equations. The evolution of the MHD spectrum is shown to be governed by a matrix linear differential equation with constant coefficients determined by the spectrum of quasi-static plasma density perturbations. The Alfven waves are shown not to affect the plasma density inhomogeneities, as they scatter off of them. The application of the MHD spectrum evolution equation to the inverse scattering problem allows tomographic measurements of the plasma density profile by scanning the plasma volume with Alfven radiation.
Large Scale Earth's Bow Shock with Northern IMF as simulated by PIC code in parallel with MHD model
Baraka, Suleiman M
2016-01-01
In this paper, we propose a 3D kinetic model (Particle-in-Cell PIC ) for the description of the large scale Earth's bow shock. The proposed version is stable and does not require huge or extensive computer resources. Because PIC simulations work with scaled plasma and field parameters, we also propose to validate our code by comparing its results with the available MHD simulations under same scaled Solar wind ( SW ) and ( IMF ) conditions. We report new results from the two models. In both codes the Earth's bow shock position is found to be ~14.8 RE along the Sun-Earth line, and ~ 29 RE on the dusk side. Those findings are consistent with past in situ observations. Both simulations reproduce the theoretical jump conditions at the shock. However, the PIC code density and temperature distributions are inflated and slightly shifted sunward when compared to the MHD results. Kinetic electron motions and reflected ions upstream may cause this sunward shift. Species distributions in the foreshock region are depicted...
Ng, C S; Germaschewski, K; Pouquet, A; Bhattacharjee, A
2007-01-01
A recently developed spectral-element adaptive refinement incompressible magnetohydrodynamic (MHD) code [Rosenberg, Fournier, Fischer, Pouquet, J. Comp. Phys. 215, 59-80 (2006)] is applied to simulate the problem of MHD island coalescence instability (MICI) in two dimensions. MICI is a fundamental MHD process that can produce sharp current layers and subsequent reconnection and heating in a high-Lundquist number plasma such as the solar corona [Ng and Bhattacharjee, Phys. Plasmas, 5, 4028 (1998)]. Due to the formation of thin current layers, it is highly desirable to use adaptively or statically refined grids to resolve them, and to maintain accuracy at the same time. The output of the spectral-element static adaptive refinement simulations are compared with simulations using a finite difference method on the same refinement grids, and both methods are compared to pseudo-spectral simulations with uniform grids as baselines. It is shown that with the statically refined grids roughly scaling linearly with effec...
Krumholz, Mark R; Klein, Richard I; McKee, Christopher F
2016-01-01
As star-forming clouds collapse, the gas within them fragments to ever-smaller masses, until the cascade of fragmentation is arrested at some mass scale, making smaller objects progressively less likely to form. This scale defines the peak of the initial mass function (IMF). In this paper we analyse radiation-magnetohydrodynamics simulations of star cluster formation in typical Milky Way environments in order to determine what physical process limits fragmentation in them. We examine the regions in the vicinity of stars that form in the simulations to determine the amounts of mass that are prevented from fragmenting by thermal and magnetic pressure. We show that, on small scales, thermal pressure enhanced by stellar radiation heating is the dominant mechanism limiting the ability of the gas to further fragment. In the brown dwarf mass regime, $\\sim 0.01$ $M_\\odot$, the typical object that forms in the simulations is surrounded by gas whose mass is several times its own that is unable to escape or fragment, an...
Geometrical shock dynamics for magnetohydrodynamic fast shocks
Mostert, W.
2016-12-12
We describe a formulation of two-dimensional geometrical shock dynamics (GSD) suitable for ideal magnetohydrodynamic (MHD) fast shocks under magnetic fields of general strength and orientation. The resulting area–Mach-number–shock-angle relation is then incorporated into a numerical method using pseudospectral differentiation. The MHD-GSD model is verified by comparison with results from nonlinear finite-volume solution of the complete ideal MHD equations applied to a shock implosion flow in the presence of an oblique and spatially varying magnetic field ahead of the shock. Results from application of the MHD-GSD equations to the stability of fast MHD shocks in two dimensions are presented. It is shown that the time to formation of triple points for both perturbed MHD and gas-dynamic shocks increases as (Formula presented.), where (Formula presented.) is a measure of the initial Mach-number perturbation. Symmetry breaking in the MHD case is demonstrated. In cylindrical converging geometry, in the presence of an azimuthal field produced by a line current, the MHD shock behaves in the mean as in Pullin et al. (Phys. Fluids, vol. 26, 2014, 097103), but suffers a greater relative pressure fluctuation along the shock than the gas-dynamic shock. © 2016 Cambridge University Press
On the compressibility effect in test particle acceleration by magnetohydrodynamic turbulence
González, C A; Mininni, P D; Matthaeus, W H
2016-01-01
The effect of compressibility in charged particle energization by magnetohydrodynamic (MHD) fields is studied in the context of test particle simulations. This problem is relevant to the solar wind and the solar corona due to the compressible nature of the flow in those astrophysical scenarios. We consider turbulent electromagnetic fields obtained from direct numerical simulations of the MHD equations with a strong background magnetic field. In order to explore the compressibilty effect over the particle dynamics we performed different numerical experiments: an incompressible case, and two weak compressible cases with Mach number M = 0.1 and M = 0.25. We analyze the behavior of protons and electrons in those turbulent fields, which are well known to form aligned current sheets in the direction of the guide magnetic field. We show that compressibility enhances the efficiency of proton acceleration, and that the energization is caused by perpendicular electric fields generated between currents sheets. On the ot...
Baczynski, C; Klessen, R S
2015-01-01
We introduce a radiative transfer code module for the magnetohydrodynamical adaptive mesh refinement code FLASH 4. It is coupled to an efficient chemical network which explicitly tracks the three hydrogen species H, H_2, H+ as well as C+ and CO. The module is geared towards modeling all relevant thermal feedback processes of massive stars, and is able to follow the non-equilibrium time-dependent thermal and chemical state of the present-day interstellar medium as well as that of dense molecular clouds. We describe in detail the implementation of all relevant thermal stellar feedback mechanisms, i.e. photoelectric, photoionization and H_2 dissociation heating as well as pumping of molecular hydrogen by UV photons. All included radiative feedback processes are extensively tested. We also compare our module to dedicated photon-dominated region (PDR) codes and find good agreement in our modeled hydrogen species once our radiative transfer solution reaches equilibrium. In addition, we show that the implemented rad...
Approximate Riemann Solvers for the Cosmic Ray Magnetohydrodynamical Equations
Kudoh, Yuki
2016-01-01
We analyze the cosmic-ray magnetohydrodynamic (CR MHD) equations to improve the numerical simulations. We propose to solve them in the fully conservation form, which is equivalent to the conventional CR MHD equations. In the fully conservation form, the CR energy equation is replaced with the CR "number" conservation, where the CR number density is defined as the three fourths power of the CR energy density. The former contains an extra source term, while latter does not. An approximate Riemann solver is derived from the CR MHD equations in the fully conservation form. Based on the analysis, we propose a numerical scheme of which solutions satisfy the Rankine-Hugoniot relation at any shock. We demonstrate that it reproduces the Riemann solution derived by Pfrommer et al. (2006) for a 1D CR hydrodynamic shock tube problem. We compare the solution with those obtained by solving the CR energy equation. The latter solutions deviate from the Riemann solution seriously, when the CR pressure dominates over the gas p...
Magnetohydrodynamic Augmented Propulsion Experiment
Litchford, Ron J.; Cole, John; Lineberry, John; Chapman, Jim; Schmidt, Harold; Cook, Stephen (Technical Monitor)
2002-01-01
A fundamental obstacle to routine space access is the specific energy limitations associated with chemical fuels. In the case of vertical take-off, the high thrust needed for vertical liftoff and acceleration to orbit translates into power levels in the 10 GW range. Furthermore, useful payload mass fractions are possible only if the exhaust particle energy (i.e., exhaust velocity) is much greater than that available with traditional chemical propulsion. The electronic binding energy released by the best chemical reactions (e.g., LOX/LH2 for example, is less than 2 eV per product molecule (approx. 1.8 eV per H2O molecule), which translates into particle velocities less than 5 km/s. Useful payload fractions, however, will require exhaust velocities exceeding 15 km/s (i.e., particle energies greater than 20 eV). As an added challenge, the envisioned hypothetical RLV (reusable launch vehicle) should accomplish these amazing performance feats while providing relatively low acceleration levels to orbit (2-3g maximum). From such fundamental considerations, it is painfully obvious that planned and current RLV solutions based on chemical fuels alone represent only a temporary solution and can only result in minor gains, at best. What is truly needed is a revolutionary approach that will dramatically reduce the amount of fuel and size of the launch vehicle. This implies the need for new compact high-power energy sources as well as advanced accelerator technologies for increasing engine exhaust velocity. Electromagnetic acceleration techniques are of immense interest since they can be used to circumvent the thermal limits associated with conventional propulsion systems. This paper describes the Magnetohydrodynamic Augmented Propulsion Experiment (MAPX) being undertaken at NASA Marshall Space Flight Center (MSFC). In this experiment, a 1-MW arc heater is being used as a feeder for a 1-MW magnetohydrodynamic (MHD) accelerator. The purpose of the experiment is to demonstrate
MHD equilibrium and stability in heliotron plasmas
Ichiguchi, Katsuji [National Inst. for Fusion Science, Toki, Gifu (Japan)
1999-09-01
Recent topics in the theoretical magnetohydrodynamic (MHD) analysis in the heliotron configuration are overviewed. Particularly, properties of three-dimensional equilibria, stability boundary of the interchange mode, effects of the net toroidal current including the bootstrap current and the ballooning mode stability are focused. (author)
Numerical simulation of flare energy build-up and release via Joule dissipation. [solar MHD model
Wu, S. T.; Bao, J. J.; Wang, J. F.
1986-01-01
A new numerical MHD model is developed to study the evolution of an active region due to photospheric converging motion, which leads to magnetic-energy buildup in the form of electric current. Because this new MHD model has incorporated finite conductivity, the energy conversion occurs from magnetic mode to thermal mode through Joule dissipation. In order to test the causality relationship between the occurrence of flare and photospheric motion, a multiple-pole configuration with neutral point is used. Using these results it is found that in addition to the converging motion, the initial magnetic-field configuration and the redistribution of the magnetic flux at photospheric level enhance the possibility for the development of a flare.
An MHD model of the earth's magnetosphere
Wu, C. C.
1985-01-01
It is pointed out that the earth's magnetosphere arises from the interaction of the solar wind with the earth's geomagnetic field. A global magnetohydrodynamics (MHD) model of the earth's magnetosphere has drawn much attention in recent years. In this model, MHD equations are used to describe the solar wind interaction with the magnetosphere. In the present paper, some numerical aspects of the model are considered. Attention is given to the ideal MHD equations, an equation of state for the plasma, the model as an initial- and boundary-value problem, the shock capturing technique, computational requirements and techniques for global MHD modeling, a three-dimensional mesh system employed in the global MHD model, and some computational results.
Observational signatures of numerically simulated MHD waves in small-scale fluxtubes
Khomenko, E; Felipe, T
2008-01-01
We present some results obtained from the synthesis of Stokes profiles in small-scale flux tubes with propagating MHD waves. To that aim, realistic flux tubes showing internal structure have been excited with 5 min period drivers, allowing non-linear waves to propagate inside the magnetic structure. The observational signatures of these waves in Stokes profiles of several spectral lines that are commonly used in spectropolarimetric measurements are discussed.
On stability and instability criteria for magnetohydrodynamics.
Friedlander, Susan; Vishik, Misha M.
1995-06-01
It is shown that for most, but not all, three-dimensional magnetohydrodynamic (MHD) equilibria the second variation of the energy is indefinite. Thus the class of such equilibria whose stability might be determined by the so-called Arnold criterion is very restricted. The converse question, namely conditions under which MHD equilibria will be unstable is considered in this paper. The following sufficient condition for linear instability in the Eulerian representation is presented: The maximal real part of the spectrum of the MHD equations linearized about an equilibrium state is bounded from below by the growth rate of an operator defined by a system of local partial differential equations (PDE). This instability criterion is applied to the case of axisymmetric toroidal equilibria. Sufficient conditions for instability, stronger than those previously known, are obtained for rotating MHD. (c) 1995 American Institute of Physics.
Xie, Lianghai; Li, Lei; Zhang, Yiteng; Feng, Yongyong; Wang, Xinyue; Zhang, Aibing; Kong, Linggao
2015-08-01
Lunar minimagnetosphere formed by the interaction between the solar wind and a local crustal field often has a scale size comparable to the ion inertia length, in which the Hall effect is very important. In this paper, the general characteristics of lunar minimagnetosphere are investigated by three-dimensional Hall MHD simulations. It is found that the solar wind ions can penetrate across the magnetopause to reduce the density depletion and cause the merging of the shock and magnetopause, but the electrons are still blocked at the boundary. Besides, asymmetric convection occurs, resulting in the magnetic field piles up on one side while the plasma gathers on the other side. The size of the minimagnetosphere is determined by both the solar zenith angle and the magnetosonic Mach number, while the Hall effect is determined by the ratio of the pressure balance distance to the ion inertia length. When the ratio gets small, the shock may disappear. Finally, we present a global Hall MHD simulation for comparison with the observation from Chang'E-2 satellite on 11 October 2010 and confirm that Chang'E-2 flew across compression regions of two separate minimagnetospheres.
Wareing, C J; Falle, S A E G
2016-01-01
We have used the AMR hydrodynamic code, MG, to perform 3D magnetohydrodynamic simulations with self-gravity of stellar feedback in a sheet-like molecular cloud formed through the action of the thermal instability. We simulate the interaction of the mechanical energy input from a 15Msun star and a 40Msun star into a 100pc-diameter 17000Msun cloud with a corrugated sheet morphology that in projection appears filamentary. The stellar winds are introduced using appropriate Geneva stellar evolution models. In the 15Msun star case, the wind forms a narrow bipolar cavity with minimal effect on the parent cloud. In the 40Msun star case, the more powerful stellar wind creates a large cylindrical cavity through the centre of the cloud. After 12.5Myrs and 4.97Myrs respectively, the massive stars explode as supernovae (SNe). In the 15Msun star case, the SN material and energy is primarily deposited into the molecular cloud surroundings over 10^5 years before the SN remnant escapes the cloud. In the 40Msun star case, the ...
Magnetohydrodynamic Simulation of the Chordal Wire-Array Plasma Flow Switch
Domonkos, Matthew; Amdahl, David
2015-11-01
The coaxial plasma flow switch (PFS) using a chordal wire array armature was first studied experimentally and computationally in the 1980's. That work revealed significant current interruption (dI/dt ~ 5 MA/ μs) as well as continuum x-ray emission representative of 30-45 keV bremsstrahlung. The work concluded that the voltage spike associated with the current interruption accelerated highly magnetized ions downstream at high velocity, and that energy exchange between the ions and electrons and their subsequent acceleration at the downstream boundary of the apparatus were responsible for the x-ray production. This work revisits the PFS operation up to and just beyond the point of armature lift-off from the coaxial section, where the magnetohydrodynamic model is valid and relevant. The early-time energy deposition in the wires from the pulse discharge is modeled in high-resolution 1-D and is used to set the initial conditions for the full-scale 3-D calculation. The wire array is assumed to have expanded from the initial r =0.01 cm uniformly and only in the axial direction, while the areal mass density retains its intended variation with radius. 3-D calculations are used to examine the armature, including magnetic field diffusion, as it is propelled along the coaxial geometry. These calculations will be used to set the initial conditions for follow-on particle or particle-fluid hybrid calculations of the propagation of ions and electrons to downstream obstacles and to calculate the x-ray production from the interactions of the flowing plasma with the obstacles.
Fundamental fluid mechanics and magnetohydrodynamics
Hosking, Roger J
2016-01-01
This book is primarily intended to enable postgraduate research students to enhance their understanding and expertise in Fluid Mechanics and Magnetohydrodynamics (MHD), subjects no longer treated in isolation. The exercises throughout the book often serve to provide additional and quite significant knowledge or to develop selected mathematical skills, and may also fill in certain details or enhance readers’ understanding of essential concepts. A previous background or some preliminary reading in either of the two core subjects would be advantageous, and prior knowledge of multivariate calculus and differential equations is expected.
Micromachined magnetohydrodynamic actuators and sensors
Lee, Abraham P.; Lemoff, Asuncion V.
2000-01-01
A magnetohydrodynamic (MHD) micropump and microsensor which utilizes micromachining to integrate the electrodes with microchannels and includes a magnet for producing magnetic fields perpendicular to both the electrical current direction and the fluid flow direction. The magnet can also be micromachined and integrated with the micropump using existing technology. The MHD micropump, for example, can generate continuous, reversible flow, with readily controllable flow rates. The flow can be reversed by either reversing the electrical current flow or reversing the magnetic field. By mismatching the electrodes, a swirling vortex flow can be generated for potential mixing applications. No moving parts are necessary and the dead volume is minimal. The micropumps can be placed at any position in a fluidic circuit and a combination of micropumps can generate fluidic plugs and valves.
Simulations of Gyrosynchrotron Microwave Emission from an Oscillating 3D Magnetic Loop
Kuznetsov, Alexey; Reznikova, Veronika
2015-01-01
Radio observations of solar flares often reveal various periodic or quasi-periodic oscillations. Most likely, these oscillations are caused by magnetohydrodynamic (MHD) oscillations of flaring loops which modulate the emission. Interpretation of the observations requires comparing them with simulations. We simulate the gyrosynchrotron radio emission from a semi-circular (toroidal-shaped) magnetic loop containing sausage-mode MHD oscillations. The aim is to detect the observable signatures specific to the considered MHD mode and to study their dependence on the various source parameters. The MHD waves are simulated using a linear three-dimensional model of a magnetized plasma cylinder; both standing and propagating waves are considered. The curved loop is formed by replicating the MHD solutions along the plasma cylinder and bending the cylinder; this model allows us to study the effect of varying the viewing angle along the loop. The radio emission is simulated using a three-dimensional model and its spatial a...
Relativistic magnetohydrodynamics
Hernandez, Juan; Kovtun, Pavel
2017-05-01
We present the equations of relativistic hydrodynamics coupled to dynamical electromagnetic fields, including the effects of polarization, electric fields, and the derivative expansion. We enumerate the transport coefficients at leading order in derivatives, including electrical conductivities, viscosities, and thermodynamic coefficients. We find the constraints on transport coefficients due to the positivity of entropy production, and derive the corresponding Kubo formulas. For the neutral state in a magnetic field, small fluctuations include Alfvén waves, magnetosonic waves, and the dissipative modes. For the state with a non-zero dynamical charge density in a magnetic field, plasma oscillations gap out all propagating modes, except for Alfvén-like waves with a quadratic dispersion relation. We relate the transport coefficients in the "conventional" magnetohydrodynamics (formulated using Maxwell's equations in matter) to those in the "dual" version of magnetohydrodynamics (formulated using the conserved magnetic flux).
Haas, Fernando; Pascoal, Kellen Alves [Instituto de Física, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS (Brazil); Mendonça, José Tito [IPFN, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal and Instituto de Física, Universidade de São Paulo, 05508-090 São Paulo, SP (Brazil)
2016-01-15
A new neutrino magnetohydrodynamics (NMHD) model is formulated, where the effects of the charged weak current on the electron-ion magnetohydrodynamic fluid are taken into account. The model incorporates in a systematic way the role of the Fermi neutrino weak force in magnetized plasmas. A fast neutrino-driven short wavelengths instability associated with the magnetosonic wave is derived. Such an instability should play a central role in strongly magnetized plasma as occurs in supernovae, where dense neutrino beams also exist. In addition, in the case of nonlinear or high frequency waves, the neutrino coupling is shown to be responsible for breaking the frozen-in magnetic field lines condition even in infinite conductivity plasmas. Simplified and ideal NMHD assumptions were adopted and analyzed in detail.
Gorlin, S.M.; Ljubimov, G.A.; Bitjurin, V.A.; Kovbasjuk, V.I.; Maximenko, V.I.; Medin, S.A.; Barshak, A.E.
1979-12-25
A magnetohydrodynamic device having a duct for a conducting gas to flow at an angle with the direction of the magnetic field induction vector is described. The duct is situated in the magnetic system and is provided with a plurality of electrodes adapted to interact electrically with the gas, whereas the cross-sectional shape of the duct working space is bounded by a closed contour formed by a curve inscribed into a rectangle. 1 claim.
王立军; 贾申利; 史宗谦; 荣命哲
2005-01-01
Based on magnetohydrodynamic (MHD) model of vacuum arc, the computer simulation of vacuum arc was carried out in this paper. In the MHD model, mass conservation equation,momentum conservation equations, energy conservation equations, generalized ohm's law and Maxwell equation were considered. MHD equations were calculated by numerical method, and the distribution of vacuum arc plasma parameters and current density were obtained. Simulation results showed that the magnetic constriction effect of vacuum arc is primarily caused by the Hall effect. In addition, the inhibition of axial magnetic field (AMF) on constriction of vacuum arc was calculated and analyzed.
Deng, Wei; Zhang, Bing; Li, Shengtai
2015-01-01
We perform 3D relativistic ideal MHD simulations to study the collisions between high-$\\sigma$ (Poynting-flux-dominated) blobs which contain both poloidal and toroidal magnetic field components. This is meant to mimic the interactions inside a highly variable Poynting-flux-dominated jet. We discover a significant electromagnetic field (EMF) energy dissipation with an Alfv\\'enic rate with the efficiency around 35\\%. Detailed analyses show that this dissipation is mostly facilitated by the collision-induced magnetic reconnection. Additional resolution and parameter studies show a robust result that the relative EMF energy dissipation efficiency is nearly independent of the numerical resolution or most physical parameters in the relevant parameter range. The reconnection outflows in our simulation can potentially form the multi-orientation relativistic mini-jets as needed for several analytical models. We also find a linear relationship between the $\\sigma$ values before and after the major EMF energy dissipatio...
Huang, Z.; Toth, G.; Gombosi, T. I.; Jia, X.; Rubin, M.; Hansen, K. C.; Fougere, N.; Bieler, A. M.; Shou, Y.; Altwegg, K.; Combi, M. R.; Tenishev, V.
2015-12-01
The neutral and plasma environment is critical in understanding the interaction of comet Churyumov-Gerasimenko (CG), the target of the Rosetta mission, and the solar wind. To serve this need and support the Rosetta mission, we develop a 3-D four fluid model, which is based on BATS-R-US within the SWMF (Space Weather Modeling Framework) that solves the governing multi-fluid MHD equations and the Euler equations for the neutral gas fluid. These equations describe the behavior and interactions of the cometary heavy ions, the solar wind protons, the electrons, and the neutrals. This model incorporates different mass loading processes, including photo and electron impact ionization, charge exchange, dissociative ion-electron recombination, and collisional interactions between different fluids. We simulate the near nucleus plasma and neutral gas environment near perihelion with a realistic shape model of CG and compare our simulation results with Rosetta observations.
Yokoyama, Takaaki; Oi, Yoshiaki; Toriumi, Shin
2017-08-01
Active regions holding a delta-sunspot are known to produce the largest class of solar flares. How, where, and when such large flares occur above a delta-sunspot are still under debate. For studying this, 3D MHD simulations of the emergence of a subsurface flux tube at two locations in a simulation box modeling the convection zone to the corona were conducted. We found that a flux rope is formed as a consequence of magnetic reconnection of two bipolar loops and sunspot rotation caused by the twist of the subsurface flux tube. Moreover, the flux rope stops ascending when the initial background is not magnetized, whereas it rises up to the upper boundary when a reconnection favorably oriented pre-existing field is introduced to the initial background.
Hoelzl, M; Merkel, P; Atanasiu, C; Lackner, K; Nardon, E; Aleynikova, K; Liu, F; Strumberger, E; McAdams, R; Chapman, I; Fil, A
2014-01-01
The dynamics of large scale plasma instabilities can strongly be influenced by the mutual interaction with currents flowing in conducting vessel structures. Especially eddy currents caused by time-varying magnetic perturbations and halo currents flowing directly from the plasma into the walls are important. The relevance of a resistive wall model is directly evident for Resistive Wall Modes (RWMs) or Vertical Displacement Events (VDEs). However, also the linear and non-linear properties of most other large-scale instabilities may be influenced significantly by the interaction with currents in conducting structures near the plasma. The understanding of halo currents arising during disruptions and VDEs, which are a serious concern for ITER as they may lead to strong asymmetric forces on vessel structures, could also benefit strongly from these non-linear modeling capabilities. Modeling the plasma dynamics and its interaction with wall currents requires solving the magneto-hydrodynamic (MHD) equations in realist...
Decaying magnetohydrodynamics: effects of initial conditions
Basu
2000-02-01
We study the effects of homogenous and isotropic initial conditions on decaying magnetohydrodynamics (MHD). We show that for an initial distribution of velocity and magnetic-field fluctuations, appropriately defined structure functions decay as a power law in time. We also show that for a suitable choice of initial cross correlations between velocity and magnetic fields even-order structure functions acquire anomalous scaling in time where as scaling exponents of the odd-order structure functions remain unchanged. We discuss our results in the context of fully developed MHD turbulence.
Ohsuga, Ken
2011-01-01
We present the detailed global structure of black hole accretion flows and outflows through newly performed two-dimensional radiation-magnetohydrodynamic simulations. By starting from a torus threaded with weak toroidal magnetic fields and by controlling the central density of the initial torus, rho_0, we can reproduce three distinct modes of accretion flow. In model A with the highest central density, an optically and geometrically thick supercritical accretion disk is created. The radiation force greatly exceeds the gravity above the disk surface, thereby driving a strong outflow (or jet). Because of the mild beaming, the apparent (isotropic) photon luminosity is ~22L_E (where L_E is the Eddington luminosity) in the face-on view. Even higher apparent luminosity is feasible if we increase the flow density. In model B with a moderate density, radiative cooling of the accretion flow is so efficient that a standard-type, cold, and geometrically thin disk is formed at radii greater than ~7R_S (where R_S is the S...
Ohsuga, Ken; Mori, Masao; Kato, Yoshiaki
2009-01-01
Black-hole accretion systems are known to possess several distinct modes (or spectral states), such as low/hard state, high/soft state, and so on. Since the dynamics of the corresponding flows is distinct, theoretical models were separately discussed for each state. We here propose a unified model based on our new, global, two-dimensional radiation-magnetohydrodynamic simulations. By controlling a density normalization we could for the first time reproduce three distinct modes of accretion flow and outflow with one numerical code. When the density is large (model A), a geometrically thick, very luminous disk forms, in which photon trapping takes place. When the density is moderate (model B), the accreting gas can effectively cool by emitting radiation, thus generating a thin disk, i.e., the soft-state disk. When the density is too low for radiative cooling to be important (model C), a disk becomes hot, thick, and faint; i.e., the hard-state disk. The magnetic energy is amplified within the disk up to about tw...
Matsumoto, Jin; Masada, Youhei; Asano, Eiji; Shibata, Kazunari
2011-05-01
The nonlinear dynamics of outflows driven by magnetic explosion on the surface of a compact star is investigated through special relativistic magnetohydrodynamic simulations. We adopt, as the initial equilibrium state, a spherical stellar object embedded in hydrostatic plasma which has a density ρ(r) vprop r -α and is threaded by a dipole magnetic field. The injection of magnetic energy at the surface of a compact star breaks the equilibrium and triggers a two-component outflow. At the early evolutionary stage, the magnetic pressure increases rapidly around the stellar surface, initiating a magnetically driven outflow. A strong forward shock driven outflow is then excited. The expansion velocity of the magnetically driven outflow is characterized by the Alfvén velocity on the stellar surface and follows a simple scaling relation v mag vprop v A 1/2. When the initial density profile declines steeply with radius, the strong shock is accelerated self-similarly to relativistic velocity ahead of the magnetically driven component. We find that it evolves according to a self-similar relation Γsh vprop r sh, where Γsh is the Lorentz factor of the plasma measured at the shock surface r sh. A purely hydrodynamic process would be responsible for the acceleration mechanism of the shock driven outflow. Our two-component outflow model, which is the natural outcome of the magnetic explosion, can provide a better understanding of the magnetic active phenomena on various magnetized compact stars.
Nakamura, T K M; Hasegawa, H; Shinohara, I
2010-04-01
Ion-to-magnetohydrodynamic scale physics of the transverse velocity shear layer and associated Kelvin-Helmholtz instability (KHI) in a homogeneous, collisionless plasma are investigated by means of full particle simulations. The shear layer is broadened to reach a kinetic equilibrium when its initial thickness is close to the gyrodiameter of ions crossing the layer, namely, of ion-kinetic scale. The broadened thickness is larger in B⋅Ω0 case, where Ω is the vorticity at the layer. This is because the convective electric field, which points out of (into) the layer for B⋅Ω0), extends (reduces) the gyrodiameters. Since the kinetic equilibrium is established before the KHI onset, the KHI growth rate depends on the broadened thickness. In the saturation phase of the KHI, the ion vortex flow is strengthened (weakened) for B⋅Ω0), due to ion centrifugal drift along the rotational plasma flow. In ion inertial scale vortices, this drift effect is crucial in altering the ion vortex size. These results indicate that the KHI at Mercury-like ion-scale magnetospheric boundaries could show clear dawn-dusk asymmetries in both its linear and nonlinear growth.
Takahashi, Hiroyuki R; Kawashima, Tomohisa; Sekiguchi, Yuichiro
2016-01-01
Using three-dimensional general relativistic radiation magnetohydrodynamics simulations of accretion flows around stellar mass black holes, we report that the relatively cold disk ($\\gtrsim 10^{7}$K) is truncated near the black hole. Hot and less-dense regions, of which the gas temperature is $ \\gtrsim 10^9$K and more than ten times higher than the radiation temperature (overheated regions), appear within the truncation radius. The overheated regions also appear above as well as below the disk, and sandwich the cold disk, leading to the effective Compton upscattering. The truncation radius is $\\sim 30 r_{\\rm g}$ for $\\dot{M} \\sim L_{\\rm Edd}/c^2$, where $r_{\\rm g}, \\dot M, L_\\mathrm{Edd}, c$ are the gravitational radius, mass accretion rate, Eddington luminosity, and light speed. Our results are consistent with observations of very high state, whereby the truncated disk is thought to be embedded in the hot rarefied regions. The truncation radius shifts inward to $\\sim 10 r_{\\rm g}$ with increasing mass accret...
XIONG Ming; PENG Zhong; HU You-Qiu; ZHENG Hui-Nan
2009-01-01
Three-dimensional global magnetohydrodynamic simulations of the solar wind magnetosphere-ionosphere system are carried out to explore the dependence of the magnetospheric reconnection voltage, the ionospheric transpolar potential, and the field aligned currents (FACs) on the solar wind driver and ionosphere load for the cases with pure southward interplanetary magnetic field (IMP). It is shown that the reconnection voltage and the transpolar potential increase monotonically with decreasing Pedersen conductance (∑p ), increasing southward IMF strength (Bs) and solar wind speed (vsw). Moreover, both regions 1 and 2 FACs increase when Bs and vsw increase, whereas the two currents behave differently in response to ∑p. As ∑p increases, the region 1 FAC increases monotonically, but region 2 FAC shows a non-monotonic response to the increase of ∑p : it first increases in the range of (0,5) Siemens and then decreases for ∑p 5 Siemens.
Fuerst, Steven V.; /KIPAC, Menlo Park; Mizuno, Yosuke; /USRA, Huntsville; Nishikawa, Ken-Ichi; /USRA, Huntsville /Alabama U., Huntsville; Wu, Kinwah; /Mullard Space Sci.
2007-01-05
We calculate the emission from relativistic flows in black hole systems using a fully general relativistic radiative transfer formulation, with flow structures obtained by general relativistic magneto-hydrodynamic simulations. We consider thermal free-free emission and thermal synchrotron emission. Bright filament-like features protrude (visually) from the accretion disk surface, which are enhancements of synchrotron emission where the magnetic field roughly aligns with the line-of-sight in the co-moving frame. The features move back and forth as the accretion flow evolves, but their visibility and morphology are robust. We propose that variations and drifts of the features produce certain X-ray quasi-periodic oscillations (QPOs) observed in black-hole X-ray binaries.
MHD turbulence and distributed chaos
Bershadskii, A
2016-01-01
It is shown, using results of recent direct numerical simulations, that spectral properties of distributed chaos in MHD turbulence with zero mean magnetic field are similar to those of hydrodynamic turbulence. An exception is MHD spontaneous breaking of space translational symmetry, when the stretched exponential spectrum $\\exp(-k/k_{\\beta})^{\\beta}$ has $\\beta=4/7$.
General-Relativistic Resistive Magnetohydrodynamics in three dimensions: formulation and tests
Dionysopoulou, Kyriaki; Palenzuela, Carlos; Rezzolla, Luciano; Giacomazzo, Bruno
2013-01-01
We present a new numerical implementation of the general-relativistic resistive magnetohydrodynamics (MHD) equations within the Whisky code. The numerical method adopted exploits the properties of Implicit-Explicit Runge-Kutta numerical schemes to treat the stiff terms that appear in the equations for small electrical conductivities. Using tests in one, two, and three dimensions, we show that our implementation is robust and recovers the ideal-MHD limit in regimes of very high conductivity. Moreover, the results illustrate that the code is capable of describing physical setups in all ranges of conductivities. In addition to tests in flat spacetime, we report simulations of magnetized nonrotating relativistic stars, both in the Cowling approximation and in dynamical spacetimes. Finally, because of its astrophysical relevance and because it provides a severe testbed for general-relativistic codes with dynamical electromagnetic fields, we study the collapse of a nonrotating star to a black hole. We show that als...
Adaptive mesh refinement with spectral accuracy for magnetohydrodynamics in two space dimensions
Rosenberg, D; Pouquet, A
2007-01-01
We examine the effect of accuracy of high-order spectral element methods, with or without adaptive mesh refinement (AMR), in the context of a classical configuration of magnetic reconnection in two space dimensions, the so-called Orszag-Tang vortex made up of a magnetic X-point centered on a stagnation point of the velocity. A recently developed spectral-element adaptive refinement incompressible magnetohydrodynamic (MHD) code is applied to simulate this problem. The MHD solver is explicit, and uses the Elsasser formulation on high-order elements. It automatically takes advantage of the adaptive grid mechanics that have been described elsewhere in the fluid context [Rosenberg, Fournier, Fischer, Pouquet, J. Comp. Phys. 215, 59-80 (2006)]; the code allows both statically refined and dynamically refined grids. Tests of the algorithm using analytic solutions are described, and comparisons of the Orszag-Tang solutions with pseudo-spectral computations are performed. We demonstrate for moderate Reynolds numbers th...
Takamoto, Makoto
2016-01-01
In this Letter, we report compressible mode effects on relativistic magnetohydrodynamic (RMHD) turbulence in Poynting-dominated plasmas using 3-dimensional numerical simulations. We decomposed fluctuations in the turbulence into 3 MHD modes (fast, slow, and Alfv\\'en) following the procedure mode decomposition in (Cho & Lazarian 2002), and analyzed their energy spectra and structure functions separately. We also analyzed the ratio of compressible mode to Alfv\\'en mode energy with respect to its Mach number. We found the ratio of compressible mode increases not only with the Alfv\\'en Mach number but with the background magnetization, which indicates a strong coupling between the fast and Alfv\\'en modes and appearance of a new regime of RMHD turbulence in Poynting-dominated plasmas where the fast and Alfv\\'en modes strongly couples and cannot be distinguished, different from the non-relativistic MHD case. This finding will affect particle acceleration efficiency obtained by assuming Alfv\\'enic critical balan...
Bhatia, Tanayveer Singh
2016-01-01
The emergence of turbulence in shear flows is a well-investigated field. Yet, one of major issues is the apparent contradiction between linear stability analysis quoting a flow to be stable and results from experiments and simulations proving it to be otherwise. There is some success, in particular in astrophysical systems, based on Magneto-Rotational Instability (MRI). However, MRI requires the system to be weakly magnetized, which is not a feature of general magnetohydrodynamic (MHD) flows. Nevertheless, linear perturbations of such flows are nonnormal in nature which argues for an origin of nonlinearity therein. The idea is, nonnormal perturbations could produce huge transient energy growth (TEG), which may lead to non-linearity and further turbulence. However, so far, nonnormal effects in shear flows have not been explored much in the presence of magnetic fields. Here, we consider the perturbed visco-resistive incompressible MHD shear flows with rotation in general. Basically we consider the magnetized ve...
Shell-to-shell energy transfer in magnetohydrodynamics. I. Steady state turbulence.
Alexakis, Alexandros; Mininni, Pablo D; Pouquet, Annick
2005-10-01
We investigate the transfer of energy from large scales to small scales in fully developed forced three-dimensional magnetohydrodynamics (MHD) turbulence by analyzing the results of direct numerical simulations in the absence of an externally imposed uniform magnetic field. Our results show that the transfer of kinetic energy from large scales to kinetic energy at smaller scales and the transfer of magnetic energy from large scales to magnetic energy at smaller scales are local, as is also found in the case of neutral fluids and in a way that is compatible with the Kolmogorov theory of turbulence. However, the transfer of energy from the velocity field to the magnetic field is a highly nonlocal process in Fourier space. Energy from the velocity field at large scales can be transferred directly into small-scale magnetic fields without the participation of intermediate scales. Some implications of our results to MHD turbulence modeling are also discussed.